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ABSTRACT

ON THE EMBEDDABILITY OF COMPACTA IN N-BOOKS:
INTRINSIC AND EXTRINSIC PROPERTIES

by Gail Adele Atneosen

An n-book B" is the union of n closed disks in E3
such that each pair of disks meets precisely on a single
arc B on the boundary of each. The disks are called the
leaves of Bn, and the arc is called its back. The
embeddabllity of compacta 1n n-books 1s investigated from
two different viewpoints. 1In Chapters II and III intrinsic
properties are considered and in Chapters IV and V extrin-
sic properties.

Chapter II is concerned with the embeddability of
certain continua in n-books. It 1s shown that all compact,
connected 2-manifolds with non-void boundary embed in a
3-book. Examples are given of a one-dimensional, locally
connected, locally plane continuum that embeds 1n a 3-book
but not in any 2-manifold, of a one-dimensional locally
connected continuum that does not embed in any n-book, and
of a one-dimensional locally connected continuum that embeds
in B" but not in B™ for 2 <m<n.

In Chapter III the concept of a polyhedron tame
in B" is introduced, and those polyhedrons’ tamély. embedded

are characterized. Necessary and sufficient conditions are
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given for a polygonal simple closed curve in a 3-book to
span a 2-manifold in the 3-book. The monotone open union
of open n-books 1s shown to be an open n-book.

In Chapter IV extrinsic properties of subsets of
n-books in E3 are investigated. Necessary and sufficient
conditlons are given for a topological polyhedron in a
tame n-book to be tame in E3. It is shown that every
topological umbrella in a tame n-book 1s locally tame at
its tangent point and that no disk plerced by an arc 1lies
in an arbltrary 3-book in E3. Next questions of cellularity
are considered. The cellular hull of a subset A of E3 is
defined to be a cellular set B containing A such that no
proper cellular subset of B contalins A. An arc A has a

3 if and

cellular hull that lies in a tame 2-complex in E
only if there is a space homeomorphism h with the property
that the image of A under h lies 1in a tame 3-book. If A

is a cellular arc whose set of wild points 1is non-empty and
does not contalin an arc and A lles 1n an arbitrary n-book
in E3, then A has at most one wild point that 1s not con-
talned 1n..the back of the n-book.

In the last chapter tamely embedded cones over
n-books 1in Eu are investigated. It is shown that no wild
Cantor set lies in a tame cone over an n-book in Eq, and
that every 1l- or 2-cell or 1- or 2-sphere 1n a tamely -
embedded cone over a 1l- or 2-book 1is tame in Eq. Examples
are given of wild 2- and 3-cells and 2-spheres in tamely

embedded cones over n-books, n > 2, 1n Eu.
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CHAPTER I
INTRODUCTION

An n-book Bn 1s the union of n closed disks in

E3

such that each pair of disks meets precisely on a
single arc B on the boundary of each. The disks are call-
ed the leaves of Bn and are denoted by Di’ i=1,...,n,
and B is 1ts back.

In this paper we investigate the embeddability
of compacta in n-books from two different viewpoints.
In Chapters II and III intrinsic propertles are consider-
ed and in Chapters IV and V extrinsic properties. This
investigation of n-books was initiated by P. H. Doyle in
[14] when he extended an earlier result [13], and showed
that 1f each of the leaves of an n-book topologically
embedded in E3 is tame then the n-book 1is tame. C. A.
Persinger continued the investigation of extrinsic
properties of subsets of n-books in [38, 39, 40]. The
concept of n-books has also arisen 1n a somewhat differ-
ent context in the work of A. H. Copeland, Jr. [10,11]
where some results concerning intrinsic properties of
subsets of n-books are found.

Next we give a few comments on notation and
some definitions necessary for the reading of this paper.

The following notation will be used.



Z+

the set of positive integers.

n
E {x | x = (xl,...,xn) an n-tuple of real

numbers, n € Z+} .
o is assumed to have the topology determined by the

Euclidean metric dn'

n
E_= {x | x = (xl,...,xn) x, > O} )
Sn-l

Il
—

»

o))

5/\

"

o

|

[
——

A homeomorphic image of S1 1s called a simple closed

curve.

