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ABSTRACT

BIFURCATION AND COMPETITIVE EVOLUTION OF NETWORK
MORPHOLOGIES IN THE STRONG FUNCTIONALIZED
CAHN-HILLTIARD EQUATION

By
Noa Kraitzman

The Functionalized Cahn-Hilliard (FCH) energy is a higher-order free energy that has been proposed to
describe phase separation in blends of amphiphilic polymers and solvent. It balances interfacial solvation
energy of ionic groups and volumetric counter-ion and polymer chain self-interaction energy against elastic
energy of the underlying polymer backbone. It is hoped that its gradient flows describe the formation of
solvent accessible network structures, such as found in polymer electrolyte membranes, lipid membranes, and
amphiphlic diblock copolymers. The FCH gradient flows possess long-lived network morphologies of distinct
co-dimension and we characterize their geometric evolution, bifurcation and competition through a formal
asymptotic reduction. This reduction encompasses a broad class of coexisting network morphologies with
different inner structure, such as bilayers and pores. The stability of the different network morphologies is
characterized by the meandering and pearling modes associated to the linearized system. For the H~! gra-
dient flow of the FCH energy, using functional analysis and asymptotic methods, we derive a sharp-interface
geometric motion which couples the flow of co-dimension 1 and co-dimension 2 network morphologies, in R3,
through the spatially constant far-field chemical potential. In particular, we rigorously characterize the

pearling eigenvalues for a class of admissible co-dimension 1 and co-dimension 2 networks.
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Chapter 1

Introduction

1.1 Amphiphilic Materials

Traditionally the term ‘amphiphilic molecule’ denotes a small molecule which finds an energetically favorable
interaction at the interface of two disparate fluids, such as soap in an oil-water-soap mixture. Indeed, early
studies of amphiphilic materials concerned emulsions formed from two immiscible fluids combined with an
amphiphilic surfactant. Lipids, formed of a hydrophilic head group and a hydrophobic tail belong to this
class of amphiphilic molecules. More recently, developments in synthetic chemistry, such as atom transfer
radical polymerization, have simplified the process of attaching charge groups to polymers, greatly expand-
ing the possible classes of amphiphilic polymers that can readily be synthesized, see [Matyjaszewski, 2012]
and [Charleux et al., 2012]. Amphiphilic blends typically phase separate; however the propensity of the
amphiphilic molecules to form monolayers leads to an energetic preference for thin interfaces. As a result,
amphiphilic mixtures typically form network morphologies which support asymptotically large interfaces of
various co-dimension. These include co-dimension one bilayers, or co-dimension two pore structures. To
make the idea of a network more precise, we offer the following motivation:

Given a small parameter 0 < g9 << 1, we say that a family of closed subdomains {D; }o<c<c, C R d>2,is a
network morphology if the sets are nested, that is D., c D., for €1 < g3 < g, and each constituent point of
D, lies within O(e) of its compliment. If Dy is the intersection of D, then the (local) co-dimension of the
network is the difference between the dimension, d, of the ambient space and the (local) Hausdorff dimension
of Dy.

Intuitively, Dy is specified and the sets D. can be thought of as the points that lie within ¢ of Dy, — where

€ plays the role of the molecular width. Networks have significant value: they describe the arrangements



of amphiphilic molecules, which self assemble into nano-scale structures with huge densities of solvent-
accessible surface area. The resulting network morphologies are typically charge-lined, rendering them
efficient charge-selective ionic conductors. Due to these traits, amphiphilic materials have found use in
many types of energy conversion devices, forming the ionomer membranes in fuel cells, the photo-active
collecting matrix in bulk-heterojunction solar cells, and the separator membrane in Lithium ion batteries,
[Anderson, 1975, Wilson and Gottesfeld, 1992, Peet et al., 2009].

The casting of blends of amphiphilic mixtures and solvent presents a rich array of distinct morphologies,
however control of the end-state morphology is experimentally challenging due to the delicate roles played by
solvent type, salt concentration and counter-ion type, di-block composition and polydispersity, temperature,
and pH. It has been shown, [Discher and Eisenberg, 2002], that changing the concentration of water in a
water-dioxane solvent blend induces bifurcations in amphiphilic di-blocks yielding micelle, micelle-pore, pore

(rod), pore-bilayers, and bilayer network morphologies, see Figure 1.1.

-~ Sphere Rod ,
tﬁ “ Vesicle
(=]
5 < .
g 5 &
<3 =
% h o
< ®
Q o
g o
L5 o

0 5 10 15 20 25 30 35 40 45
Water content (wt% in dioxane)

Figure 1.1: Morphological phases and vesicle transformations in dilute solutions. The colored regions
between sphere and rod phases and between rod and vesicle phases correspond to coexistence regions, the
vertical-axis represent the concentration of polymer by weight and the horizontal-axis is the percent of water.
From [Discher and Eisenberg, 2002]. Reprinted with permission from AAAS.

Similar bifurcation were obtained in PEO-PB amphiphilic di-blocks by changing the density of charge groups
in the hydrophilic portion, [Jain and Bates, 2004]. Figure 1.2 depicts the morphology diagram of PB-PEO
diblock in water as a function of molecular size and composition. The axis, Npg and Wpgo, denote the molec-
ular weight of the PB portion of the chain and the weight fraction of the PEO portion, respectively. The four
main structures observed are bilayer vesicles (B), cylinders (pores) (C), and spheres (S). As the hydrophilic

content (Wpgo) is increased, a sequence of structural elements is documented: starting with bilayers, fol-
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Figure 1.2: Morphology diagram of PB-PEO in water as a function of molecular size and composi-
tion describes the different regions of bilayers, pores and micelles. Reprinted (adapted) with permission
from [Jain and Bates, 2004]. Copyright 2004 American Chemical Society.

lowed by pores, and then micelles separated by composition windows containing mixed morphologies, such
as, bilayers-pores and pores-micelles. Increasing the hydrophilic weight fraction induces greater interfacial
surface area, and increases the aspect ratio of the diblock, as PEO is a softer chain than PB, and forms more
of a ball-like structure. Morphological reconfigurations can also be achieved through varying temperature,
[Zare et al., 2012] and [Gomez et al., 2005], and concentrations of counter-ions [Zhulina and Borisov, 2012].
We pay particular attention to the experimental investigation in [Budin and Szostak, 2011] and [Zhu et al., 2012]
addressing the division of primitive lipid membranes. Szostak’s group derived a particularly simple method
to induce the bilayer to micelle morphological change; they first formed a suspension of spherical vesicles
of 10% phospholipid and found that increasing the concentration of free oleo-lipids dispersed in the bulk
solvent induced a fingering instability in spherical phospholipid vesicles; this transformation is depicted in
the three horizontally arranged panels on the left side of Figure 1.3, the end state of which consists of long,
co-dimension two pore morphologies. In a subsequent experiment, the charge density on the surface of cylin-
drical pores was suddenly increased through a photo-oxidation process; the jump in charge density induces
a pearling bifurcation causing the pore structures to break into individual micelles, as depict in the three
vertically arranged panels on the right side of Figure 1.3. One aim of this thesis is to present an analysis of
related bifurcations within the context of the Functionalized Cahn-Hilliard free energy, which we introduce

in the following section.



Figure 1.3: Szostak’s mechanism for division of primitive cell membrane: (left) raising the background
concentration of lipids induces the vesicle to grow worm-like (co-dimension two) protrusions over a 74
nano-second time period [Budin and Szostak, 2011], (right) changing the density of charged groups on the
surface via a photochemically induced redox reaction incites the pore to pearl and break into micelles
[Zhu et al., 2012]. Reprint permission granted by Proceedings of National Academy of Science.

1.2 The Functionalized Cahn-Hilliard Free Energy

The first step towards the introduction of the FCH is to recall the derivation of the Cahn-Hillard (CH)
free energy, [Cahn and Hilliard, 1958], which describes the spinodal decomposition of an immiscible binary
mixture. For a fixed domain, Q ¢ R3, a phase function u € H'(£) describes the volume fraction of one
component of the binary mixture, and the free energy is modeled by a function of the density u weakly

perturbed by the spatially isotropic gradients
E(u) = /Q Fu, 2|Vul?, €2 Au) da. (1.1)
Expanding the free energy in orders of £ and keeping terms up to O(¢?), yields an expression of the form
E(u) = [Q [£(11,0,0) + £2A(w)|Vul® + £2B (u) Au] da. (1.2)

To obtain a generic normal form for the free energy, Cahn and Hilliard integrated by parts the last term
in (1.2), set the resulting coefficient of [Vu|? to 1, and relabeled the potential f(u,0,0) as W (u). The result

is the Cahn-Hilliard free energy
2
£(u) = fQ |:€2|Vu|2 " W(u)] dz. (1.3)



The corresponding H! gradient flow, the Cahn-Hilliard equation, takes the form

o0&

uy = A(S— = A(=e*Au+ W' (u)). (1.4)
u
Subject to zero-flux boundary conditions,
Au-n =0, (1.5)
Ap-n=0, (1.6)

where n is the outer normal to 9f2, the Cahn-Hilliard equation preserves the total mass

%/Qu(x,t) dz =0, (1.7)

and dissipates the Cahn-Hilliard free energy

2

<0. (1.8)
L2

d o0& o€
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It is known that the minimizers of the CH free energy over the space H'(Q) subject to a mass constraint
are achieved. Moreover, these minimizers satisfy the Euler-Lagrange equation expressed in terms of the

variational derivative of £

08 A+ W (1) = A, (1.9)
ou

where A is a Lagrange multiplier associated to a total mass constraint.

To model amphiphilic mixtures, such as emulsions formed by adding a minority fraction of an oil and soap
mixture to water, [Teubner and Strey, 1987] and [Gompper and Schick, 1990] were motivated by small-angle
X-ray scattering (SAXS) data to include a higher-order term in the usual Cahn-Hilliard expansion. Inspired
by their work, we add the next order term to (1.2),

>0
—

F(u):= fQ f(,0,0) + 2 A(u)|Vul® + 2 B(u)Au + C(u) (€2 Au)? | da. (1.10)

The full form of this system supports too many possible regimes to permit a systematic study. It is important
to find the simplest mathematical framework that supports the network morphologies typical of amphiphilic
mixtures; we need a new normal form. With this goal we first shift all the differential terms to powers of the

Laplacian. Specifically, letting A denote the primitive of A, we replace A(u)Vu with VA(u) and, assuming



appropriate zero-flux boundary conditions, we integrate the term VA - Vu by parts to obtain
F(u) = fQ [f(u7 0,0) + (B(u) - A(u))e?Au + C’(u)(EQAu)Q] dx. (1.11)
The energy density is a quadratic polynomial in e2Aw, which suggests that we complete the square

F(u)—fQC’(u) (5 Au 20) £(0,0,0) - S5 [ (1.12)

1
2

For simplicity we replace C'(u) with =, and relabel the potential within and outside the squared term by
W'(u) and P(u), respectively. The key point is that the first term is the square of the variational derivative
of a Cahn-Hilliard type free energy, consequently the case P = 0, when the energy is a perfect square, has the
special property that its global minimizers are precisely the critical points of the corresponding Cahn-Hilliard
energy. Indeed, a variant of this case was proposed as a target for I'-convergence analysis by De Giorgi, see
[Roger and Schétzle, 2006]. Our general form of the network is obtained by perturbing the perfect square

with an asymptotically small potential,

F)= [ ][5 Eau-wiw)*+oPw)] de. (113)

where § <« 1. The function W (u) is assumed to be a double-well potential with two minima at u = b, whose
unequal depths are normalized so that W(b-) =0 > W(b,). Typically b_ = 0, however it is helpful to give
this value a specific name. Thus u = b_ is associated to a bulk solvent phase, while the size of w —b_ > 0
is proportional to the density of the amphiphilic phase. The small parameter ¢ « 1, associated to the
amphiphilic molecular width, determines the interfacial width and corresponds to the ratio of the typical
length of an amphiphilic molecule to the domain size.

The Functionalized Cahn-Hilliard free energy corresponds to a class of two distinguished limits and a

particular choice for P,

F(u) = f [; (*Au- VV'(u))2 —eP (827]1|Vu|2 + nQW(u))] dz. (1.14)
Q

The functionalization terms, parameterized by 7; > 0 and 72 € R, are analogous to the surface and volume
energies typical of models of charged solutes in confined domains, see [Scherlis et al., 2006] and particularly
equation (67) of [Andreussi et al., 2012]. The minus sign in front of 7, is of considerable significance — it

incorporates the propensity of the amphiphilic surfactant phase to drive the creation of interface. Indeed,



experimental tuning of solvent quality shows that morphological instability in amphiphilic mixtures is asso-
ciated to (small) negative values of surface tension, [Zhu et al., 2009] and [Zhu and Hayward, 2012]. In the
FCH energy the gradient term, —1;|Vu|? < 0, is localized on interfaces, associated to single-layers of surfactant
molecules, whose growth lowers overall system energy — however the effect is perturbative and unrestricted
growth is arrested by the penalty nature of the square term which keeps u close to the critical points of
E. There are two natural distinguished limits corresponding to different choices for the exponent p in the
functionalization terms. In the Strong Functionalization, p = 1, the functional terms dominate the Willmore
corrections from the squared variational term. The Weak Functionalization, corresponding to p = 2, is the
natural scaling for the I'-limit as the curvature-type Willmore terms appear at the same asymptotic order
as the functional terms.

The well-posedness of the minimization problem for the FCH, including the existence of global minimizers
for fixed values of € > 0 was established in [Promislow and Zhang, 2013] for a more general functional form
over various natural function spaces. Depending upon the application, the volume-type 72 functionalization
perturbation incorporates the impact of counter-ion entropy (PEM fuel cells), capillary pressure, or entropic
effects from constraint of tail groups (lipid bilayers), [Gavish et al., 2012]. The form n.W(u) is chosen
primarily for convenience, as integrals of W (u) evaluated at critical points of Ecpg grow increasingly negative
with increasing interfacial co-dimension. We remark that the surface term n;|Vul? is equivalent to an
muW’(u) functional-form since an integration by parts on —n;|Vul? yields n;uAu which can be absorbed
into the squared variation with a perturbed form of W.

The goal of this study is to present an analysis of the stability and dynamics of classes of quasi-stationary
network morphologies A/ of F, which we define to be functions u € H?(2) which have an asymptotically
small minority of amphiphilic phase, satisfy assigned boundary conditions, and render the driving force of
the free energy asymptotically small. Specifically for each fixed C' > 0 we define the set of quasi-stationary
network morphologies

oF
ou

<CePti L, (1.15)
12(9)

QC::{ueH2(Q)|—/Q|u—b_|dm§05 and HHO

where p takes the same value as in equation (1.14) which defines the FCH free energy. The exponent

3

term, p + 5, in the bound on the residual corresponds to temporal dynamics on the €™ time scale. We also

introduce the zero-mass projection

M, f ::f—%fﬂf(:c)dx. (1.16)

Our analysis hinges on the construction of quasi-stationary functions whose properly chosen level sets form



locally co-dimension one and two network morphologies in the sense of Definition 77.

It is important to emphasize the difference between the CH free energy and the FCH free energy. The CH
free energy describes the spinodal decomposition of hydrophobic materials. The FCH free energy models
network formation in amphiphilic materials. In experimental settings, amphilicity drives the system to phase

separate on a molecular length scale. Figure 1.4 (a) resembles an early stage of CH spinodal decomposition.

Figure 1.4: A porous membrane assembled from cholormethylated polysufone (CPSF) with pyridine
graphed via nucleophilic substitution (ammonium agent). A 500 fold increase in magnification from a 1 mi-
cron to a 20 nanometer lengthscale shows a FCH-like nanoscale network morphology embedded within the do-
main walls of a micron-scale Cahn-Hilliard-like phase separation. The mixture is electroneutral on the micron
scale, but has charge separation on the nanometer scale. Reproduced (Adapted) from, [Zhang et al., 2013]
with permission of The Royal Society of Chemistry. DOI.

Zooming in where the red circle is, after a 500-fold magnification, the phase separated network morphology
is visible within the CH-cell walls, see Figure 1.4 (d). Averaged over a micron length scale the system is
electroneutral, and the phase separation is governed by a CH dynamic. On the nanometer length scale the
system is not electroneutral, and the phase separation is governed by the FCH with the associated network

morphologies.

1.3 Overview of Main Results

The over damped dynamics of amphiphilic polymer suspensions can be received from the Functionalized
Cahn-Hilliard free energy via its gradient flows whose evolution preserves the volume fraction of the con-
stituent species and lowers the free energy. Similar to the Cahn-Hilliard gradient flow given in (1.4), the
simplest mass preserving gradient flow of the strong FCH is generated by the H~! gradient,

uy = AE =A[(-*A+ W (u) —em) (- Au+ W' (w)) +(m - n2) W' (u)]. (1.17)
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This research includes a formal derivative of the geometric evolution of co-dimension one and co-dimension
two morphologies under the strong FCH equation, followed by a rigourous analysis of the pearling eigenvalues
for morphologies of either codimension.

We start by formal asymptotic reduction: In chapter 3 we derive the geometric motion of a collection of
disjoint, far from self-intersecting, closed, co-dimension one morphologies, referred to as bilayer morphologies,
in R?. The key results are that the chemical potential of the pure bilayer system, p1, is spatially constant
at leading order in the far field, and the H~! gradient flow drives pure bilayer interfaces by a quenched
mean-curvature flow, see equation (1.63). Moreover, for a bilayer morphology the far-field chemical potential
will converge temporally to a prescribed constant value, p;. In chapter 4 we investigated the geometric
evolution of a family of co-dimension two morphologies, referred to as pore morphologies, in R3. Away
from the interfaces, the chemical potential is spatially constant, and the H~! gradient flow drives pure pore
manifolds by a curvature flow, where the vector normal velocity is coupled to the chemical potential, see

equation (1.65). Moreover, the far-field chemical potential will decay to a prescribed constant Hop-

Note 1. The two equilibria points iy and p,, are determined only by the tilted double-well potential W and

the values of the functionalization parameters m, and 7.

Depending upon the value of the far-field chemical potential the geometric flow can be motion by curvature
or motion against curvature; the later induces a strong geometric instability, akin to a backwards heat
equation instability for the curvatures, see equation (1.64), which manifests in experiments as a fingering
instability, as shown in Figure 1.3. For the bilayer system, if yu; < p; then the bilayer will shrink as 1, grows,
while if p; >y, the bilayer will grow, which may induce fingering of the interface I'y. A similar instability
mechanism holds for pore morphologies.

To complete the formal analysis we consider the geometric evolution of a co-existing system comprised
of a family of disjoint, far from self-intersecting, closed, co-dimension one and two structures, in R3. In
2014, [Dai and Promislow, 2015] have shown that for the weak FCH the two morphologies can co-exist.
However, we conclude that, generically, the strong FCH equation does not support co-existence. Morpholo-
gies of distinct co-dimension will compete via the common value of the far field chemical potential, and
depending upon the initial configuration and the values of the functionalization parameters, 7, and 72, the
structures will compete for surfactant phase via the common value of the far field chemical potential, w1,
with various possible outcomes including the extinction of one phase, a pearling bifurcation of one or both
phases, or a fingering bifurcation. We also find non-generic values of 1; and 7 in which co-dimension one
and co-dimension two morphologies can co-exist.

The geometric evolution results are formal, in particular they assume that the underlying bilayer and pore



morphologies are stable. The vulnerability of the matched asymptotics method is that it ignores any possible
instabilities. In chapter 2 we review the spectrum of the linearized operators, see Figure 2.3, and show that
both the co-dimension one and co-dimension two morphologies have potential instabilities associated to
periodic, high-frequency modulations of the interfacial width, called a pearling instabilty.

A rigourous analysis of the eigenvalue problem corresponding to the strong FCH for the bilayer and the
pore morphologies is presented in Chapters 5 and 6, respectively. We show that in the strong FCH scaling
the leading order behavior of the pearling eigenvalues is independent of the shape of the underlying co-
dimension one or two morphology, which allows the definition of associated pearling-stability regions in
parameter space. In chapter 7 we analyze the combined bilayer-pore evolution. Under the H~! gradient
flow the pearling instability manifests itself on a time scale that is O(e7?) faster then than the geometric
evolution, and hence can be taken to be instantaneous on the geometric time scale. Conversely, the fingering
instability occurs on the same time scale as the geometric flow, and may not necessarily immediately manifest

itself on the geometric timescales.

1.4 Quasi-Stationary solutions of the strong Functionalized Cahn-

Hilliard Free Energy

For simplicity, we focus on the strong FCH, whose critical points, subject to a total mass constraint, are the

solutions of the associated Euler-Lagrange equation

i‘—: = (2A-W" ()| (2Au-W'(u)) |- (-*mAu+ W' (u)) = A, (1.18)

where X\ € R is the Lagrange multiplier, and the boxed term (e2Awu — W'(u)) is the variational derivative
of a CH free energy, of the form presented in Equation (1.3). Intuitively, approximate solutions of the CH
Euler-Lagrange equation

o0&

i —2Au+W'(u) = O(e). (1.19)

are natural starting places for a perturbative construction of solutions of the FCH Euler-Lagrange equation.

For such approximate critical points of the CH free energy it is natural that the Lagrange multiplier X in

(1.14) should scale with ¢, that is A = e\. Within this scaling we may rewrite the FCH Euler-Lagrange
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equation,(1.18), as two, coupled second order systems

2Au—-W'(u) = ev,
) (1.20)
(2A-W"(u))v = (-*mAu+ W’ (u)) + A

The singularly perturbed nature of the FCH Euler-Lagrange system makes it amenable to dimensional

reduction, yielding localized solutions build upon immersions in R of different co-dimensions.

1.4.1 Construction of co-dimension 1 Quasi-stationary solutions of FCH

We first review some basic definitions from elementary differential geometry. Let I', ¢ R? be a smooth,
co-dim 1 interface, which divides €2 into two disjoint sets 2, U Q_, see Figure 1.5. Let py(s) be its local
parametrization, p, : Q@ ¢ R - R, and s = (s1,...,54-1) € @ ¢ R*! and let 7 be the signed distance

(unscaled) from T',. For simplicity we choose the parameterization so the s; correspond to arc length along

Figure 1.5: The whiskered coordinate system of a generic, admissible, co-dimension one interface.

the i coordinate curve and the coordinate curves are lines of curvature. In this setting, the vectors T =

(Ty,..T;_,) defined by
dp

T := ,
8si

i=1,.,d-1, (1.21)

form an orthonormal basis for the tangent space to 'y at pp(s,t). Denoting the outer normal vector of Ty
pointing towards Q_ by n(s,t) = (N1, ..., Ng), we have the relations
oT? B on

= —k;n, — =k, T, i=1,..,n—-1, 1.22
asi - 8Si ! " ( )

where k; are the principle curvatures of I'y.

Definition 1.1. For fized K,{ > 0 the family, Gi ¢, of “admissible co-dimension one interfaces” is comprised
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of closed (compact and without boundary), oriented 2 dimensional manifolds T, embedded in R?, which are
far from self-intersection and with a smooth second fundamental form. More precisely,

(i) The W4 (Q) norm of the 2nd Fundamental form of T'y and its principal curvatures are bounded by K.
(i) The whiskers of length 3¢, in the unscaled distance, defined for each sy € Q by, ws, = {x : s(x) =
S0, |2(x)| < 3¢/e}, neither intersect each-other nor Q) (except when considering periodic boundary conditions).

(iii) The surface area, |Ty|, of Ty is bounded by K.

Assume I'y € G p. The set I'y o defined by
Toei={G(s,2) e RYse S, ~(fe <z <tfe} c @, (1.23)

will be called the reach of I'y, where we emphasize that ¢ is fixed independent of ¢ and of I'y, € Gk 4.

Each x €I'y 4 can be uniquely expressed via the whiskered coordinates such that
x=((s,2) = pp(s) +ezn(s), (1.24)

where z € [~l/e,l/e] is the scaled signed distance to Iy, z = Z. The line segments {py(s) x [~¢,/] ‘ s €
Q} are the whiskers of length 2¢ of T, and the pair (s,z) form the local whiskered coordinate system.
Figure 1.5 presents the whiskered coordinate system. By the Implicit Function Theorem this map is locally
and smoothly invertible. In particular, the functions s = s(z) and z = z(z) which relate the whiskered
coordinates to the cartesian ones and the associated change of variables, are all C* diffeomorphisms on the

reach, I'p;, of I'y. The white region in Figure 1.6 (right) depicts the reach of the associated immersion I'y,.

Definition 1.2. Given I'y € Gk and a function f : R — R which tends to constant values f% at O(1)

exponential rates as r — oo, we say that we dress the interface I'y, with f, obtaining the I'y-extension

fro (@) = @)X (r@)/D) + fo (L= x(r(@)/D) + foo (L= x(r(@)I/D)), (1.25)

where r(x) is the (unscaled) distance from Ty, and x : R - R is a fized, smooth cut-off function which is one
on [—oo,1], while x(s) =0 for s > 2. By abuse of notation we will drop the Ty subscript in the T'y-extension

when doing so creates no confusion.

The first step in the construction of the quasi-stationary solutions is to build the bilayer profile which is a
1-dimension equilibrium of equation (1.20). In the whiskered coordinates the Cartesian Laplacian takes the
form

2A =092 +eH(s,2)0. +e*Ag, (1.26)
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Figure 1.6: Single-layer (left) and Bilayer (right) dressings of the same co-dimension one interface T' (solid
black line). The dressing function is a one-D solution of the CH Euler-Lagrange equation. For the single-
layer solution I' separates regions u = b_ from w = b,, while the bilayer solution corresponds to u = b_ on
either side of the bilayer, with a brief excursion u > b_ near I'.

where H is the extended curvature, defined in terms of the Jacobian, J, of the change of variables, defined
in Equation (1.24). In particular, at leading order H (s, z) = Ho(s) + O(ez) where Hy is the mean curvature
of Ty at (p(s,0) and Ag = As + O(ez) where A, is the usual Laplace-Beltrami operator on I'y, for further
details see Section 2.1.

In the whiskered coordinates the first equation of (1.20) reduces, at leading order, to a second-order ODE
in z, for the one-dimension profile ¢(z),

92p(2) = W' (), (1.27)

defined for z in the reach. Since the double-well W is assumed to have unequal depth wells 0 = W (b_) >
W(b,), a simple phase-plane analysis shows that this equation supports a unique solution U, which is
homoclinic to b_, that is Up(2z) — b_ as z — +oo, see [Homburg and Sandstede, 2010] for a general discussion
of homoclinic orbits.

We define the leading-order structure of the bilayer critical point, up = up(2; ') via the two-term expansion,

up(x) = Uy (2()) + eup,1, (1.28)

where Uy, is the bilayer dressing of I, within the reach I'y ¢, equal to a constant value on Q\I'p 3, and smoothly
extended to match in the intermediate region, see Figure 1.6 (right). To define the correction term wuy ; we

first introduce the Sturm-Liouville operator Ly o

Lb,O = (93 - W”(Ub), (1.29)

which is the linearization of (1.27) about U,. Evaluating equations (1.20) at u; and projecting the right-hand
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side onto the range of L o yields

Lb,oubJ =, (1.30)

Lb70v= —771Ul:1+772W,(Ub) +5\. (131)

On the reach, T'y 4, the correction w1 is chosen to simplify the residual of equation (1.20) when evaluated
at uyp, is defined as

up1 = Ly (~mU + oW/ (Up) + A). (1.32)

Remark 1.1. The inverse operator L;}O is naturally defined Lo(R) — H?(R), by abuse of notation we apply
it to functions on [-¢/e, £/e] which have a natural extension to R by applying it to the extension, and then

restricting the result.

We further decompose uy, 1 into a local term @p; which decays exponentially to zero in z, and is smoothly

extended to be zero off of I'y ¢, and a constant term

M= O:\2 (1.33)

where we have introduced the well coercivity
a_=W"(b-)>0. (1.34)

The resulting u; is our qausi-steady solution
up(x) = Up(2) + € (71 + Up,1(2)), (1.35)

parameterized by I'y € Gk ¢ and y; € R. The local term %, 1 corrects the structure of U, within the reach,
while the spatial constant ~; adjusts the far-field behavior of u, which is now b:=b_ + e7;.

In the far-field region wu;, takes the spatially constant value
7 H1 2 =
up(r) =b=b_+e— +0(c”), xelyy, (1.36)
aZ

where p1, the chemical potential, is the leading order, non-zero term in the first variation of . By matching
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the inner and outer expression of up, given in (1.35) and (1.36), respectively, we find that

M= CE (137)

i.e., the value of p; differs from ; by a factor corresponding to the square of the branch point, a? of the
essential spectrum of Ly .

The quantity u; plays a key role in the evolution and bifurcation of the quasi-steady interfaces. We asso-
ciate uy with the far-field density of amphiphilic molecule — precisely the quantity that Szostak 'tweaked’ by

adding oleo-lipids to the bulk solvent phase in his experiment [Budin and Szostak, 2011], see Figure 1.3.

Remark 1.2. There are critical points of F for which A is O(1), in particular the single-layer solutions,
which correspond to heteroclinic orbits of (1.27) that connect two equilibrium values, see Figure 1.6 (left). For
the Cahn-Hilliard free energy single-layers form the dominant global minimizers, however they are generically
saddle points of the FCH, and are susceptible to meander instabilities in the gradient flow. It is important
to emphasize that single-layers and bilayers are distinct morphologies — single-layers separate phase A from
phase B while bilayers separate phase A into two regions by a thin layer of phase B, see Figure1.6. In
particular bilayers can rupture, re-uniting the two regions of phase A, as when a lipid bilayer opens a pore,
or tears. In addition, the interfacial component is a conserved quantity for bilayers, and when the bilayer is
stretched the interface must thin, which naturally increases its free energy as it deforms from its equilibrium

profile U, — bilayers can support non-zero tangential stresses.

1.4.2 Construction of co-dimension 2 and co-dimension 3 Quasi-stationary so-

lutions of the FCH

The FCH Euler-Lagrange equation, (1.20), also possesses co-dimension two and co-dimension three solutions
in Q c R3. We first consider co-dimension two solutions. These are based upon a foliation of a neighborhood
of a smooth, closed, non-self intersecting one-dimensional manifold I'), immersed in €2. The co-dimension
two whiskered coordinate system, introduced in Chapter 2, is defined using the mapping = = (,(s, z), and
the ideas of admissibility, reach, and dressing extend naturally from the co-dimension one case.

Within the reach, I'y ¢, of 'y, the Laplacian admits the local form

€2A=Az+€%'vz+528é, (138)
1-¢Z K

where A, is the Cartesian Laplace operator in the scaled normal distances Z = (21, 22), the vector K =

(k1,k2)" is the curvatures vector of T, at Cp(s,()), and 9% reduces to the line diffusion operator, 92, on T',,
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when Z = 0, see Section 2.2 for details. Assuming radial symmetry, the leading order pore profile associated

to the Euler-Lagrange equation (1.18) satisfies co-dimension two critical point equation
2 1 /
OrUp + EaRUp =W'(U,), (1.39)

subject to OrU,(0) = 0 and U, - b = b_ +eu; + O(¢?) as R - oco. The leading order form for the pore

quasi-stationary network arises from the pore profile dressing of a co-dimension two interface I',,

up(z) = Up(R(x)) + € (1 + upa(R)), (1.40)

where the local term 4, ; corrects the structure of U, within the reach, I', o, while y; € R is a spatial
constant that adjusts the far-field chemical potential. It is possible to combine quasi-stationary bilayer
and pore morphologies, so long as the associated manifolds have non-intersecting reaches, and the far-field
constant pq takes a common value. Indeed, the quasi-steady evolution between co-existing co-dimension one
and co-dimension two interfaces is driven by the competition between this common far-field value b, which
is given by b = b_ + euy. If the optimal far-field values, u; and g, associated to distinct co-dimensional
morphologies differ, then the morphologies cannot both simultaneously be in equilibrium, see section 4.7 for
details.

Co-dimension three quasi-stationary solutions, in R3, are spherically symmetric micelle morphologies. The
associated coordinate system reduces to the usual spherical variables and the Laplacian reduces to the
associated spherical form. Assuming rotational symmetry, the leading order micelle profile is the unique
solution of

ORU, + %&qu =W (Un), (1.41)

subject to OrU,,,(0) = 0 and U,, » b as R — co. An immediate prediction of the FCH free energy is that
bilayers must be thinner than pores, which in turn are thinner than micelles. This observation is born out

by experimental data, Figure 1.7 (right).

1.4.3 Minimization of the strong FCH free energy over co-dimension 1 quasi-

stationary profiles

It is constructive to examine the minimizers of F over a class of co-dimension 1 quasi-stationary solutions.
Momentarily setting aside the mass constraint, there are two classes of free parameters in our construction

of uyp, the spatially constant background correction, wpp, and the interface shape I'y. We will show, in
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Meere (g/mol) | 2500 £40 | 5850 = 204

bilayer 8.7+1.2 15.8+2.8

pore 143+1.6 | 25.4+3.3

micelle (nm) 18.4+£2.6 | 38.8+10.2

Figure 1.7: (left) A comparison of co-dimension a = 1,2, and 3 profiles computed from (1.27), (1.39),
and (1.41) respectively. The relative widths the profile is most sensitive to the difference in depths of the
two wells: W(b_) - W(by) > 0. (right) A table of experimental data indicating radii of bilayer, pore, and
micelle morphologies obtained by varying the hydrophilic length of polymer in PEO-PB amphiphilic di-blocks
with fixed hydrophobic (core) molecule weight, M:°", as indicated. Reprinted (adapted) with permission
from [Jain and Bates, 2004]. Copyright 2004 American Chemical Society.

Equation (1.52), that for the strong FCH free energy, the optimal value of amphiphilic material in the
bulk region is determine by the double-well potential W and the functionalization terms n; and 7,. We first

evaluate the free energy, at u,, which takes the form
1,4 ’ 2 52771 2
Fu) = [ 5 (20 =W/ (w))” - [ SEVwf + W (w) | da, (1.42)

and break the integral over the near-field I', , and far-field f‘bl := O\I'y ¢. Denoting the near-field integral by

Fe(up) we change to local coordinates

Fo(up) = f (*Auy - W (Ub))z—f(imVub|2+772W(Ub))dﬂf7
(1.43)

_/F .[z/ 3 62Ub—W(Ub)+€Ho(8)Ub) —E(%|Ug|2+772W(Ub))Jb(s,z)dzds,
b

where the Jacobian, defined in (2.6), admits the expansion J, = ¢ + e22Hy(s) + O(e32?). Expanding the

Jacobian and keeping only leading order terms we find

Fo(up) =€ ﬁb /'E/s g ( ( + Ty 1)+H0(5)Ub) _5(%|Ué|2+U2W(Ub)) dsdz. (1.44)

Lle

The localized functions in the squared term will yield O(e®) integrals which are negligible. However, the
far-field correction in the squared term Loty = -W"(Up)Ls — —EL yields an asymptotically relevant

contribution. Moreover integrating (1.27) we see that (U])? = 2W(U,). Together these two observations
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allow us to rewrite the localized component of the free energy as,

+
Fo(up) =& IFbI( i m ; TIQUb)a (1.45)
where we introduced the bilayer 'surface tension’
Op = ”UI;HQLQ(R)' (1.46)

The value of up in the far-field region is given in (1.36), and, by Taylor expansion, we note that W'(b) =
e+ O(e?), and W(b) = O(e?). Denoting the far-field integral by Fi(up) we find that its contribution to

the energy reduces to the leading order expression,
Folup) = 2(1Q - 2T, |) +0( ). (1.47)
Combining the near- and far-field expressions, the total energy takes the form

QO 2

Flup) = (KL 2 ) oy, (1.48)
2 at 2

A similar near-field/ far-field decomposition applied to the the integrals yields the expression for the total

mass of amphiphilic material.

M = /Qub(ac) —b_dx= [ da:+f f (Ub+5— Jpdzds —5|Q|— + €| Ty |my, (1.49)
Iy

where

my = fR Up(z) —b_dz >0, (1.50)

is the mass of amphiphilic material per unit length of bilayer. Typically the amphiphilic component is scarce
within the bulk, so that M = eM (don’t put too much soap in the washing machine!), and since T, is
admissible its interfacial area |T'p| is O(1). These assumptions render u; a quasi-stationary with respect to
F, moreover a prescribed value of M and 11 determines the area, ||, of the bilayer interface. Consequently,

we solve equation (1.49) for ||, and plug the result into equation (1.48) which yields

Qg (=125 + )

Fup) = | =
(w) =27 5 02 2y

(1.51)

18



lipid pore
lipid
bilayer

Figure 1.8: Depiction of bilayer (left, source: academic.brooklyn.cuny.edu), pore (center), and micelle
(right) morphologies of lipids. The co-dimension associated to the morphology is the difference between the
space dimension and the number of tangent directions of the minimal manifold whose normal bundle locally
foliates the morphology. In R? bilayers are co-dimension one, pores are co-dimension two, and micelles are
co-dimensionl three.

