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ABSTRACT

CASE STUDIES OF HIGH SCHOOL

STUDENTS USING PHYSICAL MODELS

TO STUDY MATHEMATICAL SYSTEMS

by

Gerald Clayton Burke

Purpose

The purpose of this study was to examine in detail the cognitive

outcomes of high school students using physical models to study the

structure and nature of mathematical systems. By mathematizing some

physical representation of a phenomena and studying that model, the

study was designed to explore how well the students could deal effec-

tively with mathematical models, understand the nature of an axiomatic

system and the process of logically deducing propositions for investi-

gations.

Procedure

The students chosen for this study were selected from inter—

mediate algebra classes taught at Suncoast High School, Riviera Beach,

Florida. During the first semester of the 1972—73 school term, stu—

dents were introduced to the operations and properties of the real

numbers in an algebraic setting with emphasis on the postulational

procedure which included operations and properties of a group. At

the beginning of the second semester, ten highly motivated and above





Gerald Clayton Burke

average students were selected to complete a ten—week schedule of

activities instead of their regular class work. All sessions were

recorded on audio tapes as the students worked in small groups or

individually. Ten activity—based exercises, most of which were

adapted from Laboratory Manual for Elementary Mathematics by Fitz-

gerald, et al., were the source of techniques and procedures. The

results of the study were reported using the case study procedure.

Findings

The results of the research demonstrates that within the con—

straints of normal classroom conditions, high school students can

achieve a higher level of understanding the entire nature of: (1) model

building both physical and abstract, (2) the axiomatic process, and

(3) the process by which propositions are logically deduced from

other assumptions and proved.
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GENERI

INTRODUCTION

Ideas in mathematics once thought to be too difficult for high

school students to study are now commonplace in many secondary school

curricula. Many of the ideas fundamental to understanding the nature

of mathematical structure are no longer reserved for advanced courses

or specialized enrichment programs. On matrix theory, Davis makes the

following observation:

A generation ago, the subject was taught as an intermediate

or first-year graduate course in college and was taken by majors

in mathematics and theoretical physics. The School Mathematics

Study Group (SMSC) has been instrumental in introducing matrix

theory into the secondary curriculum.

Fuller found analytic geometry suitable for above average students when

he wrote:

Inasmuch as this particular course is taught almost exclu-

sively in colleges, this publication is designed for college

freshmen. This book finds ready application in high school

which provide for such a study for their mathematically in—

clined students.

Brumfiel implies the postulation method to correct logical deficiencies

in high school geometry when he cited:

It is common belief that plane geometry was completed by

Euclid 2000 years ago and that nothing has been added to it or

 

1Philip J. Davis, The Mathematics of Matrices: A First Book of

Matrix Theory and Linear Algebra (Boston, Mass.: Ginn and Company, 1965)

pp. vi-vii.

 

 

2Gordon Fuller, Analytic Geometry (Reading, Mass.: Addison-

Wesley Publishing Company, Inc., 1964) p. v.

l
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taken from it since. This is simply not true. That these are

logical gaps in Euclid's presentation has been known for a long

time. Means to remedy these deficiencies have been known for

about sixty years, but strangely enough a mathematically ade-

quate and yet elementary treatment of plane geometry in the

spirit of Euclid has not appeared in print. This text repre-

sents an earnest effort to do this. The current interest in

improvement of the secondary school curriculum makes this an

appropriate time for such an attempt.

These ideas have been incorporated into the high school curricu-

lum as a result of the efforts put forth by mathematicians, mathematics

educators, classroom teachers, administrators, national curricula study

groups and committees. This change in the curriculum has given rise to

a challenge in which experimentation and exploration with ideas and ac-

tivities can be realized. Those ideas and activities when properly im-

plemented, can lead the high school student to a greater understanding

of the nature of mathematical structure and the deductive process there-

in. Mathematics should be presented in a manner which is conducive to

developing critical and creative thinking at all levels.

Rationale for the Study 

The purpose of this study is to observe and report in detail the

cognitive attainments of high school students as they study the mathe-

matical properties which are embodied in physical models. This writer

believes that such an examination will reveal how well individual high

school students can in fact deal with the ideas of mathematical systems.

By mathematizing some physical presentation of a phenomena then construct-

ing a mathematical model of the phenomena and studying that model. This

study will explore the students' ability to deal effectively with mathe-

 

3Charles F, Brumfiel, Robert E. Eicholz, and Merrill E. Shanks,

Geometry (Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1960)

p. ix.
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3

matical models, the nature of an axiomatic system, and the process of

logically deducing propositions for investigation. Blattner makes the

following observation concerning models to support this notion:

In the beginning of an axiomatic study of a mathematical sys-

tem, it is instructive to examine models of the situation, for

models have an unexcelled power of clarifying concepts and sug-

gest proper questions for investigations.

The high school student can play the ”mathematical game" of setting cer-

tain rules and understanding certain assumptions as they are related to

the idealization of an axiomatic system by means of a physical model.

Mathematical systems are characterized by certain operations and

properties; this study makes full use of physical models in the real

world to represent those Operations and properties so that in the final

process, abstract properties of the mathematical system can be under-

stood. This notion is supported by the Cambridge Conference which re-

ported that:

Every application of mathematics depends on a model,

and the value of the deduction is more an attribute of the model

than it is of the mathematics. We believe that students can be

made aware of the distinction between the real world and its

various mathematical models.

Concrete operations can be executed by the student with a physi-

cal model and related to an analogous operation in a mathematical system.

Physical models can be used to formulate properties which can be related

to analogous properties in a mathematical system. This process of mathe-

matizing a physical phenomena leads to a fuller understanding of the

 

4John W. Blattner, Projective Plane Geometry (San Francisco:

Holden-Day, Inc., 1968) p. 17.

 

5The Report of the Cambridge Conference on School Mathematics,

The Goals for School Mathematics (Boston, Mass.: Houghton Mifflin Com-

pany, 1963) p. 47.
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relationship between physical models and mathematical systems as models

was expressed by Meserve when he wrote:

In recent years the emphasis throughout mathematics has

shifted to thinking of the mathematical system as a model of the

physical situation. The interrelation between a physical model

(representation, application) of the mathematical system and the

mathematical model (system, representation, abstraction) are be—

ing recognized as a basic aspect of mathematics. The trend

toward thinking of the mathematical system as a model is based,

at least in part, on the use of a variety of mathematical models

to represent different aspects of and different approximations

of the same-physical situation. The process of model building

is used at all levels and in all branches of mathematics.

The simplicity employed in formulating the operations and pro-

perties of physical models enhances the high school student's ability to

transfer a few basic operations and properties that can characterize ab-

stract mathematical systems. Although the models will vary with physi-

cal representation, an abstract pattern can be formulated which will

identify many different and revealing consequences which are familiar to

the student from his previous experiences in the study of mathematics.

The importance of this simplicity is recognized by Anderson who made the

following observation:

One striking characteristic of a mathematical model is its

simplicity. In designing a mathematical model, we try to focus

our attention on the important ideas and ignore the irrelevent

ones.

Since the operations and properties of the physical models are

basic and simple, they can be changed at will and a variety of physical

representations can be employed. The basic operations and properties of

mathematical systems can likewise be altered. By making changes in

6Bruce E. Meserve, "An Improved Year of Geometry," The Mathe-

matics Teacher, LXV (February, 1972) pp. 177—78.

7Richard Anderson, Jack Garon, and Joseph Gremillian, School

Mathematics Geometry (Boston, Mass.: Houghton Mifflin Company, 1966)

Chapter 12.
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certain postulates of a mathematical model, new systems can be derived.

Lick points out the following:

Mathematics as a study of deductive systems allows great,

even unlimited flexibility of individual innovations, inven-

tions, and creativity. In no other discipline is this true.

By slightly altering some of the axioms, or definitions, one

can create whole new systems. For example, changing a few of

the basic axioms of high school geometry, can lead to new and

different geometries (i.e. Euclidean versus non-Euclidean).

It is the opinion of this writer that lateral transfers of con-

crete ideas of operations and properties acquired during the study of

physical models can be made to study the abstract structure of mathe-

matical systems. The ultimate realization is one in which students use

such acquired knowledge and understanding to reveal the structure and

nature of the deductive mathematical systems which are analogs of the

physical models. The Cambridge Conference reported the following:

I!

It is only when the model is fully formulated that the purely

deductive methods of mathematics takes over."9 Lick summarizes the

challenge proposed in this study when he stated:

Mathematics is abstract, mathematics is not nature. How-

ever, the key to the study of nature and natural phenomena is

the concept of the mathematical model. That is, a mathemati-

cal system can be chosen that its terms and assumptions have

some meaningful relation to the physical world and so may be a

model for a physical situation. This is another beautiful as-

pect of mathematics; in one instance it may be used as a tool

with application to models representing physical phenomena,

and in another it may be an abstract discipline in and of it-

self . . . whether pure (i.e. completely abstract) or applied

(i.e. having application to physical phenomena), the creation

of a mathematical system or model, the study of this entity,

and the derivation of consequences and results from it are

 

8Dale Lick, ”Why Not Mathematics," The Mathematics Teacher,

LXIV (January, 1971) p. 85.