Closed n-cell = {x ¢ E” | dn(x,O) < 1} .

Open n-cell = {x e EN | dn(x,O) < l} .
By a glgngill always be meant a space homeomorphic to
a closed 2-cell and by an arc a space homeomorphic to
a closed 1-cell. If A and B are topological spaces, a
homeomorphism of A 1nto'B is called an embedding.

By an n-dimensional manifold M 1s meant a

separable metric space such that each point has a neigh-
borhood whose closure is homeomorphic to a closed n-cell.
The interior of M, Int M, consists of those points which
have neighborhoods homeomorphic to an open n-cell; the
boundary of M, Bd M, is defined to be M - Int M. Thus

in discussing a disk D, 1t is clear what is meant by Bd D
and Int D. If boundary or interior is used in the usual
topological sense then it wlll be denoted by Int, A and

X

BdXA if A is a subset of X. By the interior of an n-book

is meant the set LJ?=1 Int Di U Int B.



Next some terminology from combinatorial topology
is given; the definitions are essentially those of
Zeeman [45].

By an n-simplex Ah’ 0 < n, 1s meant the convex
hull of n+l linearly independent points (the vertices)
{xJ | J = O,...,n} in EP, n < p. By a r-face A of A,
denoted by Ar < Ah’ 1s meant the convex hull of r+1

distinct points of {xJ | J = O,...,n} . A simplicial

complex, or complex, K of Ep, p > 1l,1s a finite collec-
tion of simplexes of EP such that:
(1) if A € K, then all the faces of A are in K, and
(2) 1irf A, A, € K then A) N A, 1s a common face of
A1 and AE'

L 1s called a subcomplex of K if L 1s a simplicial com-

plex and LCK. If Al’ A? are simplexes 1in EP such that
the union of thelr vertices forms a linearly independent
set of points in Ep, then A1 and A2 are Jjolnable. If A1
and A2 are Jjolnable, then the join of A1 and AQ, denoted
by Al*AQ’ 1s deflined to be the simplex spanned by the
union of their vertices. The subcomplex of K consisting
of all g-simplexes of K, where q < m, 1is called the
m-skeleton of K and is denoted by K(m). For A € K the

set st(A,K) = {o e K| AL o} 1s called the star of A
in K. The underlying point set |K| of a simplicial com-

plex K is called a Euclidean polyhedron or polyhedron.




Sometimes the phrase finite Euclidean polyhedron is used to
emphasize the fact that we are only consldering simplicial
complexes consisting of finitely many simplexes. By
|st(A,K)| is meant the spaceLJ{lcl l o€ St(A,K)}., If P is a
Euclidean polyhedron then a simplicial complex K such

that |K| = P is called a triangulation of P, and P 1is said

to be the carrier of K. If K is a simplicial complex and
and h is a homeomorphism of |K| onto Q, then the set

{h(ldl) | o€ K} 1s sald to be a curved triangulation of

Q. The m-skeleton of Q is the set {h(lcl) | o € k(™) }.

A complex K'!' 1s called a subdivision of a complex K if

|K'| = |K| and each simplex of K' is contalned in some
simplex of K. The dimension of a simplicial complex K

is the largest integer n such that K contains an n-simplex.
The carrlier of a l-dimenslonal complex 1s called a graph,
note that a graph 1s not necessarily connected. By an
umbrella is meant the Euclidean polyhedron consisting

of a disk D and an arc o such that DF\U==%* where x 1is

an interior point of D and an endpoint of 0. x 1is called
the tangent point of the umbrella and o the handle.

Let I be the interval [O,l]CIEl. For any space

X, the cone C(X) over X is the quotient space (X x I)/ R

where R 1s the equivalence relation (x,1) ~ (x',1) for all
X, x' € X. Let J be the interval [-1,1]CE'. For any

space X, the suspension I(X) of X is the quotient space

(X x J)/ R, where R 1s the equivalence relation
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(x,1) ~ (x',1), (x,-1) ~ (x',-1) for all x, x' € R.

