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ABSTRACT

NONLINEAR TEMPERATURE DISTRIBUTIONS

BY

Marshall P. Cady, Jr.

Pure, one-component fluids can exhibit large

nonlinear temperature distributions in nonequilibrium

situations in which nearly linear distributions are

usually expected. This dissertation includes (a) a

theoretical analysis of molecular energy transport mechanisms

which can create nonlinear temperature distributions and

(b) a Bryngdahl interferometric study of the quantitative

aspects of temperature nonlinearities in liquids. The

nonequilibrium thermodynamic regimes studied include

time-independent and nonconvecting, time-independent and

convecting, and time—dependent and convecting.

The possibility that molecular vibrational degrees

of freedom can create or contribute to spatial nonlinear,

time-independent temperature distributions is explored with

a stochastic diffusional energy transport model. Computations

indicate that liquids may exhibit temperature jumps at the

liquid-boundary interface but that the diffusional mechanism
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of energy tranSport cannot contribute to nonlinearities of

significant spatial extent. However, the diffusional

mechanism can produce gas phase nonlinearities which extend

2
0.01 cm from boundaries provided that P Q 1 x 10- atm.

Computations also show the nonlinear magnitude to be 0.03 K

for gases when 1 vibrational degree of freedom in 10‘1 at

the boundary fails to be described by a Boltzmann distribution.

A temperature jump of 0.03 K is expected for liquids when 1

vibrational degree of freedom in 102 belongs to the

nonequilibrium distribution. The diffusion model has

applications in describing energy transport away from

catalytic surfaces, near boundaries of polyatomic gases in

the "temperature jump" regime, and near boundaries of

strongly emitting and absorbing liquids.

The diffusional energy tranSport model is

characterized by energy tranSport via diffusion of fluid

molecules, the Landau-Teller transition probabilities for

resonant exchange of vibrational energy during bimolecular

collisions, and the assumption of non-Boltzmann distribution

of molecular vibrational degrees of freedom at boundaries.

The non-Boltzmann distribution is the result of boundary-

Iluid interactions. Two parameters describing temperature

nonlinearity associated with diffusion are deduced. They

provide a measure of the spatial extent of the nonlinearity

from boundaries and of the magnitude of the nonlinearity.

Bryngdahl interferometry is used to examine

temperature distributions in liquids bound by horizontal,
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parallel, silver plates which are maintained at different

temperatures. For nonconvecting states the linear

temperature distributions eXpected for pure thermal

conduction are found at distances greater than 0.3 cm from

boundaries for ethyl acetate, benzene, and carbon tetra-

chloride. However, at shorter distances the distributions

are highly nonlinear. As the metal-liquid interface is

approached, the temperature gradient increases 4.5% for

ethyl acetate, 12.5% for benzene, and 30% for carbon

tetrachloride. Full details of the observed temperature

distributions and gradient distributions are reported. In

addition, we find that the ratio of integrated absolute

deviation from linearity(1/l_ SEIT-T3.33ldz where T3.33

is the solution of V-kVT = 0) is 1/2.4/4.7/14.6 for ethyl

acetate, benzene, carbon tetrachloride, and water,

respectively. The very large integrated absolute deviation

exhibited by water is caused by temperature jump phenomena.

It appears that the temperature jump is a property of the

boundary-liquid system and is not caused by plate temperature

control and temperature measurement.

Knowledge of liquid nonlinear temperature

distributions makes possible an increase in the accuracy of

experimentally determined Soret coefficients, thermal

conductivities, and nonisothermally determined refractive

index temperature derivatives.

Finally, experimental studies of nonlinear

temperature distributions in convecting liquids are presented.
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The Rayleigh numbers for the critical flow transitions are

found to be R.I = 1667 1 137, RIII = 3.3 x 1011

4

i 12%, and

R = 4.42 x 10 i 14%. At RI a transition from nonconvection
IV

to steady state convection occurs; at RIII there is a

transition from three-dimensional steady flow to three-

dimensional time-dependent flow; and at RIV there is a

transition from time-dependent flow to time-dependent flow

of increased frequency. Bryngdahl interferometry is

uniquely suited to the study of the time-dependent phenomena.

Frequencies of temperature oscillations are determined via

Fourier transform of the Bryngdahl interferometric image

autocorrelation function. Four major bands are observed at

approximately 10, 30, 90, and 140 min-1. The band intensity

is proportional to e = <AT>IV - AT and decays exponentially

with angular frequency 75.8 min-1.
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CHAPTER 1

INTRODUCTION

1.1 Apergu

The study of nonlinear temperature distributions in

pure, one-component fluids provides macroscopic, continuum

data on which molecular theories of energy transport processes

may be based. Clearly, all temperature distributions in

nonequilibrium media are the consequence of molecular energy

transport via vibrational, rotational, translational, and

electronic degrees of freedom. Because of this relationship

between molecular mechanism and macroscopic observation,

nonequilibrium thermodynamic studies are an important

1’2 to catalog molecularcomplement to the modern effort

energy levels and transition probabilities.

Particulars of this work include both the conceptual

illumination of molecular mechanisms which can cause nonlinear,

Steady state temperature distributions and Bryngdahl interfer-

ometric evaluation of temperature distributions in pure,

one-component liquids. The possibility that vibrational

degrees of freedom play a contributing role in the establish-

ment of nonlinear, steady state temperature distributions in

nonconvecting fluid media is explored in Chapter 2. On the

IIIIIl--..____
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assumption that the temperature distribution far from the

walls of the fluid container is linear, mechanisms are

presented which invalidate the steady state Fourier-Laplace

equation description of the temperature distribution when wall

effects are important. Molecular diffusion and energy flux

models of vibrational energy transfer are used to analyze the

problem quantitatively. Fluid-dependent parameters characterizing

the magnitude of the temperature nonlinearity and its extension

from the container-fluid interface are deduced. Energy trans-

port by diffusion is shown to contribute negligibly to non-

linear temperature distributions observed within the liquid

phase, but this mechanism may contribute significantly to the

establishment of nonlinearities within low pressure gases.

Before experimental evidence of nonlinear temperature

distributions in both nonconvecting liquids(Chapter 4) and

convecting liquids(Chapter 5) is presented, it is necessary

to discuss details of the Bryngdahl interferometer which is

used as a temperature probe. This is the purpose of Chapter 3.

After a survey of the applications of Bryngdahl interferometry

in Section 3.2, details of the optical apparatus, the horizontal

parallel plate-cell composite, and experimental procedure are

described in Section 3.3. The horizontal parallel plate

arrangement heats the liquid cell at either the upper or lower

plate and cools it from the opposite plate. This results in a

continuous vertical temperature distribution across the liquid

‘which causes refraction of the interferometric light beam.

Beam refraction must be accounted for when spatial derivatives

of the refractive index are mapped from the unrefined Bryngdahl
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interferometric data. The mapping is

dw/dz ——9 dn/dz (1.1)

where w, n, and z are the optical path, refractive index,

and vertical coordinate, respectively. The left side of

Equation 1.1 is called the unrefined data; the right is

called the refined data. The mathematical mapping procedures

are established in Section 3.4. Once the refined data have

been mapped from the unrefined Bryngdahl interferometric data,

one can either assume knowledge of the temperature gradient

and compute the temperature derivative of the refractive

index with the chain rule expression

dn/dT = (dn/dz)/(dT/dz) (1.2a)

or assume knowledge of the temperature derivative of the

refractive index and compute the temperature gradient with

the equation

dT/dz = (dn/dz)/(dn/dT). (1.2b)

The alternative mathematical prodecures are established in

Sections 3.5 and 3.6, respectively.

Direct interferometric observations of nonlinear,

steady state temperature distributions in nonconvecting

liquids are reported in Chapter 4. After an introductory

discussion of linear and nonlinear distributions in Section

4.1, the qualitative and quantitative features of nonlinearities

exhibited by ethyl acetate, benzene, and carbon tetrachloride

are presented in Section 4.2. Besides a thorough detailing of

problems inherent in nonequilibrium experimental studies,

Section 4.2 includes data which lead to (1) correlation of the

dependence of the nonlinearity upon the impressed temperature



4

difference between the liquid boundaries, (2) Specification of

the Spatial domain of the nonlinearity, and (3) comparison of

the relative magnitudes of exhibited nonlinearities between

liquids. All measurements are at ambient pressure. Mean

temperatures are between 24°C and 29°C, and boundary

temperature differences are between 2°C and 13°C for the

1.349 cm high liquid cell. In Section 4.3 the temperature

dependence of the refractive index of water between 24°C and

40°C at 632.8 nm and atmOSpheric pressure is obtained.

Temperature gradients range from 4 deg cm"1 to 16 deg cm_1.

Results comparable to isothermal determinations of the

temperature dependence are found when the data analysis does

not include the measured temperature difference between the

upper and lower plates of the horizontal parallel plate

system. The presence of temperature jumps would explain

discrepancies which occur when the temperature difference is

used in the analysis.

Finally, the Bryngdahl interferometric examination of

convecting thermodynamic states exhibited by water is presented

in Chapter 5. There are four major features. These include the

determination of the critical Rayleigh number for two types

of transitions: the transitions from nonconvection to steady

state convection and from steady state convection to time-

dependent, turbulent convection. The nonlinear temperature

distributions between these transitions are mapped.

Frequencies of aperiodic motions in the turbulent states are

determined.
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1,2 The Interior Conducibility

The nonequilibrium description of temperature(T)

in a one-component, pure, nonreacting fluid depends upon

two fundamental statements. The first is the law of

conservation of energy:

E + V~gi = oi (1.3)

where E = E(g,t), g1 = gi(r,t), and 01 = oi(r,t) are the

Specific internal energy per unit volume, the i'th form of

heat flux, and the i'th form of energy source per unit

volume per unit time, respectively. The heat flux and energy

source have been given the superscript i because differing

physical interpretations and mathematical descriptions of

the energy source are associated with nonequivalent heat flux.

The i'th form of the energy source is associated with the

i'th form of the heat flux.

The second important statement is a phenomenological

relationship between heat flux and temperature gradient.

For isotropic media it is

J1 = -kiVT (1.4)

i = k1(r) is the i'th form of the conductivity.where R

For temperature fields which are uniform in the

horizontal plane and for which E = 0, Equations 1.3 and 1.4

simplify to

(d/dz)ki(dT/dz) = -01. (1.5)

The solution of this differential equation subject to the

boundary conditions

T(o) = T and T(l) = TL (1.6)
U

is the temperature field. l,is the distance between
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horizontal boundaries. Equation 1.5 is also used in the

experimental evaluation of k1. One integration yields:

1 i

-k (z) = (JT + Io (z)dz)/(dT(z)/dz) (1.7)

where JT is the total heat flux in the z direction and will be

called the heat flux. The heat flux, dT(z)/dz, and T(z) are

experimentally determined; then, 01(2) is assumed and ki(z)

computed with Equation 1.7. A final mapping ki(z) -—9 ki(T)

yields the i'th form of the conductivity.

A particularly important form of the conductivity

is given by Fourier's3 "interior conducibility," k(T),

which is defined by

Jz = —k(dT/dz). (1.8)

This constitutive conductivity form is recognized by many

modern authors!"11 of nonequilibrium thermodynamics. There

are two criteria to help with the deduction of the energy

source form(hereafter called the energy source) which is

conjugate to the interior conducibility. The first is due

to Truesdell(as reported by Petroskia): the energy source is

determined by given functions E and g and Equation 1.3.

Secondly, we wish to construct the interior conducibility

to be a property of the media being studied. Therefore, the

interior conducibility must describe energy tranSport by all

possible modes of energy transport solely characteristic of

that media. Energy transport modes associated wtih container

walls and the external world are not described by the

interior conducibility. Very little is known about the
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energy source,8 but with these criteria the necessary

concepts will be developed in the next section.

The multitude of possible energy transport mechanisms

is illustrated by the interior conducibility of amorphous

silica in Figure 1.1. At very low temperatures k~vT3.

This dependence is the result of phonon processes for which

k ~ CVL (1.9)

where C is the heat capacity per unit volume, V an averaged

phonon velocity, and L an averaged phonon mean path. At

low temperatures L is constant because of crystal boundary

and grain size restrictions; the temperature dependence of

Equation 1.9 is then determined by the heat capacity. At

low temperatures this dependence is the famous T3-law of the

Debye theory of heat capacity of crystals. With increasing

temperature, a second region of extreme complexity is found

which is called "the knee." The knee is apparently caused

12
by resonance scattering of phonons by local defects. At

still higher temperature a very broad region exists in which

the interior conducibility is very weakly dependent upon

temperature. In this region k is limited by phonon-phonon

processes and by the relative inability of many of the

vibrational modes, due to high spatial localization, to

transmit energy. Finally, at very high temperature there

is a fourth region of strong T3 dependence;13"16 energy

transport by photon processes have become very important.

.A photon or radiation transport process is to be understood

as either the induced or spontaneous emission of a photon



Figure 1.1

Qualitative features of the interior conducibility,

k(T), of amorphous silica.
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by a degree of freedom of the medium and the absorption of

that photon by another degree of freedom. Vibrational

degrees of freedom are major contributors to this mechanism

via infrared photons.

The second major conductivity form is called the

"thermal conductivity." In this form the conjugate energy

source contains all radiation tranSport processes, both

those in which the photons originate within the medium and

those in which thephotonsoriginate in the external world.

Energy transport processes due solely to thermal motion of

the elementary particles of the media are described by the

17.21 Our objection to this divisionthermal conductivity.

of conduction and radiation is based on the presupposed

ability to write mathematically and nonphenomenologically a

term describing all photon processes. This term is

necessary in the Equation 1.7 evaluation of the thermal

conductivity. By this procedure each photon model yields

a characteristic thermal conductivity and those of different

laboratories are impossible to compare properly unless full

computational details are published. We believe that once

any model of radiation tranSport for a particular medium

has been experimentally proven, then the above division of

conduction and radiation becomes a valid procedure. This,

luneever, is not the usual practice. For the history of the

separation of conduction, radiation, and convection see

22 for the first suggestion that conductivity theory

3

Brush;

0

can also include radiation transport, see Stokes.”
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1. The Ener Source

Because the interior conducibility describes all

energy transport processes characteristic of a given media,

the energy source is zero far from boundaries and the

external world. In this domain Equation 1.5 becomes the

Fourier-Laplace equation:

(d/dz)k(dT/dz) = 0. (1.10)

The interior conducibilities of gases and liquids are very

much like kIII(T) of Figure 1.1; they exhibit a very weak

temperature dependence in a broad temperature region which

may be called the "ordinary temperatures." For example,

for gaseous carbon monoxide at 1 atm: 9 x 10"3 K"1 3

(1/k)(dk/dT) 2 6 x 10’“ K‘1 when 90 K s T s 1100 K.24’25

For carbon tetrachloride at 1 atm: 1.7 x 10-3K-1é -(1/k)(dk/dT)$

2.2 x 10"3K‘1 when 255 K5 Ts 378 K.26 This demonstrates that

for liquids and gases subjected to temperature differences

of the order of 10 deg cm-a thermal conducibilities are

essentially constant at ordinary temperatures. Thus,

the temperature of fluids far from boundaries is expected

to be the solution of the Laplace equation:

T(z) at a + bz (1-11)

where a and b are constants. This linear relationship is a

consequence of the absence of an energy source term in

Equation 1.10. Thus, Equation 1.11 emphasizes that the study

of nonlinear temperature distributions in nonconvecting,

steady state fluids must be the theoretical and experimental

pursuit of the concepts behind the existence of non-zero energy

source, source magnitude, and spatial domain of the source.

 

 

 



12

There are a number of nonlinear temperature

distribution studies at ordinary temperatures and pressure

(~1 atm). For a review of nonlinear observations within

liquids see Section 4.1; see Figure 4.1 for an example of

the nonlinearity within carbon tetrachloride. Nonlinearities

at ordinary temperatures and pressure have also been found

within some gases. In 1964 Gille and Goody27 used horizontal

aluminum boundary plates spaced 2 cm apart and a Michelson

interferometer to study temperature distributions in dry

air and ammonia. Linear temperature profiles were found at

all distances from boundaries for dry air. Ammonia, however,

displayed nonlinear temperature profiles. The nonlinearities

were found to be antisymmetric about the intermediate

vertical coordinate with a negative deviation from linearity

on the half closest to the heated boundary and a positive

deviation on the half closest to the cooled boundary. A

maximum in the deviation from linearity appeared at about

0.4 cm from the boundaries. It was 0.1800 at 0.7 atm and

0.2100 at 1.3 atm. The nonlinear temperature profiles are

explained on the basis of absorption and re-emission of

radiation from plates and molecular diffusion. Schimmel

gt_§128 have used Mach-Zehnder interferometry to deduce

boundary temperature gradients in pure gaseous 002, N20, and

mixtures of CO2-CH4 and CO2-N2O in a cell bound by horizontal

aluminum plates 2.55 cm apart. They report that for N20 at

a temperature difference between plates of 10.700 and a mean

temperature of 33°C the ratios of boundary temperature
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gradient to the gradient predicted by Equation 1.11 are

1.09, 1.13, 1.17, 1.20, and 1.20 at pressures of 0.25 atm,

0.50 atm, 1.00 atm, 2.00 atm, and 3.00 atm, respectively.

The ratios for C02 behave similarly with pressure, but are

somewhat smaller. These nonlinearities are attributed to

radiation transport processes. Experimental studies have

shown the nonlinear phenomena to be important in vertical

29
plate systems containing pure ammonia and nitrogen-

ammonia mixtures.30

The final example of nonlinear temperature distribution

is provided by the observations in gases at low pressure

($10—2 atm) of what is called "temperature jump" and by the

association of temperature jump with gas-wall thermal

accommodation. For the history and early development of

the concept of temperature jump see References 31 and 32;

for the association with thermal accommodation see References

33-36; for the Boltzmann equation approach to the problem

see References 37 and 38. We present a new conceptualization

of the mechanism behind this nonlinearity.

Consider a gas bound by two parallel plates of

infinite extent. These plates are maintained at different

temperatures with the "lower" wall having lower temperature,

and they are far enough apart that at intermediate distances

from them all energy transport is due solely to the

characteristics of the gas. Figure 1.2A depicts energy

tranSport by thermal motion at these intermediate distances.

The indicated particle positions are those of successive
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Figure 1.2

Energy transport by translational degrees of freedom.

The indicated positions of molecules labeled 1 and 2 are

those at successive collisions.

(A) Transport far from walls.

(B) Transport in the presence of a reflecting boundary.

See text.
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gas molecule-molecule collisions. These translational

motions and collisions transport thermal energy. For

example, the motion and subsequent collision of molecule 1

results in the effective heating of the horizontal layer

of the collision; the motion and subsequent collision of

molecule 2 effectively cools the horizontal layer of the

collision. All such energy transport processes are described

by the interior conducibility. Suppose a perfect mirror

which reflects molecules specularly and elasticly is placed

between molecules 1 and 2,andthen energytranSportprocesses

are altered. Molecule 1 is now reflected by the mirror to

the collision indicated in Figure 1.2B. But the interior

conducibility being ignorant of the mirror's presence

describes the origin of the colliding molecule as corresponding

to the initial position of molecule 2. This is the mirror

image of the initial position of molecule 1. The interior

conducibility is assigning less energy to the colliding

molecule than it actually has. Thus, the temperature

distribution near the lower boundary displays a positive

deviation from linearity; the energy source is positive in

this domain. Now, considering the reflection of molecule 2,

molecule 2 is reflected into a collision but carries less

energy into that collision than predicted by the interior

conducibility. The interior conducibility describes the

reflected molecule as having originated at the initial

position of molecule 1. This position corresponds to a

horizontal layer of higher temperature and, therefore,higher
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energy than the horizontal layer of the true initial

position of the reflected molecule. Thus, the temperature

distribution near the upper boundary must display a

negative deviation from linearity; the energy source is

negative.

This conceptualization has assumed that the linear

temperature distribution observed in the gas far from

boundaries is maintained by some unspecified mechanism.

On this basis it analyzes the effect of perfect mirrors

which have a zero thermal accommodation coefficient(no

energy is transferred from mirror to molecule during

collision). This does not correspond to any possible

laboratory experiment. However, within the framework of

the model it can be easily reasoned that (1) the negative

(positive) deviation from linearity prediction of this

model at the upper(lower) boundary represents the maximum

obtainable and (2) negative(positive) deviation from

linearity at the lower(upper) boundary is not possible for any

boundary-gas system which has a thermal accommodation

coefficient between 0 and 1. The thermal accommodation

coefficient is defined as being equal to (Ti-Tr)/(Ti-Tw)

where Ti corresponds to the temperature of molecules

incident upon a wall, Tr corresponds to the temperature of

molecules reflected by a wall, and Tw is the temperature of

the wall.

Of course this conceptualization can be made

phonsically realistic through the inclusion of adsorption,
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desorption, and inelastic scattering of molecules by

boundaries. The prescription for the mathematical develop—

ment of the energy source is clear, however. It is the sum

of energy transport processes which are occurring because

of the presence of walls minus those energy transport

processes which are described by the interior conducibility

but are not occurring because of the presence of walls.

