
 
 



 

LIBRARY

Michigan State

University

"4Ef'ilifi'

   

This is to certify that the

dissertation entitled

A CqulAI'VE, Fill‘ci’tmj in RQMDTC
Hecu’l— Ra, 43— HEaSQ/Qu‘enl

j

presentedby

William I Byan E

has been accepted towards fulfillment

of the requirements for

H~ S . degree in E/Ccfvlkal EnJIhQCW‘WJ’  

§

Major professor

Marvin Siegel

Date 5 '/9-€;

MSU is an Affirmative Action/Equal Opportunity Institution 0-12771

 



 

 

MSU
LIBRARIES

—_

 
 

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

'stamped below.

 

 

  
 



ADAPTIVE FILTERING IN REMOTE

HEART RATE MEASUREMENTS

By

William Joseph Byrne III

A THESIS

Submitted to

Michigan State University

in partial Fulfillment of the requirements

For the degree of

MASTER OF SCIENCE

Department of Electrical Engineering and Systems Science

1985



ABSTRACT

ADAPTIVE FILTERING IN REMOTE HEART RATE MEASUREMENTS

By

William Joseph Byrne III

Recent efforts have been directed towards developing

bio-medical instrumentation which measures human heart rate

using microwave energy. A low-level microwave signal is

transmitted and received by a portable, self-contained

homodyne transceiver system. The instrument is either

placed directly on the subject’s chest or pointed at the

chest from a distance of Several feet. The chest is

illuminated with microwave energy and doppler shifts in the

reflected signal are used to measure chest motion. This

motion contains components due to breathing and the heart

beat as well as clutter components due to upper body

movement and channel noise obscure the heart signal.

This presentation will explain the applicability of

adaptive filtering to the problem of microwave heart rate

measurements. The derivations of several adaptive filters

will be presented. A discussion of results will be

presented which will compare the behavior of several

adaptive algorithms and measure their performance.
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INTRODUCTION

Recent efforts have been directed towards developing

bio-medical instrumentation which measures human heart rate

using microwave energy. A low-level microwave signal is

transmitted and received by a portable. self-contained

homodyne transceiver system. The instrument is either

placed directly on the subject’s chest or pointed at the

chest from a distance of several feet. The chest is

illuminated with microwave energy and doppler shifts in the

reflected signal are used to measure chest motion. This

motion contains components due to breathing and the heart

beat as well as clutter components due to upper body

movement and channel noise which act to obscure the heart

signal. If the occurrence of the heart beats can be

accurately determined it is possible to estimate the heart

rate. This task is complicated by the clutter in the

signal. Previous detection schemes have used peak detection

to detect heart beats or autocorrelation to estimate the

heart rate. with limited success.

Peak detection requires that the signal be fairly

uncluttered. There should be no constructive interference

from noise breathing or background motion which might cause

false peaks in the signal. Peak detection works well when

the subject is rested and breathing regularly and the

transceiver is not too far from the subject. In other

circumstances, peak detection performs poorly and is
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generally considered unreliable.

Autocorrelation is an .approach to overcoming the

clutter problem. Typically. a window of data is selected

and convolved with subsequent data to form correlation

estimates. The lag which yields the largest correlation

estimate above some threshold is chosen as the period of the

heart cycle. This technique is more reliable than peak

detection, although it has several limitations. Problems in

detection are caused when the signal is corrupted by

somewhat periodic background components. The most common

source of these is heavy breathing. It is difficult to

filter out breathing because the exact breathing rate (and

hence its frequency components) are unknown beforehand and

the breathing components are usually located very close to

the heart components in the frequency spectrum. (often

within a fraction of a Hertz). Further problems are caused

by the nature of the heart beat itself. Autocorrelation

detection requires periodic signals. which can only loosely

describe heart signals. The time interval between beats is

rarely constant. so that the length of the data window to be

convolved should contain only one or two heart beats. This

is in conflict with decreasing the estimate variance by

increasing the window length. Additionally. the signature

of the heart beat also changes from beat to beat, so when

this window is convolved with subsequent data. the

differences in signatures often prevent the correlation from

exhibiting detectable peaks. Also. autocorrelation
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detection has flaws when used in a medical instrument. The

heart rate estimates it produces result from averages (in a

sense) of several heart beat periods. It is therefore

difficult to detect erratic heart rates or to rapidly

identify trends in the data. such as increasing or

decreasing heart rates. Problems in implementation are

caused by the large amount of memory and processing required

to estimate the heart rate by autocorrelation.

Additionally.there' is also a significant time delay in

producing estimates which is incurred by the need to sample

several seconds of data and then compute the

autocorrelation.

The fundamental problems in this application have

been shown to be manageable. It has been demonstrated that

microwaves can be used to detect heart motion and that it is

possible to perform detection using a portable instrument

[1-3]. Before a final version of the instrument is

available. several aspects of the existing instruments need

.to be improved. Several of the improvements which need to

be incorporated are

l) a decrease in processing time

2) a reduction in hardware complexity

3) an improvement in heart rate measurement

accuracy

In effecting these improvements, adaptive filtering

has been of some use. In particular. adaptive filters have

been shown to improve both peak detection and
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autocorrelation performance. Additionally, heart beat

detectors constructed from adaptive filters have been

implemented which yield significant improvements in accuracy

over autocorrelation while requiring significantly less

hardware and processing time.

This presentation will explain the applicability of

adaptive filtering to the problem of microwave heart rate

measurements. The derivations of several adaptive filters

will be presented. A discussion of results will be

presented which will compare the behavior of several

adaptive algorithms and measure their performance using

EKG s as a reference. Finally. possibilities for further

investigation will be presented.



INVERSE FILTERING FOR HEART BEAT DETECTION

Adaptive filtering is closely related to system

identification and parameter estimation. To provide a

framework for the application of adaptive filters to this

problem. a potential model for the signal will be given and

then it will be shown how adaptive filters can be applied to

the model.

The model used is similar to that of an

autoregressive process. The assumption behind this model is

that the signal can be approximated by the output of an all—

pole filter excited by impulses and Gaussian noise (Fig. I).

 

e(t) = 4 all-

w(t)+u(t) 9019

Filter

Y(t) 

 

Figure 1. Model of the reflected microwave signal after low

pass filtering and sampling

A similar approach is used successfully in speech synthesis

and compression; indeed. the similarity of the heart signal

to voiced speech motivated this investigation [4].

The all-pole filter in the model will be such that

its impulse response matches one heart beat. Obviously. if

the input to the filter is an impulse. the filter output

will resemble a heart beat. In this way, by driving the
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filter with an impulse train it is possible to produce an

approximation of the heart signal.

To produce aimplitude variations from beat to beat,

the impulse train will consist of pulses of varying

amplitude. White noise will also be added to the input to

introduce random variations in the signal.

The following equation describes this model

y(t) = cl y(t-l) + c2 y(t-Z) + ... + CD Y(t-p) + e(t) (l)

where y(t) is the output corresponding to the measured data

at time t. and ci is the ith coefficient of the order p all-

pole filter polynomial. The filter excitation is e(t) =

u(t) + w(t). The white Gaussian noise. w(t). has zero mean

and variance Rw‘Z. The impulse train is represented by

u(t).

In this model, the filter excitation determines the

heart rate. By varying the time between impulses. a time

varying heart rate is produced. As such, the occurences of

non-zero values of u(t) will correspond to the start of a

heart beat. A possible formula for this could be

u(t)=h(t) d(t). The process d(t) would take on value 1 if a

heart beat has occurred since the last data sample was

taken. Otherwise it is zero. A way to generate this

process could be to take the first difference of a counting

process which corresponds to the number of heart beats which

have occurred up to the present time. For instance. if x(t)

equals the number of heart beats which have occurred in the

time interval [0,t]. d(t) = x(t) — x(t—l). The time varying



coefficient h(t) will allow the driving process to have time

varying amplitude.

According to this model. u(t) is non—zero only at

the start of a heart beat. As such it contains the

information necessary to extract the heart rate from the

signal.

The extraction of the pulse train u(t) is an inverse

filtering or deconvolution problem which can be viewed in

the following way

 

l

   
    

   

e(t) = 3"" aH' e(t) -

Figure 2. Use of Inverse Filtering to Find the Model

.Excltaton

Taking the Z-transform of (l).

Y(z) x C(z‘-l) = U(z) + W(z)

Y(z) = [C(z‘-l)]‘-l x [U(z) + W(Z)] -

where C(z‘-l) = 1 - c1 z‘-l - ... -cp z‘-p .