Next we glve a brief discussion of the literature
and state some definitions and theorems that will be used
in later chapters. An n-book can be viewed as the double
cone over n distinct points, and thus can also be consider-
ed as the cone over a l-dimensional complex. It is from
this viewpoint they have arisen in A. H. Copeland's work
on the isotopy classes of 2-dimensional cones. The results
are of an intrinsic nature. In [11] he divides the
isotopy classes of cones of dimension less than or equal
to two into disjJoint . sets a and B. Disregarding the
cones over homeomorphic spaces, which have the same iso-
topy type, there is only one member in each class of a.

If B, (n = 0,2,3,4,...) is the isotopy class of cones
containing an n-book (a O-book is an arc) then B is the
set of all these classes. Thus the only isotopy classes
that contain more than one distinct member are those
containing n-books. In [10] necessary and sufficient
conditions are given for cones over finitely triangulable
spaces to be embeddable in a book.

n-manifolds have been extensively studied. 1In
considering intrinsic properties of n-books, we are mainly
concerned with compact, connect 2-manifolds. 2-manifolds
are particularly well-known. For a general discussion
of 2-manifolds see [Chapt. 1, 34]; for a short proof that

all compact.2-manifolds’ can-be triangulated. see [20].



In 1908 Schoenflies [43] proved the following
result which willl be referred to as the plane Schoenflies

theorem.

Theorem 1.1 If J 1s a simple closed curve in E2 and

h 1s a homeomorphism of J onto the unit circle S1 in E2,

then h can be extended to a homeomorphism of E2 onto

itself.

A corollary to the Schoenflies result 1s that
an umbrella cannot be embedded in the plane. It also
follows that any polyhedron embedded in E2 can be mapped
by a space homeomorphism onto a Euclidean polyhedron. It
is this notion which 1s formalized in the following def-
initions for higher dimensional Euclidean spaces.

A topological polyhedron P in E" 1s tamely
embedded in E" if there is a space homeomorphism that
carries P onto a finite Euclidean polyhedron. Otherwise

P is wildly embedded. A set X in E" is locally tame at

a point p of X if there 1s a neighborhood N of p and a
homeomorphism h of N (the closure of N) onto a polyhe-
dron in E” such that h(NNX) is a finite Euclidean poly-
hedron. A set X is sald to be wild at a point p if

it 1s not locally tame at p. The definitions of tame and
locally tame are due to Fox and Artin [22] and Bing [3],

respectively. A set P 1n E" is locally polyhedral at a

point x of P if there 1s a neighborhood of x whose closure



meets P 1n a finite Euclidean polyhedron.
The notion of wild and tame can also be applied

to spaces that are not polyhedrons. By a Cantor set is

meant any homeomorphic image of the classical Cantor
ternary set, that 1s, any compact, perfect, zero-dimen-
sional, non-empty metric space 1s a Cantor set. A Cantor

set ACE" 1s called tame 1if it lies on a tame arc in En;

otherwise A 1s sald to be wild.

Examples of wild arcs in E3 were known as early
as 1921 when Antoine [2] constructed a wild Cantor set
in E3, an arc through this Cantor set 1s called an
Antolne's necklace and 1is wild. The Alexander Horned
Sphere published by Alexander [1] in 1924 is an example
of a wild 2-sphere in E3. In 1948 Fox and Artin [22]
gave a number of examples of wlld arcs and spheres in E3
with one or two wild points. These results revived 1in-
terest in the area of embeddings and since 1948 this has
been an active area of research. As an example of the
kind of results that have been obtained, and one that we

will use later, we 1list the following theorem due to

Bing [3].

Theorem 1.2 Each locally tame closed subset K of a

triangulated 3-manifold M with boundary 1s tame.
Furthermore, 1f C 1s a closed subset of M such that K 1s

locally polyhedral at each point of KNC, and o is a



positive continuous function on M - C, there is a homeo-
morphism f of M onto itself such that x = f(x) on C,

p(x,f(x)) < a(x) on M - C, and f(K) 1s a polyhedron.

In connection with n-books Persinger proved in

[40] the following two theorems which we will use.

Theorem l.§ No wild Cantor set lies 1n a tame n-book

in E3.

Theorem 1.4 There exlst wild arcs and disks in tame
3

n-books in E-, n > 2.