9The Report of the Cambridge Conference on School Mathematics,

The Goals for School Mathematics (Boston, Mass.: Houghton Mifflin

Company, 1963) p. 47.
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steps in a process than can be extremely challenging and stimu—

lating (as well as frustrating at times). This process can and

should take place at every level of mathematical training and

study.10

Pilot Study

In order to realize some of the aforementioned suggestions deal-

ing with constructing a mathematical model of a physical situation this

investigator conducted a pilot study during the 1971—72 school year.

The student population consisted of five classes of first year geometry

at Suncoast High School, Riviera Beach, Florida.

One significant feature of geometry is that it can be character—

ized as a mathematical model of physical space. The pilot study was de-

signed to expose the students to some activities that developed a mean-

ingful relation between the terms (undefined, defined) and assumptions

(postulates, theorems) of a mathematical model and physical objects in

the real world; and the nature of an axiomatic system in which the pro-

cess of logically deducing propositions was applied. The study included

topics in finite geometries based on a mathematical model of a finite

number of points and the process of deducing propositions from other as-

sumptions of the model. To emphasize the importance of the postulation-

al method, a non-Euclidean geometry was introduced and studied. This

non-Euclidean geometry was characterized basically by a simple altera—

tion of a postulate and some pertinent definitions of a "kind” of geome-

try studied earlier. The results obtained from the pilot study served

as a guide in assisting this investigator to organize and complete the

study for this report.

 

10Dale Lick, ”Why Not Mathematics,” The Mathematics Teacher,

LXIV (January, l97l) p. 85.
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Finally, the most important significance of this study lies in

the fact that it observes a situation which affords students almost un-

limited opportunities to do some critical and creative thinking in

terms of relating that which is concrete (operations and properties)

and derived from the physical models to that which is abstract (opera-

tions and properties) and applied to the mathematical system. To

assess the significance of this study, the following nonstatistical hy-

pothesis is stated.

Hypothesis I "'

When selected, bright high school students are placed in

a circumstance where they can study mathematical models

which are embodied in physical models, they will demon—

strate their abilities to deal effectively with mathe-

matical models; the nature of an axiomatic system, and

the process of logically deducing propositions for in-

vestigations.

The case study procedure is the technique used to determine how well the

. I

students were able to realize the expectations stated in the hypothesis.

Organization of the Final Report 

Chapter I includes an introduction, rationale for the study, a

description of the pilot study, and the assessment hypothesis. Chapter

II includes an introduction, a review of the literature and a summary.

Chapter III contains the procedure used in the study. An introduction

is included; a description of the activities, a description of the stu-

dents, and a summary of selected test results of students participating

in the study. Chapter IV includes an introduction, a case study report

of each activity as listed in Chapter III of this report and a summary.

Chapter V includes the summary, discussion recommendations for further

research and the conclusions.





CHAPTER II

A REVIEW OF THE LITERATURE 

Introduction

To deal effectively with the kind of report investigated in

this study, an out of the ordinary type of assessment was used to evalu-

ate how well the individuals involved in this study performed. The

assessment procedure used to evaluate the results obtained from this

investigation is the case study approach.

A close examination of individual, and/or small group perfor-

mance is of utmost importance to the appropriate evaluation of the re—

sults obtained, and it was felt that the case study approach would

serve the best purpose in that from the point of view of research, this

approach uses an intensive investigation of the activity,individual

and/or group under observation. Good reports that the most important

step in the case study is to identify the unit for investigation in

the form of some aspect of an observed behavior or recorded activity.1

This study deals with the activities of students investigating speci-

fic activity—based concepts which are observable and recorded. The

literature however, did not contain any major studies at the secondary

level similar in nature to the study in this report.

 

ICarter V. Good, ”The Individual and Case Study: Diagnosis and

Therapy,” Essentials of Educational Research (New York: Appleton-Crofts

1966) p. 313.
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A major problem at the time of this writing is the limitations

imposed upon this investigator due to the almost complete absence of

similar studies. Shaughnessy makes mention of the work advanced by

Zoltan Dienes who advocates the use of physical materials and games in

a manipulative manner before moving gradually to formal mathematical

symbols and abstract systems.2 Though most of Dienes work has been

done on the primary and intermediate levels, his results have implica—

tions for all levels of mathematics.

Review of the Literature 

As was pointed out earlier in this report, research on activity—

based mathematical studies at the secondary level are virtually non—

existent; and none have been found that reported their results using

the case study method. This, however, does not mean that there are

no studies dealing with the basic ideas of mathematical systems or

models; the nature of axiomatic systems or the process of logically

deducing propositions from assumptions for investigations. The pilot

study (Chapter I) for this report dealt specifically with the process

of characterizing geometry as a mathematical model of physical space

by relating physical objects of the real world to components of a

mathematical model, and deducing propositions from certain assumptions

in the model for investigation. Adler makes the following point con-

cerning the nature of geometry as a mathematical model:

Students who understand the nature of deductive reasoning

and of inductive reasoning can be led to understand what is

 

2J. Michael Shaughnessy, ”Research in Laboratory Approaches to

Mathematics at the Secondary and College Levels" (unpublished paper pre-

sented at Michigan State University, 1973).
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meant when we say Euclidean geometry is a mathematical model

of physical space because it has these four characteristics:

1. Each undefined term and each defined term in Eucli-

dean geometry is associated with some physical ob-

ject.

2. The axioms of Euclidean geometry express certain as—

sumed relationships of these undefined terms.

3. Theorems of Euclidean geometry are deductions from

these axioms that express other relationships among

the undefined terms and/or the defined terms.

4. If the axioms and theorems of Euclidean geometry are

interpreted to be assertions about the physical ob-

jects associated with its terms, then to the extent

that these assertions have been tested by experiment

they have been found to be approximately true.

The four characteristics mentioned above are readily adaptable

to the three major aspects under investigation in this study which are:

(l) the study of physical models with concrete operations and properties

and are adaptable to analogous abstract operations and properties of

mathematical systems; (2) the nature of axiomatic systems derived from

the study of the models; and (3) the process involved when propositions

are logically deduced from assumptions of the systems and investiga-

tions. The combined realization of these aspects should provide oppor-

tunities for secondary school students to do some critical and creative

thinking.

Several studies reviewed in the literature were similar in na-

ture to this study in that they dealt with one or more of the above

mentioned aspects or some combination of them. Lewis demonstrated that

teaching a course in high school geometry based on, or in part on, the

components of a mathematical model showed evidence to support the fact

that students developed in reflective thinking in non-mathematical areas

far greater than in either the traditional course in the subject or no

 

3Irvin Adler, "What Shall We Teach in High School Geometry?”,

The Mathematics Teacher, LXI (March, 1968) pp. 227—28.
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exposure to the subject at all/I When geometry is organized for the

specific purpose to further the ability to think critically, when mate-

rials are developed to focus upon this aim, when the teaching method

was directed to this end, then the students would come out of the

course competent in their ability to do plane geometry and more compe-

tent in their analysis of non-mathematical issues than if they had been

exposed to the traditional c0urse.

The most influential and widely distributed study dealing with

the nature of a mathematical system and the inference of proofs was

conducted by Fawcett,S In the study, students developed through class

discussion a set of undefined terms, definitions and assumptions as the

foundation on which they erected their geometric edifice. During the

investigation, it was assumed that a student understood the nature of a

deductive proof when the following was accomplished: (1) the place and

significance of undefined concepts in proving any conclusion, (2) the

necessity for clearly defined terms and their effect on the conclusion,

(3) the necessity for assumptions or unproved propositions, (4) that no

demonstration proves anything that is not implied by the assumptions.

The investigator concluded in the report that:

Mathematical methods illustrated by a small number of theo-

rems yield a control of the subject matter of geometry at least

equal to that obtained from the usual formal course by follow-

ing (appropriate) procedure . . . it is possible to improve the

reflective thinking of secondary school pupils . . . This im—

provement is general in character and transfers to a variety

of situations.

 

4Harry Lewis, ”An Experiment in Developing Critical Thinking

Through the Teaching of Plane Demonstrative Geometry,” (unpublished

doctoral thesis, New York University, 1950).

5Harold P. Fawcett, The Nature of Proof, Thirteenth Yearbook of

the National Council of Teachers of Mathematics (New York: Bureau of

Publications, Teachers College, Columbia University, 1938).