If the order of the filter polynomial C(z) and its

coefficients were known prior to implementation. inverse

filtering would be trivial. However. the filter

coefficients of C(z) are unknown and must be determined in

real time. The order of C(z) has been found to be

sufficiently general from subject to subject to be



determined prior to implementation.

There are a number of methods available for

determining the coefficients of the inverse filter. The

approach described in this paper was motivated by the use of

adaptive FIR filters as whitening filters for autoregressive

(AR) processes. For AR processes. parameter identification

is closely related to the theory of linear prediction [5].

If, in this model. the filter excitation e(t) were white.

y(t) would be an AR process. Regression on past data

samples would then yield white prediction errors. In this

sense. a filter whose output is the least squares prediction

ertor is a whitening or inverse filter. Therefore it is

necessary to find a way to do least squares prediction

without detailed a priori knowledge of the signal.



PREDICTION

The one-step ahead predictor is given by the

equation

Y“(tIt-l....,t-p) = -a(l.p) y(t-l)-...—a(p.p) y(t-p) (2)

This equation describes a p-th order. one-step ahead

predictor. The predictor coefficients are defined with the

negative sign so that the prediction error can be defined

e(p.t) y(t) - y‘(tlt-l.....t-p)

y(t) + a(l.p)y(t-l) + ... +a(p.p)y(t-p) (3)

This equation describes the p-th order prediction error at

time t. The error e(p.t) is the result of convolution of

the p data points and the p predictor coefficients. This

operation can be realized by a finite impulse response (FIR)

filter which will be called the prediction error filter.

Some criterion for the minimization of the

prediction errors must be'imposed on this filter. A set of

coefficients {al.i=l,p} which satisfy this criterion will

be considered an optimum linear predictor. The error

criterion which will be imposed is the minimization of the

mean squared error. J.

J = E(e(p.t)‘2} (4)

where E is the expected value operator.

A criterion equivalent to minimizing J is the

orthogonality principle [7].

E{e(p.t)y(t-i)} = 0 i=l.p (5)

By demanding that the orthogonality principle be satisfied,



10

J is minimized. This can be shown by differentiating (4)

with respect to its coefficients and setting the result

equal to zero

d/d(a(i.p)) (E{e(p.t)}) =

d/d(a(i.p)) E{(y(t)+a(l.p) y(t-1)+...+a(p.p) y(t—p))‘2} =

E{2(a(l.p) y(t-l)+...+a(p.p) y(t—p))y(t-i)} = 0

E{ e(p.t)y(t-i) } = 0 i=l.p (6)

Using the orthogonality condition a set of equations

can be derived which can be solved to find the optimum

predictor coefficients. This set of equations is called the

predictor normal equations [27]. Multiplying (3) by

y(t-J) for j = 1.....p yields

y(t)y(t-J) + a(l.p) y(t-l)y(t-J) +...+

a(p.p) y(t-p)y(t-j) = e(p.t)y(t-j) (7)

Taking the expected value of this equation and using the

orthogonality principle yields

E{y(t)y(t-J)}+a(1.p)E{y(t—l)y(t-J)+...+a(p.p)E{y(t-p)y(t-j)}

= 0 (8)

Defining R(i-j) = EIY(t-i)y(t-j)}. this last equation can be

written

R(J) + a(l.p) R(l-J) + ... + a(p.p) R(p-J) = 0 (9)

(since the process y(t) is assumed to be real,R(j) = R(—j)).

For j = 1.....p equation (6) can be expressed in matrix form
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RH) R(O) R(l) R(p-l)‘ [' 1 l

R(Z) R(l) R(O) R(p-Z) ga(l.P)

l

: : l : = 0 (10)

8(9) R(p-l) ... R(Oil I§(p.pu   

This system of equations can be increased to p+l equations

by adding in the equation for the variance of the prediction

error. Doing so will simplify the structure of the matrix

on the left and allow for easier solution of these

equations. Squaring equation (3) and taking expected values

yields the variance of the error e(p.t) which will be

defined

Re(P) = E{e(p.t)“2}

Re(p) E{(y(t) + a(l.p) y(t-l) + ...+ a(p.p) y(t-p))

(y(t) + a(1.p) y(t-l) + ... + a(p.p) y(t-p) )}

E{y(t)(y(t) + e(l.p) y(t-l) + ... + a(p.p) y(t-p)) +

e(l.p) y(t-l)(y(t) + e(l.p) y(t-l) + ... + a(p.p) y(t-p)) +

e(p.p) y(t-p)(y(t) + a(l.p) y(t-l) + ... + a(p.p) y(t-p)) }

= R(0) + a(l.p) R(l) +...+ a(p.p) R(p) +

E{a(l.p) y(t-l)e(p.t)+...+a(p.p) y(t-p)e(p.t)l (11)

By the orthogonality principle. the last term equals zero.

Re(p) = R(O) + e(l.p) R(l) + ... + a(p.p) R(p) (12)

Equation (12) can be included in the set of equations given

by (10) so that they take the form
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R(O) R(l) ... R(p) ‘ F 1 “i Re<pi

R(l) R(O) R(p-l) a(l.p) o

: = : (l3)

B(p) R(p-l) ... R(O) j @(p.p)l L o J      
Using matrix notation. equation (9) can be written compactly

as Rp A = Q where the Rp is the covariance matrix and Q is

the vector on the right hand side.

When these equations are written in the form given

by (10). they are called the Yule-Walker equations [9.10].

When the additional error variance equation is included. the

form (13) is sometimes called the augmented Yule-Walker

equations.

Solution techniques for these equations make use of

the symmetric structure of the matrices to avoid performing

standard matrix inversion. The matrix equation (10) which

has p scalar equations in p unknowns can be solved using

Durbin’s recursive procedure. This method requires 2p

memory locations and p‘Z operations as opposed to general

matrix inversion which requires on the order of p‘3

operations [26]. This method is useful for off-line

analysis of data in parameter estimation and order

determination routines [11.12.13].



ADAPTIVE FILTERING

In the previous presentation of methods for

obtaining least mean squares predictors. the second order

statistics were assumed to be known. The autocorrelations

up to a lag of p were needed to form the Yule-Walker

equations for the p-th order predictor.

For some processes. these statistics may be known

beforehand. If so. it is possible to design a predictor

beforehand.‘ Often. however. detailed knowledge about a

process is not available before actual observations are

made. In these cases. estimates of the autocorrelation can

be made from the sampled data. The procedure of estimating

the statistics of a process and forming a predictor from the

estimates will be called adaptive prediction. The related

structure which produces the prediction errors will be

called the adaptive filter.

Adaptive prediction is also useful for some types of

non-stationary data. If the process statistics are slowly

time varying. an adaptive filter may be able to track them.

A predictor can be constructed. although it will not

be strictly correct for non-stationary data.

An objective of the adaptive filter will be short

processing time. In some situations. this is not a crucial

consideration. For example, if new data arrives

infrequently. say monthly, efficiency in estimating process

statistics and solving the Yule-Walker equations is not

13
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important. In the biomedical applications addressed here.

medium speed algorithms are most suitable. Real time

analysis and restrictions on hardware complexity rule out

time consuming techniques and techniques which require

storage of large amounts of data. However. the sampling

rates are low enough ("100 Hz) that exactness need not be

sacrificed to speed. This means that the algorithms used

will be "exact solution" techniques which produce exact

solutions to the matrix inversion problem given the

statistical estimates. The alternative would have been to

use less complex .gradient descent algorithms which produce

estimates which eventually converge to the desired solution

[14.15]. The advantage is that the exact solution

algorithms have better tracking and start up behavior over

the gradient algorithms. This will be advantageous when

processing non-stationary data and in shortening the' time

required to produce estimates.

To summarize. the adaptive predictor objective is to

estimate the statistics of the process. solve the predictor

equations. and produce a prediction. This will be done each

time a new sample becomes available and should be completed

before the next sample appears.

Since the statistics of the process are not known.

the process to be predicted will be assumed to be ergodic.

and expectation operations in the previous stochastic

derivation will be replaced by time averages. The error

criterion to be minimized changes from E{e(t)*2} to
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J = e(p.0)‘2 +...+ e(p.t)“2 (14)

a time average approximation where the multiplicative

constant is dropped. The following derivations follow the

presentation given in [16].

