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ABSTRACT
APPLICATION OF THE THEORY

OF ROULETTES TO THE SYNTHESIS
OF MECHANISMS

by William H. Bussell

Four bar mechanisms are desirable machine elements
because of their simplicity. However, because the proper-
ties of such a mechanism are changed when the relative
lengths of its links are changed, cut and try methods of
designing them are time consuming. Graphical methods are
useful and help to give a feeling for the mechanism. Ana-
lytical methods, however, provide means of programming a

digital computer for a numerical solution.

The approach used here in devising an analytical
solution, is that of instantaneous motion of the coupler
bar plane and as such belongs to the class of analyses
based on infinitesimal displacements. The theory of rou-
lettes, which treats of the paths of points in the plane
of a curve rolling without slipping on another, is used.
This supplies a means of applying the concept of station-
ary curvature of point paths in oBtaining a numerical
solution to a mechanism synthesis problem. Since any plane
motion can be reduced to the motion of a curve rolling on
another curve, part of the problem is one of determining a

suitable rolling curve pair.
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The instant center concept is used to obtain the
rolling curve pair for a given path or function generation
problem. The equations of the rolling curve pair are then
used with principles from the Calculus to determine the
location of all points in the moving plane which, during
the instantaneous motion chosen, move in paths of station-
ary curvature. Any two of these points are used as hinge
joints at one end of a pair of links joining the moving
plane to the fixed plane. The links are joined to the
fixed plane at the centers of curvature of the pair of
points chosen. This forms a four bar mechanism. The plane
motion of the coupler bar of this mechanism will closely
approx imate the motion of the moving curve plane over a

small range of displacement.

This method is useful in devising mechanisms in
which a point on the coupler bar traces a portion of some
required continuous curve. It is also useful, by means of
mechanism inversion, for devising function generator mech-
anisms. If the function generator can be made with a pair
of rolling curves, a portion of the motion of the rolling

curve can be generated with a four bar mechanism.

An analytical method of determining the output
angle of the function generator of this mechanism is devised
so that a computer can be programmed to test possible solu-
tions of a given problem. The method does not supply the

dimensions of the best linkage arrangement, so there
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remains the problem of testing a finite number of possible
mechanisms in order to obtain one which will satisfy the

problem.
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PREFACE

The synthesis of mechanisms has received much at-
tention for many years. Before World War II almost all of
the methods used were graphical. During the war years the
increased use of mechanical analog computers and function
generators focused more attention to the need for more ac-
curate methods of synthesis. Since then, and particularly
during the last ten years, various analytical methods have
been developed for the synthesis of the basic four bar

linkage.

While the four link mechanism is simple in appear-
ance in that there are only three moving links, the analy-
sis of the motion of the linkage is not simple. There are
many theories and techniques in use. One of these, refer-
red to later as the inflection circle concept, has been in
use for many years and a special terminology has been
built up around it. However, there seems to be no strict-
ly analytical method of synthesis based on the theory

underlying this method.

The object of this investigation was to develop
a procedure for applying the theory of roulettes to two
kinds of synthesis problems: mechanisms for tracing

curves and mechanisms to generate functions. The inflec-
ii



tion circle concept originates in the theory of roulettes.

The writer wishes to express his thanks to Dr. G.
H. Martin of the Department of Mechanical Engineering for
encouragement and suggestions while this work was in prep-

aration.
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INTRODUCTION

The four link mechanism. The four link mechanism

is an assembly of four links pivoted together at their end
points to form a closed chain. It has been studied exten-
sively in the past and with good reason. It is the simplest
linkage device having constrained motion, does not require
expensive machining to produce, and can be used in an end-
less variety of applications. Such a mechanism can be used
to produce plane motion or some input-output crank angular
position, velocity, or acceleration relationship. The
plane motion referred ts here is the moticn of the coupler
bar, link b, in Figure 1. The input-output motion is that
of cranks a and c. For the linkage to be considered a

mechanism, one link must be fixed.l

Other mechanism elements, such as rolling curves
and cams, can be used to provide input-output relation-
shipsc,z”3 They can be designed to meet exact position

requirements over a given range, but ease of construction,

lRolland T. Hinkle, Kinematics of Machines (2d ed.;
Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1960) p. 7.

2Hinkle, p. 170.

3Alexander Cowie, Kinematics and Design of Mech-
anisms (Scranton, Penna.: The International Textbook Co.,
1961} p. 368.

1



Fig.). -~ The four link mechanism.

Fig. 2.-- The crossed four link mechanism.
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good wear properties, positive constraint and perhaps other
virtues make the four link mechanism the most attractive
when it can be designed to provide motion similar to that
of a pair of rolling curves. The procedure begins with a
pair of rolling curves, one being fixed and the other mov-
ing, which are synthesized from the motion requirements.
The writer has found no reference to a procedure in which

a pair of rolling curves is synthesized and these curves

used to develop an approximating four link mechanism.

Only a few functional relationships between input
and output cranks can be satisfied exactly by a four link
mechanism.h There are, however, many applications where
a close approximation to a given functional relationship
over a limited range is all that is desired. Such require--

ments can usually be satisfied with a four-link mechanism.

The design of a four link mechanism to satisfy
some coupler bar or output crank motion for a complete
cycle of the mechanism is beyond the scope of this work.
Attention is directed toward the problem of devising mech-
anisms which approximate a given required motion over a
limited range. The problem can be divided into two cat-

egories: path generation and function generation.

Path and Function Generation. Path generation is

kg, W. Shaffer and I. Cochin, "Synthesis of the Four
Bar Mechanism when the Position of two Members is Pre- .
scribed," Transactions of the ASME, v. 76, (Oct. 1954), p. 1137.
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the case in which some point in the plane of the coupler
bar (link b of Figures land 2) traces a portion of some pre-
scribed path. There are practical applications in machin-
ing surfaces and providing special motions in machines.5’6
In the case of function generation, crank c¢ has some par-
ticular motion relationship to crank a. The prescribed
motion may satisfy requirements for position, velocity,
or acceleration. There are useful applications in the

7

fields of control mechanisms and computing devices.

There are two basic approaches to both cases. The
first, as applied to function generators, consists of
choosing several values of the independent variable and
computing the eorresponding values of the dependent vari-
able. A mechanism is then devised such that the output
crank passes through several angular positions representing
the dependent variable during the same phases in which the
input crank is in angular positions corresponding to the

independent variable valuesos’g’10

5James C. Wolford and Donald C. Haack, "Applying
the Inflection Circle Concept,™ Transactions of the Fifth
Conference on Mechanisms (Cleveland:s The Penton Publishing
Company, 195 pe 2

6Joseph S. Beggs, Mechanism (New York: McGraw
Hill Book Company, Inc., 1955) p. 200,

"Hinkle, p. 293,

8Ferdinand Freudenstein and George N. Sandor, .
"Synthesis of Path Generating Mechanisms by Means of a
Programmed Digital Computer," American Society of Mech-
anical Engineers Paper No., 58-A-85.

9Ferdinand Freudenstein; "Approximate Synthesis
of Four Bar Mechanisms," Transactions of the ASME, v. 77,
(August, 1955) p. 853,

10yinkie, p. 267,
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There are, mathematically at least, an unlimited number of
possibilities in devising mechanisms to match a given mo-

tion requirement.