6Ibid,
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The investigation conducted in this report relies greatly on

the reflective thinking of high school students and their ability to

transfer knowledge acquired to a variety of familiar as well as unfa-

miliar situations. Ulmer conducted a major study in which he pointed

out that it is possible to cultivate reflective thinking under normal

classroom conditions without sacrificing an understanding of geometric

relationships; and that students at all levels are capable of profit—

ing from a method when definite provisions are made to study methods of

thinking as an important end in itself.7 Another study that investi—

gated the role of logical proofs and critical thinking was conducted by

Platt.8 In the process of the study, an evaluation was made of the ef-

fect of the use of mathematical logic in high school geometry on: (1)

the achievement of students in high school geometry, (2) achievement in

reasoning in geometry, (3) critical thinking of students, and (4) at-

titude of students toward logic, deduction, and proofs in mathematics.

The investigator's analysis of the results appeared to support the fol—

lowing conclusions: (1) mathematical logic is an appropriate area of

study well within the capability of successful high school students, (2)

there is no loss of achievement in geometry caused by devoting time to

the study of mathematical logic even in the traditional course, (3) in-

cluding instruction in mathematical logic appears to produce a more ef-

fective treatment of high school geometry with high achieving students

in its effect upon student achievement in reasoning in geometry.

 

7Gilbert Ulmer, ”Teaching Geometry to Cultivate Reflecting Think—

ing: An EXperimental Study with 1239 High School Pupils,” Journal of

Experimental Education (September, 1939).

8John L. Platt, ”The Effect of the Use of Mathematical Logic in

High School Geometry: An Experimental Study” (unpublished doctoral the-

sis, Colorado State College, 1967).
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The investigator reported, however, that the inclusion of mathematical

logic in high school geometry does not result in a course which is

significantly superior to traditional courses in its over-all effect

upon student achievement in reasoning in geometry, deductive thinking

and proof in mathematics.

The results of this report deal with a variety of physical mo—

dels that were used to derive unfamiliar mathematical systems and the

procedures used to deduce some theorems (propositions) from the assump-

tions of systems and prove them. The pilot study dealt with unfamiliar

mathematical systems by studying a non—Euclidean and finite geometries

as mathematical systems and using the components (i.e. undefined terms,

definitions, assumptions, theorems and laws of logic) of the system to

deduce propositions and prove them.

Two studies reviewed in the literature that dealt with the un-

familiar approach to studying high school geometry as axiomatic systems

were formulated by Keezer9 and Beard.10 Keezer formulated an axiomatic

system based on three primitive notions related to the following: (1)

"point,” (2) a four-termed interior relation among points, and (3) a

six-termed equi—distance relation among points. The axioms of the sys-

tem were divided into five groups which were concerned with: (1) set

relations, (2) interior relation or betweenness, (3) the equi-distance

relation (congruence), (4) continuity and parallelism. According to the

author, the axioms characterizing the interior relation, logically

 

98r. J. M. Keezer, ”An Axiom System for Plane Euclidean Geometry"

(unpublished doctoral thesis, St. Louis University, 1965).

10Earl M. Beard, ”An Axiom System for High School Geometry” (un—

published doctoral thesis, The University of Wisconsin, 1968).
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implied theorems analogous to the betweenness property of point on a

Euclidean line. The six-termed equi-distance relation among points is

used to define congruence relation on certain point sets; this develop-

ment of congruence relation is then used to define equality between line

segments. Theorems are proved analogous to congruence properties of

line segments and triangles in Euclidean geometry. The investigator

assumed a two-dimensional Cartesian space based on the undefined set

of points and reported that the set of axioms proved to be consistent

in a Cartesian model for the system.

Finally, the author demonstrated that the system characterized

plane Euclidean geometry by proving that all the plane axioms of a

known categorical system for Euclidean geometry are logical consequences

of the given system.

Beard formulated an axiomatic system for high school geometry

based on the principles of isometries. The purpose of the study was to

seek answers to the following questions: (1) Is it feasible to develop

a course beginning with fundamental ideas suitable for use in the high

school that used transformations as the basis for the development of

plane geometry? (2) If so, what could be a sequence of fundamental

theorems? (3) What comparisons could be made between such a course

and the standing or existing geometry course? (4) What special charac—

teristics might such a course have that would be useful to other facets

of the mathematics curriculum? The content comprised the usual mate-

rials found in the first year course with some modifications to accommo-

date the major premises of the thesis; such as: the geometry of the

triangle, similar figures, circles and parallels. The author reported

that the concept of area theory was omitted since a transformational



 



15

approach does not simplify the topic. The study developed a geometry

from fundamentals which meant that no background in Euclidean geometry

was necessary. A suggested sequence of theorems for standard topics in

high school geometry is given along with some proofs involving transfor-

mations for comparative purposes. In the final analysis, the author

made a comparison of the proposed and existing geometry courses with

respect to: degree of rigor and intuition possible, types of proofs

available and concepts of congruence.

m

The studies reviewed in the literature lends support to the

basic ideas expressed in the hypothesis of this study in that high

school students can understand the nature and structure of mathematics

based on models. That implied relationships between objects found in

the physical world and components of an abstract mathematical system

can be determined. The studies also imply that is is well within the

capabilities of high school students to deal effectively with familiar

and unfamiliar mathematical systems which they can study and logically

deduce propositions from assumptions in these systems and prove them,

thus developing reflective, critical and creative thinking in secondary

school mathematics.
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CHAPTER III

PROCEDURE

Introduction

The primary source of techniques, ideas, and methodology for

individual and group activities for this study were adapted from Labora—

tory Manuel for Elementary Mathematics by Fitzgerald, et al.1 The
 

activities described in the procedure were chosen from: Unit 3 Rela-

tions (reflexivity, symmetry, and transitivity); Unit 4 Functions (Tower

Puzzle); Unit 8 Mathematical Systems (clock arithmetic, equate heights,

zigzag, rectangle: flips and turns, and equilateral triangle: flips

and turns); Unit 11 Topology (Beans and Brussel Sprouts). Two other

sources included were: Circle2 (counterclockwise rotations) and Instant

Insanity.3 These activities provided a situation in which physical mo—

dels could be studied and mathematical systems could be developed. The

resulting mathematized systems can then be studied, and in fact, be

extended to finite and infinite abstract systems having properties and

operations embedded in those physical models.

 

1William M. Fitzgerald, et al., Laboratory Manuel for Elementary

Mathematics, 2nd ed. (Boston, Mass.: Prindle Weber, and Schmidt, Inc.,

1973).

 

2Mary P. Dolciani, et al., Modern School Mathematics Algebra and

Trigonometry (Boston, Mass.: Houghton—Mifflin Company, 1968) p. 249.

3Commercial Purchase (Salem, Mass.: Parker Bros., 1967).
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Descriptigg of Activities

During the school term 1972-73, this investigator taught geome-

try and intermediate algebra classes at Suncoast High School, Riviera

Beach, Florida. The students chosen for this study were selected from

the intermediate algebra classes. During the first semester, students

in the algebra classes were introduced to the operations and properties

of the real number system in an algebraic setting with emphasis on the

postulational system. Operations and properties of a group were stu—

died as well.

Before planning activities using physical models, students were

instructed on the nature and importance of the properties and operations

of a mathematical system. At the beginning of the second semester, this

writer planned a ten—week schedule of activities for ten students who

were above average performers and highly motivated. The students were

directed to complete the scheduled activities instead of regular class

work. Each activity was planned to last a period of one week. All ses—

sions were recorded on audio tapes as the students worked through the

weekly activity. Written records were kept of each activity and re-

tained in a folder prepared for each student. During the course of the

study, students worked in groups and as individuals in their regularly

scheduled class periods.

There were two students in one class, five in a second class and

three in another. The activities were scheduled and completed in the

following sequence:

1. Equilateral triangle: Flips and Turns

2. Circle: Turns

3. Clock Arithmetic: Modulus 8
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4. Equate the Height

5. Zigzag

6. Relations

7. Rectangle: Flips and Turns

8. Beans and Brussel Sprouts

9. Tower Puzzle

10. Instant Insanity

1. Equilateral Triangle: Flips and Turns 

The students were given an equilateral triangle model prepared

from cardboard and a background sheet of paper labeled as in figure 3.1.

 

Stud

 

 

 

  
Figure 3.1

The equi—lateral triangle was attached to the sheet using a thumbtack at

the center 0 of the triangle. The students were instructed to consider

as elements of the group turns (rotations) and flips of the triangle

into itself from the start position as follows:
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I1 = rotation about 0 counterclockwise 120o

r2 = rotation about 0 counterclockwise 2400

f1 = reflection about Kz 180o (pick the triangle up

and turn it over)

£2 = reflection about My 1800

f3 = reflection about LX 1800

e = the identity element (no turn at all)

The symbol 9 meant "followed by" which denoted r1 9 r1 = r2 indi-

cated that the triangle was first rotated (r1) counterclockwise 1200

about the center 0 from the start position, then "followed by" r1 or

a second counterclockwise rotation (r1) of 120°. This resulted in

2400 which was r2. Other elements of the group were demonstrated

based on the conditions for rotations or flips. Tables were constructed

for first operations using e1, r1, r2, f1, f2, and f3 "followed by”

second operations e1, r1, r2, fl, f2, and £3. The students used the

results in the table to investigate five basic properties: closure,

identity, inverses, associativity and commutativity which are the pro-

perties of an Abelian group. Other properties of the equilateral tri—

angle investigated and identified were the order of the group, the

generator of the group and whether or not the group was cyclic. Sub—

groups of the group were investigated for all of the above mentioned

properties of the group.