Nonlinear temperature distributions result from

radiation energy transport via mechanisms which are analogous

to the above translational model. This is discussed in

Section 4.4. An analogous mechanism of phonon reflection

and bulk phonon-grain surface phonon interaction may also

be responsible for the belief that the Fourier heat law is

not valid at very low temperatures in amorphous solids.16

In this case the energy source grows with decreasing

temperature.

 

 



 

 

CHAPTER 2

MOLECULAR VIBRATIONAL CONTRIBUTIONS TO NONLINEAR

TEMPERATURE DISTRIBUTIONS NEAR WALLS

2.1 Introduction

In this chapter we examine quantitatively the

possibility that vibrational degrees of freedom of a gas or

a liquid contribute to spatial nonlinear temperature distri-

butions within a single component fluid in the nonflowing

steady state. A model in which molecular vibrational energy is

transported during diffusion of molecules is considered in

detail. Computations indicate that the diffusional mechanism

of energy transport cannot contribute to nonlinearities of

significant spatial extent within dense media. However, the

diffusional mechanism can produce gas phase nonlinearities

which extend 0.01 cm from boundaries provided that P s 1 x 10"2

atm. 0n the assumption of a non-Boltzmann distribution of

molecular vibrational degrees of freedom at boundaries,

cemputations show the nonlinear magnitude to be 0.03 K for

gases when 1 vibrational degree of freedom in 1011 at the

boundary fails to be described by a Boltzmann distribution.

A temperature jump at a liquid-boundary interface is expected

0

When 1 vibrational degree of freedom in 10“ belongs to the

19
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nonequilibrium distribution.

To explore the possibility that the interaction

between vibrational degrees of freedom of the fluid and

the wall can result in nonlinear temperature distributions,

consider Figure 2.1. The coordinate 2 measures distance

from the upper plate, which is considered to extend to (i)

infinity in the (x,y) plane. The distance between the two

infinite plates is l. The upper plate is maintained at

temperature TU while the lower is at temperature TL, with

T T
U L’

each layer having width z and the ith layer being associated

Now imagine the fluid as being divided into layers,

with the temperature T(i).

Let the 1th layer be far enough away from the wall

that wall effects are negligible. The transfer of energy

on the molecular level can be envisioned as follows: Energy

is continually being transferred from the 1th layer to the

layers j+1 and j-i. For example, when a molecule goes from

the 1th layer to the layer j+1, it effectively heats layer

j+1 because its translational, rotational, and vibrational

degrees of freedom are distributed at T(j), which is

greater than T(j+1). Once in layer j+1, this excess energy

is dissipated. Conversely, when a molecule undergoes the

layer transition j+1-9j, the jth layer is cooled. Energy

is also transferred via emission and absorption of photons

'between layers. Far from walls Fourier's interior conduci-
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Figure 2.1

The horizontal plate arrangement.
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bility incorporates all such processes, and Equation 1.10

describes the temperature distribution. There is no

experimental evidence to the contrary.

Near the wall, however, the Fourier-Laplace equation

may fail. For example, a molecule of the first layer is

prevented from entering the "zeroth" layer by the presence

of the wall. When reflected back to the first layer, it

may have a translational energy corresponding to TU but have

its original vibrational energy distributed at temperature

T1. Since this reflected "reentry molecule" does not have

the vibrational temperature TU, where TU) T1, layer 1

exhibits a temperature lower than that predicted by V2T = 0

in the steady state. Next to the lower plate, a reflected

molecule may have its vibrational energy distributed at a

temperature higher than TL’ As a consequence, the layers

next to the lower wall will exhibit temperatures higher than

that predicted by V2T = 0. This is one way in which walls

might interact with vibrational degrees of freedom to

produce a nonlinear temperature distribution. Analogously,

reflection by the walls of photons which have been emitted

by vibrational degrees of freedom of the fluid results in

nonlinear temperature distributions qualitatively identical

to the temperature distributions which result from molecular

reflection. Also, if the upper wall emits and absorbs

photons at rates and extents different from the fluid at
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the same temperature, it is possible that there is a

difference in the net number of photons absorbed by the

vibrational degrees of freedom in layers near the wall

beyond that described by V2T = 0 in the steady state. One

final mechanistic example is that of a wall which catalyzes

the production of molecules in higher vibrational states.

Upon reentry into the layer next to the wall these molecules

heat the layer with a resulting nonlinear temperature

distribution.

In the following sections, the interaction between

the fluid and the wall is not directly analyzed. Rather, it

is proposed that these interactions, whatever they may be,

result in a non-Boltzmann distribution of vibrational energy

in the layer adjoining the wall. Furthermore, it is assumed

that this nonequilibrium distribution is known. Temperature

distributions can then be calculated once the energy source

term which causes deviation from the Fourier-Laplace

temperature description has been evaluated. Specific models

of vibrational energy transfer are used to evaluate the

energy source. The number of nonequilibrium molecules at

the boundary needed to achieve deviations from linearity of

10-2 K at ordinary temperatures and pressures is estimated,

and parameters which determine the thickness of the

nonlinear boundary layer are deduced.
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The concepts used to develop the above nonequilibrium

problem are stochastic: the quantities of interest are

probabilities and averages rather than classical deterministic

quantities. Much of the mathematics and many of the

stochastic concepts developed by Rubin, Shuler, and Montroll

are applied directly.1”S The models developed belong to

class of models which include first-passage time problems,

harmonic oscillator relaxation in a heat bath, relaxation of

two interacting systems of harmonic oscillators, relaxation

of Rayleigh and Lorentz gases, reaction kinetics, and

nucleation theory. Reviews of these stochastic processes

are available.6-13

2.2 Model 1: The Diffusion Model

The time—independent temperature distribution is

described by Equation 1.5:

k(d2T/dz2) = -o (2.1)

where k is the temperature-independent interior conducibility

and o is the energy source which vanishes far from the

‘boundaries. In order to describe temperature distributions

in.all domains, including that in which walls play an

:hmportant role, we assert that we may divide the one
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component fluid into two systems, the first of which is

the "heat bath" (HB) system. The heat bath system of the

1th layer has all degrees of freedom, vibrational included,

distributed in a Boltzmann distribution at temperature T(i).

Thus, the heat bath system is associated with the measured

temperature T.

The second system is the system of interest(SI).

The system of interest of the ith layer does not have its

vibrational degrees of freedom distributed in a Boltzmann

distribution at temperature T(i). Rather, the distribution

is a nonequilibrium distribution which depends on the nature

of the interaction between fluid and wall. The system of

interest also interacts with the heat bath system via

molecular collisions and perhaps radiative transfer, 1:3,,

exchange of photons between HB and SI. This interaction

results in a source of energy for the heat bath system,

0(2). In order to evaluate the energy source, models must

be developed which enable one to describe the number density

of the vibrational states of the system of interest as a

function of the spatial coordinate subject to a knowledge

of the vibrational energy distribution at 2:0 and 2:1, iég.,

sxflaject to boundary conditions on the distributions. Once

the vibrational distributions have been completely determined,

it is possible to write the energy source term of the bath

system and solve Equation 2.1 for the temperature distribution

Stflxject to the boundary conditions T(z) = TU at z = 0 and

T(z) = T t z = 1.La
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The first model, the diffusion model, has the

following characteristics:

(a)

(b)

(C)

Both the system of interest(SI) and the heat bath

system(HB) are composed of harmonic oscillators of

frequency v. pk is the number of SI molecules per unit

volume in the 5th vibrational state, and pk = pk(£,t).

The density of SI molecules is such that SI molecules

collide only with EB molecules and never with other SI

molecules. In these SI-HB molecular collisions,

resonant transfer of vibrational energy is possible.

14
Furthermore, we assume the Landau—Teller transition

probabilities per collision:

Pn,m = P1,0((n+1)6m,n+1 + n5m,n-1) = Pm,n’ (2'2)

where Pn,m is the probability per collision that a

molecule originally in the 3th harmonic state will

undergo transition to the mth harmonic state, and 6m,n

is the Kronecker delta,

0 if m i n

5 =
2.3)

11fm=n

See References 7 and 9 for a more detailed discussion

of Equation 2.2. For more recent developments, see

References 15-17.

SI molecules in the nth vibrational state diffuse at the

rate DV2pn, where D is the diffusion coefficient and is

temperature independent.
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Because of these characteristics, the rate of

change of pn at position‘s can be decomposed into the sum

of a diffusion term and an SI-HB interaction term. The

SI-HB interaction term is given in Reference 4. The result

is

(apn/at) = (apn/at)diffusion * (apn/at)SI-HB (2°43)

where

= DV2p (2.4a)
(apn/at)diffusion n

by characteristic (c), and

(apn/at)SI_HB = K(1-e‘”)‘1(ne‘”pn_1 + (n+1)pn+1

- ((n+1)e-0 + n)pn) (2.4c)

by characteristic (b). In the last equation, 0 = (hv/kT),

where h and k are the Planck and Boltzmann constants,

respectively, v is the vibrational frequency of the molecules,

and T is the temperature at 5. Both the diffusion constant

and the interaction constant, K, are assumed to be temperature

independent. For the steady-state case, Equation 2.4 becomes

2 -0 -1 -0
DV pn + K(1-e ) (ne pn-i + (n+1)pn+1

- ((n+1)e'9 + n)pn) = 0. (2.5)

Thezsolution of this equation requires two boundary conditions:

'thervibrational distribution of $1 at z = 0 and that at

z ==‘l. In order to apply Montroll's and Shuler'sq Fourier

series solution to the problem, SI must first be separated

itho two systems. The first system is the nonequilibrium
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distribution associated with the presence of the upper wall.

Its vibration number density distribution is designated as

{3.}. The second nonequilibrium distribution is that

J

associated solely with the presence of the lower wall. Its

vibrational number density distribution is designated as

)rj}. The set )sj} satisfies Equation 2.5 in the coordinate

system originating from the upper wall and also satisfies

the distribution boundary condition on the upper wall.

Similarly, the set )rj} satisfies Equation 2.5 in the

coordinate system originating from the lower wall and also

satisfies the distribution boundary condition on the lower

wall. When the nonequilibrium distribution associated with

both walls relaxes to a Boltzmann distribution within the

distance ;, SI is the sum of these two distributions. We

now make the assumption that SI is this simple sum. This is

not a very restrictive assumption when SI is a small fraction

of HB. For instance, suppose that SI is 1% of H3 at the

upper surface and that SI-HB interactions are negligibly

‘weak. In such a case the nonequilibrium distribution

associated with the upper wall is altered by 1% at the lower

'wall due to the presence of the lower wall. The fraction of

inolecules involved is then a mere 0.01% of HB, a number

‘which is negligible relative to the number of molecules in

the nonequilibrium distribution associated with the lower

'wallx Later it will be shown that either the nonequilibrium

(tistributions relax well within the distance I, or that SI

i1; a small fraction of HB. With the two systems of SI

 



30

clearly defined, Equation 2.5 becomes

DV2sn + K(1-e-0)-1(ne-0s + (n+1)s
n-i n+1

- ((n+1)e'9 + n)sn) = o (2.6)

which can be solved subject to the boundary condition

sj(z) = Sj(0) at z = 0. The set {r3} satisfies an identical

equation. To put this into dimensionless form, we make the

following definitions:

c1Z/l. XJ-(C) = sj(§)/§si(§). wJ-(L) = rj(§)/2iiri(c).C

c1 (hf/D)“2 (2.7)

Furthermore, we constrain 2si(§) and 21‘1“) to equal

1 i

Es.(0) and 2r.(c ), respectively; 5x.) and {w.} are then
1 1. i. 1 1 1 1

probabilities. In accordance with the assumed form of SI,

these probabilities must relax to a Boltzmann distribution

far from their walls of origin. Equation 2.6 then becomes

-0 2 2 -6
(1-e )(d xn/dg ) + (ne xn_1 + (n+1)xn+1

- ((n+1)e-6 + n)xn) = 0. (2.8)

It is easily shown that the variation of 0 with L in

Equation 2.8 is negligible to within 1% for IS 1 cm when

AT/_1_.$ 5 deg/cm at ordinary temperature. Since this

corresponds to the usually experimental condition, we

hereafter restrict ourselves to this case. With these

conditions the Fourier solution of Equation 2.8 is(see

Appendix)
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co _{1/2

xnm -—- zafiuhnew C (2.9a)

=0

.1....(v) = F(—n. n+1. 1; 1-5") = e‘MflEOU-e”) (3H3) (2.91:)

-0 w 0

aAU) = (1-6 )mEdlk(m)xm(O)' (“'90)

Comparison of this solution with the Appendix 1 solution of

Montroll and Shulerk shows that only the exponential power

is different, in that the square root is now required.

This difference is a consequence of the diffusion differential

equation being second order. In these equations, F(a, b, c; z)

is the hypergeometric function,18 and the binomial coefficients

have the usual meaning,

nJ/v!(n-v)! rfll>v

(3) = 0 if n<v or v40. (2.10)

1 if I): O

xm(0) is the boundary condition imposed on the reduced

distribution function at g: 0. _1_n(u) is the Gottlieb

polynomial.19

Figure 2.2 is a representation of the steady-state

solution of the nonequilibrium distribution associated with

the wall at g = 0. By assumption, this distribution is

independent of any effects related to the physical presence

of the wall at g = Cl. Figure 2.2 shows that the delta

distribution center upon n = 4 at L = 0 rapidly broadens

and shifts toward the equilibrium distribution with

increasing g. Intuitively this result is expected since
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Figure 2.2

The probability distribution {xn(§)) for various L when

0 = 1 and x4(0) = 1.
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the layers farther removed from the wall indicate the

presence of the wall to a lesser degree. However, at

L = 3 the deviation from the equilibrium distribution is

still significant. The figure indicates that molecules of

the system leave the surface at g = O with far more vibrational

energy than the average heat bath molecules possess, gradually

transfer this energy to heat bath molecules in collisions

as they diffuse away from the surface, and approach the

equilibrium distributions of heat bath layers far from the

wall.

The solution of the distribution {wj} is analogous

to that of Equation 2.9, viz.,

wn(t) = kgoaéL)ln(k)e'k1/2(°1‘§) (2.11a)

aAL) = (1'9-0) E lk(m)wm(c1) (2.11b)

m=0

wm(ci) is the boundary condition imposed upon the nonequilibrium

distribution associated with the lower wall at g = 01.

When the energy of the nth harmonic state is

En = hv(n+1/2), the steady—state source term of Equation 2.1

is given by

a = _nEoEn((arn/at)HB—SI + (aSn/at)HB-SI)

2

n=0

En((arn/at)diffusion + (aSn/at)diffusion)

2 2
DnEOEn(V rn + V sn)

DnEOEn((JErj(c1))V2wn + (ij(0))V2xn). (2.12)
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Integration of Equations 2.1 and 2.12, with the boundary

conditions T(g) = TU at g = O and T(g) = T at g = c
L 1’

yields the temperature equation:

T(g) = TU - (TU-TL)(§/c1) + c2J2sj(o)H(£) (2.13a)

where

H(§) = 420(n+1/2)(xn(0) - Xn(c) - (xn(0) - xn(cl))L/c1

+ (wh(0) - wn(§) - (wn(0) - wn(cl))L/ci) -

- (§rj(01))/(§sj(0))) (2.13M

and

c2 = Dhu/k, (2.130)

where k is the interior conducibility and not the Boltzmann

constant. The first two terms on the right-hand side of

Equation 2.13a represent the linear terms which would be

present even in the absence of a source. The third term

accounts for the deviation from linearity of the temperature

due to interaction between the walls and the vibrational

degrees of freedon of the fluid. When the distributions

{rj(ci)} and §sj(0)§ are zero, the expected linear steady-

state distribution is obtained. In addition, it is easily

shown by Equations 2.4c and 2.12, that whenever {rj(g)] and

{sj(§)} are Boltzmann distributions, the source term

vanishes, and the temperature distribution becomes spatially

linear.

Figures 2.3, 2.4, and 2.5 indicate the importance of

 



36

the constant cl. The graphs represent the temperature

.(0) in the zdeviation from linearity divided by 022s]

J

coordinate system for 3 = 1, and various boundary conditions

{xn(0)} . It is necessary to divide by c2283.(0) because the

J

deviation from linearity is proportional to this process

dependent quantity and elucidation of 2sj(0) requires a

3

body of theory not explored. Later developments will relate

the magnitude of 2sj(0) and that of the deviation of

J

linearity. The choice 0 = 1 is made for convenience and

plays no role in the relaxation of SI. If 0 were larger,

however, the energy transferred between SI molecules and HB

molecules would be larger thereby causing larger deviations

from linearity of the temperature when SI is a non-Boltzmann

distribution. In order to study the wall effects, the

graphs are plotted for the distribution {wh(;)}= 0 only,

and the effect of only one of the walls is examined.

Figure 2.3 shows that when the nonequilibrium distribution

at the wall contains less energy than the Boltzmann distri-

bution at the temperature of the wall, the deviation from

linearity is negative. The temperature near the wall is

then less than that predicted by the Laplace equation.V2T = 0.

Furthermore, as the ratio of the rate of HB-SI interactions

to the rate of diffusion increases at constant I, 01

increases and the deviation from linearity approaches

-0.582cgso(0) at z = 0. This asymptotic value when x0(0) = 1

represents the maximum deviation from linearity for this

¥ ___
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Figure 2.3

Negative of H(z) for 0 = 1, x0(0) = 1, and various c1.
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Figure 2.4

H(z) for 6 = 1, x1(0) = 1, and various 01’



 

 

110

IO

J @Cl3l

_ @Cl= 2

I @0|" 3

_ @C|= 6

— ©c.=l0

@c.=40

_ ®c|=w

 

0.!

   
0.0l

0.0 0.2 0.4 0.6 0.8



39

Figure 2.4

H(z) for 0 = 1, x1(0) = 1, and various 01’
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Figure 2.5

H(z) for 0 = 1, x4(0) = 1, and various 01.
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nonequilibrium boundary distribution. The physical reasoning

is that for very large values of 01 the HB-SI interaction

term is so much larger than the diffusion term that all SI

molecules leaving the surface immediately absorb energy

from HR and relax to a Boltzmann distribution. Thus,

non—Boltzmann SI molecules do not exist further away from

the surface and no further alteration of the temperature

distribution can occur; the Laplace equation then describes

the temperature. However, the energy absorbed by SI from HB

in relaxing to a Boltzmann distribution lowers the temperature

of the system. The consequence is that for very large values

of 01 the Laplace equation must be solved subject to the

boundary conditions T(l) = TL and T(O) = TU - 0.582c230(0).

The boundary temperature jump thus represents the largest

deviation form linearity of temperature possible.

Figures 2.4 and 2.5 both have nonequilibrium

distributions at the wall which contain more energy than the

Boltzmann distribution, and the graphs indicate a deviation

from linearity which is a positive function of z. The

temperature in these two cases is greater than that predicted

by the Laplace equation. It is seen that, as 01 increases,

the limiting values of the temperature deviation are

0.41802sl(0) and 3.418c2s,1(0) for the cases x1(0) = 1 and

x4(0) = 1, respectively. The general trend is that the

greater the energy difference between §xn(0)} and the

Boltzmann distribution at the surface, the greater is the

‘temperature deviation from linearity divided by c2EZsj(0).

J
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When equilibrium distributions are associated with

both walls, curves such as those in Figure 2.6 result. In

this figure, the distribution {wh(l)} 0 , w1(l) = 1
nil =

is associated with the wall at z = l. The distribution

{:sn(0)}m£0 = 0, 120(0) = 1 is associated with the wall at

z = 0. The total number of molecules in each of these

boundary conditions is assumed to be identical simply for

convenience. The curves result from the superposition of the

curves given in Figures 2.3 and 2.4 and exhibit the same

characteristics. One observes that in the central region

between the plates the temperature distribution is linear,

and hence Fourier's law applies. In the limit of very large

values of c the temperature distribution also appears to be1:

linear. The source term for this limit is a simple delta

function at the boundary which results in the appearance of

a "temperature jump," or a discontinuity in temperature at

the fluid-solid interface when a temperature gradient is

present. This temperature jump is entirely analogous to

20-23
those discussed in many other works; see Section 1.3

for additional discussion and references.

2,3 Estimates of c1 and c2

 

The parameters 0 and c2 determine the Spatial extent
1

of the temperature nonlinearity from boundaries and the

magnitude of the nonlinearity, respectively. The ratio

_1_/e1 = (1)/ml” (2.11.)

has the dimension of length and measures the spatial domain
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Figure 2.6

H(z) for 0 = 1, w1(l) = 1, x0(0) = 1, and various

values of 01.
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of the nonlinearity. Likewise,

p02 = pth/k (3.15)

has the dimension of temperature and measures the magnitude

of the nonlinearity; p is the number density of oscillators

of frequency v. By Equation 2.13 the product of p02, the

number fraction of SI vibrational degrees of freedom, and

the function H~1 is the nonlinear magnitude. Equations

2.14 and 2.15 provide a convenient test of the diffusion

mechanism's contribution to any observed nonlinear temperature

distribution. The properties ( ), k, and D may be

extracted from empirical tables, theoretical equations, or

semiempirical equations. The rate of interaction between

HB and SI, K, can be estimated by

K = z P (2.16)

where ZC is the number of collisions per molecule per unit

time and P1,O(v,T) is the probability per collision of the

harmonic state transition 1—¥O. P1,0 values for a number of

gas phase systems have been determined experimentally by

impact tube methods, infrared fluorescence photometry, and

17,24-26
chemiluminescence spectrophotometry. Fourier

O

transform of infrared and Raman vibrational band contours27’“8

and picosecond spectroscopy29-31 yield information concerning

vibrational relaxation times and pathways within the liquid

phase.