The minimization of F(up) over T'y, and py, subject to the mass constraint reduces to the optimization of a

quadratic polynomial in 1, and the optimal value of amphiphilic material in the bulk region takes the form

_Mh+n2 0b

1.52
> (1.52)

My =

For the strong functionalization only the area of an admissible co-dimension one interface, and not its
curvature, enter into the leading-order determination of the free energy of its bilayer dressing. Moreover
bilayers prefer an optimal far-field value of lipid, p; which is independent of the scaled mass constraint M
and hence the area of the bilayer — it is a universal property of the system as determined by the shape of
the well W through my, o3, and a_ and through the functionalization parameters 7; and 2. For the weak
functionalization the Willmore term, the integral of the square of the mean curvature over I';, enters into

the free energy at leading order, and the optimization is more subtle.

1.5 Network Bifurcation in the FCH

The quasi-stationary network morphologies developed in Section 1.4 are, at leading order, critical points of
the Cahn-Hilliard, however these structures are not perturbations of local minima but rather approximate
saddle points of the CH free energy. An essential feature of the functional form of the FCH is its facility to
build competitors for its local minima out of the saddle points of the simpler CH free energy. This process is
best understood by examining the second variational derivative of the FCH free energy at a smooth critical
point, u. of the Cahn-Hilliard free energy. For traceless boundary conditions, such as periodic boundary

conditions, see [Promislow and Zhang, 2013] for a detailed discussion of appropriate boundary conditions,
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the second variation takes the form

2
L, : 0°F

= o (ue) = (A - W (uc))” ~ € (me? A+ naW" (ue)). (1.53)

For a quasi-steady bilayer, u;, associated to an admissible, co-dimension one interface I'y, the second varia-
tional derivative Ly := L,,,, takes a simplified form when acting on functions u € H*(£2) whose support lies

within the reach, I'y ¢, of I';,. On this subspace the operator admits the asymptotic expansion
Ly = (Lb,o +eHO, + E2Ag)2 —eP (maf + 772W"(Ub)) +0(eP™), (1.54)

An investigation of the spectrum of the operator L; is presented in Chapter 5. Indeed, it was shown by

[Hayrapetyan and Promislow, 2014] that there exists U > 0, independent of € such that the eigenfunctions

N>

associated to Ly corresponding to eigenvalues Ay < U comprise two sets, the pearling eigenmodes {Vy 0.}, N

and the meander eigenmodes {‘I’b,l,n}ano, see details in Chapter 2. In chapter 5 we characterize the pearling
eigenmodes, showing that they are independent of I', € G ¢ and consequently determine parametric regions
of pearling stability and instability, for the strong FCH. For I', an admissible, generic, co-dimension one

interface we consider the eigenvalue problem
LoWs,0.n = Ab,0,0Y0,0m, (1.55)

associated to the second variation of F about the bilayer dressing up. The spectrum of I, cannot be localized
by a regular perturbation expansion since the eigenvalues are asymptotically close together.

The expression for the pearling stability condition of bilayer interfaces with constant curvatures was estab-
lished in [Doelman et al., 2014], see Figure 1.9, where the eigenvalues associated to the bilayer dressing of
such an interface are uncoupled. In this thesis we extend this result to the linearization about a dressing
of generic admissible co-dimension one and co-dimension two manifolds. The main difficulty arises from the
coupling among the eigenvalues through the derivatives of the curvatures. The analysis requires bounds on
the spectrum that are uniform in e < 1. To this end we introduce the L?(Q) orthogonal projection II onto
the space of the pearling eigenmodes and its complementary projection denoted O:=I1-1I. A decomposition

of the operator IL, into a 2 x 2 block form using the projections takes the form

ML, TIL,II
Ly = . (1.56)

ML, IT  TIL,II
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Figure 1.9: Time evolution of a circular, co-dimension one bilayer under the FCH gradient flow (1.17) for
vales € = 0.1 and n; =12 = 2. The times depicted correspond to ¢t =0, ¢t = 114, and ¢ = 804 and show the onset
of the pearling bifurcation.

In Chapter 5, Section 5.3, we prove that the off-diagonal operators are small, in norm, independent of ¢.
The spectrum of the fully infinite dimensional piece, LI, is bounded from below by a constant U > 0
independent of ¢, [Hayrapetyan and Promislow, 2014]. The upper-left element ITL,IT can be reduced to a
large matrix M € RV*N where N » ¢%/2=%. The spectrum of L, is controlled by the spectrum of the matriz
M and the singular scaling is reflected in the growth of N as ¢ - 0. Care must be taken to distinguish
between the size of the entries of M and the size of M as an operator from [2(RY) to i2(RY), as the latter
generically scales like /N times the [® norm of the entries. For simplicity we focus only on the pearling
modes j =0, neglecting the meander terms associated to j = 1. In Chapter 5 we observe that the matrix M

admits an asymptotic decomposition

M = M3, +¢€A, (1.57)

where M(?iag is a diagonal matrix and A is uniformly bounded as an operator on [?(RY) as long as the
curvatures are sufficiently smooth. Therefore, at leading order, the eigenvalues of M are the diagonal entries

of M giag which take the form

Apom =Moo —26n)% = e(u102Sy + Xo.o(m —n2) [s0l3), (1.58)

where )y is the ground state eigenvalues of the linear operator Lo with the corresponding eigenfunc-
tion vy 0, and By is an eigenvalue of the Laplace-Beltrami operator Ay, corresponding to the eigenfunc-
tion ©. The coefficient S, is the “ bilayer shape factor”, defined in equation (5.41), whose sign determines
if the pearling bifurcation absorbs or releases amphiphilic material from the bulk.

The positive quadratic term in the pearling eigenvalue expression (1.58) is dominant except when the Laplace-
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Beltrami eigenvalue f3,, is approximately equal to )\b,oa_z. By the Weyl asymptotic formula for the Laplace-
Beltrami eigenmodes, the residual of the dominant term is O(g) for an asymptotically large value, N of
indices n. The nature of the bilayer pearling bifurcation depends sensitively upon the sign of S;. For
Sp < 0, which holds for a generic class of double-well potentials W, see section 5 of [Doelman et al., 2014],

the spectrum of M will be strictly positive if and only if uq satisfies the pearling stability condition

Ao —m2) Yoo
a?S,

2
P} = Iz [ (1.59)

We also identify a class of wells for which S, > 0, in which case the the direction of the inequality in (1.59)
is reversed.
In Chapter 5, Section 5.4, we connect the spectrum of M to that of L;, showing that the eigenvalues of M
are in fact a small perturbation of the small eigenvalues of L, and we obtain a perturbation estimate. We
also examine the solution of the linear flow generated by L. Assuming the eigenvalues of M are stable under
pearling, in terms of Equation (1.59), we will show that the semi-groups generated by L decay exponentially
fast and describe the resulting exponential dichotomy.
A similar analysis can be performed for co-dimension two pore structures, parametrized by the one-dimensional
immersion I',, see Chapter 6. Assuming a negative value of the “pore shape factor” S,, defined in (6.33)
we show that the pore structure will remain pearling stable if and only if p; satisfies the pearling stability
na(leolls, + Aollepoll,)

P*=— > 1, 1.60
" s 1 (1.60)

condition

where A, ¢ is the ground state eigenvalue of L, with the corresponding eigenfunction 1, o.

This analysis is consistent with Szostak’s experiment, see [Zhu et al., 2012], in which a photo-induced increase
in charge on the lipid heads induced a pearling bifurcation which drove pores to micelles, see Figure 1.3 (right).
The increase in charge corresponds, within the FCH, to an instantaneous increase in 7; a sufficiently large
increase, for a fixed value of p1, will trigger the bilayer pearling condition (1.59) as well as the pore pearling
condition (1.60). Figure 7.9 depicts the pearling as a result of instantaneously increase in 7;.

In Section 5.5 we relate the small eigenvalues of ALL to those of I and find that the pearling eigenvalues

of AL which are two orders of ¢ larger than the pearling eigenvalues of L.
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1.6 Competitive Geometric Evolution of Bilayers and Pores

In this thesis we model the over-damped dynamics of amphiphilic polymer suspensions via the mass-
preserving H~! gradient flow given in equation (1.17). The quasi-stationary network morphologies con-
structed in section 1.4 are not stationary solutions of the FCH gradient flow, but generate slow dynamics
which may be locally parameterized by the interfacial sub-manifolds of bilayers and pores, respectively
I'y and T'y. Indeed, when the bilayer pearling stability condition holds, then the bilayers meander eigen-
modes {\Ilb,l,n}gjo, depict in Figure 2.3, comprise the potentially negative eigenspace of the associated
linearization. The flow of the underlying interfacial structure can be obtained by projecting the residual
‘;—f(ub) of the critical point equation (1.18) onto this eigenspace. The method of matched asymptotic expan-
sion provides an accessible, but formal method to derive the interfacial motion. For a bilayer morphology,
the ansatz (1.35) for u; is augmented by taking the signed distance z to the interface I'y, and the background
state 1 to be functions of the slow scaled time 7 = t/e, and the gradient flow is solved by matching fluxes,
particularly across the interfacial layers. For single-layer morphologies, under the Cahn-Hilliard gradient
flow this results in a Mullins-Sekerka problem for the interface, see [Pego, 1989]. For ¢ « 1 it was shown
that the leading order normal velocity of the interface of the spinodal domains is determined by the jump
in the normal derivative of the chemical potential defined across the interface, separate the complementary
domains. More rigorous derivations of Pego’s results quickly followed, particularly [Alikakos et al., 1994]
and [De Mottoni and Schatzman, 1995].

For the FCH gradient flow, (1.17) reduces, at leading order, to

EUé(z)% + 5% = Aa—}—(ub) = eAHy(s)U[(2) + O(£%). (1.61)
or dr ou

The leading order residual arises from the mean-curvature term which was neglected in the construction of
the bilayer, up. This term now becomes a driving force for the evolution of the interface I'y, through the time

derivative in the signed distance function. Indeed, the quantity

0z

‘/b(S) = _Ea

(1.62)

is the normal velocity of the interface I',. The asymptotic reduction does lead to a Mullins-Sekerka prob-
lem for the far-field chemical potential, however its driving force is given by the interfacial mean curvature
times the jump of the bilayer profile across the interface, Hy(s)[Us]. Since the bilayer is a homoclinic orbit
its jump [Up] = 0, and the Mullins-Sekerka problem is trivial. The outer chemical potential reduces to

a spatial constant, and the far-field is characterized by amphiphilic density, p1(7), whose value in deter-
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mined by conservation of total mass, see [Dai and Promislow, 2013] for details for bilayers under the weak

functionalization. For the strong functionalization the resulting system takes the form

Vo = v (11 — iy ) Ho,

d:ul * f 2
S __ - H2dS
a vemy(p = ) , Hods

(1.63)

where Hj is the mean curvature, v := W >0 and g is the optimal far-field amphiphilic density,
the same quantity derived by the optimization process in (1.52). The H~! gradient flow drives pure bilayer
interfaces by a quenched mean-curvature flow. While the flow drives 1 to its optimal value f;, the sign of
the difference p; — py is consequential. Indeed, in two space dimension, modulo reparameterization of the
evolving interface, the curvature driven flow can be recast as an evolution equation of the single curvature
Hy,

0Hy

Bty = (02 + Hg)Vy = v (p1 — ) (95 + Hg ) Ho, (1.64)

see section 3.3 of [Gavish et al., 2011] for details. If 1 > pf, that is if the bulk value of amphiphilic material
is in excess then the curvature driven flow is a backwards-heat equation in the curvatures. This is the nature
of the fingering instability induced in [Budin and Szostak, 2011] when oleo-lipids were added to the bulk of
the spherical bilayer suspension. The fingering instability initiates as a backward heat flow in the curvature.
The resulting singularity is associated to the development of the pore type growth emanating from the bilayer
surface. Moreover, in [Doelman et al., 2014] the condition g1 > p; was identified as the point of bifurcation
to linear instability of the meander eigenvalues associated to spherical bilayers. For p; < p; the curvature
driven flow is locally well-posed but is subject to finite-time blow-up due to the cubic driving force, Hg. This
is the familiar finite-time extinction of droplets under curvature driven flow. However, for the quenched flow
(1.63) the relaxation of p; to its equilibrium value precludes the blow-up if the initial curvatures are not too
large.

A similar reduction can be performed for co-dimension two pore structures, parametrized by the one-

dimensional immersion I',. The result is a similar quenched curvature driven flow for the vector valued

normal velocity V, = —(%, %)T,
Vi = vp (= 113)R(5),
W oy~ [ R ds, e
dr b P2 Jr,
where v, := M% > 0, & is the vector curvature of I'y, m,, = 2 [~ (U, - b_)RdR is the mass of
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Figure 1.10: Competition for the amphiphilic phase between a spherical bilayer (beach ball) and circular
solid pore (hula hoop) as a function of the well tilt W (b_) — W(b,). The image shows ¢ = 100 end states
of the FCH gradient flow (1.17) from identical initial data but with increasing values of the well tilt. Small
tilt prefers bilayers, larger tilt prefers pores by increasing p; and the pearling threshold, P, which drives
bilayers to pearl. Images courtesy of Andrew Christlieb and Jaylan Jones.

amphiphilic material per unit length of pore structure and the equilibrium value

e m _Jo (U))*RdR

Hr = a2 [=(U, - b_)’RdR’

(1.66)

is again independent of I',. Most intriguingly, initial data corresponding to spatially separated pores and
bilayers yields a competitive evolution that can be understood as a fight for surfactant, mediated through the
common value of the bulk amphiphilic density 1, whose evolution is determined to impose the conservation

of total mass,
Vo= vp(pa — py ) H

¥y = vy (o1 — i) (1.67)
dﬂl * * pa
i —vemny(piy = i) /;b HGdS - evymy (i = Hp) /;p 7 ds,

The competitive evolution of the bilayers and pores couples through curvature-weighted surface area. How-
ever, the two morphologies seek differing equilibria values, which generically satisfy p; # u,, making coex-
istence of bilayers and pores impossible under the strong functionalization, unless one of the structures is
flat, since zero curvature interfaces are at equilibrium independent of bulk value of amphiphile. For curved
interfaces, the range p1 € [y, ;] is invariant under the flow, and once j; enters this range the bilayers
will shrink, while the pore morphologies will grow. Moreover, if the pearling threshold P, lies within the

invariant range [fi;, ;] then the value of y; may transiently decrease through the pearling threshold for
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bilayers, (1.59), causing the bilayers to pearl as they shrink. Figure 1.9 depicts various ¢ = 100 end-states of
the FCH gradient flow for a double well potential W with increasing value of well tilt W (b, ) - W (b-). In all
cases the initial data consists of a spherical bilayer and two circular pores placed with antipodal symmetry.
Increasing well tilt leads to a pore end state with a larger radius and to pearling of the bilayer. A detailed

analysis of the bifurcation structure of the bilayer-pore network morphologies is given in Chapter 7.
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Chapter 2

Coordinate System, Definitions and

Notation

One main goal of this thesis is to describe the geometric evolution of the functionalized polymer-solvent
bilayer and pore morphologies. We introduce the whiskered coordinate system which describes the
tangential and normal coordinates in a neighborhood of an admissible interface. In Section 2.1 we address the
co-dimension one morphology in R%, (d > 2), and establish necessary definitions from elementary differential

geometry, and in Section 2.2 we repeat the process for co-dimension two morphology in R3.

Note 2. Throughout this thesis we will use subscript b or p to distinguish between quantities associated with

the bilayers structures and and those associated with the pore structures, respectively.

Derivative Notation: Given a function of a single variable, such as f(z), we use (-)’ notation to indicate
its derivative. e.g., f’:= 9, f. If a function involves more then one variable, we specifically write with respect

to which variables we differentiate to avoid ambiguity.

2.1 Co-dimension One Morphology in R?, d > 2

Admissible co-dimension one interfaces are defined in Definition 1.1. We fix K and ¢ and let I', € Gk, be an
admissible, co-dim 1 initial interface, which divides §2 into two disjoint sets, see Figure 1.5. The reach of the
interface, I'p ¢ is defined in equation (1.23), and according to equation (1.24), each x € I'y ¢, can be uniquely

expressed using the whiskered coordinates such that
x=((s,2) = pp(s) +ezn(s), (2.1)
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where p, is a parameterization of T, z € [-l/e,l/e] is the scaled signed distance to I', and n is the outer

normal.
Definition 2.1. We define kp = (kp,..-kba-1) to be the vector of the principle curvatures of T'y.

Let g the matrix representation of the first fundamental form of I'y, whose entries are given by

Opy 3/)1;)
;= ,— , 2.2
gz] (aSZ 88] L2(Rd) ( )
and the representation of the second fundamental form of I'y, given by
ov 0
hij = _< - pz;) ; (2.3)
651- aSj L2(Rd)

where v is the Gauss map associated to I'y. Then, the Jacobian, Jp, of the transformation z — (s, z) takes

the form

Ijy—ezh! 0

Ipw dpy )
Jp=—,... 2.4
b (651 PRRET] 854_1 , 1 ) ( )

where I4_; is the (d—1) x (d—1) identity matrix, and hz is related to the first and second fundamental forms

of T'y, via the following equation
o d-1 .
hi = himg™ . (2.5)
1

3
I

The determinant of the Jacobian matrix, J, = det(J}), satisfies
Jo(s,2) = edo(s)Jy = Jo(e + % 2Hy) + O(e3). (2.6)

where Jj is defined by
Jo(s) = \/detg, (2.7)
is related to the matrix representation of the first fundamental form, defined in (2.2), and .J; is given by

Jy(s,2) = ﬁu —ezky i), (2.8)

i=1

where kj,; are the principle curvatures of I',. For more details see [Hayrapetyan and Promislow, 2014, Ap-

pendix 6].
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On the reach I'y ¢, in the whiskered coordinates, the Laplace operator takes the form
24 _ 92 2
€A, =0; +eH0, +e"Ag, (2.9)
where H is the extended curvature term, given by

d-1 k . [e <] L
—YI = N H(s)el 2 = Ho(s) +eHy(s)z + O(g2), (2.10)
=0

=
1l
I

1—ezky

ky,; are the principle curvatures of I'y, and H; are related to the sum of the 4t power of the curvatures. To
understand the third term on the right hand side of equation (2.9) we first consider the matrix G = J7 Jy,.

With this matrix, the generalized Laplace term A¢ takes the form

L d-1d-1 o . o
Ag = J; G J,—, (2.11)
b Z:Z; ; 8si aSj

and, according to [Hayrapetyan and Promislow, 2014, Proposition 6.6], the generalized Laplacian term can

be written as

Ag=A, +ezDy 5. (2.12)

Here A, is the Laplace-Beltrami operator, define by
g7 Jo——, (2.13)

where g is the first fundamental form of I', introduced in equation (2.2), the elements g* are the entries

2nd

of g7, and Do isa order operator, relatively bounded perturbation of Ay, given by

d-1 82

d-1 !
Degi= S dii(s,2)—2— + Y d;(s,2)—. 2.14
,2 L 2] (S Z) 83185J + ]; J(S Z) 65‘] ( )

4,J=

For admissible I', the coefficients {d; ;} and d; satisfy
e (|02l ey 1070 ) € € for m=0,1,2 (215)

for some C > 0 independent of ¢.

Lemma 2.1. Let Q c R? be a bounded domain and consider the subspace HZ2(T'y) where the subscript c

denotes compact support within I'y o. Then Ds o is a relatively bounded perturbation of Ag on ch(].—‘b’g),
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The proof of Lemma 2.1 follows from Holder’s Estimates for the second derivatives, given in the following

theorem -

Theorem 2.1.1 (Holder’s Estimates for the second derivatives, [Gilbarg and Trudinger, 2001]). Let u €
C2(R™), feCg(R™), satisfy Poisson’s equation Au = f in R™. Then u € C’g’“(R") and, if B = Bgr(Xy) is

any ball containing the support of u, we have
|D2u|6,a;B < C|f|6,a;Ba (216)
where C = C(n,a), the Holder continuous exponent satisfies 0 < oo < 1, and the norm is defined by

o = 310 (F@)=F) +* s M (2.17)

and d = diam(B).
Note 3. For a =1, the ||| .5 norm is the W"*(B) norm.

Proof of Lemma 2.1. Fix f € C§(Q) with supp(f) c Tpe, and As € p(As). WLOG, take . = 0. We define
the function u = A;!f. Then, the following calculation shows that we can bound the L?-norm of D, 2 using

the L2-norm of D?u

!

d-1 o
|DS,2u|g’1;Q = Z (di; P 8 Z(dj(s,z))? U (2.18)
ij=1 j=1 Sj 0.1.0
prpa S
<||d;i (s, 2 ||Loe(p) +1d; (s, Z)HLoo(p) U

Vi 83188] 0,1:0 1= 0s; 0,1;0

d-1 0 !
SH%%.X(Hdi,j(S?Z)HLw(FZ)7||dj(3az)||[,°°(rl)) |D u|019 ;678]'”01.9

)

/

0
];58

) = (|D2u|0 Lo T2 |D2“|;,1:,sz) < C[D%],

(|D2u|0 1.0 0,1,0°

0,1;2

where the third inequality follows from (2.15), the fourth inequality follows from Poincaré inequality and
the constants ¢, cy and C are independent of €. Consider the |-[; .5 norm of the operator D?(A,)7! acting

on u and apply (2.16) to u to obtain

|D2u|6,a;ﬂ < O|Asu|6,a;9 = C|f|6,(x;§2’ (219)
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where the equality follows from replacing u = A~ f. Combining equation (2.19) and (2.18) we obtain
D5, 287" f1o,050 < Clf 1o, as0- (2.20)

In particular, for a = 1 we have

H DS,QAglf ||W1v°° < CH f ||W1v°° . (221)
We want to show that the following inequality holds

1D 287 |2y < ClLF Nlzeqay - (2.22)

Assuming inequality (2.22) does not holds, i.e.,

||D372A;1f||L2(Q) > CHfHLQ(Q)? (223)

then there exist a sequence {f,} such that

||fn||L2(Q) -0, (2.24)

| Ds 2 f L. (2.25)

lz2g0y =

Since the W* norm is bounded below by the L? norm, equation (2.25) implies that
1< [ D27 fu e < Cll i e (2.26)
However, by the Sobolev Embedding Theorem we know that

Whe cc LP, (2.27)

where 1% = é, and d is the space dimension. The embedding (2.27) implies that there is a subsequence { f,, }

such that || f,, = fll;, =0, and || f||;, > 1. However, this contradicts (2.25), and we conclude that

||DS72A;1f||L2(Q) < C||f||L2(Q) (228)

To better understand the generalized Laplacian operator, A, we review some basic facts about the Laplace-
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Beltrami operator Ag: The eigenvalues, {3 }72, of the —A,, and the corresponding eigenfunctions, {©} 52,

satisfy the following properties :
o A;Of =506,
e Bog=0and B, >0 for k>0.

e The eigenfunction of Laplace-Beltrami are orthonormal in the I'y, inner product,
(01,0,)r, = fr 01,0, Jo(5) dS = 6, (2.29)
b

where Jy is defined in (2.7).

e According to Weyl’s asymptotic formula, [Chavel, 1984], the number of eigenvalues < A\, N(3, < A),
including multiplicity, satisfy
N(By £ A) ~ Cy A D2, (2.30)

In particular, 3, ~ Con®(41 where C;,Cs € R constants.

Definition 2.2. Let I'y be an admissible interface. We say that f € L*(Q) is localized on T, if there exist

constants M,v > 0, independent of € >0, such that
F(a(s,2))| < M, (2.31)

forall z €Ty 4.

Definition 2.3. Given a function f := f(s,2) localized on Ty we define the jump of [ across a given whisker
by
[/1(s) = lim f(s,2) — lim_f(s,2). (2.32)

Given two functions f,g € L*(Q) with supp(f),supp(g) c Ty, we may change the L?(Q)-inner product to

the whiskered coordinates

\e
(P = [ f@a)do= [ [ 52005205 2) d= ds, (2.33)

where the Jacobian, Jj,, was defined in (2.6). Moreover, integration of a localized function yields

(]
fﬂfda:: /Fb /::/E f(z(s,2))dp(s,2) dzds + O(e V%), (2.34)
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We introduce the Jy inner product, defined as

1755
G [ [, 10s:2)(s.2)Jod=ds. (2:35)

Definition 2.4. For a fized whisker w, we define the point (I'y(s),0) to be its base point (see Figure 2.1).

(a) Base Point in © (b) Base Point in the whiskered coordinates

Figure 2.1: Figure (a) is the sharp interface reduction and the base point is a given point x € py(s). The
white area in Figure (b) is the reach of the interface, Iy ¢, and for the whiskered coordinates, the base point
is the intersection point of the whisker with the interface

Lemma 2.2. The curve length evolves according to

dly|

= fr VH(s)ds. (2.36)

We consider the dressing, as defined in Definition 1.2, of an admissible interface, I'y € Gx ¢, with the bilayer
profile, Uy, which solves

20U, = W' (Up),
(2.37)

Ub(iOO) =b_.
Figure (2.2) depicts the bilayer solution (left) and the dressing of the interface (middle). Observe that Uy is
translation invariant, i.e., Up(z) — Uy(z + p) also solves (2.37). Taking the derivative of (2.37) with respect
to z yields

Ly oUy =0, (2.38)
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where Ly is the linear operator, defined in equation (1.29), given by
Ly =02 -W"(Uy). (2.39)

From Sturm-Liouville theory, see [Titchmarsh, 1946], we know that the eigenvalue problem Lb,oz/}b, ji= )\b’jiﬁb’j

Uy
by Ab,0
b1
z
b
(a) Bilayer Solution U, (b) Dressing I'y with U, (c) Spectrum of Ly o

Figure 2.2: Subfigure (a) depicts the bilayer profile U,(z) which converges to b_ as z — co. Subfigure ()
describes the dressing of the interface with the bilayer profile U, marked in red. The blue regions represent
the background state and the white region is the neighborhood of the interface I', o. Subfigure (¢) depicts
the spectrum of Ly o, with the vertical axis representing the real line.

has a finite number of simple eigenvalues {)\ ; }, see Figure 2.2 (right). From (2.38) we know that U} is an
eigenfunction of Ly o, and since it has one node, it is the first eigenfunction @b,l = U}, i.e., U} is the excited-
state eigenfunction corresponding to the excited-state eigenvalue Ay 1 = 0. The ground state eigenfunction ’(/AJb,o
corresponds to the ground state eigenvalue Ay o > 0. By Weyl’s essential spectrum theorem, see [Kato, 1976,
Theorem 5.35], the reminder of the spectrum is real, negative and O(1) distance to 0. For further details
see Appendix A.2.

We introduce the co-dimension one, L™/1 functions ®, ; € L=(R) for j = 1,2 which are the solutions of
L;OCI);,J =1, (2.40)

and are orthogonal to the kernel of Ly . The function ®;; takes the form

- 1
Dp1=Dp1 — —, (2.41)

where (i)b,l is the solution of

T
Lb,Oci)b,l e ) Z/ (Ub), (2.42)

and a_ is the well coercivity introduced in equation (1.34). Since U, — b_ at an exponential rate as z — oo,
the right-hand side of (2.42) is in L?*(R), and even about z = 0, hence orthogonal to ker Ly = U/. The

existence of ®; » follows from a similar argument.
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Definition 2.5. We define the scaled eigenfunctions iy, := X(z)j_lmt/;b,k, where zﬁb,k is the k' eigen-

function of Ly and x(z) is a cut off function,

0 if |zl 21fe,
x(2) =11 if 2| <1/2e, (2.43)

momnotone in between.

The scaled eigenfunctions are orthonormal in the L?(2)-inner product

I\e - N\e . - -
||¢b,k”21;2(9) = /;b [1\5 (px)?Jo(8)Jp dzds = /;b /:l\s (Do) X2 (2) Iy Jo(8) Jy dz ds (2.44)

Ne .
= f Jo(s)ds / (p)°x2(2)dzds = 1.
Fb —l\E
Definition 2.6. The full operator is defined by
Ly=Lyo+cHO, +e°Ag, (2.45)

where H and A are given in equations (2.10), (2.11), respectively. The full operator, Ly, is self-adjoint in

the L*(Q)-inner product, for more details see appendiz (A.3).

According to [Hayrapetyan and Promislow, 2014], there exists C' > 0 so that eigenmodes corresponding to

eigenvalues from the set o(Ly) N [-C, C] admit the leading order expansion

Yb,jn = 1/fb,j(2)@n(8) +0(e), (2.46)

for j =0 or 1. Here the error is in the L?(2)-norm, and we emphasis that the eigenvalues vy, ; are smoothly
extended over the entire domain €2, see Definition 2.5. Here v, ; are the scaled eigenmodes of L; ¢ introduced
in Definition 2.5, the term ©,, is a Laplace-Beltrami eigenfunction defined in (2.29), and the corresponding
eigenvalues take the form

Ab»jﬂl = ()‘bJ + 52571) + 0(5)7 (247)

where Ay ; are the eigenvalues of L ¢ corresponding to the scaled eigenfunctions v ;, and ,, are the eigen-
values of —Ag, see Figure 2.3 (center) for a depiction of the spectrum of —L,.
To understand the general structure of the spectrum of the second variation of F at the bilayer dressing of an

admissible interface, we recall that the leading order structure of the second variation of F, Ly, introduced
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Pearling

Figure 2.3: The structure of the real spectrum of —Ly, defined in equation (1.54), plotted verses Laplace-
Beltrami wavenumber n. (left) The Sturm-Liouville operator Ly o, defined in (1.29), has one positive ground
state eigenvalue, A\po > 0 and a one dimensional kernel, denoted Ap1. (center) The extension of Ly to
Ly = Lyo+eH0, +e? Ay adds side-bands in n, the Laplace-Beltrami index which bend back negatively at the
rate —(Ap,0 —€2Bk)?. (right) The spectrum of the operator —Lj, = —£2 + O(¢), (minus sign chosen to preserve
orientation of images) is, to O(e), the negative square of the spectrum of £;,. The side-band associated to Ao
has a quadratic tangency at leading order, which may be raised or lowered by the functional terms, 7, and
7)2, the crossing of this spectrum through zero is the mechanism of the pearling instability. Springer and the
original publisher [Hayrapetyan and Promislow, 2014], original copyright notice is given to the publication
in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media

in (1.54), is controlled by £7. The remaining parts of L, are relatively bounded and asymptotically small in
comparison to ,Cﬁ. The spectral mapping theorem implies that the eigenvalues of L, are approximately the
square of the eigenvalues of £;. Figure 2.3 (right) depicts the eigenvalues of the operator —Ls.

The eigenfunctions associated to L, corresponding to eigenvalues Ay, < U, with j,n > 0, comprise two
sets, the pearling eigenmodes {\I/b,om}anJ\,1 and the meander eigenmodes {1 ,}03), where the index N3
is the biggest index which satisfies Ay 1 v, < U, and the indices N1, Ny are chosen so that N; is the first
index satisfying Ap o n, < U and Ny is the biggest index which satisfies Ay o n, < U, see Figure 2.4. The

indices N;, i =1,2,3 are independent of e.

!
[} L
v o
[ o
[} L
o
PR o
PREEY L)
PREY L
RS L
X ,
“ . . 1'
LN . . . .
.2 - .
NGON N,

Figure 2.4: The eigenvalues of L, with the limit of the meandering eigenmodes, N3, and the limits of the
pearling eigenmodes No, N.
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For j = 0,1 we introduce Xy j, the set of indices n for which L; acting on ;0,, is small, i.e.,

S = A{n | (Ag —€26a) ~ O(VE) . (2.48)

Weyl’s asymptotics determine the size of the set 3, o, which satisfies |X | ~ O(3?4) » 1. We introduce

the co-dimension one meander eigenspace

yb,me = Span{‘llb,l,n}ﬁ[:()a (249)

and the co-dimension two pearling eigenspace

Vi pe = span{Wp 0.0} 12 . (2.50)

The co-dimension one morphologies are approximate critical points of the FCH, however they may suffer
from both low-frequency (meander or fingering) or high-frequency (pearling) instabilities. We characterize
the meander type motion through the bilayer geometric flow in Chapter 3, while the pearling instability of

bilayers is characterized in Chapter 5.

2.2 Co-dimension Two Morphology in R3
Let © c R? be a bounded domain and let I'pc R? be a smooth, closed curve, parameterized by Pp
Ty = {pp(s) : [0, L(1)] - R | pp(0) = pp(L(t))}, (2.51)

where s denotes arc-length and L is the total curve length.

At a given point on I'p, the unit tangent vector T, the principle normal vector N and the binormal vector B

defined by

Ipp
T=— 2.52
>, (252)

T ||”' oT

= || =— — 2.53
’ ds ds’ ( )
B=TxN, (2.54)

form the Frenet-Serret frame. we introduce the vectors {T,N',N?} which, at each point p,(s) on the
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curve I',, form an orthonormal basis for the normal plane and are given by

ON?
0s

=1, T, i=1,2, (2.55)

where

#(s,t) = (K1, k2)" (2.56)

is the normal curvature vector with respect to {IN', N?}. The local T, N1, N5 coordinate system gives a more

natural expression for the resulting geometric flow (See [Dai and Promislow, 2015] for further details).

Definition 2.7. For fized K,{ >0 the family Gy, , of “admissible co-dimension two interfaces” is comprised
of smooth, closed curve, 1-dimensional manifolds T, embedded in R, which are far from self-intersection

and have a smooth second fundamental form.

The set I'p, ¢ defined by
Tpei={Gp(5,2) €R¥s e 5,0<2<tfe} c @, (2.57)

will be called the reach of I',,, where we emphasize that £ is fixed independent of «.
Assume I'y, € G, ¢ is a co-dimension two admissible interface. Then, by the Implicit Function Theorem each

point x € I', ¢ is uniquely expressed using the whiskered coordinates
x=((5,2) = pp(s,t) + 21N (s,1) + e20N?(s,1), (2.58)

where z = (21,22)" is the scaled signed distance vector and t € [0, co] represent time, see Figure 2.5.

N>
Ny

22

21

Figure 2.5: Co-dimension 2 whiskered coordinates in R?
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Definition 2.8. Let z €'y ¢(t) be a point on a given whisker w. We define the point

bl)(z) = pp(s(x,t),t), (259)

to be the whisker’s base point, or the base point associated to x.

Definition 2.9. For a time-dependent family of admissible surfaces parameterized by pp(-,t), the normal

velocity V = (V1,Va) of a point py(s,t) on Ty is defined by
.0
V=N P21y =12 (2.60)
ot
Lemma 2.3 ([Dai and Promislow, 2015]). The {T,N! N?} coordinate system satisfies

T
oT _ k1IN + o NZ, (2.61)
s
while the curve length evolves according to
dir
Il _ —f V- ids. (2.62)
dt T,

Lemma 2.4 ([Dai and Promislow, 2015]). Fiz T, € G, k¢ and assume that ¢ is sufficiently small, so
that ||R||L°°(FP) < 1. Then, on Ty, in the whiskered coordinates, the Jacobian, J,, of the transforma-

tion x — (s, z) takes the form

Jp(s,2) = 2, (2.63)

where

Jpi=(1-e2-F), (2.64)

and k is defined in equation (2.56). Moreover, The Laplace operator takes the form

Ay =M, -e'D, + 0% (2.65)
where we introduce the operators
K
D, := j *Vz, (266)
1 1 z-OsR
92 =0 (Ta ) - o LI 2.67
G RT) (-ezR)2E E(1—52-,‘%)3 ° (2.67)
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and the normal velocity V takes the form

821 2 6N1
Vi=—-—e— N — 2.68
LT T ot (2.68)
ZQ 1 8N2
Vo=—-e——+exN . 2.69
2T T8 ot (2.69)
For future calculation, we also introduce a more compact version for the Laplacian expansion:
Ap=e2A, -5V, +0? - (2-R)R- V. + 0(e). (2.70)

We introduce the “co-dimeanion two Laplacian” operator, 02, and assume that its eigenvalues, {Bk}Z":O, and

its corresponding eigenfunctions, {C:)k}Z":07 satisfy the following,
o 920} =[Oy,
o Bo=0and ;>0 for k>0,

e the eigenfunctions of co-dimeanion two Laplacian are orthonormal in the I'p-inner product
(ékyéj)l“p = '/I: ékéj ds = 5k,j- (2.71)

e Weyl’s asymptotic formula, introduced in (2.30), is valid also for the co-dimension two case. For this

chapter we fix d = 3 and as a result, the number of eigenvalues < A\, N(3, < \), including multiplicity,

satisfy N (B, < A) ~C1\, and S, ~ Can.

Note 4. By abuse of notation we will drop the bar signs from B and Oy when doing so creates no confusion

with By and Oy introduced for the co-dimension one interfaces.

Definition 2.10. For a radial function f:R — R which tends to constant value foo at an O(1) exponential

rate as R — oo, we say that we dress the interface I', with f, obtaining the I',-extended function

fry (@) = F(@))x(Ir(@)|/€) + foo (1= x(|r(2)I/0)), (2.72)

where £ >0 is the minimal (unscaled) distance of T'y, to the compliment 'V ¢ of its neighborhood I'y, o and x :
R - R is a fized, smooth cut-off function which is one on [0,1], while x(s) = 0 for s > 2. By abuse of

notation we will drop the Iy, subscript in the I'p-extension when doing so creates no confusion.