Theorem 1.4 is interesting for it states that
wild arcs can lie 1in very simple subspaces of E3. In
this connection, we note that the arc A of Example 1.1 of
Fox and Artin [22] 1s embeddable in a tame 3-book in E3
in such a manner that the 1lmages of a set of generators
of 'rrl(E3 - A) are also contained in the 3-book. (The
fundamental group of the complement of A in E3, vl(E3 - A),
1s non-trivial.) Another simple subspace of E3 that
contalns willd arcs 1s an 1Infinite croquet game. By an

infinite croquet game 1s meant a flat disk D in E3 union

countably many disjoint polygonal arcs {ci | 1 e Z+}

that intersect D only in their endpoints and such that the
{oi} converge to a point p in the interior of D. If A

is any arc that lies in a tame 3-book in E3 and has a

single wild point, then it 1s easy to see that A 1s



equivalent to an arc that lies 1n an infinite croquet game.
A set C in E™ is said to be cellular if there
exists a sequence of topological closed n-cells

+ ©
{ c; | 1ez } such that C; ., CInt ¢, and C =[]7_; ;.

1
This notion was defined in 1960 by M. Brown [8]. An arc
may be wild and also be cellular as Example 1.2 of [22].
Wild points of cellular subsets of 2-spheres in E3 are
considered by Loveland in [32]. McMillan in [35] has
obtained results about cellular subsets of higher dimen-
sional space.

A k-cell in E", k < n, is saild to be flatly
embedded, or flat, if there 1s a space homeomorphism of

n

E" onto itself mapping 1t onto a k-simplex. A (k-1)-

sphere in En i1s sald to be flatly embedded, or flat,

if there 1s a space homeomorphism that maps 1t onto the

boundary of a k-simplex in En. Thus a polygonal trefoill

3

knot 1n ET 1s tame but not flat. An n-book 1s flatly

3

embedded in if each of its leaves 1s a Euclidean
2-simplex. If M 1s a k-manifold with boundary contained

in an n-manifold N, M is locally flat at a point p € Int M

if there is a neighborhood U of p in N such that (U, UNM)

1s homeomorphic to the pair (En,Ek); M 1s locally flat

at a point p € Bd M 1f there 1s a neighborhood U of p

in N such that (U, UNM) is homeomorphic to (E"

k
’ E+).
These notions have been recently studied by Lacher [31]

and Kirby [27]. It 1s known that a locally flat k-cell
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in E" is flat in E” [31].
One other theorem that is used and should be

mentioned is the Brouwer Theorem on the invariance of

domain.

Theorem 1.5 If U and V are homeomorphic subsets of

s™ and U 1s open in Sn, then V 1s open in s™.



CHAPTER II

CONTINUA IN N-BOOKS

This chapter 1s concerned with intrinsic pro-
perties of n-books rather than, say, positional proper-
ties of n-books 1n Euclidean space. In particular the
embeddability of certain continua, that 1s compact

connected sets, 1n n-books is considered.

Theorem 2.1 All compact, connected 2-manifolds with

non-void boundary embed in a 3-book.

Proof. Figure 2.1 illustrates what is meant by a disk
with (a) a single bridge, (b) a twisted bridge, (c) a

double bridge.

(a) G & (c)

Figure 2.1

Using scissors-and-paste techniques (see Chapter 1 of [34]),

it can be shown that all compact, connected 2-manifolds with

11
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non-void boundary are homeomorphic to:
(1) a disk with r > O single bridges and h > O
double bridges, or
(11) a disk with r > O single bridges and q > O
twisted bridges.
Thus to prove that all 2-manifolds with non-voild boundary
can be embedded in a 3-book, 1t suffices to show that
2-manifolds of type (i) or (i1) can be embedded in B3,
Figure 2.2 indicates that this 1s, in fact, the case.
Figure 2.2 (a) consists of a disk with three double
bridges and five single bridges and (b) consists of a
disk with two twisted bridges and four single bridges.

Figure 2.2

Corollary 2.2 All compact, connected 2-manifolds with

non-void boundary can be embedded in a 3-book so as to

carry a subcomplex of some triangulation of the 3-book.
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Corollary 2.3 Every proper compact subset of a compact

connected 2-manifold embeds in a 3-book.