Table 2.1 contains estimates of _l_/c1 and 02 for gas phase

inolecules. The computations utilize the P1 0(v,T) tabulations

’





48

Table 2.1

Gas phase parameters c1 and 02 of the molecular fundamental

frequency 5. p, the number density of the normal mode 5,

is the product of the degeneracy of the symmetry species

and the molecular number density. T = 300 K; P = 1 atm.

 

 

     

Gas _ Symmetry _

Molecules fi/cm1 Species 103(l/c1)/cm 10 2pc2/K

(36. 37)

N2 2331 870 9.3

NO 1904 0.30 7.4

02 1554 610 6.1

F2 892 2.0 3.4

C12 557 0.63 2.0

C02 667 Wu 0.77 4.4

COS 520 w 0.28 3.2

SO2 518 a1 0.077 1.6

NH3 950 a1 0.022 3.2

PH3 992 a1 0.11 3.3

ASH 906 a 0.069 2.5

3 1

CH4 1306 f2 0.65 13.0

CH301 732 a1 0.11 2.3

CH Br 611 a 0.058 1.9

3 1

02H2 612 fig 0.11 3.5

Cqu 826 b2n 0.10 2.3

C2H6 289 alu 0.013 0.77
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of Stevens,26 the ideal equation of state, the kinetic

theory collision rate, and first order kinetic theory thermal

conductivities and self-diffusion coefficients:32

zC = 4Pr§(ka/w)”1/2, (2.17)

D = 2.628 x 10“3(T3/M)1/2/(Pr§0(1'1)*(T*)), (2.18)

and

k = 6.066 x 10-5R(T/M)1/2((4CV/9R)+1)/(r§9(2’2)*(T*)).

(2.19)

M is the molecular weight, T* = kT/e, 9(1’1)*(T*) and

9(2’2)*(T*) are collision integrals tabulated by Hirschfelder

£3 21,32 and ro(X) and e are the Lennard-Jones(12-6)

potential parameters defined by

2 6
¢(r) = ..((ro/r)1 - (ro/r) ). (2.26)

The Table 2.1 computations utilize the r0 and e tabulations

of Stevens,26 Ibele,33 and Sherwood et al.34 In Equations

2.17-2.19 D is in cm2/sec when P is in atm; k is in

cal/cm sec deg when R is in cal/mole deg. The term

(3/5)((4CV/9R)+1) in Equation 2.19 is called the Eucken

correction. It takes into account approximately the

transfer of energy between translational and internal

degrees of freedom. Heat capacities from the JANAF

Thermochemical Tables35 are used in the computation of this

term.

Table 2.2 contains estimates of l/c1 and p00 for

liquid phase systems. The self-diffusion coefficients are
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computed with Houghton's equation:38

D = (an/6nM)(M/dh)2/3 (2.21)

where d,n, and N are the mass density, viscosity, and

Avogadro's number, respectively. Values of d,1), and k are

extracted from standard thermophysical tables.39’l10 The

collision rate within liquids is calculated with the cell

model equation of Bartoli and Litovitz:41

Zc = (8hT/nm)1/2(21/6p‘1/3- ro)‘1. (2.22)

This equation is valid because (a) it is consistent with the

model of vibrational energy transfer via isolated binary

30,31
molecular collisions, and (b) Calaway and Ewing have

demonstrated that the product of Equation 2.22 and P1,0

values determined via gas phase experiments is comparable

to vibrational relaxation times exhibited by liquid phase

systems( 1 psec). However, Equation 2.22 cannot be taken

too seriously because it fails to deal properly with the

concept of "collision" and is an inaccurate formula for the

computation of collision frequenciesf‘g’l‘i3

Table 2.1 reveals that the diffusional transport

mechanism can produce nonlinear temperature distributions

at 1 atm which extend 0.87 cm, 0.61 cm, and 0.002 cm from

boundaries for gaseous N2, 02, and F2, respectively.

Furthermore, when SI contains 1 molecular vibrational degree

of freedom out of 104, the nonlinear magnitude is 0.093 K,

0.061 K, and 0.034 K for gaseous N2, 02, and F2, respectively.
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Table 2.2

Liquid phase parameters c1 and c2 of the molecular fundamental

frequency 0. p, the number density of the normal mode 5,

is the product of the degeneracy of the symmetry species

and the molecular number density. T = 300 K; P = 1 atm.

 

 

Liquid N _1 Symmetry 8

Molecules v/cm Species 10 (l/c1)/cm pc2/K

(36,37)

Br2 321 16 0.25

H20 1595 a1 2.7 4.8

CS2 397 ”u 25 3.4

CH2012 282 a1 5.1 0.95

CHCl3 261 e 0.90 1.1

CCIQ 217 e 0.86 0.41

CHBOH 1030 a' 0.86 6.4

C6H6 410 6211 2.9 2.0      
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For the other gases l/cl< 10—3 cm at 1 atm; therefore, the

diffusional mechanism operating within these gases can only

produce temperature jumps at the gas-boundary interface.

The magnitude of the temperature jump is approximately

0.03 K when 1 vibrational degree of freedom in 104 is

contained within SI. However, the extent increases as

pressure decreases. From Equations 2.14 through 2.19, it

is found that for gases

l/ci~11/P and pc2h’P0. (2.25)

For example, a N20 pressure decrease from 1 atm to 0.1 atm

increases the nonlinearity extent from 3.5 x 10-4 cm to

3.5 x 10-3 cm; at 0.1 atm the nonlinear extent approaches

measurable dimensions while the magnitude remains unchanged.

Considering the typical gas parameters to be 1 01:11 x 10-4 cm

and pc2=£3 x 102 K at 1 atm, the diffusional mechanism can

cause most gases to exhibit nonlinear temperature distri-

butions which extend 0.01 cm from boundaries at 1.0 x 10'2 atm

and have a magnitude of 0.03 K provided 1 vibrational

degree of freedom in 104 belong to SI.

The diffusional energy transport mechanism can

contribute only a temperature jump to observed nonlinear

temperature distributions within liquids. Table 2.2

8 and 10"7 cm, and thevalues of l/c1 lie between 10

ratio has a very weak dependence upon pressure. The jump

magnitude is typified by CS2. It is 0.034 K when 1 molecular
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vibrational degree of freedom(b = 397 cm-1) in 102 belongs

to SI.

2.4 Model 2

As a final example, we again consider the situation

in which the fluid between the plates can be divided into

two systems: the system of interest(SI) and the heat bath

system(HB). In SI the vibrational degrees of freedom

cannot always be described by a Boltzmann distribution

while those in BB can be described by a Boltzmann distribution.

In addition, it is assumed that molecules of SI are of such

a density and relative position that resonant transfer of

vibrational energy occurs between molecules of SI but no

diffusion of molecules occurs. Model characteristics (a)

and (b) are then identical to those of Model 1, and the

HB-SI interaction term is given in Equation 2.40. However,

characteristic (c) for Model 2 is

(c) The propagation, or velocity-probability, of vibrational

energy transfer, V, determines the SI-SI interactions

according to the expression

(apn/at)SI_SI = v((arn/az) - (asn/az)), (2.24)

where {rn} is the number density distribution of SI

associated with the wall at z = l and {en} is the number

density distribution associated with the wall at z = 0.

With this model, then, we have

(apn/at) = (arn/at) + (asn/at) (2.25.)
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where

(arn/at) = V(arn/az) + K(1-e'0)‘1(ne‘9rn_1 + (n+1)rn+1

-((n.1)e‘9 + n)rn), (2.251

(asn/at) = -V(asn/az) + K(1-e‘9)‘1(ne“9sn_1 + (n+1)sn+1

-((n+1)e-0 + n)sn).(2.25¢

The signs of the gradient terms are chosen so that V is

the velocity-probability in the direction 9321 from the

plate in question.

The steady-state solution of Equation 2.25 is easily

obtained from Appendix I of Montroll and Shuler4(see

Appendix). With the following definitions,

;' = ciz/_l_, c; = (Kl/V), wn = rn/Ern(°1)’ xn = sn/isnw),

(2.26)

the solution of Equation 2.25, subject to the boundary

conditions {rn(c1)} and {sn(0)), and the constraint

ISW' = 1 = I: is

n n Hg)"

sn(§') = kfoalaU)l_n(k)e'-kv, (2.27.

rh(g') = Ega§L1;n(n)e'k(°i‘4'), (2.27:

1,6) = e”n”B§O(1-e”) (2)04). (22%

aéU) = e-k0(1-e-0)£20eneln(k)sn(0), (2.27:

aéL) = e'k”(1-e"9) 2 eneln(k)rn(ci). (2.27.
n=0
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The first of Equation 2.12 can now be used in Equation 2.1

to determine the temperature distribution. Double integration

and evaluation of the two resulting constants with the

boundary conditions T(g') = TU at (l = 0 and T(g') = TL at

g' = oi yields, upon insertion of Equation 2.27,

m0 = TU - (TU-TLHy/cp + C§§O(n+1/2)k§1k'1.1.n(k)( (U) .

- (1-e'k4' - (;'/ci)(1-e'k°i)) 2 sum)
m=0

+ gins—elk? — (L'/ci)(1-ek°i))e'kcimform(°i))'

(2.28a)

where

65 = (hvV2/kK) . (2.28b)

The first two terms to the right of the equality are the

linear terms; the third is the nonlinear term. In Equation

2.28b, k is the interior conducibility not the Boltzmann

constant.

Model 2 corresponds physically to propagation of

vibrational energy along large chains or local structures

of molecules which might form in liquids due to the presence

of walls. This mechanism would transfer energy far more

rapidly than diffusion and would result in larger nonlinear

temperature deviations. The mechanism is included as a

Speculative possibility which should be pursued experimentally.

For example, estimating the SI-SI interaction term
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to be of the order of the velocity of sound in solids

( 105 cm/sec) we find
’

l/ciN 10-3cm and pcéNiO6 K (2.29)

for liquids.

2.5 Discussion

It indeed appears possible for vibrational degrees

of freedom to contribute to nonlinear temperature distri-

butions near walls. Model 1, the diffusion model, indicates

that for gases with typical thermal conductivities and

diffusion constants, only 1 in 104 molecules at the wall

need be in variance with the Boltzmann distribution to

achieve a temperature deviation of 10'2 degrees from

linearity. The mere presence of walls may cause a variance

of this magnitude by the reflection mechanism discussed in

Section 1.3. Surface-catalyzed reactions and the absorption

of reflected radiation by strongly emitting absorbing gases

are also capable of producing variances of this magnitude.

Weakly absorbing gases are not included in Model 1 because

the effect of the wall has been treated as a boundary-

value problem, which excludes direct, long-range interactions

between fluid and wall via radiation. Liquids are expected

to give nonlinear temperature deviations of 10.2 degrees

when 1 in 102 molecules do not satisfy the Boltzmann

distribution.

The strongly absorbing and emitting case of water
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provides a specific application of the diffusion model.

For water _l__/c1 is the order of a molecular spacing. Thus,

the model predicts that only a temperature jump can be

exhibited by the liquid. This agrees with experiment

(see Section 4.3). The order of magnitude of this

temperature jump is indicated by the Table 2.3 tabulation

of pcz(u)Hw(v) at 300 K for various assumed delta distri-

butions of the upper boundary SI molecules and for the v2

bending mode, the ”L librational mode, and the hindered

translational modes, ”T and vT2.44’45 Hw(vL'Which is H(v) in the

limit as ciacn, is evaluated at z = 0(i&g,, ignoring the SI

distribution associated with the lower boundary). For

example, if xn(v2,0) = 5n,1 and s1(v2,0) = 0.01p, then the

contribution of 02 to the temperature jump is 0.049 deg.

Also, if xn(vT,0) = 8n,2 and s1(vT,0) = 0.01p, then the

expected contribution to the temperature jump is 0.008 deg.

Temperature jumps of these magnitudes are important in many

experimental studies and must be considered. The weakness

of models 1 and 2 is the boundary value nature of these

models. This excludes the case of weakly absorbing and

emitting gases and liquids which can interact with the walls

via photon exchange at distances which are an appreciable

fraction of l.
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Table 2.3

pcz(v)Hw(v)'values for water at 300 K.and various boundary

 

 

conditions. p is the molecular number density, 81 j is the

9

Kronecker delta, and table units are deg.

,J N N .9

x11(0) ”2 ”L UT UT2

1595 cm” 685 cm.1 193 cm- 60 on!"1

n,0

811,1 4.9 2.0 0.21 -O.36

an,2 9.8 4.1 0.80 -0.18

.2 . .an’3 15 6 1 4 o 0053

     
 





CHAPTER 3

BRYNGDAHL INTERFEROMETRY

3.1 Introduction

Ingelstam-Bryngdahl type wavefront shearing

interferometry utilizes Savart plates to shear a plane

polarized wavefront of monochromatic light after passage

through a test object of non-uniform refractive index.

1’2 in 1955 and

3-8

The method was first described by Ingelstam

subsequently developed by Bryngdahl and coworkers.

Section 3.2 is devoted to a survey of the application

of Ingelstam-Bryngdahl interferoemtry to problems of

nonequilibrium heat and mass transport phenomena in liquids.

Section 3.3 introduces the particular Bryngdahl interferometer

which we used to study (a) the temperature dependence of the

refractive index of water; (b) temperature distributions in

nonequilibrium, steady state experiments on ethyl acetate,

benzene, carbon tetrachloride, and water; (0) the possibility

of temperature jumps at the water-metal interface; and (d)

the critical Rayleigh numbers associated with the Bénard

problem.

59
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Equations for the unrefined data,(dmw(Z)/dZm)m=1,2 ..’

where W(Z) is the optical path associated with the vertical

image coordinate Z, are also presented in Section 3.3.

Unfortunately, the unrefined data are functions of the applied

temperature field and the cell dimensions. Section 3.4

explores this problem and describes a program for mapping

spatial derivatives of the refractive index from unrefined

data. The spatial derivatives of the refractive index,

(dmn/dzm) , are called the refined data. In the
m=1,2,.

process of refining the data, the discussion is restricted

to pure liquids which do not absorb the monochromatic

radiation of the interferometer. From the refined data

either the temperature derivatives of the refractive index

or the spatial derivatives of the temperature(the temperature

distribution) may be mapped. Equations which relate either

(dmn/dTm)m=1’g..

are developed in Sections 3.5 and 3.6, respectively.

or (me/dzm) to the refined data
m=1’2,..
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§.2 Bryngdahl Interferometry: Applications

Gustafsson and coworkersg-z3 have been major

pioneers in the application of wavefront shearing interferometry

to problems of measurement of Soret coefficientsg’la,

10,13,14
thermal conductivity coefficients , refractive

11,12,17,21
9

indices interdiffusion coefficients of transparent

9’15’16'18’23, and interdiffusion coefficients of

19,20,22

liquids

molten salts. In 1965 Gustafsson 23.21-9 measured

the Soret coefficient for water solutions of CdSOA, AgNOB,

and K01 by observing the time and space evolution of a

Bryngdahl interferometric image of a "sandwich" type cell.

The procedure involves application of a temperature

gradient to an equilibrium system and analysis of the

thermodiffusional demixing process; or, alternatively,

removal of the temperature gradient from a nonequilibrium

system and observation.of the mixing process. In 1970 Uhllin

and Wallin17 increased the sensitivity of the interferometer

with a double exposure technique which is capable of

measuring the Soret effect of water solutions a few

18
thousandths molal in Cdsoq. The second exposure is made

after a 1800 rotation of one of the Savart plates about

the optical axis.

In 1967 and 1968 Gustafsson et a110'13'1“

used a plane source of heat in a transient method to

measure the thermal conductivity of water, KNO3, LiNO3,
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NaN03, RbNO3, and CsNO3. The Bryngdahl interferometer was

used to diSplay the time dependent temperature distribution

close to the plane heat source. The average deviation of

the measured thermal conductivity of water from the

recommended values of McLaughlinzq was 0.37%-

An isothermal method of measuring absolute refractive

indices has been developed by Gustafsson's research

11,12,17,21
group. The method has been used to measure

the temperature dependence of the refractive index of

21 6
with an accuracy of about 11 x 10' , and that

12

water

of the molten alkali nitrates with an accuracy of about

:3 x 10-5. The wavefront shearing interferometer of

this method combines two light beams, one passing through

the liquid and the other through a rotatable quartz plate

inside the liquid. The refractive index of the quartz

plate serves as a reference. The rotatable reference plate

technique is well known, and the equations which describe

the optical path differences as a function of rotation

angle were developed by Adams25 in 1915.

Finally, Gustafsson's research group has developed

an isothermal, bottom layer technique for the measurement

of interdiffusion coefficients of transparent liquids.

A crystal of the diffusing substance is dropped to the

bottom of the liquid container in initiation of a bottom

layer. Bryngdahl interferometry is used to observe the

transient diffusion process. The procedure requires that the

density of the crystal be much greater than that of the
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liquid. In this way the amount of material being dissolved

during the "drap" is negligible. The diffusion of KCl and

15,16,23
CdSOA in pure water at 22°C and the diffusion of

silver ions15 into the alkali nitrates NaNOZ, KN03, and RbNO3

from 310°C to 380°C has been studied with the "drop", plane

source technique. The plane source diffusion technique has

also been used to measure the diffusion coefficients of

F‘ and Br‘ in LiNOB; F‘, Br”, I”, 003'2, and 304'2 in NaN03;

and I” and 003-2 in RbN03.2O The temperature range of

melting point to 100°C above the melting point was studied.

The interdiffusion coefficient of thallous ion(Tl+) in

LiNO has been determined in the temperature range of

3

260°C to 355°C; Van der Waals interactions are shown to

contribute significantly to the diffusion rate.22

Thomas and coworkers have used Bryngdahl interferometry

to measure the diffusion coefficients of mono-, di-,

and tri-ethanolamines in aqueous solutions at infinite

dilution26'27 and have made a comparison with existing

semi-empirical equations. The results demonstrate the

inadequacy of these equations and suggest that hydration

of the ethanolamines plays an important role in the diffusion

process. Thomas gt_gl. have also used a special interferometric

method with increased vertical shear in conjunction with
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28,29 30
a pressure transducer to study absorption and desorption

of gas at the gas-liquid interface. The absorption

experimental systems include C02-water, 02H2-water,

NH3-water, $02-water, and 002-propylene carbonate. The

desorption experimental systems include carbon dioxide-water

acetylene-water, ammonia-water, sulphur dioxide—water, and

acetone-water. Anomalously large transport of solute is

explained in terms of convective disturbances, eddies,

and microflows at the interface. The cellular structure

of the disturbances is smaller than that which is directly

observable by interferometric technique. Onset times of

the disturbances were reported. Temperature effects at

the interface which could produce such disturbances and could

even be responsible for the observed fringe shift were

reportedly eliminated by the proper choice of systems for

30
examination, and by using dilute solutions. The studies

are then limited to buoyancy and surface tension effects.

31 have developed an isothermalPepela 91 El.

diffusiometer which features Bryngdahl-Ingelstam interferometry.

They have determined the diffusion coefficients at 25°C

of aqueous solutions of sucrose, n-butyl alcohol, magnesium

sulfate, tetra-n-propylammonium bromide, tetra-n-butylammonium

bromide, thiourea, glycine anhydride, é-caprolactam, and

mannitol. The results for MgSOA-water, n-PquBr-water, and

thiourea-water are compared to Gouy interferometric and
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conductance methods. Data obtained from the three methods

are in excellent agreement. The authors believe that the

diffusion coefficients may be measured with their technique

to a precision of 20.3%. Staker and Dunlop32 have also

used this isothermal technique to measure the diffusion

coefficients at 25°C of the benzene-carbon tetrachloride

binary liquid over the whole concentration range. The

results agree with those of Gouy interferometry to within 1%.

Anderson and Home33 have used a nonisothermal,

wavefront shearing method very similar to the demixing-mixing

9
experiments of Gustafsson to determine concentration and

temperature dependence of the thermal diffusion factor

and diffusion coefficient for the CClq-C6H12 system

between 20°C and 55°C. The standard error of the thermal

diffusion factor is about 1% and that of the diffusion

coefficient about 3%. This interferometer was also used

by Olson and Horneak to measure the temperature dependence

of the refractive indices of water, carbon tetrachloride,

cyclohexane, and benzene at 25°C with a nonisothermal

technique. They report uneXpected parabolic steady state

fringe patterns which are attributed to nonlinear temperature

distributions associated with metal boundaries.

Mitchell and Tyrrell35 use a Bryngdahl interferometer to

measure the diffusion coefficients of dilute solutions of benzene,

phenol, and resorcinol in propane-1,2-diol. The application

of a temperature gradient creates a gradient of solute.