2. Circle: Turns

To investigate the circle, each student was given a circle

model prepared from cardboard and a background sheet of paper labeled

as shown in figure 3.2.
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I30   

Figure 3.2

The circle was attached to the sheet using a thumbtack which al—

lowed the circle to rotate about its center. The students were instruct—

ed to consider three counterclockwise rotations about the center of the

circle. Those rotations were designated from the start position as

follows:

a = rotation about the center counterclockwise 900

b = rotation about the center counterclockwise 1800

c = rotation about the center counterclockwise 2700

e = rotation about the center counterclockwise 3600

or no rotation at all

As in the first exercise, <:> represented the operation ”followed by."

Using the elements of the model and the operation, the five basic pro-

perties of an Abelian group were investigated as well as the properties

of the order of the group, the generator of the group and Whether or not

the group was cyclic. Students were instructed to investigate the
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physical model for a subgroup and all properties of the subgroup anal-

ogous to the group.

3. Clock Arithmetic: Modulus 8 

The physical model used in this activity was a circular piece

of cardboard with the numerals 0, 1, 2, 3, 4, 5, 6 and 7 painted on

the face of the circle and a pointer which could be rotated about the

center of the cardboard circle as shown in figure 3.3

 

Figure 3.3

To build a mathematical system, the numerals on the face of the clock

were considered elements, an operation addition was denoted by <:>.

The elements and the operation were related as follows: x <:> y = q,

where q was found by starting the pointer at 0 then moving it clock-

wise x hours, followed by moving it clockwise y hours. Q would repre-

sent the "sum" of x and y. Using the numerals 0, l, 2, 3, 4, 5, 6 and

7 as left and right addends, a table was constructed for the operation

G; . The system was investigated for the following properties: clo-

sure, an identity element, inverses of elements, associativity and

commutativity. Multiplication for the system was denoted by (:> where
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x (:> y = k and k was the number obtained by starting the pointer at 0

and moving it clockwise y hours x times. Using the procedure described

above, a table was constructed for <:> and the following properties

were investigated: closure, commutativity, associativity, identity ele-

ment, an inverse element and the distributive property of (:> over c:).

4. Equate the Height

The physical model mathematized and studied in this activity

consisted of colored rods and several square pieces of paper which had

the same area as one of the square surfaces of any of the colored rods.

Each square piece of paper was identified by writing the word "plane” on

each piece. The colored rods varied in heights and were used as ele-

ments of the set for this system. The following names were noted:

orange, blue, brown, black, dark green, yellow, purple, light green,

red, white and plane. An operation ”circle—times” denoted by 69 on

the set resulted in the following: place the first mentioned rod on

its square surface, place a second mentioned rod on its square surface

along side of the first rod. The result was the element (rod) which

was placed upon the shorter of the two rods to make them the same height.

See figure 3.4 for an example of brown (:> red = dark green.

1" 1'7

 

a!

Figure 3.4
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Using the elements plane, white, red, light green, purple, yel—

low, dark green, black, brown, blue and orange as left factors and right

factors, a table was constructed for (:J. The system was investigated

to determine which of the following properties were exhibited by <:):

closure, commutativity, associativity, identity element, and inverses

of each element. After the system was investigated, its properties were

compared with the system of natural numbers under addition, and the set

of integers under the operation of subtraction.

5. Zigzag

This system did not consist of a physical model, but was adapted

from a series of ”Table System" exercises. The operation "zigzag” was

defined on members of set R.= :0, l, 2,13} by the table below:

TABLE 3.1

ZIGZAG

 

The system was investigated for the following properties: closure, com-

mutativity, associativity, an identity element and inverses of each

element.

6. Relations

This activity was designed to use a physical model to investi-

gate the abstract notion of a relation using colored rods. Due to the

nature of the objectives of the activity, definitions were provided for
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the following:

1. Cartesian cross product

2. Relation R on a Cartesian cross product

3. Reflexivity, symmetry, and transitivity of a relation R

4. An equivalence relation

5. An equivalence class

Considering x and y as elements of a relation R, a table was constructed

to investigate the properties of reflexivity, symmetry and transitivity

with respect to eight possible combinations based on the following:

(x, y) (R if and only if:

1. x ”has the same length as" y

2. x ”is shorter than” y

3. x ”has a different length than” y

4. the length of x exceeds the length of y by an amount

equal to the length of the white rod

5. neither x nor y are purple

6. the difference between the lengths of x and y is less

than the length of the light green rod

7. x ”is shorter than, or has the same length as" y

8. x and y have the same color, or if the length of

x exceeds the length of y by an amount less than

the length of the yellow rod

TABLE 3.2

EQUIVALENCE RELATION
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The equivalence relations as defined on the set of colored rods was in-

vestigated to determine the following:

(x, y) e R if and only if:

1. the length of x differs from the length of y by an

amount equal to a multiple of the length of the red

rod

the names for the colors of x and y begin with the

same letter

Finally seven non-physical abstract relations were investigated to de—

termine which property (ies) was exhibited by each relation, and whether

any of the relations was an equivalence relation; where any relation was

an equivalence relation, its equivalence class was listed

1.

2.

R = {(1, 2), (2, 1)}, as defined on {1, 2 .1.

R = {(1, 1), (2, 2), (2, 1)} , as defined on {1, 2}.

R = {(1, 1), (2, 2), (l, 2), (2, l) , as defined on

1, 2}.

R = i(1,2), (2,3), (3, 4)} , as defined 01121, 2, 3, 4}.

R = )(1, 2), (2,3), (1,3)} , as defined on $1, 2, 3}.

R = (0, 0), (1, 1), (2, 2), (1, 2), (2, 1), (0, 1),

(1, O) ‘, as defined on t 0, 1, 2

(x, y) e R if and only if the last name of x and y begin

with the same letter, as defined on the set of

students in Suncoast High School.

7. Rectangle: Flips and Turns

The physical model used in this activity was prepared from a

piece of cardboard, called a frame, by cutting a rectangular hole in

it and fitting a rectangular piece of cardboard, with an asterisk

placed in the upper left corner, in the hole as shown in figure 3.5.
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Figure 3.5

The rectangle with the asterisk was moved in such a way that the aste-

risk was in a different place as the rectangle was fitted into the hole

of the frame. Four ways were determined in which the rectangle could

fit by starting with the asterisk in the upper corner of the rectangle.

See figures 3.5a, 3.5b, 3.5c, and 3.5d.
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3.5a Removed from the frame and replaced in the same way

3.5b Rotate the rectangle 180O (asterisk in lower right

corner)

3.5c Flip the rectangle about its vertical axis (asterisk

in the upper right corner)

3.5d Flip the rectangle about its horizontal axis (asterisk

in the lower left corner)

These flips and turns resulted in a set of four transformations

of the rectangle denoted by Ea, b, c, dIl. An operation was defined

on the set by performing one of the transformations "and then" another.

The operation "and then” was denoted by G;- A table was constructed

as usual and the system was investigated to determine the following pro-

perties: closure, commutativity, associativity, an identity element

and inverses for each element, paring elements and their inverses and

listing those elements having no inverses; and finally a comparative

study of the properties of Rectangle with the Clock Arithmetic System.

8. Beans and Brussel Sprouts 

Beans and Brussel Sprouts was a topological game for two players.

To start the game, an arbitrary number of dots were marked on a piece of

paper; players took turns connecting any two dots or connecting a dot to

itself. When arcs were drawn, new dots were marked on the arc; no arc

was crossed with a connecting line, and no dot was the endpoint of more

than three arcs. The following questions were considered by players:

1. Does the game always end?

2. Is there always a winner?

3. Beginning with two dots, what is the maximum number of arcs

that can be drawn before the game ends? What is the minimum

number of arcs that can be drawn to end the game? Can you

predict who will be the winner?
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4. Apply questions 1, 2, and 3 for a game beginning

with three dots; four dots; and five dots.

9. Tower Puzzle

The tower puzzle pieces for this study were made from construc-

tion paper using the following: 4 squares were cut from a piece of con—

struction paper of one color with the following dimensions — 1” x l",

2" x 2", 3” x 3” and 4” x 4”. Using a different color of construction

paper, 3 squares were cut with the following dimensions - 1%” x 1%",

2%" x 2%", and 3%” x 3%”. These seven squares represented the seven

discs. A piece of construction paper of dimensions 6” x 18” with three

circles drawn five inches apart along the length of the paper was used

instead of spindles. The circles represented the spindles for this

game. The object of the game was to start with a pile of squares in

descending size, the largest square on the bottom and the smallest

square on the top, at one spindle and move the pile to another spindle.