Given two functions f,g € L?(Q2) with supp(f),supp(g) c I'p, we may change the L?(Q)-inner product to
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the whiskered coordinates

le
G = [ f@a@rdr= [ [ 16,2905, 005,2) s, (.73

where the Jacobian, J,, is defined in (2.63). For two functions f,g € L*(R?) we may change to polar

coordinates and denote the corresponding R-weighted inner product by

2m o
(f,g)LR==f0 fo fgRdRdb. (2.74)

We consider the dressing, as defined in Definition 1.2, of an admissible co-dimension two interface, I'y € G}, ,,

with the pore profile, U,, which solves

(e + %) Up = W' (Uy),

OR?2 R
Uy(c0) =b_, (2.75)
au,

ar (0) =0

To understand the general structure of the spectrum of F we consider the second variation of F at U,
Ly = L5+ O0(e), (2.76)

where we introduce the full operator

L,:=L,-¢eD,+e%0%. (2.77)

To understand the spectrum of £, we first investigate the spectrum of the linear operator

1 1 "
L= 0%+ TR+ ﬁag -W"(U,), (2.78)
We define the spaces Z,, by
Zm = {f(R) cos(mb) + g(R) sin(mb) | f,g€ C™(0,00),m € N}. (2.79)

These spaces are invariant under the operator L,, and mutually orthogonal in L?(2). Moreover, on these

spaces L, reduces to

L,(f(R)cos(mf) + g(R)sin(m8)) = cos(mb) L, p f + sin(mb) L, g, (2.80)
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where

2 1 0 m2
L= =% M ey, 2.81
P oR2 T ROR R () (2.81)

Each operator Ly, ,,, is self-adjoint in the R-weighted inner product, and the operator L, 1, introduced in (?7),
has a 1-dimensional kernel spanned by 0rU,. For m > 1 we observe that (Lpmf, f)rn < (Lp1f, f)r, and
since Ly, 1 <0 we deduce that Ly, ,, <0. In particular the operator L, ,, is boundedly invertible for all m # 1.

The operator L, satisfied

Ly,0¥p,0,5 = Ap,0,j¥p,0,5- (2.82)

We denote the eigenfunctions and eigenvalues of Ly, m by {¥pm,j}520 and {Apm.j} 520, respectively.

We differentiate equation (2.75) with respect to R to obtain
LUl = 0. (2.83)

Equation (2.83) implies that the functions 9,,U,, 0,,U, lie in ker L,,.

Assumption 2.2.1. The operator L, has no kernel and it has a 1-dimensional positive eigenspace,

i.e., Ap,0,0>0 and Ay, <0 for every j > 1.

It follows from Assumption 2.2.1 that
ker(Ly) = span{0.,Up, 0.,Up,} = span{drU, cos 8, OrUp, sin 0}. (2.84)

Under these assumptions, we can write L, in its block-matrix form

Li=| o 1, (2.85)

where the spectrum of each operator Ly, ,,, m >0 is describes in Figure 2.7. The eigenvalues of £,, defined
in (2.77), at leading order, are described in Figure 2.6, where the pearling eigenvalues are the small eigenvalues
of the operator (L, o +£20?)?, see Figure 2.6 (d).
We introduce the co-dimension two, L™71 functions ®, 4, j=1,2 which solves

L&

pEDP.J

-1, (2.86)
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(a) o(Lpo+ 6283) (b) o(Lp1 + 5283) (¢) o(Lpm+ 5265), m>2 (d) o(Lpo + e29?%)?

Figure 2.6: Full Operators Spectrum

Ap.0,0
Ap.1,0
Ap.0.1 A Ap.m.0
Apymit
(a) Spectrum of Ly (b) Spectrum of Ly 1 (c) Spectrum of Ly ., for m > 2

Figure 2.7: The spectrum of the sub-operators L, ,, for m =0,1,2 with the real axis vertical.

and converge exponentially to asymptotic value o~ as R - oo such that b, - ol e (ker L,)*, and a_ is

the well coercivity, defined in (1.34).

Definition 2.11. We define the scaled eigenfunctions i, = x(2)J %4, ok, where ¢y is the k™

eigenfunction of L, o and x(z) is the cut off function, defined in (2.43)

The scaled eigenfunctions are orthonormal in the L?()-inner product

l\e
(Y, Vpj) L2y = Vp.0,kWp,0,X°(2) dzds = 0. (2.87)
T 0

Note 5. Any f € L?(R?) admits the Fourier expansion

£= BoB)+ 3 () cos(mb) + g, () sin(m). (2.5%)

and as long as {f1,91}Lker L, 1, we have the inverse formulation

L =L fo+ i((L;}m Fn(R)) cos(mb) + (L51 gun(R)) sin(me)), (2.89)
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Assumption 2.2.2. We assume that the results from [Hayrapetyan and Promislow, 2014] hold for the co-

dimension 2 morphology.

Assumption 2.2.2, implies that there exists C' > 0 such that o(LL,) n[-C, C'] have the leading order expansion

Uyin=(1p;(2)0n(5))*+0(e) (2.90)
where 1), ; are the scaled eigenfunctions of L,, introduced in Definition 2.11, and ©,, are the eigenfunctions
of co-dimeanion two Laplacian, and the corresponding eigenvalues take the form

Apjm = (Apj +E°Bn)? +O(e), (2.91)

where )\, ; are the eigenvalues of L, and 3, are the eigenvalues of 92.

Similarly to the co-dimension one case, see Figure 2.3 (right), the eigenfunctions associated to L,, correspond-
ing to eigenvalues A, j , < U, with j,n >0, comprise two sets, the pearling eigenmodes {\pr707n}flv=2Nl and the
meander eigenmodes {W, 1 ,}2?,, where the index Nj is the biggest index which satisfies A, 1 n, < U, and
the indices IV;, N3 are chosen so that N; is the first index satisfying A, o n, < U and Ny is the biggest index
which satisfies A, o n, < U, and the indices IV;, ¢ = 1,2,3 are independent of €. For j = 0,1 we introduce

Xp,j, the set of indices n for which L, acting on ;0,, is small, i.e.,
Sp = An | (Apj —€2Bn) ~ O(VE)}- (2.92)

The size of the set ¥, ¢ follows From Weyl’s asymptotic formula, which implies that || ~ O(e3/27%) > 1.

Definition 2.12. The space, Xy, corresponding to the small eigenvalues of L is defined as
Xy = {wO@k | ke Z}, (293)
The L2-orthogonal projection, II, onto Xy, is given by

, 0Ok ) 12
I fe= ) U%—Mlﬁo@k = > (f,%0Ok) L2(2) V0 Ok, (2.94)

keX ||w0@k“%2(g) keX
and its complementary projection is O=7-1L

Assumption 2.2.3. We assume that the restricted operator l:IILpr is uniformly coercive on X and its

spectrum is bounded from below by 6 >0 which may be chosen independent of sufficiently small € > 0.
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Assumption 2.2.3 implies that o(L,)/ Xy is strictly positive.

We introduce the co-dimension two meander eigenspace
Ypme = span{\l'p717n}g:3‘0, (2.95)
and the co-dimension two pearling eigenspace

Vp,pe = Span{‘l/p,o,n}anNl- (2.96)
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Chapter 3

Geometric Evolution of Bilayers in R?

In this chapter we derive the geometric evolution of admissible co-dimension one interfaces in R? under
the H™! gradient flow of the strong FCH. In contrast to analysis of single-layer interfaces, multi-scale
analysis shows that the Stefan and Mullins-Sekerka problemsfor bilayers are trivial, and the sharp interface
limit yields a simple, quenched mean curvature-driven normal velocity at leading order. To obtain the flow
of the underlying interfacial structure we project the residual %(ub) of the critical point equation, (1.18),

onto the meandering eigenspace, defined in (2.49).

Note 6. By abuse of notation we will drop the b subscript in the uy critical point when doing so creates no

confusion.

Recall the strong FCH free energy which corresponds to the choice p =1 in (1.14),
L o / 2 em 2
F = [Q 5(5 Au-W'(u))*-¢ T|Vu| +neW(u) | dz, (3.1)

where Q c RY, d > 2 is a bounded domain, W (u) is a tilted double-well potential with two minima at b,, u :
Q) - R is the density of one of the amphiphilic species, € << 1 controls the width of the boundary layer and n;
and 7y are the functionalization constants.

The chemical potential, y, is defined as the first variation of F,
OF 2 " 2 ' ’
= E(u) = (e A-W"(u)+em)(e*Au-W'(u)) +engW'(u), (3.2)
where 74 := 71 — 72. In this chapter we present a formal reduction of the strong FCH equation,
up = A[(E2A-W"(u) +em)(e*Au- W (w)) + enaW'(u)], (3.3)
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for functions u that are close to a bilayer dressing of an admissible interface in 2, subject to periodic or
zero-flux boundary conditions. We may rewrite the strong FCH equation using the definition of the chemical
potential, given in (3.2),

up = Ap. (3.4)

3.1 Inner and Outer Expansions

Assuming an admissible initial co-dimension one interface I'y(¢o) € G ¢. We describe the geometric evolution

of the interface as a flow in time ¢, yielding the curve I'; (), see Figure 3.1, by performing a multi-scale analysis

Figure 3.1: The geometric evolution of a generic, admissible, co-dimension one interface, I'y(to) is the
initial interface and I'y(¢1) describes the interface at a later time 1 > to.

of the solution u and the chemical potential ;. Away from the interface I'y, in the far-field, f‘b,b the outer

solution u and the outer chemical potential ;1 have the expansions

u(x,t) = ug(x,t) + eur (x,t) + e2ug (x,t) + O(e?), (3.5)

ﬂ(%t) = :u’O(xat) + 6,LL1($,t) + €2N2(xat) + 0(53)' (36)
In the reach I'y ¢, at a time-scale 7, we have the inner spatial expansions

u(zx,t) =u(s,z,7) = to(s,2,7) + ety (s,2,7) + 52112(3, 2,7T)+ 0(83), (3.7)

:U’(xvt) = /7'(87 277-) = /10(8, 2 T) + 5[1’1(8’ Z, T) + 52/12(87 277-) + 0(53)' (38)

The normal velocity V;, of T'y at a point s(¢) is defined by

V‘r(s) = _@ =t 0z

ot =& a (39)
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where r is the signed distance away from I', and z = £

is the scaled distance. We develop an expression for
the time derivative of the outer density function @, defined in (3.7), using the whiskered coordinates. To this
end, we treat s and z as functions of ¢t and apply the chain rule to obtain

i 0s ' ouo. ouor

i Su+$a+aa7 (3.10)

where the first term on the right-hand side of (3.10) is zero since we may reparameterize the evolved curve
locally.
Plugging the normal velocity, (3.9), into (3.10) yields

il

%0 o1 0
ot

o
— - L
e Vi(s) . e (3.11)

3.2 Matching Conditions

We connect the inner and outer solutions via matching conditions across the inner-outer boundary. We
formally expand the outer solution u(z,t) given in (3.5) and the inner solution (s, z,7) given in (3.7). Fix
a whisker, w, and let x € I'y, be its base point, see Definition 2.4, such that x + hn € w. Then, the matching
condition can be written as

}liH(l) u(z + hn,t) ~ lim a(s, z,7), (3.12)
h— Z—>00

see Figure 2.1. An expansion of the left hand side of equation (3.12) around z, as h — 07, is given by
ug (z,t) + e(ui (z,t) + 20pud (2, 1)) + % (ug (x,t) + 20,ul (x,t) + 2202ug (x,1)) + O(?), (3.13)
where 0, is the derivative in the normal direction of T'y, and u] are defined as
ul = ’lli_% ui(z + hn,t), (3.14)

for all ¢ > 0. We can obtain similar expression as h - 07. Using (3.7) to expand the right hand side of

equation (3.12) and matching it to the left hand side, (3.13), yields the following matching conditions

ug = Zl_i)rinoo g, (3.15)
ul + 20qug = lirin Uy. (3.16)
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Similarly, we can obtain matching conditions for the chemical potential

po = lim fio, (3.17)

pi + 20npG = lim iy, (3.18)

1y + 20npii + 5225ﬁu3 = lim i, (3.19)

s + 20npts + %zgaﬁuf + ézséﬁué = lim fis. (3.20)

3.3 Expansion of the chemical potential

We will also have recourse to the inner and outer expansions of the chemical potential
pi= (-2 A+ W"(u) —em) (-e*Au+ W' (u)) + engW'(u). (3.21)

3.3.1 Outer Expansion of the Chemical Potential

At a given time scale 7, the outer expansion for the density function u(z,t) is given by equation (3.5).

Plugging (3.5) into (3.21) and rewriting the chemical potential p in orders of € yields

p(z,t) = po(x,7) +epr (z,7) + 2o (z, 7) + ..., (3.22)
where
Ho :W"(UO)W,(U()), (323)
p1 =W (uo)uy =))W (ug) + (W (uo))*uy + naW' (uo), (3.24)
pi2 = (‘A + W (uo)uz + %W(@(uo)ul) W (ug) + (W™ (uo)ur = )W" (uo)us (3.25)

1
+ W (ug) (—Auo + W (ug)us + §W"'(u0)u%) +ngW" (ug)uy.

See Appendix B.1 for further calculation details.
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3.3.2 Inner Expansion of the Chemical Potential

At a given time scale 7, the inner expansion for the density function u(x,t) is given by equation (3.7), and

in local coordinates, the Laplacian operator, see (2.9), takes the form

2N, = 63 +eHO, +e22H10, + 2 A + 0(53)7 (3.26)

where H; are defined in (2.10). Plugging (3.7) and (3.26) into (3.21), we can rewrite the chemical potential u

in orders of ¢

w(x,t) = fio(s,2,7) +enr(s,z,7) + 62[42(5, 2,7)+ 53/13(3, 2,7T)+ 0(54), (3.27)

where
fio =(=02 + W" (i1)) (=0210 + W' (i09)), (3.28)
fin =(=02 + W (110)) (~Hod-iio — 02y + W" (fig )i )+ (3.29)

(~Hod, + W (o) tty —m ) (0%t + W' (o)) + naW' (i),
1
fio =(=0% + W (110)) (=021ig — 2H, 0. 1ig — Hod., 1y — Agiig + W (o )lip + 5VV"’(aO)a%)+ (3.30)
(—Hoaz + W”’(ﬂo)fbl - 771)(—83’&1 - Hoaz’fbo + W”(ﬂo)’al)-i-

1
(—ZHlaz - AS + W”’(ﬂo)ﬁz + EW(ZL) (ao)ai)(—agﬂo + W,(ﬂo)) + ndW”(’ELQ)ﬂl,

fis (=07 + W (ii0)) (La3 — Hods ity — 2Hy 0.ty — Aty  Aviio + W (iig )ity iz + éw<4>(a0)ai’) (3.31)
+ (=Hod. + W" (iig )iin 1) (La2 — Hyduiiy - 2Hy Dl — Asiig + %W’"(ao)ai)
. (—zHl(f?Z C A+ W (iig)iia + %W<4>(a0)a§) (Lity - Hod- iio)
(<80 W ) + WO ()45 + W) (00)7 ) (<020 + W (7o)

1
e a (W G}z + W )i

See Appendix B.3 for further calculation details.
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3.4 Time scale 7=t : a Gradient Flow

We start by looking for approximations of the solutions of the strong FCH equation

m

up = Ay [(E2A =W (u) +em) (2 Au-W'(u)) +enaW'(v)] in Q, (3.32)

for the time scale 7 =¢.

3.4.1 Outer expansion

Away from the interface, plugging the outer expansion for the density function u(z) and the outer expansion
of the chemical potential p, given in (3.5) and (3.22), respectively, into the strong FCH equation, (3.32),

yields, at leading order, O(1),

% AW ()W (uo))  in Q_uUQ,. (3.33)
.

This second order problem has boundary conditions on €2 but to solve it we also need boundary conditions

on I'y. This leads us to the inner expansion.

3.4.2 Inner expansion

We express each of the terms in (3.32) using the whiskered coordinates. Plugging the inner expansion of w,
given in (3.7), into the left-hand side of equation (3.32) yields
dug 0ty Oug

5 VT(S)E +—+0(e), (3.34)

up =~V (s) 5
-

see Appendix B.2 for calculations details. An expand expression of the Laplacian operator in the whiskered
coordinates is given in (3.26) and an expression for the inner expansion of the chemical potential is given
in (3.27). Plugging (3.34), (3.26) and (3.27) back into the evolution equation (3.32) and comparing orders
of € yields, at leading order, O(¢72),

0=09%fip inTyy, (3.35)

and at the next order, O(e7!), we have

-V-(8)d 10 = 83;11 +Hp0.fip in I'yy. (3.36)
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Consider the leading order equation, (3.35), and recall that fiy is related to @y through (3.28). Then,
equation (3.35) has the solution iy = Up(z) where U, is the homoclinic profile defined in (2.37). For this

choice of g it follows that fip =0 and that {1, defined in (3.29), takes the form
fir = Li otix +ngW' (Us), (3.37)
where the linear operator L; o is defined in (2.39). Moreover, the next order equation, (3.36), reduces to
~Vo(s)Up =211 in Ty, . (3.38)

3.4.3 Jump Conditions on the Outer Solution : Gradient Flow

An outer approximation of (3.32) is given in (3.33) which is defined on each domain Q_ and Q.. We would
like to solve (3.33) and to connect the two outer solution to obtain a solution over the entire domain Q. To
this end, we use the inner approximation of (3.32) given in equation (3.38) and the matching conditions from
Section 3.2 to obtain suitable jump conditions over the interface I'y.

Motivated by Definition 2.3 of the interfacial jump, we integrate equation (3.38) with respect to z from —oo

to co obtaining

O Crestaes) RS o (3.39)
Since U, is a homoclinic orbit, equation (3.39) leads to the two key identities
lim o (z) = lim ag(2) = lim Up(2) - lim Up(2) =0, (3.40)
lim 9.is () - lim_ 0.7 (2) =0, (3.41)
Differentiating the matching condition (3.18) with respect to z yields
i 0.7 (2) = Ot (3.42)

and the combination of equation (3.41) and equation (3.42) implies that the normal derivative of the outer
chemical potential is continuous across the interface I'y,. Similarly, combining the matching condition (3.15)

and equation (3.40) we conclude that the outer density function, wg, is continuous over the interface. we
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summarize these results in the jump conditions on the outer solution

[uo] =0, (3.43)

[0np0] = 0. (3.44)

Combining the jump condition (3.43) with the outer equation (3.33) implies that ug is a solution of (3.33)
over the entire domain 2 and that ug can be solved independently of I'y at this order. The resulting equation
for ug is

8u0

= AV ()W () in €, (3.45)

subject to the boundary conditions. This evolution equation has is a mass preserving H~' gradient flow on

the reduced energy

Fo(uo) = fQ %(W’(Uo))Q dz. (3.46)

Consider initial data of the form ug = b-+vo where [[vo [[;2(q) < 1, and track the evolution of v(t) = u(t)-b-.

Plugging u = b_ + v into equation (3.45) yields the linear evolution equation for v

Ut=a2A(U+W'"(b-)
- o

v? +O(U3)), (3.47)

where a_ := W"(b-) is the well-coercivity constant. If [|vo [}z () is sufficiently small, then as long as || v || ;2 (g
remains small it is plausible that the dynamics of the nonlinear system (3.45) are primarily governed by those
of the linear system

vy = @ Aw, (3.48)

and it is reasonable to expect that for ug close to the equilibria.

For simplicity of presentation, we assume that at leading-order the initial value satisfies
up(t=0) =b_, (3.49)

where b_ is the spatial constant, which is an equilibria to equation (3.45).

Return to (3.38) and note that Uy = U{ where U, is given by
Uy = Uy —b_, (3.50)

and U enjoys the property U, — 0 as z — +oo. To obtain an expression for the normal velocity, we
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integrate (3.38) twice w.r.t z from 0 to z and solve for fi; to obtain

fin(2) = ~Vi(s) fo Uy (w) duw + 2

—

V()0 (0) |+ azgl(z)\zzo) + i1 (0). (3.51)

Furthermore, integrating from z = —co to z = 0 yields the expression

Vo(8)03(0) | = 0-fia(2)] _ = Jim 0-fin(2) = 0-fin (2)]_ = Do), (3.52)

for V;(s)U,(0), where the second equality follows from the matching condition (3.18). Since ug = b_ we have

fo == W"(b_)W'(b_) =0, (3.53)

and equation (3.52) further reduces to

Vi (s)0y(0) | = —8zﬂ1(z)L=0. (3.54)

Using (3.54) to replace V;(s)U,(0) in equation (3.51) yields an expression for the inner chemical potential
in(2) ==Ve(s) [ Ou(z)dz + u 0). (3.55)

Recall that equation (3.37) relates fi; to ;. Plugging (3.37) into (3.55) and solving for Lg)oﬂl yields
L giin = =Ve(s) [ Ou(w)dw + i (0) - na” (T, (3.56)

By the Fredholm Alternative, see [Grisvard, 1985], this equation has a solution @ € L?(R) if and only if the

right-hand side is perpendicular to ker Ly . The solvability condition expressed as

fR (—VT(S) fo Uy (w) dw + i1 (0) - ndW’(Ub)) Ul dz = 0. (3.57)

Since Uy is an odd function it is orthogonal to constants which implies that the integral involving fi; (0) is

zero. For the 1y term, we evaluate the integral to find

fR W (Uy)ULd> = /R(W(Ub))'dz - W(Ub)[; -0, (3.58)

where the last inequality follows from the fact that U, - b_ as z - +oo. Finally, Integrating the second
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integral in the V,.(s) term in (3.57) by parts to obtain the equality

z ~ A2
_VT(S)[Rfo Up(w) dw U}(2)dz = Ve (5) | 00 [} - (3.59)
These calculations, combined with the solvability condition (3.57), yield the result

Vo (s) || Uy 0, (3.60)

2
||L2(R) -

# 0, it follows that the normal velocity V. =0 at this time scale.

A2
and since || Uy ||L2(R)

3.5 Time scale 7 =<t : Mean Curvature Driven Flow

Using the inner equations we obtain jump conditions on the outer solution over the interface and an expression
for the normal velocity of the interface. We will see that the reduced system is a trivial Mullins-Sekerka
type system and the normal velocity is driven by a curvature-type flow. Finally, we use the mass preserving
property of the system to obtain the coupled system for the normal velocity, V;, and the external chemical

potential, ;.

3.5.1 Outer Expansion

Away from the interface, the outer expansion of the density function w is given in (3.5). At this time

scale, T = et, the time derivative 9, expands as
wg = eug , +2ug - + O(%). (3.61)

Plugging (3.61) and the outer expansion of the chemical potential, u, given in (3.22), into the strong FCH

equation, (3.32), and comparing orders of ¢ yields, at leading order, O(1),
0=AW"(up)W'(up)) inQ_uQ,, (3.62)
and at the next order, O(¢),

Up,r = A ((W’"(uo)ul — )W (ug) + (W (ug))?uy + ndW'(uo)) in Q_uQ,. (3.63)
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The first equation, (3.62), is consistent with our assumption that ug = b— and the second equation (3.63)
reduces to

0=0a?Au; inQ_ uUQ, (3.64)

and a_ > 0 is the well-coercivity defined in (1.34). This second order problem has boundary conditions on €2,
which we supplement with matching conditions on the inner boundary I', that are developed in the next

section.

3.5.2 Inner Expansion

We express each of the terms in (3.32) in inner coordinates. Plugging the inner expansion of u, given in (3.7),

into the left-hand side of equation (3.32) yields

Up = gﬁzﬂo +0(e), (3.65)
or

see Appendix B.2 for calculation details. An expand expression of the Laplacian in local coordinates is
given in (3.26) and an expression for the inner expansion of the chemical potential is given in (3.27). Plug-
ging (3.65), (3.26) and (3.27) back into the evolution equation (3.32) and comparing orders of € yields, at
leading order, O(e72),

0=09%fip inTyy, (3.66)
at the next order, O(e7'),
0=02/u, + HoO.fip in Ty, (3.67)
and at O(1) we have
—V-,—(S)azﬂo = 83;12 + Hoazﬂl + ZHlazﬂo + Agﬂo in Fb,(y (368)

where fig, fi1 and i are defined in (3.28), (3.29) and (3.30), respectively.
Equation (3.66) is consistent with our choice @y = U, where U, is the dressing of the interface with the
bilayer solution, defined in (2.37). This choice implies that fip = 0. Moreover, for this choice of @y the next

orders equations reduce to

0=0201 inTyy, (3.69)

—VT(S)aZfLO = 83/12 + H()azjll in Fbyg, (370)
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3.5.2.1 Solving Equation (3.69)

Equation (3.69) is a second order PDE which we want to solve for fi;. Integrating equation (3.69) twice,
w.r.t z, yields

[Ll = /112’ + Bl. (371)

The matching condition (3.18) implies that 0,fi1 = Onpo = 0 as z —> 0, which, together with (3.69) implies

that A; =0 and that [11 is independent of z, i.e.,
i1 = f11(s,t). (3.72)
Since 1 = U, we can simplify the inner expression for fi; in (3.29) and solve for Lioﬂl to obtain
Li oix = fir = naW'(Up). (3.73)

By the Fredholm Alternative, this equation has a solution @; € L?(R) if and only if the right-hand side is per-
pendicular to ker L;, o. Recall that ker Ly, o = Uy and it is odd about z=0, see the discussion regarding o (Ly o)
in Chapter 2.1. The fact that the right-hand side of equation (3.73) in perpendicular to Uj follows from the

facts that 17 is constant in z, and W’/ (U,) is even. Consequently, there exist a solution u; denoted
@iy = fir®p,2 = 1Ly oW (Uy), (3.74)

where @9 solves Liofbb,g = 1, defined in (2.40). Since W/(U,) = 02Uy, using identity (B.43), we can
rewrite Uy

~ ~ _ z
Uy = i1 Py — ndLb}o (iUé) , (3.75)

or, alternatively,

~ ~ z
Lyotin = 1Py — T}diUé- (3.76)

Note that since fi; is independent of z, the next order approximation of (3.32), equation (3.70), reduces to
~V,(8)0,ii0 = O2fiz  in Ty (3.77)

3.5.2.2 Jump Conditions

We are looking for a solution of (3.32) in €. An outer approximation of (3.32) is given in (3.64) which is

defined on each domain, 2_ and €2,. We would like to solve (3.64) and to connect the two outer solution
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to obtain a solution over the entire domain 2. We obtain the jump condition of the external chemical
potential pq over the interface from (3.100) and the matching condition (3.18): since fi; is independent of z

we have

zliglw ﬂl = /]1(83 t) = :uzlt7 (378)

and the jump condition takes the form

[11] = 0. (3.79)

To obtain a second jump condition on p;, we turn to the Definition 2.3 of the interfacial jump, we integrate

equation (3.77) with respect to z from —oo to co to obtain

=0
—_—

~Vi(8) | Un(00) = Up(=0) | = lim 0.z — lim 0. i (3.80)

Since U, is a homoclinic orbit, equation (3.80) leads to the key identity
lim 0.7ia(2) - lim_0.ia(2) = 0. (3.81)
Differentiating the matching condition (3.19) with respect to z yields
i 0:fa(2) = i (382)

and the combination of equation (3.81) and equation (3.82) implies that the normal derivative of the outer
chemical potential is continuous across the interface I'y,. we summarize these results in the jump conditions

on the outer solution

[] =0, (3.83)

[Oapa] = 0. (3.84)

3.5.2.3 The Normal Velocity at 7 =¢t

We would like to determine the evolution of the interface I',. To this end, recall equation (3.77), which
involves the normal velocity V;, and the inner chemical potential fio. The definition of fis is given in (3.30),

and since g = Uy, (3.30) reduces to

fiz = L gliz = Ly oR + (=Ho0. + W' (Uy )ity = 1) (~Lotis — HoUp) +naW" (U )i, (3.85)
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where

1
R = —2zH,U; - Hotl + §W’”(Ub)zﬁ. (3.86)

In order to get an expression for the normal velocity we solve (3.77) for fia, by integrating (3.77) twice w.r.t z

from 0 to z to obtain

fi2(2) = fiz(0) + 2(82/i2(0) +| V() Uy (0) ) = Vi (s) fOZUb(w)dw. (3.87)

Furthermore, integrating from z = —co to z = 0 and recalling that Uy — 0 as z - 00, yields the expression

Vi (5)U,(0) | = i 9.1z ~ 9. f12(0) = Bnpur ~ :fin(0). (3.88)

for V;(s)Uy(0), where the second equality follows from the matching condition (3.19). Using (3.88) to

replace V;(s)U,(0) in equation (3.87) yields

fi2(2) = fia(0) + 20t - Vi (s) [0 Uy (w) duw. (3.89)
Replacing fiz in (3.89) with its expression from (3.85) and solving for Lf,oﬂg yields

L3 iz = Ly oR—(=Ho0. + W' (Uy) i - 1) (~Lyotis — HoUp)-naW" (Uy )i +i2(0)+20n 11~V (5) [OZ Uy (w) dw
(3.90)
By the Fredholm Alternative, this equation has a solution iy € L?(R) if and only if the right-hand side is
perpendicular to ker Ly o. Recall that ker Ly, o = Uy and consider the inner product of U} with the right-hand
side of equation (3.90). Since @1, defined in (3.74), is even and the operator Ly o preserves symmetry, parity

considerations show that the Fredholm condition reduces to

(—Hoasz,oﬂl + HoW"' (Uy) a1 U] = n1 HoUj, + 20011 — Vi (8) fo Up(w) dw, Ué)m(R) =0. (3.91)

Simplifying the integrals in the inner product, and solving for the normal velocity V. yields the expression

 (Hop + 8npn)my + 5 Ho (1 +n2) 0y
= Bl )

Vz(s) (3.92)
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where my, is the mass amphiphilic material per unit length of bilayer, defined in (1.50), and we introduce

the constants

A 2
By =T, (3.93)

2
|2 (3.94)

1
b

ap =

Detailes of the calculations leading to equation (3.92) can be found in Appendix B.4.

3.5.3 Sharp interface limit : Trivial Mullins-Sekerka and Curvature Driven
Flow

The preceding calculation show that, in a neighborhood of the dressed solution, the 7 = £t time scale evolution

of (3.32) reduces to a Mullins-Sekerka system for the unknown external chemical potential, 1.

(3.64): Api=0 inQ_uQy, (3.95)
(3.83):  [m] =0, (3.96)
(3.84): [Onpa] =0, (3.97)

(HO/il + Bnm)m + %HO (7’]1 + 772) op
B

(3.92): Vi(s) = n . (3.98)

The Mullins-Sekerka system (3.95-3.97) is trivial because the jump in the normal derivative of p; balances
against the jump of the z derivative of the inner chemical potential fi; across the inner structure. This later

quantity is zero as the underlying profile is homoclinic. Equations (3.95-3.97) imply that

Ap; =0 in Q, (3.99)

and subject to the boundary conditions on 02 it follows from the maximum principle, [Evans, 2010], that p;

is spatially constant, i.e.,

pr(x,7)=p1(7) VaeQ. (3.100)

Moreover, from equation (3.100), which implies that u is spatially constant, and the jump condition (3.97),

we conclude that p; is continuous over the interface, and

fin (1) = pa (7)- (3.101)
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Combining (3.99) and (3.100), we conclude that dup; = 0 on T, and the expression for the normal veloc-

ity, (3.98), reduces to a curvature driven expression coupled to the spatially constant chemical potential pq

iy + 5 (1 +12) 0

V2 (s) B,

Hy onTy. (3.102)

3.5.4 Equilibria estimate for time scale 7 = ¢t

The far-field external chemical potential p; is characterized by the density function, u, whose value is
determined by conservation of total mass. For this time scale, we summarize our approximation for the
density function in each region. In the outer region f‘b,g = Q\I'p ¢, our assumption that ug = b— combined
with equation (3.24) yields

u(a,t) = b+ 5% +0(%) in Q/Tyy, (3.103)

where a_ := W (b_) > 0. In the reach, I'; ¢, our choice @y = U, combined with equation (3.74) yields
u(z,t) = Uy +e(u1®u2 —naly oW (Up)) + O(®)  in Ty (3.104)

We use mass balance to determine p; and to obtain the coupled g1,V system evolution. The total mass of
the system is given by
M := f u(z,t) —b_dx = f u(z,0) —b_dx, (3.105)
Q Q

which is fixed by the initial data. Inserting the expressions for the density function, given in (3.103)

and (3.104), into the total mass yields

M:5/f “—;dmfr O, + e(i1®p 2 - naLy W' (U)) da + O(2). (3.106)
bl

be O

We assume that |I'| ~ O(1), and change to the whiskered coordinates in the localized integral to obtain

K1 te - 2
M=¢ |Q|—2+/ / Uy dzds | + O(<2). (3.107)
aZ Ty J-Lfe

We expand M = M + O(¢?) and the surface area |[Ty| = v + ey1 + O(2), evaluate the integrals in equa-

tion (3.107) and comparing orders of ¢ yields, at leading order,

M = IQI% + YoM, (3.108)
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where my, is defined in (1.50). Moreover, solving for u yields

o?

= o] (M - Yom). (3.109)
On the other hand, equation (2.36) implies that, subject to the normal velocity at time scale 7 = &t, the

interfacial surface area growth is given by

Il _

5y = [FVT(S)Ho(S)d& (3.110)

so that, subject to (3.98) the interface has the leading order growth

d ulmb+§(m+nz)abf )

—Y0 = H d 3.111

d’l"yo Bl r O(S) S, ( )
where By and o, are defined in (3.93) and (3.94), respectively. Taking the time derivative, %, of equa-

tion (3.109), solving for %'yo and plugging the result expression into (3.111) yields

d M-|Q5 B ulmb+%(m +12) 0

/FHg(s)ds, (3.112)

E my Bl

and we arrive at the ODE for the chemical potential

2

d pimia? 5 (m +n2)oympa® / )
L= - H2(s) ds. 3.113
" ( QB B pHo(s)ds (3113

These results show that the evolution of the interface is governed by the coupled system

Himyp + % (m +m2) oy
By

(mmb-r n ;nQJb)/FHg(s) ds. (3.115)

(3.102) : Vi (s) =

Ho, (3.114)

d mba%
3.113) : —py = ————F
(3.113) = Zoim 0B

The H! gradient flow drives pure bilayer interfaces by a quenched mean-curvature flow. While the flow

drives the external chemical potential to its equilibria value

1 o
1 —> =5 (m +m2) =, (3.116)
2 my

the sign of the right-hand side of (3.114), determined by initial data, is influential. If the right-hand side is

positive, motion against mean curvature leads the interfacial area to grow uncontrollably, and the reduced
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geometric flow is ill-posed. However, the system is a locally well-posed motion by mean-curvature flow for
right-hand side is negative. While mean-curvature driven flows can exhibit finite-time singularities, in the
quenched flow the singularity can be arrested by the decay of p; to its equilibria value. Since p1 = ouy, the
density function decays to

1 op
> —— 2 3.117
U1 5 (m +m2) ma2’ ( )
and the far-field behaviour of the density, u, takes the form

g

1
w=b_—e= (m +12) — + O(e?). (3.118)
2 ma?

Assuming the system decay to an equilibria with an admissible interface I', then the analysis can be continued
to the next time-scale, however our goal is to investigate the coupled bilayer-pore evolution which occurs at

this time scale.
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Chapter 4

Geometric Evolution of Pores in R°

In this chapter we derive the geometric evolution of admissible co-dimension two interfaces in R® under
the H™! gradient flow of the strong FCH. Using multi-scale analysis we derive an expression for the
curvature-driven normal velocity at O(e7!) time scale. We describe the competitive evolution of disjoint
collections of bilayers and pores which couple through curvature-weighted surface area, and show that,
generically, the two morphologies seek different equilibria values, making coexistence of bilayers and pores
impossible under the strong functionalization, unless one of the structures is flat, since zero curvature
interfaces are at equilibrium independent of bulk value of amphiphile.

Recall the strong FCH free energy which corresponds to the choice p =1 in (1.14),

52 1
F(u) = fQ %(52Au -W'(u))*-¢ (2?7|Vu|2 + 172W(u)) dx, (4.1)

where 2 c R? is a bounded domain, W (u) is a tilted double-well potential with two minima at b,, u: Q - R
is the density of one of the amphiphilic species, € << 1 controls the width of the boundary layer and 7; and 75

are the functionalization constants.

Note 7. By abuse of notation we will drop the p subscript in the u, critical point when doing so creates no

confusion.

