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ABSTRACT

APPLICATION OF THE THEORY

OF ROULETTES TO THE SYNTHESIS

OF MECHANISMS

by William H. Bussell

Four bar mechanisms are desirable machine elements

because of their simplicity. However, because the proper-

ties of such a mechanism are changed when the relative

lengths of its links are changed, out and try methods of

designing them are time consuming. Graphical methods are

useful and help to give a feeling for the mechanism. Ana-

lytical methods, however, provide means of programming a

digital computer for a numerical solution.

The approach used here in devising an analytical

solution, is that of instantaneous motion of the coupler

bar plane and as such belongs to the class of analyses

based on infinitesimal displacements. The theory of rou-

lettes, which treats of the paths of points in the plane

of a curve rolling without slipping on another, is used.

This supplies a means of applying the concept of station-

ary curvature of point paths in obtaining a numerical

solution to a mechanism synthesis problem. Since any plane

motion can be reduced to the motion of a curve rolling on

another Curve, part of the problem is one of determining a

suitable rolling curve pair.
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The instant center concept is used to obtain the

rolling curve pair for a given path or function generation

problem. The equations of the rolling curve pair are then

used with principles from the Calculus to determine the

location of all points in the moving plane which, during

the instantaneous motion chosen, move in paths of station-

ary curvature. Any two of these points are used as hinge

joints at one end of a pair of links joining the moving

plane to the fixed plane. The links are joined to the

fixed plane at the centers of curvature of the pair of

points chosen. This forms a four bar mechanism. The plane

motion of the coupler bar of this mechanism will closely

approx imate the motion of the moving curve plane over a

small range of displacement.

This method is useful in devising mechanisms in

which a point on the coupler bar traces a portion of some

required continuous curve. It is also useful, by means of

mechanism inversion, for devising function generator mech-

anisms. If the function generator can be made with a pair

of rolling curves, a portion of the motion of the rolling

curve can be generated with a four bar mechanism.

An analytical method of determining the output

angle of the function generator of this mechanism is devised

so that a computer can be programmed to test possible solu-

tions of a given problem. The method does not supply the

dimensions of the best linkage arrangement, so there
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remains the problem of testing a finite number of possible

mechanisms in order to obtain one which will satisfy the

problem.
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PREFACE

The synthesis of mechanisms has received much at-

tention for many years. Before Werld war II almost all of

the methods used were graphical. During the war years the

increased use of mechanical analog computers and function

generators focused more attention to the need for more ac-

curate methods of synthesis. Since then, and particularly

during the last ten years, various analytical methods have

been developed for the synthesis of the basic four bar

linkage.

While the four link mechanism is simple in appear-

ance in that there are only three moving links, the analy-

sis of the motion of the linkage is not simple. There are

many theories and techniques in use. One of these, refer-

red to later as the inflection circle concept, has been in

use for many years and a special terminology has been

built up around it. However, there seems to be no strict-

ly analytical method of synthesis based on the theory

underlying this method.

The object of this investigation was to develOp

a procedure for applying the theory of roulettes to two

kinds of synthesis problems: mechanisms for tracing

curves and mechanisms to generate functions. The inflec-

ii



th1circle concept originates in the theory of roulettes.

The writer wishes to express his thanks to Dr. G.

H. Martin of the Department of Mechanical Engineering for

encouragement and suggestions while this work was in prep-

aration.

iii



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . .

LIST OF TABLES . . . . . . . . . . . .

LIST OF ILLUSTRATIONS . . . . . . . . .

INTRODUCTION . . . . . . . . . . . . .

Chapter

I. THEORETICAL DEVELOPMENT . . . .

Roulettes

Plane Motion and the Rolling

The Point Path Traced in the

II. PATH GENERATION . . . . . . . .

Open Curves

Closed Curves

III. FUNCTION GENERATION . . . . . .

Function Generators

Synthesis of the Four Link Function

Generator

The Analytical Determination of the Output

Pair

Plane

Crank Angle for the Four Bar Function

Generator

CLOSURE . . . . . . . . . . . . . . . .

APPENDIX . . . . . . . . . . . . . . .

BIBLIOGRAPHY . . . . . . . . . . . . .

iv

Page

ii

vi

31

#8

76

80

85



LIST OF TABLES

Table Page

1. Tabulated Values for the X and Y Components

of Points of Stationary Curvature and

Their Centers for the Straight Line

Mechanism . . . . . . . . . . . . . . . . . 27

2. Results for the Parabolic Path Program . . . . 36

3. Results for the Function Generator Program . . 63

A. Computed Output for the Function Generator

OfFigure 2L... 0 00.0 0-0.». 0‘. 000 O 73



Figure

l.

2.

3.

10.

ll.

12.

13.

lb.

15.

16.

17.

LIST OF ILLUSTRATIONS

The Four Link Mechanism . . . . . . . . . .

The Crossed Four Link Mechanism . . . . . .

Three Roulettes: The Cycloid 02 and the

TrOChOidS Cl and 03 o o o o o o o o o o o

A Four Link Mechanism to Replace Rolling

MOtoion O O O O O O O O O O I O O O O O O

The Fixed and Moving Coordinate Systems . .

The Location of the Fixed Coordinate System

Relative to the MOving System . . . . . .

The Disc and Straight Line Rolling Pair . .

The General Tracing Point and the Rolling Curve

Pair 0 O 0 O O O O O O O O O O O O O O O

The Rolling Curve Pair and the Derived Approx-

imating Four Link Mechanism . . . . . . .

The Locus Curves for the Straight Line Mech—

anism..................

The Straight Line Mechanism Obtained from

the Locus Curves . . . . . . . . . . . .

The Locii of the g-and C-Points for the Para-

bolic Path . . . . . . . . . . . . . . .

One Parabolic Path Mechanism . . . . . . .

The Circular Path Problem . . . . . . . . .

The Disc Rolling on a Disc. . . . . . . . .

The Disc Rolling on Disc Mechanism for the

case «=0 0 O O O O O O O O O O O O O O O

The Rolling Curve Function Generator . . .

vi

Page

12

12

17

22

25

26

3h

35

39

#2

#5

51



Figure

18.

19.

20.

21.

22.

23.

2h.

25.

26.

27o

28.

29.

LIST OF ILLUSTRATIONS -- Continued

The Rolling Curve Inversion . . . . . . . .

The Derived Path Tracing Mechanism . . . . .

The Inversion for Constructing the Function

Generator Mechanism . . . . . . . . . . .

The Derived Path Generator Mechanism for the

FunCtion $83 0 O O O O O O O O O O O O O

The Function Generator Mechanism Derived for

¢=39L2 and Obtained from m1 at 0'0 . . . .

The Performance Curve for the Mechanism of

Figure 22 O O O O O O O O O O O O O O O 0

The Function Gengrator Mechanism for the

Function .4180" Obtained from m; at a=O .

The Performance Curve for the Mechanism of

Figure 24 O O O 0 O O O O O O O O O O O O

The Locii of the Points of Stationary Curvature

and Their Centars of Curvature for the

Equation #1 =3 9" .

Equivalent Path Mechanism for v=3.hh50 9"aat

ago 0 O I O O I O O C O O O O O O O O C O

The Mechanism and the Performance Curve Based

on the Solution of Figure 27 . . . . . . .

The Figure Used in Deriving the Analytical

Method of Determining the Output Angle . .

vii

Page

51

57

57

59

6O

6O

61

61

62

67

68

7O



INTRODUCTION

The four link mechanism. The four link mechanism

is an assembly of four links pivoted together at their end

points to form a closed chain. It has been studied exten-

sively in the past and with good reason. It is the shmflest

linkage device having constrained motion, does not require

expensive machining to produce, and can be used in an end»

less variety of applications. Such a mechanism can be used

to produce plane motion or some input=output crank angular

position, velocity, or acceleration relationship. The

plane motion referred to here is the motion of the coupler

bar, link b, in Figure l. The input-output motion is that

of cranks a and c. For the linkage to be considered a

mechanism, one link must be fixed.1

Other mechanism elements, such as rolling curves

and cams, can be used to provide input-output relation-

ships.293 They can be designed to meet exact position

requirements over a given range, but ease of construction,

 

lRolland T. Hinkle, Kinematics of Machines (2d ed.;

Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1960) p. 7.

