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ABSTRACT

I. STATISTICAL MECHANICS OF THE

HALF-FILLED BAND HUBBARD MODEL

II. RANDOM EXCHANGE ISING CHAINS

By

Dario Cabib

The two main subjects of this thesis, unrelated as

they may seem, can be regarded from a general theoretical

point of view as being two different aspects of the same

branch of Physics. This branch of Physics studies the pro-

perties of systems consisting of interacting particles at

finite temperature. Both parts of the thesis are essentially

studies of theoretical models for interacting particles, and

in both the general methods and concepts of Statistical

Mechanics are used.

Part A is a study of the Half—Filled-Band Hubbard

model. In the introductory chapter we make comment on the

history and derivation of the model, we mention the various

exact results existing in the literature and we outline the

properties of some organic solids that have been recently

related to the Hubbard model. In the following chapter we

 

 



 



Dario Cabib

present the exact results obtained for the four-atom ring:

these results are interpreted physically, and used to resolve

serious discrepancies existing in the literature; furthermore

an attempt is made to extrapolate these results to an infinite

one-dimensional system and contact is made with recent ex-

periments on the organic solid N-methyl phenazinium

tetracyanoquinodimethan.(NMP—TCNQ). The results obtained

for the susCeptibility show that the Half-Filled-Band Hubbard

model is deficient as to the explanation of these experi-

ments. We tried to improve the theory in various ways but

our efforts were not completely satisfactory: we show that

although one can quantitatively fit the experimental para-

magnetic susceptibility of NMP-TCNQ using a temperature

dependent Hubbard model, there is still a lack of under-

standing of the physical mechanisms responsible for the

behavior of such a system. We then describe a high-

temperature expansion of the Half-Filled-Band Hubbard

hamiltonian, which is valid in the case of small interaction

between the electrons compared to the temperature; we give

the result for the susceptibility in first order of the ratio

interaction/temperature. In the final chapter of Part A we

explain and correct a serious error occurring in the liter-

ature involving a calculation of the zero frequency conduc—

tivity in the single band Hubbard model. We point out the

subtleties involved in the symmetry properties of the
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current operator as defined with a model hamiltonian such as

the Hubbard hamiltonian, and explain how the lack of under-

standing of these subtleties were the cause of the above

mentioned error.

Part B is a study of the Ising model with random

exchange interactions. One strong motivation for this work

is to understand the effects of the randomness of the inter-

actions on the critical behavior at finite temperature. Our

calculations refer only to one-dimensional systems; from the

analysis of the low-temperature behaviOr of such systems we

get some insight on the critical behavior of systems which

display phase transitions at finite temperature. We describe

extensively this low-temperature behavior, especially as a

function of different distributions of the exchange param-

eters. Finally the effect of a random highly anisotropic

Heisenberg interaction at low and high temperature is

studied. The results are compared with the periodic Ising

chain.
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PART A

CHAPTER I

INTRODUCTION



1. Preliminaries and Definition

of the Model
 

One of the fundamental problems in Solid State

Physics is to solve the equation of motion for an arbitrary

number of electrons and nuclei interacting via Coulomb

forces. This problem is so extremely difficult in the

general case that it has been solvedanalytically only in

the case of one nucleus interacting with one electron (the

hydrogen atom). As the number of particles increases, the

difficulties rise rapidly and when the collection of parti-

cles is a macroscopic system, a detailed solution to the

Schrodinger equation, with all the interactions, is out of

the question.

0n the other hand much of the information about the

behavior of systems of electrons and nuclei can be attained

by the use of general theorems and of different approxi-

mations, valid in different physical situations. In many

cases these approximations or theories (one may regard the

development of a theory as being an attempt to understand

nature through a simplified, and therefore approximate,

picture) give an accurate account of physical phenomena;

therefore one is often confronted with the problem of under-

standing the features of a theory and the phenomena that it

predicts, to be able to make contact with experimental

findings. The way one usually does this is to choose on

semi-qualitative grounds a simplified Hamiltonian, and



 

 



study its properties exactly, if possible, or approximately,

otherwise; the results are then compared with experiments.

It is in this spirit that Hubbard proposed.I his Hamilton-

ian in 1963. Similar to other contemporary work,2 Hubbard

was concerned with the study of correlated electrons in

solids; his goal was to account for the effects of cor-

relations in narrow bands and he suggested that his theory

be applied to d-electrons in transition metals. As we shall

see in Section AI.4, some authors3 proposed that this theory

be applied also to some organic solids; furthermore it has

4
been claimed that this or very similar theories can

account for the physics of the benzene ring and of a vast

number of magnetic insulators,5 usually thought of as being

described by the Heisenberg Hamiltonian (at the end of

Section AI.3 we will mention the relationship between the

Heisenberg and the Hubbard Hamiltonian).

Let us now focus upon the description of Hubbard's

model and its properties. It is well known that in a

crystal the energy levels of the electrons are grouped in

bands. Throughout this work we will restrict ourselves to

the case of a crystal of N atoms and an average of N

electrons, filling exactly half of one non-degenerate band;

we will disregard the presence of all the other bands. (To

do so we construct a so called projected Hamiltonian, where

part of the full Hamiltonian matrix is completely ignored.)

We define an orthonormal complete set of N Mannier functions



for this band; the Nannier functions are localized at the

lattice sites i.e. each of them is appreciably different

from zero only in the neighborhood of a lattice site, and

can be occupied by a maximum number of two electrons,

allowing for the spin degeneracy. The theory will not

depend on the detailed functional form of the Nannier

functions, and we will therefore leave them completely

general. We then define operators cio+ and c1.O which

respectively create and destroy an electron in the Nannier

function at site i with spin projection o. The c10+'s and

ngls satisfy the usual fermion anticommutation relations

+

and n. c=C

IO

10 id is the number operator of site i and spin 0.

The Hubbard Hamiltonian is written in terms of these

operators as

H = igo'bij(cio+cjo+cjo+cio) + U §n1¢ni+. (l)

The bijls and U are constant parameters and have precise

physical meanings. For simplicity we will always consider

the case b1j=b for i and j nearest neighbors, and zero

otherwise. b is often called the transfer or hopping

integral. The first summation in (l) is a noninteracting

electron term that can be written, in the basis of the Bloch

functions, as



 



nk0 are defined as

"L0 aha aka (3)

where ako+ and ak0 are respectively the creation and annihi-

lation operators for an electron in the Bloch function with

crystal momentum k and spin 0. ako+ is related to the Nannier

functions creation operators by

+ _ -1/2 154 +
a

ek are the one-electron energies of the band in question,

whose width is proportional to b; in general

ik-R..
13 --1a (5)e =Zb..e

k3

(3,,-

dimension, for instance, 8k = 2bcosk.

is the position vector between sites i and j). In one

The second summation in (l) is the interaction term:

when two electrons with opposite spins occupy the same site

(the exclusion principle forbids two electrons with the same

spin to occupy the same site) they repel each other with an

energy U. They do not interact if they are on different

sites.

Hubbard gave a derivation of the Hamiltonian that

took his name and studied it in different approximations:

the Hartree-Fock approximation,1 a Green function decoupling

6
procedure1 (Hubbard I), and a second approximate solution

(Hubbard III), which improved Hubbard I.



 



Since then the Hubbard Hamiltonian has been of great

theoretical interest. There are some exact results‘,7T12

but in the general case b,U¢0 at finite temperature TfO

they refer only to small one-dimensional systems; the ground

state and some of the low lying states have been calculated

for infinite chains. The approximate calculations are

usually based on Green function decoupling schemesl’6’13’14

which do not give criteria for the estimates of the errors

involved and sometimes14 are wrong in the limiting case

bij/U + 0; these difficulties were overcome in part by

.l5
T. A. Kaplan and R. A. Bar1 with the TSDA. (The TSDA

16
is a variational approximation due to T. A. Kaplan and

discussed in some detail by Kaplan and Argyres.]7) Finally

the derivation of the Hamiltonian itself given by Hubbard

has been recently criticized18 and an attempt is being made

to improve that derivation.

The fundamental question which arises is: why study

such a model, since it appears to be only a crude approxi-

mation to reality. This is so because, as we explained

before, we take into account only one band and the intrasite

Coulomb repulsion: the presence of other bands and the long

range of the Coulomb interaction may be nonnegligible. To

try to answer this question let us briefly examine the two

cases b/U<<l, U/b<<l.



 



Originally equation (l) was derived in the case of

narrow band eleCtrons; in this case the transfer integral b

(and therefore the bandwidth) is small in comparison to U,

and the lattice sites are quite distant from each other:

it is intuitive therefore that two electrons on the same

site repel each other with a force much greater than when

they are located at different sites. This allows us to

disregard the intersite repulsions. (It is worthwhile to

note here that when b=O, the Hamiltonian describes a system

of isolated atoms.) In the other extreme case when b>>U

the Hamiltonian (l) may seem unrealistic not only because

the repulsion between electrons on different sites becomes

important, but also because other bands may start to come

into play. On the other hand screening effects may reduce

the inter- and intra-atomic interactions appreciably making

it conceivable that (l) is still in some cases a good

description of reality. In the present work our approach

has been to study the Hamiltonian (l) from a phenomenological

point of view: in other words we have been interested in

the features of the theory as functions of the parameters

b and U. This means also that we have not worried about

the derivation of the Hamiltonian and its validity for the

different physical situations, and the different values of

the parameters b and U. Both cases b>>U and b<<U are very

interesting: the first describes the situation of weakly

interacting electrons in a band; the understanding of such



 



a system is a fundamental theoretical problem not yet fully

solved; the second, better understood in many respects, as

we shall mention in the next Section, is equivalent to the

Heisenberg model at low temperatures. In the rest of this

Chapter we will discuss some aspects of the Hubbard model,

such as the atomic limit and exact results; at the end we

will review some of the most recent experiments related to

the Hubbard model.

2. The Atomic Limit

It is worthwhile to focus our attention upon the

"atomic limit" i.e. the case in which b=0, because it is

an example of a problem with arbitrary number of strongly

interacting particles that is very easily solved. Further-

more there have been theoretical works where this simplicity

had not been recognized.

The Hamiltonian (1) reduces to

H = U :3anH (6)

It was pointed out by Kaplan16 that a complete set of

eigenstates of (6) are all the possible Slater determinants

with Nannier functions occupied. The energy eigenvalues19

for a given eigenstate is given by U times the number of

double occupancies in that state. The ground state (for

half-filled band) has each site occupied by one electron,

and it is degenerate 2N times if N is the total number of
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atoms. The total partition function Z in the Grand Canonical

Ensemble is a product of identical partition functions c for

each site: Z = cN. c is obtained as a sum of exponential

factors on the four states corresponding to (n1), ni+)

(0,0), (0,1), (l,0), (l,l), and is given by:

c = 1 + ZeBHcosh(ng/2H) + e‘B(U'2“) (7)

where: B = l/kT, u is the chemical potential, H is an

external magnetic field acting on the spin magnetic

moment only, 9 and “B are the g-factor of the electron and

the Bohr magneton. In the case of the half-filled band p

is easily proved to be equal to U/2 and independent of

temperature. Equation (7) was first given by Kaplan and

Argyres,17.with H=O.