The second type of solution is based on the geome-
try of the plane motion of the coupler bar and is usually

11,12 It is

referred to as the inflection circle concept.
based on the theory of roulettes, which treats of the paths
of points in the planes of curves as they roll without
slipping on other curves.13 This theory can be used to
develop the Euler-Savary Equation which is used in apply-
ing the inflection circle concept to determine the center
of curvature of the path of a point in a moving plane. In
application, the inflection circle can be used to synthe-
size mechanisms which have motions matching a given re-
quirement over a finite range of displacement. There are.
many examples in the literature.lh’ls.,As with the pre-
cision point method, there are infinitely many mechanisms

obtainable from this method which will satisy a motion re=-

quirement over a small range.

llAllen S. Hall, Jr., "Inflection Circle and Polode

Curvature," %Ién§aQ&iQnﬁ_Qi_&hs_IDJZJLJEKﬂSHEHHELJNLJMQQh-

anisms (Cleveland: The Penton Publishing Company, 1958) p.207.
12p31en s. Hall, Jr., Kinematics and Linkage Design

(Englewood Cliffs, N. J.: Prentice-Hall, Inc., I96§),p° 6§°

13Benjamin Williamson, An Elementary Treatise on
the Differential Calculus, (London: Longmans Green and Co.,

LTD, 1927), p. 335.
liywolford and Haak, p. 233.

lSHall, Po 9%.
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Synthesis methods using the inflection circle con-
cept are not well suited to strictly analytical methods.
Since the programmed digital computer can do numerical work
with such rapidity, the use of such a device for mechanism
synthesis seems very attractive. The development of such
methods however, necessitated a reconsideration of the

underlying mathematical theory.



CHAPTER
I
THEORETICAL DEVELOPMENT



THEORETICAL DEVELOPMENT

Roulettes

The roulette. A curve generated by some point in-

variably connected to a curve which rolls without slipping

16 Two well known examples

on another curve is a roulette.
are cycloids and trochoids. In Figure 3, the curves C; and
C3 are trochoids while curve C, is a cycloid. If the co-
ordinate system in Figure 3 is located so that the origin
is at 0 and the radius of the circle is r, then the para-
metric equations for the location of a point n, which lies

in the moving plane, are:
Xn= rg — Qnsiné (1)
Yan= r -Qncos @ (2)

Equations (1) and (2) can be used to devise a mech-
anism having four rigid, hinged links, one link of which
will closely approximate, over a small range, the motion of
the circle when rolling without slipping on the straight
line. To do this, one locates a pair of points in the
plane of the circle which have "stationary™ or unchanging

17

curvature. Since the general point must be moving

16Williamson, p. 335,
17Hall, p. 97



Y '
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Fig. 3.-- Three roulettes: The cycloid C, and the

trochoids C; and Cj.

Fig. 4.--A four link mechanism to replace rolling motion.
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along a trochoidal path with respect to the straight line,
the curvature at every point is changing more or less rap;
idly. The points having the greatest range of stationary
curvature are best. After the two points are selected,
their centers of curvature are determined. The straight
line is considered to be a line scribed in a fixed plane,
and the two points chosen in the moving plane are joined
by means of rigid links to their centers of curvature lo-

cated in the fixed plane. See Figure 4.

This method of synthesis will apply to any pair of
rolling curves. A more general expression than equations
(1) and (2) will be required; one which will include the
rolling curves used. Since the shape of the rolling
curves is not generally known in the beginning, some method
must be devised to determine the expressions of the curves
as an intermediate step. This is done in the following

consideration of plane motion.

Plane Motion and the Rolling Curve Pair

Plane motion. The plane motion of a plane may be

some combination of translation and rotation. Whatever
the motion, it may be considered to be composed of a num-
ber of small rotations about different instantaneous cen-

ters. Hence, any plane motion is the equivalent of the
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rolling of one curve on another,le’19

The given motion can be reduced to a rolling curve
pair by using the concept of the instant center in the
manner shown in the following development. Refer to Figure
5. A moving point P is located in a left-hand coordinate

system x-y, which moves in a fixed right-hand system X-Y.

The location of P in the X-Y system in terms of
the parameter ¢, the angular displacement of x-y with re-

spect to X-Y is:

Xp = Xq *+ Xp COS ¢ - yp Sin ¢ (3)

Yp = Yq *+ X Sing + ypcos ¢ (4)

Xq and Yj locate the origin of the moving set in the fixed

set.

The location of P in the x-y system is made simi-

larly (refer to Figure 6.):

Xp = Xg + XpCOS ¢ + Yp sing (5)

Yp2 Yo = XpSing + Yjcos ¢ (6)

XQ AND YQ are related to Xq AND yo BY:

lSWilliamson, p. 363.

19Edwin Bidwell Wilson, Advanced Calculus (Boston:
Ginn and Company, 1911), p. 73.




0

mm——
Fig. 6.-- The location of the fixed coordinate system

relative to the moving system.




13
xg = -(Xqcos¢+ Yy sing) (7)
= Xo sing - Y cos¢ . (8)

Yo

The fixed curve. The point P can be made to be the

point of contact of the rolling curve pair. The requirement
for pure rolling is satisfied if the velocity of the point
of contact zero with respect to both systems: ip = ip = ip =
QP = 0, Here the dot notation is used to represent deri-
vatives with respect to time. The imposition of the con-
dition for pure rolling at point P on the time derivatives

of equations (3) and (4) results in:

0= Xq- Xpdsing - ypdcos ¢
0= Yq + XpdcOS ¢ - ypdsing

which can be rearranged as:

—:—9 = Xp8in ¢ + yp cOs ¢ (9)
%9 z «(xp COS ¢ -~ yp Sin ). (10)

The parametric equations for the fixed curve, which
is in the fixed coordinate system, are obtained by substi=-

tuting equations (9) and (10) into equations (3) and (4).

They are: Y
Xp = Xq - =% (-
P Q é

)
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The Moving Curve. The equations of the moving curve

are obtained in the following manner. Equations (7) and (8)
are substituted into equations (5) and (6). The results

are:
Xxp = (Xp- Xg) cosp + (Yo - Yg) sin ¢
Yp = =(Xo=Xg) sine + (Y, = Yq)cos ¢
Equations (11) and (12) are rearranged and substituted into

the two equations above. The parametric expressions for

the moving curve result.

Xp = T‘}(X“ sing - Yo cos¢) (13)
Yp = T'i;(xa cos¢ + ?Q sin¢g) . (14)

P is the point of contact between the rolling curves.

It is expected that the path of Q will be expressed
as some function of XQ. That is:
Yq * f(XQ)
Then equations (11), (12), (13) and (l14) will be expressions
written as functions of XQ and ¢. Obviously, it will be
helpful if ¢ is also a function of XQ. For a particular

path of point Q, Y. will be expressed as a particular

function of XQ° ngever, because the curve is a point
path, the relationship between ¢ and XQ is independent
of the curve and any relationship may be used. Further,
there will be a different rolling curve pair for every

¢==g(XQ). This is not particularly important if the
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path generator is to consist of a pair of rolling curves
with the tracing point fixed in the moving curve, but if

a four bar function generator with the tracing point fixed
to the coupler bar is to be synthesized, the best function
for ¢ will of necessity be determined by trial. This is
so because the motion of the tracing point can be made to

trace portions of some curves more accurately than others.

A 10lling curve example. Some examples will be

needed as the development proceeds so that principles can
be illustrated. A simple one illustrating rolling curve
development follows. The path to be generated is a
straight line inclined upward to the right at an angle 7/4
with the following specifications for the plane motiong
Yo Xq , ¢=KXq
in which K is some assumed constant. From equations (11)
and (12):

- 4
Xp = Xg= X%

|
YPSYQ"’ 7.
This may be rewritten as:
= 2
YP"‘ XP+ 'R‘-

The fixed curve is seen to be a straight line inclined up-
ward to the right at the angle m/4 from the X-axis. The

line crosses the Y-axis at 2/K.