Moves were made according to the following conditions:

1. Only one square could be moved at a time

2. A larger square could never be placed on top of a

smaller square

Students had to determine the least number of moves necessary to trans—

fer the entire pile of squares from one spindle to another using 2

squares, 3 squares, 4 squares, 5 squares, 6 squares and 7 squares; this

information was recorded in a table with the number of squares-in one

column and the number of moves in another. Students were asked to

generalize their finding to a pile of n square based on the apparent

results in the table. The following questions were posed for study by

the students:
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1. Why do you think the squares are of alternating colors?

2. Suppose that the squares were all the same color. Could

you develop a strategy for determining which square

should be moved at each turn?

10. Instant Insanity 

This game contained four cubes with surfaces painted in the fol-

lowing colors: red, white, blue and green. The purpose of the game was

to note the arrangement of the colors on the lateral sides of the cubes,

before the package was opened: white, blue, green and red on one side

and green, white, red and blue on the other and similar arrangements on

the other two sides. The cubes were mixed very thoroughly and ten re-

assembled in a manner in which they were first observed. Students were

asked to formulate any generalization in the arrangements which were

successful.

Students

The population of this study consisted of ten students selected

from three intermediate algebra classes taught by this investigator.

All ten students were considered to be above average or superior in

their class performances. Seven of the students had been part of the

student population of the pilot study conducted during the previous

school year. Two of the students in the population were seniors, seven

were juniors and one a sophomore.

A review and study was made of the mathematical performances

(i.e. total scores, percentile rank, etc.) of students in the popula-

tion on the following tests: Florida State-Wide Ninth Grade Test, the

mathematics section of this test is a balance between traditional and
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contemporary topics. The more contemporary materials include such

topics as: number sentences, inequalities, primes, absolute values,

clock and remainder arithmetic, set notation, closure, multiplicative

and additive inverses, the identity elements for addition and mulitpli-

cation, and the commutative, associative and distributive principles.

The test does not emphasize the abstract symbolism of logic and sets;

School and College Ability Tests (SCAT, Tenth grade), Series II was

designed to provide estimates of basic verbal and mathematical ability;

Differential Aptitude Test (DAT, Eleventh grade) using diagrams, the

abstract reasoning tests measure how easily and clearly students can

reason when problems are presented in terms of size, or shape, or posi-

tion, or quantity or other non-verbal, non—numerical forms; Preliminary

Scholastic Aptitude Test (PSAT, Tenth or Eleventh grade) and Scholastic

Aptitude Test (SAT, Eleventh or Twelfth grade); in form and content,

the PSAT and the SAT are parallel. The mathematics sections measure

the ability to reason with numbers and other mathematical symbols; the

sections also contain various kinds of problems to be solved, stress

reasoning ability rather than knowledge of specific college preparatory

course in mathematics.

The Florida State—Wide Twelfth Grade Test, the mathematics sec-

tion covers both traditional and modern topics. It includes materials

on the number system, set theory, coordinate geometry, data interpreta-

tion, algebra and geometry. The table below is a summary of the tests

and student's reports by percentiles, and total scores on the PSAT and

SAT.
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CHAPTER IV

CASE STUDIES RESULTS

Introduction

In order to assess the results of this study, the case study

procedure is used for each activity as outlined in Chapter III. The

case study procedure permitted this investigator to concentrate on a

particular activity of an individual student performing an activity of

a small group of students working on an activity. The results of the

activities are reported in table form, where possible, and based on

the following: (1) what all students were expected to report and did

(marked with an asterisk*); (2) what a particular student or students

should have reported but didn't (marked with a hypen —), at this point,

where possible, comments are given to explain such actions; and (3) what

a particular student or students reported that was not required but is

most unusual and very pertinent to the activity under investigation.

Such reports are marked with double asterisk (**) and pertinent comments

are offered here also. Results which are true for the cases tested but

not necessarily valid for generalized cases are marked with #.

Activity 1

Equilateral Triangle: Flips and Turns

Consider an equilateral triangle with its altitudes x,y, and

z intersecting at a point 0 in the center of the triangle. Build a

32
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flips and turn system for the triangle using as elements of a group the

following:

e = identity (no rotation)

r1 = rotation about 0 counterclockwise 120°

r2 = rotation about 0 counterclockwise 240°

fl = reflection about Kz 180° (pick the triangle

up and flip it over)

f2 = reflection about My 180°

f3 = reflection about Lx 180°

Using the operation "followed by" denoted by (:> , (i.e. rl + r2 means

rotation rl "followed by" r2) and the elements of the group (e, r1, r2,

fl’ f2, f3) investigate the five basic properties: (1) closure, (2)

identity, (3) inverses, (4) associativity and (5) commutativity. Consi-

der the subgroup G'(e, r1, r2) and investigate it using the same proper-

ties. Determine the generator(s) of the subgroup, the order of the sub—

group and whether or not the subgroup is cyclic.

TABLE 4.1

ACTIVITY SUMMARY: EQUILATERAL TRIANGLE

S
t
u
d
e
n
t
s

 

1. The equilateral triangle characterized the properties of

a group.
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2. The equilateral triangle did not characterize an Abelian

group.

3. The subgroup G' characterized the properties of an

Abelian group.

4. Determined that r and rl were generators of the
2

subgroup.

5. Determined that the order of the subgroup was 3 .

6. Demonstrated that the subgroup was cyclic.

7. Supplementary activities.

Student A(**)

This student formulated the following conjecture:

Using any of the flip elements (fl’f £3) with the opera—
2)

tion O defined as in the activity, if one of the flips was used

once it results in the inverse of that element; if the element

was used twice, it results in the identity element.

 

An even number of f's resulted in the identity element

because we showed that used twice, it results in the identity

and the definition of an even number is 2 used as a factor n

times; using fl twice results in the identity and e G e any

number of times is equal to e

Student B(**)

This student studied a series of rotations and flips and

formulated the following for selected subsets:

even: fn e fn = e

odd: an fn e fn = fn

Rotations

even: r1 9 r1 = r2
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Student C(**)

This student reported that the set of integers under addition

was found to be an Abelian group. This investigation could possibly

account for the fact that no report on the subgroup was submitted.

Student D§**)

This student formulated two theorems without proofs:

Theorem 1: Flips ,

Using any flip element, if one of the flips is used once

(or odd number of times) it results in the inverse of that

element, if used twice (or an even number of times), then

the result is the identity element of the set.

Theorem 2: Turns

Using the elements r1 or r2, if the sums of these were used

three or a multiple of three times, the result would be the

identity.

Students E, F, and G (-) 

There were no records to indicate that these students had inves-

tigated the subgroup for any properties.

Student H(**)

This student concluded that the properties of the subgroup and

the integers under addition satisfied the properties of a group.
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Activity 2

Circle: Turns

Using the circle with center 0, let a, b, c and e represent

counterclockwise rotations about the center with the following nota-

tions:

a = rotation of 900 c = rotation of 2700

b = rotation of 1800 e = no rotation or 3600

Using the operation ”followed by” denoted by (:> and the elements a, b,

c, and e as a set, show the following:

1. That S constitutes a group.

2. That S is Abelian.

3. That a is of order 4 in S.

4. That S is cyclic.

5. That (b, e) is a subgroup of S.

6. That the subgroup is cyclic and its generator is b and

is of order 2.

7. Supplementary activities.

TABLE 4.2

ACTIVITY SUMMARY: CIRCLE

S
t
u
d
e
n
t
s
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Student A(<*

In addition to reporting that c was a generator of S also with

order 4, this student submitted two theorems based on the following con-

dition: ”If each element in the set is divided by 10, e = 36, a = 9,

b = 18 and c = 27; and given that e and b are even elements; a and c

are odd elements.”

Theorem 1 ,

Th? inverse of the even element is that element, i.e.

eI = e, b' = b; the inverse of the odd element is the

other odd element, a" = c, and cI = a.

Theorem 2 1

e'I 1:) cI = b'1 <:) a"1 (corollary to D's theorem)

Student B§**)

This student submitted three theorems with proofs.

Theorem 1

In a circular plane choose elements moving counterclock-

wise and using using the operation ”followed by” with

the clockwise operation of the element's successor is

always C.

a (:> 13-1 = c

b (E) CI1 = c

c C) eI1 = c

e (E) aII = c

Theorem 2

If you take one operation and "followed by” to the

inverse of the operation before the original operation,

then you get a.



 



38

Proof

a 63 eII1 = a

-l

1) ED a = a

<2 G; b-1 = a

eec‘1 = a

Theorem 3

The operation QB produces a generator in S if an ele-

ment and its clockwise or counterclockwise inverse is

used.

Proof

Theorem 1 counterclockwise, c

Theorem 2 clockwise, a

Student D(**)

This student submitted the following theorem to which Student A

formulated a corallary.

