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ABSTRACT
LOCAL JORDAN ALGEBRAS

By

Marvin Edwin Camburn

The purpose of this thesis is to study local Jordan algebras
and their completions. A local Jordan algebra J 1is a quadratic
Jordan algebra over a commutative associative ring ¢ with identity
such that gR(J) is the unique maximal ideal of J, J/R(J) satisfies

b (k)
the minimum condition, and N RU) = 0, where R(J) is the

k=1

Jacobson radical of J and p@) D = puy, @) &t

=U (EKJ)(k)), k € N. The main results of this thesis are:
@) ®

Theorem. If J 1is a local Jordan algebra, then the completion

of J 1is a local Jordan algebra.

Theorem. If J is a complete local Jordan algebra over a field

of characteristic not 2, then either

(1) J 1is a complete, completely primary local Jordan algebra,

(2) J 1is the vector space direct sum of two completely primary local
Jordan algebras and a subspace of J, or

(3) J 1is isomorphic to a Jordan matrix algebra b(bn,ja) of
order n = 3, where (i) (8,j) 1is an alternative algebra
with involution and identity such that (8,j) & N(8), the
Smiley radical g(H) is the unique maximal ideal of (8,j),

and B® 1is complete in a topology induced by the topology
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on J, or (f,j) 1is an associative algebra with involution
such that g(8), the Jacobson radical of B, is the unique
maximal ideal of (f,j) and B is acomplete semi-local algebra-
If J 1is either a complete, completely primary Jordan
algebra, or J is one of the algebras in (3), then J is a

complete local Jordan algebra.
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INTRODUCTION

The importance of the theory of (commutative, associative)
local rings in algebraic geometry and the theory of commutative rings
is well-known (see [8], [12]). Cohen [2] provided the first structure
theory for complete Noetherian local rings in his now classic paper.
In 1957, Batho [1] in developing a theory of noncommutative, asso-
ciative, semi-local rings proved that any noncommutative complete
local ring is isomorphic to a full matrix ring over a complete, com-
pletely primary, local ring.

If A is any associative ring with identity, them A 1is an
algebra over the ring Z of integers in the sense of §l.1. Thus at
is a quadratic Jordan algebra, and when A 1is a local ring, much of
the structure of A can be seen to carry over to A+. Hence it
seems reasonable to ask the following question: 1is it possible under
a suitable definition to develop a structure theory for complete local
Jordan algebras? 1In this thesis, an affirmative answer is given for
a Jordan algebra over a field of characteristic not 2. This is
accomplished through the concept of a completion of a local Jordan
algebra.

Chapters 1 and 2 contain the basic concepts with which we will
be dealing throughout the thesis. 1In Chapter 1, algebras with involu-
tion are considered with emphasis on the simple ones. 1In Chapter 2,

both quadratic and linear Jordan algebras are defined as well as the



Jacobson radical, Jordan matrix algebras, and the concept of isotopy.
A sketch of the structure theory of certain simple Jordan algebras
over a field of characteristic not 2 is included. Many of the proofs
which are omitted in the first two chapters can be found in either
[5] or [6].

Chapter 3 deals with the completion of a local (quadratic)
Jordan algebra, beginning with an outline of completions of modules.
For a more extensive treatment of the material on modules, the reader
is referred to Zariski and Samuel [12]. The main result of this
chapter is the following: the completion of any local Jordan algebra
is a local Jordan algebra.

In Chapter 4, the main structure theory is developed through
the use of infinite series and an idempotent lifting property.
Completions of local Jordan algebras are classified according to the
capacity of their residue class algebras modulo the (Jacobson)
radical. When this capacity is greater than or equal to 3, a com-
pletion is shown to be a Jordan matrix algebra over a certain type
of alternative algebra or over a semi-local associative algebra with

involution.



CHAPTER I

ALTERNATIVE AND ASSOCIATIVE ALGEBRAS

1.1 Algebras over Rings

Let & be an arbitrary commutative associative ring with
identity element 1, and let Y and B be unital left §-modules.
A mapping f : U x U - B 1is bilinear, if f(x1 + xz,y) = f(xl,y) +
£(x,,¥), £(x,y; +y,) = £(x,y) + £(x,y,), and  f(ax,,y) =
of (x,y) = £(x,ay), for all xl’XZ’x’yl’y2’y €Y, and o € . For

the special case B8 = §, f 1is called a bilinear form on 9. 9 is a

(unital) algebra over ¢, if 9 1is equipped with a bilinear multipli-

cation (x,y) - xy, x,y € 4 and 9 has an identity. The mapping
A XY XY >y defined by [x,y,z] = (xy)z - x(yz), X,y,z € Y is
called the associator, and it is linear in each component. 9| is
alternative, if [x,x,y] =0 = [y,x,x], for every x,y € 4, and
Y is associative, if ([x,y,z] = 0, for every x,y,z € 9. For an
arbitrary algebra 9 we define the nucleus of 3 to be the set
N@) = {n € : [n,x,y] = [x,n,y] = [x,y,n] =0, for all x,y € yj.
The center of g9 1is the set C(1) = {c € N(o1) : cx = xc, for all
x € 4}. N(@) is an associative algebra and C(y) a commutative
associative algebra.

Let 9 be an algebra over ¢. A subalgebra K 1is a sub-
module of g such that for all x,y € K, xy € K. An ideal of g

is a submodule K such that xa and ax € K for all a € 9,



x € K. Right and left ideals are defined in a similar fashion. The
concepts of residue class ring, homomorphism, kernel, etc., are taken
to be the standard ones (see [9]). (%,j) is an algebra with involu-
tion, if 9 1is an algebra and j is an anti-automorphism of U

such that j2 = j. A subalgebra (ideal) K of (9,j) 1is a sub-

algebra (ideal) of 9 such that kJ =K. If @,k) is also an
algebra with involution, then a homomorphism from (91,j) into (B,k)

is a homomorphism § : Y - B such that ¢j = kg. If a € Y

satisfies al = a, then a is called a symmetric element of ¥

and the set of all symmetric elements of (9,j) is denoted by
QU,j). If no confusion can arise, this set will simply be denoted
by (). Now in general an algebra 9 is simple, if 9 has no

ideals other than 0 and 9], and uz =9 Y # 0. An algebra with

involution (9[,j) 1is a simple algebra with involution, if ¢

contains no j-invariant ideals other than 0, and 9, and Nz # 0.
If U and B are (unital) algebras over ¢, the direct sum of ¥
and B 1is the set U X B together with componentwise addition,
scalar multiplication, and multiplication. The direct sum is denoted
by U®B, and U and B are isomorphic to the ideals
{(@a,0) € y®B : a€ gy} and {(o,b) € y®P : b € P}, respectively.
Hereafter we shall identify ¢ and B with these ideals. K is
an ideal of Y ®B if and only if K = Kl(@ K2, where K is an

1

ideal of 9 and K is an ideal B. It is clear that if 9 and

2

B are associative, then so is U ® B.

Llet 9 be an associative algebra and let B be ideals

1> B
of U. It is well-known that, if 81 n 82 =0, and YU = Bl + %2 =

{b1 +b2 : b1 € B> b2 € <52}, then 9 =9, @%2. In this case we



suppress the ordered pair notation and write b1 + b2 for (bl’b2)°
Also we will write U =38, ®3,.

Let 9 be a (unital) associative algebra and define a new
product on Y X Y by x°y = yx, for all x,y € Y. The opposite
algebra of Y denoted by 910 is the algebra determined by using
the §-module structure of ¢ together with the product o. §P° 1is
an associative algebra which is anti-isomorphic to 9. Let
B =yu®y . Hence, if (x15Y1)s (x55Y,) €8, then (x1,¥,)(x,,y,) =
(xlxz,y°1y2) = (xlxz,yzyl), and B is an associative algebra. 1If
1 is the identity of 9, then 1 is the identity of Y and (1,1) is
the identity for B. Now define the mapping j : 8 -8 by

(x,y)j = (y,x), for all (x,y) € B. Then j is an involution

called the exchange involution and so @®@,j) 1is an algebra with

involution. It is clear that ©@®) = {(a,a) : a € ¥y}. If K is

an ideal of B8, themn K =K, ® Kz, where K. is an ideal of ¢

1 1

and K is an ideal of ¢°. Suppose (o,y) € K2. Then (o,y) € K

2
and KJ =k implies (y,o0) = (o,y)J € K. Thus (y,o0) € 1(1 and

(o,y) = (y,o)J, so (o,y) € K{. Conversely, if (w,z) € KJ, then

(wW,2z) = (x,o)J, for some (x,0) € Kl. Hence (w,z) = (0o,x) and
(w,2) € K, so (w,z) € K, Thus K{ <K, and hence equality

holds; i.e., K =K, ® K{, Kl an ideal of 9. On the other hand,

1

is an ideal of g, then K @KJ is an ideal of @,j).

1 1 1

Therefore there is a bijection from the set of ideals of 8,]j)

if K

onto the set of ideals of ¢.
Finally, note that, if (,j) 1is an algebra with involu-

tion such that g9 = @%J, B an ideal of 9], then ﬁJ 3550 under
33

j. This follows since (b° bz)J = b7 = bb5-



1.2 Simple Artinian Algebras with Involution

Let 9 be an associative algebra over a field &. U

satisfies the minimum condition for right ideals, if 9 has no

infinite descending chain of right ideals. An algebra U which
satisfies the minimum condition for right ideals is called (right)
Artinian. By the Wedderburn-Artin theorem, an Artinian associative
algebra over a field ¢ 1is simple if and only if 9 = s, an algebra
of n X n matrices with entries from some division algebra A. A

simple Artinian algebra with involution ,j) 1is a simple asso-

ciative algebra with involution such that 9 is Artinian. The
structure of these algebras will be determined next.
Let (@,j) be a simple associative algebra with involution.

If 9 is not itself simple, then there exists an ideal B of 9
such that B #0,Y. clearly BJ is also an ideal of %, so that

B n!)j is an ideal of (9,j) such that B ﬂ%j < B 9. By the
simplicity of (9,j), we must have naj = 0. Similarly, g +Q5j
is an ideal of (y,i) and O0Cg €3 +8°. Thus 9 =B +87 and

hence 9 =9 .@%J. If B is an ideal of $, then B is an ideal

of 9, and thus B +BJ is an ideal of (y,j). Hence, B +BJ =0

or B + Bj =9, so that either B =0 or B =38. Therefore 9
is a simple algebra.

Now assume (3,j) is a simple Artinian algebra with involu-
tion. If 9 1is simple, then g = An’ A an associative division
algebra with involution. If 9 1is not simple, then 9 =9 @%j,
where B is a simple ideal of U. Since Y is Artinian, B is
Artinian, and thus B = An, A an associative division algebra. It
is clear that SBj = (A°)n, so that 9] == An ® (A°)n, with j the

exchange involution.



1.3 Alternative Algebras

let 9 be an alternative algebra over a field &. Then
[x,x,y] = 0, for all x,y € g9, and [y,x,x] =0, for all x,y € 9.
These statements are equivalent to the left and right alternative
laws : xzy = x(xy), yx2 = (yx)x, for all x,y € 9. By the theorem
of Artin, these laws are equivalent to the statement that every
subalgebra of 9 generated by two elements is associative. The
associator in an alternative algebra has the following property:
if ¢ 1is any permutation of {1,2,3}, then [xlc’xzc’x3c] =
(sgn c)[xl,xz,x3], for all X%, 5%, € 9. The Moufang identities

also hold in any alternative algebra U:

1) (xyx)z = x[y(xz)]

(2) z(xyx) = [(zx)y]x

3)  (xy)(zx) = x(yz)x,
for every x,y,z € A [9].

Assume that 9] 1is alternative with identity 1. x € 9 is
invertible, if there exists y € Y such that xy =yx = 1. If x
is invertible with inverse vy, then [x,y,z] =0, for all z € ¥
and y is unique, (see [9], p. 38). If x 1is invertible, the
unique inverse of x will be denoted by x-l. Suppose X,y,z € U
are such that yx = 1 = xz. Then by the second Moufang identity,
1 = yx = y(xzx) = [(yx)z]x = zx. Hence x is invertible with
inverse x = =z
0= x Loy ™ = Loyay L = Loy M - e TTh = 1

(xy)(y-lx-l). Thus (xy)(y-lx-l) = 1, Similarly, (y-lx-l)(xy)

so xy 1is invertible, and (xy)-1 = y-lx-l. Next suppose x,y €

y. Suppose x,y € Y 3re invertible. Then
1

are such that x and xy are invertible. Then



y = (x-lx)y = x-l(xy), is invertible.

Definition 1.3.1. Let 9 be a (unital) alternative algebra. x € Y

is quasi-invertible with quasi-inverse y, if 1 - x 1is invertible

with inverse 1 - y. An ideal K of 9 1is a quasi-invertible

ideal, if every element of K 1is quasi-invertible.

Proposition 1.3.1. lLet K be a quasi-invertible ideal of Y. 1If
u € Y4 1is invertible and x € K, then u - x 1is invertible.

Proof. u-l(u -x) =1-u x 1is invertible, since u 'x € K

. . -1 . . . S s .
implies u "x is quasi-invertible. Thus u - x is invertible.

Proposition 1.3.2. If A and B are quasi-invertible ideals of
A, then A + B is a quasi-invertible ideal of 9.
Proof. If a € A, b €B, then 1 - (a+b) = (1 -a) -b is

invertible by Proposition 1.3.1.

Theorem 1.3.1. Let 9 be an alternative algebra with 1 over a
field §. Then Y contains a unique maximal quasi-invertible

ideal gR(U) which contains every quasi-invertible ideal of 9.
Moreover, A/R(U) contains no nonzero quasi-invertible ideals.
Proof. Since O 1is a quasi-invertible ideal, the set of all quasi-
invertible ideals is nonempty, and Zorn's lemma may be applied to
find a maximal quasi-invertible ideal R®Q). If A 1is any quasi-
invertible ideal of U, then by Proposition 1.3.2, A + R() is a
quasi-invertible ideal of %Y. Hence A + RO = RQ), and A < ROD).
Thus the uniqueness of R@) 1is clear. Now if a + R(91) is
invertible in 9/R(U), then there exists b € 9 such that

ab - 1€ ROI). Hence ab =1-2z, z € @) and, so ab is

invertible. Similarly ba 1is invertible in %Y. Thus



abza = (ab) (ba) 1is invertible in Y. Let c € Y be the inverse

2 2 2 2 2
of ab“a. Then a[b"(ac)] = (ab"a)c =1 = c(ab"a) = [(ca)b ]a, and
a 1is invertible in 9. Therefore, if x + R@) 1is quasi-invertible
in A/RM), x 1is quasi-invertible in 9], and if K is a quasi-
invertible ideal of U/RQI), the complete inverse image of K in
9 under the natural homomorphism is a quasi-invertible ideal of 9I

and thus is contained in R(). Hence K = 0.

Definition 1.3.2. The unique quasi-invertible ideal gR(U) of U

is called the Smilely radical of 9y [10].

We now turn our attention to alternative algebras with involu-
tion, and first consider the defining conditions for a quaternion
algebra Q over a field & of characteristic not 2. Recall that

Q 1is a noncommutative associative algebra with identity 1, and
2

generators 1i,j satisfying 12 =l, j wl, and ij = -ji, where

Asp € & are nonzero. The set {1,i,j,k = ij} constitutes a basis

2

for Q, and the following are also satisfied: k™ = -)\l;

= - = «yi: ki = -ik = =-\j. = 1 i +
jk kj wis ki ik Aj. If a all ta,i o] ok,
then a - 3 = all - azi - a3j - a4k is an involution called the

standard involution, and the norm of a € Q, n(a), is defined by

a ¥ =n(a)l =3 a, The norm is a quadratic form on Q whose
associated symmetric bilinear form, n(a,b) = n(a + b) - n(a) -
n(b) = ab + b3A, is nondegenerate.

Let O =Q ®Q, where the sum is a vector space direct sum,

and define multiplication in (3 by

(a,b)(c,d) = (ac + vdb, da +b%¥), v #0¢€ & .
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O 1is a (not associative) alternative algebra over & called the
algebra of octonions defined by & and v. & has identity (1,0)
and the subset {(a,0o) : a € Q} is an isomorphic copy of Q. If

we write a for (a,0), and let 4 = (0,1), then every element of
O can be written uniquely as a +bg, a,b € Q. If x =a + by € 0,
the mapping x - X =% - bg is an involution in (@ again called
the standard involution. As with Q, the quadratic form n defined
by x X =n(x)l =X x, x €@ is called the norm, and the associated
bilinear form is nondegenerate. Q and @ are examples of simple

alternative algebras.

Definition 1.3.3. An algebra with involution (#,j) is called a

composition algebra, if B 1is alternative and for all x € 8,

xxj =Qx)1 = xjx, where Q is a quadratic form whose associated
bilinear form Q(x,y) = Q(x +y) - Q&) - Q(y) 1is nondegenerate.

(8,j) 1is a split composition algebra, if B is not a division

algebra.

Now any composition algebra (&,j) 1is finite dimensional
and is isomorphic to a two-dimensional commutative associative algebra
with basis {1,q} where qj = -q, a quaternion algebra with standard
involution, or an octonian algebra with standard involution [5].
In addition, we state a result in which the determination of certain
simple alternative algebras with involution is given. This result

as well as a more detailed discussion of the topics in this section

can be found in [5].

Proposition 1.3.3. 1let (8,j) be a simple alternative algebra

with involution and identity element such that every nonzero symmetric



11

element is invertible in the nucleus, and let [ be the subset of
B of symmetric elements in C(8§). Then T is a subfield of B8
and the following possibilities occur for (8,j): I. S =4® 8,
A an associative division algebra, j the exchange involution;
II. (&,j) an associative division algebra with involution;

III. a split quaternion algebra over [' isomorphic to Fz;
IV. an algegra of octonions over ' with standard involution.

Conversely, any algebra in one of the classes I-IV satisfies the

given conditions.



CHAPTER 2

JORDAN ALGEBRAS

2.1 Quadratic Jordan Algebras

Quadratic Jordan algebras were first introduced by McCr immon
[7], although the presentation given in this section follows that of

Jacobson [6].

Definition 2.1.1. Let & be an arbitrary commutative associative
ring with 1 and let M,N be left $-modules. Then a mapping

Q : M- N 1is called quadratic, if (1) for all o € ¢, a € M,
Q(oa) = 0’Q(a), and (2) Q(a,b) =Q(a +b) - Qa) - Q) is a

¢-bilinear mapping from M X M into N.

If P 1is a commutative associative ring extension of @

= P ¢
P &QM’ M

a unital $-module. If Q : M - EndéM is a quadratic mapping,

then there exists a unique quadratic mapping 6 : MP - EndPMP

in the sense that P is a (unital) algebra over §, let M

such that the following diagram:

Q
M — EndQM

v l l o
M'P —_ EndPMP

Q

is commutative, where v(a) lwa, J5(A) =1 ®A, and 1 ¥ A(p ®w a) =

p®A(a) [6].

12
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We are now ready to define a quadratic Jordan algebra.