2Hinkle, p. 170.

3Alexander Cowie, Kinematics and Design of Megh:

anisms (Scranton, Penna.: The International Textbook 00.,

I961) p. 368.

l



 

 
 

 

Fig. l.--- The four link mechanism.

 

 
 

Fig. 2.» The crossed four link mechanism.
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good wear properties, positive constraint and perhaps other

virtues make the four link mechanism the most attractive

when it can be designed to provide motion similar to that

of a pair of rolling curves. The procedure begins with a

pair of rolling curves, one being fixed and the other mov-

ing, which are synthesized from the motion requirements.

The writer has found no reference to a procedure in which

a pair of rolling curves is synthesized and these curves

used to develop an approximating four link mechanism.

Only a few functional relationships between input

and output cranks can be satisfied exactly by a four link

mechanism.4 There are, however, many applications where

a close approximation to a given functional relationship

over a limited range is all that is desired. Such require-~

ments can usually be satisfied with a four—link mechanism.

The design of a four link mechanism to satisfy

some coupler bar or output crank motion for a complete

cycle of the mechanism is beyond the scope of this work.

Attention is directed toward the problem of devising mech-

anisms which approximate a given required motion over a

limited range. The problem can be divided into two cato

egories: path generation and function generation.

Path and Function Generation. Path generation is

 

4B. W. Shaffer and I. Cochin, "Synthesis of the Four

Bar Mechanism when the Position of two Members is Pre- ,

scribed," Transactions of the ASME, v. 76, (Oct. l95h),P-ll37.



A.

the case in which some point in the plane of the coupler

bar (link b of Figures land 2) traces a portion of some pre-

scribed path. There are practical applications in machin-

ing surfaces and providing special motions in machines.5’6

In the case of function generation, crank c has some par-

ticular motion relationship to crank a. The prescribed

motion may satisfy requirements for position, velocity,

or acceleration. There are useful applications in the

7
fields of control mechanisms and computing devices.

There are two basic approaches to both cases. The

first, as applied to function generators, consists of

choosing several values of the independent variable and

computing the corresponding values of the dependent vari-

able. A mechanism is then devised such that the output

crank passes through several angular positions representing

the dependent variable during the same phases in which the

input crank is in angular positions corresponding to the

independent variable values.8’9"lo

 

5James C. WOlford and Donald C. Haack, "Applying

the Inflection Circle Concept," Transactions of the Fifth

Conference on Mechanisms (Cleveland: The Penton PubIIsHIng

Company, 1958) p. 232.

6Joseph S. Beggs, Mechanism (New York: McGraw

Hill Book Company, Inc., 1955) p. 200.

7Hinkle, p. 293.

8Ferdinand Freudenstein and George N. Sandor,,

"Synthesis of Path Generating Mechanisms by Means of a

Programmed Digital Computer," American Society of Mech-

anical Engineers Paper No. 58=A~85.

9Ferdinand Freudenstein, "Approximate Synthesis

of Four Bar Mechanisms," Transactions of the ASME, v. 77,

(August, 1955) p. 853.

10Hinkle, p. 267.
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There are, mathematically at least, an unlimited number of

possibilities in devising mechanisms to match a given mo-

tion requirement.

The second type of solution is based on the geome-

try of the plane motion of the coupler bar and is usually

11,12 It is

referred to as the inflection circle concept.

based on the theory of roulettes, which treats of the paths

of points in the planes of curves as they roll without

13 This theory can be used toslipping on other curves.

develop the Euler-Savary Equation which is used in apply-

ing the inflection circle concept to determine the center

of curvature of the path of a point in a moving plane. In

application, the inflection circle can be used to synthe-

size mechanisms which have motions matching a given re-

quirement over a finite range of displacement. There are.

many examples in the literature.lh’15..As with the pre-

cision point method, there are infinitely.many.mechanisms

obtainable.from this method which will satisy a motion re-

quirement over a small range.

 

11Allen S. Hall, Jr., "Inflection Circle and Polode

Curvature. " WWW-

agisms (Cleve and: The Penton Publishing Company, 1958);n207.

12Allen S. Hall, Jr., Kinematics and Linka e Desi n

(Englewood Cliffs, N. J.: Prentice-HaII, Inc., I96I),p. 6%.

13Ben amin Williamson, An Elementary Treatise on

the Different al Calculus, (London: Longmans Green and Co.,

LTD, 1927), p. 335.

lHWolford and Haak, p. 233.

15Hall, p. 9b.
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Synthesis methods using the inflection circle con-

cept are not well suited to strictly analytical methods.

Since the programmed digital computer can do numerical work

with such rapidity, the use of such a device for mechanism

synthesis seems very attractive. The deve10pment of such

methods however, necessitated a reconsideration of the

underlying mathematical theory.
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THEORETICAL DEVELOPMENT



THEORETICAL DEVELOPMENT

Roulettes

The roulette. A curve generated by some point in-

variably connected to a curve which rolls without slipping

16 Two well known exampleson another curve is a roulette.

are cycloids and trochoids. In Figure 3, the curves Cl and

C3 are trochoids while curve 02 is a cycloid. If the co-

ordinate system in Figure 3 is located so that the origin

is at O and the radius of the circle is r, then the para-

metric equations for the location of a point n, which lies

in the moving plane, are:

x": ra—G'nsine (I)

Y" r -O-r3cose (2)

Equations (1) and (2) can be used to devise a mech-

anism having four rigid, hinged links, one link of which

will closely approximate, over a small range, the motion of

the circle when rolling without slipping on the straight

line. To do this, one locates a pair of points in the

plane of the circle which have "stationary" or unchanging

l7
curvature. Since the general point must be moving

 

16Williamson, p. 335.

17Ha11, p. 97.
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Fig. 3.-- Three roulettes: The cycloid 02 and the

trochoids C. and C3.
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/  
 Fig. 4.--A four link mechanism to replace rolling motion.
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along a trochoidal path with respect to the straight line,

the curvature at every point is changing more or less rape

idly. The points having the greatest range of stationary

curvature are best. After the two points are selected,

their centers of curvature are determined. The straight

line is considered to be a line scribed in a fixed plane,

and the two points chosen in the moving plane are joined

by means of rigid links to their centers of curvature lo-

cated in the fixed plane. See Figure 4.

This method of synthesis will apply to any pair of

rolling curves. A more general expression than equations

(1) and (2) will be required; one which will include the

rolling curves used. Since the shape of the rolling

curves is not generally known in the beginning, some method

must be devised to determine the expressions of the curves

as an intermediate step. This is done in the following

consideration of plane motion.

Plane Motion and the Rolling Curve Pair

Plane motion. The plane motion of a plane may be

some combination of translation and rotation. Whatever

the motion, it may be considered to be composed of a num-

ber of small rotations about different instantaneous cen-

ters. Hence, any plane motion is the equivalent of the



ll

rolling of one curve on another.l8’19

The given motion can be reduced to a rolling curve

pair by using the concept of the instant center in the

manner shown in the following development. Refer tc>Figure

5. A moving point P is located in a left-hand coordinate

system x-y, which moves in a fixed right-hand system X—Y.

The location of P in the X-Y system in terms of

the parameter ¢, the angular displacement of x-y with re-

spect to X-Y is:

Xp= XQ-rxpcos¢-ypsh1¢ (3)

Yp=Yo+xpsin¢+ypcos¢ <4)

XQ and YQ locate the origin of the mOVing set in the fixed

set.

The location of P in the x-y system is made simi-

larly (refer to Figure 6.):

xP = x0 + XPcos¢ + YP sin4> (5)

yP= yo - XPsin4> + YP cos 4. (6)

XQ AND YQ are related to xO AND yo BY:

 

l8Williamson, p. 363.