The equations for the moving curve are:

Xp = (VK)(sin¢ - cos¢)
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yp = -(1/K)(siné + cos ¢)
After squaring both equations and adding, an equation of a
circle about the origin having a radius of Y2/K is obtained.
x%«-y%= 2/k |
The tracing point is the center of a circle which will fol-

low the line desired. See Figure 7.

The Point Path Traced in the Fixed Plane

EQuations_of the point. With the rolling curve

pair expressed mathematically, the paths on the fixed
plane traced by points fixed in the moving plane can be
determined. Figure 8 shows the rolling curve pair and the
point path. Q is the origin of the moving coordinate
set, and § is the moving point, which is located by:

0t = 6G + Qt (15)
In order to write the X and Y components of equation
(15), a radius vector angle a is defined. This angle,
a position angle in the moving set, is measured counter-
clockwise from the negative y-axis. The X and Y compo-

nents of the position of [ are written:

Xp = Xq + QT sin(a-¢) (16)

Yp = Yo + QC cosla-¢)- (17)
The distance Q can be expressed as the product
of some number m, to be determined, and the distance QP

at the initial position of the rolling curve pair.
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0,Q X

Fig. 7.-- The disc and stroighf' line rolling pair.

Path of
Yy L in X-Y ! L
/* a P an
0-2_ \ +
1
“——— -
Fixed curve
P Moving curve
6
{ X o
° D)

Fig. 8.--The general tracing point and the rolling curve pair.
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T=madP = mvVxd) o+ yg)tgo (18)

The expression under the radical in equation (18) can be

represented by y.

4
y = V80 * Yo oo (19)
Equations (16) and (17) can now be written:

X = Xq + mysinla-¢) (20)
Yg = Yq + my cos{a-¢). (21)

Points having stationary curvature. The points in

the moving plane which trace paths having momentarily sta-
tionary curvature can be located by means of expressions
for the radius of curvature. Radius of curvature express-
ions can be obtained from any textbook on the Calculus.20
The procedure is to equate the derivative of the radius of
curvature, with respect to the position angle a, to zero
and solve the resulting equation for m. Equations (20)

and (21) can then be used to locate the stationary curva-
ture points. The centers of curvature are located by using
expressions obtained from the Calculus. (See equations (25)

and (26)). There is, of course, a solution for m for every

chosen value of a.

20yilliam Anthony Granville, Percy F. Smith, and
William Raymond Longley, Elements of the Differential and
Integral Calculus (Boston: Ginn and Company, 1941), p.1l52.
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The expression for the radius of curvature, taken
from the Calculus, is:

i +(::;) i

R 2
x2
where §
ayy . 9%
T /dt (23)
and
dx da X
dxp &y _ Y &%,
&  dt dt2 dt~ d42
._§= (24)
459
dt

The expressions for the centers of curvature are:21

_ oy 1o ()

CX

d
- ()’
Y= Y+ ——zﬁ— (26)

dcy,
dxg
CX and CY are the X and Y coordinates of the center of

curvature.

Equations (20) and (21) are now put into equation

(22). The derivatives are determined, using equations (23)

and (24): (The dot notation is used for time derivatives.)

2lGranville, Smith, and Longley, p. 157.
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d%._ Yo + my ¢ sin(a—-¢)
:x-i Xq - my¢ cosla-¢) (27

_d2_y§ _ Xg¥a - YaXq + my[M sin (¢-¢) + N cos(d -9)] + P éz. 08)

dx§ [Xq- my¢ cosla-¢1]°
M and N are defined as:
M= Xo¢ - Xqé + Yoo? (29)

The expression for the radius of curvature can now be

written: "
R, = {)‘(8- ?g +2my [?Q sin(a-¢) - 5(0 cos(a-¢)] + maya 4.2} .
- ).(QVQ - %RQ + my[M sin(a-¢) + N cos(a-¢)] + mzyz &3 °

The process of writing the derivative of R; with
respect to @ can be shortened by writing R; symbolically

as.

3
R H A_/z.
4 B
The derivative is then:
|
% ¥
3 2 dA dB
.‘EC: (?)BA da A da_
da 32
dR;_
If da =0, then
dA dB
_—= —_—. 32
3B da 2A ia (32)

Since
A= 5G +¥E +2my (Y, sinfa-¢) - Xgcosla-¢)] + mf F ¢

B = )‘(QVQ - YQXQ - my[M sin(a-¢) + Ncos(a-¢)] + mé 72 &3
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then

dA . 2my [ Yocosla-¢) + )'(Qsin(d-¢)]

B - my[Mcos(a-¢) - Nsina-4)]

When values of A, B, %%, and %% are put into
equation (32) and simplified, a quadratic equation in m
is obtained as follows:
mey242[342-2z] + myd[(3M-2Y,2) sin(a-¢) +
(3N +2XqZ) cosla-¢)] - 3 (Yo Xg-Xo¥o) - 2(X%+ ¥2) =0  (33)
in which

M cos(a-¢) - N sin(a-¢)

Yo cos(a-¢) + X, sin(a-¢) (34)

Equation (33) completes the derivation of the
equations locating the points in the moving plane having
stationary curvature and their centers of curvature. The
values of m obtained from a solution of equation (33) are
put into equations (20), (21), (25), and (26). For every
value of @ chosen there are two values of m, and it fol-
lows that along any line drawn through point Q and making
the angle a with the -y axis, there are two points having

stationary curvature.

With the points of stationary curvature, g' and ;2
and their centers of curvature Cl and C, located, a mech-
anism can now be constructed which will cause the point Q

to move along a path which is similar over a small range
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) ¢ |

___;_ — M:||\ \poth of L,

Fig..9.-- The rolling curve pair and the derived
approximating four link mechanism.
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to that produced by Q as a point in the moving curve.
Points Cl and C; become the joints of a link joining the
fixed to the moving plane; points {5 and C, form another
link.

Application. The example presented earlier for
rolling curve formation can be used to illustrate mech;
anism synthesis by this method. Some arbitrarily assumed
values which simplify the problem are:

$=Y =Xq:=0.
Then M and N from equations (29) and (30) are:
M=K, N:=-K¢
also, from equation (34):
z =42
Equation (33) becomes:
2m2y23* + mKy¢*[sinla-¢) - cosla-¢)] - 2k2¢*=0.

By equation (19):

N2
Yy < K°

The constant ‘K is a scale factor and the geometry of the
mechanism will not be changed by any chosen value. Unity
is the most convenient choice and the quadratic equation

in m becomes:

2 m2 +v%[sin(a-¢) -cosfa-¢)] -1 =0. (A)

Any value of ¢ can be chosen since the character
of the motion of a disc on a straight line is independent
of the position of the disc. When ¢=0, the solution of

equation (A) becomes:
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m=‘%— [cosa -sina V7T - sin2a] (B8)

Since a different solution of (B) exists for each
value of a chosen, there are, mathematically, infinitely
many possible mechanisms for drawing this straight line.
The locii of the stationary curvature points and their
centers can be obtained by computing the positions of the
points and their centers for a finite number of values of

a between 0° and 360°. The equations needed are listed

below.
Q¢ =g [cosa -sinat VI7T-sinz2a]l (G)
Xg = Qg sina (D)
Yy = Q cosa (e)

1]

1 | + X

W QL(X - Y+ QC) o
Yg- (l+ﬁ% (@)
! 12
cX= Xy - AL ;c(Y)] (H)
|+ (%)?
cY = Yy + T (1)
C Y

The locii are shown plotted in Fig're 10, The nu-

merical results of this program on a digital computer are

shown in Table 1.