The specific heat C and the susceptibility X are

easily obtained by the appropriate differentiations of Z.

C/NT has a 6 function singularity at T=0 to account for the

degeneracy of the ground state, and has a broad peak with a

maximum at a temperature of the order of U: the latter

corresponds to the entropy gain in allowing for double

occupancies when kT is of the order of the intraatomic

repulsion energy. The spin susceptibility X shows a l//2

Bohr magneton Curie-Weiss behavior at high temperature

(kT>>U) and a one Bohr magneton Curie law at very low kT<<U.

The positive intercept of X_1 does not denote ferromagnetic
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ordering (the sites are not correlated) but is due to the

Change in the local moment <SI2> brought about by the for-

mation of double occupancies when kT 2 U. This discussion

has been given by Kaplan.19 The local mOment is never~

zero,20 even when T-+w because there is always a finite.fi

probability (Z 1/2) to find singly occupied sites.

To complete this section, we mention that for b#0

but satisfying b/U<<l, it is possible to show in perturbation

21 that the low lying energy levels of the Hubbardtheory

Hamiltonian are the same as those of the Heisenberg

Hamiltonian (defined as -J ZS.-S., i and j are nearest

<ij; _‘]

neighbor sites, Si is the spin at site i, J is the exchange

integral) with antiferromagnetic J = —2b2/U. Extensive work

has been carried out at finite temperature in this range of

the parameters, more or less successfully, and the physics

is now quite well understood. For instance the work by

15’22 has been fundamental: both theKaplan and Bari

exact results at b=0 for any T, and the mentioned Heisenberg-

like behavior at low T are necessary in the description of

the model and its properties for b<<U. This field is very

fertile in physical phenomena: it includes spin wave effects,

second order phase transitions (Néel point) and therefore

critical phenomena. The work on the Ising model that we

describe in Part B of this thesis is also included in this

field. In fact if we take into account spin orbit effects

in the perturbation theory mentioned above to derive the
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Heisenberg Hamiltonian from the Hubbard Hamiltonian, we

would introduce an anisotropy. The Ising model is obtained

in the extreme case of infinite anisotropy.

3. Exact Calculations 

A brief summary of the existing exact results is

useful and appropriate here, since most of the present work

is concerned with exact calculations.

Unfortunately they are limited to few cases: this

is so because they are very difficult to obtain; in fact

the Hubbard Hamiltonian is more complex than the Heisenberg

22N 2N
Hamiltonian (for example the first is a x2 matrix

whereas the second is a 2Nx2N matrix), and the latter has

been solved exactly only at zero temperature in the case of

infinite one-dimensional lattice.

The ground state energy, wave function and chemical

potential of an infinite chain have been obtained by Lieb

7 (LM) in the half-filled band. They have used aand Wu

method similar to the one used for the solution of the

Heisenberg chain, and of the one-dimensional fermion gas

with 6—function interactions,23 they give a set of

integral equations to be solved simultaneously for the

lowest energy eigenvalue corresponding to a fixed value of

the total spin projection 32. The solution was given

explicitly for the absolute ground state, which has Sz=0.

It is interesting to note that this ground state need not

be antiferromagnetic in general: as a matter of fact when
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U=0 it is not antiferromagnetically ordered and it is

'plausible that the same holds when b>>U; on the other hand

when b<<U, we expect the system to behave similar to the

Heisenberg chain (antiferromagnetic): to the extent that

the Heisenberg ground state is believed to be antifer-

romagnetically ordered so it is Hubbard's (for b<<U). There

are arguments in support of this belief (such as the symmetry

of the spin waves), but there is no rigorous calculation of

<§i°§j>’ as far as we know, which would clearly show the

kind of order.

Finally, with the help of the chemical potential LN

have argued that at any finite U at T=0 the system is insu-

lating and is conducting only at U=0 or away from the half-

filled band.

7
Lw's work was the starting point of subsequent

exact calculations at T=0, and for this it was of great

fundamental importance. In fact, using Lw's method and

results Ovchinnikov9 calculated the spectrum of the lowest

excitations with total spin 0 and l and Takahashi8 obtained

the magnetization and the zero-field susceptibility (both

12
works refer to the half-filled-band case). Shiba extended

Lw's and Takahashi's calculations to arbitrary number of

electrons (not necessarily half-filled band). Griffiths'

24
work on the magnetization and susceptibility of the

infinite antiferromagnetic Heisenberg chain was also used

by Takahashi8 and Shiba12; therefore it appears that the
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same problems of rigor pointed out by Griffithsz4 apply to

Takahashi's and Shiba's work as well (the lack of rigor is

in the characterization of the lowest energy levels for a

given total 52, although there may be very plausible argu-

ments in support of the assumptions made).

10 uses.a'differentliThe papers by Shiba.and Pincus

approach:' they diagonalize by computer the Hamiltonian (l)

for chains and rings of up to N=6 atoms, and then they

compute the thermodynamics in the Canonical10 Ensemble.

As reported in Chapter II this is essentially our approach;

our calculations were carried out (both in the Canonical

and Grand Canonical Ensemble) simultaneously with and

independently of Shiba and Pincus' and concerned rings

of four atoms. After our work was presented (Magnetism

Conference, Nov. l972), further work within the same approach

11 For more extensive discussion of the motivations,appeared.

the checks of the computer program, presentation and interpre—

tation of the results and further references we refer here

to Section AII.l.

4. N-methyl Phenazinium Tetracyanoquinodimethan

(NMP—TCNQ)

 

An extensive and detailed description of the systems

that will be the subject of the present Section can be found

in the works by Fritchie,25 Epstein et al.,3 Shchegolev26

27
and Heeger and Garito. We report here some of the proper-

ties of the TCNQ organic solids (especially of the NMP-TCNQ)
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because the experiments on NMP-TCNQ have been closely

related3’27 to the recent theoretical studies of the Hubbard

model.

There is a class of so-called "organic charge trans—

fer salts” that are characterized by interesting features.

First of all they are organic solids composed of two types

of molecules, a donor and an acceptor giving rise to the

presence of unpaired electrons in the crystal. These un—

paired electrons are generally thought3 to be responsible

for the magnetic and electric properties of the system (due

to the nature of the molecular orbital involved), along

with the crystal structure of each solid. Second these

salts are highly anisotropic, displaying a very pronounced

one-dimensional behavior, the unpaired electrons moving

along the chains made up of the acceptor molecules. (The

effect of other bands is usually considered negligible.3)

The one-dimensionality is clearly displayed by the conduc—

26
tivity measurements by Shchegolev. The anion in these

salts is the TCNQ molecule, a planar molecule of the form:

 

CN CN

\\ /// \\\ //

C = = C

/- \_/

CN CN

< W8A° >

Figure AI.l.--TCNQ molecule.
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it is capable of combining with other melecules that play

the role of cation. The negative charge resides in the

lowest n level and is localized near the cyanide groups,

because of their strong electron affinity.3 In par-

ticular TCNQ can combine with the NMP molecule of the form:

Figure AI.2.--NMP Molecule.

in this cation the positive charge resides on the nitrogen

and carbon atoms involved in the bond between the methyl

group and the phenazinium, and all the electrons of the

cation are paired. Furthermore the methyl group can be

bound to either N at random so that there is also a ran-

domness in the position of the positive charge. Both NMP

and TCNQ form alternating chains of stacking blanar molecules

as shown in the following schematic figure:

TCNQ h ' + \\ TCNQ h ' +

.:.::.'N, N ..:.::.:., 40%”
TCNQ chain—>(a) \\\\ TCNQ chain+(b)0 fl O

Figure AI.3.-~Chains of stacking planar NMP-TCNQ molecules:

(a) side view of the chains; (b) front view

of the chains.
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As seen in Figure AI.3(a) they stack face to face to each

other and the interplanar distance is roughly 3.3 A; in (b)

the distance between TCNQ's is roughly 7.8 A. This picture

shows that the TCNQ chains are far apart and it is reasonable

to think of the electrons as bound to move in one dimension.

Each TCNQ can accommodate two extra electrons with opposite

spin assuming that it has associated with it one spatial

wave function, but the total number of these electrons is

equal to the number of TCNQ molecules so that the band in

which the electrons move is half filled. Certainly the

electrons in the band interact via Coulomb forces, and this

complicates the physics of this one-dimensional electron gas,

even if we neglect the interactions with the phonons and

with the highly polarizable NMP molecules.

The experimental measurements3’26 refer to low;

temperature specific heat, up to about 20 degrees Kelvin,

d.c. conductivity and spin susceptibility up to about 400

degrees K (above which the substance melts) and electric

permeability.

Epstein et al.3 tried to interpret their experi-

mental results with the Hubbard model. The few exact theo-

retical results existing at zero temperature8 and a calcu-

lation of Hubbard's gap based on Ovchinnikov's excitation

spectrum9 were the theoretical basis for establishing

the values of U and b appropriate to the NMP-TCNQ. In
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Sections AII.l and AII.2 we show the serious difficulties

this approach runs into.

Later Heeger and Garito27 tried to change the

theoretical picture allowing for the parameters b and U to

vary with temperature; this was done to better account for

their experimental data. In Sections AII.3 and AII.4 we

will discuss this aspect of the problem in greater detail.
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We have calculated thermodynamic properties of the half—filled-band Hubbard model for a

ring of N=4 atoms. Our results resolve serious discrepancies between similar calculations

which have appeared. For weak interactions, a new kind of smooth magnetic transition (non—

antiferromagnetic) is found at low temperature. For strong interactions, properties are ap—

proximately independent of Nwhen the grand canonical ensemble is used, enabling contact to

be made with recent experimental work on N—methyl phenazinium tetracyanoquinodimethan

(NM P) (TCNQ); the comparison suggests strongly that the Hubbard model is seriously deficient

as a means of description of these experiments.

There has been considerable interest recently“3

in the Hubbard model for electrons in a half—filled

band. Since exact results are extremely limited,

particularly in the intermediate temperature range

and for bandwidth b of the order of the Coulomb in—

teraction U, we began a study of exact numerical

solutions for small numbers of atoms. Since that

time three papers“-6 have appeared giving results

of similar calculations. Their results disagree

with each other in several important qualitative

respects: in the region of large b/U one group“

(SP) found one peak in the specific—heat—vs—temper—

ature curve, the other group516 (HM) finding three

peaks; for b/Uz 1, the groups again disagree as

to the number of peaks found. (These statements

concern the four—atom ring, the only case common

to both groups. )

Here we resolve these important theoretical dis-

crepancies. We agree with the number of specific—

heat peaks found by HM; however, numerical com—

parison is not possible because of inconsistencies

in their results. We also disagree with their inter—

pretation of these peaks and find instead a new

kind of smooth magnetic transition. Further, the

extrapolation to large systems as to the existence

of the low -temperature peaks for large b/U is

shOWn to be not possible on the basis of the four-

atom results in disagreement with HM: whenever

one-half the number of atoms is even, we show that

there is a low-T peak for large b/U which does not

scale with the size of the system. The behavior

for small b/U does not appear to be spurious in

relation to macroscopic systems, and we there-

fore carefully examined the susceptibility to com—

pare with recent experimental results.7 Whereas

the previous calculations were made using the

canonical ensemble, we have also made calcula-

tions in the grand canonical ensemble, as moti-

vated below.