Theorem

Given S = (e, a, b, c) with a as a generator and the

operation a closed, then e e a = b c.

Proof

Statements Reasons

ll

1. e, a, b, c e S, gen,

9 closed

2. e (:> a = a 2. Identity (table)

3. b a c = (a e a) a 3. Gen. "a"

(a £9 a £9 a)

a”, 1. By hypothesis

4. b + c = (a e a) e c 4. Gen. ”a", subst. prin.

5. b 9 c = a e (a e c) 5. Associative prop.

6. a a; c = e 6. Gen. ”a”, table

7. a (E) c = a <:) e 7. Step 5, subst. prin.
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a 8. Subst. and identity

a 9. Steps 2, 4

a

b (3) c 10. Transitive prop.

This student concluded that c was a generator of the set S.

Student G(**)

This student submitted the following theorems:

Theorem 1

Given the circular plane, if you go in a counterclockwise

direction taking one element a) the next element's inverse,

its "sum” is always c.

l. b

2. a

3. c

4. e

e a:

e 1:1

e a-1

e a-1

Corollary 1.1

If you take an element and its consecutive clockwise element

with (B, then the result is point a.

1. a

2. b

3. c

4. e

Theorem 2

e e-1

e

e b'1

e 61

An element is a generator "if and only if” it can be generated

by adding the next (counterclockwise, clockwise) in the sequence.

Proof

1_ Theorem 1

2. Corollary 1.1
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Student J(**)

This student reported that the element ”e" could exist as a sub-

group of the set S. In addition to that statement, this student submit-

ted two theorems and a corollary for every operation "followed by", <:>.

Theorem 1

In a circular plane, if you go in a counterclockwise direction

using any element ”followed by” its successor's inverse, then

the result is c.

Proof

1. a (:> b'1 = c

—1

2. b (B c = c

—1

3. c <:) e = c

4. e = a = c

Corollary 1.1

In a circular plane, by taking the inverse of the element of

the next clockwise element, the result is a.

l. b (:3 aI1 = a

2. c (E) b.1 = a

3. e (E) cI1 = a

4. a (D eI1 = a

Theorem 2

An element is a generator ”if and only if” it can be obtained

by using "followed by” or an element next to it.

1. a

2. b

@
9
9
9
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Activity 3

Clock Arithmetic: Modulus 8
 

This system involved using a circular piece of cardboard with

eight numerals from zero to seven painted on the face of the circle.

Attached to the center of the circle was a movable pointer. To build

a mathematical system, the numerals on the face of the clock i O, 1, 2,

3, 4, 5, 6, 7} were considered elements and addition denoted by G

was defined as: x <:> y = q where q was determined by starting the

pointers at O and moving it x hours clockwise followed by y hours clock-

wise. To investigate the system for <:) the students responded posi—

tively to the following questions:

1. Is the system closed?

2. Is the system commutative?

3. Is the system associative?

4. Is there an identity element?

5. Does each element have an additive inverse?

6. Supplementary activities.

Table 4.3 contains the results for <:); Table 4.4 contains the results

for (:>

TABLE 4.3

ACTIVITY SUMMARY: MODULUS 8 6

S
t
u
d
e
n
t
s
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Student D **

This student reported that the clock arithmetic system under (:>

was an Abelian group.

Student F(**)

This student submitted the following statement of relations:

V aab=x5a+b£7(realnumbers);

a (:I b = a + b

To investigate the system for multiplication denoted by <:) and

defined as: x (:> y = k, where k was determined by starting the pointer

at 0 and moving clockwise y hours x times. The students responded posi-

tively to the following questions:

1. Is the system closed?

2. Is the system commutative?

3. Is the system associative?

4. Is there an identity element?

5. Does each element have a multiplicative inverse?

6. Is there only one multiplicative inverse?

7. Does the distributive law for multiplication over addition

hold true in the system?

8. Supplementary activities.



 



TABLE 4.4

ACTIVITY SUMMARY: MODULUS 8 0

S
t
u
d
e
n
t
s

 

Student A(**)

This student reported that the system was commutative for both

G; and C) because the elements in the tables were symmetric about the

upper left, lower right diagonal row of elements; and that this system

as well as the clock arithmetic system are Abelian groups with respect

to 9 and 0

Students B and J(**)# 

These two students working together concluded that the clock

arithmetic system was an Abelian group with respect to (:> and <:> ;

the identity elements for (:> and <:) were distinct, and the distri—

butive property of (:> over <:> was true, therefore the clock

arithmetic system characterized a field.

Student C(**)

This student submitted the following conclusive report:

This system holds all of the properties of a group, even com—

mutativity, therefore it is an Abelian group. For multiplication,

if you use an even number an odd number of times, you will come up



"* ’1) ‘ air-Jung
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with an even number; if you use an odd number an odd number of

times, you will get an odd number. This is a finite set. We

found that when multiplying 4 by 4, if you use 4 an even number

of times, you will get 0; if you use 4 an odd number of times,

you will get 4.

Student D(**)

This student prepared an elaborate Table of Remainders for <:)

and <:) based on the following statement: "The real system's + and

x corresponds directly to the mod 8 system for a (E) b = c; c { 8

and a c:, b = c; c E 8.” The student claimed that the tables of re-

mainders corresponded directly to the results in the table prepared

during the investigation of the system using (:) and (:> . The follow-

ing theorem was submitted with a proof:

Theorem

For the elem nts of the set {0, 1, 2, 3, 4, 5, 6, 7},

i 0, 2, 4, 6 are even elements. If the first even elements

of O, 2, 4, 61 is added to the second even element, then

the sum is equal to the third even element added to the

fourth even element.

Statements Reasons

1. 0 e 2 = 2 1. Definition ofehypothe-

sis

2. 4 9 6 = 2 2. Definition of e

3. 0 e 2 = 4 e 2 3. Substitution principle

4. 2 = 2 4. Q. E. D.

Finally this student submitted the following conclusive report:

For the operation a: 3 G 6 = 2, definition of 9; but

if we apply some properties of the real number system, we can

see that 4 units and 6 units equals 10 units, simple addition.

If we use still another property we can divide 10 by the modu-

lus, which in the other system is 8, 10/8 = 1 with a remainder

of 2. But look, the remainder in this system (real number) is

equal to the result of 4 G) 6 or 2. Two units in the real
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system is equal to two units in the modulus system. For the

operation : 3 6 = 2, definition of . Again by

applying the propert1es of the real number system we can say

that 3 units times 6 units equals 18 units and 18 units divided

by the modulus of the system in which we are working .

18/8 = 2 with a remainder of 2 which is simple division. Again

we see that the results are the same 2 units (mod 8) are equal

to the units as we define them in the real number system.

Student E(**)

This student and her associates formulated several theorems in

the system for (E) and (:> . This student submitted the following

theorem:

For every a and every b, when a - b :?7 (real numbers),

aC)b equals the remainder of (a - b)/8.

The students in this group concluded that their theorems could be used

for any modulus.

Student H(**)

This student submitted the following conclusive report:

The system is a finite set which has the properties of an

Abelian group. For multiplication, the product of any element

and an even number, the product is an even element.

Student K **)

This student submitted the following theorem: For every a and

every b: a - b 5E7 (real numbers) a (:) b = a - b.

Activity 4

Eguate the Height

In order to investigate this system, a set of colored rods were

used including a square piece of paper which had the same area as one of



k.0 O '

.411;- amszosm Iarsvsa bsaeImnx'oi 2938130888 19:? has 3:155:19; 1131'};

_ o
o0 . Q   u

aniwollol 5d: beinimdua jhsbui-a alrtfl’ . A baa a to! 09314.1

.c "



46

the square surfaces of any of the colored rods, and was called "plane."

The colored rods including the square pieces of paper were considered

elements of the set. Each element, with the piece of paper, was de-

signated by color which were: orange, blue, brown, black, dark green,

yellow, purple, light green, red, white and ”plane." An operation

”circle times” denoted by (:) was defined as follows: Place the first

mentioned element on its square surface, and place the second mentioned

element on its square surface immediately to the right of the first.

The result will be the element which should be placed upon the shorter

of the two to make them the same height. The system was investigated

to determine which properties the operation exhibited using the follow—

ing questions and statements as a guide:

1. Is 6b closed on the set?

2. Is (3) a commutative operation?

3. Is ® associative?

4. Does this system have an identity element?

5. Does each element have an inverse?

6. Discuss the difference between this system and the natural

numbers under ordinary addition.

7. How does this system differ from the set of integers under

the operation subtraction?

Due to the nature of the questions asked and the small group

reporting procedure, this activity is not submitted in table form. The

reports show how many students are included in the groups.

