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ABSTRACT

BIFURCATION AND COMPETITIVE EVOLUTION OF NETWORK
MORPHOLOGIES IN THE STRONG FUNCTIONALIZED

CAHN-HILLIARD EQUATION

By

Noa Kraitzman

The Functionalized Cahn-Hilliard (FCH) energy is a higher-order free energy that has been proposed to

describe phase separation in blends of amphiphilic polymers and solvent. It balances interfacial solvation

energy of ionic groups and volumetric counter-ion and polymer chain self-interaction energy against elastic

energy of the underlying polymer backbone. It is hoped that its gradient flows describe the formation of

solvent accessible network structures, such as found in polymer electrolyte membranes, lipid membranes, and

amphiphlic diblock copolymers. The FCH gradient flows possess long-lived network morphologies of distinct

co-dimension and we characterize their geometric evolution, bifurcation and competition through a formal

asymptotic reduction. This reduction encompasses a broad class of coexisting network morphologies with

different inner structure, such as bilayers and pores. The stability of the different network morphologies is

characterized by the meandering and pearling modes associated to the linearized system. For the H−1 gra-

dient flow of the FCH energy, using functional analysis and asymptotic methods, we derive a sharp-interface

geometric motion which couples the flow of co-dimension 1 and co-dimension 2 network morphologies, in R3,

through the spatially constant far-field chemical potential. In particular, we rigorously characterize the

pearling eigenvalues for a class of admissible co-dimension 1 and co-dimension 2 networks.
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Chapter 1

Introduction

1.1 Amphiphilic Materials

Traditionally the term ‘amphiphilic molecule’ denotes a small molecule which finds an energetically favorable

interaction at the interface of two disparate fluids, such as soap in an oil-water-soap mixture. Indeed, early

studies of amphiphilic materials concerned emulsions formed from two immiscible fluids combined with an

amphiphilic surfactant. Lipids, formed of a hydrophilic head group and a hydrophobic tail belong to this

class of amphiphilic molecules. More recently, developments in synthetic chemistry, such as atom transfer

radical polymerization, have simplified the process of attaching charge groups to polymers, greatly expand-

ing the possible classes of amphiphilic polymers that can readily be synthesized, see [Matyjaszewski, 2012]

and [Charleux et al., 2012]. Amphiphilic blends typically phase separate; however the propensity of the

amphiphilic molecules to form monolayers leads to an energetic preference for thin interfaces. As a result,

amphiphilic mixtures typically form network morphologies which support asymptotically large interfaces of

various co-dimension. These include co-dimension one bilayers, or co-dimension two pore structures. To

make the idea of a network more precise, we offer the following motivation:

Given a small parameter 0 < ε0 ≪ 1, we say that a family of closed subdomains {Dε}0<ε≤ε0 ⊂ Rd, d ≥ 2, is a

network morphology if the sets are nested, that is Dε1 ⊂ Dε2 for ε1 < ε2 ≤ ε0, and each constituent point of

Dε lies within O(ε) of its compliment. If D0 is the intersection of Dε, then the (local) co-dimension of the

network is the difference between the dimension, d, of the ambient space and the (local) Hausdorff dimension

of D0.

Intuitively, D0 is specified and the sets Dε can be thought of as the points that lie within ε of D0, – where

ε plays the role of the molecular width. Networks have significant value: they describe the arrangements
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of amphiphilic molecules, which self assemble into nano-scale structures with huge densities of solvent-

accessible surface area. The resulting network morphologies are typically charge-lined, rendering them

efficient charge-selective ionic conductors. Due to these traits, amphiphilic materials have found use in

many types of energy conversion devices, forming the ionomer membranes in fuel cells, the photo-active

collecting matrix in bulk-heterojunction solar cells, and the separator membrane in Lithium ion batteries,

[Anderson, 1975, Wilson and Gottesfeld, 1992, Peet et al., 2009].

The casting of blends of amphiphilic mixtures and solvent presents a rich array of distinct morphologies,

however control of the end-state morphology is experimentally challenging due to the delicate roles played by

solvent type, salt concentration and counter-ion type, di-block composition and polydispersity, temperature,

and pH. It has been shown, [Discher and Eisenberg, 2002], that changing the concentration of water in a

water-dioxane solvent blend induces bifurcations in amphiphilic di-blocks yielding micelle, micelle-pore, pore

(rod), pore-bilayers, and bilayer network morphologies, see Figure 1.1.

This content downloaded from 35.8.11.2 on Thu, 28 May 2015 15:45:40 UTC
All use subject to JSTOR Terms and Conditions

Figure 1.1: Morphological phases and vesicle transformations in dilute solutions. The colored regions
between sphere and rod phases and between rod and vesicle phases correspond to coexistence regions, the
vertical-axis represent the concentration of polymer by weight and the horizontal-axis is the percent of water.
From [Discher and Eisenberg, 2002]. Reprinted with permission from AAAS.

Similar bifurcation were obtained in PEO-PB amphiphilic di-blocks by changing the density of charge groups

in the hydrophilic portion, [Jain and Bates, 2004]. Figure 1.2 depicts the morphology diagram of PB-PEO

diblock in water as a function of molecular size and composition. The axis, NPB and WPEO, denote the molec-

ular weight of the PB portion of the chain and the weight fraction of the PEO portion, respectively. The four

main structures observed are bilayer vesicles (B), cylinders (pores) (C), and spheres (S). As the hydrophilic

content (WPEO) is increased, a sequence of structural elements is documented: starting with bilayers, fol-
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Figure 1.2: Morphology diagram of PB-PEO in water as a function of molecular size and composi-
tion describes the different regions of bilayers, pores and micelles. Reprinted (adapted) with permission
from [Jain and Bates, 2004]. Copyright 2004 American Chemical Society.

lowed by pores, and then micelles separated by composition windows containing mixed morphologies, such

as, bilayers-pores and pores-micelles. Increasing the hydrophilic weight fraction induces greater interfacial

surface area, and increases the aspect ratio of the diblock, as PEO is a softer chain than PB, and forms more

of a ball-like structure. Morphological reconfigurations can also be achieved through varying temperature,

[Zare et al., 2012] and [Gomez et al., 2005], and concentrations of counter-ions [Zhulina and Borisov, 2012].

We pay particular attention to the experimental investigation in [Budin and Szostak, 2011] and [Zhu et al., 2012]

addressing the division of primitive lipid membranes. Szostak’s group derived a particularly simple method

to induce the bilayer to micelle morphological change; they first formed a suspension of spherical vesicles

of 10% phospholipid and found that increasing the concentration of free oleo-lipids dispersed in the bulk

solvent induced a fingering instability in spherical phospholipid vesicles; this transformation is depicted in

the three horizontally arranged panels on the left side of Figure 1.3, the end state of which consists of long,

co-dimension two pore morphologies. In a subsequent experiment, the charge density on the surface of cylin-

drical pores was suddenly increased through a photo-oxidation process; the jump in charge density induces

a pearling bifurcation causing the pore structures to break into individual micelles, as depict in the three

vertically arranged panels on the right side of Figure 1.3. One aim of this thesis is to present an analysis of

related bifurcations within the context of the Functionalized Cahn-Hilliard free energy, which we introduce

in the following section.
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Figure 1.3: Szostak’s mechanism for division of primitive cell membrane: (left) raising the background
concentration of lipids induces the vesicle to grow worm-like (co-dimension two) protrusions over a 74
nano-second time period [Budin and Szostak, 2011], (right) changing the density of charged groups on the
surface via a photochemically induced redox reaction incites the pore to pearl and break into micelles
[Zhu et al., 2012]. Reprint permission granted by Proceedings of National Academy of Science.

1.2 The Functionalized Cahn-Hilliard Free Energy

The first step towards the introduction of the FCH is to recall the derivation of the Cahn-Hillard (CH)

free energy, [Cahn and Hilliard, 1958], which describes the spinodal decomposition of an immiscible binary

mixture. For a fixed domain, Ω ⊂ R3, a phase function u ∈ H1(Ω) describes the volume fraction of one

component of the binary mixture, and the free energy is modeled by a function of the density u weakly

perturbed by the spatially isotropic gradients

E(u) = ∫
Ω
f(u, ε2∣∇u∣2, ε2∆u)dx. (1.1)

Expanding the free energy in orders of ε and keeping terms up to O(ε2), yields an expression of the form

E(u) = ∫
Ω
[f(u,0,0) + ε2A(u)∣∇u∣2 + ε2B(u)∆u] dx. (1.2)

To obtain a generic normal form for the free energy, Cahn and Hilliard integrated by parts the last term

in (1.2), set the resulting coefficient of ∣∇u∣2 to 1
2
, and relabeled the potential f(u,0,0) as W (u). The result

is the Cahn-Hilliard free energy

E(u) = ∫
Ω
[ε

2

2
∣∇u∣2 +W (u)] dx. (1.3)
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The corresponding H−1 gradient flow, the Cahn-Hilliard equation, takes the form

ut = ∆
δE
δu

= ∆(−ε2∆u +W ′(u)). (1.4)

Subject to zero-flux boundary conditions,

∆u ⋅ n = 0, (1.5)

∆µ ⋅ n = 0, (1.6)

where n is the outer normal to ∂Ω, the Cahn-Hilliard equation preserves the total mass

d

dt
∫

Ω
u(x, t)dx = 0, (1.7)

and dissipates the Cahn-Hilliard free energy

d

dt
E(u) = ⟨ut,

δE
δu

⟩
L2

= −∥∇δE
δu

∥
2

L2

≤ 0. (1.8)

It is known that the minimizers of the CH free energy over the space H1(Ω) subject to a mass constraint

are achieved. Moreover, these minimizers satisfy the Euler-Lagrange equation expressed in terms of the

variational derivative of E
δE
δu

∶= −ε2∆u +W ′(u) = λ, (1.9)

where λ is a Lagrange multiplier associated to a total mass constraint.

To model amphiphilic mixtures, such as emulsions formed by adding a minority fraction of an oil and soap

mixture to water, [Teubner and Strey, 1987] and [Gompper and Schick, 1990] were motivated by small-angle

X-ray scattering (SAXS) data to include a higher-order term in the usual Cahn-Hilliard expansion. Inspired

by their work, we add the next order term to (1.2),

F̃(u) ∶= ∫
Ω

⎡⎢⎢⎢⎢⎢⎣
f(u,0,0) + ε2A(u)∣∇u∣2 + ε2B(u)∆u +

≥0
­
C(u) (ε2∆u)2

⎤⎥⎥⎥⎥⎥⎦
dx. (1.10)

The full form of this system supports too many possible regimes to permit a systematic study. It is important

to find the simplest mathematical framework that supports the network morphologies typical of amphiphilic

mixtures; we need a new normal form. With this goal we first shift all the differential terms to powers of the

Laplacian. Specifically, letting A denote the primitive of A, we replace A(u)∇u with ∇A(u) and, assuming
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appropriate zero-flux boundary conditions, we integrate the term ∇A ⋅ ∇u by parts to obtain

F̃(u) = ∫
Ω
[f(u,0,0) + (B(u) −A(u))ε2∆u +C(u)(ε2∆u)2] dx. (1.11)

The energy density is a quadratic polynomial in ε2∆u, which suggests that we complete the square

F̃(u) = ∫
Ω
C(u)

⎡⎢⎢⎢⎢⎣
(ε2∆u − A −B

2C
)

2

+ f(u,0,0) − (A −B)2

4C(u)

⎤⎥⎥⎥⎥⎦
dx. (1.12)

For simplicity we replace C(u) with 1
2
, and relabel the potential within and outside the squared term by

W ′(u) and P (u), respectively. The key point is that the first term is the square of the variational derivative

of a Cahn-Hilliard type free energy, consequently the case P ≡ 0, when the energy is a perfect square, has the

special property that its global minimizers are precisely the critical points of the corresponding Cahn-Hilliard

energy. Indeed, a variant of this case was proposed as a target for Γ−convergence analysis by De Giorgi, see

[Röger and Schätzle, 2006]. Our general form of the network is obtained by perturbing the perfect square

with an asymptotically small potential,

F̃(u) = ∫
Ω
[1

2
(ε2∆u −W ′(u))2 + δP (u)] dx, (1.13)

where δ ≪ 1. The function W (u) is assumed to be a double-well potential with two minima at u = b± whose

unequal depths are normalized so that W (b−) = 0 > W (b+). Typically b− = 0, however it is helpful to give

this value a specific name. Thus u = b− is associated to a bulk solvent phase, while the size of u − b− > 0

is proportional to the density of the amphiphilic phase. The small parameter ε ≪ 1, associated to the

amphiphilic molecular width, determines the interfacial width and corresponds to the ratio of the typical

length of an amphiphilic molecule to the domain size.

The Functionalized Cahn-Hilliard free energy corresponds to a class of two distinguished limits and a

particular choice for P ,

F(u) ∶= ∫
Ω

[1

2
(ε2∆u −W ′(u))2 − εp (ε

2η1

2
∣∇u∣2 + η2W (u))] dx. (1.14)

The functionalization terms, parameterized by η1 > 0 and η2 ∈ R, are analogous to the surface and volume

energies typical of models of charged solutes in confined domains, see [Scherlis et al., 2006] and particularly

equation (67) of [Andreussi et al., 2012]. The minus sign in front of η1 is of considerable significance – it

incorporates the propensity of the amphiphilic surfactant phase to drive the creation of interface. Indeed,
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experimental tuning of solvent quality shows that morphological instability in amphiphilic mixtures is asso-

ciated to (small) negative values of surface tension, [Zhu et al., 2009] and [Zhu and Hayward, 2012]. In the

FCH energy the gradient term, −η1∣∇u∣2 < 0, is localized on interfaces, associated to single-layers of surfactant

molecules, whose growth lowers overall system energy – however the effect is perturbative and unrestricted

growth is arrested by the penalty nature of the square term which keeps u close to the critical points of

E . There are two natural distinguished limits corresponding to different choices for the exponent p in the

functionalization terms. In the Strong Functionalization, p = 1, the functional terms dominate the Willmore

corrections from the squared variational term. The Weak Functionalization, corresponding to p = 2, is the

natural scaling for the Γ-limit as the curvature-type Willmore terms appear at the same asymptotic order

as the functional terms.

The well-posedness of the minimization problem for the FCH, including the existence of global minimizers

for fixed values of ε > 0 was established in [Promislow and Zhang, 2013] for a more general functional form

over various natural function spaces. Depending upon the application, the volume-type η2 functionalization

perturbation incorporates the impact of counter-ion entropy (PEM fuel cells), capillary pressure, or entropic

effects from constraint of tail groups (lipid bilayers), [Gavish et al., 2012]. The form η2W (u) is chosen

primarily for convenience, as integrals of W (u) evaluated at critical points of ECH grow increasingly negative

with increasing interfacial co-dimension. We remark that the surface term η1∣∇u∣2 is equivalent to an

η1uW
′(u) functional-form since an integration by parts on −η1∣∇u∣2 yields η1u∆u which can be absorbed

into the squared variation with a perturbed form of W .

The goal of this study is to present an analysis of the stability and dynamics of classes of quasi-stationary

network morphologies N of F , which we define to be functions u ∈ H2(Ω) which have an asymptotically

small minority of amphiphilic phase, satisfy assigned boundary conditions, and render the driving force of

the free energy asymptotically small. Specifically for each fixed C > 0 we define the set of quasi-stationary

network morphologies

QC ∶= {u ∈H2(Ω)∣ ∫
Ω
∣u − b−∣dx ≤ Cε and ∣∣Π0

δF
δu

∣∣
L2(Ω)

≤ Cεp+ 3
2 } , (1.15)

where p takes the same value as in equation (1.14) which defines the FCH free energy. The exponent

term, p + 3
2
, in the bound on the residual corresponds to temporal dynamics on the ε−p time scale. We also

introduce the zero-mass projection

Π0f ∶= f −
1

Ω
∫

Ω
f(x)dx. (1.16)

Our analysis hinges on the construction of quasi-stationary functions whose properly chosen level sets form
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locally co-dimension one and two network morphologies in the sense of Definition ??.

It is important to emphasize the difference between the CH free energy and the FCH free energy. The CH

free energy describes the spinodal decomposition of hydrophobic materials. The FCH free energy models

network formation in amphiphilic materials. In experimental settings, amphilicity drives the system to phase

separate on a molecular length scale. Figure 1.4 (a) resembles an early stage of CH spinodal decomposition.

Figure 1.4: A porous membrane assembled from cholormethylated polysufone (CPSF) with pyridine
graphed via nucleophilic substitution (ammonium agent). A 500 fold increase in magnification from a 1 mi-
cron to a 20 nanometer lengthscale shows a FCH-like nanoscale network morphology embedded within the do-
main walls of a micron-scale Cahn-Hilliard-like phase separation. The mixture is electroneutral on the micron
scale, but has charge separation on the nanometer scale. Reproduced (Adapted) from, [Zhang et al., 2013]
with permission of The Royal Society of Chemistry. DOI.

Zooming in where the red circle is, after a 500-fold magnification, the phase separated network morphology

is visible within the CH-cell walls, see Figure 1.4 (d). Averaged over a micron length scale the system is

electroneutral, and the phase separation is governed by a CH dynamic. On the nanometer length scale the

system is not electroneutral, and the phase separation is governed by the FCH with the associated network

morphologies.

1.3 Overview of Main Results

The over damped dynamics of amphiphilic polymer suspensions can be received from the Functionalized

Cahn-Hilliard free energy via its gradient flows whose evolution preserves the volume fraction of the con-

stituent species and lowers the free energy. Similar to the Cahn-Hilliard gradient flow given in (1.4), the

simplest mass preserving gradient flow of the strong FCH is generated by the H−1 gradient,

ut = ∆
δF
δu

= ∆ [(−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + ε(η1 − η2)W ′(u)] . (1.17)
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This research includes a formal derivative of the geometric evolution of co-dimension one and co-dimension

two morphologies under the strong FCH equation, followed by a rigourous analysis of the pearling eigenvalues

for morphologies of either codimension.

We start by formal asymptotic reduction: In chapter 3 we derive the geometric motion of a collection of

disjoint, far from self-intersecting, closed, co-dimension one morphologies, referred to as bilayer morphologies,

in Rd. The key results are that the chemical potential of the pure bilayer system, µ1, is spatially constant

at leading order in the far field, and the H−1 gradient flow drives pure bilayer interfaces by a quenched

mean-curvature flow, see equation (1.63). Moreover, for a bilayer morphology the far-field chemical potential

will converge temporally to a prescribed constant value, µ∗b . In chapter 4 we investigated the geometric

evolution of a family of co-dimension two morphologies, referred to as pore morphologies, in R3. Away

from the interfaces, the chemical potential is spatially constant, and the H−1 gradient flow drives pure pore

manifolds by a curvature flow, where the vector normal velocity is coupled to the chemical potential, see

equation (1.65). Moreover, the far-field chemical potential will decay to a prescribed constant µ∗p.

Note 1. The two equilibria points µ∗b and µ∗p are determined only by the tilted double-well potential W and

the values of the functionalization parameters η1 and η2.

Depending upon the value of the far-field chemical potential the geometric flow can be motion by curvature

or motion against curvature; the later induces a strong geometric instability, akin to a backwards heat

equation instability for the curvatures, see equation (1.64), which manifests in experiments as a fingering

instability, as shown in Figure 1.3. For the bilayer system, if µ1 < µ∗b then the bilayer will shrink as µ1 grows,

while if µ1 > µ∗b , the bilayer will grow, which may induce fingering of the interface Γb. A similar instability

mechanism holds for pore morphologies.

To complete the formal analysis we consider the geometric evolution of a co-existing system comprised

of a family of disjoint, far from self-intersecting, closed, co-dimension one and two structures, in R3. In

2014, [Dai and Promislow, 2015] have shown that for the weak FCH the two morphologies can co-exist.

However, we conclude that, generically, the strong FCH equation does not support co-existence. Morpholo-

gies of distinct co-dimension will compete via the common value of the far field chemical potential, and

depending upon the initial configuration and the values of the functionalization parameters, η1 and η2, the

structures will compete for surfactant phase via the common value of the far field chemical potential, µ1,

with various possible outcomes including the extinction of one phase, a pearling bifurcation of one or both

phases, or a fingering bifurcation. We also find non-generic values of η1 and η2 in which co-dimension one

and co-dimension two morphologies can co-exist.

The geometric evolution results are formal, in particular they assume that the underlying bilayer and pore
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morphologies are stable. The vulnerability of the matched asymptotics method is that it ignores any possible

instabilities. In chapter 2 we review the spectrum of the linearized operators, see Figure 2.3, and show that

both the co-dimension one and co-dimension two morphologies have potential instabilities associated to

periodic, high-frequency modulations of the interfacial width, called a pearling instabilty.

A rigourous analysis of the eigenvalue problem corresponding to the strong FCH for the bilayer and the

pore morphologies is presented in Chapters 5 and 6, respectively. We show that in the strong FCH scaling

the leading order behavior of the pearling eigenvalues is independent of the shape of the underlying co-

dimension one or two morphology, which allows the definition of associated pearling-stability regions in

parameter space. In chapter 7 we analyze the combined bilayer-pore evolution. Under the H−1 gradient

flow the pearling instability manifests itself on a time scale that is O(ε−2) faster then than the geometric

evolution, and hence can be taken to be instantaneous on the geometric time scale. Conversely, the fingering

instability occurs on the same time scale as the geometric flow, and may not necessarily immediately manifest

itself on the geometric timescales.

1.4 Quasi-Stationary solutions of the strong Functionalized Cahn-

Hilliard Free Energy

For simplicity, we focus on the strong FCH, whose critical points, subject to a total mass constraint, are the

solutions of the associated Euler-Lagrange equation

δF
δu

∶= (ε2∆ −W ′′(u)) (ε2∆u −W ′(u)) − ε (−ε2η1∆u + η2W
′(u)) = λ, (1.18)

where λ ∈ R is the Lagrange multiplier, and the boxed term (ε2∆u −W ′(u)) is the variational derivative

of a CH free energy, of the form presented in Equation (1.3). Intuitively, approximate solutions of the CH

Euler-Lagrange equation

δE
δu

∶= −ε2∆u +W ′(u) = O(ε). (1.19)

are natural starting places for a perturbative construction of solutions of the FCH Euler-Lagrange equation.

For such approximate critical points of the CH free energy it is natural that the Lagrange multiplier λ in

(1.14) should scale with ε, that is λ = ελ̂. Within this scaling we may rewrite the FCH Euler-Lagrange
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equation,(1.18), as two, coupled second order systems

ε2∆u −W ′(u) = εv,

(ε2∆ −W ′′(u)) v = (−ε2η1∆u + η2W
′(u)) + λ̂.

(1.20)

The singularly perturbed nature of the FCH Euler-Lagrange system makes it amenable to dimensional

reduction, yielding localized solutions build upon immersions in Rd of different co-dimensions.

1.4.1 Construction of co-dimension 1 Quasi-stationary solutions of FCH

We first review some basic definitions from elementary differential geometry. Let Γb ⊂ Rd be a smooth,

co-dim 1 interface, which divides Ω into two disjoint sets Ω+ ∪ Ω−, see Figure 1.5. Let ρb(s) be its local

parametrization, ρb ∶ Q ⊂ Rd−1 → Rd, and s = (s1, ..., sd−1) ∈ Q ⊂ Rd−1, and let r be the signed distance

(unscaled) from Γb. For simplicity we choose the parameterization so the si correspond to arc length along

Ω−

Ω+Γ

x = ρb(s) + εzn(s)

Figure 1.5: The whiskered coordinate system of a generic, admissible, co-dimension one interface.

the ith coordinate curve and the coordinate curves are lines of curvature. In this setting, the vectors Ti =

(T i1, ...T id−1) defined by

Ti ∶= ∂ρ

∂si
, i = 1, .., d − 1, (1.21)

form an orthonormal basis for the tangent space to Γb at ρb(s, t). Denoting the outer normal vector of Γb

pointing towards Ω− by n(s, t) = (N1, ...,Nd), we have the relations

∂Ti

∂si
= −kin,

∂n

∂si
= kiTi, i = 1, .., n − 1, (1.22)

where ki are the principle curvatures of Γb.

Definition 1.1. For fixed K, ` > 0 the family, GK,`, of “admissible co-dimension one interfaces” is comprised
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of closed (compact and without boundary), oriented 2 dimensional manifolds Γb embedded in Rd, which are

far from self-intersection and with a smooth second fundamental form. More precisely,

(i) The W 4,∞(Q) norm of the 2nd Fundamental form of Γb and its principal curvatures are bounded by K.

(ii) The whiskers of length 3`, in the unscaled distance, defined for each s0 ∈ Q by, ws0 ∶= {x ∶ s(x) =

s0, ∣z(x)∣ < 3`/ε}, neither intersect each-other nor ∂Ω (except when considering periodic boundary conditions).

(iii) The surface area, ∣Γb∣, of Γb is bounded by K.

Assume Γb ∈ GK,`. The set Γb,` defined by

Γb,` ∶= {ζb(s, z) ∈ Rd∣s ∈ S,−`/ε ≤ z ≤ `/ε} ⊂ Ω, (1.23)

will be called the reach of Γb, where we emphasize that ` is fixed independent of ε and of Γb ∈ GK,`.

Each x ∈ Γb,` can be uniquely expressed via the whiskered coordinates such that

x = ζb(s, z) ∶= ρb(s) + εzn(s), (1.24)

where z ∈ [−l/ε, l/ε] is the scaled signed distance to Γb, z = r
ε
. The line segments {ρb(s) × [−`, `] ∣ s ∈

Q} are the whiskers of length 2` of Γb, and the pair (s, z) form the local whiskered coordinate system.

Figure 1.5 presents the whiskered coordinate system. By the Implicit Function Theorem this map is locally

and smoothly invertible. In particular, the functions s = s(x) and z = z(x) which relate the whiskered

coordinates to the cartesian ones and the associated change of variables, are all C4 diffeomorphisms on the

reach, Γb,l, of Γb. The white region in Figure 1.6 (right) depicts the reach of the associated immersion Γb.

Definition 1.2. Given Γb ∈ GK,` and a function f ∶ R → R which tends to constant values f±∞ at O(1)

exponential rates as r →∞, we say that we dress the interface Γb with f , obtaining the Γb-extension

fΓb
(x) ∶= f(r(x))χ(∣r(x)∣/l) + f+∞(1 − χ(∣r(x)∣/l)) + f−∞(1 − χ(∣r(x)∣/l)), (1.25)

where r(x) is the (unscaled) distance from Γb and χ ∶ R→ R is a fixed, smooth cut-off function which is one

on [−∞,1], while χ(s) = 0 for s ≥ 2. By abuse of notation we will drop the Γb subscript in the Γb-extension

when doing so creates no confusion.

The first step in the construction of the quasi-stationary solutions is to build the bilayer profile which is a

1-dimension equilibrium of equation (1.20). In the whiskered coordinates the Cartesian Laplacian takes the

form

ε2∆ = ∂2
z + εH(s, z)∂z + ε2∆G, (1.26)
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Ω−

Ω+

Ω−

Ω+

Figure 1.6: Single-layer (left) and Bilayer (right) dressings of the same co-dimension one interface Γ (solid
black line). The dressing function is a one-D solution of the CH Euler-Lagrange equation. For the single-
layer solution Γ separates regions u = b− from u = b+, while the bilayer solution corresponds to u = b− on
either side of the bilayer, with a brief excursion u > b− near Γ.

where H is the extended curvature, defined in terms of the Jacobian, Jb, of the change of variables, defined

in Equation (1.24). In particular, at leading order H(s, z) =H0(s) +O(εz) where H0 is the mean curvature

of Γb at ζb(s,0) and ∆G = ∆s +O(εz) where ∆s is the usual Laplace-Beltrami operator on Γb, for further

details see Section 2.1.

In the whiskered coordinates the first equation of (1.20) reduces, at leading order, to a second-order ODE

in z, for the one-dimension profile ϕ(z),

∂2
zϕ(z) =W ′(ϕ), (1.27)

defined for z in the reach. Since the double-well W is assumed to have unequal depth wells 0 = W (b−) >

W (b+), a simple phase-plane analysis shows that this equation supports a unique solution Ub which is

homoclinic to b−, that is Ub(z) → b− as z → ±∞, see [Homburg and Sandstede, 2010] for a general discussion

of homoclinic orbits.

We define the leading-order structure of the bilayer critical point, ub = ub(x; Γb) via the two-term expansion,

ub(x) ∶= Ub(z(x)) + εub,1, (1.28)

where Ub is the bilayer dressing of Γb within the reach Γb,`, equal to a constant value on Ω/Γb,3` and smoothly

extended to match in the intermediate region, see Figure 1.6 (right). To define the correction term ub,1 we

first introduce the Sturm-Liouville operator Lb,0

Lb,0 ∶= ∂2
z −W ′′(Ub), (1.29)

which is the linearization of (1.27) about Ub. Evaluating equations (1.20) at ub and projecting the right-hand
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side onto the range of Lb,0 yields

Lb,0ub,1 = v, (1.30)

Lb,0v = −η1U
′′
b + η2W

′(Ub) + λ̂. (1.31)

On the reach, Γb,`, the correction ub,1 is chosen to simplify the residual of equation (1.20) when evaluated

at ub, is defined as

ub,1 ∶= L−2
b,0 (−η1U

′′
b + η2W

′(Ub) + λ̂) . (1.32)

Remark 1.1. The inverse operator L−1
b,0 is naturally defined L2(R) →H2(R), by abuse of notation we apply

it to functions on [−`/ε, `/ε] which have a natural extension to R by applying it to the extension, and then

restricting the result.

We further decompose ub,1 into a local term ũb,1 which decays exponentially to zero in z, and is smoothly

extended to be zero off of Γb,`, and a constant term

γ1 =
λ̂

α2
−

, (1.33)

where we have introduced the well coercivity

α− ∶=W ′′(b−) > 0. (1.34)

The resulting ub is our qausi-steady solution

ub(x) = Ub(z) + ε (γ1 + ũb,1(z)) , (1.35)

parameterized by Γb ∈ GK,` and γ1 ∈ R. The local term ũb,1 corrects the structure of Ub within the reach,

while the spatial constant γ1 adjusts the far-field behavior of ub, which is now b ∶= b− + εγ1.

In the far-field region ub takes the spatially constant value

ub(x) = b ∶= b− + ε
µ1

α2
−

+O(ε2), x ∈ Γ̃b,`, (1.36)

where µ1, the chemical potential, is the leading order, non-zero term in the first variation of F . By matching
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the inner and outer expression of ub, given in (1.35) and (1.36), respectively, we find that

γ1 =
µ1

α2
−

, (1.37)

i.e., the value of µ1 differs from γ1 by a factor corresponding to the square of the branch point, α2
− of the

essential spectrum of Lb,0.

The quantity µ1 plays a key role in the evolution and bifurcation of the quasi-steady interfaces. We asso-

ciate µ1 with the far-field density of amphiphilic molecule – precisely the quantity that Szostak ’tweaked’ by

adding oleo-lipids to the bulk solvent phase in his experiment [Budin and Szostak, 2011], see Figure 1.3.

Remark 1.2. There are critical points of F for which λ is O(1), in particular the single-layer solutions,

which correspond to heteroclinic orbits of (1.27) that connect two equilibrium values, see Figure 1.6 (left). For

the Cahn-Hilliard free energy single-layers form the dominant global minimizers, however they are generically

saddle points of the FCH, and are susceptible to meander instabilities in the gradient flow. It is important

to emphasize that single-layers and bilayers are distinct morphologies – single-layers separate phase A from

phase B while bilayers separate phase A into two regions by a thin layer of phase B, see Figure 1.6. In

particular bilayers can rupture, re-uniting the two regions of phase A, as when a lipid bilayer opens a pore,

or tears. In addition, the interfacial component is a conserved quantity for bilayers, and when the bilayer is

stretched the interface must thin, which naturally increases its free energy as it deforms from its equilibrium

profile Ub – bilayers can support non-zero tangential stresses.

1.4.2 Construction of co-dimension 2 and co-dimension 3 Quasi-stationary so-

lutions of the FCH

The FCH Euler-Lagrange equation, (1.20), also possesses co-dimension two and co-dimension three solutions

in Ω ⊂ R3. We first consider co-dimension two solutions. These are based upon a foliation of a neighborhood

of a smooth, closed, non-self intersecting one-dimensional manifold Γp immersed in Ω. The co-dimension

two whiskered coordinate system, introduced in Chapter 2, is defined using the mapping x = ζp(s, z), and

the ideas of admissibility, reach, and dressing extend naturally from the co-dimension one case.

Within the reach, Γp,`, of Γp the Laplacian admits the local form

ε2∆ = ∆z + ε
κ⃗

1 − εz⃗ ⋅ κ⃗ ⋅ ∇z + ε
2∂2
G, (1.38)

where ∆z is the Cartesian Laplace operator in the scaled normal distances z⃗ = (z1, z2), the vector κ⃗ =

(κ1, κ2)T is the curvatures vector of Γp at ζp(s, 0⃗), and ∂2
G reduces to the line diffusion operator, ∂2

s , on Γp
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when z⃗ = 0, see Section 2.2 for details. Assuming radial symmetry, the leading order pore profile associated

to the Euler-Lagrange equation (1.18) satisfies co-dimension two critical point equation

∂2
RUp +

1

R
∂RUp =W ′(Up), (1.39)

subject to ∂RUp(0) = 0 and Up → b = b− + εµ1 + O(ε2) as R → ∞. The leading order form for the pore

quasi-stationary network arises from the pore profile dressing of a co-dimension two interface Γp,

up(x) ∶= Up(R(x)) + ε (µ1 + up,1(R)) , (1.40)

where the local term ũp,1 corrects the structure of Up within the reach, Γp,`, while µ1 ∈ R is a spatial

constant that adjusts the far-field chemical potential. It is possible to combine quasi-stationary bilayer

and pore morphologies, so long as the associated manifolds have non-intersecting reaches, and the far-field

constant µ1 takes a common value. Indeed, the quasi-steady evolution between co-existing co-dimension one

and co-dimension two interfaces is driven by the competition between this common far-field value b, which

is given by b = b− + εµ1. If the optimal far-field values, µ∗b and µ∗p, associated to distinct co-dimensional

morphologies differ, then the morphologies cannot both simultaneously be in equilibrium, see section 4.7 for

details.

Co-dimension three quasi-stationary solutions, in R3, are spherically symmetric micelle morphologies. The

associated coordinate system reduces to the usual spherical variables and the Laplacian reduces to the

associated spherical form. Assuming rotational symmetry, the leading order micelle profile is the unique

solution of

∂2
RUm + 2

R
∂RUm =W ′(Um), (1.41)

subject to ∂RUm(0) = 0 and Um → b as R → ∞. An immediate prediction of the FCH free energy is that

bilayers must be thinner than pores, which in turn are thinner than micelles. This observation is born out

by experimental data, Figure 1.7 (right).

1.4.3 Minimization of the strong FCH free energy over co-dimension 1 quasi-

stationary profiles

It is constructive to examine the minimizers of F over a class of co-dimension 1 quasi-stationary solutions.

Momentarily setting aside the mass constraint, there are two classes of free parameters in our construction

of ub, the spatially constant background correction, µ1, and the interface shape Γb. We will show, in
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 =3

M core
n (g/mol) 2500 ± 40 5850 ± 204

bilayer 8.7 ± 1.2 15.8 ± 2.8

pore 14.3 ± 1.6 25.4 ± 3.3

micelle (nm) 18.4 ± 2.6 38.8 ± 10.2

Figure 1.7: (left) A comparison of co-dimension α = 1,2, and 3 profiles computed from (1.27), (1.39),
and (1.41) respectively. The relative widths the profile is most sensitive to the difference in depths of the
two wells: W (b−) −W (b+) > 0. (right) A table of experimental data indicating radii of bilayer, pore, and
micelle morphologies obtained by varying the hydrophilic length of polymer in PEO-PB amphiphilic di-blocks
with fixed hydrophobic (core) molecule weight, M core

n , as indicated. Reprinted (adapted) with permission
from [Jain and Bates, 2004]. Copyright 2004 American Chemical Society.

Equation (1.52), that for the strong FCH free energy, the optimal value of amphiphilic material in the

bulk region is determine by the double-well potential W and the functionalization terms η1 and η2. We first

evaluate the free energy, at ub, which takes the form

F(ub) = ∫
Ω

1

2
(ε2∆ub −W ′(ub))

2 − ε(ε
2η1

2
∣∇ub∣2 + η2W (ub))dx, (1.42)

and break the integral over the near-field Γb,` and far-field Γ̃b,` ∶= Ω/Γb,`. Denoting the near-field integral by

F`(ub) we change to local coordinates

F`(ub) = ∫
Γb,`

(ε2∆ub −W ′(ub))
2 − ε(ε

2η1

2
∣∇ub∣2 + η2W (ub))dx,

= ∫
Γb
∫

`/ε

−`/ε

1

2
(∂2
zUb −W ′(Ub) + εH0(s)U ′

b)
2 − ε(η1

2
∣U ′
b∣2 + η2W (Ub))Jb(s, z)dz ds,

(1.43)

where the Jacobian, defined in (2.6), admits the expansion Jb = ε + ε2zH0(s) + O(ε3z2). Expanding the

Jacobian and keeping only leading order terms we find

F`(ub) = ε∫
Γb
∫

`/ε

−`/ε

ε2

2
(Lb,0 (µ1

α2
−

+ ũb,1) +H0(s)U ′
b)

2

− ε(η1

2
∣U ′
b∣2 + η2W (Ub)) dsdz. (1.44)

The localized functions in the squared term will yield O(ε3) integrals which are negligible. However, the

far-field correction in the squared term Lb,0
µ1

α2−
= −W ′′(Ub) µ1

α2−
→ − µ1

α−
yields an asymptotically relevant

contribution. Moreover integrating (1.27) we see that (U ′
b)2 = 2W (Ub). Together these two observations
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allow us to rewrite the localized component of the free energy as,

F`(ub) = ε2∣Γb∣ (`
µ2

1

α2
−

− η1 + η2

2
σb) , (1.45)

where we introduced the bilayer ’surface tension’

σb ∶= ∥U ′
b∥2
L2(R). (1.46)

The value of ub in the far-field region is given in (1.36), and, by Taylor expansion, we note that W ′(b) =

ε µ1

α−
+O(ε2), and W (b) = O(ε2). Denoting the far-field integral by F̃`(ub) we find that its contribution to

the energy reduces to the leading order expression,

F̃`(ub) = ε2(∣Ω∣ − 2`∣Γb∣)
1

2

µ2
1

α2
−

+O(ε3). (1.47)

Combining the near- and far-field expressions, the total energy takes the form

F(ub) = ε2 ( ∣Ω∣
2

µ2
1

α2
−

− ∣Γb∣
η1 + η2

2
σb) +O(ε3). (1.48)

A similar near-field/ far-field decomposition applied to the the integrals yields the expression for the total

mass of amphiphilic material.

M ∶= ∫
Ω
ub(x) − b− dx = ∫

Γ̃b,`

ε
µ1

α2
−

dx + ∫
Γb
∫

`/ε

−`/ε
(Ub + ε

µ1

α2
−

)Jb dz ds = ε∣Ω∣µ1

α2
−

+ ε∣Γb∣mb, (1.49)

where

mb ∶= ∫
R
Ub(z) − b− dz > 0, (1.50)

is the mass of amphiphilic material per unit length of bilayer. Typically the amphiphilic component is scarce

within the bulk, so that M = εM̂ (don’t put too much soap in the washing machine!), and since Γb is

admissible its interfacial area ∣Γb∣ is O(1). These assumptions render ub a quasi-stationary with respect to

F , moreover a prescribed value of M̂ and µ1 determines the area, ∣Γb∣, of the bilayer interface. Consequently,

we solve equation (1.49) for ∣Γb∣, and plug the result into equation (1.48) which yields

F(ub) = ε2
⎛
⎜
⎝
∣Ω∣
2

µ2
1

α2
−

−
(M̂ − ∣Ω∣ µ1

α2−
)(η1 + η2)σb

2mb

⎞
⎟
⎠
. (1.51)
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Figure 1.8: Depiction of bilayer (left, source: academic.brooklyn.cuny.edu), pore (center), and micelle
(right) morphologies of lipids. The co-dimension associated to the morphology is the difference between the
space dimension and the number of tangent directions of the minimal manifold whose normal bundle locally
foliates the morphology. In R3 bilayers are co-dimension one, pores are co-dimension two, and micelles are
co-dimensionl three.

The minimization of F(ub) over Γb and µ1, subject to the mass constraint reduces to the optimization of a

quadratic polynomial in µ1, and the optimal value of amphiphilic material in the bulk region takes the form

µ∗b = −
η1 + η2

2

σb
mb

. (1.52)

For the strong functionalization only the area of an admissible co-dimension one interface, and not its

curvature, enter into the leading-order determination of the free energy of its bilayer dressing. Moreover

bilayers prefer an optimal far-field value of lipid, µ∗b which is independent of the scaled mass constraint M̂

and hence the area of the bilayer – it is a universal property of the system as determined by the shape of

the well W through mb, σb, and α− and through the functionalization parameters η1 and η2. For the weak

functionalization the Willmore term, the integral of the square of the mean curvature over Γb, enters into

the free energy at leading order, and the optimization is more subtle.

1.5 Network Bifurcation in the FCH

The quasi-stationary network morphologies developed in Section 1.4 are, at leading order, critical points of

the Cahn-Hilliard, however these structures are not perturbations of local minima but rather approximate

saddle points of the CH free energy. An essential feature of the functional form of the FCH is its facility to

build competitors for its local minima out of the saddle points of the simpler CH free energy. This process is

best understood by examining the second variational derivative of the FCH free energy at a smooth critical

point, uc of the Cahn-Hilliard free energy. For traceless boundary conditions, such as periodic boundary

conditions, see [Promislow and Zhang, 2013] for a detailed discussion of appropriate boundary conditions,
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the second variation takes the form

Luc ∶=
δ2F
δu2

(uc) = (ε2∆ −W ′′(uc))
2 − εp (η1ε

2∆ + η2W
′′(uc)) . (1.53)

For a quasi-steady bilayer, ub, associated to an admissible, co-dimension one interface Γb, the second varia-

tional derivative Lb ∶= Lub
, takes a simplified form when acting on functions u ∈ H4(Ω) whose support lies

within the reach, Γb,`, of Γb. On this subspace the operator admits the asymptotic expansion

Lb = (Lb,0 + εH∂z + ε2∆G)2 − εp (η1∂
2
z + η2W

′′(Ub)) +O(εp+1), (1.54)

An investigation of the spectrum of the operator Lb is presented in Chapter 5. Indeed, it was shown by

[Hayrapetyan and Promislow, 2014] that there exists U > 0, independent of ε such that the eigenfunctions

associated to Lb corresponding to eigenvalues Λb < U comprise two sets, the pearling eigenmodes {Ψb,0,n}N2

n=N1

and the meander eigenmodes {Ψb,1,n}N3

n=0, see details in Chapter 2. In chapter 5 we characterize the pearling

eigenmodes, showing that they are independent of Γb ∈ GK,` and consequently determine parametric regions

of pearling stability and instability, for the strong FCH. For Γb an admissible, generic, co-dimension one

interface we consider the eigenvalue problem

LbΨb,0,n = Λb,0,nΨb,0,n, (1.55)

associated to the second variation of F about the bilayer dressing ub. The spectrum of Lb cannot be localized

by a regular perturbation expansion since the eigenvalues are asymptotically close together.

The expression for the pearling stability condition of bilayer interfaces with constant curvatures was estab-

lished in [Doelman et al., 2014], see Figure 1.9, where the eigenvalues associated to the bilayer dressing of

such an interface are uncoupled. In this thesis we extend this result to the linearization about a dressing

of generic admissible co-dimension one and co-dimension two manifolds. The main difficulty arises from the

coupling among the eigenvalues through the derivatives of the curvatures. The analysis requires bounds on

the spectrum that are uniform in ε≪ 1. To this end we introduce the L2(Ω) orthogonal projection Π onto

the space of the pearling eigenmodes and its complementary projection denoted Π̃ ∶= I −Π. A decomposition

of the operator Lb into a 2 × 2 block form using the projections takes the form

L̃b ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΠLbΠ ΠLbΠ̃

Π̃LbΠ Π̃LbΠ̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.56)
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Figure 1.9: Time evolution of a circular, co-dimension one bilayer under the FCH gradient flow (1.17) for
vales ε = 0.1 and η1 = η2 = 2. The times depicted correspond to t = 0, t = 114, and t = 804 and show the onset
of the pearling bifurcation.

In Chapter 5, Section 5.3, we prove that the off-diagonal operators are small, in norm, independent of ε.

The spectrum of the fully infinite dimensional piece, Π̃LbΠ̃, is bounded from below by a constant U > 0

independent of ε, [Hayrapetyan and Promislow, 2014]. The upper-left element ΠLbΠ can be reduced to a

large matrix M ∈ RN×N where N ≈ ε3/2−d. The spectrum of Lb is controlled by the spectrum of the matrix

M and the singular scaling is reflected in the growth of N as ε → 0. Care must be taken to distinguish

between the size of the entries of M and the size of M as an operator from l2(RN) to l2(RN), as the latter

generically scales like
√
N times the l∞ norm of the entries. For simplicity we focus only on the pearling

modes j = 0, neglecting the meander terms associated to j = 1. In Chapter 5 we observe that the matrix M

admits an asymptotic decomposition

M =M0
diag + εA, (1.57)

where M0
diag is a diagonal matrix and A is uniformly bounded as an operator on l2(RN) as long as the

curvatures are sufficiently smooth. Therefore, at leading order, the eigenvalues of M are the diagonal entries

of M0
diag which take the form

Λb,0,n = (λb,0 − ε2βn)2 − ε(µ1α
2
−Sb + λb,0(η1 − η2)∥ψb,0∥2

2), (1.58)

where λb,0 is the ground state eigenvalues of the linear operator Lb,0 with the corresponding eigenfunc-

tion ψb,0, and βk is an eigenvalue of the Laplace-Beltrami operator ∆s, corresponding to the eigenfunc-

tion Θk. The coefficient Sb is the “ bilayer shape factor”, defined in equation (5.41), whose sign determines

if the pearling bifurcation absorbs or releases amphiphilic material from the bulk.

The positive quadratic term in the pearling eigenvalue expression (1.58) is dominant except when the Laplace-
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Beltrami eigenvalue βn is approximately equal to λb,0ε
−2. By the Weyl asymptotic formula for the Laplace-

Beltrami eigenmodes, the residual of the dominant term is O(ε) for an asymptotically large value, N of

indices n. The nature of the bilayer pearling bifurcation depends sensitively upon the sign of Sb. For

Sb < 0, which holds for a generic class of double-well potentials W , see section 5 of [Doelman et al., 2014],

the spectrum of M will be strictly positive if and only if µ1 satisfies the pearling stability condition

P ∗
b ∶= −

λb,0(η1 − η2)∥ψb,0∥2
L2

α2
−Sb

> µ1. (1.59)

We also identify a class of wells for which Sb > 0, in which case the the direction of the inequality in (1.59)

is reversed.

In Chapter 5, Section 5.4, we connect the spectrum of M to that of Lb, showing that the eigenvalues of M

are in fact a small perturbation of the small eigenvalues of Lb, and we obtain a perturbation estimate. We

also examine the solution of the linear flow generated by Lb. Assuming the eigenvalues of M are stable under

pearling, in terms of Equation (1.59), we will show that the semi-groups generated by L decay exponentially

fast and describe the resulting exponential dichotomy.

A similar analysis can be performed for co-dimension two pore structures, parametrized by the one-dimensional

immersion Γp, see Chapter 6. Assuming a negative value of the “pore shape factor” Sp, defined in (6.33)

we show that the pore structure will remain pearling stable if and only if µ1 satisfies the pearling stability

condition

P ∗
p ∶= −

ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
)

Sp
> µ1, (1.60)

where λp,0 is the ground state eigenvalue of Lp with the corresponding eigenfunction ψp,0.