The chemical potential, u, is defined as the first variation of F,

= E(u) = (2A-W"(u) +em) (2 Au—~W'(u)) +engW’ (u), (4.2)
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where 74 := 71 — 12. In this chapter we present a formal reduction of the strong FCH equation,
up = A[(E2A-W"(u) +em)(e*Au- W (w)) + enaW'(u)], (4.3)

for functions u that are close to a bilayer dressing of an admissible interface in 2, subject to periodic or
zero-flux boundary conditions. We may rewrite the strong FCH equation using the definition of the chemical
potential, given in (4.2),

ug = Ap. (4.4)

4.1 The whiskered coordinate system and inner-expansions

Assuming an admissible initial co-dimension two interface I',(ty), we perform a multi-scale analysis of the

solution u. Away from the interface, in the far-field region f‘pvg, the outer solution u has the expansion
uw(z,t) = ug(x,t) + eur (x,t) + e2ug (x,t) + O(e%). (4.5)
On the reach, I', ¢, at a given time-scale 7, the outer solution’s inner expansion takes the form
u(x,t) = (s, z,7) = to(s, 2,7) +etir (s, 2,7) + €20a(s, z,7) + O(3). (4.6)

4.2 Matching Conditions

Fix a whisker, w, and let x € I';, be its base point. We take two vectors n,m ¢ span{N* N2} in the normal
plane of I', at x, and specify that
n = cos(A)N' + sin(§)N2, (4.7)

The usual directional derivative along n is denoted
On=n-Vy = cos(A)N' - v, +sin(0)N?- v, (4.8)
and for f e C*=(Q/T),) we introduce the n, m limit

™ () = hli_)r&(n- V) f(xz+hm,t) forall j>0, (4.9)
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and the limit of the gradient
Vo f™(2) = hlirgl+ Vo f(x+hm,t), (4.10)

where the limit exists. If f € C1(2) then the normal derivative of f will satisfy

O f ™ = O f™. (4.11)

This motivates the following definition of the jump condition

Definition 4.1. Given a radial function f := f(R) localized on Ty, we define the jump of f across a given

whisker by
[0nf™]r, (%) = 0n f™(2) = O f ™ (@) (4.12)

which is zero when f has a smooth extension through I'y.

With this notation we examine the matching condition
u(z +hn,t) ~u(s,R,0,7). (4.13)
An expansion of the left-hand side of equation (4.13) around x, as h — 0%, is given by
u(x,t) + e(u(x,t) + 20quf (z,t)) + 2 (ub (z,t) + 20qul () + %ZQ(?iug(x, t)) + O(e?), (4.14)

and equating orders of € the matching condition (4.13) yields

ug = 1%13}0 to(s,R,0,7), (4.15)
ul' + ROnug = I%im w1(s, R,0,7). (4.16)

Similarly, we can obtain matching conditions for the chemical potential

W = lim o, (4.17)
R+ Rowp = Jim i, (4.18)

8+ ROW + S RP0248 = lim i, (4.19)

4 ROwpl + S RO + S F028 = lim s (4.20)
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4.3 Expansion of the Chemical Potential

We will have recourse to the inner and outer expansions of the chemical potential
pi= (-2 A+ W (u) —em) (-2 Au+ W' (u)) +engW'(u), (4.21)

4.3.1 Outer Expansion of the Chemical Potential

At a given time scale 7, the outer expansion for the density function u(z,t) is given by equation (4.5).

Plugging (4.5) into (4.21) and rewriting the chemical potential u in orders of € yields

pw(x,t) = po(x,7) +epr (2, 7) + 2oz, 7) + ..., (4.22)
where
Mo IW”(U())W,(U()), (423)
py =(W" (uo)ur =)W' (ug) + (W (o)) *ur +naW’ (uo), (4.24)
Lo = (—A + W (ug)ug + %W(‘l)(uo)ul) W' (ug) + (W (wo)uy — 01 )W (ug)us (4.25)

1
+ W (ug) (—Auo + W (ug)ug + §W"'(u0)u%) +ngW" (ug)uy.

Note that the outer expansion of the chemical potential is identical for both co-dimension one and co-

dimension two.

4.3.2 Inner Expansion of the Chemical Potential

At a given time scale 7, the inner expansion for the density function u(z,t) is given by equation (4.6), and
in local coordinates, the Laplacian is given in equation (2.70). Plugging (4.6) and (2.70) into (4.21), we can

rewrite the chemical potential p in orders of €

/J/(Z‘,t) = /3’0(8) 2, T) + <C'\/3’1(85 Z, 7-) + 52[)/2(8’ 277—) + 0(53)7 (426)

where
fio =(=A + W (110) ) (=A. o + W' (1)), (4.27)
[Jq :(—AZ + W”(ﬂo))(—Azﬂl +K- vzﬂo + W”(ﬂo)ﬁl)-F (428)
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(R -V, + W”l(ao)ﬂl - m)(—Azao + W,(ao)) + ndW,(ao)
1
fiz =(=A. + W (i) (DL tig + F - Vi + 8%0ig — (2-R)R - Vig + W (iig)iig + §W”’(ao)ﬂ?)+ (4.29)
(/% -V, + W”,(’ao)’ﬁl - nl)(—Azal + K-Vl + W"(ﬂo)ﬂ1)+

1
(0% = (z-R)R -V, + W" ()i + §W(4)(ﬁo)ﬂf)(—Azﬂ0 + W' (ti0)) +naW" (i )iig

4.4 Time scale 7=¢c7%
On the fast time scale, the initial data is expected to relax into an equilibria solution. We start by looking
for approximations of the solutions of the strong FCH equation

m

up = Ay [(E2A =W (u) +emp) (2 Au - W' (w)) +enaW'(u)]  in Q, (4.30)

for the time scale 7 = £72¢.

4.4.1 Outer expansion

Away from the pore I'y, plugging the outer expansion for the density function u(x) and the outer expansion
of the chemical potential p, given in (4.5) and (4.22), respectively, into the strong FCH equation, (4.30), and

equating orders of ¢ yields

O(e™?) 1w, =0, (4.31)
O(e™) 1w, =0, (4.32)
O(1) :ugr =AW (ug)W'(up))  in Tpy. (4.33)

On the 7 = ¢ 2¢ time scale, the solution u is stationary to first and second order. Equation (4.33) has
boundary conditions on 2 but to solve it we also need boundary conditions on I'). This leads us to the inner

expansion.

4.4.2 Inner expansion

We express each of the terms in (4.30) in whiskered coordinates. Plugging the inner expansion of u, given

in (4.6), into the left-hand side of equation (4.30), the time derivative of u takes the form

up = 72 (vza% + asa% + aT) : (4.34)
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In light of the normal velocity relations given in equations (2.68) and (2.69), equation (4.34) reduces to

ug =2V -V, dig + 72 ((z2N2 . %, 2 N*'. %) Vo0 + aga@ + ﬂ,) +0(e7) (4.35)
or or or

An expression of the Laplacian in local coordinates is given in (2.70) and an expression for the inner expansion
of the chemical potential is given in (4.26). Plugging (4.35), (2.70) and (4.26) back into the evolution

equation (4.30) and comparing orders of € yields,

O(?): V-V.ig =0, (4.36)
ONy 0y 1 0N Ditg

Jds
O(e™®): V.V, iy +Oglig— + 1o + 22N? - —— — + 22
() U sU0 U, Z2 ar 92, Z1 a7 9

NS n
or Ho (4.37)

where fig is given in (4.27). We are interested in non-trivial solutions based upon a quasi-stationary radial
profile, consequently we assume that the transient dynamics on the 7 time scale have equilibrated, that

is V =0 and all 7 partial are zero, so that the system of equations reduces to
0=A,%p. (4.38)

These assumptions are consistent with equilibria which at leading order have radially symmetric profiles that
render fip = 0.

The next time scale 7 = et yields the same results and we skip the calculations.

4.5 Time Scale 7 =t : Sharp Interface Limit

Recall that we are looking for approximations for solutions of the strong FCH equation

14

up =Dy [(E2A =W (u) +em)(?Au- W' (w)) +enaW'(u)] in Q. (4.39)

For the time scale 7 =t. We will obtain an evolution equations for the outer and inner regions.

4.5.1 Outer Expansion

Away from the interface, the outer expansion of the density function w is given in (4.5), and the outer

expansion of the chemical potential, u, given in (4.22). Plugging (4.5) and (4.22) into (4.39) yields at leading
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order, O(1),
up» = Apg in Ty, (4.40)
where i is given in (4.23).

4.5.2 Inner Expansion

We express each of the terms in (4.39) in inner coordinates. Plugging the inner expansion of u, given in (4.6),

into the left-hand side of equation (4.39) yields

ut:’I]T+ﬂs%+%'vz’a:—5_1V'VZ’L~I,0+O(1). (441)
or Ot

An expand expression of the Laplacian in local coordinates is given in (2.70) and an expression for the
inner expansion of the chemical potential is given in (4.26). Plugging (4.41), (2.70) and (4.26) back into the

evolution equation (4.39) and comparing orders of ¢ yields,

O(e™®) :0=A.fip inT,y, (4.42)

O(e™Y) + =V -V.iig = Asjin — - Vajig, inTpy. (4.43)

Equation (4.43) has the solution @y = U, where U, is the pore profile defined in (2.75). For this choice of

it follows that fig = 0 and that fi;, defined in (4.28), takes the form
fir = L2 gty +naW' (Uy), (4.44)
where L, ¢ is defined in (2.81). Moreover, the next order equation, (4.43), reduces to
~V - V.ig= ALy, inT,y. (4.45)

4.5.3 Jump Conditions

We would like to determine the normal velocity of the interface I', for the time scale 7 =¢. To this end, we
need to determine an explicit solution for fi1, in equation (4.45), subject to the matching conditions with

the outer solution, given in Section 4.2.
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Turning to polar coordinates, we use the Fourier mode expansion, (2.88), to obtain an express for fij,

f1 = Ai(s,R)cosf + By(s,R)sinf + C(s,R) +&(s, R, 0), (4.46)
where
&(s,R,0) = i (A (s, R) cos(mB) + By (s, R) sin(mf)). (4.47)
m=2

From the matching condition (4.18) we see that fi; grows at most linearly as R — oo and

. 8#'1 _ n

Using the definition of the directional derivative along n, given in (4.8), we rewrite equation (4.48) in terms

of the sine and cosine functions

0
lim % = cosON' - v, +sinON? - v_uf. (4.49)

R—o0
Taking the R derivative of (4.46) yields

o , , , 0
% =(C1-a'(R)V1)cosf + (Cy—a'(R)V3)sinf + % (4.50)

Comparing (4.50) with (4.49) we conclude that & = £(s,0). Using basic trigonometric identities, (C.35), we

note that % also satisfies

(s,R,0,7) = —%(8,R,9+7r,7’). (4.51)

Ojn
OR

Combining (4.51) and (4.48) we obtain the jump condition over the interface I',

[0np5] = O, (4.52)

for any choice of normal vector n.

4.5.4 The Normal Velocity

We would like to determine the evolution of the interface I',. To this end, recall equation (4.45), which
involve the normal velocity V, and the inner chemical potential ji;. Using the polar coordinates extension of

the Laplacian, given in (A.3), and the expression for fi; given in (4.46), the right-hand side of equation (4.45)

71



takes the form

1 1 1 1 1
ALy =(C" + EC,) + (A] + EAII + ﬁAl) cosf + (BY + EB{ + ﬁBl) sin 6 (4.53)

[

mn Ay (8) cos(mb) + ﬂBm(s) sin(m#).

" m=2 ﬁ R2

Using the polar gradient, (A.4), the left-hand side of equation (4.45) becomes
V-v.U, = (ViUjcos , VaU, sinf) (4.54)

Plugging (4.53) and (4.54) into (4.45) and matching coefficients of corresponding trigonometric terms yields

the system

"+ %C’ =0, (4.55)

Ay tae L v (4.56)

1 R 1 R2 1= 1 P .
1 1

B + 2 Bi + 73 B1 = VU, (4.57)

%Am =0, (4.58)

%Bm = 0. (4.59)

From equations (4.58) and (4.59) we deduce that A,, = By, =0, for m > 2. Equation (4.55) has the solution

C = Cy(s), (4.60)

and the non-homogeneous equations, (4.56) and (4.57), have the solutions

A(s,R) = C1(s)R - a(R)V1(s), (4.61)

B(s, R) = Ca(s) R - a(R)Va(s), (4.62)

where a(R) is the solution of the non-homogeneous ODE

1 1
CL” + Ea’ - ﬁa = U,(R), (463)
and is given by the explicit formula
1 r& .
a(R) = & [0 rUpdr, (4.64)
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where we introduce

U,=U,—b_. (4.65)

Note that U, is positive and U, - 0 as R - co. Plugging (4.60), (4.61) and (4.62) into (4.46) and taking A,, =

B, =0 we see that fi; takes the form
i1 =Co(s) + (C1(s)R-a(R)Vi(s))cosO + (Co(s)R - a(R)Va(s))siné. (4.66)

Recall that fi; relates to the density function @ through equation (4.28), which for the choice 4y = U, takes
the form

Liiy = fiy = naW'(Up), (4.67)

where the linear operator L, was introduced in (2.78). By the Fredholm Alternative, this equation has
a solution i; € L*(R) if and only if the right-hand side is perpendicular to ker L,. Recall that ker L, =
(U, cos0,U,sinf) and consider the inner product of (U, cos®,U,sinf) with the right-hand side of equa-
tion (4.67). We know that ngW'(U,) belong to the space Zy, defined in (2.79), and hence is perpendicular
to ker L,,. From orthogonality in 6, the only non-trivial condition is imposed on the sinf and cos terms

of fi1, in equation (4.66), and the Fredholm condition (4.67) reduces to
f (Ci(s)R - a(R)Vi())U, RAR =0, fori=1,2. (4.68)
0

Plugging the definition of a(R), given in (4.64) into (4.68) and integrating by parts yields the relation

Ci=V,— 4.69
25, (4.69)
where we introduce the constants
Sy = U, RAR (4.70)
0
Sy = fo 02 RdR. (4.71)

Plugging (4.69) into (4.66) and taking the R derivative of (4.66) yields

O

S , S , ,
ﬁ:V1(2—;1—a(R))cos0+V2(2—SQI—a(R))sm9. (4.72)
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Equating coefficients of siné and cosf in equations (4.72) and (4.49) yields
N vl = V-(& - lim d’(R)) (4.73)
T M0 K] 251 R-o0 9
and since
. / _ . ]- R Sy 2 _
1%1_{20(1 (R) = ]%1_{20(? /0 rU,dr +Up) =0, (4.74)
we find that the normal velocity satisfies

25 . i
V= S—lNl Ve, fori=1,2. (4.75)
2

4.5.5 Sharp Interface Limit

The preceding calculation shows that, in a neighborhood of the dressed solution, the 7 = ¢ time scale evolution

of (4.39) reduces to a sharp interface limit problem for the evolution of T,

(4.40) : ug, = Apg inTpy, (4.76)
n-Vyuo =0 on 08, (4.77)
po=0 onT,, (4.78)
(4.52) ¢ [Onpg] =0 on T, for all normal vectors n of T'p, (4.79)
(4.75): V; = QS—?NZ' Vo', forall zeT,(t), i=1,2. (4.80)

We are following the argument of [Dai and Promislow, 2015] and prove the following Lemma -

Lemma 4.1. Assume that the co-dimension two interface I', ¢ Q has finite one dimensional Hausdorff
measure. Then the only equilibrium solution of (4.76)-(4.80) is the trivial solution pg = 0, however the

curve I'y, can have arbitrary shape.

Proof. At equilibium we have

Apo=0, inT,y, (4.81)
n-Vipuo=0 on 0Q, (4.82)
to=0 onT,. (4.83)

Since g is analytic off of a set of finite hausdorff measure, then p has an analytic extension to €, fig, see [?]
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and [Polking, 1984], and we drop the bar notation. The extended function satisfies

App=0, in Q, (4.84)

n-Vyio =0 on 08, (4.85)

then, by the Strong Mazimum principle implies that p is spatially constant. Finally, since y19 = 0 on I'y,, we

conclude that pgo = 0. ™

We subsequently assume the system has achieved equilibrium on the 7 =t time-scale.

4.6 Time scale 7 =<t : Curvature Driven Flow

We obtain evolution equations for the outer and inner regions. Using the inner equations we obtain a jump
conditions of the outer solution over the interface and an expression for the normal velocity of the interface.
we will see that the normal velocity is driven by the curvature flow. Finally, we use the mass preserving
property of the system to obtain the coupled system for the normal velocity, V', and the external chemical

potential, p1.

4.6.1 Outer expansion

Away from the interface, the outer expansion of the density function u is given in (4.5), and the outer
expansion of the chemical potential, u, given in (4.22). Plugging (4.5) and (4.22) into (4.39) and equating

orders of ¢ yields

O(1) : 0=A,up, inTyy (4.86)

O(E) : uo,r = Arﬂla in fp,[a (487)

where pg and pq are given in (4.23) and (4.24), respectively. From equations (4.76)-(4.80) we assume that
the system has equilibrated to ug = b_ in f‘p}[. Under this assumption ug = 0, which satisfies equation (4.86)
and equation (4.87) reduces to

Agpy =0 in Ty (4.88)
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4.6.2 Inner Expansion

We express each of the terms in (4.39) in inner coordinates. Plugging the inner expansion of u, given in (4.6),

into the left-hand side of equation (4.39) yields

ur ==V -V, u+0(¢e). (4.89)

An expand expression of the Laplacian in local coordinates is given in (2.70) and an expression for the
inner expansion of the chemical potential is given in (4.26). Plugging (4.89), (2.70) and (4.26) back into the

evolution equation (4.39) and comparing orders of € yields,

O(e™?) :0= A, (4.90)
O(e™) :0=Afi1 + K- V.fio (4.91)
O(1) ==V, - Voo = Asfio = - Vafin + (97 = (2 R)R - V) fio, (4.92)

where fig, fi1 and fio are defined in equations (4.27), (4.28) and (4.29), respectively. Equation (4.90) is
consistent with the assumption that @y = U, which implies that fioc = 0. Since fip = 0 equations (4.91)

and (4.92) reduces to

O(e™) :0=A /1, (4.93)

O(1) + =V, »Vaiig = Afia = K- V. (4.94)

4.6.2.1 Solving equation (4.93) for

To solve (4.93) we use the explicit expression for A,ji;, given in (4.53). Plugging (4.53) into (4.93) and

matching cos, sin terms yields

1
"+ 0" =0, (4.95)
" ]‘ A 1
A1 + EAl + ﬁAl =0 (496)
1 1
Bi’ + EBi + ﬁBl =0 (497)
%Am -0, (4.98)
%Bm = 0. (4.99)
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From equations (4.56)-(4.59) we deduce that A; = B; =0, for ¢ > 1. Equation (4.55) has the solution
C = Co(s), (4.100)
and we deduce that fi; is spatially constant, i.e.,

fu = fa(s,t) = p. (4.101)
Recall that fi; is given in (4.28) and since g = U, it reduces to
L2y = fiy = ngW'(Uy). (4.102)

By the Fredholm Alternative, this equation has a solution % if and only if the right-hand side is perpendicular
to ker L,,. Recall that ker L,, c ker L, ;1 and note that fi,,74W’(U,) € Zy. Since the spaces Z,, are mutually

orthogonal, there exists a solution @, denoted
iy = p®p2 = nal,* W' (U,) (4.103)

where 11 is a spacial constant and @, o satisfied Li‘bp,g =1, defined in (2.86).
To determine the interface normal velocity we continue to the equation (4.94). Since equation (4.101) implies

that fi; is spatially constant and equation (4.94) reduces to
O(1) : -V -V, =ALfie. (4.104)

4.6.2.2 Jump Conditions

We would like to determine the normal velocity of the interface I'j, for the time scale 7 = et. To this end, we
need to determine an explicit solution for fis, in equation (4.104), subject to the matching conditions with
the outer solution, given in Section 4.2.

Turning to polar coordinates, we use the Fourier expansion, (2.88), to obtain an express for [,

fio = A1 (s, R)cosf + B (s,R)sinf + C(s,R) +£(s, R, 0), (4.105)
where
E(s R0 = 3 (A (s, R) cos(mb) + Byu(s, R) sin(m)). (4.106)
m=2

7



From the matching condition (4.19) we see that fio grows at most linearly as R — oo and

. 3#2 _ n

Using the definition of the directional derivative along n, given in (4.8), we rewrite equation (4.107) in terms

of sin and cos

lim % = cosONT - V™ + sin ON2 - v 2. (4.108)

Taking the R derivative of (4.105) yields

o - , - , , 0
% =(C1-a'(R)V1)cosf + (Cy—a'(R)V3)sinf + % (4.109)

Comparing (4.109) with (4.108) we conclude that & = £(s,0). Using basic trigonometric identities, (C.35),

Ojiz

Y also satisfies

we note that

%(S,R,G,T} 2—%(8,R79+ﬂ',7’). (4.110)

Combining (4.110) and (4.107) we obtain the jump condition over the interface I',,
[[anullaﬂ =0, (4'111)

for any choice of normal vector n. Moreover, plugging (4.109) into (4.108), recalling that o’(R) — 0 as R — oo,

and comparing coefficients of sin and cos yields the relation
C;=N"-v_u} (4.112)

4.6.2.3 The normal velocity

We would like to determine the evolution of the interface I'y. To this end, recall equation (4.104), which
involves the normal velocity, V, and the inner chemical potential fio. The definition of fis is given in (4.29),

and since @g = U, (4.29) reduces to
fiz = L2Gs = Ly(R) + (k- Vo + W(Up)iia = m) (= Lyiiy + & - V.Up) + naW" (Ui (4.113)

where

1 -
R = - Vit = (- R)R- V.U + 5 W"(T, ). (4.114)
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In order to get an expression for the normal velocity we want to solve (4.104) for fi. Following the same pro-
cedure as in Section 4.5.4, specifically equations (4.45)-(4.66), and considering the matching condition (4.19)

we deduce that fio takes the form
fio = Co(s) + (C1(s)R—a(R)Vi(s)) cosd + (Co(s)R - a(R)Va(s))sind, (4.115)

where a(R), Cy and Cy,C5 are given in (4.64), (4.60), (4.61), and (4.62), respectively.

To solve equation (4.113) for @y we rewrite it in the following form
Liiy = iz — Q- Lp(R), (4.116)

where

Q:= (k- -V, +W"(Up)us —m)(~Lpty + &-V.Up) + naW"(Up)ty. (4.117)

By the Fredholm Alternative, we can solve equation (4.116) for @y if and only if the right-hand side is
perpendicular to ker L,. Recall that ker L,, = span{U, cos,U, sin0} c ker L,, 1, and that the Z,, spaces are

mutually orthogonal. Expanding Q, given in (4.117), and decomposing it to its Z,, components yields
Q=0p+ 91+ 92, (4.118)

where Qg € 2y, Q1 € Z1, Qo2 € Zp + Z2, and are given by

Qo := -W"(Up)t1 Lytiy + ny Lyty +naW" (Up )t (4.119)
Q1 :=-k -V, Lyuy + W"(Up)tnF- V.U, - mE -V, Up, (4.120)
Qo2 = (- V2)?U,. (4.121)

By the orthogonality of the Z,, spaces and since L,(R)Lker L, the Fredholm solvability condition of equa-
tion (4.116) reduces to

(/12 - Ql,ainp)LR([07oo)) = 0, for i = 1,2. (4122)

In order to calculate the solvability condition, given in (4.122), we first expand Q; using the explicit expression

of @1 given in (4.103), such that

Q1 == k- V:Pp1 + 14k VZL;I(W/(UP)) + W (Up) ®p 2k - V.U, (4.123)
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- ndW,,,(Up)L;Z(W,(Up))’% ’ szp -k VzUpv
and calculating the inner product (see Appendix C.2 for details) yields
(Ql,ain)LR = —277/11,‘{1'51 —7717'1'/%1'547 (4.124)

where S is defined in (4.70) and
Sy = fo (U})’RdR, (4.125)

The inner product of 0.,U, with fis, where fip is given in equation (4.115), yields
(ﬂg, 821U) = —27rC_’iSl + W‘/iSQ = —27TNi . Vzull\risl + W‘/iSQ, s (4.126)

where Sy is defined in (4.71), and the second equality follows form the matching conditions, see equa-
tion (4.112). Returning to (4.122) and using (4.124) and (4.126), we conclude that the normal velocity is

given by
2/115’1 - ’17154 251
—_— K +

V‘i = -
Sa Sa

N-vul i=1,2. (4.127)

4.6.3 Sharp interface limit

On the time scale 7 = et, the evolution of the interface, I', is given by the normal velocity

2 2 ;
(4127) : V; = 2L EmSy o 251G Vol i=1,2. (4.128)
So So
where p is the solution of the system
(4.88) + Ay =0 inT,y, (4.129)
n-Vyu =0 on 09, (4.130)
(4.111) : [Oapi] =0, onT,, for all normal vectors n of T, (4.131)

The inner chemical potential satisfies y; = p1(s,7) on I',. Since we assumed that py € C%(Q/T,) n C(Q)
we may use Lemma 4.1 to conclude that Ap; = 0 on the entire domain . Applying the Strong Maximum

Principle (see [Evans, 2010]) we deduce that p is spatially constant.
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Since 7 is spatially constant we have Vi1 = 0 and the normal velocity reduces to

20181 =Sy
Sttt S At

V =
Sa '

(4.132)
where S7 and Sy are defined in (4.70), (4.125), respectively.

4.6.4 Equilibria estimate for time scale 7 = ¢t

The far-field external chemical potential p; is characterized by the density function, w, whose value is
determined by conservation of total mass. For this time scale, we summarize our approximation for the
density function in each region. In the outer region I:pvg, our assumption that uwy = b_ combined with
equation (4.24) yields

u(x,t) =b_+ 5% +0(e?) in Ty, (4.133)

where a_ is defined in (1.34). In the inner region, I'y ¢, our choice %y = U, combined with equation (4.103)
yields
u(x,t) =Up +e(p1Ppa - ndeW'(Up)) +0(e?) inTpy. (4.134)

We use mass balance to determine p; and to obtain the coupled 1,V system evolution. The total mass of

the system is given by
M= [u@)-bde= [u@0)-bde= [ (u-b)de+ [ (u-b)d i
CA) z= | u(z,0) x Q\rpyl(u )dz + rp,,,(u )da ( )
Using (4.133), the outer integral becomes
M1 )
T dr=e g (B 41
fﬂ\rpyz(u b_)dx aa%(| | =[ITpe] ) + O(£2) (4.136)

Using (4.134) and the Jacobian, defined in (2.63), the inner integral takes the form

)

e(“ -b.)dx=¢? fF fR ((Up = b2) + (1 ®po = 1aL, 2 W' (Uy)) + O(e?)) (1 - €2 &) dz ds (4.137)

P

= £227|,|S1 + €327 |Tp jun f ®,.5 RAR + 27|04 f W'(U,) RdR + O(1[T,|) (4.138)
0 0
Adding and subtracting the term e*2mw 23 |T")| = e £4[T, | to (4.137), the inner integral becomes

fr (w=b-) do = <22m|0 Sy + 2500l + %20, 11 S + O ) (4.139)
p,L —
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where we introduce the constant Ss
Sy = fo ®,5 - a 2 RdR. (4.140)

Combining (4.139) and (4.136) into (4.135) and assuming that || ~ O(e7!), which implies that

Tyl =770+ O(1), (4.141)
we rewrite the total mass in orders of €
M:6($|Q|+27TSW_1) +O(e2). (4.142)
Taking the 7 = €t time derivative of the total mass, (4.142), and solving for ©=1 —+ yields
dya 10 dm (4.143)

dr 2ra2S; dr
On the other hand, taking the time derivative of (4.141) yields

d|Fp| RS dy-1

i 5 HoQ). (4.144)

Combining equation (2.62), which relates the interfacial surface area growth with the normal velocity, with

equation (4.144) yields

_ 2
19 :—f R~Vds:mf|/%|2ds, (4.145)
dr r, Sa

where for the second equality we used the expression of V obtained in equation (4.132). Plugging (4.143)

1

into equation (4.145) and solving for ddLT we obtain the leading order evolution equation

dpy 4ra? S? [ L2 27ra 2raZSySim 2
dHr _ d f d 4.146
dr 8( |Q|Sy  Jr, IR ds | o + 2] S5 A" ds ( )

These results show that the evolution of the interface is governed by the coupled system

) _
_ M151 77154,%

(4.132) : V , (4.147)
S
d 2ma’ S .
(4.146) ’f - ¢ IQISQI (25,101 — Sa1) fr IR[2 ds (4.148)

The H™! gradient flow drives pure pore interfaces by a mean-curvature flow and the external chemical
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potential decays exponentially to its equilibria value

54771

— 4.149
M1 251 ) ( )
Since p1 = a?uy, the density function decays to
Sam
— 4.150
“ 251&% ( )
and the far-field behaviour of the density, u, takes the form
Sam 2
u:b_+5251a2 +0(g%). (4.151)

4.7 Competitive Geometric Evolution of Bilayers and Pores

After obtaining a leading order expression for the evolution equation of the bilayer morphology and the
pore morphology, we would like to consider a combined system in which the two morphologies co-exists.
Let 2 c R3 be a given domain with two admissible manifolds I', and I'y, for the co-dimension one and the
co-dimension two morphology, respectively, which satisfy |Tp| ~ O(1) and |T'| ~ O(e7!). Let I'y; and T,
be the reaches of I', and I'y, respectively, on which the change of coordinates to the whiskered coordinates
is unique.

Away from the interface, at time scale 7 = €t, the leading order expression for the morphologies solutions
takes the form

up =up = b — e+ O(?). (4.152)
o
and the composite solution takes the form

Upp =Up +Up +b_ —e% +0(e?), (4.153)

and we already see that the two structures will compete each other for surfactant phase through the common,
slowly varying, chemical potential p.
For u, a combined bilayer-pore solution of the form (4.153), the total mass constraint of the combined system

is given by

M=fQ(u—b_)d:c=fQ\Fb‘NFN(u—b_)d:r+/;b)l(u—b_)der/lzp‘l(u—b_)d:c. (4.154)
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Calculating the outer integral yields

b_)d Q- Ty, ul O(&? 4.155
Jones e, (=) dz = B (2= D 0T + O(E2), (4.155)

and plugging (4.155) back into (4.154) yields

- s—|Q| —5—(|Fbl| ST, + f (u—b_)dz+ f (u-b_)da. (4.156)
Using (4.139) and equation (1.49), we obtain an expression for the inner integrals

fF (u-b_)dx:smb|rb|+s%|rb,l|+0(52), (4.157)
b,l —

fF (u—b_)dz = my|Tp| + g%mﬂ L0, (4.158)
p,l Z

where my, = [ Uydz and m, = 21S; and S; defined in (4.70). Plugging equations (4.157) and (4.158)

n (4.156) the total mass takes the form

M = 5—|Q| +emp|Ty| + €2my,|Ty). (4.159)
a?

Expanding M = eM + O(e?) and using our assumption that [Ty ~ O(1) and [T',)| ~ O(¢7!) yields
M = EL10) + my [Ty + em, T, (4.160)
a?

Which, yields the constraint on the chemical potential pq,

2

ot N
Hy = o] (M = my|Ty| = emy|Ty)) . (4.161)

Recall that the interfacial surface area growth of the pore is given in equation (2.62) and the equivalent
interfacial surface area growth of the bilayer is given in equation (3.110). Plugging into (2.62) the normal
velocity of the pore, V,, given in (4.132), and plugging into (3.110) the normal velocity for the bilayer, V,

given in (3.102), yields leading order expressions for change in bilayer surface area and pore length

d|Il"

% ’;”’ (uﬁ(mﬂh)—)f H? ds, (4.162)
dir 2S5

|dtp| Sl (u 771)_[ |I€| ds, (4.163)
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where Bj is defined in (3.93). Taking the time derivative of (4.161) yields

dn o2 drny_dr,
—_— = —_— 4.164
dr || (mb dr M ) ( )
and plugging (4.162) and (4.163) into (4.164) yields
dpy a? my ( By ) 2 25, ( Sy ) 12
oy, H2d - am) [ lPds|. 4165
b et (e o) ) [ s, 2 (- Sa) [ REas] e

These results show that for initial data corresponding to spatially separated pore and bilayer structures yields
a competitive evolution that can be understood as a fight for surfactant, mediated through the common value

of the chemical potential p;, whose evolution is determined to by the conservation of total mass,

(4.132) : V= vp(p1 + )R, (4.166)

(8.102) : Vo= 1y(pr + 1) Ho, (4.167)

@165y : M ] s *)f HZ ds + empwy (11 + *)f IR[? ds (4.168)
. e |Q| Vo (1 + My T, 0 pVp \H1 + Ky r, s .

where we introduce the constants

_m _ 25
Y= By Vo=
(4.169)
1 a . _mS
=5 (m+n2) 2k, pp = —hEt

The competitive evolution of the bilayers and pores couples through curvature weighted surface area. How-
ever, the two morphologies seek differing equilibria values, which typically satisfy v > v, making coexistence
of bilayers and pores impossible under the strong functionalization, unless one of the structures is flat, since
zero curvature interfaces are at equilibrium independent of chemical potential. For curved interfaces, the
range fi1 € [u;, ;] is invariant under the flow, and once p1 enters this range the bilayers will shrink, while
the pore morphologies will grow. In section 7.2 we will show numerically the equilibria of each system for a

specific choice of double-well potential, and the dynamically invariant interval is described in Figure 7.2.
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Chapter 5

The Pearling Eigenvalue Problem,

Co-Dimension 1

In this chapter we address the linear stability of the bilayer morphology in the strong FCH and obtain an
explicit expression for the pearling stability condition. We present a rigourous analysis of the eigenvalue
problem corresponding to the strong FCH for the co-dimension one structure. We show that in the strong
FCH scaling the leading order behavior of the pearling eigenvalues is independent of the shape of the
underlying co-dimension one morphology. Under the H! gradient flow the pearling instability manifests
itself on a time scale that is O(e72) faster than the geometric evolution, and hence can be taken to be
instantaneous on the geometric evolution time scale. Conversely, the fingering instability occurs on the
same time scale as the geometric flow, and may not necessarily immediately manifest itself on the geometric
evolution time scale.

Recall the strong FCH free energy which corresponds to the choice p =1 in (1.14),
L o / 2 em 2
F(u) = fQ 5(5—: Au-W'(u))* -¢ T|VU| +neW(u) | de, (5.1)

where Q c R%, d> 2, is a bounded domain, W (u) is a tilted double-well potential with two minima at b,, u :
Q — R is the density of one of the amphiphilic species, € << 1 controls the width of the boundary layer and 7
and 7y are the functionalization constants. The first variation of F, introduced in equation (1.18), is given

by

%(u) = (2A =W (u) +em) (2 Au - W' (u)) +engW' (u), (5.2)
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where 74 := 71 — 2. The second variation of F, evaluated at a critical point of £, takes the form

62
Ly := 5—‘72:(1;) =(2A-W"(u) +em) (2A-W"(u)) - (2 Au-W'(u)) W (u) + enaW" (u). (5.3)
U
We obtain a pearling stability condition for the co-dimension one morphology which is summarized in the

following theorem-

Theorem 5.0.1. For a given admissible interface, Ty, the associated bilayer solution constructed in (2.87),
is stable with respect to the pearling bifurcation if and only if the far-field chemical potential 1 satisfies the

pearling stability condition

Ab,0md b0

22
2 L2(Q) N
Oz_Sb

Py o= - (5.4)

5.1 Overview

We want to investigate the pearling eigenmodes of the co-dimension one bilayer structure: given an admissible

interface I'y € Gi ¢, assume that the system is at quasi-equilibrium, as defined in (1.15), with
up = Up(2) +€uq, (5.5)

where Uy, is the homoclinic bilayer solution introduced in (2.37), and wuq, derived in equation (3.74), is given
by

2 1z
Lyour = p1®Pp1 — g (iUé) = up = Ppo- TIdLb,lo (iUé) , (5.6)

where Ly o is the linear operator introduced in (2.39), the chemical potential y; is spatially constant and the
functions @ ; solves (2.40) for j =1,2.
To show that up, defined in equation (5.5), is a quasi-equilibrium, as defined in (1.15), we plug (5.5) into the

first variation, (5.2), which yields

%(ub) = (2A =W (up) +en ) (€2 Auy — W' (up)) + engW' (up). (5.7)

Expanding the Laplacian in local coordinates, (2.9), and Taylor expanding the potential terms W (uy) yields

ii(ub) = [Lb,o +e(HO, - W" (Up)uy +n1) + 52Ag] o [€(H8ZUb + Ly our) + 52H3Zu1] +enaW'(Uy)  (5.8)
u
+0(e?)
=e(Li gur + naW'(Uy)) (5.9)

87



+ EZ(HZUZ;, + Haszpul - H(W"(Ub))'ul + 771HUI: - W"'(Ub)uleoul
+mLpour + ﬁdW"(Ub)Ul) +0(e%)

=epy +0(£2), (5.10)

where the second equality follows from the definition of wy in (5.6). The leading order term is specially
constant, while the O(g?) terms in (5.8) are localized on I', and constant on the reach. Using Iy to project
away the constant part of (5.8), yields terms that are O(g?) in L* and zero off of the reach, taking the L2-

norm yields
2
=0(e2). (5.11)

5F
H Moy (w)
u 12(9)

We see that u;, satisfies the definition of quasi-equilibrium, given in (1.15).
We are interested in the pearling eigenmodes of the second variation of F, Ly, defined in (5.3). Consider the
eigenvalue problem

LW = AV. (5.12)

By changing coordinates of the Laplacian, in the operator L;, to the whiskered coordinates, using (2.9), and
plugging-in the expansion of up, (5.5), into u, L, can be written in orders of ¢ as

Lb = Eg + dLl + €2L2 + 0(53)7 (513)

where £, introduced in (2.45), and the operators Ly, Ly take the form

Ly ==Ly o (W"(Up)ur) = (W"(Up)ur — ) Lo — (HUy + Lour )W (Uy) + naW" (Us), (5.14)
1 1
Ly = —Ly o0 (W’"(Ub)uQ . 5W<4>(Ub)u§) - (W’”(Ub)u2 N 5W<4>(Ub)u%) Ly (5.15)
1
(W (U + )W (U)as = ( Lyua = W7 ()l ) W7 (U)

- (Lbul + HUé) W(4)(Ub)ul - ndWN/(Ub)ula

see appendix D.1 for details. Note that for i > 1, the unbounded term in the operators LL; is £, and we can
write ILy in the following form

Ly = £2 +cLy, (5.16)

where Ly, is a relatively bounded perturbation of LE. The eigenvalues of Ez are described in Figure 2.3 (right)

where the boxed area contains the pearling eigenvalues.
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Recall that X ¢, defined in (2.48), is the set of small eigenvalues associated to Lj, and, according to Weyl’s

asymptotic formula [¥p 0| ~ O(£3/27%). We define
Pii= (o - €°Br), (5.17)

to be the detuning constant depending only on k.