Students A and D

These students performed the operation (:> with the elements in
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the set and answered the questions as follows: (1) yes, the set was

closed because every element (:> another element results in an element

of the set; (2) yes, (2, was a commutative operation. The table showed

that the results were symmetric about the upper left to lower right

diagonal of "plane." (3) No, 6 was not associative because of the

following example: (yellow Q red) ® white 76 yellow Q (red ®

white). (4) Yes, the system had an identity element which was "plane,”

and (5) the inverse of each element under 65 was the element itself.

These two students reported that the natural numbers have no identity,

but this system does; the natural numbers are associative under ordinary

addition and this system isn't; and that under subtraction, the integers

are not commutative.

Students B, G and J

These students prepared a table using the operation 65 and the

elements of the set. The results in the table provided the following

answers: (1) yes, the operation was closed, when &a was used with all

elements in the set, no new elements were formed; (2) yes, (:> was commu-

tative: blue Q yellow = yellow ® blue; (3) no, ® was not associa—

tive because (W Q W) ® light green 94 W ® (W ® light green); (4)

yes, the system had an identity represented by "plane” and (5) yes,

elements had inverses because each element was its own inverse. These

students reported that the natural numbers are associative for addition

and is an infinite set whereas this system is not associative for addi-

tion and is a finite set; the natural numbers have no identity element

for addition and this system does. The students concluded that under

subtraction, this system and the integers are the same if the absolute
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value is used for the integers.

Students C and H

These students constructed a table for (2’ and the elements in

the set. The following answers were provided based on the results found

in the table: (1) yes, the operation was closed on the set; (2) yes,

® was commutative, verified by blue ® light green = (light green ®

blue; (3) no, the system was not associative because (white Q red) ®

purple # white £9 (red 69 purple); (4) yes, the system had an identity

which was ”plane”; and (5) each element had an inverse which was found

to be the element itself.

These students reported that this system did not have the pro-

perties of a group; the difference between this system and the natural

numbers under addition was found to be that the system had an identity

element and the natural numbers did not. They reported that the dif-

ference between this system and the integers under subtraction was that

the system was commutative and the integers were not.

Students E, F, and K 

These students performed the operation 69 with the elements in

the set, prepared a table which provided answers to the questions as

follows: (1) yes, the set was closed, by the table, a C) b : c where

a, b, c are elements in the set; (2) yes, fig vms commutative as the

table will show by ”mirror images” of elements; (3) no, (2) was not as-

sociative, verified by (blue ® red) ® yellow # blue a (red @yel-

low); (4) yes, the identity element was ”plane”; and (5) each element

was its own inverse,
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The students reported that this system was not associative, the

natural numbers are; this system had an identity element, the natural

numbers do not have one under addition. The difference between the

integers and this set was that this system demonstrated commutativity

under subtraction and the integers did not.

Activity 5

Zigzag

This mathematical system was defined by simply presenting a set

and a complete operation table instead of having the students to mathe-

matize some physical model. This system allowed the student to use

those ideas which he had learned from the study of previous physical sys-

tems (concrete situations) and apply them to analogous abstract systems.

The abstract system of zigzag consisted of the operation é; (zigzag) de-

fined on the elements of set R = t 0,]fl 2, 3? by the table:

TABLE 4.5

ZIGZAG

 

and the following statements or questions concerning the system:

1. Complete each of the following to make true statements

01,3: 390:

193: 3’ =3

2. For every a of R and for every b or R, is it always true





that

3.

5.
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(a 6 b) is an element of R?

a ‘.t) = b ’7 a?

Is 6 an associative operation?

Is there an identity element? Explain. If so, does every

element have an inverse?

Students performed this activity in small groups and responded to the

questions as a unit.

Students A and D

These students reported the following results based on the table:

3.

4.

093:2 360:2

193=o 391:3

a 6 b in R was always true.

a 9 b = b a was not always true.

The operation 6 was not associative.

There was an identity element as long as one condition was

satisfied and that was using 2 as a left factor with zigzag. Every ele-

ment had an inverse as long as a left factor was used with zigzag.

Students B, G, and J

These students reported the following results based on the

table:

350:=2

=0 351:3H
O

[
\
3

w
»

a
n
»

L
O
U
.
)

b was an element in R.

b = b ‘y a wasn't always true.

9 was not an associative Operation.

There was an identity element if the first (left factor)
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was 2 because: 2 9 a = a but a 61 2 # a where a was an element in

the set; and every element had an inverse.

Students C and H

These students reported the following results based on the re-

sults of the table:

1. 0 5' 3 = 2 3 l, 0 2

19' 3 = 0 I3 ’ l 3

2. a9 bw an element in R.

a, b = bf a was not always true.

3. The operation i was not associative.

4. There was no constant identity element; each element had a

different identity; and every element had a different inverse.

Students E, F, and K 

These students submitted the following report based on their

study of the results in the table:

1.093=2 3

173:0 3 3

$0 = 2

’1 =

2. Yes, the system was closed, no, the system was not always

commutative.

3. The operation 6 was not associative: (l 5 2) f 3 aé

1 f (2 f 3)

4. There was a number 2 such that: 2 b 0 = 0, 2 9 l = 1,

2 f2 = 2 and 2 i 3 = 3 and each element had an inverse.
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Activity 6

Relations

This activity was designed to use a physical model to investi—

gate the abstract notion of a relation using colored rods. Due to the

nature of the objectives of the activity, definitions were provided for

the following: (1) cartesian cross product; (2) a relation R on a

cartesian cross product; (3) reflexivity, symmetry, and transivity of a

relation R; (4) equivalence relation; and (5) an equivalence class.

The prOperties, equivalence relations and evaluations are listed

in Chapter III of this investigation. For some reason or reasons yet un-

known, only two students, A/D, completed part of this activity. Other

students reported repeatedly that the exercise did not make sense to

them and they couldn't understand it. The only question answered con-

sistently by most students was: How many relations are there on the set

of colored rods?

Activity 7

Rectangle: Flips and Turns 

To investigate flips and turns of the rectangle as a mathemati-

cal system, the physical model was prepared as described in Chapter III

of this report.

A set of four transformations involving flips and turns was de-

termined and denoted by {eg b, c, d 3 . An operation was defined on

the set by performing one of the transformations ”and then” another.

The operation "and then” was denoted by (a? and beginning each time at
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the starting position. One operation was performed, b ”and then” c

which was noted to be the same transformation as d, and placed in the

table. Students were to complete the remainder of the table using left

transformations "and then” right transformations.

The elements of the system is“ b, c, d} and the operation ”and

then” were investigated to determine the following properties for the

model: (1) closure; (2) commutativity; (3) associativity; (4) an iden-

tity element; (5) inverses; and (6) how this system compared with the

clock arithmetic system (Activity 3).

TABLE 4.6

ACTIVITY SUMMARY: RECTANGLE

S
t
u
d
e
n
t
s

 

The students responded positively to the first five properties

listed to be investigated for this activity, however, the responses to

statement six was divided into two major groups: Students A, D, E, and

K reported that the rectangle system and the clock arithmetic system

satisfied the properties of a group, however, the other students, B,

C, F, G, H, and J reported that both systems were Albelian groups.
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Activity 8

Beans and Brussel Sprouts

Beans and Brussel Sprouts was a topological game for two players.

To start the game, an arbitrary number of dots were marked on a piece of

paper. Two players alternated turns drawing arcs connecting any two dots

or connecting one dot to itself. When an arc was drawn, the player had

to mark a new dot on the arc. No arc could be crossed and no dot could

be the end point of more than three arcs. The winner was the last

player able to draw an arc. The following questions were considered:

1. Does the game always end?

2. Is there always a winner?

3. Beginning with two dots, what is the maximum number of arcs

that can be drawn before the game ends? What is the minimum number of

arcs that can be drawn to end the game? Can you predict who will be the

winner?

4. Answer Questions 1, 2 and 3 for a game beginning with three

dots; four dots; five dots.

Students completed this activity with two players performing at

a time; the results summarized represents their findings.

Students A and D

These two students completed an elaborate network of activities

indicating the number of dots and connective conditions; who started;

who won and the number of arcs at the end of each game.
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Starting Number Who Who Number

Conditions of Dots Started Won of Arcs _

1. No connection of

a dot to itself 2 D D 10

2. One connecting

itself 2 A A 10

3. One connecting

itself 2 D D 10

4. Two connecting

themselves 2 A A 10

5. None connecting

a dot to itself 2 D D 10

6. None connecting

a dot to itself 3 A D 12

7. One connecting 3 D D 14

8. Two connecting 3 A A 8

9. Three connecting 3 D D 14

10. One connecting 3 A D 16

11. No connecting 4 D A 20

12. One connecting 4 A D 20

13. Three connecting 4 D A 20

14. Two connecting 4 A D 20
 

The students submitted the following summary:

a. Game always ends

b. Some always win

c. No conclusions

Students B, G, and J

These three students completed the game by playing two at a

time and summarized their finding accordingly:
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Started Finished Winner

1. 7 25 Second player

2. ll 40 Second player

3. 4 15 First player

4. 6 20 First player

 

The students submitted the following conclusions:

1. The first player won when there was an even number of

dots at the start.