This analysis is consistent with Szostak’s experiment, see [Zhu et al., 2012], in which a photo-induced increase

in charge on the lipid heads induced a pearling bifurcation which drove pores to micelles, see Figure 1.3 (right).

The increase in charge corresponds, within the FCH, to an instantaneous increase in η1; a sufficiently large

increase, for a fixed value of µ1, will trigger the bilayer pearling condition (1.59) as well as the pore pearling

condition (1.60). Figure 7.9 depicts the pearling as a result of instantaneously increase in η1.

In Section 5.5 we relate the small eigenvalues of ∆L to those of L and find that the pearling eigenvalues

of ∆L which are two orders of ε larger than the pearling eigenvalues of L.
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1.6 Competitive Geometric Evolution of Bilayers and Pores

In this thesis we model the over-damped dynamics of amphiphilic polymer suspensions via the mass-

preserving H−1 gradient flow given in equation (1.17). The quasi-stationary network morphologies con-

structed in section 1.4 are not stationary solutions of the FCH gradient flow, but generate slow dynamics

which may be locally parameterized by the interfacial sub-manifolds of bilayers and pores, respectively

Γb and Γp. Indeed, when the bilayer pearling stability condition holds, then the bilayers meander eigen-

modes {Ψb,1,n}N3

n=0, depict in Figure 2.3, comprise the potentially negative eigenspace of the associated

linearization. The flow of the underlying interfacial structure can be obtained by projecting the residual

δF
δu

(ub) of the critical point equation (1.18) onto this eigenspace. The method of matched asymptotic expan-

sion provides an accessible, but formal method to derive the interfacial motion. For a bilayer morphology,

the ansatz (1.35) for ub is augmented by taking the signed distance z to the interface Γb and the background

state µ1 to be functions of the slow scaled time τ = t/ε, and the gradient flow is solved by matching fluxes,

particularly across the interfacial layers. For single-layer morphologies, under the Cahn-Hilliard gradient

flow this results in a Mullins-Sekerka problem for the interface, see [Pego, 1989]. For ε ≪ 1 it was shown

that the leading order normal velocity of the interface of the spinodal domains is determined by the jump

in the normal derivative of the chemical potential defined across the interface, separate the complementary

domains. More rigorous derivations of Pego’s results quickly followed, particularly [Alikakos et al., 1994]

and [De Mottoni and Schatzman, 1995].

For the FCH gradient flow, (1.17) reduces, at leading order, to

εU ′
b(z)

∂z

∂τ
+ εdµ1

dτ
= ∆

δF
δu

(ub) = ε∆H0(s)U ′
b(z) +O(ε2). (1.61)

The leading order residual arises from the mean-curvature term which was neglected in the construction of

the bilayer, ub. This term now becomes a driving force for the evolution of the interface Γb through the time

derivative in the signed distance function. Indeed, the quantity

Vb(s) ∶= −
∂z

∂τ
, (1.62)

is the normal velocity of the interface Γb. The asymptotic reduction does lead to a Mullins-Sekerka prob-

lem for the far-field chemical potential, however its driving force is given by the interfacial mean curvature

times the jump of the bilayer profile across the interface, H0(s)JUbK. Since the bilayer is a homoclinic orbit

its jump JUbK = 0, and the Mullins-Sekerka problem is trivial. The outer chemical potential reduces to

a spatial constant, and the far-field is characterized by amphiphilic density, µ1(τ), whose value in deter-
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mined by conservation of total mass, see [Dai and Promislow, 2013] for details for bilayers under the weak

functionalization. For the strong functionalization the resulting system takes the form

Vb = νb(µ1 − µ∗b)H0,

dµ1

dt1
= −νbmb(µ1 − µ∗b)∫

Γb

H2
0 dS,

(1.63)

where H0 is the mean curvature, νb ∶= mb

∫R(Ub−b−)2 dz
> 0 and µ∗b is the optimal far-field amphiphilic density,

the same quantity derived by the optimization process in (1.52). The H−1 gradient flow drives pure bilayer

interfaces by a quenched mean-curvature flow. While the flow drives µ1 to its optimal value µ∗b , the sign of

the difference µ1 − µ∗b is consequential. Indeed, in two space dimension, modulo reparameterization of the

evolving interface, the curvature driven flow can be recast as an evolution equation of the single curvature

H0,

∂H0

∂t1
= −(∂2

s +H2
0)Vb = νb(µ1 − µ∗b)(∂2

s +H2
0)H0, (1.64)

see section 3.3 of [Gavish et al., 2011] for details. If µ1 > µ∗b , that is if the bulk value of amphiphilic material

is in excess then the curvature driven flow is a backwards-heat equation in the curvatures. This is the nature

of the fingering instability induced in [Budin and Szostak, 2011] when oleo-lipids were added to the bulk of

the spherical bilayer suspension. The fingering instability initiates as a backward heat flow in the curvature.

The resulting singularity is associated to the development of the pore type growth emanating from the bilayer

surface. Moreover, in [Doelman et al., 2014] the condition µ1 > µ∗b was identified as the point of bifurcation

to linear instability of the meander eigenvalues associated to spherical bilayers. For µ1 < µ∗b the curvature

driven flow is locally well-posed but is subject to finite-time blow-up due to the cubic driving force, H3
0 . This

is the familiar finite-time extinction of droplets under curvature driven flow. However, for the quenched flow

(1.63) the relaxation of µ1 to its equilibrium value precludes the blow-up if the initial curvatures are not too

large.

A similar reduction can be performed for co-dimension two pore structures, parametrized by the one-

dimensional immersion Γp. The result is a similar quenched curvature driven flow for the vector valued

normal velocity V⃗p = −(∂z1∂τ ,
∂z2
∂τ

)T ,

V⃗p = νp(µ1 − µ∗p)κ⃗(s),
dµ1

dτ
= −εmp(µ1 − µ∗p)∫

Γp

∣κ⃗∣2 ds,
(1.65)

where νp ∶= mp

π ∫
∞
0 (U ′

p)
2RdR

> 0, κ⃗ is the vector curvature of Γp, mp ∶= 2π ∫
∞

0 (Up − b−)RdR is the mass of
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Figure 1.10: Competition for the amphiphilic phase between a spherical bilayer (beach ball) and circular
solid pore (hula hoop) as a function of the well tilt W (b−) −W (b+). The image shows t = 100 end states
of the FCH gradient flow (1.17) from identical initial data but with increasing values of the well tilt. Small
tilt prefers bilayers, larger tilt prefers pores by increasing µ∗b and the pearling threshold, P ∗

b , which drives
bilayers to pearl. Images courtesy of Andrew Christlieb and Jaylan Jones.

amphiphilic material per unit length of pore structure and the equilibrium value

µ∗p ∶= −
η1

α2
−

∫
∞

0 (U ′
p)2RdR

∫
∞

0 (Up − b−)2RdR
, (1.66)

is again independent of Γp. Most intriguingly, initial data corresponding to spatially separated pores and

bilayers yields a competitive evolution that can be understood as a fight for surfactant, mediated through the

common value of the bulk amphiphilic density µ1, whose evolution is determined to impose the conservation

of total mass,

Vn = νb(µ1 − µ∗b)H

V⃗p = νp(µ1 − µ∗p)κ⃗
dµ1

dt1
= −νbmb(µ1 − µ∗b)∫

Γb

H2
0dS − ενpmp(µ1 − µ∗p)∫

Γp

∣κ⃗∣2 ds,

(1.67)

The competitive evolution of the bilayers and pores couples through curvature-weighted surface area. How-

ever, the two morphologies seek differing equilibria values, which generically satisfy µ∗b ≠ µ∗p, making coex-

istence of bilayers and pores impossible under the strong functionalization, unless one of the structures is

flat, since zero curvature interfaces are at equilibrium independent of bulk value of amphiphile. For curved

interfaces, the range µ1 ∈ [µ∗p, µ∗b ] is invariant under the flow, and once µ1 enters this range the bilayers

will shrink, while the pore morphologies will grow. Moreover, if the pearling threshold P ∗
b lies within the

invariant range [µ∗p, µ∗b ] then the value of µ1 may transiently decrease through the pearling threshold for
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bilayers, (1.59), causing the bilayers to pearl as they shrink. Figure 1.9 depicts various t = 100 end-states of

the FCH gradient flow for a double well potential W with increasing value of well tilt W (b+)−W (b−). In all

cases the initial data consists of a spherical bilayer and two circular pores placed with antipodal symmetry.

Increasing well tilt leads to a pore end state with a larger radius and to pearling of the bilayer. A detailed

analysis of the bifurcation structure of the bilayer-pore network morphologies is given in Chapter 7.
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Chapter 2

Coordinate System, Definitions and

Notation

One main goal of this thesis is to describe the geometric evolution of the functionalized polymer-solvent

bilayer and pore morphologies. We introduce the whiskered coordinate system which describes the

tangential and normal coordinates in a neighborhood of an admissible interface. In Section 2.1 we address the

co-dimension one morphology in Rd, (d ≥ 2), and establish necessary definitions from elementary differential

geometry, and in Section 2.2 we repeat the process for co-dimension two morphology in R3.

Note 2. Throughout this thesis we will use subscript b or p to distinguish between quantities associated with

the bilayers structures and and those associated with the pore structures, respectively.

Derivative Notation: Given a function of a single variable, such as f(x), we use (⋅)′ notation to indicate

its derivative. e.g., f ′ ∶= ∂xf . If a function involves more then one variable, we specifically write with respect

to which variables we differentiate to avoid ambiguity.

2.1 Co-dimension One Morphology in Rd, d ≥ 2

Admissible co-dimension one interfaces are defined in Definition 1.1. We fix K and ` and let Γb ∈ GK,` be an

admissible, co-dim 1 initial interface, which divides Ω into two disjoint sets, see Figure 1.5. The reach of the

interface, Γb,` is defined in equation (1.23), and according to equation (1.24), each x ∈ Γb,` can be uniquely

expressed using the whiskered coordinates such that

x = ζb(s, z) ∶= ρb(s) + εzn(s), (2.1)
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where ρp is a parameterization of Γb, z ∈ [−l/ε, l/ε] is the scaled signed distance to Γb and n is the outer

normal.

Definition 2.1. We define k⃗b = (kb,1, ...kb,d−1) to be the vector of the principle curvatures of Γb.

Let g the matrix representation of the first fundamental form of Γb, whose entries are given by

gij ∶= ⟨∂ρb
∂si

,
∂ρb
∂sj

⟩
L2(Rd)

, (2.2)

and the representation of the second fundamental form of Γb given by

hij ∶= − ⟨ ∂ν
∂si

,
∂ρb
∂sj

⟩
L2(Rd)

, (2.3)

where ν is the Gauss map associated to Γb. Then, the Jacobian, Jb, of the transformation x → (s, z) takes

the form

Jb = (∂ρb
∂s1

, ...,
∂ρb
∂sd−1

,n)

⎛
⎜⎜⎜⎜⎜
⎝

Id−1 − εzhji 0

0 ε

⎞
⎟⎟⎟⎟⎟
⎠

, (2.4)

where Id−1 is the (d−1)×(d−1) identity matrix, and hji is related to the first and second fundamental forms

of Γb via the following equation

hji =
d−1

∑
m=1

himg
mj . (2.5)

The determinant of the Jacobian matrix, Jb = det(Jb), satisfies

Jb(s, z) = εJ0(s)J̃b = J0(ε + ε2zH0) +O(ε3). (2.6)

where J0 is defined by

J0(s) ∶=
√

detg, (2.7)

is related to the matrix representation of the first fundamental form, defined in (2.2), and J̃b is given by

J̃b(s, z) ∶=
d−1

∏
i=1

(1 − εzkb,i), (2.8)

where kb,i are the principle curvatures of Γb. For more details see [Hayrapetyan and Promislow, 2014, Ap-

pendix 6].
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On the reach Γb,`, in the whiskered coordinates, the Laplace operator takes the form

ε2∆x = ∂2
z + εH∂z + ε2∆G, (2.9)

where H is the extended curvature term, given by

H ∶=
d−1

∑
j=1

kb,j

1 − εzkb,j
=

∞

∑
j=0

Hj(s)εjzj =H0(s) + εH1(s)z +O(ε2), (2.10)

kb,j are the principle curvatures of Γb, and Hj are related to the sum of the jth power of the curvatures. To

understand the third term on the right hand side of equation (2.9) we first consider the matrix G = JTb Jb.

With this matrix, the generalized Laplace term ∆G takes the form

∆G ∶= J−1
b

d−1

∑
i=1

d−1

∑
j=1

∂

∂si
GijJb

∂

∂sj
, (2.11)

and, according to [Hayrapetyan and Promislow, 2014, Proposition 6.6], the generalized Laplacian term can

be written as

∆G = ∆s + εzDs,2. (2.12)

Here ∆s is the Laplace-Beltrami operator, define by

∆s ∶= J−1
0

d−1

∑
i=1

d−1

∑
j=1

∂

∂si
gijJ0

∂

∂sj
, (2.13)

where g is the first fundamental form of Γb, introduced in equation (2.2), the elements gij are the entries

of g−1, and Ds,2 is a 2nd order operator, relatively bounded perturbation of ∆s, given by

Ds,2 ∶=
d−1

∑
i,j=1

di,j(s, z)
∂2

∂si∂sj
+
d−1

∑
j=1

dj(s, z)
∂

∂sj
. (2.14)

For admissible Γb the coefficients {di,j} and dj satisfy

max
i,j

(∣∣∂mz di,j ∣∣L∞(Γl)
, ∣∣∂mz dj ∣∣L∞(Γl)

) ≤ Cεm, for m = 0,1,2 (2.15)

for some C > 0 independent of ε.

Lemma 2.1. Let Ω ⊂ Rd be a bounded domain and consider the subspace H2
c (Γb,`) where the subscript c

denotes compact support within Γb,`. Then Ds,2 is a relatively bounded perturbation of ∆s on H2
c (Γb,`).

29



The proof of Lemma 2.1 follows from Hölder’s Estimates for the second derivatives, given in the following

theorem -

Theorem 2.1.1 (Hölder’s Estimates for the second derivatives, [Gilbarg and Trudinger, 2001]). Let u ∈

C2
0(Rn), f ∈ Cα0 (Rn), satisfy Poisson’s equation ∆u = f in Rn. Then u ∈ C2,α

0 (Rn) and, if B = BR(X0) is

any ball containing the support of u, we have

∣D2u∣′0,α;B ≤ C ∣f ∣′0,α;B , (2.16)

where C = C(n,α), the Hölder continuous exponent satisfies 0 ≤ α ≤ 1, and the norm is defined by

∣f ∣′0,α;B = sup
x,y∈B,
x≠y

(f(x) − f(y)) + dα sup
x,y∈B,
x≠y

f(x) − f(y)
∣x − y∣α (2.17)

and d = diam(B).

Note 3. For α = 1, the ∣ ⋅ ∣′0,1;B norm is the W 1,∞(B) norm.

Proof of Lemma 2.1. Fix f ∈ C2
0(Ω) with supp(f) ⊂ Γb,`, and λ∗ ∈ ρ(∆s). WLOG, take λ∗ = 0. We define

the function u = ∆−1
s f . Then, the following calculation shows that we can bound the L2-norm of Ds,2 using

the L2-norm of D2u

∣Ds,2u∣′0,1;Ω =
RRRRRRRRRRR

⎛
⎝
d−1

∑
i,j=1

(di,j(s, z))
∂2

∂si∂sj
+
d−1

∑
j=1

(dj(s, z))
∂

∂sj

⎞
⎠
u
RRRRRRRRRRR

′

0,1;Ω

(2.18)

≤ ∣∣di,j(s, z) ∣∣L∞(Γl)

RRRRRRRRRRR

d−1

∑
i,j=1

∂2

∂si∂sj
u
RRRRRRRRRRR

′

0,1;Ω

+ ∣∣dj(s, z) ∣∣L∞(Γl)

RRRRRRRRRRR

d−1

∑
j=1

∂

∂sj
u
RRRRRRRRRRR

′

0,1;Ω

≤max
i,j

(∣∣di,j(s, z) ∣∣L∞(Γl)
, ∣∣dj(s, z) ∣∣L∞(Γl)

)
⎛
⎝
∣D2u∣′

0,1;Ω
+
RRRRRRRRRRR

d−1

∑
j=1

∂

∂sj
u
RRRRRRRRRRR

′

0,1;Ω

⎞
⎠

≤c1
⎛
⎝
∣D2u∣′

0,1;Ω
+
RRRRRRRRRRR

d−1

∑
j=1

∂

∂sj
u
RRRRRRRRRRR

′

0,1;Ω

⎞
⎠
≤ c1 (∣D2u∣′

0,1;Ω
+ c2 ∣D2u∣′

0,1;Ω
) ≤ C ∣D2u∣′

0,1;Ω
,

where the third inequality follows from (2.15), the fourth inequality follows from Poincaré inequality and

the constants c1, c2 and C are independent of ε. Consider the ∣ ⋅ ∣′0,α;B norm of the operator D2(∆s)−1 acting

on u and apply (2.16) to u to obtain

∣D2u∣′0,α;Ω ≤ C ∣∆su∣′0,α;Ω = C ∣f ∣′0,α;Ω, (2.19)
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where the equality follows from replacing u = ∆−1f . Combining equation (2.19) and (2.18) we obtain

∣Ds,2∆−1
s f ∣′0,α;Ω ≤ C ∣f ∣′0,α;Ω. (2.20)

In particular, for α = 1 we have

∣∣Ds,2∆−1
s f ∣∣

W 1,∞ ≤ C ∣∣ f ∣∣W 1,∞ . (2.21)

We want to show that the following inequality holds

∣∣Ds,2∆−1
s f ∣∣

L2(Ω)
≤ C ∣∣ f ∣∣L2(Ω) . (2.22)

Assuming inequality (2.22) does not holds, i.e.,

∣∣Ds,2∆−1
s f ∣∣

L2(Ω)
> C ∣∣ f ∣∣L2(Ω) , (2.23)

then there exist a sequence {fn} such that

∣∣ fn ∣∣L2(Ω) → 0, (2.24)

∣∣Ds,2∆−1
s fn ∣∣

L2(Ω)
→ 1. (2.25)

Since the W 1,∞ norm is bounded below by the L2 norm, equation (2.25) implies that

1 ≤ ∣∣Ds,2∆−1
s fn ∣∣

W 1,∞ ≤ C ∣∣ fn ∣∣W 1,∞ . (2.26)

However, by the Sobolev Embedding Theorem we know that

W 1,∞ ⊂⊂ Lp, (2.27)

where 1
p
= 1
d
, and d is the space dimension. The embedding (2.27) implies that there is a subsequence {fnk

}

such that ∣∣ fnk
− f ∣∣Lp → 0, and ∣∣ f ∣∣Lp > 1. However, this contradicts (2.25), and we conclude that

∣∣Ds,2∆−1
s f ∣∣

L2(Ω)
≤ C ∣∣ f ∣∣L2(Ω) . (2.28)

∎

To better understand the generalized Laplacian operator, ∆G, we review some basic facts about the Laplace-
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Beltrami operator ∆s: The eigenvalues, {βk}∞k=0, of the −∆s, and the corresponding eigenfunctions, {Θk}∞k=0,

satisfy the following properties :

� ∆sΘk = −βkΘk,

� β0 = 0 and βk > 0 for k > 0.

� The eigenfunction of Laplace-Beltrami are orthonormal in the Γb inner product,

(Θk,Θj)Γb
∶= ∫

Γb

ΘkΘjJ0(s)dS = δk,j , (2.29)

where J0 is defined in (2.7).

� According to Weyl’s asymptotic formula, [Chavel, 1984], the number of eigenvalues ≤ λ, N(βn ≤ λ),

including multiplicity, satisfy

N(βn ≤ λ) ∼ C1λ
(d−1)/2. (2.30)

In particular, βn ∼ C2n
2/(d−1), where C1,C2 ∈ R constants.

Definition 2.2. Let Γb be an admissible interface. We say that f ∈ L1(Ω) is localized on Γb if there exist

constants M,ν > 0, independent of ε > 0, such that

∣f(x(s, z))∣ ≤Me−ν∣z∣, (2.31)

for all x ∈ Γb,`.

Definition 2.3. Given a function f ∶= f(s, z) localized on Γb we define the jump of f across a given whisker

by

JfK(s) = lim
z→∞

f(s, z) − lim
z→−∞

f(s, z). (2.32)

Given two functions f, g ∈ L2(Ω) with supp(f), supp(g) ⊂ Γb,` we may change the L2(Ω)-inner product to

the whiskered coordinates

(f, g)L2(Ω) ∶= ∫
Ω
f(x)g(x)dx = ∫

Γb
∫

l/ε

−l/ε
f(s, z)g(s, z)Jb(s, z)dz ds, (2.33)

where the Jacobian, Jb, was defined in (2.6). Moreover, integration of a localized function yields

∫
Ω
f dx = ∫

Γb
∫

`/ε

−`/ε
f(x(s, z))Jb(s, z)dz ds +O(ε−νl/ε). (2.34)
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We introduce the J0 inner product, defined as

(f, g)J0 ∶= ∫
Γb
∫

`/ε

−`/ε
f(s, z)g(s, z)J0 dz ds. (2.35)

Definition 2.4. For a fixed whisker w, we define the point (Γb(s),0) to be its base point (see Figure 2.1).

n

Ω−

Ω+

Γ

base point

(a) Base Point in Ω

base point

z → +∞

→ −∞z

w

ΓΩ−

Ω+

(b) Base Point in the whiskered coordinates

Figure 2.1: Figure (a) is the sharp interface reduction and the base point is a given point x ∈ ρb(s). The
white area in Figure (b) is the reach of the interface, Γb,`, and for the whiskered coordinates, the base point
is the intersection point of the whisker with the interface

Lemma 2.2. The curve length evolves according to

d∣Γb∣
dt

= ∫
Γb

V H(s)ds. (2.36)

We consider the dressing, as defined in Definition 1.2, of an admissible interface, Γb ∈ GK,`, with the bilayer

profile, Ub, which solves
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂2
zUb =W ′(Ub),

Ub(±∞) = b−.
(2.37)

Figure (2.2) depicts the bilayer solution (left) and the dressing of the interface (middle). Observe that Ub is

translation invariant, i.e., Ub(z) Ð→ Ub(z +p) also solves (2.37). Taking the derivative of (2.37) with respect

to z yields

Lb,0U
′
b = 0, (2.38)
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where Lb,0 is the linear operator, defined in equation (1.29), given by

Lb,0 ∶= ∂2
z −W ′′(Ub). (2.39)

From Sturm-Liouville theory, see [Titchmarsh, 1946], we know that the eigenvalue problem Lb,0ψ̂b,j = λb,jψ̂b,j

b−

b+

z

Ub

(a) Bilayer Solution Ub

Ω−

Ω+

(b) Dressing Γb with Ub

λb,0

λb,1

(c) Spectrum of Lb,0

Figure 2.2: Subfigure (a) depicts the bilayer profile Ub(z) which converges to b− as z → ∞. Subfigure (b)
describes the dressing of the interface with the bilayer profile Ub marked in red. The blue regions represent
the background state and the white region is the neighborhood of the interface Γb,`. Subfigure (c) depicts
the spectrum of Lb,0, with the vertical axis representing the real line.

has a finite number of simple eigenvalues {λb,j}, see Figure 2.2 (right). From (2.38) we know that U ′
b is an

eigenfunction of Lb,0, and since it has one node, it is the first eigenfunction ψ̂b,1 = U ′
b, i.e., U ′

b is the excited-

state eigenfunction corresponding to the excited-state eigenvalue λb,1 = 0. The ground state eigenfunction ψ̂b,0

corresponds to the ground state eigenvalue λb,0 > 0. By Weyl’s essential spectrum theorem, see [Kato, 1976,

Theorem 5.35], the reminder of the spectrum is real, negative and O(1) distance to 0. For further details

see Appendix A.2.

We introduce the co-dimension one, L−j1 functions Φb,j ∈ L∞(R) for j = 1,2 which are the solutions of

Ljb,0Φb,j = 1, (2.40)

and are orthogonal to the kernel of Lb,0. The function Φb,1 takes the form

Φb,1 = Φ̂b,1 −
1

α−
, (2.41)

where Φ̂b,1 is the solution of

Lb,0Φ̂b,1 =
α− −W ′′(Ub)

α−
, (2.42)

and α− is the well coercivity introduced in equation (1.34). Since Ub Ð→ b− at an exponential rate as z Ð→∞,

the right-hand side of (2.42) is in L2(R), and even about z = 0, hence orthogonal to kerLb,0 = U ′
b. The

existence of Φb,2 follows from a similar argument.
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Definition 2.5. We define the scaled eigenfunctions ψb,k ∶= χ(z)J̃−1/2ψ̂b,k, where ψ̂b,k is the kth eigen-

function of Lb,0 and χ(z) is a cut off function,

χ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∣z∣ ≥ l/ε,

1 if ∣z∣ < l/2ε,

monotone in between.

(2.43)

The scaled eigenfunctions are orthonormal in the L2(Ω)-inner product

∣∣ψb,k ∣∣2L2(Ω) = ∫
Γb
∫

l/ε

−l/ε
(ψb,k)2J0(s)J̃b dz ds = ∫

Γb
∫

l/ε

−l/ε
(ψ̂b,k)2χ2(z)J̃−1

b J0(s)J̃b dz ds (2.44)

= ∫
Γb

J0(s)ds∫
l/ε

−l/ε
(ψ̂b,k)2χ2(z)dz ds = 1.

Definition 2.6. The full operator is defined by

Lb ∶= Lb,0 + εH∂z + ε2∆G, (2.45)

where H and ∆G are given in equations (2.10), (2.11), respectively. The full operator, Lb, is self-adjoint in

the L2(Ω)-inner product, for more details see appendix (A.3).

According to [Hayrapetyan and Promislow, 2014], there exists C > 0 so that eigenmodes corresponding to

eigenvalues from the set σ(Lb) ∩ [−C,C] admit the leading order expansion

ψb,j,n = ψb,j(z)Θn(s) +O(ε), (2.46)

for j = 0 or 1. Here the error is in the L2(Ω)-norm, and we emphasis that the eigenvalues ψb,j are smoothly

extended over the entire domain Ω, see Definition 2.5. Here ψb,j are the scaled eigenmodes of Lb,0 introduced

in Definition 2.5, the term Θn is a Laplace-Beltrami eigenfunction defined in (2.29), and the corresponding

eigenvalues take the form

λb,j,n = (λb,j + ε2βn) +O(ε), (2.47)

where λb,j are the eigenvalues of Lb,0 corresponding to the scaled eigenfunctions ψb,j , and βn are the eigen-

values of −∆s, see Figure 2.3 (center) for a depiction of the spectrum of −Lb.

To understand the general structure of the spectrum of the second variation of F at the bilayer dressing of an

admissible interface, we recall that the leading order structure of the second variation of F , Lb, introduced
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λ

Figure 2.3: The structure of the real spectrum of −Lb, defined in equation (1.54), plotted verses Laplace-
Beltrami wavenumber n. (left) The Sturm-Liouville operator Lb,0, defined in (1.29), has one positive ground
state eigenvalue, λb,0 > 0 and a one dimensional kernel, denoted λb,1. (center) The extension of Lb,0 to
Lb = Lb,0 + εH∂z + ε2∆s adds side-bands in n, the Laplace-Beltrami index which bend back negatively at the
rate −(λb,0 − ε2βk)2. (right) The spectrum of the operator −Lb = −L2

b +O(ε), (minus sign chosen to preserve
orientation of images) is, to O(ε), the negative square of the spectrum of Lb. The side-band associated to λb,0
has a quadratic tangency at leading order, which may be raised or lowered by the functional terms, η1 and
η2, the crossing of this spectrum through zero is the mechanism of the pearling instability. Springer and the
original publisher [Hayrapetyan and Promislow, 2014], original copyright notice is given to the publication
in which the material was originally published, by adding; with kind permission from Springer Science and
Business Media

in (1.54), is controlled by L2
b . The remaining parts of Lb are relatively bounded and asymptotically small in

comparison to L2
b . The spectral mapping theorem implies that the eigenvalues of Lb are approximately the

square of the eigenvalues of Lb. Figure 2.3 (right) depicts the eigenvalues of the operator −Lb.

The eigenfunctions associated to Lb corresponding to eigenvalues Λb,j,n < U , with j, n ≥ 0, comprise two

sets, the pearling eigenmodes {Ψb,0,n}N2

n=N1
and the meander eigenmodes {Ψb,1,n}N3

n=0, where the index N3

is the biggest index which satisfies Λb,1,N3 < U , and the indices N1, N2 are chosen so that N1 is the first

index satisfying Λb,0,N1 < U and N2 is the biggest index which satisfies Λb,0,N2 < U , see Figure 2.4. The

indices Ni, i = 1,2,3 are independent of ε.

n
U

1
Ν

2
Ν3

Ν

Figure 2.4: The eigenvalues of Lb with the limit of the meandering eigenmodes, N3, and the limits of the
pearling eigenmodes N2,N3.
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For j = 0,1 we introduce Σb,j , the set of indices n for which Lb acting on ψjΘn is small, i.e.,

Σb,j ∶= {n ∣ (λb,j − ε2βn) ∼ O(
√
ε)}. (2.48)

Weyl’s asymptotics determine the size of the set Σb,0, which satisfies ∣Σb,0∣ ∼ O(ε3/2−d) ≫ 1. We introduce

the co-dimension one meander eigenspace

Yb,me ∶= span{Ψb,1,n}N3

n=0, (2.49)

and the co-dimension two pearling eigenspace

Yb,pe ∶= span{Ψb,0,n}N2

n=N1
. (2.50)

The co-dimension one morphologies are approximate critical points of the FCH, however they may suffer

from both low-frequency (meander or fingering) or high-frequency (pearling) instabilities. We characterize

the meander type motion through the bilayer geometric flow in Chapter 3, while the pearling instability of

bilayers is characterized in Chapter 5.

2.2 Co-dimension Two Morphology in R3

Let Ω ⊂ R3 be a bounded domain and let Γp ⊂ R3 be a smooth, closed curve, parameterized by ρp

Γp = {ρp(s) ∶ [0, L(t)] → R3 ∣ ρp(0) = ρp(L(t))}, (2.51)

where s denotes arc-length and L is the total curve length.

At a given point on Γp, the unit tangent vector T, the principle normal vector N and the binormal vector B

defined by

T = ∂ρp
∂s

, (2.52)

N = ∣∣ ∂T

∂s
∣∣
−1 ∂T

∂s
, (2.53)

B = T ×N, (2.54)

form the Frenet-Serret frame. we introduce the vectors {T,N1,N2} which, at each point ρp(s) on the
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curve Γp, form an orthonormal basis for the normal plane and are given by

∂Ni

∂s
= −κiT, i = 1,2, (2.55)

where

κ⃗(s, t) ∶= (κ1, κ2)t (2.56)

is the normal curvature vector with respect to {N1,N2}. The local T,N1,N2 coordinate system gives a more

natural expression for the resulting geometric flow (See [Dai and Promislow, 2015] for further details).

Definition 2.7. For fixed K, ` > 0 the family GpK,` of “admissible co-dimension two interfaces” is comprised

of smooth, closed curve, 1-dimensional manifolds Γp embedded in R3, which are far from self-intersection

and have a smooth second fundamental form.

The set Γp,` defined by

Γp,` ∶= {ζp(s, z) ∈ R3∣s ∈ S,0 ≤ z ≤ `/ε} ⊂ Ω, (2.57)

will be called the reach of Γp, where we emphasize that ` is fixed independent of ε.

Assume Γp ∈ Gp,K,` is a co-dimension two admissible interface. Then, by the Implicit Function Theorem each

point x ∈ Γp,` is uniquely expressed using the whiskered coordinates

x = ζ(s, z) ∶= ρp(s, t) + εz1N
1(s, t) + εz2N

2(s, t), (2.58)

where z = (z1, z2)t is the scaled signed distance vector and t ∈ [0,∞] represent time, see Figure 2.5.

z1

z2

N1

N2

Figure 2.5: Co-dimension 2 whiskered coordinates in R3
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Definition 2.8. Let x ∈ Γp,`(t) be a point on a given whisker w. We define the point

bp(x) ∶= ρp(s(x, t), t), (2.59)

to be the whisker’s base point, or the base point associated to x.

Definition 2.9. For a time-dependent family of admissible surfaces parameterized by ρp(⋅, t), the normal

velocity V = (V1, V2) of a point ρp(s, t) on Γp is defined by

Vi ∶= Ni ⋅ ∂ρp
∂t

(s, t) i = 1,2. (2.60)

Lemma 2.3 ([Dai and Promislow, 2015]). The {T,N1,N2} coordinate system satisfies

∂T

∂s
= κ1N

1 + κ2N
2, (2.61)

while the curve length evolves according to

d∣Γp∣
dt

= −∫
Γp

V ⋅ κ⃗ ds. (2.62)

Lemma 2.4 ([Dai and Promislow, 2015]). Fix Γp ∈ Gp,K,` and assume that ` is sufficiently small, so

that ∣∣ κ⃗ ∣∣L∞(Γp)
< 1. Then, on Γp,`, in the whiskered coordinates, the Jacobian, Jp, of the transforma-

tion x→ (s, z) takes the form

Jp(s, z) = ε2J̃p, (2.63)

where

J̃p ∶= (1 − εz ⋅ κ⃗), (2.64)

and κ⃗ is defined in equation (2.56). Moreover, The Laplace operator takes the form

∆x = ε−2∆z − ε−1Dz + ∂2
G (2.65)

where we introduce the operators

Dz ∶=
κ⃗

J̃
⋅ ∇z, (2.66)

∂2
G ∶= ∂s (

1

J̃2
∂s) =

1

(1 − εz ⋅ κ⃗)2
∂2
s + ε

z ⋅ ∂sκ⃗
(1 − εz ⋅ κ⃗)3

∂s, (2.67)
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and the normal velocity V takes the form

V1 = −ε
∂z1

∂t
+ εz2N

2 ⋅ ∂N1

∂t
, (2.68)

V2 = −ε
∂z2

∂t
+ εz1N

1 ⋅ ∂N2

∂t
. (2.69)

For future calculation, we also introduce a more compact version for the Laplacian expansion:

∆x = ε−2∆z − ε−1κ⃗ ⋅ ∇z + ∂2
s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z +O(ε). (2.70)

We introduce the “co-dimeanion two Laplacian” operator, ∂2
s , and assume that its eigenvalues, {β̄k}∞k=0, and

its corresponding eigenfunctions, {Θ̄k}∞k=0, satisfy the following,

� ∂2
s Θ̄k = −β̄kΘ̄k,

� β̄0 = 0 and β̄k > 0 for k > 0,

� the eigenfunctions of co-dimeanion two Laplacian are orthonormal in the Γp-inner product

(Θ̄k, Θ̄j)Γp ∶= ∫
Γp

Θ̄kΘ̄j dS = δk,j . (2.71)

� Weyl’s asymptotic formula, introduced in (2.30), is valid also for the co-dimension two case. For this

chapter we fix d = 3 and as a result, the number of eigenvalues ≤ λ, N(βn ≤ λ), including multiplicity,

satisfy N(βn ≤ λ) ∼ C1λ, and βn ∼ C2n.

Note 4. By abuse of notation we will drop the bar signs from β̄k and Θ̄k when doing so creates no confusion

with βk and Θk introduced for the co-dimension one interfaces.

Definition 2.10. For a radial function f ∶ R→ R which tends to constant value f∞ at an O(1) exponential

rate as R →∞, we say that we dress the interface Γp with f , obtaining the Γp-extended function

fΓp(x) ∶= f(z(x))χ(∣r(x)∣/`) + f∞(1 − χ(∣r(x)∣/`)), (2.72)

where ` > 0 is the minimal (unscaled) distance of Γp to the compliment Γcp,` of its neighborhood Γp,` and χ ∶

R → R is a fixed, smooth cut-off function which is one on [0,1], while χ(s) = 0 for s ≥ 2. By abuse of

notation we will drop the Γp subscript in the Γp-extension when doing so creates no confusion.

Given two functions f, g ∈ L2(Ω) with supp(f), supp(g) ⊂ Γp,` we may change the L2(Ω)-inner product to
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the whiskered coordinates

(f, g)L2(Ω) ∶= ∫
Ω
f(x)g(x)dx = ∫

Γp
∫

`/ε

0
f(s, z)g(s, z)Jp(s, z)dz ds, (2.73)

where the Jacobian, Jp, is defined in (2.63). For two functions f, g ∈ L2(R2) we may change to polar

coordinates and denote the corresponding R-weighted inner product by

(f, g)LR
∶= ∫

2π

0
∫

∞

0
fgRdRdθ. (2.74)

We consider the dressing, as defined in Definition 1.2, of an admissible co-dimension two interface, Γp ∈ GpK,`,

with the pore profile, Up, which solves

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( ∂2

∂R2 + 1
R

∂
∂R

)Up =W ′(Up),

Up(∞) = b−,

∂Up

∂R
(0) = 0.

(2.75)

To understand the general structure of the spectrum of F we consider the second variation of F at Up

Lp ∶= L2
p +O(ε), (2.76)

where we introduce the full operator

Lp ∶= Lp − εDz + ε2∂2
G. (2.77)

To understand the spectrum of Lp we first investigate the spectrum of the linear operator

Lp ∶= ∂2
R +

1

R
∂R +

1

R2
∂2
θ −W ′′(Up), (2.78)

We define the spaces Zm by

Zm ∶= {f(R) cos(mθ) + g(R) sin(mθ) ∣ f, g ∈ C∞(0,∞),m ∈ N}. (2.79)

These spaces are invariant under the operator Lp, and mutually orthogonal in L2(Ω). Moreover, on these

spaces Lp reduces to

Lp(f(R) cos(mθ) + g(R) sin(mθ)) = cos(mθ)Lp,mf + sin(mθ)Lp,mg, (2.80)
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where

Lp,m ∶= ∂2

∂R2
+ 1

R

∂

∂R
− m

2

R2
−W ′′(Up). (2.81)

Each operator Lp,m is self-adjoint in the R-weighted inner product, and the operator Lp,1, introduced in (??),

has a 1-dimensional kernel spanned by ∂RUp. For m > 1 we observe that (Lp,mf, f)LR
< (Lp,1f, f)LR

and

since Lp,1 ≤ 0 we deduce that Lp,m < 0. In particular the operator Lp,m is boundedly invertible for all m ≠ 1.

The operator Lp,0 satisfied

Lp,0ψp,0,j = λp,0,jψp,0,j . (2.82)

We denote the eigenfunctions and eigenvalues of Lp,m by {ψp,m,j}∞j=0 and {λp,m,j}∞j=0, respectively.

We differentiate equation (2.75) with respect to R to obtain

Lp,1U
′
p = 0. (2.83)

Equation (2.83) implies that the functions ∂z1Up, ∂z2Up lie in kerLp.

Assumption 2.2.1. The operator Lp,0 has no kernel and it has a 1-dimensional positive eigenspace,

i.e., λp,0,0 > 0 and λp,0,j < 0 for every j ≥ 1.

It follows from Assumption 2.2.1 that

ker(Lp) = span{∂z1Up, ∂z2Up} = span{∂RUp cos θ, ∂RUp sin θ}. (2.84)

Under these assumptions, we can write Lp in its block-matrix form

Lp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Lp,0 0

0 Lp,1

⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.85)

where the spectrum of each operator Lp,m, m ≥ 0 is describes in Figure 2.7. The eigenvalues of Lp, defined

in (2.77), at leading order, are described in Figure 2.6, where the pearling eigenvalues are the small eigenvalues

of the operator (Lp,0 + ε2∂2
s)2, see Figure 2.6 (d).

We introduce the co-dimension two, L−j1 functions Φp,j , j = 1,2 which solves

LjpΦp,j = 1, (2.86)
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Figure 2.6: Full Operators Spectrum

λp,0,0

λp,0,1

(a) Spectrum of Lp,0

λp,1,0

λp,1,1

(b) Spectrum of Lp,1

λp,m,0

λp,m,1

(c) Spectrum of Lp,m for m ≥ 2

Figure 2.7: The spectrum of the sub-operators Lp,m for m = 0,1,2 with the real axis vertical.

and converge exponentially to asymptotic value α−j− as R → ∞ such that Φp,j − α−j− ∈ (kerLp)�, and α− is

the well coercivity, defined in (1.34).

Definition 2.11. We define the scaled eigenfunctions ψp,k ∶= χ(z)J−1/2ψp,0,k, where ψp,0,k is the kth

eigenfunction of Lp,0 and χ(z) is the cut off function, defined in (2.43)

The scaled eigenfunctions are orthonormal in the L2(Ω)-inner product

(ψp,k, ψp,j)L2(Ω) = ∫
Γp
∫

`/ε

0
ψp,0,kψp,0,jχ

2(z)dz ds = 0. (2.87)

Note 5. Any f ∈ L2(R2) admits the Fourier expansion

f = f0(R) +
∞

∑
m=1

(fm(R) cos(mθ) + gm(R) sin(mθ)), (2.88)

and as long as {f1, g1}�kerLp,1, we have the inverse formulation

L−1
p f = L−1

p,0f0 +
∞

∑
m=1

((L−1
p,mfm(R)) cos(mθ) + (L−1

p,mgm(R)) sin(mθ)), (2.89)
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Assumption 2.2.2. We assume that the results from [Hayrapetyan and Promislow, 2014] hold for the co-

dimension 2 morphology.

Assumption 2.2.2, implies that there exists C > 0 such that σ(Lp)∩[−C,C] have the leading order expansion

Ψp,j,n = (ψp,j(z)Θn(s))2 +O(ε) (2.90)

where ψp,j are the scaled eigenfunctions of Lp, introduced in Definition 2.11, and Θn are the eigenfunctions

of co-dimeanion two Laplacian, and the corresponding eigenvalues take the form

Λp,j,n = (λp,j + ε2βn)2 +O(ε), (2.91)

where λp,j are the eigenvalues of Lp and βn are the eigenvalues of ∂2
s .

Similarly to the co-dimension one case, see Figure 2.3 (right), the eigenfunctions associated to Lp correspond-

ing to eigenvalues Λp,j,n < U , with j, n ≥ 0, comprise two sets, the pearling eigenmodes {Ψp,0,n}N2

n=N1
and the

meander eigenmodes {Ψp,1,n}N3

n=0, where the index N3 is the biggest index which satisfies Λp,1,N3 < U , and

the indices N1, N2 are chosen so that N1 is the first index satisfying Λp,0,N1 < U and N2 is the biggest index

which satisfies Λp,0,N2 < U , and the indices Ni, i = 1,2,3 are independent of ε. For j = 0,1 we introduce

Σp,j , the set of indices n for which Lp acting on ψjΘn is small, i.e.,

Σp,j ∶= {n ∣ (λp,j − ε2βn) ∼ O(
√
ε)}. (2.92)

The size of the set Σp,0 follows From Weyl’s asymptotic formula, which implies that ∣Σ0∣ ∼ O(ε3/2−d) ≫ 1.

Definition 2.12. The space, XΣ, corresponding to the small eigenvalues of L is defined as

XΣ ∶= {ψ0Θk ∣ k ∈ Σ}, (2.93)

The L2-orthogonal projection, Π, onto XΣ is given by

Π f ∶= ∑
k∈Σ

(f,ψ0Θk)L2(Ω)

∣∣ψ0Θk ∣∣2L2(Ω)

ψ0Θk = ∑
k∈Σ

(f,ψ0Θk)L2(Ω)ψ0Θk, (2.94)

and its complementary projection is Π̃ = I −Π.

Assumption 2.2.3. We assume that the restricted operator Π̃LpΠ̃ is uniformly coercive on X�
Σ and its

spectrum is bounded from below by δ > 0 which may be chosen independent of sufficiently small ε > 0.
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Assumption 2.2.3 implies that σ(Lp)/XΣ is strictly positive.

We introduce the co-dimension two meander eigenspace

Yp,me ∶= span{Ψp,1,n}N3

n=0, (2.95)

and the co-dimension two pearling eigenspace

Yp,pe ∶= span{Ψp,0,n}N2

n=N1
. (2.96)
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Chapter 3

Geometric Evolution of Bilayers in Rd

In this chapter we derive the geometric evolution of admissible co-dimension one interfaces in Rd under

the H−1 gradient flow of the strong FCH. In contrast to analysis of single-layer interfaces, multi-scale

analysis shows that the Stefan and Mullins-Sekerka problemsfor bilayers are trivial, and the sharp interface

limit yields a simple, quenched mean curvature-driven normal velocity at leading order. To obtain the flow

of the underlying interfacial structure we project the residual δF
δu

(ub) of the critical point equation, (1.18),

onto the meandering eigenspace, defined in (2.49).

Note 6. By abuse of notation we will drop the b subscript in the ub critical point when doing so creates no

confusion.

Recall the strong FCH free energy which corresponds to the choice p = 1 in (1.14),

F = ∫
Ω

1

2
(ε2∆u −W ′(u))2 − ε(ε

2η1

2
∣∇u∣2 + η2W (u)) dx, (3.1)

where Ω ⊂ Rd, d ≥ 2 is a bounded domain, W (u) is a tilted double-well potential with two minima at b±, u ∶

Ω→ R is the density of one of the amphiphilic species, ε≪ 1 controls the width of the boundary layer and η1

and η2 are the functionalization constants.

The chemical potential, µ, is defined as the first variation of F ,

µ ∶= δF
δu

(u) = (ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u), (3.2)

where ηd ∶= η1 − η2. In this chapter we present a formal reduction of the strong FCH equation,

ut = ∆ [(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u)] , (3.3)
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for functions u that are close to a bilayer dressing of an admissible interface in Ω, subject to periodic or

zero-flux boundary conditions. We may rewrite the strong FCH equation using the definition of the chemical

potential, given in (3.2),

ut = ∆µ. (3.4)

3.1 Inner and Outer Expansions

Assuming an admissible initial co-dimension one interface Γb(t0) ∈ GK,`. We describe the geometric evolution

of the interface as a flow in time t, yielding the curve Γb(t), see Figure 3.1, by performing a multi-scale analysis

Ω−

Ω+

Γb(t0)

Γb(t1)

Figure 3.1: The geometric evolution of a generic, admissible, co-dimension one interface, Γb(t0) is the
initial interface and Γb(t1) describes the interface at a later time t1 > t0.

of the solution u and the chemical potential µ. Away from the interface Γb, in the far-field, Γ̃b,`, the outer

solution u and the outer chemical potential µ have the expansions

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) +O(ε3), (3.5)

µ(x, t) = µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) +O(ε3). (3.6)

In the reach Γb,`, at a time-scale τ , we have the inner spatial expansions

u(x, t) = ũ(s, z, τ) = ũ0(s, z, τ) + εũ1(s, z, τ) + ε2ũ2(s, z, τ) +O(ε3), (3.7)

µ(x, t) = µ̃(s, z, τ) = µ̃0(s, z, τ) + εµ̃1(s, z, τ) + ε2µ̃2(s, z, τ) +O(ε3). (3.8)

The normal velocity Vn of Γb at a point s(t) is defined by

Vτ(s) ∶= −
∂r

∂t
= ε−1 ∂z

∂t
. (3.9)
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where r is the signed distance away from Γb and z = r
ε

is the scaled distance. We develop an expression for

the time derivative of the outer density function ũ, defined in (3.7), using the whiskered coordinates. To this

end, we treat s and z as functions of t and apply the chain rule to obtain

∂ũ

∂t
=
��

�
��*

0
∂s

∂t
⋅ ∇sũ +

∂ũ

∂z

∂z

∂t
+ ∂ũ
∂τ

∂τ

∂t
, (3.10)

where the first term on the right-hand side of (3.10) is zero since we may reparameterize the evolved curve

locally.