Using matrix notation, the prediction error equation

(1) can be written

lé(p.0)‘ - 'y<0)]' T’ o 0 0 * [Mimi

e(p.1) y(l) y(O) o o ,a(2.p)

l

: : y(l) y(O) o o :

: = : + : y(0) i : (15)

@(mtll Ly<t14 [y(t-l) y(t-puLipm).       
This arrangement of the (txp) data matrix is called

the pre-windowed form [6]. For simplicity. the data matrix

will be denoted as Yp(t).

The error criterion can be expressed in matrix form

e(p.01*2 +...+ e(p.t>*2 = [e(p.0) e(p.t)11le(p.0>‘l (16)

  [e(p.t)]

Rewriting (15) in the minimum prediciton error form.

i.e. setting the prediction errors to zero. the following

equation can be obtained. where ’ denotes transposition.

-Yp<t)' Ty<o>l Yp(t)’ Yp(t) mum]

: = g I (I7)

  
l

[y(t)] a<p.p>]

The solution for the coefficient vector is given by
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using the generalized matrix inverse

    

T ..

-(Yp<t)' Yp(t))*-1 Yp(t)’ @(0) E(1.p)

Y(l) = 8(29p) (18)

[y(t)] [15(me

The notation will be simplified further by

expressing the data vector in this equation as y(Ozt).

Equation (18) is the solution for linear regression on past

data of the process y(t). Therefore. standard recursive

techniques such as Gaussian least squares are applicable.

These regression techniques solve the general estimation

problem of minimizing the error criterion (14).

The matrix equation (18) has the term

(Yp(t)’ Yp(t)) which can be expanded into

Yp(t)’ Yp(t) =

"y(orz +...+y(t-1)"2 y(0)y(p-1)+...+y(t—1)y(t-p) ‘1

y(0)y(l)+...+y(t-2)y(t-l) ... y(0)y(p-2)+...+y(t-2)y(t—p)

Ly(0)y(p-l)+...+y(t-p)y(t-l) ... y(Ol‘z +...+ y(t-pl‘z J  
(19)

This matrix is called the sample covariance matrix

for pre-windowed data. noting that the processes being

filtered here are all zero mean because a low frequency

("0.5 Hz) high pass filter is used prior to sampling.



SIMPLE FIRST ORDER PREDICTOR

The first order predictor is simple to implement directly

from the Yule-Walker equations [17]. From equation

(13) (setting p = 1).

y‘(n) = -a yin-1)

a = - Ry(1)/Ry(0) (20)

Re(1)‘2 = (1 - a‘2) Ry(O)

where Ry(l) will be approximated by

RY(1) = [Q‘t Y(0)Y(l) + ... + q YIt-l)y(t-2) + y(t)y(t-l)]/t

We will implement a recursive approximation using the time

update equation for Ry(i) at time t

Ry(i.t) = q” Ry(i.t-I) + x(t-i)*x(t)/t (21)

The forgetting factor q introduces an exponential weighting

to the data which decreases the influence of data further in

the past. It is assumed that the signal is short term

stationary in the middle of the heart beat. so q will be

chosen such that non-stationary effects of the previous

heart beat will be discarded before the next beat appears.

To chose q. the measure of the effective windowing length,

n Q/(l-q) is used [18]. For a length of 0.5 second.

q 0.98 for a sampling rate of about 100 Hz. This value of

n will be substituted for t in equation (21).

The equation (21) has another interpretation. It

can be considered as a low pass filter. where q locates the

17
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cut off frequency. w = l-q [25]. and w is normalized by the

sampling frequency. A method of choosing q would then be to

locate the cut off frequency above the major components in

the power spectrum. Note that these comments about q apply

to exponential windowing in general.



LATTICE FILTERS

Another technique for solving the prediction problem

is Levinson’s algorithm which is a recursive solution for

the matrix equation (13). A full description of this

technique starting with the case of known second order

statistics and proceeding to the adaptive case will be

presented because this approach forms the basis of a useful

form of adaptive filter which will be introduced later.

This approach introduces a set of backward prediction errors

r(p.t-l) = y(t-p-l) - y‘(t-p-1 l y(t-p).....y(t-1) ) (22)

where the backward prediction is defined

y‘(t-p-1ly(t-p).....y(t—1)) =

-b(1.p) Y(t-p)-...-b(p.P) Y(t-l) (23)

The backward prediction error can be found using a

prediction error filter similar to that of the forward

prediction error. Combining (22) and (23).

r(p.t-1) = y(t-p-l) + b(1.p) y(t-p)+ ... +b(p.p) y(t-l) (24)

Both the forward and backward prediction predictors use the

same block of data. the values of y(t) from t-p to t-l.

In the same way as the augmented Yule-Walker

equations (13) were derived for the forward predictor.

similar results can be obtained for the backward predictor.

These equations take the form

19



20

R(oi R(l) ... R(p) 'i [h(p.pi F o

R(l) R(O) R(p-l) :

: = : (25)

2 b(lvp) 0 ‘

5(p) R(p-l) ... R(O) 1 L 1 fl LRr(pM     
where Rr(p) is the variance of the p-th order backward

prediction error

Rr(p) = E[r(p.t)‘2} - (26)

Levinson's algorithm solves equations (13) and (25)

simultaneously and recursively. The algorithm is recursive

in that. if given the optimum p-th order predictors, the

algorithm produces the predictor of order p+1. The

derivation for the recursions is presented here. as outlined

in [15].

Assuming that the forward and backward p-th order

predictors are known. they must satisfy equations (13) and

(25). These two equations can be combined and expressed in

the following form

 

R(0) R(l)...R(p) R(p+1§lf 1 o l [Re(p) Lr(p+1i

R(l) R(O) R(p) a(1.p) b(p.p) 0 0

: : : : = : : (27)

: = a(p.p) b(1.p) 0 0

[R(p+l) ...R(l) R(0)j L 0 l ‘ Le(p+1) Rr(pu     
The terms Lr(p+l) and Le(p+1) arise from expanding the

(9+1 x p+1) matrix equations (13) and (25) into a set of
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(p+2 x p+2) matrix equations.

If an operation can be found which. when performed

on (14). forces Le(p+l) and Lr(p+l) to zero. the transformed

set of equations will then satisfy equations (13) and (25)

for the predictor of order p+1. The desired set of

equations has the form

    

R(O) ...R(p) R(p+1ffli 1 b(p+1,p+1f Fe(p+l) 0 ‘

R(l) : a(1.p+1) b(p.p+1) 0 0

: : : : = : : (28)

B(p+l)...R(l) R(O) _l§(p+1.p+1) 1 _ L o Rr(p+lLL  
The operation which transforms (27) into the desired

form (28) is post-multiplication by

1 —Lr(p+l)/Re(p) 1 -ke(p+l)l

Le(p+l)/Rr(p) l = -kr(p+1) 1 J(29)

where the forward and backward reflection coefficients,

kr(p+l) and ke(p+1). are defined as ke(p+l) = -Lr(p+l)/Re(p)

and kr(p+1) = Le(p+1)/Rr(p) . Writing this operation

explicitly,

R(oi... R<p+1§ ’1 o '1 1 -ke(p+l) Re<p+1> 0'

: : e(l.p) b(p.p)I;kr(p+1) 1 0 :

: : : : = : t (30)

: : e(p.p) : = 0

B<p+1)...R(0)l .0 1 1 0 Rr(p+1)'      
Equating (30) to (28) yields
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R(O) R(p+1fll' 1 0 i[ 1 -ke(p+1)]

: : a(l.p) b(p.p) -kr(p+1) 1

: : a(D.D) 3

@(p+l) R(0)4L_ 0 l j

R10) R(l) ... R(p) R<p+1fil 1 b<p+1.p+1>-

R(l) R(O) a(1.p+l) b(p.p+l)

: : : (31)

fi(p+l) R(p) ... R(l) R(0)J_La(p+l.p+1) 1 J

Pre-multiplication by the inverse of the covariance

matrix yields the order update recusions

F 1 0 ' 1 -ke(p+l) r 1 b(p+1.p+1fl

a(1.p) b(p.p) —kr(p+1) 1 :1: a(1.p+1) b(p.p+1)

: : : : (32)

e(p.p) : : :

_ 0 1 j _a(p+1.p+1) 1 l

The Levinson order update recursions given in

equation (32) can be expressed directly in a digital filter

in a form called a

can be incorporated into a filter.

the prediction

where

and

e(p.z) = Ap(z) Y(z)

r(p.z) = z“—l 89(2) Y(z)

AD(Z) = l + a(l.p) z‘—1 + ... + a(p.