19Edwin Bidwell Wilson, Advanced Calculus (Boston:

Ginn and Company, 1911), p. 73.



 

 

  

 

  
 

 

 

 

   
 

Fig. 6.-- The location of the fixed coordinate system

relative to the moving system.
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x0 =~-(X0 cos¢+ YQsine) (7)

yo s XQ sump - Yo case . (8)

 

The fixed curve. The point P can be made to be the

point of contact of the rolling curve pair. The requirement

for pure rolling is satisfied if the velocity of the point

of contact zero with respect to both systems: xp = 9, = KP =

Yp = 0. Here the dot notation is used to represent deri-

vatives with respect to time. The imposition of the con-

dition for pure rolling at point P on the time derivatives

of equations (3) and (4) results in:

O = *0 - xpdasingb- ypducos e

O = To + xpélcose — ypciasine

which can be rearranged as:

1:9 = xp sin 4: + yp cos d: (9)

£9 = ~(xp case -— yp sin 4:). ('0)

The parametric equations for the fixed curve, which

is in the fixed coordinate system, are obtained by substi—

tuting equations (9) and (10) into equations (3) and (A).

They are: Y

X : x — q-Q (ll)'
P 0 ¢

YP = Ya + 5— (l2)
¢
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The Moving Curve. The equations of the moving curve

are obtained in the following manner. Equations (7) and (8)

are substituted into equations (5) and (6). The results

are:

xp = (XP- X0) case + (YP - Y0) sin ¢

3n. = -(Xp-XQ) sine + (Yp - Yo)cos 96

Equations (11) and (12) are rearranged and substituted into

the two equations above. The parametric expressions for

the moving curve result.

x... = $(XQ sin¢~ To c034.) (I3)

yP = $020 cos¢+ 9Q sin¢) . ()4)

P is the point of contact between the rolling curves.

It is expected that the path of Q will be expressed

as some function of XQ. That is:

v, = axe)

Then equations (11), (12), (13) and (110 will be expressions

written as functions of XQ and ¢. Obviously, it will be

helpful if ¢ is also a function of XQ. For a particular

path of point Q, Y will be expressed as a particular

Q

function of Xq. However, because the curve is a point

path, the relationship between diand XQ is independent

of the curve and any relationship may be used. Further,

there will be a different rolling curve pair for every

d»: g(XQ). This is not particularly important if the
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path generator is to consist of a pair of rolling curves

with the tracing point fixed in the moving curve, but if

a four bar function generator with the tracing point fixed

to the coupler bar is to be synthesized, the best function

for ¢ will of necessity be determined by trial. This is

so because the motion of the tracing point can be made to

trace portions of some curves more accurately than others.

A_Iglling_curve example. Some examples will be

needed as the development proceeds so that principles can

be illustrated. A simple one illustrating rolling curve

development follows. The path to be generated is a

straight line inclined upward to the right at an angle V/h

with the following specifications for the plane motion:

ya: x,, «in-xx,

in which K is some assumed constant. From equations (11)

and (12):

x ‘x--—'-
P- O K

I
HP 8 Yb'+ l<°

This may be rewritten as:

- 2L
YP XP+K.

The fixed curve is seen to be a straight line inclined up-

ward to the right at the angle W/h from the X-axis. The

line crosses the Y=axis at 2/K.

The equations for the moving curve are:

xP = ('IK)(sin4>- case)
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yp = -(l/K)(sin¢ + cos 4:)

After squaring both equations and adding, an equation of a

circle about the origin having a radius of V27K is obtained.

xgi-Y%= 27K -

The tracing point is the center of a circle which will fol—

low the line desired. See Figure 7.

The Point Path Traced in the Fixed Plane

Eqiations of the point. With the rolling curve

pair expressed mathematically, the paths on the fixed

plane traced by points fixed in the moving plane can be

C
D

determined. Fmgn‘ 8 shows the rolling curve pair and the

point path. Q is the origin of the moving coordinate

set, and C is the moving point, which is located by:

62:67:».0‘; ((5)

In order to write the X and Y components of equation

(15), a radius vector angle a is defined. This angle,

a position angle in the moving set, is measured counter-

clockwise from the negative y-axis. The X and Y compo-

nents of the position of g are written:

x; XQ + 5—; sink-4:) (l6)

Y; YQ + 52 cosh-4.) - (I?)

The distance Q can be expressed as the product

of some number m, to be determined, and the distance‘UP

at the initial position of the rolling curve pair.
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Fig. 7.-- The disc and straight. line rolling pair.

 

 

Path of

l; in X-Y

Yi

Fixed curve

*
0
)

 

chi \ +

Q___1 -

P Moving curve

 

 

Fig.8.--The general tracing point and the rolling curve pair.
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52 = mOP = High.“ 33:0 ((8)

The expression under the radical in equation (18) can be

represented by y.

 

7==\/X2Pit.“ YE),- 0 (l9)

Equations (16) and (17) can now be written:

X§= XQ + my sink-(p) (20)

Y; 3 Yo + m7 C05(a"¢) o (2')

Points having stationary curvature. The points in

the moving plane which trace paths having momentarily sta-

tionary curvature can be located by means of expressions

for the radius of curvature. Radius of curvature express-

ions can be obtained from any textbook on the Calculus.2O

The procedure is to equate the derivative of the radius of

curvature, with respect to the position angle a, to zero

and solve the resulting equation for m. Equations (20)

and (21) can then be used to locate the stationary curva-

ture points. The centers of curvature are located by using

eXpressions obtained from the Calculus. (See equations (25)

and (26)). There is, of course, a solution for m for every

chosen value of a .

 

20William Anthony Granville, Percy F. Smith, and

William Raymond Longley, Elements of the Differential and

Integral Calculus (Boston: Ginn and Company, 1941), p.152.
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The eXpression for the radius of curvature, taken

from the Calculus, is:

3

2 (22)

d Y:

dxf
where

.21.... “lg/5‘3}.
ch dt

23dt ()

and

dX sz d dex
——c— “It—z

d2? dt dt2 dt dt2
(24)

dx; 925;)3

dt

The expressions for the centers of curvature are:21

X§" 91: I +(g%ifz

 

ox = (ix; sz4 (25)

d

dV' 2

- Y . 4.2)
dX

GK and CY are the X and Y coordinates of the center of

curvature.

Equations (20) and (21) are now put into equation

(22). The derivatives are determined, using equations (23)

and (24): (The dot notation is used for time derivatives.)

21Granville, Smith, and Longley, p. 157.
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23;: ‘314- my.) sink-4i) (2.”

dxt X0 - myél cosh-e)

Eva" Yaxa + M7(M sin (01--¢) + Ncos(a- 46)] + "2,2;2 ‘28)

>2
)?

d C [XQ- myr} cos(a at”?

M and N are defined as:

The expression for the radius of curvature can now be

written:

{XS-Y20+ 2my [Yo sin(a- d») - X0 cos(a- ¢)] + m

. 3/2
R 3 2 24’2}

C x070 9020 + M7[M sink-e) + Ncos(a- 40] + mzyz 4.3
. (3|) 

The process of writing the derivative of R; with

respect to a can be shortened by writing R; symbolically

as:

The derivative is then:

I
/ 3’2

3 2 dA - 13

ng_ (5)3A da A da
 

cTa' ' B?-

dR;_

If da -0, then

d d

33—5 = 2A3. (32)
da do

Since

A= X3 + if + 2my<p[YQ sin(a-¢) - Xocos(a-¢)] + "127262

B = )(QYQ- YQXQ - my[M sin(a-4>) 4- N cosh-M] + m2 72 $3
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then

.16.: 2m7$[70cos(a-4>) + kqsin(¢-4>)]

D
.