Plugging the normal velocity, (3.9), into (3.10) yields

∂ũ

∂t
= −ε−1Vτ(s)

∂ũ

∂z
+ ∂ũ
∂τ

∂τ

∂t
. (3.11)

3.2 Matching Conditions

We connect the inner and outer solutions via matching conditions across the inner-outer boundary. We

formally expand the outer solution u(x, t) given in (3.5) and the inner solution ũ(s, z, τ) given in (3.7). Fix

a whisker, w, and let x ∈ Γb be its base point, see Definition 2.4, such that x + hn ∈ w. Then, the matching

condition can be written as

lim
h→0

u(x + hn, t) ≈ lim
z→∞

ũ(s, z, τ), (3.12)

see Figure 2.1. An expansion of the left hand side of equation (3.12) around x, as h→ 0+, is given by

u+0(x, t) + ε(u+1(x, t) + z∂nu+0(x, t)) + ε2(u+2(x, t) + z∂nu+1(x, t) + z2∂2
nu

+
0(x, t)) +O(ε3), (3.13)

where ∂n is the derivative in the normal direction of Γb, and u+i are defined as

u+i = lim
h→0

ui(x + hn, t), (3.14)

for all i ≥ 0. We can obtain similar expression as h → 0−. Using (3.7) to expand the right hand side of

equation (3.12) and matching it to the left hand side, (3.13), yields the following matching conditions

u±0 = lim
z→±∞

ũ0, (3.15)

u±1 + z∂nu±0 = lim
z→±∞

ũ1. (3.16)
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Similarly, we can obtain matching conditions for the chemical potential

µ±0 = lim
z→±∞

µ̃0, (3.17)

µ±1 + z∂nµ±0 = lim
z→±∞

µ̃1, (3.18)

µ±2 + z∂nµ±1 +
1

2
z2∂2

nµ
±
0 = lim

z→±∞
µ̃2, (3.19)

µ±3 + z∂nµ±2 +
1

2
z2∂2

nµ
±
1 +

1

6
z3∂2

nµ
±
0 = lim

z→±∞
µ̃3. (3.20)

3.3 Expansion of the chemical potential

We will also have recourse to the inner and outer expansions of the chemical potential

µ ∶= (−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + εηdW ′(u). (3.21)

3.3.1 Outer Expansion of the Chemical Potential

At a given time scale τ , the outer expansion for the density function u(x, t) is given by equation (3.5).

Plugging (3.5) into (3.21) and rewriting the chemical potential µ in orders of ε yields

µ(x, t) = µ0(x, τ) + εµ1(x, τ) + ε2µ2(x, τ) + ..., (3.22)

where

µ0 =W ′′(u0)W ′(u0), (3.23)

µ1 =(W ′′′(u0)u1 − η1)W ′(u0) + (W ′′(u0))2u1 + ηdW ′(u0), (3.24)

µ2 =(−∆ +W ′′′(u0)u2 +
1

2
W (4)(u0)u1)W ′(u0) + (W ′′′(u0)u1 − η1)W ′′(u0)u1 (3.25)

+W ′′(u0) (−∆u0 +W ′′(u0)u2 +
1

2
W ′′′(u0)u2

1) + ηdW ′′(u0)u1.

See Appendix B.1 for further calculation details.
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3.3.2 Inner Expansion of the Chemical Potential

At a given time scale τ , the inner expansion for the density function u(x, t) is given by equation (3.7), and

in local coordinates, the Laplacian operator, see (2.9), takes the form

ε2∆x = ∂2
z + εH0∂z + ε2zH1∂z + ε2∆G +O(ε3), (3.26)

where Hi are defined in (2.10). Plugging (3.7) and (3.26) into (3.21), we can rewrite the chemical potential µ

in orders of ε

µ(x, t) = µ̃0(s, z, τ) + εµ̃1(s, z, τ) + ε2µ̃2(s, z, τ) + ε3µ̃3(s, z, τ) +O(ε4), (3.27)

where

µ̃0 =(−∂2
z +W ′′(ũ0))(−∂2

z ũ0 +W ′(ũ0)), (3.28)

µ̃1 =(−∂2
z +W ′′(ũ0))(−H0∂zũ0 − ∂2

z ũ1 +W ′′(ũ0)ũ1)+ (3.29)

(−H0∂z +W ′′′(ũ0)ũ1 − η1)(−∂2
z ũ0 +W ′(ũ0)) + ηdW ′(ũ0),

µ̃2 =(−∂2
z +W ′′(ũ0))(−∂2

z ũ2 − zH1∂zũ0 −H0∂zũ1 −∆sũ0 +W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1)+ (3.30)

(−H0∂z +W ′′′(ũ0)ũ1 − η1)(−∂2
z ũ1 −H0∂zũ0 +W ′′(ũ0)ũ1)+

(−zH1∂z −∆s +W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1)(−∂2
z ũ0 +W ′(ũ0)) + ηdW ′′(ũ0)ũ1,

µ̃3 =(−∂2
z +W ′′(ũ0)) (Lũ3 −H0∂zũ2 − zH1∂zũ1 −∆sũ1 −∆1ũ0 +W ′′′(ũ0)ũ1ũ2 +

1

6
W (4)(ũ0)ũ3

1) (3.31)

+ (−H0∂z +W ′′′(ũ0)ũ1 − η1) (Lũ2 −H0∂zũ1 − zH1∂zũ0 −∆sũ0 +
1

2
W ′′′(ũ0)ũ2

1)

+ (−zH1∂z −∆s +W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1) (Lũ1 −H0∂zũ0)

+ (−∆1 +W ′′′(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2 +
1

6
W (5)(ũ0)ũ3

1) (−∂2
z ũ0 +W ′(ũ0))

+ ηd (W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1) .

See Appendix B.3 for further calculation details.
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3.4 Time scale τ = t : a Gradient Flow

We start by looking for approximations of the solutions of the strong FCH equation

ut = ∆x

µ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u)] in Ω, (3.32)

for the time scale τ = t.

3.4.1 Outer expansion

Away from the interface, plugging the outer expansion for the density function u(x) and the outer expansion

of the chemical potential µ, given in (3.5) and (3.22), respectively, into the strong FCH equation, (3.32),

yields, at leading order, O(1),

∂u0

∂τ
= ∆ (W ′′(u0)W ′(u0)) in Ω− ∪Ω+. (3.33)

This second order problem has boundary conditions on Ω but to solve it we also need boundary conditions

on Γb. This leads us to the inner expansion.

3.4.2 Inner expansion

We express each of the terms in (3.32) using the whiskered coordinates. Plugging the inner expansion of u,

given in (3.7), into the left-hand side of equation (3.32) yields

ut = −ε−1Vτ(s)
∂ũ0

∂z
− Vτ(s)

∂ũ1

∂z
+ ∂ũ0

∂τ
+O(ε), (3.34)

see Appendix B.2 for calculations details. An expand expression of the Laplacian operator in the whiskered

coordinates is given in (3.26) and an expression for the inner expansion of the chemical potential is given

in (3.27). Plugging (3.34), (3.26) and (3.27) back into the evolution equation (3.32) and comparing orders

of ε yields, at leading order, O(ε−2),

0 = ∂2
z µ̃0 in Γb,`, (3.35)

and at the next order, O(ε−1), we have

−Vτ(s)∂zũ0 = ∂2
z µ̃1 +H0∂zµ̃0 in Γb,`. (3.36)
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Consider the leading order equation, (3.35), and recall that µ̃0 is related to ũ0 through (3.28). Then,

equation (3.35) has the solution ũ0 = Ub(z) where Ub is the homoclinic profile defined in (2.37). For this

choice of ũ0 it follows that µ̃0 = 0 and that µ̃1, defined in (3.29), takes the form

µ̃1 = L2
b,0ũ1 + ηdW ′(Ub), (3.37)

where the linear operator Lb,0 is defined in (2.39). Moreover, the next order equation, (3.36), reduces to

−Vτ(s)U ′
b = ∂2

z µ̃1 in Γb,`, . (3.38)

3.4.3 Jump Conditions on the Outer Solution : Gradient Flow

An outer approximation of (3.32) is given in (3.33) which is defined on each domain Ω− and Ω+. We would

like to solve (3.33) and to connect the two outer solution to obtain a solution over the entire domain Ω. To

this end, we use the inner approximation of (3.32) given in equation (3.38) and the matching conditions from

Section 3.2 to obtain suitable jump conditions over the interface Γb.

Motivated by Definition 2.3 of the interfacial jump, we integrate equation (3.38) with respect to z from −∞

to ∞ obtaining

−Vτ(s)
⎛
⎜⎜
⎝

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ub(∞) −Ub(−∞)

⎞
⎟⎟
⎠
= ∂zµ̃1∣

z=∞
− ∂zµ̃1∣

z=−∞
. (3.39)

Since Ub is a homoclinic orbit, equation (3.39) leads to the two key identities

lim
z→∞

ũ0(z) − lim
z→−∞

ũ0(z) = lim
z→∞

Ub(z) − lim
z→−∞

Ub(z) = 0, (3.40)

lim
z→∞

∂zµ̃1(z) − lim
z→−∞

∂zµ̃1(z) = 0. (3.41)

Differentiating the matching condition (3.18) with respect to z yields

lim
z→±∞

∂zµ̃1(z) = ∂nµ±0 , (3.42)

and the combination of equation (3.41) and equation (3.42) implies that the normal derivative of the outer

chemical potential is continuous across the interface Γb. Similarly, combining the matching condition (3.15)

and equation (3.40) we conclude that the outer density function, u0, is continuous over the interface. we
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summarize these results in the jump conditions on the outer solution

Ju0K = 0, (3.43)

J∂nµ0K = 0. (3.44)

Combining the jump condition (3.43) with the outer equation (3.33) implies that u0 is a solution of (3.33)

over the entire domain Ω and that u0 can be solved independently of Γb at this order. The resulting equation

for u0 is

∂u0

∂t
= ∆(W ′′(u0)W ′(u0)) in Ω, (3.45)

subject to the boundary conditions. This evolution equation has is a mass preserving H−1 gradient flow on

the reduced energy

F0(u0) ∶= ∫
Ω

1

2
(W ′(u0))2 dx. (3.46)

Consider initial data of the form u0 = b−+v0 where ∣∣ v0 ∣∣L2(Ω) ≪ 1, and track the evolution of v(t) ∶= u(t)−b−.

Plugging u = b− + v into equation (3.45) yields the linear evolution equation for v

vt = α2
−∆(v + W

′′′(b−)
α−

v2 +O(v3)) , (3.47)

where α− ∶=W ′′(b−) is the well-coercivity constant. If ∣∣ v0 ∣∣L2(Ω) is sufficiently small, then as long as ∣∣ v ∣∣L2(Ω)

remains small it is plausible that the dynamics of the nonlinear system (3.45) are primarily governed by those

of the linear system

vt = α2
−∆v, (3.48)

and it is reasonable to expect that for u0 close to the equilibria.

For simplicity of presentation, we assume that at leading-order the initial value satisfies

u0(t = 0) = b−, (3.49)

where b− is the spatial constant, which is an equilibria to equation (3.45).

Return to (3.38) and note that U ′
b = Û ′

b where Ûb is given by

Ûb ∶= Ub − b−, (3.50)

and Ûb enjoys the property Ûb Ð→ 0 as z → ±∞. To obtain an expression for the normal velocity, we
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integrate (3.38) twice w.r.t z from 0 to z and solve for µ̃1 to obtain

µ̃1(z) = −Vτ(s)∫
z

0
Ûb(w)dw + z ( Vτ(s)Ûb(0) + ∂zµ̃1(z)∣

z=0
) + µ̃1(0). (3.51)

Furthermore, integrating from z = −∞ to z = 0 yields the expression

− Vτ(s)Ûb(0) = ∂zµ̃1(z)∣
z=0

− lim
z→−∞

∂zµ̃1(z) = ∂zµ̃1(z)∣
z=0

− ∂nµ0(z), (3.52)

for Vτ(s)Ûb(0), where the second equality follows from the matching condition (3.18). Since u0 ≡ b− we have

µ0 ∶=W ′′(b−)W ′(b−) = 0, (3.53)

and equation (3.52) further reduces to

Vτ(s)Ûb(0) = −∂zµ̃1(z)∣
z=0
. (3.54)

Using (3.54) to replace Vτ(s)Ûb(0) in equation (3.51) yields an expression for the inner chemical potential

µ̃1(z) = −Vτ(s)∫
z

0
Ûb(z)dz + µ̃1(0). (3.55)

Recall that equation (3.37) relates µ̃1 to ũ1. Plugging (3.37) into (3.55) and solving for L2
b,0ũ1 yields

L2
b,0ũ1 = −Vτ(s)∫

z

0
Ûb(w)dw + µ̃1(0) − ηdW ′(Ub). (3.56)

By the Fredholm Alternative, see [Grisvard, 1985], this equation has a solution ũ1 ∈ L2(R) if and only if the

right-hand side is perpendicular to kerLb,0. The solvability condition expressed as

∫
R
(−Vτ(s)∫

z

0
Ûb(w)dw + µ̃1(0) − ηdW ′(Ub))U ′

b dz = 0. (3.57)

Since U ′
b is an odd function it is orthogonal to constants which implies that the integral involving µ̃1(0) is

zero. For the ηd term, we evaluate the integral to find

∫
R
W ′(Ub)U ′

b dz = ∫R(W (Ub))′ dz =W (Ub)∣
∞

−∞
= 0, (3.58)

where the last inequality follows from the fact that Ub → b− as z → ±∞. Finally, Integrating the second
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integral in the Vτ(s) term in (3.57) by parts to obtain the equality

−Vτ(s)∫
R
∫

z

0
Ub(w)dw Û ′

b(z)dz = Vτ(s) ∣∣ Ûb ∣∣
2

L2(R)
. (3.59)

These calculations, combined with the solvability condition (3.57), yield the result

Vτ(s) ∣∣ Ûb ∣∣
2

L2(R)
= 0, (3.60)

and since ∣∣ Ûb ∣∣
2

L2(R)
≠ 0, it follows that the normal velocity Vτ = 0 at this time scale.

3.5 Time scale τ = εt : Mean Curvature Driven Flow

Using the inner equations we obtain jump conditions on the outer solution over the interface and an expression

for the normal velocity of the interface. We will see that the reduced system is a trivial Mullins-Sekerka

type system and the normal velocity is driven by a curvature-type flow. Finally, we use the mass preserving

property of the system to obtain the coupled system for the normal velocity, Vτ , and the external chemical

potential, µ1.

3.5.1 Outer Expansion

Away from the interface, the outer expansion of the density function u is given in (3.5). At this time

scale, τ = εt, the time derivative ∂t expands as

ut = εu0,τ + ε2u1,τ +O(ε3). (3.61)

Plugging (3.61) and the outer expansion of the chemical potential, µ, given in (3.22), into the strong FCH

equation, (3.32), and comparing orders of ε yields, at leading order, O(1),

0 = ∆ (W ′′(u0)W ′(u0)) in Ω− ∪Ω+, (3.62)

and at the next order, O(ε),

u0,τ = ∆ ((W ′′′(u0)u1 − η1)W ′(u0) + (W ′′(u0))2u1 + ηdW ′(u0)) in Ω− ∪Ω+. (3.63)
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The first equation, (3.62), is consistent with our assumption that u0 = b− and the second equation (3.63)

reduces to

0 = α2
−∆u1 in Ω− ∪Ω+, (3.64)

and α− > 0 is the well-coercivity defined in (1.34). This second order problem has boundary conditions on Ω,

which we supplement with matching conditions on the inner boundary Γb that are developed in the next

section.

3.5.2 Inner Expansion

We express each of the terms in (3.32) in inner coordinates. Plugging the inner expansion of u, given in (3.7),

into the left-hand side of equation (3.32) yields

ut =
∂r

∂τ
∂zũ0 +O(ε), (3.65)

see Appendix B.2 for calculation details. An expand expression of the Laplacian in local coordinates is

given in (3.26) and an expression for the inner expansion of the chemical potential is given in (3.27). Plug-

ging (3.65), (3.26) and (3.27) back into the evolution equation (3.32) and comparing orders of ε yields, at

leading order, O(ε−2),

0 = ∂2
z µ̃0 in Γb,`, (3.66)

at the next order, O(ε−1),

0 = ∂2
z µ̃1 +H0∂zµ̃0 in Γb,`, (3.67)

and at O(1) we have

−Vτ(s)∂zũ0 = ∂2
z µ̃2 +H0∂zµ̃1 + zH1∂zµ̃0 +∆Gµ̃0 in Γb,`, (3.68)

where µ̃0, µ̃1 and µ̃2 are defined in (3.28), (3.29) and (3.30), respectively.

Equation (3.66) is consistent with our choice ũ0 = Ub, where Ub is the dressing of the interface with the

bilayer solution, defined in (2.37). This choice implies that µ̃0 = 0. Moreover, for this choice of ũ0 the next

orders equations reduce to

0 = ∂2
z µ̃1 in Γb,`, (3.69)

−Vτ(s)∂zũ0 = ∂2
z µ̃2 +H0∂zµ̃1 in Γb,`, (3.70)
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3.5.2.1 Solving Equation (3.69)

Equation (3.69) is a second order PDE which we want to solve for µ̃1. Integrating equation (3.69) twice,

w.r.t z, yields

µ̃1 = Ã1z + B̃1. (3.71)

The matching condition (3.18) implies that ∂zµ̃1 = ∂nµ0 = 0 as z Ð→ 0, which, together with (3.69) implies

that Ã1 = 0 and that µ̃1 is independent of z, i.e.,

µ̃1 = µ̃1(s, t). (3.72)

Since ũ0 = Ub we can simplify the inner expression for µ̃1 in (3.29) and solve for L2
b,0ũ1 to obtain

L2
b,0ũ1 = µ̃1 − ηdW ′(Ub). (3.73)

By the Fredholm Alternative, this equation has a solution ũ1 ∈ L2(R) if and only if the right-hand side is per-

pendicular to kerLb,0. Recall that kerLb,0 = U ′
b and it is odd about z=0, see the discussion regarding σ(Lb,0)

in Chapter 2.1. The fact that the right-hand side of equation (3.73) in perpendicular to U ′
b follows from the

facts that µ̃1 is constant in z, and W ′(Ub) is even. Consequently, there exist a solution ũ1 denoted

ũ1 = µ̃1Φb,2 − ηdL−2
b,0W

′(Ub), (3.74)

where Φb,2 solves L2
b,0Φb,2 = 1, defined in (2.40). Since W ′(Ub) = ∂2

zUb, using identity (B.43), we can

rewrite ũ1

ũ1 = µ̃1Φb,2 − ηdL−1
b,0 (z

2
U ′
b) , (3.75)

or, alternatively,

Lb,0ũ1 = µ̃1Φb,1 − ηd
z

2
U ′
b. (3.76)

Note that since µ̃1 is independent of z, the next order approximation of (3.32), equation (3.70), reduces to

−Vτ(s)∂zũ0 = ∂2
z µ̃2 in Γb,`. (3.77)

3.5.2.2 Jump Conditions

We are looking for a solution of (3.32) in Ω. An outer approximation of (3.32) is given in (3.64) which is

defined on each domain, Ω− and Ω+. We would like to solve (3.64) and to connect the two outer solution
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to obtain a solution over the entire domain Ω. We obtain the jump condition of the external chemical

potential µ1 over the interface from (3.100) and the matching condition (3.18): since µ̃1 is independent of z

we have

lim
z→±∞

µ̃1 = µ̃1(s, t) = µ±1 , (3.78)

and the jump condition takes the form

Jµ1K = 0. (3.79)

To obtain a second jump condition on µ1, we turn to the Definition 2.3 of the interfacial jump, we integrate

equation (3.77) with respect to z from −∞ to ∞ to obtain

−Vτ(s)
⎛
⎜⎜⎜
⎝

=0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Ûb(∞) − Ûb(−∞)

⎞
⎟⎟⎟
⎠
= lim
z→∞

∂zµ̃2 − lim
z→−∞

∂zµ̃2 (3.80)

Since Ub is a homoclinic orbit, equation (3.80) leads to the key identity

lim
z→∞

∂zµ̃2(z) − lim
z→−∞

∂zµ̃2(z) = 0. (3.81)

Differentiating the matching condition (3.19) with respect to z yields

lim
z→±∞

∂zµ̃2(z) = ∂nµ±1 , (3.82)

and the combination of equation (3.81) and equation (3.82) implies that the normal derivative of the outer

chemical potential is continuous across the interface Γb. we summarize these results in the jump conditions

on the outer solution

Jµ1K = 0, (3.83)

J∂nµ1K = 0. (3.84)

3.5.2.3 The Normal Velocity at τ = εt

We would like to determine the evolution of the interface Γb. To this end, recall equation (3.77), which

involves the normal velocity Vτ , and the inner chemical potential µ̃2. The definition of µ̃2 is given in (3.30),

and since ũ0 = Ub, (3.30) reduces to

µ̃2 = L2
b,0ũ2 −Lb,0R+ (−H0∂z +W ′′′(Ub)ũ1 − η1)(−Lb,0ũ1 −H0U

′
b) + ηdW ′′(Ub)ũ1, (3.85)
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where

R ∶= −zH1U
′
b −H0ũ

′
1 +

1

2
W ′′′(Ub)ũ2

1. (3.86)

In order to get an expression for the normal velocity we solve (3.77) for µ̃2, by integrating (3.77) twice w.r.t z

from 0 to z to obtain

µ̃2(z) = µ̃2(0) + z(∂zµ̃2(0) + Vτ(s)Ûb(0) ) − Vτ(s)∫
z

0
Ûb(w)dw. (3.87)

Furthermore, integrating from z = −∞ to z = 0 and recalling that Ûb → 0 as z → ±∞, yields the expression

Vτ(s)Ûb(0) = lim
z→−∞

∂zµ̃2 − ∂zµ̃2(0) = ∂nµ1 − ∂zµ̃2(0). (3.88)

for Vτ(s)Ûb(0), where the second equality follows from the matching condition (3.19). Using (3.88) to

replace Vτ(s)Ûb(0) in equation (3.87) yields

µ̃2(z) = µ̃2(0) + z∂nµ1 − Vτ(s)∫
z

0
Ûb(w)dw. (3.89)

Replacing µ̃2 in (3.89) with its expression from (3.85) and solving for L2
b,0ũ2 yields

L2
b,0ũ2 = Lb,0R−(−H0∂z +W ′′′(Ub)ũ1 − η1) (−Lb,0ũ1 −H0U

′
b)−ηdW ′′(Ub)ũ1+µ̃2(0)+z∂nµ1−Vτ(s)∫

z

0
Ûb(w)dw

(3.90)

By the Fredholm Alternative, this equation has a solution ũ2 ∈ L2(R) if and only if the right-hand side is

perpendicular to kerLb,0. Recall that kerLb,0 = U ′
b and consider the inner product of U ′

b with the right-hand

side of equation (3.90). Since ũ1, defined in (3.74), is even and the operator Lb,0 preserves symmetry, parity

considerations show that the Fredholm condition reduces to

(−H0∂zLb,0ũ1 +H0W
′′′(Ub)ũ1U

′
b − η1H0U

′
b + z∂nµ1 − Vτ(s)∫

z

0
Ûb(w)dw,U ′

b)
L2(R)

= 0. (3.91)

Simplifying the integrals in the inner product, and solving for the normal velocity Vτ yields the expression

Vτ(s) =
(H0µ1 + ∂nµ1)mb + 1

2
H0 (η1 + η2)σb

B1
, (3.92)
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where mb is the mass amphiphilic material per unit length of bilayer, defined in (1.50), and we introduce

the constants

B1 ∶= ∣∣ Ûb ∣∣
2

L2 , (3.93)

σb ∶= ∣∣ Û ′
b ∣∣

2

L2 . (3.94)

Detailes of the calculations leading to equation (3.92) can be found in Appendix B.4.

3.5.3 Sharp interface limit : Trivial Mullins-Sekerka and Curvature Driven

Flow

The preceding calculation show that, in a neighborhood of the dressed solution, the τ = εt time scale evolution

of (3.32) reduces to a Mullins-Sekerka system for the unknown external chemical potential, µ1.

(3.64) ∶ ∆µ1 = 0 in Ω− ∪Ω+, (3.95)

(3.83) ∶ Jµ1K = 0, (3.96)

(3.84) ∶ J∂nµ1K = 0, (3.97)

(3.92) ∶ Vτ(s) =
(H0µ1 + ∂nµ1)m + 1

2
H0 (η1 + η2)σb

B1
on Γ. (3.98)

The Mullins-Sekerka system (3.95-3.97) is trivial because the jump in the normal derivative of µ1 balances

against the jump of the z derivative of the inner chemical potential µ̃1 across the inner structure. This later

quantity is zero as the underlying profile is homoclinic. Equations (3.95-3.97) imply that

∆µ1 = 0 in Ω, (3.99)

and subject to the boundary conditions on ∂Ω it follows from the maximum principle, [Evans, 2010], that µ1

is spatially constant, i.e.,

µ1(x, τ) = µ1(τ) ∀x ∈ Ω. (3.100)

Moreover, from equation (3.100), which implies that µ1 is spatially constant, and the jump condition (3.97),

we conclude that µ1 is continuous over the interface, and

µ̃1(τ) = µ1(τ). (3.101)
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Combining (3.99) and (3.100), we conclude that ∂nµ1 = 0 on Γb, and the expression for the normal veloc-

ity, (3.98), reduces to a curvature driven expression coupled to the spatially constant chemical potential µ1

Vτ(s) =
µ1mb + 1

2
(η1 + η2)σb
B1

H0 on Γb. (3.102)

3.5.4 Equilibria estimate for time scale τ = εt

The far-field external chemical potential µ1 is characterized by the density function, u, whose value is

determined by conservation of total mass. For this time scale, we summarize our approximation for the

density function in each region. In the outer region Γ̃b,` ∶= Ω/Γb,`, our assumption that u0 = b− combined

with equation (3.24) yields

u(x, t) = b− + ε
µ1

α2
−

+O(ε2) in Ω/Γb,`, (3.103)

where α− ∶=W ′′(b−) > 0. In the reach, Γb,`, our choice ũ0 = Ub combined with equation (3.74) yields

u(x, t) = Ub + ε(µ1Φb,2 − ηdL−2
b,0W

′(Ub)) +O(ε2) in Γb,`. (3.104)

We use mass balance to determine µ1 and to obtain the coupled µ1, Vτ system evolution. The total mass of

the system is given by

M ∶= ∫
Ω
u(x, t) − b− dx = ∫

Ω
u(x,0) − b− dx, (3.105)

which is fixed by the initial data. Inserting the expressions for the density function, given in (3.103)

and (3.104), into the total mass yields

M = ε∫
Γ̃b,`

µ1

α2
−

dx + ∫
Γb,`

Ûb + ε(µ1Φb,2 − ηdL−2
b,0W

′(Ub))dx +O(ε2). (3.106)

We assume that ∣Γ∣ ∼ O(1), and change to the whiskered coordinates in the localized integral to obtain

M = ε(∣Ω∣µ1

α2
−

+ ∫
Γb
∫

`/ε

−`/ε
Ûb dz ds) +O(ε2). (3.107)

We expand M = εM̂ + O(ε2) and the surface area ∣Γb∣ = γ0 + εγ1 + O(ε2), evaluate the integrals in equa-

tion (3.107) and comparing orders of ε yields, at leading order,

M̂ = ∣Ω∣µ1

α2
−

+ γ0mb, (3.108)
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where mb is defined in (1.50). Moreover, solving for µ1 yields

µ1 =
α2
−

∣Ω∣
(M̂ − γ0m) . (3.109)

On the other hand, equation (2.36) implies that, subject to the normal velocity at time scale τ = εt, the

interfacial surface area growth is given by

∂∣Γb∣
∂τ

= ∫
Γ
Vτ(s)H0(s)ds, (3.110)

so that, subject to (3.98) the interface has the leading order growth

d

dτ
γ0 =

µ1mb + 1
2
(η1 + η2)σb
B1

∫
Γ
H2

0(s)ds, (3.111)

where B1 and σb are defined in (3.93) and (3.94), respectively. Taking the time derivative, d
dτ

, of equa-

tion (3.109), solving for d
dτ
γ0 and plugging the result expression into (3.111) yields

d

dτ

M̂ − ∣Ω∣ µ1

α2−

mb
=
µ1mb + 1

2
(η1 + η2)σb
B1

∫
Γ
H2

0(s)ds, (3.112)

and we arrive at the ODE for the chemical potential

d

dτ
µ1 = −(µ1m

2
bα

2
−

∣Ω∣B1
+

1
2
(η1 + η2)σbmbα

2
−

∣Ω∣B1
)∫

Γ
H2

0(s)ds. (3.113)

These results show that the evolution of the interface is governed by the coupled system

(3.102) ∶ Vτ(s) =
µ1mb + 1

2
(η1 + η2)σb
B1

H0, (3.114)

(3.113) ∶ d
dτ
µ1 = −

mbα
2
−

∣Ω∣B1
(µ1mb +

η1 + η2

2
σb)∫

Γ
H2

0(s)ds. (3.115)

The H−1 gradient flow drives pure bilayer interfaces by a quenched mean-curvature flow. While the flow

drives the external chemical potential to its equilibria value

µ1 Ð→ −1

2
(η1 + η2)

σb
mb

, (3.116)

the sign of the right-hand side of (3.114), determined by initial data, is influential. If the right-hand side is

positive, motion against mean curvature leads the interfacial area to grow uncontrollably, and the reduced
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geometric flow is ill-posed. However, the system is a locally well-posed motion by mean-curvature flow for

right-hand side is negative. While mean-curvature driven flows can exhibit finite-time singularities, in the

quenched flow the singularity can be arrested by the decay of µ1 to its equilibria value. Since µ1 = α2
−u1, the

density function decays to

u1 Ð→ −1

2
(η1 + η2)

σb
mα2

−

, (3.117)

and the far-field behaviour of the density, u, takes the form

u = b− − ε
1

2
(η1 + η2)

σb
mα2

−

+O(ε2). (3.118)

Assuming the system decay to an equilibria with an admissible interface Γb, then the analysis can be continued

to the next time-scale, however our goal is to investigate the coupled bilayer-pore evolution which occurs at

this time scale.
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Chapter 4

Geometric Evolution of Pores in R3

In this chapter we derive the geometric evolution of admissible co-dimension two interfaces in R3 under

the H−1 gradient flow of the strong FCH. Using multi-scale analysis we derive an expression for the

curvature-driven normal velocity at O(ε−1) time scale. We describe the competitive evolution of disjoint

collections of bilayers and pores which couple through curvature-weighted surface area, and show that,

generically, the two morphologies seek different equilibria values, making coexistence of bilayers and pores

impossible under the strong functionalization, unless one of the structures is flat, since zero curvature

interfaces are at equilibrium independent of bulk value of amphiphile.

Recall the strong FCH free energy which corresponds to the choice p = 1 in (1.14),

F(u) = ∫
Ω

1

2
(ε2∆u −W ′(u))2 − ε(ε

2η1

2
∣∇u∣2 + η2W (u)) dx, (4.1)

where Ω ⊂ R3 is a bounded domain, W (u) is a tilted double-well potential with two minima at b±, u ∶ Ω→ R

is the density of one of the amphiphilic species, ε≪ 1 controls the width of the boundary layer and η1 and η2

are the functionalization constants.

Note 7. By abuse of notation we will drop the p subscript in the up critical point when doing so creates no

confusion.

The chemical potential, µ, is defined as the first variation of F ,

µ ∶= δF
δu

(u) = (ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u), (4.2)
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where ηd ∶= η1 − η2. In this chapter we present a formal reduction of the strong FCH equation,

ut = ∆ [(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u)] , (4.3)

for functions u that are close to a bilayer dressing of an admissible interface in Ω, subject to periodic or

zero-flux boundary conditions. We may rewrite the strong FCH equation using the definition of the chemical

potential, given in (4.2),

ut = ∆µ. (4.4)

4.1 The whiskered coordinate system and inner-expansions

Assuming an admissible initial co-dimension two interface Γp(t0), we perform a multi-scale analysis of the

solution u. Away from the interface, in the far-field region Γ̃p,`, the outer solution u has the expansion

u(x, t) = u0(x, t) + εu1(x, t) + ε2u2(x, t) +O(ε3). (4.5)

On the reach, Γp,`, at a given time-scale τ , the outer solution’s inner expansion takes the form

u(x, t) = ũ(s, z, τ) = ũ0(s, z, τ) + εũ1(s, z, τ) + ε2ũ2(s, z, τ) +O(ε3). (4.6)

4.2 Matching Conditions

Fix a whisker, w, and let x ∈ Γp be its base point. We take two vectors n,m ∈ span{N1,N2} in the normal

plane of Γp at x, and specify that

n = cos(θ)N1 + sin(θ)N2. (4.7)

The usual directional derivative along n is denoted

∂n ∶= n ⋅ ∇x = cos(θ)N1 ⋅ ∇x + sin(θ)N2 ⋅ ∇x, (4.8)

and for f ∈ C∞(Ω/Γp) we introduce the n,m limit

∂jnf
m(x) ∶= lim

h→0+
(n ⋅ ∇x)jf(x + hm, t) for all j ≥ 0, (4.9)
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and the limit of the gradient

∇xfm(x) ∶= lim
h→0+

∇xf(x + hm, t), (4.10)

where the limit exists. If f ∈ C1(Ω) then the normal derivative of f will satisfy

∂nf
−m = ∂nfm. (4.11)

This motivates the following definition of the jump condition

Definition 4.1. Given a radial function f ∶= f(R) localized on Γp, we define the jump of f across a given

whisker by

J∂nfmKΓp(x) ∶= ∂nfm(x) − ∂nf−m(x) (4.12)

which is zero when f has a smooth extension through Γp.

With this notation we examine the matching condition

u(x + hn, t) ≈ ũ(s,R, θ, τ). (4.13)

An expansion of the left-hand side of equation (4.13) around x, as h→ 0+, is given by

un(x, t) + ε(un1 (x, t) + z∂nun0 (x, t)) + ε2(un2 (x, t) + z∂nun1 (x, t) +
1

2
z2∂2

nu
n
0 (x, t)) +O(ε3), (4.14)

and equating orders of ε the matching condition (4.13) yields

un0 = lim
R→∞

ũ0(s,R, θ, τ), (4.15)

un1 +R∂nun0 = lim
R→∞

ũ1(s,R, θ, τ). (4.16)

Similarly, we can obtain matching conditions for the chemical potential

µn
0 = lim

R→∞
µ̃0, (4.17)

µn
1 +R∂nµ±0 = lim

R→∞
µ̃1, (4.18)

µn
2 +R∂nµn

1 +
1

2
R2∂2

nµ
n
0 = lim

R→∞
µ̃2, (4.19)

µn
3 +R∂nµn

2 +
1

2
R2∂2

nµ
n
1 +

1

6
R3∂2

nµ
n
0 = lim

R→∞
µ̃3. (4.20)
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4.3 Expansion of the Chemical Potential

We will have recourse to the inner and outer expansions of the chemical potential

µ ∶= (−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + εηdW ′(u), (4.21)

4.3.1 Outer Expansion of the Chemical Potential

At a given time scale τ , the outer expansion for the density function u(x, t) is given by equation (4.5).

Plugging (4.5) into (4.21) and rewriting the chemical potential µ in orders of ε yields

µ(x, t) = µ0(x, τ) + εµ1(x, τ) + ε2µ2(x, τ) + ..., (4.22)

where

µ0 =W ′′(u0)W ′(u0), (4.23)

µ1 =(W ′′′(u0)u1 − η1)W ′(u0) + (W ′′(u0))2u1 + ηdW ′(u0), (4.24)

µ2 =(−∆ +W ′′′(u0)u2 +
1

2
W (4)(u0)u1)W ′(u0) + (W ′′′(u0)u1 − η1)W ′′(u0)u1 (4.25)

+W ′′(u0) (−∆u0 +W ′′(u0)u2 +
1

2
W ′′′(u0)u2

1) + ηdW ′′(u0)u1.

Note that the outer expansion of the chemical potential is identical for both co-dimension one and co-

dimension two.

4.3.2 Inner Expansion of the Chemical Potential

At a given time scale τ , the inner expansion for the density function u(x, t) is given by equation (4.6), and

in local coordinates, the Laplacian is given in equation (2.70). Plugging (4.6) and (2.70) into (4.21), we can

rewrite the chemical potential µ in orders of ε

µ(x, t) = µ̃0(s, z, τ) + εµ̃1(s, z, τ) + ε2µ̃2(s, z, τ) +O(ε3), (4.26)

where

µ̃0 =(−∆z +W ′′(ũ0))(−∆zũ0 +W ′(ũ0)), (4.27)

µ̃1 =(−∆z +W ′′(ũ0))(−∆zũ1 + κ⃗ ⋅ ∇zũ0 +W ′′(ũ0)ũ1)+ (4.28)
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(κ⃗ ⋅ ∇z +W ′′′(ũ0)ũ1 − η1)(−∆zũ0 +W ′(ũ0)) + ηdW ′(ũ0)

µ̃2 =(−∆z +W ′′(ũ0))(−∆zũ2 + κ⃗ ⋅ ∇zũ1 + ∂2
s ũ0 − (z ⋅ κ⃗)κ⃗ ⋅ ∇ũ0 +W ′′(ũ0)ũ2 +

1

2
W ′′′(ũ0)ũ2

1)+ (4.29)

(κ⃗ ⋅ ∇z +W ′′′(ũ0)ũ1 − η1)(−∆zũ1 + κ⃗ ⋅ ∇zũ0 +W ′′(ũ0)ũ1)+

(−∂2
s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z +W ′′′(ũ0)ũ2 +

1

2
W (4)(ũ0)ũ2

1)(−∆zũ0 +W ′(ũ0)) + ηdW ′′(ũ0)ũ1

4.4 Time scale τ = ε−2t

On the fast time scale, the initial data is expected to relax into an equilibria solution. We start by looking

for approximations of the solutions of the strong FCH equation

ut = ∆x

µ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u)] in Ω, (4.30)

for the time scale τ = ε−2t.

4.4.1 Outer expansion

Away from the pore Γp, plugging the outer expansion for the density function u(x) and the outer expansion

of the chemical potential µ, given in (4.5) and (4.22), respectively, into the strong FCH equation, (4.30), and

equating orders of ε yields

O(ε−2) ∶ u0,τ = 0, (4.31)

O(ε−1) ∶ u1,τ = 0, (4.32)

O(1) ∶ u2,τ = ∆ (W ′′(u0)W ′(u0)) in Γ̃p,`. (4.33)

On the τ = ε−2t time scale, the solution u is stationary to first and second order. Equation (4.33) has

boundary conditions on Ω but to solve it we also need boundary conditions on Γp. This leads us to the inner

expansion.

4.4.2 Inner expansion

We express each of the terms in (4.30) in whiskered coordinates. Plugging the inner expansion of u, given

in (4.6), into the left-hand side of equation (4.30), the time derivative of u takes the form

ut = ε−2 (∇zũ
∂z

∂τ
+ ∂sũ

∂s

∂τ
+ ũτ) . (4.34)
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In light of the normal velocity relations given in equations (2.68) and (2.69), equation (4.34) reduces to

ut = ε−3V ⋅ ∇zũ0 + ε−2 ((z2N
2 ⋅ ∂N1

∂τ
, z1N

1 ⋅ ∂N2

∂τ
) ⋅ ∇zũ + ∂sũ

∂s

∂τ
+ ũτ) +O(ε−1) (4.35)

An expression of the Laplacian in local coordinates is given in (2.70) and an expression for the inner expansion

of the chemical potential is given in (4.26). Plugging (4.35), (2.70) and (4.26) back into the evolution

equation (4.30) and comparing orders of ε yields,

O(ε−3) ∶ V ⋅ ∇zũ0 = 0, (4.36)

O(ε−2) ∶ V ⋅ ∇zũ1 + ∂sũ0
∂s

∂τ
+ ũ0,τ + z2N

2 ⋅ ∂N1

∂τ

∂ũ0

∂z1
+ z1N

1 ⋅ ∂N2

∂τ

∂ũ0

∂z2
= ∆zµ̃0, (4.37)

where µ̃0 is given in (4.27). We are interested in non-trivial solutions based upon a quasi-stationary radial

profile, consequently we assume that the transient dynamics on the τ time scale have equilibrated, that

is V = 0 and all τ partial are zero, so that the system of equations reduces to

0 = ∆zµ̃0. (4.38)

These assumptions are consistent with equilibria which at leading order have radially symmetric profiles that

render µ̃0 = 0.

The next time scale τ = ε−1t yields the same results and we skip the calculations.

4.5 Time Scale τ = t : Sharp Interface Limit

Recall that we are looking for approximations for solutions of the strong FCH equation

ut = ∆x

µ
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[(ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u)] in Ω. (4.39)

For the time scale τ = t. We will obtain an evolution equations for the outer and inner regions.

4.5.1 Outer Expansion

Away from the interface, the outer expansion of the density function u is given in (4.5), and the outer

expansion of the chemical potential, µ, given in (4.22). Plugging (4.5) and (4.22) into (4.39) yields at leading
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order, O(1),

u0,τ = ∆µ0 in Γ̃p,`, (4.40)

where µ0 is given in (4.23).

4.5.2 Inner Expansion

We express each of the terms in (4.39) in inner coordinates. Plugging the inner expansion of u, given in (4.6),

into the left-hand side of equation (4.39) yields

ut = ũτ + ũs
∂s

∂τ
+ ∂z
∂τ

⋅ ∇zũ = −ε−1V ⋅ ∇zũ0 +O(1). (4.41)

An expand expression of the Laplacian in local coordinates is given in (2.70) and an expression for the

inner expansion of the chemical potential is given in (4.26). Plugging (4.41), (2.70) and (4.26) back into the

evolution equation (4.39) and comparing orders of ε yields,

O(ε−2) ∶ 0 = ∆zµ̃0 in Γp,`, (4.42)

O(ε−1) ∶ −V ⋅ ∇zũ0 = ∆zµ̃1 − κ⃗ ⋅ ∇zµ̃0, in Γp,`. (4.43)

Equation (4.43) has the solution ũ0 = Up where Up is the pore profile defined in (2.75). For this choice of ũ0

it follows that µ̃0 = 0 and that µ̃1, defined in (4.28), takes the form

µ̃1 = L2
p,0ũ1 + ηdW ′(Ub), (4.44)

where Lp,0 is defined in (2.81). Moreover, the next order equation, (4.43), reduces to

−V ⋅ ∇zũ0 = ∆zµ̃1, in Γp,`. (4.45)

4.5.3 Jump Conditions

We would like to determine the normal velocity of the interface Γp for the time scale τ = t. To this end, we

need to determine an explicit solution for µ̃1, in equation (4.45), subject to the matching conditions with

the outer solution, given in Section 4.2.
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Turning to polar coordinates, we use the Fourier mode expansion, (2.88), to obtain an express for µ̃1,

µ̃1 = A1(s,R) cos θ +B1(s,R) sin θ +C(s,R) + ξ(s,R, θ), (4.46)

where

ξ(s,R, θ) =
∞

∑
m=2

(Am(s,R) cos(mθ) +Bm(s,R) sin(mθ)). (4.47)

From the matching condition (4.18) we see that µ̃1 grows at most linearly as R →∞ and

lim
R→∞

∂µ̃1

∂R
= ∂nµn

0 . (4.48)

Using the definition of the directional derivative along n, given in (4.8), we rewrite equation (4.48) in terms

of the sine and cosine functions

lim
R→∞

∂µ̃1

∂R
= cos θN1 ⋅ ∇zµn

0 + sin θN2 ⋅ ∇zµn
0 . (4.49)

Taking the R derivative of (4.46) yields

∂µ̃1

∂R
= (C1 − a′(R)V1) cos θ + (C2 − a′(R)V2) sin θ + ∂ξ

∂R
. (4.50)

Comparing (4.50) with (4.49) we conclude that ξ = ξ(s, θ). Using basic trigonometric identities, (C.35), we

note that ∂µ̃1

∂R
also satisfies

∂µ̃1

∂R
(s,R, θ, τ) = −∂µ̃1

∂R
(s,R, θ + π, τ). (4.51)

Combining (4.51) and (4.48) we obtain the jump condition over the interface Γp

J∂nµn
0 K = 0, (4.52)

for any choice of normal vector n.

4.5.4 The Normal Velocity

We would like to determine the evolution of the interface Γp. To this end, recall equation (4.45), which

involve the normal velocity V, and the inner chemical potential µ̃1. Using the polar coordinates extension of

the Laplacian, given in (A.3), and the expression for µ̃1 given in (4.46), the right-hand side of equation (4.45)
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takes the form

∆zµ̃1 =(C ′′ + 1

R
C ′) + (A′′

1 +
1

R
A′

1 +
1

R2
A1) cos θ + (B′′

1 +
1

R
B′

1 +
1

R2
B1) sin θ (4.53)

+
∞

∑
m=2

m

R2
Am(s) cos(mθ) + m

R2
Bm(s) sin(mθ).

Using the polar gradient, (A.4), the left-hand side of equation (4.45) becomes

V ⋅ ∇zUp = (V1U
′
p cos θ , V2U

′
p sin θ) (4.54)

Plugging (4.53) and (4.54) into (4.45) and matching coefficients of corresponding trigonometric terms yields

the system

C ′′ + 1

R
C ′ = 0, (4.55)

A′′
1 +

1

R
A′

1 +
1

R2
A1 = V1U

′
p, (4.56)

B′′
1 +

1

R
B′

1 +
1

R2
B1 = V2U

′
p, (4.57)

m

R2
Am = 0, (4.58)

m

R2
Bm = 0. (4.59)

From equations (4.58) and (4.59) we deduce that Am = Bm = 0, for m ≥ 2. Equation (4.55) has the solution

C = C0(s), (4.60)

and the non-homogeneous equations, (4.56) and (4.57), have the solutions

A(s,R) = C1(s)R − a(R)V1(s), (4.61)

B(s,R) = C2(s)R − a(R)V2(s), (4.62)

where a(R) is the solution of the non-homogeneous ODE

a′′ + 1

R
a′ − 1

R2
a = U ′(R), (4.63)

and is given by the explicit formula

a(R) = 1

R
∫

R

0
rÛp dr, (4.64)
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where we introduce

Ûp ∶= Up − b−. (4.65)

Note that Ûp is positive and Ûp → 0 as R →∞. Plugging (4.60), (4.61) and (4.62) into (4.46) and taking Am =

Bm = 0 we see that µ̃1 takes the form

µ̃1 = C0(s) + (C1(s)R − a(R)V1(s)) cos θ + (C2(s)R − a(R)V2(s)) sin θ. (4.66)

Recall that µ̃1 relates to the density function ũ through equation (4.28), which for the choice ũ0 = Up takes

the form

L2
pũ1 = µ̃1 − ηdW ′(Up), (4.67)

where the linear operator Lp was introduced in (2.78). By the Fredholm Alternative, this equation has

a solution ũ1 ∈ L2(R) if and only if the right-hand side is perpendicular to kerLp. Recall that kerLp =

(U ′
p cos θ,U ′

p sin θ) and consider the inner product of (U ′
p cos θ,U ′

p sin θ) with the right-hand side of equa-

tion (4.67). We know that ηdW
′(Up) belong to the space Z0, defined in (2.79), and hence is perpendicular

to kerLp. From orthogonality in θ, the only non-trivial condition is imposed on the sin θ and cos θ terms

of µ̃1, in equation (4.66), and the Fredholm condition (4.67) reduces to

∫
∞

0
(Ci(s)R − a(R)Vi(s))U ′

pRdR = 0, for i = 1,2. (4.68)

Plugging the definition of a(R), given in (4.64) into (4.68) and integrating by parts yields the relation

Ci = Vi
S2

2S1
(4.69)

where we introduce the constants

S1 ∶= ∫
∞

0
ÛpRdR (4.70)

S2 ∶= ∫
∞

0
Û2
p RdR. (4.71)

Plugging (4.69) into (4.66) and taking the R derivative of (4.66) yields

∂µ̃1

∂R
= V1(

S2

2S1
− a′(R)) cos θ + V2(

S2

2S1
− a′(R)) sin θ. (4.72)

73



Equating coefficients of sin θ and cos θ in equations (4.72) and (4.49) yields

Ni ⋅ ∇xµNi

0 = Vi(
S2

2S1
− lim
R→∞

a′(R)), (4.73)

and since

lim
R→∞

a′(R) = lim
R→∞

( 1

R2 ∫
R

0
rÛ ′

p dr + Ûp) = 0, (4.74)

we find that the normal velocity satisfies

Vi =
2S1

S2
Ni ⋅ ∇xµNi

0 , for i = 1,2. (4.75)

4.5.5 Sharp Interface Limit

The preceding calculation shows that, in a neighborhood of the dressed solution, the τ = t time scale evolution

of (4.39) reduces to a sharp interface limit problem for the evolution of Γp

(4.40) ∶ u0,τ = ∆µ0 in Γ̃p,`, (4.76)

n ⋅ ∇xµ0 = 0 on ∂Ω, (4.77)

µ0 = 0 on Γp, (4.78)

(4.52) ∶ J∂nµn
0 K = 0 on Γp, for all normal vectors n of Γp, (4.79)

(4.75) ∶ Vi =
2S1

S2
Ni ⋅ ∇xµNi

0 , for all x ∈ Γp(t), i = 1,2. (4.80)

We are following the argument of [Dai and Promislow, 2015] and prove the following Lemma -

Lemma 4.1. Assume that the co-dimension two interface Γp ⊂ Ω has finite one dimensional Hausdorff

measure. Then the only equilibrium solution of (4.76)-(4.80) is the trivial solution µ0 ≡ 0, however the

curve Γp can have arbitrary shape.