Definition 5.1. The space, Xx,, corresponding to the small eigenvalues of Ly is defined as

Xy = {wbﬁ()e)k | ke Ebﬁ()} U {¢b,19k | ke Eb¢1}~ (518)

The meander modes are accounted for in the geometric motion, however, we expand only the pearling modes,
for brevity. Looking for solutions of the eigenvalue problem, (5.12), we consider a regular perturbation

expansion of the form

\I/j = \I/()J‘ + E\Illd + 0(82), \I/(),j € XZ, \I’Q,j = Z Olki/ibv()@k, \1117]' € Xé, (519)
keX

Aj = €A17j + 0(62). (520)

The L2-orthogonal projection, II, onto Xy, is given by

, OL)ye
mfe=3 Mww@k = S (s 5.00%) 12 () .0Ok (5.21)

kex Hq/)b’O@kH%z(Q) keX

and its complementary projection is =1-1I

We consider a decomposition of the operator L; into a 2 x 2 block form,

M B
, (5.22)
BT ¢
where
M :=TIL,II, B:=T1IL,I, C :=MLyI. (5.23)

By abuse of notation we denote L; and its 2 x 2 decomposition with the same symbol.

[Hayrapetyan and Promislow, 2014] have shown that the restricted operator C' is uniformly coercive on X3
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and its spectrum is bounded from below by é > 0 which may be chosen independent of sufficiently small
€ > 0. In section 5.2 we investigate the operator M, describing its matrix representation and, develop an
expression for its pearling eigenvalues, presented in Theorem 5.2.3. In section 5.3, we will show that B, BT
have an e-bounds as operators from I2(RY*M) to 12(RV*Y). In section 5.4, we conclude, using both semi-
group estimates and a perturbation argument, that the spectrum of M determines the pearling eigenmodes

of Ly. Finally, in section 5.5, we connect the pearling eigenvalues of AL, to those of L.

5.2 Eigenvalues of M :=I1IL,II

Let v € Xy, i.e., v can be written as

U= Z bkwb,OG)ky (5.24)
keX

without loss of generality, assume ||v||z2 = 1. The operator IIL,II, acting on v, takes the form

MLAIT Y bty 0Ok = > (Lb > bj¢b,0@j7¢b,09k) V500K = Y, > b; (quﬁb,o@j»%,o@k),;z(g) Vp,00%.
12()

jex ke> jex ke jex.
(5.25)
We define the operator matrix representation M € RNe*Nd where Ny ~ 3274 in the following way
Mj g = (Lotn,095,¥,00k) 12(0)- (5.26)
Using the expansion of Ly, (5.13), we can write each entry of M in orders of € such that
(Lot6,005, ¥6,008) £2(0) = (Lo6,005,%6,00%) 12(0) + (L1%,00 7, Y600k 12 () + O(e2), (5.27)
and collect the matrix terms into two classes such that
M = MO 4 00T, (5.28)
where
M3y = (L306,00;,1,00k) 2(0) + (L1005, Y600k ) L2(0) + i_zq;Ei(Lﬂ/Jb,o@jy¢b,o@k)L2(Q), (5.29)
M= 3D (Lithy 005, ¥6,00k) L2(0) - (5.30)

i>q
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We will show that the first term, MY, can be split into a diagonal and off-diagonal terms, the latter of which
can be bounded independently of the matrix size Ny, if the curvatures of the interface I'y are sufficiently
smooth. The other term, M, can be bounded, independent of the dimension, via the L™ norm, for g suitably

large, depending upon the dimension, d.

5.2.1 Bounding M

To establish the bound on M, we start with the definition of the {2-norm of a matrix, followed by a lemma

which establish a bound on the /2-norm using the {°° norm:

Definition 5.2. The induced [*-norm of a matriz A is given by,

A
(Pp— (5:31)
loll,z 20 |[V]li2
Lemma 5.1. Given a matriz A e RN*N | there exist C > 0 such that
14ll < CVN Al (5.32)

Proof. Let v e RY with ||v||;2 = 1. Then,

2

A
Al = sup LAk
[|v]],2#0 ||UHl2

2 N
< ||A||lw\‘ Sl < [|Ali= VN, (5.33)
j=1

N | N N
2 Ajrve| < [IIAlIR Y
j=1 k=1 j=1

N
2. vk
j=1

Corollary 5.2.1. If g > i+% and ||M||;= = 1 then e?||M||;2 < Ce, where C' is a constant independent of Ny.

Proof. Since ||M||;= = 1, applying Lemma (5.1) to M yields ||M||;z < CVe3/2-d = C3/4=/2 for some con-

stant C. -

Corollary 5.2.1 implies that for d = 2, 3 it suffices to choose ¢ > %, g respectively, to render the e7M term O(e)

in the induced [?>-norm.
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5.2.2 Bounding M?°

Next, we want to find a bound in R?, d > 2, for the matrix M°. An examination of the first two terms

of MP, given in equation (5.29), shows that they admit the expansions

) EPIE-FO(EQ) 1fk:.77
(L£516,005,¥6,00k) L2(02) = l (5.34)
e [ H30x0; Jods [ (¥0,)')? dz + O(e2/E) itk +j,

L6t 60) = L0 WU (0,0)2 L gun dz + ma [IN. W (U) (450)2 dz+ O(VE) i ki =,
1%6,095, Yb,09k ) L2(Q) =

—¢ [ H1040; ds [\ W (Uy) Uy (1) )%z dz + O(®) if k# j

(5.35)

(see Appendix D.2 for calculation details, specifically, equations (D.5) and (D.14)). We may split M into

its on/off diagonal matrices

M° = Moy + M. aing (5.36)
where
M), +0(se) ifj=k,
M((i)iag(ju k) = (537)
0 if j#k,
and
0 ' 0 if j=k,
Moff—diag(jv k) = (538)

M), +0(e2e)  ifj#k.
with entries given by
I\e
M, =¢ (sz - fl\ [W"'(Ub)prm - 77le"(Ub)](1/)19,0)2 dZ) = (P2 - 1S = nadvoll¥woll3) . (5.39)
—=L\€
0 2 2 Ne 0 2 2 Ne 100 \2
MO, =e fFH ekejjods[l\s((zpb,o)) sdz—¢ fFHleke)jJOdsL\s W (U UL (00)2% dz,

-2 (SlfFHg@k(aonds+SQfFHle)k@onds), (5.40)

with indices ae®? % < j k< ae®?*?, a<a, a,acR, Sy is called the "shape factor”, and Sy, Si, S are given

by

l/e
Sp= [ oW W)igd (5.41)
753

l/e
Si= [, (o)) dz, (5.42)
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I\e
Sy = f ) W (U)U (10 )22 d. (5.43)

See appendix D.3 for the derivation of the second equality in equation (5.39).

The entries of M9

diag AT€ O(e). If we can bound Mgﬂ_diag independently of ¢ then the eigenvalues of M? are

given, at leading order, by the diagonal entries of Mg,,,. To keep M 4, order of €* we need to bound the

iag*
two integrals on the right-hand side of equation (5.40). Since S; and S5 are bounded, the main issue is to

bound the terms
fr H1040,Jods, and fFHg@k.@on ds. (5.44)
We can write the two terms is (5.44) in a more generic form as
fF F(E)040; Jods (5.45)

where f (/;b) is a polynomial of the curvatures, k;, defined in Definition 2.1.

Lemma 5.2. Let 'y € R be an admissible interface, then, in particular Ky e W2 Let f:R¥ SR bea

bounded function, and define the matriz M e RN*N | N e R with entries
M; ;= [Ff(ffb)@'@j Jods, (5.46)

where Oy are the eigenfunctions of Laplace-Beltrami operator; then, there exists C > 0 independent of € such
that
[ M]]2p2 < C. (5.47)

Proof. The operator norm of M from [? to I? is defined by
| M ||,2_,;2 :=inf{c>0 ‘ |(Mv,w)| < c||v|l||w], for all v,weRN}. (5.48)
Let v,w € R, using the definition of M, (5.46), we can write

[(Mv,w)| =

Z[Ff(s)@lvl@]wj JodS :‘frf(s)(Z@lvl)(Z@Jw])Jods 5 (549)
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and applying Holder’s inequality to this last integral yields

|(Mv, w)| < || f | oo (1

> Ojw;

J

(5.50)

Z @ivi

La(T) Ly(T)

Calculating the last norm in (5.50) yields

2

2
2
:fr(;@jwj) Jods:;/;@?w?ds:;w?fr@?dS:Hlez (5.51)

> 0jw;
J L2(T")

where the second equality follows form the orthogonality of the Laplace-Beltrami eigenfunctions in the I'-

inner product, see equation (2.71). Similarly, we have

2

> 9;v; =[loll. (5.52)
J L2(T)
Plugging (5.51) and (5.52) back into (5.50) yields
|(Mv, )| <[ fll e 0y 101z [T ],z (5.53)

and by choosing C' = || f ||~y and using the operator norm definition, (5.48), we obtain the desired bound,

| M |22 < C. (5.54)

Corollary 5.2.2. The matriz M°, defined in (5.36), can be written as
M° = Mgiag B Mgﬁ-diaga (5.55)

where Mgﬁ.dmg is uniformly bounded as an operator from I to I?.

Theorem 5.2.3. The pearling eigenvalues of TIL,II, (5.20), take the leading order form

1

A= —
||1/}b70||%2(9)

(1185 +maXbollvnollZ2(0y) + O(?), (5.56)

and, the associated co-dimension one bilayer network is pearling stable if and only if

1156 + 11aAb,0l[06,0[7 2 2y < O- (5.57)
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Proof. Corollary 5.2.2 implies that the eigenvalues of M?, Ay, are, at leading order, the diagonal entries
of Mc?iag, defined in equation (5.37). From the definition of M, (5.28), and Corollary 5.2.1, we deduce
that Ay are the eigenvalues of M, at leading order. Since M is the matrix representation of IIL,II, the

eigenvalues of ITL,IT are, at leading order, A, which takes the form

Ay = (P = p1Sy = nad ol [e0ll 72 0y (5.58)

where Sy, is the shape factor defined in (5.41) and Py is the detuning constant defined in (5.17).

We want to find a lower bound for the eigenvalues of the pearling modes: we have o(¢3/>~%) possible values

for k € ¥, for which (A\po - €28k) ~ O(\/€) and for d = 2, the Laplace-Beltrami eigenvalues takes the

2 . . . .
form By = (M) . The distance between two successive scaled eigenvalues is

L
2 2 2 (27 2
€“Brr1—€“ Bk ~¢€ T (2k +1). (5.59)
; 2 2 (2mko \2 . e/ AuolL
To determine how close €/} can get to A, ¢ we choose kg such that Ao = ¢ ( T 0) , 8o if kg = —5——,
the closest we can guarantee that €2, approaches to Ap,0 is
27\ 2 2m\2 [ e/ ApoL
52(1) (2k0+1):52(1) Z VR 1]~ 0Ce). (5.60)
L L us

Recall that P, := 5‘1/2()\1,,0 —€2/3;) then, the distance between two sequential terms is

Pi-Po =P (No-Bre1) e P (Mo —2B) =€ 2 (2B —* Brar) = - 1/2& (2;)2 (2k+1) ~ O(e?).

(5.61)
Therefore, the detuning parameter P, satisfies O(¢) < P2 < O(1) for ae™/? < k < ae~'/2. This shows that P?
can be made as small as O(g) and therefore it is lower order near the turning point of the pearling spectrum.

We conclude that the pearling eigenvalues of IIL,II, (5.20), takes the form

1
= _EW (1S +nareolltn.ol[Z2(0)) + O(?), (5.62)
ollz2 ()
[

Note that for a generic interface we recover the same pearling conditions as for interfaces with constant
curvature, see [Doelman et al., 2014] for more details.

Recall that our main goal is to find an expression for the pearling eigenvalues of IL;, using our 2 x 2 represen-
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tation of Ly, see (5.22). In this section we found an expression the pearling eigenvalues of the operator M.

The next section establish the bounds on the off-diagonal terms B, BT

5.3 Bounding the Off-Diagonal Operators

Recall the 2 x 2 block form representation of Lj, given in (5.22),

M B
(5.63)

BT C

If the off-diagonal blocks, B := IIL,II and B” := IIL,II, are small (same order of the ITIL,II block or less)
then we can relate the eigenvalues of L, to those of M := IIL,II, see section 5.4. Since both II and I are

self-adjoint operators we have
(LI, w) 12 = (LpIlv, TTw) 12 = (Mo, LyIlw) 12 = (v, TLyIIw) f2. (5.64)

So, it is enough to show that one of the off-diagonal blocks is small, i.e., we want to show that there exist a

constant C, independent on Ny ~ O(¢%>~?) such that
HfﬂLbHv”Lz(Q) < 60“1)”[/2(9), Vve Xy. (565)

without loss of generality, assume v € X5, v =5 0;95,00; and |v]12(q) = 1. Note that

Hek’l/fb,OHsz(Q):l =0,by orthogonality of ©;
—_— —_——
2 2 2 2.2 2 2 2
[ol220y :[Q > bk, Oxi g da = Y b fg(ajwb70dx+ S by [QG)j@m/)b)odx =307 = bl
7,kex jex j,kex jex
j+k
(5.66)

where b := (bl, bg, ceey bNd)-
Since Ly = E% +ely, and Ly, is relatively bounded with respect to [Z%, we split the proof into three parts: first
we show that we appropriately bound the operator ﬁﬂbHv, next we appropriately bound the operator ﬁﬁgl’[v

and at finally we appropriately bound L, Iv.

96



5.3.1 Bounding I1£,IIv

Recall that v € X5, v = ¥ e 059,00, and |v| 12y = 1. In particular,
Iv = v, ITv = 0. (5.67)
We need to show that there exist C7 such that
HﬁEbUHL2(Q) <eCh vl L2 ¢ay- (5.68)

Using the expression for £y, (2.45), yields

[,b’U = (Lb7011 + 6Haz’0 + €2Ag1}) = Z bj >\b,0¢b,0®j +€H®j¢é70 + é‘zAgl/)b’()@j . (569)
jEZ b\/—/
GXE

The projection II is the orthogonal projection to Xy, there it eliminates the first term and the operator IILyv

takes the form

MLy =€l Y b (HO; ¥ o +eAcih00;). (5.70)

jex

The L2-norm of equation (5.70) is given by

Rv
|| I1Lyv ||L2(S2) =||ell Z b; (H@j¢g70 + 5Acwb,0@j) <e€ Z ij@jd’I,),o +e? ” HAgv ||L2(Q) )
jex L2(Q) jex
L2(Q)
(5.71)
where we used triangle inequality and the fact that HquHLz(Q) < |lufz2(q) for each w.
We define the operator R matrix representation B € RNe*Na  with N, ~ /7% such that
Bj,k = <H@jwl,),0 ; Hijé,O)LQ(Q) . (572)
The entries of B take the form
By, = frf@k@on ds, (5.73)
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and we can apply Lemma 5.2 to conclude that B is uniformly bounded as an operator from 12(RY) to [?(R™).

Since B is the matrix representation of R we have
2 2 2 2
R[22y = [[6BY" ||}y < 1012 1 B2 - (5.74)

Theorem 5.2 and (5.74) implies
IRV lL2q) < cllvllze - (5.75)

Going back to (5.71) and plugging in (5.75) yields

||ﬁ£bv||L2 <ecl|v]|pe +€2||ﬁAGv||L2 (5.76)

() ()

The following Proposition shows that the L?(9)-norm of IIAgv can be bounded as an operator in the L?(£2)

norm:

Proposition 5.3.1. Let f(z) be a smooth function such that
IF(2)| < cre™2Fl for some ¢; € R, ¢; >0 ,i=1,2, supp(f) cT}. (5.77)

The operator IIAq, where 11 is the projection off of the space of small eigenvalues X, defined in (5.18)
and Ag is defined in (2.12), is bounded on the space

Y = {f(2)O | kex,}, (5.78)

i.e., there exists C' > 0 such that

[TIAGY] 2, < Ce2 0]l 120 (5.79)

()

for every v €Y. Particularly, for v e rs we obtain the bound
A -1
| TIAGY ||L2<m <Ol - (5.80)

Proof. Fix A, € p(As), where p(A;) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor Ag can be written as

Ag=As+e2Ds 0= (Ag =) +2Dga(Ag = X)) (A = M) + As (5.81)
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The Laplace-Beltrami operator is invariant on Y, i.e, Azv € Y for every v € Y and it satisfies
18502 () < €72 10l 2(q (5.82)

and since D 5 is a relatively bounded perturbation of A, see Lemma 2.1, the operator D o(A — )\*)_1 is
bounded, independently on €, on Y.

Let v e Y/ Xy,
v=f(2) ) b;0;, (5.83)
jeo
with [v] 20y = 1.
Taking the L?(Q)-norm of IIA¢ acting on v yields

|| MAGw || = || f[(AS AU+ szﬂDs’g(As - )\*)_I(AS - v || (5.84)

L2(9) L2()

SHl:IAsvH +||1:I)\,,v

te || 2TID, 2(As = M) H(As = M) || (5.85)

L2(9) |L2(Q) L2(Q)
<€ vllpagay + Nl lollpagey + € [ Ds2(As = X) M| o) 1(As = XA)2vllpagqy  (5.86)

< floll+Palllvll+ e 2ol gy (5.87)

We conclude that

[TAG | 2y < Ce* on Y- (5.88)

Similarly, taking v € X5, c Y,
v=1u0 ) b0y, (5.89)

Jjex

with [v] z2¢q) = 1, the L*(Q2)-norm of IIA¢ acting on v yields

| TAGv ||L2(Q) = || TI(As = A )v +ellD; 2 (Ay = X)) 7 (As = Ai)2v ||L2(Q) (5.90)
< || Iatv r + || IIxo r +5||1:IDS,2(AS—A*)‘l(AS—)\*)szLQ(Q) (5.91)
L2(Q) L2(Q)
<& Dsa(Bs = 2) 7 | o 12850 2 (5.92)
<ce M llpaa (5.93)
We conclude that
ITAG [ 2y < O™ on X (5.94)
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Combining Proposition 5.3.1 with equation (5.76) we obtain the required bound

||1:[,va||L2 <ecllvl|ge- (5.95)

()

5.3.2 Bounding T2y

Recall that v € X5, v =¥ e 051,00, and |v|12(q) = 1. In particular,
v = v, v = 0. (5.96)
We want to show there exist Cs, independent on €, such that

T30 2y < £Ca 0]z (5.97)

()

Writing the Lf operator acting on v explicitly we have

L’%v =Ly (Lyv) = (Lpo+cHID, + 52Ag)(Lb,0v +eHO,v+e?Agv) (5.98)
:(Lb,O + 5H82 + EZA(;) Z bj ()\5701/}})70@]' + 6H@j¢1,),0 + €2Ag1/}b7o®j) (599)
jex
eXs
—_———
=3 bj[ Abo6,00; +eLy o (HO 1 ) +€° Ly o (At 00;) + eXp,o Hy O + e HO;0.(Hpy o) (5.100)
jex

+ €3H62(Agwb70@j) + 52)\b70¢b70Ag@j + ESAGw{LO(H@j) + €4Aé’¢b70@j]

Projecting away from Xy, using II and taking the L2-norm yields

EXZ
|| Hﬁg’l} ||L2(Q) = HH Z bj[ Ag,owb,o@j +€Lb7O(H@ng70) + 52Lb,0(Awa,O@j)E/\b,OHon@j + €2H@jaz(H1/)ll),0)
jex

(5.101)
+ e HO.(Aa00;) + 2N 01,0860, + £ Agtf o(HO;) + ' A%1,00; || 20y

Ryiv

< EH Zi::bj [Lb,O(H@j'(M;)()) + /\b,OH'(/){;)o@j + 5H@jaZ(lely,O)]”L2(ﬂ) + ES || ﬁHaZ(Ag’U) ||L2(Q)
J€

(5.102)

+ & HAGHD. o ) + € [N 0 A0 | o +* | TTAZ + 2 ||TiLyo(Ago

”“Lz(m )HL2(Q)
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where we used the triangle inequality to derive (5.102) from (5.101). We introduce the matrix B ¢ RV*V

the matrix representation of Ry, given by

Bch = <(Lb,0(H¢l;,o) + )\b,OH%’),o + 5H8z(H¢1,7,0))@j, (Lb,o(HT/)ll),o) + )\b,OHwZ,),O + 5H82(H¢1,7,0))@k)p .

The entries of B take the form

_ le

By = fF[UE (2,8)0,04 J dz ds,
and by Lemma 5.2, we conclude that there exists ¢ > 0, independent of ¢, such that

1Bl <
Using (5.105) we obtain a bound on the operator Ry
2 2 1 52 2
IR 720y bl || Bllas e < clllliz s

and equation (5.102) reduces to

||fLC,27v||L2(Q) <cg||vllp2(q) +&*||TTHO. (Agv) ||L2(Q) +e® ||1~IA0H82U||L2(Q)

+ &[T 0860 | 2y + & [TAGY [ gy +&* [ITTL00 (A60) || 2 g
Consider the second term in the right-hand side of (5.107).

[|[TTHO.(AcV) || oy < € [TTHAGO V|| o o +° [ TTH[0: A

) ]UHLz(Q)

<ect||vlpaqq) + e’ ||ﬁH[8ZAG]U ||L2(Q) J

(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

where the second inequality follows applying Proposition 5.3.1 to the first term in (5.108). In order to show

that the second term in (5.108) is bounded, we recall the definition of Ag, given in (2.12). Taking the z

derivative of (2.12) yields

[0.AG] =D 5 +e2[0.Ds 2],

(5.110)

where [0, D, 2] denotes the multiplier operator comprised of the z derivative of the coefficients of D, 2, which

satisfy the bounds (2.15).
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Proposition 5.3.2. Let f(z) be a smooth function such that
1£(2)| < cre™2Fl for some ¢; € R, ¢; >0 ,i=1,2, and supp(f) cT}. (5.111)
The operator [0,Aq], where Ag is defined in (2.12), is bounded on the space
Y = span{f(z)O | keX, }, (5.112)
i.e., there exists C' >0, C' independent of € and f, such that
I10:Ac]v|12q) < Ce™Hlv 20 (5.113)

for everyveY.

Proof. Fix A, € p(Ag), where p(A;) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor Ag can be written as
[0.A¢] = 0. (As+e2D,0) =2[0.Ds2](As = M) H(As = M) D 2(As = X)) 1A - N). (5.114)

From Lemma 2.1 we know that Do is a relatively bounded perturbation of Ay, i.e., there exists C' > 0,

independent of ¢, such that

| De2(As=A) | oo <C. (5.115)
Let veY,
v:f(z) ij@j’ (5116)
jex

with HUHLZ(Q) =1.

Taking the L?(2)-norm of [0,A¢] acting on v yields

110:A610 120y = || [£200:Ds 2] (A = X) M (AL = A) + €Dy 2(Ay = M) HAL = ) ] ||L2(Q) (5.117)
<e || Dsa(As = 27 (As = A)v| o) + €[] 210D 2] (As = 2 )TH (A = A0 | 2

(5.118)

<e || DS,2(AS - )‘*)_1 ||12—>l2 || (As - /\*)U ||L2(Q) (5'119)

+e || [0:Ds2](As - )‘*)71 ”lzélz 1 (As = As)zv ||L2(Q)
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Note that

2

[0-Ds 2] = Z (0:dii(s5,2)) 5 2(3 dj(s Z)) (5.120)
,j=1 j=1
d-1 82 d-1
SHazdi,j(Saz)HLw(rl) Z ,Ja a +||6 d (8 Z)HL‘X’(FL) Z d (S Z) (5.121)
i,j=1 Sj
<max ]| 0. (5, 2) | o py) 511025 | o py) | Do < c2Ds s, (5.122)

for some ¢ > 0, where for the last inequality we used the bounds on the z-derivatives of the coefficients

of D, 2, given in equation (2.15). Combining (5.120) with (5.119) yields
100-810 oy < €= DaaB = 1) [y (80 = A0l s (5123)

and we conclude that

1[0-A¢]l 2y < Ce™t on Y. (5.124)

Returning to (5.108) we have

53||ﬁH8z(AGv)||L2 o Secllvllpzg +53||I~IH(8ZAG)U||L2 0 (5.125)
() ) ()
<eer||v]lpaay + € 1H(O:A6)0 |20 (5.126)
<eerl|vllpagey + € 1 H llp~(r, ) 1[0:A610]l 120 - (5.127)

where the third inequality follows from the generalized Holder inequality, see (D.36). Combining Proposi-

tion 5.3.2 with equation (5.127) we obtain the bound
53||ﬁH62(AGv)||L2(Q) <eca||vllpeqqy s (5.128)

where ¢o is independent of ¢, but it depend upon ||H||LM(FH). Plugging (5.128) and into the right-hand
side of (5.107) yields

106300y <2210 20y + 2 1 TTAGHO || + 22 [ A0 Ao [+ [HAZV oy (5:129)

+&|| Ly, 0(Agv) ||L2(Q) '
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To show that the second term in (5.129) is bounded as an operator in the L?(Q) norm with

& |TIAGHOv ||L2(m <cieflvllpzq) (5.130)
we use the following Lemma -
Lemma 5.3. Fizve Xy,
v=3 590, (5.131)
jex

with Hv||L2(Q) = 1. Then, if Ty is admissible, and, in particular, if ke W2°(T), then there exists C > 0
independent of € such that
185 (HV) [l 20y < C7H Il 20 (5.132)

Proof. Recall that H, given in (2.10), has the expansion
H=Hy(s)+ezHq1(s) + ..., (5.133)
and the jacobian takes the form
Jo(5,2) = Jo(8)Jp = Jo(s)(e + €2 Hoz +...). (5.134)
The term Ag(Hv) has the explicit form
As(Hv) = (AsH)v+ (Asv)H + 2V HV 5. (5.135)
Taking the L? norm of equation (5.135)
1 As(HV)[[1200) <[ (AsH)V 1200y + [ (A0)H || 2y + 2| Vs HV 0 [[ 120y - (5.136)
Using the expansion of H and J, we can bound the first term on the right-hand side of equation (5.136)

Lle
| (A gy = [ (AHO) (X 0:0,)* Jods [ | Wod (5.137)

jex

175
+52(/FAS(HOH1)(Z bj(aj)?Jods/M Y202 dz

jex

jex

le
+[FHOAS(H§)(Z bj@j)QJOdsfe/ w,io,z?dz)
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+0(£%)
< (e[ (AcHO || oy 10 20y (5.138)

+2 | s (HoH) ll e oy 101172 0y + | HOAHE [ oy 10 720y ] ) + OCP),
and as long as the interface is admissible, i.e., k € W22 (T), we have
H(AH )V |20y < 27 0]l 2q) - (5.139)
The second term on the right-hand side of equation (5.136) can be bounded

175
IHAw (220 :ngg(Z b;A.0;)2 Jods[ Y2 dz (5.140)
r jem —L/e

175 ¢/e
+e2 (./rHOHl(ijAS@j)Q JOdS[@/ “ﬂf,oszZ*fFHng(Z bjAs@j)2 Jods_/e/ ¢g7022d2’)

jex jex
+0(e%)

< e[| S| oy 1 A5 720 - (5.141)

Since [| Agv|[p2(q) < e2|v I12(q2), and since the interface is admissible and f is a polynomial of the curvatures

of ", we know that || f(E) ||L2(F) is bounded, independent of . This implies that
||HAsU||L2(Q) 305_1||U||L2(Q)~ (5.142)

We apply similar calculations to the third term on the right-hand side of equation (5.136) to obtain

7 2
| Vs HV v ||i2(9) <ce | f(Vsk) ||Lm(r) 1Vsvllz2(q) (5.143)
9 ~ 5 Lfe 9 ~ 5 Lle 5
r —0fe 7 r —lfe
175
=025, f@§ Jodsf Wlodz <2020y (5.145)
J r —L/e

and as long as the interface is admissible, i.e., k € WH*(T'), we obtain the bound

IVHY 0|20y < g0l 20y - (5.146)
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Plugging (5.139), (5.142) and (5.146) back into (5.136) we conclude that, as long as the interface is admissible,

there exists C' > 0 independent on ¢ such that

| A CHO) 2y < O 102y (5.147)
|
Proposition 5.3.3. Fiz ve Xy,
v=2biO9tno, (5.148)
jex

with || v ||L2(Q) = 1. The operator IIAGHv, where 11 is the projection off of the space of small eigenvalues X,
defined in (5.18) and Aq is defined in (2.12), is bounded on the space

Y = {f(2)0k | ke, ), (5.149)
i.e., there exists C' >0 such that

|IAGHY <Ce?||v 2@y forallveY. (5.150)

||L2(Q)

Proof. We repeat the proof of Proposition 5.3.1 but replacing equation (5.82) with equation (5.132), and

taking the L?(Q) norm of IIAg acting on Hv yields the required result. [

Proposition 5.3.1 shows that the third term in (5.129) is bounded in the L?(2) operator norm with
g2 Hl:U\b,oAGU ||L2(Q) <col|vlpz(q) - (5.151)

Inserting (5.151) and (5.130) into (5.129) yields

1220 [ < 2el0lgay + £ ITIAZY | 1o gy + 22| TLZ00(Ac) 1 (5.152)
The bound on the second term in the right-hand side of (5.152) follows from the following lemma
Lemma 5.4. Let v e Xy,
v= Z bj@j’(ﬂb,o, (5153)

jex

106



with v] 2y = 1. Then there exists C >0 such that

|TIAZv ||L2(n> <Ce?||vllLagq - (5.154)

Proof. Fix A, € p(Ag), where p(A;) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor Ag can be written as
AL =(Ag+e2Dg0)? = A2+ 262D, 5 (A — M) 1Ay = M)A, +222D2 5 (A - X)) 2(As - M)2 (5.155)
The Laplace-Beltrami operator satisfies

||AQU||L2(Q) SE_4||U||L2(Q)7 (5.156)

S

and since Ds o is a relatively bounded perturbation of A, we conclude that the operator Ds o(Ag — )\*)’1 is
bounded on Y.

Taking the L?(Q)-norm of MIAZu and using equation (5.155) to express AZ, yields

ITAZ)Y | 2y < [| B0 pocey 221 7Da (B0 = A) T (As = A A (5.157)
+&2 || D§72(As - )\*)_Q(AS - )\*)2,221) ||L2(Q) ,
<2 || Dsa(As = M) ||L2(Q) 1 (As = A) Az |20y (5.158)

+e%| Diz(As S ||L2(Q) | (As = X)?2% ||L2(Q) .

From Lemma 2.1 we know that Do is a relatively bounded perturbation of A, i.e., there exists C' > 0,
independent of ¢, such that

| Ds2(Ag = A <C. (5.159)

) e €

Proving that D?, is a relatively bounded perturbation of A is similar and (5.157) reduces to

||ﬁ(5§Ag)U||L2(Q) S05_3HUHL2(Q)' (5.160)

Combining Lemma 5.4 and equation (5.129) yields

|| T1c3v ||L2(Q) <etl|vllpz )+ | TTLoo(Agu) HL,_,(Q) : (5.161)
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Consider the second term in (5.161), and note that W (U) commutes with Ag. Then

& || 1:ILb,O(AGv) ”Lz(g) =&’ || 1:[(85 -W"(Up))(Agv) ||L2(Q) (5.162)

<&?||TI(92Ag)v +e2[|2I1(9.A¢ ) (0:v) ||L2(Q) +&? || IAG Ly ov ||L2(m (5.163)

||L2(Q)

=% ||TI(92Ac)v || +e2[|21(9.A¢ ) (0:v) ||L2(Q) +&% || ApolIAGu ||L2(Q) .

L2(Q)
(5.164)
For the first term in (5.164) we have the following lemma
Lemma 5.5. Let v e Xy,
v = Z bj@j’(/Jb’o, (5165)
jex
with |v| 2y = 1. Then there exists C >0 such that
A2
|T1(02A¢)v ||L2(Q) <Ollvllpzqy - (5.166)

Proof. Fix A, € p(As), where p(A;) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor Ag can be written as
D2AG =02 (Ay +62Dg2) = €202 (Ds2) (Ag = M) H A = M) +620. D 2 (A = X)) (A= \). (5.167)

From Lemma 2.1 we know that D; s is a relatively bounded perturbation of Ajg, i.e., there exists C' > 0,
independent of €, such that

| Ds2(As = As <C. (5.168)

) ||L2(Q)

Taking the L?(Q)-norm of II(8?Ag)v combined with equation (5.167) yields

ITH02A6)v || 20y = 1T [£2(02Ds2) (As = A)TH(As = Ae) +26(0: D 2) (A = X) T (A = A) [0 12y
(5.169)
<2e||(0:Ds2)(As = A) (A = Ai)v ||L2(Q) +¢||2(02Ds2) (As = X)) (As = A)v ||L2(Q) ,
<2e||(0:Ds2)(As = Ai)™ ||L2(Q) 1(As = M)l L2 (5.170)
+2][(02Ds2)(As = A) ™ oL 1A = A) 20 12 -
From (5.120) we know that
0.Dg 5 < ceDy o, (5.171)
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and similar calculations shows that there exists a constant ¢ > 0 such that
02Dy <Dy 5.
Plugging (5.172) and (5.120) into (5.169) yields

|| ﬁ(agAG)’U ||L2(Q) < 282 || (DS72)(AS - A*)_l ||l2%l2 H (AS - A*)’U ||L2(Q)
+ [ (Ds2)(As = X) ] o o 1 (A =X 20 |20y 5

<Cllvllp(q)-

Returning to (5.164), and using Lemma 5.5 we have

2 || f[Lb,O(AGv) ||L2(Q) <Ce?||v ||L2(Q) +e2 || Qﬁ(azAg)(azv) ||L2(Q) +e2 || )\bVOI:[AGv ||L2(Q) .

(5.172)

(5.173)

(5.174)

(5.175)

Applying Proposition 5.3.2 to the second term and Proposition 5.3.1 to the third term, equation (5.175)

reduces to

€2||ﬁLb,O(AG'U)“L2 SC~'€||U||L2(Q)-

()

Plugging equation (5.176) into (5.161) we obtain the required bound

||l:[£§v||L2 <eC||vllpe(qy. for ve Xy,

()

where C' is independent of €, but it depend upon || ks HLw(Q).

5.3.3 Bounding IIL,II

Finally, the following Proposition shows that the operator IIL,IT is bounded.
Proposition 5.3.4. The operator TILIL: I2(RV*N) s I2(RV*N) has an O(g) operator norm.

Proof. Let v e X5, v =Y 5 bjp,00; with [v]12(q) = 1. In particular,
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where II is the projection onto Xy and I its complementary.

Fix . € p(L£2), where p(L?) is the resolvent set of £, and rewrite L; in the following way

Ly = L7 +ely = (L7 = X)) + ey (L7 - X)) 7H(LE = M) + As (5.179)

Taking the L?-norm of TIL, 11 acting on v yields

|| TIL, ITw ||L2(Q) =|| TI(LF - A)v + eIy (L7 = M) (L] = Ao ||L2(Q) , (5.180)
<[ TLZ0]| oy + & | TIL (£ = M) (I + T)(LE = A0 |2 - (5.181)
<|[IL30 | 20 (5.182)
e ([Lo(£] = X)L = M) oy * 1Eo (23 = X) T TI(LE = Ao oy )
<|[IL3v | 20 (5.183)
(T 17 [ [ M7= W N 11720 O B

Since Ly is relatively bounded with respect to £, the operator Ly(£? — A,)™" has an O(¢) bound as an

operator from [2(RY*M) to [2(RV*M). In section 5.3.2 we have shown that
| TLC3TT||,, < ce. (5.184)

Therefore, combining bound (5.184) with the boundedness of ||Iﬁb(£§ - )7 ||l2 an inspection of equa-

20

tion (5.93) yields
| OLyIo||,, <& ((L+e) vl + || TL30]|,.) (5.185)

To complete the bound on ||1:H[4,HHL2 we need show that ||H£§HHL,_, is bounded. Using the definition

of II, (5.21), we can rewrite the operator IIL3Iv as

ICPIL Y bt 0Ok = . > bi(L31,005,%,00k) L295,0Ok, (5.186)
jex keX jeX

and define its matrix representation M € RNe*N¢ where Ny ~ O(¢%/>7%), to be

MjJ“ = (ﬁiﬁjb,o@j,?ﬁb,o@k)ﬂ . (5187)
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Using equation (5.34) we can write M = Mdiag + Moﬁ_diag where

_ (Moo —€2Br)*+0(e?) if k=3,
Maiag = (5.188)
0 if k# 7,
. 0 if k= j,
Moff—diag = (5189)
e [ H301O; Jods [ (194))? dz+ O(2V/E) if k=,

By Theorem 5.2 we know that Mg diag has an O(e) bound as an operator from I2(RV*N) to [2(RV*M).