Bpiz) b(p.p) z‘-l

lattice filter.

+ O. 0

error equations (3) and (24)

+ b(p.l) Z‘*(D-l) +

take the Z-transform

p) z‘-p

9

‘—

To see how equation (32)

of

(33)

A

-p
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Premultiplying (33) by [l.z‘-1.....z"—p.z“-(p+l)J. the order

update recursion equation (32) can be written in Z-transform

  

notation

[1.ze—1....,z‘-p.z*-(p+1)][ 1 o l 1- -ke(p+1)-’

a(1.p) b(p.p) -kr(p+1) 1 J =

Le(p.p) 1 J

Tl
[1.z‘-1.....z‘-p.z‘-(p+l)] I 1 b<p+1.p+1)

a(l.p+1) b(p.p+l)

: : (34)

  ‘La(p+l.p+l) 1 ]

[Ap(z) Bp(z)] 1 0 1 -ke(p+1) = [AP+1(Z) Bp+l(z)] (35)

0 Z"-1][-kr(p+l) 1

Premultiplying (35) by Y(z).

Y(z)[Ap(z) Bp(z)] 1 0 1 -ke(p+1) =

[0 z“-lI[-kr(p+1) l I

Y(z)IAp+1(z) Bp+l(z)]

[e(p.z) r(p.z)] I 0 1 -ke(p+l) =

0 z“-1 -kr(p+1) 1

[e(p+1.z) r(p+1.z)] (36)

Equation (36) describes how the lattice filter is to

be implemented. The equation describes the propagation of

the prediction errors of predictors of increasing order.

Starting with order 0 (p=0). A0 = 80 = 1. The reason for

this is that a zero order predictor makes no prediction (the

prediction equals zero) and the prediction error is the

value to be predicted.
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The first stage of the lattice (from order 0 to

order 1) is given by

[Y(z) Y(z)][l (J ][ 1 -ke(l) '= [e(1.z) r(1.z)] (37)

0 z“-1 —kr(1) l

The flow diagram for this is

 

e(l.t)

-kr0)

- -kehl

2f ] r(l.t)

y(t)—1

 

  
   

Figure 3. Stage One of the Lattice Filter

 

 

The order update from order p = 1 to order p = 2 is

given by

e(l.t) e(2.t)

-Kr(0

. ‘ -mw

r(1.t)'_—lzz r(2.t)   

Figure 4a. Stage two of the Lattice Filter

The general lattice of order p is

e(p.t)

Vit’ -Kr0) 'kr(9

‘KCI‘I ‘ - -ke (P)

“21— we

 

 
   r(p.t)
 

 

Figure 4b. Lattice Filter
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Some inspection of the filter parameters will

simplify these realizations. The quantities Lr(p+l) and

Le(p+1) are equal. To see this. extract Lr(p+1) and

Le(p+1). as defined in (29) from equation (27) using the

operations on the matrix Rp+1

   

    

[1 a(1.p)...a(p.p) OJRp-i-lI-O ' [1 a(1.p)...a<p.p) O]!I.r(p+l)l'

b(p.pI I 0

b(1.p) :

_ 1 J r(p+l)

= Lr(p+1) (38)

and

[o b(p.p)...b<1.p) 1]Rp+11' 1 ‘ [o b(p.p)...b(1.p) 1]Re(p+1>ll

h(l.p) 0

a(P.P) :

L 0 . Le(p+lfl

= Le(p+1) (39)

Since the left hand sides of equations (38) and (39) are

transpositions of each other. their scalar products are

equal. The notation r and e will be dropped from Lr(p+1)

and Le(p+1) and they will be denoted by a single variable

L(p+1).

The variables associated with this update recursion

also have information about the prediction process. By

comparing equations (27) and (30). order update recursions
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can be found for the prediction error variances

Re(p+1) Re(p) - Lr(p+l) kr(p+1)

Rr(p+1) Rr(p) - Le(p+1) ke(p+1) (40)

The variable L(p+l) is the cross correlation of the

forward and backward prediction errors at a lag of 1. This

can be seen from expanding (38) into the following form

    

L(p+l) =

E{[0 b(p.p)...b(l.p) 11’ y(t) lty<t>...y(t—p-1)1 I 1 ' 1

Y(t-l) :

: a(p.p)

[Ht-9%)] L 0

L(p+l) = E{r(p.t-l) e(p.t)} (41)

The previous derivations assumed that the forward

and backward predictors were different. which is not

correct. Since least mean squares prediction is analogous

to a projection onto the space spanned by the data

y(t-l).....y(t-p) [8], the forward and backward predictors

are the same. Also. the prediction error variances Re(p)

and Rr(p) are equal. and can be found recursively as in

equation (28). This means that the forward and backward

reflection coefficients. kr(p+l) and ke(p+1). are also

equal. The reflection coefficients can also be used to

check the invertibility of the filter. An all zero filter

can be inverted if and only if all its zeros are inside the

unit circle in the Z-plane. i.e. if it is minimum phase. It

can be Ashown [20] that this is true for the least squares

predictor if and only if lk(p+1)l < 1.
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These equalities are not always imposed on the

realization in Figure 5. When the filter is implemented

adaptively. the parameters are often computed independently

of each other to allow for non-stationarities in the data

and errors in approximating the parameters.

The actual predictors Ap(z) .and Bp(z) are not

immediately available from the lattice filter. There is.

however. a simple way to obtain them. Since the lattice

filter has the same impulse response as the predictors in

equations (3) and (22). the predictor coefficients can be

found from the impulse response of the lattice filter. This

makes use of the knowledge that the i-th value of an FIR

impulse response is the i-th filter coefficient. To obtain

the coefficients of forward predictor of order j (j <= p),

observe the e(j.t) node in Figure 3. If the states of the

lattice (the nodes r(i.t-l) ) are set to zero, the response

at node e(j.t) to an impulse applied at y(t) at time t = 0

will be l.a(1.j)....,a(j.j) which are the coefficients of

the predictor.

The order p prediction y‘(t) can be found by

inspection without actually finding the predictor Ap(z).

since y‘(t) = y(t) — e(p.t). from equation (3).

By implementing a lattice filter of order p. the

predictions and prediction errors of all the lower order

predictors Ai(z). i=1.p are available by inspection.



NORMALIZED LEAST SQUARES LATTICE FILTER

Several forms of adaptive lattice filters are

presented in [16]. One of these which has proven

particularly useful is the normalized. pre-windowed lattice

filter. As the name suggests. the filter is in the lattice

form of Levinson’s Recursion (Figure 5). The pre-windowed

qualification means that the data used to form the predictor

is taken from the time interval [0.t-1]. The filter is

called normalized because the prediction errors propagating

through it are divided by their standard deviations.

Unnormalized lattice forms exist and it is possible to

obtain the unnormalized forms from the normalized forms. and

vice versa. The normalized form is preferable in that it

requires fewer operations at ,each recursion than the

unnormalized filter.

Friedlander’s derivation is simpler and more

straight forward than the derivation previously presented by

Lee. Morf and Friedlander [21]. The latter derivation is

based on a Hilbert space approach which yields several

useful interpretations not immediately obvious in the

derivation used by Friedlander.

Friedlander’s derivation proceeds by considering the

least squares predictor in equation (18) as a projection

operator onto the space spanned by the columns of Yp(t).

Then. he presents matrix operations which update the

28
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projection operator of the (txp) data matrix to the

projection operator of a data matrix increased in order or

time. By combining these time and order update operations.

a recursive solution for the lattice filter is derived. The

details of the derivation are included in the Appendix.

Each parameter in the filter can be computed using

recursive formulas. To ease the notation. functions will be

defined for the recursions.

F(a.b.c) [I-c‘2]‘-1/2 [a - bc][I-b‘2]‘—l/2 (42)

G(a.b.c) [I-c‘ZJ‘l/Z a[1-b‘2]‘1/2 + cb (43)

Using this notation the filter recursions can be

expressed in the form

k(P+l.t) = G(k(p+1.t-1).r”(p.t—1).e"(p.t)) (44)

e~(p+lot) = F(e~(p9t)9r~(p9t-l)vk(p+lot))

r“(p+1.t) = F(r(p.t-l).e(p.t).k(p+l.t)

The recursions are performed each instant a data

value becomes available. The initial conditions are to set

all parameters equal to 0 at time t = -1.