Proof. At equilibium we have

∆µ0 = 0, in Γ̃p,`, (4.81)

n ⋅ ∇xµ0 = 0 on ∂Ω, (4.82)

µ0 = 0 on Γp. (4.83)

Since µ0 is analytic off of a set of finite hausdorff measure, then µ0 has an analytic extension to Ω, µ̄0, see [?]
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and [Polking, 1984], and we drop the bar notation. The extended function satisfies

∆µ0 = 0, in Ω, (4.84)

n ⋅ ∇xµ0 = 0 on ∂Ω, (4.85)

then, by the Strong Maximum principle implies that µ0 is spatially constant. Finally, since µ0 = 0 on Γp, we

conclude that µ0 ≡ 0. ∎

We subsequently assume the system has achieved equilibrium on the τ = t time-scale.

4.6 Time scale τ = εt : Curvature Driven Flow

We obtain evolution equations for the outer and inner regions. Using the inner equations we obtain a jump

conditions of the outer solution over the interface and an expression for the normal velocity of the interface.

we will see that the normal velocity is driven by the curvature flow. Finally, we use the mass preserving

property of the system to obtain the coupled system for the normal velocity, V , and the external chemical

potential, µ1.

4.6.1 Outer expansion

Away from the interface, the outer expansion of the density function u is given in (4.5), and the outer

expansion of the chemical potential, µ, given in (4.22). Plugging (4.5) and (4.22) into (4.39) and equating

orders of ε yields

O(1) ∶ 0 = ∆xµ0, in Γ̃p,` (4.86)

O(ε) ∶ u0,τ = ∆xµ1, in Γ̃p,`, (4.87)

where µ0 and µ1 are given in (4.23) and (4.24), respectively. From equations (4.76)-(4.80) we assume that

the system has equilibrated to u0 = b− in Γ̃p,`. Under this assumption µ0 = 0, which satisfies equation (4.86)

and equation (4.87) reduces to

∆xµ1 = 0 in Γ̃p,`. (4.88)
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4.6.2 Inner Expansion

We express each of the terms in (4.39) in inner coordinates. Plugging the inner expansion of u, given in (4.6),

into the left-hand side of equation (4.39) yields

uτ = −V ⋅ ∇zũ +O(ε). (4.89)

An expand expression of the Laplacian in local coordinates is given in (2.70) and an expression for the

inner expansion of the chemical potential is given in (4.26). Plugging (4.89), (2.70) and (4.26) back into the

evolution equation (4.39) and comparing orders of ε yields,

O(ε−2) ∶ 0 = ∆zµ̃0, (4.90)

O(ε−1) ∶ 0 = ∆zµ̃1 + κ⃗ ⋅ ∇zµ̃0 (4.91)

O(1) ∶ −Vt1 ⋅ ∇zũ0 = ∆zµ̃2 − κ⃗ ⋅ ∇zµ̃1 + (∂2
s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z)µ̃0, (4.92)

where µ̃0, µ̃1 and µ̃2 are defined in equations (4.27), (4.28) and (4.29), respectively. Equation (4.90) is

consistent with the assumption that ũ0 = Up which implies that µ̃0 = 0. Since µ̃0 = 0 equations (4.91)

and (4.92) reduces to

O(ε−1) ∶ 0 = ∆zµ̃1, (4.93)

O(1) ∶ − Vt1 ⋅ ∇zũ0 = ∆zµ̃2 − κ⃗ ⋅ ∇zµ̃1. (4.94)

4.6.2.1 Solving equation (4.93) for ũ1

To solve (4.93) we use the explicit expression for ∆zµ̃1, given in (4.53). Plugging (4.53) into (4.93) and

matching cos, sin terms yields

C ′′ + 1

R
C ′ = 0, (4.95)

A′′
1 +

1

R
A′

1 +
1

R2
A1 = 0 (4.96)

B′′
1 +

1

R
B′

1 +
1

R2
B1 = 0 (4.97)

m

R2
Am = 0, (4.98)

m

R2
Bm = 0. (4.99)
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From equations (4.56)-(4.59) we deduce that Ai = Bi = 0, for i ≥ 1. Equation (4.55) has the solution

C = C0(s), (4.100)

and we deduce that µ̃1 is spatially constant, i.e.,

µ̃1 = µ̃1(s, t) = µ1. (4.101)

Recall that µ̃1 is given in (4.28) and since ũ0 = Up it reduces to

L2
pũ1 = µ̃1 − ηdW ′(Up). (4.102)

By the Fredholm Alternative, this equation has a solution ũ1 if and only if the right-hand side is perpendicular

to kerLp. Recall that kerLp ⊂ kerLp,1 and note that µ̃1, ηdW
′(Up) ∈ Z0. Since the spaces Zm are mutually

orthogonal, there exists a solution ũ1 denoted

ũ1 = µ1Φp,2 − ηdL−2
p W

′(Up) (4.103)

where µ1 is a spacial constant and Φp,2 satisfied L2
pΦp,2 = 1, defined in (2.86).

To determine the interface normal velocity we continue to the equation (4.94). Since equation (4.101) implies

that µ̃1 is spatially constant and equation (4.94) reduces to

O(1) ∶ − V ⋅ ∇zũ0 = ∆zµ̃2. (4.104)

4.6.2.2 Jump Conditions

We would like to determine the normal velocity of the interface Γp for the time scale τ = εt. To this end, we

need to determine an explicit solution for µ̃2, in equation (4.104), subject to the matching conditions with

the outer solution, given in Section 4.2.

Turning to polar coordinates, we use the Fourier expansion, (2.88), to obtain an express for µ̃2,

µ̃2 = Ā1(s,R) cos θ + B̄1(s,R) sin θ + C̄(s,R) + ξ̄(s,R, θ), (4.105)

where

ξ̄(s,R, θ) =
∞

∑
m=2

(Ām(s,R) cos(mθ) + B̄m(s,R) sin(mθ)). (4.106)
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From the matching condition (4.19) we see that µ̃2 grows at most linearly as R →∞ and

lim
R→∞

∂µ̃2

∂R
= ∂nµn

1 . (4.107)

Using the definition of the directional derivative along n, given in (4.8), we rewrite equation (4.107) in terms

of sin and cos

lim
R→∞

∂µ̃2

∂R
= cos θN1 ⋅ ∇zµn

1 + sin θN2 ⋅ ∇zµn
1 . (4.108)

Taking the R derivative of (4.105) yields

∂µ̃2

∂R
= (C̄1 − a′(R)V1) cos θ + (C̄2 − a′(R)V2) sin θ + ∂ξ̄

∂R
. (4.109)

Comparing (4.109) with (4.108) we conclude that ξ̄ = ξ̄(s, θ). Using basic trigonometric identities, (C.35),

we note that ∂µ̃2

∂R
also satisfies

∂µ̃2

∂R
(s,R, θ, τ) = −∂µ̃2

∂R
(s,R, θ + π, τ). (4.110)

Combining (4.110) and (4.107) we obtain the jump condition over the interface Γp

J∂nµn
1 K = 0, (4.111)

for any choice of normal vector n. Moreover, plugging (4.109) into (4.108), recalling that a′(R) → 0 as R →∞,

and comparing coefficients of sin and cos yields the relation

C̄i = Ni ⋅ ∇zµn
1 (4.112)

4.6.2.3 The normal velocity

We would like to determine the evolution of the interface Γp. To this end, recall equation (4.104), which

involves the normal velocity, V, and the inner chemical potential µ̃2. The definition of µ̃2 is given in (4.29),

and since ũ0 = Up (4.29) reduces to

µ̃2 = L2
pũ2 −Lp(R) + (κ ⋅ ∇z +W ′′′(Up)ũ1 − η1)(−Lpũ1 + κ⃗ ⋅ ∇zUp) + ηdW ′′(Up)ũ1 (4.113)

where

R = κ ⋅ ∇ũ1 − (z ⋅ κ⃗)κ⃗ ⋅ ∇zUp +
1

2
W ′′′(Ũp)ũ1. (4.114)
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In order to get an expression for the normal velocity we want to solve (4.104) for µ̃2. Following the same pro-

cedure as in Section 4.5.4, specifically equations (4.45)-(4.66), and considering the matching condition (4.19)

we deduce that µ̃2 takes the form

µ̃2 = C̄0(s) + (C̄1(s)R − a(R)V1(s)) cos θ + (C̄2(s)R − a(R)V2(s)) sin θ, (4.115)

where a(R), C0 and C1,C2 are given in (4.64), (4.60), (4.61), and (4.62), respectively.

To solve equation (4.113) for ũ2 we rewrite it in the following form

L2
pũ2 = µ̃2 −Q −Lp(R), (4.116)

where

Q ∶= (κ⃗ ⋅ ∇z +W ′′′(Up)ũ1 − η1)(−Lpũ1 + κ⃗ ⋅ ∇zUp) + ηdW ′′(Up)ũ1. (4.117)

By the Fredholm Alternative, we can solve equation (4.116) for ũ2 if and only if the right-hand side is

perpendicular to kerLp. Recall that kerLp = span{U ′
p cos θ,U ′

p sin θ} ⊂ kerLp,1, and that the Zm spaces are

mutually orthogonal. Expanding Q, given in (4.117), and decomposing it to its Zm components yields

Q = Q0 +Q1 +Q0,2, (4.118)

where Q0 ∈ Z0, Q1 ∈ Z1, Q0,2 ∈ Z0 +Z2, and are given by

Q0 ∶= −W ′′′(Up)ũ1Lpũ1 + η1Lpũ1 + ηdW ′′(Up)ũ1, (4.119)

Q1 ∶= −κ⃗ ⋅ ∇zLpũ1 +W ′′′(Up)ũ1κ⃗ ⋅ ∇zUp − η1κ⃗ ⋅ ∇zUp, (4.120)

Q0,2 ∶= (κ⃗ ⋅ ∇z)2Up. (4.121)

By the orthogonality of the Zm spaces and since Lp(R)�kerLp the Fredholm solvability condition of equa-

tion (4.116) reduces to

(µ̃2 −Q1, ∂ziUp)LR([0,∞))
= 0, for i = 1,2. (4.122)

In order to calculate the solvability condition, given in (4.122), we first expandQ1 using the explicit expression

of ũ1 given in (4.103), such that

Q1 ∶= − µ1κ⃗ ⋅ ∇zΦp,1 + ηdκ⃗ ⋅ ∇zL−1
p (W ′(Up)) + µ1W

′′′(Up)Φp,2κ⃗ ⋅ ∇zUp (4.123)
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− ηdW ′′′(Up)L−2
p (W ′(Up))κ⃗ ⋅ ∇zUp − η1κ⃗ ⋅ ∇zUp,

and calculating the inner product (see Appendix C.2 for details) yields

(Q1, ∂ziU)LR
= −2πµ1κiS1 − η1πκiS4, (4.124)

where S1 is defined in (4.70) and

S4 ∶= ∫
∞

0
(U ′

p)2RdR. (4.125)

The inner product of ∂ziUp with µ̃2, where µ̃2 is given in equation (4.115), yields

(µ̃2, ∂ziU) = −2πC̄iS1 + πViS2 = −2πNi ⋅ ∇zµNi

1 S1 + πViS2, , (4.126)

where S2 is defined in (4.71), and the second equality follows form the matching conditions, see equa-

tion (4.112). Returning to (4.122) and using (4.124) and (4.126), we conclude that the normal velocity is

given by

Vi = −
2µ1S1 − η1S4

S2
κi +

2S1

S2
Ni ⋅ ∇zµNi

1 i = 1,2. (4.127)

4.6.3 Sharp interface limit

On the time scale τ = εt, the evolution of the interface, Γp is given by the normal velocity

(4.127) ∶ Vi = −
2µ1S1 + η1S4

S2
κi +

2S1

S2
Ni ⋅ ∇zµNi

1 i = 1,2. (4.128)

where µ1 is the solution of the system

(4.88) ∶ ∆xµ1 = 0 in Γ̃p,`, (4.129)

n ⋅ ∇xµ1 = 0 on ∂Ω, (4.130)

(4.111) ∶ J∂nµn
1 K = 0, on Γp, for all normal vectors n of Γp. (4.131)

The inner chemical potential satisfies µ1 = µ1(s, τ) on Γp. Since we assumed that µ1 ∈ C2(Ω/Γp) ∩ C(Ω̄)

we may use Lemma 4.1 to conclude that ∆µ1 = 0 on the entire domain Ω. Applying the Strong Maximum

Principle (see [Evans, 2010]) we deduce that µ1 is spatially constant.
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Since µ1 is spatially constant we have ∇xµ1 = 0 and the normal velocity reduces to

V = −2µ1S1 − η1S4

S2
κ⃗, (4.132)

where S1 and S4 are defined in (4.70), (4.125), respectively.

4.6.4 Equilibria estimate for time scale τ = εt

The far-field external chemical potential µ1 is characterized by the density function, u, whose value is

determined by conservation of total mass. For this time scale, we summarize our approximation for the

density function in each region. In the outer region Γ̃p,`, our assumption that u0 = b− combined with

equation (4.24) yields

u(x, t) = b− + ε
µ1

α2
−

+O(ε2) in Γ̃p,`, (4.133)

where α− is defined in (1.34). In the inner region, Γp,`, our choice ũ0 = Up combined with equation (4.103)

yields

u(x, t) = Up + ε(µ1Φp,2 − ηdL−2
p W

′(Up)) +O(ε2) in Γp,`. (4.134)

We use mass balance to determine µ1 and to obtain the coupled µ1, V system evolution. The total mass of

the system is given by

M ∶= ∫
Ω
u(x, t) − b− dx = ∫

Ω
u(x,0) − b− dx = ∫

Ω/Γp,`

(u − b−)dx + ∫
Γp,`

(u − b−)dx (4.135)

Using (4.133), the outer integral becomes

∫
Ω/Γp,`

(u − b−)dx = ε
µ1

α2
−

(∣Ω∣ − ∣Γp,`∣ ) +O(ε2) (4.136)

Using (4.134) and the Jacobian, defined in (2.63), the inner integral takes the form

∫
Γp,`

(u − b−)dx = ε2 ∫
Γp
∫
R2

((Up − b−) + ε(µ1Φp,2 − ηdL−2
p W

′(Up)) +O(ε2)) (1 − εz ⋅ κ⃗)dz ds (4.137)

= ε22π∣Γp∣S1 + ε32π∣Γp∣µ1 ∫
∞

0
Φp,2RdR + ε32π∣Γp∣ηd ∫

∞

0
W ′(Up)RdR +O(ε4∣Γp∣) (4.138)

Adding and subtracting the term ε22π µ1

α2−
∣Γp∣ = ε µ1

α2−
∣Γp,`∣ to (4.137), the inner integral becomes

∫
Γp,`

(u − b−)dx = ε22π∣Γp∣S1 + ε
µ1

α2
−

∣Γp,`∣ + ε32π∣Γp∣µ1S3 +O(ε3∣Γp∣) (4.139)
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where we introduce the constant S3

S3 ∶= ∫
∞

0
Φp,2 − α−2

− RdR. (4.140)

Combining (4.139) and (4.136) into (4.135) and assuming that ∣Γp∣ ∼ O(ε−1), which implies that

∣Γp∣ = ε−1γ−1 +O(1), (4.141)

we rewrite the total mass in orders of ε

M = ε(µ1

α2
−

∣Ω∣ + 2πS1γ−1) +O(ε2). (4.142)

Taking the τ = εt time derivative of the total mass, (4.142), and solving for dγ−1

dτ
yields

dγ−1

dτ
= − ∣Ω∣

2πα2
−S1

dµ1

dτ
. (4.143)

On the other hand, taking the time derivative of (4.141) yields

d∣Γp∣
dτ

= ε−1 dγ−1

dτ
+O(1). (4.144)

Combining equation (2.62), which relates the interfacial surface area growth with the normal velocity, with

equation (4.144) yields

ε−1 dγ−1

dτ
= −∫

Γp

κ⃗ ⋅V ds = 2µ1S1 + η1S4

S2
∫ ∣κ⃗∣2 ds, (4.145)

where for the second equality we used the expression of V obtained in equation (4.132). Plugging (4.143)

into equation (4.145) and solving for dµ1

dτ
we obtain the leading order evolution equation

dµ1

dτ
= −ε(4πα2

−S
2
1

∣Ω∣S2
∫

Γp

∣κ⃗∣2 ds)µ1 + ε
2πα2

−S4S1η1

∣Ω∣S2
∫

Γp

∣κ⃗∣2 ds (4.146)

These results show that the evolution of the interface is governed by the coupled system

(4.132) ∶ V = −2µ1S1 − η1S4

S2
κ⃗, (4.147)

(4.146) ∶ dµ1

dτ
= −ε2πα2

−S1

∣Ω∣S2
(2S1µ1 − S4η1)∫

Γp

∣κ⃗∣2 ds (4.148)

The H−1 gradient flow drives pure pore interfaces by a mean-curvature flow and the external chemical
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potential decays exponentially to its equilibria value

µ1 Ð→
S4η1

2S1
, (4.149)

Since µ1 = α2
−u1, the density function decays to

u1 Ð→
S4η1

2S1α2
−

(4.150)

and the far-field behaviour of the density, u, takes the form

u = b− + ε
S4η1

2S1α2
−

+O(ε2). (4.151)

4.7 Competitive Geometric Evolution of Bilayers and Pores

After obtaining a leading order expression for the evolution equation of the bilayer morphology and the

pore morphology, we would like to consider a combined system in which the two morphologies co-exists.

Let Ω ⊂ R3 be a given domain with two admissible manifolds Γb and Γp, for the co-dimension one and the

co-dimension two morphology, respectively, which satisfy ∣Γb∣ ∼ O(1) and ∣Γp∣ ∼ O(ε−1). Let Γb,l and Γp,l

be the reaches of Γb and Γp, respectively, on which the change of coordinates to the whiskered coordinates

is unique.

Away from the interface, at time scale τ = εt, the leading order expression for the morphologies solutions

takes the form

up = ub = b− − ε
µ1

α2
−

+O(ε2). (4.152)

and the composite solution takes the form

ub,p = Ub +Up + b− − ε
µ1

α2
−

+O(ε2), (4.153)

and we already see that the two structures will compete each other for surfactant phase through the common,

slowly varying, chemical potential µ1.

For u, a combined bilayer-pore solution of the form (4.153), the total mass constraint of the combined system

is given by

M = ∫
Ω
(u − b−)dx = ∫

Ω/Γb,l∪Γp,l

(u − b−)dx + ∫
Γb,l

(u − b−)dx + ∫
Γp,l

(u − b−)dx. (4.154)

83



Calculating the outer integral yields

∫
Ω/Γb,l∪Γp,l

(u − b−)dx = ε
µ1

α2
−

(∣Ω∣ − ∣Γb,l ∪ Γp,l∣) +O(ε2), (4.155)

and plugging (4.155) back into (4.154) yields

M = ε µ1

α2
−

∣Ω∣ − ε µ1

α2
−

(∣Γb,l∣ + Γp,l∣) + ∫
Γb,l

(u − b−)dx + ∫
Γp,l

(u − b−)dx. (4.156)

Using (4.139) and equation (1.49), we obtain an expression for the inner integrals

∫
Γb,l

(u − b−)dx = εmb∣Γb∣ + ε
µ1

α2
−

∣Γb,l∣ +O(ε2), (4.157)

∫
Γp,l

(u − b−)dx = ε2mp∣Γp∣ + ε
µ1

α2
−

∣Γp,l∣ +O(ε3), (4.158)

where mb ∶= ∫R Ûb dz and mp ∶= 2πS1 and S1 defined in (4.70). Plugging equations (4.157) and (4.158)

in (4.156) the total mass takes the form

M = ε µ1

α2
−

∣Ω∣ + εmb∣Γb∣ + ε2mp∣Γp∣. (4.159)

Expanding M = εM̂ +O(ε2) and using our assumption that ∣Γb∣ ∼ O(1) and ∣Γp∣ ∼ O(ε−1) yields

M̂ = µ1

α2
−

∣Ω∣ +mb∣Γb∣ + εmp∣Γp∣, (4.160)

Which, yields the constraint on the chemical potential µ1,

µ1 =
α2
−

∣Ω∣
(M̂ −mb∣Γb∣ − εmp∣Γp∣) . (4.161)

Recall that the interfacial surface area growth of the pore is given in equation (2.62) and the equivalent

interfacial surface area growth of the bilayer is given in equation (3.110). Plugging into (2.62) the normal

velocity of the pore, Vp, given in (4.132), and plugging into (3.110) the normal velocity for the bilayer, Vb,

given in (3.102), yields leading order expressions for change in bilayer surface area and pore length

d∣Γb∣
dt

= mb

B1
(µ1 + (η1 + η2)

σb
2mb

)∫
Γb

H2
0 ds, (4.162)

d∣Γp∣
dt

= 2S1

S2
(µ1 +

S4

2S1
η1)∫

Γp

∣κ⃗∣2 ds, (4.163)
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where B1 is defined in (3.93). Taking the time derivative of (4.161) yields

dµ1

dτ
= −α

2
−

∣Ω∣ (mb
d∣Γb∣
dτ

+ εmp
d∣Γp∣
dτ

) , (4.164)

and plugging (4.162) and (4.163) into (4.164) yields

dµ1

dτ
= −α

2
−

∣Ω∣ [mb
mb

B1
(µ1 + (η1 + η2)

B2

2mb
)∫

Γb

H2
0 ds + εmp

2S1

S2
(µ1 −

S4

2S1
η1)∫

Γp

∣κ⃗∣2 ds] . (4.165)

These results show that for initial data corresponding to spatially separated pore and bilayer structures yields

a competitive evolution that can be understood as a fight for surfactant, mediated through the common value

of the chemical potential µ1, whose evolution is determined to by the conservation of total mass,

(4.132) ∶ Vp = νp(µ1 + µ∗p)κ⃗, (4.166)

(3.102) ∶ Vb = νb(µ1 + µ∗b)H0, (4.167)

(4.165) ∶ dµ1

dτ
= −α

2
−

∣Ω∣ [mbνb (µ1 + µ∗b)∫
Γb

H2
0 ds + εmpνp (µ1 + µ∗p)∫

Γp

∣κ⃗∣2 ds] , (4.168)

where we introduce the constants

νb ∶= mb

B1
, νp ∶= − 2S1

S2
,

µ∗b ∶= 1
2
(η1 + η2) σb

mb
, µ∗p ∶= −η1S4

2S1
.

(4.169)

The competitive evolution of the bilayers and pores couples through curvature weighted surface area. How-

ever, the two morphologies seek differing equilibria values, which typically satisfy ν∗b > ν∗p , making coexistence

of bilayers and pores impossible under the strong functionalization, unless one of the structures is flat, since

zero curvature interfaces are at equilibrium independent of chemical potential. For curved interfaces, the

range µ1 ∈ [µ∗p, µ∗b ] is invariant under the flow, and once µ1 enters this range the bilayers will shrink, while

the pore morphologies will grow. In section 7.2 we will show numerically the equilibria of each system for a

specific choice of double-well potential, and the dynamically invariant interval is described in Figure 7.2.
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Chapter 5

The Pearling Eigenvalue Problem,

Co-Dimension 1

In this chapter we address the linear stability of the bilayer morphology in the strong FCH and obtain an

explicit expression for the pearling stability condition. We present a rigourous analysis of the eigenvalue

problem corresponding to the strong FCH for the co-dimension one structure. We show that in the strong

FCH scaling the leading order behavior of the pearling eigenvalues is independent of the shape of the

underlying co-dimension one morphology. Under the H−1 gradient flow the pearling instability manifests

itself on a time scale that is O(ε−2) faster than the geometric evolution, and hence can be taken to be

instantaneous on the geometric evolution time scale. Conversely, the fingering instability occurs on the

same time scale as the geometric flow, and may not necessarily immediately manifest itself on the geometric

evolution time scale.

Recall the strong FCH free energy which corresponds to the choice p = 1 in (1.14),

F(u) = ∫
Ω

1

2
(ε2∆u −W ′(u))2 − ε(ε

2η1

2
∣∇u∣2 + η2W (u)) dx, (5.1)

where Ω ⊂ Rd, d ≥ 2, is a bounded domain, W (u) is a tilted double-well potential with two minima at b±, u ∶

Ω→ R is the density of one of the amphiphilic species, ε≪ 1 controls the width of the boundary layer and η1

and η2 are the functionalization constants. The first variation of F , introduced in equation (1.18), is given

by

δF
δu

(u) = (ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u), (5.2)

86



where ηd ∶= η1 − η2. The second variation of F , evaluated at a critical point of E , takes the form

Lb ∶=
δ2F
δu2

(u) = (ε2∆ −W ′′(u) + εη1) (ε2∆ −W ′′(u)) − (ε2∆u −W ′(u))W ′′′(u) + εηdW ′′(u). (5.3)

We obtain a pearling stability condition for the co-dimension one morphology which is summarized in the

following theorem-

Theorem 5.0.1. For a given admissible interface, Γb, the associated bilayer solution constructed in (2.37),

is stable with respect to the pearling bifurcation if and only if the far-field chemical potential µ1 satisfies the

pearling stability condition

P ∗
b ∶= −

λb,0ηd∥ψb,0∥2
L2(Ω)

α2
−Sb

> µ1. (5.4)

5.1 Overview

We want to investigate the pearling eigenmodes of the co-dimension one bilayer structure: given an admissible

interface Γb ∈ GK,`, assume that the system is at quasi-equilibrium, as defined in (1.15), with

ub = Ub(z) + εu1, (5.5)

where Ub is the homoclinic bilayer solution introduced in (2.37), and u1, derived in equation (3.74), is given

by

Lb,0u1 = µ1Φb,1 − ηd (
z

2
U ′
b) ⇒ u1 = µ1Φb,2 − ηdL−1

b,0 (z
2
U ′
b) , (5.6)

where Lb,0 is the linear operator introduced in (2.39), the chemical potential µ1 is spatially constant and the

functions Φb,j solves (2.40) for j = 1,2.

To show that ub, defined in equation (5.5), is a quasi-equilibrium, as defined in (1.15), we plug (5.5) into the

first variation, (5.2), which yields

δF
δu

(ub) = (ε2∆ −W ′′(ub) + εη1)(ε2∆ub −W ′(ub)) + εηdW ′(ub). (5.7)

Expanding the Laplacian in local coordinates, (2.9), and Taylor expanding the potential terms W (ub) yields

δF
δu

(ub) = [Lb,0 + ε (H∂z −W ′′′(Ub)u1 + η1) + ε2∆G] ○ [ε(H∂zUb +Lb,0u1) + ε2H∂zu1] + εηdW ′(Ub) (5.8)

+O(ε2)

=ε(L2
b,0u1 + ηdW ′(Ub)) (5.9)
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+ ε2(H2U ′′
b +H∂zLb,0u1 −H(W ′′(Ub))′u1 + η1HU

′
b −W ′′′(Ub)u1Lb,0u1

+ η1Lb,0u1 + ηdW ′′(Ub)u1) +O(ε3)

= εµ1 +O(ε2), (5.10)

where the second equality follows from the definition of u1 in (5.6). The leading order term is specially

constant, while the O(ε2) terms in (5.8) are localized on Γb and constant on the reach. Using Π0 to project

away the constant part of (5.8), yields terms that are O(ε2) in L∞ and zero off of the reach, taking the L2-

norm yields

∣∣Π0
δF
δu

(ub) ∣∣
2

L2(Ω)

= O(ε 5
2 ). (5.11)

We see that ub satisfies the definition of quasi-equilibrium, given in (1.15).

We are interested in the pearling eigenmodes of the second variation of F , Lb, defined in (5.3). Consider the

eigenvalue problem

LbΨ = ΛΨ. (5.12)

By changing coordinates of the Laplacian, in the operator Lb, to the whiskered coordinates, using (2.9), and

plugging-in the expansion of ub, (5.5), into u, Lb can be written in orders of ε as

Lb = L2
b + εL1 + ε2L2 +O(ε3), (5.13)

where Lb introduced in (2.45), and the operators L1, L2 take the form

L1 ∶= −Lb ○ (W ′′′(Ub)u1) − (W ′′′(Ub)u1 − η1)Lb − (HU ′
b + Lbu1)W ′′′(Ub) + ηdW ′′(Ub), (5.14)

L2 ∶= −Lb ○ (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) − (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1)Lb (5.15)

+ (W ′′′(Ub)u1 + η1)W ′′′(Ub)u1 − (Lbu2 −
1

2
W ′′′(Ub)u2

1)W ′′′(Ub)

− (Lbu1 +HU ′
b)W (4)(Ub)u1 − ηdW ′′′(Ub)u1,

see appendix D.1 for details. Note that for i ≥ 1, the unbounded term in the operators Li is Lb, and we can

write Lb in the following form

Lb = L2
b + εL̃b, (5.16)

where Lb is a relatively bounded perturbation of L2
b . The eigenvalues of L2

b are described in Figure 2.3 (right)

where the boxed area contains the pearling eigenvalues.
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Recall that Σb,0, defined in (2.48), is the set of small eigenvalues associated to Lb, and, according to Weyl’s

asymptotic formula ∣Σb,0∣ ∼ O(ε3/2−d). We define

Pk ∶= ε−1/2(λb,0 − ε2βk), (5.17)

to be the detuning constant depending only on k.

Definition 5.1. The space, XΣ, corresponding to the small eigenvalues of Lb is defined as

XΣ ∶= {ψb,0Θk ∣ k ∈ Σb,0} ∪ {ψb,1Θk ∣ k ∈ Σb,1}. (5.18)

The meander modes are accounted for in the geometric motion, however, we expand only the pearling modes,

for brevity. Looking for solutions of the eigenvalue problem, (5.12), we consider a regular perturbation

expansion of the form

Ψj = Ψ0,j + εΨ1,j +O(ε2), Ψ0,j ∈XΣ, Ψ0,j = ∑
k∈Σ

αkψb,0Θk, Ψ1,j ∈X�
Σ, (5.19)

Λj = εΛ1,j +O(ε2). (5.20)

The L2-orthogonal projection, Π, onto XΣ is given by

Π f ∶= ∑
k∈Σ

(f,ψb,0Θk)L2(Ω)

∣∣ψb,0Θk ∣∣2L2(Ω)

ψb,0Θk = ∑
k∈Σ

(f,ψb,0Θk)L2(Ω)ψb,0Θk, (5.21)

and its complementary projection is Π̃ = I −Π.

We consider a decomposition of the operator Lb into a 2 × 2 block form,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.22)

where

M ∶= ΠLbΠ, B ∶= ΠLbΠ̃, C ∶= Π̃LbΠ̃. (5.23)

By abuse of notation we denote Lb and its 2 × 2 decomposition with the same symbol.

[Hayrapetyan and Promislow, 2014] have shown that the restricted operator C is uniformly coercive on X�
Σ
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and its spectrum is bounded from below by δ > 0 which may be chosen independent of sufficiently small

ε > 0. In section 5.2 we investigate the operator M , describing its matrix representation and, develop an

expression for its pearling eigenvalues, presented in Theorem 5.2.3. In section 5.3, we will show that B,BT

have an ε-bounds as operators from l2(RN×N) to l2(RN×N). In section 5.4, we conclude, using both semi-

group estimates and a perturbation argument, that the spectrum of M determines the pearling eigenmodes

of Lb. Finally, in section 5.5, we connect the pearling eigenvalues of ∆Lb to those of Lb.

5.2 Eigenvalues of M ∶= ΠLbΠ

Let v ∈XΣ, i.e., v can be written as

v = ∑
k∈Σ

bkψb,0Θk, (5.24)

without loss of generality, assume ∣∣v∣∣L2 = 1. The operator ΠLbΠ, acting on v, takes the form

ΠLbΠ∑
j∈Σ

bjψb,0Θk = ∑
k∈Σ

⎛
⎝
Lb∑

j∈Σ

bjψb,0Θj , ψb,0Θk

⎞
⎠
L2(Ω)

ψb,0Θk = ∑
k∈Σ

∑
j∈Σ

bj (Lbψb,0Θj , ψb,0Θk)L2(Ω)
ψb,0Θk.

(5.25)

We define the operator matrix representation M ∈ RNd×Nd , where Nd ≈ ε3/2−d, in the following way

Mj,k ∶= (Lbψb,0Θj , ψb,0Θk)L2(Ω). (5.26)

Using the expansion of Lb, (5.13), we can write each entry of M in orders of ε such that

(Lbψb,0Θj , ψb,0Θk)L2(Ω) = (L2
bψb,0Θj , ψb,0Θk)L2(Ω) + ε(L1ψb,0Θj , ψb,0Θk)L2(Ω) +O(ε2), (5.27)

and collect the matrix terms into two classes such that

M =M0 + εqM̃, (5.28)

where

M0
j,k = (L2

bψb,0Θj , ψb,0Θk)L2(Ω) + ε(L1ψb,0Θj , ψb,0Θk)L2(Ω) +
q

∑
i=2

εi(Liψb,0Θj , ψb,0Θk)L2(Ω), (5.29)

M̃j,k = ∑
i≥q

ε(i−q)(Liψb,0Θj , ψb,0Θk)L2(Ω). (5.30)

90



We will show that the first term, M0, can be split into a diagonal and off-diagonal terms, the latter of which

can be bounded independently of the matrix size Nd, if the curvatures of the interface Γb are sufficiently

smooth. The other term, M̃ , can be bounded, independent of the dimension, via the L∞ norm, for q suitably

large, depending upon the dimension, d.

5.2.1 Bounding M̃

To establish the bound on M̃ , we start with the definition of the l2-norm of a matrix, followed by a lemma

which establish a bound on the l2-norm using the l∞ norm:

Definition 5.2. The induced l2-norm of a matrix A is given by,

∣∣A∣∣l2 ∶= sup
∣∣v∣∣l2≠0

∣∣Av∣∣l2
∣∣v∣∣l2

. (5.31)

Lemma 5.1. Given a matrix A ∈ RN×N , there exist C > 0 such that

∣∣A∣∣l2 < C
√
N ∣∣A∣∣l∞ . (5.32)

Proof. Let v ∈ RN with ∣∣v∣∣l2 = 1. Then,

∣∣A∣∣l2 = sup
∣∣v∣∣l2≠0

∣∣Av∣∣l2
∣∣v∣∣l2

=

¿
ÁÁÁÀ

N

∑
j=1

∣
N

∑
k=1

Aj,kvk∣
2

≤

¿
ÁÁÁÀ∣∣A∣∣2l∞

N

∑
j=1

RRRRRRRRRRR

N

∑
j=1

vk

RRRRRRRRRRR

2

≤ ∣∣A∣∣l∞
¿
ÁÁÀ N

∑
j=1

∣∣v∣∣l2 ≤ ∣∣A∣∣l∞
√
N. (5.33)

∎

Corollary 5.2.1. If q > 1
4
+ d

2
and ∣∣M̃ ∣∣l∞ = 1 then εp∣∣M̃ ∣∣l2 ≪ Cε, where C is a constant independent of Nd.

Proof. Since ∣∣M̃ ∣∣l∞ = 1, applying Lemma (5.1) to M̃ yields ∣∣M̃ ∣∣l2 ≤ C
√
ε3/2−d = Cε3/4−d/2, for some con-

stant C. ∎

Corollary 5.2.1 implies that for d = 2,3 it suffices to choose q > 5
4
, 7

4
respectively, to render the εqM̃ term O(ε)

in the induced l2-norm.
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5.2.2 Bounding M0

Next, we want to find a bound in Rd, d ≥ 2, for the matrix M0. An examination of the first two terms

of M0, given in equation (5.29), shows that they admit the expansions

(L2
bψb,0Θj , ψb,0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εP 2
k +O(ε2) if k = j,

ε2 ∫ΓH2
0 ΘkΘj J0ds ∫

l/ε

−l/ε((ψ0
b,0)′)2 dz +O(ε2√ε) if k ≠ j,

(5.34)

(L1ψb,0Θj , ψb,0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∫
l/ε

−l/εW
′′′(Ub)(ψ0

b,0)2Lb,0u1 dz + ηd ∫
l/ε

−l/εW
′′(Ub)(ψ0

b,0)2 dz +O(√ε) if k = j,

−ε ∫ΓH1ΘkΘj ds∫
l/ε

−l/εW
′′′(Ub)U ′

b(ψ0
b,0)2z dz +O(ε3) if k ≠ j

(5.35)

(see Appendix D.2 for calculation details, specifically, equations (D.5) and (D.14)). We may split M0 into

its on/off diagonal matrices

M0 =M0
diag +M0

off-diag (5.36)

where

M0
diag(j, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M0
k,k +O(ε√ε) if j = k,

0 if j ≠ k,
(5.37)

and

M0
off-diag(j, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if j = k,

M0
j,k +O(ε2√ε) if j ≠ k.

(5.38)

with entries given by

M0
k,k = ε(P 2

k − ∫
l/ε

−l/ε
[W ′′′(Ub)Lb,0u1 − ηdW ′′(Ub)](ψ0

b,0)2 dz) = ε (P 2
k − µ1S − ηdλb,0∣∣ψb,0∣∣22) , (5.39)

M0
j,k = ε2 ∫

Γ
H2ΘkΘjJ0 ds∫

l/ε

−l/ε
((ψ0

b,0)′)2z dz − ε2 ∫
Γ
H1ΘkΘjJ0 ds∫

l/ε

−l/ε
W ′′′(Ub)U ′

b(ψ0
b,0)2z dz,

= −ε2 (S1 ∫
Γ
H2

0 ΘkΘjJ0 ds + S2 ∫
Γ
H1ΘkΘjJ0 ds) , (5.40)

with indices aε3/2−d ≤ j, k ≤ ãε3/2−d, a < ã, a, ã ∈ R, Sb is called the ”shape factor”, and Sb, S1, S2 are given

by

Sb ∶= ∫
l/ε

−l/ε
ϕ1W

′′′(U)ψ2
b,0 dz, (5.41)

S1 ∶= ∫
l/ε

−l/ε
((ψ0

b,0)′)2 dz, (5.42)
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S2 ∶= ∫
l/ε

−l/ε
W ′′′(Ub)U ′

b(ψ0
b,0)2z dz. (5.43)

See appendix D.3 for the derivation of the second equality in equation (5.39).

The entries of M0
diag are O(ε). If we can bound M0

off-diag independently of ε then the eigenvalues of M0 are

given, at leading order, by the diagonal entries of M0
diag. To keep M0

off-diag order of ε2 we need to bound the

two integrals on the right-hand side of equation (5.40). Since S1 and S2 are bounded, the main issue is to

bound the terms

∫
Γ
H1ΘkΘjJ0 ds, and ∫

Γ
H2

0 ΘkΘjJ0 ds. (5.44)

We can write the two terms is (5.44) in a more generic form as

∫
Γ
f(k⃗b)ΘkΘj J0ds (5.45)

where f(k⃗b) is a polynomial of the curvatures, k⃗b defined in Definition 2.1.

Lemma 5.2. Let Γb ∈ Rd be an admissible interface, then, in particular k⃗b ∈ W 2,∞. Let f ∶ Rd−1 → R be a

bounded function, and define the matrix M ∈ RN×N , N ∈ R with entries

Mi,j = ∫
Γ
f(k⃗b)ΘiΘj J0ds, (5.46)

where Θk are the eigenfunctions of Laplace-Beltrami operator; then, there exists C > 0 independent of ε such

that

∣∣M ∣∣l2→l2 ≤ C. (5.47)

Proof. The operator norm of M from l2 to l2 is defined by

∣∣M ∣∣l2→l2 ∶= inf{c > 0 ∣ ∣(Mv,w)∣ ≤ c ∣∣ v ∣∣l2 ∣∣w ∣∣l2 , for all v,w ∈ RN}. (5.48)

Let v,w ∈ RN , using the definition of M , (5.46), we can write

∣(Mv,w)∣ =
RRRRRRRRRRR
∑
i,j
∫

Γ
f(s)ΘiviΘjwj J0ds

RRRRRRRRRRR
=
RRRRRRRRRRR
∫

Γ
f(s)(∑

i

Θivi)(∑
j

Θjwj)J0ds
RRRRRRRRRRR
, (5.49)
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and applying Hölder’s inequality to this last integral yields

∣(Mv,w)∣ ≤ ∣∣ f ∣∣L∞(Γ) ∣∣∑
i

Θivi ∣∣
L2(Γ)

RRRRRRRRRRR

RRRRRRRRRRR
∑
j

Θjwj

RRRRRRRRRRR

RRRRRRRRRRRL2(Γ)

. (5.50)

Calculating the last norm in (5.50) yields

RRRRRRRRRRR

RRRRRRRRRRR
∑
j

Θjwj

RRRRRRRRRRR

RRRRRRRRRRR

2

L2(Γ)

= ∫
Γ

⎛
⎝∑j

Θjwj
⎞
⎠

2

J0ds = ∑
j
∫

Γ
Θ2
jw

2
j ds = ∑

j

w2
j ∫

Γ
Θ2
j dS = ∣∣w ∣∣2l2 (5.51)

where the second equality follows form the orthogonality of the Laplace-Beltrami eigenfunctions in the Γ-

inner product, see equation (2.71). Similarly, we have

RRRRRRRRRRR

RRRRRRRRRRR
∑
j

Θjvj

RRRRRRRRRRR

RRRRRRRRRRR

2

L2(Γ)

= ∣∣ v ∣∣2l2 . (5.52)

Plugging (5.51) and (5.52) back into (5.50) yields

∣(Mv,w)∣ ≤ ∣∣ f ∣∣L∞(Γ) ∣∣ v ∣∣l2 ∣∣w ∣∣l2 , (5.53)

and by choosing C = ∣∣ f ∣∣L∞(Γ) and using the operator norm definition, (5.48), we obtain the desired bound,

∣∣M ∣∣l2→l2 ≤ C. (5.54)

∎

Corollary 5.2.2. The matrix M0, defined in (5.36), can be written as

M0 =M0
diag +M0

off-diag, (5.55)

where M0
off-diag is uniformly bounded as an operator from l2 to l2.

Theorem 5.2.3. The pearling eigenvalues of ΠLbΠ, (5.20), take the leading order form

Λ = −ε 1

∣∣ψb,0∣∣2L2(Ω)

(µ1Sb + ηdλb,0∣∣ψb,0∣∣2L2(Ω)) +O(ε2), (5.56)

and, the associated co-dimension one bilayer network is pearling stable if and only if

µ1Sb + ηdλb,0∣∣ψb,0∣∣2L2(Ω) < 0. (5.57)

94



Proof. Corollary 5.2.2 implies that the eigenvalues of M0, Λk, are, at leading order, the diagonal entries

of M0
diag, defined in equation (5.37). From the definition of M , (5.28), and Corollary 5.2.1, we deduce

that Λk are the eigenvalues of M , at leading order. Since M is the matrix representation of ΠLbΠ, the

eigenvalues of ΠLbΠ are, at leading order, Λk, which takes the form

Λk = ε(P 2
k − µ1Sb − ηdλb,0∣∣ψb,0∣∣2L2(Ω)), (5.58)

where Sb is the shape factor defined in (5.41) and Pk is the detuning constant defined in (5.17).

We want to find a lower bound for the eigenvalues of the pearling modes: we have o(ε3/2−d) possible values

for k ∈ Σb,0, for which (λb,0 − ε2βk) ∼ O(√ε) and ,for d = 2, the Laplace-Beltrami eigenvalues takes the

form βk = ( 2πk
L

)2
. The distance between two successive scaled eigenvalues is

ε2βk+1 − ε2βk ∼ ε2 (2π

L
)

2

(2k + 1). (5.59)

To determine how close ε2βk can get to λb,0 we choose k0 such that λb,0 = ε2 ( 2πk0

L
)2

, so if k0 = ε−1
√
λb,0L

2π
,

the closest we can guarantee that ε2βk approaches to λb,0 is

ε2 (2π

L
)

2

(2k0 + 1) = ε2 (2π

L
)

2 ⎛
⎝
ε−1

√
λb,0L

π
+ 1

⎞
⎠
∼ O(ε). (5.60)

Recall that Pk ∶= ε−1/2(λb,0 − ε2βk) then, the distance between two sequential terms is

Pk+1−Pk = ε−1/2(λb,0−ε2βk+1)−ε−1/2(λb,0−ε2βk) = ε−1/2(ε2βk −ε2βk+1) = −ε−1/2ε2 (2π

L
)

2

(2k+1) ∼ O(ε1/2).

(5.61)

Therefore, the detuning parameter Pk satisfies O(ε) ≤ P 2
k ≤ O(1) for aε−1/2 ≤ k ≤ ãε−1/2. This shows that P 2

k

can be made as small as O(ε) and therefore it is lower order near the turning point of the pearling spectrum.

We conclude that the pearling eigenvalues of ΠLbΠ, (5.20), takes the form

Λ = −ε 1

∣∣ψb,0∣∣2L2(Ω)

(µ1Sb + ηdλb,0∣∣ψb,0∣∣2L2(Ω)) +O(ε2), (5.62)

∎

Note that for a generic interface we recover the same pearling conditions as for interfaces with constant

curvature, see [Doelman et al., 2014] for more details.

Recall that our main goal is to find an expression for the pearling eigenvalues of Lb using our 2× 2 represen-
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tation of Lb, see (5.22). In this section we found an expression the pearling eigenvalues of the operator M .

The next section establish the bounds on the off-diagonal terms B,BT .

5.3 Bounding the Off-Diagonal Operators

Recall the 2 × 2 block form representation of Lb, given in (5.22),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.63)

If the off-diagonal blocks, B ∶= ΠLbΠ̃ and BT ∶= Π̃LbΠ, are small (same order of the ΠLbΠ block or less)

then we can relate the eigenvalues of Lb to those of M ∶= ΠLbΠ, see section 5.4. Since both Π and Π̃ are

self-adjoint operators we have

(ΠLbΠ̃v,w)L2 = (LbΠ̃v,Πw)L2 = (Π̃v,LbΠw)L2 = (v, Π̃LbΠw)L2 . (5.64)

So, it is enough to show that one of the off-diagonal blocks is small, i.e., we want to show that there exist a

constant C, independent on Nd ∼ O(ε3/2−d) such that

∥Π̃LbΠv∥L2(Ω) ≤ εC∥v∥L2(Ω), ∀v ∈XΣ. (5.65)

without loss of generality, assume v ∈XΣ, v = ∑j∈Σ bjψb,0Θj and ∥v∥L2(Ω) = 1. Note that

∥v∥2
L2(Ω) = ∫

Ω
∑
j,k∈Σ

bjbkΘjΘkψ
2
b,0 dx = ∑

j∈Σ

b2j

∥θkψb,0∥
2
L2(Ω)=1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫

Ω
Θ2
jψ

2
b,0 dx + ∑

j,k∈Σ
j≠k

bjbk

=0,by orthogonality of Θj

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫

Ω
ΘjΘkψ

2
b,0 dx = ∑

j∈Σ

b2j = ∣∣ b ∣∣2l2 ,

(5.66)

where b ∶= (b1, b2, ..., bNd
).