A single mechanism is constructed by choosing a
value of a which is measured clockwise from the negative

y-axis. In this case; with ¢=0 , the negative y-axis
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The {-curve is the locus of all
points in the x-y plane having stationary
curvature with respect to the X-Y plane.
The C-curve is the locus of the centers
of curvature.

C-curve

YA

Moving curve

/ RN

_—

Desired path
of Q

Fig. 10.-- The locus curves for the straight line mechanism.
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e
— "~ Moving curve’

Fig.1l.-- A straight line mechanism obtained from

the locus curves.
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corresponds to the positive Y=-axis. A line is drawn
through Q at angle a. The intersection of the line with
the {-curve locates the two points Cl and Cz. These are
the joints connecting the cranks with the moving plane.
Lines are now drawn from ;l and Cz through P to the point
of intersection with the C-curve. This determines the
length of the cranks and the location of the joints on the
fixed plane. The construction is shown in FigurelO and the
mechanism is shown in Figure 11. The portion of the path of
Q as a point on the coupler bar is shown to indicate the

range of match with the desired curve.

Practicality. The utility of a curve tracing

device may not be too obvious. One possible application
is its use as a special mechanism to aid in machining sur-
faces. There is another possibility in replacing gears
and rolling curves to provide a particular motion. In the
example given, the link which is formed by drawing a line
from §; to Cz has the same motion it would have if it were
a line scribed on the disc. This suggests the possibility
of replacing a rack and pinion with a four bar when the

range of motion required is small.

Angular acceleration of the disc., The specifica-

tion that &»be constant does not make this a special case,
for as long as XQ = YQ = K¢, the rolling curve pair will

have the same form and the mechanism will be the same,
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II
PATH GENERATION

Open Curves

Open Curve paths. We shall now consider the problem

of synthesis of a four link mechanism having a tracing
point Q which traces some portion of an open curve. The
general procedure previously described applies. The prin-
cipal difficulty lies in the selection of the best relation-
ship between ¢ and Xq. There are no general rules for se-
lecting the relationship so that trial and error will per-

haps be necessary.

Parabola. As a first step in the exploration of
the method, a mechanism is to be designed to trace a por-

tion of a parabolic curve.
2

Yq * 4 Xq (35)
The ¢ to Xq relationship is assumed to be
XQ s ¢ . (36)
The following equations are derived from equations (35)
and (36).
Xq= ¢ (37)
Xq= ¢ (38)
Yo= ¢/v& (39)
You é1vF - AP, (40)

31
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The fixed and moving curves are expressed by:

Xpz= ¢ = \NF (41)

Yoz 2V% + | (42)

Yp = sing - & (43)

xp = - (cos ¢ + j‘/'g_ ) (44)
The expressions for the roulette are:

Xg = ¢ + my sin (a-¢) (45)

YC = 2V¢ + my cos(a-¢) (46)

in which r=@ a
Before a mechan?sm can be designed it is necessary
to select some values of ¢ and ¢ . By choosing ¢ =$ = |
the following series of equations is obtained.
y=vZ ; M=1; N7 -l

cos{a-¢) — 0.5 sin(a-¢)
cos(a-¢) + sin(a-¢)

Equation (33) then becomes:

om2 + M S tsin2a-¢)- 3cos2(a-¢) _ 7cos(a-¢) + 5 sin(a-¢) _

V2 4cos(a-¢) + 5sin(a-¢) 4cos(a-¢) + 5 sin(a-9) =0
which can be written:
2m2+%0-—£=0 (V)

if
. 5 +sin 2(a-¢) - 3 cos 2(a-¢)

_ 7cos(a-¢)+ 5 sin(a-¢) (K.L)
4cosle-¢) + 5sinla-¢) ’

" 4cos(a-¢) + 5sin(a-¢)

, E

The following list of equations can be used to
make the computations needed to synthesize a mechanism
which will trace a portion of the parabola of this example.
It was the basis for a computer program used to make a

more complete solution.
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m=3l‘—/2-0.t'\/02+l68 (M)

Xg= | + V2m sin(a-¢) (N)
Y= 2+ v2 m cos(a-¢) (0)
v _ |+ V2 m sin(a-¢) (P)

% T =v2 m cos@-9)

w_-Y2 + Y2mlsin@-¢) - Y5 cosla-¢) + 2m]

Y- [1-vV2mcos(a-¢)13 (@)
) -2)
CX= Xp - ft-(—"éﬁ— (R)
_ (1+Yp)
CY= Y% v (S)

The Fortran program for this series of equations
is in the appendix. The tabulated results are presented
in Table 2.. The locus plot of the points and their
centers are shown in Figure 1l2. The performance of one of

the possible mechanisms is shown in Figure 13.

Closed Curves

Closed curve paths. The circle. The next problem

is to explore the synthesis of a mechanism having a coupler
bar point which moves in a circular path. It is not to be
expected that the resulting mechanism will generate a
circle, but that it will approximate the curve over a lim-

ited range. The problem is depicted in Figure 14.

The equation for the path of Q is:
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C- curve

C -curve

The arrows and letters on the
C-curve are intended to show the
order of the branches.

L-curve

Fig. 12.-- The locii of the { and C- points for the

parabolic path.
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@\' (\f,“

—Tracing point, Q

"Traced
curve

Fig. 13.--One parabolic path mechanism.
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in which C is the circular path radius.

The angle ¥ is measured counterclockwise from the
X-axis to the radius of the circle locating point Q, and
is expressed by:

Yo- b

R (49)
Q

tany =

The angular displacement of the moving coordinate system

1s: = fly). (50)
The equations for Xq and YQ are written by inspection of
Figure 14.
Xq=a + GCcos ¥ (51)
Yo=b + CsinV, (562)
Their time derivatives are:
Xq= - C¥siny (53)
Yo = Cvcosy (54)
Xq = -Gy siny + yPcosy) (55)
‘?Q = (Y cosy -y%siny). (56)
The parametric equations for the fixed curve are:
Xp=a + C(I- .)cosw (57)
Yp=b +C(l-F)siny , (58)
and for the moving curve:
xp = = C(¥/9) cost -¢) (59)
Yo = —C(y/$)sinly-¢) - (60)

Equations (20), (21), (25), and (26) are used to
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Yf -

b__.__

Fig. 14.-- The circular path problem.
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locate the joints of the approximating mechanism. Equations

(29), (30), and (34) are written as follows:

M=CI(¥d-y)sing + (§% +y¢Icosy] (61
N =-Cl(yd- yd)cosy + (y2p + $d sin yl (62)
7- (V- yé)sin(y+a-¢) + (§Pp sy cosly+a- ) (63)
¥ cos(y+a-¢)
The value of y is:
y=V x5 +y8 =C%' (64)

After putting equations (61), (62), (63), and (64) into
equation (33). the result, after some simplifying, is:

[(w + y32) sin 20 - (V- “"ﬁL(S-l-cosZ_O_)_]
(29 ¢2- py°)cos® - (Y- yP)sin®

_ [i¢¢2-2y2¢)cose + (¥ -¥@)sin® ]
(2942- $y2)cos® - (4 - b )sin®

in which e:(w.‘.a_‘#).