Definition 2.1.2. A (unital) quadratic Jordan algebra over a

commtative associative ring with identity is a triple (J,U,1),
where J 1is a unital left $-module, 1 a distinguished element of

J,and U : J - End J (a - Ua) is a quadratic mapping such that

Qi1 U =14
QJ2 for every x,y € J, UnyUx = UUX(Y)
QJ3 1f Ux,y = Ux+y - Ux - Uy is the associated symmetric

bilinear mapping, and Vx y € End J 1is defined by

vx,y(z) = Uz,y(x)’ for all z € J, then

uv

v = =y .
x,yUy Y ¥,X Uy(X),y

QJ4 If P 1is any commutative associative algebra over %

and U 1is the extension of U to Jp’ then U satisfies

QJ1 - QJ3

By a linearization of QJ2 and QJ3, the following identities

are obtained:

J5 U uu + U uUuu =1U
Q X Y X,z X,Z2 y X URCOFLNC))

b

6 UUU +UUU 4+U UU = U +U
QJ Xy z z'yx X,2 Yy X,2 Ux(y),Uz(y) Ux(y),z

QJ7 U uu + U ubgu +U uu +U U u
Xy Z,W X,2Z Y X,W Z,Wy X X,W y X,2

=U + U
UX’Z(Y),UX’W(Y) UX(Y)’UZ,W(y)

QJ8 v U +V U U \% +UV
X,Y ¥,2 X,Z Yy YsZ Y X Yy 2,x
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In the presence of QJ1 - QJ3, QJ4 is equivalent to QJ5 - QJS8.
Hence QJ1 - QJ3 together with QJ5 - QJ8 constitute an intrinsic set

of defining conditions for a quadratic Jordan algebra [6].

Definition 2.1.3. For x,y € J, (i) x2 = Ux(l), (ii) x° y = Ux y(l)’
J

(iii) Vx =V

1,x
It follows immediately from Definition 2.1.3 that Vx(y)

= Vl,x(Y) = Ux,y(l) = Uy,x(l) =yo x, and o is a symmetric bilinear

composition. We now list identities which are necessary for this

thesis [ 6].

QI9 Vx B Vx,l B Ux,l
' - . o -
QJ9 V1 ZIdJ, 1o x 2x
_ .2
QJ10 Uu,=U
X
x
QJ11 UU +UU =U +U -V UV
Xy y X U (¥)5y xoy Xy x
QJ12 UV +VU =
Xy X X ,Xoy
_ 2
Qil4 U +V  =vy

'
Q14 U y(z) + Uz

o J) = e x) oy

3

Definition 2.1.4, If x € J, let xO =1, x1 = X, x2 = Ux(l) and

for n=2 2, x" = ux(x“'z).

From Definition 2.1.4, we have
QJ15 u_=1
mn _  mn
= x

QJ16 =)

QJ17 X o X = 2x [6]
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. . n n+2
For any nonnegative integer n, Ux(x ) =x . If
n n+2m . . n
Uxm(x ) =x , m a nonnegative integer, then U I1(x ) =
ml n. m. n. _ n, _ n+2m, _ o+2mt2 _  n+2(m+l)
Ux x) = Uxe(x ) = Uxem(x ) Ux(x ) =x X .

Therefore by induction on m we have

QJ18 U (xn) = xn+2m, m,n nonnegative integers.
m g
X
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2.2 Inner and Quter Ideals

Let (J,U,l1) be a quadratic Jordan algebra. 1f A,B < J,
let UB(A) be the set of all §-linear combinations of elements of

the form Ub(a), b €B, a € A.

Definition 2.2.1. Let (J,U,1) be a quadratic Jordan algebra. A
subset K of J 1is an inner ideal of J, if K 1is a submodule of
J and UK(J) € K. A subset K is an outer ideal, if K 1is a sub-
module of J and UJ(K) € K. A subset K is an ideal of J, if

K 1is both an inner and an outer ideal of J. A subset K 1is a

subalgebra of J, if K is a submodule, 1 € K and UK(K) < K.

If K 1is an inner ideal of J and x € J, then Ux(K)
is an inner ideal of J, so in particular Ux(J) is an inner ideal

called the principal inner ideal determined by x. Ux(J) need not

contain x, so the inner ideal generated by x is &x + Ux(J) f1173.

For outer ideals we have the following:

Proposition 2.2.1. Let (J,U,1) be a quadratic Jordan algebra and
K an outer ideal of J. If x,y € J and k € K, then

3 k = - i1 = =
(1) Ux’y( ) Vk,y(X) €K, (i) VvV, (x) =V _(k) =x o k €K, so

Je K€K, and (iii) U ) =V ) = LR MMONSS

Proof. (i) U, y(k) = Ux+y(k) - Ux(k) - Uy(k) € UJ(K) < K.

3

(ii) By QJ9, xo k = Vx(k) = Ux,l(k) € K by (i).

(iii) By QJ14', Uk,x(y) = (y° k) o x - U, y(k) € K by (i) and (ii).

~

Definition 2.2.2. Let (J,U,1l) and (E,G,l) be quadratic Jordan

algebras. A mapping 6 : J - J is a (Jordan) homomorphism, if @

is a linear mapping and
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(1) e(1) =1

@) 68U () = Uy, (00, for all x,y € J.

Isomorphism, endomorphism and automorphism all have the usual mean-
ings.

It is clear from Definition 2.2.2, that the kernel of any
homomorphism @ 1is an ideal of J. If K 1is any ideal of J,

then (J/K, E, 1) is a quadratic Jordan algebra, where

G;+K(y +K) =U (y) +K and 1=1+K. The natural ¢-module
homomorphism ¢ : J - J/K is a Jordan homomorphism and if
(3,0,1) is any homomorphic image of (J,U,1), then J == J/ker ¢.
If K 1is any inner (outer) ideal of J, then @(K) is an inner
(outer) ideal of 3, for if x € J, k € K, ﬁe(k)(e(x)) =

o, x)) € o(x) (0 (8(k)) = 8(U_(k)) € 8(K)). Conversely, if

8(x)
K is any inner (outer) ideal of 3, then K = e-l(ﬁ) is an inner
(outer) ideal of J and ker g € K, for x € J, k € K 1implies
Uy gy (00)) €K, 50 8(U, () €K, and U, (x) € K(B(U (K) =
ﬁe(k)(e(x)) €K implies Ux(k) € K). Thus the (inner, outer)

ideals of J are in one-to-one correspondence with the (inner,

outer) ideals of J which contain ker g.

Proposition 2.2.2. I1If (J,U,l1) 1is a quadratic Jordan algebra and
K 1is an outer ideal of J, then for all x,y € J such that
X -y €K, x" -y" €K, for all n €N.

Proof. The case =1 holds by hypothesis. Ilet x -y =w € K,

n
k k
and assume x =~y € K for k < n. Then
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n-2 n-2
x -y =0 & ) - Uy(y )

n-2 n-2
Uy+w(x ) - Uy(y )

-2 -2 -2 -2
I N I NG IR R VA

]
(=]

YW

n-2 n-2 n-2 n-2
Uy’w(x ) + Uy(x -y ) +U,(x ) €K

by Proposition 2.2.1 and the induction hypothesis.

Definition 2.2.3. let (J,U,l) be a quadratic Jordan algebra and

K be an ideal of J. Then K(o) = J, K(l) = K, and for n 2 1,

l((n-+-1) _

(n)
U &Ky,
@

Proposition 2.2.3. If (J,U,l) is a quadratic Jordan algebra and

K 1is an ideal of J, then K(n) is an ideal of J for n = 0,1,2,...

Proof. Clearly K(o), K(l) are ideals of J. The proof follows
(2)

by induction on n, if K = UK(K) is an ideal. Let x € J,

kl,kz € K. Then UUk (kz)(x) =U, U U (x) = U, (u

k. Kk K, Uy, )]
1 1

1271 1 2
€ UK(UK(J)) = UK(K), since K is an inner ideal. Thus K(z) is

an inner ideal. To show that UK(K) is an outer ideal first note

that, if k € K, then U (k) =U (k) - U, (k) -U (k)
kl’kZ k1+k2 kl k2
€ UK(K). Thus by QJ11 and QJ12,

UxUkl(kZ) = UUx(kl)’kl(kz) + Ux°k1(k2) - UkIUx(kZ) VxUk Vx(kZ)

1

Uy (k.),k, (Kp) F U o (ky) - U U (o) = (U op
x 51725 1 1

1 1

- UkIVX)Vx (k,)
=U (k,)) +U . (k) -U [U (k)] -
Ux(kl)’kl 2 x kl 2 k1 X 2 ]

U (x° k) +U ° o k
ky %o kg 20 T &7 e k)

€ UK(K).
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Thus K(z) is an ideal, and the proposition follows as indicated.

Proposition 2.2.4, ILet (J,U,1) be a quadratic Jordan algebra and

K an ideal of J. If x € K, then xm € K(k) for all m 2 3k,
k €N,

3k-l (k)
Proof. We first show that x €K , Kk € N by induction on

k. If k=1, then x € K(l) and if k = 2, then

b

x3 = Ux(x) € UK(K) = K(Z). Suppose the property holds for r < k,
k-1 k-2

where k = 2. Then by QJ18, x =U (x y €U (K(k-l))

X
k-1

= K(k)- Now, if m 2 3k, then x' =10 k-1(xm-.2'3 ) € K(k), since
3
(k) x

K an ideal.
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2.3 Invertible and Quasi-invertible Elements

Definition 2.3.1. Let (J,U,l1) be a quadratic Jordan algebra.
x € J 1is invertible, if there exists y € J such that
(i) Ux(y) = x, and (ii) Ux(yz) = 1. y 1is called the inverse of

. -1
X and we write y =x .

Proposition 2.3.1 (Theorem on Inverses). 1. The following are
equivalent: (i) x is invertible; (ii) Ux is invertible in
End J; (iii) 1 € Ux(J).

2. If x is invertible, then (i) x-'1 is unique and

x L= U;l(x), (ii) U 4 = U;l, (iii) x 1 is invertible and
x

-1 - - 2 -
(x 1) 1 =x, (iv) x o x 1. 2, (V) x o x 1 = 2x, (vi) V 1

-1 - X
Vxe = Ux <

3. Ux(y) is invertible if and only if x and y are

. . -1 -1
invertible, and [Ux(y)] =U _l(y ). (6]

x
By 1(ii) and 1(iii), if Ux is onto for x € J, then Ux

is one-to-one. However, the converse need not be true. If Ux

is not onto, then x 1is called a zero divisor of J. Thus x € J

is a zero divisor if and only if there exists y # 0 € J such that

Ux(y) = 0. A quadratic Jordan algebra which has no zero divisors

other than zero is called a Jordan integral domain. Similarly, a

quadratic Jordan algebra in which every nonzero element is invertible

is called a Jordan division algebra. z € J 1is an absolute zero

divisor, if Uz = 0. J is (strongly) nondegenerate, if J has

no nonzero absolute zero divisors. The ideal, zer J, generated

by the set of all absolute zero divisors of J is a nil ideal in the usual

n
sense that z € zer J implies z = 0, for some n €N, and hence,
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if K is an ideal of J such that zer J € K, then J/K 1is non-

degenerate [67].

Definition 2.3.2., Let (J,U,l1) be a quadratic Jordan algebra.

z € J 1is called quasi-invertible, if 1 -z is invertible. If

the inverse of 1 - z 1is denoted by 1 - w, then w 1is called

the quasi-inverse of =z.

let z be quasi-invertible with quasi-inverse w. Then
the following properties are immediate from the definition (see
(6.
M U, @A) =1-z, 0 [d-w]=1
1-z > Tl-z
2
(2) W+2z -2 -WwWoz+ Uz(w) =0

2
3) 2w - z2 + Uz(2w) - Uz(w ) +2z - 2w °o z - w2 + w2 oz =0

-1 2
@) w-= Uy

o

(&)) z oW =2(z +w)

(6) w+z + Uz(l - w) =0.
From (6), it is clear that any ideal which contains 2z must also
contain w. Also note that w is quasi-invertible with quasi-

inverse z.

An (inner, outer) ideal is quasi-invertible, if every

element is quasi-invertible. The following useful lemma is stated

without proof (see [6]).

Lemma 2.3.1. Let (J,U,l) be a quadratic Jordan algebra and let
K be a quasi-invertible ideal of J. If u € J is invertible and

z € XK, then u + z 1is invertible.
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1f Kl and K2 are quasi-invertible ideals of J, and
x € Kl’ y € Ky, then 1 - x is invertible, and thus, by Lemma 2.3.1,
1l -xx+y)=@-x)+y is invertible. Hence Kl + K2 is a
quasi-invertible ideal. This fact together with Zorn's lemma implies
the existance of a unique maximal quasi-invertible ideal RgR(J), which

contains every quasi-invertible ideal of J. R(J) 1is called the

Jacobson radical of J and J is (Jacobson) semisimple, if

R(J) = 0. Since the homomorphic image and the complete inverse
image of a quasi-invertible ideal is a quasi-invertible ideal,
J/R(I) contains no nonzero quasi-invertible ideals. Finally, since
R(J) contains every nil ideal of J, in particular zer J < R(J),
and so J/R(J) is nondegenerate [6].

We conclude this section with a brief discussion of isotopes.

For more details, see [6].

Definition 2.3.3. Let (J,U,1) be a quadratic Jordan algebra and

c € J invertible. Define U(C) :J -End J by Uic) = Uch’
x € J, and let l(c) = c-l. Then the quadratic Jordan algebra
J(C) = (J, U(c), l(c)) is called the c-isotope of (J,U,1).
(U (d))
If d € J 1is also invertible, then (J(C))(d) =3 € .
2 @ ()
- -1 2 - 1
Thus if ¢ 2 = (c 1) s (J(C))(C ) - g € = J( ) =J. Now
if K is an ideal of J and x € J, k € K, then Ul(f)(x)

= (c) - : .
Ukuc(x) € K and Ux (k) = Uch(k) € K. Thus K 1is an ideal

of J(C). Similarly, if K 1is an ideal of J(C)

%

, then K 1is an

ideal of (J(c)) = J. Thus the ideals of J and any isotope

(c)

coincide. 1In particular, RU

) = RQJ) (see [6]).
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2.4 Linear Jordan Algebras

Linear Jordan algebras play an important role in Chapter &4,
where the only algebras considered will be linear Jordan algebras

over fields of characteristic not 2.

Definition 2.4.1. A (unital) linear Jordan algebra over a com-

mutative associative ring ¢ (with 1) containing % is a triple
(J,R,1) such that J 1is a (unital) left $-module and R is a
mapping from J - End J such that R is a ¢-homomorphism, and

if the image of x € J is denoted by Rx’ then

J1 R1 = IdJ
J2 R R =RR
Rx(x) X X RX(X)
1 d 3 d = = .
J3 if L is efined by Lx(y) Ry(x), then Lx Rx

Let (J,R,1) be a linear Jordan algebra and for x,y € J
define x.y = Ry(x). Then . is a bilinear composition, by J1
x.1 =x, by J3 x.y = y.x, and by J2, (y.x).x2 = (y.xz).x, where
x2 = x.X. Conversely, let J be a unital left §-module, % € 9%,
equipped with a symmetric bilinear composition . such that 1
is an identity for . and (y.x).x2 = (y.xz).x for all x,y € J.
By defining R by Rx(y) = y.x, R satisfies J1 - J3 and (J,R,1)
is a linear Jordan algebra. Thus we have the more familiar alternate

definition which is equivalent to Definition 2.4.1.

Definition 2.4.1'. A (unital) linear Jordan algebra J over the

. S . . L )
commutative associative ring ¢ (with 1) containing 5 is a
unital left $-module with a bilinear composition . and 1 € J

such that (i) l.x =x = x.1, x € J, (ii) x.y =y.x, for x,y € J,
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2
(iii) (Jordan identity) (y.x).x = (y.x2).x, for all x,y € J.

1f (,R,1) 1is any linear Jordan algebra over & (% € 3)
and P is any commutative associative algebra over &, then there
exists a unique extension R of R to Jp =P 8% J so that
(Jp, ﬁ, 1 ® 1) is a linear Jordan algebra [6].

Finally, if (J,R,1) is a linear Jordan algebra, define
U:J—-EndJ by Ux = 2Ri - R 2° Then U is quadratic and
(J,U,1) is a quadratic Jordan ZIgebra. Conversely, if (J,U,1)
is a quadratic Jordan algebra over ¢, where % € &, then define

1
H - d = =
R J End J by Rx 2 Vx

. In this case (J,R,1) 1is a linear
Jordan algebra. 1In fact there is a category isomorphism between
the category of linear Jordan algebras with homomorphisms as
morphisms and quadratic Jordan algebras over rings & such that
% € & with homomorphisms as morphisms [6].

For the remainder of this section let (J,U,l) be a
quadratic Jordan algebra over the unital commutative associative

ring ¢ and assume % € . Then we will write J for the triple

J,u,1) and the triple (J,R,1), since J 1is also a linear Jordan

algebra in the sense of Definition 2.4.1' with x.y = =x o y.

2

First note that K 1is an ideal of J 1if and only if K 1is an
outer ideal of J. Since one direction is clear, assume K 1is
an outer ideal of J. Then for k € K, x € J, Uk(x) = ZRi(x)

- R 2(x) = 2(x.k).k - x.k2 =1 (xo k) o k - % X o k2 € K by

2
k
Proposition 2.2.1. Hence K is also an inner ideal and therefore

an ideal. Also it is clear that K is an ideal of J if and only

if K is a submodule of J and x.k € K for all x € J, k € K.
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It is also possible to state the concepts of inverse and

quasi-inverse in terms of - . Suppose x € J 1is invertible with

1
inverse y. By Proposition 2.3.1, x.y = % x°y= 2 2 =1 and
2

X .y = %'x cYy =5 2x = x. Conversely, if for x € J there exists
2
y such that x.y =1 and x .y = x, then we show first that

x2.y2 =1 and x.y2 = y. Since % € &, the linearized form of the

Jordan identity holds; i.e., for a,b,c,d, € J, [(b.c).a].d
+ [(c.d).a].b + [(d.b).al.c = (a.b).(c.d) + (c.b).(a.d) + (d.b).(a.c).

2
b =y, we get x .y2 = 1. Then

x and a

2 2
(x*.y’).y =y. Hemee U (y) = 2Ro(y) - R ,()

X
2
y)

By taking c¢ =d

2 2 2
X.y = (x .y).y

2 2
2(y.x).x - y.x2 =2x - x =x, and UX(Y ) = ZR:(Y ) - R 2(
X

2(y2.x).x - yz.x2 =2y.x -1=2-1=1, and so x is invertible

with inverse y. By a straightforward computation it can be shown
that x € J 1is quasi-invertible with quasi-inverse y if and only

if x+y -x.y =0 and Xz-y - x.(x.y) = 0.

. _ — . 0 _ 1 _
By QJ3 with y =1, vax = Vxe. Thus since x =1, x = x,
2 2 _ 2 2
X = Ux(l) = 2Rx(1) - R 2(1) = 2x.x - X , so that x = x.x, we have
n+l n-1. 1 % n-2 1 n-2 n
X = Ux(x ) =35 vax(x ) =5 Vxe(x ) = x .x by induction.
Hence when % € ¢, powers can be defined in terms of -, and
xn.xm = % x" o xm = xn+m implies that (J,*,1) is power-associative.