Since Lb = L2
b +εL̃b, and L̃b is relatively bounded with respect to L2

b , we split the proof into three parts: first

we show that we appropriately bound the operator Π̃LbΠv, next we appropriately bound the operator Π̃L2
bΠv

and at finally we appropriately bound Π̃LbΠv.
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5.3.1 Bounding Π̃LbΠv

Recall that v ∈XΣ, v = ∑j∈Σ bjψb,0Θj and ∥v∥L2(Ω) = 1. In particular,

Πv = v, Π̃v = 0. (5.67)

We need to show that there exist C1 such that

∥Π̃Lbv∥L2(Ω) ≤ εC1∥v∥L2(Ω). (5.68)

Using the expression for Lb, (2.45), yields

Lbv = (Lb,0v + εH∂zv + ε2∆Gv) = ∑
j∈Σ

bj

⎛
⎜⎜
⎝
λb,0ψb,0Θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈XΣ

+εHΘjψ
′
b,0 + ε2∆Gψb,0Θj

⎞
⎟⎟
⎠
. (5.69)

The projection Π̃ is the orthogonal projection to XΣ, there it eliminates the first term and the operator Π̃Lbv

takes the form

Π̃Lbv = εΠ̃∑
j∈Σ

bj (HΘjψ
′
b,0 + ε∆Gψb,0Θj) . (5.70)

The L2-norm of equation (5.70) is given by

∣∣ Π̃Lbv ∣∣L2(Ω)
=
RRRRRRRRRRR

RRRRRRRRRRR
εΠ̃∑

j∈Σ

bj (HΘjψ
′
b,0 + ε∆Gψb,0Θj)

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ ε

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRR

Rv
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j∈Σ

bjHΘjψ
′
b,0

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRL2(Ω)

+ ε2 ∣∣ Π̃∆Gv ∣∣L2(Ω)
,

(5.71)

where we used triangle inequality and the fact that ∥Π̃u∥L2(Ω) ≤ ∥u∥L2(Ω) for each u.

We define the operator R matrix representation B ∈ RNd×Nd , with Nd ≈ ε3/2−d such that

Bj,k ∶= ⟨HΘjψ
′
b,0 , HΘjψ

′
b,0⟩L2(Ω)

. (5.72)

The entries of B take the form

Bk,j = ∫
Γ
fΘkΘjJ0 ds, (5.73)
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and we can apply Lemma 5.2 to conclude that B is uniformly bounded as an operator from l2(RN) to l2(RN).

Since B is the matrix representation of R we have

∣∣Rv ∣∣2L2(Ω) = ∣∣ bBbT ∣∣2
L2(Ω)

≤ ∣∣ b ∣∣2l2 ∣∣B ∣∣2l2→l2 . (5.74)

Theorem 5.2 and (5.74) implies

∣∣Rv ∣∣L2(Ω) ≤ c ∣∣ v ∣∣L2 . (5.75)

Going back to (5.71) and plugging in (5.75) yields

∣∣ Π̃Lbv ∣∣L2(Ω)
≤ εc ∣∣ v ∣∣L2 + ε2 ∣∣ Π̃∆Gv ∣∣L2(Ω)

(5.76)

The following Proposition shows that the L2(Ω)-norm of Π̃∆Gv can be bounded as an operator in the L2(Ω)

norm:

Proposition 5.3.1. Let f(z) be a smooth function such that

∣f(z)∣ < c1e−c2∣z∣ for some ci ∈ R, ci > 0 , i = 1,2, supp(f) ⊂ Γl. (5.77)

The operator Π̃∆G, where Π̃ is the projection off of the space of small eigenvalues XΣ, defined in (5.18)

and ∆G is defined in (2.12), is bounded on the space

Y = {f(z)Θk ∣ k ∈ Σ,}, (5.78)

i.e., there exists C > 0 such that

∣∣ Π̃∆Gv ∣∣L2(Ω)
≤ Cε−2 ∣∣ v ∣∣L2(Ω) , (5.79)

for every v ∈ Y . Particularly, for v ∈ xΣ we obtain the bound

∣∣ Π̃∆Gv ∣∣L2(Ω)
≤ Cε−1 ∣∣ v ∣∣L2(Ω) . (5.80)

Proof. Fix λ∗ ∈ ρ(∆s), where ρ(∆s) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor ∆G can be written as

∆G = ∆s + εzDs,2 = (∆s − λ∗) + εzDs,2(∆s − λ∗)−1(∆s − λ∗) + λ∗. (5.81)
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The Laplace-Beltrami operator is invariant on Y , i.e, ∆sv ∈ Y for every v ∈ Y and it satisfies

∣∣∆sv ∣∣L2(Ω) ≤ ε
−2 ∣∣ v ∣∣L2(Ω) (5.82)

and since Ds,2 is a relatively bounded perturbation of ∆s, see Lemma 2.1, the operator Ds,2(∆s − λ∗)−1 is

bounded, independently on ε, on Y .

Let v ∈ Y /XΣ,

v = f(z) ∑
j∈Σ

bjΘj , (5.83)

with ∥v∥L2(Ω) = 1.

Taking the L2(Ω)-norm of Π̃∆G acting on v yields

∣∣ Π̃∆Gv ∣∣L2(Ω)
= ∣∣ Π̃(∆s − λ∗)v + εzΠ̃Ds,2(∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)

(5.84)

≤ ∣∣ Π̃∆sv ∣∣L2(Ω)
+ ∣∣ Π̃λ∗v ∣∣L2(Ω)

+ ε ∣∣ zΠ̃Ds,2(∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)
(5.85)

≤ ε−2 ∣∣ v ∣∣L2(Ω) + ∣λ∗∣ ∣∣ v ∣∣L2(Ω) + ε ∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

∣∣ (∆s − λ∗)zv ∣∣L2(Ω) (5.86)

≤ ε−2 ∣∣ v ∣∣ + ∣λ∗∣ ∣∣ v ∣∣ + cε−1 ∣∣ zv ∣∣L2(Ω) (5.87)

We conclude that

∣∣ Π̃∆G ∣∣
L2(Ω)

≤ Cε−2 on Y. (5.88)

Similarly, taking v ∈XΣ ⊂ Y ,

v = ψb,0∑
j∈Σ

bjΘj , (5.89)

with ∥v∥L2(Ω) = 1, the L2(Ω)-norm of Π̃∆G acting on v yields

∣∣ Π̃∆Gv ∣∣L2(Ω)
= ∣∣ Π̃(∆s − λ∗)v + εΠ̃Ds,2(∆s − λ∗)−1(∆s − λ∗)zv ∣∣L2(Ω)

(5.90)

≤
RRRRRRRRRRRR

RRRRRRRRRRRR
�
��
�*0

Π̃∆sv

RRRRRRRRRRRR

RRRRRRRRRRRRL2(Ω)

+
RRRRRRRRRRR

RRRRRRRRRRR
��
�*0

Π̃λ∗v
RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

+ ε ∣∣ Π̃Ds,2(∆s − λ∗)−1(∆s − λ∗)zv ∣∣L2(Ω)
(5.91)

≤ ε ∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

∣∣ z∆sv ∣∣L2(Ω) (5.92)

≤ cε−1 ∣∣ v ∣∣L2(Ω) (5.93)

We conclude that

∣∣ Π̃∆G ∣∣
L2(Ω)

≤ Cε−1 on XΣ. (5.94)
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∎

Combining Proposition 5.3.1 with equation (5.76) we obtain the required bound

∣∣ Π̃Lbv ∣∣L2(Ω)
≤ εc ∣∣ v ∣∣L2 . (5.95)

5.3.2 Bounding Π̃L2bΠv

Recall that v ∈XΣ, v = ∑j∈Σ bjψb,0Θj and ∥v∥L2(Ω) = 1. In particular,

Πv = v, Π̃v = 0. (5.96)

We want to show there exist C2, independent on ε, such that

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤ εC2 ∣∣ v ∣∣L2 . (5.97)

Writing the L2
b operator acting on v explicitly we have

L2
bv =Lb(Lbv) = (Lb,0 + εH∂z + ε2∆G)(Lb,0v + εH∂zv + ε2∆Gv) (5.98)

=(Lb,0 + εH∂z + ε2∆G) ∑
j∈Σ

bj (λb,0ψb,0Θj + εHΘjψ
′
b,0 + ε2∆Gψb,0Θj) (5.99)

= ∑
j∈Σ

bj[

∈XΣ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
λ2
b,0ψb,0Θj +εLb,0(HΘjψ

′
b,0) + ε2Lb,0(∆Gψb,0Θj) + ελb,0Hψ′b,0Θj + ε2HΘj∂z(Hψ′b,0) (5.100)

+ ε3H∂z(∆Gψb,0Θj) + ε2λb,0ψb,0∆GΘj + ε3∆Gψ
′
b,0(HΘj) + ε4∆2

Gψb,0Θj]

Projecting away from XΣ using Π̃ and taking the L2-norm yields

∣∣ Π̃L2
bv ∣∣L2(Ω)

= ∥Π̃∑
j∈Σ

bj[

∈XΣ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
λ2
b,0ψb,0Θj +εLb,0(HΘjψ

′
b,0) + ε2Lb,0(∆Gψb,0Θj)ελb,0Hψ′b,0Θj + ε2HΘj∂z(Hψ′b,0)

(5.101)

+ ε3H∂z(∆Gψb,0Θj) + ε2λb,0ψb,0∆GΘj + ε3∆Gψ
′
b,0(HΘj) + ε4∆2

Gψb,0Θj]∥L2(Ω)

≤ ε∥

R1v³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j∈Σ

bj[Lb,0(HΘjψ
′
b,0) + λb,0Hψ′b,0Θj + εHΘj∂z(Hψ′b,0)]∥L2(Ω) + ε3 ∣∣ Π̃H∂z(∆Gv) ∣∣L2(Ω)

(5.102)

+ ε3 ∣∣ Π̃∆GH∂zv ∣∣L2(Ω)
+ ε2 ∣∣ Π̃λb,0∆Gv ∣∣L2(Ω)

+ ε4 ∣∣ Π̃∆2
Gv ∣∣L2(Ω)

+ ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)
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where we used the triangle inequality to derive (5.102) from (5.101). We introduce the matrix B̄ ∈ RN×N ,

the matrix representation of R1, given by

B̄j,k ∶= ⟨(Lb,0(Hψ′b,0) + λb,0Hψ′b,0 + εH∂z(Hψ′b,0))Θj , (Lb,0(Hψ′b,0) + λb,0Hψ′b,0 + εH∂z(Hψ′b,0))Θk⟩L2 .

(5.103)

The entries of B̄ take the form

B̄j,k = ∫
Γ
∫

`/ε

−`/ε
f(z, s)ΘjΘk J dz ds, (5.104)

and by Lemma 5.2, we conclude that there exists c > 0, independent of ε, such that

∣∣ B̄ ∣∣
l2→l2

≤ c. (5.105)

Using (5.105) we obtain a bound on the operator R1

∣∣R1v ∣∣2L2(Ω) ≤ ∣∣ b ∣∣2l2 ∣∣ B̄ ∣∣2
l2→l2

≤ c ∣∣ v ∣∣2l2 , (5.106)

and equation (5.102) reduces to

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤cε ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣ Π̃H∂z(∆Gv) ∣∣L2(Ω)

+ ε3 ∣∣ Π̃∆GH∂zv ∣∣L2(Ω)
(5.107)

+ ε2 ∣∣ Π̃λb,0∆Gv ∣∣L2(Ω)
+ ε4 ∣∣ Π̃∆2

Gv ∣∣L2(Ω)
+ ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)

Consider the second term in the right-hand side of (5.107).

ε3 ∣∣ Π̃H∂z(∆Gv) ∣∣L2(Ω)
≤ ε3 ∣∣ Π̃H∆G∂zv ∣∣L2(Ω)

+ ε3 ∣∣ Π̃H[∂z∆G]v ∣∣
L2(Ω)

(5.108)

≤ εc1 ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣ Π̃H[∂z∆G]v ∣∣

L2(Ω)
, (5.109)

where the second inequality follows applying Proposition 5.3.1 to the first term in (5.108). In order to show

that the second term in (5.108) is bounded, we recall the definition of ∆G, given in (2.12). Taking the z

derivative of (2.12) yields

[∂z∆G] = εDs,2 + εz[∂zDs,2], (5.110)

where [∂zDs,2] denotes the multiplier operator comprised of the z derivative of the coefficients of Ds,2, which

satisfy the bounds (2.15).
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Proposition 5.3.2. Let f(z) be a smooth function such that

∣f(z)∣ < c1e−c2∣z∣ for some ci ∈ R, ci > 0 , i = 1,2, and supp(f) ⊂ Γl. (5.111)

The operator [∂z∆G], where ∆G is defined in (2.12), is bounded on the space

Y = span{f(z)Θk ∣ k ∈ Σ,}, (5.112)

i.e., there exists C > 0, C independent of ε and f , such that

∣∣ [∂z∆G]v ∣∣L2(Ω) ≤ Cε
−1 ∣∣ v ∣∣L2(Ω) , (5.113)

for every v ∈ Y .

Proof. Fix λ∗ ∈ ρ(∆s), where ρ(∆s) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor ∆G can be written as

[∂z∆G] = ∂z (∆s + εzDs,2) = εz[∂zDs,2](∆s − λ∗)−1(∆s − λ∗) + εDs,2(∆s − λ∗)−1(∆s − λ∗). (5.114)

From Lemma 2.1 we know that Ds,2 is a relatively bounded perturbation of ∆s, i.e., there exists C > 0,

independent of ε, such that

∣∣Ds,2(∆s − λ∗)−1 ∣∣
l2→l2

≤ C. (5.115)

Let v ∈ Y ,

v = f(z) ∑
j∈Σ

bjΘj , (5.116)

with ∥v∥L2(Ω) = 1.

Taking the L2(Ω)-norm of [∂z∆G] acting on v yields

∣∣ [∂z∆G]v ∣∣L2(Ω) = ∣∣ [εz[∂zDs,2](∆s − λ∗)−1(∆s − λ∗) + εDs,2(∆s − λ∗)−1(∆s − λ∗)] v ∣∣L2(Ω)
(5.117)

≤ ε ∣∣Ds,2(∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)
+ ε ∣∣ z[∂zDs,2](∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)

(5.118)

≤ ε ∣∣Ds,2(∆s − λ∗)−1 ∣∣
l2→l2

∣∣ (∆s − λ∗)v ∣∣L2(Ω) (5.119)

+ ε ∣∣ [∂zDs,2](∆s − λ∗)−1 ∣∣
l2→l2

∣∣ (∆s − λ∗)zv ∣∣L2(Ω)
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Note that

[∂zDs,2] =
d−1

∑
i,j=1

(∂zdi,j(s, z))
∂2

∂si∂sj
+
d−1

∑
j=1

(∂zdj(s, z))
∂

∂sj
(5.120)

≤ ∣∣∂zdi,j(s, z) ∣∣L∞(Γl)

d−1

∑
i,j=1

di,j
∂2

∂si∂sj
+ ∣∣∂zdj(s, z) ∣∣L∞(Γl)

d−1

∑
j=1

dj(s, z)
∂

∂sj
(5.121)

≤max [∣∣∂zdi,j(s, z) ∣∣L∞(Γl)
, ∣∣∂zdj ∣∣L∞(Γl)

]Ds,2 ≤ cεDs,2, (5.122)

for some c > 0, where for the last inequality we used the bounds on the z-derivatives of the coefficients

of Ds,2, given in equation (2.15). Combining (5.120) with (5.119) yields

∣∣ [∂z∆G]v ∣∣L2(Ω) ≤ cε ∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

∣∣ (∆s − λ∗)v ∣∣L2(Ω) , (5.123)

and we conclude that

∣∣ [∂z∆G] ∣∣L2(Ω) ≤ Cε
−1 on Y. (5.124)

∎

Returning to (5.108) we have

ε3 ∣∣ Π̃H∂z(∆Gv) ∣∣L2(Ω)
≤ εc1 ∣∣ v ∣∣L2(Ω) + ε

3 ∣∣ Π̃H(∂z∆G)v ∣∣
L2(Ω)

(5.125)

≤ εc1 ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣H(∂z∆G)v ∣∣L2(Ω) (5.126)

≤ εc1 ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣H ∣∣L∞(Γb,`)

∣∣ [∂z∆G]v ∣∣L2(Ω) . (5.127)

where the third inequality follows from the generalized Hölder inequality, see (D.36). Combining Proposi-

tion 5.3.2 with equation (5.127) we obtain the bound

ε3 ∣∣ Π̃H∂z(∆Gv) ∣∣L2(Ω)
≤ εc2 ∣∣ v ∣∣L2(Ω) , (5.128)

where c2 is independent of ε, but it depend upon ∣∣H ∣∣L∞(Γb,`)
. Plugging (5.128) and into the right-hand

side of (5.107) yields

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤εc̃ ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣ Π̃∆GH∂zv ∣∣L2(Ω)

+ ε2 ∣∣ Π̃λb,0∆Gv ∣∣L2(Ω)
+ ε4 ∣∣ Π̃∆2

Gv ∣∣L2(Ω)
(5.129)

+ ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)
.
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To show that the second term in (5.129) is bounded as an operator in the L2(Ω) norm with

ε3 ∣∣ Π̃∆GH∂zv ∣∣L2(Ω)
≤ c1ε ∣∣ v ∣∣L2(Ω) (5.130)

we use the following Lemma -

Lemma 5.3. Fix v ∈XΣ,

v = ∑
j∈Σ

bjΘjψb,0, (5.131)

with ∣∣ v ∣∣L2(Ω) = 1. Then, if Γb is admissible, and, in particular, if k⃗ ∈ W 2,∞(Γ), then there exists C > 0

independent of ε such that

∣∣∆s(Hv) ∣∣L2(Ω) ≤ Cε
−1 ∣∣ v ∣∣L2(Ω) (5.132)

Proof. Recall that H, given in (2.10), has the expansion

H =H0(s) + εzH1(s) + ..., (5.133)

and the jacobian takes the form

Jb(s, z) = J0(s)J̃b = J0(s)(ε + ε2H0z + ...). (5.134)

The term ∆s(Hv) has the explicit form

∆s(Hv) = (∆sH)v + (∆sv)H + 2∇sH∇sv. (5.135)

Taking the L2 norm of equation (5.135)

∣∣∆s(Hv) ∣∣L2(Ω) ≤ ∣∣ (∆sH)v ∣∣L2(Ω) + ∣∣ (∆sv)H ∣∣L2(Ω) + 2 ∣∣ ∇sH∇sv ∣∣L2(Ω) . (5.136)

Using the expansion of H and Jb we can bound the first term on the right-hand side of equation (5.136)

∣∣ (∆sH)v ∣∣2L2(Ω) =ε∫
Γ
(∆sH0)2(∑

j∈Σ

bjΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0 dz (5.137)

+ ε2⎛
⎝∫Γ

∆s(H0H1)(∑
j∈Σ

bjΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0z

2 dz

+ ∫
Γ
H0∆s(H2

0)(∑
j∈Σ

bjΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0z

2 dz
⎞
⎠
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+O(ε3)

≤ c(ε ∣∣ (∆sH0)2 ∣∣
L∞(Γ)

∣∣ v ∣∣2L2(Ω) (5.138)

+ ε2 [∣∣∆s(H0H1) ∣∣L∞(Γ) ∣∣ v ∣∣
2
L2(Ω) + ∣∣H0∆sH

2
0 ∣∣

L∞(Γ)
∣∣ v ∣∣2L2(Ω)] ) +O(ε3),

and as long as the interface is admissible, i.e., k⃗ ∈W 2,∞(Γ), we have

∣∣ (∆sH)v ∣∣L2(Ω) ≤ cε
−1 ∣∣ v ∣∣L2(Ω) . (5.139)

The second term on the right-hand side of equation (5.136) can be bounded

∣∣H∆sv ∣∣2L2(Ω) =ε∫
Γ
H2

0(∑
j∈Σ

bj∆sΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0 dz (5.140)

+ ε2 ⎛
⎝∫Γ

H0H1(∑
j∈Σ

bj∆sΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0z

2 dz + ∫
Γ
H0H

2
0(∑
j∈Σ

bj∆sΘj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0z

2 dz
⎞
⎠

+O(ε3)

≤ cε ∣∣ f(k⃗) ∣∣
L∞(Γ)

∣∣∆sv ∣∣2L2(Ω) . (5.141)

Since ∣∣∆sv ∣∣L2(Ω) ≤ ε−2 ∣∣ v ∣∣L2(Ω), and since the interface is admissible and f is a polynomial of the curvatures

of Γ, we know that ∣∣ f(k⃗) ∣∣
L2(Γ)

is bounded, independent of ε. This implies that

∣∣H∆sv ∣∣L2(Ω) ≤ cε
−1 ∣∣ v ∣∣L2(Ω) . (5.142)

We apply similar calculations to the third term on the right-hand side of equation (5.136) to obtain

∣∣ ∇sH∇sv ∣∣2L2(Ω) ≤ cε ∣∣ f(∇sk⃗) ∣∣L∞(Γ)
∣∣ ∇sv ∣∣2L2(Ω) , (5.143)

∣∣ ∇sv ∣∣2L2(Ω) =∫
Γ
(∑
j

bj∇Θj)2 J0ds∫
`/ε

−`/ε
ψ2
b,0 dz = ∑

j

b2j ∫
Γ
(Θj∆sΘj)J0ds∫

`/ε

−`/ε
ψ2
b,0 dz (5.144)

= ∑
j

b2jβj ∫
Γ

Θ2
j J0ds∫

`/ε

−`/ε
ψ2
b,0 dz ≤ ε−2 ∣∣ v ∣∣2L2(Ω) , (5.145)

and as long as the interface is admissible, i.e., k⃗ ∈W 1,∞(Γ), we obtain the bound

∣∣ ∇sH∇sv ∣∣L2(Ω) ≤ cε
−1 ∣∣ v ∣∣L2(Ω) . (5.146)
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Plugging (5.139), (5.142) and (5.146) back into (5.136) we conclude that, as long as the interface is admissible,

there exists C > 0 independent on ε such that

∣∣∆s(Hv) ∣∣L2(Ω) ≤ Cε
−1 ∣∣ v ∣∣L2(Ω) . (5.147)

∎

Proposition 5.3.3. Fix v ∈XΣ,

v = ∑
j∈Σ

bjΘjψb,0, (5.148)

with ∣∣ v ∣∣L2(Ω) = 1. The operator Π̃∆GHv, where Π̃ is the projection off of the space of small eigenvalues XΣ,

defined in (5.18) and ∆G is defined in (2.12), is bounded on the space

Y = {f(z)Θk ∣ k ∈ Σ,}, (5.149)

i.e., there exists C > 0 such that

∣∣ Π̃∆GHv ∣∣L2(Ω)
≤ Cε−2 ∣∣ v ∣∣L2(Ω) for all v ∈ Y. (5.150)

Proof. We repeat the proof of Proposition 5.3.1 but replacing equation (5.82) with equation (5.132), and

taking the L2(Ω) norm of Π̃∆G acting on Hv yields the required result. ∎

Proposition 5.3.1 shows that the third term in (5.129) is bounded in the L2(Ω) operator norm with

ε2 ∣∣ Π̃λb,0∆Gv ∣∣L2(Ω)
≤ c2ε ∣∣ v ∣∣L2(Ω) . (5.151)

Inserting (5.151) and (5.130) into (5.129) yields

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤ εc̄ ∣∣ v ∣∣L2(Ω) + ε
4 ∣∣ Π̃∆2

Gv ∣∣L2(Ω)
+ ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)

. (5.152)

The bound on the second term in the right-hand side of (5.152) follows from the following lemma

Lemma 5.4. Let v ∈XΣ,

v = ∑
j∈Σ

bjΘjψb,0, (5.153)
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with ∥v∥L2(Ω) = 1. Then there exists C > 0 such that

∣∣ Π̃∆2
Gv ∣∣L2(Ω)

≤ Cε−3 ∣∣ v ∣∣L2(Ω) . (5.154)

Proof. Fix λ∗ ∈ ρ(∆s), where ρ(∆s) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor ∆G can be written as

∆2
G =(∆s + εzDs,2)2 = ∆2

s + 2εzDs,2(∆s − λ∗)−1(∆s − λ∗)∆s + ε2z2D2
s,2(∆s − λ∗)−2(∆s − λ∗)2. (5.155)

The Laplace-Beltrami operator satisfies

∣∣∆2
sv ∣∣L2(Ω)

≤ ε−4 ∣∣ v ∣∣L2(Ω) , (5.156)

and since Ds,2 is a relatively bounded perturbation of ∆s, we conclude that the operator Ds,2(∆s −λ∗)−1 is

bounded on Y .

Taking the L2(Ω)-norm of Π̃∆2
Gv and using equation (5.155) to express ∆2

G yields

∣∣ Π̃(∆2
G)v ∣∣

L2(Ω)
≤ ∣∣��

�
Π̃∆2

sv ∣∣
L2(Ω)

+ 2ε ∣∣ zDs,2(∆s − λ∗)−1(∆s − λ∗)∆sv ∣∣L2(Ω)
(5.157)

+ ε2 ∣∣D2
s,2(∆s − λ∗)−2(∆s − λ∗)2z2v ∣∣

L2(Ω)
,

≤ 2ε ∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

∣∣ (∆s − λ∗)∆szv ∣∣L2(Ω) (5.158)

+ ε2 ∣∣D2
s,2(∆s − λ∗)−2 ∣∣

L2(Ω)
∣∣ (∆s − λ∗)2z2v ∣∣

L2(Ω)
.

From Lemma 2.1 we know that Ds,2 is a relatively bounded perturbation of ∆s, i.e., there exists C > 0,

independent of ε, such that

∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

≤ C. (5.159)

Proving that D2
s,2 is a relatively bounded perturbation of ∆2

s is similar and (5.157) reduces to

∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
≤ Cε−3 ∣∣ v ∣∣L2(Ω) . (5.160)

∎

Combining Lemma 5.4 and equation (5.129) yields

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤ ε¯̄c ∣∣ v ∣∣L2(Ω) + ε
2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)

. (5.161)
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Consider the second term in (5.161), and note that W ′′(Ub) commutes with ∆G. Then

ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)
= ε2 ∣∣ Π̃(∂2

z −W ′′(Ub))(∆Gv) ∣∣L2(Ω)
(5.162)

≤ ε2 ∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
+ ε2 ∣∣2Π̃(∂z∆G)(∂zv) ∣∣L2(Ω)

+ ε2 ∣∣ Π̃∆GLb,0v ∣∣L2(Ω)
(5.163)

= ε2 ∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
+ ε2 ∣∣2Π̃(∂z∆G)(∂zv) ∣∣L2(Ω)

+ ε2 ∣∣λb,0Π̃∆Gv ∣∣L2(Ω)
.

(5.164)

For the first term in (5.164) we have the following lemma

Lemma 5.5. Let v ∈XΣ,

v = ∑
j∈Σ

bjΘjψb,0, (5.165)

with ∥v∥L2(Ω) = 1. Then there exists C > 0 such that

∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
≤ C ∣∣ v ∣∣L2(Ω) . (5.166)

Proof. Fix λ∗ ∈ ρ(∆s), where ρ(∆s) is the resolvent set of the Laplace-Beltrami operator, then the opera-

tor ∆G can be written as

∂2
z∆G = ∂2

z (∆s + εzDs,2) = εz∂2
z(Ds,2)(∆s − λ∗)−1(∆s − λ∗) + ε2∂zDs,2(∆s − λ∗)−1(∆s − λ∗). (5.167)

From Lemma 2.1 we know that Ds,2 is a relatively bounded perturbation of ∆s, i.e., there exists C > 0,

independent of ε, such that

∣∣Ds,2(∆s − λ∗)−1 ∣∣
L2(Ω)

≤ C. (5.168)

Taking the L2(Ω)-norm of Π̃(∂2
z∆G)v combined with equation (5.167) yields

∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
= ∣∣ Π̃ [εz(∂2

zDs,2)(∆s − λ∗)−1(∆s − λ∗) + 2ε(∂zDs,2)(∆s − λ∗)−1(∆s − λ∗)] v ∣∣L2(Ω)
,

(5.169)

≤ 2ε ∣∣ (∂zDs,2)(∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)
+ ε ∣∣ z(∂2

zDs,2)(∆s − λ∗)−1(∆s − λ∗)v ∣∣L2(Ω)
,

≤ 2ε ∣∣ (∂zDs,2)(∆s − λ∗)−1 ∣∣
L2(Ω)

∣∣ (∆s − λ∗)v ∣∣L2(Ω) (5.170)

+ ε ∣∣ (∂2
zDs,2)(∆s − λ∗)−1 ∣∣

l2→l2
∣∣ (∆s − λ∗)zv ∣∣L2(Ω) .

From (5.120) we know that

∂zDs,2 ≤ cεDs,2, (5.171)
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and similar calculations shows that there exists a constant c̃ > 0 such that

∂2
zDs,2 ≤ c̃ε2Ds,2. (5.172)

Plugging (5.172) and (5.120) into (5.169) yields

∣∣ Π̃(∂2
z∆G)v ∣∣

L2(Ω)
≤ 2ε2 ∣∣ (Ds,2)(∆s − λ∗)−1 ∣∣

l2→l2
∣∣ (∆s − λ∗)v ∣∣L2(Ω) (5.173)

+ ε3 ∣∣ (Ds,2)(∆s − λ∗)−1 ∣∣
l2→l2

∣∣ (∆s − λ∗)zv ∣∣L2(Ω) ,

≤ C ∣∣ v ∣∣L2(Ω) . (5.174)

∎

Returning to (5.164), and using Lemma 5.5 we have

ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)
≤ Cε2 ∣∣ v ∣∣L2(Ω) + ε

2 ∣∣2Π̃(∂z∆G)(∂zv) ∣∣L2(Ω)
+ ε2 ∣∣λb,0Π̃∆Gv ∣∣L2(Ω)

. (5.175)

Applying Proposition 5.3.2 to the second term and Proposition 5.3.1 to the third term, equation (5.175)

reduces to

ε2 ∣∣ Π̃Lb,0(∆Gv) ∣∣L2(Ω)
≤ C̃ε ∣∣ v ∣∣L2(Ω) . (5.176)

Plugging equation (5.176) into (5.161) we obtain the required bound

∣∣ Π̃L2
bv ∣∣L2(Ω)

≤ εC ∣∣ v ∣∣L2(Ω) , for v ∈XΣ, (5.177)

where C is independent of ε, but it depend upon ∣∣ k⃗b ∣∣L∞(Ω)
.

5.3.3 Bounding Π̃LbΠ

Finally, the following Proposition shows that the operator Π̃LbΠ is bounded.

Proposition 5.3.4. The operator Π̃LbΠ ∶ l2(RN×N) ↦ l2(RN×N) has an O(ε) operator norm.

Proof. Let v ∈XΣ, v = ∑j∈Σ bjψb,0Θj with ∥v∥L2(Ω) = 1. In particular,

Πv = v, Π̃v = 0, (5.178)
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where Π is the projection onto XΣ and Π̃ its complementary.

Fix λ∗ ∈ ρ(L2
b), where ρ(L2

b) is the resolvent set of L2
b , and rewrite Lb in the following way

Lb = L2
b + εL̃b = (L2

b − λ∗) + εL̃b(L2
b − λ∗)−1(L2

b − λ∗) + λ∗. (5.179)

Taking the L2-norm of Π̃LbΠ acting on v yields

∣∣ Π̃LbΠv ∣∣L2(Ω)
= ∣∣ Π̃(L2

b − λ∗)v + εΠ̃L̃b(L2
b − λ∗)−1(L2

b − λ∗)v ∣∣L2(Ω)
, (5.180)

≤ ∣∣ Π̃L2
bv ∣∣L2(Ω)

+ ε ∣∣ Π̃L̃b(L2
b − λ∗)−1(Π + Π̃)(L2

b − λ∗)v ∣∣L2(Ω)
, (5.181)

≤ ∣∣ Π̃L2
bv ∣∣L2(Ω)

(5.182)

+ ε (∣∣ L̃b(L2
b − λ∗)−1Π(L2

b − λ∗)v ∣∣L2(Ω)
+ ∣∣ L̃b(L2

b − λ∗)−1Π̃(L2
b − λ∗)v ∣∣L2(Ω)

) ,

≤ ∣∣ Π̃L2
bv ∣∣L2(Ω)

(5.183)

+ ε (∣∣ L̃b(L2
b − λ∗)−1 ∣∣

l2→l2
∣∣ΠL2

bv ∣∣L2(Ω)
+ ∣∣ L̃b(L2

b − λ∗)−1 ∣∣
l2→l2

∣∣ Π̃L2
bv ∣∣L2(Ω)

) .

Since L̃b is relatively bounded with respect to L2
b , the operator L̃b(L2

b − λ∗)−1 has an O(ε) bound as an

operator from l2(RN×N) to l2(RN×N). In section 5.3.2 we have shown that

∣∣ Π̃L2
bΠ ∣∣

L2 ≤ cε. (5.184)

Therefore, combining bound (5.184) with the boundedness of ∣∣ L̃b(L2
b − λ∗)−1 ∣∣

l2→l2
, an inspection of equa-

tion (5.93) yields

∣∣ Π̃LbΠv ∣∣L2 ≤ c̃ε ((1 + ε) ∣∣ v ∣∣L2 + ∣∣ΠL2
bv ∣∣L2) (5.185)

To complete the bound on ∣∣ Π̃LbΠ ∣∣
L2 we need show that ∣∣ΠL2

bΠ ∣∣
L2 is bounded. Using the definition

of Π, (5.21), we can rewrite the operator ΠL2
bΠv as

ΠL2
bΠ∑

j∈Σ

bjψb,0Θk = ∑
k∈Σ

∑
j∈Σ

bj(L2
bψb,0Θj , ψb,0Θk)L2ψb,0Θk, (5.186)

and define its matrix representation M̄ ∈ RNd×Nd , where Nd ∼ O(ε3/2−d), to be

M̄j,k ∶= (L2
bψb,0Θj , ψb,0Θk)L2 . (5.187)
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Using equation (5.34) we can write M̄ = M̄diag + M̄off-diag where

M̄diag =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λb,0 − ε2βk)2 +O(ε2) if k = j,

0 if k ≠ j,
(5.188)

M̄off-diag =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if k = j,

ε2 ∫ΓH2
0 ΘkΘj J0ds ∫

l/ε

−l/ε((ψ0
b,0)′)2 dz +O(ε2√ε) if k ≠ j,

(5.189)

By Theorem 5.2 we know that M̄off-diag has an O(ε) bound as an operator from l2(RN×N) to l2(RN×N).

Moreover, we consider k ∈ Σ for which λb,0 − ε2βk ∼ O(ε). Hence, M̄ and M̄diag have a similar bound and

∣∣ΠL2
bv ∣∣L2 ≤ cε ∣∣ v ∣∣L2 . (5.190)

Plugging this bound back to (5.185) yields

∣∣ Π̃LbΠv ∣∣L2 ≤ εc ∣∣ v ∣∣L2 , (5.191)

which implies that Π̃LbΠ has O(ε) bound as an operator l2(RN×N) → l2(RN×N). ∎

Recall the 2×2 block form of Lb, (5.22). In this section we have shown that the off diagonal blocks are O(ε)

bounded as operators from l2(RN×N) → l2(RN×N). The following section focuses on the pearling spectrum

of Lb and we use the bounds on B,BT to show that the pearling eigenvalues of Lb are, at leading order, the

pearling eigenvalues of M .

5.4 Relating the Eigenvalues of Lb and ΠLbΠ

Recall the 2 × 2 block form representation of Lb, given in (5.22),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.192)

where the submatrices are given by

M ∶= ΠLbΠ, B ∶= ΠLbΠ̃, BT ∶= Π̃LbΠ and C ∶= Π̃LbΠ̃. (5.193)
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We use the estimates from the previous section to relate the small eigenvalues of Lb to those of M . If Π

were a spectral projection associated to Lb then the two operators would commute, and since ΠΠ̃ = 0, the

off-diagonal terms would be zero. However, XΣ only approximates a spectral subset of Lb, and the estimates

∥B∥L2(Ω) = ∥BT ∥L2(Ω) ≤ cε, found in Section 5.3, are sharp. However, the restricted operator C is uniformly

coercive on X�
Σ with its spectrum is bounded from below by δ > 0 which may be chosen independent

of sufficiently small ε > 0, (see [Hayrapetyan and Promislow, 2014] for more details). Consider v1 ∈ XΣ

and v2 ∈ X�
Σ. Then, for any λ < δ we reduce the 2 × 2 representation of the infinite dimensional eigenvalue

problem
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.194)

to a finite dimensional system for the component v1, which solves

(M − λ)v1 = B(C − λ)−1BT v1. (5.195)

We will use two methods to show that the pearling conditions established for M in Corollary 5.2.3 do in

fact characterize the small spectrum of Lb: First, we show that the eigenvalues of M are in fact a small

perturbation of the small eigenvalues of Lb, and we obtain a perturbation estimate. Second, we look at the

solution of the linear flow generated by Lb. Assuming the eigenvalues of M are stable under pearling, in

terms of Corollary 5.2.3, we will show that the semi-groups generated by Lb decay exponentially fast and

describe the resulting exponential dichotomy.

5.4.1 Perturbation estimate

Consider λ ∈ σ(Lb) ∩ (−∞, δ), taking the l2-norm of both sides of (5.195) and estimating the right-hand side

yields

∥(M − λ)v1∥l2 ≤ ∣∣B ∣∣L2(Ω)
∣∣ (C − λ)−1 ∣∣

L2(Ω)
∣∣BT ∣∣

L2(Ω)
∥v1∥l2 . (5.196)

Using the estimates on the norms of B and BT , given in equation (5.191), we know there exists c ∈ R

independent of ε such that

∥(M − λ)v1∥l2 ≤ cε2 ∣∣R(λ,C) ∣∣L2(Ω) ∥v1∥l2 . (5.197)

where R(λ,C) is the resolvent operator of C, defined as

R(λ;C) ∶= (C − λ)−1, (5.198)
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for λ ∉ σ(C). Since C is self-adjoint, standard estimates based upon spectral decomposition of the resolvent

allow us to bound the L2(Ω)-norm of the resolvent operator

∣∣R(λ;C) ∣∣L2(Ω) ≤ (dist(λ,σ(C)))−1 ≤ 1

∣λ − δ∣ . (5.199)

Plugging the bound (5.199) in (5.197) yields

∥(M − λ)v1∥l2 ≤
cε2

∣λ − δ∣ ∥v1∥l2 . (5.200)

Let {wi} be the set the eigenvectors of M with the corresponding eigenvalues {λi}. The spectral decompo-

sition of v is given by

v = ∑αiwi, (5.201)

and the right-hand side of equation (5.200) can be written as

∥(M − λ)v1∥l2 = ∥∑αi(λi − λ)wi∥l2 ≥ dist(σ(M), λ)∥∑αiwi∥l2 = dist(σ(M), λ)∥v1∥l2 (5.202)

Combining equations (5.202) and (5.200) yields

dist(σ(M), λ) ≤ cε2

∣λ − δ∣ , for λ < δ. (5.203)

Therefore, for λ ∈ R an order of one distance below δ this estimate implies that dist(λ,σ(M)) = O(ε2). We

infer that the spectrum of Lb below δ lies within O(ε2) of the spectrum of M . In particular, if the spectrum

of M is bounded from below by a positive O(ε) quantity, then so is the spectrum of Lb.

The spectrum of M is to leading order given by its diagonal terms Mk,k, which are of the form Mk,k =

(Lbψb,0Θk, ψb,0Θk)L2(Ω), see (5.26). Since the basis elements ψb,0Θk have norm one, we infer from the

Rayleigh Ritz variational characterization of eigenvalues that the smallest eigenvalue of Lb is smaller than

the smallest eigenvalue of M .

We deduce from these calculations that the pearling condition (5.2.3) applies to Lb.

5.4.2 Semi-group estimates

Let V = [v1, v2]T where v1 ∈XΣ and v2 ∈X�
Σ. We derive decay estimates on the linear evolution equation

Vt = −LbV. (5.204)
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Using the 2 × 2 block form representation for Lb we obtain

v1,t = −Mv1 −Bv2, (5.205)

v2,t = −BT v1 −Cv2. (5.206)

Equations (5.191) and (5.64) afford bounds on the off-diagonal matrices

∣∣B ∣∣L2(Ω) , ∣∣B
T ∣∣

L2(Ω)
≤ εc. (5.207)

We assume the eigenvalues of M are positive, Corollary 5.2.3 implies that they are order of ε. By Rayleigh-

Ritz formula we know that ∣∣M ∣∣L2(Ω) ≤ εc. Since M is a self-adjoint matrix we can apply the Spectral

Mapping Theorem to −M and obtain the decay estimate

∣∣ e−Mtv ∣∣
L2(Ω)

≤ ce−εσt ∣∣ v ∣∣L2(Ω) , (5.208)

where εσ > 0 is a lower bound on the spectrum of M . From [Hayrapetyan and Promislow, 2014, Thm 2.5]

we know that C is uniformly coercive on X�
Σ, its spectrum is bounded below by some constant δ which may

be chosen independent of sufficiently small ε > 0. Since C is self-adjoint it is sectorial and it generates an

analytic semi-group for which we have the semi-group estimates

∣∣ e−Ctv ∣∣
L2(Ω)

≤ ce−δt ∣∣ v ∣∣L2(Ω) . (5.209)

We fix ν ∈ (0, σ) and introduce the quantities

M1(t) ∶= sup
0≤s≤t

(eνεs ∣∣ v1(s) ∣∣L2(Ω)) , (5.210)

M2(t) ∶= sup
0≤s≤t

(eνεs ∣∣ v2(s) ∣∣L2(Ω)) . (5.211)

The quantity M1(t) affords the estimate

∣∣ v1(s) ∣∣L2(Ω) ≤ e
−νεsM1(t), 0 ≤ s ≤ t, (5.212)

so if M1 is uniformly bounded, then ∣∣v1∣∣L2 decays with exponential rate εν as tÐ→∞, as do v2(t) and M2(t).
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Applying Variation of Constants formula to equation (5.206) yields

v2(t) = e−Ctv2(0) + ∫
t

0
e−C(t−s)BT v1(s)ds, (5.213)

which in light of the bound for B, see (5.207), and the semi-group estimate (5.209) reduces to

∣∣ v2(t) ∣∣L2(Ω) ≤ e
−δt ∣∣ v2(0) ∣∣L2(Ω) + εc∫

t

0
e−δ(t−s) ∣∣ v1(s) ∣∣L2(Ω) ds, (5.214)

= e−δt ∣∣ v2(0) ∣∣L2(Ω) + εce
−δt ∫

t

0
eδs ∣∣ v1(s) ∣∣L2(Ω) ds, (5.215)

≤ e−δt ∣∣ v2(0) ∣∣L2(Ω) + εce
−δt ∫

t

0
e(δ−νε)sM1(t)ds, (5.216)

and the second inequality follows from estimate (5.212). Integration of the last line yields

∣∣ v2(t) ∣∣L2(Ω) ≤ e
−δt ∣∣ v2(0) ∣∣L2(Ω) + εce

−δtM1(t)
e(δ−νε)t − 1

δ − νε . (5.217)

Fixing εν ∈ (0, δ) implies that e−δt (e(δ−νε)t − 1) = e−νεt − e−δt < e−νεt is decaying, the equation above reduces

to

∣∣ v2(t) ∣∣L2(Ω) ≤ c̃ (e
−δt ∣∣ v2(0) ∣∣L2(Ω) + εe

−νεtM1(t)) , (5.218)

where c̃ = c̃(ν). Since t ∈ [0, T ] is arbitrary, we can fix 0 < t′ < t, replace t with t′ and multiply by eνεt
′
,

obtaining

eνεt
′
∣∣ v2(t′) ∣∣L2(Ω) ≤ c̃e

νεt′ (e−δt
′
∣∣ v2(0) ∣∣L2(Ω) + εe

−νεt′M1(t′)) , (5.219)

since M1(t′) ≤M1(t), taking the supremum over 0 < t′ < t yields

M2(t) ≤ c̃ (∣∣ v2(0) ∣∣L2(Ω) + εM1(t)) . (5.220)

To obtain a bound on M1 we apply the variation of constant formula to the ODE of v1, eq (5.205), which

yields

v1(t) = e−Mtv1(0) + ∫
t

0
e−M(t−s)Bv2(s)ds (5.221)

applying the bound on B, (5.64), and the semi-group estimate on −M , (5.208), yields

∣∣ v1(t) ∣∣L2(Ω) ≤ e
−σεt ∣∣ v1(0) ∣∣L2(Ω) + εc∫

t

0
e−σε(t−s) ∣∣ v2(s) ∣∣L2(Ω) ds, (5.222)
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= e−σεt ∣∣ v1(0) ∣∣L2(Ω) + εce
−σεt ∫

t

0
eεσs ∣∣ v2(s) ∣∣L2(Ω) ds, (5.223)

and recall that ∣∣ v2(s) ∣∣L2(Ω) ≤ e−ενsM2(t) which yields

∣∣ v1(t) ∣∣L2(Ω) ≤ e
−σεt ∣∣ v1(0) ∣∣L2(Ω) + εce

−σεt ∫
t

0
eε(σ−ν)sM2(t)ds, (5.224)

≤ e−σεt ∣∣ v1(0) ∣∣L2(Ω) + εce
−σεt e

ε(σ−ν)t − 1

ε(σ − ν) M2(t), (5.225)

≤ e−σεt ∣∣ v1(0) ∣∣L2(Ω) + c̃(e
−ενt − e−σεt)M2(t). (5.226)

where c̃ = c̃(ν). Since ν ∈ (0, σ), we have (e−ενt − e−σεt) ≤ e−ενt and the inequality reduces to

∣∣ v1(t) ∣∣L2(Ω) ≤ e
−σεt ∣∣ v1(0) ∣∣L2(Ω) + c̃e

−ενtM2(t). (5.227)

Applying the bound (5.220) to M2(t) yields

∣∣ v1(t) ∣∣L2(Ω) ≤ c [e
−σεt ∣∣ v1(0) ∣∣L2(Ω) + e

−ενt (∣∣ v2(0) ∣∣L2(Ω) + εM1(t))] . (5.228)

Since t ∈ [0, T ] arbitrary, we can fix 0 < t′ < t, replace t with t′ and multiply by eνεt
′
, obtaining

eνεt
′
∣∣ v1(t′) ∣∣L2(Ω) ≤ c [e

(ν−σ)εt′ ∣∣ v1(0) ∣∣L2(Ω) + (∣∣ v2(0) ∣∣L2(Ω) + εM1(t′))] . (5.229)

note that M1(t′) ≤M1(t) and taking the supremum over 0 < t′ < t yields

M1(t) ≤ c [∣∣ v1(0) ∣∣L2(Ω) + ∣∣ v2(0) ∣∣L2(Ω) + εM1(t)] . (5.230)

For ε sufficiently small we obtain a uniform bound on M1(t)

M1(t) ≤
c

1 − ε (∣∣ v1(0) ∣∣L2(Ω) + ∣∣ v2(0) ∣∣L2(Ω)) , (5.231)

valid for all t > 0. Combining bound (5.231) on M1 and estimate (5.212) on v1(t), yields

∣∣ v1(t) ∣∣L2(Ω) ≤ c̄e
−ενt (∣∣ v1(0) ∣∣L2(Ω) + ∣∣ v2(0) ∣∣L2(Ω)) , (5.232)

and we see that ∣∣ v1 ∣∣L2(Ω) decays with exponential rate εν as tÐ→∞. To obtain a bound on ∣∣ v2 ∣∣L2(Ω), we

116



combine bound (5.231) on M1(t) with equation (5.218) and this yields

∣∣ v2(t) ∣∣L2(Ω) ≤ ĉ (εe
−νεt ∣∣ v1(0) ∣∣L2(Ω) + (e−δt + εe−νεt) ∣∣ v2(0) ∣∣L2(Ω)) , (5.233)

≤ ĉe−νεt (ε ∣∣ v1(0) ∣∣L2(Ω) + (1 + ε) ∣∣ v2(0) ∣∣L2(Ω)) , (5.234)

Returning to the original equation (5.204), and recall that V = [v1, v2]T we can bound the norm of V

using (5.232) and (5.233) which yields

∣∣V ∣∣L2(Ω) ≤ ∣∣ v1(t) ∣∣L2(Ω) + ∣∣ v2(t) ∣∣L2(Ω) , (5.235)

≤ ce−ενt [(1 + ε) ∣∣ v1(0) ∣∣L2(Ω) + (2 + ε) ∣∣ v2(0) ∣∣L2(Ω)] . (5.236)

for some constant c depend upon ν and for every t > 0. Therefore, the semi-groups generated by Lb manifest

decay with an exponential rate εν.