Proof. If C is a proper compact subset of a compact,
connected 2-manifold M, then M - C is a non-empty open
set. Hence there is a closed disk D contained in M that
does not intersect C. M - Int D is a compact, connected
2-manifold with non-vold boundary containing C and can

be embedded in a 3-book by Theorem 2.1.

Corollary 2.4 All graphs embed in a 3-book.
Proof. Let G be a graph and let n denote the number

of vertices of G. Select n distinct points on a 2-sphere
and accomodate each arc Joining two vertices by a "handle"
approprilately attached to the 2-sphere. Thus G can be
embedded 1in a 2-sphere with handles which is a 2-manifold
without boundary. Hence by Corollary 2.3 G embeds in a

3-book.

Corollary 2.5 All compact, connected 2-manifolds embed

in the triple cone over three points.

3 is the double cone over three points, so it

Proof. B
suffices to show that all 2-manifolds embed in C(B3).
Let M be a compact, connected 2-manifold; if Bd M # &

then by Theorem 2.1 M embeds in B3C C(B3). If BA M =g,
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then M - Int D embeds in B3 where D 1s a disk in M. But
C(B3) contains the cone over the boundary of D and

(M - Int D)UC(BA D) 1s homeomorphic to M. Hence M embeds
in ¢(B3).

Corollary 2.6 All compact, connected 2-manifolds embed

in a 2-dimensional continuum in E4 that falls to be locally

polyhedral at only one point.

Proof. There are countably many distinct 2-manifolds
wilth non-void boundary. These can be polyhedrally embedd-

ed in B3

s by Corollary 2.2, so as to converge to a point

p on the back of B3. Consider B3<: E3 x 0, a 3-dimension-
al hyperplane in Eu, such that these countably many
distinct 2-manifolds are embedded in B3 as described
above. 1In E4 form the cone over the boundary components
of each of these 2-manifolds in such a manner that the
cones are disjoint and the vertices of the cones converge
to p. Then B3 union these cones 1s a 2-dimensional

continuum that 1s locally polyhedral except at p and con-

tains all 2-manifolds with or without boundary.

In Corollary 2.3 it was noted that every proper
compact subset of a compact, connected 2-manifold embeds
in B3. Thus the question may be asked 1f there exlsts a

locally plane, locally connected, one-dimensional
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continuum that embeds in a 3-book but not in any 2-manifold.

By locally plane 1s meant that each point has a neighbor-

hood that embeds in E2. An example due to Borsuk [7] is
used to answer this question in the affirmative. His
example utilizes one of Kuratowskl's primitive skew curves
[29] which is the union of all the edges of a tetrahedron
plus a segment Joining two polnts lying in the interiors
of two opposite edges. This graph 1s not embeddable 1n

the plane.

Example 2.7 [7] A locally plane, locally connected

one-dimensional continuum that 1s not embeddable in any

2-manifold.

Let aqs bl’ Cqs and dl be the vertices of a tetrahedron
in E3, Ch denote the point dividing the segment a,cq in
the ratio 1: n-1, and dn the point dividing 5131 in the

same ratlo,.for n € Z+. See Figure 2.3 below.

Figure 2.3
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Let

X, = diblualcnualdnUblcnubldnucndnUcn+ldn+1 and

::1 Xn '
Note that X is not homeomorphic to any subset of
a 2-manifold M. For if g' were such an embedding, then
there would exist a disk D in M such that g'(EEB;) C Int D
and for almost all indices n, g'(Xn)CZD. But this is
impossible because Xn is not planar.
Next X - EIHI is mapped into a continuum in o
which will enable X to be embedded in a locally connected
cantinuum Y and also show that Y 1s locally plane. Consi-
der the following points of E2:

a! = (O:O): b' = (1,0), cr'l = (O,l/n), bt"l = (l:l/n):

al = (1, 2/(20+1)), d' = (1, -1/n) for n e 7t

and linear maps

f: a;b; » @'’ with f(al) =a', f(bl) =Db' ;
g: ajcqy »a'e] with g(al) = a', g(cl) =ci ;
L] — — '
£ E;a;-» aga; with fn(cn) =cl, fn(dn) =d! ;
. AN 1 — ot 1 = h!
f£l: ¢ b > clbt with fn(cn) =cl, fn(bl) b! 3
n, aTAm " — n = n