We finish this section with a special result for linear

(n)

Jordan algebras concerning K , n €N,

Proposition 2.4.1. Let J be a linear Jordan algebra (% € 3)

and K an ideal of J. Then K(n+1) = (K(n))'B, n € N, where
A3 = a.(a.8).
Proof. Since K(n+1) = (n))’ the result will follow by

U ®

induction, if UK(K) =K. 1If kl’kZ € Kl then
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2 2 .3
Ukl(kZ) = 2Rk1(k2) - sz(kz) = 2(1(2.k1).k1 - k2.k1 €K . Con-
1 '
versely, suppose kl’kZ’k3 € K. Then by QJ14', l;(kl.kz).k3

=(k1°k2)°k3=Ukk(k)+U (k,)) =U (kz)-U )

(k
1°%3 2 k2,k3 1 k1+k3 k1 2
-Uk3(k2) + Uk2+k3 (kl) - Ukz(kl) - Uk3 (kl) € UK(K).
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2.5 Constructions of Jordan Algebras

I. Llet Y be an associative algebra with 1 over the com-
mutative associative ring ¢ with identity. Define U : 9 - End Y
by x - U,s where Ux(y) = xyx, y € 4. Then U is a quadratic
mapping and m+ = (YU,U,1) 1is a quadratic Jordan algebra (see [7]).

The associated bilinear map is determined by Ux y(z) = xzy + yzx.
b

1 -1 =1 =1 =1
If 5€39, then x.y =35 xeoy =3V () 2Ux,1(Y) > (xy +yx).
1
Conversely, if 9 1is an associative algebra and 7 € ¢, then ¥
together with <+ defined by x.y = % (xy + yx) 1is a linear Jordan
algebra.

Clearly every ideal of 9 1is also an ideal of m+. The
following theorem due to Herstein has an interesting consequence.
Let (x) denote the associative ideal of Y generated by x.
Theorem 2.5.1 (Herstein). Let Y be an associative algebra (with
1) and 0 # K an ideal of M+. Then either (1) b2 = 0 for every
b € K, and if b # 0, then (b) # O but (b)3 = 0, or (2) there exists
b € K, b2 #0, and 0 # (bz) < K.
Proof. First note that x2 = xlx = Ux(l) for all x € J and
X oy = Ux,y(l) = xy + yx, for all x,y € 2. Secondly, note that
bxby and xbzy € K for all b € K, x,y € Y, since bxby = (bx) (by)
+ (by) Gcb) = blyI)b = Uy () - U (yx), and xbly = (xb) (by)
+ (bx) (by) + (by) (xb) + (by) (bx) - bxby - b(yx)b - bybx = (x ° b) ° by
- Ub(yx) - bxby - bybx.

(1) Assume b2 =0 for every b € K. Then for all a,c € K,
actca=a cc=u, () =U (D -U(D-U )= (a+c)? - a% - 2

=0, so ac = -ca. Now, if b # 0, then b € (b) = AbYU # 0. For
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2
X,y € %, bxbyb = (bxby)b = -b(bxby) =-b xby = 0, so
(b)3 = 0.
2 2 2 2
(2) 1f b€K and b" # 0, then b” € (b"), so 0 # (b")

= 9Ib2%[ < K.

Definition 2.5.1. A quadratic Jordan algebra (J,U,1) is simple, if

J # 0 and the only ideals of J are 0 and J.

We now derive a corollary to Herstein's theorem which pro-
vides many examples of simple Jordan algebras. Recall that an
associative algebra 9 is simple, if mz # 0, and 0 and 9 are
the only ideals of %Y. Since mz is an ideal of 9, mz = 9 when

U 1is simple.

Corollary 2.5.1. 9 1is a simple associative algebra with identity
if and only if m+ is a simple quadratic Jordan algebra.

Proof. 1If m+ is simple, then 9 1is simple since every ideal

of Y 1is an ideal of M+. Hence assume 9 1is simple. Then

m+ # 0, so let K be a nonzero ideal of M+. If b € K and

b2 # 0, then 0 # (b2) € K<Y. Since Y is simple (b2) =9 and
hence K = M+. On the other hand, if b2 =0 for all b €K,

then (b) # 0, so (b) = Y. But by Theorem 2.5.1, 0 = (b)3 = m3,
and thus mz = 0, a contradiction. Thus the only nonzero ideal of

m+ is m+ itself, and m+ is simple.

Proposition 2.5.1. x € ¥ 1is invertible with inverse y if and

only if x 1is invertible in m+ with inverse y. x is quasi-
invertible in 9 with quasi-inverse y if and only if x 1is quasi-
invertible in u+ with quasi-inverse y. Let x'" denote powers

.n n .
of x in m+. Then x = xn, where x denotes powers in Y.
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2 2
Proof. If xy =1 = yx, then Ux(y) = xyx = x and Ux(y ) =xy x
= (xy) (yx) = 12 = 1. Conversely, if Ux(y) = x and Ux(yz) =1,
2
then x(y x) = 1= (xyz)x, so x 1is invertible in 9, and

2 2 -
Yy X =Xy =X 1. Since x = Ux(y) = xyx, and x invertible,

y = x-lxyxx-1 = x-]'xx-1 = x-l. If x 1is quasi-invertible in 9,
then 1 - x 1is invertible in 9 and hence invertible in m+.
Thus x is quasi-invertible in m+, and conversely. If x has
quasi-inverse y in Y, then 1 - x and 1 -y are inverses in
m+, and conversely. Thus the second statement is clear.

Clearly x'1 = x1 and x°2 = U (1) =xIx = x2, so for

n>2, x" = Ux(xn-z) = xxn-zx =x".

It can be shown that the nil radicals and Jacobson radicals
of Y and m+ coincide. Since only the result concerning the
Jacobson radicals is needed for this thesis, it is the only one
which will be proved. However, the proofs in the two cases are

nearly identical, both results being corollaries to Herstein's

Theorem (2.5.1).

Corollary 2.5.2., let U be an associative algebra (with 1), and
let R@) be the Jacobson radical of Y. Then Y 1is (Jacobson)
semi~simple if and only if m+ is (Jacobson) semi-simple.

Proof. By Proposition 2.5.1, R() is a quasi-invertible ideal of
m+ so that R@Q) < &Km+). Now suppose m+ is semi-simple. Then
rRE) < EKM+) =0 implies RM) = 0; i.e., 9 1is semi-simple.
Conversely, assume 9 1is semi-simple. If x2 =0 for all

x € PO, then (x)°> =0, and (x) € PQ@) = 0. Thus x = O and

m+ is semi-simple. If there exists x € g%m+) such that x2 # 0,
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then 0 # (x2) < E0u+). But then (x2) is a nonzero quasi-invertible

+
ideal of 9, a contradiction. Thus ¥ is semi-simple.

3

Corollary 2.5.3. R@) = RQ ), 9 as in Corollary 2.5.2.
Proof. Since RM) < R(m+), it remains only to show the reverse
inclusion. Let © : 9 — U/RQ). Then clearly 9§ is a Jordan
homomorphism from m+ - (ﬂ/ﬁ%ﬂ))+ with kernel g@). Hence
u+/&Km) = cu/ecu))+, where the latter is semi-simple by Corollary
2.5.2. Since &Km+)/ﬁcu) is a quasi-invertible ideal of M+/£Cu),

rah/p@) =0 so REM < ).

Definition 2.5.2. A quadratic Jordan algebra (J,U,1) is special,
<+
if there exists a (Jordan) monomorphism from J into 9 , where ¥

is an associative algebra with identity. Otherwise (J,U,1l) is
exceptional.

+
Clearly, if U associative, then Y is special.

II. The construction in (I) can be generalized to U an
alternative algebra with identity. Again Ux(y) = xyx, and the
resulting quadratic Jordan algebra is denoted by M+. 1f

1 +
X.y = E(xy + yx) yields 91 as a linear Jordan algebra.

€ ¢,

wn N | =

ince
. . + + + . . . ]
in this case 9§ = Homé o, , 9 is clearly special. Finally, it

is again clear that every ideal of 91 1is also an ideal of m+.

III. Iet (U,j) be an associative algebra with identity and
involution j, and let §@O,j) = {x € ¥ : x) = x} be the set of
j-symmetric elements of (97,j). Since $(,j) is clearly a sub-
module of 9], 1j = 1, and Ux(y)j = (xyx)J = nyJxJ = Xyx = Ux(y)

for all x,y € Q,j), SU,j) is a subalgebra of m+. 1f
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o : (U,j) - (ﬂ,}) is a homomorphism of algebras with involution,

then e\b(ﬂ,j) is a (Jordan) homomorphism from §(,j) - b(ﬂ,}).

Now let 9%° be the opposite algebra of U, B =UD u°
and j the exchange involution. Then we have seen that ®B is
an associative algebra with involution and identity (1,1). Hence
9®) = {(a,a) : a € Y} is a Jordan subalgebra of %+. Since
m+'e:©08,j) under the mapping a - (a,a), we have a second equi-

. + C o
valent construction of 9 , 91 associative.

IV. Let V be a vector space over a field § which is
equipped with a symmetric bilinear form f, and let J = 3%1®V
be the vector space direct sum of V with the one-dimensional

vector space $1 with basis {1}. We define a product on J by

(@l +x).(B1 +y) = (@8 + £(x,y))L + (Bx + ay).

Then if ¢ does not have characteristic 2, (J,-,1) 1is a linear

Jordan algebra. Let V' = {x €V : f(x,y) =0 for all y € V].

i

Then f is nondegenerate, if vi=0. v is a subspace of J

which is properly contained in J, and if ol +x € J, y € VL,
then (ol + x).(0l +y) = £(x,y)l + oy = oy € V*. Thus V% is
an ideal of J, and so if J 1is simple, vt = 0, and f is non-

degenerate. Conversely, if f 1is nondegenerate and dimV > 1,

then J is simple.
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2.6 Maximal Ideals

Let J be a quadratic Jordan algebra. Since 1 is quasi-
invertible if and only if J = 0, we assume throughout this section

that J # 0. Hence 1 ¢ RWUJ) so that gJ) c J.

Definition 2.6.1. An ideal M of a quadratic Jordan algebra J

is a maximal ideal, if M#J and M S N, N an ideal of J,

implies N =M or N =J. An ideal P is prime, if A and B
ideals of J such that UB(A) C P implies ACS P or B S P

(for equivalent conditions see [117]).

Before considering properties of maximal ideals, note that
K an ideal of J implies KN {x € J : x 1is invertible} = ¢ or
K =J. For if x € K 1is invertible, then 1 = Ux(x-z) € K so

that y = Ul(y) € K for all y € J.

Proposition 2.6.1. Let J be a quadratic Jordan algebra with

Jacobson radical R(J). Then:

(1) Every maximal ideal of J 1is prime.

(2) M is a maximal ideal of J if and only if J/M 1is simple.

(3) Every ideal properly contained in J 1is contained in a maximal
ideal.

(4) RJ) 1is contained in every maximal ideal of J, and if RQ)
is itself a maximal ideal, then RgR(J) 1is the only maximal
ideal of J.

(5) If M is the unique maximal ideal of J, then every ideal
properly contained in J is contained in M, and conversely.

(6) J/R(I) is a division algebra if and only if RU) = {x € J :

x is not invertible}. 1In this case R(J) 1is the unique
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maximal ideal of J.
Proof. (1) Let M be a maximal ideal of J, and assume A and
B are ideals of J such that A¢ M and B € M. Then MC A+ M
and McCcB +M, so A+M=B +M=J. Hence J = UI(J) = UJ(J)

= UB+M(A +M). Let a €A, b €B, and x,y € M. Then Ub+x(a +y)

Up @ FY) +U @ +Y) +U @ +y) =U (a+y) +U @ + U0 0)
+U (a+y) € UB(A) + M. Thus J &< UB_m(A + M) UB(A) + M, which
implies that Uy (A) ¢ M, since M #J. Hence M is prime.

(2) K 1is an ideal of J such that M < K if and only if K/M

is a nonzero ideal of J/M. Thus the result is immediate.

(3) Let K be an ideal of J such that K # J. The set of all
ideals containing K and properly contained in J 1is nonempty,
since this set contains K. Thus Zorn's lemma can be used to imply
the existence of a maximal element M of the set. That is M # J
is an ideal, K< M, and if K & N, N an ideal of J, then N €M
or N =J. But any ideal of J containing M must necessarily
contain K, and so M is actually a maximal ideal of J.

(4) Suppose M is a maximal ideal of J and gRUJ) ¢ M. Then
MC RUJ) +M, so that R(J) + M =J. Hence there exists z € RUJ)
and x € M such that z +x =1, and so x =1 - z 1is invertible.
This is a contradiction, and so RJ) €« M. If RQUJ) is a maximal
ideal, then it is clear that g(J) is the only maximal ideal of J.
(5) I1If M is the only maximal ideal of J and K 1is any ideal
different from J, them K &M by (3).

(6) One direction is clear. Hence assume J/R(J) is a Jordan
division algebra. If x ¢ R(J), then o(x) # O, where @ 1is the

natural homomorphism from J onto J/R(J). Thus ¢(x) 1is invertible
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and there exists y € J such that Ux(y) + R(J) = 1. Hence there
exists z € R(J) such that Ux(y) =1 - z, which implies that
Ux(y) is invertible. By Proposition 2.3.1, x 1is invertible.

The maximality of R(J) follows immediately.

We next turn to the relationship between maximal ideals

of an associative algebra 9 and the maximal ideals of m+.

Proposition 2.6.2. Let %Y be an associative algebra with 1. M
is a maximal ideal of Y if and only if M 1is a maximal ideal
of m+. If M is the unique maximal ideal of m+, then M is
the unique maximal ideal of 9. If M = R®) is a maximal ideal
of 9, then it is the unique maximal ideal of both 9 and m+,
Proof. Recall that 9'/M = (QI/M)+. By Corollary 2.5.1, 4/M is
simple if and only if (M/M)+ is simple. Thus 9U/M is simple

if and only if m+/M is simple and the first result follows from
Proposition 2.6.1 (2). If M is the unique maximal ideal of M+,
then by Proposition 2.6.1 (5), M contains every ideal of m+
which is properly contained in m+. In particular maximal ideals
of 9 are such ideals, so M 1is the only maximal ideal of 9.

If M =pR®H) is maximal in Y, then M 1is the unique maximal
ideal of 9, since R®) 1is contained in every maximal ideal of
A. Since LA = ﬁ@u+) by Corollary 2.5.3, M 1is also the unique

maximal ideal of m+ by Proposition 2.6.1 (4).

Proposition 2.6.2 allows one to construct many examples of
quadratic Jordan algebras with unique maximal ideals. Let
9 ={a/becQ :b#0(mod p), p a fixed odd prime in 2Z3}. Then 9

is a unital algebra over Z with unique maximal ideal
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RrA) = {a/b €U : a= (o(mod p)}. Now 9 itself is a quadratic
Jordan algebra, but we can derive a less trivial one by forming
+ + . . . +
(mn) , 2 2. Then (mn) has unique maximal ideal &?(mn)
= ﬁ(mn) = R - Of course any associative algebra U with

identity such that gR(9) is a maximal ideal would do as well.
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2.7. Linear Jordan Algebras over Fields

In this final section of Chapter 2, it is assumed that J
is a linear Jordan algebra (with 1) over a field & of charac-
teristic not 2. None of the proofs will be given for results
whose proofs can be found in [57.

We first consider the associativity of certain finitely
generated subalgebras of J. Recall that J 1is special, if there
exists a monomorphism ¢ : J - m+, 91 an associative algebra.
Whenever this occurs in what follows, J will be identified with
J° and 1 will be assumed to be the identity of 9 (see [57,

p. 10). For the sake of completeness, the fact that J 1is power-

associative is restated in another form. Note: [# a subalgebra

of J implies 1€ f.

Proposition 2.7.1. For every x € J, the subalgebra generated by

{1,x} is associative.

Proposition 2.7.2. Let RJ(B) {Rb € HomQ(J,J) :bep}y. 1f B
is a subalgebra of J and X a set of generators of [ containing

1, then the subalgebra of HomQ(J,J) generated by RJOG) and

1d; is generated by {Ux,y ! X,y € X}.

Proposition 2.7.3. (Shirshov-Cohn). Any Jordan algebra (with 1)

generated by two elements (and 1) is special.

Proposition 2.7.4. 1et K be the subalgebra of J generated by
{1,x,y}, where J is a subalgebra of m+, 90 associative . 1If
xy = yx, then K 1is associative.

Proof. Note that J 1is a subalgebra of m+, 91 associative, by

Proposition 2.7.3. We first show that xy = yx implies Rx’Ry

and R commutes. For
X.y
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Rny(z) = (2.y).x = %(zyx + yzx + xzy + xyz)
1
= Z(zxy + yzx + xzy + yxz)
= (z.X).y = Rny(z),
and
1, 2
Rx yRx(z) = (z.x).(x.y) = g(zx y + zxyx + xzxy + xzyx + xyzx

2
+ xyxz + yxzx + yx 2z)

%(zxyx + zyx2 + xyzx + yxzx + xzxy + xzyx + xzyz + xyxz)

]

[z.(x.y)].x = R R (z) .

X.y

Similarly Rx.yRy = Rny.y . Now since Ua,b = RaRb + RbRa - Ra.b’ the
set {Ua,b : a,b € {1,x,y}}] 1is a commutative subset of Hom@(J,J).
Since the subalgebra of HomQ(J,J) generated by RJ(K) is gen-
erated by {Ua,b : a,b € {1,x,y}}, this associative subalgebra is
commtative, call it £&.

Suppose a,b,c € K. Then Rb,Rc € B, and so (a.b).c
=RR (a) =RR_(b) =RR (b) = (b.c).a = a.(b.c). Thus K is

associative.

Proposition 2.7.5. Let K be the subalgebra of J generated by
{l1,x,y}. Then K is associative, if (i) x is invertible and

y = x , or (ii) x 1is quasi-invertible and y 1is the quasi-
inverse of x.

Proof. Let U be the associative algebra such that J is a

‘subalgebra of m+. By Proposition 2.7.4, it is sufficient to

show that xy = yx in each case. 1In case of (i) or (ii), x
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and y are inverses (quasi-inverses) in 9 by Proposition 2.5.1.

Thus xy = 1 = yx, if (i) holds or xy =x +y = yx, if (ii) holds.
We next consider idempotents in J.

Definition 2.7.1. let (J,U,1) be a quadratic Jordan algebra (mno
2
restriction on §). An element e € J 1is idempotent, if e = e.
Two idempotents e and f are orthogonal (e L f), if e o f
= Ue(f) = Uf(e) = 0. A set of orthogonal idempotents
n
{el,ez,...,en} is supplementary, if i§1 e, = 1.

It is immediate from the definition that e an idempotent
implies en = e for all n € N. Now if % € , then e and f
orthogonal implies e.f = % e o f = 0. Conversely, if e.f =0,
2e.f =0 and U () =L [VE(E) - V .(£)
° e 2 e eZ ]

then e o f

o

= %((f ° e) e - f oe) =0; and similarly Uf(e) = 0. Thus
e 1L f.