The observation of the transient decay of the concentration

gradient upon removal of the temperature gradient allows
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the calculation of diffusion coefficients. Results show

the importance of solute-solvent interactions in

diffusion. The authors claim that diffusion

coefficients as low as 5 x 10'"8 cm,2sec-1 can be

measured. In a later paper Skipp and Tyrrell36

report interdiffusion coefficients for carbon tetrachloride,

carbon tetrabromide, methyl pivalate, chlorobenzene, and

phenol in propane-1,2-diol. The results show that spherical

molecules(CClq, Cqu, methyl pivalate) diffuse at a rate

comparable to the prediction of the Stokes-Einstein

relationship D = kT/kwnr,where the molecular radius(r) is

calculated from molar volume data, and n is the viscosity.

However, planar molecules diffuse about twice as fast as

expected. The evidence suggests that free rotation of

planar solutes during diffusion is prevented in propane-1,2-

diol. In more mobile solvents free rotation is possible.

The final major research group included in this

37-42 They have usedsurvey is that of Porsch and Kubin.

Bryngdahl interferometry and isothermal, flowing-boundary

cells to measure the diffusion coefficients of

37939941 39,41

biphenyl-benzene, sucrose-water, and monodisperse

polystyrene-toluene39’41 at 25°C. Further, they have

determined up to four average diffusion coefficientsBB’40

for the polydiSperse polyisobutylene-heptane system, and

unfractionated polystyrenes in toluene. The average

diffusion coefficients are related to the moments of the

diffusion coefficient. Porsch
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zxnd Kubin have also measured the concentration dependence

()1 the first four average diffusion coefficients of a

I)olystyrene-toluene system42 having a broad molecular

tveight distribution.

Bryngdahl wavefront shearing interferometry is

(Inc of a number of interferometric methods which have

lieen used successfully to study heat and mass transport.

()ther methods include Gouy interferometry, Rayleigh

iiiterferometry, wedge-interference interferometry, Jamin,

hhach-Zehnder, and Michelson interferometry, and multiple-beam

iriterferometry. Useful reviews of these methods and

tlieir applications are availablefgu51

. B dahl Interferomet : A aratus Cell Data

The Bryngdahl interferometer, cell-water jacket

zassembly, and temperature measurement technique used in

tliis work were developed by Anderson52 53and Olson.

Tile interferometer features a Spectra Physics Stabilite

120 helium-neon laser with 5.0 mw output power at 632.8 nm

811d a Spectra Physics 336 multiwavelength collimating

lxans of collimation within 1/8 wavelength over a 4.6 cm

zxperture. The laser is oriented so that the cell is

illuminated with radiation polarized in the direction

vdiich bisects the x,z axes shown in Figure 3.1. After

passage through a cell of height A and length a, the

L1-L2 lens combination reduces the cell image to a size

compatable with the modified Savart plates Q1 and 02.
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Figure 3.1

(A) The interferometer.

1. collimator

2. cell-water jacket assembly

3. lens, L1

4. lens, L2

5. modified Savart beam splitter, Q1

6. lens, L3

7. modified Savart beam splitter, Q2

8. analyser, A

9. lens (optional)

10. camera

(B) The cell-water jacket assembly.

1. lower assembly

2. upper assembly

3. cell
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The first beam splitter, Q1, splits the wavefront into

two identical, vertically sheared wavefronts. Before

entering Q2 the double image passes through the converging

lens L3. This introduces a small shear angle between the

wavefronts which produces constant path length differences.

After Q2 the radiation passes through a polarization

analyser A which is crossed with the laser polarization.

The resulting image is sharply focused and recorded with

a Polaroid MP-3 Land Camera using Polaroid Type 42 black

and white film. The modified Savart plates were manurfactured

by Valpey Co., Halliston, Mass. Each plate consists of

three 2 cm X 2 cm x 0.7 cm quartz subplates bonded without

cement, flat to 1/20 wavelength, and parallel to 2 seconds

of arc. The principal plane of the second subplate, which

serves as a half-wave plate, is oriented 45° from the

principal axis of the first plate; the principfl. axis of

the third plate is oriented 900 from the principal axis

of the first plate. This arrangement results in symmetrical

light paths through the whole plate.8

The cell (see Figure 3.1) is made of four pieces

of % inch thick glass cemented together

with Chemgrip epoxy adhesive (Chemical Rubber 00., Cleveland,

Ohio). 7 cm is a typical width and length (a),and the

height (_l_) is typically 4 mm to 15 mm. The cell is

sandwiched between two highly polished, silver plated,

% inch copper plates. Each of these plates is secured

to a magnesium water jacket which serves to control the
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temperature of the plate. The volume of a water jacket

is 230 ml. In the isothermal configuration water is fed

to both water jackets from a single 10 liter Neslab water

bath (Neslab Instruments, Durham, N.H.). In the nonisothermal

configuration each water jacket is fed separately from

45 liter Neslab water baths. The temperature of each

bath is controlled to i0.003 deg with Versa—Therm proportional

electronic temperature controllers (Cole-Palmer Instrument

Co.) balanced against coils containing cold water feed

from a 25 gallon Lab-Line heat bath (Lab-Line Instruments

Inc., Melrose Park, Ill.) maintained at about 14°C.

Water is pumped from the heat baths to the water jackets

at a flow rate of 2.8 l/min.

Temperature measurement is made with 40 gauge

copper-constantan thermocouples soldered to matched

20 gauge copper-constantan leads. The 20 gauge leads are

placed in mercury containing tubes and inserted well

within an air saturated ice-water slush in accordance

with standard procedure.54’55 Copper leads connect the

mercury tubes with the potentiometer. Thermocouple

electromotive force is measured with a Leeds and Northrup

K-3 Universal Potentiometer. The Eppley unsaturated

cadmium sulfate standard cell used in the potentiometer

was calibrated in terms of the U.S. legal volt effective

January 1, 1969,by Leeds and Northrup Co. prior to

experimentation. Uncertainty in null detection is 10.1 av,

whichcorresponds to i 0.003 deg. Thermocouple electromotive
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force is standardized in the 1968 International Practical

Temperature Scale (IPTS-68)54’56 with the secondary

reference points: the ice point, the sodium decahydrate

sulfate—monohydrate sulfate solution point, the pressure

corrected56 boiling point of water. The resulting calibration

is

2E - 5.2922 10'7E2 (3.1)T = 2.5577 10‘

where E is electromotive force measured in nv, and T is

temperature in 0C. This calibration is in good agreement

with National Bureau of Standard recommended (March,1974)

reference tables based on the IPTS-68.57

To determine the temperature of a silver plate, the temperatures

of two thermocouples (one on each side of the cell, out

of the optical path, and in intimate contact with the silver)

are averaged.

52 53
In the technique practiced by Anderson and Olson ,

the cell was greased, top and bottom, with silicone

or fluorosilicone lubricant and loosely clamped between

the silver plates. The cell was then filled through

a filling tube which is part of the upper plate and was

subsequently pushed away from the filling hole. This

procedure results in a fluid tight seal but has the

disadvantage that excess grease prevents the interferometric

examination of the fluid near the top and bottom walls.

Weeliminated.this difficulty by hand grinding the sealing

surfaces of the glass cell to 0.001 inch flatness with

progressively finer grades of the silicon carbide Crystolon
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(Norton Abrasives, Worcester, Mass.). The cell is firmly

clamped between the silver plates with four securing nuts. An

interferometric check is made to insure that the glass cell is

not distorted. Evaporation of liquids such as carbon tetrachloride

and ethyl acetate through the silver-glass interface

is apparent one day after filling. This is a very long

time relative to the duration of the pure fluid experiments

of this work. Additionlly, to improve the optical quality

of the cell, the optical faces are ground with ferric

oxide powder. Figure 3.2 demonstates the quality of the

polished cell by comparing the best quality image obtainable

with the interferometer, the image of a slit, with the

image of the assembled polished cell-silver plate-water jacket

assembly in the isothermal configuration. The comparison shows

that the shear parameter, 2D, is blurred in the cell

image and fringes are not as sharp. Blurring of the shear

parameter is due to roughnessof the cell edge. Degradation

of the fringe shape is caused by optical face, surface,

roughness. The quality of the cell image is satisfactory,

however, and the cell height parameter, H, the shear

parameter, 2D, and the distance between fringes 8 can be

measured within 1% accuracy.

The experimental procedure is:

1. Establish the isothermal configuration by determining

the temperature difference

ATO = TU - TL

to be applied between the top and bottom silver plates.
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Figure 3.2

(A) Best quality image obtainable with interferometer, the

slit image. (B) Isothermal cell-water jacket assembly

image. Z is the vertical image coordinate measured from

the upper, bounding, plate. 2D is the shear parameter.

H is the image cell height. 8 is the distance between

fringes in the isothermal cell configuration.
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Adjust both plates to the mean temperature; i.e. TL + ATo/2.

TL is the temperature of the lower plate in the nonisothermal

configuration; TU is the temperature of the upper plate.

2. Fill cell with liquid, wait for temperature equilibration,

focus front face of cell onto camera.

3. Take photograph of isothermal cell image for evaluation

of 2D, H, and 5 (see Figure 3.2).

4. Apply Ana and record number of fringes which evolve

at image center in establishment of steady state.

5. Focus front face of cell. Take photogragh of

steady state image.

For further details of the temperature switching device,

see Anderson;52 for details of the photomultiplier

arrangement used in fringe counting, see Olson.53 The

nonisothermal image photograph is used to determine the

exact number of fringes, N(Z), which evolve in the establishment

of the steady state.

According to Bryngdahl8 and Olson,34’53 the image

fringe pattern is described by

W(Z+D) — w(z—D) = iAN(z) (3.2)

where W(Z) is the optical path of the light pencil associated

with the vertical image coordinate Z which is optically

conjugate to the cell vertical coordinate z; 2D is the

shear parameter (see figure 3.2); l is the wavelength of

the interferometric light source (632.8 nm) and N(Z) is

the number of fringes which have evolved at A. The sign

of Equation 3.2 is altered if Q2 is rotated 180° or if
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the sign of ATO is altered. To write Equation 3.2 in a

nuare useful form, expand W(ZiD) in a Taylor series about Z.

T116 even terms vanish leaving

iN(Z) = (2/l)2 (Dn/n!)(an(Z)/dZn). (3.3)

n=1,3, ..

Fuxrthermore, let X(Z) be the horizontal image coordinate

off a particular fringe. Then

X(Z) = 8N(Z) + arbitrary constant. (3.4)

ngfferentiation of Equation 3.3 m times with respect to Z

yields the matrix equation

N8 _ "13 o 133/3! 0 D5/5! ".7 dW/dZ—

dX/dZ o D 0 133/3! 0 . . . . d2W/dZ2

d2X/dZ2 o o D o D3/3! . . . . d3w/dz3

: d3X/dZ3 = (223/1) 0 o o D o dQW/dzl’ .(3.5)

(fix/dz“ o o o o D . . . . dSW/dz5

__ . _J _._ . . . . _ . _     

The parameters 5 and D are known from the isothermal cell

Photographs. N(Z) and (de/dZm) are measurable
m=1,2..

from the nonisothermal image photographs. Thus, the inverse

of Equation 3.5 serves to determine the derivatives of the

Optical path with respect to the vertical coordinate; i.e.

(de/dzm)m=1,2... These derivatives are called the

"unrefined data" for reasons which will become apparent in the

next section. Assuming that the higher order fringe

derivatives, (de/dzm)m_5 6 , are equal to zero and that the
"',00
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D matrix is non-singular, inversion of Equation 3.5 yields

dw/dz 7f 0 —D2/6 0 7D4/360 “ha
0

d“W/dZ2 0 1 0 —D2/6 0 dK/dZ

i d3w/dz3 = (A/2D6) 0 o 1 0 -D2/6 d2X/d62 . (3.6)

4. .4 3x ”3
d w/dz 0 o 0 1 0 d x/dn

dSW/dzéd 0 0 0 0 1 dl‘X/dzl1

All quantities on the right hand side of the equality

are experimentally determined. Equation 3.6 is the

working equation for the determination of the unrefined data.

3.4 Refined Data; Refraction of Light

Defining the optical path to be the path experienced by

a radiation pencil traversing the cell, spatial derivatives of

the optical path are not properties of the liquid. The optical

path depends upon the length of the cell,a, and the magnitude of

the applied temperature gradient. Relative to the isothermal

liquid state, a temperature gradient causes an increase in the

optical path experienced by the interferometer photon

beam transversing the liquid. The beam curves toward the

cooler temperatures due to the drag effect of greater

density. This is illustrated in Figure 3.3. In radial

temperature fields this effect is termed "thermal blooming."66

To remove experimental configurational aspects of the

unrefined data, it is necessary (a) to determine the light

Path, z(y) in Figure 3.3, of a photon beam of infinitesimal

cross section which enters the liquid at z (b) to determine
0;

the dependence of the unrefined data upon cell length, and

upon spatial derivatives of the refractive index; and (c) to
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Figure 3.3

Refraction of light in a one dimensional gradient. z(y) is

the path of a photon pencil of infinitesimal cross

section which enters the liquid cell at z = Z0' 21. is

the exit coordinate. TU ) TL.
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determine eventually either the temperature dependence

of the refractive index or the spatial derivatives of the

temperature. The spatial derivatives of the refractive

index are called the "refined data."

Many of the equations derived below have been studied

50’58'62 We discussand published with slight modification.

these equations in detail here for the purpose of establishing

an iterative method for the numerical mapping of refined data

from unrefined. The analysis is restricted to one component

fluids in one dimensional refractive index fields, but it _

could be extended to multicomponent systems if the variation

of the optical path with mole fraction were included.

The possiblity of absorption of interferometric

light by the liquid is totally neglected. This neglect

is justified for the one component, weakly absorbing

liquids examined in this work because there is no experimental

observation of significant thermal blooming in these

'7 l . .

6J’6l However, in cases for which the liquidliquids.

is moderately or strongly absorbing, the temperature

field within the liquid is altered. This results in

significant thermal bloomingGE-67 and necessitates the

inclusion of absorption effects.

Abnormally large thermal diffusion coefficients may render

thermal blooming very important in binary mixtures near

the consolute critical point.64’68’69 This is a Soret effect

(diffusion in a temperature gradient) response to the

temperature gradient associated with absorbed interferometric
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radiation. Concentration differences across the beam of

a few parts in 107 give appreciable thermal blooming at

very low powers of the illumination radiation.64

Consider a beam of light of infinitesimal cross

section and frequency v which enters the liquid at the

coordinate (20,0) indicated in Figure 3.3. The path, 3,

traveled by this beam through the liquid is classically

determined by Fermat's variational principle70 for the

optical path;

5W(zo) = 8(n(z)ds = O (3.7)

where W(zo) is the optical path of the photon pencil

entering the liquid at zo, and n(z) is the refractive index.

In a one dimensional refractive index field, the path

differential is

1/2az. (3.8)ds = ((dy/dz)2 + 1)

Substitution into Equation 3.7 yields

6fn(z)((dy./dz)2 + 1)1/2dz = 0. (3.9)

It is well known71 that this variation statement implies

that the integrand satisfies Euler's equation,

(a/az)<a/a<ay/az))(n(1 + (ay/az)2)1/2)

- (a/ay)<n<1 + (ay/az)2)1/2) = o. (3.10)

The second term is zero,and the first is equivalent to

(d/az)(n(ay/dz)(1 + (dy/dz)2)'1/2)= 0. (3.11)

Integration, evaluation of the integration constant at

z = z and use of the experimental criterion dz(0)/dy = 0
0’

Yields

«n(z)/neon2 - 1)(dy/dz)2 = 1; (3.12)
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or,

ay = :az/((n(z)/n(zo))2 - 1)1/2. (3.13)

Because y and z must not be imaginary,

n(Z)/n(zo) > 1. (3.14)

and the light beam must curve toward the higher refractive

indices; that is, toward the lower temperatures. Thus,

if the temperature decreases with increasing 2 in a

particular experimental configuration, then the positive

sign is used in Equation 3.13. If temperature increases

with increasing 2, then the negative Sign must be retained.

We now restrictihe discussion to the case of heating

from above with the z coordinate originating from the

upper wall. The resulting equations apply to the

case of heating from below but with the coordinate system

originating from the lower wall. To facilitate the integration

of Equation 3.13, expand n(z)/n(zo) in a Taylor series

about z = z . Then,
0

n(z)/n(zo) = 1112:1611“sz (3.15a)

where

Nm = (1/m!n(zo))(dmn(zo)/dzom) (3.13s)

and

A2 = z - zo. (3.15c)

Enrthermore,

(n(z)/n(zo))2 =v§glv(Az)v (3.16a)

ivhere

M =gum'NV'm. (3.16b)

maO

lVith Equations 3.150, 3.16a, and the requirement y(zo)=0,
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integration of Equation 3.13 yields

Aj(v21M Wl/gdw. (3.17)

Table 3.1 shows that for water in a temperature gradient

of 10 deg/cm, (Mv)v__3 4 are of negligible magnitude
"" ’0.

relative to M They can, therefore, be neglected.2.

The refractive indices of most liquids have first order

temperature variations which are less dependent upon

temperature than those of water; for them, (Mv)v=3 4..

are less important. Since Am ( 1cm, the third order term

of Equation 3.17 is less than 0.1% of the second order

term, and can safely by discarded. Equation 3.17 becomes

.Az

y = $(M1w + M2wz)1/2dw (3.18a)

= (-M2)'1/2cos’1(2M2M;tAz + 1). (3.18b)

Inversion yields the desired equation,

AZ = M1(2M2)-1(cos((-M2)1/2y) - 1). (3.19)

This describes z(y) for a photon beam which enters the

liquid at 20 normal to the cell face.

It is now possible to write the Optical path as a

function of the spatial derivatives of the refractive index

and the length of the cell, a. Using the path integral

empression for the Optical path (Equation 3.7), Equations

3.8, 3.12, and 3.16a, we find

a

N(zo) = n(zo);EOMV éQSz)vdy. (3,20)
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Table 3.1

Derivative estimates of Mv (Equation 3.16b) for

water in a 10 deg/cm temperature gradient.

 

 

 

 

 

 

 

v Mv de/dz dsz/dz2

1 10"3cm'1 -3x10“‘cm'2 6x10"7cm"3

2 -1O-qcm-2 --10"7cm-3

3 -1o"7cm'3 _—

4 10'8cm'“ —————- ___-—      
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The indicated integration requires the use of Equation

3.19. The integrated form is

w(zo>/n(zo) = (1 + mf/(8<—M2)))a

-(Mi/(16(-M2)3/2))sin(2(-M2)1/2a). (3.21)

Expansian in powers of a, yields

w(zo)/n(zo) = a + (Mi/12)a3 - (Mf(-M2)/6o)a5

+ (Mf(—M2)2/630)a7 - (Mf(-M2)3/11340)a9

+ . . . . (3.22)

. m m
The refined data, (d n(zo)/dzo)m=1’2. , are now mapped

from (dmw(z )/dzm) by taking m derivathms with
0 O m=1,2,..

respect to zo. The result is

a(dmn(zo)/dz§) = amw(zo)/az§ - iEOB§a2i+3 (3.23a)

where

(1/12)(dm(an)/dz§)

0
3
3
5

l
I

{
1
1

llm (1/6o)(dm(anM2)/dz§)

(3.23b)

Bm (1/63o)(dm(anMg)/dz§)

N
)

I
I

C
!

IIm (1/11340)(dm(anMg)/dz§).

Additional equations are needed to associate the

m)o m=1,2..‘ To flnd theseunareiined data with (de(zo)/dz

eQHations, let (a) Z(zo) be the image coordinate associated

Witfli the cell face coordinate zo, (b) yI be the plane of

fOClis within the cell, (c) zI(zo) be the image plane
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z coordinate of the photon pencil associated with 20, and

(d) note that H/l is the magnification factor of the

interferometer. Then,

lz(zo)/H = 21(20) - 21(0) (3.24)

where 21(0) = 0 when the front face of the cell is focused.

Use of Equation 3.19 in Equation 3.24 yields

lZ(zo)/H = z + (M1(zo)/(2m2(zo))>(cos(<-M2(zo))1/2y1) - 1)
0

- (M1(o)/(2M2(o>))(cos((-M2(o))1/2y1) - 1).

(3.25)

Taking m derivatives with respect to 20, we find

(l/H)(dmZ(zo)/dzm) = am,1+ (yi/4)<amml(zo)/dz§) + - - (3.26)

where m = 1,2.. Equation 3.25 is used to determine

the conjugate image coordinate, Z, of a particular cell

face coordinate, zo; and Equation 3.26 is used to determine

derivatives of the optical path with respect to cell

face coordinate 20.

The difficulty with using Equations 3.25, 3.26, and

m)
. . m

3.23a is that the refined data, (d n(zo)/dzo m=1,2. ., appears

to the right of all equalities. A simple iteration procedure is

possible, however. The 1th order iteration proceeds as follows:

1. Assume an ith order approximation to the set

(dmn(zo)/dzm)o m=1,2.. and calculate M1(zo) and M2(zo) in

the ith order with Equation 3.16b. Use these in the right

hand side of Equation 3.25 to determine z(zo) in the

ith order. The unrefined data, (de/dzm)m_1 2 , are now
_ , to
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associated with 20. A convenient ch order approximation to

M1 18 zero; i.e., (M1)ch order = O.

2. Use the ith order approximation to M1(zo) in the

right hand side of Equation 3.26 to calculate (dmZ(zO)/dz§)m_1 2 .
"' , o.