.g = my [M cosh-p) - N sink-4”]

When values of A, B, 3'3, and 3'3 are put into

equation (32) and simplified, a quadratic equation in m

is obtained as follows:

m2y2432[sqi2- z] + myHlsM-thZ) sine-4.) +

(3N +2XQZ)cos(a-¢)] - 3&0}, 5(0- XQVQ) - 206+ 7%) =0 (33)

in which

M cosh-4:) - N sink-e)

Yo cosh-4i) 4- X0 sink-4:) (34)

Equation (33) completes the derivation of the

equations locating the points in the moving plane having

stationary curvature and their centers of curvature. The

values of m obtained from a solution of equation (33) are

put into equations (20), (21), (25), and (26). For every

value of a chosen there are two values of m, and it fol-

kmm that along any line drawn through point Q and making

the angle a with the -y axis, there are two points having

stationary curvature.

With the points of stationary curvature, {I and g2

and their centers of curvature Cl and 02 located, a mech-

anism can now be constructed which will cause the point Q

to move along a path which is similar over a small range
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Fig.~9.-- The rolling curve pair and the derived

approximating four link mechanism.
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to that produced by Q as a point in the moving curve.

Points Cl and Cl become the joints of a link joining the

fixed to the moving plane; points :2 and Cg form another

link.

Application. The example presented earlier for

rolling curve formation can be used to illustrate meche

anism synthesis by this method. Some arbitrarily assumed

values which simplify the problem are:

a; = ii, = x, = 0.

Then M and N from equations (29) and (30) are:

M = K49; N=-K«'p3

also, from equation (34):

z=¢i

Equation (33) becomes:

Zmzyzé.4 + me$4fsin(a-¢) - cosh-44)] - 2K2$4=O.

By equation (19):

-\/_2‘_
7 ‘ |(’

The constant K is a scale factor and the geometry of the

mechanism will not be changed by any chosen value. Unity

is the most convenient choice and the quadratic equation

in m becomes:

2m2 +V%[sin(a-4>) - cos(a-¢)] - I = O. (A)

Any value of ¢ can be chosen since the character

of the motion of a disc on a straight line is independent

of the position of the disc. When ¢=O, the solution of

equation (A) becomes:
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m=‘%- [cosa-sinaii/TT-sinZa] (8)

Since a different solution of (B) exists for each

value of a chosen, there are, mathematically, infinitely

many possible mechanisms for drawing this straight line.

The locii of the stationary curvature points and their

centers can be obtained by computing the positions of the

points and their centers for a finite number of values of

a between 0° and 360°. The equations needed are listed

 

 

below.

Q§=%[cosa-sinaiVl7—sin2a] (o)

Xg=QC Sin“ (D)

Y; =0; cosa (E)

i_ I+X

Y; - W- (F)

.._ QUXc-st‘QC) G

Y9 - (l+-Y§) ( )

a .2

ex: xgs Y[';§(Y)] (H)

'2

CY= Y§+ -L%1 (I)

The locii are shown plotted inifignrelfih The nu-

merical results of this program on a digital computer are

shown in Table l.

A single mechanism is constructed by choosing a

value of a which is measured clockwise from the negative

y-axis. In this case, with 4>=O , the negative y-axis
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The §-curve is the locus of all

points in the x-y plane having stationary

curvature with respect to the X-Y plane.

The C-curve is the locus of the centers

of curvature.

C- curve

 
 

 

// __._

p

Fixed curve

7/

./ i/l
/ l

/ \

/ \

/ Moving curve \

/ ' \\

/

/

/

/

Desired path

 
of Q

\\

\

\

\

0,0 X}

  
 

Fig. IO.--The locus curves for the straight line mechanism.
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Fig.ll.-- A straight line mechanism obtained from

the locus curves.
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corresponds to the positive Y=axis. A line is drawn

through Q at angle q. The intersection of the line with

the {-curve locates the two points C1 and C2. These are

the joints connecting the cranks with the moving plane.

Lines are now drawn from El and 52 through P to the point

of intersection with the C-curve. This determines the

length of the cranks and the location of the joints on the

fixed plane. The construction is shown in Figure 10 and the

mechanism is shown in Figure 11. The portion of the path of

Q as a point on the coupler bar is shown to indicate the

range of match with the desired curve.

Practicalityig The utility of a curve tracing

device may not be too obvious. One possible application

is its use as a special mechanism to aid in machining sur-

faces. There is another possibility in replacing gears

and rolling curves to provide a particular motion. In the

example given, the link which is formed by drawing a line

from g1 to C2 has the same motion it would have if it were

a line scribed on the disc. This suggests the possibility

of replacing a rack and pinion with a four bar when the

range of motion required is small.

Angular acceleration of the disc. The specifica-

tion that d>be constant does not make this a special case,

for as long as XQ = YQ = K¢>, the rolling curve pair will

have the same form and the mechanism will be the same.
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II

APPLICATIONS TO PATH GENERATION



II

PATH GENERATION

Qpen Curves

Open Curve paths. We shall now consider the problem

of synthesis of a four link mechanism having a tracing

point Q which traces some portion of an open curve. The

general procedure previously described applies. The prin-

cipal difficulty lies in the selection of the best relation-

ship between ¢>and Xq. There are no general rules for se-

lecting the relationship so that trial and error will per-

haps be necessary.

Parabola. As a first step in the exploration of

the method, a mechanism is to be designed to trace a por-

tion of a parabolic curve.

2

YQ = 4X0 (35)

The e‘to XQ relationship is assumed to be

The following equations are derived from equations (35)

and (36).

x,= (i. (37)

x0: iii (38)

Yo: (ix/6‘ (39)

t0: «ii/«a.- — “5513. (40)
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The fixed and moving curves are expressed by°

XP= ¢ "' l/V; (4')

NF 2"; + l (42)

y. = sine - %§=—¢ (43)

x, = - (c... + $37.4 (44)

The expressions for the roulette are:

x; = 4: + mysin(a-¢) (45)

Y; = 2H? + my cos(¢-¢) (46)

in which y:)/.£;E a

Before a mechanism can be designed it is necessary

to select some values of 4: and d) . By choosing 4’ ‘4’ = l

the following series of equations is obtained.

7=Wf; M=l; Nf-d

= cosh-4)) - 0.5 sink-e)

cosh-e) + sin (a-d)

Equation (33) then becomes:

2m2 + _lt_'l_ 5 +sin2(a-¢)- 30052(¢-¢) _ 7cos(a-4>i + 5 sine-(b) :0

V2- 400501-43) + Selma-(p) 4005(3-4’) + 5 sin(°‘¢)

which can be written:

2m2+%D-E=O (J)

if

___ 5 + sin 2(a-4>) - 3 cos 20g»)

400564)) + 5sin(¢-¢) ’

_ 7cos(a-¢)+ 5 sink-4.)

E " 4co3(a-¢) + 53in(¢-4>)'
(K,L)

The following list of equations can be used to

make the computations needed to synthesize a mechanism

which will trace a portion of the parabola of this example.

It was the basis for a computer program used to make a

more complete solution.
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m=Zl-‘/2 -Di'\/DZ+IGE (M)

X§= l +V2m sink-4:) (N)

Y; = 2 + Jim casual-(la) (O)

. _ l + V? m sink-4)) (P)
 

YC - l - f2- m coda-4’)

.. _ - |/2 + f2 m [sin (OI-(p) - '/2 cos(1-¢)+ 2m]
 

 

YC ' [l-x/Em coda—<10]3 (Q)

.2

g _. ngI-t\t ) (R)
CX X; Y'i')

CY”= it + £11;%t-. (S)

Y;

The Fortran program for this series of equations

is in the appendix. The tabulated results are presented

in Table 2.. The locus plot of the points and their

centers are shown in Figure 12. The performance of one of

the possible mechanisms is shown it) Figure 13.

Closed Curves

Closed curve paths. The circlgi The next problem

is to explore the synthesis of a mechanism having a coupler

bar point which moves in a circular path. It is not to be

expected that the resulting mechanism will generate a

circle, but that it will approximate the curve over a lim-

ited range. The problem is depicted in Figure 14.

The equation for the path of Q is:



(too
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(XQ-a)2 + (Ya-b)2 = o2 (48)

in which C is the circular path radius.