If e 1is an idempotent of J, then Ue(J) is an inner

ideal of J, since x,y € J implies UUe(x)(y) = UeUer(y)

= Ue[Uer(y)] € Ue(J). Moreover, if u, = Ua\ ac Ue(J),

u )
then (Ue(J), ﬁ, e) 1is a quadratic Jordan algebra. Since QJ2-
QJ3 and QJ5-QJ8 are inherited by U from U, all that needs to

be shown is that ﬁa is an endomorphism of Ue(J) and

U =1d .
Ye = My )

But = =

u UUe(x)[Ue(y)] U U UU () =U (U ()
€ Ue(J) and UeUe(x) = Ue(x) proves this is so. Thus if

% € 9%, Ue(J) is a linear Jordan algebra under - . 1In partic-

ular, this also implies x2 = Ux(e) for x € Ue(J).
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let {el,ez,...,en} be a supplementary set of idempotents

in J. Then for i # j, u, ,Ue o form a set of pairwise orthogonal
29

i i’7j
n
projections and 1d; = T U + TU . If J,, =0 (J) and
1=1 1 ]_<j i j i
Jij = Ue.’e (J), i < j, then we have J = .2' ® Jij’ which is
173 i<j

called the Pierce decomposition of J relative to {el,ez,...,en}.

The inner ideals Jigo i=1,2,...,n are called the Pierce inner
ideals determined by the ei. As before we will be interested in the
case where § is a field of characteristic not 2, and since the
decomposition is a vector space direct sum, any Jij’ i <j will

be called a Pierce space of the decomposition. We have the follow-

ing characterizations of the Pierce spaces for this case:

1) J; ={xedxe, = x}

]
]

(2) J

. ={x€J : x.e,
1]

1 X = x.e_}
l 2 x . j 4 .

Proposition 2.7.6. Let J be a linear Jordan algebra over a field
® of characteristic not 2, and let J = g C)Jij be the Pierce
i<j

decomposition of J relative to the supplementary set of idempotents

{el,ez,...,en}. Then:

(i) I3 53 1=1,2,..00m,

(ii) Jijdi © Jij, if i#j,

(iii) J...J.,sJ., + Jjj, if i#j,

ij "Tij ii
(iv) Jigedyy =0 i 4 * i,
W) Jij'ij = Jik’ if i,j,k are distinct,
(vi) J..,.Jd =0, if i,j,k are distinct.

ij "kk
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(vii) Jij.JkL =0, if 1i,j,k,4 ared

Proposition 2.7.7. Let

decomposition J = £ ®J,, with respe
i<j H

set of idempotents {el,ez,...,en}, and

1If 9 :J - J/K 1is the natural homomorp

write @(S) =S, then {el,éz,...,én}

idempotents of J and J = r ® Ii‘ i
<] J
of J relative to this set of idempoten
Proof. Since e’ = ? =e. and é_.é_
i i i i j

{51,52,...,én) is a set of orthogonal i

n n

set is supplementary, since Te =%

i=1 b i=1

= E: (3), then x = ﬁ: (¥), y € J. Henc
i i

Conversely, if x € Eii’ then x = Ue (y

i

=U- 2 O
3

Conversely,

ffé ,é (3), i # j, then X
i"]
X € Uei’ej(J) =Ji_‘]

j(y) +K = Eé

Definition 2.7.2.

€.,
1

Thus

=U
e

i

X e i’(;j(y) € Dyye

are called connected, if there exists u

e

1

u

invertible in U and e

e te, ) 2

1 2
if there exists an element

2 =
Y12

€u
12 1,e2
e. +e,_.

1 2

The relation of connectedness is

(J)ii’ y € J. Hence (J)ii = Jii' Now

Two nonzero orthogonal idempotents

istinct.

J be a linear Jordan algebra with Pierce

ct to the supplementary
let K be an ideal of J.
hism and for

S<J we

is a supplementary set of

s the Pierce decomposition
ts.
=e =0, for i#j,

e,
i'j

dempotents of J. This

e. =1,

i If x € (J)ii

e

+ ...
Uei(Y) K € Ji4

Us (v) € Uz )
i i
O

)

L]

3

’ej(y) + K, y€J.

e;1¢y €J

S (J) which is
e;r€,

are strongly connected,

12

(J) such that

transitive.
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Proposition 2.7.8. let e be nonzero orthogonal idempotents

1°°2°°3
such that ey and e, are connected (strongly connected) and e,

are connected (strongly connected). Then e and e

and e

3

are connected (strongly connected).

3

The usefulness of connected idempotents will become apparent
after Jordan matrix algebras have been defined. let & be an
algebra over a field § of characteristic not 2 with identity
element 1 and involution j : d - dj =d. Let jm' be the algebra
of n X n matrices with entries in 8. let a, ENGW N,
i=1,2,...,n (N(& is the nucleus of B and @B ={d € B :

d

d}), and assume a, fis invertible in N8 . If
a = diag {al,az,...,an}, then we define an involution on jh

called a canonical involution by ja

: X - 8-1 ita, X € ﬁh’ where
ﬁt is the conjugate transpose of X wunder j. If a = In’ then
the involution is called standard. Let @c&n,ja) denote the set
of symmetric elements of Jh’ if ﬁ: is the algebra which has
the same underlying vector space structure as ﬁh’ but multiplica-
tion defined by X.Y = %(XY + YX), then bcbh’ja) is a subalgebra
of ﬁ:. We will write hcﬂh) for @CDn,jIn).

The following notation will be used for elements of ﬁh

and @g&n,ja) wherever these algebras are encountered. Let

eij’ i,j =1,2,...,n be the element of j; with 1 in the (i,j)
position and 0 elsewhere, and if x € %, identify x with .; X eii
= diag {x,x,...,x}. Then xeij is the matrix with x in th;—1
(i,j) position and O elsewhere, and for x € B we put
ja -1
(IMA0) x[ij] = xeij + (xeij) = xeij + (aj % ai)eji’ i,j =1,2,...,n.
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A
Since the characteristic of $ is not 2, bgﬁh,ja) ={X+X a .

X € jh}’ and hence every element of bgﬁn,ja) is a sum of elements

x(1j], x € &, 1,5 = 1,2,...,n. If @ij = {x[ij] : x € £}, then
n

bij = ﬁji and 9 ,j,) = is§=1<3 2

tion rules hold in bCDn,ja):

j° The following multiplica-

(oMal) 2 x[ij].y[jk] = xy[ik], if 1i,j,k are distinct;

(JMA2) 2 x[ii].y[ij] (xy + (a;1 % ai)y)[ij], if i #3;

aMa3) 2 x[ij].y(§i] = xy[ii] + yx([§i], if i # j;

A

-1 -1 . . .
(x + ai X ai).(y + a,;” § ai)[llj.

(IMA4) 2 x[ii].y[ii]

P -14\ . e s
Also we have x[ij] = (aj & ai)[jlj, and x[ij].y(ke] =0,
if {i,j} N {k,2} = ¢.
The next proposition determines when ﬁcbn,ja) is a

(linear) Jordan algebra for n = 3.

Proposition 2.7.9. b(bn,ja) for n =23 is Jordan if and only
if (&,j) 1is associative or n =3 and (f,j) is alternative

with symmetric elements in the nucleus.

For n = 2, bcﬂh’ja) is clearly Jordan if (8,j) is
associative (see Section 2.5), and for n = 1, nothing more can
be said than to state the Jordan conditions for ﬁgﬁh,ja). In
any case, whenever bCDn,ja) is Jordan, 9‘”5’3a) is called a

Jordan matrix algebra of order n.

Proposition 2.7.10. let § = bgﬁn,ja) be a Jordan matrix algebra
of order n = 3 defined by the canonical involution ia in ﬁh
such that a, = 1. Then the mapping &3 «»Bn N is a lattice

isomorphism of the lattice of subalgebras /[ of (#,j) containing
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a»a,,1i-= 1,2,...,n onto the lattice of subalgebras of &
containing the elements 1(i,j], i,j = 1,2,...,n. Also the mapping
Ic] *’Bn N $ is a lattice isomorphism of the lattice of ideals /f3

of (B,j) onto the lattice of ideals of &, and

B ={decp:dlij] € B N3 for every (i,j) € {1,2,...,n}

x {1,2,...,n}}. 1In either the ideal case or subalgebra case, f3

is characterized by S ={d € £ : d is an entry of a matrix in

BN gl

Note that there is no loss of generality in assuming

a, = 1 1in the preceeding proposition (see [5], p. 128).

Proposition 2.7.11. let bg&n,ja) and b(@n,kb) be Jordan matrix
algebras of order n = 3 determined by canonical involutions ig
and kb respectively where the first is defined by an involution

j in B and a diagonal matrix a with a, = 1 and the second

by an involution k in § and a diagonal matrix b with b1 = 1.

1f T 1is a homomorphism of (&#,j) into (&,k) such that

a? = bi’ i=1,...,n, then the restriction ¢ to ﬁg&n,ja) of

the mapping (di ) - (d? ) of ﬁh is a homomorphism of ﬁcbn,ja)

] j
into ©(6_,k) such that 1[1j1% = 1{1j}, where d[ij] and
e{ij} are defined by (JMAO) in Q8 »3,) and Q08 sk)
respectively.

Conversely, if ¢ 1is a homomorphism of bgbn,ja) into
2(8,,k,) such that 1{1j1° = 1{ij}, i,j = 1,...,n, then there
exists a homomorphism T of (&,j) into (&,k) such that
al=b,, i=1,2,...,n and o is the restriction to 20h ,3,)
) - @)

of the mapping (di ) of ﬁ;.

3 ]
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Corollary 2.7.1. 1let § = ﬁcbh,ja) be a Jordan matrix algebra

of order n =z 3 determined by a canonical involution ja with

a = 1, and let K = Sn N $ be an ideal of . Then §/K

a@(,&/a)n, i3), where (8/8,j) is the image of (8#,j) wunder the
. - g m U

natural homomorphism 71 and a = diag [al,ag,,,.,an].

Proof. By Proposition 2.7.11, there exists a homomorphism ¢
from @CDh,ja) into b(c&/s)n,ja) which is the restriction of

the homomorphism (di ) - (dgj). Since T onto implies that (dij)

]
N, .
- (d, t . : - E
( 1J) is onto, g is clearly onto. let @ j; ﬁh/@n Cﬁ/ﬁ)n
be the natural map. Then ker g = ker g N § = 6n N$ =K, and

hence J/K == b(Cﬁ/&)n,ja)-

Proposition 2.7.12. (Coorinatization Theorem). Let J be a linear
Jordan algebra over a field ¢ of characterization not 2, let

[el,ez,...,en} be a supplementary set of nonzero idempotents of

J, n23, and let J = ¢ C)Ji' be the corresponding Pierce
i<j

decomposition. If for j = 2,3,...,n there exists u1j € Jlj

which is invertible in J11 + Jjj + Jlj’ then there exists a

Jordan matrix algebra b(ﬁh,ja) and an isomorphism { of J
c_ 1. ¢ _ .
onto bCBn,ja) such that ey = 5{11] and ulj = 1[1j3],

2
j=2,3,...,n. If in addition ulj =e + ej, j=2,3,...,n,

then the involution ja is standard and J = bgbn).

Since supplementary connected idempotents satisfy the
first hypothesis and supplementary strongly connected idempotents
the latter in addition, it follows immediately that if J has a
supplementary set of connected (strongly connected) idempotents

[el,ez,...,en}, n >3, then J 1is isomorphic to a Jordan matrix
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algebra (5 ,j) (R0 )).

lemma 2.7.1. 1let (J,U,1) be a quadratic Jordan algebra and
e # 0 an idempotent in J. If K = U,(J), then RUJ) NK € R(K).

Proof. 1If Ue(x) € R(J) N K, then for any Ue(y) € K, UU (x)(Ue(y))
e

=UU U (y) € RU) NK, and U )(Ue(X)) = UeUyUe(x) € RUJ) NK,

u, &y
since R(J) is an ideal and K = Ue(J). Thus RWJ) N K 1is an
ideal of K. Now Ue(x) € RJ) N K implies Ue(x) is quasi-

invertible in J with quasi-inverse y. Then y = Ul_y[(Ue(x))2

- Ue(x)] = Ul-yUe(Ux(e) - x), since (Ue(x))2 UUe(X)(e) = UeUer(e)

UU, (). Thus U (y) = UV, U (U (e) - x) = UU, U, () - x)

e l-y e

=U

Ue(l_y)(UeUx(e) - Ue(x)) =U

e-U (}’)[(Ue(x))2 - Ue(x)]' There-
e

fore Ue(x) has quasi-inverse Ue(y) € K, and RJ) NK is a

quasi-invertible ideal of K. Thus RJ) N K < RK).

The next proposition plays a fundamental role in obtaining

the results of Chapter 4.

Proposition 2.7.13. Let J be a linear Jordan algebra, K a quasi-
invertible ideal of J such that J = J/K = b(@n,jb), a Jordan
matrix algebra of order n 2 3 determined by a canonical involu-
tion, and let {51,52,...,En] be a supplementary set of connected
idempotents such that éi - %{ii] under the isomorphism of J

onto @(6n,jb) for i =1,2,...,n. If J contains a supplementary
set of connected idempotents {fl,fz,...,fn} satisfying Ei = éi
for i =1,2,...,n, then

(1) J =908 ,3,), a Jordan matrix algebra,

) (8,j) = (B/%,j), where F is the ideal of B such that

KeF N ﬁCﬁh,ja) under the isomorphism of J onto
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R ,i,), and b = diag {a, +F, a, +%F,..., a + 7).

Proof. Without loss of generality we may let e, = fi’ i=1,2,...,n.

Thus, if J = ¢ @ Jij is the Pierce decomposition of J with
i<j
respect to the set {el,ez,...,en}, then by Proposition 2.7.6,

3'= T ® 3_, is the Pierce decomposition of J with respect
i<j

to {51,52,...,én]. Let T be the given isomorphism of J onto

ﬁ(&n,jb). Then T(éi) = % {ii} (as defined in (JMAO)), i =1,2,...,n.

€ J,. such that

Also for every j = 2,3,...,n, there exists u

1j 1]

T(ulj) = 1{1j}, and Glj is invertible in 311 + Jlj + Ejj
= Uél+éj(J). let e = e, + ej. Then there exists v € J such
that Uu ) =e+z, z€ RAJ) (since K € RJ)). Hence by

1j

. . . 3 3 3 + =
lemma 2.3.1, Uu1j(v) is invertible in Jll + Jlj Jjj Ue(J),
and so u1j is invertible in J11 + Jlj + Jjj’ by Proposition
2.3.1. For j =2,3,...,n, let ujq be the inverse of upj in

J,, +J_ . +J,.. Then T(ujl) = 1{j1}.

11 1j i3
Now by hypothesis the e are connected and supplementary,
so by Proposition 2.7.12, there exists a Jordan matrix algebra

ﬁ(ﬁh,ja) and an isomorphism ( of J onto bgﬁh,ja) such that

Clep = % [11), = 1,2,..0m, and C(uy) = 1[1], § = 2,3,..00m.

'ro\)og-

let v :J - J be the natural homomorphism. Then ¢

is a homorphism of @CBn,ja) onto b(én,jb) such that

() oL =1 o v e (TIALED =16 v = 1@ = 3Liil,

"
]

i) oL =70 v e ¢ ALY =T o v(u ) =T = 1,

(iii) o(1[j1]) = 1{j1}, as in (ii).
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Hence by Proposition 2.7.1l1, there exists a homomorphism
M of (B,j) into (&,j) satisfying ﬂ(ai) = bi’ i=1,2,...,n

. . . o can .
and ¢ 1is the restriction to ©cbh’3a) of (dij) (dij)° Since
o 1is onto, T 1is onto, and (&4,j) = (8,j)/ker T. Llet F = ker 1.
Hence ((K) = ker o = (ker n)n N chn,ja) = 3n n b(ﬁh,ja), since

o 1is the restriction of the homomorphism (dij) - (d?j)'

We next identify the Jacobson radical of a Jordan matrix

algebra for n =2 3, and 8 associative.

Proposition 2.7.14. 1let (&,j) be an associative algebra with
involution and identity over a field § of characteristic not 2.
Then § = ﬁﬁﬁh,ja), j; @ canonical involution and n 2 3, satisfies
R@) = R, N .

Proof. By Proposition 2.7.10, there exists an ideal @& of (&,j)
such that R(Q) = Sn N . Now B associative with 1 implies

?Ca)n = PCDn), and hence fﬁb)n ny= ECDh) N is a quasi-invert-
ible ideal of . Thus RC&)n N9 < RE. Suppose x € § Then

n
2
x[12] € g N = R(Q). Also u = 1[12] + ,ZBeii €% and u = I
1=

so u is invertible in ﬁh and hence in . Since x[12] is

an element of the quasi-invertible ideal R(), u - x[12]

= (1 -x)[12] + .;3eii is invertible in §. One verifies by
direct computati;; that the inverse of u - x[12] has the form
a - yy(21] + .;3eii’ where 1 -y = (1 - x)-l. Therefore x
is quasi-inver;;ble in 8 and § 1is a quasi-invertible ideal.

Hence S < R and pER) =8 NQ<RWB N

Finally, we consider linear Jordan algebras which satisfy

minimum conditions on inner ideals.
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Definition 2.7.3. Let J be a linear Jordan algebra over a field
$ of characteristic not 2. An inner ideal B of J 1is called

a minimal inner ideal, if B # 0 and C an inner ideal of J

such that 0 € C < B 1implies C =0 or C =B. J satisfies

the minimum condition (for inner ideals), if (i) there exist no
2
properly decreasing sequence U (J) DU (J)> ..., e, =e,, and
e e, i i
(ii) every inner ideal Ue(J), e = e # 0, contains a minimal

inner ideal,.

Jordan algebras will now be considered which satisfy the
following axioms:
(i) J has an identity;
(ii) J 1is nondegenerate; i.e., J has no nonzero absolute zero
divisors;

(iii) J satisfies the minimum condition .

Recall that J/R(J) is nondegenerate, and therefore, if
J is a linear Jordan algebra such that J/R(J) satisfies the
minimum condition , then J/R(J) satisfies the axioms (i)-(iii).

This case becomes of prime importance in Chapter 4.

Definition 2.7.4. 1Let J be a linear Jordan algebra. An idempotent
e € J is primitive, if e # 0 and e cannot be written as
e = e, + s where ey and e, are nonzero orthogonal idempotents.

An idempotent e € J 1is completely primitive, if e # 0 and

Ue(J) is a division algebra. J has (finite) capacity n, if
J contains a supplementary set {el,ez,...,en} of completely primitive
orthogonal idempotents and n 1is minimal with respect to this

property.
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Note that a nonzero idempotent e is primitive if and
only if Ue(J) contains no idempotents # 0, e, and J has

capacity 1 if and only if J 1is a division algebra.

Proposition 2.7.15. Any Jordan algebra J satisfying axioms (i)-

(iii) has a finite capacity.