5.5 Connecting the pearling eigenvalues of ∆Lb and those of Lb

In the first part of this section we derived conditions under which the bilayer dressing of an admissible

interface is pearling stable. This reduces to an understanding of the the spectrum of Lb, the second variation

of F at the bilayer ub. However, to understand the dynamic stability of a bilayer under the H−1 gradient

flow, requires the analysis of the pearling eigenvalues of the linearization, ∆Lb of the gradient flow. This

analysis is completed in the theorem below.

Proposition 5.5.1. Fix an admissible interface Γb and let ub denote the associated bilayer solution. Let Lb

be the second variation of F evaluated at ub. Then, the spectrum of ∆Lb is real, and there exist U > 0 such

that for each Λ ∈ σ(∆Lb) ∩ (−∞, U) there exists µ ∈ σ(Lb) ∩ (−∞, ε2Ua), such that

Λ = ε−2µ

a
+O(ε3/4−d/2), (5.237)

where the constant a is defined via

a ∶= −∫
R
ψb,0(∂2

z − λb,0)−1ψb,0 dz > 0. (5.238)

In particular, for space dimension d = 2 or d = 3 the first term gives the leading order form of Λ.
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Proof of Theorem 5.5.1. Consider the eigenvalue problem

−∆LΨ = ΛΨ, (5.239)

and let {vi}Ni=1 be the orthonormal basis of the space XΣ given in Definition 5.1. We consider the decompo-

sition of the eigenfunction Ψ

Ψ = v + v�, (5.240)

where v ∈XΣ, v = ∑Ni=1 αivi,

∣∣ v ∣∣L2(Ω) = ∣∣ α⃗ ∣∣l2 , (5.241)

and v� ∈ V �. Inserting (5.240) into (5.239) yields

Lb(v + v�) = −Λ∆−1(v + v�). (5.242)

The projection of (5.242) onto vj ∈XΣ yields

(Lbv, vj)L2(Ω) + (Lbv�, vj)L2(Ω) = −Λ(∆−1v, vj)L2(Ω) −Λ(∆−1v�, vj)L2(Ω). (5.243)

We introduce the following matrices

Di,j ∶= (Lbvi, vj)L2(Ω), (5.244)

Ei,j ∶= −(∆−1vi, vj)L2(Ω). (5.245)

Using the matrices D and E, defined in (5.244) and (5.245), respectively, we rewrite equation (5.243) as

(D −ΛE)α⃗ = γ⃗, (5.246)

where we introduce the vector γ⃗

γ⃗j ∶= Λ(−∆−1v�, vj)L2(Ω) − (Lbv�, vj)L2(Ω). (5.247)

To bound the right-hand side of (5.247) we need to bound ∣∣ v� ∣∣L2(Ω). Consider the complementary projection
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of (5.242) onto v� ∈ V � which yields

(Lbv�, v�)L2(Ω) = −Λ(∆−1v, v�)L2(Ω) +Λ(−∆−1v�, v�)L2(Ω) − (Lbv, v�)L2(Ω). (5.248)

The operator Lb is coercive on X�
Σ and so, there exists ν > 0 so that

ν ∣∣ v� ∣∣2
L2(Ω)

≤ (Lbv�, v�)L2(Ω). (5.249)

Proposition (5.3.4) implies that there exists c > 0 so that the bilinear form (Lbv, v�)L2(Ω) = (v,Lbv�)L2(Ω)

has is bounded

(Lbv, v�)L2(Ω) ≤ cε ∣∣ v ∣∣L2(Ω)
∣∣ v� ∣∣

L2(Ω)
. (5.250)

Since the term (−∆−1v�, v�)L2(Ω) is positive, we need to consider the sign of Λ. If Λ < 0, the last term on

the right-hand side of (5.248) is negative, and we can drop it when we are bounding from above. It Λ > 0,

then there exists c > 0 so that

Λ(−∆−1v�, v�)L2(Ω) ≤ cΛ ∣∣ v� ∣∣2
L2(Ω)

. (5.251)

Moreover, from equation (5.266) of Lemma 5.6, there exists c > 0 so that

Λ(−∆−1v, v�)L2(Ω) ≤ c1∣Λ∣ε2 ∣∣ v ∣∣L2(Ω)
∣∣ v� ∣∣

L2(Ω)
. (5.252)

Using the bounds (5.249), (5.250), (5.251)and (5.252) in equation (5.248) we obtain

ν ∣∣ v� ∣∣2
L2(Ω)

≤ c1∣Λ∣ε2 ∣∣ v ∣∣L2(Ω)
∣∣ v� ∣∣

L2(Ω)
+Λ+c2 ∣∣ v� ∣∣2

L2(Ω)
+ c3ε ∣∣ v ∣∣L2(Ω)

∣∣ v� ∣∣
L2(Ω)

, (5.253)

where

Λ+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if Λ < 0,

Λ if Λ > 0.

(5.254)

Solving (5.253) for ∣∣ v� ∣∣L2(Ω), we obtain the upper bound,

∣∣ v� ∣∣
L2(Ω)

≤ cε ∣∣ v ∣∣L2(Ω) , (5.255)

valid so long as Λ+ < U ∶= ν/c2. Bounding ∣γj ∣, defined in (5.247), via (5.250) and (5.252) yields

∣γj ∣ ≤ (c1ε + c2ε2∣Λ∣) ∣∣ vj ∣∣L2(Ω)
∣∣ v� ∣∣

L2(Ω)
. (5.256)
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Combining (5.256) and (5.255) we obtain a bound on the l2 norm of γ⃗

∣∣ γ⃗ ∣∣l2 ≤ c(ε
2 + ε3∣Λ∣)

√
N ∣∣α ∣∣l2 , (5.257)

where N ∼ O(ε3/2−d).

Going back to equation (5.246), we note that the matrix D, defined in (5.244), is precisely the matrix M

introduced in (5.26), and from Corollary 5.2.2 we know that, at leading order, D takes the form

D = D0 + ε2D1, (5.258)

where D0 is a diagonal matrix whose entries are the eigenvalues of Lb, and D1 is O(1) in the operator norm.

We can express the Laplace inverse operator using the whiskered coordinates system, (2.9),

∆−1∣
xΣ

= (ε−2∂2
z + ε−1H∂z +∆G)−1 = ((1 + T )L0)−1 = L−1

0 +L−1
0 T + ..., (5.259)

where we introduce the operators

L0 ∶= ε−2∂2
z −∆s, (5.260)

T ∶= (ε−1H∂z + εzDs,2)L−1
0 . (5.261)

Plugging (5.259) into (5.245) we see that E takes the form

E = Ẽ0 + Ẽ1, (5.262)

where the entries of the matrices Ẽ0 and Ẽ1 take the form

Ẽ0
i,j ∶= −(L−1

0 vi, vj)L2(Ω), (5.263)

Ẽ1
i,j ∶= −(L−1

0 Tvi, vj)L2(Ω). (5.264)

To estimate the entries of Ẽ0 we prove the following Lemma

Lemma 5.6. The inverse operator L−1
0 acting on v ∈XΣ, v = ∑k∈Σb,0

αkψb,0Θk, takes the form

L−1
0 ψb,0Θk = ε2Θk(∂2

z − ε2βk)−1ψb,0, ∀ k ∈ Σb,0. (5.265)
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In particular, L−1
0 has an O(ε2) bound on XΣ, i.e., there exists c > 0 so that

∣∣L−1
0 v ∣∣

L2(Ω)
≤ cε2 ∣∣ v ∣∣L2(Ω) , ∀ v ∈XΣ. (5.266)

Proof. To obtain an expression for L−1
0 v, consider the following equation

L0f = ψb,0Θk, (5.267)

and recall that Θk is an eigenfunction of ∆s, which implicates that the function f is of the form f = g(z)Θk,

and equation (5.267) reduces to

(ε−2∂2
z − βk)g(z)Θk = ψb,0Θk. (5.268)

Factoring ε−2 from the left-hand side of (5.268) yields

ε−2(∂2
z − ε2βk)g(z)Θk = ψb,0Θk. (5.269)

Inverting the operators in equations (5.269) and (5.267) we conclude that

L−1
0 (ψb,0Θk) = ε2Θk(∂2

z − ε2βk)−1ψb,0. (5.270)

For a general v ∈XΣ, v = ∑k∈Σb,0
αnΘkψb,0, equation (5.270) takes the form

L−1
0 v = ε2 ∑

k∈Σb,0

αkΘk(∂2
z − ε2βk)−1ψb,0. (5.271)

Since Θj are orthonormal in the Γb weighted inner product, see (2.29), the L2(Ω)-norm of the inverse

operator acting on v ∈XΣ yields

∣∣L−1
0 v ∣∣

L2(Ω)
= ε2 ∣∣Aα⃗ ∣∣l2 , (5.272)

where A is the diagonal matrix with entries

Ai = ∥(∂z − ε2βi)−1ψ0∥L2(R). (5.273)

Since ε2βi = λb,0 +O(√ε) we deduce that A is uniformly bounded and hence

∣∣L−1
0 v ∣∣

L2(Ω)
= cε2 ∣∣ v ∣∣L2(Ω) . (5.274)
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∎

Lemma 5.6 implies that the entries of Ẽ0, defined in (5.263), admit the following expansion

Ẽ0
i,j = − ∫

Γb
∫

`/ε

−`/ε
(ε−2∂2

z +∆s)−1(ψb,0Θi)Θjψb,0 Jb dz ds (5.275)

= − ε2 ∫
Γb
∫

`/ε

−`/ε
ΘiΘjψb,0(∂2

z − ε2βi)−1ψb,0 Jb dz ds (5.276)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−ε2 ∫
`/ε

−`/ε ψb,0(∂2
z − λb,0)−1ψb,0 dz +O(ε2√ε) if i = j,

−ε3 ∫Γ ∫
`/ε

−`/ε ψb,0(∂2
z − ε2βi)−1ψb,0ΘiΘjH0 dz ds +O(ε4) if i ≠ j,

(5.277)

where for i = j, since k ∈ Σb,0, we obtained (5.277) by expanding ε2βi = λb,0 +O(√ε). Consequently we may

write

Ẽ0 = ε2 (E0 +
√
εB) , (5.278)

where E0 = aId is a diagonal matrix, aId is the identity matrix multiplies by the constant a defined in (5.238),

and the matrix B has entries of the form ∫Γb
f(k⃗)ΘiΘj J0 ds. By Lemma 5.2, the matrix B has O(1) bound

in the operator norm. The next Lemma shows that the matrix Ẽ1, defined in (5.264), is bounded in the

operator norm.

Lemma 5.7. The matrix Ẽ1, defined in (5.264) has an O(ε3) bounded in the operator norm, i.e., there

exists c > 0 so that

∣∣ Ẽ1 ∣∣
l2→l2

≤ cε3. (5.279)

Proof. The operator L−1
0 is self-adjoint in the J0 inner product, defined as in (2.35), and so the entries of Ẽ1,

given in (5.264) can be written as

E1
i,j = −(L−1

0 Tvi, vj)J0 = −(Tvi,L−1
0 vj)J0 . (5.280)

For vk ∈XΣ, vk = ϕb,0Θk, the operator T acting on vk takes the form

Tvk = εHΘkg
′
k + ε3zgkDs,2Θk, (5.281)

where

gk ∶= (∂2
z − ε2βk)−1ψb,0. (5.282)

122



Using equation (5.281) and Lemma 5.6 we write

−(Tvi,L−1
0 vj)J0 = −∫

Γb
∫

`/ε

−`/ε
(εHΘig

′
i + ε3zgiDs,2Θi)ε2Θjgj J0 dz ds (5.283)

= −ε3E1
i,j − ε5E2

i,j (5.284)

where the matrices E1 and E2 are given by

E1
i,j ∶= ∫

Γb
∫

`/ε

−`/ε
Hg′igjΘiΘj J0 dz ds, (5.285)

E2
i,j ∶= ∫

Γb
∫

`/ε

−`/ε
zgigjΘjDs,2Θi J0 dz ds. (5.286)

Lemma 5.2 implies that E1 has an O(1) bound in the operator norm, and according to Corollary 5.2.1, the ε5

terms are negligible. Going back to (5.280) we conclude that

∣∣ Ẽ1 ∣∣
l2→l2

≤ cε3. (5.287)

∎

Equation (5.278) and Lemma 5.7 implies that E, defined in (5.262), can be written as

E = ε2aId + ε5/2E1, (5.288)

where the matrix E1 has an O(1) bound in the operator norm.

We use the expansions of the matrices D and E, defined in (5.258) and (5.288), respectively, to expand

equation (5.246) so that

(D0 − ε2aΛ)α⃗ = γ⃗ − ε2(D1 −
√
εE1)α⃗, (5.289)

which, dividing by ε2a, takes the form

(ε
−2

α
D0 −Λ) α⃗ = ε

−2

α
(γ − ε2(D1 −

√
εE1)α⃗) , (5.290)

Taking the L2 norm of equation (5.290), and using inequality (5.257) we deduce that

∣∣ (ε
−2

a
D0 −Λ) α⃗ ∣∣

l2
≤ C(1 + ε∣Λ∣)

√
N ∣∣α ∣∣l2 , (5.291)
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however as D0 is self-adjoint, it follows that α is close to an eigenvector of D0 and

dist(Λ, ε
−2

a
σ(D0)) ≤ C(1 + ε∣Λ∣)ε3/4−d/2. (5.292)

Since the spectrum of D0 constitutes the pearling eigenvalues of Lb, and σ(D0) ∼ O(ε), we know that ε−2

a
σ(D0) ∼

O(ε−1), and hence ∣εΛ∣ = O(1). As long as the right-hand side of equation (5.292) is O(εr) with r > −1,

i.e., as long as the dimension size is d < 3.5, we may conclude that for Λ ∈ σ(∆Lb) ∩ (−∞, U) there exists

µ ∈ σ(Lb) ∩ (−∞, ε2Ua) so that

Λ = ε−2µ

a
+O(ε3/4−d/2). (5.293)

∎
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Chapter 6

The Pearling Eigenvalue Problem,

Co-Dimension 2

In this Chapter we address the stability of the bilayer morphology in the strong FCH and obtain an explicit

expression for the pearling stability condition. We present a rigourous analysis of the eigenvalue problem

corresponding to the strong FCH for the co-dimension two structure. We show that in the strong FCH

scaling the leading order behavior of the pearling eigenvalues is independent of the shape of the underlying

co-dimension two morphology. Under the H−1 gradient flow the pearling instability manifests itself on a

time scale that is O(ε−2) faster than the geometric evolution, and hence can be taken to be instantaneous

on the geometric evolution time scale. Conversely, the fingering instability occurs on the same time scale

as the geometric flow, and may not necessarily immediately manifest itself on the geometric evolution time

scale.

Recall the strong FCH free energy which corresponds to the choice p = 1 in (1.14),

F(u) = ∫
Ω

1

2
(ε2∆u −W ′(u))2 − ε(ε

2η1

2
∣∇u∣2 + η2W (u)) dx, (6.1)

where Ω ⊂ Rd, d ≥ 2, is a bounded domain, W (u) is a tilted double-well potential with two minima at b±, u ∶

Ω→ R is the density of the amphiphilic species, ε≪ 1 controls the width of the boundary layer and η1 and η2

are the functionalization constants. The first variation of F , introduced in equation (1.18), is given by

δF
δu

(u) = (ε2∆ −W ′′(u) + εη1)(ε2∆u −W ′(u)) + εηdW ′(u), (6.2)
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where ηd ∶= η1 − η2. The second variations of F takes the form

Lp ∶=
δ2F
δu2

(u) = (ε2∆ −W ′′(u) + εη1) (ε2∆ −W ′′(u)) − (ε2∆u −W ′(u))W ′′′(u) + εηdW ′′(u). (6.3)

We obtain a pearling stability condition for the co-dimension two morphology which is summarized in the

following theorem-

Theorem 6.0.2. For a given admissible interface, Γp, the associated pore solution constructed in (2.75),

is stable with respect to the pearling bifurcation if and only if the far-field chemical potential µ1 satisfies the

pearling stability condition

P ∗
p ∶= −

ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
)

Sp
> µ1, (6.4)

6.1 Overview

We want to investigate the pearling eigenmodes of the co-dimension two pore structures: Given an admissible

interface Γ, assume that the system is at quasi-equilibrium with

up = Up(R) + εu1, (6.5)

where Up is the radial symmetric pore solution of (2.75) and u1, derived in equation (4.103), is given by

u1 = µ1Φp,2 − ηdL−2
p W

′(Up), (6.6)

where Lp is the linear operator introduced in (2.78),The chemical potential µ1 is spatially constant and the

functions Φp,j solves (2.86) for j = 1,2.

We are interested in the pearling eigenmodes of the second variation of F , Lp, defined in (6.3). Consider the

eigenvalue problem

LpΨ = ΛΨ. (6.7)

By changing coordinates of the Laplacian, in the operator Lp, to the whiskered coordinates, using (2.65),

and plugging-in the expansion of up, (6.5), into u, we can rewrite Lp in orders of ε such that

Lp =L2
p + εL1 +O(ε2), (6.8)

126



where

L1 ∶= − (W ′′′(Up)u1 − η1) ○ Lp − Lp ○ (W ′′′(Up)u1) − (Lpu1 −DzUp)W ′′′(Up) + ηdW ′′(Up), (6.9)

and Lp is defined in (2.77). See appendix (E.2) for detailed calculations of the expansion of Lp.

Recall that Σp,0, defined in (2.92), is the set of small eigenvalues associated to Lp, and, according to Weyl’s

asymptotic formula ∣Σp,0∣ ∼ O(ε3/2−d). We define

Pk ∶= ε−1/2(λp,0 − ε2βk), (6.10)

to be the detuning constant depending only on k.

Definition 6.1. The space, XΣ, corresponding to the small eigenvalues of Lp is defined as

XΣ ∶= {ψp,0Θk ∣ k ∈ Σ}, (6.11)

Looking for solutions of the eigenvalue problem, (6.7), we consider a regular perturbation expansion of the

form

Ψj = Ψ0,j + εΨ1,j +O(ε2), Ψ0,j ∈XΣ, Ψ0,j = ∑
k∈Σ

αkψ0Θk, Ψ1,j ∈X�
Σ, (6.12)

Λj = εΛ1,j +O(ε2). (6.13)

The L2-orthogonal projection, Π, onto XΣ is given by

Π f ∶= ∑
k∈Σ

(f,ψ0Θk)L2(Ω)

∣∣ψ0Θk ∣∣2L2(Ω)

ψ0Θk = ∑
k∈Σ

(f,ψ0Θk)L2(Ω)ψ0Θk, (6.14)

and its complementary projection is Π̃ = I −Π.

We consider a decomposition of the operator L into a 2 × 2 block form,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.15)
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where

M ∶= ΠLpΠ, B ∶= ΠLpΠ̃, C ∶= Π̃LpΠ̃. (6.16)

By abuse of notation we denote Lp and its 2 × 2 decomposition with the same symbol.

By Assumption 2.2.3, the restricted operator C is uniformly coercive on X�
Σ and its spectrum is bounded

from below by δ > 0 which may be chosen independent of sufficiently small ε > 0.

6.2 Eigenvalues of M ∶= ΠLpΠ

Let v ∈XΣ, v can be written as

v = ∑
k∈Σ

bkψ0Θk, (6.17)

without loss of generality, assume ∣∣v∣∣L2(Ω) = 1. The operator ΠLΠ, acting on v, takes the form

ΠLΠ∑
j∈Σ

bjψ0Θk = ∑
k∈Σ

⎛
⎝
Lp∑

j∈Σ

bjψ0Θj , ψ0Θk

⎞
⎠
L2(Ω)

ψ0Θk = ∑
k∈Σ

∑
j∈Σ

bj (Lpψ0Θj , ψ0Θk)L2(Ω)
ψ0Θk. (6.18)

We define the operator matrix representation M ∈ RN×N , where N ≈ ε−3/2, in the following way

Mj,k ∶= (Lpψ0Θj , ψ0Θk)L2(Ω). (6.19)

Using the expansion of Lp, (6.8), we can write each entry of M in orders of ε such that

(Lpψ0Θj , ψ0Θk)L2(Ω) = (L2
pψ0Θj , ψ0Θk)L2(Ω) + ε(L1ψ0Θj , ψ0Θk)L2(Ω) +O(ε2), (6.20)

and decompose the matrix into terms of order ≤ εr and terms of order > εr, such that

M =M0 + εrM̃, (6.21)

where

M0
j,k = (L2

pψ0Θj , ψ0Θk)L2(Ω) + ε(L1ψ0Θj , ψ0Θk)L2(Ω) +
r

∑
i=2

εi(Liψ0Θj , ψ0Θk)L2(Ω), (6.22)

M̃j,k = ∑
i≥r

ε(i−r)(Liψ0Θj , ψ0Θk)L2(Ω). (6.23)
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We will show that the first term, M0, can be split into a diagonal and off-diagonal terms, the latter of which

can be bounded independently of the matrix size N , assuming that the curvatures of the interface Γ are

sufficiently smooth. The other term, M̃ , can be bounded, independent of the dimension, via the L∞ norm.

In particular, we have shown in Section 5.2.1, that for a 3-dimensional space, the matrix M̃ is negligible for

r = 2.

6.2.1 Bounding M0

Next, we want to find a bound for the matrix M0 in R3. An examination of the first two terms of M0, given

in equation (6.22), shows that they admit the expansions

(L2
pψ0Θj , ψ0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εP 2
k +O(ε2√ε) if k = j,

O(ε2√ε) if k ≠ j,
(6.24)

(L1ψ0Θj , ψ0Θk)L2(Ω) = − (((Lu1)W ′′′(Up) − ηdW ′′(Up))ψ0Θj , ψ0Θk)L2(Ω) +O(
√
ε) if k = j, (6.25)

(L1ψ0Θj , ψ0Θk)L2(Ω) =ε(((2W ′′′(Up)u1 − η1)κ⃗ ⋅ ∇zψ0 − κ⃗ ⋅ (∇zu1 −Up)W ′′′(Up)ψ0)Θj , ψ0Θk)L2(Ω) (6.26)

+O(ε2) if k ≠ j

see (E.14) and (E.33) for more details. We may split M0 into its on/off diagonal matrices

M0 =M0
diag +M0

off-diag (6.27)

where

M0
diag(j, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M0
k,k +O(ε√ε) if j = k,

0 if j ≠ k,
(6.28)

and

M0
off-diag(j, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if j = k,

M0
j,k +O(ε2√ε) if j ≠ k.

(6.29)

with entries given by

M0
k,k = ε(P 2

k − ∫
l/ε

0
[W ′′′(Up)Lu1 − ηdW ′′(Up)](ψ0

0)2 dz) , (6.30)

= ε [P 2
k − µ1Sp − ηd (∣∣ (ψ0

0)′ ∣∣
2

LR
+ λp,0 ∣∣ (ψ0

0) ∣∣
2

LR
)] , (6.31)

M0
j,k = ε2(((2W ′′′(Up)u1 − η1)κ⃗ ⋅ ∇zψ0 − κ⃗ ⋅ (∇zu1 −Up)W ′′′(Up)ψ0)Θj , ψ0Θk)L2(Ω), (6.32)
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with indices aε−1/2 ≤ j, k ≤ ãε−1/2, a < ã, a, ã ∈ R, and Sp is the shape factor of the pore structure, given by,

Sp ∶= 2π∫
∞

0
W ′′′(Up)Φ1(ψ0

0)2RdR. (6.33)

Using Theorem 5.2 we deduce that M0
off-diag is uniformly bounded as an operator from l2 to l2.

Corollary 6.2.1. The matrix M0, defined in (6.27), can be written as

M0 =M0
diag +M0

off-diag, (6.34)

where M0
off-diag is uniformly bounded as an operator from l2 to l2.

At this point we conclude that the eigenvalues of M0, Λk, are, at leading order, the diagonal entries of M0
diag,

defined in equation (6.28). By the definition of M , (6.21), we deduce that Λk are the eigenvalues of M , at

leading order. Since M is the matrix representation of ΠLpΠ, the eigenvalues of ΠLpΠ are, at leading

order, Λk, which takes the form

Λk = ε [P 2
k − µ1Sp − ηd (∣∣ψ′p,0 ∣∣2

LR
+ λp,0 ∣∣ψp,0 ∣∣2LR

)] , (6.35)

where Sp is the shape factor defined in (6.33) and Pk is the detuning constant defined in (6.10).

Since P 2
k can be made as small as O(ε) (see equation (5.61)), it follows that the term involving P 2

k is lower

order near the turning point of the pearling spectrum. This leads us to the following corollary-

Corollary 6.2.2. The pearling eigenvalues of ΠLpΠ, (6.13), takes the form

Λ = −ε 1

∣∣ψp,0∣∣2LR

[µ1Sp + ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
)] +O(ε2), (6.36)

and, in order to have, at leading order, pearling stability we need

µ1Sp + ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
) < 0. (6.37)

Recall that our main goal is to find an expression for the pearling eigenvalues of L using our 2×2 representation

of Lp, see (6.15). In this section we found an expression the pearling eigenvalues of the operator M . The

next section establish the bounds on the off-diagonal terms B,BT .
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6.3 Bounding the Off-Diagonal Operators

Recall the 2 × 2 block form representation of Lp, given in (6.15),

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M B

BT C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.38)

If the off-diagonal blocks, B ∶= ΠLpΠ̃ and BT ∶= Π̃LpΠ, are small (same order of the M ∶= ΠLpΠ block or

less) then we can relate the eigenvalues of Lp to those of M ∶= ΠLpΠ, see section 6.2. Since both Π and Π̃

are self-adjoint operators we have

(ΠLpΠ̃v,w)L2 = (LpΠ̃v,Πw)L2 = (Π̃v,LpΠw)L2 = (v, Π̃LpΠw)L2 . (6.39)

So, it is enough to show that one of the off-diagonal blocks is small, i.e., we want to show that there exist a

constant C, independent on N ∼ O(ε−3/2) such that

∥Π̃LpΠv∥L2(Ω) ≤ εC∥v∥L2(Ω), ∀v ∈XΣ. (6.40)

without loss of generality, assume v ∈XΣ, v = ∑j∈Σ bjψ0Θj and ∥v∥L2(Ω) = 1. Note that

∥v∥2
L2(Ω) = ∫

Ω
∑
j,k∈Σ

bjbkΘjΘkψ
2
0 dx = ∑

j∈Σ

b2j

∥θkψ0∥
2
L2(Ω)=1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫

Ω
Θ2
jψ

2
0 dx + ∑

j,k∈Σ
j≠k

bjbk

=0,by orthogonality of Θj

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫

Ω
ΘjΘkψ

2
0 dx , (6.41)

= ∑
j∈Σ

b2j = ∣∣ b ∣∣2l2 , (6.42)

where b ∶= (b1, b2, ..., bNd
).

Note that we can write Lp in the following form

Lp = L2
p + εL̃p, (6.43)

where Lp is a relatively bounded perturbation of L2
p. We split the proof into three parts: first we show that

we can bound the operator Π̃LpΠv, next we bound the operator Π̃L2
pΠv and then we bound Π̃LpΠv.
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6.3.1 Bounding Π̃LpΠv

Recall that v ∈XΣ, v = ∑j∈Σ bjψ0Θj and ∥v∥L2(Ω) = 1. In particular,

Πv = v, Π̃v = 0. (6.44)

We need to show that there exist C, independent of ε, such that

∥Π̃Lpv∥L2(Ω) ≤ εC∥v∥L2(Ω). (6.45)

Using the expression for Lp, (2.77), Lpv takes the form

Lpv = (Lv − εDzv + ε2∂2
Gv) = ∑

j∈Σ

bj

⎛
⎜⎜
⎝
λp,0ψ0Θj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈XΣ

−εDzψ0Θj + ε2∂2
Gψ0Θj

⎞
⎟⎟
⎠
. (6.46)

Note that Π̃ project off of XΣ, therefore it eliminates the first term and the term Π̃Lpv becomes

Π̃Lpv = εΠ̃∑
j∈Σ

bj (ε∂2
GΘjψ0 −Dzψ0Θj) . (6.47)

The L2(Ω)-norm of (6.47) has the bound

∣∣ Π̃Lpv ∣∣L2(Ω)
≤ ε ∣∣Dzv ∣∣L2(Ω) + ε

2 ∣∣∂2
Gv ∣∣L2(Ω)

, (6.48)

and we will show that each of the terms on the right-hand side of equation (6.48) is bounded. To show that

the first norm on the right-hand side of equation (6.48) is bounded, we introduce the matrix B ∈ RN×N ,

with N ∼ O(ε−3/2) such that

Bj,k ∶= ⟨Dzψ0Θj ,Dzψ0Θk⟩L2(Ω)
, (6.49)

which, using the definition of Dz, given in (2.66), takes the form

Bj,k = ∫
Γ
f(κ⃗)ΘjΘk ds, where f = ∫

∞

0
( κ⃗
J̃p

⋅ ∇zψ0)
2

J dz. (6.50)

Applying Theorem 5.2 we conclude that B is uniformly bounded operator from l2 → l2. Since B is the matrix

representation of the operator Dz we obtain the bound

∣∣Dzv ∣∣L2(Ω) ≤ c ∣∣ v ∣∣L2(Ω) for v ∈XΣ, (6.51)
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where c is independent on ε. Equation (6.48) reduces to

∣∣ Π̃Lpv ∣∣L2(Ω)
≤ εc ∣∣ v ∣∣L2(Ω) + ε

2 ∣∣∂2
Gv ∣∣L2(Ω)

, (6.52)

The following Proposition shows that, over the appropriate space, the operator Π̃∂2
G is bounded in the L2(Ω)

norm:

Proposition 6.3.1. Let f(z) be a smooth function such that

∣f(z)∣ < c1e−c2∣z∣ for some ci ∈ R, ci > 0 , i = 1,2, supp(f) ⊂ Γl. (6.53)

The operator Π̃∂2
G, where Π̃ is the projection off of the space of small eigenvalues XΣ, defined in (6.11)

and ∂2
G is defined in (2.67), is bounded on the space

Y = span{f(z)Θk ∣ k ∈ Σ,}, (6.54)

i.e., there exists C > 0, independent of ε, such that

∣∣ Π̃∂2
Gv ∣∣L2(Ω)

≤ Cε−2 ∣∣ v ∣∣L2(Ω) , (6.55)

for every v ∈ Y . Particularly, for v ∈XΣ, i.e., when f(z) = ψ0, we obtain the bound

∣∣ Π̃∂2
Gv ∣∣L2(Ω)

≤ Cε−1 ∣∣ v ∣∣L2(Ω) . (6.56)

Proof. Fix λ∗ ∈ ρ(∂2
s), where ρ(∂2

s) is the resolvent set of the co-dimeanion two Laplacian operator, then the

operator ∂2
G can be written as

∂2
G = 1

J̃2
p

[∂2
s + ε

z ⋅ ∂sκ⃗
J̃p

∂s] =
1

J̃2
p

[(∂2
s − λ∗) + ε

z ⋅ ∂sκ⃗
J̃p

∂s(∂2
s − λ∗)−1(∂2

s − λ∗) + λ∗] . (6.57)

where J̃p is defined in (2.64) and 1
J̃2
p

have the expansion

1

J̃2
p

= 1 + εR, where R ∶=
∞

∑
i=0

(J̃2
p − 1)i − 1. (6.58)

Without loss of generality, we assume that λ∗ = 0. We note that every v ∈ Y satisfies the following inequality
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∣∣∂2
sv ∣∣L2(Ω)

≤ ε−2 ∣∣ v ∣∣L2(Ω) , (6.59)

and since ∂s is a relatively bounded perturbation of ∂2
s , the operator ∂s(∂2

s −λ∗)−1 is bounded, independent

of ε, on Y .

Considering the case when f ≠ ψ0, then v takes the form,

v = f(z)Θ̄(s), Θ̄ ∶= ∑
j∈Σ

bjΘj , ∥v∥L2(Ω) = 1 (6.60)

Taking the L2(Ω)-norm of Π̃∆G acting on v yields

∣∣ Π̃∂2
Gv ∣∣L2(Ω)

=
RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

[∂2
s + ε

z ⋅ ∂sκ⃗
J̃p

∂s(∂2
s)−1∂2

s] v
RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

, (6.61)

≤
RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

∂2
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

+ ε
RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

z ⋅ ∂sκ⃗
J̃p

∂s(∂2
s)−1∂2

sv
RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

. (6.62)

Using the expansion of J̃p, given in (6.58), we can bound the first term on the right-hand side of equa-

tion (6.61)

RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

∂2
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ ∣∣ Π̃∂2
sv ∣∣L2(Ω)

+ ε ∣∣ Π̃R∂2
sv ∣∣L2(Ω)

≤ ∣∣∂2
sv ∣∣L2(Ω)

+ ε ∣∣R∂2
sv ∣∣L2(Ω)

, (6.63)

≤ ε−2 ∣∣ v ∣∣L2(Ω) + ε ∣∣Rf(z) ∣∣L∞(Ω)
∣∣∂2

s Θ̄ ∣∣
L2(Ω)

,≤ (ε−2 + ε−1) c ∣∣ v ∣∣L2(Ω) , (6.64)

where c is independent of ε and the third inequality follows from the fact that v = f(z)Θ̄(s), and f decays

at O(1) rate in z. As for the second term on the right-hand side of equation (6.61)

ε2
RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

z ⋅ ∂sκ⃗
J̃p

∂s(∂2
s)−1∂2

sv
RRRRRRRRRRR

RRRRRRRRRRR

2

L2(Ω)

≤ ε2
RRRRRRRRRRR

RRRRRRRRRRR

1

J̃2
p

z ⋅ ∂sκ⃗
J̃p

∂s(∂2
s)−1∂2

sv
RRRRRRRRRRR

RRRRRRRRRRR

2

L2(Ω)

, (6.65)

≤ ε2
RRRRRRRRRRR

RRRRRRRRRRR

1

J̃3
p

∂s(∂2
s)−1(∂sκ⃗) ⋅ ∂2

szv
RRRRRRRRRRR

RRRRRRRRRRR

2

L2(Ω)

, (6.66)

≤ ε2
RRRRRRRRRRR

RRRRRRRRRRR

1

J̃3
p

RRRRRRRRRRR

RRRRRRRRRRR

2

L∞(Ω)

∣∣∂s(∂2
s)−1 ∣∣2

l2→l2
∣∣ (∂sκ⃗) ⋅ ∂2

szv ∣∣
2

L2(Ω)
, (6.67)

≤ ε2c1 ∣∣ (∂sκ⃗)zf(z) ∣∣2L∞(Ω)
∣∣∂2

s Θ̄ ∣∣2
L2(Ω)

≤ ε−2c2 ∣∣ v ∣∣2L2(Ω) , (6.68)

where for the third inequality we used the fact that f(z) decay at O(1) in z. Plugging (6.70) and (6.68)
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into (6.61) yields

∣∣ Π̃∂2
Gv ∣∣L2(Ω)

≤ ε−2c3 ∣∣ v ∣∣L2(Ω) . (6.69)

For v ∈XΣ, the only difference in is equation (6.70) which the becomes

RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃2
p

∂2
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ ∣∣��
�Π̃∂2
sv ∣∣L2(Ω)

+ ε ∣∣ Π̃R∂2
sv ∣∣L2(Ω)

≤ ε ∣∣R∂2
sv ∣∣L2(Ω)

, (6.70)

≤ ε ∣∣Rf(z) ∣∣L∞(Ω)
∣∣∂2

s Θ̄ ∣∣
L2(Ω)

≤ ε−1c4 ∣∣ v ∣∣L2(Ω) , (6.71)

and for this case we have

∣∣ Π̃∂2
Gv ∣∣L2(Ω)

≤ ε−1c ∣∣ v ∣∣L2(Ω) . (6.72)

∎

Combining Proposition 6.3.1 with equation (6.52) we obtain the required bound

∣∣ Π̃Lpv ∣∣L2 ≤ εC ∣∣ v ∣∣l2 . (6.73)

6.3.2 Bounding Π̃L2pΠv

Recall that v ∈XΣ, v = ∑j∈Σ bjψ0Θj and ∥v∥L2(Ω) = 1, in particular,

Πv = v, Π̃v = 0. (6.74)

We want to show there exist C2, independent on ε, such that

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤ εC2 ∣∣ v ∣∣L2 . (6.75)

Writing the L2
p operator acting on v explicitly we have

L2
pv =Lp(Lpv) = (L − εDz + ε2∂2

G)(Lv − εDzv + ε2∂2
Gv), (6.76)

=(L0 − εDz + ε2∂2
G) ∑

j∈Σ

bj (λp,0ψ0Θj − εDzψ0Θj + ε2∂Gψ0Θj) ,

= ∑
j∈Σ

bj[

∈XΣ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
λ2
p,0ψ0Θj −εL(Dzψ0Θj) + ε2L(∂2

Gψ0Θj) − ελp,0Dzψ0Θj + ε2Dz(Dzψ0Θj)
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− ε3Dz(∂2
Gψ0Θj) + ε2λp,0∂

2
Gψ0Θj − ε3∂G(Dzψ0Θj) + ε4∂2

G(∂2
Gψ0Θj)].

Projecting away from XΣ using Π̃ and taking the L2-norm yields

∣∣ Π̃L2
pv ∣∣L2(Ω)

= ∥Π̃∑
j∈Σ

bj[

∈XΣ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
λ2
p,0ψ0Θj −εL(Dzψ0Θj) + ε2L(∂2

Gψ0Θj) − ελp,0Dzψ0Θj + ε2Dz(Dzψ0Θj) (6.77)

− ε3Dz(∂2
Gψ0Θj) + ε2λp,0∂

2
Gψ0Θj − ε3∂G(Dzψ0Θj) + ε4∂2

G(∂2
Gψ0Θj)]∥L2(Ω),

≤ ε∥

R1v³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∑
j∈Σ

bj[ −L(Dzψ0Θj) − λp,0Dzψ0Θj + εDz(Dzψ0Θj)∥L2(Ω) + ε6 ∣∣ Π̃Dz(∂2
Gv) ∣∣L2(Ω)

(6.78)

+ ε6 ∣∣ Π̃∂2
GDzv ∣∣L2(Ω)

+ ε4 ∣∣ Π̃λp,0∂2
Gv ∣∣L2(Ω)

+ ε8 ∣∣ Π̃∂2
G(∂2

Gv) ∣∣L2(Ω)
+ ε4 ∣∣ Π̃L(∂2

Gv) ∣∣L2(Ω)
,

where we used the triangle inequality. The matrix representation B̄ ∈ RN×N of R1 is given by

B̄j,k ∶= ⟨(−L(Dzψ0) − λp,0Dzψ0 + εDz(Dzψ0))Θj ,−L(Dzψ0) − λp,0Dzψ0 + εDz(Dzψ0))Θk⟩L2 . (6.79)

The entries of B̄ take the form

B̄j,k = ∫
Γ
∫

l/ε

0
f(z, s)ΘjΘk J dz ds, (6.80)

and, for a smooth function f, Theorem 5.2 implies that there exists c > 0, independent of ε, such that

∣∣ B̄ ∣∣
l2→l2

≤ c. (6.81)

Using (6.81) we obtain a bound on the operator R1

∣∣R1v ∣∣2L2(Ω) ≤ ∣∣ b ∣∣2l2 ∣∣ B̄ ∣∣2
l2→l2

≤ c ∣∣ v ∣∣2l2 , (6.82)

and equation (6.78) reduces to

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤cε ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣ Π̃Dz(∂2

Gv) ∣∣L2(Ω)
+ ε3 ∣∣ Π̃∂2

GDzv ∣∣L2(Ω)
(6.83)

+ ε2 ∣∣ Π̃λp,0∂2
Gv ∣∣L2(Ω)

+ ε4 ∣∣ Π̃∂2
G(∂2

Gv) ∣∣L2(Ω)
+ ε2 ∣∣ Π̃L(∂2

Gv) ∣∣L2(Ω)
.

Consider the second term in the right-hand side of (6.83).

ε3 ∣∣ Π̃Dz(∂2
Gv) ∣∣L2(Ω)

≤ ε3 ∣∣ κ
J̃p

⋅ ∇z (∂2
Gv) ∣∣

L2(Ω)

, (6.84)
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≤ ε3 ∣∣ κ
J̃p

⋅ [∇z∂2
G] v ∣∣

L2(Ω)

+ ε3 ∣∣ κ
J̃p

⋅ ∂2
G (∇zv) ∣∣

L2(Ω)

, (6.85)

≤ ε3 ∣∣ κ
J̃p

∣∣
L∞(Ω)

∣∣ [∇z∂2
G] v ∣∣

L2(Ω)
+ ε3 ∣∣ κ

J̃p
∣∣
L∞(Ω)

∣∣∂2
G (∇zv) ∣∣L2(Ω)

, (6.86)

≤ ε3c1 ∣∣ [∇z∂2
G] v ∣∣

L2(Ω)
+ c2ε ∣∣ v ∣∣L2(Ω) , (6.87)

where the last inequality follows applying Proposition 6.3.1. In order to show that the first term in (6.87) is

bounded, we note that

[∇z∂2
G] =

⎛
⎝
∇z

1

J̃2
p

⎞
⎠
∂2
s + ε

⎛
⎝
∇z

z ⋅ ∂sκ⃗
J̃3
p

⎞
⎠
∂s, (6.88)

and we consider the following Proposition.

Proposition 6.3.2. Let f(z) be a smooth function such that

∣f(z)∣ < c1e−c2∣z∣ for some ci ∈ R, ci > 0 , i = 1,2, and supp(f) ⊂ Γl. (6.89)

The operator [∇z∂2
G], where ∂2

G is defined in (2.67), is bounded on the space

Y = span{f(z)Θk ∣ k ∈ Σ,}, (6.90)

i.e., there exists C > 0, C independent of ε and f , such that

∣∣ [∇z∂2
G]v ∣∣

L2(Ω)
≤ Cε−1 ∣∣ v ∣∣L2(Ω) , (6.91)

for every v ∈ Y .

Proof. Fix λ∗ ∈ ρ(∂2
s), where ρ(∂2

s) is the resolvent set of the co-dimeanion two Laplacian operator, and,

without loss of generality, assume that λ∗ = 0. The operator ∂2
G can be written as

∂2
G = 1

J̃2
p

∂2
s + ε

z ⋅ ∂sκ⃗
J̃3
p

∂s =
1

J̃2
p

∂2
s + ε

z ⋅ ∂sκ⃗
J̃3
p

∂s(∂2
s)−1(∂2

s). (6.92)

Let v ∈ Y such that f ≠ ψ0, then v takes the form,

v = f(z)Θ̄(s), Θ̄ ∶= ∑
j∈Σ

bjΘj , (6.93)

and, without loss of generality, ∥v∥L2(Ω) = 1.
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Taking the L2(Ω)-norm of ∂z∆G acting on v yields

∣∣ (∇z∂2
G)v ∣∣

L2(Ω)
=
RRRRRRRRRRR

RRRRRRRRRRR
(∇z

1

J̃2
p

)∂2
sv + ε∇z(

z ⋅ ∂sκ⃗
J̃3
p

)∂s(∂2
s)−1(∂2

s)v
RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

(6.94)

≤
RRRRRRRRRRR

RRRRRRRRRRR
(∇z

1

J̃2
p

)f(z)
RRRRRRRRRRR

RRRRRRRRRRRL∞(Ω)

∣∣∂2
s Θ̄ ∣∣

L2(Ω)
(6.95)

+ ε
RRRRRRRRRRR

RRRRRRRRRRR
∇z(

z ⋅ ∂sκ⃗
J̃3
p

)f(z)
RRRRRRRRRRR

RRRRRRRRRRRL∞(Ω)

∣∣∂s(∂2
s)−1 ∣∣

l2→l2
∣∣ (∂2

s)Θ̄ ∣∣
L2(Ω)

≤ε−2c1

RRRRRRRRRRR

RRRRRRRRRRR
(∇z

1

J̃2
p

)f(z)
RRRRRRRRRRR

RRRRRRRRRRRL∞(Ω)

∣∣ Θ̄ ∣∣
L2(Ω)

+ ε−1c2 ∣∣ v ∣∣L2(Ω) , (6.96)

where the first inequality follows from the triangle inequality combined with the generalized Hölder inequality.