The angle W'is measured counterclockwise from the

X-axis to the radius of the circle locating point Q, and

is expressed by:

YQ-b
X a (4 9)
a ..

temp =

The angular displacement of the moving coordinate system

18: ¢ = fHI) . (50)

The equations for XQ and YQ are written by inspection of

Figure 14.

X0: 0 + Coos 4’ (5i)

YQ=b + Csin‘l’. (52)

Their time derivatives are:

x0: - C‘itsimp (53)

70 = 04: cos 4' (54)

54; = -C(ip simp + (520051;!) (55)

yo = C({II cosv/ -\ilzsinw) . (56)

The parametric equations for the fixed curve are:

XP=a +C(I- .)cos\p (57)

¢=b+cn- wa, mm

and for the moving curve:

xp = - C(thosN-fl (59)

yP = -C(\i:/$)sin(‘P-4>) . (60)

Equations (20), (21), (25), and (26) are used to
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Fig. I4.-- The circular path problem.
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locate the joints of the approximating mechanism. Equations

(29), (30), and (34) are written as follows:

 

M =C[(55-55)sin5+ (525.55%«51 (6|)

N = - C((55- 55)cos\p + (525+ 552) sin 5] (62)

Z: (55- 55)sin(5+a5)+ (525.55%036414-(2-5) (63)

Vcoswm'fl

The value of 7 is:

7:1/ xPz+sz =Cg. (64)

After putting equations (61), (62), (63), and (64) into

equation (33). the result, after some simplifying, is:

+.r_r12_[(5ii’f"“2+552)sin 20- (55-5-5)(5+coszo)]

(255- 552icos8 - (55 55isine

-.2[i¢,¢2_2{kz¢)c030 + (V5 -1tif)$in0 ] = O (65)

(2552-- 552mm - (55 - 55 )sinO

in WhiCh G=(‘p+a _¢).

The four link mechanism which is to approximate

this motion will be designed so that the tracing point

Q fits at one point and values of 5, 5, 5, 5, 5, and 5

will be put into equation (65). This will simplify the

equation. The coupler bar (attached to the moving plane)

hinge joints are located at (Xgl, YCI)’ (1‘2, YCZ) and

the hinge joints on the fixed plane are located at (0X1,

0Y1) and (CX2, CY2). The points and the derivatives of

the path curves are:

a + C[c055 + m(5/5)sin(a-5)] (66)

b + C[sin5 + m(5/5)cos(x -5)] (67)

X;

Y;



#1

Y' = _ 5 c035 4: mu! sin(a-5) +6 cosh-5)] (68)

C 75in 5 + m [5 cos(a ~5) ~£ sin(a-5)]

 

 

 

where £= flizté

(69)

": .. fl! +M[Pcose +Tsin01+ Amz}

Y; C{5sin5 + m [5 005(0‘5)-€sin(a-¢)]
}3

(70)

u_.... .2.. ”_2

where P = (W 5'95”? 5) _ Hz—
(7])

4’ 5

T : "_ v . . - 2‘ . .. i

and 5% WM vim, $5) +55%”. 4,, (72)

A = 55(55 ’355‘55)
+ 555544-255) + 355,392... 2“”? (73)

53 -

The centers of curvature are determined by put-

ting equations (66), (67), (68), and (70) into equations

(25) and (26).

Circles rollinggon circles. The foregoing pro-

cedure may be used to synthesize mechanisms which approx-

imate the motion of circles rolling on circles. In this

case, the fixed center 0 is shifted to the center of the

circular path. See Figure 15. Here,

_ D+d

0" 2

559-

(7 4)

The moving circle motion can begin at YQ = O,

XQ = C. After an interval, 55 rotates an angle 5 and

the moving circle rotates through angle x with respect to

the line 56. The moving system, attached to the moving

circle, turns through the angle X‘+4I:
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Fig. l5.-- The disc rolling on a disc.
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4, -.- A + 5. (75)

From Figure 11,:

id = 50 (76)

and 5 ‘P on - (77)

 

By substituting n= d , 5: n5 , 53'- n5 , and 5: 05

into equation (65), the resulting quadratic in m becomes:

 

I .

m2+ Zmé‘fi—‘sme - 2n—l = O (78)

in which ®= 5~5+a

7_ C%- Dzn+d

The points of stationary curvature are:

 

x; = -";"[cos5 + 1} sin(a- 5)] (79)

YC = 92-‘1[sin 5 + -';','—cos(a-5)] . (80)

Expressions (69), (71). (72), and (73) become:

5“ O

P _.; JAM-mi?) ..

'r = 5[5(n+|) ~2fl31+§

5556+ 2m]/52+ 2n2 2 2 .

[135/3

The geometry of such a mechanism would not be

A

altered by taking 5= I, 5='5'=O , so that

P=O

T=n+l

A=n

and the derivatives can be written:

. cos 5 + m sin(a -5)

= - sin 5 + m cosh—5) (8')



4h

2 I +m(n+l)sino *I-nm2

D+d [sin4.+mcos(a-¢)]3"

 

Y; = ' (82)

Application. A mechanism is designed by putting

values into equations (78), (79). (80). (81), and (82).

As an example, for d = 2, n = 1+, 4" 1r/2, ¢= 2-1r and

equation (78) becomes:

2 2. _.EL
m+7mcosa 730

for <1= 90°, ml = 0.535, m2 = -0.535. The coordinates of

the joints are:

x§1= 0.535; Y§l= 4.0; cxl = -o.7hh; 0Y1 = 1.608

x£2= -0.535; Yt2= 4.0; 0x2 = 0.7hh; CY2 = 1.608

The mechanism is constructed in Figure 16.

fieduction of the case of the disc rolling_on a

disc to that of a disc rolling on a straight line. In the

extension of this case to that of the disc rolling on a

straight line, the diameter D becomes infinitely large.

As

I
D—v-oo; n—u-oo; s=-n—->-O ,

Then, replacing n by l/s, equation (78) becomes:

2 3+) . _ 1'25 g
m + [—2_s]m smO 2-s 0. (83)

By putting s = 0, equation (82) becomes:

m2+ flsine - -'— =0. (84)
2 2

Now, by using the trigonometric identity:

sin®= sin(\p+a -¢) = sin~pcos(a-4>) + coswsiMa-o) ,
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Fig. l6.-- The disc rolling on disc mechanism for

the case a=0.
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and taking, for a horizontal line below the disc, the value

v = "/2.

sinO = cosh-4:)

and equation (82) becomes:

m2 + Ian-cosW-M-‘é'; 0. (85)

Now, if the value for W is taken as -774 in the

first case considered, in which the disc rolls on a stranyn;

line above the disc and inclined upward to the right,

sine = -gcos(a-¢) + £- sin(a -¢)
2

Equation (82) becomes:

m2+ 2135 [sin(a-¢)-cos(a-¢)] - i = o (86)

which, when multiplied by 2 is identical to equation (A)

of the first example. Thus, the development of the mech-

anism to generate a portion of a straight line path is a

special case of the more general curved path case.

It is to be noted that the mechanism develOpment

begins with a different equation for m for each differently

inclined line, and for each line there is a very large

number of possible mechanisms.
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FUNCTION GENERATION

Function Generators.

 

Four link function generators. The relation be-

tween the input and output link angular displacements of a

mechanism is a geometrical property. A mechanism so de—

signed that the input-output relationship satisfies a par-

ticular mathematical function between two quantities is a

function generator. Function generators may be used as

components in control systems, instruments, or as mechani-

cal analog computing elements.

Mechanisms which match any given function relation-

ship exactly can be constructed from rolling curves.22’23

Such devices can be difficult to machine and when the input

output requirements are not exact or a small range of motion

is required, a four bar function generator may suffice.) For

the purpose of this study, the four bar function generator is

a mechanism constructed of bars or links, the lengths cfwhich are

such that the crank angles correspond to the variation of some dependent

 f ‘Vfi

22H. E. Golber "Rollcurve Gears," Transactions of

the Isms, v. 61, (1939) p. 223. *

23Bees8. p- 7h-

#8



#9

variable and the variation of its independent variable.

The devices considered here will be approximate function

generators.