3. Calculate (de(zo)/dz:) with the chain rule equations
m=1,2..

dW(zo)/dzo = (dz/dzo)(dw(z)/dz)

d2w(zo)/dz§ = (dZZ/dz§)(dW(Z)/dz)

(3.27)

+ (dz/dzo)2(d2w(z)/dz2)

etc.

4. Use the ith order approximation of (de(z )/dz _ ,
—

O 0 Ill—1,2...

M M and the derivatives of M1 and M2 in the right
1’ 2’

hand side of Equation 3.23 to calculate the iiith order

approximation of (dmn(zo)/dz§)m=1’2 .’

5. Iterate until two successive approximations agree within

the desired accuracy.

The refined data of any particular nonequilibrium

experimental configuration are now unambiguiusly determined.

From these data it is possible to map either the temperature

derivatives of the refractive index or the spatial derivatives

of the temperature. Section 3.5 and 3.6 establish the

mathematical procedures for calculation of (dun/dTm)m=1’2...

and (me/dzm)m=1’2.. from the refined data, respectively.
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3.5 Refractive Index: Temperature Dependence

For a one component liquid the temperature

derivatives of the refractive index are simply related to

the refined data, (dmn(z)/dzm) by the chain rule
m=1,2..’

expressions

dn/dT = (dz/dT)(dn/dz)

d2n/dT2 = (dzz/dT2)(dn/dz)

(3.28)

+ (dz/dT)2(d2n/d22)

etc.

These equations can be used to evaluate the temperature

derivatives of the refractive index provided the temperature

distribution is known. In the absence of unusual energy

sources or anomalous energy fluxes, the temperature

distribution is easily determined in the nonflowing, steady

state by72-74

(d/dz)k(dT/dz) = 0 (3.29)

where h is the thermal conductivity. Equation 3.29

must be solved subject to the boundary conditions

T(z) = T at z = O

U (3.30)

T(z) = TL at z = l

where TU is the temperature of the upper plate, and

TL is the temperature of the lower plate.

The temperature dependence of the thermal conductivity

is adequately described by the second order, truncated Taylor

seriequ

k(T) = k(TM) + (dk(TM)/dT)(T - TM)

+ (1/2)(d2k(mM)/dT2)(T - TM)2

where TM is the mean temperature defined by

(3.31)
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3.5 Refractive Index: Temperature Dependence

For a one component liquid the temperature

derivatives of the refractive index are simply related to

the refined data, (dmn(z)/dzm)m=1’2.., by the chain rule

expressions

dn/dT = (dz/dT)(dn/dz)

d2n/dT2 = (d2z/dT2)(dn/dz)

(3.28)

+ (dz/dT)2(d2n/d22)

etc.

These equations can be used to evaluate the temperature

derivatives of the refractive index provided the temperature

distribution is known. In the absence of unusual energy

sources or anomalous energy fluxes, the temperature

distribution is easily determined in the nonflowing, steady

state by72'74

(d/dz)k(dT/dz) = 0 (3.29)

where k is the thermal conductivity. Equation 3.29

must be solved subject to the boundary conditions

T(z) = TU at z = o

T(z) T at z = 1
L

where TU is the temperature of the upper plate, and

TL is the temperature of the lower plate.

The temperature dependence of the thermal conductivity

is adequately described by the second order, truncated Taylor

serieszq

k(T) = k(TM) + (dk(TM)/dT)(T - 2M)

2 2 2 . 1

+ (1/2)(d k(TM)/dT )(T - TM) (3 3 )

where TM is the mean temperature defined by
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T = TU -.ATo/2 = TL + AH0/2 (3.32a)

and

as; = TU - TL. (3.32b)

With Equations 3.31 and 3.30, the integrated form of

Equation 3.29 is

2

012 =£Eé1/(n+1)!)(dnk(TM)/dTn)((T - TM)n+1 - osTo/2)n+1)

h (3.33a)
W ere

c1 = -1‘1(k(TM)ATO + (1/3)(a2k<TM)/dw2)(mo/2)3>. (3.331s)

T(z) is a root of Equation 3.33a (a cubic equation) and

is defined to be T3.33(z). It is numerically computed

from the above equations.

From the refined data associated with z0 in a

particular steady state experiment, Equation 3.33a is used

to determine T(zo). The temperature derivatives of

Equation 3.33a, evaluated at T(zo), are used in Equation 3.28

to calculate (dmn(T)/dTm)m=1’2...

3.6 Temperature Distributigg

When the temperature dependence of the refractive

index is known, it is possible to map the temperature

distribution from the refined data. By the chain rule,

dT/dz = (dn/dz)(dT/dn)

d2T/dz2 = (d2n/dz2)(dT/dn)

+ (dn/dz)(dT2/dn2) (3.34)

etc.
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On the right hand side of these equations, the

(amn(zo)/dz‘§) are known, and the (me(zo)/dnm)
m=10200

m=1’2'°

can be calculated from the empirical cubic equation

n(T) = A + BT + 0T2 + DT3 (3.35)

provided T(zo) is known. Equation 3.35 is adequate for

visible wavelengths in the ordinary temperature range 20°C

to 40°C. The coefficient of the cubic term is usually

vanishingly small. Because T(zo) is an unknown, an

iteration procedure is necessary. A suitable ith order

iteration is:

1. Assume an ith order approximation to T(zo); calculate

the ith order approximation to (me(zo)/dz§)m=1’2..

with Equations 3.34 and 3.35. A convenient 9th order

approximation to T(zo) is

(T(zo))9th = TU - (ATo/2)zo. (3.36)

2. Calculate the i+1th order approximation to T(zo)

from the Taylor expansion

T(zo) = §O(me(zo-€)/dzm)(ém/m!). (3.37)

where E is some small distance, and TU is known.

 





CHAPTER 4

NONISOTHERMAL, NONCONVECTING LIQUID STATES

4.1 Introduction

As temperature increases, liquid density decreases.

Consequently, when a horizontal parallel plate apparatus

is heated from above, the liquid density increases as the

lower plate is approached. This results in a liquid

layer which is stable to convective motion(provided that

cell end effects are unimportant). A11 liquid motion decays

to stable, time-independent, nonconvecting thermodynamic

states. Far from boundary or interface, measurements of

liquid temperature distribution in these nonequilibrium,

nonconvecting states have shown that the temperature

is described by the Fourier-Laplace equation

V-kVT = o. (4.1)

For horizontal parallel plates in the absence of end

effects, Equation 4.1 becomes

(d/dz)k(dT/dz) = 0 (4.2)

where the temperature distribution, T(z), is a function

of the vertical coordinate, 2, which is measured from the

upper plate.

The parameter k of Equation 4.2 is experimentally

found to be a liquid property. At ordinary temperatures
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k depends to a small degree upon temperature; it is

independent of temperature gradient. Highly nonlinear

temperature distributions which may be found in.regions

for which Equation 4.2 may not be valid(i&g,, near walls

or interfaces) are described by the experimentally found

temperature, T(z), minus the temperature predicted by

Equation 4.2, T Equation 3.33 is the solution to

3.33’

Equation 4.2 subject to the boundary conditions which are

taken to be the temperature of the upper and lower silver

plates; these are TU and TL, respectively. The function

T(z) - 3(z) is called the deviation from linearityT

3.3

because the temperature dependence of k is so small at

ordinary temperatures that the solution of Equation 4.2

is essentially linear in the vertical coordinate.

1 called k(T) the "interiorJoseph Fourier

conducibility." He recognized that Equation 4.2 describes

all energy flux in the absence of external effects through

the Fourier heat flux relationship,

Jz = -de/dz, (4.3)

where Jz is the total heat flux in the z direction.

We concur with Fourier but restate the external effects

provision:

Equation 4.2 describes T(z) in the nonflowing,

steady state provided that z is far enough away

from any boundary interface. The interface may

be solid-liquid, solid-solid, solid-gas, liquid-

gas, etc.

{This statement is valid because there is no experimental

evidence to the contrary. Equation 4.2 describes all
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temperature distributions which have been observed far

from boundaries.

In this chapter we present quantitative, experimental

temperature distributions for ethyl acetate, benzene, and

carbon tetrachloride. The nonlinear temperature distributions

which are found near the bounding silver walls of these pure

liquids demonstrate the failure of Equation 4.2 as the

liquid-solid interface is approached. The temperature

distributions are determined with the Bryngdahl interferometer

and mathematical analysis described in Chapter 3. Analysis

of the dependence of the nonlinearity upon the temperature

difference

ATO = T - TL > O (4.4)
U

is made, and the variation of the exhibited magnitude of the

nonlinearity from liquid to liquid is established. Evidence

is presented which suggests that Equation 4.2 describes

the temperature distribution in water at all distances

from the solid-water interface but with a temperature

jump or discontinuity at the interface. Such temperature

discontinuity may be viewed as a degenerate nonlinearity

in the sense that the nonlinearity is over a distance

too small to be observed with the Bryngdahl interferometric

probe.

Irregular temperature distributions near liquid-

solid interfaces have been reported by a number of authors.

2
In 1933 Bates found that "temperature drops" across the

solid-liquid interfaces resulted in significant variations
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in the experimentally determined thermal conductivities

of water and red oil when the solid boundary was either

copper or Duco lacquered copper. He reported that a

surface effect exists which must be considered different

from the effects of the.boundary layers associated with

convecting fluids.

In 1957 Longsworth3 used a nonisothermal technique

and Rayleigh interferometry to study the Soret coefficients

of KCl solutions. The Rayleigh cell was sandwiched between

horizontal parallel p1ates(;_¢ 1 cm, ATo d 10°C). Pure water

was found to exhibit highly nonlinear temperature distributions

near bounding surfaces of either silver or stainless steel.

Longsworth reported that the "temperature drop" in water

is 2.4% to 3% of ATo with silver plates and 7% for stainless

steel. He takes these temperature draps into account in the

evaluation of Soret coefficients.

Neglect of nonlinear temperature distribution near

walls can cause systematic error in experimental thermal

conductivity calculations. Recognizing this, Poltz has

developed the concept of "effective thermal conductivity"

for liquidsf‘"7 He defines an effective thermal conductivity,li

keff’ such that

km = marrow, = (gnome + Jr) (4.5a)

= kc + (l/ATO)Jr (4.5h)

‘where l is the distance between the horizontal parallel

‘plates, and J2 is the total heat flux(W/cm2) in the z

direction. The conductive heat flux, JC, is defined to
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be the total heat flux, Jz, minus the radiative heat flux, Jr

A11 fluxes are in the vertical, 2, direction. The parameter

kc defined in Equation 4.5b is called the "thermal

conductivity" by Poltz. From these definitions it is

apparent that Poltz uses keff as the parameter in Equation

4.2. Thus, the validity of Equation 4.2 in describing

the temperature distribution is extended to all domains

whether near or far from walls. Consequently, the effective

thermal conductivity depends upon (1) cell geometry and

(2) the nature and magnitude of the solid-liquid interaction.

Because it is not generally a property of the liquid,

the effective thermal conductivity of Poltz and the

interior conducibility of Fourier are not identical.

Analyzing what he perceives to be the radiative heat

flux, Poltz finds

k = kc + (16n2aT3/3E)Y(e,t) (4.6)
eff

where Y(e,t) is a function such that

lim Y(e,t) = 1 (4.7)

£*”

and where n and g are the average refractive index and

average absorption coefficient(cm-1) of the liquid media,

respectively. e is the emissivity of the plate surfaces,

and o is the Stefan-Boltzmann constant:

a = 5.66910 x 10'9 Wcm'2k‘“. (4.8)

The optical density,t , is defined by

r = 1g. (4.9)

Taking the limit of Equation 4.6 as law , making the
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fundamental assumption that kc is a liquid property which

is independent of cell geometry, and employing Equation

4.7 we find

lim k = kc + 16n20T3/3g. (4.10)

l7)”

eff

Because the right-hand side of Equation 4.10 is the sum

of two properties, the limit as l+°° of keff must be a

property. Being both a liquid property and the thermal

parameter of Equation 4.2, the limiting value of keff

must be equivalent to Fourier's interior conducibility:

112° keff = k. (4.11)

Poltz's experimental program for determination of

the interior conducibility is: (1) measure keff(l) with

Equation 4.5a at several cell heights and (2) extrapolate

the results to l = «L This yields the interior conducibility

by Equation 4.11. Using copper plates(e = 0.04), Poltz

finds an increase in keff for toluene of 7% when l is

increased from zero to infinity at a mean temperature

of 80°C.4 When the mean temperature is 20°C, keff increases

by 3.6% but the increases is 85% complete for the cell

height of 3 mm. Similar increases of 4-7% are found

for the weak infrared absorbing liquids: benzene, m-xylene,

carbon tetrachloride, and paraffin.5’6 The effective

thermal conductivity of the strong infrared absorbers

n-propanol, iso-propanol, n-butanol, sec-butanol, and

iso-butanol increases by less than 1% with increasing ;.7

In related work Novotny and co-workerss'9 have
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evaluated the radiative contribution to energy transport

for carbon tetrachloride using experimental, frequency

dependent, absorption spectra. This seems to be the only

work of its kind for a liquid.

Direct interferometric observation of temperature

distribution near and far from walls has been reported.

In 1970 Schodel and Grigull10 used horizontal parallel

plates heated from above in conjunction with a Mach-

Zehnder interferometer to establish and determine temperature

distribution. They found nonlinear temperature distributions

for carbon tetrachloride, paraffin, and carbon disulfide,

while water and methanol exhibited linear temperature

distributions. Figure 4.1A reproduces their data for

carbon tetrachloride. The magnitude of the temperature

gradient shown in Figure 4.1A increases by 25% as the

solid-liquid interface is approached from the cell center.

There is also a central region(0.25 é z/l s 0.75) in

which the temperature gradient is constant. The cell

height is 1.5 cm; therefore, the nonlinearity lies within

0.4 cm of the liquid-silver interface(e = 0.05).

Olson and Horne have used nonisothermal Bryngdahl

11
interferometry to study the refractive indices and thermal

12 of pure liquids in a horizontal parallel plateconductivities

arrangement. Finding parabolic steady state fringe shapes for

carbon tetrachloride, cyclohexane, and benzene,11 they suggest

that the observed parabolas are caused by slight nonlinearities

in the steady state temperature distribution. Further,
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Figure 4.1

(A) Reduced temperature gradient, (dT/dz)/(dT/dz)l/2,

versus z/l for carbon tetrachloride when l = 1.5 cm,

e = 0.05, and ATo = 2.0000. From G. Schodel and

U. Grigull.10

(B) Deviation from linearity, T - T3 33, of C014 in a

cell 0.810 cm high. T = 26.40°c, TL = 23.6o°c.
U

From J. D. Olson.12
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they speculate that the unexpected nonlinearities are

due to anomalous interactions between liquid and metal

boundaries. Olson12 has computed the temperature distribution

necessary to explain the parabolic fringe shape exhibited

by carbon tetrachloride between silver plates(l = 0.810 cm,

ATo = 2.8000C). The resulting deviation from linearity

is plotted versus z/l in Figure 4.1B. Near the upper

plate the temperature is a maximum of 0.0150C less than

the prediction of Equation 4.2. Near the lower wall the

temperature is a maximum of 0.0300C greater than the

prediction of Equation 4.2. In the central region

(0.2 cm s 2 $ 0.55 cm) the temperature distribution is

essentially linear.

Gurenkova gt all; have used a double beam diffraction

interferometer to evaluate temperature distributions. They

found distributions qualitatively similar to those of

Figure 4.1 for toluene, hexane, and octane. The nonlinearities

for water and liquid alcohols were negligibly small.

4.2 Nonlinear Temperature Distributiggg: Ethyl Acetate,

Benzene, Carbon Tetrachloride

All liquids studied are high purity. Methanol

is "acetone free" Matheson, Coleman, and Bell A.C.S.

Analyzed Reagent. Benzene is Matheson, Coleman, and

Bell Spectroquality. Carbon tetrachloride is Baker

Analyzed "Spectrophotometric" Reagent with 0.00 absorbance

at 400 nm. Ethyl acetate is Mallinckrodt A.C.S. Analytical
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Reagent. These organic reagents are freshly opened.

Doubly distilled water with an electrical conductivity

of 0.4umho/cm is degassed by boiling just prior to use.

This eliminates troublesome air bubbles within the liquid

cell.

When the large temperature gradients needed to

study nonlinear temperature distributions are applied to

the pure organic liquids, strong refraction of the inter-

ferometric light beam causes the beam to be refracted

completely out of the optical train. This makes it

impossible to count photometrically the number, N(H/2), of

fringes which evolve at the image center, and the experimental

procedure of Section 3.3 must be altered. All isothermal

experimental aSpects remain unchanged he nonisothermal

aspects are modified as follows: once the nonequilibrium,

steady state temperature distribution is established, lens

L1 is lowered until (1) the interferometric light beam

traverses the optical train, and (2) the cell face is

sharply focused. The fringe shape is measured from a

photograph of the steady state image. Assuming T(H/2) is

the mean of TU and TL, N(H/2) is calculated from Equation 3.6.

The sum of the fringe shape and N(H/2) is the fringe number,

N(Z).

Table 4.1 contains the indices of refraction at

632.8 nm which are used with the methods of Section 3.6

to evaluate the temperature distribution, T(z). In

computing these functions, the temperature dependent
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parameters A(T), B(T), and C(T) of Cauchy's formula,20

n(T,1) = A(T) + B(T)/l2 + C(T)/14, (4.12)

are evaluated by the method of least squares from reported

refractive indices at specific temperature and variable

wavelength. A(T), B(T), and C(T) are then fitted to the

best quadratic temperature equation with the least squares

method. Table 4.1 lists the final results evaluated at

632.8 nm. The standard deviation of n(T,l) determined in

this manner agrees with the experimental data within the

reported experimental uncertainty. Table 4.2 lists thermal

conductivity functions used in the calculation of T3.33.

Two aspects of the data reduction must be justified:

(1) neglect of the pressure dependence of refractive indices

and (2) Equation 3.24. Concerning the pressure dependence,

‘1 for benzene at 24.800C,

1

(an/8P)T = 5.057 x 10'5 atm

1 atm, and 643.9 nm;14 (an/8P)T = 1.462 x 10.5 atm- for

water at 23.10C, 1 atm, and 589.3 nm;21

-1

and (an/3P)T =

4.056 x 10"5 atm for methanol at 22.80C, 1 atm, and

1
589.3 nm.2 Thus a fluctuation of 0.1 atm causes a

3

refractive index fluctuation which is smaller than the

experimental uncertainties reported in Table 4.1. Furthermore,

since (an/3T)P = -1.071 x 10-4 o -1C for water at 1 atm and

632.8 nm, the refractive index of water decreases by about

10-3 units during a temperature increase of 10°C, a typical

temperature difference between plates; but the refractive

index increases by about 5 x 10"6 units during a pressure

increase of 0.1 atm. Even at these large variations of
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pressure, the pressure induced refractive index variation

is less than 1% of a typical temperature induced variation.

These points justify the neglect of pressure variation.

Equation 3.24 asserts that when the cell face is

focused:

Z(zo) = (H/_1_)z0 (4.13)

where Z is the vertical image coordinate of a photon

pencil which enters the liquid at the vertical coordinate

20; l is the cell height; and H is the isothermal image
 

height. In general this simple relationship is incorrect.

Alterations in relative lens position during the isothermal-

nonisothermal experimental sequence cause changes in the

magnification factor which is H/l in Equation 4.13. To

prove the validity of Equation 4.13 for our experimental

procedure, the nonisothermal image height predicted by

Equation 4.13 is compared to the experimental, nonisothermal

image height. Isothermal and nonisothermal image hieghts

differ because light is refracted toward the lower

temperatures, which causes a portion of the interferometric

radiation to strike the lower silver plate. This portion is

reflected out of the optical train, thereby reducing the

 

image height in the nonisothermal, experimental configuration.

It is easily seen from Figure 4.2 that the cross section of

the interferometric beam leaving the cell-plate composite

will have the effective height(l-eff) given by

1 l (4.14)
—eff = - - zend(0)
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Figure 4.2

Light refraction in a nonisothermal experimental

configuration; TU) TL. The pencil of light shown

enters the liquid at z0 = 0. It leaves at coordinate

zf(0) and angle af(0). This pencil travels through

the glass cell at angle Bf(0), refracts in air, and

travels at angle Yf(0) until direction is altered by

the Bryngdahl optical train.
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where zend(0) is the vertical coordinate of the light

pencil, which enters the cell at 20 = 0, passing beyond

the silver plate. From the definition of zend(0)’ we

have the trigonometric relationship

zend(0) = zf(0) + L tan flf(0) + K tan Yf(0) (4.15)

where the distances L and K are defined in Figure 4.1.

L and K are 0.635 cm and 2.450 cm, reSpectively. The angles

af(0), Bf(0), and 7f(0) are also defined in Figure 4.2.