We consider a system of four atoms at the cor-



2200

 

 

 

TABLE I. Comparison of results with high—temperature

expansion.

a U— (H) %U2 fi-U+ <H> 1L1 1/32

25><10'3 0.19987512 1.2x 10‘4 0.12700320

25><10'4 0.01999988 1.2x10'7 0.125 207 55

25x 10-5 0.002 000 00 1.2 x 1040 0.125 02078

 

ners of a square. As usual the Hubbard Hamil-

tonian is written

H=Ebuclacja+UZ> NHN“ . (1)

Ho 1

We include only nearest-neighbor hoppings (PH

2 b when i andj are nearest neighbors). Unless

specified otherwise, bE 1. All energy eigenvalues

and eigenfunctions are calculated numerically for

several values of U; from these the statistical

average of any operator 0 (expressed as a function

of the creation and destruction operators c}, and

C”), can be calculated either in the grand canoni-

cal or canonical ensemble (GCE or CE) according

to the equation

- 301- 111172)

<0):T-Il:r0‘:e H-uNe) 7 (2)

where B: l/kT, u = chemical potential. The trace

runs over all states in the GCE, and only over

states with fixed number of particles Ne in the CE.

It turns out that for the half-filled band ((Ne ) = num-

ber of atoms) )1 = éU independent of T.

The motivation for calculating in both the GCE

and the CE is twofold. One point is that in the
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atomic limit (b/U- 0), any intensive parameter

(e.g., the free energy per atom) is independent of

the number of atoms N when calculated in the GCE.

Therefore the GCE for small N can be expected to

give results close to those for N—~ so for small b/ U.

The other point is that, since all results for CE and

GCE become the same for N—~ 0°, any qualitative

feature that we may discover for small Nwill be

considered suggestive as to the large—N behavior

only if such a feature occurs both in CE and in

GCE.

The checks of our computer program are: (1) At

high temperatures for all U we expanded the expo—

nentials in (2) in powers of [3 retaining only terms

of the first few orders in B. We compare the nu—

merical results with the expansion coefficients.

For instance we have computed the following quan—

tities for U=4 in the GCE:

<H>= U— tBU2+ 0032),

Li= 432+ our), (4)

where L,,= ((Ni, +N‘.) (N, m, — N, m,)). (Because of

symmetry, L,l is independent of i.) The numerical

results are given in Table I. We see that U— (H)

is about 88 and that éUZB— U+ (H) is of order 82

or higher; similarly 1L11/32 is about i and - 1L11/

Ba+é is of order [3, in agreement with (3) and (4).

(ii) In the two cases U=O and U=°°, the various

(0) were again calculated analyticallya in GCE and

compared with the numerical results. There is

agreement in at least the first eight figures.

(iii) In the case of large U and low T we checked

the magnetic susceptibility against the results of

(3)
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Bonner and Fisher9 for the Heisenberg model which

is expected to reproduce the behavior of the Hub-

bard model under these conditions when the ex—

change constant J= — 2122/ U. We find convergence

with increasing U of our peak location and height

to within about 12 and 6%, respectively, by the time

U: 15.

The specific -heat vs T is shown in Fig. 1 for

U=8 and 0. 7 for the GCE. In qualitative agree—

ment with HM we find three peaks in the specific

heat at least for 0< U26 both in CE and GCE. For

H: 8 there is rough agreement with SP’s results,

but disagreement for lower U. Quantitative com-

parison with the work of HM is not possible be-

cause of inconsistencies in their results. (Figures

1 and 2 of Ref. 5 give appreciably different peak

locations.) In Fig. 2 we summarize the tempera-

tures at which the peaks in the specific heat occur.

To understand the physics of these peaks, we

studied the spin—spin correlation function §Lm n

= 0, l, 2. We note that the zero—field spin-suscep—

tibility X is related to this by

x=(kT)"(L,+2L1+L,) . (5)
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As shown in Fig. 1, L0, -—L1, and L2 undergo a

more or less sudden change in correspondence to

one or another of the peaks in the specific heat.

For clarity, we discuss separately the two regions,

U> 6 and U< 6 (where there are two and three spe—

cific -heat peaks, respectively).

For U> 6 we see from Fig. (1a) that lLll and L2

simultaneously decrease sharply at temperatures

near TI=Tn, the low-T peak in the specific heat,

while LO remains essentially constant through this

temperature region. Aside from the lack of any

mathematical singularity in these functions, this

behavior is very similar to the well-known anti-

ferromagnetic transition in large three-dimension-

al systems. We will therefore adopt the terminol-

ogy, used in the liter‘atux‘e,“‘6 which calls TI: T"

the Néel temperature. We note that this tempera-

ture : sz/U, as expected from the relation between

the Hubbard and the Heisenberg model mentioned

above.

In the small—U region, we note a remarkable

fact. Although X has a peak near the lowest tem—

perature peak (T1) in C, L2 is seen in Fig. 1(b) to

have an essentially constant value different from

zero up to the temperature (Tu) at which the middle

peak in C occurs, and above this temperature it

goes rapidly to zero. 1L1], On the other hand, is

seen to start to decrease sharply near TI. The

fact that |L1| and L2 do not start to decrease

sharply near the same temperature is in marked

contrast to typical behavior at a magnetic transi-

tion. Hence the characterizationS'6 of T, as a

Néel temperature is misleading and unacceptable.

We also note that L0 is essentially constant near

TI, and decreases rapidly near T“, for U small.

The relation of the high—T C peak (at Tm) to a

characteristic change in L0 has already been

noted.4'6'10 We see [Fig. 1(b)] an additional effect

at small U, namely, L1 also shows an anomaly near

Tm, which somewhat surprisingly disappears at

a value of U roughly equal to one. This plus the

other anomalies in L,l are indicated by the numbers

accompanying the curves in Fig. 2.

We consider the significance of the unusual re—_

sults obtained, namely, the low—T peaks in C for

small U and their physics. In fact, one cannot ex-

pect these effects to continue to exist as the num-

ber of atoms N—~ co because of the following reason.

Consider first the four-atom four-electron system.

For U: 0, the ground state is sixfold degenerate,

including a triplet and three singlets. This de-

generacy is seen by considering the occupancy of

the one—electron levels Eh: 2b cosk, k: 0, i $11, 11.

The minimum, which occurs either at k =0 or k: 11,

accomodates two electrons; but the other two elec-

trons can occupy four one-electron states (k: 1%11

spin up and down) all with the same energy. The

existence of the triplet among these ground states
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implies, of course, that x will exhibit Curie—law

behavior at low T. Furthermore, C will show a

low-T peak when U increases from zero because

of the splitting induced in this ground level. Clear-

ly, this effect occurs whenever %N is even, but it

will become negligible as N-ow; e. g. , the Curie-

law term in x will approach zero since the total

magnetic moment is always from a triplet, and

will not increase with N.

On the other hand, when %N is odd, the ground

state for U=0 is a singlet, so that the above effect

will not occur. Clearly, for N: 2 or 6, the first

excited state lies above the ground state by an en-

ergy of the order of b for U small, so that no low-

T peak (at kT << b) in the specific heat will occur.

Hence, in these very small systems, there is no

“band antiferromagnetism” (for which, by defini-

tion, the Néel temperature - 0 with decreasing U).

One cannot conclude from this that such antiferro-

magnetism does not occur for macroscopic sys-

tems, since for large N the separation of the low—

lying states is O(b/N) for U: 0. (It might be that

as N increases for small U the peak splits, with

the lower-T peak moving to low temperature.)

Although as we have just seen, one clearly can—

not use the four—atom results to guess about large

systems for small U, this is not so for large U.

In fact, when U=oo, we have noted above that the

GCE results for small N give the large-N behavior

exactly. Furthermore, the qualitative behavior

that we find (a Neel-like smooth transition at kTN

z 2bz/U, a highly correlated nonmagnetic system

for m << kT<< U with <N..N.. ><< <N..><N.. >=i,

these correlations decreasing markedly as kT

becomes '2 U) is what we expected on the basis of

earlier work.’"11 There3 essentially the same

physical picture was found for large U on the basis

of a variational single-determinant approximation,

in which the best one-electron states were found to

be the Wannier functions for all T.

Therefore we felt that one should look carefully

at x vs T for a sign of the leveling off of x'1 found

by Epstein et at.” at high T (~ 200 °K). Using their

values b= 0. 021, U/b= 8, we looked closely in the

D. CABIB AND T. A. KAPLAN 1

region of temperature corresponding to the experi—

mental anomaly. We found no such effect. Fur-

thermore, the location of the minimum in x'1 (at

kTo: ZbZ/UE 60 °K for the above values of b and U)

occurs at much higher temperature (by a factor of

about 3) than the temperature at which a rounding

off occurs in the experiment? We can get a sug—

gestion as to whether To might reduce by the

needed factor when N increases from 4 to 00 from

the results on the Heisenberg chain,9 and from

comparison with the easily solved N= 2 Hubbard

model. For the Heisenberg chain, To decreases

by about 20% when N goes from 4 to no, and for the

Hubbard model by about 10% when N goes from 2

to 4. Thus it seems unlikely that To for N: 00 will

be low enough.

Furthermore, we expect the qualitative behavior

to be similar to that for the Heisenberg model, for

which x“ shows a minimum and then levels to a

finite nonzero value at T: 0.9 In support of this ex-

trapolation, we note that the minimum value of X4

in the Heisenberg model is insensitive to N for N

14 and that in the Hubbard model the exact value12

of x" at T=0 lies well above this minimum calcu—

lated for N: 4 (for U=8, b = 1); this is consistent

with an extrapolated X(T)'l, which is qualitatively

similar to that found for the Heisenberg chain.9

Such qualitative behavior is very different from the

experimental results. In view of this discrepancy

at low T and the above failure to find the experi-

mentally observed leveling off in X4 at high T, one

is led to suggest that major modifications of the

Hubbard model are needed to explain essential fea-

tures of the high-T transition (called a “metal—in—

sulator transition” by Epstein et al.) and the low—

T antiferromagnetic behavior.

We thank Professor S. D. Mahanti for valuable

discussions.

Note added in Droof. For additional aspects of

the comparison with experiment on (NMP) (TCNQ)

and the extrapolations see D. Cabib and T. A.