£ aiH;-a a’d? with fn(al) = afl, fn(dn) )
Then

p

f(x) for x € a;b; - {bl},

g(x) for x € ajcy,
h(x) = { £,(x) for x e Tq - {at,
fé(x) for x e ¢ b, - {pl},
n _
L fn(x) for x € alan {dn},
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is a homeomorphism mapping X - bldl onto the set

7 = a'b'\Ja'ci U LJ:=l(bAcALJcéaéLja'ag) - ia; C E°.

0
See Figure 2.4.

Let L(n,1) for 1 =1,...,n and n € 77 denote the
line segment parallel to ETE{ through af(i,n), where
a(i,n) is the point dividing a'b' in the ratio i: (n+l-1),
with one endpoint on EEHI and the other endpoint on 573:.
Then Y' = ZOLJLJ:=1 ?=l L(n,1) is locally connected and

1

the homeomorphism h™ ~: Z, > X - blal can be extended to a

homeomorphism g of the set ¥Y' onto a subset of E3 - EIHI
so that for every e > O there exists an n(e) such that
for all n > n(e) the diameters of the sets g(L(n,1i)) are
less than €. Let Y = g(Y')L}SIHI, then Y 1s a locally

plane, locally connected continuum that contains X and is

hence not embeddable in any surface.

¢ b,
ch Y
. 'd;
a B
Sid: d3
LGN da
[
.4
Figure 2.4
Theorem 2.8 There exists a locally plane, locally

connected one-dimensional continuum that embeds in a

3-book but not in any 2-manifold.
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Proof. Example 2.7 is a locally plane, locally connect-
ed one-dimensional continuum that embeds in no 2-manifold.

To show that it 1s embeddable in B3 consider Figure 2.5.

Figure 2.5
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Figure 2.5 (a) shows the embedding of X,UX,U X3 - —cbrdu.

—_— 3
In general, if LJi -1 i - cn+1dn+1 haz been embedded in B,
then X . n+23n+2 is embedded in B~ as in Figure 2.5 (b).

Thus continuing in this manner it 1s clear that X embeds

in B3 and also that Y embeds in B3.

However, all one-dimensional continua do not
necessarily embed in Bn, for some positive integer n, as

the argument of the following theorem illustrates.

Theorem 2.9 There exists a one-dimensional, locally

connected continuum that cannot be embedded in an n-book

for any positlve integer n.

Proof. In order to define such a continuum let:
K = the graph which 1s the union of all the edges
of a tetrahedron plus a segment joining two

points lying 1in the interiors of two opposite

edges,
J(1) = { (x,0,0) € E3 | O<xK1 },
K(1,2) = a graph in E~ homeomorphic to K whose diameter

is less than 1/2 and such that K(1,2) intersects

J(1) only in the point (1/2,0,0), and |
J(2) = J(1)UK(1,2).

Assume that J(n) has been defined and let:

J(n+1) = J(n) U LI°_) K(m,n+1).

3

K(m,n+1) is a graph in E- homeomorphic to K such that:
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(1) X(m,n+1)NJ(n) = (m/(n+1),0,0) m=1,...,n,
(11) XK(m,n+l) 0D K(m',n+l) =@ if m # m', and

(1i1) the diameter of K(m,n+l) is less than 1/2n+1
form=1,...,n.
Let J = :=1 J(n) with the relative topology of ES. Then

J 1s compact, connected, and locally connected by con-
struction; furthermore, J is one-dimensional since 1t 1is
the countable union of closed one-dimensional sets.

Next it will be shown that J does not embed in
any n-book. Suppose this 1s not the case, and ‘there is
an embedding h: J -» B", then h(J(1))CB, the back of B".
For if not, then there exists an x € J(1) such that
d(h(x), B) = € > 0. Since J is compact, h is a uniform
homeomorphism and there exists a & > O such that if
d(u,v) < & then d(h(u),h(v)) < €/3. Thus there exists
(m/p,0,0) € J(1) such that d(K(m,p),x) < 8 and hence
h(K(m,p)) C D,, a leaf of B". But this contradicts the
fact that K cannot be embedded in the plane so h(J(1))CB.