=0 (65)

The four link mechanism which is to approximate
this motion will be designed so that the tracing point
Q fits at one point and values of ¢, ¢, &, ¥, ¥, and ¢
will be put into equation (65). This will simplify the
equation. The coupler bar (attached to the moving plane)
hinge joints are located at (X§1, YCl)’ (X;Z, YCZ) and
the hinge joints on the fixed plane are located at (CX;,
CY;) and (CX;, CY,). The points and the derivatives of
the path curves are:

X

s

a + Clcosy + m(y/p)sin(a-¢)] (66)
b + C[siny + m(y/¢)cosh -¢)] (67)
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Y' _ \p cosy + m[y sin(a-¢) +£ cos(a-¢)] (68)
" Jsiny +mlycos(a-¢) -Esina-¢)]

where €= ﬂ;%ﬁ (69)
s - § +m{Pcos® + Tsin®] + Am2} (70)

¢ C{¥siny + m [ycosla-¢)- €sm(a-¢)l}
where Ps= (¥ - #*?‘. a2 - 4”‘,2 ¥4)]

$ ¢
T: BUF-40+ V-5 505 T (72)
and i& $§i lg
A - VB 35499 + Wvgtras ) + Wplr i’ o
$3

The centers of curvature are determined by put-
ting equations (66), (67), (68), and (70) into equations
(25) and (26).

Circles rolling on circles. The foregoing pro-

cedure may be used to synthesize mechanisms which approx-
imate the motion of circles rolling on circles. In this
case, the fixed center O is shifted to the center of the

circular path. See Figure 15. Here,

. D+d
C="3

y=6.

(74)

The moving circle motion can begin at Yg = O,
Xy = C. After an interval, 0Q rotates an angle ¥ and
the moving circle rotates through angle A with respect to
the line 0Q. The moving system, attached to the moving

circle, turns through the angle A+ ¢ :
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\

T

Fig. I15. -- The disc rolling on a disc.
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= A+ y, (75)
From Figure 14:

A= yD (76)
and o=y 2L, (77)

By substituting n= D;d , $= Ny, é=ny . ond ¢=nvy

into equation (é5), the resulting quadratic in m becomes:

2+ 2mpnysin® - 222 - o (78)

in which ®@=y-¢+a
-c ) D+d
V‘C% * T2n

The points of stationary curvature are:

Xg = “—zd[cosw + -'% sin(a-¢)] (79)
Y : %[_sin vy + Tcosta-9)]. (80)
Expressions (69), (71), (72), and (73) become:
£€=0
P: 7“'1;—.(|—n.ii‘5
T =

n
A = M 202 + 20232 ¢2
n3\il3

Viin+n - 2%+ 2¥

The geometry of such a mechanism would not be
altered by taking ¢=1, ¥=¥ =0, so that

P=0
T=n+1|
A =n

and the derivatives can be written:

\_ _ Ccosy + msin(a -¢)
%" ein ¢ + m cos(a - ¢) (81)
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2 1 +mn+l)sin® +nm?
D+d [siny + m cos(@-¢)13 °

Application. A mechanism is designed by putting

values into equations (78), (79), (80), (81), and (82).
As an example, for d =2, n = 4, ¢ = n/2, ¢=2r and

equation (78) becomes:

2., 5 -2
m€ + = m cosa = s 0

for a= 90° m; = 0.535, mp = -0.535. The coordinates of
the joints are:
Xgy= 0.535; Y= 4.0; CX; = -0.744; CY; = 1.608
Xp,= =0.535; Yr,= 4.0; CX; = 0.74k4; CY, = 1.608

The mechanism is constructed in Figure 16,

Reduction of the case of the disc rolling on a

disc to that of a disc rolling on a straight line. In the

extension of this case to that of the disc rolling on a
straight line, the diameter D becomes infinitely large.

As
|

D —+oo, n —=oco; § = ?—"O ,
Then, replacing n by 1/s, equation (78) becomes:

|-2s

2 stl . _ -
m? + [35C]m sin® - 5=~ = 0. (83)

By putting s = O, equation (82) becomes:
m2+ Dsing - L 0. (84)

2 2
Now, by using the trigonometric identity:

sin®= gin(y+a -¢) = siny cosla -¢) + cosy sinla—¢) ,



L5

Ea §)
Path of Q 2% Q y,
Moving Polode
Fixed pol?:l 5
Cy n C2

=Y

Fig. 16.-- The disc rolling on disc mechanism for
the case a=0.
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and taking, for a horizontal line below the disc, the value
v ="T/2,
sin ® = cos(a—¢)

and equation (82) becomes:

m2 + -';—cos(a -¢) - é— = 0, (85)

Now, if the value for ¥ is taken as -ﬂVh in the
first case considered, in which the disc rolls on a straight
line above the disc and inclined upward to the right,
sin® = -%‘icos(a-tﬁ) + % sin(a -¢)

2
Equation (82) becomes:

m2 + 2%5 [ sin(a-¢)-cosla-¢)] - % =0 (86)

which, when multiplied by 2 is identical to equation (A)
of the first example. Thus, the development of the mech-
anism to generate a portion of a straight line path is a

special case of the more general curved path case.

It is to be noted that the mechanism development
begins with a different equation for m for each differently
inclined line, and for each line there is a very large

number of possible mechanisms.
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FUNCTION GENERATION

Function Generators

Four link function generators. The relation be-

tween the input and output link angular displacements of a
mechanism is a geometrical property. A mechanism so de-
signed that the input-output relationship satisfies a par-
ticular mathematical function between two quantities is a
function generator. Function generators may be used as
components in control systems, instruments, or as mechani-

cal analog computing elements.

Mechanisms which match any given function relation-
ship exactly can be constructed from rolling curves.zz’23
Such devices can be difficult to machine and when the input
output requirements are not exact or a small range of motion
is required, a four bar function generator may suffice. For
the purpose of this study, the four bar function generator is
a mechanism constructed of bars ar links, the lengths of which are

such that the crank angles correspad to the variation of same dependent

224, E. Golber, "Rollcurve Gears," Transactions of
the ASME, v. 61, (1939} p. 223. "

23 Beggs, p. 74.
L8
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variable and the variation of its independent variable.
The devices considered here will be approximate function

generators.

Function generators can be synthesized by seeking
a mechanism such that the oﬁtput link will be in certain
positions when the input link is in corresponding positions,
the positions being obtained from several numerical solu-
tions of the desired functional relationshiplzh’25 There
are an infinite number of possibilities mathematically, and
a very large number of different mechanisms can be obtained
from one set of precision points. The mechanism positions
between precision points are in error and part of the
problem is that of locating the precision points so as to

26

minimize the error.

Mechanism synthesis based on the inflection circle
concept is a different method.?’ As pointed out earlier,
that method and the method presented here are based on the
same fundamental theory, which is one of matching the mech-

anism performance to the function over a small range.

The application of the roulette method. The direct

2hFerdinand Freudenstein, "Approximate Synthesis of
Four-Bar Linkages," Trans. ASME, v. 77, (Aug., 1955), p. 853.

25Hinkle, p. 267.

26Ferdinand Freudenstein, "Structural Error Analysis in
Plane Kinematic Synthesis,™ Trans. ASME, v.&l, ser.B,n.1, (Feb.1959), p.15.

27Hall, p. 106.
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application of the method of roulettes to function genera-
tin requires beginning with a rolling curve pair. The curves

will be expressed in parametric fam as discussed previously.

The procedure for designing rolling curves is well
known.28 Any pair of rolling curve function generators
which can be designed by Golber's method can be used as a
basis for four bar function generator design. The procedure
for synthesizing a circular path generating mechanism is
combined with an inversion of the rolling curve mechanism

about one curve, preferably the input curve.