Kaplan, AIP Conference Proceedings No. 5, Mag—

nelism and Magnetic Materials, edited by C. D.

Graham, Jr. and J. J. Rhyne (AIP, New York, 1972).
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2. Static Properties of the Half-Filled Band

Hubbard Model [AIP Conference Proceedingg,

Magnetism and Magnetic Materials,’Vol. 10,

1504 (1972)], with T. A. Kaplan

Exact calculations on the 4 atom ring Hubbard model1

had resolved serious confusion existing in the literature

2,3
on the subject. More specifically the qualitative

behavior of the specific heat agrees with that found by

Heinig and Monecke,3 (even though the quantitative results

are appreciably different) and disagrees with Shiba and

Pincus2 (for weak to intermediate interactions). The

results obtained with the grand canonical ensemble1 do

not differ qualitatively from those obtained with the

canonical ensemble; but the use of the GCE is important

for the extrapolation to a large number of atoms, N, because

in this case when the ratio of hopping integral to Coulomb

repulsion, b/U+0, any intensive parameter is independent

of N (we take U and b > 0).

The specific heat has three peaks for 0<U/bg6 and

two peaks for U/b;6 both in the CE and GCE. The results

obtained for the spin—spin correlation function, defined

as Ln=<sizsi+n,z> where 512 is the z-component of spin at

site i, are very illuminating on the physical significance

of these specific heat peaks: the various anomalies in Ln

were shown to occur always at temperatures very close to

the ones at which one or another specific heat peak occurs.

Since the large U/b region had been essentially understood
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previously4’5 and since we agree qualitatively with the

existing resultsz’3’4’5 in this region, we will focus

for the moment On the small U/b region. Here the specific:

heat has three peaks at temperatures T < T
I II < TIII‘ (T1

and TII + O as U/b + 0.) We found that -b1 decreases rapidly

near TI’ approaching a constant different from 0, and again

near TIII’ approaching 0. L2 decreases from a constant

value to 0 near TII‘ From this picture we cannot charac-

terize TI as being similar to a Néel temperature (as HM do)

because the first and second-neighbor correlations L1 and

L2 do not have anomalies at the same temperature. This type

of transition had not been found previously. HM argued, by

extrapolation, that the low—T specific heat peaks will occur

for large N, but we showed1 that this Was_wrong. ,Let us

summarize here the reason. First of all this phenomenon

occurs only when N/2 is even; in fact in this case the one-

particle energy levels for U=0 are given by

Ek = -2b cos k k = O, i——, -—, . . . , n

and the N—electron ground state (half-filled band) fills

completely the states with k=0, iZW/N, . . . , (2n/N)-(N/4 -

l) leaving 2 more electrons the possibility of occupying the

four states k=in/2(sz=il/2) which all correspond to the same

one-electron energy. This gives rise to a six—fold degener-

acy of the ground state which is removed when a small U is
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turned on, explaining the existence of the low—T peaks in

the specific heat per atom.6 .This.degeneracy will remain

six-fold for all even N/2 and its effect will therefore

become negligible when N+w, the height in the above peaks

decreasing as l/N. One is naturally led to ask what the

situation is for a chain. In this case the hopping integral

b is taken to be the same for every nearest neighbor pair of

sites, the end-sites having only one-sided hopping. The one-

electron energies are

fit

Ek = -2b cos k, k = ———, 2 = l, 2, . . . , N

N+l

Therefore, when the number of electrons is even, the ground

state is non-degenerate. Hence, when U increases from zero,

no appreciable low-T peak in C will occur in contrast to the

behavior discussed above for the ring. By appreciable we

mean f(C/T) dT integrated over the peak is 2 kB/N and by

low-T we mean the peak location, T0<< b/N and T +0 as U+0
O

(we have small N in mind). In other words, we cannot expect

to find in this case the new type of smooth magnetic transi-

tion which was found for the ring.

HM7 also stated that_the low-lying specific heat

peaks should not occur for the chain, but gave an incorrect

argument. Namely they said that the vanishing of the conduc-

tivity o for the chain implied the vanishing of the peaks in

C, presumably because they had established a causal relation
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between anomalies in o with those same low-T peaks in C. A

reason for the incorrectness of this argument is that their

calculation of o is seriously in error, as we now show.

HM's results imply that o(w=0)¢0 at zero temperature

for any U/b. A calculation from Kubo's formula for the

conductivity yields:

( ) Tl l _Bfim _Bfin
0 w = — Z ' ~

Z nm IJ—nm|2 —————————————— 6(w + Enm)

nm

n ~

"BE - 2
+ — B E e n [ll | . 2

nm + 3 Ii 1 ] 5(w)
Z n mfin nm

m degenerate

with n

Z is the partition function. Z' is extended to states such

that EnfEm (En is the energy eigenvalue corresponding to the

n-th energy eigenstate in zero electric field), Ek=Ek—unk

(nk=number of electrons in the state corresponding to Ek),

inm is the matrix element of the current operator,

. _ _. _ +
i — 1e Zbij(3i Bj) C10 Cjo'

Clearly for a small system (with discrete energies) only the

sum involving the square brackets contributes to 0(0).

States with an even number of electrons can always be chosen

to give a zero contribution to the sum involving the first

term in square brackets. (For an even number of particles
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the time reversal operator 9 and H can be simultaneously

diagonalized and since i changes sign under time reversal,

inn=0 in this basis.) Since in our case the ground state

has an even number of particles, this sum must vanish at

zero T. Hence the only contribution to 0(0) at zero T is

the second sum in square brackets. For it to be different

from zero at zero temperature it is necessary that the

ground state be degenerate. Explicit calculations for

four atoms showed that the ground state is non-degenerate

for finite U and hence the HM result is incorrect. The

error can be traced to the paper by Monecke,9 upon which

the conductivity calculations for 4 atoms are based.

Since the 4-atom calculations for U/b>>l do not

give special results whose significance is restricted to

small systems, and the GCE for b=0 does not depend on N,

we1 tried to compare zero magnetic field susceptibility'

calculations with the experimental measurements by Epstein

et al.10 (see Figure AII.l). (To this end we discuss the

extrapolation to large N.

First of all, it is known that for large enough U/b

and kT<<U, the Hubbard model approaches the Heisenberg model

—anJnmSn-Sm, with Jnm=2bnm2/U; for the proposed value1O

U/b=8 and small N we find behavior very similar to that of

the Heisenberg model11; therefore we expect similar behavior

for U/b=8 and increasing N. The similarity can be described

in terms of the following important features: the existence
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Figure AII.l.--Inverse susceptibility vs temperature. The

exact value at T=0 for the infinite chain

is shown by x.

of a minimum in x—], its location, and the behavior in the

Curie-Weiss region. As seen in Figure AII.l the exact

12 -l
value of X at T=0 (shown as x) lies above the minimum

for N=4 by about 50%; this suggests strongly that the

minimum will persist when N+w, as it does in the Heisenberg

model,13 because the height at the minimum appears to be

relatively insensitive to N (it changes by ml5% in the

Hubbard model from N=2 to 4,14

ll

and by about 7% in the

Heinsenberg model from N=4 to w). The location TO=2b2/U

(N=60°K for the experimental values of U and b) only varies

14
about l0% from 2 to 4 atoms in the Hubbard model and

about 20% from 4 to w in the Heisenberg model.H Finally,
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the theoretical 4-atom result for X above ~60°K approaches

closely to the Heisenberg—model Curie-Weiss behavior (with

a moment of one Bohr magneton and a em-60°K as seen in

Figure AII.l). The use of the 4—atom X as an approximation

to the many-atom x in this higher-T region seems very relia-

ble because in this region the results of Bonner and Fisher11

are very insensitive to N, in the Hubbard model X-1 changes

by only about l2% from 2 to 4 atoms,]4 and the correlation

Ln is short—ranged for N=4 (see Figure 1, ref. 1). Thus

we are led to suggest that the curve X-l vs.T for N+co will be

closely approximated by the dotted line in Figure AII.l for

kT/b<.l7 and by the 4-atom curve for larger kT/b.

The experimental curve is seen to differ radically

from this theoretical curve. The reduction in the moment

10 who gave the notfrom lpB was noted by Epstein et al.,

implausible argument that it might be expected because b/U

is large enough to give appreciable mixing of ionic states

into the singly-occupied states; however, the fact that our

calculations show no such reduction forces us to conclude

that such an argument is highly questionable. In fact the

mixing effect discussed certainly occurs for systems with

small N, but as seen in Figure AII.l, it is negligible for

these purposes.

We conclude that drastic changes in the Hubbard

10 “metal—model are needed to explain the so-called

insulator transition“ at high T and the low-T antifer-

romagnetic behavior.
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3. Attempts to Explain the Susceptibility

of NMP-TCNQ by Modifying the

Hubbard Model

In the previous two Sections we were concerned,

among other problems, with the comparison of the theory with

the experiments. It had been claimed by some authors3 (the

Penn group), that the organic solid NMP—TCNQ can be fairly

well represented by the one—dimensional half—filled-band

Hubbard model if we appropriately choose the values of the

parameters b and U. Later the same group27 suggested that

the experimental data would be better explained by letting

the parameter b increase with temperature. The needed

change would be of roughly a factor of two on going from

low T (bm.02 ev.) to Tm200 °K (bm.05 ev.) so that the ratio

U/b goes from m8 to m4. However, these conclusions were

based on admittedly crude theoretical considerations, so

that we did not expect them to be taken seriously. In

Sections AII.l and AII.2 we showed the serious difficulties

encountered by the claim3 that a T—independent b and U theory

represents the behavior of NMP-TCNQ and we stressed the

necessity of drastically changing the model.

In what follows we shall describe the attempts we

made to explain the experiments by changing the model dis-

cussed in Sections AII.l and AII.2. They were of two types:

in the first attempt we modified the Hamiltonian, but we

considered only temperature-independent parameters; in the
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second, following later emphasis put by the Penn group28 on

the temperature dependence of b, we tried to qualitatively

fit the experimental susceptibility (X) using the half-

filled-band Hubbard model but allowing the hopping integral

to change with temperature.

Let us now describe the first attempt. We tried a

canonical calculation of X for a system of four atoms on

the corners of a rectangle, instead of a square as described

in Section AII.l: that is, there are two hopping integrals

b and b‘. Furthermore the number of electrons is fixed and

equal to 2 to account for the total number of unpaired

electrons in a TCNQ chain. The justification for trying

such a model is essentially the idea that each TCNQ

molecule in the organic solid NMP—TCNQ may contribute two

spatial orbitals (instead of the one proposed by Epstein

et al.3), that can be filled by a maximum of four electrons

(because of the spin), and in our calculation the four atoms

on the rectangle correspond to the four cyanide groups on

two adjacent TCNQ's (see Figure AI.3). The picture given by

Epstein et al.3 describes the electrons as occupying a n

orbital which is concentrated mainly at the two terminal

cyanide groups in a TCNQ molecule; furthermore, according

to the same authors, if two electrons happen to be simul—

taneously on the same molecule they will be located at the

two far ends of the molecule so as to minimize the Coulomb

repulsion. But this picture is actually impossible with a
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single molecular orbital (because in the two-electron state

constructed in this way, there is high probability of finding

the two electrons at the same end). Hence our model seems

more reasonable because we let each cyanide group in a TCNQ

molecule contribute a spatial orbital that can be occupied

by a maximum of two paired electrons (so that the whole

molecule contributes a total of four one-electron states).