Lee. Morf and Friedlander's derivation allows

incorporation of an exponential weighting factor into the

data which reduces the influence of past data values. They

show that an exponential window can be introduced by

windowing and normalizing the data. instant. That is. the

variance of the zero order prediction error (the zero order

prediction error is the data value) is given an exponential

taper by using the estimate

s(t) q s(t-l) + y(t)‘2 0 < q < l (45)
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Then, e"(0.t) = r~(0.t) = y(t)/sqrt(8(t))

The complete filter algorithm is then (46)

 

at time t:

obtain y(t)

s(t) q s(t-l) + y(t)‘2

e~(0.t) = r"(0.t) = y(t)/sqrt(s(t))

For m = 0. p-l :

k(m+l,t) G(k(m+1,t-1).r"(m.t—l).e"(m.t))

e~(m+l,t) F(e~(m.t).r~(m.t-l).k(m+l.t))

r"(m+1.t) F(r(m.t-l).e(m.t).k(m+l.t)

 

The filter has another useful parameter which does

not arise immediately from Friedlander’s derivation. This

variable propagates unseen in the normalized lattice filter

(similarly to the exponential weighting i). This variable

is a likelihood variable which detects changes in the

statistics of the input process. If the process statistics

are changing, the filter parameters are allowed to vary more

rapidly to track the process. Friedlander gives a method

for computing the likelihood parameter. g(t).

1 - g(t-i) = (1 - r"(0.t—l)“2)(l — r"(1.t—l)“2)*...*

(l - r”(p-l.t-l)“2) (47)

for the predictor of order p-l.

Where g(t) is defined

g(t-l) = y(t-p:t-1)’((Rp-l)‘-l)y(t-p:t—1) (48)

This is the exponential term in the zero mean. joint

Gaussian distribution for p-l variables -and Rp-l is the

covariance matrix as defined in (9).



Pseudo Linear Regression for Least Squares Prediction

A predictor can be implemented by performing matrix

inversion using an algorithm based on the Matrix Inversion

Lemma [22]. This lemma states that if a matrix can be

expressed as

P(t-l)‘-1 = P(t-Z)“-1 + h(t-l) h(t-l)’ (49)

then the inverse of the matrix can be found by

P(t-I) = P(t-Z) - P(t-Z) h(t-l) h(t-I)’ P(t-2)/

(1 + h(t-l)’ P(t-Z) h(t-l)) (50)

This recursion is similar to those found for the adaptive

lattice algorithm. Their purpose is to allow matrix

inversion by a recursive algorithm which requires only

scalar division.

The predictor which will be used is designed to

minimize the error criterion [23]

J = (e(p.l)“2 + ... + e(p.t)‘2)/t (51)

where e(t) = y(t) - y‘(t).

The estimate y“(t) is chosen as a linear function of

available data.

The data used to predict y(t) is taken from

the time interval [t-l.t-p] and the predictor is formed

using the time varying coefficients a1(t).....ap(t). The

prediction is then given by

31
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y*(t) = [y(t-1).....y(t—p)J[a1(tf = h(p.t-1) A<p.t)

  @p(tn (52)

The algorithm used to update the filter coefficients

is the least squares form of the Pseudo Linear Regression

algorithm [24]. This is essentially the general recursive

least squares algorithm for linear regression applied to the

parameters of an FIR predictor . The algorithm is

A(P.t) = A(p.t-l) + P(t—Z) h(p.t-l)’ e(P.t)/ m(t-1)

P(t-i) = P(t-Z) - P(t-Z) h(p.t-1)’ h(t-l) P(t-2)/ m(t-l)

m(t-1) = 1 + h(p.t-l)P(t-2)h(p.t-l)’ (53)

This algorithm has very good initial start up

performance. but after several iterations. the matrix P(t)

becomes small and the parameter estimates do not change much

at each recursion. It is possible to apply an exponential

window to the data by introducing a scale factor into the

recursion for P(t—l) [25]

P(t-l) = [(P(t~2) -

P(t-2) h(t-l)’ h(t-l) P(t-2)/Q(t-1)]/a(t—1)

g(t-l) = e(t-l) + h(p.t-1)P(t-2)h(p.t-1)’ (54)

A possible choice for a(t-l) is a(t-1) = a a(t-2) + (l—a)

where a = .99 and 8(0) = .95 . This will apply an

exponential window to the initial data and then the window

will become constant. To window all the data, let

a(t-l) =q 0 < q < 1
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The algorithm then takes the form

y“(t) = h(p.t-l) A(p.t)

A(p.t) = A(p.t-l) + P(t—2)h(p.t-1)’ e(p.t)/g(t-1)

e(p.t) = y(t) - y‘(t)

h(p.t) = [y(t-l).....y(t—p)]

P(t-l) = [(P(t-2) -‘

P(t-2) h(t-l)’ h(t-l) P(t-2)/g(t-1)]/a(t-l)

g(t-l) = a(t-1) + h(p.t-1)P(t-2)h(p.t-1)’

(55)

In addition to being based on recursive matrix

inversion. this algorithm is similar to the adaptive lattice

algorithm in that it is possible to obtain a log-likelihood

function from the recursive process. This is so because the

matrix P(t) is the inverse of the estimate of the covariance

matrix in the pre-windowed data case [19]. In computing the

parameter g(t-l). this matrix is pre- and post- multiplied

by the data vector so the variable g(t-l) is of the form

g(t-i) = a(t-1) +

[y(t-l).....y(t-p)] Rp.(t—2)*-1[y<t-1> <56)

 [y(t-p)

in which the second term is the exponential term in the

joint distribution for several zero—mean Gaussian variables.



DETECTION OF HEART BEATS IN FILTERED DATA

The previous discussions and derivations have shown

how adaptive filters are applicable to the problem remoted

heart rate detection. Given the model of the signal

presented in equation (1). the heart rate can be found by

detecting the non—zero occurences of u(t) which initiate a

heart beat. The information. u(t). is present in the model

as part of the model excitation e(t) = u(t) + w(t). where

w(t) is white noise. The excitation e(t) can be found by

inverse filtering. which is equivalent to producing the one-

step prediction errors of appropriate order. Since the

model parameters are not known. they will be determined

adaptively and used to form a predictor. The prediction

errors will be used as estimates of e(t).

Since the‘ impulse train u(t) is found in the

presence of additive Gaussian white noise. some processing

must be done on the prediction errors to find the best

estimate of u(t). This task becomes more difficult as the

variance of the white noise w(t) increases.

The simplest way to detect occurrences of u(t) is to

perform peak detection on the prediction errors. In cases

where the standard deviation of w(t) is small relative to

the amplitude of u(t). the occurrences of u(t) should be

noticeable. Additionally, the adaptive behavior of the

algorithms aid detection. Since least squares estimation

algorithms produce biased estimates when the model

34
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excitation is correlated. the occurrence of u(t) will cause

estimation errors and the algorithms will change their

tracking behavior to correct the errors. This will result

in large prediction errors. This behavior when u(t) occurs

aids detection.

This type of detection is illustrated in Figure 5.

The signal presented in Figure 5a was obtained by placing

the microwave transceiver directly on the chest of a

reclining subject. The subject was rested and breathing

normally. Peak detection without adaptive filtering would

have been adequate for this signal. The effects of adaptive

filtering are shown well by this example. The results of

filtering by each of the lthree algorithms are shown in

Figure Sb-d. As expected. there were large prediction

errors when a heart beat occurred (indicated by arrows on

the time scale. which were taken from simultaneous EKG

measurements). Additionally. between beats. the signal was

whitened.

An instance where both peak detection and

autocorrelation perform poorly is when the subject is

breathing heavily. Such a signal was taken from a subject

who had just exercised strenuously (Figure 6a). The subject

was seated three feet from the transceiver when the data was

taken. Large movements in the chest. due to the breathing.

cause peak detection to fail. Autocorrelation also performs

poorly. as shown in Figure 6b. perhaps because of the

periodic breathing components or the erratic heart rate.
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The results of applying adaptive filtering to this signal

are shown in Figure 6c-e. Peak detection of the prediction

errors is not an appropriate method of detecting u(t) in

this case. Either the standard deviation of w(t) is much

larger than u(t). or the signal components are such that the

filter tracks wildly. It is possible to apply

autocorrelation to the prediction errors however. The

results of this are shown in Figure 6f-h.
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It is also possible to construct detectors based on

statistical parameters computed by the adaptive filters.