They are related by Snell's refraction law by22

nf(0)sin af(0) = nglassSin Bf(0)

= natmsin vf(o). (4.16)

nf(0) is the liquid refractive index experienced by the

upper most light pencil leaving the liquid. The refractive

index of glass, is 1.52; the refractive index of
nglass’

air, natm’ is 1.000276.23 From Equations 4.14, 4.15, and

4.16, we have

1,- leff = zf(0) + L tan sin-1((nf(0)/ng1ass(0))sin af(0))

+ K tan sin-1((nf(0)/natm)sin af(0)). (4.17)

To find af(0), we have

tan a = dz/dy = ((n(z)/n(zo))2 - 1)1/2 (4.18)

by Equation 3.12. Furthermore, combining Equations 3.16a,

3.18b, and 4.18 and evaluating the results at y = a =

5.986 cm, we have

2

af(0) = tan-1(12 MV(M1(2M2)-1(cosh(M:/2a) - 1 ))V).
v=1

(4.19)
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Equations 4.17 and 4.19 can now be used to calculate

leff‘ Equation 4.13 is correct if (H/_l_)leIf = Heff

equals the experimentally determined, nonisothermal,

image height. Table 4.3 includes the isothermal shear

parameter(2D), the interfringe distance(6), the isothermal

and nonisothermal experimental image heights, and the

computed effective height, H The last column is the

eff“

per cent deviation of the calculated height from the

experimentally determined height. In all instances, the

deviation is 1% or less. Because deviations of this

magnitude are within the uncertainty of the measured

value of H, the validity of Equation 3.24 is established.

Figures 4.3 through 4.7 are photographic prints

of nonisothermal configuration images of water, ethyl

acetate, benzene, carbon tetrachloride, and methanol.

The fringe shapes exhibited at different ATO may be

qualitatively discussed if we temporarily neglect the

bending of light in a temperature gradient. Then the

fringe number, N(z), is simply related to the temperature

gradient by Equation 3.6:

N(z) 2‘ (2Da_l_/}.H)(dn/dT)(dT/dz). (4.20)

dn/dT data of Table 4.1 are linear functions of temperature

in the temperature range of interest for all liquids.

Thus, if dT/dz is a constant independent

of z, N(z) is expected to be a linear function of z by

Equation 4.20. This expectation is confirmed at all AT0

from the Figure 4.3 nonisothermal data for water. Water,
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Figure 4.3

Nonisothermal Bryngdahl interferometric image of water at

several temperature differences between upper and lower

silver plates. 1 = 1.349 cm; ATO = 10.028°c, 13.047°c,

and 16.69100.
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Figure 4.4

Nonisothermal Bryngdahl interferometric image of ethyl

and lower silver plates. 1 = 1.349 cm; ATO = 2.24400,

1

acetate at several temperature differences between upper

6.261%, and 10.019°c. 1
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Figure 4.5

Nonisothermal Bryngdahl interferometric image of benzene

at several temperature differences between upper and

lower silver plates. 1 = 1.349 cm; ATo = 2.3990C, 7.25600,

10.52900, and 15.06300.
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Figure 4.6

Nonisothermal Bryngdahl interferometric image of carbon

tetrachloride at several temperature differences between

upper and lower silver plates. 1 = 1.349 cm; ATo = 2.63700,

5.976%, 7.729%, and 12.71300.
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Figure 4.7

Nonisothermal Bryngdahl interferometric image of methanol

at several temperature differences between upper and

lower silver plates. I = 1.349 cm; ATo = 4.7390C,

9.297°C, 12.125°C, and 13.4880C.
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therefore, seems to satisfy Equation 3.33; Equation 3.33

describes the temperature distribution within observable

distances from the silver-water interfaces. The temperature

dependence of dn/dT for ethyl acetate, benzene, carbon

tetrachloride, and methanol is only 1/10th to 1/5th that

of water. Because dn/dT is essentially constant for these

liquids, N(z) is proportional to the temperature derivative,

dT/dz. From the nonisothermal images of ethyl acetate in

Figure 4.4, N(z) is nearly independent of 2 at ATo = 2.240C;

therefore, dT/dz is essentially a constant. However, at

ATo = 6.2600, N(z) develops curvature near both the upper

and lower plates. This indicates nonlinear temperature

gradients in these domains. At ATo = 6.2600 and intermediate

values of the vertical coordinate, the fringe shape is

seen to be a linear function of the vertical coordinate.

This is the expected shape when dn/dT depends slightly

upon temperature, and dT/dz is a constant. At ATo = 10.0200

very pronounced fringe curvature is seen near both upper

and lower silver-ethyl acetate interfaces; the central

region still displays the expected linear fringe shape.

These qualitative observations indicate (1) nonlinear

temperature distribution near the silver-ethyl acetate

interface, (2) the magnitude of the nonlinearity increases

with increasing AT and (3) there is a central region
0,

in which dT/dz is constant.

Qualitatively comparable results are found for

benzene and carbon tetrachloride in Figures 4.5 and 4.6,





 

123

respectively. Only the magnitude of the nonlinearity

and its extension from the metal-liquid interface vary

between ethyl acetate, benzene, and carbon tetrachloride.

Methanol exhibits a characteristically different fringe

pattern in Figure 4.7. In the methanol nonisothermal

images, the expected vertical fringe pattern has small

amplitude wiggles superimposed upon it. The wiggles

are time independent with amplitude which grow slightly

with increasing ATO. By placing a rubber bulb over the

cell fill holes and "plunging," the wiggles could be made

to oscillate frantically with large amplitude at high ATO.

These time dependent fringe shapes are characteristic of

turbulent convection which strongly suggests that the

irregular, time independent wiggles are caused by

laminar convection. Observed laminar and turbulent motion

experimentally proves the importance of end effects in

the present apparatus, and the characteristic wiggles

provide a convenient test for such liquid motion. For

example, ethyl bromide is found to exhibit steady state

fringe shapes identical to those of methanol, but the

time dependent behavior can be induced at much lower ATO.

Thus, both methanol and ethyl bromide are unsuitable for

studies of temperature distribution in nonconvecting

media. The characteristic fringe pattern of methanol is

also observed for ethyl acetate at ATO above 1200,

indicating a critical, liquid dependent ATO above which

end effects become important through their production of
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convection.

To analyze quantitatively for temperature

distribution, the fringe numbers are fitted in a least

squares sense to spatial polynomials of degree 3 to 6.

The method employed uses orthogonal Chebyshev polynomials

in the discrete range.24 Results are reported in Table 4.4.

The raw data are processed by methods described in Sections

3.3 and 3.4. Temperature distributions are mapped by the method

of Section 3.6 with the refractive index temperature derivatives

given in Table 4.1. The temperature at z = 1/2 is assumed

to be given by Equation 3.33 subject to the boundary

conditions T(O) = TU, T(l) = TL' T3.33(z) is computed

from Equation 3.33 subject to the calculated boundary

temperatures. The resulting deviation from linearity,

T(z) - T3.33(z), for benzene and carbon tetrachloride are

recorded in Figures 4.8 and 4.9, respectively.

Certain-features of these figures are clear: (1) a

negative deviation from linearity exists near the upper

silver-liquid interface, (2) a positive deviation exists

near the lower silver-liquid interface, (3) the deviation

magnitude depends upon ATO, and (4) a central region

exists in which the deviation from linearity is linear

in the vertical coordinate. There are some disturbing

aspects of these figures. First, because both upper and

lower plates are identical, we expect a high degree of

symmetry with respect to inversion through the cell center.

Figures 4.8 and 4.9 have far larger negative deviations
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Figure 4.8

Temperature deviation from linearity, T(z) - T3.33(z),

for benzene at several temperature differences between

upper and lower silver plates. The refractive index

temperature derivatives of Table 4.1 are used in the

method of Section 3.6 to compute T(z) from the refined

experimental data. I = 1.349 cm.
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Figure 4.9

Temperature deviation from linearity, T(z) - T3.33(z),

for carbon tetrachloride at several temperature differences

between upper and lower silver plates. The refractive

index temperature derivatives of Table 4.1 are used in

the method of Section 3.6 to compute T(z) from the refined

experimental data. 1 = 1.349 cm.
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from linearity than positive; other curves are found

with far larger positive deviation than negative. Second,

we expect a regular increase in deviation with increasing

ATO; yet, near the lower plate an irregularity is found

for benzene(ATo = 7.2600). Systematic error, due to lens

aberrations, is the cause of these disturbing points.

Lowering lens L1 to bring the interferometric light beam

back into the optical train and to refocus the cell face

causes a repositioning of the light beam upon each lens.

For example, in the isothermal configuration the light

beam passes through the center of each lens. The need to

lower L1 in the nonisothermal configuration, however,

causes the light beam to traverse L1 just below center,

L2 just above center, etc. This results in systematic

distortion of the cell image. Correction for the distortion

is made as follows.

Choose two points, z and Z2, a distance m apart
1

such that

21 = (l_~ m)/2, and 22 = (l + m)/2. (4.21)

Furthermore, choose the distance m such that

dT(zl)/dz = dT(z2)/dz = dT(l/2)/dz, (4.22)

and make the following definitions:

dn(T)/dT a A + BT, (4.23)

- z2

I1 = i (dn/dz)dz, and (4.24)

1

12 E f2 (d2n/dz2)dz. (4.25)

Z

1
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The integrals 11 and 12 are numerically evaluated from

the refined, experimental data. Equations 4.21 to 4.25

can be combined and manipulated to show that

2
B = 12/m(dT(l/2)/dz) (4.26)

where B is defined by Equation 4.23. Equation 4.26 is

used to estimate B by approximately the temperature

derivative as -ATo/l. Equations 4.21 to 4.25 can also be

combined and manipulated to show that

aA2 + bA + 0 = 0 (4.27a)

where

a = T(l/2)12 (4.27b)

0
"

fl n(dn(_l_/2)/dz)2 - 11dn(;/2)/dz + 2T(;/2)12B

(4.270)

(123(T(;/2))2 — Ildn(l/2)/dz)BT(l/2). (4.27s)C

The final parameter of Equation 4.23, A, is the root of

Equation 4.27. In this manner, the parameters A and B

have been effectively adjusted so as to satisfy the

condition stated in Equation 4.22; image distortions are

thereby contained within these parameters. Choosing

m = 0.2;, the resulting parameters are reported in Table 4.5.

With the refractive index temperature derivatives of

Table 4.5 and the methods of Section 3.6, the temperature

distributions shown in Figure 4.10 through 4.12 are mapped.

These figures are temperature deviation from linearity

corrected for interferometric image distortion. They show
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Figure 4.10

Temperature deviation from linearity, T(z) - T3.33(z),

for ethyl acetate at several temperature differences

between upper and lower silver plates. These curves

are corrected for image distortion by using the refractive

index temperature derivatives of Table 4.5 in the method

of Section 3.6 to compute T(z) from the refined experimental

data. 1 = 1.349 cm.
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Figure 4.11

Temperature deviation from linearity, T(z) - T3.33(z),

for benzene at several temperature differences between

upper and lower silver plates. These curves are corrected

for image distortion by using the refractive index temperature

derivatives of Table 4.5 in the method of Section 3.6 to

compute T(z) from the refined experimental data. 1 = 1.349 cm.
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Figure 4.12

Temperature deviation from linearity, T(z) - T3.33(z),

for carbon tetrachloride at several temperature differences

between upper and lower silver plates. These curves are

corrected for image distortion by using the refractive

index temperature derivatives of Table 4.5 in the method

of Section 3.6 to compute T(z) from the refined experimental

data. I = 1.349 cm.
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(1) regular increase in negative deviation with increasing

ATO near the upper plate, (2) regular increase in positive

deviation with increasing ATo near the lower plate, and (3)

a central region in which the deviation is a linear function

of the vertical coordinate. The maximum observed deviations

are -0.o28°c at z = 0.243 cm and 0.025°C at l-z = 0.236 cm

for ethyl acetate(AT0 = 1o.019°c); -o.107°c at z = 0.216 cm

and 0.079°c at 1:2 = 0.297 cm for benzene(ATo = 13.063°c);

-0.16o°c at z = 0.233 cm and 0.12400 at l—z = 0.270 cm for

carbon tetrachloride(ATO = 12.7130C).

Comparison of ATO and the interferometrically

determined difference between the temperature of the liquid

at the upper plate and the temperature of the liquid at

the lower plate, AT, as reported in Table 4.5, reveals

discrepancy. AT0 is the temperature difference between

upper and lower silver plates as measured by thermocouples

placed just outside the cell. ATo is consistently smaller

than AT when Table 4.5 temperature derivatives are used

to compute AT; however, ATO and AT are identical when

Table 4.1 temperature derivatives are used. This latter

fact is a computational artifact, just as the similarity of

ATO/l and -dT(l/2)/dz(see Table 4.5) is a computational

artifact in the former case. Linear least squares analysis

shows

AT - ATO = 1.00 x 10-2AT (4.28)
O

2 0C

a 0.9 x 10-

for ethyl acetate;
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AT — ATO 2.43 x 10’2ATO (4.2 )

2 o

0:306X10- C

for benzene; and for carbon tetrachloride

5.67 x 10‘2ATo (4.30)AT - ATo

2 0C

0 = 3.8 x 10-

where a is the standard deviation.

The hypothesis that these discrepancies are a true

reflection of temperature control and measurement technique

is tested by replacing the liquid cell with a white pine block

(5.900 cm x 5.876 cm x 1.915 cm). Twenty-two nonisothermal

experiments in which AT is measured by thermocouples placed at

the center of the wood-silver interfaces and ATO is measured

by thermocouples placed just outside the wood cell show

(4.31)AT — AT0 2.37 x 10'2AT
O

1.0 x 10‘“2 °c0

where -4.7°C$ATOS 8.1°c. ATo is smaller than AT. The

discrepancy is due to the water flow in upper and lower

water jackets which is effectively from a position

corresponding to the metal-liquid(or wood) interface

center toward the outer edges. Because heat flow is

away from the upper plate, the heat bath water cools in

flowing toward the outer edges. In addition, heat flow is

toward the lower plate; therefore, heat bath water in the

lower water jacket heats in flowing toward the outer edges.

This results in a measured temperature difference, ATO,

which is smaller than the temperature difference AT.
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The reduced temperature gradient(RTG) is defined

as the ratio of temperature gradient to temperature

gradient at z/l = 0.5. Several important features are

apparent in the RTG of Figure 4.13. First, no systematic

behavior of RTG is found with increasing ATO; this ratio

seems to be independent of the applied temperature gradient,

ATO. Consequently, RTG's of differing AT0 are averaged

for each particular liquid. A second characteristic of

RTG curves is the exhibited nonlinearity near the solid-

liquid interfaces. At the upper interface, the temperature

gradient is 4.5% greater than (dT/dz)l/2 for ethyl acetate,

12.5% greater for benzene, and 30% greater for carbon

tetrachloride. These represent extremely large increases

in temperature gradient as interfaces are approached.

Central regions of RTG curves demonstrate the validity of

the Fourier-Laplace description of temperature far from

interfaces. Centrally, the temperature gradient is

constant. A final characteristic feature of RTG curves is

the relative magnitude of temperature gradient increase

as the lower plate is approached; the temperature gradient

increases as the lower plate is approached, but the

magnitude of increase is smaller than that observed as

the upper plate is approached. We believe these relative

differences to be due to data extrapolation problems, not

to physical differences between upper and lower silver

plates. At the lower plate a portion of the interferometric

light beam has struck and been reflected by the plate;
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Figure 4.13

Reduced temperature gradient, (dT/dz)/(dT/dz)l/2, for

ethyl acetate, benzene, and carbon tetrachloride.

Corrections have been made for interferometric image

distortion. l = 1.349 cm.
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Figure 4.14

Integrated absolute deviation from linearity,

1

(1/1) I [T - T ldz, as a function of AT . Corrections

- 0 3.33 0

have been made for interferometric image distortion. The

placement of the water curve is discussed in Section 4.3.

l = 1.349 cm for ethyl acetate, benzene, and carbon

tetrachloride. l = 0.474 cm for water.
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this portion provides no experimental data. The interval

not observed is l-leff(Equation 4.17). Temperature in

this interval is computed by extrapolating the observed

fringe shapes of Table 4.4. This procedure underestimates

the growth in N(z) as the lower plate is approached and

thereby underestimates the growth in temperature gradient.

The extent of the unobserved interval can be calculated

from the data of Table 4.3 by taking the image height(H)

at ATo = 0, subtracting Heff at a particular value of

AT and dividing by H/l. For benzene at ATo = 13.0630C,
0,

the unobserved interval extends 0.177 cm from the lower

plate. For smaller ATO, the interval is smaller.

Figure 4.14 is another useful representation of

the observed nonlinear temperature distributions. The

curves are the integrated absolute deviation from linearity.

They are functions of ATO, and the magnitude of their

first derivatives orders liquids as to the magnitude of

exhibited nonlinearity. Where a is the standard deviation,

we find

1

(1/;) 50 IT - T3.33|dz = 1.655 x 10 3ATO (4.32)

o 1.1 x 10“3 00

for ethyl acetate,

N II

1
- _ -3

(1/;)(0 |T T3.33ld 4.059 x 10 ATo (4.33)

0 = 3.9 x 10‘3 0C

for benzene, and
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7.839 x 10'3ATO (4.34)

1

(1/1) (0 IT - T3.33|dz

a = 8.8 x 10"3 00

for carbon tetrachloride. As discussed above, the temperature

distribution in water is described by the Fourier-Laplace

equation. Thus, neglecting the possibility of temperature

jump at the silver-liquid interface, an integrated absolute

deviation from linearity of zero is expected for water.

Figure 4.14, however, assigns water an entirely unexpected

position. This placement is discussed in Section 4.3.

4.3; Temperature Dependence of the Refractive Index of Water

Interferometric determinations of the temperature

derivatives of the refractive index of water seem to

depend upon whether an isothermal or a nonisothermal

experiment is utilized. This is illustrated in Figure 4.15

where

A1 = 100((dn/dT)i - (dn/dT)TT)/(dn/dT)TT. (4.35)

(dn/dT)i is the first derivative of the refractive index

with reSpect to the temperature, as determined by research

group i at 1 atmosphere pressure. The absolute refractive

index measurements of Tilton and Taylor(TT)25 are generally

considered most reliable and their thirteen parameter

equation for n(A,T) is used as a standard of reference.

Calculations of (dn/dT)i in Figure 4.15 are based upon the

best linear least square fit of the temperature variation,

11
except for the value reported by Olson and Horne which

is for a single temperature only(see Table 4.6). All
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by Tilton and Taylor for water at 1 atm. See Equation 4.35.

I =

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8
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Figure 4.15

cent deviation of dn(l,T)/dT from values reported

   isothermal determination, N = nonisothermal determination.

I. Hawkes and Astheimer.26

l

I. Eight wavelengths, Waxler gt al.14’27

I. Andreasson gt a;,28

I. Dobbins and Peck.29

N. Bryngdahl . 3O

11
N. Olson and Horne.

N. Equation 4.38: Data of this work analyzed with

methods of Section 3.5 and T(O) = TU’ T(l) = TL

assumption.

N. Equation 4.41; Implied by the ratio of Equation 4.40.
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interferometric studies which utilize isothermal states

1 -

of waterlk’ 25 29 agree with TT to within 4% in the

temperature range for which they are valid. The positive

curvature which results in a maximum positive 4% deviation

is due to the slight nonlinearity between dn/dT and T

which is fully described in the values of TT. However,

11'30 both of whichthe two nonisothermal determinations,

employ Bryngdahl interferometry, markedly differ from the

results of TT. It is possible that temperature jumps

in the nonisothermal, nonconvecting steady state may

contribute to or be the cause of this discrepancy. The

hypothesis of the existence of temperature jumps at the

metal-water interface is a natural extrapolation of observed

nonlinear temperature distributions(Section 4.2) in which

the deviation from linearity is negative at the upper

interface and positive at the lower interface. However,

in the case of temperature jump, the spatial interval of

nonlinearity would be smaller than that observable with

the Bryngdahl interferometer(less than 0.107 cm for the

present apparatus). Such physical phenomena would appear

as a temperature jump: the interferometrically measured

temperature difference between the liquid at the upper

metal-water interface and the liquid at the lower metal-

water interface, AT, would be less than the measured

temperature difference between upper and lower metal

plates, ATO, while the observed temperature distribution

is linear.
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To test this hypothesis we have examined water

in the temperature range 24-4000 with the experimental

procedure of Section 3.3. The cell height(l) and length

(a) are 0.474 cm and 6.771 cm, respectively. The raw

dataanxareported in Table 4.7. The fringe number associated

with the vertical coordinate l/2 times the interfringe

distance,0 , has an uncertainty of $0.003 cm, and the

angle of fringe from the vertical,13, has an uncertainty

of :10 min of arc. B is corrected for deviant verticality

of the isothermal image by subtracting the tangent of

the isothermal angle from the tangent of the nonisothermal.

This equals the tangent of the corrected angle. The

isothermal angle is typically 10-20 min of arc. The

temperature at z/l = 0.5 is assumed to be given by Equation

3.33 subject to the boundary conditions T(O) = TU and

T(l) = TL. First and second derivatives of the refractive

index with respect to temperature are mapped from the

refined data at z/l = 0.5 with the methods of Section 3.5.