Moreover, we consider k € 3 for which Ao — €28 ~ O(¢). Hence, M and Mdiag have a similar bound and

[TL30 ||, < cellvllpe - (5.190)
Plugging this bound back to (5.185) yields

[TLpIo |, < ecllv]lg. , (5.191)
which implies that ITL,II has O(e) bound as an operator [2(RV*N) — [2(RV*N), ]

Recall the 2 x 2 block form of L, (5.22). In this section we have shown that the off diagonal blocks are O(g)
bounded as operators from [2(RY*V) — [2(RNY*YN). The following section focuses on the pearling spectrum
of L, and we use the bounds on B, BT to show that the pearling eigenvalues of L, are, at leading order, the

pearling eigenvalues of M.

5.4 Relating the Eigenvalues of I, and IIL,II

Recall the 2 x 2 block form representation of L;, given in (5.22),

M B
, (5.192)
BT C
where the submatrices are given by
M :=TIL,II, B:=MLyI, BT := LI and C := [IL,II. (5.193)
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We use the estimates from the previous section to relate the small eigenvalues of L, to those of M. If IT
were a spectral projection associated to L; then the two operators would commute, and since ITIT = 0, the
off-diagonal terms would be zero. However, X, only approximates a spectral subset of Ly, and the estimates
IB| 20y = HBTHLz(Q) < ce, found in Section 5.3, are sharp. However, the restricted operator C' is uniformly
coercive on Xg with its spectrum is bounded from below by 6 > 0 which may be chosen independent
of sufficiently small ¢ > 0, (see [Hayrapetyan and Promislow, 2014] for more details). Consider v; € Xy
and vy € X&. Then, for any A < ¢ we reduce the 2 x 2 representation of the infinite dimensional eigenvalue

problem

M Bl|v, "
=\ (5.194)

BT (C||ve )

to a finite dimensional system for the component v1, which solves
(M =My = B(C-\)"'BTv,. (5.195)

We will use two methods to show that the pearling conditions established for M in Corollary 5.2.3 do in
fact characterize the small spectrum of LL;: First, we show that the eigenvalues of M are in fact a small
perturbation of the small eigenvalues of LL;, and we obtain a perturbation estimate. Second, we look at the
solution of the linear flow generated by L;. Assuming the eigenvalues of M are stable under pearling, in
terms of Corollary 5.2.3, we will show that the semi-groups generated by L, decay exponentially fast and

describe the resulting exponential dichotomy.

5.4.1 Perturbation estimate

Consider X € o(ILy) N (=00, 6), taking the I*norm of both sides of (5.195) and estimating the right-hand side
yields

[ = Nyorlle < 1Bl gagay 16 =2 ooy 1B llagey ol (5.196)

Using the estimates on the norms of B and BY, given in equation (5.191), we know there exists ¢ € R
independent of € such that
[(M = Xvi]i2 < ce? | R(A, C) || 2qy 01 12 (5.197)

where R(A,C) is the resolvent operator of C, defined as

R\ C):=(C-\)"1, (5.198)
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for A ¢ o(C). Since C is self-adjoint, standard estimates based upon spectral decomposition of the resolvent

allow us to bound the L?(€)-norm of the resolvent operator

. — 1
IR C) [l < (dist(X,0(C))) 7" < T (5.199)
Plugging the bound (5.199) in (5.197) yields
ce
H(M— /\)Ul Hl2 < mﬂvl ”12. (5200)

Let {w;} be the set the eigenvectors of M with the corresponding eigenvalues {\*}. The spectral decompo-
sition of v is given by

v=Y o, (5.201)

and the right-hand side of equation (5.200) can be written as
[(M = Xvi iz =] D) (AN = N w2 2 dist(a(M), )] Y w2 = dist(a (M), N)]v1 ]2 (5.202)

Combining equations (5.202) and (5.200) yields

652

; M
dist(o(M),\) < Pk

for A< 4. (5.203)

Therefore, for A € R an order of one distance below § this estimate implies that dist(\,o(M)) = O(g?). We
infer that the spectrum of Ly, below § lies within O(&?) of the spectrum of M. In particular, if the spectrum
of M is bounded from below by a positive O(e) quantity, then so is the spectrum of L.

The spectrum of M is to leading order given by its diagonal terms My ,, which are of the form Mj ; =
(Lpvp,00k, ¥5,0Ok) 12(0), see (5.26). Since the basis elements v 0O have norm one, we infer from the
Rayleigh Ritz variational characterization of eigenvalues that the smallest eigenvalue of L is smaller than
the smallest eigenvalue of M.

We deduce from these calculations that the pearling condition (5.2.3) applies to Lp.

5.4.2 Semi-group estimates

Let V = [vy, vg]T where v; € X5 and v; € X§,. We derive decay estimates on the linear evolution equation

V, = -L,V. (5.204)
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Using the 2 x 2 block form representation for I, we obtain

Vit = —M’Ul - BU27 (5205)

vas = —BTv; — Cus. (5.206)
Equations (5.191) and (5.64) afford bounds on the off-diagonal matrices
T
1Bz | B[] 120 < 2 (5.207)

We assume the eigenvalues of M are positive, Corollary 5.2.3 implies that they are order of . By Rayleigh-
Ritz formula we know that [ M ||,y < €c. Since M is a self-adjoint matrix we can apply the Spectral

Mapping Theorem to —M and obtain the decay estimate

-Mt

|| e < ce =7 |v 2y » (5.208)

”||L2(Q)

where €0 > 0 is a lower bound on the spectrum of M. From [Hayrapetyan and Promislow, 2014, Thm 2.5]
we know that C' is uniformly coercive on X3, its spectrum is bounded below by some constant ¢ which may
be chosen independent of sufficiently small € > 0. Since C' is self-adjoint it is sectorial and it generates an

analytic semi-group for which we have the semi-group estimates

-Ct

He U”]ﬂ(g) SCe_&H'UHL?(Q)' (5.209)

We fix v € (0,0) and introduce the quantities

M(t) = sup (€ [[01(5) |20 (5.210)
0<s<t

Mo (t) = sup (€7 [[v2(5) |20 ) - (5.211)
0<s<t

The quantity M (t) affords the estimate

lv1(8) |2y < €M (1), 0<s<t, (5.212)

so if My is uniformly bounded, then ||v||p2 decays with exponential rate ev as t — oo, as do va(t) and Ms(t).
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Applying Variation of Constants formula to equation (5.206) yields
t
va(t) = ety (0) + /(; e CEI BTy (s) ds, (5.213)

which in light of the bound for B, see (5.207), and the semi-group estimate (5.209) reduces to

t
2@l <€ 12(0) ey ¢ [ € [foa(5) oy s (5.214)
t
= 7% u2(0) 2y + eceo fo €% || vy (s) 120y ds, (5.215)
t
<€ vp(0) [ 2 gy +ece™ [0 OV N (1) ds, (5.216)

and the second inequality follows from estimate (5.212). Integration of the last line yields

e(é—us)t -1

[[02(8) |2 ay < € 102(0) || 2 gy + ece™ Mu(2) (5.217)

0 —-ve

Fixing ev € (0,0) implies that e (e®)t — 1) = ¢7%! — ¢79 < ¢7"¢! is decaying, the equation above reduces

to

o2l g0y < (€ 102(0) 20y + e ™M (1)), (5.218)

where & = &(v). Since t € [0,T] is arbitrary, we can fix 0 < #/ < ¢, replace ¢ with #' and multiply by e***’,
obtaining

e [[0a(#) | 2y < @ (€ 102(0) |2y + 2™ Ma(#)), (5.219)
since M7 (t") < My (t), taking the supremum over 0 < ¢’ < ¢ yields

Mo () <& (J|v2(0) |2y + M (1)) (5.220)

To obtain a bound on M; we apply the variation of constant formula to the ODE of vy, eq (5.205), which
yields
t
v1(t) = e M (0) + / e M%) Byy(s) ds (5.221)
0

applying the bound on B, (5.64), and the semi-group estimate on —M, (5.208), yields

t
1010 2oy < €7 1020) a0+ [ €7 va(s) ey ds, (5222
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t
= 0nO) gy ece ™ [e ua(o) iy

and recall that [|v2(s) || 2(qy < €7 Ma(t) which yields

t
1010 zqay €€ 01 (0) Lz + e [ e M) ds,

e(o-v)t _ 1

e(o-v)

<e 7 or(0) |l + E(e™ = e Ma(2).

oet

<e 7 [[v1(0) [|2(qy +ece” My(t),

where &= é(v). Since v € (0,0), we have (e V! — e79¢t) < 7V

and the inequality reduces to
o1 () |2y < €7 101 (0) [l 2(qy + e~ Ma(t).
Applying the bound (5.220) to Ms(¢) yields
lor(®) 20y < e[ 101(0) lgaay + € (Ile2(0) lpzay +eMa(®) ) |-
Since t € [0,7T] arbitrary, we can fix 0 < ¢’ < ¢, replace t with ¢’ and multiply by et obtaining
e N[0 (#) laay < e[ [01(0) 2y + (102(0) 2y + =M () ) ]
note that My (¢") < M;(t) and taking the supremum over 0 < t' < ¢ yields
M (t) < e[l[01(0) |2 gy + l102(0) |2 (g + M1 (1)]
For ¢ sufficiently small we obtain a uniform bound on M (t)
Mi(t) < 7 (I101(0) 2y + [102(0) l2(0)

valid for all ¢ > 0. Combining bound (5.231) on M; and estimate (5.212) on vy(t), yields

1018 oy < 26 (I[01(0) [l oy +122(0) ll3y)

(5.223)

(5.224)
(5.225)

(5.226)

(5.227)

(5.228)

(5.229)

(5.230)

(5.231)

(5.232)

and we see that ||v1 ||z, decays with exponential rate ev as t — co. To obtain a bound on [|v2 [|72(g), We
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combine bound (5.231) on M (t) with equation (5.218) and this yields

02(8) gy < (2™ 01(0) gy + (7 + 2™ [02(0) 2y (5.233)

<ce™ (2llv1(0)llaggy + (1+2) [02(0) [l 2y ) (5.234)

Returning to the original equation (5.204), and recall that V = [vi,v2]7 we can bound the norm of V

using (5.232) and (5.233) which yields

IV Iz < Nvi@) g2y + 1020 120y (5.235)

<ce " [(1+ ) [|01(0) I oy + (2 + ) 02(0) | 2ey |- (5.236)

for some constant ¢ depend upon v and for every ¢ > 0. Therefore, the semi-groups generated by L, manifest

decay with an exponential rate ev.

5.5 Connecting the pearling eigenvalues of AL, and those of L,

In the first part of this section we derived conditions under which the bilayer dressing of an admissible
interface is pearling stable. This reduces to an understanding of the the spectrum of IL;, the second variation
of F at the bilayer u,. However, to understand the dynamic stability of a bilayer under the H~' gradient
flow, requires the analysis of the pearling eigenvalues of the linearization, AL, of the gradient flow. This

analysis is completed in the theorem below.

Proposition 5.5.1. Fiz an admissible interface I'y and let up denote the associated bilayer solution. Let 1L,
be the second variation of F evaluated at uy. Then, the spectrum of AlLy is real, and there exist U >0 such

that for each A € o(AlLy) N (—o00,U) there exists ju € o(Ly) N (=00,e2Ua), such that
A=e2E (B2, (5.237)
a
where the constant a is defined via

o 2 -1
a:= fR D60 (82 = Apo) M0 dz > 0. (5.238)

In particular, for space dimension d =2 or d =3 the first term gives the leading order form of A.
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Proof of Theorem 5.5.1. Consider the eigenvalue problem
-ALY = AU, (5.239)

and let {v; f\:[1 be the orthonormal basis of the space Xy given in Definition 5.1. We consider the decompo-
sition of the eigenfunction ¥

U=0+v (5.240)

where v e Xy, v = ZZI-L Q;v;,

Nvllz2eoy = a2, (5.241)

and vt € V*. Inserting (5.240) into (5.239) yields
Ly(v+v') = —AA™ (v +0*). (5.242)
The projection of (5.242) onto v; € X, yields
(Lov, v;) 12y + (Lpv*',v5) 12(0) = ~A(A ™ 0,05) 120y = AMAT 05, ;) 12(q). (5.243)
We introduce the following matrices

D; ;== (Lovi, v;) L2(0), (5.244)

Eij=-(Av,v5) 120 (5.245)
Using the matrices D and E, defined in (5.244) and (5.245), respectively, we rewrite equation (5.243) as
(D-AE)d =7, (5.246)
where we introduce the vector ¥
i = A=A 05) 120y = (Lov*,v5) £2(0) - (5.247)

To bound the right-hand side of (5.247) we need to bound || v* [| ;2 (q,. Consider the complementary projection
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of (5.242) onto v* € V* which yields
(Lov*, v") r2e0) = —A(A™ 0,01 ) p2gg) + A(AT 0 08 120y — (Lov, v*) 12(0)- (5.248)
The operator L is coercive on X3, and so, there exists v > 0 so that
v |0t ey < oot 00 12gy- (5.249)

Proposition (5.3.4) implies that there exists ¢ > 0 so that the bilinear form (ILyv,v*)r2¢0) = (v, Lov*) 12(0)
has is bounded

(Lyv, 0" 20 < cel|v]l2qy || v* ||L2(Q) . (5.250)

Since the term (—A’lvl,vl)Lz(Q) is positive, we need to consider the sign of A. If A <0, the last term on
the right-hand side of (5.248) is negative, and we can drop it when we are bounding from above. It A > 0,
then there exists ¢ > 0 so that

A=A 0 v ) oy < eA | vt ||2L2(Q) : (5.251)

Moreover, from equation (5.266) of Lemma 5.6, there exists ¢ > 0 so that
A=A 0,01 12y < alAlE? v lr2(0) || v* ||L2(Q) . (5.252)

Using the bounds (5.249), (5.250), (5.251)and (5.252) in equation (5.248) we obtain

v||v* H;(Q) <c|AE?||v r2(0) | vt ||L2(Q) +Ases||vt ||2LQ(Q) +cse||v]|p2(q) || v* ||L2(Q) ) (5.253)
where
0 if A<0,
A, = (5.254)
A ifA>0.

Solving (5.253) for ||v* |12, We obtain the upper bound,

||Ul||L2(Q) <cgllvllzy (5.255)

valid so long as A, < U :=v/cy. Bounding |v;, defined in (5.247), via (5.250) and (5.252) yields

il < ere + e IAD 1105 oy 10 oy - (5.256)
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Combining (5.256) and (5.255) we obtain a bound on the [? norm of 7
171l < c(e® + X ADVN [ a |l 2, (5.257)

where N ~ O(&3/%79),
Going back to equation (5.246), we note that the matrix D, defined in (5.244), is precisely the matrix M

introduced in (5.26), and from Corollary 5.2.2 we know that, at leading order, D takes the form
D =D + 2D, (5.258)

where DV is a diagonal matrix whose entries are the eigenvalues of Ly, and D! is O(1) in the operator norm.
We can express the Laplace inverse operator using the whiskered coordinates system, (2.9),

AN = (62024 e T HO + Ag) T = (1+T)Lo) P = Lot + Lo T + ..., (5.259)

s

where we introduce the operators

Lo:=e202 - A,, (5.260)

T:= (¢ HO, +e2D,5)Lg". (5.261)

Plugging (5.259) into (5.245) we see that E takes the form
E-EO+ B, (5.262)

where the entries of the matrices E® and E! take the form

INE?,J‘ = —(Lg'vi,v5) 12(0) (5.263)

E; ;= (Lo Tvi, ;) 12(0)- (5.264)

To estimate the entries of E° we prove the following Lemma

Lemma 5.6. The inverse operator Ly' acting on ve Xy, v= Ykes, o Ok Vb,0Ok, takes the form

Lalwb,()@k = 52@k(a§ - 82,8k)_1¢b70, V ke Eb,O- (5.265)
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In particular, ]L61 has an O(e?) bound on Xy, i.e., there exists ¢ >0 so that
||]L51v||L2(Q) <ce®||vllpaqqy, YV veXs. (5.266)
Proof. To obtain an expression for Lglv, consider the following equation
Lof =00k, (5.267)

and recall that © is an eigenfunction of A, which implicates that the function f is of the form f = g(2)Oy,
and equation (5.267) reduces to
(67263 — ﬂk)g(z)@k = 1/)(,70@]@. (5.268)

Factoring e72 from the left-hand side of (5.268) yields
e72(92 - €*Br)g(2)Ok = 11,00k (5.269)
Inverting the operators in equations (5.269) and (5.267) we conclude that
Lo (¥6,00k) = €%04(02 - £° k) 0- (5.270)
For a general v € X5, v = Yy, , @nOtp,0, equation (5.270) takes the form

]Lal’u=€2 Z ak@k(az—EQ,Bk)_l’lpb,o. (5.271)
keXy o

Since ©; are orthonormal in the T, weighted inner product, see (2.29), the L?(€2)-norm of the inverse

operator acting on v € Xy, yields

Lo ] 2 gy = =* 1Al (5.272)

where A is the diagonal matrix with entries
A; = [(0: = *B:) ol L2 ay- (5.273)
Since €28; = X0 + O(v/€) we deduce that A is uniformly bounded and hence

HL61UHL2(Q) 2052||v||L2(Q)' (5.274)
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Lemma 5.6 implies that the entries of E, defined in (5.263), admit the following expansion

~ Lle
B0, =- fr f , (7202 + )L (1,00:)O jthn0 Jy dz ds (5.275)
b —Lje
_ 2 5/6'4 2 _2,4-1
=—=£ r Y @z@ﬂbb,o(az e ﬁz) wb,O Jb dz ds (5.276)
b —L/e
—52 f_zé//i 1/)1,’()(83 - )\b,O)_lwb,O dz + 0(52\/5) if 4= j,
) (5.277)

—g3 ]F /_ZF//EE wb,o(ag - 525i)_1wb,09i@jH0 dzds + 0(84) if 7+ 7

where for i = j, since k € 5,9, we obtained (5.277) by expanding £23; = Ay + O(y/€). Consequently we may
write

E° =¢* (E® + V2B), (5.278)

where E° = al, is a diagonal matrix, aly is the identity matrix multiplies by the constant a defined in (5.238),
and the matrix B has entries of the form ij f(k)©;0; Jyds. By Lemma 5.2, the matrix B has O(1) bound
in the operator norm. The next Lemma shows that the matrix E', defined in (5.264), is bounded in the

operator norm.

Lemma 5.7. The matriz E*, defined in (5.264) has an O(e®) bounded in the operator norm, i.e., there
exists ¢ >0 so that

| E! <ce’. (5.279)

[

Proof. The operator Lg! is self-adjoint in the .Jy inner product, defined as in (2.35), and so the entries of E',

given in (5.264) can be written as
E;; =-(Lg"Tvi,v5) 5 = ~(Ti, Lo ) g, (5.280)
For vy, € X5, v = 1,00k, the operator T' acting on vj, takes the form
Tvy = eHOg), + egzngsg@k, (5.281)

where

gr = (02 = €°Br)  u.o- (5.282)
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Using equation (5.281) and Lemma 5.6 we write

le
—(TUZ‘,]Lalvj)JU = - fp fe/ (é‘H@ig,z + €3ZgiD372®i)€2@jgj JO dzds (5283)
b —L/e
3l 512
=—"E; ; —€e’E}; (5.284)

where the matrices E! and E? are given by

L]e

]Ezlj:/ Hgig;j©:0; Jodzds, (5.285)
’ Fb —E/E
175

]E?j::/ / 29i9j9; D520 Jo dz ds. (5.286)
’ Fb —Z/E

Lemma 5.2 implies that E* has an O(1) bound in the operator norm, and according to Corollary 5.2.1, the °

terms are negligible. Going back to (5.280) we conclude that

NEY|,._,» < . (5.287)

1252 =

Equation (5.278) and Lemma 5.7 implies that E, defined in (5.262), can be written as
E = e2aly + e"°E?, (5.288)

where the matrix E! has an O(1) bound in the operator norm.
We use the expansions of the matrices D and E, defined in (5.258) and (5.288), respectively, to expand
equation (5.246) so that

(D% - e2aA)d =5 - e2(D! - VeEHa, (5.289)

which, dividing by £2a, takes the form

2

e? o . _ € 2/l 1\z
(aD —A)a:a(v—a (D' - /eE )a), (5.290)

Taking the L? norm of equation (5.290), and using inequality (5.257) we deduce that

sz}

a

<C(1+eADVN |l (5.291)
l2
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however as D° is self-adjoint, it follows that « is close to an eigenvector of D° and
o2
dist(A, —o(D%)) < C(1 + | A])e3/44/2, (5.292)
a

Since the spectrum of DY constitutes the pearling eigenvalues of Ly, and o(D°) ~ O(¢), we know that %U(DO) ~
O(e™'), and hence [eA] = O(1). As long as the right-hand side of equation (5.292) is O(¢") with r > -1,
i.e., as long as the dimension size is d < 3.5, we may conclude that for A € o(ALy) N (—o0,U) there exists
peoa(ly)n (—o0,e2Ua) so that

A= 5—25 +O(3/1-412), (5.293)
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Chapter 6

The Pearling Eigenvalue Problem,

Co-Dimension 2

In this Chapter we address the stability of the bilayer morphology in the strong FCH and obtain an explicit
expression for the pearling stability condition. We present a rigourous analysis of the eigenvalue problem
corresponding to the strong FCH for the co-dimension two structure. We show that in the strong FCH
scaling the leading order behavior of the pearling eigenvalues is independent of the shape of the underlying
co-dimension two morphology. Under the H~! gradient flow the pearling instability manifests itself on a
time scale that is O(e72) faster than the geometric evolution, and hence can be taken to be instantaneous
on the geometric evolution time scale. Conversely, the fingering instability occurs on the same time scale
as the geometric flow, and may not necessarily immediately manifest itself on the geometric evolution time
scale.

Recall the strong FCH free energy which corresponds to the choice p =1 in (1.14),
L o / 2 em 2
F(u) = fQ 5(5—: Au-W'(u))* -¢ T|VU| +neW(u) | de, (6.1)

where Q c R%, d> 2, is a bounded domain, W (u) is a tilted double-well potential with two minima at b,, u :
Q — R is the density of the amphiphilic species, € << 1 controls the width of the boundary layer and 7; and 75

are the functionalization constants. The first variation of F, introduced in equation (1.18), is given by

%(u) = (2A =W (u) +em) (2 Au - W' (u)) + engW'(u), (6.2)
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where 74 := 1 — 2. The second variations of F takes the form

_8F

L,:= W(u) =(2A-W"(u) +em) (A -W"(u)) - (2 Au-W'(u)) W (u) + enaW" (u). (6.3)

We obtain a pearling stability condition for the co-dimension two morphology which is summarized in the

following theorem-

Theorem 6.0.2. For a given admissible interface, T'y, the associated pore solution constructed in (2.75),
is stable with respect to the pearling bifurcation if and only if the far-field chemical potential 1 satisfies the

pearling stability condition

2
2,)

e (¥l * Mrollvno

P Sp > M, (64)

6.1 Overview

We want to investigate the pearling eigenmodes of the co-dimension two pore structures: Given an admissible

interface I", assume that the system is at quasi-equilibrium with
up = Up(R) +cuq, (6.5)
where U, is the radial symmetric pore solution of (2.75) and w1, derived in equation (4.103), is given by
uy = @y 0 = nal,* W' (U,), (6.6)

where L, is the linear operator introduced in (2.78),The chemical potential p; is spatially constant and the
functions @, ; solves (2.86) for j =1,2.
We are interested in the pearling eigenmodes of the second variation of F, L, defined in (6.3). Consider the

eigenvalue problem

L,¥ = AU, (6.7)

By changing coordinates of the Laplacian, in the operator L,, to the whiskered coordinates, using (2.65),

and plugging-in the expansion of w,, (6.5), into u, we can rewrite L, in orders of € such that

Ly =L} + Ly + O(e?), (6.8)
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where
Ly =~ (W"(Up)ur —m) o Ly~ Ly o (W (Up)ur) = (Lpur = DUp) W"(U,) +naW" (Up), (6.9)

and £, is defined in (2.77). See appendix (E.2) for detailed calculations of the expansion of L,.
Recall that 3, ¢, defined in (2.92), is the set of small eigenvalues associated to L,, and, according to Weyl’s

asymptotic formula |, o| ~ O(£%/2~%). We define
Pk = 5_1/2()\])’0 - 52ﬁk)7 (610)

to be the detuning constant depending only on k.

Definition 6.1. The space, X, corresponding to the small eigenvalues of L, is defined as
Xy = {thp0O | ke T}, (6.11)

Looking for solutions of the eigenvalue problem, (6.7), we consider a regular perturbation expansion of the

form

\I/j = \I’Q,j +5\I’1,j + 0(82), \IJO,j € XE, \I/()’j = Z Oékﬂ/)o@k, \Ijl,j € Xé, (612)
keXx

Aj =€A1,j+0(62). (613)
The L2-orthogonal projection, II, onto Xy, is given by

00O) L2
= M¢0@k = > (f,%0Ok) L2(0) 0Ok, (6.14)

I f:=
keX ||7/}06k||%2(9) keX

and its complementary projection is =17-1I

We consider a decomposition of the operator L into a 2 x 2 block form,

; (6.15)
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where
M :=TIL,II, B:=TIL,I, C:=1L,II. (6.16)

By abuse of notation we denote L, and its 2 x 2 decomposition with the same symbol.
By Assumption 2.2.3, the restricted operator C' is uniformly coercive on X3 and its spectrum is bounded

from below by ¢ >0 which may be chosen independent of sufficiently small € > 0.

6.2 Eigenvalues of M :=IIL,II

Let v € Xy, v can be written as

v=) brthoOx, (6.17)

keX

without loss of generality, assume [|v||2(€) = 1. The operator IILII, acting on v, takes the form

jen kex jex kes jex

ILIT Y bvoOk = Y, (]L’p > bjwo@jﬂ/ioek) YOk =Y, D b; (Lpt0©;,%0Ok) 2 (q) Y0Ok.  (6.18)
£2(9)
We define the operator matrix representation M € RN*N | where N ~¢~3/2, in the following way
Mk = (LypthoO;, 0Ok L2(0)- (6.19)
Using the expansion of L, (6.8), we can write each entry of M in orders of € such that

(Lpt00;, 100k 2(0) = (L21000;,100k) r2(0y + £(L1h0O;, %0Ok) 12y + O(£), (6.20)

and decompose the matrix into terms of order < " and terms of order > €, such that

M=M"+e"M, (6.21)
where
M3, = (Lo00;, 0Ok 12(0) + € (Lav00;,%0Ok) 2y + 2 &' (Litho O, 10Ok L2 (), (6.22)
=2
Mje =3 e (Litho©;,%001) L2(0)- (6.23)

i>r
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We will show that the first term, MY, can be split into a diagonal and off-diagonal terms, the latter of which
can be bounded independently of the matrix size N, assuming that the curvatures of the interface I" are
sufficiently smooth. The other term, M, can be bounded, independent of the dimension, via the L™ norm.
In particular, we have shown in Section 5.2.1, that for a 3-dimensional space, the matrix M is negligible for

r=2.

6.2.1 Bounding M?°

Next, we want to find a bound for the matrix M° in R3. An examination of the first two terms of M, given

in equation (6.22), shows that they admit the expansions

eP2+0(e%\/fe) ifk=j,
(L5100, 10Ok) L2(0) = * (6.24)
0(2,/7) itk %,
(L1v0©;, %00k L2(0) = = ((Lur )W (Up) = naW" (Up) )00, 10Ok ) 2(0) + O(Ve) if k= j, (6.25)
(L1900, 90Ok L2 () =e(((2W" (Up)ur = m )k - Vatho = K- (Vour = Up)W"' (Up)00) O, 10Ok L2(0)  (6.26)

+0(?) ifk#j

see (E.14) and (E.33) for more details. We may split MY into its on/off diagonal matrices

MO = Mgiag + Mgff—diag (627)
where
M, +0(ee) ifj=k,
M((i)iag(j7 k) = (628)
0 if j #k,
and
. 0 ifj =k,
Moff—diag(]v k) = (629)

M), +0(e2Ve)  ifj#k.

with entries given by

0 2 f\e " " 02
th:e(Pk - fo (W (U,) Luy = W (U,) | (6) dz), (6.30)
=e[PE-mSy-na (| @Y1, + ol D] (6.31)
M3y = (W (Up)ur =m )R- Vtho = & (Vaur = Up) W' (Up)10) 05, $0Ok) 1202 (6.32)
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1/2

with indices ac? < j,k<ac V? a<a, a,a <R, and Sp is the shape factor of the pore structure, given by,

S, = 27rf0°° W (U,)®, (40)? RdR. (6.33)

Using Theorem 5.2 we deduce that MY

offdiag 15 uniformly bounded as an operator from 1% to 12

Corollary 6.2.1. The matriz M°, defined in (6.27), can be written as
MO = Mdoiag + Mgﬁ—diag7 (634)

where Mgﬂ—diag is uniformly bounded as an operator from 12 to I2.

At this point we conclude that the eigenvalues of M, Ay, are, at leading order, the diagonal entries of M giag,

defined in equation (6.28). By the definition of M, (6.21), we deduce that Ay are the eigenvalues of M, at

leading order. Since M is the matrix representation of IIL,II, the eigenvalues of IIL,II are, at leading

order, Ag, which takes the form

Ae=e[PE=mS, = na([[¢holly,, + oo lonol?,)] (6.35)

where S, is the shape factor defined in (6.33) and Py is the detuning constant defined in (6.10).
Since P? can be made as small as O(g) (see equation (5.61)), it follows that the term involving P? is lower

order near the turning point of the pearling spectrum. This leads us to the following corollary-

Corollary 6.2.2. The pearling eigenvalues of IIL,II, (6.13), takes the form
1 2 2
A=—e—[mSy +na([[¥holl;, +wollvwollz, )]+ OE), (6.36)
[¢p.0llZ . "
and, in order to have, at leading order, pearling stability we need
2 2
1Sy +ma ([ 0poll;, + Ao lltpollz, ) <0. (6.37)

Recall that our main goal is to find an expression for the pearling eigenvalues of IL using our 2x2 representation
of L, see (6.15). In this section we found an expression the pearling eigenvalues of the operator M. The

next section establish the bounds on the off-diagonal terms B, BT.
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6.3 Bounding the Off-Diagonal Operators

Recall the 2 x 2 block form representation of L,, given in (6.15),

(6.38)
BT C

If the off-diagonal blocks, B := H}Lpﬁ and BT := ﬁLpH, are small (same order of the M := IIL,II block or
less) then we can relate the eigenvalues of L, to those of M := ITL,II, see section 6.2. Since both IT and I

are self-adjoint operators we have
(ML, v, w) g2 = (L,ITv, Tlw) g2 = (T, LyTTw) 12 = (v, TL,TTw) 12 (6.39)

So, it is enough to show that one of the off-diagonal blocks is small, i.e., we want to show that there exist a

constant C, independent on N ~ O(¢7%/?) such that
||1:[LpHUHL2(Q) < €CHUHL2(Q), Yve Xy. (640)

without loss of generality, assume v € X5, v = Y5 b;900; and |v|12(q) = 1. Note that

010 ”22(9):1 =0,by orthogonality of ©;
—_— —_—
[ol32 0 = f S bib©;0k02 da = 3 b7 f O22dz+ Y biby f 0,0t dr (6.41)
2 kex jeo 2 keSS Q
j*k
=2 b=Ibll (6.42)
jex
where b := (b, ba, ...,bn,).
Note that we can write L, in the following form
Ly = L3 +¢L,, (6.43)

where L, is a relatively bounded perturbation of LZ. We split the proof into three parts: first we show that

we can bound the operator fIEPHU, next we bound the operator IZLCIQ,HU and then we bound ﬁLpHv.
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6.3.1 Bounding flﬁpﬂv

Recall that v € X5, v = ¥ e 05900, and |[v]2(q) = 1. In particular,
v = v, v =0. (6.44)
We need to show that there exist C', independent of €, such that
IT1L,0] L2 () < £Cllv] 12 (0)- (6.45)

Using the expression for £,, (2.77), L,v takes the form

Lyv=(Lv-—eD,v+ 6262;0) = Z bi | Apot0©; —€D, 10O, + 525%1/1093- . (6.46)
jex —
QXZ

Note that IT project off of Xy, therefore it eliminates the first term and the term I:I[,pv becomes

fIL',pv = <€ﬁ Z bj (€8é®j¢0 - DZ’(/J()@]') . (647)
jex

The L?(Q)-norm of (6.47) has the bound
1ALy pa gy <l Dty + <2030 age (6.48)

and we will show that each of the terms on the right-hand side of equation (6.48) is bounded. To show that
the first norm on the right-hand side of equation (6.48) is bounded, we introduce the matrix B € RV*V
with N ~ O(e7%/?) such that

Bj = (Dz¢0®,jaDzw0@k)L2(Q) ) (6.49)

which, using the definition of D,, given in (2.66), takes the form

2
Bj,szrf(r@)@j@kds, wheref:fo ( -vzwo) Jdz. (6.50)

£
Ty
Applying Theorem 5.2 we conclude that B is uniformly bounded operator from 12 — [2. Since B is the matrix

representation of the operator D, we obtain the bound

D202y < cllvllpzqy for ve Xs, (6.51)
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where ¢ is independent on e. Equation (6.48) reduces to
(6.52)

ITLL0 ][ 2y < €l llzzgay + 211080 | 2gqy

The following Proposition shows that, over the appropriate space, the operator 1:182; is bounded in the L?(Q)

norm:

Proposition 6.3.1. Let f(z) be a smooth function such that
(6.53)

<cre Pl for some ¢; €R, ¢; >0 ,i=1,2, supp(f) cT.

[F(2)

The operator ﬁ&é, where II is the projection off of the space of small eigenvalues Xy, defined in (6.11)

and 02 is defined in (2.67), is bounded on the space
(6.54)

Y = span{f(=)6y | ke,

i.e., there exists C' >0, independent of €, such that
(6.55)

||ﬁ6évHL2(Q) <Ce?? lvllr2e0)

for every v €Y. Particularly, for ve Xx, i.e., when f(z) =1y, we obtain the bound
(6.56)

||ﬁ8év HL2(Q) <Cet v HL2(Q) :

Proof. Fix \, € p(0?), where p(9?) is the resolvent set of the co-dimeanion two Laplacian operator, then the

operator 3% can be written as
1 - OgR 1 - OsR _
0% = — [af +sz~"‘as] S [(af )+ e (02 = X)L - A) + A (6.57)
J2 JIp 2 JIp
where J, is defined in (2.64) and % have the expansion
(6.58)

Ty

1+eR, where R:= Z(jz% 1) -1,

=0

Without loss of generality, we assume that A* = 0. We note that every v € Y satisfies the following inequality
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HagvHLz(Q) SE':72||'U||L2(Q)’ (659)

and since d, is a relatively bounded perturbation of 92, the operator 9,(9% — \.)™! is bounded, independent
of e, on Y.