Proposition 2.7.16. (Second Structure Theorem). The following
conditions on a Jordan algebra J are equivalent: (1) J is a
simple algebra satisfying axioms (i)-(iii); (2) J 1is either a
division algebra, a Jordan algebra of a nondegenerate symmetric
bilinear form in a vector space V over an extension field T

with dim V/IT > 1 (only if the capacity of J = 2), a Jordan
matrix algebra ﬁcbh,ja) where n =z 2 and (8,j) 1is either
A®A° with A an associative division algebra and j the
exchange involution, an associative division algebra with involu-
tion, a split quaternion algebra over an extension field (n = 2
only), an algebra of octonians over an extension field with standard
involution (only if n = 3); (3) J is either a division algebra,
a Jordan algebra of a nondegenerate symmetric bilinear form in

a vector space V over an extension field T with dim V/T > 1,

a Jordan matrix algebra $683’jy) where B is an octonian algebra
over an extension field with standard involution and jY is a
canonical involution, or an algebra {(U,j) where (U,j) is

simple Artinian with involution.



CHAPTER 3

COMPLETIONS OF QUADRATIC JORDAN ALGEBRAS

3.1 Topological Modules

let ¢ be a commutative associative ring with identity

and J a unital $-module. I1f J = KO 2K, 2K, =2

1 2 ... 1is any

decreasing sequence of submodules of J, then it is well-known
that the set {x + K, : 1= 0,1,2,... and x € J} forms a basis

for a topology on J. If S is any subset of J, then

0

CLJ S= N + Ki) so that S 1is closed if and only if

1=0

S =

(s + Ki)' In particular every open subset of J is closed.
i

(o]

I D8

Clearly the topology is 1° countable, and it can be shown that

0
the topology is Hausdorff if and only if N K, = 0 (see [12]).
i=o
Let T be the topology induced by a decreasing sequence of
(=]
submodules of J as above, and assume K; = 0. Since x,y €J
@ i=o
are distinct if and only if =x-y & N K5 X # y implies there
i=o
exists k € {0,1,2,...} such that x -y € Ky —-Kk+1. Let e

be any fixed real number greater than 1, and define d : J X J = R
-k
by (i) d(x,y) =0, if x =y, (ii) d(x,y) =e , if x #y and

X -y € Kk —-K Then it is well-known that (J,d) is a metric

k+1°
space and T(d) = J. We now establish some useful inequalities

tor d.

50
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Proposition 3.1.1. (i) For every x,y,z € J, d(x,z)
< max {d(x,y), d(y,z)}.
(ii) For every x,w,y,z € J, d(x +y, w + 2)
< max {d(x,w), d(y,z)]}.
(iii) For every x,y € J and o € %, d(ox, ay) < d(x,y).
Proof. (i) If x =z, then d(x,z) =0 < d(x,y) = d(z,y) = d(y,z).
If x =y, then d(x,z) = d(y,z) and d(x,y) = 0 < d(y,z).

Similarly if y =z, and (i) holds for these special cases. Now

st Ky
assume x,y,z are distinct. Then d(x,y) = e , d(y,z) = e ’
-k
_ 3
and d(x,z) = e , where x -y € Kk - Kk 410 Y ~ 2 € Kk - Kk +1
1 1 2 2
and x - z € Kk3~ Kk3+1' Thus x -z = (x -y) + (y - 2)
[ .
€ Kmin[k ko) so that Kk Kmin{k k. ) Hence k3 P kl or
1’72 3 -k 1°°2 k. -k
k3 2 k2 and thus d(x,z) = e 3 < max {e l,e 2}

= max {d(x,y), d(y,z)}.
(ii) If x =w, then (x+y ) - (W+2z) =y -z and so
d(x +y, w +2z) = d(y,z) < max {d(x,w), d(y,z)}. Similarly, if

y = z, the result holds. Hence assume x #w and y # z. Then
Tk Ky
, d(y,z) = e , where x - w € K, — Kk +1 and

kl 1

So (x+y) - (wW+2z)=(x-=-w)+ (y -2)

d(x,w) =e

y -2 €K - K .
k2 k2+1

€ K and the result follows as in (i).

min{kl,kz}
(iii) If x =y, then d(ax,ay) =0 =d(x,y). If x #y, then

d(x,y) = e-k, where x -y € Kk - K Hence ox - ay = a(x - y)

k+1°
-k
€ Kk’ and d(Q’X:Q’Y) s e = d(x,y).

From Proposition 3.1.1 (ii), it follows easily that the

mapping (x,y) - x +y from J X J - J is (uniformly) continuous.
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The mapping (a,x) - ox from & X J —» J 1is also continuous when
¢ has a suitable topology: in particular, if ¢ 1is given one

of the trivial topologies. Since we are primarily concerned with
a ring theoretic structure, the continuity of the module operation
plays no role. Thus a module with a continuous addition will be

called a topological module in this thesis.

The notions of sequence, Cauchy sequence, series, and con-
vergence will be taken to be the usual ones associated with metric
spaces. Since JT(d) =7 it is convenient to have these ideas

stated in terms of the topology 7.

Proposition 3.1.2. Let J = K =2 Kl 2 K2 2... be a decreasing

®
sequence of submodules of J such that N Ki = 0. Then:
i=o
(1) 1f {xn} is a sequence in J, then 1lim x =x if and only
n

if for every nonnegative integer k there exists N €N
such that n =2 N implies X = x (mod Kk).

(2) {xn} is a Cauchy sequence if and only if for every
k € {0,1,2,...) there exists N € N such that n,m =2 N
implies X =X (mod Kk).

(3) 1I1f every Cauchy sequence in J converges in J, then

® n
T x; = lim ( £ x.) converges if and only if 1lim x, = O.
i=o n  i=o ' i

Proof. (1) 1lim X, =X if and only if for every ¢ > 0 there
exists N € N n8uch that if n =2 N, then d(xn,x) < ¢. Suppose

lim X =x and let k be given. Choose ¢ >0 so that ¢ < e—k.
TEen there exists N € N such that if n = N, then d(xn,x) < €,

which implies d(xn,x) < e-k. Hence for n = N, X, =X (mod Kk).

Conversely, let ¢ > 0 be given. Then for some k, e-k < €.
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Hence for this k there exists N € N so that X = x (mod Kk),

if n2N; i.e., if n =2 N, d(xn,x) < e.k < ¢. Hence 1lim xn = X.
n
(2) Proof is similar to (1).

(3) All that remains to be shown is that 1lim x, = 0 implies
© i

z X, converges. This will be accomplished by showing that the
i=o

sequence of partial sums is a Cauchy sequence. Thus let k be

any nonnegative integer. Since 1lim X, = 0, there exists N €N

1]

i
such that i =2z N implies X 0 (mod Kk). Thus for n 2z m 2= N,

n m n

X, - £x.=% x. =0 (mod K,), and therefore the sequence of
. 1 . i, 1 k
i=o i=o “i=mtl

partial sums is Cauchy by (2).

Using the standard metric space arguments, there exists
* *
a metric space (J ,d ) which is the completion of (J,d) in
* * *
that (i) (@@ ,d ) 1is a complete metric space, (ii) d coincides
*
with d on J X J, (iii) ct & =J ;5 i.e., J is a dense subset
* * %
of J, and (iv) (J ,d ) 1is unique to within isometry. Addition
* *

*
and scalar multiplication are defined on J by x +y =

*
= I:m (xn + yn) and ox = lim X where o € %, lim xn =

I
k]

*
lim y, = and {xn}, {yn} are sequences on J. Of course

*
every element of J is the limit of a sequence on J, and more-
* * *
over, if we let S =cf S for S & J, then x €S if and
J

only if there exists a sequence {xn} in S such that limx =

n

*
We now establish some important properties of J

* %
Proposition 3.1.3. lLet (J ,d ) be the completion of (J,d)
as above. Then:

* *
(1) 1If I;m X =x, 1;m Y, =Y s {xn], {yn} sequences on J,
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* % %
then d (x ,y ) = lim d(x_,y ).
. n n’’n
2 J is a unital $-module.

* * * *
3 J = K, =2 Kl =2 K2 2... 1s a decreasing sequence of submodules

* @ *x
of J with N K, = 0 and thus induces a metric p on J
i=o

*

*
4) T() =7T()
(5) There is a one-to-one correspondence between the open sub-
*
modules A of J and the open submodules of J given
* * *
by A« A, and A=J NA . In particular, Ki =J N l(i
for i =0,1,2,...
* %
(6) If A is any open submodule of J, then J/A=J /A as
® -modu les.
*
Proof. (1) Since 1lim X =X and 1lim Yo=Y for every
n n

* *
¢ > 0, there exists N € N such that n 2 N implies d (x_,Xx ) < e/2

* *
and d v,y ) < ¢/2. Thus for every n =N,
* % ok * * % * * * * %
d(xn’yn) -d (x ,y) =4d (xn’yn) -d (x ,y) sd (xn,x ) +d (x ,Yn)
* * K
-d (x ,y)
* * * % % * % * k%
sd (xppx) +d (x,y) +d(y,y) -d &x,y)
< el2 + ¢/2 = ¢,
and
* * * * * * % * *
d (xppy ) -d (x,y) 2d (x sy ) - d(x,y) -d@G.y)
* * % * * *
= d (xnsyn) -d (x ,xn) -d (xn’yn) -d (yn’y )
> -¢/2 - /2 = -¢ .

* k  k . * % %
Therefore, \d(xn,yn) -d (x ,y )| <e, and I:m d(x_,y ) =d (x,y).
* *
(2) 1t will be shown first that the definitions x +y = lim (Xn'+ yn)
n
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*
and ox = lim (axn), where o € § and {xn}, (yn} are sequences

n * * * *
in J such that 1lim X =x €J , lim Y, =Y € J , are independent
n *  * n *
of representations of x , y . First suppose x = lim X 0
n
* . ] * . * . ] e, .
x = lim X and y = lim Yo ¥V = lim Yn* Then by Proposition
n n n

3.1.1, d(xn + Yo x; + y;) < max {d(xn,x;), d(yn,y;)} and
d(axn,dx;) < d(xn,x;), for every n € N. But it is clear that if
{wn} is a sequence in J and {w;] is a sequence in J, then
* *
limw =w , lim w; =w if and only if for every ¢ > 0 there
n n
exists N € N so that d(wn,wé) < ¢, for all n = N. Hence
. — . ] [] . = : )
lim (xn + yn) = lim (xn + yn) and 1lim (axn) lim (axn) follows
n n n n
immediately from the above inequalities. Note that the fact that
{xn + yn}, and {axn} are Cauchy sequences also follows from these
inequalities. Thus the operations are well-defined and clearly
*
closed. That J is an Abelian semigroup follows easily from the

corresponding properties in J. Also it is clear that the constant

*
sequence {0} 1is an identity since x + 0 = lim (xn + 0) =

* * n
= limx_ =x . Finally-x = lim (-x ) since x* + lim (-x_)
n n n n
= lim (xn + (-xn)) = 1lim 0 = 0, and d(-xn,-xm) = d(xn,xm) so

n n
*
that {-xn} is Cauchy. Thus (J,+) is an Abelian group. Now,

if o,p € &, we have
* * ) * *
i) a(x +y ) = lim [a(xn + yn)] = lim (ozxn + ayn) =ax +ay ,
n n

ii) (o + B)x* = lim (¢ + B)xn = lim (axn + an) = ax* + BX*»

n n

iii) (aB)x* = lim (aB)x_ = lim a(Bx ) = a(Bx*),
- *-~n1 = 1 i

iv) Ix = I;m ( xn) = ;m X =X,

*
since J 1is a unital ®-module. Hence J is a unital §-module.
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*
2

* * *
(3) Since J = K = Ky 2.0, J =K 2 K1 2..., and Ki is a

1
©

* * *
$-submodule of J exactly as in (2). Hence let x € N Ki'

i=o
* * *
Then for each i =0,1,2,..., x € Ki’ and since Ki is closed,

*
there is a sequence {x. } on K. such that 1lim x__ =x . Now
in i . in

let ¢ > 0 be arbitrary, and choose i so that et < el2.
. * _ -i
Since X0 € Ki’ for every n € N, d (Xin’o) d(xin’o) <e < ¢f2.

*
Also since 1lim xin = x , there exists N € N such that n > N
o * % . . * %
implies d (x ’Xin) < ¢/2. Thus, in particular d (x ,0)

* * * * %
sd (x ’xiN) + d (xiN’O) < el2 + ¢/2 =¢, and so d (x ,0) = 0.

*
Hence x = 0.

The second statement about the existence of p follows
immediately from the definition of the metric determined by the

* * * *
submodules J 2K 2K, 2K, 2... .
o 1 2

*
(4) To show J(d ) = T(p), it is sufficient to show that the two
* *
metrics are equivalent. If ¢ >0 is given and x =1y , then
* * * * % * * ok
d x ,y)=0=p(x ,y),and d (x ,y ) < ¢ if and only if

* ok * *
p(X ,¥y ) < ¢. Hence we may assume x #y . First assume

* * * % -k * * * *
p(x ,y ) < ¢/2. Then p(x ,y ) =e , where x -y ¢€ K, =Ky

-k * .
and e < ¢/2. Since Kk is closed, there exists a sequence

* *
{zn} in K, such that 1limz =x -y . Thus there exists
n

*  * *
N €N such that n 2N implies d (x -y ,zn) < ¢/2. Also

2 €K for all n €N implies d (z ,0) = d(z ,0) s e < ¢/2.
n k n n

Hence

lim d = lim d = d Ly
;m (xn,yn)— ;m (x, -vy,0 =d x -y ,0

* % * *
<d (x -y ’zn) +d (zn)o)

* % %
d (x ,y)

< el2 4+ ¢/2=¢ .
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* k% * * *
Conversely, assume d (x ,y ) < ¢/2. By (1) d (x ,y )

lim d(xn,yn), and hence there exists N € N such that when
n

* kx * ) * * *
> N, ‘d(xn,yn) -d (x ,y )‘ < e/2; i.e., d(xn,yn) <d (x ,y)

=]

+ ¢/2 < e/2 4+ ¢/2 =¢ for all n =>2N. Thus if n 2 N,
-k )
- n - _ )
X, " Y, € Kk Kk +1° where e <e or x -y 0 ¢ .ﬂ Ki
n n i=o

Let k be the smallest positive integer kn’ n 2 N. Then

Kkn < Kk for all n 2 N and thus x -y, € Kk for all n 2N,

- * * * *
where e < ¢. Since K, s closed, x -y = lim (xn - yn) € K

* % - )

and p(x ,y ) s e k < ¢. Therefore the two metrics are equivalent.
* %

(5) By (4) convergence, etc. in (J ,d ) 1is characterized by

*
Proposition 3.1.2. Also since d ‘ = d, the topology on (J,d)

JIXJ
coincides with the subspace topology inherited from (J*,d*).
Let A be an open submodule of J and define ¢ on the set of
open submodules of J by ¢(A) = A*. First, A open and 0 € A
implies that there exists k € N such that K, € A ¢ A*. Thus

k
* * * * % * * *
K, A and for any x € A, x +K, S A , Hence A 1is open

k k
*
and ¢ is a map into the set of open ideals of J . Since
- 3 * - * - .
Al = A2 implies A1 = A2, ¢ 1is well-defined. Next let B be
*
any open submodule of J . Then A =B NJ 1is an open submodule
*
of J and A < B. Now B open implies B closed in J so
* * *
that A € B = B. Suppose x € B. Then there exists a sequence
*
{xn} in J such that 1lim x =X . Hence for every k € N
n * *
there exists N(k) € N such that if n 2 N(k), then X, - X € K, -
*
Also B is open in J and 0 € B so there exists m € N such
* *
that Km S B, which implies Ki S B for all i =2 m. Define a

*
new sequence Clearly 1limy = x , and since
m

Ya T N@)+n-1 .
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* * *
X €B and x - X € Km < B. Thus yn €EB NJ =A for

N(m)4n-1
* * *
all n, and so x € A . Thus B &€ A, and equality holds. From
this the remainder of (5) can be deduced. First, this certainly
*
implies that ¢ is onto the set of open submodules of J .
Secondly, if A 1is open in J, them A =B NJ where B is open
* *
in J which implies that A =A N J by what was just shown.
* *

Finally ¢ is one-to-one, for if A =B where A and B are

* *
open in J, then A=J NA =JNB

]

B.
*  *
(6) Llet A be any open submodule of J and define ¢ : J - J /A
*
by ¢x) =x +A for x € A. 1f o,R € §, x,y € J, then
* * * * *
@(ax +By) =ax +By +A =gx+A +By +A =qg(x+A4A) +8(y +A)
= ap(x) + Byp(y). Thus ¢ 1is a $-module homomorphism. Suppose

* * *,
x +A €J /A . Then there exists a sequence {xn} in J such

* *
that 1lim x =% . Also A 1is open, so A is open by (5) and
n * *
there exists k € N such that K, € A ., Hence there exists

k
* *
N € N such that x =X (mod Kk) for all n > N. Hence

% * * % * )

Xg =X (mod A ), and ¢(xN) = Xy +A =x 4+ A . Thus ¢ is
* , * *

onto, and J /A == J/ker ¢. But x € A implies x € A" so that
* *

p(x) =x +A =A and x € ker ¢, and x € ker ¢ implies

* * *
A = kx) =x +A so that x € J NA =A. Hence ker ¢ = A

and (6) follows.
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3.2. Topological Quadratic Jordan Algebras

let (J,U,1) be a quadratic Jordan algebra, and consider

the ideals J = K(O),x(l),K(z)

(n+1)

,oo. as defined in Definition 2.2.3.

(o) (1)

Since for n =2 1, K

)

= UK(n)(K(n))’ clearly K 2 K

= eece o

Definition 3.2.1. An ideal K of J 1is called a nucleus for J,

it nr™ =o.
n=o

Since J and K(n), n=20,1,2,..., are $-modules, the con-
siderations in §3.1 apply. Hence if K is a nucleus for J, K
induces a topology in J called the K-topology. We have the
metric d as defined in §3.1, and of course (J,d) 1is a metric
space whose topology coincides with the K-topology.

As we have previously seen,addition and scalar multiplica-
tion are continuous (the latter under suitable assumptions about
). Next consider the mapping (x,y) - Ux(y) from J X J - J.

We shall now prove that this operation is also continuous. Let

(k)

be any basic open set of T(d) which contains

(k) (k)

Ux(y) + K

Ux(y). Clearly (x + K 7)) X (y +K*7) 1is open in the product

topology on J X J and (x,y) € (x + K(k)) X (y + K(k)). If
ac K(k) and b € K(k), then x +a € x + K(k) and y + b
€y + K(k) so that (x +a, y +b) € (x + K(k)) X (y + K(k)).

Also U, #D) = U (y +b) +U,(y +b) +U (v +D)
= x
= Ux(}’) + Ux(b) + Ua(y + b) + Ux’a(y + b) € UX (y) + K , Since

K(k) is an ideal and a,b € K(k) implies Ux a(y + b) € K(k)
’

by
Proposition 2.2.1. Thus (x,y) - Ux(y) is continuous and J

is a topological Jordan algebra according to
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Definition 3.2.2. A quadratic (linear) Jordan algebra J is

called a topological Jordan algebra, if J 1is a topological space

and the mappings (x,y) » x + vy, (x,y) = Ux(y) are continuous.

Before considering completions of topological Jordan

algebras with respect to the metric topology determined by a nucleus

K, the following useful inequality is established.