The first derivatives are then fitted by least squares to the

best linear temperature equation. The second derivatives are

simply averaged and standard deviation calculated. In the

evaluation of the regression coefficients a and b for a

function such as

f(T) = a + bT (4.36)

by the method of least squares, the standard error of estimate

of f on T(o) is computed along with the standard error of the

regression coefficient a(aa), the standard error of the

regression coefficient b(ob), and the coefficient of
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Table 4.7

Nonisothermal experimental water data. N(l/2) is the

fringe number at image Center. B is the angle from

vertical of fringe in deg.min and corrected for deviant

verticality of the isothermal image. Angles of experiments

of identical ATO and TL have been averaged. The isothermal

parameters are H = 4.713 cm, 2D = 0.463 cm, and 6 = 1.239 cm

with standard deviations of 0.023 cm, 0.018 cm, and 0.018 cm,

respectively, for 67 isothermal experiments.

I = 0.474 cm, a = 6.771 cm.

 

 

Aug/00 Tl /OC N(l/2) B/deg.min

2.306 23.042 2.232 1.46

2.306 23.042 2.248 1.46

2.667 22.961 2.605 2.29

2.667 22.961 2.588 2.29

3.137 22.818 3.023 3.33

3.137 22.818 3.013 3.33

3.137 22.818 3.021 3.33

3.137 22.818 3.042 3.33

4.199 22.934 4.153 6.10

4.390 22.880 4.310 6.59

5.360 23.026 5.370 10.34

5.360 23.026 5.394 10.34

5.627 23.364 5.761 11.25

5.627 23.364 5.724 11.25

5.695 23.292 5.754 11.00

5.695 23.292 5.792 11.00

6.596 23.340 6.841 14.59

6.596 23.340 6.849 14.59

6.732 23.415 7.020 15.35

3.435 30.393 3.952 3.29

3.214 29.278 3.788 3.41

3.214 29.278 3.754 3.41

3.764 29.152 4.409 4.60

3.764 29.152 4.448 4.60

3.554 29.214 4.121 4.33

4.112 29.142 4.836 5.59

4.112 29.142 4.793 5.59

4.115 29.187 4.880 6.12

4.115 29.187 4.876 6.12

5.091 29.209 6.080 8.57

5.364 29.198 6.415 9.45

5.364 29.198 6.431 9.45

5.195 29.353 6.192 8.59

5.195 29.353 6.180 8.59

5.774 29.377 6.902 11.22     
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ATo/° TL/°C N(i/2) B/deg.min

5.774 29.377 6.904 11.22

6.151 29.391 7.387 12.55

6.151 29.391 7.412 12.55

4.365 31.388 5.401 6.34

4.365 31.388 5.372 6.34

4.413 31.525 5.444 6.26

4.413 31.525 5.435 6.26

4.498 31.679 5.685 7.03

4.498 31.679 5.701 7.03

5.597 31.650 7.050 10.39

5.597 31.650 7.055 10.39

4.569 32.424 5.802 7.06

4.569 32.424 5.752 7.06

5.481 32.400 6.967 10.13

5.481 32.400 6.949 10.13

5.726 32.412 7.337 10.33

5.174 30.986 6.393 9.27

5.174 30.986 6.393 9.27

5.604 31.064 6.934 10.27

5.604 31.064 6.935 10.27

5.916 31.069 7.360 11.49

7.781 31.188 9.889 20.06

7.443 31.189 9.450 18.39

6.519 31.292 8.141 14.10

5.750 32.868 7.384 11.18

6.02 32.932 7.788 12.18

6.029 32.932 7.816 12.18

6.315 32.964 8.153 13.54

6.813 33.000 8.875 16.17

6.813 33.000 8.876 16.17

5.805 34.304 7.638 10.12

5.805 34.304 7.688 10.12

5.412 34.738 7.166 9.17

5.023 35.180 6.712 8.37

4.910 35.282 6.540 8.25

4.631 35.566 6.186 7.34

4.116 36.164 5.567 5.48

4.116 36.164 5.507 5.48

4.419 36.310 5.980 6.45

4.987 36.466 6.802 8.28

5.415 36.549 7.402 9.49     





determination(r2). 0, 0a, ab, and r2 are defined for m

experiments by31'32

o = ((m - 2)‘1 2(1?i - i)2)1/2, (4.37a)

0a = (m'1( 213‘:- - m'1( mph-12213)“? (4.3711)

ab (2T? - m'1(2Ti)2)‘1/2, (4.37c)

and

(21? - m'1(2ri)2)‘1. (4.37d)

The coefficient of determination, r2, is interpreted as

the proportion of total variation of f explained by

regression; 0~$r2£-1. If r2 = 1 the fit is perfect.

The above analytical procedure is illustrated in

Figure 4.16. With it, we find

-(dn/dT)104 = 0.2822 + 0.02671T (4.38)

o = 0.0161400’1

0.013490c‘10a =

ab = 0.00042°c‘2

r2 = 0.983

where T is in 0C. The standard error of about 1.5% and

the coefficient of determination demonstrate that Equation

4.38 fits the data very well. We also find

-(d2n/dT2)10‘l = 0.02486°c‘2 (4.39)

o = 0.0009800'2.

The second derivative of Equation 4.38 is about 7% higher

than Equation 4.39. This is a bit large to be explained
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Figure 4.16

Temperature dependence of the refractive index. The

raw experimental data is refined with the method of

Section 3.4, and dn/dT mapped with the method of

Section 3.5 assuming that T(O) = TU and T(l) = TL.

Equation 4.38(solid line) is the best linear fit of the

resulting temperature derivatives.
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by the regression coefficients 0 of Equation 4.38 and
b

o of Equation 4.39. More disturbing is the discrepancy

between Equation 4.38 and the values of Tilton and Taylor;

Figure 4.15 shows Equation 4.38 to be 8-9% lower, a

magnitude which is much larger than the 1.5% standard

error.

Quite another result is found when the experimental

first derivatives divided by the square root of the

experimental second derivatives are fitted to a linear

temperature equation. Then

-(dn/dT)102/(-d2n/dT2)1/2 = 1.62619 + 0.17455T (4.40)

0 = 0.1206

0a = 0.1008

0

0b — 0.0031 C

r2 = 0.977.

This analysis is illustrated in Figure 4.17. Equation

4.40 implies that

--(dn/dT)1ol1 = 0.2838 + 0.03047T (4.41)

where the estimated uncertainty in the calculated value

of the derivative is 2%. Figure 4.15 shows Equation 4.41

to be in very good agreement with Tilton and Taylor.

The failure of Equation 4.38 to agree with

isothermal determinations of dn/dT in the experimental

temperature range and the success of Equation 4.41 can be

qualitatively discussed by neglecting both the bending of

light in temperature gradients and small temperature

 

 







 

 

Figure 4.17

f(T) = -(dn/dT)102/(-d2n/dT2)1/2. The data are computed

by refining the raw data with the method of Section 3.4,

and mapping dn/dT and d2n/dT2 with the method of Section 3.5

assuming that T(O) = TU and T(l) = TL. Equation 4.40(solid

line) is the best linear fit of the above ratio. The

dashed line is predicted by Equation 4.38.
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dependence of the thermal conductivity. Then Equations

3.6 and 3.28 yield two important equations for media

which exhibit straight line fringe patterns in the

nonisothermal state. The first equation is

—dn/dT = D1N/AT (4.42)

where dn/dT is the refractive index temperature derivative

of the cell center, N is the number of fringes which

evolve at the image coordinate corresponding to cell

center, AT is the temperature difference between liquid at

upper and lower interfaces, and D1 is a constant determined

from the isothermal configuration cell image. The second

equation of importance is

-d2n/dT2 = D D2tanB /(AT)2 (4.43)
1

where d2n/dT2 is second derivative at cell center, B is the

fringe angle from the vertical in the nonisothermal, steady

state configuration, and D2 is a constant determined from

the isothermal configuration cell image. The difficulty

with Equation 4.42 and 4.43 is AT. .AT is a quantity

which is not directly measured in the present experimental

arrangement. Assumptions regarding AT may lead to erroneous

results. For example, suppose that

AT = ATO = T - T (4.44)
U L‘

In this case all quantities in Equations 4.42 and 4.43

are experimentally determined and the desired derivatives

can be calculated. Equation 4.44 is assumed by Bryngdahl,30

11
Olson and Horne, and in the data analysis of this work
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which culminates in Equation 4.38 and 4.39. Suppose,

however, thatwaterexhibits a temperature jump.

In such a case AT will be less than ATO and use of AT0

will yield computed derivatives which are smaller than the

true derivatives. This is the trend of Bryngdahl's

refractive index temperature derivatives above 20°C(see

Figure 4.15), of Olson and Horne's at 25°C, and of Equation

4.38 between 24°C and 40°C. Fortunately, it is possible

to avoid the AT problem by eliminating AT from Equations

4.42 and 4.43. This yields

-(an/aT)/(-a2n/dT2>1/2 = (Di/D2)1/2N/(tano)1/2. (4.45)

Because the evaluation of dn/dT via Equation 4.45 does not

involve AT, results should agree wtih isothermal determinations.

This explains the success of Equation 4.40.

It may be that the temperature measurement technique,

not a temperature jump, is responsible for the discrepancy

between Equation 4.38 and 4.41; however, the "wood cell"

experiments described in Section 4.2 strongly indicate

that the technique is slightly compensating and not creating

an apparent temperature jump. Further, the variance

between Equation 4.38, Bryngdahl, and Olson and Horne is

expected because the magnitude of any temperature jump

will depend upon the interactions between the solid

boundaries and the liquid. This interaction is a function

of composition, structure, and condition of the solid

surface.
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The functional dependence of AT upon ATo can be

estimated with Equation 4.42. Substituting Equation 4.38

for D1N and Equation 4.41 for dn/dT, we find

T = 0.994((1 + 0.0947T)/(1 + 0.1074T))ATO (4.46)

where 240C 6 T S 40°C, 2°C 5 AT0 é 8°C. Averaging this

relationship over the applicable temperature range, yields

AT - ATo = -9.671 x 10’2AT0. (4.47)

Further, since

12 = (AT - 4101(4— - z/l). (4.48)
" T3.33

the integrated absolute deviation is

l -2
(1/1) 50 IT - T3.33ldz = 2.414 n 10 ATO. (4.49)

Figure 4.14 illustrates that

H20 > 001,, > C6H6 > 011300002115 (4. 50)

is the observed liquid order for integrated absolute

deviation.

The physical literature contains several reports

of unexplained water density fluctuation in the neighborhood

of 35°C. Hawkes and Astheimer26’33 have encountered small,

time-dependent fringe wiggle during isothermal Jamin

interferometric studies of the refractive index of water.

These wiggles correspond to density fluctuation of Ap/p =

6 x 10"6 and appear in the 34°C to 45°C interval. Varying

the temperature during 3062 isothermal Michelson interfero-

metric evaluations of the refractive index of water,
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Dobbins and Peck29 found no evidence of any abrupt, large

refractive index change. Possible irregularity is,

however, indicated in their plot of mean deviation of the

experimental refractive index versus temperature. The

plot reveals rapid change at 34.50C. Andaloro gt gth

report a subtle transition in water between 30°C and

400C. Their study of the weakly absorbed 1.2 u combination

band of water yields Arrhenius plots of integrated component

intensity ratios which show neatly defined breaks occurring

in the 30°C to 40°C temperature interval. Outside this

interval, the experimental points are well aligned. The

Bryngdahl interferometric fringe pattern of this work does

not directly indicate the presence of this anomalous

phenomena. Yet, the increased deviation in the ratio of

(dn/dT)/(d'2n/dT2)1/2 above 35°C, shown in Figure 4.17, is

further indirect evidence of its existence.

4.4 Discussion

New computations, experimental observations, and

experimental deficiencies have been reported. First,

computed nonisothermal image heights have been confirmed

experimentally, proving the validity of data analysis with

respect to the experimental procedures. To our knowledge,

this is the first time that the essential correctness of

the mathematical analysis of nonisothermal data has been

experimentally proven, not simply assumed. Characteristic

fringe patterns for laminar and turbulent flows, driven by
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end effects, have also been observed. This is important

because absence of these characteristic patterns implies

absence of convective liquid flow. Thus, convective flow

does not contribute or cause the observed nonlinear

temperature distributions. Corrections, however, are

found to be necessary for nonisothermal image distortion

which results from lens aberrations. Finally, the thermo-

couple measurement ATO has proven to be an imperfect

representation of AT. This demonstrates the need for

improved temperature control and measurement. Both image

distortion and temperature control problems must be

considered in future nonisothermal, cell system and optical

train design.

After consideration of the above nonisothermal

experimental problems, the temperature distribution

predicted by the Fourier-Laplace temperature equation for

a nonconvecting liquid is found to fail near the silver-

liquid interface for ethyl acetate, benzene, and carbon

tetrachloride. The observed nonlinear temperature

distributions are reported in three forms: (1) temperature

deviation form linearity(Figures 4.10—4.12), (2) reduced

temperature gradient(RTG, Figure 4.13), and (3) integrated

absolute deviation form linearity(Figure 4.14). Each form

has an advantage. The temperature deviation from linearity

curves directly demonstrate the magnitude of the temperature

deviation from that predicted by the Fourier-Laplace equation.

They are functions of both applied temperature gradient and
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vertical coordinate. RTG curves indicate that the

temperature gradient divided by the temperature gradient

at cell center is independent of applied temperature

gradient within experimental uncertainty. Furthermore,

RTG curves reveal dramatic increases in temperature gradient

as the metal-liquid interface is approached. The magnitude

of the increase is liquid dependent and found to be 4.5%

for ethyl acetate, 12.5% for benzene, and 30% for carbon

tetrachloride when the metal is highly polished silver.

Curves of integrated absolute deviation from linearity

(functions of the applied temperature gradient) conveniently

order liquids according to the relative magnitude of their

exhibited deviation from linearity. A nonzero curve is

associated with liquids which exhibit temperature jumps

at the metal—liquid interface. Observed nonlinear temperature

distributions are found to extend 0.2-0.3 cm from the

interface for ethyl acetate, benzene, and carbon tetrachloride.

Evidence strongly suggests that water exhibits a temperature

jump.

Knowledge of liquid nonlinear temperature distributions

makes possible an increase in the accuracy of experimentally

determined Soret coefficients,

a = (~T/C1C2)(dCl/dz)/(dT/dz), (4.51)

nonisothermally determined refractive index temperature

derivatives,

dn/dT = (dn/dz)/(dT/dz), (4.52)

and interior conducibilities,
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k = -JZ/(dT/dz). (4.53)

Because nonlinear temperature distributions associated

with interface effects have temperature gradients smaller

than AT/t at cell center, use of the common gradient

approximation

dT(t/2)/dz s -AT/t

in Equation 4.51-4.53 yields computed values of a, dn/dT,

and k which are lower than the true liquid properties.

Table 4.5 shows that the linear assumption yields a 1%

systematic error for ethyl acetate, a 3% error for benzene,

and a 6% error for carbon tetrachloride. Figure 4.15

suggests an 8% error for water. Errors of this magnitude

are much larger than typical experimental inaccuracy of

1-2% reported by independent research groups for both

temperature derivatives of refractive indices and thermal

conductivities of carbon tetrachloride, benzene, and water.19

The nonisothermal, Bryngdahl interferometric image

also provides criteria for the establishment of liquid

thermal conductivity standards. Any liquid which exhibits

both linear fringe pattern and absence of a temperature

jump problem similar to that observed for water will be

an excellent standard. The temperature distribution in

such a liquid is independent of cell size and boundary

material, making the thermal conductivity measurements

laboratory independent and highly reproducible.

Nonlinear temperature distributions may prove very

useful in testing the validity of radiation energy transport
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models for the liquid phase. Taking the viewpoint that

Fourier's interior conducibility incorporates all energy

transport processes characteristic of the liquid far

from walls, the time-independent, nonconvecting temperature

equation becomes

(d/dz)k(dT/dz) = -o (4.54)

where k is the interior conducibility. 0(z) is the

energy source term. It contains (1) all energy transport

processes occurring within the liquid but not described by

the interior conducibility and (2) all energy transport

processes described by the interior conducibility but not

occurring within the liquid. To conceptualize and understand,

consider the averaged photon events of Figure 4.18. Photon

events far from walls are depicted in Figure 4.18A. When

molecule 1 emits a photon and molecule 2 absorbs that

photon, the horizontal layer of molecule 2 is heated

because the horizontal layer of molecule 1 has higher

temperature. Likewise, the emission and absorption of a

photon between molecules 3 and 4 is also a photon energy

transport event. All such events are described by the

interior conducibility.(0ther energy tansport processes

contained within the interior conducibility include

vibration-vibration, translation-translation, vibration-

translation, and vibration-rotation energy transfer during

molecular collisions.) Placement of a perfect mirror

between molecules 1 and 3 alters the energy transport

processes. The photon emitted by molecule 1 is now

 





(A)

(B)
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Figure 4.18

Molecule 1 emits an "average" photon which is absorbed

by molecule 2. This energy transport process heats the

horizontal layer of molecule 2 because the photon

originates within a layer of higher temperature.

Placement of a perfect mirror between molecules 1 and

3 alters photon energy transport processes. The photon

absorbed by molecule 2 now originates from molecule 3.

Since the horizontal layer of molecule 3 is of lower

temperature than the layer of molecule 1, energy flux

differs from the above figure. See text.
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reflected and abosrbed by molecule 4. But, Fourier's

heat flux law, ignorant of the mirror's presence, says

that the photon absorbed by molecule 4 originates from

molecule 3 whose horizontal layer is lower in temperature

than that of molecule 1. The actual photon absorbed has

more energy on the average. Consequently, positive deviation

from linearity is found near the lower wall. Similarly,

Fourier's heat flux law says that the photon absorbed by

molecule 2 originates from molecule 1. This is wrong.

Because of the mirror's presence, the photon has originated

from molecule 3 whose horizontal layer is lower in energy.

This results in negative deviation from the temperature

predicted by the Fourier-Laplace temperature equation

near the upper wall. By these arguments the extent of

the nonlinearity from the liquid-metal interface is roughly

the inverse Lambert absorption coefficient of the lowest

energy vibrational mode. For water this is 7 x 10-4 cm

(5 = 200 0111-1);35 for carbon tetrachloride it is 0.13 cm

(0 = 320 cm-i).8

The simplest mathematical model for the energy

source term: (1) assumes temperature nonlinearity is due

solely to photon events, (2) treats the metal boundary as

a non-emitting, non-absorbing, perfect mirror, (3) forbids

multiple reflection, and (4) treats the liquid as a non-

photon-scattering, isotropic media. Summing all reflection

associated emission-absorption events per unit time and

subtracting all emission—absorption events which due to
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the presence of walls cannot occur yields the energy source.

We find

(D

6(2) = S 0(z,v)dv (4.55)

0

where

o(z,u)/2wa(v) = S; dz1 )0 duB(z1,v)e(a(v)/u)(z1+z)

0 -1

1 dus(zl,.)e<a(v>/U><z-zr>
I

+5; dz1 31 duB(zl,v)e-(a(v)/u)((l_zi)+(l-z))

0

1

0

-13., °d.B(.1,.).<a<v>/u)<z.—z>, a...)

u = cos¢ , (4.57)

a<v1 = a<z,v) = a<z.v)(1 - e'”). (4.58)

9 = hv/kT,
(4'59)

B(Z,U) = B(T(z),v)

= (2hv3/c2)/(e6° -1). (4.60)

v, 9, h, k, c, and B(T,v) are the photon frequency, vertical

angle, Planck's constant, Boltzmann's constant, speed of

light, and black body radiation intensity, respectively.

a(z,v) is the Lambert absorption coefficient at the

temperature T(z). More complicating features may be built

into the model. These include emission and absorption of

photons by the metal boundaries, spectral reflection, and

photon scattering by the liquid media. Once a particular

model has been shown to accurately predict the observed
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nonlinear temperature distributions, the model is proven.

Liquid radiation events may then be substracted from

the interior conducibility, leaving all energy transport

due to non-radiation processes. This will be an

unambiguous liquid pr0perty which may be called the thermal

conductivity.

Many review papers exist dealing with the counting

- 4

of photon events in gaseous atmospheres,36 41 ’5

and solids.°i2 The work of Pomraning°‘3’°£4

liquids,

may prove particularly

useful in pursuing the above program.

 





 

CHAPTER 5

NONISOTHERMAL, CONVECTING LIQUID STATES

5.1 Introduction

As temperature increases, liquid density decreases.

Consequently, when a horizontal parallel plate apparatus

is heated from below, the liquid density decreases as the

lower plate is approached. This results in a liquid layer

which is unstable to convective motion,provided the

resulting buoyant force exceeds the viscous dissipation

force. The transition from nonconvection to convection as

the buoyant force is increased is generally called "Bénard

convection" in recognition of Bénard's1 1901 observations

of hexagonal convection cells in very thin liquid layers

with a free surface. However, it is now generally believed

that surface tension effects played an important role in

Bénard's experiments.2'4 In this chapter and the relevant

references, the layers are relatively deep and confined

within rigid boundaries. Thus, surface tension plays no

role. The transition is also called the "Rayleigh-Jeffreys

instability" in recognition of their theoretical contributions.