If these two spatial orbitals overlap appreciably, they

would make up two bands very different in energy from each

other: in this case one could neglect the higher energy

band and end up with Epstein et al.'s single E—orbital

picture. 0n the other hand if the two orbitals do not over-

lap very much the two bands will be nearly degenerate and

there is no justification for neglecting one of them. A

calculation of a 4—atom Hubbard model on a rectangle with

two electrons as described above, would hopefully account

for the physics of this latter case, apart from the usual

problems of extrapolating the results to an infinite system.

We tried a few sets of parameters: i) b=l, b'=.5, U=8, ii)

b=l, b'=2, U=8, iii) b=b'=l, U=l, 4, 8. b represents the

hopping between the two orbitals within the same molecule,

b' the hopping between two orbitals on near cyanide groups

on neighboring molecules, U is the Coulomb repulsion of two

electrons on the same orbital. Unfortunately the results

were discouraging; none of the main features of the experi-

mental X-1 curve vs. temperature were recovered: the
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high-temperature leveling off is absent in the theoretical

curve, and there still remains a minimum (the location of

the minimum is shifted toward higher temperatures compared

to the previous results showed in Figure l of Section AII.2);

finally the slope in the Curie-Weiss region of temperature

is unchanged with respect to the same previous results.

Especially this slope should not depend on the size of the

system as explained in Section AII.2. Thus, these seemingly

reasonable generalizations of the Hubbard model apparently

do not overcome its deficiencies vis a vis the experiments.

As for the second attempt, let us now describe its

conceptual significance and our results.

To let the parameters of the Hamiltonian change

with temperature has very subtle conceptual implications.

What is usually done to test the validity of a theory is

to calculate the thermodynamic properties of the Hamiltonian

with fixed parameters and then compare with experiments.

Furthermore in general one expects a Hamiltonian to be able

to fit any experimental results, if it is a function of a

sufficiently large number of temperature~dependent parameters.

On the other hand the concept of a temperature-

dependent Hamiltonian is not completely extraneous to a

theory of the Hubbard type. In fact we have to bear in

mind that the Hubbard Hamiltonian is an approximate one:

it has to be justified in terms of a derivation from the

exact N-electron and N-nucleus Hamiltonian. Important
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physical effects may occur in a real system that are com—

pletely neglected in a temperature-independent theory of the

Hubbard type such as the ones induced by electron-phonon,

other bands or long-range electron—electron interactions.

As a matter of fact a derivation of the Hubbard Hamiltonian

based on Bogoliubov's variational principle18 would give a

temperature dependent theory; and it would also give the

best Hubbard Hamiltonian which approximates the exact

Hamiltonian of the crystal. In any case if one is forced

to let the parameters of his approximate theory vary ap-

preciably with temperature, to be able to make contact with

experiments, that suggests at least that the neglected

interactions are not negligible, i.e. the starting

Hamiltonian has to be appreciably changed.

27,28
We tried to check Heeger and Garito's (HG)

suggestion of a band broadening with temperature; we found

that their data on NMP-TCNQ could be fit quantitatively

with a temperature dependent bandwidth as follows. We plot

the experimental inverse susceptibility S'] = (xU/Nu§)—1

as a function of kT/U; then we plot on the same graph the

l
theoretical S_ for different ratios of b/U: when b/U is

in the range l/8ml/4 we use our 4-atom results (Section

AII.l) and Shiba'sH 6—at0m results and extrapolation. In

Figure AII.2 theoretical curves (for N=w) vs. kT/U for

U/b=4 and 35have been added to Figure AII.l, and the plot
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is changed (xb+xU, kT/b+kT/U) because U is presumed28 a

constant independent of temperature.
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Figure AII.2.-—Determination of b/U as function of

temperature.

As seen from Figure AII.2, the U/b=8 and the U/b=4 curves

intersect the experimental curve respectively at T=0 and

kT/Um2(b/U)2; the U/b=3 curve agrees roughly with experiment

above kT/Um.l Furthermore the minimum value of 3'1 increases

with b/U and shifts to higher temperatures: when U/b=0 the

theoretical curve is at infinity. The fact that the minimum

shifts to higher temperatures is very plausible (because

kT m bZ/U for b<< U and kTminm b/U for b>> U). Therefore,
min

at least in principle, one can determine b/U as a function

of T by determining the intersection points between the

1

experimental S' and the various theoretical 5'] curves:

to each temperature there corresponds a theoretical curve
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with a particular b/U that crosses the experimental curve

at that temperature. This correspondence gives b/U as a

function of T.

From Figure AII.2 we see that within this scheme

b/U does indeed increase by roughly a factor of two on going

from 0°K to m200°K in agreement with HG's suggestionzg; but

we also see that at every b/U the minimum in the theoretical

S'1 as a function of T lies to the right of the intersection

point with the experimental 3']. Since this minimum is the

ordering temperature which marks a smooth but rapid transi—

tion from weakly correlated spins (|<S. S. >l<< <Siz2>’ ifj)
lZ jz

. N 2 . . 29
to strongly correlated spins (|<S1.ZSJ.Z>[—|<S1.Z >I, ifj) ,

the interpretation of the experimental results is totally

28: thedifferent from that given by Epstein et al.3 and HG

spin variables Siz are strongly correlated in the region of

temperature 5 200°K, instead of being uncorrelated. In other

1
words the straight-line portion of 5' below 200°K in the

NMP-TCNQ would not correspond at all to a Curie-Weiss behavior

above the ordering temperature as suggested3’28 , where the

spins are weakly correlated, but would correspond to a long

and appreciable short-range order of the electron spins.

Clearly, a crucial experiment for testing the model is a

measurement of the spin-spin correlation function, which at

least in principle should be possible via neutron scattering.
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4. Expansion in Powers of U/kT

In the last Section we were concerned with the

determination of a function b(T) that at least would allow

a phenomenological interpretation of the experimental

measurements of the susceptibility in NMP-TCNQ. Mathe-

matically the conclusions were not rigorous (even though we

feel they were semiquantitatively accurate) because they

were based on extrapolations from small-system caculations

to infinite systems.

One central point of the discussion was the fact

that the minimum in theoretical 5‘] = (xU/Nu§)-] as a

function of temperature lies always at the right of the

'1 curve for anyintersection point with the experimental S

given b/U, at least as long as b/U is in the region ml/8 -

ml/4. This point is fundamental for the physical interpre-

tation of the experiment because this minimum indicates a

smooth but marked transition from weak to strong spin-spin

27,28
correlations. Thus assuming with the Penn group that

the Hubbard model with b=b(T) is a correct description of

NMP-TCNQ, we were led to conclude that the physics in the

region T2200°K would be drastically different from that

described by the Penn group. No uncertainty in this

conclusion would exist if we knew rigorously the position

1
T of the minimum in S_ for the infinite chain as function

0

of b and U. The following discussion is aimed at investi-

gating further this function.
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The rigorous information available up to now about

T0 is very limited: at U=0, S has a broad maximum at

kT0=.7b10; at b=0, S+w as T+0 and monotonically decreases

with T, therefore kTO=0; for be but satisfying b/U<<l S has

a maximum at TONZbZ/U (assuming the validity of perturbation

theory). Taking this information into account we can expand

kT0 in the following form for x small:

t = kTO/U = f(x) + Eanxn (l)

0 n=-l

where x=U/b. We assume f(0)=0, and either f(x)50 or f(x)

has an essential singularity at x=0, and contains no part

with an expansion in powers of x with a finite number of

negative powers.

The known behavior of t0(x) can be summarized in

the following qualitative plot

A

t0=kT0/U

 

 a0 / l/x=b/U

Figure AII.3.--kT0/U vs. b/U.
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The curve starts off quadratically in b/U; it will then

asymptote to a straight line at large b/U with a slope

a_1~.7 and an unknown intercept with the tO—axis equal to

ac; the way the curve approaches the straight line for x+0

is not known: in principle it may be from below, above or

may be oscillatory; the deviation from the quadratic

behavior at small b/U could be investigated using the

next higher term in the appropriate perturbation theory,

but this seems to be more difficult than the analagous small

U/b behavior, and at present we are investigating only the

region x=U/b small. This is being done by an expansion of

S in powers of BU (B=l/kT). In this expansion we assume

kT>>U but not necessarily greater than b (in the case U<<b).

From this one can calculate the coefficients in the expansion

(l) for to.

We add here that the interest in such an expansion

transcends the above discussion. The susceptibility of an

interacting electron gas has been of interest in the liter-

ature29'3] where the RPA approach is used. Although it

seems that usually RPA is thought to be appropriate in the

weak—interaction limit3], we could not find in the liter—

ature a clear-cut statement that RPA is exact in first order

in the interaction (U in the Hubbard model). Certainly RPA

is not exact to all orders because it does not account for

the shift in t0 on going from U=0 to UfO.
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Our expansion in BU in the Hubbard model is exact

and would give an opportunity to check the RPA result for

the susceptibility (for b>>U). So far we have carried out

the first term of the expansion and up to the first order in

BU and first order in U/b the result agrees with RPA31; the

second order term is under study.