Function generators can be synthesized by seeking

a mechanism such that the output link will be in certain

positions when the input link is in correSponding positions,

the positions being obtained from several numerical solu-

tions of the desired functional relationshiplzh’ZS There

are an infinite number of possibilities mathematically, and

a very large number of different mechanisms can be obtained

from one set of precision points. The mechanism positions

between precision points are in error and part of the

problem is that of locating the precision points so as to

26
minimize the error.

Mechanism synthesis based on the inflection circle

concept is a different method.27 As pointed cut earlier,

that method and the method presented here are based on the

same fundamental theory, which is one of matching the mech-

anism performance to the function over a small range.

The application of the roulette method. The direct

 

2("Ferdinand Freudenstein, "Approximate Synthesis of

Four-Bar Linkages," Trans. ASME, v. 77, (Aug., 1955), p. 853.

25Hinkle, p. 267.

26Ferdinand Freudenstein, "Structural Error Analysis in

Plane Kinanatic Synthesis," Trans. ASME, v.81, ser.B, n.1, (Feb.l959 ), p.15.

27Ha11, p. 106.
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application of the method of roulettes to function genera-

ticn requires beginning with a rolling curve pair. The curves

wfll be expressed in paranetric fcrm as discussed previously.

The procedure for designing rolling curves is well

known.28 Any pair of rolling curve function generators

which can be designed by Golber's method can be used as a

basis for four bar function generator design. The procedure

for synthesizing a circular path generating mechanism is

combined with an inversion of the rolling curve mechanism

about one curve, preferably the input curve.

The rolling curve function generator is depicted

in Figure 17. Angle 9 is the input. Figure 18 shows the in-

version of the mechanism about the input link and is the

basis of this development. Since the rolling curve mech-

anism is usually designed with fixed centers, the path of

the ground joint of the output link is a circle. The

output angle, W , when added to the input angle, becomes ¢,

the displacement angle of the moving coordinate system.

The case of the circular path generating mechanism with

the circle center at the fixed origin applies. The func»

tion generating mechanism resulting from this synthesis,

however, is quite different from the path generating

mechanism, as shall be seen. The moving system displace-

ment angle is:

 

28Golber
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Fig. )7. --The rolling carve function generator.

 

 
 
 
 

 

Fig. IS. --The rolling curve inversion.

 

 



52

4>=9+.pc (87)

Rolling_curve design. It is to be assumed that

some function is to be generated by a pair of rolling curves

such as

0: Ma) (88)

and that the curves have a fixed center distance so that

R+r= C (89)

R and r are associated with input and output angles, 0 and

irrespectively. The condition for pure rolling is satis-

 

 

 

fied by:

RdO = MW. (90)

By rearranging equation (90)

.8. a £311 9)r d0 ( )

so that

_ i
r R dw/dO (92)

and finally:

C(d‘P/da)

(av/d9) + I (93)

and

r = I (94)
C (deBh-l °

Equations (93) and (9h) eXpress R and r as func-

tions of the derivative of the desired function, which

is in turn a function of the independent variable, 9.

Rolling curves using instant centers. The rolling

curve development by the method of this thesis can be com-

pared with the method of Golber referred to earlier.
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The path of Q is now taken to be a circle about the

fixed origin and its equation is:

X3 + Y::= 02

Here, C = OQ.

Since 3 3.05130

x0

then

X0 ‘0 cos 9

Yb==05h19 .

The time derivatives are;

*0 '3 -Césin9

Y0 = Cecos 0 .

The parametric equations for the rolling curve pair are

(95)

(96)

(97)

(98)

(99)

(IOO)

obtained by putting equations (97), (98), (99), and (100)

into equations (11), (12), (13), and (16).

Xp= cu Air/6)]... a

YP = on ~(é/ipilsin 9

X9 = -C(é/$) cos(9-¢)

YP '-‘ C(é/ci) sin(9-¢) .

(I0!)

(I02)

(I03)

(IO4)

Comparison of results with Golber'§=method. To com-

pare this with Golber's method, it is noted that:

R=VX§+Y§ and r=Vx§+y§.

Then

R=cu-(é/q'b)1

r = C(84) .

Replacing 4> with VH8:

(ms)

((06)

(I07)
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(W/0)+ l

C

= . . (H39)
and (W/9)+’|

since @Vé= fig, it is seen that equations (108) and (109)

are the same as equations (93) and (9h).

Synthesis of the Four Link Function Generator.

Basic equationg; With a'b=0 in equations (65)ami(66)

and with w replaced by 9, the equations of the point on the

roulette are:

x; = C[c059 + m(é/qi>)sin(a-¢)] (HO)

Y; = C[ sine + m(8/$)cos(a —¢)]. (III)

The location of the points of stationary curv-

ature is made as before, that is, by solving equation (65)

for m and putting the values of m into equations (110) and

(111). Equation (65) can be simplified by noting that the

geometry of the four link mechanism will not be changed

if the input link has constant velocity, that is,

m2[&>(2&>-é)cos® + $sin 01+ 33 [JQHQ sin 20 +$(5+cos 20)] -

[&($-28)cos® +$sin®] = 0. (”2)

In this equation, 9 =9-¢+a .

The mechanism is constructed to fit the desired
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function exactly at one point. This point can be selected

in the center of the desired Operating range with the ex-

pectation that good approximation will extend an equal

amount on either side of the matching point. Whether or

not the mechanism will satisfy the requirement over the

range desired cannot be determined since the range of

best fit cannot be found at this time.

When the matching point of the mechanism is chosen,

values of 9,. 8, (p, «i, <3, and 4; Will be fixed, This will

simplify equation (112). The points of stationary curve

ature are determined by inserting values of m from eq-

uation (112) into equations (110) and (111). It must be

remembered that a pair of values of m are obtained from

equation (112) by fixing all variables, so that the same

variables must be used in any given solution of equations

(110) and (111). Equations (25) and (26) are to be used

for the centers of curvature, using the following deriva-

tives:

. - _ ' '2 -

Yc' : __ cosB + m[sm(a 4:) (if/4: )cos(a 48] (HS)

sin a + m[ cosh-4:) + ($/4>2)sin («z-40]

8+mRW)sinO - @50038] + $2 R¢2+9$'2$2)' $2]

Y" =- '
C

.0!) '9 [(-i iwa-i] 3{sun +m costlcti-ir‘fi2 sun 4> } (II4)

where ®=9-¢+a.

Function generator linkage construction. The den
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rived mechanism for path generation is illustrated in Figure

19. The point Q is intended to describe a segment of a

circle. Cl and :2 are the points of stationary curvature

and points 01 and 02 are their centers of curvature.

This is the inversion of the function generator. It is to

be noted that in the origional motion, the XQY system is

to rotate about the point 0 through 9 while the x-y system

is to rotate about the fixed point Q. The distance 05

then is required to be fixed and to be made so by using a

link which becomes the fixed link of the mechanism. Next

a link is used to attach points C1 to C1 and the two planes,

XeY and x-y have constrained motion with respect to each

other. These two planes can be reduced to links 051 and

5:1 and the result is the four link function generator.

A second possibility is mechanism 002920. See Figure 20.

Application. An easily followed procedure for

numerical synthesis can be devised by putting the so-

lution of equation(112) in a more easily handled form.

If the mechanism is a position function generator, 1. e.,

velocity of the input link is not specified, then 8= 1

can be inserted into the solution. The result is:

m=-,-:-(-01'\/02+I6I-:) (us)

 

where

3 j>(d»+l)sin20 +§(5+cos28) (ll6)

6(28-00030 + $sin®

 

D
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Fig. I9.--The derived path tracing mechanism.

 

 

 
 

 

Fig. 20.--The inversion for constructing the function

generator mechanism.
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and 601+ 2icose -$sine
. II7)

6(2d- I) case + 85m (

 E:

Example. An arbitrary function is chosen to illus-

trate the procedure.

|P=:30L2

This is put into the form to be used in this synthesis

method by replacing \p by ¢-8: (This accomplishes the in-

version)

¢= 39"21-8

with time derivatives:

i=(3.ea'2+ mi

3;:- (0.72 9‘3) 92

'4; =(- 0.576 9'”) 93

For 9:), 9:1, 6:4, 6:4.6, 8:072, 62-0576. (“0)

= -().3|S), IE= O.3|4

[0.319 £40319? + l6(0.3l4) J

 

J.