The important parameter describing the relative

magnitude of buoyant and viscous force is the dimensionless
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Rayleigh number defined by

R - 2” 3_ -gap CV-J‘ AT/kn, (5.1)

where p, CV, k, and n are the mass density, specific heat,

thermal conductivity, and viscosity, respectively. g is

the gravitational constant(980.2 cm sec-2) and a is the

coefficient of expansion. When heating from below,AT is

negative and R is positive. Linear stability analysis of

the hydrodynamic equations describing p(5,t), T(5,t), and

the barycentric velocity, v(;,t), Show that in the

Boussinesq approximation a transition from nonconvection

to time-independent convection occurs at the Rayleigh

number

RI = 1707.76 (5.2)

for a fluid between rigid boundaries. This theoretical

result has been reviewed by Chandrasekhar.5 For R4<RI,

the fluid is at rest and energy is transported by conduction

alone; for R ) RI’ steady state convection of the fluid

contributes to energy transport.

It has been found experimentally that several

additional transitions occur with increasing Rayleigh

number.6°°12 These are: (a) a two-dimensional steady flow

to three—dimensional steady flow transition at RII' (b)

a three—dimensional steady flow to three-dimensional time-

dependent flow transition at R (c) a time-dependent

III’

flow to time-dependent flow of increased frequency transition

at R and (d) a time-dependent flow to turbulent flow
IV’
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10’11 has compiled evidencetransition at RV. Krishnamurti

of these transitions and has shown that the transitions

are dependent upon the dimensionless Prandtl number defined

by

N

Pr = ch/k. (5.3)

This is a ratio of viscous energy dissipation to thermal

conductivity. Generally, the critical Rayleigh numbers

increase toward a limiting value with increasing Prandtl

number.

Detailed reviews of the Benard problem are avail-

able.5’13-18 Works which relate the concepts and mathematics

of the Benard instability with the Taylor problem, the

Landau phase transition, lasing, and oscillating chemical

reactions are also available.19-21

In this chapter we explore the application of

Bryngdahl interferometry to the analysis of the Rayleigh

instabilities. Consequently, the thrust of the chapter is

experimental. All measured quantities are compared with

relevant experimental studies which have been reported in the

literature. Questions include: What transitions can be

observed with the Bryngdahl interferometer? What temperature

distributions are observed between transitions? D0 time-

periodic states exist in the fluid? If so, what is the

period? Are aperiodic states a possibility? If so, for

what Rayleigh numbers and what is the observed frequency

spectrum? To answer these questions, we have studied water

with the experimental techniques anddataanalysis described

in Chapter 3 but with an experimental arrangement in which
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ATo = TU - TL < o. (5.4)

The cell used has a height, 1, of 1.440 cm and measures

5.961 cm along the optical path. It is 7.0 cm wide. The

mean temperatues, TM, of individual experiments varies

between 22.300 and 32.00C. AT0 values vary between

-0.02°C and -12.4°c. Furthermore, using the density,

coefficient of expansion, coefficient of compressibility,

and heat capacity compilation of Kell,22 the thermal

23
conductivity evaluation of McLaughlin, and viscosity

reported in the Handbook of Chemistry 229 Physics,24 we

find that for water

1 1
-(R/_l_3AT)10‘li cm3 00 —9.6914 x 10‘ + 1.7429 x 10“ T

-5.3120 x 10‘5T2 + 1.5528 x io‘l‘T3

-1.4803 x 10‘6T4, (5.5)

1TPr = 13.044 - 4.4926 x 10'

+ 9.1933 x 10'3T2 - 1.1055 x 10"‘T3

+ 5.9166 x 10‘7T4. (5.6)

T is in 00, 20°CST$35°C, and P = 1 atm.
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512 Temperature Distributions and the First Rayleigh

Transition

  

Figure 5.1 reproduces the nonisothermal Bryngdahl

images of thirty-two experiments in the order of increasing

Rayleigh number. It is apparent that even at the lowest

Rayleigh number(9.3 x 103) the fringe pattern is essentially

vertical but with curvature near the upper and lower

boundaries characteristic of nonlinear temperature distri-

bution. Vertical fringe patterns of negligible shift are

characteristic of isothermal regions. Up to R = 2.9 x 104

the curvature increases gradually, and comparison of

Figure 5.1 with Figure 4.3 shows that time-independent

fluid flow is the predominant mode of energy transport.

The straight, tilted fringe characteristic of pure thermal

conduction ofenergy'is absent.

Between R = 2.9 x 10‘1 and 3.3 x 10“, the time-

independent boundary layers become well-formed and distinctly

contrast the central isothermal region in which dT/dz = 0.

The boundary layers extend approximately 0.2; into the fluid.

The isothermal region is 0.6; in extent. The thermal

boundary layers grow in strength with increasing Rayleigh

number. However, at R = 5.40 x 104 a photomultiplier at

image center indicates the appearance of small amplitude,

time—dependent fluctuations which are superimposed upon the

time-independent pattern. The amplitude of the fluctuations

grow with increasing Rayleigh number and are visually

recognized in the image at R = 8.4 x 104. Finally, between
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Figure 5.1

Nonisothermal Bryngdahl cell images. t = 1.440 cm,

a = 5.961 cm, H a 3.175 cm, 2D = 0.138 cm, 6 = 0.353 cm.

Equation 4.47 is used to evaluate AT for given ATO.

 

 

       

Exp. 10'48(TM,AT) Pr Exp. 10’42(TM,AT) Pr

1 0.929 6.30 17 7.670 6.14

2 1.433 6.28 18 8.366 6.14

3 1.796 6.27 19 9.224 6.13

4 1.998 6.28 20 9.822 6.11

5 2.268 6.28 21 10.49 6.11

6 2.577 6.27 22 11.18 6.10

7 2.888 6.27 23 12.00 6.10

8 3.321 6.26 24 12.74 6.081

9 3.808 6.25 25 13.73 6.07

10 4.136 6.25 26 14.20 6.06

11 4.426 6.24 27 21.41 6.53

12 4.859 6.24 28 30.56 6.34

13 5.365 6.20 29 37.08 6.22

14 5.700 6.19 30 43.43 6.10

15 6.377 6.17 31 57.44 5.90

16 7.347 6.15 32 72.15 5.72]
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R = 5.7 x 105 and 7.2 x 105 the fluctuations become so

strong as to destroy the characteristic fringe pattern of

isothermal layers and boundary layers. A transition to

turbulence is evident.

The temperature distributions of Figure 5.2 are

mapped from the refined data using the method of Section

3.6. They are considered to be the average temperature

experienced by a photon pencil along the optical path.

The thermal boundary layers and isothermal region discussed

above are quantitiatively displayed in this figure.

An important aspect is the absence of "temperature

inversion" in the domain 0.2< z/lg<0.8. In their evaluation

of horizontally averaged temperature distributions,

Deardorff and Willis7 have used a resistance wire probe

to measure temperature gradient. They report distributions

6, and 1.0 x 107 which qualitativelyat R = 6.3 x 105, 2.5 x 10

agree with Figure 5.2 However, Gille's8 measurement of the

horizontally averaged temperature distribution with a

Michelson interferometer at R = 2.73 x 10ll reveals temperature

inversion in the central region. The reversal is about

1.5% of the impressed temperature difference. Finally, the

Mach-Zehnder interferometrically determined temperature

profiles of Farhadieh and Tankin12 provide direct evidence

4
of a 6% temperature inversion at R = 1.57 x 10 and

2.36 x 104. This result verifies numerical computations

2

at high Rayleigh numbers of Veronis. 5 We believe that the

inversion has not been observed with the Bryngdahl interfer—
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Figure 5.2

Temperature distributions for various impressed temperature

gradient.

 

 

—ATo/1°C 10'4n(TM,AT)

0.299 1.43

0.417 2.00

0.689 3.32

0.854 4.14

1.000 4.86    
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ometer because of the very small total fringe shift at

image center caused by such small temperature gradients.

At R ~I2 x 104 a 6% inversion results in a total fringe

shift of only 0.01 cm for the optical train used in this

series of experiments. Furthermore, the expected fringe

shift at larger Rayleigh numbers are masked by time-

dependent fringe fluctuation. These observations indicate

that the direct temperature measurement techniques provided

by Michelson and Mach-Zehnder interferometry are to be

preferred in the analysis of very small temperature

phenomena for which temperature gradients are nearly

constant.

Figure 5.3 compares the experimentally found

temperature derivatives at z = l with the values expected

for pure conduction. The experimental gradients are far

larger. In addition, the sudden increase in the standard

deviation at B(TM,ATO) = 3.7 x 104 indicates a transition to

time-dependent flow. This is the critical Rayleigh number

8111 within an uncertainty of 112%. with the correction

of Equation 4.47 we find

RIII(TM’AT) = 3.3 X 101* _‘L’ 12%. (507)

This agrees well with Krishnamurti's11 value of

4
3.59 x 10 I 15%. However, Schmidt and Saunders27 report

a transition from laminar to turbulent flow at Re'4.7 x 104

while Malkus6 claims that this transition occurs between

1 x 104 and 3 x 104.
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Figure 5.3

Experimentally determined boundary(z = 1) temperature

gradient as a function of Rayleigh number. Curve 1 is

the linear least squares analysis of data(Equation 5.8);

Curve 2 is the prediction of the Laplace equation description

of temperature.
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Linear least squares analysis of the data

n(Tb ATO)$ 4.2 x 104 yields
‘9

dT(;)/dz = -7.177 x 10‘2 + 5.075 x 10‘SR(TM,ATO) (5.8)

0 = 0.133

0a = 4.42 x 10-2

ob = 1.94 x 10'6

r2 = 0.957.

The gradient expected for pure thermal conduction is

dT(l)/dz = ~ATo/l (5.9)

-R(TM,ATO)/(;R(<TM),ATo)/ATO)

= 1.3138 x 10-5R(TM,ATO).

The intersection of Equation 5.8 and 5.9 is the critical

Rayleigh number for the transition from nonconvection to

steady state convection. It is

RI(TM,ATO) = 1908 i 137. (5.10)

This value is significantly higher than the theoretical

value of 1708. However, the experimental result is

considerably improved with the correction of Equation 4.47.

Applying the correction, Equation 5.7 becomes

dT(l)/dz = -7.177 x 10‘2 + 5.619 x 10’5R(TM,AT). (5.11)

The intersection of Equations 5.9 and 5.11 is

RI(TM,AT) = 1667 i 137. (5.12)
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TflfleSJ

Experimental evaluations of the first critical Rayleigh

number. a is the standard deviation or uncertainty.

 

 

 

Reference RI 0 Fluid

Schmidt and 1770 140 water

Milverton(1935)26

Schmidt and 1750 100 water

Saunders(1938)27

Malkus(1954)6 1700 80 water

Silveston(1958)28 1700 51 water, glycol

Gille and 1786 16 air

Goody(196li)29

Thompson and 1793 80 argon, air, CO2

Sagin(1966)30

Rossby(1969)9 1750 130 water, silicon

oil, Hg

Tarhadieh and 1700 30 water

Tankin(1974)12

This work 1667 137 water       
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Figure 5.4

Time sequential temperature distributions for

R(TM,AT) = 1.37 x 105.

 

 

  

Curve t/1 sec c/1°c

1 0 0.0

2 15 0.1

3 30 0.2

4 45 0.3

5 60 0.4

6 75 0.5

7 90 0.6

8 105 0.7
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The agreement of this value with the theoretical value is

further evidence for the existence of the temperature jump

discussed in Section 4.3. It also justifies the use of

Equation 4.47 in converting B(TM,

R(TM,AT) values reported in many of the figures of this

ATO) values to the

chapter.

Table 5.1 compares experimentally determined

values of the first critical Rayleigh number. A final

example of temperature distribution is provided by the time-

sequential distributions at B(TM,AT) = 1.37 x 105 shown in

Figure 5.4.

5.2 Fluctuations and Frequency Spectrum

For Rayleigh numbers not much higher than approximately

Q x 104, the intensity fluctuations of the Bryngdahl image

can be very periodic. The output of a photomultiplier

placed at image center reveals that at R = 8.37 x 104 the

fringe oscillate with a period of 0.5 min(Figure 5.5).

Dividing this period by the basic time unit pfivl2/k(i;g.,

1.425 x 103 sec at 24.500 for water) yields the dimensionless

period t = 2.11 x 10-2. This is intermediate between the

-0 .—

shortest period oscillations(t = 1.6 x 10 “ and 2.6 x 10 2)

reported by Krishnamurti.11

Both the intensity fluctuation rate and amplitude

increase with Rayleigh number, and the photomultiplier

output is visually aperiodic for the Rayleigh numbers of

Figure 5.6. The fluctuations provide a convenient method
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Figure 5.5

Intensity fluctuations at image center of Bryngdahl

1

image for R(TM,AT) = 8.37 x 10‘.
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Figure 5.6

Intensity fluctuations at image center of Bryngdahl

image for various impressed temperature gradients.
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for the determination of the critical Rayleigh transition

RIV‘ A plot of the fluctuation rate as a function of ATO

(Figure 5.7) indicates the linear relationship

no. fluctuations per min 3.970(IATOI - 0.805) (5.13)

O = 2.625

0a = 1.064

ab = 0.174

r2 = 0.9700

The standard error of the regression coefficients improve

when the functional dependence upon Rayleigh number is

considered. Then

no. fluctuations per min =

6.457 x 10'5(R(TM,ATO) - 4.898 x 104) (5.14)

o = 1.568

0a = 0.631

ob = 1.676 x 10"6

r2 = 0.989.

Equation 5.13 states that an apparent transition from

small amplitude fluctuations(not detectable with the

photomultiplier) to large amplitude fluctuations occurs

at (AT6)IV.= -0.805°c. Equation 5.14 establishes the

4
critical Rayleigh number RIV(TM’AT0) = 4.90 x 10 :p14%.

Applying the temperature jump correction, the result is

T 4
M,A'r) = 4.42 x 10RIV( 1 14%. (5.15)
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Figure 5.7

 

Bryngdahl image intensity fluctuation rate at cell center

versus impressed temperature gradient and versus Rayleigh

number. The solid lines are Equations 5.13 and 5.14.
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This is in excellent agreement with Krishnamurti's

report of RIV~J4.4 x 104. Malkus6 also observed a

11

transition from one turbulent mode to another but at

R'vS.5 x 104.

The frequency spectrum of the fluctuations is the

Fourier transform of the photomultiplier output autocor-

relation function. It is very important in developing an

understanding of aperiodic motions.31’32 Let AI(t) be the

photomultiplier output at time t minus the time averaged

output. The autocorrelation function, R(t), is then

defined to be

R(t) = lim (1/lx|)f: AI(t1)AI(t1 + t)dt1. (5.16)

X900

This is an even function; therefore, the Fourier transform

of R(t), F(w), is

F(w) = lim 5 : R(t)cos(wt)dt. (5.17)

X9”

The importance of F(w) is demonstrated by the Wiener—

Khintchine theorem:33

F(w) = lFourier transform of AI(t)I2 (5.18a)

2

= lwA(w)‘ (5.18b)

where

I(t) = 5w A(w)cos(wt)dw. (5.18c)

0
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Thus, F(w) is proportional to the square of the harmonic

frequency amplitude. Applying this correlation analysis

to the intensity fluctuations of Figure 5.6, the integrals

of Equation 5.16 and 5.17 are numerically evaluated with the

trapezoidal rule.34 Furthermore, the time increment

At = 0.01 min and the time interval X = 5 min are used.

Figure 5.8 is the autocorrelation function for

AT

indicates that F(w)/e where

-6.849°C and R(TM,AT) = 3.71 x 105. Figure 5.9

6 = <AT)IV - AT (5.19)

is approximately independent of the impressed temperature

difference. Four harmonics in the ratio w1/w2/w3/w I»:

1/3/9/14 are distinctly visible and the best exponential

description of the maxima is

-0.013201
F(w)/€’V e (5.20)

where w has the dimension min-1. The only comparable

observations are those of Krishnamurti.11 Her reported

oscillation periods of light scattering from aluminum

flakes seem to be components of the two lowest frequency

peaks shown in Figure 5.9.

5.4 Summary

Bryngdahl interferometrically determined temperature

derivatives have proven very useful in the detection and

quantitative evaluation of critical transitions between

different modes of flow. Experimental determination of
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Figure 5.8

Autocorrelation function of AI(t) for AT = ~6.849°C

and R(TM,AT) = 3.71 x 105.
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Figure 5.9

Fourier transform of autocorrelation function of AI(t)

divided by e = IATI - 0.7270C. The solid line of curve D

is proportional to Equation 5.20; the experimental points

are the maxima of curves A, B, and C. T is in 0C.

 

 

-AT TM 10-5R(TM,AT)

A(O) 3.693 31.633 2.93

B(CI) 5.881 23.342 3.06

0(a) 6.849 24.033 3.71      
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boundary temperature gradients as a function of Rayleigh

number has yielded the critical Rayleigh transitons

R 4
1667 1 137 and R I = 3.3 x 10 1_12% for water.

I II

It has not proven possible to detect temperature inversion

at intermediate distances from boundaries because of the

small, nearly constant, temperature gradients involved.

Fluctuations in the Bryngdahl interferometer image

have proven to be extremely valuable in the study of time-

dependent properties. First, the fluctuations provide

strong evidence of the existence of a fourth Rayleigh

4

transition at RIv = 4.42 x 10 1.14%- Second, autocor-

relation analysis of intensity fluctuations reveals four

major frequency bands at w~10, 30, 90, and 140 min-1. The

intensity of the bands seems to be preportional to

6 = (AT)IV - AT and they decrease exponentially with the

angular frequency 75.8 min-1. Both theoretical and further

experimental work are needed to determine whether these

frequency bands are the manifestation of buoyancy effects

driven by thermodynamic fluctuations within the liquid or

whether one or more of the bands are due to instabilities

driven by room and plate vibrations. Because of the unique

nature of the Bryngdahl interferometric observations, no

relevant literature comparison is possible. Lack of a

theoretical description provides a good, although extremely

difficult, field of research. Numerical computations35’36

show that temperature fluctuations can be conceptualized as

thermal elements or "plumes" which break away from the
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lower thermal layer and rise in the cooler, denser

surroundings.

Bryngdahl interferometry cannot detect the transition

from two-dimensional flow to three-dimensional flow at RII

because of the absence of both temperature fluctuations

and nonlinear variation of the boundary temperature gradient

with Rayleigh number. Busse's37 theoretical study of two-

dimensional convection demonstrates that such a transition

is possible at R = 2.3 x 104 for high Prandtl number fluids.

However, in the limit of small Prandtl number, Busse finds

that two-dimensional rolls become unstable to oscillatory

three-dimensional disturbances when the amplitude of the

convective motion exceeds a finite critical value.38 It

may be possible to detect this transition with the Bryngdahl

interferometer.

Finally, the successful evaluation of RIII and

RIv for water suggests that Bryngdahl interferometry can

be used to determine the dependence of the critical Rayleigh

numbers upon Prandtl number. This dependence is believed

to be very strong for Prandtlnumberslower than that of

water.11
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APPENDIX

FOURIER POWER SERIES SOLUTION OF

THE VIBRATIONAL RELAXATION EQUATION

The general differential form of the vibrational

relaxation models of Chapter 2 is

(A.1)

k -0 k k -0

(~1) (1-e )d xn/dg + ne xn_1 + (n+1)xn+1

-0
+ ((n+1)e + n)xn = 0.

Model 1 has k = 2 and g = (K/D)1/22; Model 2 has k = 1

and L = (K/V)z. This equation must be solved subject to

the conditions

xn(g) = xn(0) at g = 0 and (A.2)

lim xn(;) = (1-e-0) -n6

{-900

Further, it is assumed that the variation of 0 with g is

negligible.

Taking the solution to have the form

w 1/kg
_ -11

xnm — 11508.4(“ ,

207

e . (A.3)

(A.4)
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we find from Equation A.1 that

(1-e-0)uln + ne-ol 1 + (n+1);n+1 + ((n+1)e-0 + n)_l_'n = 0.
—n—

(A.5)

Gottlieb(Am. J. Math., g9, 453(1938)) has shown that the

polynomials which satisfy this recurrence formula are

1 (u) = e-.. 5 (1-e”)”(n>(“) (A 6)
-n 0:0 0 v . .

Montroll and Shuler(J. Chem. Phys., 26, 454(1957)) have shown

that

ln(u) = F(-n, u+1, 1; 1-e-0) (A.7)

where F(a, b, c; z) is the hypergeometric function. The

Gottlieb polynomials have the following properties:

en”in(u) = e“?1u(n). (1.8)

n o
t
d
8

v e‘””ln<v)im(u) = e”n”(1-e‘”)'1an,m. (1.9)

and

Eoenaln(v)ln(u) = ev0(1'e-0)-15v, (A.10)

u
n:

where 8n m is the Kronecker delta. To evaluate the functions

7

an, left operate on Equation A.5 with the summation operator

m

2 eneln(u); then, evaluate the results at L = 0. Using

n=0

Equations A.8-A.10, it is found that

- "“0(1- ‘0) E enfll (u)x (0) (A 11)an - e e n=0 __n n . o
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Finally, by Equations A.4, A.6, and A.11

. _ _ -n0
11m x - aol (0) — aoe

{400 n

e-no(1-e'0) 2 x (0)

n=0 n

e-n0(1—e-0)

The last equation follows from the normalization of

probability.

In summary, the solution of Equation A.1 is

xn(§) = ugoauln(u)e-u1/k§ (1.12)

where

_1_.n(u) = e'"”v§0(1-e9)”(3)(3) (1.13)

and

au = e-u0(1-e-0) 02° e“0;n(u)xh(0). (A.14)

n=0
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