Lemma 3.2.1. Let K be a nucleus for J and d the metric of
the K-topology. Then d(Ux(y),Uw(z)) < max {d(x,w),d(y,z)} for
all x,y,w,z € J.

Proof. Suppose x =w so that d(x,w) = 0. If y =z, then
Ux(y) - UW(Z) = Ux(y -z) = Ux(O) = 0, and the inequality holds.

If y #z, then d(y,z) = ek where y -z € K(k) - K(k+1).

Hence Ux(y) - Uw(z) = Ux(y -2z) € K(k) implies d(Ux(y),Uw(z)) <e

d(y,z). Now assume x # w so that d(x,w) = e'k where
+
(k) _ K(k 1).

Xx -w=acK If y =2z, then U (y) - U (2)

U -uv _JQO)=@ -u -U + Ux,a)(y) = Ux,a(y) - U, (&)

€ K(k). Thus in this instance d(Ux(y),Uw(z)) < e-k = d(x,w)

K(m+1).

where y -z =b € K(m):— Then we have

U ) -U () =U () -U _(-b =0 -U -b)

- U,y = B) + U LGy - b)

U () - U ) +U () - Uy -b) +U_ (v - b)

3

@)
u (b) - U, (y -b) +U (v -b) €K,

(k) @) (m) )

where ¢ = min {k,m}, since K c K and K < K.

max {d(x,w),d(y,z)}. Finally assume y # z so that d(y,z) = e

k
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Thus d(U, (v),U (2)) < e = max {d(x,w),d(y,2) ]}

Definition 3.2.3. let J be a quadratic Jordan algebra with
nucleus K and let d be the metric of the K-topology. Then a
* %

quadratic Jordan algebra (J ,U ,1) is a completion of (J,U,1)
with respect to d, if

* ok
i) (J ,d ) 1is a complete topological space,

* *

ii) (J,d) 1is a dense subspace of (J ,d ),

*
iii) J is a topological Jordan algebra,

*
iv) J 1is a subalgebra of J

Theorem 3.2.1. I1If (J,U,1) has nucleus K with metric d, then

* *
there exists a completion (J ,U ,1) which is unique to within

isomorphism.,
Proof. By the considerations in §3.1 there exists a unital §-

* *
module J with metric d  such that among other things, J is

*

* *
a dense subspace of J , d | =d, and J is complete with

IXJ
*
respect to the metric d . Recall that addition and scalar multi-
* * *
plication were defined by x +y = lim (xn +y), ax = lim x
n
n n

* * *
o €% and x = 1;m X sy = 1im Y, € J where {xn}, {yn} are

*
sequences in J. In a similar fashion define U by

* Kk
U, ) = 1lim U (yn) .
X n n

. * o [} * . * . ] *
Suppose limx =x , limx =x , limy =y , lim Yo =y . Then
n O n O n O n

for any ¢ > 0 there exists N € N such that n =2 N implies

d(xn,x;) < ¢ and d(yn,y;) < ¢. Hence by Lemma 3.2.1,

d(an(yn),Ux;(y;)) < max {d(xn,x;),d(yn,y;)} < ¢ for all n = N.
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Thus lim Ux (yn) = lim Ux,(y;) and so the operation is independent
n n n n

* % *
of representation. Similarly, it follows that U _(y ) € J . Hence

x
* * * *
U, € EndQ J . Also for every o €3, U ,(y) =1limU (yn)
X oX n n
, 2 2k k * . .
= limo'U (v ) =a'U _(y ). Therefore U is a quadratic mapping
n X O pYs
* * *
from J into Endé J . If U * * is the associated bilinear
X »y

mapping, then

* * * * * * * *
U %* *(Z ) U * *(Z ) - U *(z ) - U *(Z )
X ,y X +y X y

1l

Lim (U, 4 () < U, () - U ()]

lim U (z) .
n *nYn "

* * * %
Similarly V , ,(z ) = lim v , (Zn) and V _(y ) = lim Vx (yn)’
X ,y n n’’n X n n

* * * % .
sothat x oy =V (y) = lim VXn(yn) = I;m X ° Y. where the
X

definitions of the operators are as in §2.1, It can easily be

seen that the fact that (J,U,1) satisfies QJ1 - QJ3 and QJ5 -
* %

QJ8 implies that these hold for (J ,u ,1) also. For example,

by QJ3 in (@J,U,1),

* % * .
U, Ve () lim u_v

ISR C
X Y 5X n n n

* * *
v, U *(z ),
X ,¥y X

* % * %
and thus QJ3 holds for (J ,U ,1). Therefore @J ,U ,1) is a
quadratic Jordan algebra with (J,U,1) as a subalgebra.

* % %
By Proposition 3.1.3 (1), d (x ,y ) = lim d(xn,yn), if
n
* * * % * * *
lim xn =X and lim yn =y . Thus d (x +y ,w +2)
n n
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* k k. Kk Kk x * Kk kx x %
smax {d (x ,w ),d (y ,z )} and d (U *(y ) U *(Z ))
* Kk Kk Kk Kk ok * X W
<max {d (x ,w ),d (y ,z )}. let p be the metric induced on
* * *  x % * %
the product J x J where p ((x ,y ), (W ,z ))

* * k. k *x % * ok % * %
=max {d (x ,w ),d (y ,2 )}. Then for any ¢ >0, p ((x ,y ),(W ,2 ))

. * % * * * * * Kk Kk %
< e implies d (x +y ,w +2z )< e and d (U (¥ ),U ,(z2)) < e.
x * Vi
Hence the operations are uniformly continuous, and (J ,U ,1)
is a topological Jordan algebra.

A A

If (@J,U0,1) 1is another completion of J, then there
* -~
exists an isometry ¢ : J —J such that ¢ is onto and ¢(x) = x
* ok * * *
for all x € J. Since d (x ,y ) = 3(¢(x )>¢p(y )) for all
* % * * * *
X ,y €J , if x = lim X sy = lim Y.» then ¢o(x ) = lim X
n n n

* . * *
¢(v ) = limy . Hence g(ax +By ) = ¢[lim (ax_+ By )]
* n * %* * ) n . *
=ag(x ) +Bp(y )> and QU 4 (v )) = ¢(lim U (v )) =T , (o(y ).
X n *n Qx )
Thus ¢ is a Jordan homomorphism and J* = J.

*
Since a completion of J of J 1is unique to within

*
isomorphism, J will be called the completion of J. Also since

*
(@ ) = T(p), where p 1is the metric induced by the decreasing

* * * *
sequence of modules J = K(o) 2 K(l) 2 K(z) 2 ..., p will

*
be used to denote the metric for J . Some important properties

*
of J are considered next.

*
lemma 3.2.4. If J has nucleus K and J is the completion

of J, then:
i) K® o ™y 01,2, .

iy  n®H® g

n=o

*
= 0, and if (K(n)) = for every

* *
n=20,1,2,..., then K is a nucleus for (J ,p).
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(iii) If A 1is an ideal of J, then A* is an ideal of J*.
(iv) If A is an open ideal of J, then A=A NJ and
A e A* is a one-to-one correspondence between the open
ideals of J and the open ideals of J*.
) For any open ideal A of J, J/A = J*/A* as quadratic

Jordan algebras.

* *

Proof. (i) Certainly K*(O) = J* = (K(o))* and K (1) = K
* *

= (K(l)) . Proceed by induction. For n =2 1 assume K (n)

> * o F(ntD)

*
If z € , then =z is a $-linear combina-

* ok * * *
tion of elements of the form U ,(y ), x ,y €K (n). Since

X

+1) *
K(n )) is closed under such sums, it suffices to show

* * % *
(n+1)) for every x ,y €K (n). By the induction

(

* *
U,ly) € K
X

* ¥ (@)

* *
hypothesis, x ,y € K (™

* *
implies x ,y € (K ) . Hence there

*
exist sequences {xk], {yk} in K™ such that x* = lim x
k
* * ok
y = lim Y, S° that U ,(y ) = lim U (yk). Now U (yk)
k X k Tk XKk
K(n+1)

k’

*  *
for every k =1,2,..., s0 U ,(y)
X

(n)y _

¢ (K(n+1))*.

0 * 0
i) nk™ ¢ n ®™)* =0, by Proposition 3.1.3 (3). Thus

n=o0 n=o
* * * *
K is a nucleus for a topology for J . 1If (K(n)) S K (n)’
* *
then (K(n)) = K (n)’ and the topology coincides with the p-

metric topology.
* *  * *
(iii) Let A be an ideal of J and x €A,y €J . Then
there exist sequences {xn}, {yn] in A and J respectively
* *
such that 1lim x =X, lim Yy, <V - Thus for all n €N,
n n

* *
U (y)>U (x) €A. Hence U ,(y ) =1limU (v ),
X n y n X n
n n X n n
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LI * * *
U,x)=1limU (x) €A . Since A is a submodule of J by
y n Yn © * *
Proposition 3.1.3 (2), A is an ideal of J .

(iv) let A be any open ideal in J. By Proposition 3.1.3 (5),
* * * *
A=A NJ and A is open in J . Thus the map ¢(A) = A is
a one-to-one map of the set of open ideals of J into the set of

* *
open ideals of J . If B is any open ideal of J , then A =B NJ
*

is an open ideal of A and B = A . Thus ¢ is onto.
(v) From the proof of Proposition 3.1.3 (6) we have, if A is
*, % *
an open ideal of J, then ¢ : J - J /A defined by ¢(x) =x +A,
*
x € J, is a module epimorphism with kernel A. Now ¢(l) =1 +A
* * , % ~%
and 1 + A is the unit of J /A . Let U denote the quadratic

* % * *
mapping for J /A" induced by U . Then ¢(Ux(y)) = Ux(y) + A

=U +A =70 (y +A i (p(y)) for all x,y € J
= = = or X .

* *
Hence ¢ is a Jordan homomorphism so that J/A=J /A as

quadratic Jordan algebras.
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3.3. Local Jordan Algebras

If J is a quadratic Jordan algebra, then g(J) denotes

the Jacobson radical of J (see §2.3).

Definition 3.3.1. A quadratic Jordan algebra J 1is a local

Jordan algebra, if (i) R(J) 1is the unique maximal ideal of J,

(ii) R@) 1is a nucleus for J, and (iii) J/R(J) satisfies

the minimum condition.

let Y be a commtative associative ring with 1. If 9

has a unique maximal ideal, then this ideal is R). Since

() . n
S R is clear by induction on k, if N RM) =

n=o
then n &Km)(k) =0 and R@Q) is a nucleus for Y as a

k=0
quadratic Jordan algebra over Z. U/R®) is a field and hence

RON

contains no idempotents other than 0,1. Thus 91/R(1) trivially

satisfies the minimum condition. Therefore any not-necessarily

Noetherian, commutative, associative, local ring is a local Jordan algebra.
We now proceed to consider the completion of a local

Jordan algebra.

Lemma 3.3.1. If K 1is an ideal of J and J/K 1is semi-simple,
then pRJ) < K.

Proof. let ¢ : J - J/K be the natural homomorphism. Then
@(R(J)) is a quasi-invertible ideal of J/K, and thus

©(R(J)) = 0. Hence RUJ) < K.

Lemma 3.3.2. Let J be a local Jordan algebra with completion

* * @ n
J , let o, €%, n€EN, and z € RJ) . Then £ o z converges
* n=1"
in J .
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Proof. let k€N and N = 3k. By Proposition 2.2.4, n 2 N implies

* * *
2" € RQ) ) o /?(J)(k) » and hence anzn € /e(J)(k) for n = N.
- -]
Thus 1lim anzn =0, and I qnzn converges by Proposition 3.1.2 (3).

n n=1

*
Lemma 3.3.3. Let J be a local Jordan algebra with completion J |

* * *
e an idempotent in J , and K = Ue(J ) closed in J . If
* (o]
z € RJ) N K has quasi-inverse w € K, then -w = ¢ z
n=1
Proof. Recall that K 1is a quadratic Jordan algebra with quadratic

n

~% * ~k *
mapping U = U \K and unit e (§2.7, p. 38). Since U =U on

*
K we shall use U to denote both mappings. Note that for all

2 * * *
X,y € K, x = Ux(e) and x o y = Ux’y(e) = Ux e(y), the latter

H
*
following since Ux y(e) = x+y) - x2 -y . Thus the operations
bl

*
in J coincide with those in K. Hence we have for any m € N,

m m m m

* * * *
U (e+ £z =u (e + zzn)+u(e+ ):zn)-U (e + zn)
e-2z e z e,z
n=1 n=1 n=1 n=1
m m m
* * * * *
=U (e)+ TUEH)+U () + LU () -U _()- U _(z)
e e z z e,z e,z
n=1 n=1 n=1
m m m
=e + I zn + 22 + T zn+2 -e°z - T zoz
n=1 n=1 n=1
m m+2 m
=e -2z + L zn + T zn -273 zn+1
n=1 n=2 n=1
=e -z - zm+1 + zm+2

k m+2 m+ * k) *
Given any k €N, if m = 3, then =z -z 1 € RQ) (k) c R(J)( ) ,
m
*
and thus it is clear that 1lim U _ (e + T zn) =e - z. By Lemma
© m e-z n=1
3.3.2, gz =u exists in J , and hence, since K 1is closed,

n=1
u € K. Now



68
* +u) = lim U +mn *
U,_ (e +u) = ;m u,_, nilz )=e-z=0,_ (e -w),

since w 1is the quasi-inverse of z in K. By the invertibility

*
of U (on K), -w = u.

X

ne s
bd
"

@

lemma 3.3.4. If J 1is a local Jordan algebra and
© i

= z, then +z.) = +z .
Tz, > 1.(xi 21) X

i=1 i=1
Proof. For any nonnegative integer k, there exists N € N such
- - (k)
that when m =2 N, x - X, and z - g z_  are in RUJ) . Thus
i=1 i=1 '
m m m
for all mz=zN (x+2z) - £ (x, +z.)=(x- £x.)+(z - Lz,
. 1 1 . 1 . 1
(k) i=1 i=1 i=1

€ RWJ)

*
Lemma 3.3.5. If J 1is a local Jordan algebra with completion J ,
* *

then RUJ) = RJ ).

* * * *
Proof. By Lemma 3.2.4, J/RUJ) =J /R(J) , and hence J /RWU) is

* *
semi-simple. By Lemma 3.3.1, R(J ) € R(J) . Also by Lemma 3.2.4,
* *

RW) is an ideal of J , and thus the result will follow, if

* * *
every element of R(J) is quasi-invertible. If x € RQU) ,
*
then there exists a sequence on R(J) such that lim x =X
n
Thus for each n € N there exists Y, € R(J) which is the quasi-

inverse of X We will first show that the sequence {yn} is

Cauchy. Now for any k = 0,1,2,..., there exists N € N such

(k)

that n,m = N implies S RQ) By Proposition 2.2.2,

y 0

(xn)1 - (xm)1 € RWU for every i € N. By Lemma 3.3.3,
© .

. [~} N
i i i

= L () and -y = £ (x),andso y -y = E (x)
i=1 o i=1 i=1

S E e T et - ) e @7 ror all mmaw

ne~ 8

Therefore {yn} is a Cauchy sequence on R(J), so that there

* * *
exists y € R@J) such that y = lim Y-
n
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* * ]
Since U (1 -y ) = lim Ul-x a - yn) = lim (1 - xn)
1-x n n n
* * * 2 ) 2 ]
=1l-x,and U _[@Q-y)"]=1lim Ul-x ra - yn) J=1liml =1,
1-x n n n

* L * *
y is the quasi-inverse of x in J

Theorem 3.3.1. If J 1is a local Jordan algebra with completion
* *
J , then J is a local Jordan algebra.
* * * *
Proof. By Lemma 3.3.5, R(J) = R ), and so J/RW) =J /RQU)
* *
=J /R ). Since R@J) is the unique maximal ideal of J, J/R(J)
* *

is simple by Proposition 2.6.1 (2). Hence J /R ) is simple

* *
and so R(J ) 1is a maximal ideal of J . By Proposition 2.6.1 (4),

* * by *_ (n)
R ) 1is the unique maximal ideal of J . Finally N QU ) =

n=0

* *
by Lemma 3.2.4, and J /R(J ) satisfies the minimum condition

*
since J/R(J) does. Thus J 1is a local Jordan algebra.

The last result of this section is concerned with properties

*
of power series in J which will be useful in Chapter 4.

Proposition 3.3.1. Let J be a local Jordan algebra with comple-

* *
tion J , z € RUJ ), an’sn € §, n = 0,1,2,... . Then:
@

. . n .
(i) Any regrouping or rearrangement of I oz gives a con-

n=0
vergent series (not necessarily a power series), which con-
@®
n
verges to oz .
n
n=0
[} o]

n
Y2 o where

™8

(ii) 1f y = T o Un, and u B zn, then y =
n n
n=0 n=1 n=0

2

Yo = %ls Y1 T @1Bys Yy = 098y F )87, vy = agBy + 20848,
2 _ 2 2 4

FogBys Y, T B, * 200818y FapBy * 30388, * By

Proof. (i) First note that by Lemma 3.3.2, every series of the
-}

* *
form g o zn, z € RAJ ), o € ¢, converges in J ., Trivially
n=1 "
[- -} n @
then, so does any series of the form Y gz =g 1+ ¥ o zn.
n=0 " 0 n=1 "
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[o2]
Now any series formed from I anzn by regrouping (adding paren-
n=0
theses) will have its sequence of partial sums as a subsequence of
-}
the sequence of partial sums of T o zn, and will therefore con-
® n n=0 "
verge to T o z .
n
n=0
Next let a = anzn and let w be any permutation of
m
N U {0}. Let b = 3 (n) and B = L b . Then letting
n=0
© © m
a= %o z" = T an, and A = ¢ an, we have a = lim A . Now
n=0 n=0 m n=0 m "
given m € N, let r(m) =max {m(i) : 0 < i < m}. Then for any
m m
mEN, B = b = a = A - by a . Let
> Tm nEO n nE-O m(n) r(m) q(n)<r(m) m(n)

n>m
k € N be given and let h =max {n : n(n) < 3k}. Then for every

nzh+1, n(n) > 3k so that an(n) = aﬂ(n)zn(n) € ?(J*)(k)
(k) .

Since T a = a, there exists N1 € N such that
n=0

< R(I)

j 2 N, implies a - Aj € E(J*)(k) o f(J)(k)*. Now let p €N

satisfy m(p) =N1, and let N2 = max {p,h}. If m = NZ’ then

(i) r(m) =2 n(n), for all n < m implies N1 = n(p) € r(m), so

* *
that a - Ar(m) € R )(k) c E(J)(k) , and (ii) m 2 N2 2 h
*
implies for n>my, n2 h+ 1 so an(n) € rRU )(k) (= Q(J)(k)*.
Thus for m 2 N,> a - B =a-A + z a € E(J*)(k)
m r (m) m(n)<r (m) m(n)
© n>m
(k) * : =
< RW) . Hence g bn = lim Bm = a,
o 0=0 m o
(iii) Let w = 3 vy 2" be the series derived from £ » o by substituting
n n
n=0 n=0
@ n > n
u= g Snz for u and collecting terms. Now I Y2 is derived
n=1 n=0

from the series o + alslz + alazzz + azsizz + a16323 + ... by
©

regrouping and if this series is denoted by I bi’ then 1lim bi =0,
i=0 i

since there are only finitely many terms of a fixed power of =z.
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@ [+ ]
Thus £ b, oconverges by (i) and w= T b,.