If we define H0, 20 and xo/NuBZ to be the Hamiltonian,

partition function, and susceptibility per particle respec-

tively, when U=0 (see Equation (l) of Chapter I), we have,

in first order in BU:

2 _ 2 _ 2
x/NuB — l/NuB (x0 + x1) -(9 B/4NZ0) trIeXP[-B(H0-uNe)]°

2 2

'[i("k+‘"k+)] (1 - BH1 - Z1/Zo)} + 0[(BU) J (2)

Since

2 _ 2 2
xO/NuB -(g B/4NZO) tr epr-B(H0 - uNe)] [E(nk,-nk,)l

= 928/4 x [1 — (2/N)Efk] (3)

Equation (2) defines X], N = Z n , u is the chemical
e k0 ko

potential, H1 is the Coulomb repulsion

+ +

H1 ‘ (U/N) k k? qak+q.+ ak,+ ak'-q.l ak'.+ (4)
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written in the Bloch—function basis. 21/20 is defined as:

Z1/Z0 = -8 tr exp[-B(H0 - uNe)] H1 (5)

Finally in (3) fk is the Fermi function f(Ek) at wave-

vector k. (2) and (5) are obtained taking into account the

non-commutativity of H0 with H]. If we restrict ourselves

to the half-filled-band case where the average number of

electrons <Ne> is equal to N, u=U/2 and is independent of

temperature. Expanding the exponential factor in (2) and

(5), Equation (2) becomes, up to first order in BU,

2 2

X/NUB = ' Z1X0/ZONUB + (928/4Nzo) tr EXp(-BH0)-

-[1 +(BU/2)Ne - 8H,] [E(nk, - nk,)12 (6)

Using repeatedly the rule that the thermal average

<nk101nk292...nk > w1th the Ham1lton1an H0 15 equal to

<n ><n

k]o1 kzo2

pair kfj, we find:

202

> ...<nk£02> if (ki’Oi) # (k.J,oJ.) for each

X1/Nu32 = (ngzU/8) [1 - (Z/NlikaZ = (2U/gz) (xo/Nu32)2

(7)

It is easy to see that this first order correction does not

affect t if we assume that dzx /dT2| = #0, which we
0 TO, U 00

checked numerically. Therefore in the expansion (l), a0=0,
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and the intercept of the straight line asymptote with the

coordinate axes coincides with the origin. We can also

write

X/NpBZ = XO/Nsz (1 + ZUXO/NuBzgz) + 0((BU)2) (8)

and it is easily seen that if U is treated as a perturbation

parameter, in first order in U (8) agrees with the RPA

expression obtained by Hubbard and Jain.31 Therefore the

RPA is exact for the Hubbard model in this order. (For a

more general type of interaction the exact and the RPA

results need not agree in first order in the interaCtion,)

In conclusion, in this Section we have calculated

the susceptibility of the half-filled—band Hubbard model

to first order in BU, and, concentrating on the U<<b region,

we compared our exact results with the RPA: we found that

the two agree in first order in U/b, which means that RPA

is exact to this order. We found also that t0=kT0/U (the

position of the maximum in X0) does not shift to first order

in BU with respect to the case U = 0.
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1. Introduction

The calculation of the response to a small electric

field in the one-band Hubbard model has been of interest in

the recent literature. Such calculations need the current-

current correlation function which involves the current

operator lg, defined in general as1

e

lg=zjelj =TEK9H19 (T)

1 1

where

X = Z x.,

H is the Hamiltonian of the system and the index 1 refers to

the i-th particle. For the purposes of working with a single-

band model there is some question as to how one defines a

current operator. K. Kubo2 and Bari §£_5113 obtained

an expression for the current 1 analogous to (1) in the

following way: the Hamiltonian is replaced by

+ . .
where Cio and C10 are the creat1on and destruct1on operators

of an electron with spin projection 0 at site i, in the

Wannier function basis, and U is the intraatomic coulomb

+

10 c the polarization operator e 5repulsion (n1.O = c 1.0);

is replaced by
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e 5 E e 2 5. n. (2)
id 1 10

where 5, are the position vectors of the atoms; then

1

12.71. 3. H1 (3)
1

=-- 1e 2 1t..(R. - 5.) c. c. . (4)

Several authorsz-7 have used an expression for i which is

formally like eq. (4), but different in the case of the

linear chain with periodic boundary conditions as we shall

see below.

Bari and Kaplan6 found, in agreement with K. Kubo,2

that the conductivity shows an absorption and emission

spectrum with a line at w = U (in the atomic limit); this

corresponds to the increase in energy by about U when an

electron hops from an otherwise empty site to a site already

occupied by another electron. A line at w = 0 was also

obtained.2’6

However, Monecke,7 in a similar calculation, using

(3) explicitly does not find such behavior, namely he finds

free electron behavior with absorption only at w = 0. Further—

more, he shows that the matrix elements <n|1|m> are zero for

n f m if the basis set {|n>} is chosen in such a way that

each |n> is a simultaneous eigenfunction of the Hamiltonian

and the lattice translation operator. Cabib and Kaplan8
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showed that the conductivity calculations by Heinig and

9 for the ring of 4 atoms, based on Monecke's work,7Monecke

are wrong, by showing that the zero temperature d.c.

conductivity vanishes, in contrast to the result given

by those authors.9

A very simple and direct argument that shows the

incorrectness of Monecke's analysis is that from his equation

for <n|1|m> on pg. 372, it immediately follows that the

diagonal elements are also zero. Hence his argument must

lead him to the conclusion that the operator 1 of eq. (3)

above is zero, a conclusion which is evidently wrong.

However, finding the explicit error was subtle and

the result somewhat surprising, so we will now present the

arguments. The essential point is that Monecke's proof7

of <n[1|m> = 0 for n f m was based on the assumption that

1 is invariant under the lattice translations. In the next

Section we show that this assumption is incorrect.

2. Lack of Translational Invariance of j;

Resolution of the Disagreement in

the Literature

 

Let us first consider the case of a ring. Here the

lattice translation operation is an N-fold rotation about the

axis perpendicular to the plane and passing through the cen-

ter of the ring, with N equal to the number of atoms. If T

is the operator which performs this rotation
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-‘l N

T1T = -ie 2 t

i.:1=1
o

+

13(31 ' —j io jo

_ _ . _ +

‘ ‘6 i3 t1-1,j-1(31-1 B--j-1) cio cjo

O

= -ie 2 t

ij

0

+

1j(31-1 ‘ Bj-l) cio Cjo

Thus

[Tai] # 0 (5)

because clearly Bi-l - Ej-l f 51 - Ej' (These two vectors

have the same length but different direction).

In the case of a chain of N atoms with periodic

+ _ + = =

N+i,o ‘ C10 and tN,N+1 tN,1 t12

because the Mannier functions W(:'3i) and w(5—5N+i) are

equal, making H translationally invariant. However, we now

boundary conditions c

point out that despite this, 1 as in (4) is not translation-

ally invariant. This is so because there appears a term (we

take nearest neighbor hopping for simplicity)

. + + .

' ‘e t12(3N ‘ 31) (0N0 C10 ' C10 CNo)’ (6)

clearly 5N - 5] f 5N - R and this is sufficient to spoil
—N+1’

the translational invariance. (As stated in the Introduction

the failure of Monecke's argument in either case is in the
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fact that he incorrectly assumed that 1 as calculated from

eq. (3) is translationally invariant.)

If one simply replaces, ad hoc, the term (6) in eq.

. + + .
(4) by -1e t]2(5N - 3N+l) (cNO c1O — c1O CNo)’ then we obta1n

a new operator 5, which is translationally invariant. In

fact one can see that it is this 5 that has been used in

2-7 in connection with the calculation ofthe literature

the current-current correlation function (with the reser-

vation noted above in connection with ref. 7). This con-

cludes the resolution of the disagreement between the results

of different workers who began with apparently the same

definitions.

3. How to Define the Current Operator? 

There remains the question, how should one define

the current operator? That there is ambiguity stems from

the fact that the operations of commuting the polarization

operator and the Hamiltonian (to find the current) and

projecting these operators on to the space of functions

spanned by the single-band states, do not commute. That

is, suppose P is this projection operator, e5 E 5 e51 and
1

H = 2 pi 2/2m + V(. . rj. .) are the polarization and

Hamiltonian respectively. Then commutation followed by

projection gives

1 eP

P1gP = P— [eLH] P = —— (5H - HX) P (7)

i i
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whereas projection first gives10

1
.i = T [peim PHP] = (pip HP - PH PAP); (8)

l

e

7

the two expressions on the right of (7) and (8) are seen to

be unequal in general (they are unequal if H and 5 connect

single-band states with at least one common state which is

orthogonal to all the single-band states).

In the case of a linear chain with periodic boundary

conditions, the lack of translational invariance of 1 is an

unsatisfactory property. Apart from the fact that this lack

of symmetry is contrary to the usual concept of current (19),

it is easy to see in the simple special case of U=0, that

the expectation value of 1 in the Bloch-function energy

eigenstates is zero for finite N (also contrary to the usual

expectation).

In our opinion, 5 is a satisfactory choice at least

from the viewpoint of satisfying the right symmetry (again

for the chain with periodic boundary conditions). For our

nearest neighbor example, with N > 2, we have (for t12 real)

+ +
e N

i = T 312 1:12 E 0 (C10 Ci+1,o ' Ci+1,o 010) (9)
1 i=1

2

Furthermore, under rather loose restrictions as specified

below, 5 can be chosen to be the same as P 19 P, in which



 



60

case the definition is a natural one. To see this we note

that we can write (in the absence of an external vector

potential):

I

. +

P' P = Z <i >c. .

e

= — Z <k|5|k>n (10)

m ko 59

where nk0 are the Bloch-function occupation-number operators,

and 5 is the electron momentum. Also from (9) we have

5 = e EWE e£)n£0. (11)

where

e = l 2 e1£R—ij t-- (12)

‘h N i,j 13

Clearly (10) and (11) are equal if

1

— <£|RIE> = Vk 8k, (13)

m

a relation found in many solid-state texts.

Since this 8k must be differentiated in order to

obtain (11), it must—be defined for continuous 5; to every

choice of the 5, (to within crystal lengths) there cor-

responds a different function ck; all of these functions
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have identical values at the discrete wave-vectors in the

Brillouin zone, but they differ in their derivatives at

these wave-vectors. The particular choice of the 51 leading

to (9) yields that continuous function 8k which would be

approached by the set of discrete values when N+w, whereas

other choices will lead to different 6k and different cur-

rents (e.g., if 3N+l is replaced by 51—then 5 will be

replaced by 1).1]..

Equation (13) will not be true for arbitrary Bloch-

functions |5> and energies ck, since the derivation12

depends on the assumption that |5> and ck are eigenstates

and eigenvalues of a Hamiltonian of the form

2

P

h = - + V(L) (l4)

2m

where V(L) is a periodic k—independent local potential.12

Nevertheless it is clear that there exists a variety of

V(L) and their resulting 15> and ck which will provide a

sufficiently rich variety of sets of parameters tij =

eih'gijek to probably be able to achieve(wi. hwj) =

z
l
—
a

[
F
M

any Hubbard Hamiltonian one desires; for any of these the

above discussion shows that the remaining ambiguity in the

definition of the current operator (the choice between 5

and P1gP) does not exist.
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4. Summary

In the above discussion we first reviewed the general

definition of the current operator as it is used by differ-

ent authors in the calculation of the electric conductivity

in the one-band Hubbard model. He pointed out the disagree-

ment existing in the results of different authors, one7

finding free electron behavior (absorption only at w=0), the

2,6

others finding also high frequency absorption (w=U in

the atomic limit); we settled the controversy by showing

that Monecke's discussion7 leads him to the obviously

incorrect conclusion that 1 E 0. In Section 2 we showed

that his assumption, that 1 as defined in (3) is transla-

tionally invariant, is wrong in both a ring and a chain of

N atoms with periodic boundary conditions. The other

authorsz-6 used a definition much closer to 5 than to 1:

if we presume they had in mind periodic boundary conditions,

then their definition was identical to 5; if they had in

mind a finite crystal, then their definition would differ

from 5 by only surface terms (whose effect becomes negli-

gible for macroscopic crystals), in contrast to the dif-

ference between 5 and the definition 1 for periodic boundary

conditions,H as used by Monecke.7 Also, theyz-6 did

not use the commutator (3) subsequent to obtaining an

explicit form for the current. Since the lack of trans-

lational invariance in 1 makes this 1 an unsatisfactory

current operator, in Section 3 we approached the problem
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of the definition of a ”good'I current operator; after having

explained that there is still an ambiguity in this defi-

nition due to the fact that the projection of the product

of two operators is not in general equal to the product

of the respective projections, we showed that the ambiguity

disappears under broad conditions: the “good" current is

proportional to Z (Vk ek)nkc provided that we properly define

ko

the one-particle energies ck at those vectors k away from the

. 2n£

discrete values ——— .