Note that

∇z
1

J̃2
p

= ε(1,1) ⋅ κ⃗
2J̃3
p

, (6.97)

which implies that there exists c independent of ε such that

RRRRRRRRRRR

RRRRRRRRRRR
(∇z

1

J̃2
p

)f(z)
RRRRRRRRRRR

RRRRRRRRRRRL∞(Ω)

≤ εc3. (6.98)

Plugging (6.98) into (6.96) yields

∣∣ (∇z∂2
G)v ∣∣

L2(Ω)
≤ ε−1c4 ∣∣ v ∣∣L2(Ω) , for v ∈XΣ, (6.99)

and we conclude that

∣∣ ∇z∂2
G ∣∣

L2(Ω)
≤ Cε−1 on Y. (6.100)

∎

Returning to (6.87), and using Proposition 6.3.2, we have

ε3 ∣∣ Π̃Dz(∂2
Gv) ∣∣L2(Ω)

≤ εc1 ∣∣ v ∣∣L2(Ω) . (6.101)

Plugging (6.101) and into the right-hand side of (6.83) yields

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤cε ∣∣ v ∣∣L2(Ω) + ε
3 ∣∣ Π̃∂2

GDzv ∣∣L2(Ω)
+ ε2 ∣∣ Π̃λp,0∂2

Gv ∣∣L2(Ω)
(6.102)

+ ε4 ∣∣ Π̃∂2
G(∂2

Gv) ∣∣L2(Ω)
+ ε2 ∣∣ Π̃L(∂2

Gv) ∣∣L2(Ω)
.
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The second term in (6.102) involves the operator ∂2
GDz. Using the definitions of ∂2

G and Dz, given in (2.67)

and (2.66), respectively, we can write

∂2
GDzv = ∂2

G ( 1

J̃p
∇zv) = κ⃗

J̃p
⋅ (∂2

G(∇zv)) + (∂2
G

κ⃗

J̃p
) ⋅ ∇zv + 2∂s (

κ⃗

J̃p
) ⋅ ∂s∇zv. (6.103)

Taking the L2(Ω)-norm yields

∣∣ Π̃∂2
GDzv ∣∣L2(Ω)

= ∣∣ κ⃗
J̃p

(∂2
G(∇zv)) + (∂2

G

κ⃗

J̃p
)∇zv + 2∂s (

κ⃗

J̃p
)∂s∇zv ∣∣

L2(Ω)

, (6.104)

≤ ∣∣ κ⃗
J̃p

(∂2
G(∇zv)) ∣∣

L2(Ω)

+ ∣∣ (∂2
G

κ⃗

J̃p
)∇zv ∣∣

L2(Ω)

+ 2 ∣∣∂s (
κ⃗

J̃p
)∂s∇zv ∣∣

L2(Ω)

, (6.105)

≤ ∣∣ κ⃗
J̃p

∣∣
L∞

∣∣ (∂2
G(∇zv)) ∣∣L2(Ω)

+ ∣∣ (∂2
G

κ⃗

J̃p
)∇z(f(z)) ∣∣

L∞(Ω)

∣∣ Θ̄ ∣∣
L2(Γ)

(6.106)

+ 2 ∣∣∂s (
κ⃗

J̃p
) ∣∣

L∞(Ω)

∣∣∂s∇zv ∣∣L2(Ω) ,

≤ ε−2c1 ∣∣ v ∣∣L2(Ω) + c2 ∣∣ v ∣∣L2(Ω) (6.107)

+ 2 ∣∣∂s (
κ⃗

J̃p
) ∣∣

L∞(Ω)

∣∣∂s(∂−2
s ) ∣∣

l2→l2
∣∣∂2

s∇zv ∣∣L2(Ω)
,

≤ ε−2C ∣∣ v ∣∣L2(Ω) , (6.108)

where the first inequality is the triangle inequality, for the second inequality we use Hölder and the third in-

equality follows from Lemma 6.3.1, combined with the assumption that κ ∈W 2,∞.Plugging (6.108) into (6.102)

yields

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤cε ∣∣ v ∣∣L2(Ω) + ε
2 ∣∣ Π̃λp,0∂2

Gv ∣∣L2(Ω)
+ ε4 ∣∣ Π̃∂2

G(∂2
Gv) ∣∣L2(Ω)

+ ε2 ∣∣ Π̃L(∂2
Gv) ∣∣L2(Ω)

(6.109)

Proposition 6.3.1 shows that the second term in (6.109) is bounded as an operator in the L2(Ω) norm with

ε2 ∣∣ Π̃λp,0∂2
Gv ∣∣L2(Ω)

≤ c2ε ∣∣ v ∣∣L2(Ω) , (6.110)

and (6.109) reduces to

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤cε ∣∣ v ∣∣L2(Ω) + ε
4 ∣∣ Π̃∂2

G(∂2
Gv) ∣∣L2(Ω)

+ ε2 ∣∣ Π̃L(∂2
Gv) ∣∣L2(Ω)

. (6.111)

The bound on the second term in the right-hand side of (6.111) follows from the following lemma
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Lemma 6.1. Let v ∈XΣ,

v = ∑
j∈Σ

bjΘjψ0, (6.112)

with ∥v∥L2(Ω) = 1. Then there exists C > 0 such that

∣∣ Π̃∂2
G(∂2

Gv) ∣∣L2(Ω)
≤ Cε−3 ∣∣ v ∣∣L2(Ω) . (6.113)

Proof. There exists c, independent of ε, such that

∣∣∂4
sv ∣∣L2(Ω)

≤ cε−4 ∣∣ v ∣∣L2(Ω) . (6.114)

Fix λ∗ ∈ ρ(∂2
s), where ρ(∂2

s) is the resolvent set of the second order operator. without loss of generality,

assume λ∗ = 0. Then, first we write the operator ∂2
G(∂2

Gv) explicitly -

∂2
G(∂2

Gv) =
1

J̃2
p

⎡⎢⎢⎢⎢⎣
(∂2
s

1

J̃2
p

)∂2
s + 2(∂s

1

J̃2
p

)∂3
s +

1

J̃2
p

∂4
s + ε

⎛
⎝
∂2
s

κ ⋅ z
J̃3
p

∂s +
κ ⋅ z
J̃3
p

∂3
s + (∂s

κ ⋅ z
J̃3
p

)∂2
s

⎞
⎠

⎤⎥⎥⎥⎥⎦
v (6.115)

+ ε κ⃗ ⋅ z
J̃3
p

⎛
⎝
⎛
⎝
∂s

1

J̃2
p

⎞
⎠
∂2
s + ε

1

J̃2
p

∂3
s

⎞
⎠
v + ε2 ⎛

⎝
(κ ⋅ z
J̃3
p

)2∂2
s +

κ ⋅ z
J̃3
p

(∂s
κ ⋅ z
J̃3
p

)∂s
⎞
⎠
v,

= 1

J̃4
p

∂4
s +

⎛
⎝

2
1

J̃2
p

(∂s
1

J̃2
p

) + ε 1

J̃2
p

κ⃗ ⋅ z
J̃3
p

+ ε2 κ⃗ ⋅ z
J̃3
p

1

J̃2
p

⎞
⎠
∂3
s (6.116)

+
⎛
⎝

1

J̃2
p

(∂2
s

1

J̃2
p

) + ε 1

J̃2
p

(∂s
κ⃗ ⋅ z
J̃3
p

) + ε κ⃗ ⋅ z
J̃3
p

(∂s
1

J̃2
p

) + ε2( κ⃗ ⋅ z
J̃3
p

)2⎞
⎠
∂2
s

+
⎛
⎝
ε

1

J̃2
p

(∂2
s

κ⃗ ⋅ z
J̃3
p

) + ε2 κ⃗ ⋅ z
J̃3
p

(∂s
κ⃗ ⋅ z
J̃3
p

)
⎞
⎠
∂s.

To bound the first term on the right-hand side of equation (6.116), note that the Taylor expansion 1
J̃4
p

can

be written as

1

J̃4
p

= 1 + εR, R = R(z, κ⃗) =
∞

∑
i=0

(J̃4
p − 1)i − 1. (6.117)

and we obtain the bound

RRRRRRRRRRR

RRRRRRRRRRR
Π̃

1

J̃4
p

∂4
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤
��

���
��:0

∣∣ Π̃∂4
sv ∣∣L2(Ω)

+ ε ∣∣Rf(z) ∣∣L∞(Ω)
∣∣∂4

s Θ̄ ∣∣
L2(Ω)

≤ c1ε−3 ∣∣ v ∣∣L2(Ω) . (6.118)

Similarly, as long as κ⃗ ∈W 1,∞, then we have

RRRRRRRRRRR

RRRRRRRRRRR
Π̃

⎛
⎝

2
1

J̃2
p

(∂s
1

J̃2
p

) + ε 1

J̃2
p

κ⃗ ⋅ z
J̃3
p

+ ε2 κ⃗ ⋅ z
J̃3
p

1

J̃2
p

⎞
⎠
∂3
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ c1ε−3 ∣∣ v ∣∣L2(Ω) . (6.119)
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To bound the second operator on the right-hand side of equation (6.116) we require that κ⃗ ∈W 2,∞, then

RRRRRRRRRRR

RRRRRRRRRRR
Π̃

⎛
⎝

1

J̃2
p

(∂2
s

1

J̃2
p

) + ε 1

J̃2
p

(∂s
κ⃗ ⋅ z
J̃3
p

) + ε κ⃗ ⋅ z
J̃3
p

(∂s
1

J̃2
p

) + ε2( κ⃗ ⋅ z
J̃3
p

)2⎞
⎠
∂2
sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ c3ε−1 ∣∣ v ∣∣L2(Ω) , (6.120)

and similarly,
RRRRRRRRRRR

RRRRRRRRRRR

⎛
⎝
ε

1

J̃2
p

(∂2
s

κ⃗ ⋅ z
J̃3
p

) + ε2 κ⃗ ⋅ z
J̃3
p

(∂s
κ⃗ ⋅ z
J̃3
p

)
⎞
⎠
∂sv

RRRRRRRRRRR

RRRRRRRRRRRL2(Ω)

≤ c4ε−1 ∣∣ v ∣∣L2(Ω) . (6.121)

Plugging (6.118), (6.119), (6.120) and (6.121) back into (6.116) we obtain the bound

∣∣ Π̃∂2
G(∂2

Gv) ∣∣L2(Ω)
≤ Cε−3 ∣∣ v ∣∣L2(Ω) . (6.122)

∎

Combining Lemma 6.1 and equation (6.111) yields

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤ ε¯̄c ∣∣ v ∣∣L2(Ω) + ε
2 ∣∣ Π̃L(∆Gv) ∣∣L2(Ω)

. (6.123)

Consider the second term in (6.123), and note that W ′′(Up) commutes with ∂2
G. Then

ε2 ∣∣ Π̃L(∂2
Gv) ∣∣L2(Ω)

= ε2 ∣∣ Π̃(∆z −W ′′(Up))(∂2
Gv) ∣∣L2(Ω)

, (6.124)

≤ ε2 ∣∣ Π̃[∆z∂
2
G]v ∣∣

L2(Ω)
+ ε2 ∣∣2Π̃[∇z∂2

G](∇zv) ∣∣L2(Ω)
+ ε2 ∣∣ Π̃∂2

GLv ∣∣L2(Ω)
, (6.125)

≤ ε2 ∣∣ Π̃[∆z∂
2
G]v ∣∣

L2(Ω)
+ ε4 ∣∣2Π̃[∇z∂2

G](∇zv) ∣∣L2(Ω)
+ ε2 ∣∣λp,0Π̃∂2

Gv ∣∣L2(Ω)
, (6.126)

≤ ε2 ∣∣ Π̃[∆z∂
2
G]v ∣∣

L2(Ω)
+ c2ε3 ∣∣ v ∣∣L2(Ω) + c3ε ∣∣ v ∣∣L2(Ω) , (6.127)

where the last inequality follows from Propositions 6.3.1 and 6.3.2. The first term in (6.127) has the following

bound

ε2 ∣∣ Π̃[∆z∂
2
G]v ∣∣

L2(Ω)
≤ ε2

RRRRRRRRRRRR

RRRRRRRRRRRR
ε

⎡⎢⎢⎢⎢⎣

((1,1) ⋅ κ⃗)2

6J̃4
p

∂2
s +

⎛
⎝
((1,1) ⋅ κ⃗)2

3J̃4
p

+ ε((1,1) ⋅ κ⃗)
2z ⋅ κ⃗

12J̃5
p

⎞
⎠
∂s

⎤⎥⎥⎥⎥⎦
v

RRRRRRRRRRRR

RRRRRRRRRRRRL2(Ω)

, (6.128)

≤ c1ε ∣∣ v ∣∣L2(Ω) , (6.129)

for some c1 independent of ε (The explicit calculation is similar to that of Propositions 6.3.1 and 6.3.2).

Plugging (6.128) into (6.127) yields

ε2 ∣∣ Π̃L(∂2
Gv) ∣∣L2(Ω)

≤ c5ε ∣∣ v ∣∣L2(Ω) . (6.130)
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Plugging equation (6.130) into (6.123) we obtain the required bound

∣∣ Π̃L2
pv ∣∣L2(Ω)

≤ εC ∣∣ v ∣∣L2(Ω) , for v ∈XΣ (6.131)

where C is independent of ε, but it depend upon ∣∣κ ∣∣L∞(Ω), which is uniformly bounded for Γp admissible.

6.3.3 Bounding Π̃LpΠ

Finally, the following Proposition shows that the operator Π̃LpΠ is bounded.

Proposition 6.3.3. The operator Π̃LpΠ ∶ l2(RN×N) ↦ l2(RN×N) has an O(ε) operator norm.

Proof. Let v ∈XΣ, v = ∑j∈Σ bjψ0Θj with ∥v∥L2(Ω) = 1. In particular,

Πv = v, Π̃v = 0, (6.132)

where Π is the projection onto XΣ and Π̃ is the complementary projection.

Fix λ∗ ∈ ρ(L2
p), where ρ(L2

p) is the resolvent set of L2
p, and rewrite Lp in the following way

Lp = L2
p + εL̃p = (L2

p − λ∗) + εL̃p(L2
p − λ∗)−1(L2

p − λ∗) + λ∗. (6.133)

Taking the L2-norm of Π̃LΠ acting on v yields

∣∣ Π̃LpΠv ∣∣L2(Ω)
= ∣∣ Π̃(L2

p − λ∗)v + εΠ̃L̃(L2
p − λ∗)−1(L2

p − λ∗)v ∣∣L2(Ω)
, (6.134)

≤ ∣∣ Π̃L2
pv ∣∣L2(Ω)

+ ε ∣∣ Π̃L̃(L2
p − λ∗)−1(Π + Π̃)(L2

p − λ∗)v ∣∣L2(Ω)
, (6.135)

≤ ∣∣ Π̃L2
pv ∣∣L2(Ω)

(6.136)

+ ε (∣∣ L̃(L2
p − λ∗)−1Π(L2

p − λ∗)v ∣∣L2(Ω)
+ ∣∣ L̃(L2

p − λ∗)−1Π̃(L2
p − λ∗)v ∣∣L2(Ω)

) ,

≤ ∣∣ Π̃L2
pv ∣∣L2(Ω)

(6.137)

+ ε (∣∣ L̃(L2
p − λ∗)−1 ∣∣

L2(Ω)
∣∣ΠL2

pv ∣∣L2(Ω)
+ ∣∣ L̃(L2

p − λ∗)−1 ∣∣
L2(Ω)

∣∣ Π̃L2
pv ∣∣L2(Ω)

) .

Since L̃ is relatively bounded with respect to L2
p, the operator L̃(L2

p−λ∗)−1 has an O(ε) bound as an operator

from l2(RN×N) to l2(RN×N). In section 6.3.2 we have shown that

∣∣ Π̃L2
pΠ ∣∣

L2 ≤ cε. (6.138)

Therefore, combining bound (6.138) with the boundedness of ∣∣ L̃(L2
p − λ∗)−1 ∣∣

L2 , an inspection of equa-
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tion (6.137) yields

∣∣ Π̃LpΠv ∣∣L2 ≤ c̃ε ((1 + ε) ∣∣ v ∣∣L2 + ∣∣ΠL2
pv ∣∣L2) (6.139)

To complete the bound on ∣∣ Π̃LpΠ ∣∣
L2 we need show that ∣∣ΠL2

pΠ ∣∣
L2 is bounded. Using the definition

of Π, (6.14), we can rewrite the operator ΠL2
pΠv as

ΠL2
pΠ∑

j∈Σ

bjψ0Θk = ∑
k∈Σ

∑
j∈Σ

bj(L2
pψ0Θj , ψ0Θk)L2ψ0Θk, (6.140)

and define its matrix representation M̄ ∈ RN×N , where N ∼ O(ε−3/2), with entries

M̄j,k ∶= (L2
pψ0Θj , ψ0Θk)L2 . (6.141)

Calculating L2
pv explicitly, we can write M̄ = M̄diag + M̄off-diag where

M̄diag =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(λp,0 − ε2βk)2 +O(ε2) if k = j,

0 if k ≠ j,
(6.142)

M̄off-diag =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if k = j,

ε2√ε(Pk + Pj) ∫Γ ∫
l/ε

0 (z ⋅ κ⃗)κ⃗ ⋅ (∇ψ0)ψ0ΘkΘj dz ds +O(ε3) if k ≠ j,
(6.143)

see appendix (E.3) for detailed calculations. By Theorem 5.2 we know that M̄off-diag has an O(ε) bound

as an operator from l2(RN×N) to l2(RN×N). Moreover, we consider k ∈ Σ for which (λp,0 − ε2βk)2 ∼ O(ε).

Hence, M̄ and M̄diag has a similar bound and

∣∣ΠL2
pv ∣∣L2 ≤ cε ∣∣ v ∣∣L2 . (6.144)

Inserting this bound back to (6.139) yields

∣∣ Π̃LΠv ∣∣
L2 ≤ εc ∣∣ v ∣∣L2 , (6.145)

which implies that Π̃LpΠ has an O(ε) bound as an operator l2(RN×N) → l2(RN×N). ∎

Recall the 2× 2 block form of L, (6.15). In this section we have shown that the off diagonal blocks has O(ε)

bound as operators from l2(RN×N) → l2(RN×N). The next step in the analysis will be to show that, at
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leading order, the spectrum of L is determined by the spectrum of M . However, we already proved this

for the Bilayer, and since the analysis does not depend upon the interface co-dimension, the same result

holds here. We conclude that the pearling stability condition of L, for the co-dimension 2 structure is, at

leading order, the pearling condition of M , given in Corollary 6.2.2. That is, we have shown that for a given

admissible interface, Γp, the associated pore solution constructed in (2.75), is stable with respect to the

pearling bifurcation if and only if the far-field chemical potential µ1 satisfies the pearling stability condition

stated in Theorem 6.0.2.
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Chapter 7

Analysis of Network Bifurcations

7.1 Introduction

In the chapters 3 and 4 we develop asymptotic expressions for the geometric evolution of admissible bilayer

and pore morphologies. These are quenched curvature driven flows, which yield a stable motion by mean

curvature for values of the spatially constant chemical potential, µ, that are less than µ∗b for bilayers and

less than µ∗p for pores. If the chemical potential exceeds either of these critical values, then the evolution

becomes motion against mean curvature, which is unstable to fingering growths. In section 4.7, the combined

evolution of well separated bilayers and pores is given by equations (4.166-4.169), which couple the evolution

of the two morphologies through the spatially constant value of the far-field chemical potential. The stability

of bilayers and pores to the pearling bifurcation is characterized in chapters 5 and 6, respectively. Again

the stability condition can be expressed in terms of the magnitude of the far field chemical potential with

respect to critical values that depend only upon the functionalization parameters, η2, η2 and the potential

well W . As the stability of the underlying pore and bilayer morphologies is independent of their shape, for

a fixed potential well W , we may analyze the stability regions of bilayers and pores with respect to µ1, η1,

and η2. For simplicity we fix η1 = 1 and present the stability regions in terms of µ1 and ηd ∶= η1 − η2.

Under the H−1 gradient flow the chemical potential µ1 is dynamic on the τ = O(ε−1) time-scale. This is the

same time scale as the geometric flow, and hence of the fingering instability. However the time scale of the

pearling instability is governed by the pearling eigenvalues of ∆L which are two orders of ε larger than the

pearling eigenvalues of L, that is they scale with O(ε−1) and the time-scale of the of the onset of the pearling

instability is t = O(ε). Thus the pearling instability manifests itself on a time scale that is instantaneous

with respect to the underlying geometric evolution.
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7.2 Meandering Equilibria

We investigated the geometric evolution of co-dimensions one and two morphologies in Chapters 3 and 4. It

was shown that, in the combined system, so long as the underlying network morphologies remain admissible

and have non-zero curvature, then the leading order chemical potential µ1 will decay exponentially to a

constant, see equation (4.165). The explicit expression for the equilibria points of the chemical potential for

a system with bilayers, µ∗b , and for a system with pores, µ∗p, takes the form

(3.116) ∶ µ∗b(ηd) ∶= −
1

2
(2η1 − ηd)

∣∣ Û ′
b ∣∣

2

L2

∫R Ûb dz
, (7.1)

(4.149) ∶ µ∗p(ηd) ∶= η1
∫
∞

0 (Û ′
p)2RdR

2 ∫
∞

0 ÛpRdR
. (7.2)

According to the results in Section 4.7, for non-flat interfaces, the range µ1 ∈ [µ∗p, µ∗b ] is invariant under the

flow, and once µ1 enters this range one structure will shrink, while the other morphology will grow.

Once a double-well potential Wξ has been chosen, see equation (7.10), we can calculate the bilayer and pore

profiles, Ub and Up from equations 2.37 and 2.75 respectively, see Figure 7.1.
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Figure 7.1: The bilayer profile (left) and the pore profile (right) corresponding to the fixed tilted double-well
potential W

The functionalization parameter η2 plays an important rule: since it can be either positive or negative it will

determine the relative size of µ∗b and µ∗p, and so we consider η2 as a free parameter through ηd. Once the

well, W , and η1 are fixed, the only two varying parameters in the system are µ1 and η2. Figure 7.2 depicts

the equilibria points, of the two structures, as a function of ηd. The two equilibria lines intersect and divide

the plane into four regions: above the two lines - both structures grow, and the chemical potential decays,
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Figure 7.2: The meandering equilibria lines: The blue (solid) line is for the bilayer system, µ∗b , and the
red (dashed) line is for the pore system µ∗p, as a function of ηd, where η1 = 1 fixed and a fixed double-well
potential.

below the two lines - both structures shrink, and the chemical potential grows, and two regions between the

two lines, where one structure grows and the second decays. The intersection point of the two equilibria

lines is given by

η∗d ∶= η1

⎛
⎝

1 +
⎛
⎝

∣∣Up ∣∣LR

∫
∞

0 ÛpRdR
+ ∣∣Ub ∣∣2L2

2 ∫R Ûb dz
⎞
⎠
∫R Ûb dz
∣∣Ub ∣∣2L2

⎞
⎠
, (7.3)

and, after choosing Wξ and η1, the intersection point, η∗d , is fixed. For this specific value of ηd the strong

FCH may, at leading order, support a coexistence of the two morphologies. However, for any value of ηd > η∗d
the system gives priority to pores, and, similarly, when ηd < η∗d the system prefers bilayers.

7.3 Pearling Stability

In Chapters 5 and 6 we derived an explicit leading order expression for the pearling eigenvalues. The pearling

stability condition is the condition on µ1 for which the pearling eigenvalues remain positive. The pearling

stability conditions, for the bilayers and the pores, respectively, take the form

(5.2.3) ∶ µ1Sb + ηdλb,0 ∣∣ψb,0 ∣∣22 < 0, for bilayers (7.4)

(6.2.2) ∶ µ1Sp + ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
) < 0, for pores, (7.5)
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where λb,0 is the ground-state eigenvalue of the linear operator Lb,0 , defined in (1.29), with the corresponding

eigenfunction ψb,0, λp,0 is the ground state eigenvalue of the linear operator Lp,0, defined in (2.81), with the

corresponding eigenfunction ψp,0, and Sb, Sp are the shape factors of the bilayers and the pores, respectively,

defined by

(5.41) Sb ∶= ∫
R

Φb,1W
′′′(Ub)ψ2

b,0 dz, (7.6)

(6.33) Sp ∶= 2π∫
∞

0
Φp,1W

′′′(Up)ψ2
p,0RdR. (7.7)

Within the µ1 − ηd plane the pearling bifurcation occurs along the two ”pearling bifurcation lines”

(5.2.3) ∶ P ∗
b =

⎧⎪⎪⎨⎪⎪⎩
µ1 = −

ηdλb,0 ∣∣ψb,0 ∣∣22
Sb

RRRRRRRRRRR
ηd ∈ R

⎫⎪⎪⎬⎪⎪⎭
, (7.8)

(6.2.2) ∶ P ∗
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
µ1 = −

ηd (∣∣ψ′p,0 ∣∣2
LR

+ λp,0 ∣∣ψp,0 ∣∣2LR
)

Sp

RRRRRRRRRRR
ηd ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (7.9)

The sign of shape factors Sb, Sp determines if the morphology is pearling stable when µ1 is above the

pearling bifurcation lines P ∗
b , P

∗
p , or if the morphology pearls.

7.4 Numerical Evaluation of Bifurcation Regions

In this section we numerically determine the pearling lines and the meander stability/meander fingering lines

and present their partitioning of the µ1 − ηd plane. We fix the background state, b−, to be −1, and choose a

tilted double-well potential of the form

Wξ(u) =
(u2 − b2−)2

4
− ξ

3
(u − 2b−), (7.10)

where the parameter ξ determines the depth of the right well. We consider 3 different well tilts, corresponding

to ξ = −0.9,−0.7,−0.5, see Figure 7.3. We start by fixing ξ = −0.9.

To calculate each of the stability lines we must evaluate the ground state eigenvalue, the ground state

eigenfunctions, and the value of the shape factor. We use the Evans functions to calculate the ground state

eigenvalues, and for the potential defined in (7.10) we find that λb,0 = 0.7421 and λp,0 = 0.4648. We normalize

the associated eigenfunctions so that ∣∣ψb,0 ∣∣22 = ∣∣ψp,0 ∣∣2LR
= 1, see Figure 7.4. Next, to evaluate the shape

factors Sb and Sp we need an expression for the ”L−11 functions” Φb,1 ∶= L−1
b,01and Φp,1 ∶= L−1

p,01, defined

in (2.40) and (2.86), respectively, and depicted in Figure 7.5, and the resulting values for the shape factors
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Figure 7.3: The tilted double-well potential W (u).
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Figure 7.4: The ground state eigenfunctions: ψb,0 (left) and ψp,0 (right).

are given in Table 7.1. The pearling bifurcation lines divide the µ1 − ηd plane into four regions, when both

shape factors are negative. The first region - above the two lines, both morphologies are pearling stable,

second region - below the two lines, both morphologies are pearling unstable, the third region where the

bilayer is pearling unstable while the pore is stable and the fourth region it is vise versa, see Figure 7.6

(left). The equilibria lines, µ∗b(ηd) and µ∗p(ηd), defined in equations (7.1) and (7.2) are also functions of ηd,

and figure 7.6 (right) shows the partitioning of the plane from all four lines. The invariant interval for µ1

is between the two horizontal lines, where the blue (solid) line represents the bilayer equilibria and the red

(solid) line represents the pore equilibria line.

Recalling that the parameter µ1 is dynamic on the slow τ = εt time scale, we consider initial data for which

the chemical potential µ1 lies within the region where both morphologies are pearling stable and are growing,
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Figure 7.5: The L−11 functions: Φb,1 (left) and Φp,1 (right).

ξ Sb Sp

-0.9 -2.1958 -0.0431

-0.7 -0.616 -0.033

-0.5 0.8736 -2.1756

Table 7.1: Numerical evaluations of the shape factor of the bilayers Sb and the shape factor of the pores Sp
as a function of the tilt of the double well potential Wξ(u).

see arrow on Figure 7.6 (right). Then for ηd < 0 the chemical potential will shrink while both the bilayer and

pore morphologies, Γb and Γp, will grow, while they may finger, this is a slow process which can be dominated

by the evolution of µ1 if the curvature weighted integrals in (4.168) are sufficiently large. Assuming that

both morphologies remain admissible, then at some time t ∼ O(ε−1) the chemical potential will cross the P ∗
b

line, and the bilayers will pearl on a fast O(ε) time-scale.

Generically the coupled bilayer and pore evolution is competitive, with the two morphologies seeking in-

compatible values of the far-field chemical potential at equilibrium. However, by tuning the value of ηd,

the equilibrium values can balance, µ∗b = µ∗p, and the codimension one and two morphologies can potentially

co-exist. The green circle in Figure 7.6 marked the location of a common equilibria, and for the specific

double-well potential, with ξ = −0.9, we see that the equilibria point is located in the pearling stable region.

For this value of ηd, and an initial value of µ1 below the equilibria point, the two morphologies with shrink,

until reaching the equilibria, without suffering from pearling instability or meandering instability.

For a double tilted well potential Wξ with ξ = −0.7 the results are qualitatively same as the case ξ = −0.9.

The values of the shape factors are indicated in Table 7.1 and Figure 7.7 (above) depicts the division of

the µ1 − ηd plane by the four meandering equilibria/pearling bifurcation lines.
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Figure 7.6: Pearling bifurcation lines as a function of ηd (top left), Pearling and Equilibria lines (top right),
the co-existence equilibria is marked by a green circle. Zooming onto the black circle in the figure on the
right (bottom center).

We consider an even more flattened tilted double well potential Wξ, with ξ = −0.5. In this case, the value

the shape factor of the bilayer is positive, see Table 7.1. The change in the sign of Sb implies that the

bilayer morphology is stable as long as µ1 lies below P ∗
b . Furthermore, the shape factor of the pore remains

negative and the pore structure is stable for µ1 above P ∗
p . For ηd close to zero, the area where both structures

are pearling stable is located inside the dynamically invariant interval. The chemical potential will decay to

its equilibria, and will stay inside the interval, while the pores will shrink, and the bilayers will grow. As µ1

decays, it will cross the pore bifurcation line, P ∗
p , which will cause the pore structure to pearl before the

system reached its equilibria, see Figure 7.7 (bottom).

Note 8. The choice of the potential Wξ influence the sign of Sb. By changing the potential tilt, we are able

to change the sign of Sb. If the shape factor is identically zero, the corresponding pearling bifurcation line
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Figure 7.7: The two equilibria lines and the two bifurcation lines for a double tilted well with ξ = −0.7
(top) and with ξ = −0.5 (bottom).

will be vertical in the µ1 − ηd plane.
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7.5 Comparison to Experiment and Full FCH simulations

The Functionalized Cahn-Hilliard free energy provides a compact description of the energy landscape driving

morphological selection in amphiphilic mixtures, such as lipid bilayers. We have shown that the strength of

the interactions of the hydrophilic units with the solvent phase, parameterized by η1 > 0, the packing entropy

of the hydrophobic tails, parameterized by η2, and the pressure jump between amphiphilic and hydrophobic

phases, characterized by the difference in self energies, W (b±) of the amphiphilic and bulk phases, can

trigger a range of bifurcations. Specifically the fingering and pearling instabilities observed experimentally

in [Budin and Szostak, 2011] and [Zhu et al., 2012] by adjusting the bulk values of lipids and the charge

density of the lipids, respectively, can be induced in the FCH framework by varying the corresponding

control parameters. The fingerling instability is triggered by a jump in the value of the chemical potential µ1.

Assuming we start with the combined system at its equilibria point, and instantaneously increase µ1. Then,

at least one morphology will start growing, as µ1 decays back to its equilibria, and this morphology may

start fingering, see Figure 7.8 (left). On the other hand, the pearling instability can be triggered by an

Bilayers stable,
Pores pearl,

Both grow & �nger.

Pores stable, Bilayers pearl

Both pearl & shrink

Both pearling stable, grow & �nger

Both pearling stable
& shrink

Both shrink

Both pearl, 
grow & �nger

Fingering instability,

Figure 7.8: (left) Increasing the background state µ1 moves the black point from its equilibria, which
results in growth of both morphologies. (right) Szostak’s experiment: raising the background concentration
of lipids induces the vesicle to grow worm-like (co-dimension two) protrusions over a 74 nano-second time
period [Budin and Szostak, 2011]

increase in ηd which moves the system from its equilibria in a pearling stable region into a pearling unstable

region, see figure 7.9 (left).

Another way to change the stability of a system is by changing the tilt of the double-well potential. Fig-
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Figure 7.9: (left) Increasing ηd moves the black point to a different pearling stability area, which quickly
leads to pearling in the bilayers. (right) Changing the density of charged groups on the surface via a
photochemically induced redox reaction incites the pore to pearl and break into micelles [Zhu et al., 2012].

ure 7.10 describes the numerical results for ξ = −0.7 (left) for ξ = −0.9 (right), where the green dot marks the

initial data for which the functionalization terms satisfy ηd = −1 and the chemical potential, at the initial

state, is µ1(0) = −0.4. For ξ = −0.7 the green dot is located at a region which is both pearling stable and me-

andering stable. According to the analysis, starting with a combined system, with initial data corresponding

to the green dot, both morphologies will shrink while µ1 grows until µ1 = µ∗b , and both structures should

remain pearling stable. However, for ξ = −0.9, the same green dot would be located in a region corresponding

to meandering stability, i.e., the two structures will shrink, however, the region is pearling unstable for the

bilayer. These results are in concord with Figure 1.10 which describes the competition for the amphiphilic

phase between a bilayer and pores as a function of the tilt.

There are however many avenues to explore, for example the pearling bifurcation induces a periodic dimpling

of a bilayer surface which can lead to perforation. Within the biological context of cell membranes, it is

of particular interest to understand the energy required to open a single hole. Can a local adjustment of

parameter values, such as a spatial variation in η1, induce the opening of isolated holes in the membrane?

154



Bilayers stable,

Pores pearl,

Both grow & �nger

Pores stable,

Bilayers pearl,

Both shrink.

Both pearl & shrink

Both pearling stable, grow & �nger

Both pearling stable

 & shrink

Both pearl, grow & �nger

Bilayers stable,

Pores pearl,

Both grow & !nger

Pores stable, 

Bilayers pearl,

Both shrink.

Both pearl & shrink

Both pearling stable, grow & !nger

Both pearl, grow & !nger

Figure 7.10: Pearling and meandering stability regions for different tilts of the potential Wξ. For the flat
tilt ξ = −0.7, the green dot is both meandering and prealing stable (left). For ξ = −0.9, the green dot is
located in the bilayer unstable pearling region.

7.6 Verifying the Numerical Results

To verify the numerical results presented here, we compare the numerical value of the shape factor, Sb,

as well as the numerical values of other key parameters, to the value of their algebraic expressions, given

in [Doelman et al., 2014]. It was shown by [Doelman et al., 2014] that the shape factor Sb, of the bilayer is

negative for a family of tilted double-well potentials of the form

Wp(u) = W̃p(u + 1) + 20(u − m̃p + 1)p+1H(u − m̃p + 1), (7.11)

where

W̃p(u) ∶=
1

p − 2
(pu2 − 2up), mp ∶=

p

2

1
p−2 > 1, (7.12)

H is the Heaviside function and p > 2. Figure 7.11 depicts W3. Moreover, in [Doelman et al., 2014] algebraic

expressions are derived for key quantities, which we repeat in the following Lemma.

Lemma 7.1 ([Doelman et al., 2014]). Fix p > 2 and let Ub be the homoclinic solution of ∂2
zUb = W ′(Ub)

for W =Wp. Then the ground state eigenvalue of the linearized operator Lb,0, defined in (1.29), satisfies

λb,0 =
1

2
p(p + 2) > 0. (7.13)

Moreover, the following equalities hold

∣∣U ′
b ∣∣L2(Ω) = ∣∣ψb,0 ∣∣L2(Ω)

= 2√
p − 2

m̃
p+2
2
p I ( 2

p − 2
) , (7.14)
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Figure 7.11: A tilted double-well potential of the form (7.11) for p = 3 (blue) and of the form (7.10)
for ξ = −0.9 (red).

where I(q) = 4q ∫
1

0 z
q(1 − z)q dz, while the shape factor Sb satisfy

Sb = −
2(p − 1)√
p − 2

m̃
1
2 (3p−4)
p I ( 1

p − 2
) . (7.15)

For p = 3, we use W3 to obtain the values of λb,0, ∣∣U ′
b ∣∣L2(Ω)

and Sb numerically and compare them to the

algebraic values, given in Lemma 7.1. The results are shown in table 7.2.

Parameter Numerical Value Algebraic value

λb,0 7.4985 7.5

∣∣U ′
b ∣∣L2(Ω)

2.9394 2.9394

Sb -7.3242 -7.3485

Table 7.2: Numerical evaluations of the key parameters compared to their algebraic values, for the double
well potential W3(u).

Note that the tilted double-well potential Wξ, defined in (7.10), does not belong to this class of potentials,

defined in (7.11). The double well potentials given by (refNV-eq:ArjenW) have strongly unequal depths of

the two local minima and a larger value for the local maxima between them. The value of Sb turns positive

for Wξ as the value of the local minima become proximal and the height of the local maxima decreases.
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Appendix A

Coordinates System

A.1 Polar Coordinates

The co-dimension 2 morphologies can be formed from cylindrically, symmetric critical points of the Cahn-

Hilliard free energy. In polar coordinates, the scaled destance vector z is given by

z = (R cos θ , R sin θ), (A.1)

where R is the ε-scaled radial distance to Γp. We rewrite the z-gradient and the z-Laplace operators in polar

coordinates

∇z = (cos θ∂R −
1

R
sin θ∂θ , sin θ∂R +

1

R
cos θ∂θ), (A.2)

∆z = ∂2
R +

1

R
∂R +

1

R2
∂2
θ . (A.3)

For radial symmetric functions the gradient (A.2) and the Laplacian (A.3) reduce to

∇z = (cos θ∂R , sin θ∂R), (A.4)

∆z = ∂2
R +

1

R
∂R. (A.5)

Plugging (A.5) into (2.70), we obtain a radially symmetric representation of the Laplacian in the inner

coordinates

∆x = ε−2 (∂2
R +

1

R
∂R) − ε−1κ⃗ ⋅ (cos θ∂R , sin θ∂R) + ∂2

s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z +O(ε), (A.6)
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A.2 Detailed investigation of the spectrum of Lb,0.

Consider the linear, closed, limit operator

Lb,∞ ∶= ∂2
z −W ′′(b−). (A.7)

According to Strum-Liouville Theory for operators on the real line, the point spectrum of Lb,∞ consists of

finite number of simple eigenvalues which can be enumerated in a strictly descending order

λ0 > λ1 > ... > λN >W ′′(b−). (A.8)

We define the matrix

A ∶=

⎛
⎜⎜⎜⎜⎜
⎝

0 1

λ −W ′′(b−) 0

⎞
⎟⎟⎟⎟⎟
⎠

(A.9)

The matrix eigenvalues are given by

µ± = ±
√
W ′′(b−) − λ. (A.10)

The essential spectrum of Lb,∞ satisfies

σess(Lb,∞) = {λ ∈ R ∶ dimEc(A(λ)) ≠ 0} =W ′′(b−). (A.11)

Note that Lb,∞ is the limit operator of Lb,0, defined in (2.39), and Lb,0 is a close, linear operator. Moreover,

since the operator

(Lb,0 −Lb,∞)(Lb,0 − λ∗)−1 = (W ′′(Ub) −W ′′(b−))(Lb,0 − λ∗)−1 (A.12)

is a compact for every λ∗ ∈ σ(Lb,0)), we know that Lb,0 is a relatively compact perturbation of Lb,∞. We

apply Weyl’s Theorem to conclude

σess(Lb,∞) = σess(Lb,0). (A.13)

A.3 Self-adjoint operators

Consider the L2(Ω) inner product defined in (2.73) and the two operators L̃b ∶= ∂2
z −W ′′(u) + ε2∆s and the

full operator Lb ∶= ∂2
z +εκ∂z −W ′′(u)+ε2∆G. The Laplace-beltrami operator is not self-adjoint in this inner
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product,

(∆sf, g)L2(Ω) = ∫
Γ
∫

l/ε

−l/ε
gJ−1

0 ∇s ⋅ (g−1J0∇s)f J0J̃ dz ds = −∫
Γ
∫

l/ε

−l/ε
g−1J0∇s(gJ̃) ⋅ ∇sf dz ds (A.14)

= ∫
Γ
∫

l/ε

−l/ε
∇s(g−1J0∇s(gJ̃))f dz ds ≠ (f,∆sg)L2(Ω) (A.15)

although it is self-adjoint in the Γb-inner product. However, ∆G is self-adjoint in the L2(Ω) inner product.

(∆Gf, g)L2(Ω) = ∫
Γ
∫

l/ε

−l/ε
gJ−1∇s ⋅ (g−1J∇s)f J dz ds = −∫

Γ
∫

l/ε

−l/ε
g−1J∇s(g) ⋅ ∇sf dz ds (A.16)

= ∫
Γ
∫

l/ε

−l/ε
∇s(g−1J∇s(g))f dz ds = (f,∆Gg)L2(Ω). (A.17)

Calculating the L2(Ω)-inner product to the rest of the terms in the operator Lb yields,

(∂2
zf, g)L2(Ω) = ∫

Γ
∫

l/ε

−l/ε
f ′′gJ dzds = ∫

Γ
∫

l/ε

−l/ε
f(gJ)′′ dzds = ∫

Γ
∫

l/ε

−l/ε
fg′′J + 2fg′J ′ + fgJ ′′ dzds (A.18)

= (f, ∂2
zg)L2(Ω) + 2ε∫

Γ
∫

l/ε

−l/ε
fg′κJ dzds + ε∫

Γ
∫

l/ε

−l/ε
fgκ′J dzds + ε2 ∫

Γ
∫

l/ε

−l/ε
fgκ2J dzds,

(A.19)

ε(κ∂zf, g)L2(Ω) = ε∫
Γ
∫

l/ε

−l/ε
κf ′gJ dzds = ε∫

Γ
∫

l/ε

−l/ε
f(gJκ)′ dzds = −∫

Γ
∫

l/ε

−l/ε
fεκg′J + εfgJκ′ + fgεκJ ′ dzds

(A.20)

= −ε(f, κ∂zg)L2(Ω) − ε∫
Γ
∫

l/ε

−l/ε
fgκ′J dzds − ε2 ∫

Γ
∫

l/ε

−l/ε
fgκ2J dzds. (A.21)

Each of the terms separately is not self-adjoint in the L2(Ω)-inner product, however their sum satisfies

(∂2
zf + εκ∂zf, g)L2(Ω) = (f, ∂2

zg + εκ∂zg)L2(Ω).

Therefore, our full operator Lb is self-adjoint in the L2(Ω)-inner product where the L̃b operator is not.
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Appendix B

Geometric Evolution Co-dimension 1

B.1 Outer expansion of the 1st variation of F

Recall that the 1st variation of F is given by

δF
δu

(u) = [(−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + εηdW ′(u)] . (B.1)

Plugging a formal expansion of u(x) = u0(x) + εu1(x) + ... and expanding yields

(−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + εηdW ′(u) = (B.2)

(−ε2∆ +W ′′(u0) + ε(W ′′′(u0)u1 − η1) + ε2(W ′′′(u0)u2 +
1

2
W ′′′′(u0)u2

1) + ..) ⋅

(−ε2(∆u0 + ε∆u1 + ε2∆u2) +W ′(u0) + εW ′′(u0)u1 + ε2(W ′′(u0)u2 +
1

2
W ′′′(u0)u2

1) + ...)

+ εηd (W ′(u0) + εW ′′(u0)u1 + ε2(W ′′(u0)u2 +
1

2
W ′′′(u0)u2

1) + ...) .

Since µ(x, t) ∶= δF
δu

(u) we can rewrite it in order of ε such that

δF
δu

(u) = µ0(x, t) + εµ1(x, t) + ε2µ2(x, t) +O(ε3), (B.3)

where

µ0 =W ′′(u0)W ′(u0), (B.4)

µ1 =(W ′′′(u0)u1 − η1)W ′(u0) + (W ′′(u0))2u1 + ηdW ′(u0), (B.5)
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µ2 =(−∆ +W ′′′(u0)u2 +
1

2
W (4)(u0)u1)W ′(u0) + (W ′′′(u0)u1 − η1)W ′′(u0)u1 (B.6)

+W ′′(u0) (−∆u0 +W ′′(u0)u2 +
1

2
W ′′′(u0)u2

1) + ηdW ′′(u0)u1

B.2 Inner expansion of the t-derivative of u

To get an expression for the left-hand side using the whiskered coordinates we take the t-derivative of u and

consider u = ũ(s, z, τ). Treating both s and z as functions of t, the use of the chain rule is required, and

results in

ut = ∇S ⋅ ∇sũ +
∂ũ

∂z

∂z

∂t
+ ∂ũ
∂τ

∂τ

∂t
. (B.7)

Assuming that u do not change when s varies normal to Γb with z held fixed, see equation (??), and using

the normal velocity,defined in (3.9), equation (B.7) reduces to

∂u

∂t
= −ε−1Vτ(s)

∂ũ

∂z
+ ∂ũ
∂τ

∂τ

∂t
. (B.8)

Expanding ũ in orders of ε such that ũ(s, z, τ) = ũ0(s, z, τ) + εũ1(s, z, τ) +O(ε2) and plugging it back into

equation (B.8) yields

∂u

∂t
= −ε−1Vτ(s)

∂ũ0

∂z
− Vτ(s)

∂ũ1

∂z
+ ∂ũ0

∂τ

∂τ

∂t
− Vτ(s)

∂ũ2

∂z
+ ∂ũ1

∂τ

∂τ

∂t
+ ... . (B.9)

B.3 Inner expansion of the 1st variation of F

Recall that the 1st variation of F is given by

δF
δu

(u) = (−ε2∆ +W ′′(u) − εη1) (−ε2∆u +W ′(u)) + εηdW ′(u), (B.10)

and the chemical potential µ is defined by

µ ∶= δF
δu

(u). (B.11)

At a given time scale τ , the inner spatial expansion for the density function u(t, x) is given by

u(x, t) = ũ0(s, z, τ) + εũ1(s, z, τ) + ε2ũ2(s, z, τ) + ..., (B.12)
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and in local coordinates, recall that the Laplacian operator, see (2.9), takes the form

ε2∆x = ∂2
z + εκ∂z + ε2∆G. (B.13)

First, consider an expansion of each of the terms on the right-hand side of (B.10) :

−ε2∆ = − ∂2
z − εH0∂z − ε2(zH1∂z +∆s) − ε3∆1 + ... , (B.14)

−ε2∆ũ = − ∂2
z ũ0 − ε(∂2

z ũ1 +H0∂zũ0) − ε2(∂2
z ũ2 +H0∂zũ1 + zH1∂zũ0 +∆sũ0)

− ε3(∂2
z ũ3 +H0∂zũ2 + zH1∂zũ1 +∆sũ1 +∆1ũ0) + ... , (B.15)

W ′′(ũ) =W ′′(ũ0) + εW ′′′(ũ0)ũ1 + ε2[W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1]

+ ε3[W ′′′(ũ0)u3 +W (4)(ũ0)ũ1ũ2 +
1

6
W (5)(ũ0)ũ3

1] +O(ε4) , (B.16)

W ′(ũ) =W ′(ũ0) + εW ′′(ũ0)ũ1 + ε2[W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1]

+ ε3[W ′′(ũ0)ũ3 +W ′′′(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0)ũ3

1] +O(ε4). (B.17)

Next, we collecting the terms and write them in order of ε

(−ε2∆ +W ′′(u) − εη1) =(−∂2
z +W ′′(ũ0)) (B.18)

+ ε (−H0∂z +W ′′′(ũ0)ũ1 − η1)

+ ε2 (−zH1∂z −∆s +W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1)

+ ε3 (−∆1 +W ′′′(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2 +
1

6
W (5)(ũ0)ũ3

1) +O(ε4),

(−ε2∆u +W ′(u)) =(−∂2
z ũ0 +W ′(ũ0)) (B.19)

+ ε (−∂2
z ũ1 −H0∂zũ0 +W ′′(ũ0)ũ1)

+ ε2 (−∂2
z ũ2 −H0∂zũ1 −H1z∂zũ0 −∆sũ0 +W ′′(ũ0)ũ2 +

1

2
W ′′′(ũ0)ũ2

1)

+ ε3⎛
⎝
− ∂2

z ũ3 −H0∂zũ2 −H1z∂zũ1 −∆sũ1 −∆1ũ0

+W ′′(ũ0)ũ3 +W ′′′(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0)ũ3

1

⎞
⎠

+O(ε4).
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Using expansion (B.18) and (B.19) we can rewrite the 1st variation of F in the following form

δF
δu

(u) = µ̃0(s, z, τ) + εµ̃1(s, z, τ) + ε2µ̃2(s, z, τ) +O(ε3), (B.20)

where µ̃i for i ≥ 0 are the inner expansion of the chemical potential

µ(x, t) = µ̃0(s, z, τ) + εµ̃1(s, z, τ) + ε2µ̃2(s, z, τ) + ..., (B.21)

given by

µ̃0 =(−∂2
z +W ′′(ũ0))(−∂2

z ũ0 +W ′(ũ0)), (B.22)

µ̃1 =(−∂2
z +W ′′(ũ0))(−H0∂zũ0 − ∂2

z ũ1 +W ′′(ũ0)ũ1)+ (B.23)

(−H0∂z +W ′′′(ũ0)ũ1 − η1)(−∂2
z ũ0 +W ′(ũ0)) + ηdW ′(ũ0),

µ̃2 =(−∂2
z +W ′′(ũ0))(−∂2

z ũ2 − zH1∂zũ0 −H0∂zũ1 −∆sũ0 +W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1)+ (B.24)

(−H0∂z +W ′′′(ũ0)ũ1 − η1)(−∂2
z ũ1 −H0∂zũ0 +W ′′(ũ0)ũ1)+

(−zH1∂z −∆s +W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1)(−∂2
z ũ0 +W ′(ũ0)) + ηdW ′′(ũ0)ũ1,

and, merely from pedantic reasons (I don’t know if I use this term later on) we also have

µ̃3 =(−∂2
z +W ′′(ũ0)) (Lũ3 −H0∂zũ2 − zH1∂zũ1 −∆sũ1 −∆1ũ0 +W ′′′(ũ0)ũ1ũ2 +

1

6
W (4)(ũ0)ũ3

1) (B.25)

+ (−H0∂z +W ′′′(ũ0)ũ1 − η1) (Lũ2 −H0∂zũ1 − zH1∂zũ0 −∆sũ0 +
1

2
W ′′′(ũ0)ũ2

1)

+ (−zH1∂z −∆s +W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1) (Lũ1 −H0∂zũ0)

+ (−∆1 +W ′′′(ũ0)ũ3 +W (4)(ũ0)ũ1ũ2 +
1

6
W (5)(ũ0)ũ3

1) (−∂2
z ũ0 +W ′(ũ0))

+ ηd (W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1) .