4

= -0.688. The following values

"‘3

so that ml = 0.6h2, m2

are obtained:

X§l= 0.665, Ygl= 0.736, CXl= 0.065, CYl= 0.505

XC2= 0.460, Ytz= 0.907, CX2= 0.358, CY2= 0.173.

The constant C is a scale factor and can be taken as unity.

The derived mechanism is shown in,EQ;re21. The function

generators resulting from the inversion are shown in Figures

22 and 24. The performance curves, graphically determined,

are shown hiifigures 23and 25. The locus plot from a com-

puter solution is shown in Figure 26.
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Fig. 2|.-- The derived path generator mechanism

for the function g: = 30"
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Fig. 22.-- The function generator mechanism derived

for 4' =39"2 and obtained from m. at a=0.
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Fig. 23.--The performance curve for the mechanism of Fig.22.
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Fig. 24.-- The function generator linkage for w 3:59"2

obtained from m2 at a: 0.
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The mechanism is expected to represent the function

to be generated over only a small range of values. It will

be necessary to decide on the range of values of the func-

tion the mechanism is to generate. In the example just

given the scale divisions of the function and the angular

diSplacement of the cranks in radians corresponded. In

another case it might be desirable to eXpand or to com-

press the function scale. In the absence of any specific

information on the mechanism, a limitation of something

less than 180° rotation of the output link can be imposed

when the range of values of the function to be generated

is greater than that of its independent variable. This

particular mechanism will probably be a crank and rocker

mechanism which is driven by the rocker.

To expand the range of the function to be generated,

in this case, a revision of the equation relating the in-

put crank angle to the output crank angle is necessary. By

rewriting the function, i. e., renaming the variables;

y=E§xL2

The relationship between the input angle range and the

independent variable range is:

A6=KAx

For the two variables to have equal values, K equals unity.

For A9=I, and Ax=2, K= l/2

then x=29, y=2¢

and the function to be generated can be determined by

substitution into the function statement:
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(24’) = 3(29)"2

or 4. = 3.445 0"2,

After replacing \p by 41-6 and solving for 4H

8 = 3.4456“?- + a

J. =(4.l49'2 + Hé

a; =(o.8289"°)éz

“a; =(-0.662 8"”)63

for x = 1, 9= 0.5, é= 1, 4,: 2.0, 8= 4.6, $=1.443,

4> = ml.757. Choosing a= 0, the calculated values are:

0 = «0.875, E = 0.40, ml= 0.887, = -0.451. Then:m
2

x51: 09365, Y§2= 0.762, CXl= 0.916, CY1= -0.44O

x§2= 0.629, Y§2= 0.883, cx2= 0.240, 012- 0.467.

The stationary curvature points and their cen-

ters are plotted inFigure 27. The derived mechanism for

path generation is shown. The function generating

mechanism, constructed using points 0, Cl, :1, and Q

and inversion about link 001 is showr in Figure 28. Note,

however, that the input range has only been extended

a small amount and that the degree of fit is not as

good as that of the first mechanism constructed. (Fqgue

24‘ However, there is probably still a better mech-

anism and it can be obtained by taking another value

of a to be put into the equations. A locus plot is an

interesting study to make.
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The Analytical Determination of the Output Crank

Angle for the Four Bar Function Generator. With the avail-

ability of rapid computational equipment, the determina-

tion of the output angle of the derived four bar linkage

by numerical rather than graphical methods is desirable.

In addition to the speed there is the availability of

greater precision afforded by numerical methods.

Figure 23 shows the pair of derived mechanisms

which are obtained from a solution using one value of <1.

An expression relating W and 0 is to be obtained. The

angles of the inverted mechanisms which correspond to the

input angle 9 of the function generator are 1; and v .

The links are: (The subscripts are omitted.)

 

 

a = 00 = chF + (CY)2 (H8)

b = c; = “(X -cx>2- (Y -0\r)é (me)

C -"-’ QC -‘-' my (I20)

d = 00

d is a scale factor. Unity is a convenient value.

TWO relations for the output angle w result.

They are based on the following:

1")0 p>1r Case I

P46 [1(11' Case 11

also:

- ~19. ~
F-—tan ex “2!)
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’-  X

 

Fig. 29.-- The figure used in deriving the analytical

method of determining the output angle.
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Case I. For case I, 1; = l"-9 . (l22)

The line 3 = 56113 drawn and by the use of the law of co-

sines:

32: a2 + d2 -2ad cos 1) (l23)

The two angles B and k are defined from:

 

B = sin"('% sin a) (124)

_ 2

x=cos.'2(sz+sc: b). (l25)

The two expressions obtained from Figure 29 are:

P = 152349-454...)

p=w+WX-B)

from which: 4>=9+a -g-+().-,3)o (l26)

By substituting ¢=9+W9

4"“'-2'L*”‘B)° (:27)

Case II. For case II,

n==9-P “21»

and the expressions for F are:

[1,: %+(O-¢+O)

;L= V'f(k"B)

from which

- —- —

¢-9+a+2 (x B)

and finally:

\l/= a+%-(X-B)-
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The computation is carried out in tabular form

in Table 4” The output scale is to be regarded as movable,

and the position is to be determined by the matching point.

In this case, the match is made at 9= 1 and qr= 3. For

this reason, the equations for d and W are not numbered.

In computing the output values it is only necessary to de-

termine (x -B) and the difference between the required

angle at 9 = 1 (¢= 3), subtract (x -3) from this

angle and add the difference to (h -,8) for the other

values.
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IV

CLOSURE



CLOSURE

0n the preceding pages there has been no attempt

to derive any existing equations. The origional intent was

the development of a method for optimizing a mechanism

synthesized by the inflection circle concept. It was

first determined that some expressions of the procedure

in an analytical form were necessary. Examination of an

out of date calculus book uncovered the theory of roulettes

and its use in developing the inflection circle and in

deriving the Euler-Savary equation. It seemed to be

the necessary theory on which to base an analytical

synthesis method. This development was the result.

The basis of this work is the plane motion of

a plane: every mechanism synthesis here begins with

instantaneous plane motion. The plane motion is described

in terms of a pair of rolling curves as an intermediate

step in the location of a pair of points which are moving

in paths having instantaneously stationary curvature.

If the radius of curvature of the path is constant over

a considerable displacement of the plane, the coupler

bar plane of a linkage having joints located at these

points will match the origional plane motion for the

same range. Also, if the curvature is not changing
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rapidly there will be a good match. A rapidly changing

radius of curvature means a poorly matching mechanism. In

the event of a poor match there are two possibilities: the

first and easiest is to select a different position angle,

¢, The second possibility is to select a different plane

position. In the second possibility it will be necessary

to rewrite all the equations. In either case it is possi-

ble to solve for enough points and centers using a digital

computer so that the locii of all points can be plotted.

These locus curves can then be used to select the mech-

anism after a few trials.

A direct method of selecting the best mechanism

has not yet been devised. It should be possible, however,

to write a computer program that will determine error

over some set range for a finite number of the possible

mechanisms so that the one with minimum error can be se-

lected.

The path generating method of synthesis involves

a selection of the relationship between the moving plane

angular displacement and the displacement of the tracing

point on the coupler. The best relationship must be ob-

tained by trial since, due to the nature of the problem

of path tracing with a point, none will be given in the

initial statement. It would seem that this is an area for

further work. Obviously, a different rolling curve pair

will result from each different angular displacement-path
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displacement relationship. Once the selection is made,

two other selections are necessary: first, the tracing

point position so that equations of position may be writ-

ten and second, the choice of the position angle a. Once

the tracing point position is fixed and the equations

written, the angle :1 can be chosen either at random or a

systematic exploration can be made using different values

of a. As in the case of the function generator, a digital

computer program can be written and used to obtain values

for plotting the locus curves. These curves are very

helpful in selecting the mechanism.