. i . i

i=0 i=0

Next consider the following matrix in which the entry in

the mEE row and nEtl column is denoted by C n"

o 0 0 0 0 .
0 @B)? o‘1‘5222 o’15323 "’15424 A
0 0 01252122 2a2816223 (2azale3+azs§)z“ C e
0 0 0 033323 3G3Biﬁzza . oee
0 0 0 0 daﬁiz4
0 0 0 0 0 ...

*
Since each row constitutes a power series in z € R(J ), with the
[}

first m terms O, each row series converges. Let Cn - rc
n=0

r
m=0,1,2,... . Also let Br = z b, and let k € N be given.

’
mn

Then there exists N, € N such that for all r =2 N

1 v Br
(k)

1’
* (k)* . .. .
€ RWJ ) c RWJ) . Now Br is a finite sum of entries from

the above matrix, so let m'(r) = max {row subscripts of terms of Br}

and n'(r) = max {column subscripts of terms of B_}. Then w - B
m'(r) n'(r) i i

=w- I (Z Cmn) € ?(J*)(k) < E(J)(k)*, for every r 2 N;.
m=0 n=0 -
Also, since Cn = niocm“’ there exists N2 €N such that p = N2
P
implies ¢, - L €n = x(p) € R(J*)(k) c E(J)(k)*. Hence for
n=0 m' (r) m'(r)
n'(r) 2Ny, w =B =w - T [c -x(P]=w- T c_+mn'()x(p),
m=0 m=0
* m'(r)
and if r 2 Nl,w - Br € RU )(k) = R(J)(k)* implies w - & c
=0
m') "
+a'@xm € REHY ¢ g, so thae w- T e e g™
m=0
< R(J)(k)* Hence if Q = m'(Nl), for any q 2 Q, there exists
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q=m'(r) n'(r)

r 2N such that B_ = T (r «c_ ) and therefore the above
1 r mn
m=0 n=0
. . d *_ (k) (k)*
computations give w - T n € RJ ) < RWJ) . Hence
q @® m=0 @ n -]
w=1lim £ ¢ = £ c . Finally, this gives ¥ Y2 =W = rc
q w=0™ nm=0" n=0 m=0 ™
® n
= z o u = y.
n=0 "



CHAPTER 4

STRUCTURE OF COMPIETIONS OF LOCAL JORDAN ALGEBRAS

4.1, Basic Concepts

Throughout Chapter 4 all Jordan algebras will be assumed
to be linear Jordan algebras over a field of characteristic dif-
ferent from 2 unless it is stated otherwise. Recall that such an
algebra is equipped with a commutative bilinear product which
satisfies the Jordan identity. If ¢ 1is a local Jordan algebra
with completion J, then, in the notation of Chapter 3, U:‘ﬂ = Ux
for all x ¢ &> and so we will write U for both the quadratic
mapping on J and the quadratic mapping on J. Likewise the stars
will be omitted from the remaining operators, but we will still
denote cLJS by S*. In particular, we have J = g*. let
{x,}, {y,} be Cauchy sequences on ¢ such that 1lim x =x and

n

L =Ll o= 1im L
I;m Yy, =V Then x,y € J, and x.y = 2 X °y 1;m (2 X yn)

= lim X Y- Thus the product . satisfies the usual defining
con:ition for a product, and the continuity of U clearly implies
the continuity of - .

In a linear Jordan algebra J, the subalgebra generated by
1 and an arbitrary element x € J is associative; i.e., J is
power-associative. If ¢ 1is a local Jordan algebra with completion

J, then the set of convergent power series in x € J with coefficients

in ¢ 1is an associative subalgebra of J. We now prove this in

73
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a somewhat limited form.

Proposition 4.1.1. Let ¢ be a local Jordan algebra with comple-
tion J, let z € RJ) be fixed, and 9,[ ={zaz :aneé,
n=0

n=0,1,2,...}. Then 9, 1is an associative subalgebra of J.

Proof. Note that by Lemma 3.3.2, a11 elements of 912 are con-

vergent series. Suppose by o,nzn, 2 B 2" € gyz and vy € %.
n=0 n=0
© m n m
Then Ean2+zﬁz =11m(£az+252)=11m(2(a+3)2)
n=0 n=0 m n—O n=0 n m n=0
= L (o +B)z €y, and vy T g 2" = lim (y Loz )
n=0 n=0 m n—O

@

lim (£ (v, )z = )3 (v, y2" € 9 . Hence %A is a vector
m n=0 n=0 z A

subspace of J. Also

] m m m m

i
(Eazh. (2BZ)=11m[(ZozZ) (£g2M)=lin L Toapz "
n=0 n=0 m n=0 n=0 m n=0 j=0
m n n 2m  2m-n+l n
=lim[EZ (ZoaB _ Pzt L (T oB )z ]
m n=0 j=0 J n=mt+l j=n-m J
m n n 2m  2m-n+l n
=1lim £ (L a, Bn Jz +1lim £ ( Z cv.Bn_.)Z
m n=0 j=0 3"n-j m n=mt+l j=n-m J J
@ n
= E(foap )z €U
n=0 j=0 1 "7J §
Finally, the associativity of 91 follows from the
@ -] @©
associativity of §(z); for if I o zn, b)) 5 2" , T Y 2" € 9,[2, then
n=0 n=0 n=0
© m
[(zaZ)(zezn mz =hm[<zaz><>:az>] >:vz
n=0 n=0 n=0 m n=0 =0 n=0
m
= lim g anz ¢« z B2 ™y 2 Y z )]
m n=0 n=0 "

-}

) 2" E(BZ)Z Z)
n=0 o oL =0 Y“ 1
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-}

Clearly 1 =11+ £ O 2" € mz and the proposition follows.
n=1

For the last proposition of this section recall that a
set of idempotents {el,ez,...,en} is supplementary, if they are

n
pair-wise orthogonal and ¢ e, = 1.
i=1

Proposition 4.1.2, Let J be a quadratic Jordan algebra over a
commutative, associative ring § with identity, and let K be

a nucleus for J. If J = & ®J,, 1is the Pierce decomposition
i<j
of J relative to a set of supplementary idempotents {el,ez,...,en},

then Jij is closed for i < j.
Proof. We have that Ji; = {(x €J : Ue-(x) = x},

i
; ={x€J: Uei’ej(x) =x}, i < j. Thus if x € CLJJii’ then
there exists a sequence {xk} on J.. such that x = lim L
= i = i = d .
Hence Ue'(x) lim Ue,(xk) lim Xy x, and so x € Jii Thus
i k i k
Jii is closed. Since Ue.,e, = Ue,+e - Ue' - Ue., Jij’ i<j,
i™] i3] i ]

is closed in a similar manner.

J.
i

In particular, if ¢ 1is a local Jordan algebra, then the
* *
Pierce spaces of ¢ and g are closed in the #£(g) and R(g )-
*
topologies, respectively, and therefore those of g are closed

in the completion topology.
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4.2, Idempotent Lifting

If g is a quadratic Jordan algebra over a ring ¢ and

1
K is an inner ideal of #, then for any x € K, x~ € K and

x| = ux(x“'z) € K for all n > 1.

lemma 4.2.1. Let g be a local Jordan algebra with completion J,
and let K be any closed inner ideal of J. Then for every

2
y € RJ) N K, there exists x € R(J) N K such that x - x =y.

Proof. Define a sequence {an] as follows: let o, = 1lesd
n

and @ = izldian'i+1 for all n 2 1. Clearly, o, €d® for

every n € N. Since y € RJ) NK, -y € RJ) N K, and so
(- -] -]
b3 an(-y)n converges., If x = T an(-y)n, then x € RJ) N K,
n=1 n=1

since each is closed in J. Now from the proof of Proposition
© n-1 ®

2
411, x" = £ (2 oo, DN = £ (9. Thus
n=2 i=1 n=2
2 @ n bl n
X =-x= 3 an('Y) -z an('Y) =y .
n=2 n=1

Lemma 4.2.2. Let g be a local Jordan algebra with completion

J, and let K be a closed inner ideal of J. If v € RJ) N K,

@
w= Ty vn, Y. € §, and u2 - u =v, then
n n
n=1
2
(1) (u.w)2 =u .w2
(ii) u.(u.w) = uz.w
(iii) (u.w).w = u.w2
m n 2
Proof. let W = £ yV ,m€EN. Since v=u =-u, W € §(u)
m n m
n=1
for all m € N, and $(u) associative yields that for all m €N,

2 2 .2 _ 2 _ 2
(u.wm) =u .Wm, u.(u.wm) =u .wm, (u.Wm).Wm = u.Wm. Hence
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w = lim W , implies (u.w)2 = lim (u.W )2 = lim u2.w2 = u2.w2,
m m m
m 2m 2 m
u.(u.w) = lim u.(u.Wm) = lim u .Wm =u .w, and (u.w).w = lim (u.wm).wm
p M 2 m m
= lim u.wm = u.w .

m

Theorem 4.2.1. Let ¢ be a local Jordan algebra with completion

J, and let K be a closed inner ideal of J. Let @ : J - 3 = J/RQJ)
be the natural homomorphism and let K = p(K). 1If feK is
idempotent, then there exists e € K such that e2 =e and e = f.

= - - = 2
Proof. f2 -f=0 and f € K implies that f - f =2z € RJ) N K.

Now -4z € R(J) N K 1implies 1 + 4z 1is invertible, so by Lemma

@

o
3.3.3, @ +42) F = g (-4z)". Thus -z.(1 +4z) L= g (-4)" "
n=0 n=1
€ RJ) NK, since RUJ) N K is closed. By Lemma 4.2.1, there
-] n
. _ _ -1_n - -
exists x = E an[ z.(1 + 42) 7, @y 1cg, @ = oo s
n=1 i=1
2 -1 - ® n
and x - x = -z.(L + 4z) ~. By Proposition 3.3.1, x = £ gz,
n=1"
. 2 . . 2 2 2
By € §. Since z =f - f, Lemma 4.2.2 implies (f.x) = f .x ,
2
f.(f.x) = f .x, and (f.x).x = f.xz.
Next let h =1 - 2x and g = x. Then h2 + 2g.h
= (1 - 2x)2 + 2x.(1 - 2x) =1 - 4x + kxz + 2x - 4x2 =1 - 2x = h,
2 - -
and g2 +h .z = x2 + (1 - 2x)2.z =x - z.[(1 + 42) L 1 + 4z.(1 + 42) 1]

s x bz -z [(L 4 b2). (L + b))

x+2z -2z =x=g. Now let
e =f.h+g. Since f,x € K, e=f.h +g=f - 2f.x + x € K, and

since x € RJ), -2f.x + x € RAJ), so e = E. It remains to show

that e 1is idempotent. Since (f.h)2 = f2 - 4f . (f£.x) + Q(f.x)2

f2 - 4f2.x + 4f2.x2 = 2. 2,

f .h , and (f.h).g = f.x - 2(f.x).x

f.x - 2f.x2 = f.(h.g), we have
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2
(£.h)% + 2(£.h).g + e = (f +2).h% + 2f.(h.g) + g

(1]
]

2
f.h2 + z.h2 + 2f.(h.g) +t g = f.(h2 + 2h.g) + g2 + hzuz

f.h+g==e.

For the next theorem, recall that if J is a linear Jordan

2
algebra over ¢ and % € &, then for all x ¢ J, Ux = ZRX - R 2°
X

Theorem 4.2.2. Let ¢ be a local Jordan algebra with completion

J. If {?1,F2,...,?;} is a set of nonzero orthogonal idempotents
in J = J/R(J), then there exists a set {el,ez,...,en} of nonzero
idempotents in J such that gi = fi’ i=1,2,...,n. Furthermore
if {?1,...,f£} is supplementary, then {el,...,en} is a supple-
mentary set.

Proof. First note that if {el,...,en] is a set of orthogonal
idempotents such that Zi = ?i’ i=1,2,...,n, then the e, are
nonzero. The proof is by induction on n. The case n =1 follows
from Theorem 4.2.1, where we take K = J. Hence assume for

l < r <« n, orthogonal idempotents €11€seeese exist with ej =f ,

J
r
i=L2,...r. Let u; = jElej \and u, =1 -wu;. Then {ul,uz}
is a supplementary set of idempotents. Let J = J11<3 le ® J22

be the Pierce decomposition of J relative to {ul,uz}. Since
r

for j =1,2,...,r, ul.ej = (izlei).ej = e

j=1,2,...,r. Now put f =U ¢(
Y2

y’ ej € J11 for all

fr+1)’ so that f ¢ J22. Since

2
f = Uuz(fr+1) = ZRuz(fr+1) - Ruz(fr+1) = 2(fr+1.u2).u2 - fr+1.u2
2

e @ m Ul @ - - L - u))

2( £

= 2fr+1.(1 - ul) - 2(fr+1.u1).(1 - ul) - f a - ul)

r+1°



=f 4 - fpryy - 2E e - ey,
and fr+1'ul = iElfr-l-l.ei - iElfr+1°fi =0, f= fr+1 #0.

Now by Proposition 4.1.2, J is closed, and J is

22 22

an inner ideal of J. Also ?2 =f¢ 322, so by Theorem 4.2.1,

. 2 — - _
there exists e € J22 such that e =e and e = f., Let e 41 e.
Then e 41 is an idempotent in J and e 41 - ¢ = f = fr+1' Now
for any i =1,2,...,r, e, € Jll’ so ei.er+1 € Jll..]22 = 0, and

{el,ez,...,er+1} is a nonzero set of orthogonal idempotents of

J such that e, = ?i’ i=1,2,...,n.

n n
Finally, assume T ?_ = T, and let e = £ e.. Then
i=1 ' i=1 '
e= Te, = L f, =1, and hence e =1+12, z € RUJ). Now
i=1 ¥ i=1 '
1+ z)2 = e2 =e=1+4+2z,s0 1+ 2z + 22 = (1 + 2)2 =1+ z.

Thus z.(l1 +2z) =z + 22 =0, and [z.(1 +2)].(1 + z)-1 = 0.

But z, 1 +2z, (1 + z)-1 € mz’ so z = 0.

Lemma 4.2.3. Let g be a local Jordan algebra with completion

J, e a nonzero idempotent of J, and K = Ue(J). Then:

(i) If uc K 1is invertible in K, then u is invertible in K.

(ii) If u=-e -4z, z € RQJ) N K, then there exists w = ; x Z
such that (e - 2w)2 =u=e - 4z, )

(iii) If u € K and u2 - e € RJ) N K, then there exists v € K
such that v2 =e and v =u,

Proof. (i) Recall that K 1is a linear Jordan algebra and

RJ) NK& RK). If u is invertible in E, then there exists

X € K such that U_(x) = e; i.e., U (x) -e=z€RU NK.

u
Hence Uu(x) =e + 2z, and since -z € RUJ) NK € R(K), e +z is
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invertible in K. Thus Uu(x) is invertible in K and so u

is invertible in K by Proposition 2.3.1.

(ii) Since K = Ue(J) is a Pierce space from the Pierce decomposi-
tion of J relative to f{e, 1 - e}, K is closed. Hence by Lemma
4.2.1, there exists w € R(J) N K such that w2 < w = z, where

w = ;lanzn, o € ¢. Now (e =~ 2w)2 = e2 - be.w + 4w2 =e - 4w + 4w2
= e r-1._42.

(iii) Since u2 - e € RUJ) N K, let u2 =e -4z, z € RUJ) N K.

Then by (ii) there exists w = ; anzn such that (e - 2w)2 =e - 4z,
Since R(J) N K 1is closed, 2w 2jé(]) NK&< RK), so 2w 1is quasi-
invertible in K. Hence e - 2w is invertible in K. Let

v =u.(e - 2w)-1. Clearly v € K. Now by Lemma 3.3.3, (e - 2w)-1
[--] -

=e+ ¢ (2w)n, so v =u.(e - 2w)-1 =u.e +u. T (2W)n =u+u. I (2w)n

n=1 n=1 n=1
® n
Since 2w € R(J) and RJ) 1is closed in J, I (2w) € RWUJ), and
- L n=1 © _
so u. g (2w)n € RJ). Thus v =u. Finally, since w = g .z,
n=1 n=1
-1 s n L .
(e - 2w) =e + I an , by Proposition 3.3.1. Thus, since
n=1 m n B
-1 . n . n 2.n
(e =2w) " =1lim(e + Tz )=1lim{e+ £ — (¢ -u") ], and
n n
m n=1 m n=1 4
m 8, n
e+ ¢ Y (e = u) is in the subalgebra of K generated by
n=1l 4

- - 2 -
e and u, v2 = [u.(e - 2w) 1]2 = uz.(e - 2w) 2 (e - 2w) .(e - 2w) 2

=e .

Theorem 4.2.3. 1Let ¢ be a local Jordan algebra with completion

J and let be nonzero orthogonal idempotents in J. Then

el,ez

e, and e, are (strongly) connected if and only if 31 and e

2 2

are strongly connected in J = J/IRQ) .
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Proof. If e, and e are (strongly) connected, then there exists

1 2
2
. . . . = + .
u€evu, e (J) such that u is invertible in Up 4o J) (u e ez)
1°72 1 72
Hence u is invertible in E_ _ (35 (32 = 21 + EZ)’ and
e. +e
_ _ 1 72
e)se, o _
Hence assume e, e, are connected in J., Then there
exists Giz € ﬁ; _ (3) such that :iz is invertible in G;(ES,
where e = e, + e,- Let Vi, = Ue e (u12). Then Vi, € U, e ),
172 1’72
and Vip = U_ = (u12) =u;,, S0 Vv, is invertible in U_(J).
€1°%2 €
By Lemma 4.2.3, Vi, is invertible in Ue(J). Thus e, and e,

are connected.

If, moreover e and e are strongly connected, then

1 2
we may assume that G%Z =e. Let Vi, be as above. Then
v., €U J), and ;2 =e, By Lemma 4.2.3 (iii), there exists
12 12

€122

2 -
v € Ue(J) such that v =e and v = Even more can be

V12.

said from the proof of the lemma, since

. o Bn 2 |n m n 2
v - lim [v12 + Vip® T (e - v12) J. But Vi, + Vi,e T - (e - Vio
n=1 &4 n=1 4
€U (J), for all m €N, and U (J) 1is closed. Therefore
e_,e e,»sre
1’72 1" 72
v € Ue e (J), and e »e, are strongly connected.

172
The importance of Theorem 4.2.3 lies in the relationship
between (strongly) connected idempotents and Jordan matrix algebras.

In essence, it allows us to infer the structure of a completion from

the known structure of J/R(J).
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4.3. Structure of Completions

If 91 is any algebra, A an ideal of % and ¢ : o - 9/A
the natural homomorphism, then for S <9 and x € S we will write

a(x) = x and p(s) = s throughout this section.

Definition 4.3.1, Let J be a Jordan algebra with radical gRQUJ).

J is said to have (finite) radical capacity n, if J/RQJ) has

finite capacity n. J is completely primary, if J has radical

capacity 1.

lemma 4.3.1. Let J be a Jordan algebra. Then the following are
equivalent:

(1) J is completely primary.