B.4 Normal Velocity Calculations for τ = εt

Recall equation (3.91) given by

(−H0∂zLb,0ũ1 +H0W
′′′(Ub)ũ1U

′
b − η1H0U

′
b + z∂nµ1 − Vτ(s)∫

z

0
Ûb(w)dw,U ′

b)
L2(R)

. (B.26)
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To calculate each of the inner products we first note that the inner product of Lb,0ũ1, given in (3.76), with U ′′
b

yields

(Lb,0ũ1, U
′′
b )L2(R) = (µ̃1ϕ1 − ηd

z

2
U ′
b, U

′′
b )L2(R) = µ1 ∫

R
ϕ1U

′′
b dz − ηd ∫R

z

4
((U ′

b)2)′ dz (B.27)

= µ1 ∫
R
ϕ1Lb,0(

z

2
U ′
b)dz − ηd ∫R

z

4
((U ′

b)2)′ dz (B.28)

= µ1 ∫
R

z

2
U ′
b dz − ηd ∫R

z

4
((U ′

b)2)′ dz (B.29)

= −µ1

2
∫
R
Ub dz +

ηd
4
∫
R
(U ′

b)2 dz (B.30)

= −µ1

2
m + ηd

4
σb (B.31)

(B.32)

where we use identity (B.43) to get (B.28), (B.29) follows from the fact that Lb,0 is self-adjoint and (B.30)

follows from integrating by parts each of the integrals. The last equality we recall mb and σb are defined

in (1.50) and (3.94), respectively.

The first term in the inner product in equation (B.26) can be written as

(−H0∂zLb,0ũ1, U
′
b) =H0(Lb,0ũ1, U

′′
b ), (B.33)

and the second term in the inner product in equation (B.26) can be written as

(H0W
′′′(Ub)ũ1U

′
b, U

′
b) =H0(ũ1,W

′′′(Ub)(U ′
b)2) =H0(ũ1, Lb,0U

′′
b ) =H0(Lb,0ũ1, U

′′
b ) (B.34)

Summing these two inner product together yields

(−H0∂zLb,0ũ1 +H0W
′′′(Ub)ũ1U

′
b, U

′
b) = 2H0(Lb,0ũ1, U

′′
b ) = −H0µ1mb +H0

ηd
2
σb, (B.35)

where the last equality we used equation (B.31). Calculating the integrals in the next two term in equa-

tion (B.26) yields

(−η1H0U
′
b, U

′
b) = −η1H0 ∫

R
(Û ′

b)2 dz = −η1H0σb, (B.36)

(z∂nµ1, U
′
b) = ∂nµ1 ∫

R
zÛ ′

b dz = −∂nµ1mb, (B.37)

where for the last equality we integrated by parts. The last term in equation (B.26) involve the normal
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velocity Vτ(s)

(−Vτ(s)∫
z

0
Ûb(w)dw,U ′

b) = −Vτ(s)∫R ∫
z

0
Ûb(w)dwU ′

b dz = Vτ(s)∫R Û
2
b dz = Vτ(s)B1 (B.38)

Setting equation (B.26) equal to zero, summarizing the calculation of each inner product and solving for Vτ(s)

yields

Vτ(s) =
(H0µ1 + ∂nµ1)mb + 1

2
H0 (η1 + η2)σb

B1
. (B.39)

B.5 Useful Identities

Recall that Ub solves

W ′(Ub) = ∂2
zUb. (B.40)

Taking the z derivative of (B.40) yields

Lb,0U
′
b = 0, (B.41)

and taking the z derivative again yields

Lb,0U
′′
b =W ′′′(Ub)(U ′

b)2. (B.42)

In addition, direct calculation yields

Lb,0(
z

2
U ′
b) = ∂2

zUb. (B.43)
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Appendix C

Geometric Evolution Co-dimension 2

C.1 Appendix : Detailed expansion of the FCH equation using

inner variables

We start by expanding each term on the right-hand side of (4.3) to obtain

−ε2∆ = −∆z + εκ⃗ ⋅ ∇z + ε2(∂2
s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z) +O(ε3), (C.1)

−ε2∆ũ = −∆zũ0 − ε(∆zũ1 − κ⃗ ⋅ ∇zũ0) − ε2(∆zũ2 − κ⃗ ⋅ ∇zũ1 − ∂2
s ũ0 + (z ⋅ κ⃗)κ⃗∇ũ0) +O(ε3), (C.2)

W ′′(ũ) =W ′′(ũ0) + εW ′′′(ũ0)ũ1 + ε2[W ′′′(ũ0)ũ2 +
1

2
W (4)(ũ0)ũ2

1] (C.3)

+ ε3[W ′′′(ũ0)u3 +W (4)(ũ0)ũ1ũ2 +
1

6
W (5)(ũ0)ũ3

1] +O(ε4) (C.4)

W ′(ũ) =W ′(ũ0) + εW ′′(ũ0)ũ1 + ε2[W ′′(ũ0)ũ2 +
1

2
W ′′′(ũ0)ũ2

1] (C.5)

+ ε3[W ′′(ũ0)ũ3 +W ′′′(ũ0)ũ1ũ2 +
1

6
W (4)(ũ0)ũ3

1] +O(ε4). (C.6)

Next, collecting the terms by orders of ε yields

(−ε2∆ +W ′′(u) − εη1) =(−∆z +W ′′(ũ0)) (C.7)

+ ε (κ⃗ ⋅ ∇z +W ′′′(ũ0)ũ1 − η1) (C.8)

+ ε2 (∂2
s − (z ⋅ κ⃗)κ⃗ ⋅ ∇z +W ′′′(ũ0)ũ2 +

1

2
W (4)(ũ0)ũ2

1) (C.9)

+O(ε3), (C.10)

(−ε2∆u +W ′(u)) =(−∆zũ0 +W ′(ũ0)) (C.11)
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+ ε (−∆zũ1 + κ⃗ ⋅ ∇zũ0 +W ′′(ũ0)ũ1) (C.12)

+ ε2 (−∆zũ2 + κ⃗ ⋅ ∇zũ1 + ∂2
s ũ0 − (z ⋅ κ⃗)κ⃗ ⋅ ∇ũ0 +W ′′(ũ0)ũ2 +

1

2
W ′′′(ũ0)ũ2

1) (C.13)

+O(ε3). (C.14)

C.2 Appendix : Calculation of the solvability condition, τ = εt

Recall that the operators Lp,m given in (2.81) are self-adjoint in the R-weighted inner product, introduced

in (2.74). We calculate each term of the R-weighted inner product of (Q1, Up)LR
, where

Q1 ∶= − µ1κ⃗ ⋅ ∇zΦp,1 + ηdκ⃗ ⋅ ∇zL−1
p (W ′(Up)) + µ1W

′′′(Up)Φp,2κ⃗ ⋅ ∇zUp (C.15)

− ηdW ′′′(Up)L−2
p (W ′(Up))κ⃗ ⋅ ∇zUp − η1κ⃗ ⋅ ∇zUp.

Calculation of the R-inner product of the first term in (C.15) yields

(µ1κ⃗ ⋅ ∇zΦp,1, ∂z1Up)LR
= ∫

2π

0
∫

∞

0
µ1(κ1 cos θ + κ2 sin θ)Φ′

p,1(R)U ′
p(R) cos θRdRdθ (C.16)

= µ1κ1 ∫
2π

0
cos2 θ dθ∫

∞

0
Φ′
p,1U

′
pRdR = πµ1κ1 ∫

∞

0
Φ′
p,1U

′
pRdR,

using integration by parts and identity (C.39), equation (C.16) reduces to

πµ1κ1 ∫
∞

0
Φ′
p,1U

′
pRdR = −πµ1κ1 ∫ Φp,1(U ′

pR)′ dR = −πµ1κ1 ∫ Φp,1Lp (
1

2
RU ′

p)RdR (C.17)

= −πµ1κ1

2
∫ U ′

pR
2 dR = πµ1κ1 ∫ ÛRdR = πµ1κ1S1,

where S1 is the total mass, defined in (4.70). Similarly,

(µ1κ⃗ ⋅ ∇zΦp,1, ∂z2U)LR
= ∫

2π

0
∫

∞

0
(µ1(κ1 cos θ + κ2 sin θ)Φ′

p,1(R))U ′(R) sin θRdRdθ = πµ1κ2S1. (C.18)

Next we calculate the inner product of the 2nd term of Q1, (C.15), with ∂ziUp. Recall that W ′(Up) = ∆zUp

and, using identity (C.42), we have L−1
p (W ′(Up)) = L−1

p (∆zUp) = 1
2
RU ′

p. Therefore, the second term takes

the form ηdκ⃗ ⋅ ∇z( 1
2
RU ′) and the inner product reduces to

(ηdκ⃗ ⋅ ∇z(
1

2
RU ′), ∂z1U)LR

= ∫
2π

0
∫

∞

0

ηd
2

(κ1 cos θ + κ2 sin θ)(U ′ +RU ′′)U ′ cos θRdRdθ (C.19)
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= ηdκ1

2
∫

2π

0
∫

∞

0
(U ′ +RU ′′)U ′ cos2 θRdRdθ = πηdκ1

2
∫

∞

0
(U ′ +RU ′′)U ′RdR

(C.20)

= πηdκ1

2
∫

∞

0
(U ′)2RdR + πηdκ1

2
∫

∞

0

1

2
((U ′)2)′R2 dR (C.21)

= πηdκ1

2
S4 − π

ηdκ1

2
∫

∞

0
(U ′)2RdR = πηdκ1

2
S4 − π

ηdκ1

2
S4 = 0 (C.22)

where S4.

Next we calculate the inner product of the 3nd term of Q1, (C.15), with ∂ziUp.

(µ1W
′′′(Up)Φp,2κ⃗ ⋅ ∇zUp, ∂z1Up)LR

= πκ1µ1 ∫
∞

0
W ′′′(Up)(U ′

p)2Φp,2RdR = πκ1µ1 ∫
∞

0
L2(1

2
RU ′

p)Φp,2RdR

(C.23)

= πκ1µ1 ∫
∞

0

1

2
U ′
pR

2 dR = −πκ1µ1 ∫
∞

0
ÛpRdR = −πκ1µ1S1. (C.24)

The 4th term -

(ηdW ′′′(Up)L−2
p (W ′(Up))κ⃗ ⋅ ∇zUp, ∂z1Up)LR

= πηdκ1 ∫
∞

0
W ′′′(Up)(U ′

p)2L−2
p (W ′(Up))RdR (C.25)

= πηdκ1 ∫
∞

0
L2
p(

1

2
RU ′

p)L−2
p (W ′(Up))RdR (C.26)

= πηdκ1 ∫
∞

0

1

2
U ′
pW

′(Up)R2 dR (C.27)

= πηdκ1 ∫
∞

0

1

2
U ′
p(U ′′

p +
1

R
U ′
p)R2 dR (C.28)

= πηdκ1 ∫
∞

0

1

2
U ′
pU

′′
pR

2 dR + πηdκ1 ∫
∞

0

1

2
(U ′

p)2RdR (C.29)

= πηdκ1 ∫
∞

0

1

2
(1

2
(U ′

p)2)′R2 dR + πηdκ1

2
S2 (C.30)

= −πηdκ1 ∫
∞

0

1

2
(U ′

p)2RdR + πηdκ1

2
S2 (C.31)

= −πηdκ1

2
S4 +

πηdκ1

2
S4 = 0 (C.32)

Using the fact that W ′(Up) = U ′′
p + 1

R
U ′
p. And the inner product of the last term yields

(η1κ⃗ ⋅ ∇zUp, ∂z1Up)LR
= πη1κ1 ∫

∞

0
(U ′

p)2RdR = πη1κ1S4 (C.33)

we can summarize it

(Q1, ∂ziUp)LR
= −2πB̃1κiS1 − η1πκiS4. (C.34)
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C.3 Appendix : Useful Identities

The following basic trigonometric identities may come useful

cos(θ + π) = − cos(θ), (C.35)

sin(θ + π) = − sin(θ). (C.36)

The following are useful operator identities for Lp,m. Recall that the spaces Zm are orthogonal. We first

calculate Lp( 1
2
RU ′

p)

Lp(
1

2
RU ′

p) =
1

2
Lp,0(RU ′

p) =
1

2
(2U ′′

p +RU ′′′
p +

U ′
p

R
+U ′′

p −RW ′′(Up)U ′
p) (C.37)

= 1

2

⎛
⎜⎜⎜⎜⎜⎜
⎝

2U ′′
p + 2

U ′
p

R
+

=RLp,1U
′
p=0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
RU ′′′

p +U ′′
p −

U ′
p

R
−RW ′′(Up)U ′

p

⎞
⎟⎟⎟⎟⎟⎟
⎠

(C.38)

This yields the first identity

Lp(
1

2
RU ′

p) =
1

2
Lp,0(RU ′

p) = ∆zU = (U ′′
p +

U ′
p

R
) (C.39)

To obtain the next identity, we differential equation (2.75) twice w.r.t R

U (4)
p + 1

R
U ′′′
p − 2

U ′′
p

R2
+

2U ′
p

R3
−W ′′(Up)U ′′

p =W ′′′(Up)(Up)2 (C.40)

Next we calculate Lp(∆zUp)

Lp(U ′′
p +

U ′
p

R
) = Lp,0(U ′′

p +
U ′
p

R
) = U (4)

p + 1

R
U ′′′
p − 2

U ′′
p

R2
+

2U ′
p

R3
−W ′′(Up)U ′′

p + 1

R
(U ′′′

p +
U ′′
p

R
−
U ′
p

R2
−W ′′(Up)U ′

p)

(C.41)

using identity (C.40) we see that first boxed terms sum up to W ′′′(Up)(Up)2, and the second boxed terms

sum up to 1
R
Lp,1U

′
p = 0. This yields the second identity

Lp(∆zUp) = Lp,0(U ′′
p +

U ′
p

R
) =W ′′′(Up)∣∇Up∣2 =W ′′′(Up)(U ′

p)2. (C.42)
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Appendix D

Pearling Co-dimension 1

D.1 Calculations of the expansion of Lb

Consider the 2nd variation of F

Lb ∶=
δ2F
δu2

= (ε2∆ −W ′′(u) + εη1) (ε2∆ −W ′′(u)) − (ε2∆u −W ′(u))W ′′′(u) + εηdW ′′(u). (D.1)

Using the expansion of ub, given in (5.5), and considering the Taylor expansion of W (ub) and its deriva-

tives, Lb takes the form

Lb =[ε2∆ −W ′′(Ub) − εW ′′′(Ub)u1 − ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) + εη1]⋅ (D.2)

[ε2∆ −W ′′(Ub) − εW ′′′(Ub)u1 − ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) ]−

[ε2∆Ub + ε3∆u1 −W ′(Ub) − εW ′′(Ub)u1 − ε2 (W ′′(Ub)u2 +
1

2
W ′′′(Ub)u2

1) ]⋅

[W ′′′(Ub) + εW (4)(Ub)u1]+

εηd[W ′′(Ub) + εW ′′′(Ub)u1 + ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) ] + higher order terms.

Note that ε2∆Ub −W ′(Ub) = εHU ′
b + ε2���

�: 0
∆GUb since Ub is the homoclinic solution and it is independent of s.

Using the definition of the full operator Lb, defined in (2.45), equation (D.2) reduces to

Lb =[Lb − εW ′′′(Ub)u1 − ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) + εη1]⋅ (D.3)

[Lb − εW ′′′(Ub)u1 − ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) ]−
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ε[HU ′
b + ε2∆u1 −W ′′(Ub)u1 − ε(W ′′(Ub)u2 +

1

2
W ′′′(Ub)u2

1) ] ⋅ [W ′′′(Ub) + εW (4)(Ub)u1]+

εηd[W ′′(Ub) + εW ′′′(Ub)u1 + ε2 (W ′′′(Ub)u2 +
1

2
W (4)(Ub)u2

1) ] + higher order terms.

Collecting Lb in orders of ε yields

Lb =L2
b− (D.4)

ε[Lb ○ (W ′′′(Ub)u1) + (W ′′′(Ub)u1 + η1)Lb + (Lbu1 +HU ′
b)W ′′′(Ub) − ηdW ′′(Ub)]−

ε2[Lb ○ (W ′′′(Ub)u1 +
1

2
W (4)(Ub)u2

1) + (W ′′′(Ub)u1 +
1

2
W (4)(Ub)u2

1)Lb

− (W ′′′(Ub)u1 + η1)W ′′′(Ub)u1 + (Lbu2 −
1

2
W ′′′(Ub)u2

1)W ′′′(Ub)

+ (Lbu1 +HU ′
b)W (4)(Ub)u1 + ηdW ′′′(Ub)u1]

+O(ε3).

D.2 Calculating M

(L2
bψ0Θj , ψ0Θk)L2(Ω) = (Lbψ0Θj ,Lbψ0Θk)L2(Ω (D.5)

= ∫
Γ
∫

l/ε

−l/ε
(Lb,0 + εH∂z + ε2∆G)ψ0Θj(Lb,0 + εH∂z + ε2∆G)ψ0Θk J dzds (D.6)

= ∫
Γ
∫

l/ε

−l/ε
Lb,0ψ0ΘjLb,0ψ0Θk J dzds (D.7)

+ ε(∫
Γ
∫

l/ε

−l/ε
Lb,0ψ0ΘjH∂z(ψ0Θk)J dzds + ∫

Γ
∫

l/ε

−l/ε
H∂z(ψ0Θj)Lb,0(ψ0Θk)J dzds)+

ε2⎛
⎝∫Γ

∫
l/ε

−l/ε
Lb,0ψ0Θj∆G(ψ0Θk)J dzds + ∫

Γ
∫

l/ε

−l/ε
∆G(ψ0Θj)Lb,0(ψ0Θk)J dzds

+ ∫
Γ
∫

l/ε

−l/ε
H∂z(ψ0Θj)H∂z(ψ0Θk)J dzds

⎞
⎠

+O(ε3)

= εPkPj ∫
Γ

ΘkΘj J0 ds∫
l/ε

−l/ε
(ψ0

0)2dz + ε
√
ε(Pj + Pk)∫

Γ
∫

l/ε

−l/ε
ΘjΘkHψ

′
0ψ0 J dzds+

(D.8)

− ε2√εε2(Pjβk + Pkβj)∫
Γ
∫

l/ε

−l/ε
ΘjΘkψ

2
0 J dzds

+ ε2 ∫
Γ
∫

l/ε

−l/ε
H2ΘjΘk(ψ′0)2 J dzds +O(ε3)
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since ψ0 = ψ0
0 J̃

−1/2, we have

ψ′0 = (ψ0
0)′J̃−1/2 + ψ0

0(J̃−1/2)′ = (ψ0
0)′J̃−1/2 − 1

2
ψ0

0(J̃−3/2)J̃ ′ (D.9)

and using the identity J̃ ′ = εHJ̃ we get

ψ′0 = (ψ0
0)′J̃−1/2 − 1

2
ψ0

0(J̃−3/2)εHJ̃ = (ψ0
0)′J̃−1/2 − 1

2
εHψ0

0(J̃−1/2) = (ψ0
0)′J̃−1/2 − 1

2
εHψ0 (D.10)

and

(ψ′0)2 = ((ψ0
0)′)2J̃−1 − εH(ψ0

0)′ψ0
0 J̃

−1 + 1

4
ε2H2(ψ0

0)2(J̃−1) (D.11)

(L2
bψ0Θj , ψ0Θk)L2(Ω) (D.12)

= εPkPj ∫
Γ

ΘkΘj J0 ds∫
l/ε

−l/ε
(ψ0

0)2dz+ (D.13)

ε
√
εPj ∫

Γ
HΘkΘjj0 ds���

���
��:0

∫
l/ε

−l/ε
(ψ0

0)′ψ0
0 dz −

1

2
ε2√εPj ∫

Γ
H2ΘkΘj J0ds∫

l/ε

−l/ε
(ψ0

0)2 dz+

ε
√
εPk ∫

Γ
HΘkΘjj0 ds���

���
��:0

∫
l/ε

−l/ε
(ψ0

0)′ψ0
0 dz −

1

2
ε2√εPk ∫

Γ
H2ΘkΘj J0ds∫

l/ε

−l/ε
(ψ0

0)2 dz+

− ε2√ε(Pjε2βk + Pkε2βj)∫
Γ

ΘjΘk J0ds∫
l/ε

−l/ε
(ψ0

0)2 dz + ε2 ∫
Γ
H2ΘjΘk J0ds∫

l/ε

−l/ε
((ψ0

0)′)2 dz

− ε3 ∫
Γ
H3ΘjΘk j0ds∫

l/ε

−l/ε
(ψ0

0)′ψ0
0 dz +

1

4
ε4 ∫

Γ
H4ΘjΘk J0ds∫

l/ε

−l/ε
(ψ0

0)2 dz +O(ε3)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εP 2
k + ε2 ∫Γ(Hθk)2 J0ds ∫

l/ε

−l/ε((ψ0
0)′)2 dz +O(ε2√ε) if k = j,

ε2 ∫ΓH2θkΘj J0ds ∫
l/ε

−l/ε((ψ0
0)′)2 dz +O(ε2√ε) if k ≠ j

Calculating M1 yields

(L1ψ0Θj , ψ0Θk)L2(Ω) = − ∫
Γ
∫

l/ε

−l/ε
(W ′′′(Ub)u1)ψ0ΘjLbψ0Θk Jdzds (D.14)

− ∫
Γ
∫

l/ε

−l/ε
(W ′′′(Ub)u1 − η1)ψ0ΘkLb(ψ0Θj)Jdzds

− ∫
Γ
∫

l/ε

−l/ε
(HU ′

b + Lbu1)W ′′′(Ub)ψ0Θjψ0Θk Jdzds

+ ηd ∫
Γ
∫

l/ε

−l/ε
W ′′(Ub)ψ0Θjψ0Θk Jdzds

= −
√
εPk ∫

Γ
∫

l/ε

−l/ε
W ′′′(Ub)u1ΘjΘkψ

2
0 Jdzds (D.15)

−
√
εPj ∫

Γ
∫

l/ε

−l/ε
(W ′′′(Ub)u1 − η1)ΘkΘjψ

2
0 Jdzds
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− ∫
Γ
∫

l/ε

−l/ε
HU ′

bW
′′′(Ub)ΘjΘkψ

2
0 Jdzds

− ∫
Γ
∫

l/ε

−l/ε
Lb(u1)W ′′′(Ub)ΘjΘkψ

2
0 Jdzds

+ ηd ∫
Γ
∫

l/ε

−l/ε
W ′′(Ub)ΘjΘkψ

2
0 Jdzds

using ψ0 = J̃−1/2ψ0
0 we get

(L1ψ0Θj , ψ0Θk)L2(Ω) = −
√
εPk ∫

Γ
ΘkΘj J0ds∫

l/ε

−l/ε
W ′′′(Ub)u1(ψ0

0)2 dz (D.16)

−
√
εPj ∫

Γ
ΘkΘj J0ds∫

l/ε

−l/ε
(W ′′′(Ub)u1 − η1)(ψ0

0)2 dz

− ∫
Γ
H0ΘkΘj J0ds

��
���

���
���

�:0

∫
l/ε

−l/ε
U ′
bW

′′′(Ub)(ψ0
0)2 dz (D.17)

− ε∫
Γ
H1ΘkΘj J0ds∫

l/ε

−l/ε
U ′
bW

′′′(Ub)(ψ0
0)2z dz

− ∫
Γ

ΘjΘk j0ds∫
l/ε

−l/ε
Lb(u1)W ′′′(Ub)(ψ0

0)2 dz (D.18)

+ ηd ∫
Γ

ΘjΘk J0ds∫
l/ε

−l/ε
W ′′(Ub)(ψ0

0)2 dz +O(ε3)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∫
l/ε

−l/εW
′′′(Ub)(ψ0

0)2Lb,0u1 dz + ηd ∫
l/ε

−l/εW
′′(Ub)(ψ0

0)2 dz

+√εPk(η1 − 2) − ε ∫ΓH1Θ2
k ds∫

l/ε

−l/εW
′′′(Ub)U ′

b(ψ0
0)2z dz +O(ε2) if k = j,

−ε ∫ΓH1ΘkΘj ds∫
l/ε

−l/εW
′′′(Ub)U ′

b(ψ0
0)2z dz +O(ε3) if k ≠ j

(D.19)

D.3 Simplifying the expression for Mk,k

Recall that, Mk,k is given by

M0
k,k = P 2

k − ∫
l/ε

−l/ε
[W ′′′(Ub)Lb,0u1 − ηdW ′′(Ub)](ψ0

0)2 dz. (D.20)

Using the following identities

Lb,0u1 = µ1Φ1 − ηd (
z

2
U ′) , (D.21)

W ′′(U)ψ0 = ψ′′0 −Lb,0ψ0 = ψ′′0 − λ0ψ0, (D.22)
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we get

ηd ∫ W ′′(U)ψ2
0 − ∫ (µ1ϕ1 − ηd

z

2
U ′)W ′′′(U)ψ2

0 =ηd ∫ W ′′(U)ψ2
0 (D.23)

−

µ1Sb³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∫ µ1ϕ1W

′′′(U)ψ2
0 −∫ ηd

z

2
U ′W ′′′(U)ψ2

0

= −µ1Sb + ηd ∫ W ′′(U)ψ2
0 − ∫ ηd

z

2
(W ′′(U))′ψ2

0 . (D.24)

Integrating by parts we have

ηd ∫ W ′′(U)ψ2
0 − ∫ (µ1ϕ1 − ηd

z

2
U ′)W ′′′(U)ψ2

0 = − µ1Sb (D.25)

+ ηd ∫ (W ′′(U)ψ2
0 −

1

2
W ′′(U)ψ2

0 −W ′′(U)zψψ′)

= −µ1Sb + ηd ∫ (1

2
W ′′(U)ψ2

0 −W ′′(U)zψ0ψ
′
0) (D.26)

= −µ1Sb + ηd ∫ (1

2
ψ0 − zψ′0))W ′′(U)ψ0 (D.27)

Using identity (D.22) yields

ηd ∫ W ′′(U)ψ2
0 − ∫ (µ1ϕ1 − ηd

z

2
U ′)W ′′′(U)ψ2

0 = −µ1Sb + ηd ∫ (1

2
ψ0 − zψ′0)(ψ′′0 − λ0ψ0) (D.28)

= −µ1Sb + ηd ∫ (1

2
ψ0ψ

′′
0 −

1

2
λ0ψ

2
0 − zψ′0ψ′′0 + λ0zψ0ψ

′
0)

(D.29)

= −µ1Sb + ηd ∫
1

2
ψ0ψ

′′
0 −

1

2
λ0ηd ∫ ψ2

0 (D.30)

− ηd ∫ zψ′0ψ
′′
0 + λ0ηd ∫ zψ0ψ

′
0

Using integration by parts we can show that

∫ zψ′0ψ
′′
0 = −1

2
∣∣ψ′0∣∣22, ∫ zψ0ψ

′
0 = −

1

2
∣∣ψ0∣∣22 (D.31)

therefore,

ηd ∫ W ′′(U)ψ2
0 − ∫ (µ1ϕ1 − ηd

z

2
U ′)W ′′′(U)ψ2

0 = −µ1Sb + ηd ∫
1

2
ψ0ψ

′′
0 −

1

2
λ0ηd ∫ ψ2

0 (D.32)

− ηd ∫ zψ′0ψ
′′
0 + λ0ηd ∫ zψ0ψ

′
0
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= −µ1Sb −
1

2
ηd∣∣ψ′0∣∣22 −

1

2
λ0ηd∣∣ψ0∣∣22 +

1

2
ηd∣∣ψ′0∣∣22 −

1

2
λ0ηd∣∣ψ0∣∣22

(D.33)

= −µ1Sb − λ0∣∣ψ0∣∣22ηd. (D.34)

Hence, the diagonal terms Mk,k take the form

Mk,k = P 2
k − µ1Sb − ηdλ0∣∣ψ0∣∣22. (D.35)

D.4 Useful identities and inequalities

Theorem D.4.1 (Hölder’s Inequality). Suppose f ∈ Lp(Rd), g ∈ Lq(Rd) and 1
p
+ 1
q
= 1 with

1 ≤ p, q, r ≤ ∞. Then

∣∣fg∣∣1 ≤ ∣∣f ∣∣p∣∣g∣∣q. (D.36)

Theorem D.4.2 (Generalized Hölder’s Inequality). Suppose f ∈ Lp(Rd), g ∈ Lq(Rd) and 1
p
+ 1
q
= 1
r

with

1 ≤ p, q, r ≤ ∞. Then

∣∣fg∣∣r ≤ ∣∣f ∣∣p∣∣g∣∣q. (D.37)

1. An expression for the derivative of ψ0

ψ′0 = (ψ0
0)′J̃−1/2 − εHψ0 (D.38)

2.

Lb,0zψ0 = zλ0ψ0 + 2ψ′0 (D.39)

3.

Lb,0ψ
′
0 = λ0ψ

′
0 − ψ′′′0 +W ′′′(U)U ′ψ0 (D.40)

4.

Lb,0(zψ′0) = zLb,0ψ′0 + 2ψ′′0 = z(λ0 − ∂2
z)ψ′0 +W ′′′(U)U ′ψ0 + 2ψ′′0 . (D.41)

5.

Lb,0(ψ0Ds,2Θk) = λ0ψ0Ds,2Θk + 2ψ′0(Ds,2)zΘk + ψ0(Ds,2)zzΘk (D.42)
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Appendix E

Pearling Co-dimension 2

E.1 Appendix : Self-adjoint operators

Consider the L2(Ω) inner product defined in (2.73) and the two operators L̃p ∶= ∂2
z −W ′′(u)+ε2∆s and Lp ∶=

∂2
z +εκ∂z−W ′′(u)+ε2∆G. The co-dimeanion two Laplacian operator is not self-adjoint in this inner product,

(∆sf, g)L2(Ω) = ∫
Γ
∫

l/ε

−l/ε
gJ−1

0 ∇s ⋅ (g−1J0∇s)f J0J̃ dz ds = −∫
Γ
∫

l/ε

−l/ε
g−1J0∇s(gJ̃) ⋅ ∇sf dz ds (E.1)

= ∫
Γ
∫

l/ε

−l/ε
∇s(g−1J0∇s(gJ̃))f dz ds ≠ (f,∆sg)L2(Ω) (E.2)

although it is self-adjoint in the Γ-inner product. However, ∆G is self-adjoint in the L2(Ω) inner product.

(∆Gf, g)L2(Ω) = ∫
Γ
∫

l/ε

−l/ε
gJ−1∇s ⋅ (g−1J∇s)f J dz ds = −∫

Γ
∫

l/ε

−l/ε
g−1J∇s(g) ⋅ ∇sf dz ds (E.3)

= ∫
Γ
∫

l/ε

−l/ε
∇s(g−1J∇s(g))f dz ds = (f,∆Gg)L2(Ω). (E.4)

As for the rest of the terms in the operator,

(∂2
zf, g)L2(Ω) = ∫

Γ
∫

l/ε

−l/ε
f ′′gJ dzds = ∫

Γ
∫

l/ε

−l/ε
f(gJ)′′ dzds = ∫

Γ
∫

l/ε

−l/ε
fg′′J + 2fg′J ′ + fgJ ′′ dzds (E.5)

= (f, ∂2
zg)L2(Ω) + 2ε∫

Γ
∫

l/ε

−l/ε
fg′κJ dzds + ε∫

Γ
∫

l/ε

−l/ε
fgκ′J dzds + ε2 ∫

Γ
∫

l/ε

−l/ε
fgκ2J dzds,

(E.6)
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ε(κ∂zf, g)L2(Ω) = ε∫
Γ
∫

l/ε

−l/ε
κf ′gJ dzds = ε∫

Γ
∫

l/ε

−l/ε
f(gJκ)′ dzds = −∫

Γ
∫

l/ε

−l/ε
fεκg′J + εfgJκ′ + fgεκJ ′ dzds

(E.7)

= −ε(f, κ∂zg)L2(Ω) − ε∫
Γ
∫

l/ε

−l/ε
fgκ′J dzds − ε2 ∫

Γ
∫

l/ε

−l/ε
fgκ2J dzds, (E.8)

we see that each of the terms separately is not self-adjoint in the L2(Ω)-inner product, but the sum of them

is

(∂2
zf + εκ∂zf, g)L2(Ω) = (f, ∂2

zg + εκ∂zg)L2(Ω).

Therefore, our full operator Lp is self-adjoint in the L2(Ω)-inner product where the L̃p operator is not.

E.2 Calculations of the expansion of L

We consider the 2nd variation of F

Lp ∶=
δ2F
δu2

= (ε2∆ −W ′′(u) + εη1) (ε2∆ −W ′′(u)) − (ε2∆u −W ′(u))W ′′′(u) + εηdW ′′(u). (E.9)

Using the expansion of the Laplacian in local coordinates, given in (2.65), writing up using (6.5) and Taylor

expand W (up) and its derivatives.

Lp =[∆z −W ′′(Up) − εDz + ε2∂2
G − ε (W ′′′(Up)u1 − η1) − ε2 (W ′′′(Up)u2 +

1

2
W (4)(Up)u2

1) ]○ (E.10)

[∆z −W ′′(Up) − εDz + ε2∂2
G − ε (κ⃗∇z +W ′′′(Up)u1) − ε2 (W ′′′(Up)u2 +

1

2
W (4)(Up)u2

1) ]−

[∆zUp −W ′(Up) − εDzUp + ε∆zu1 − ε2Dzu1 + ε2∂2
GUp − εW ′′(Up)u1 − ε2 (W ′′(Up)u2 +

1

2
W ′′′(Up)u2

1) ]○

[W ′′′(Up) + εW (4)(Up)u1]+

εηd[W ′′(Up) + εW ′′′(Up)u1 + ε2 (W ′′′(Up)u2 +
1

2
W (4)(Up)u2

1) ] + higher order terms,

Recall that Lp ∶= Lp − εDz + ε2∂2
G, Lp is defined in (2.78), and Up is the radial symmetric solution of

equation (2.75). Then,

Lp =[Lp − ε (W ′′′(Up)u1 − η1) − ε2 (W ′′′(Up)u2 +
1

2
W (4)(Up)u2

1) ]○ (E.11)

[Lp − ε (W ′′′(Up)u1) − ε2 (W ′′′(Up)u2 +
1

2
W (4)(Up)u2

1) ]−

[ − εDzUp + εLpu1 − ε2 (W ′′(Up)u2 +
1

2
W ′′′(Up)u2

1) ] ○ [W ′′′(Up) + εW (4)(Up)u1]+
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εηd[W ′′(Up) + εW ′′′(Up)u1 + ε2 (W ′′′(Up)u2 +
1

2
W (4)(Up)u2

1) ] + higher order terms,

Rewriting Lp in orders of ε we have

Lp =L2
p + εL1 +O(ε2), (E.12)

where

L1 ∶= − (W ′′′(Up)u1 − η1) ○ Lp − Lp ○ (W ′′′(Up)u1) − (Lpu1 −DzUp)W ′′′(Up) + ηdW ′′(Up). (E.13)

E.3 Calculating M 0

To obtain an explicit expression for M0 we calculate the inner products given in (6.22). We start with the

inner product involving L2
p: Recall that Lp, given in (2.77), is self-adjoint in the L2(Ω) inner product. Then

(L2
pψ0Θj , ψ0Θk)L2(Ω) = (Lpψ0Θj ,Lpψ0Θk)L2(Ω) (E.14)

= (((L + ε2∂2
s) − εκ⃗ ⋅ ∇z − ε2(z ⋅ κ⃗)κ⃗ ⋅ ∇z)ψ0Θj , ((L + ε2∂2

s) − εκ⃗ ⋅ ∇z − ε2(z ⋅ κ⃗)κ⃗ ⋅ ∇z)ψ0Θk)L2(Ω)

(E.15)

+O(ε3)

= ((L + ε2∂2
s)ψ0Θj , (L + ε2∂2

s)ψ0Θk)L2(Ω) (E.16)

− ε (((L + ε2∂2
s)ψ0Θj , κ⃗ ⋅ ∇zψ0Θk)L2(Ω) + (κ⃗ ⋅ ∇zψ0Θj , (L + ε2∂2

s)ψ0Θk)L2(Ω)) +O(ε2)

= εPkPj(ψ0Θj , ψ0Θk)L2(Ω) − ε
√
ε(Pj + Pk)(ΘjΘkψ0, κ⃗ ⋅ ∇zψ0)L2(Ω) +O(ε2) (E.17)

where for the second equality we used the expansion of the Laplacian, given in (??). Since psi0 is a radial

function we have

(ΘjΘkψ0, κ⃗ ⋅ ∇zψ0)L2(Ω) = ∫
Γ
κΘkΘj ds ⋅ ∫

l/ε

0
ψ0∇zψ0 J dz (E.18)

changing to polar coordinates, equation (E.18) takes the form

(ΘjΘkψ0, κ⃗ ⋅ ∇zψ0)L2(Ω) = ∫
Γ
κΘkΘj ds ⋅

=(0,0)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
2π

0
(cos θ, sin θ)dθ∫

∞

0
ψ0ψ

′
0 dz +O(ε) (E.19)

That is, the term ε
√
ε(Pj + Pk)(ΘjΘkψ0, κ⃗ ⋅ ∇zψ0)L2(Ω) is actually O(ε2√ε) and negligible. Using the

orthonormality of the co-dimeanion two Laplacianeigenmodes we can rewrite equation (E.17) in the following
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way

(L2
pψ0Θj , ψ0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

εP 2
k +O(ε2√ε) if k = j,

O(ε2√ε) if k ≠ j
(E.20)

The next term in (6.22) involves the L1 operator, given in (6.9).

(L1ψ0Θj , ψ0Θk)L2(Ω) = −

(A)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((W ′′′(Up)u1 − η1) ○ Lpψ0Θj , ψ0Θk)L2(Ω) −

(B)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Lp ○ (W ′′′(Up)u1)ψ0Θj , ψ0Θk)L2(Ω)

(E.21)

−

(C)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
((Lpu1 −DzUp)ψ0Θj , ψ0Θk)L2(Ω) +

(D)

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ηdW ′′(Up)ψ0Θj , ψ0Θk)L2(Ω) (E.22)

we calculate (E.21) term by term:

(A)

((W ′′′(Up)u1 − η1) ○ Lpψ0Θj , ψ0Θk)L2(Ω) =
√
εPj((W ′′′(Up)u1 − η1)ψ0Θj , ψ0Θk)L2(Ω) (E.23)

− ε((W ′′′(Up)u1 − η1)κ⃗ ⋅ ∇zψ0Θj , ψ0Θk)L2(Ω) +O(ε2)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
εPj((W ′′′(Up)u1 − η1)ψ0Θk, ψ0Θk)L2(Ω) +O(ε) if k = j,

−ε((W ′′′(Up)u1 − η1)κ⃗ ⋅ ∇zψ0Θj , ψ0Θk)L2(Ω) +O(ε2) if k ≠ j

(E.24)

(B)

(Lp ○ (W ′′′(Up)u1)ψ0Θj , ψ0Θk)L2(Ω) =((W ′′′(Up)u1)ψ0Θj ,Lpψ0Θk)L2(Ω) (E.25)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
εPj(W ′′′(Up)u1ψ0Θk, ψ0Θk)L2(Ω) +O(ε) if k = j,

−ε(ψ0Θj ,W
′′′(Up)u1κ⃗ ⋅ ∇zψ0Θk)L2(Ω) +O(ε2) if k ≠ j

(E.26)
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(C)

((Lpu1 −DzUp)ψ0Θj , ψ0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((Lu1 − (κ⃗ ⋅ ∇zUp))W ′′′(Up)ψ0Θk, ψ0Θk)L2(Ω) +O(ε) if k = j,

−((κ⃗ ⋅ ∇zUp)W ′′′(Up)ψ0Θj , ψ0Θk)L2(Ω) if k ≠ j

−ε(κ⃗ ⋅ (∇z(u1 −Up))W ′′′(Up)ψ0Θj , ψ0Θk)L2(Ω) +O(ε2)

(E.27)

Recall that Up, ψ
0
0 and W ′′′(Up) are all radial functions, and using (A.2), the calculation of the inner-

product ((κ⃗ ⋅ ∇zUp)W ′′′(Up)ψ0Θk, ψ0Θk)L2(Ω) (boxed) becomes

((κ⃗ ⋅ ∇zUp)W ′′′(Up)ψ0Θj , ψ0Θk)L2(Ω) = ∫
Γ
∫

`/ε

−`/ε
(κ⃗ ⋅ ∇zUp)W ′′′(Up)(ψ0

0)2ΘjΘk dz ds (E.28)

= ∫
Γ
∫

2π

0
∫

∞

0
(κ⃗ ⋅ (cos θ, sin θ)∂RUp)W ′′′(Up)(ψ0

0)2ΘjΘkRdRdθ ds (E.29)

= ∫
Γ
κ⃗ΘjΘk ds ⋅

=(0,0)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
2π

0
(cos θ, sin θ)dθ∫

∞

0
(∂RUp)W ′′′(Up)(ψ0

0)2RdR (E.30)

= 0. (E.31)

It follows from (E.28) that equation (E.27) reduces to

((Lpu1 −DzUp)ψ0Θj , ψ0Θk)L2(Ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

((Lu1)W ′′′(Up)ψ0Θk, ψ0Θk)L2(Ω) +O(ε) if k = j,

−ε(κ⃗ ⋅ (∇z(u1 −Up))W ′′′(Up)ψ0Θj , ψ0Θk)L2(Ω) +O(ε2) if k ≠ j

(E.32)

summarizing the calculation of each of the terms, and returning to (E.21) we see that

(L1ψ0Θj , ψ0Θk)L2(Ω) = (E.33)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(((Lu1)W ′′′(Up) − ηdW ′′(Up))ψ0Θj , ψ0Θk)L2(Ω) +O(√ε) if k = j,

ε(((2W ′′′(Up)u1 − η1)κ⃗ ⋅ ∇zψ0 − κ⃗ ⋅ (∇zu1 −Up)W ′′′(Up)ψ0)Θj , ψ0Θk)L2(Ω) +O(ε2) if k ≠ j

E.4 Simplifying the expression for Mk,k

Recall that, Mk,k is given by

M0
k,k = P 2

k − ∫
l/ε

0
[W ′′′(Ub)Lu1 − ηdW ′′(Ub)](ψ0

0)2 dz, (E.34)
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where u1 is defined in (6.6) and in polar coordinates, using the identity L−1(W ′(Up)) = L−1(∆zUp) = 1
2
RU ′

p

takes the form

Lu1 = µ1ϕ1 − ηdL−1(W ′(Up)) = µ1ϕ1 − ηd
1

2
RU ′

p. (E.35)

For future calculations we have the following identity

W ′′(Up)ψ0
0 = (ψ0

0)′′ −L0ψ
0
0 = (ψ0

0)′′ − λp,0ψ0
0 . (E.36)

Since all the function in (E.34) are radial functions, we change to polar coordinates

M0
k,k = P 2

k − 2π∫
∞

0
[W ′′′(Ub)Lu1 − ηdW ′′(Ub)](ψ0

0)2RdR, (E.37)

and plugging (E.35) into (E.37) yields

M0
k,k = P 2

k − 2πµ1S + 2πηd ∫
∞

0
[W ′′′(Ub)

1

2
U ′
pR +W ′′(Ub)](ψ0

0)2RdR, (E.38)

where S is the shape factor defined in (6.33). Consider the ηd term in (E.37)

∫
∞

0
[W ′′′(Ub)

1

2
U ′
pR +W ′′(Ub)](ψ0

0)2RdR = ∫
∞

0
[W ′′(Ub)]′

1

2
(ψ0

0)2R2dR + ∫
∞

0
W ′′(Ub)(ψ0

0)2RdR

(E.39)

= −∫
∞

0
W ′′(Ub)(ψ0

0)(ψ0
0)′R2dR −

((((
((((

(((
∫

∞

0
W ′′(Ub)(ψ0

0)2RdR

(E.40)

+
(((

((((
((((

∫
∞

0
W ′′(Ub)(ψ0

0)2RdR

= −∫
∞

0
(ψ0

0)′′(ψ0
0)′R2dR − ∫

∞

0
λp,0(ψ0

0)(ψ0
0)′R2dR (E.41)

= −∫
∞

0

1

2
(((ψ0

0)′)2)′R2dR − λp,0 ∫
∞

0

1

2
((ψ0

0)2)′R2dR (E.42)

= −∫
∞

0
(((ψ0

0)′)2)RdR − λp,0 ∫
∞

0
((ψ0

0)2)RdR. (E.43)

The second and the last equalities follow from integration by parts, and the third equality follows from

identity (E.36). Plugging (E.43) into (E.37) yields

M0
k,k = P 2

k − 2πµ1S − ηd (∣∣ (ψ0
0)′ ∣∣

2

LR
+ λp,0 ∣∣ (ψ0

0) ∣∣
2

LR
) . (E.44)
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E.5 Useful identities and inequalities

Theorem E.5.1 (Young’s Inequality). Suppose f ∈ Lp(Rd), g ∈ Lq(Rd) and 1
p
+ 1
q
= 1
r
+ 1 with

1 ≤ p, q, r ≤ ∞. Then

∣∣f ∗ g∣∣r ≤ ∣∣f ∣∣p∣∣g∣∣q. (E.45)

Theorem E.5.2 (Hölder’s Inequality). Suppose f ∈ Lp(Rd), g ∈ Lq(Rd) and 1
p
+ 1
q
= 1 with

1 ≤ p, q, r ≤ ∞. Then

∣∣fg∣∣1 ≤ ∣∣f ∣∣p∣∣g∣∣q. (E.46)

E.6 Appendix : Detailed calculations of operator bounds

First we consider the following operator ∂2
GDz. Using the definitions of each of the operators, given in (2.67),

and (2.66), we can write

∂2
GDzv = ∂2

G ( 1

J̃p
∇zv) = κ⃗

J̃p
(∂2
G(∇zv)) + (∂2

G

κ⃗

J̃p
)∇zv + 2∂s (

κ⃗

J̃p
)∂s∇zv (E.47)

Taking the L2(Ω)-norm yields

∣∣ Π̃∂2
GDzv ∣∣

2

L2(Ω)
= ∣∣ κ⃗

J̃p
(∂2
G(∇zv)) + (∂2

G

κ⃗

J̃p
)∇zv + 2∂s (

κ⃗

J̃p
)∂s∇zv ∣∣

L2(Ω)

(E.48)

≤ ∣∣ κ⃗
J̃p

(∂2
G(∇zv)) ∣∣

2

L2(Ω)

+ ∣∣ (∂2
G

κ⃗

J̃p
)∇zv ∣∣

2

L2(Ω)

+ 4 ∣∣∂s (
κ⃗

J̃p
)∂s∇zv ∣∣

2

L2(Ω)

(E.49)

≤ ∣∣ κ⃗
J̃p

∣∣
L∞

∣∣ (∂2
G(∇zv)) ∣∣

2

L2(Ω)
+ ∣∣ (∂2

G

κ⃗

J̃p
) ∣∣

L∞
∣∣ ∇zv ∣∣2L2(Ω) (E.50)

+ 4 ∣∣∂s (
κ⃗

J̃p
) ∣∣

L∞
∣∣∂s∇zv ∣∣2L2(Ω)

≤ ε−4c1 ∣∣ v ∣∣L2(Ω) + c2 ∣∣ v ∣∣L2(Ω) + 4 ∣∣∂s (
κ⃗

J̃p
) ∣∣

L∞
∣∣∂s(∂−2

s ) ∣∣
l2→l2

∣∣∂2
s∇zv ∣∣

2

L2(Ω)
(E.51)

≤ ε−4C ∣∣ v ∣∣L2(Ω) , (E.52)

where the first inequality is the triangle inequality, for the second inequality we use Hölder, the third

inequality follows from Lemma 6.3.1, combined with the assumption that κ ∈W 2,∞.
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