Considering the case when f # g, then v takes the form,

v = f(Z)é(S), (:) = Z bj@j, HUHLQ(Q) =1 (660)

jex

Taking the L?(2)-norm of [IA¢ acting on v yields

1021 - |15 02+ oalol| 661)
p L2(Q)
-1 - 1 z-04K _
HTQ('?SQU te ’H ~22 ?K L(02) 0% (6.62)
P L2(Q) P p L2(Q)

Using the expansion of jp7 given in (6.58), we can bound the first term on the right-hand side of equa-

tion (6.61)

<[[mozv |l .
L2(Q)

<e? v ||L2(Q) +e|IRf(2) ||L°°(Q) ||852(:) ||L2(Q) S (5_2 +€_1) cllv ||L2(Q) ) (6.64)

”H v +¢e||RO? (6.63)

(Q)+€||ﬁR8§U||L2(Q)SHasQUHLZ(Q) U“L?(Q)’

where ¢ is independent of e and the third inequality follows from the fact that v = f(2)O(s), and f decays

at O(1) rate in z. As for the second term on the right-hand side of equation (6.61)

2 2
~ . s" _ 1
e ||i== 0ok 5 (92)1 0% <e?f| == ok 5 (82) 1020 : (6.65)
Jp L2(Q) Iy JIp L2(9)
2
1
<e? || =002 (0:7) - 0220 , (6.66)
Ip L2(Q)
1 2
_ 2 R 2
<l = 100 [|1opo | (0s8) - 0720 [ 2 g (6.67)
Tl

N = 112 _
<1 || (BsR)2f (2) e () 1020 ||}y <722 1vl72y,  (6.68)

where for the third inequality we used the fact that f(z) decay at O(1) in z. Plugging (6.70) and (6.68)
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into (6.61) yields
||ﬁaéU||L2(Q) < 6_263 ||v||L2(Q) . (669)

For v € X5, the only difference in is equation (6.70) which the becomes

-1 - -
|adozo| <l o220l gy R (670)
D L2(Q)
<e€ || Rf(Z) ||L°°(Q) || 852@ ||L2(Q) < 6_164 H v ||L2(Q) ’ (671)
and for this case we have
||ﬁaév||L2(Q) S5_10||U||L2(Q)' (672)
| ]

Combining Proposition 6.3.1 with equation (6.52) we obtain the required bound
||1:I£pv||L2 <eCllvl]e - (6.73)

6.3.2 Bounding ﬁﬁgﬂv

Recall that v € X5, v= 35 b;900; and |v]12(q) = 1, in particular,
Iv = v, v =0. (6.74)
We want to show there exist C5, independent on €, such that

||1:I£Z2,v||L2(Q) <eCol|v]ly2 - (6.75)

Writing the LIQ) operator acting on v explicitly we have

Eiv =L, (L) = (L—eD, +%0%)(Lv —eD,v + £20%v), (6.76)

:(LO - &‘Dz + 526%) Z bj (Ap,0¢0@j - EDZ’(bo@j + 528Gw0®j) ,
jex
GXE
—_———

=3 bj[ A2 %00 —eL(D:1000;) + 2 L(03100;) = eAp,oD.100O; + 2D, (D.1)0©);)
jex
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= %D, (081000;) + €% Xp,008100; — €206 (D.1heO);) + 543?;(33%93‘)]-

Projecting away from Xy, using II and taking the L?-norm yields

EXZ
———

|| ﬁﬁiv ||L2 = ”1:[ Z bJI: /\i&ﬁo@j —EL(DZ¢0@]‘) + EQL(8?;¢0@J‘) - 6/\p70DZ’$0@j + €2Dz(Dz¢O@j) (677)
jex

()

— 2D (0100;) +£° Ap 0081000, — €206 (D210 0;) + 5452;(3?;%(%‘)] I 2(0)

RI’U

<e ZZ bj[ = L(D:100;) = Ap.oD:100; + e D= (D:100;) | 120y +€°[|TID:(980) [| 2 ) (6.78)
J€

#1108 D20 | gy + 2 | TR 00Z [+ 2° | TOZCO20) [y + 2" | TLLEZD) [

(0

where we used the triangle inequality. The matrix representation B € RV*N

of R, is given by
Bj,k: = <(—L(Dzw0) — )\p,ODsz + <€l)z(l)z’$()))e)j7 —L(Dzlbo) — Ap,ODz'(/)O + EDZ(DZ,(/)O))@]C>L2 . (679)

The entries of B take the form

_ l/e
Bj,szrfo £(2,5)0,;0y, J dz ds, (6.80)

and, for a smooth function f, Theorem 5.2 implies that there exists ¢ > 0, independent of &, such that
||B Hl?—»l? <ec (6.81)
Using (6.81) we obtain a bound on the operator Ry
I Ruvllza gy <181 | Bl < cllvlie, (6.52)

and equation (6.78) reduces to

|| IZIEIQJU ||L2(Q) <cel|v|lp2qy + €3 ||1:[Dz(f3év) ||L2(Q) +e3 ||f18éDzv ||L2(Q) (6.83)
e 00080 gy + & | IOBO20) gy + <2 | FLECOE0) [ 1a e -
Consider the second term in the right-hand side of (6.83).
el || 1D, (0%v) ||L2(Q) <S||L. Ve ((‘3?;11) , (6.84)
Jp L2(Q)
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T e ) [ -
Jp LQ(Q) p LQ(Q)
K K
S53 (]T ||[vz6é]v||L2(Q)+€3 _ ||8é(vzv)||m(m, (6.86)
p lLe(q) p 1l L=(q)
<edey || [Vzﬁé] v ||L2(Q) + e ||vll 2y » (6.87)

where the last inequality follows applying Proposition 6.3.1. In order to show that the first term in (6.87) is

bounded, we note that

1 - O
[v.02] = (vﬁ) 92 +e (vﬂ"‘) o5, (6.88)

p p

and we consider the following Proposition.

Proposition 6.3.2. Let f(z) be a smooth function such that
1£(2)| < cre 2Pl for some ¢; € R, ¢; >0 ,i=1,2, and supp(f) cT. (6.89)
The operator [V,0%], where 8% is defined in (2.67), is bounded on the space
Y = span{f(z)Oy | kex,}, (6.90)
i.e., there exists C' >0, C independent of € and f, such that
| [v-02]v ||L2(Q) <CeMvllpa gy » (6.91)

for everyveY.

Proof. Fix X\, € p(0?), where p(0?) is the resolvent set of the co-dimeanion two Laplacian operator, and,

without loss of generality, assume that A* = 0. The operator 8(2; can be written as

1 O 1 o7
0= — 02+’ 59;"65 = — P et %“as(ag)-l(af). (6.92)
Ip Ip JIp Ip
Let v € Y such that f # g, then v takes the form,
v=f(2)0(s), ©:=3 ;0 (6.93)
jex

and, without loss of generality, [v|12(q) = 1.
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Taking the L?(Q)-norm of 9,Aq acting on v yields

1720830l 2 oy = || (V=5 >62v+svz< = o, (7)) (6.94)
P L2(Q)
(V= )12 1026 12q (6.95)
p L= (Q)
0, ) _
el|v.(Z2E Jsff)f(z) 10:02) 7 oo 1028 ]
Le=(Q)
_ 1 _ -
<e 2Cl (Vzﬁ)f(z) |‘@’|L2(Q)+€ 1CQH'UHL?(Q)v (6.96)
P L=(Q)

where the first inequality follows from the triangle inequality combined with the generalized Holder inequality.

Note that
1 1,1
s= = ( )R , (6.97)
J2 2J3
which implies that there exists ¢ independent of € such that
1
H (V2=)f(2) < ecs. (6.98)
Ip Le=(Q)
Plugging (6.98) into (6.96) yields
|| (v.0&)v ||L2(Q) <eleal|vllpaqy, forveXs, (6.99)
and we conclude that
2 -1
V202 || 2 () < Ce ™' on Y. (6.100)
|
Returning to (6.87), and using Proposition 6.3.2, we have
*|| 1D, (0¢v) HLZ(Q) <ecr||vllpzq) - (6.101)
Plugging (6.101) and into the right-hand side of (6.83) yields
T2 3| 1792 2|75 2
HH‘CP,UHLQ(Q) <cel|vllpz) + € HH@GDZUHLQ(Q) te ||H)\p108GvHL2(Q) (6.102)

+e* || og (95 v) (= ML(0%v) [

() (DN
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The second term in (6.102) involves the operator % D,. Using the definitions of 02 and D, given in (2.67)

and (2.66), respectively, we can write

. . . .
0%D,v = 02, (~Vzv) = 2 (02(Vav)) + (ag’f) V. + 20, (“) -9,V 0. (6.103)
JP JP JP JP
Taking the L?*(Q)-norm yields
1020202 e - ’f(ag(vzv>)+(ag’f)vzv+zas(*f)asvzv , (6.101)
Ip Jp Jp L2(Q)
< || = (92(v.0v)) t (ag?)vzu 12 as(f”)asvzv . (6.105)
Ip L2() Jp L2(Q) Jp L2(Q)
R i _
AEN 1) agey + (a2~)vz(f(z)) 160]2ce, (6.106)
Ip Il e Jp L=(Q)
K
+2|0s 7 ||6svzv||L2(Q)7
p/ L)
<e2er[[vllgagay * €210l 2oy (6.107)
R -2 2
" (95(j) 1923 )||12—>l2||asvzv||L2(Q)’
p/ L= ()
<eCllvllpaga) (6.108)

where the first inequality is the triangle inequality, for the second inequality we use Holder and the third in-
equality follows from Lemma 6.3.1, combined with the assumption that x € W2 > .Plugging (6.108) into (6.102)

yields

2 2| 2 41192 (52 2|75 2

| T1L2v ||L2(m <ce||vl 2y + €7 || T, 0020 ||L2(Q) +e* || 110g (9gv) ||L2(Q) +e?|| IL(0¢v) ||L2(Q) (6.109)

Proposition 6.3.1 shows that the second term in (6.109) is bounded as an operator in the L?(Q) norm with
52||ﬁ,\p,oa?;v||m(m < coe||v]l 2y » (6.110)

and (6.109) reduces to

ITL30 |20y <cellvllLaqay + € |TIOZ(0E) || 2 gy + € ITILCOG) [ 12y - (6.111)

The bound on the second term in the right-hand side of (6.111) follows from the following lemma
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Lemma 6.1. Let v e Xy,

v = Z bj@jwo, (6112)

jex

with v] g2y = 1. Then there exists C >0 such that
||ﬁaé(aév)||L2(m <Ce vl pacqy - (6.113)
Proof. There exists ¢, independent of ¢, such that
1020|200y < e 110l 2y (6.114)

Fix A, € p(9?), where p(0?) is the resolvent set of the second order operator. without loss of generality,

assume \* = 0. Then, first we write the operator 0% (024 v) explicitly -

1 1 K-z /<; z
O2(020) = = | (92 =)0? +2(0, = )? Ta4+ ? 02 6.115
G( GU) Jg [( ng) s ( ) p € J J3 ) ( )

p P p

celfZ 8Si 8§+5i8§ v+e? (H Z)2 2 (8 )85 v,
J3 J2 J2 J3 J3

+(2}(as})+g}“§z +52”~'Z})a§ (6.116)

+(~(a§})+g~(asf)+gf(a LyiepEz ))

To bound the first term on the right-hand side of equation (6.116), note that the Taylor expansion ji can

4
be written as
1 )
=" 1+eR, R=R(zR)= Z(J4 ) - 1. (6.117)
P =0

and we obtain the bound

i 0 i} i
< | 0tttz F IR ey 06| ey < 172 N0l - (6.118)

1
J 12(9)

P

Similarly, as long as & € W1 then we have

Hﬁ(zg(as}2>+g}2't;+g'i;}2)agv
J2U g2 T3 J2

p

<cre” vl pagay - (6.119)
L2(Q)
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To bound the second operator on the right-hand side of equation (6.116) we require that # € W2, then

- [ 1 1 1 K-z K-z 1 K-z _
Hn(ﬁ(af 7RO ey O >2)3§” < ollpys (0420
p p p p p p P L2(Q)
and similarly,
1 K-z K-z K-z _
‘ (Eﬁ(aszjs) 52?( 8 ))8SU <cae vl (6.121)
p p p p L2(Q)

Plugging (6.118), (6.119), (6.120) and (6.121) back into (6.116) we obtain the bound

|| 1% (9¢.v) ||L2(Q) <Ce™||v]| 20y - (6.122)

Combining Lemma 6.1 and equation (6.111) yields

ITL30 20y < €€l 2y + € [TIL(AGY) [[ 2 - (6.123)
Consider the second term in (6.123), and note that W (U,) commutes with 9%. Then
® | TIL(0¢v) HLz(Q) =2 ||TI(A, - W (U,))(0gv) me : (6.124)
< | T[A0810 || g + €2 | 2[V2081 (Vo) [[ o) + €° ITIOG L0 [ 12, (6.125)
< || TAE 0| o g +€* [|2TV2081(V0) || o) + 2 [ Ap0TTOZV [ 2y > (6:126)
<e? || ﬁ[Azaé]U ||L2(Q) + e8| v ||L2(Q) +ce v ||L2(Q) ) (6.127)

where the last inequality follows from Propositions 6.3.1 and 6.3.2. The first term in (6.127) has the following

bound
.A 2 u‘) 2 .‘) 2 .4'
T2 ey < ||| QLA g (L) R (LD -R)2 R, 0 . (6.128)
Gl (@) 6.4 3.J4 12.J5
p p p L2(Q)
<ciel|vllpzqay (6.129)

for some ¢; independent of ¢ (The explicit calculation is similar to that of Propositions 6.3.1 and 6.3.2).

Plugging (6.128) into (6.127) yields

® | TIL(9v) ”L2(9> <csellvlleq) - (6.130)
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Plugging equation (6.130) into (6.123) we obtain the required bound

||fu:§u||L2(m <eCllvllpay, forveXs (6.131)

where C is independent of ¢, but it depend upon || ||« gy, Which is uniformly bounded for I', admissible.

6.3.3 Bounding fIIL.pH

Finally, the following Proposition shows that the operator f[]LPH is bounded.
Proposition 6.3.3. The operator TIL,IT : 2(RV*N) s 12(RV*NY) has an O(e) operator norm.

Proof. Let v e X5, v =Y b;j100; with |v]12(q) = 1. In particular,
Iy = v, v =0, (6.132)

where II is the projection onto Xy and II is the complementary projection.

Fix X, € p(L}), where p(L2) is the resolvent set of £2, and rewrite L, in the following way
Ly =L2+el, = (L2 -X.) +eLy(L£2 - A) 7 (L2 - X) + A (6.133)

Taking the L?-norm of IILIT acting on v yields

[T, [| . ) = 1 TECL5 = A )o + eTIL(L = X)L = Ao | o g - (6.134)
<||TL2v ||L2(Q) +e||TIL(LE - A) H(IT+ ) (L2 - As)v ||L2(Q) , (6.135)
<||TL2v ||L2(Q) (6.136)
+g(||11:(c§ “ ALY = Ao | oy + IL(LE = X)L - A*)v||L2(Q)),
<[TL50 | 2 g (6.137)

+e ([T -2 L0 | oy + IECLE =27 o o 1TEEZ0 |2

1||L2(Q)| (Q))'

()

Since L is relatively bounded with respect to E;, the operator H:(ﬁf, -A+) 7! has an O(¢) bound as an operator

from 12(RV*N) to 12(RV*N). In section 6.3.2 we have shown that

| TL2TT|,, < ce. (6.138)

Therefore, combining bound (6.138) with the boundedness of ||i(£12) - ) an inspection of equa-

i
LZ?
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tion (6.137) yields

| LI ||, <ée ((1+e) ||l +|| L0 ]],,) (6.139)

To complete the bound on ||1:H[4][,1_I||L2 we need show that ||1_I£]?,H||L2 is bounded. Using the definition

of II, (6.14), we can rewrite the operator IIL2ITv as

ILOIL Y bjhoOk = 3. 3 b (L5100, 40Ok 12 40Ok, (6.140)

jex keX jeX

and define its matrix representation M € RN*N  where N ~ O(e7%/?), with entries
M= (L3100;,%00%) ., - (6.141)

Calculating ngu explicitly, we can write M = Mdiag + Moff_diag where

_ (Apo—€Br)?+0(e?) if k=],
Mging = (6.142)
0 if k=#7,
B 0 if k=,
Moff—diag = (6143)
e2/2(Py + P}) i[5 (2 B - (Vbo)oOO; dzds + O(e) if k # §,

see appendix (E.3) for detailed calculations. By Theorem 5.2 we know that Moff_diag has an O(e) bound
as an operator from [2(RYN) to 12(RV*N). Moreover, we consider k € & for which (A, —€%8;)? ~ O(¢).

Hence, M and Mgisg has a similar bound and

[TL50 ]|, < cellv]lLe - (6.144)
Inserting this bound back to (6.139) yields

[TILI [, <ecllvllp. (6.145)
which implies that IIL,II has an O(e) bound as an operator I2(RV*V) — [2(RV*N). ]

Recall the 2 x 2 block form of L, (6.15). In this section we have shown that the off diagonal blocks has O(e)

bound as operators from I2(RV*N) — [2(RV*N). The next step in the analysis will be to show that, at
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leading order, the spectrum of L. is determined by the spectrum of M. However, we already proved this
for the Bilayer, and since the analysis does not depend upon the interface co-dimension, the same result
holds here. We conclude that the pearling stability condition of L, for the co-dimension 2 structure is, at
leading order, the pearling condition of M, given in Corollary 6.2.2. That is, we have shown that for a given
admissible interface, I',, the associated pore solution constructed in (2.75), is stable with respect to the
pearling bifurcation if and only if the far-field chemical potential p, satisfies the pearling stability condition

stated in Theorem 6.0.2.
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Chapter 7

Analysis of Network Bifurcations

7.1 Introduction

In the chapters 3 and 4 we develop asymptotic expressions for the geometric evolution of admissible bilayer
and pore morphologies. These are quenched curvature driven flows, which yield a stable motion by mean
curvature for values of the spatially constant chemical potential, y, that are less than p; for bilayers and
less than p,, for pores. If the chemical potential exceeds either of these critical values, then the evolution
becomes motion against mean curvature, which is unstable to fingering growths. In section 4.7, the combined
evolution of well separated bilayers and pores is given by equations (4.166-4.169), which couple the evolution
of the two morphologies through the spatially constant value of the far-field chemical potential. The stability
of bilayers and pores to the pearling bifurcation is characterized in chapters 5 and 6, respectively. Again
the stability condition can be expressed in terms of the magnitude of the far field chemical potential with
respect to critical values that depend only upon the functionalization parameters, 72,72 and the potential
well W. As the stability of the underlying pore and bilayer morphologies is independent of their shape, for
a fixed potential well W, we may analyze the stability regions of bilayers and pores with respect to ui, 71,
and 7. For simplicity we fix 71 = 1 and present the stability regions in terms of puy and ng = 11 — 2.
Under the H™! gradient flow the chemical potential p1 is dynamic on the 7= O(¢7!) time-scale. This is the
same time scale as the geometric flow, and hence of the fingering instability. However the time scale of the
pearling instability is governed by the pearling eigenvalues of AL which are two orders of ¢ larger than the
pearling eigenvalues of L, that is they scale with O(¢7!) and the time-scale of the of the onset of the pearling
instability is ¢ = O(¢). Thus the pearling instability manifests itself on a time scale that is instantaneous

with respect to the underlying geometric evolution.
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7.2 Meandering Equilibria

We investigated the geometric evolution of co-dimensions one and two morphologies in Chapters 3 and 4. It
was shown that, in the combined system, so long as the underlying network morphologies remain admissible
and have non-zero curvature, then the leading order chemical potential p; will decay exponentially to a
constant, see equation (4.165). The explicit expression for the equilibria points of the chemical potential for

a system with bilayers, y;, and for a system with pores, p;, takes the form

A 2
(3.116) = py(na) := 1(277 Nd) Uil (7.1)
. : = 1 — P~ E— .
’ 2 Jo Uy dz
J (UL)?RdR
4.149) : pf(ng) = mo—pl """ 7.2
( ) ¢ pp(na) =m 2 [0, RdR (7.2)

According to the results in Section 4.7, for non-flat interfaces, the range y1 € [u,,, 1] is invariant under the
flow, and once p; enters this range one structure will shrink, while the other morphology will grow.
Once a double-well potential W, has been chosen, see equation (7.10), we can calculate the bilayer and pore

profiles, Uy and U, from equations 2.37 and 2.75 respectively, see Figure 7.1.

Bilayer Profile for different potentials Pore Profile for different potentials

—t=05 —&=-05
---£=-0.7 ---8=-07
‘‘‘‘‘ £=-0.9 -=E=-0.9

8 10 12 14 16 18 20

Figure 7.1: The bilayer profile (left) and the pore profile (right) corresponding to the fixed tilted double-well
potential W

The functionalization parameter 72 plays an important rule: since it can be either positive or negative it will
determine the relative size of p; and p,, and so we consider 72 as a free parameter through 74. Once the
well, W, and n; are fixed, the only two varying parameters in the system are p; and 7. Figure 7.2 depicts
the equilibria points, of the two structures, as a function of 14. The two equilibria lines intersect and divide

the plane into four regions: above the two lines - both structures grow, and the chemical potential decays,
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Meandering Equilibria, &=-0.9

0.2 T T T T T T
Y Y Y Y Y Y VY Y Y Y Y Y OYY
Y Y Y Y Y Y Y Y Y YV OYY
Y Y Y Y Y Y Y Y Y YOV oY
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§ v Y Y Y YOV OV Pores grow & finger
< VY Y Y ov oy
g Bilayersgrow&ﬁnger A A A A 4 4 4 44
g -02 Pores shrink A A A A A A 4 A A4
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T S S N N
T
Mg

Figure 7.2: The meandering equilibria lines: The blue (solid) line is for the bilayer system, u;, and the
red (dashed) line is for the pore system ju, as a function of 74, where 7, = 1 fixed and a fixed double-well
potential.

below the two lines - both structures shrink, and the chemical potential grows, and two regions between the
two lines, where one structure grows and the second decays. The intersection point of the two equilibria

lines is given by

. ::m(1+ 1UPll, Ul )]Rﬁbdz) -
[°U, RAR 2 [y Uydz ) ||Uy I

and, after choosing W and 7, the intersection point, 7}, is fixed. For this specific value of 74 the strong
FCH may, at leading order, support a coexistence of the two morphologies. However, for any value of nq > n}

the system gives priority to pores, and, similarly, when 7y < n the system prefers bilayers.

7.3 Pearling Stability

In Chapters 5 and 6 we derived an explicit leading order expression for the pearling eigenvalues. The pearling
stability condition is the condition on p; for which the pearling eigenvalues remain positive. The pearling

stability conditions, for the bilayers and the pores, respectively, take the form

(5.2.3) = p1Sp+nar0 b0 ||§ <0, for bilayers (7.4)

(6.2.2) = 1Sy + 14 (|| Yy 0 ||2LR + X0 |[%p.0 ||iR) <0, for pores, (7.5)
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where A o is the ground-state eigenvalue of the linear operator Ly o , defined in (1.29), with the corresponding
eigenfunction ¥4 0, Ap o is the ground state eigenvalue of the linear operator Ly, o, defined in (2.81), with the
corresponding eigenfunction v, o, and Sy, S), are the shape factors of the bilayers and the pores, respectively,

defined by

(5.41) Syi= [ @o W (U0 dz. (7.6)

(6.33) S, := 2r fo By W (U,) 42, RAR. (7.7)

Within the pp — 14 plane the pearling bifurcation occurs along the two ”pearling bifurcation lines’

(52.3) . Pb*

2
iy = _1dAb,0 1n.0 15
T

Nd € R} y (78)

na (%507, + Aol ¥nollz,)
SP

(6.22) « Py =1p1=- ngeR}. (7.9)

The sign of shape factors Sy, S, determines if the morphology is pearling stable when p is above the

pearling bifurcation lines Py, Py, or if the morphology pearls.

7.4 Numerical Evaluation of Bifurcation Regions

In this section we numerically determine the pearling lines and the meander stability /meander fingering lines
and present their partitioning of the p; — ng plane. We fix the background state, b_, to be —1, and choose a

tilted double-well potential of the form

(1) ¢

We(u) = 1 g(u -2b_), (7.10)

where the parameter ¢ determines the depth of the right well. We consider 3 different well tilts, corresponding
to £ =-0.9,-0.7,-0.5, see Figure 7.3. We start by fixing £ = -0.9.

To calculate each of the stability lines we must evaluate the ground state eigenvalue, the ground state
eigenfunctions, and the value of the shape factor. We use the Evans functions to calculate the ground state
eigenvalues, and for the potential defined in (7.10) we find that Ay ¢ = 0.7421 and A, o = 0.4648. We normalize
the associated eigenfunctions so that || .o ||§ = || ¢p.0 ||iR =1, see Figure 7.4. Next, to evaluate the shape
factors S; and S, we need an expression for the "L™'1 functions” ®,; := Lb"loland D, = L;}Ol, defined

in (2.40) and (2.86), respectively, and depicted in Figure 7.5, and the resulting values for the shape factors
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Tilted double—well potentials, different & values
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0.8
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A0

Figure 7.3: The tilted double-well potential W (u).

Bilayer Ground-State Eigenfunction Pore Ground-State Eigenfunction
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04r
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0.3r
0.1

021
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Figure 7.4: The ground state eigenfunctions: i, o (left) and ¢, o (right).

are given in Table 7.1. The pearling bifurcation lines divide the @ — ng plane into four regions, when both
shape factors are negative. The first region - above the two lines, both morphologies are pearling stable,
second region - below the two lines, both morphologies are pearling unstable, the third region where the
bilayer is pearling unstable while the pore is stable and the fourth region it is vise versa, see Figure 7.6
(left). The equilibria lines, u;(14) and p,;(nq), defined in equations (7.1) and (7.2) are also functions of 7q,
and figure 7.6 (right) shows the partitioning of the plane from all four lines. The invariant interval for p;
is between the two horizontal lines, where the blue (solid) line represents the bilayer equilibria and the red
(solid) line represents the pore equilibria line.

Recalling that the parameter p; is dynamic on the slow 7 = &t time scale, we consider initial data for which

the chemical potential y; lies within the region where both morphologies are pearling stable and are growing,
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............................................
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Figure 7.5: The L™'1 functions: ®; 1 (left) and @, (right).

5 Sb Sp

-0.9 || -2.1958 | -0.0431
-0.7 || -0.616 | -0.033
-0.5 || 0.8736 | -2.1756

Table 7.1: Numerical evaluations of the shape factor of the bilayers Sy and the shape factor of the pores S,
as a function of the tilt of the double well potential W (u).

see arrow on Figure 7.6 (right). Then for ny < 0 the chemical potential will shrink while both the bilayer and
pore morphologies, I', and I'y,, will grow, while they may finger, this is a slow process which can be dominated
by the evolution of p if the curvature weighted integrals in (4.168) are sufficiently large. Assuming that
both morphologies remain admissible, then at some time ¢ ~ O(¢7!) the chemical potential will cross the Py
line, and the bilayers will pearl on a fast O(g) time-scale.

Generically the coupled bilayer and pore evolution is competitive, with the two morphologies seeking in-
compatible values of the far-field chemical potential at equilibrium. However, by tuning the value of 7y,
the equilibrium values can balance, i = i, and the codimension one and two morphologies can potentially
co-exist. The green circle in Figure 7.6 marked the location of a common equilibria, and for the specific
double-well potential, with & = 0.9, we see that the equilibria point is located in the pearling stable region.
For this value of 74, and an initial value of u; below the equilibria point, the two morphologies with shrink,
until reaching the equilibria, without suffering from pearling instability or meandering instability.

For a double tilted well potential W with £ = —0.7 the results are qualitatively same as the case & = -0.9.

The values of the shape factors are indicated in Table 7.1 and Figure 7.7 (above) depicts the division of

the p1 —ng plane by the four meandering equilibria/pearling bifurcation lines.
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Figure 7.6: Pearling bifurcation lines as a function of n; (top left), Pearling and Equilibria lines (top right),
the co-existence equilibria is marked by a green circle. Zooming onto the black circle in the figure on the

right (bottom center).

We consider an even more flattened tilted double well potential W, with £ = -0.5. In this case, the value

the shape factor of the bilayer is positive, see Table 7.1. The change in the sign of S, implies that the

bilayer morphology is stable as long as p; lies below P;. Furthermore, the shape factor of the pore remains
negative and the pore structure is stable for 11 above P;. For 1y close to zero, the area where both structures
are pearling stable is located inside the dynamically invariant interval. The chemical potential will decay to
its equilibria, and will stay inside the interval, while the pores will shrink, and the bilayers will grow. As pu;

decays, it will cross the pore bifurcation line, P, which will cause the pore structure to pearl before the

system reached its equilibria, see Figure 7.7 (bottom).

Note 8. The choice of the potential We influence the sign of Sy. By changing the potential tilt, we are able

to change the sign of Sy. If the shape factor is identically zero, the corresponding pearling bifurcation line
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Figure 7.7: The two equilibria lines and the two bifurcation lines for a double tilted well with £ = —-0.7
(top) and with £ = -0.5 (bottom).

will be vertical in the uy —ng plane.
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7.5 Comparison to Experiment and Full FCH simulations

The Functionalized Cahn-Hilliard free energy provides a compact description of the energy landscape driving
morphological selection in amphiphilic mixtures, such as lipid bilayers. We have shown that the strength of
the interactions of the hydrophilic units with the solvent phase, parameterized by n; > 0, the packing entropy
of the hydrophobic tails, parameterized by 72, and the pressure jump between amphiphilic and hydrophobic
phases, characterized by the difference in self energies, W(b.) of the amphiphilic and bulk phases, can
trigger a range of bifurcations. Specifically the fingering and pearling instabilities observed experimentally
in [Budin and Szostak, 2011] and [Zhu et al., 2012] by adjusting the bulk values of lipids and the charge
density of the lipids, respectively, can be induced in the FCH framework by varying the corresponding
control parameters. The fingerling instability is triggered by a jump in the value of the chemical potential p.
Assuming we start with the combined system at its equilibria point, and instantaneously increase p1. Then,
at least one morphology will start growing, as u; decays back to its equilibria, and this morphology may

start fingering, see Figure 7.8 (left). On the other hand, the pearling instability can be triggered by an
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Figure 7.8: (left) Increasing the background state p; moves the black point from its equilibria, which
results in growth of both morphologies. (right) Szostak’s experiment: raising the background concentration
of lipids induces the vesicle to grow worm-like (co-dimension two) protrusions over a 74 nano-second time

period [Budin and Szostak, 2011]

increase in 1y which moves the system from its equilibria in a pearling stable region into a pearling unstable

region, see figure 7.9 (left).
Another way to change the stability of a system is by changing the tilt of the double-well potential. Fig-
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Figure 7.9: (left) Increasing 1y moves the black point to a different pearling stability area, which quickly
(right) Changing the density of charged groups on the surface via a

leads to pearling in the bilayers.
photochemically induced redox reaction incites the pore to pearl and break into micelles [Zhu et al., 2012].

ure 7.10 describes the numerical results for £ = -0.7 (left) for £ = -0.9 (right), where the green dot marks the
initial data for which the functionalization terms satisfy 1y = —1 and the chemical potential, at the initial
state, is p1(0) = —0.4. For £ = 0.7 the green dot is located at a region which is both pearling stable and me-
andering stable. According to the analysis, starting with a combined system, with initial data corresponding
to the green dot, both morphologies will shrink while p; grows until 1 = p;, and both structures should
remain pearling stable. However, for £ = —0.9, the same green dot would be located in a region corresponding
to meandering stability, i.e., the two structures will shrink, however, the region is pearling unstable for the
bilayer. These results are in concord with Figure 1.10 which describes the competition for the amphiphilic
phase between a bilayer and pores as a function of the tilt.
There are however many avenues to explore, for example the pearling bifurcation induces a periodic dimpling
of a bilayer surface which can lead to perforation. Within the biological context of cell membranes, it is
of particular interest to understand the energy required to open a single hole. Can a local adjustment of

parameter values, such as a spatial variation in 7, induce the opening of isolated holes in the membrane?
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Figure 7.10: Pearling and meandering stability regions for different tilts of the potential W¢. For the flat
tilt € = -0.7, the green dot is both meandering and prealing stable (left). For & = —0.9, the green dot is
located in the bilayer unstable pearling region.

7.6 Verifying the Numerical Results

To verify the numerical results presented here, we compare the numerical value of the shape factor, Sp,
as well as the numerical values of other key parameters, to the value of their algebraic expressions, given
in [Doelman et al., 2014]. It was shown by [Doelman et al., 2014] that the shape factor Sp, of the bilayer is

negative for a family of tilted double-well potentials of the form
Wy (u) = Wy (u+ 1) +20(u — 1, + 1)P H(u — 17, + 1), (7.11)

where

= 1 =
W, (u) :== —— (pu? - 2uP), =275, 7.12
o) = o (= 2u), -y = (7.12)

H is the Heaviside function and p > 2. Figure 7.11 depicts W3. Moreover, in [Doelman et al., 2014] algebraic

expressions are derived for key quantities, which we repeat in the following Lemma.

Lemma 7.1 ([Doelman et al., 2014]). Fiz p > 2 and let Uy, be the homoclinic solution of 02U, = W'(Uy)

for W =W,. Then the ground state eigenvalue of the linearized operator Ly o, defined in (1.29), satisfies
1
Abo = ip(p +2)> 0. (7.13)
Moreover, the following equalities hold

2 pt2 2
U; = = ——my° I( ), 7.14
|| b||L2(Q) ||¢b70||L2(Q) \/mmp p_2 ( )
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Tilted double—well potential

Figure 7.11: A tilted double-well potential of the form (7.11) for p = 3 (blue) and of the form (7.10)
for £ =-0.9 (red).

where I(q) =44 fol 29(1 - 2)9dz, while the shape factor Sy satisfy

PR O (L) _

7.15
(g (7.15)

For p = 3, we use W3 to obtain the values of A, o, ||U; ||L2(Q) and S, numerically and compare them to the

algebraic values, given in Lemma 7.1. The results are shown in table 7.2.

Parameter || Numerical Value | Algebraic value

Ab.o 7.4985 7.5
103 1|20y 2.9394 2.9394
S, -7.3242 -7.3485

Table 7.2: Numerical evaluations of the key parameters compared to their algebraic values, for the double
well potential W5(u).

Note that the tilted double-well potential W, defined in (7.10), does not belong to this class of potentials,
defined in (7.11). The double well potentials given by (refNV-eq:Arjen W) have strongly unequal depths of
the two local minima and a larger value for the local maxima between them. The value of S, turns positive

for We as the value of the local minima become proximal and the height of the local maxima decreases.
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Appendix A

Coordinates System

A.1 Polar Coordinates

The co-dimension 2 morphologies can be formed from cylindrically, symmetric critical points of the Cahn-

Hilliard free energy. In polar coordinates, the scaled destance vector z is given by
z=(Rcosl , Rsind), (A1)

where R is the e-scaled radial distance to I',. We rewrite the z-gradient and the z-Laplace operators in polar

coordinates

V. = (cos00g — %sin 00y , sinfop + %COS 00y), (A.2)
1 1
Az = 8% + EaR + ﬁag (A3)

For radial symmetric functions the gradient (A.2) and the Laplacian (A.3) reduce to

V. =(cos00g , sinbog), (A.4)

A, =0%+ %ag. (A.5)

Plugging (A.5) into (2.70), we obtain a radially symmetric representation of the Laplacian in the inner

coordinates

A, =& (a; . %aﬁ,) R (cos 00 , sinfdp)+ 0% — (2- B)ii- V. + O(c), (A.6)
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A.2 Detailed investigation of the spectrum of L.

Consider the linear, closed, limit operator
Lp oo i= 02 = W" (D). (A7)

According to Strum-Liouville Theory for operators on the real line, the point spectrum of Ly » consists of

finite number of simple eigenvalues which can be enumerated in a strictly descending order

Ao > A > > Ay > W(bD). (A.8)
We define the matrix
0 1
A= (A.9)
A-W"(b-) 0

The matrix eigenvalues are given by

fhs = /W7 (b_) = . (A.10)

The essential spectrum of Ly o, satisfies
Oess(Lboo) = {NeR = dimE°(A(N)) #0} = W"(b.). (A.11)

Note that Ly o is the limit operator of Ly o, defined in (2.39), and Ly ¢ is a close, linear operator. Moreover,

since the operator
(Lb,0 = Lv,oo) (Lo = M) ™ = (W (Up) = W (b-)) (Lbyo = As) ™! (A.12)

is a compact for every A. € 0(Lyp,)), we know that L is a relatively compact perturbation of Ly . We
apply Weyl’s Theorem to conclude
Cress(Lb,oo) = Cress(Lb,O)- (A13)

A.3 Self-adjoint operators

Consider the L?(Q) inner product defined in (2.73) and the two operators Ly := 2 - W (u) + e2A, and the

full operator Ly = 02 +ekd, - W' (u) +e2A¢. The Laplace-beltrami operator is not self-adjoint in this inner
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product,

I\e - I\e ~
(Asf7g)L2(Q) = fF /l\ gJ(;lvs : (g_ljovs)f JoJ dzds = _/I.‘fl\ g_lJOvs(gJ) Vsfdzds (A.14)

I\e N
= A [l\s Vs(gflJOVs(gJ))dedS * (f?ASg)LQ(Q) (A15)

although it is self-adjoint in the I'y-inner product. However, A¢ is self-adjoint in the L?(Q) inner product.

l\e e

(Aaf )i = fr 97 Ve (87 f T dzds = - fr L\E g ' IV(9)-V,fdzds (A.16)
I\e

- fr L\E Va(g ' IVa(9)) fdzds = (f,Aag) 2o (A7)

Calculating the L?(f2)-inner product to the rest of the terms in the operator £ yields,

l\e Ne I\e
(02f,9)12(0) = fF[l\a f"gJ dzds = [F[l\e f(gJ)"dzds = /F[l\a fg"J+2fg"J + fgJ"dzds  (A.18)

I\e I\e I\e
=(f,029)12(0) +25A[l\s fg'/dezds+£fF [l\s fgrk'J dzds + €2 fr [l\s fgr?J dzds,
(A.19)

I\e e I\e
e(kO:f,9)12(0) :Eff ﬁf’ngZdSIE/f f(gJH)'dzds:—f[ ferg'J +efgJr’ + fgerJ dzds
rJ-l\e rJ-l\e T J-l\e

(A.20)

I\e I\e
= —e(f,k0.9)12(0) — € / fgrk'J dzds — €2 [ [ fgr?J dzds. (A.21)
T J-l\e T J-l\e

Each of the terms separately is not self-adjoint in the L?(Q)-inner product, however their sum satisfies

(O2f +erd.f,9) 120y = (f.029 +€K0.9) 12(0)-

Therefore, our full operator £ is self-adjoint in the L?(2)-inner product where the £, operator is not.
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Appendix B

Geometric Evolution Co-dimension 1

B.1 Outer expansion of the 15t variation of F

Recall that the 15 variation of F is given by

oF 2 " 2 / /

E(u) =[(-e*A+ W"(u) —em) (-e*Au+ W' (u)) +engW' (u)]. (B.1)
Plugging a formal expansion of u(z) = ug(x) + eui(z) + ... and expanding yields

(-*A+W"(u) —em) (-e*Au+ W' (u)) +engW'(u) = (B.2)
1 nr nr 1 mnr

(-2 W7 o) 20 s = 1) + 2 (V" () + S W (oY) + . )

(—52(Au0 +eAuy + 2 Aug) + W' (ug) + W (uo)ur + (W (ug)usg + %W’"(uo)u%) + )

1
reng (W’(uo) W (g Yy + (W (uo)uz + 5 W (o)) + ) .