The rolling curve function generator is depicted
in Figue 17. Angle 8 is the input. Figure 18 shows the in-
version of the mechanism about the input link and is the
basis of this develcpment. Since the rolling curve mech-
anism is usually designed with fixed centers, the path of
the ground joint of the output link is a circle. The
output angle, ¥ , when added to the input angle, becomes ¢,
the displacement angle of the moving coordinate system.
The case of the circular path generating mechanism with
the circle center at the fixed origin applies. The func-
tion generating mechanism resulting from this synthesis,
however, is quite different from the path generating
mechanism, as shall be seen. The moving system displace-

ment angle is:

28Golber
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TN

Fig. 17.-- The rolling curve function generator.

Fig. 18. --The rolling curve inversion.
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$=0+y. (87)

Rolling curve design. It is to be assumed that

some function is to be generated by a pair of rolling curves
such as
v=1Ff(8) (88)
and that the curves have a fixed center distance so that
R+r =20 (89)
R and r are associated with input and output angles, 8 and

¥ respectively. The condition for pure rolling is satis-

fied by:
Rdé = rdy. (90)
By rearranging equation (90)
R . 4y |
- 10 (1)
so that
) |
r= R dy/aé (92)
and finally:
_ C(dy/d6)
" (dw/d0) + 1| (93)
and
r= ! (94)

© (dy/d8) +1 °
Equations (93) and (94) express R and r as func-
tions of the derivative of the desired function, which

is in turn a function of the independent variable, 8.

Rolling curves using instant centers. The rolling

curve development by the method of this thesis can be com-

pared with the method of Golber referred to earlier.
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The path of Q is now taken to be a circle about the
fixed origin and its equation is:

Xg + Yé s 02

(95)
Here, C = 0Q.
Since e =faﬁ'!b (96)
Xa
then
Xq =Ccos 8 ©7
Yq =Csin 8 . (98)
The time derivatives are;
Xq = -GOsiné (99)
Yq = Cécos 8. (100)
The parametric equations for the rolling curve pair are
obtained by putting equations (97), (98), (99), and (100)
into equations (11), (12), (13), and (14).
Xp= Gl -(8/¢)]cos 8 (101)
Yp = G[I -(8/¢]]sin 6 (102)
xp = - C(6/) cos (8 - ¢) (103)
Y, = G(8/¢) sin(8-¢) - (104)

Comparison of results with Golber's method. To com-
pare this with Golber's method, it is noted that:
R=Vx3+ v2

and r =Vx§ +y'2a .
Then

(105)

2
"

CLi-(8/¢)]
C(6/¢) - (107)
Replacing ¢ with \il+é:

(106)

-
"
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R . _CWg

rE— |

(¢/78) + | (108)
C

and r = ‘?5737:—7 (109)

since ¢/é= %%, it is seen that equations (108) and (109)

are the same as equations (93) and (94).

Synthesis of the Four Link Function Generator.
Basic equations.

With a=b=0 in equations (65) and (56)

and with ¢ replaced by @, the equations of the point on the
roulette are:

Xg = Glcos 8 + m(6/¢) sin (a-¢)] | (110)
Y = C[siné + m(é/&)cos(a—'ﬁ)], (rn)

The location of the points of stationary curv-

ature is made as before, that is, by solving equation (65)

for m and putting the values of m into equations (110) and
(111),

Equation (65) can be simplified by noting that the
geometry of the four link mechanism will not be changed

if the input link has constant velocity, that is,

m2[$(24- 8) cos® + $sin B) + % [ (¢ +6) sin 28 + (5 + cos 28)] -

[p-26)cos® + ¢sin®] = O, (112)

In this equation, ®=0-¢+a.

The mechanism is constructed to fit the desired
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function exactly at one point. This point can be selected
in the center of the desired operating range with the ex-
pectation that good approximation will extend an equal
amount on either side of the matching point. Whether or
not the mechanism will satisfy the requirement over the
range desired cannot be determined since the range of

best fit cannot be found at this time.

When the matching point of the mechanism is chosen,
values of 8, 8, ¢, ¢, ¢, and § will be fixed, This will
simplify equation (112). The points of stationary curv-
ature are determined by inserting values of m from eqg-
uation (112) into equations (110) and (111). It must be
remembered that a pair of values of m are obtained from
equation (112) by fixing all variables, so that the same
variables must be used in any given solution of equations
(110) and (111). Equations (25) and (26) are to be used
for the centers of curvature, using the following deriva-
tives:

v s - cos@ + m[sin(a-¢) - (¥/J>2)cos(a-¢)]
¢ sin® + m[ cosla-¢) + ($/¢?)sin (a-¢)]

6 +m[(‘M) sin® - (—é:jg;cosel + §2R¢2+¢$-2:{>2)- %2]

‘Cé {sine + m[cos(a-tﬁ) + i’g sin(¢-¢)] }3

(113)

Yp =-
(114)

where ®:=0-¢+a.

Function gesnerator linkage construction. The de=
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rived mechanism for path generation is illustrated in Figure
19, The point Q is intended to describe a segment of a
circle. Cl and §> are the points of stationary curvature
and points C, and 02 are their centers of curvature.

This is the inversion of the function generator. It is to
be noted that in the origional motion, the X-Y system is

to rotate about the point O through 8 while the x-y system
is to rotate about the fixed point Q. The distance 56

then is required to be fixed and to be made so by using a
link which becomes the fixed link of the mechanism. Next

a link is used to attach points Cl to C; and the two planes,
X-Y and x-y have constrained motion with respect to each
other. These two planes can be reduced to links ﬁﬁi and
ﬁfl and the result is the four link function generator.

A second possibility is mechanism 0C,{2Q. See Figure 20.

Application. An easily followed procedure for

numerical synthesis can be devised by putting the so-
lution of equation(1l2) in a more easily handled form.

If the mechanism is a position function generator, i. e.,
velocity of the input link is not specified, then 6=1

can be inserted into the solution. The result is:

m= 3(-0% VOZ+16E ) (115)
where
0. Blg+1)sin20 + (5 +cos28) (116)

$(2¢-1)cos® + Fsin®
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Fig. 19.--The derived path tracing mechanism.

Fig. 20.-- The inversion for constructing the function
generator mechanism.
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and $(d+2) cos® - Psin ®

- 117)
$(2¢-1)cos® + $sin® (

E =

Example. An arbitrary function is chosen to illus-
trate the procedure.
v=38"2
This is put into the form to be used in this synthesis
method by replacing ¢ by ¢-8: (This accomplishes the in-
version)
$=36"%+p
with time derivatives:
$=3.682+1)8
$.=0.72 6 %162
4 (-0.576 6% 3
For =1, 6=1, ¢=4, $=46, $:=0.72, $=-0576. (a=0)
D= -0.319, E=0.314

[0.319 £Y(0.319) + 16(0.314) )

N
m=

so that m; = 0.642, m, = -0.488. The following values

2
are obtained:

X§1= 0.645, Yq= 0.736, CX;= 0.065, CY,= 0.505

X;2= 0.460, Y§2= 0.907, CX,= 0.358, CY,= 0.173.
The constant C is a scale factor and can be taken as unity.
The derived mechanism is shown in Figuwe2l. The function
generators resulting from the inversion are shown in Figures
22 and 24. The performance curves, graphically determined,

are shown in Figures 23 and 25. The locus plot from a com-

puter solution is shown in Figure 26.
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Fig. 21.-- The derived path generator mechanism
for the function ¢ = 392
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Py
30 ' 38

Fig. 22.-- The function generator mechanism derived
for v = 368"2 and obtained from m, at a= 0.
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Fig. 23.--The performance curve for the mechanism of Fig.22,
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Fig. 24.-- The function generator linkage for y = 36"2
obtained from m, at a= 0.
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Fig.25.-- The performance curve for the mechanism of Fig.24.
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C-curve

The letters indicate
the curve order,

}

A mechanism is constructed
by drawing a line through Q

to locate ¢, and {,. C, and Cyare
located by drawing lines from {

and {, through P to the C-curve.
£ >

Fig. 26.-- The locii of the points of stationary curva-
ture ond their centers of curvature for the equation y=36'-2
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The mechanism is expected to represent the function
to be generated over only a small range of values. It will
be necessary to decide on the range of values of the func-
tion the mechanism is to generate. In the example just
given the scale divisions of the function and the angular
displacement of the cranks in radians corresponded. In
another case it might be desirable to expand or to com=-
press the function scale. In the absence of any specific
information on the mechanism, a limitation of something
less than 180° rotation of the output link can be imposed
when the range of values of the function to be generated
is greater than that of its independent variable. This
particular mechanism will probably be a crank and rocker

mechanism which is driven by the rocker.