The duplication of rolling curve plane motion as a

means of substituting four bar linkages for rolling curves

has been considered only briefly. The case included here,

that of a disc rolling on a disc, was the most successful

of all syntheses attempted in length of match. As pointed

out earlier, it has an application where there is an in-

centive to replace a pair of gears with a four bar link-

age. The example shows the application where one gear is

fixed. It is also possible to use the linkage to replace

a pair of fixed center gears. Such use is a simplifica-

tion of the function generator problem with constant an-

gular velocity ratio. Other rolling curves in machines

may be approximated with this technique.
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COMPUTER PROGRAMS AND RESULTS

The locus curves for the two path generating mech-

anisms and the function generator were obtained using an

IBM 1620 digital computer having a FORTRAN input. Since

this is a widely used computer, the programs are included

here. However, they are specialized programs and must be

altered for other mechanisms. They are arranged to give

the X and Y components of the points of stationary curv-

ature for incremental values of a of 10°. Finer incre-

ments can be obtained by rewriting the increment state-

ment, A = A + 0.1745 (A is a ) to read the desired value.

It is not necessary to index a around for 360°, because

ml for a = 90° becomes m2 for a = 90°-t» 180°. Thus, if

Aa(orAA) is taken to be one half of 0.1745 then the

100ping statement, DO 22I = 1,36 will supply enough points.

Synthesis of other mechanisms can be obtained by

rewriting the program statements as necessary to suit the

new requirements. The form is suitable for specific mech-

anisms. Specifically, the generation of a different func-

tion would require that certain statements of table ‘7 be

changed. These are: Nos. 11 and 12 for a different mat-

ching point; 24 through 36 for a different function.
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Statements 26 through 36 can be made general by replacing

numerical values with alphabetical terms which are then

defined earlier in the program.

Table 5

FORTRAN PROGRAM FOR STRAIGHT LINE MECHANISMS

i
-
-
’

O
O
C
D
Q
O
U
‘
I
-
P
W
N

t
—
’

F
H
A

A
H
A

STATIONARY CURVATURE POINTS AND CENTERS=STRAIGHT L.

LINE MECHANISM

A=O

D0 221=1,36

A=A+O.1745

TC=COSF(A)

TS=SINF(A)

T82=SINF(2.0*A)

QP1=0.25*(TC-TS+SQRTF(17.0-TS2))

QP2=0.25*(TC-TS-SQRTF(17.0-TS2))

YP1=QP1*TC

YP2=QP2*TC

XP1=QP1*TS

XP2=QP2*TS

Y1Pl=(l.O+XPl)/(l.O-YP1)

Y1P2=(1.0+XP2)/(l.0-YP2)

Y11P1=§XP1-YPl-QP1**2)/(l.O-YP1**3)

Y11P2= XP2-YP2-QP2**2)/(1.0-YP2**3)

CX1=XP1-(Y1P1*(l.O+YlP1**2))/YllPl

CX2=XP2-(Y1P2*(1.0+Y1P2**2))/Y11P2

CY1=YP1+(1.0+YlP1**2)/Y11P1

CY2=YP2+(1.0+Y1P2**2)/Y11P2

PUNCH 23,A,YP1,YP2,XP1,XP2,CX1,CX2,CY1,CY2

FORMAT(F7.4,8F9.3)

END

Symbols

A =a_, XPl = X91, YlPl = Igl,

"

YllPl = Ycl, 0x1 = 0x1, CY2 = CY2.
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Table 6

FORTRAN PROGRAM FOR THE PARABOLIC PATH MECHANISM

\
O
C
D
Q
O
U
'
I
P
W
N
i
-
J

PATH GENERATING MECHANISM-PARABOLA

A=0.0

DO 24I=1336

A=A+O.l745

TC=COSF(A-l.0)

TS=SINF(A-l.0)

(T02=COSF(2.0*(A-1.0))

T32=SINF(2.0*(A-1.0))

D=(5.0+T32-3.0*T02)/(4.0*TC+5.0*TS)

E=(7.0*TC+5.0*TS)/(4.0*TC-5.0*TS)

GM1=0.1765*(-D+SQRTF(D**2.0+16.0*E))

GM2=0.1765*(-D-SQRTF(D**2.0+16.0*E))

XP1=1.0+GM1*1.414*TS

XP2=1.0+GM2*1.414*TS

YP1=2.0+GM1*1.414*TC

YP2=2.0+GM2*1.414*TC

Y1P1=(1.0+GM1*1.414*TS)/(1.0-GM1*1.414*TC)

Y1P2=(1.0+GM2*1.414*TS)/(1.0-GM2*1.414*TC)

Y11Pl=(-O.50+GM1*1.414*(TS-O.50*TC+1.414*GM1))/

(1.0-GM1*1.414*TC)**3.0

Y11P2=(-0.50+GM2*1.414*(TS-0.50*TC+1.414*GM2))/

(1.0-GM2*1.414*TC)**3.0

CX1=XP1-Y1Pl*(1.0+Y1Pl**2.0l/(YllPl)

CX2=XP2~Y1P2*(1.0+Y1P2**2.0)/(Y11P2)

CY1=YP1 + (1.0+Y1P1**2.0)/(Y11P1)

CY2=YP2+(1.0+Y1P2**2.0)/(Y11P2)

PUNCH 25,A,XP1,YP1,CX1,CYl,CX2,CY2

FORMAT(3F7.3,2F10.3,2F7.3,2F10.3)

END

Added symbols: GMl = ml, GM2 = m2
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Table 7

FORTRAN PROGRAM FOR A FUNCTION GENERATOR - ¢I= 331°2

o
m
w
o
w
r
w
m
w

FUNCTION GENERATING MECHANISM - CASE ONE

A=0.0

B-1.0

FI=4.0

DO 31I=1,36

A=A+0.1745

TH=B-FI+A

TC=CCSF(B)

TS=SINF(B)

TCA=COSF(A-FI)

TSA=SINF(A-FI)

TCB=COSF(TH)

TSB=SINF(TH)

TCB2=COSF(2.0*TH)

TSB2=SINF(2.0*TH)

D=(3.6+25.75*TSB2+0.72*TCBZ)/(37.75*TCB+0.72*TSB)

E=(11.95*TCB-O.72*TSB)/(37.75*TCB+O.72*TSB)

GM1=0.25* -D+SQRTF(D**2.0+16.0*E))

GM2=O.25* -D-SQRTF(D**2.0+16.0*E))

DY1=-(TC+GM1*(TSA-0.034*TCA))/(TS+GM1*(TCA+0.034*TSA))

DY2=-(TC+GM2*(TSA-0.034*TCA))/(TS+GM2*(TCA+0.034*TSA))

DDY1=-(1.0+GM1*(4.79*TSB-O.1905*TCB+3.79*GM1))/

(TS+GM1*(TCA-0.034*TSA))**3.0

DDY2=-(I.0+GM2*(4.79*TSB-0.I905*TCB+3.79*GM2)l/

(TS+GM2*(TCA-0.034*TSA))**3.0

XP1=TC+GM1*O.2175*TSA

XP2=TC+GM2*0.2175*TSA

YP1=TS+GM1*O.2175*TCA

YP2=TS+GM2*0.2175*TCA

CX1=XPl-DY1*(1.0+DY1**2.0)/DDI1

CX2=XP2-DY2*(1.0+DY2**2.0)/DDY2

CY1=YP1+ 1.0+DY1**2.0)/DDY1

CY2=YP2+ 1.0+DY2**2.0)/DDY2

PUNCH 32,A,XP1,YP1,CX1,CY1,XP2,YP2,CX2,CY2

F0RMAT(3F7.3,2F10.3.2F7.3,2F10.3l

END

Symbols: A = a, B = 9. FI "¢. 9Y1: DYZ = Yil. Y£2

DDYl, DDY2 = Yzl, YEZ.
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