N
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1. Introduction

Thermodynamic properties of a spin system with

random exchange interaction have been of considerable

interest recently.1'4 There are two important aspects

in the study of the properties of a random spin

system: the effect of randomness of the exchange

interaction on the sharpness of the phase transition

and on the low temperature behaviour of the thermo-

dynamic quantities such as specific heat (C) and

susceptibility (X)

McCoy and Wu]’2 have studied the effect of

randomness on the sharpness of the phase transition of

a two dimensional rectangular Ising lattice with a

special type of randomness. In their model, the

horizontal interactions (J1) between all the spins

are the same, but the vertical interactions (J2) ,

which connect spins of the jth row with those of the

j+lth row are the same for all the spins in the jth row,

but vary randomly from one row to the other. Using a

narrow distribution P(J of width 0(N'1) , (N being2)

the total number of spins), they find that the critical

temperature is shifted by an amount O(N-1) and the

specific heat deviates by an amount 0(1) for large N

from Onsager's value only for T - TC ~ O(N'Z) However,

for a finite but narrow width w of P(J2) , in the

2
thermodynamic limit (N+ 00) , McCoy and Wu find that



 ’44, l
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the logarithmic divergence in the specific heat is absent.

In fact, C is an infinitely differentiable function of

' temperature at TC even though it is not an analytic

function. For (T - TC)>> w2 , it approaches Onsager's

value.

The second interesting aspect in the study of a

random spin system is the behaviour of the thermodynamic

properties such as specific heat, susceptibility, away

from the region of the phase transition. In one dimen-

sion, since there is no phase transition, this second

aspect, in particular the low and high temperature

behaviour of C and X becomes more relevant. Fan and

McCoy4 have used the method of McCoy and Wu1 to analyze

the thermodynamic properties of a one dimensional Ising

model with random nearest neighbor exchange and with an

external magnetic field. They have studied a system where

the distribution of exchange P(J) has a width of order

N-l

In this paper, we have studied in detail the properties

of the one-dimensional random Ising model for various types

of distribution P(J) in the case of zero magnetic field.

In particular we have analyzed the case of constant distri-

bution, P(J) = constant for J in the interval [0, Jm]

and P(J) = 0 otherwise for both the ferro (Jm>0) and

the antiferromagnetic (Jm<0) cases. (In the present

paper, Jm is always a finite number and this distribution

will be referred to as “constant distribution”.) In
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addition, the effect of distributions of the form

P(J) = AlJlV for J in the interval [0,Jm] and

P(J) = 0 otherwise, on the low temperature (kT<<|Jm|)

behaviour of C and X , has been studied.

We find that the low temperature behaviour of X11 ,

XL and C is very sensitive to the nature of the

distribution P(J) . In the case of constant distribution,

C(T) « VT for low T . This behaviour is quite similar to

that of a more general random spin system interacting via a

long range RKKY interaction.5 The physical origin of this

linear behaviour can be ascribed to the finite density of

low lying excited states present because of non-zero P(O)

Furthermore a direct comparison (see Fig. l) of the random

chain C—curve with the periodic C-curve with J = Jm/2

shows that the height of the peak (occurring at about .25 Jm

in the former and .2 Jm in the latter case) is lower 1

(~ 40%) and broader in the former. The same behaviour is

expected in the more general cases of v > 0 , but as v

increases the effect will be less pronounced.

The effect of randomness on the temperature dependence

of the parallel susceptibility X11(T) is quite dramatic.

For a periodic Ising chain, it is known6 that X11(T) goes

to zero with T exponentially in the antiferromagnetic

(AF) case and diverges exponentially in the ferromagnetic

case (F) . However, in the random case with constant P(J) ,

x (0)

we find that ~ii§—- = 193—; in the AF case and

NpB IJm1
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2
diverges as [JhI/(kT) in the F case. This indicates

that the essential singularity of xl|(T) at T = 0

present in the periodic system is removed by the random—

ness: X||(T) is either regular or has a pole singularity

at T = 0 , in the random system. The major effect of the

randomness is the removal of the gap that is present for a

periodic system. This then alters the low lying excita—

tions significantly. The results for more general distri-

butions are discussed in the next Section.

In contrast to X1|(T) , XI(T) does not depend upon

the sign of Jm and therefore its value is the same in the

F and AF cases. We have found that the value of XL(O) is

enhanced from its value in the periodic case7 by the amount

2 log 2 in the case of constant P(J) . In addition, a

remarkable effect of the randomness is to remove the peak

in XL(T) as a function of T which is present in the

periodic case. Again, these effects can be understood by

noting that the gap in the excitation spectrum that occurs

in the periodic case is absent in the random system.

At high T i.e. kT>>|Jm1 , XL exhibits a Curie

like behaviour. The Meiss part in X1_] is absent due to

the absence of the interaction along the x and y

directions. We have made some attempts to study the effect

of an interaction of the type -2; J4 (Sixsi+lx +

Sini+1y) (we will refer to this operator as xy inter-

action) on the thermodynamic properties of the system.
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We have carried out a high temperature expansion to the

leading order in J+ /kT and Jm/kT and found that the

inclusion of the xy interaction leads to a Weiss term in

X1—1 . The low temperature behaviour of the random Ising

system with small xy interaction is quite interesting

but difficult. For an arbitrary distribution of J+ ,

P(Ji) , the ground state is not known. It is known8

that for a special class of P(Ji) , namely J+ = y Ji'

and 0<y<l , the ground state is ferromagnetic for

J1|>0 . However, in the general case J1 = y, Jll , the

ground state is more complex. The nature of the ground and

low-lying excited states is presently under study.

In Section 2, we present all our results for the

Ising chain. Section 3 deals with the effect of the xy

interaction on various physical-and thermodynamic properties.

2. The Model and its Solution
 

The Hamiltonian describing a system of N Ising spins

interacting via nearest neighbour exchange Jij in the

—)

presence of an external magnetic field H is given by:

9M
H: _ l __B

I I J--0- 0- Z<ij> 1j 1z jz 2 1

C
H

2
2
+

(1)

Jijls are a set of random numbers with a distribution

P(J) . He will be concerned with a distribution P(J)

different from zero for J <J<J . By choosing J
min— — max min
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and Jmax appropriately, one can have a system with

(a) ferromagnet1c coupl1ng (Jmin’JmaXZO) (b) ant1-

ferromagnet1c coupl1ng (Jmin’Jmaxio) and (c) mixed

coupling (J >0 , Jmax <0) . In this paper we shall
m1n

be concerned with cases (a) and (b) only and report the

results for different distributions P(J) of the

exchange parameters Jij for a one dimensional

system.

Fan and McCoy4 have studied the thermodynamics of

the system given by eqn. (1) in the one-dimensional case

with H = O . P(J) is taken in their work as a peaked

-1
function with width proportional to N , and the correc-

tions to the thermodynamic quantities of the periodic chain

are calculated in different orders of NT]

Our approach in this paper is to generate ensembles

of random spin systems by computer, calculate the thermo-

dynamic properties of each member of the ensemble and then

take an average. We have limited ourselves to finite

chains consisting of 500 - 2000 spins. We have found that

the spin correlation functions and other thermodynamic

quantities as calculated for these finite chains already

exhibit the N» w behaviour in the sense that increasing

the number of spins does not alter the numerical results

in significant figures.

The partition function in the absence of the external

. . . . 9
f1eld can be obta1ned by u51ng the transfer matr1x method
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and is given by:

cosh K, + "N sinh K1) (2)

l

where K, = B Ji/Z and N is the number of spins, and we

have assumed periodic boundary conditions. The second term

inside the bracket of eqn. (2) would not appear if we had

used the open end boundary conditions. All our numerical

calculations have been performed in the thermodynamic

limit (N+ 00) , where the second term in eqn. (2) does

not contribute.

In the presence of a magnetic field H , one cannot

obtain a closed form expression for Z by using the same

method as for the H = 0 case. This is so because the

transfer matrices T1.10 whose matrix elements are given by

§(J. 00' + h(o+o'))

(0|T110')= e2 l (3)

where h = % guB HZ and o,o' = t 1 ,

do not commute in general if h # 0 . Therefore one

cannot diagonalize all Ti 5 simultaneously. In order to

obtain the partition function in this case, one has to

first multiply N (2 x 2) nondiagonal matrices and then

diagonalize the resulting (2 x 2) matrix. An alternate

procedure is to use the method given by McCoy and Wu.1

We now present the results for various thermodynamic

quantities in the absence of magnetic field.
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A. Specific heat

Using eqn. (2) for the partition function, we can

obtain the specific heat per spin

2 N

_ 5_ ,2 2

where we have omitted terms which approach zero in the

thermodynamic limit. In terms of the distribution

function P(J) for the random variable J1 , we can

replace the summation in eqn. (4) by an integration for

large N and eqn. (4) becomes

82 Jmax 2 2

C/Nk = 4‘ 1J P(J) J sech K dJ (5)

min

where K = BJ/2 and

Jmax

1, dJ P(J) =1 (6)
min

defines the proper normalization condition for P(J)

The specific heat C/Nk has been computed by using

eqns. (5) and (6) for P(J) given by:

\)+ V

|J| , 0<J_<Jm for Jm> 0 (F)

P(J) = or Jm : J i o for Jm< 0 (AF) (7)

0 otherwise

 



 



77

For the sake of comparison we have plotted C/Nk for

v = 0 in fig. 1 together with C/Nk for the periodic

chain with J = Jm/2 . The important effects of random-

ness can be summarized as follows: at low temperatures

(kT<<IJm1) , for v = 0 , the specific heat is linear

in T in contrast to the exponential behaviour in the

periodic system; in addition, from the figure we see

that the effect of randomness is to reduce and broaden

the peak in the specific heat. From eqns. (5) and (7),

it is easily seen that at low temperatures, for a

general 0:0

C/Nk . (kT)v+] (8)

This behaviour is understood if we note that the energy

spectrum does not have a gap.