These have been found to offer the most promise for

implementation as heart beat detectors.

The first test criterion is based on an inspection

of the prediction errors. If no beat has occurred recently,

the model excitation, e(t) = w(t), is normal, zero mean,

with variance Rw‘2. Given that e(t) is white, the following

conditional density describes e(t) I

f(e(t)iu(t)=0) = eXPI-(e(t)/Rw)‘2 /2)]/sqrt(2 Rw‘Z) (57)

A change in u(t) from u(t-l) will be implemented by a log—

likelihood ratio test

log[f(e(t)iu(t)=0) / f(e(t)iu(t-1)=0)] =

-((e(t)/Rw)‘2 - (e(t-1)/Rw)‘2)/2

= Dl(t) (58)

If no heart beat has occured, Dl(t) should be small. If

e(t) were available, this test could be performed directly.

However, under the assumption that the recent model

excitation is white, the estimation routines should yield

accurate, unbiased estimates of the model parameters. If

this is so. the prediction error e(p.t) should be an

accurate estimate of the model excitation e(t). Therefore,

(e(t)/Rw)“2 will be approximated by (e(p.t)/Re(p))‘Z. The

variable, Dl(t), will be used to mask the prediction error

e(p.t). and the occurrence of the heart beat will be chosen

as the largest absolute value of Dl(t)e(p,t). This test

will be used with the simple first order predictor
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A possibility for another detector is to check

whether a group of several measurements are jointly Gaussian

[4]. This will be the case if the recent model excitation is

solely zero—mean Gaussian. i.e. there has been no heart

beat. The likelihood function for this event is

proportional to

f(y(t)....,y(t-k)iu(t-i)=0) = i=1,..k

epr-(y(t).....y(t-k))W(y(t).....y(t—k))’/2] (59)

where W is the inverse of the covariance matrix of y.

The exponent, g(t). of this likelihood function

g(t) = (Y(t).....y(t-k))W(Y(t).....y(t-k))’/2 (60)

is readily available from both the normalized least squares

lattice filter (equation (47)) and the pseudo linear

regression predictor algorithm (equation (56)).

The above test for jointly Gaussian data is

implemented as a log—likelihood ratio test

02(t) log[f(y(t),...,y(t-k):u(t-i)=0)/

f(Y(t-1),....Y(t-k-l)1U(t-i-1)=0] (61)

g(t) - g(t-l)

of the present block of data versus the previous block of

data as an indication of a change in u(t) from u(t-l). The

block size, k, is equal to the filter order p. The

parameter D2(t) is used to mask the residuals e(p.t) in both

the normalized lattice and the pseudo linear regression

algorithm. The largest value of 02(t)e(p,t) in a specified

time interval will be chosen as the location of the heart

beat.
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The application of the two tests (equations (61) and

(58)) will be presented simultaneously. The following steps

are performed at each sampling instant. The time series of

the intermediate steps are plotted in Figure 7 to show the

different behavior of the algorithms. The purpose will be

show the performance of the algorithms on relatively

uncluttered data.

The first step is to obtain the linear prediction

errors, e(p.t), (Figure 7a-c) from the adaptive filters.

Then the detector parameters are computed. For the simple

predictor, this requires using the autocorrelation estimate

(21) in (20) to compute the current estimate of the error

variance

Re(1.t) = (1-a‘2)Ry(0,t) (62)

which is then used to compute the term e(l.t)“Z/Re(1,t))‘2.

The present value of this term is then subtracted from the

previous value e(l.t-l)‘2/Re(l,t-l)‘2 to produce Dl(t)

(Figure 7d). The detector parameters for the normalized

lattice and pseudo linear regression algorithm are computed

by determining the likelihood function exponent, g(t-l). by

equations (48) and (56), and subtracting it from the

previous value g(t-Z) to produce the parameter 02(t—1)

(Figure 7e,f).

Once the detector parameters Dl(t) and 02(t-1) are

found, they are used to mask the innovations e(p.t) to

produce the detector output e(p.t) D(t) (Figure 7d—f). The



55

output is peak detected and the largest value in a specified

search range will be chosen as the occurrence of the heart

beat. The search range is specified by a maximum and

minimum time lag from the previously detected peak. The

minimum time lag is the inverse of the minimum expected

heart rate and the maximum time lag is the inverse of the

maximum heart rate. where both rates are in seconds. This

detection can be performed "on the fly" so that the detector

outputs D(t) e(p.t) over the entire search range need not be

stored.

The time lag between the peak value in the present

search range and the peak in the previous search range is

used to generate the estimate of the instantaneous heart

rate.

Table 1 shows side by side the results of the four

approaches: peak detection, the simple algorithm, the

normalized lattice algorithm, and the pseudo linear

regression algorithm. The inclusion of EKG data allows for

quantitative comparison. The normalized lattice detector is

clearly superior to the other methods. For this signal, the

variance in the BPM estimates is decreased from about 6 BPM

to about 1 BPM.

The previous results show a marked improvement in

BPM estimate using the normalized lattice filter. The

following results will show that this form of detection can

yield results in .situation where peak detection fails

completely and the only competetive form of processing is
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autocorrelation with large window sizes.

The data presented in Figure 8a was taken at a

distance of three feet from a seated subject who had just

performed fifty push-ups. This combination of measurement

from a distance and chest movement due to heavy breathing

obscures the heart signal. Inspection of the signal shows

that peak detection is inapplicable in this case. Figure 8

presents the detector outputs from the three filtering

techniques. Of these techniques, the normalized lattice is

the only one which produces reliable results (Table 2).

Only one beat was not detected. There are several possible

reasons for this superior behavior. When compared to the

simple predictor, the normalized lattice is better able to

track non-stationary data due to the likelihood variable

which improves tracking behavior. That the data is highly

non-stationary is further suggested in that the optimum

detector performance was obtained for q = .91. a fairly low

value for the forgetting factor, which means that the data

is stationary over only short intervals. The pseudo linear

regression method also contains this likelihood variable,

however, the parameters in the normalized lattice algorithm

are normalized by their standard deviations. This form of

normalization, which is a test for non-zero mean Gaussian

outliers [28]. accentuates the occurence of the heart beat.
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Table I. Detector Performance on Data in Figure 7

Instantaneous Heart Beat Measurements (8PM)

Filter Order = 1. g = 0.98

Simple. Normalized Pseudo

First Least Linear

EKG Peak Order Squares Regression

(reference) Detection Predictor Lattice Predictor

79.17525 78.36735

77.57571- 66.78266 66-20639 77.57570 67.36842

74.56315 89.30217 90.35287 74.56306 ' 89.30232

73.14231 73.14270 71.77574 73.14290 59.13922

75 29412 75.29412 71-11111 75.29412 75.29412

73.14290 73.84615 73 34615 73 84615 73.84615

77.57571 76.80000 82.58059 76.30000 80.84206

85.33334 85.33334 86.29219 85.33334 86.29219

82.58070 31.70213 30.84206 82.58059 77.57571

78.36735 79.17525 73.84620 79.17531 78.36739

?4,§6311 74.56311 74.56311 73.84615 74.56311

62.43903 62.43890 57.31317 61.93548 65.08441

57.74452 55.25165 66.78317 53.18182 53‘13241

70.45808 74.56381 66.20689 69.81779 66.78239

74.56381 73.84615 73.84615 75.29457 74.56234

76.03988 76.03887 68.57143 75.29367 79.17556

85.33264 86.29249 93.46077 86.29249 81.70160

87.27273 87.27273 87.27273 87.27273 37.27273

85.33276 84.39526 85 33392 85.33392 05.33392

87.27285 30.34130

Error Variance: 32.76 139.6 0.3287 22.28

(BPM**2)
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Table 2. Detector Performance on Data in Figure 8

Filter Order = I, q = .91

Instantaneous Heart Beat Measurements (BPM)

EKG Normalized Least-

(reference) Squares Lattice

92.53012 . .

89.30232 88.27592

99.74018 98.46154

97.21526 102.3999

94.81474 98.46154

92.53019 92.53019

90.35307 88.27580

93.65833 89.30232

94.81489 97.21526

94.81474 92.53026

80.84216 83.47815

58.18182 59.07692

70.45879 67.96460

82.58054 82.58097

88.27561 90.35191

93.65923 96.00000

. 91.42057 . 64.00000

Error Variance ' 33-04

(BPM”'2)
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CONCLUSION

It has been shown that. application oF adaptive

Filtering to remote heart rate monitors improves heart rate

measurements. The Filters can either be employed as pre-

processing For autocorrelation or peak detection or they can

be used alone as detectors. In particular. evidence has

been presented which indicates that a detector based on the

normalized, least squares lattice Filter is the superior

choice among detectors investigated to date: it is Faster.

less complex and more accurate than any other algorithms

investigated.