Since p(zx,t) := %(u) we can rewrite it in order of € such that

2 () = ol )+ g (1) + a1 + O(), (8.3

where
fo =W" (ug) W' (uo), (B.4)
pr =(W" (uo)ur =)W' (u) + (W (u0))*ur + naW' (uo), (B.5)
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H2 = (_A + W (ug)ug + %Wm)(uo)m) W' (uo) + (W (uo)uy =) W" (uo)us (B.6)

1
+ W (ug) (—Auo + W (ug)us + §W"'(u0)u%) +naW" (ug)uy

B.2 Inner expansion of the t-derivative of u

To get an expression for the left-hand side using the whiskered coordinates we take the t-derivative of u and
consider u = (s, z,7). Treating both s and z as functions of ¢, the use of the chain rule is required, and

results in

0z 0t Ot Ot

up = VS - Vsl + (B.7)

Assuming that v do not change when s varies normal to I', with z held fixed, see equation (??), and using

the normal velocity,defined in (3.9), equation (B.7) reduces to

% = 'V, (s)

ou ouor

Expanding @ in orders of € such that (s, z,7) = (s, 2,7) + €1 (s, z,7) + O(e?) and plugging it back into

equation (B.8) yields

ou _ 8’&0 8121 5‘120 or 8122 8&1 % .

-1
e W) == -V (s)—— + —— =V, (s)=—=+ — B.9
S MO Sl ma v S i (B.9)
B.3 Inner expansion of the 18t variation of F
Recall that the 15% variation of F is given by
E _ 2 ” 2 / /
5 (u) = (—*A+ W' (u) —em) (~e*Au+ W' (u)) + engW' (w), (B.10)
u
and the chemical potential p is defined by
oOF
pi= = (u). (B.11)
u
At a given time scale 7, the inner spatial expansion for the density function u(t,x) is given by
u(x,t) = ig(s, 2,7) + iy (s, 2,7) + 21U (5, 2,7) + ..., (B.12)
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and in local coordinates, recall that the Laplacian operator, see (2.9), takes the form
24 _ 92 2
A, =0, +er0, +"Ag. (B.13)
First, consider an expansion of each of the terms on the right-hand side of (B.10) :

A =- 0%~ eHy0, - *(zH10, + Ay) — A1 + ..., (B.14)
2 Al = — %1y — e(0%0y + Hod.1ig) — €2 (021 + Hod, iy + 2H, 0110 + Agilg)
— (0203 + HoOlig + 2H, 0,0 + Agiiy + Aqiig) + ... (B.15)
W (@) =W (iio) + eW"™ (iio) iy + 52[W"’(ﬂ0)ﬁ2 + %W“)(ao)ﬁf]
+ X[ W (g Yus + WD (it )iy iz + éw<5>(ao)a§] +O@Y) | (B.16)
W (@) =W (iio) + W (g )ity + 52[W"(a0)a2 + %W”’(ﬁo)ﬁ]

1
+ 53[W”(a0)a3 + W (g i dia + 6W<4)(ao)fff] +O(eh). (B.17)
Next, we collecting the terms and write them in order of €

(=2 A+ W () - en) (=02 + W (ii0)) (B.18)
+e(=Hod. + W" (o)1 — 1)
e (—zHlaz C A+ W (i )il + %W(“) (ao)af)
el (—A1 W iio)ig + WD (it )ity g + %W@)(ao)a?) +O(eY),

(=2 A+ W (w)) =(~0%i0 + W (iio)) (B.19)
+£ (—83’&1 - Hoazﬂo + W”(ﬂo)ﬂl)

1
+ 62 (—83112 - Hoazﬁl - leazﬁo - Asﬂo + W”(’&Q)ﬁg + §W”’(ﬁ0)af)
+ 53( - agﬂg - Hgazﬂ2 - leﬁzﬂl - Asﬂl - Al’ao
1
+ W (g)ig + W (i) @iy g + BW(“) (ao)ai’)

+0(eh).
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Using expansion (B.18) and (B.19) we can rewrite the 15¢ variation of F in the following form

O () = (s, 2, 7) + el (5,2,7) 4 2al5,2,7) + O(),

where [i; for i > 0 are the inner expansion of the chemical potential

,u(x,t) = ﬂ0(37277-) + 6&1(37Z7T) + 62/12(87'257—) T
given by

fio =(=02 + W" (o)) (—0%1i0 + W' (o)),

fin =(=02 + W (iig) ) (~Ho - ti — 021y + W (il )i )+
(—=Ho. + W"" (iig) iy =) (=020 + W' (i) +naW' (iio),

fia =(=02 + W (t10)) (=0%ig — 2H, 0719 — HoO. 11y — Agiig + W (g )iz + %W’”(ao)ﬂ%ﬁ
(=Hod= + W' (i) — 1) (=021 ~ HoOx o + W (i) ) +

1
(=2H1D: = Ay + W (ii0) 2 + 5 W (110) i) (-0 + W' (o)) + maW " (o),

and, merely from pedantic reasons (I don’t know if I use this term later on) we also have

(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

1
fis =(~0% + W (ip)) (La3 — HoB.tis — 2H10.111 — Ayt — Aviig + W (i) iy g + 6W<4> (ao)ai’) (B.25)

+ (—Hoaz + W’”(ﬂo)ﬂl - 771) (L’ag - Hoazfl,l - ZHlaZﬂo - Asﬂo + %W’”(ﬂo)ﬂ%)
1

+ (—zch?Z - AS + W,,I(ﬂo)ﬂg + §W(4) (ﬁo)ﬁ?) (L’ELl - Hoazﬂo)

(=0 W i) + W ()i + W) (10)a ) (020 + W ()

1
a (W0 + W7 ()22

B.4 Normal Velocity Calculations for 7 =¢t

Recall equation (3.91) given by

(—Hoasz,oﬂl +H0W”,(Ub)ﬂ1UZ;—771H0U1;+Zanul —VT(S)[ Ub(w) d’LU,UZ;) .
0 L2(R)
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To calculate each of the inner products we first note that the inner product of Ly g1, given in (3.76), with U}’

yields
- - z z
(Lo,ot1, Uy ) L2y :(M1<P1—Tld§Uz§7Ué')L2(R):Ml /R%Ué'dz—ﬁdfki((Ué)Q)'dZ (B.27)
z z
=i [ erLaoGUD dz—ma [ (1)) a (B.28)
- [ SUpdz—ma [ S(UD) dz (B.29)
R 2 R 4

H1 Nd N2
_m 74 B.30
: fRU(,dz+ ) [R(Ub) dz (B.30)
:—%m+%ab (B?’l)
(B.32)

where we use identity (B.43) to get (B.28), (B.29) follows from the fact that Lj ¢ is self-adjoint and (B.30)
follows from integrating by parts each of the integrals. The last equality we recall m; and o} are defined
in (1.50) and (3.94), respectively.

The first term in the inner product in equation (B.26) can be written as
(-Ho0, Ly ot1,U}) = Ho(Lp o1, Uy), (B.33)
and the second term in the inner product in equation (B.26) can be written as
(HoW"'(Uy)a1 Uy, Uy) = Ho(tiy, W"' (Up)(U})?) = Ho (@1, Ly,oUy') = Ho(Ly0t1, Uy) (B.34)
Summing these two inner product together yields
(~Hod. Ly ot + HoW" (Uy)ian Uy, U) = 2Ho(Lv,oiin, Up') = —Hopymy + Ho%ab, (B.35)

where the last equality we used equation (B.31). Calculating the integrals in the next two term in equa-

tion (B.26) yields

(=in HoUL, UL =~ Ho fR(U,;)2 dz = —ny Hyo, (B.36)

(20np1,U}) = Onpia /RZUZ; dz = =Opp1my, (B.37)

where for the last equality we integrated by parts. The last term in equation (B.26) involve the normal
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velocity V;(s)

(—VT(S)AZﬁb(w)dw,Ué) _ —VT(S)[R/OZUb(w)dngdz “Vi(s) [ 02 dz= V(o) By (B.38)

Setting equation (B.26) equal to zero, summarizing the calculation of each inner product and solving for V (s)

yields
Hopq + Onpir)mp + 2 H, +m9) o
Vo(s) = (Hopr + Onpir)mp + 5Ho (11 +12) b (B.39)
By
B.5 Useful Identities
Recall that Uy solves
W'(Uy) = 92U, (B.40)
Taking the z derivative of (B.40) yields
Ly oUy =0, (B.41)
and taking the z derivative again yields
Ly oUj' = W" (Uy)(U})?. (B.42)
In addition, direct calculation yields
Loo(3U5) = 92U (B.43)
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Appendix C

Geometric Evolution Co-dimension 2

C.1 Appendix : Detailed expansion of the FCH equation using
inner variables

We start by expanding each term on the right-hand side of (4.3) to obtain

2N =N, +eR-V, +e2(0? - (2-R)R-V.) + O(e?), (C.1)
—2Al = -Aiig — (ALt — R Vo) — 2(Asliy — K- Vil — 0%1g + (2 R)REVig) + O(?), (C.2)
W (@) = W (iio) + eW" (it )iy + 52[W’”(a0)a2 + %W“)(ao)aﬂ (C.3)

[ W g s + WO (it )iy i + %W“)(ao i+ O(<") (C.4)
W (@) = W (o) + W (il )ity + s“‘[w"(ao)ag + %W"’(ao)aﬂ (C.5)
+ X[ W (o) s + W (i) iz + éww (70)i] + O(="). (C.6)

Next, collecting the terms by orders of € yields

(—e2A+ W (u) —em) =(-A. + W (i) (C.7)
+e (R Vo + W ()i —m) (C.8)

ve? (af (2 R)R -V 4 W (il )iy + %W<4>(a0)a§) (C.9)

+0(e%), (C.10)

(=2 Au+ W' (w)) =(~Adg + W' (o)) (C.11)
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+e(—AZ121 + K- Vg +W”(ﬂ,0)ﬂ1) (0.12)
+e? (—Azﬂg + R Vo + 0% — (2 R)FR - Vig + W (Tlo) g + %W”’(ao)ﬁ) (C.13)

+0(e%). (C.14)

C.2 Appendix : Calculation of the solvability condition, 7 =<t

Recall that the operators L, ,, given in (2.81) are self-adjoint in the R-weighted inner product, introduced

in (2.74). We calculate each term of the R-weighted inner product of (Q1,U,)rL,, where

Qq:i=— Wik - qu)pJ + Nak - VZL;I(W/(UP)) + MlW”’(Up)@p,QR . szp (C15)

- ndWW(Up)Lz—)z(W,(Up))’% ' VzUp -k VzUp'
Calculation of the R-inner product of the first term in (C.15) yields

27 oo
(ulkvzq)p’l,alep)LR:[O [0 p1 (k1 cosb + kasin@) @ | (R)U,(R) cosRdR db (C.16)

27 oo oo
= [ cos?0a0 [ @) UjRdR = ks [ @) U RAR,
using integration by parts and identity (C.39), equation (C.16) reduces to

S 1
mrn | <I>;71U;RdR:—wmf<1>p71(U]gR)'dR:_wmlfcmep(§RU;)RdR (C.17)

_ _% f U R2dR = mjin sy f URAR = 715151,
where S is the total mass, defined in (4.70). Similarly,
2 oo
(41Fe- Vo ®p1, 05, U) Ly = fo fo (1.(k1 €080 + ko sin 0) ), | (R)) U'(R) sin ORARd0 = mpuy Sy (C.18)

Next we calculate the inner product of the 2"¢ term of Q;, (C.15), with 9,,U,. Recall that W'(U,) = AU,
and, using identity (C.42), we have L,"(W'(U,)) = L,'(A.U,) = 5RU,. Therefore, the second term takes

the form ngk - Vz(%RU ") and the inner product reduces to

1 2m oo
(nd/%-vz(iRU'),ale)LR :A ’/0 %(/ﬁ cos + ko sin@) (U’ + RU")U' cosORdR df (C.19)
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27 =) oo
:% f (U'+RU”)U'cos293de9:n%f (U' + RU"YU'RAR
0 0 0
(C.20)
oo oo 1
:w@f (U’)QRdRm@f S((U)?) R dR (C.21)
2 0 2 0o 2
- LS —n ML [T (U RAR = 1S, - n 1S = 0 (C.22)

where Sy.

Next we calculate the inner product of the 3"¢ term of Qy, (C.15), with 9,,U,,.

[} [} 1
(MW’"(UP)@M,%.szp,alep)LR:mlmfo W"'(Up)(U;)2<I>p72RdR:7T/£1u1/(; L(SRU,)®, 2 RAR

(C.23)
= TRl /:o %U{,Rz dR = -mK11 fom UdeR = —TK1 151 (C.24)
The 4" term -
(naW"" (Up)L,> (W' (Up)) - VU, 02, Up) Ly = Tk fom W' (U,)(U))*L,>(W'(U,))RdR (C.25)
p—— [omLi(%RU;)L;Q(W’(Up))RdR (C.26)
—— fo ” %U;W’(UP)RQ iR (C.27)
—— fom %UI’)(U[’)’ N %U]’,)RQ dR (C.28)
B [Ow %UI’,UZ’,’RQ dR + 7 [Ow %(UZ’,)ZRdR (C.29)
= onans [ ” %(%(UZ’))Q)’RZ ar+ Mg, (C.30)
e fom %(U;,)QRdR ;M g (C.31)
) _wﬂ;/ﬁ S+ Wﬁ;fﬁ 5, =0 (C.32)

Using the fact that W'(U,) = U}/ + £U;. And the inner product of the last term yields
(7 V.Up, 0., Up) L, = Tk fo (U)2RdR = w151 S (C.33)

we can sumimarize it

(Q1,8z,iUp)LR = —27‘(’31/@51 - 7717T/€iS4. (034)
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C.3 Appendix : Useful Identities

The following basic trigonometric identities may come useful

cos(0 + ) = —cos(6), (C.35)

sin(f + 7) = —sin(6). (C.36)

The following are useful operator identities for L, ,,. Recall that the spaces Z,, are orthogonal. We first

caleulate L,(5RU})

1 1 1 U’
Ly(5RUp) = 5Ly o(RUY) = 5 (QU;; +RUY + 2+ Uy - RW"(U,,)U;) (C.37)
=RL,1U,=0
1 U’ U’
=5 |20+ 2%’ +RU) + U, - Ep - RW"(U,)U, (C.38)
This yields the first identity
[P : v, Up
Ly(3RUy) = 5 Lpo(RUp) = AU = (U + =) (C.39)

To obtain the next identity, we differential equation (2.75) twice w.r.t R

" !

1 U,
UIE4) + EUZI?// _ 2R71; + ngp _ W”(Up)U[/,’ _ WIII(UP)(UP)Q (040)

Next we calculate L,(A,U,)

Ul UI 1 UH 2U/ 1 UII 4
Ly(U) + Ep) =Lyo(U, + Ep) = UM + EU;” - QR—I; + R—gp -W"(U,)U,) |+ = (U;” + Ep - R—’; - W”(U,,)U;)

(C.41)

using identity (C.40) we see that first boxed terms sum up to W"’(U,)(U,)?, and the second boxed terms

sum up to %Lp,l U, = 0. This yields the second identity

" U’ nr "
Ly(A.Up) = Lp,O(Up + Ep) =W (Up)|vUp|2 =W (Up)(U;)2~ (C.42)
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Appendix D

Pearling Co-dimension 1

D.1 Calculations of the expansion of L,
Consider the 2"? variation of F

Ly := 67‘72: =(2A-W"(u) +em) (A -W"(u)) - (2 Au-W'(u)) W (u) + enaW" (u). (D.1)

Using the expansion of up, given in (5.5), and considering the Taylor expansion of W (u;) and its deriva-

tives, Ly takes the form

1
Ly =|2A - W"(Up) - W (Up)uy - € (W"’(Ub)uz + §W<4>(Ub>u%) rem (D-2)

1
[E2A —W"(U) = eW" (Uy)uy — > (W”’(Ub)u2 + 5W<4>(Ub)u’;’) ]—
1
[52AUb +&3Auy - W'(U) —eW" (Uy)uy - €2 (W”(Ub)u2 + 5W’”(Ub)uf) ]

W' (U,) + sW(4)(Ub)u1]+
1
end[W"(Ub) +eW"" (Up)uy + &> (W’"(Ub)ug + 5W<4>(Ub)u%) ] + higher order terms.

0
Note that e?AU, - W'(Uy) = eHU] + e2AcHy” since U, is the homoclinic solution and it is independent of s.

Using the definition of the full operator L, defined in (2.45), equation (D.2) reduces to

Lo [ L0 - W Uy =2 (W U+ SWE Uyt +em | (D3)

1
[cb — W (Uy)uy - €2 (W’"(Ub)ug + 5W<4>(Ub)u§) ]—
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1
a[HU,; + 2 Auy - W (Uy)uy — ¢ (W"(Ub)ug + 5W"’(Ub)u%) ] : [W”’(Ub) + eW(4)(Ub)u1]+

1
and[W"(Ub) +eW" (Uy)uy + € (W"'(Ub)uQ + §W(4)(Ub)u%) ] + higher order terms.
Collecting Ly, in orders of ¢ yields

Ly =£2- (D.4)
E[Eb o (W"(Up)ur) + (W"' (Up)uy +m1) Lo + (Lyur + HU) W' (Up) — ﬁdW"(Ub)]—
52[5,, o (VV”’(U,,)u1 + %W“)(Ub)u%) + (W”’(Ub)u1 + %W(‘l)(Ub)uf)Eb
- (WU Yus )W U + Ly = S () | W (T3)
+ (Lyur + HUDW D (U )uy +na W (U s

+0(e3).

D.2 Calculating M

(£§¢o@ja¢o@k)m(ﬂ) = (Lp0Oy, Ly1oOr) 120 D)
/e

i fr L/ (Lvo +eHO. +*Ac)1h00;(Lyo + HO. +&* Aa)oOy J dzds (D.6)
l/e

B fr [l/ L0900 Ly, 00Ok J dzds 0.7)

+

l/e /e
+6(f1“ L/E Lbﬂ%@jﬂaz(%ek)uzdﬁfFL/a HO. (160, Lyo (10O ) J d=ds

S—

l/e l/e
gz(fFL/ thowo@jAg(¢o@k)szds+frj_‘l/ Ac(100;) Lo (10O J dzds

l/e
" [F /—l/a Haz(wOGJ)HaZ(¢O@k) szds)
+0(e%)

l/e l/e
zspkpjfr@kej Jods[l/a(w8)2d2+5\/g(Pj+Pk)/F/_l/E 0,05, Ho J dzds+

(D.8)
l/e
—52\/552(Pjﬂwpkﬁj)frfl/ 0,042 J d=ds

9 l/e ) ' \
e /FL/EH 0,0k (1)* J dzds + O(”)
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since g = ¢8j_1/2, we have
Y= (UR) T2 4 g (T2 = ()T - L (TR
and using the identity J' =eHJ we get
b = (WY T 2 = SUBCTOR)HT = (u8) T - SeHR(TME) = U8y T - SeHg
and

(V) = (8) P cH () T+ (2P )T

(L3%00;,%0Ok) 12(0)
l/e
=5PkijP®k9j Jodsfl/ (10)*dz+

0
/e 1 l/e

E\/EijFHQkG)jjods g Odz—iezﬁpjfrmekej Jodsfl/ (¥0)? dz+
=17= ~l/e

0

l/e 1 l/e
s\/gpkfFH@k@jdeSW— EeQﬁPkfrH“'@k@j Jodsfl/ (¥9)? dz+

le
/e

l/e
~SVERS B BiEy) [ 0,00 duds [ () dz e [ 170,00 duds [ ()7 dz

l/e 1 l/e
—a3fFH3@j®kjodsfl/ (w8)'¢8d2+154fFH4@j@k Jodsfl/ (W2 dz + O(e%)

eP?+ % [L(HO)? Jods [ (03))2 dz+ O(2/E) if k=j,

e [p H?0:0; Jods [ (¥3)")? dz + O(c* /%) if k #

Calculating M; yields

(L1485, %0120y =~ [ [ ll//:(W”’(Ub)ul)woejﬁbwoek Jdzds
‘frfll//:(WW(Ub)ul—U1)¢0®k£b(wo®j)szds
—frLl//:(HUé+£bul)W’”(Ub)wo@jw0@k Jdzds
+1a fr [ ll//: W (Up)10© 10Oy, Jdzds

=P, fr [ ll//: W (Uy)ur 0,048 Jdzds

l/e
—\/EijFL/ (W (Up)ur - 11)0x0;2 Jd=ds
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/e

- fl‘ U HUI;W,"(Ub)@j@kwg Jdzds
/e

- fl‘ fz/ Ly (ur)W" (Up)0; 0515 Jdzds

l/e
+nd_/l"[l/ W’/(Ub)(—)]@k’(/}g JdZdS

using g = j’1/21/)8 we get

l/e
(L1%0©;,%0Ok) L2(0) =—\/5Pkfr@k@j JodS[l/ W (Uy)ur (19)* dz

l/e
~VEP, [[040, dods [ (W (W ym - m)(u)° dz
0

/e
—fHo@k@j Jode W 67)(40)* d=
r _

l/e
~e [ 1040, dods [ | U0 ()2 o
l/e
—/;@j@kjod«S[l/ Ly (u)W"'(Up) (45)* dz
l/e
+ndfr@j@k Jods/l/ W (U,) (02 dz + O(e%)

= LI W (U (08)? Lo dz +1ma [ W (Up) (45)? dz

= +\/§Pk(m—2)—sfFHleidsj_ll\iW"'(Ub)Ul;(qu)?deO(s?) if k=7,

-¢ [ H10,0; alsf_ll\\eE W (Up) UL (45)?2 dz + O(£%) ifk+j

D.3 Simplifying the expression for M
Recall that, My, j is given by

I\e

M= BE = [ (W () Luors sl (U) | 05)? .

Using the following identities

z
Lyour = p1®1 — g (§U') ,

W"(U)po = g = Lu,oto = ¥y — Moo,
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(D.18)

(D.19)

(D.20)

(D.21)
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we get

na [ WOWE - [ (e =naZUWO)E =na [ W03 (D.23)

,11,151)

- [ maw" @i [ v Wy

=—nSy+na [ WUNE - [0 (WI@))E. (D24)

Integrating by parts we have

Ude"(U)¢g—f(,uwl—Ung')W"'(UWg:—Mle (D.25)
+nd/(W”(U)wg—%W”(U)wS—W"(U)zww’)

“—iSiena [ (W@ -WIO)=000)  (D:26)

1 A 44
—-mSy e [ (Gv0-=0) )W @ (D21)
Using identity (D.22) yields
44 z A " 1 ! "
na [ WUWE = [ s - naZU YW UYE = -y +na [ (Goo - 204) (61 = Aotko) (D.28)
1 1
— - Sy+na [ (G068 - 33008 - 20500 + Doz
(D.29)
1 " 1 2
:—u15b+7]df§¢01/’0 —§>\077df¢o (D.30)
—na [ =+ doma [ oy
Using integration by parts we can show that
101 1 112 4 1 2
[zt ==5lvols, [ 2o = -5l (D.31)
therefore,
144 z A nr ]‘ 14 ]‘
77de (U)¢(2)—f(u1@1—77d5U)W (U)¢32—M15b+77df§1/10% —5/\07701/%2) (D.32)

—nd[2¢6¢6'+/\077df2¢0%
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1 1 1 1
=—u1Sy — 577d||1/)6||§ - 5/\077d||¢0”§ + 5%”%”3 - 5%%“%”3

= —111.Sp = Aol[%ol|374-

Hence, the diagonal terms My, j, take the form

My i = PE = 1Sy = nadol[voll5-

D.4 Useful identities and inequalities

Theorem D.4.1 (Holder’s Inequality). Suppose f € LP(R?), ge LI(R?) and 1% + % =1 with

1<p,q,r <oco. Then
1 gll < £ 1lpllgllg-

Theorem D.4.2 (Generalized Holder’s Inequality). Suppose f e LP(R?), ge LY(RY) and % +

1<p,q,r <oo. Then
1/ gllr < £ 1lpllgllq-

1. An expression for the derivative of g

W = (9) T2 — eHupy

2.
Ly 0ztho = 2Aotbo + 21
3.
Lip0thg = Xotho =g + W (U)U o
4.
Lbﬁo(zz/)(')) = ZLb70’1/16 + 211)6’ = Z(>\0 - 83)1/}6 + W",(U)U/w() + 21/)6,
5.

Lo (0 D5 201) = Moo Ds,20k + 2¢00( D5 2) -0k + 10 (Ds 2) - Ok
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Appendix E

Pearling Co-dimension 2

E.1 Appendix : Self-adjoint operators

Consider the L?(£2) inner product defined in (2.73) and the two operators £, := 82— W" (u) +e2A, and L,, =

02 +erkd, ~W"(u)+e2Aq. The co-dimeanion two Laplacian operator is not self-adjoint in this inner product,

l\e - N\e ~
(Asfag)LZ(Q):fr/;l\5 gJO_lvs'(g_lJovs)fJOJdZdS:_\/I:'/;l\E g_ljovs(gJ)'vsdeds (El)

\e B
:fFL\E V(g JoVa(g)) fdzds = (f, Aug) 2o (E.2)

although it is self-adjoint in the T-inner product. However, Ag is self-adjoint in the L?(£2) inner product.

Ne I\e
(A frg) 2y = fr / 9TV (g7 IV f T dzds = - fr / (8 IVH0) Vafdzds (E3)

I\e
_ fr [ . Vo(871 V() dzds = (f, Aag) 2o (E.4)

As for the rest of the terms in the operator,

l\e I\e l\e
(02f,9)12(0) = f"gJ dzds = f(gJ)" dzds = fq"'TJ+2fg' J + fgJ" dzds (E.5)
rJ-i\e I J-l\e rJ-l\e

I\e I\e I\e
=(f,029)12(q) +2¢ f f fg'kJ dzds + € f f fgrk'J dzds + €2 f f fgr?J dzds,
T J-l\e rJ-l\e T J-l\e
(E.6)
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\e I\e I\e
e(kO:f,9)12(0) = €fF fz\ kf'gJ dzds = 5fF fz\ flgJr) dzds = _fr,[z\ fexg'J +efgJr’ + fgerJ dzds

(E.7)

I\e I\e
= —e(f,k0.9)2(0) —5/1: fl\ fgrk'J dzds — €2 '/1: .[1\ fgr?J dzds, (E.8)

we see that each of the terms separately is not self-adjoint in the L?(£2)-inner product, but the sum of them
is

(O2f +erd.f,9) 120y = (f, 029 +€K0.9) 2 (0

Therefore, our full operator £, is self-adjoint in the L?(Q)-inner product where the ﬁp operator is not.

E.2 Calculations of the expansion of L.
We consider the 2"¢ variation of F

v

p = v ( AW (u) + 5771) (52A - W"(u)) - (52Au - W’(u)) W (u) + engW" (u). (E.9)

Using the expansion of the Laplacian in local coordinates, given in (2.65), writing u, using (6.5) and Taylor

expand W (u,) and its derivatives.

L, <[ AL —W"(U,) =D, + 2% = (W (U, ur 1) (W"'(U Vs + = W<4>(U )ul)] (E.10)

(A2 - W(U,) ~eD. + 203 < (R + W (Uyur) ~ ¢ (W’"(U Yz + © W<4>(U) )]
[A U, -W'(U,) - eD. U, + eAuy — €2 Dyuy +*0LU, —eW" (Up)uy —EQ(W”(U,,)UQ + 5W’”(U,,)ui)]o

W (Uy) +eW D (U, )un |+
1
snd[W"(Up) +eW"(Uy)uy + € (W"'(Up)ug + §W(4)(Up)u%) ] + higher order terms,

Recall that £, := L, — €D, + 202, L, is defined in (2.78), and U, is the radial symmetric solution of

equation (2.75). Then,

Ly =[£y == OV Uy )us =) -2 (W (U )z + s WO )2 ) (E11)
(£, - (W (U, )ur) - <2 (W"'(Up)ug + %W“)(Up)u%) B

1
[ ~eD. U, +eLyuy - €° (W"(Up)uQ + §W"'(Up)uf) ] o [W"'(Up) + SW(4)(Up)u1]+

178



Er]d[W"(Up) +eW" (Up)uy +€2 (W"'(Up)ug + %W(‘l)(UP)u%) ] + higher order terms,
Rewriting IL,, in orders of € we have
L, :Ef, +elg + O(e?), (E.12)
where

Ly:=- (W”’(Up)ul —-m)o Ly—Lyo (W”’(Up)ul) - (Epul - DZUP) W”,(Up) + ndW,,(Up)~ (E.13)

E.3 Calculating MY

To obtain an explicit expression for M° we calculate the inner products given in (6.22). We start with the

inner product involving Lf): Recall that £, given in (2.77), is self-adjoint in the L?(Q2) inner product. Then

(L2¢00;,100k) 12() = (Lpt0O;, LytoOk) r2(0) (E.14)

= (((L+€%02) —ck V. — (2 R)R - V. )1oO;, (L +€°02) — e+ V. — €% (2 R)R - V.) 0Ok ) 12(0)

(E.15)
+0(e%)
= (L +20)100;, (L +%02)¢0Ok) 12(0) (E.16)
—e(((L+E02)100;, k- V10O 2(0y + (B V0005, (L +£%02)90Ok) 120y ) + O(€7)
= ePuPj(100;,1%00k) 12(0) — eVE(P; + P ) (00110, k- V1) 12(q) + O(?) (E.17)

where for the second equality we used the expansion of the Laplacian, given in (??). Since psig is a radial

function we have

l/e
(Gj@kw07R'Vzw0)L2(Q) = Lﬁ@k@j ds-A zDoni/Jo Jdz (E.18)
changing to polar coordinates, equation (E.18) takes the form

=(0,0)

27 oo
(9j9k1/}0,7€'vz¢0)1:2(9):[FNGk@de'[o (cos@,sin@)d&[o Yobydz + O(e) (E.19)

That is, the term e\/2(P; + P)(0;0¢0,% - V210)r2(0) is actually O(¢?\/2) and negligible. Using the

orthonormality of the co-dimeanion two Laplacianeigenmodes we can rewrite equation (E.17) in the following
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way

) eP+0(e*\/e) ifk=j,
(£,%00;,%00k) 12(q) = (E.20)
O(e%\/¢) if k#j

The next term in (6.22) involves the L, operator, given in (6.9).

(A) (B)
(L190©;,1%0Ok) r2(0) = — (W (Up)ur = m1) 0 LyhoO;, 10Ok ) p2(0) = (Lp o (W' (Up)u1) 100,100k ) 2(0)
(E.21)
() (D)
— ((Lpur = D.Up)00;, 10Ok ) r2(2) + (naW " (Up) 10O, 0Ok ) 12(02) (E.22)
we calculate (E.21) term by term:
(A)
(W (Up)ur —m1) © LpthoO;,10Ok) 20y =V/ePj (W' (Up)ur =11 )00, %00k L2() (E.23)
—e((W"(Up)ur = m)E - V:100;,%00k) r2¢0) + O(e%)
VEP; (W (Up)ur = m)1oOk, 0Ok ) L2(0) + O(€) if k = j,
—e(W"(Up)ur —m)&- Vo105, v00k) 2(0) + O(e®) if k#j
(E.24)
(B)
(Ly o (W (Up)u1)1oO;,1%00k) 120y =((W"(Up)u1)v0O;, Ly1hoOr) 12(0) (E.25)

VEP; (W (Up)u1thoOk, 0Ok ) L2 () + O(€) if k=7,
—e(oO;, W (Up)urk - Vo1oO) r2()y + O(e?) if k#j

(E.26)
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((Lua = (R - VUp) )W (Up)t0Ok, 0Ok ) L2() + Oe)  if k=7,

((Lpur = D:Up)t0O;,%0Ok) L2() = | ~((& - V.U )W (Up)1h00;, 0Ok ) 120 if k#j

—€(R' (VZ(Ul - Up))WW(Up)dJo@j,1/J0®k)L2(Q) + 0(82)
(E.27)

Recall that Uy, 99 and W"’(U,) are all radial functions, and using (A.2), the calculation of the inner-

product ((K-V.Up)W"'(Up)tboOk, ¥0Or) 2(q) (boxed) becomes

Lle
(- VU)W (U005 6000 2oy = [ [ oUW (U)(05)%0,01 de s (529

27 oo
- /F /0 [0 (7~ (cos,sin0)ArU,)W" (U,)(¥0)0,0, RAR O ds (E.29)

=(0,0)

27 oo
- fr 70,0 ds- f (cos 0, sin 0) d f (OrU,)W"(U,)(40)? RAR (E.30)
0 0

= 0. (E.31)
It follows from (E.28) that equation (E.27) reduces to

((Lu) W (Up) 0Ok, YoOr) r2(ay + O(€) if k =7,
((Lpur = D:Up) 005,100k L2 () =
—e(R- (V2 (ur = Up) )W (Up)tho©;, 90Ok ) L2y + O(e?) if k#j

(E.32)
summarizing the calculation of each of the terms, and returning to (E.21) we see that
(L1%00;,%00k) L2(q) = (E.33)
~((Lu)W"(Up) = naW" (Up))100;, 0Ok ) 12() + O(VE) if k= j,

e((@W""(Up)ur = m)& - Varo = B+ (Vaur = U)W (Up)h0)©;, %oOk) L2y + O(e?) itk #j

E.4 Simplifying the expression for M}

Recall that, My, j is given by

I\e
M= PE= [ W) Lo - naW (0) | (00)? 2, (E.34)
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where u; is defined in (6.6) and in polar coordinates, using the identity L™ (W'(U,)) = L™}(A,U,) = %RU;
takes the form

_ 1
Luy = pypy = gL~ (W' (Up)) = papr - UngU;’;- (E.35)

For future calculations we have the following identity
W (Up) = (40)" = Loy = ()" = Ap,oto- (E.36)
Since all the function in (E.34) are radial functions, we change to polar coordinates
MYy = P2 =2m [ W (U Luy —naW" (U3) | (60)° RaR, (E:37)
and plugging (E.35) into (E.37) yields
MP, = P2 =21 S + 274 fo ” [W”’(Ub)%UZ’,R + W"(Ub)](ng)2 RdR, (E.38)
where S is the shape factor defined in (6.33). Consider the g term in (E.37)

[ @ gur e w02 Rar = [T S8 Bar+ [T W) (68)? RaR

(E.39)
—= [T WO @)@ Bar - [T Wity Rk

(E.40)
- o) RdR

= [T @y Bar- [T @@y RAR (B4
= [T @Ry Rar - [T

—— [T W@ RAR - N0 [T () RaR. (B.43)

((v0)*)' R*dR (E.42)

The second and the last equalities follow from integration by parts, and the third equality follows from

identity (E.36). Plugging (E.43) into (E.37) yields

M= PE=2mmS = na (| )1 + Xl @3, ) (E44)

182



E.5 Useful identities and inequalities

Theorem E.5.1 (Young’s Inequality). Suppose f € LP(RY), g€ LY(RY) and % + % = % +1 with
1<p,q,r<oo. Then

If = gllr < [1f1lpllgllq-
Theorem E.5.2 (Hélder’s Inequality). Suppose f € LP(R?), g e LY(R?) and % + % =1 with

1<p,q,r <oo. Then
gl <[/ llpllgllq-

E.6 Appendix : Detailed calculations of operator bounds

(E.45)

(E.46)

First we consider the following operator Z%DZ. Using the definitions of each of the operators, given in (2.67),

and (2.66), we can write

agDZu:ag(f¥vzv)=?(ag(Vgo)+(agf?)vzv+zas(
J J, J

p p

)3SVZv

"sk”‘ =t

Taking the L?(2)-norm yields

00800 ey = || £ (@85-00) + 22

2

)Vzv+23s(lf)8svzv
JP

82; V.

(GJp) ‘

(3
(3

,,Sku‘ =t

L2(Q)

@(T)&vw
J

p

2 2

IN

+4
L2(Q)

(08(V2v))

+
L2(Q)

2
1098 (720) [[z2 0y *
Lco

()

-4
seellvlipzoy +ezllvlipz ) +4

L2(Q)

IN

2
V2020
LDQ

,@Ku‘ =l ﬁku‘ = .Sku‘ =i

2
||asvzv||L2(Q)
Loo

10505 |2, 1|03V

Lee
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where the first inequality is the triangle inequality, for the second inequality we use Holder, the third

inequality follows from Lemma 6.3.1, combined with the assumption that x € W2,
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