 B. Spin-spin Correlation Function and X11

The spin—spin correlation function <Oiz 0jz> is

easily obtained by differentiating10the partition function

L1. = <0, 0. > = % gS-i 23K 3K 3K for i<J
J Z 32 j_l j—2 " 1+1 1

 

Using eqn. (1) for Z in eqn. (9) and taking the limit
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N+ m we find ,

= n. tanh K (10)

The zero field X1) is related to Lij by

X

4i“: 1—2 Z. Lij (H)
NuB 4kTN lJ

In the periodic case, where K = K , L = (tanh K)‘]-1

P ij

and is a function of j-i only. In this case eqn. (11)

for XII/NUS reduces to the one given by Bonner and

Fisher.6 We note here that if we fix the index i , Lij

is not a smooth function of j because of the random-

ness. This is shown in Fig. 2, where we have plotted L1j

for a particular set J1 , J2 , .... JN randomly generated

by computer; nevertheless it is a monotonically decreasing

function which falls off rapidly for j large. To see

how Llj approaches zero as a function of j , we take

an ensemble average: this is done by generating a number

of similar random chains and taking an arithmetic average

of Llj . This smoothes out Llj as a function of j

and makes it a function only of r = j-l . Furthermore

it can be shown that L1j=L(r) becomes equal to L(l)r

For a general distribution of the exchange interaction

J defined in eqn. (7) , we obtain for the ensemble averaged



 



79

L
(
r
)

   
Figure 2.—-Spin-s in correlation function L1j = L(r)

r=‘-l) as a function of distance r at kT =

.OSTJmI. The continuous and the dashed lines

refer to an average on 10— and BOO-member en-

semble respectively.
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(012 01+12> the following expression:

Jm

T11) = fl 1 .1" tanh B’—J dJ (12)
J 0+1 0 2

For T+ O , L(l) behaves asymptotically as

J

“— e _ V“ _mLo) (1 bv<kT> 1 WI (13)

with

b\) ___ 2(\)+1)F X:}) (14)

IJml

 

In the special case v = O , L(r) can be written as

 

%1 ln cosh J )r (15)

m

L(r) = (2 _m

ZkT

 

We have calculated L(r) using eqn. (15) and we display 1t

in Fig. 3 at different temperatures. One can see from

the figure that the range of correlation increases with

decreasing temperature, and decreases exponentially with

r for a fixed temperature. For the sake of comparison,

we have also plotted L(r) for the periodic case at

kT/Jmax = 0.1. The effect of randomness is to drastically

reduce the range of spin correlation at low temperatures.

However as the temperature is increased, the effect of

exchange fluctuation is not as important because thermal

fluctuations are large.

From eqn. (11) , realizing that % Z, is equivalent



   



L
(
r
)
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Figure 3.—-Spin—spin correlation function L(r) as a function

of r: (a) kT/Jm = .5, (b) kT/Jm = .3, (c) kT/Jm =

.1. The continuous and dashed lines refer to the

random (v=0) and periodic (J=Jm/2) ferromagnetic

Ising chains respectively.
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to taking an ensemble average, we obtain:

Eit = 33. LILLLI (16)

The parallel susceptibility is shown in Fig. (4) in the

F and AF cases for v = 0 . The very interesting

results at low temperatures can be summarized as follows:

2 . . . . lo 2
N 15 f1n1te 1n the AF case and e ual to

W “B ‘1 144,1—

at T = 0 ; it behaves as 12 in the F case, contrary

to the usual periodic Ising Aodel where the existence of

a gap makes XII/Nu: vanish (AF) , or blow up (F)

exponentially at T = 0 . Furthermore, these results

generalize in the following way for P(J) of eqn. (7).

For Jm < 0 (AF) , X11 9 bu (kT)V (17)

Nu:

For Jm>0 (F) , X1) . 92 1 (18)

N 2 2 b 0+2
“B v (kT)

From eqns. (l7) and (18) we can see that the low temperature

behaviour depends crucially on the distribution of the

exchange interactions. The absence of a gap for any 0 3 0

makes XII (AF) vanish and X|1(F) blow up only as a power

in T instead of exponentially. In fact it is instructive

to note that we can recover the exponential behavior of

X11 at low temperature if we allow P(J) to be a constant
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Figure 4.-~E—? |Jm| vs. kT/|Jm| in the v=0 case.
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between J1 and J2 and 0 otherwise (when J1 , J2

are both <0 (AF) or >0 (F))

C. Zero Field Perpendicular Susceptibility
 

A detailed study of the perpendicular susceptibility

7 for various one-and two—dimensionalwas made by Fisher

periodic Ising lattices. Two interesting features of one

dimensional periodic Ising systems are the finiteness of

XL at T = 0 , and the smooth peak in the susceptibility

as a function of temperature. We have analyzed the effect

of randomness on these features. To obtain XI , we intro-

duce a field HX in the x-direction. The Hamiltonian is

given by

.. l_ l.
H ‘ ‘ 2 A Ji Oiz Oi+1z ‘ 2 9“B Hx 4 0ix (19)

Taking into account the noncommutativity of the second term

in the Hamiltonian with the first term (HO) , we obtain,

8

——-— = sf. 2 I <o,x<y)ojx10)> <0 (20)
“.2 4N ij 0
11,18

-BHO BHO

where Oix(y) = e Oix e and <A> refers to the

usual zero field thermal trace. It is easily seen that

only the terms with i = j contribute to XL . After

taking the trace and carrying out the y integration, we
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have

X N
_1__2 = 2 2 K1. tanh K1. - K1._1 tanh K1._] (2,)

Nu 4NkT _ 2 2
B 1"] K1 - Ki-1

Equation (21) in the periodic limit (K1._1 = Ki = K)

reduces to7

‘ X

Nl‘é'l i = g: (tanh K + K sech2 K) (22)

2 40

From eqns. (21) and (22) it is seen that XL is independent

of the sign of J, and therefore its behaviour is the

same in the ferro and antiferromagnetic cases. In Fig. (5),

we have plotted X1lJml/NUB for random and periodic chains

in the case of constant distribution.2 The two pronounced

effects of randomness are: (1) Xi(0) for the random system

is enhanced by an amount log 2 over XL(O) for the

periodic system with J = Jm/2 . (2) The peak in XL(T)

as a function of T that occurs for a periodic chain is

completely washed out. However we believe that XL(T) has

still an essential singularity at T = 0 in the random

case.

In addition to the low and intermediate temperature

(kT f Jm) behaviour of XI that we have discussed above,

we find that for kT>>Jm

LL 1_
~ (23)

Nug T
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I'O xJ_(Random)

0 l 1 24441

(15 L0 1.5

kT/IJmI

XllJml
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The absence of a Neiss term can be ascribed to the

absence of exchange interaction along x and y

directions. The effect of incorporating such inter—

actions on Xi will be discussed in the next Section.

Effect of Random xy Interaction

In the presence of an xy interaction with random

exchange J, , the total Hamiltonian is given by

H = HI + H (24)

where HI is the Ising Hamiltonian given in eqn. (1) which

includes the interaction with an external magnetic field

and ny lS 91ven by

_ 1_

ny ‘ ' 2 A Ji (Oix Gi+1x + Oiy Oi+ly) (25)

Ji is the random exchange interaction along the x and y

directions. An exact solution of the Hamiltonian H for an

arbitrary distribution Ji is difficult. However, the

effect of including ny on the high temperature behaviour

of XI and X11 can be obtained by using a perturbation

theory.

For the random Ising model when v=0 , we have seen

that when kT+ w , XI/NUS ~ AT and from eqn. (16), one

can show that XII/Nag ~ lT +(1 )2(Jm/2). In order to see

kT

the effect of ny on the high temperature behaviour of

these susceptibilities, we expand X11 and XI up to
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order (BH)2

Let M be the magnetic moment operator

(M = % 908 Z 01). In the presence of the total

1

Hamiltonian H = HI + H , one has

xy

H H (26)
<M>= Tr e'B M/Tr e-B

Expanding the right hand side of eqn. (26) up to terms

0f order (BH)2 , we have

<fi> = <%>m [—B <HM>00 + %E_<H2M>m] (27)

Where <X>0° denotes the infinite temperature trace of

any operator X . In obtaining eqn. (27), we have made

use of the fact that <M>°° = <H>0° = 0 . From eqn. (27),

we can obtain Xi by taking the magnetic field H

along the x—direction and calculating dMX/dHX at

HX = O . We obtain

XI 2 1.

“2=B+fi—TZJ- (28)
N08 1

From eqn. (28), one finds that the Curie Weiss constant

0 is iven b1 9 Y

kei = 11‘ Z oi = fP(JJ—) 1L doL (29)
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A similar expansion can be performed for X11

by taking the field along the z—direction and one

finds that

Xll
___2 = g + B Z J. (30)

NuB i

from the above equation, we see that up to order B2

there is no contribution to XII/N1182 from ny , and

therefore the Curie Weiss constant 811 given by

1
k0 = — J. = JP J dJ

|| ~1.f<>

is unaffected by the inclusion of ny

The ground and low lying excited states of the system

described by the Hamiltonian H + H depend crucially
I xy

on the probability distributions P(J) and P(J )

However, for the ferromagnetic coupling between spins with

O<Ji 4J1 , the ground statégis the one where all the

spins are either pointing up or down. In case of a more

general distribution of J, , the ground state need not

be the same anymore.

Conclusions

Our calculations show that the low temperature

(T+ 0) behaviour of different thermodynamic quantities

such as C , X11 and Xi are affected differently by
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the randomness. For example, in case of ferromagnetic

coupling, the essential singularity in X11 at T = 0

changes to a pole singularity by introducing a randOmness

which removes the gap in the energy spectrum that exists

in the periodic Ising case. In contrast, the specific

heat which also has an essential singularity at T = 0

for the periodic chain becomes analytic in the random

case. These results are consistent “ with the findings

of McCoy and No2 (specific heat) and GriffithsH

(susceptibility) for a two dinlmsional Ising system.



 

 

1
1
1
1
.
1
1
1

1
.
1
1
1

)
1
1
1
:
1
1
1
.
1
1
r



1 B

(1968).

2.

549 (1968).

3. E.

(1969).

(1963).

6. J.

A640 (1964).

7. M.

8. T.

9 A.

Inc., New York

10. H.

REFERENCES

CHAPTER I

. M. McCoy, and T. T. Wu, Phys. Rev. 176, 631

M. McCoy, and T. T. Wu, Phys. Rev. Letters 51,

R. Smith, J. Phys. C 5, 1419 (1970).

Fan, and B. M. McCoy, Phys. Rev. 182, 614

W. Klein, and R. Brout, Phys. Rev. 1 2, 2412

Bonner, and M. E. Fisher, Phys. Rev. 1 5,

E. Fisher, Jour. Math. Phys. 4, 124 (1963).

A. Kaplan (Private Communication).

Isihara, Statistical Physics, Acad. Press

(1971), p. 214.

E. Stanley, Introduction to Phase Transitions

and Critical Phenomena, Oxford University Press, New York

and Oxford (1971), p. 8

11. R. B. Griffiths, Jour. Math Phys. 5, 478 (1967).

91



 





 





 

 







 