2. The second player won when there was an odd number of

dots at the start.

3. The number of dots at the finish was a multiple of five.

The group responded to the questions concerning the exercise accordingly:

1. Yes, the game always ends.

2. Yes, there is a winner.

3. Starting with two dots, five arcs was the maximum number of

arcs that could be drawn before the game ends; five arcs was the mini—

mum number of arcs that could be drawn to end a game. The winner can

be predicted.

Students C and H

These two students submitted a summary to the questions asked

about the activities.

1. No, the game does not end because for every two dots, there

is an infinite number of two dots that can be connected to each other.

2. There can be no winner because there are an infinite num-

ber of turns that can be taken.
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3. Beginning with two dots, there is no way of determining

the maximum number of arcs; there is no way to determine the minimum.

A winner cannot be determined because there is no winner.

Students E, F, and K

These three students completed the game by playing two at a

time and submitted these results:

1. Yes, the game will end.

2. Yes, there will be a winner.

3. No. of Dots Max. Min.

Connected Arcs Arcs

2 10 7

3 l4 l4

4 22 18

5 28 22

6 34 __

Activity 9

Tower Puzzle

The tower puzzle consisted of a piece of construction paper

6” x 18” with circles drawn 5 inches apart which served as spindles,

and squares of appropriate sizes. The object of the game was to move

a pile of squares from one ”spindle” to another maintaining the rela-

tive positions of the squares, which was the smallest square on the

top, largest square on the bottom. Moves were made according to the

following conditions:

1. Only one square could be moved at a time.
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2. A larger square could never be placed on top of a smaller

square.

Determine the least number of moves necessary to transfer an

entire pile of squares from one ”spindle” to another. Try playing the

game with 2 squares, 3 squares, 4 squares, etc. Once the least number

of moves required to transfer the entire pile of squares has been de—

termined, record the information in a table and try to generalize that

information to finding a pile of n squares; then determine the least

number of moves needed to transfer any pile. Provide answers to the

following questions:

1. Why do you think the squares are of alternating color?

2. Suppose that the squares are all the same color. Can

you develop a strategy for determining which square should be moved

at each turn?

The students worked in their groups for this activity, the re-

sults represent their combined efforts.

Students A and D

These two students completed the exercise after many trials and

submitted their report which was brief:

By working with the tower, it can be found that in order to

have the right number of movements, you must not place one colored

element on another element of the same color. Using different

numbers of squares, they worked for the formula 2r+l where r was

the previous number of movements.

Students B, G and J

These three students completed the moves according to the con-

ditions; results were recorded in a table and conclusions drawn
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accordingly:

 

Number of Number of

§guares Turns ”Generalization”

0 0

1 1 2(0) + 1

2 3 2(1) + 1

3 7 2(3) + 1

4 15 2(7) + 1

5 31 2(15) + 1

6 63 2(31) + 1

7 127 2(63) + 1

 

Let y equal the number of consecutive number of squares,

the number of turns increase according to the formula 2x + l

where x is the previous turn for increasing y's. The least

number of turns possible was obtained by always placing a

square on another of a different color.

Students C and H

These students performed the activities, recorded their results

and provided the following:

 

Number of Number of

Sguares Moves

2 3

3 7

4 15
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Number of Number of

Squares Moves

6 63

7 127

n 2x + l 

When the number of squares was increased by l, the number

of moves was increased by twice the preceeding number of moves

plus 1. The squares are alternating in color because it's

easier to distinguish between them. If all squares were the

same color use the smaller of each advancing square.

Students EJ F, and K 

These students completed the activity as a team; after many

trials, the compiled their results in a table with the following

conclusions: The least number of moves to transfer one pile to another

 

 

spindle

Number of Number of

Squares Moves

2 3

3 7

4 15

5 3l

6 63

7 127

n 2n + l

Conjecture: ” 2n + l is the number of moves where n is the preceding

number of moves (for the preceding number of squares.) By demonstra-

tion we proved it, therefore it is a theorem. The squares are of

alternating colors because they are a guide in working the puzzle. The

squares must go together in alternating colors.”
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Activity 10

Instant Insanity

This game was played with four cubes with their faces colored

red, blue, white and green. The purpose of the game was to take note

of the arrangement of the colors before the package was opened. At the

start of the game, the cubes were mixed very thoroughly and then rear-

ranged in a manner similar to the arrangement before the package was

opened. Only one student submitted a report on this activity. Student

G reported: "The easiest way to complete the problem is to use color

combination, first same color next to each other, or any other combina-

 

 

 

 
 

 

 

 

tion.’ Now a diagram of his solution:

Row 1 Row 2 Row 3 Row 4

Side 1 I blue I green I white I red I

Side 2 I green blue I red I white I

Side 3 I white I green I blue red

Side 4 I red I white I green blue

   
Row 1 - blue, green, white, red

Row 2 - green, blue, green, white

Row 3 - white, red, blue, green

Row 4 - red, white, red, blue

”There is no sure way to get a solution for it but the informa-

tion given here might be able to generalize something; block positions

may be switched.” All of the students had played the game before and

their interest in the game was not encouraging as they chose not to
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try to generalize a solution.

Summary

The statements, quotes, theorems corollaries and conjectures

made by the students and included in this report are exactly as they

were made or written. No attempt was made on the part of this inves-

tigator to edit or rearrange their thoughts as they perceived them.

In several instances, students reported results which were not necessarily

valid for generalized cases. These conclusions should be considered

conjectures and are marked with a #. The students participating in this

investigation were above average and highly motivated. All were con-

sidered excellent candidates for further studies in the area of math—

ematics; they demonstrated time after time what can be accomplished

with this kind of high school student. The students, themselves,

pointed out many times that what was accomplished could be part of a

normal class situation with any student enrolled in an ordinary algebra

class.



 



CHAPTER V

SUMMARY AND CONCLUSION

Summary

The purpose of this study was to examine in detail the cognitive

outcomes of high school students using physical models to study the

structure and nature of mathematical systems. The study was conducted

under normal classroom conditions at Suncoast High School in Riviera

Beach, Florida using for the population selected high school students

who were considered to be above average and excellent candidates for

further studies in mathematics. The hypothesis which stated:

When selected bright high school students are placed in a

circumstance where they can study mathematical models, they

will demonstrate their abilities to deal effectively with

mathematical models; the nature of an axiomatic system, and

the process of logically deducing propositions for investi—

gations

was realized in more than a few instances. The physical model being

concrete and familiar in nature, as well as manipulative, provided an

excellent means by which the student could develop an understanding of

the nature and properties of a mathematical system. The students demon-

strated time after time that it was possible for them to do critical

and creative thinking in terms of relating that which was concrete and

derived from physical models to that which was abstract and applied to

a mathematical model. One activity proved to be either too abstract or

too unfamiliar for the students and no results were obtained.
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The students were familiar with the reflexive, symmetric and

transitive properties and the Cartesian cross product concept as they

were related to their study of the real number system in a algebraic

setting.

It is the opinion of this investigator that since this particu—

lar activity was not representative of a physical model to be mathema—

tized the students were unable to determine the significance of the

characteristics of an equivalence relation as they relate to physical

models. As was pointed out earlier in the report, the only question

answered consistently by most students dealt with the Cartesian cross

product of A x A of colored rods.

Discussion

The results of this research demonstrates that within the con-

straints of normal classroom conditions, high school students can

achieve a higher level‘of understanding the nature of: (1) model build—

ing both physical and abstract, (2) the axiomatic process, and (3) the

truth value of inferential propositions. What was accomplished here is

not typical, nearly all courses in high school mathematics at some time

or another make mention of physical models of mathematical entities and

the properties of mathematical models; but all too often, these topics

are treated in isolation. The significance of the model, physical or

mathematical, should be emphasized throughout the course as the need

arises. The content of the intermediate algebra class, from which the

students were selected, was taught based on the axiomatic approach which

probably contributed to the results obtained.
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Recommendations for Further Research

The following recommendations are made as a direct consequence

of this investigator's participation in the pilot and final studies as a

classroom teacher.

1. There should be more use of the case study procedure in the

elementary and middle school to investigate the content in

mathematics using physical models and participatory games

to characterize mathematical systems.

2. The physical models mathematized in this study should be

used in an attempt to teach high school students about

other mathematical systems.

3. That research be done on the effect of the use of these

teaching strategies on a wider sample of high school

students.

Conclusions

In conclusion, it can be stated that the major aspects as stated

in the hypothesis are reasonable and proper goals to work for and attain

with high school students.

As was pointed out earlier in this report, models have an unex—

celled power to clarify concepts and provide an invaluable means by

which difficult and abstract ideas can be made simple and understandable.

The students participating in this study submitted fifteen theorems, two

corollaries, four conjectures and four generalizations as a testament to

that fact.
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