To expand the range of the function to be generated,
in this case, a revision of the equation relating the in-
put crank angle to the output crank angle is necessary. By
rewriting the function, i. e., renaming the variables;

y=3x-2
The relationship between the input angle range and the
independent variable range is:

A8 = KAX
For the two variables to have equal values, K equals unity.
For AB8=1, and Ax=2, K= 1/2
then x=20, y=2y
and the function to be generated can be determined by

substitution into the function statement:
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(2y) = 3(20)"2
or y = 3.4450"2
After replacing ¢ by ¢-8 and solving for ¢:
¢=3.44560"2+90
$=(4.1482+1)6
$ =(0.8286 %82
$ =(-0.662 6 %8>

for x =1, 8= 0.5, 8=1, ¢=2.0, = 4.6, ¢=01.443,

-
n

=1.757. Choosing a= O, the calculated values are:

o
]

-0.875, E = 0,40, m = 0.887, m, = -0.451. Then:
X§1= 0.365, !t2= 0.762, CX1= 0.916, CYy= -0.440

XC2= 0.629, Yt2= 0.883, CXp,= 0.240, CY2- 0.467.

The stationary curvature points and their cen-
ters are plotted inFigure 27. The derived mechanism for
path generation is shown. The function generating
mechanism, constructed using points O, Cy, §{,, and Q
and inversion about link OCy is showr in Figure 28. Note,
however, that the input range has only been extended
a small amount and that the degree of fit is not as
good as that of the first mechanism constructed. (Figure
24" However, there is probably still a better mech-
anism and it can be obtained by taking another value
of a to be put into the equations. A locus plot is an

interesting study to make.
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Fig. 28.-- The mechanism and the performance curve
based on the solution of Fig. 27.
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The Analytical Determination of the Output Crank

Angle for the Four Bar Function Generator. With the avail-

ability of rapid computational equipment, the determina-
tion of the output angle of the derived four bar linkage
by numerical rather than graphical methods is desirable.
In addition to the speed there is the availability of

greater precision afforded by numerical methods.

Figure 23 shows the pair of derived mechanisms
which are obtained from a solution using one value of @,
An expression relating ¢ and 8 is to be obtained. The
angles of the inverted mechanisms which correspond to the

input angle 8@ of the function generator are m and v.

The links are: (The subscripts are omitted.)

a = 0G = Y(CX)2 + (CY)2 (118)
b =6y = VIX -CX2- (Y -CYP (1n9)
c=QL = my (120)
d = 0Q

d is a scale factor. Unity is a convenient value.

Two relations for the output angle ¥ result.

They are based on the following:

r'>e u>w Case I
r<e pw Case 1I
also:
- ot SY ‘
I'=tan’ — (121)
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e

o] X

Fig. 29.-- The figure used in deriving the analytical
method of determining the output angle.
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Case I, For case I, 5 =T-6, (122)
The line s = CQ is drawn and by the use of the law of co-
sines:
s2= g2+ d2 -2ad cos g (123)

The two angles B and A are defined from:

B = sin"(-a- sin ) (124)
2
—cos(sgsc: b). (125)

The two expressions obtained from Figure 29 are:

e 3T —(0-4+a)

p =+ (A-B8)
from which: p=6ta-5Hr-8), (126)
By substituting $=6+y,

y=a-T+x-p). (127)

Case II. For case II,
n=6-T (128)
and the expressions for p are:
b= %+(e-¢+a)
p=w+t(x-p8)
from which
¢=0+a+ZT-(A-p)
and finally:
Y = a+%-()\-/3).
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The computation is carried out in tabular form
in Table 4. The output scale is to be regarded as movable,
and the position is to be determined by the matching point.
In this case, the match is made at 8= 1 and y= 3. For
this reason, the equations for ¢ and ¢ are not numbered.
In computing the output values it is only necessary to de-
termine (A -8 ) and the difference between the required
angle at 8 =1 (¢ = 3), subtract (A -g8) from this
angle and add the difference to (A -8 ) for the other

values.
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CLOSURE

On the preceding pages there has been no attempt
to derive any existing equations. The origional intent was
the development of a method for optimizing a mechanism
synthesized by the inflection circle concept. It was
first determined that some expressions of the procedure
in an analytical form were necessary. Examination of an
out of date calculus book uncovered the theory of roulettes
and its use in developing the inflection circle and in
deriving the Euler-Savary equation. It seemed to be
the necessary theory on which to base an analytical

synthesis method. This development was the result.

The basis of this work is the plane motion of
a plane: every mechanism synthesis here begins with
instantaneous plane motion. The plane motion is described
in terms of a pair of rolling curves as an intermediate
step in the location of a pair of points which are moving
in paths having instantaneously stationary curvature.
If the radius of curvature of the path is constant over
a considerable displacement of the plane, the coupler
bar plane of a linkage having joints located at these
points will match the origional plane motion for the

same range. Also, if the curvature is not changing
76
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rapidly there will be a good match. A rapidly changing
radius of curvature means a poorly matching mechanism. 1In
the event of a poor match there are two possibilities: the
first and easiest is to select a different position angle;
¢. The second possibility is to select a different plane
position. In the second possibility it will be necessary
to rewrite all the equations. In either case it is possi-
ble to solve for enough points and centers using a digital
computer so that the locii of all points can be plotted.
These locus curves can then be used to select the mech-

anism after a few trials.

A direct method of selecting the best mechanism
has not yet been devised. It should be possible, however,
to write a computer program that will determine error
over some set range for a finite number of the possible
mechanisms so that the one with minimum error can be se-

lected.

The path generating method of synthesis involves
a selection of the relationship between the moving plane
angular displacement and the displacement of the tracing
point on the coupler. The best relationship must be ob-
tained by trial since, due to the nature of the problem
of path tracing with a point, none will be given in the
initial statement. It would seem that this is an area for
further work. Obviously, a different rolling curve pair

will result from each different angular displacement-path
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displacement relationship. Once the selection is made,
two other selections are necessary: first, the tracing
point position so that equations of position may be writ-
ten and second, the choice of the position angle a. Once
the tracing point position is fixed and the equations
written, the angle @ can be chosen either at random or a
systematic exploration can be made using different values
of a. As in the case of the function generator, a digital
computer program can be written and used to obtain values
for plotting the locus curves. These curves are very

helpful in selecting the mechanism.