(2) J =J/pQ) is a division algebra.

(3) R(I) 1is the set of noninvertible elements of J.

Proof. See p. 49 and Proposition 2.6.1.

If J is the completion of the local Jordan algebra f,
then J is a local Jordan algebra (Theorem 3.3.1). Consequently,
J = J/R@) is simple (Proposition 2.6.1), ; satisfies axioms (i)-
(iii), and there exists n € N such that J has radical capacity
n (Proposition 2.7.15). Thus, the structure of J is completely
determined by the Second Structure Theorem (Proposition 2.7.16). The
several possibilities are listed according to the radical capacity
n of J.
I (n=1). J is a Jordan division algebra.
II (n = 2). J is isomorphic to a Jordan algebra of a nondegenerate

symmetric bilinear form in a vector space V over an extension

field TI'/$ with dim V/T > 1, or a Jordan matrix algebra
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b(DZ,ja), where (8,j) 1is an associative division algebra
with involution or 8 = A C>A°, A an associative division
and j the exchange involution.

III (n = 3). J s isomorphic to a Jordan matrix algebra
9603,ja), where (8,j) is an associative division algebra

o]
with involution, # >=A ® A , A an associative division algebra

and j the exchange involution, or an Octonian algebra with

+ A7 Gaamcmrngy

standard involution over an extension field T[/%.

IV (m 2 4). J 1is isomorphic to a Jordan matrix algebra bcﬁh’ja)’

WPE— i his

where (8,j) 1is an associative division algebra with involution
]
or B=A®A , A an associative division algebra and j the

exchange involution.

Since J has finite radical capacity n, J contains a
supplementary set of (strongly) connected idempotents {gl’gé""’g;}‘
By Theorem 4.2.2 and Theorem 4.2.3, we may assume that
{el,ez,...,en} is a supplementary set of (strongly) connected
idempotents in J. If n =1, then J 1is a completely primary
local Jordan algebra (Lemma 4.3.1). If n = 2, then
J=J ®J,, ®J,, (Pierce decomposition relative to [el,ez}),
where I and J,, are completely primary local Jordan algebras
and J19 is a subspace of J. This follows, since {21,32} a
set of completely primitive idempotents implies that Eii is a
division algebra, i = 1,2, and thus, Eii = Jii/Jii n e is
semi-simple, which in turn implies Jii neRA) = R(Jii) (Lemma
2.7.1 and lemma 3.3.1). There does not seem to be more that can
be said for this case, because of the lack of a coordinatization

theorem for n = 2.
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If n =23, then J = bcbh’ja)’ a Jordan matrix algebra,
and if B = B/m, where ,{?(S)(,&n,ja)) =m N ﬁ(‘&n’ja)’ then
= b@n,j;) with 3 = diag {a,,8,,-..,a ) for
a = diag {al,az,...,an} (Proposition 2.7.13). Of course Cs,j)
is characterized by III and IV. Also, since J 1is a local Jordan
algebra, &Kb(ﬁn,ja)) is the unique maximal ideal of b(ﬁn,ja).
Therefore, by Proposition 2.7.10, 7 must be the unique maximal
ideal of (8&,j).

Since b(bn,ja) is Jordan and n = 3, (#,j) is associative
or n=3 and (B,j) is alternative with §(8,j) € N(F) (Pro-
position 2.7.9). Hence, if (8,j) 1is associative, then 7 = R(H)
(Proposition 2.7.14). Suppose (B8,j) 1is alternative. If R(H)
is the Smiley radical of B8, then M < R(H by the same proof
as in Proposition 2,7.14., Since ﬁ(&)j = R and M is the
unique maximal ideal of (8&,j), we have M = R(B).

Following the next two lemmas, we will be in a position
to establish the main structure theorem.

Lemma 4.3.2., If J 1is a subalgebra of M+, 91 an associative

k-1
®cxd L, k=1,2,....

Moreover, if 9 1is commutative, then K(k) = K3 , k=1,2,... .

algebra, and K is an ideal of J, then K

3
Proof. If x,y € K, then Ux(y) = xyx € K . Hence, K(z) = UK(K)

= K3. Since K(k+1) = (k)), the first inclusion follows

U K
RO
by induction. Now assume 9 1is commutative, and let x,y,z € K.

1
Then xyz =% (xyz + zyx) = ‘21' Ux,z(y) =3 [Ux_,z(y) -U () -U,O]

€ K(Z). Thus, K3 < K(z). The remaining inclusions follow by

induction as in the first part.



85

Lemma 4.3.3. Let J = S)(,&n,ja) be a Jordan matrix algebra of

) 3k-l
order n 2 3. If (&,j) 1is associative, then R(J) = M )n nJ
@ k) . . =k
for all k €N and N E(J)( =0 if and only if nm = 0.
k=1 k=1
If (8,j) is alternative and /?(J)(k) = A(k)n NJ for all
it k) , .2
k € N, then N ,?(J)( =0 if and only if N A(k) = 0.
k=1 k=1
Proof. Since gQJ) () is an ideal of J = S)(,Bn,ja) for all

k =1,2,..., (Proposition 2.2.3), for each k € N there exists
an ideal A(k) of (§,j) such that ﬁ(J)(k) = A(k) N J (Pro-

position 2.7.10). 1In this notation A(l) =%, and in either case

)

we have n p(3) & Nla _NJIT=CNA INJ
o k=1 k=1 k=1

=[N A(k)] N J. Now, if B is an ideal of (8,j) and
k=1

0#b¢€B, then b{12] #0€ B _NJ. Thus B NJ =0 if and

only if B = 0. Thus it follows that N E(J)(k) 0 if and

o k=1

only if N A(k) = 0.
k=1

Assume that (B8,j) 1is associative. First note that nm
an ideal of (#,j) and j an involution implies that Wzk is an
ideal of (8/,j) for all k € N. By Proposition 2.7.10,

Ak) = (deb:d[ij] e RO, 1,5 =1,2,...,n) for

each k €N. If d€A(k), then d[12] € A(K) NJ = ey &
k-1 k-1
c R(J)3 = (mn N J)3 by Lemma 4.3.2. Thus d[12] is equal

to a finite sum of products of 3k-1 matrices each of whose

entries are in 7, and hence each entry of d[12] 1is a finite sum

of products of Bk-l elements of 7. In particular then, the
k-1

(1,2) entry of d[12], which is d, is in 7733 . Hence

A(Kk) c'm3 .
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We will use induction on k to establish the reverse
k-1
inclusion. If k =1, then A(l) =M. Assume that 7N < A(k)

for k= 1. Let digeeesd , A oseeesd ,d . se.d €M,
1 Py p1+1 P, p2+1 Py
k-1 k-1 k
where p, = 37, p, = 2.3 7, and Py = 3. Let x = dl"°d s

P
k-1 1

=d ...d and z =d ...d . Then x,y,z €

y P1+1 P2 ’ p2+1 P3 Y m ’
and therefore, by the induction hypothesis, x,y,z € A(k). By
JMA1l (p. 42), and Proposition 2.4.1, xyz[13] = 2xy[12].2[23]

= 4(x[13].y032]).2[23] € @) ™) "7 = oy **D | since

x[13],y[32],z[23] € A(k)n nJy-s= E(J)(k). Hence d.d_...d

12 P3
3k 3k-1
= xyz € A(k+l), and so 9 < A(k+l). By induction N S A(k)
k-1
for all k € N, and so A(k) =‘m3 for all k € N.
. i k) .
From the first part we now have that N ﬁ(])( =0 if
k=1
@ k-1 ® i
and only if N9y = 0. Since NM =0 1if and only if
k=1 k=1
© 3k-1
am = 0, the remainder of the lemma follows.
k=1

It is immediate from the setting of Lemma 4.3.3, that if

(o]
(&,j) 1is associative, then N Q(J)(k) =0 1if and only if
k=1

0
n ﬁC&)k = 0, since M = R(B) by Proposition 2.7.14.
k=1
We can now establish the main structure theorem. Note

that the two cases previously considered are also included for

the sake of completeness.

Theorem 4.3.1. Ilet ¢ be a local Jordan algebra with completion
J, and let J have radical capacity n € N.
(1) If n =1, then J 1is a completely primary local Jordan

algebra, and R(J) 1is the set of noninvertible elements
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of J.

(2) 1If n =2, then J=J1®J2®S,where J1 and J2 are
completely primary local Jordan algebras with identities
e, and e, respectively such that 1 = e + e, and S

is a subspace of J.

(3) 1If n = 3, then J = S)(,Dn,ja), a Jordan matrix algebra, and E

J/RA) =3 =20 1) = (BM i), where REQW ,1))
a a

N PUET GACY) PR TReere St it ¢ A

='mn n .b(.&n,ja). (8,j) admits the following possibilities:

(1) (8,j) 1is a (not associative) alternative algebra with

involution and identity over an extension field of %
such that $(8,j) S NGW). M= R is the Smiley
radical of &, and G,j) is either an Octonian algebra
with standard involution or a simple Artinian algebra
with involution. 1In the first instance 5 is simple
and RS 1is the unique maximal ideal of B. 1In either
case R(B) 1is the unique maximal ideal of (&,j).
(ii) (B,j) 1is an associative algebra with involution such

that B 1is a semi-local algebra and R(H) 1is the
unique maximal ideal of (8,j).

If n23 and R(Y ()* _ A(k)n n g;(,bn,ja) for k € N, then

L5 1is complete in the topology induced by the decreasing sequence

of ideals R(8 = A(l) 2 A(2) =2 ... , where we define A(0) = 5.

Proof. (1), (2) and the first part of (3) were established in the

discussion preceeding Lemma 4.3.2. 1In (3-i) we have not yet shown

that 3 simple implies that R(# 1is the unique maximal ideal of 5.

Since the proof is identical to the Jordan case (Proposition 2.6.1),
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it will not be repeated here. From (3-ii), it remains to be shown
that if n =3 and (§,j) 1is associative, then B is a semi-

local algebra. By a semi-local algebra 9 we mean an associative
algebra with identity such that (a) 9 has only a finite number of

o
maximal ideals, (b) R@) is a nucleus for Y; i.e., N e(m)k =0,
k=1

and (c¢) U/RQ) is Artinian. For B, (b) follows from Lemma 4.3.3
and the fact that c}:p(J) () - 0, and (c) has previously been
proved. By III andkg\} (p. 83), 5= A, an associative division
algebra with involution or 5 =A® AO, A an associative division
algebra and j the exchange involution. From the discussion in
§1.2, it is clear that in either case 3 has at most two ideals.
Thus B has at most two ideals which contain R(&). Since every
maximal ideal of B8 must contain R(S), S has at most two maximal
ideals. Note that this also yields that & is a local algebra
(not necessarily right Noetherian) if and only if & is completely
primary in the sense of Jacobson [4].

We will now show that 8 is complete in the topology
induced by the ideals A(k), k = 0,1,2,... . 1In what follows J

®

is identified with S;(,Dn,ja). By lemma 4.3.3, N A(k) = 0, since
k=1

. Thus B8 is actually a metric space. Let {di]

@©

N R(PH 0% = o
k=1

be a Cauchy sequence in B, and let k € N be given. Then there

exists N € N such that i,,i, 2 N implies d, -d € A(k).
172 | )
Since A(k) is an ideal of (8,}), dji , dji € A(k). Now for any
)

x € B8, X['_12] € ﬁ(,&n,ja), and hence for il,iz 2N, d11[12] - di [12]

2
1,3 ] -1,3 OLE
11812 + a.2 dilale21 d12e12 - a2 di2a1e21 € R(H , Since

=d
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-1.j -1.j .
d, ,d. ,a,dj aj,a,7dy a; € A(K). Thus ({d [12]} is a Cauchy
1 2 1 2
sequence in S)(,Dn,ja) = J, and since J is complete relative to

*
the topology induced by the ideals ,?(9) (k) , there exists

x_ €48, p,q=1,2,...,n, such thatlimd [12] = £ x_e . There-
Pd . i

1 P»>4
fore given any k € N, there exists N' € N such that i =2 N'
o - (k) *
implies d.[12] - 3 L € RW) )

Thus 1lim di = X9 €8 and B is complete.
i

and so di - X, € A(k).
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4.4, Complete local Jordan Algebras

Definition 4.4.1. A quadratic Jordan algebra J over a commutative
associative ring with identity is said to be complete, if R(J)
is a nucleus and J 1is a complete metric space with respect to

the R(J)-topology.

If J 1is a complete local Jordan algebra, and J* is the completion
* *
of J, then J =J , and R(J)(k) = R(J)(k) for all k € N.

Hence we can apply Theorem 4.3.1 to obtain

Theorem 4.4.1. Let J be a complete local Jordan algebra of

radical capacity n. Then:
(1) If n=1,J is a complete, completely primary local
Jordan algebra and R(J) 1is the set of noninvertible

elements of J.

(2) If n=2, then J =J., ® J2<D S, where J_,J_ ,S are

1 1772

as described in Theorem 4.3.1.
(3) If n=3, then J = bCDh,ja), a Jordan matrix algebra
such that R(2(D_,3,)) = R N BB ,j,), and
(i) (& j) 1is a (not associative) alternative
algebra as in Theorem 4.3.1 (n = 3 only) or
(ii) (B,j) 1is an associative algebra with involution
which is a complete semi-local algebra such that
R(B) is the unique maximal ideal of (8,]).
Conversely, if J 1is a complete, completely primary Jordan algebra,
or J = QCDh,ja), a Jordan matrix algebra of order n =2 3 with

(#,3j) as in (3), then J is a complete local Jordan algebra.
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Proof. (1), (2) and (3-i) are immediate from Theorem 4.3.1.
(3-1i) is immediate once it is noted that in the notation of
Theorem 4.3.1, A(k) = RS et by Lemma 4.3.3.

For the converse, first assume that J is a complete,
completely primary Jordan algebra. Then g(J) 1is a nucleus for
J, J/R@) 1is a Jordan division algebra so that R(J) 1is the
unique maximal ideal of J, and J/R(J) trivially satisfies the
minimum condition. Thus J is a complete local Jordan algebra.

Next let n 23, J =98, ), and p()

= A(k) N J,
where A(l) = R(8) . We will prove the completeness of J for
(8,j) associative only, but it will be clear how the proof can
be adjusted for the alternative case. So assume B 1is an
associative semi-local algebra which is complete in the R(H)-
topology, and R(# 1is the unique maximal ideal of (§,j). Then
rRWJ) = /?(,D)n N J 1is the unique maximal ideal of J and RS
a nucleus for B implies gR(J) is a nucleus for J (Lemma 4.3.3).
Since (8/R(8),j) is a simple Artinian algebra with involution,
and J/R(J) = sq(jn,j_) by Corollary 2.7.1, J/R(J) satisfies the
minimum condition byathe Second Structure Theorem (Proposition
2.7.16). Thus J is a local Jordan algebra.

Let {Xr} be a Cauchy sequence in J. Then for each

r €N, X = z Xgl.‘)e.., Xgl.‘) €p. If k is given, then there

i,j ij ij ij

exists N € N such that r_,r., 2 N implies Xr -Xr ER(J)(R)

k-1 172 1 2
= A(k)n nJg= E’(.D)f‘l NJ (Lemma 4.3.3). Thus when rsT, 2 N,
(rl) (rz) 3k-1
x - x € R . Therefore, if p € N, choose k such
1 1y ) (@) k-1
k-1 1 2 3 P
that 3 2 p. Then for reT, 2 N, xij - x, € RWB) < R ;

ij
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i.e., for each pairi,j =1,2,...,n, {XS)} is a Cauchy sequence
in 8. Thus for each (i,j) there exists xij € B such that

lim xgr) = x.,, and hence for any p € N there exists N,,K € N
r ij ij ij

such that if r 2N, then x . - ) ¢ pmP. 1f ken,

1J
let = 3k-1. Then for r 2 max {NlJ : i,j =1,2,...,n},
k-1
i J(.J) € :?w)p = P(-B"E} for every i,j =1,2,...,n. Thus,
if X = zx .s then X - X EE(J)(k), and limX =XE€ B .
3 1] ij r . n
’

It remains to be shown that X € S)(,b ] ) =J. Now for all r €N,

Xr € ﬁwn’ja): and thus Xr = T X( )[ij] ( )[11] Since
i<j i
1 . 1 r ..
[1_]] 5 X, [11] - X = ¥ (x, ij " xi; yLij] + Ez (xii-xgi))[ll],
1<_] i<j i
X = limX = [1_]] + = 2 X [11] € b(ﬁ 5] ) Therefore J
r t i<J

is a complete local Jordan algebra.
If n=3 and (#,j) 1is alternative with R(S) the unique
maximal ideal of (8,j) and E(ﬁ)n NJ=pLgRJ), then ,?(J) is the

®
unique maximal ideal of J. If N A(k) = 0, then ﬂ E(J)( ) - 0,

k=1
so that R@UJ) is a nucleus for J. If B is complete in the

topology induced by the A(k), k = 0,1,2,..., then J 1is complete
in the R(J) topology as in the associative case. Since J/R(J)
= &(En,j_), where 5 = 5/R(S), and (j,j) is either an Octonian
algebra :ith standard involution or a simple Artinian algebra
with involution, J/R(J) satisfies the minimum condition by the
Second Structure Theorem. Thus J is a complete local Jordan

algebra.

The concepts of commutative associative algebra with identity

and associative (linear) Jordan algebra coincide over a field of
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(k)

characteristic not 2. If 9 1is such an algebra, then R{)
= ch)Bk-l, k € N, by Lemma 4.3.2. Thus 9 is a@ not-necessarily
Noetherian local associative algebra if and only if 9 1is a local
Jordan algebra. 9 is a metric space with respect to both the
associative and Jordan R@9I) topologies. Suppose {xn} is a
Cauchy sequence in Eglative to the associative R(Y)-topology
and assume 9 1is complete with respect to the Jordan R(Y)-topology.
Then for any k € N, there exists N € N such that m,n =2 N

implies x - x_ € Q@u)k. Hence given k' € N, there exists

3k'—l (k")
N € N such that m,n 2 N implies X, T X € RPQD = R(A) ,

and {xn} is Cauchy in the Jordan topology. Thus there exists

X € 91 such that lim x =X in this topology. That is for any

n
k € N there exists N € N such that n 2 N implies x - X
k-1
€ Eﬁu)(k) = EK%)3 . Thus if p € N, and 3k-1 2 p, X - X
€ R c p@)P for all n 2 N. Hence lim x = x in the
n

associative topology, and 9 is complete in this topology. The
converse is equally clear. Therefore 9 1is a complete local
(associative) algebra if and only if 9 1is a complete local Jordan
algebra. Note that in this case 9 has capacity 1.
We close this section with several questions which remain
open.
1. 1Is there a corresponding local algebra theory for
alternative algebras? The difficulty here lies in
finding ideals corresponding to Ak in the associative

(k)

case and A in the Jordan case.
2. Can the structure for radical capacity 2 be more

completely determined? This problem seems to be
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laden with difficulties.
Under what conditions is the completion J of a

local Jordan algebra g itself complete? A trivial

)

condition is that Q(g*)(k = g(g)(k)*.
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