POSSIBILITIES FOR FURTHER INVESTIGATION

The application oF the adaptive FIR Filters to this

problem was JustiFied by the signal model given in equation

(1). It is possible that other models are more appropriate,

which would permit the use oF other Forms oF adaptive

Filters. One possibility is to use a pole-zero. or

autoregressive moving average (ARMA) model For the signal.

The appropriate adaptive Filter would then have both poles

and zeros [29]. The key to all approaches is to Find a

model For the signal. A possible approach might be to use a

Frequency domain approach. with model poles and zeros chosen

to match the signal spectrum [30]. Parametric
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identiFication routines could then be used to Form an

adaptive Filter, as in [31]. This approach has several

potential beneFits. It is easy to constrain the model poles

to remain within the unit circle (although this does not

guarantee stability in the time-varying case). It also

allows modeling the signal spectrum as narrowband

components, which is a good description oF the heart signal

spectrum. Also. with a general model Form, many oF the

identiFication techniques presented in [22] can be applied.

Clutter poses major problems in all detection

schemes. Models For the diFFerent types oF clutter, such as

mechanical vibration and moving trees, could be developed.

Adaptive Filters based on a combined model oF heart signal

and clutter could then be implemented.

Finally. it might be desirable to Find a way to

introduce past heart rate measurements into the Filtering

process. This would require modeling how the heart signal

varies with heart rate.
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NORMALIZED LATTICE FILTER RECURSIONS

The projection operator is deFined

PIYP(t)} = Yp(t)(Yp(t)’ Yp(t))“-l Yp(t)’

Inserting the the least squares solution (18) into the

prediction error equation (15)

  

    

’e(p.OY

e(pol)

l;<p.tz

”y(of T 0 0 ... 0 ‘ (Yp(t)’ Yp(t))‘-l Yp(t)’ y(Ozt)

Y(l) Y(0) 0 ... :

: y(I) y(O) o

: + : y(O)

_y(t)i [y(t-l ...y(t-pl

= (I - Yp(t)(Yp(t)’ Yp(t))‘-l Yp(t)’ ) y(0:t) (A1)

The error e(p.t) can be extracted using a matrix

operation on (Al). Substituting the projection operator

deFinition into (Al)

e(p.t) = [0...0 l] (I - P(Yp(t)})y(0:t) (A2)

= h' (I - PIYD(t)}) Y(0:t)

71
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= h’ (I - PIYp(t)})) (I - PIYD(t)}) Y(0:t)

where h’ = [0...0 1].

To normalize e(p.t) by its standard deviation. an

analogy will be drawn with the covariance oF two zero mean

random variables

r(x.y) = cov(x.y) = Eixy)/sqrt(E(x‘2)E(y‘2)) (A3)

For an expression in the Form oF equation (A4).

V’[I-P{s}]w. the normalization will be

r{s}(V,W) = [V’(I-P{s})(V'(I-P{s})’]‘-I/2 V’[I-P{s}Jw '

[((I-Pfs})W)’(I-Pfs})WJ‘—l/2

= [V'(I-P{5})V]‘-l/2 V'II-PISIIW [W’il-P{5})W]“-l/2 (A4)

using the Fact that (I-P{y(p,t)}) is symmetric and

idempotent.

Using this notation, the normalized prediction

error, e"(p.t). can be written

e"(p.t) = r{5}(h.y(0:t)) . s = Yp(t) (A5)

Similarly. the backward prediction errors can be put

into normalized Form. The coeFFicients oF the backward

error Filter are determined in the same way as the

coeFFicients oF the Forward Filter. Both predictions

involve a projection onto Yp(t). The derivation oF the

backward predictor proceeds From the deFinition oF the

backward prediction error



r(p,t-l)

I 0

 
predictor coeFFicients is obtained as

 
By

Ib<p.pfl

r(p.0)

 

f(p.t~ly 
The

inserting the

Y(t-P-l)

l'o‘

0

y(O)
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+ b(p.p) y(t-l) +...+ b(l.p) y(t-p) (A6)

 [y(t-p-lz

least

(Yp(t)’

 

I F o ...

y(O)

y(l)

+ :

y(p-l)

y(p)

y(t—l) ...

squares solution

Yp(t))‘-1 Yp(t)

 
least squares solution

  

0 'ir b(p.p)

. . l

: I (A7)

y(O) :

y(l) : E

y(t-p)ll b(1.p)

For the backward

' I 0 l’ (A8)

: (p zeros)

0

y(O)

y(t-p-IU 
into the prediction

error equation and pre-multiplying by [0..0 l], the backward

prediction error can be extracted

r(pvt-l)

[0...0 l][I — Yp(t)(

[0...0 l][I

Yp(t)’ Yp(t))‘-l Yp(t)’

- PIYp(t)}] y(0:t)p+1

] Y(0:t)p+l

(A9)
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where y(0:t)p+1 = I 0 1

0

y(O)

.Yit‘P‘l )1

To express the backward prediction errors r(p.t) in

their normalized Form. r"(p,t), the notation will be

r"(p.t) = r{s}(h,y(0:t)p+1) . s = Yp(t) - (A10)

In this derivation. the reFlection coeFFicients will

be assumed equal. In other Forms. such as the unnormalized

pre—windowed Form [16]. kr(p+l) is computed seperately From

ke(p+1). In the time average sense. the two should be

equal, but their instantaneous values are not necessarily

equal. By assuming equality, however. the number oF

operations is reduced.

The reFlection coeFFicient was deFined in equation

(29) as ke(p+1) = -Lr(p+1)/Re(p) and kr(p+1) =

Le(p+1)/Rr(p). Dropping the notation oF r and e on K,

k(p+i.t) = L(p+l.t)/sqrt(Re(p)Rr(p)) (All)

where L(p+1.t) = E{e(p,t)r(p.t-1)} . the cross correlation

oF the Forward and backward prediction errors at lag l.

L(p+1,t) will be replaced by a time average approximation
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L(p+l.t) [O r(p.0) ... r(p.t-1)] e(p.0) (A12)

e(p.t)

[(I—P{y(p.t)})y(0:t)p+l]’ [(I-P(y(p.t)}) y(0:t)]

y(0:t)p+l’ (I-P{y(p.t)l) y(0:t)

The error variance Rr(p) can be also be approximated

by a time average

Rr(p) = [0 r.(990) ... F(pytr'HJ [0 r(p90) coo r(p9t"l)]'

[ (I-P{Y(p.t)}) Y(0:t)p+l ]' [ (I'P{Y(D.t)}) Y(0:t)p+l J

y(0:t)p+1’ (I-P{Y(p.t)}) Y(0:t)p+l (A13)

Similarly, Re(p) can be expressed

Re(p) = y(0:t)’ ((I-P{y(9.t)l) y(0:t) (A14)

It appears that the reFlection coeFFicient can be

expressed as the covariance between e(p.t) and r(p.t) at lag

1. Using the equations (A11)-(Al4), the approximation oF

the reFlection (All) can be expressed in the Form oF

equation (A4)

k(p+l.t) [y(0:t)’ ((I-P{y(p.t)}) y(0:t)]‘-l/2 '

[y(0:t)p+l’ (I-P{y(p.t)}) y(0:t)] ”

[y(Ozt)p+l’ (I-P{y(p.t)}) y(0:t)p+l]‘-1/2

= r{s}(Y(0:t)p+l.y(0:t)). s = Yp(t) (A15)

= r{s}(Y(0:t).y(0:t)p+l)), due to symmetry

Now, recursions will be developed For higher order

predictors in terms oF lower order predictors and present

predictors in terms oF past predictors. The First recursion
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Finds r{s+x}, when {s+x} indicates a change in the

projection space From {s}. This will correspond to either

an order update. in which Yp(t) becomes Yp+l(t), or a time

update. when Yp(t) becomes Yp(t+1).

The First step is to note that the space spanned by

(s+x} is the same as that spanned by {s + (I-P{s})x}. where

P(s} is the projection operator onto the space {s}.

ThereFore.