The duplication of rolling curve plane motion as a
means of substituting four bar linkages for rolling curves
has been considered only briefly. The case included here,
that of a disc rolling on a disc, was the most successful
of all syntheses attempted in length of match. As pointed
out earlier, it has an application where there is an in-
centive to replace a pair of gears with a four bar link-
age. The example shows the application where one gear is
fixed., It is also possible to use the linkage to replace
a pair of fixed center gears. Such use is a simplifica-
tion of the function generator problem with constant an-
gular velocity ratio. Other rolling curves in machines

may be approximated with this technique.
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COMPUTER PROGRAMS AND RESULTS

The locus curves for the two path generating mech-
anisms and the function generator were obtained using an
IBM 1620 digital computer having a FORTRAN input. Since
this is a widely used computer, the programs are included
here. However, they are specialized programs and must be
altered for other mechanisms. They are arranged to give
the X and Y components of the points of stationary curv-
ature for incremental values of @ of 10°. Finer incre-
ments can be obtained by rewriting the increment state-
ment, A = A ¢ 0.1745 (A is a ) to read the desired value.
It is not necessary to index a around for 360°, because
m) for a = 90° becomes m, for a = 90°+ 180°. Thus, if
Aa(or AA) is taken to be one half of 0.1745 then the
looping statement, DO 22I = 1,36 will supply enough points.

Synthesis of other mechanisms can be obtained by
rewriting the program statements as necessary to suit the
new requirements. The form is suitable for specific mech-
anisms. Specifically, the generation of a different func-
tion would require that certain statements of table 7 be
changed. These are: Nos. 1l and 12 for a different mat-

ching point; 24 through 36 for a different function.
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Statements 26 through 36 can be made general by replacing

numerical values with alphabetical terms which are then

defined earlier in the program.

Table 5

FORTRAN PROGRAM FOR STRAIGHT LINE MECHANISMS

(oo N No NV, P o VEIR I o

STATIONARY CURVATURE POINTS AND CENTERS=STRAIGHT .
LINE MECHANISM

A=0
DO 221I=1,36
A=A+0.1745
TC=COSF(A)
TS=SINF(A)
TS2=SINF(2.0%A)
QP1=0,25%(TC-TS+SQRTF(17.0-TS2} )
QP2=0,25%(TC-TS-SQRTF (17.0-TS2))
YP1=QP1*TC
YP2=QP2*TC
XP1=QP1*TS
XP2=QP2*TS
Y1P1=(1.0+XP1)/(1.0~-YP1)
Y1P2=(1.0+XP2)/(1.0-YP2)
Y11P1=§XP1-YP1-QP1**2)/(l.O-YPl**B)
Y11P2=(XP2-YP2-QP2#%2)/(1.,0-YP2%%*3)
CX1=XPl-(Y1P1%(1.0+Y1P1%%2))/Y11P1
CX2=XP2- (Y1P2%(1.0+Y1P2#%2))/Y11P2
CY1=YPls+(1.0+Y1P1%*2)/Y11P1l
CY2=YP2+(1.04+Y1P2%%*2)/Y11P2
PUNCH 23,A,YP1,YP2,XPl,XP2,CX1,CX2,CY1l,CY2
ggRMAT(F7.4,8F9.3)

D

Symbols
A=a, XPL=Xp, YIPL = Y;'l,
1{]
Y11P1 = Yp;, CXl =CX;, CY2 = CY,.
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Table 6

FORTRAN PROGRAM FOR THE PARABOLIC PATH MECHANISM

PATH GENERATING MECHANISM-PARABOLA
A=0.0

DO 24I=1,36

A=A+0.1745

TC=COSF(A-1.0)

TS=SINF(A-1.0)

TC2=COSF(2.0%*(A-1.0))
TS2=SINF(2.0%(A-1.0))
D=(5.04TS2-3.0%TC2)/ (4.0%TC4+5.0%TS)
E=(7.0%TC+5,0%TS)/ (4 .0%*TC=5,0%TS)
GM1=0.1765%(-D+SQRTF (D**2.0+16.0%E) )
GM2=0.1765%(=-D-SQRTF (D*%2,0416.0%E) )
XP1=1.0+GM1*1,414%*TS
XP2=1.04GM2%1 . 414 *TS

14 YP1=2.,04GM1*1.L1L%TC

YP2=2,04GM2#1 . 414 *TC
Y1P1=(1,0+GM1*1.414%*TS)/(1.0=-GML*1.414*TC)
Y1P2=(1.04GMR*L.414*TS)/(1.0=GM2%1.414%*TC)
Y11P1=(=0.504GML*1,414%(TS=0,50%TC+1.414%GML) )/
(1.0-GM1*1,414%TC)*%*3,0
Y11P2=(-0,504GM2%1 . 4,14* (TS=0,50%TC+1.414%*CM2) )/
CX1=XP1-Y1P1%(1.0+Y1P1%%2.0)/(Y11P1)
CX2=XP2-Y1P2%(1,0+#Y1P2%%2,0)/(Y11lP2)

CY1l=YP1 + (1.0+Y1lP1%%*2,0)/(Y11P1)
CY2=YP2+(1.0+Y1P2%%2,0)/(Y11P2)

PUNCH 25,A,XP1,YP1,CX1,CY1l,CX2,CY2
FORMAT(3F7.3,2F10.3,2F7.3,2F10.3)

END

Added symbols: GMl = m;, GM2 = m,
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Table 7

FORTRAN PROGRAM FOR A FUNCTION GENERATOR - ¢ = 391°2

O B~ VN =W -

FUgchON GENERATING MECHANISM - CASE ONE
A=0,

B=1.0

FI=4.0

DO 31I=1,36

A=A+0.1745

TH=B~FI+A

TC=COSF(B)

TS=SINF(B)

TCA=COSF (A-FI)

TSA=SINF(A-FI)

TCB=COSF (TH)

TSB=SINF(TH)

TCB2=COSF (2.0%TH)

TSB2=SINF(2.0%TH)
D=(3.6+25.75%TSB2+0.72%TCB2)/(37.75%TCB+0.72%T3RB)
E=(11.95%TCB-0.72%TSB)/(37.75%TCB+0.72%*TSB)
GM1=0.25%(-D+SQRTF (D*%2.0+16.0%E) )
GM2=0.25%(-D-SQRTF (D**2.0+16.0%E) )

DY1l=- (TC+GM1%(TSA-0.034*TCA) )/ (TS+GML*(TCA+0.034%*TSA) )
DY2=-(TC+GM2%( TSA-0.034*TCA) )/ (TS+GM2*(TCA+0.034%*TSA) )
DDYl=-(1.04¢CML*(L4.79%TSB-0.1905%TCB+3.79%*GM1) )/
(TS+GML* (TCA-0.034%*TSA) )*%3.0
DDY2=-(1.0+GM2% (L .79%*TSB-0.1905*TCB+3 . 79%GM2) )/
(TS+GM2%(TCA-0.034%TSA) ) *%3,0
XP1=TC+GM1%0.2175%TSA

XP2=TC+CM2%*0, 2175 *TSA

YP1=TS+GM1%0,.2175*TCA

YP2=TS+GM2%0,2175%TCA
CX1=XP1l-DY1%*(1.0+DY1%**2,0)/DDY1l
CX2=XP2-DY2%(1.04DY2%*%2,0)/DDY2
CY1=YP1l+(1.04DY1%%2,0)/DDY1
CY2=YP2+(1.04DY2%%2.0)/DDY2

PUNCH 32,A,XP1,YP1,CX1,CY1l,XP2,YP2,CX2,CY2
gggMAT(3F7.3;2F10.3,2F7.3,2F10.3)

Symbols: A =a, B =6, FI =¢, DYl, DY2 = Yél, Yég
DDYl, DDY2 = Yp;, Ygo-
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