P(s+x} = P(s} + P((I-Pfs})x}

and I - P{s+x} = I - P(s} - P((I-P{s})x} (A16)

Using the least squares solution For the projection,

PIII-P{S))X} = (I-PIS))X([(I-P{S))X]'[(I-PIS))X])‘-l

[(I-P{$})x]’ (A17)

Equations (A16) and (A17) can be used to Find a

recursion For V'[I-P{s+x}]w in terms oF P(s}, x, V, and w ,

all oF which are known. Pre-multiplying (A17) by V’ and

post-multiplying by w yields

V’[1-P{s+x}]w = V’(I-P{s})w -

V'(I-P{s})x[x’(I-P{s})x]‘-I x’[(I-P{s}]w

[V’(I-P{s})V]‘1/2[V’(I-P{s})V]‘-l/2 V(I-P{s))w

[W(I-P{s})H]‘-l/2 [W’(I—P{s})N]‘I/2 - V’(I-P{s})x

[x’(I-P{s})x]‘-l/2 [X'(I-P{s})x]‘-l/2 x'[(I-P{s}]w

[V’(I-P{s})V]‘l/2 r{s}(V,W) [W’(I-P{s})W]‘I/2 -

[V’(I-P{s})V]‘l/2[V’(I-P{s})V]‘-l/2 V'(I-P{s})x

[X’iI-PIS))X]“-l/2 [X’(I-P{S})V]“-l/2 X’[(I-P{$}]W '

[W'(I-P{s})W]‘-I/2 [W’(I-P{s})W]‘I/2
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= [V’(I-PIS))V]"l/2 (r(s}(V.W) - ris}(V.x) ris}(x.W)] *

[W'(I-P[s})W]“I/2 (A18)

The resulting recursion relation is

V’[I-P{s+x}]w = [V’(I-P(s})V]‘l/2

[r{s}(V,W)-r{s}(V,x) r[s}(x.W)][W’(I—P{s})W]“1/2 (A19)

Evaluating this equation at w = V and V = w gives

V’[I-P[s+x}]V“l/2 [V’(I-P[s})V]‘l/2 [I - r{5}(V.x)“2]“I/2

N’[I-P{s+x}]W‘l/2 [W'(I-P{s})w]‘l/2 [I - r{S}(W.X)“2]“l/2

(A20)

Equation (A4) can be rewritten For projection onto

{s+x}

r{s+x}(V,W) [V'(I-P{s+x})V]“-1/2 V’[I-P{s+x}]w *

[W’(I-P{s+x})W]“-l/2

[V’(I—P{s})V]‘-l/2 [I — r{s}(V,x)‘2]‘-1/2 '

[V’(l-P{s})VJ"l/2 [r(s}(V.w) - ris}(V.x) ris}(x.W)] *

[W’(I-P[s})W]“1/2 [W’(I-P{s})W]‘-I/2 [I - r[s}(w,x)“2]‘-l/2

r‘iI'S‘i’xHVJiU = [I - r{S}(V.x)‘2]“-l/2 [r{s}(V,W) -

r{s}(V.x) r[s}(x.W)] [I - rfs}(W.x)“2]“-I/2 (A21)

This recursion can be used to Find an order update

For e"(p.t). Using the deFinition oF e"(p,t) in equation

(A5)

e"(p+1.t) = r{Yp+l(t)}(h.y(0:t)) (A22)

the matrix update can be applied when the projection space

is changed From Yp(t) to Yp+1(t). To use equation (A21) let

s = Yp(t) and let x = y(0:t)p+1. The space spanned by s and

x is the same as the space spanned by Yp+1(t). Using the
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update recursion (A21) where V = h and w = y(0:t)

e”(p+l.t) = [I — r(Yp(t)}(h.y(0:t)p+l)“2]‘-I/2 *

[F{Yp(t)}(h.Y(0=t)) - F{Yp(t)}(h,Y(0=t)P+l)

rIYp(t)}(y(0:t)p+l.y(0:t))J *

[I - r[Yp(t)}(Y(0:t)cY(0:t)p+1)‘2]‘-1/2 (A23)

A similar regression can be Found For the backward

prediction error. The p+1 order predictor equations are

        

7 o ‘ 0 ‘ i 0 0 ‘ [b(p+1,p+1i

r(P+1.0) = y(O) 0 ... : :

: = : + y(1) y(l) 0 : : (A24)

: y(O) y(p+1) . y(1) =

0(p+l.th ly(t-p-l) _y(t) y(t-px L b(l.p+l)j

The space spanned by Yp+1(t+1) is the same as the space

spanned by Yp(t) and y(0:t). The normalized backward

prediction error r”(p+1.t) is deFined as

r”(p+1,t) = r{Yp+l.t+l}(h,y(0:t)p+l) (A25)

Using the update recursion (A21) where x = y(0:t),

s = Yp(t), V = h, and H = y(O:t)p+I

r"(p+1,t) = [I - rIYp(t)}(h.y(0:t))‘21‘-1/2 *

[r{YU(t)}(h,y(0:t)p+l)-

rti(t)}(h.y(0:t))rti(t)l(y(0:t).y(0:t)p+l)J *

[I - rIYp(t)}(y(0:t)p+l.y(0:t))“2]‘-1/2 (A26)

The recursion For the reFlection coeFFicient k(p.t)

will be a time update. That is. k(p.t) will be Found From

k(p,t-1). The update Follows From the deFintion oF the
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reFlection coeFFicient

k(p+1.t) L(p+l.t)/sqrt(Rr(p)Re(p)) (A27)

= [0 r(p.0)...r(p,t-1)] %(p.0 l/sqrt(Rr(p)Re(p))

, @(p.t)

[0 r(p.0)...r(p.t-2)] (e(p.0) l/sqrt(Rr(p)Re(p))

 (e(p.t-I)
+ r(p.t-1)e(p.t)/sqrt(Rr(p)Re(p))

= [0 r(p.0)...r(p.t-2)] e(p.0) l/sqrt(Rr<p)Re(p))

(pvt‘l)

+ r"(p.t-1)e”(p.t) (A28)

Noting that Re(p.t-1) + e(p.t)‘Z = Re(p,t)

RE(pvt’l) R9(pot) ‘ 8(p9t7A2

1/Re(p.t) (1 — e“(p.t)‘2 )/Re(p.t-l)

l/sqrt(Re(p.t)) =

(I - e”(p.t)‘2 )‘1/2 /sqrt(Re(p.t-l)) (A29)

Inserting (A29) into (A28).

k(p+l.t)=[0 r(p,0)...r(p.t-2)] e(p,0) (I — e"(p,t)“2 )“1/2”

e(p.t-I

(1-r"(p,t-1)‘2)“l/2/sqrt(Re(p,t-1)Rr(p,t-l))

+ r"(p.t-l)e"(p.t)

= (l-e“(p.t)‘2)“1/2 k(p+l.t-l)(l - r"(p.t-l)“2 )‘1/2

+ r"(p.t-l)8"(p.t) (A30)

The recursions necessary to implement the lattice
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Filter are now available. The structure becomes more

apparent when the recursions For r"(p,t) and e"(p.t) are

written

6~(p.t) = F{Yp(t)}(h.y(0=t)) (A31)

r"(p.t) = F(Yp(t))(h.y(0:t)p+l) (A32)

Using the order update recursions

e”(p+1.t) = [I - r{Yp(t)}(h.y(0:t)p+1)“2]‘-l/2 *

[rIYp(t)}(h.y(0:t)) - FIYp(t)}(h.y(0:t)p+l) *

rIYp(t)}(y(0:t)p+l.y(0:t))] '

[I - rIYp(t))(y(0:t).y(0:t)p+l)‘2]‘-l/2

e”(p+1.t) = 11-r"(p.t—1)‘2]‘-1/2[e"(p.t)-k(p+l.t)r”(p.t-l)]‘

[l-k(p+1.t)‘2]‘-l/2 (A33)

Similarly, For r"(p+1.t).

r"(p+l.t) = [I - F(Yp(t))(h.y(0:t))‘2]‘-l/2 *

[rti(t)}(h.y(0:t)p+l) - rIYp(t))(h.y(0:t)) *

FIYp(t)}(y(0:t).y(0:t)p+l)] *

[I - rIYp(t)}(y(0:t)p+l.y(0:t))“2]“-l/2

r“(p+1.t) = [I-e"(p.t)‘2]“-1/2 [r"(p.t-l)-e"(p.t)k(p+l.t)] *

[I-k(p+l.t)‘2]‘-l/2 (A34)
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