Let z be an interior point of the interval J(1),
and N a neighborhood of h(z) in B" such that N - h(J(1))
consists of n components CicD1 , 1 =1,...,n. Then there
exists integers m and p such that h(K(m,p»CZN. Since
h(J(1)) separates N, h(K(m,p) - (m/p,0,0)) C c, for some
1, but this again contradicts the fact that K'cannot be
embedded in the plane. Hence there does not exist an

embeddingof J into any n-book.
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Next 1t 1s shown that n-books can be distinguish-
ed by the one-dimensional continua that embed in them.
A locally connected, one-dimensional continuum A(n) is
constructed with the property that i1f X 1s a compact set
of dimensidn less than or equal to one 1n the interior of

an n-book,then XCA'(n) where A'(n) is homeomorphic to A(n).

Theorem 2.10 There exlists a locally connected, one-

dimensional continuum that embeds 1n Bn but not in Bm

for 2 < m < n.

Proof. Let {Ei | 1 € Z+} be a sequence of mutually
disjoint disks in Bn that do not intersect the boundary

of any of the leaves of B", such that LJ;=1 E, 1s dense

in Bn, and such that the diameters of the.E, converge to

n [

locally connected, one-dimensional continuum that embeds

i
then A(n) is a

zero. Define A(n)

in B®. Note that if D, 1s a leaf of B" then D, NA(n) is

homeomorphic to Sierpinski's universal plane curve [42, 44].
Assume that there exlsts an embedding h mapping

A(n) into B™ for 2 < m < n and reach a contradiction. By

definition of A(n), the back of B" is contained in A(n);

denote this set by B' in A(n). Then h(B')CB, the back

of B". For if not there exists a z ¢ B' such that

d(z,B) = 3¢ > 0. Since h is a uniform homeomorphism there

exists a 6 > O such that if d(u,v) < 8,then d(h(u),h(v)) < e.
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Note that A(n)r‘\Di is arcwise connected. Let c(1) ,
i=1,...,n, be an arc in A(n)ﬂ(D1 - {z}) such that:
(1) d(e(i),z) < 8, (2) c(i) intersects B' only in
its endpolnts a and b, which are the same for all i, and
(3) 1if ab denotes the line segment in B' Jjoining a to
b then z € ab. Let a(1l) denote an arc in A(n) Joining
a point on ¢(1) - B! to z such that a(i)NB' = {z},
(thus the diameter of a(i) is less than 6). Then
h( 2=l(c(i)LJa(1))Lj§F) is a graph that is entirely
contained in a leaf of B™. This graph contains one of
Kuratowskl's primitive skew curves which 1s not embedd-
able in the plane [29], thus h(B')CB.

Next, using the fact that h(B')CB it will be
shown that A(n) cannot be embedded in B". Let z e B!
such that d(h(z), B - h(B')) is greater than 3¢ > O.
Choose c¢(1) and a(1) as before, 1 =1,...,n. Then since
m < n there exists 1 # J such that h(c(1)) U h(c(J)) is
contalined 1in one leaf, say Dk’ of B and
[h(c(1))Un(c(3))1nB ={n(a}uf(p)} Then n(c(4))uUn(abp),
say, bounds a disk containing h(c(i)). But then h(a(j))
must intersect h(c(1i)) which contradicts the fact that h
1s an embedding. Hence A(n) cannot be embedded in B" for

2 L m<n.

The above argument also provides an entirely

different proof for Lemma 2.1 of A. H. Copeland in [11].
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This lemma 1s stated in the following corollary.

Corollary 2.11 I1f B™ is contained in B" then m < n.

If m > 2 then the back of B™ is contained in the back of B".

The next corollary states that in some sense

A(n) is the "universal curve" for B".

Corollary 2.12 If X 1s a compact set 1in the interior

of an n-book B" such that dim X <1, then X CA'(n)

where A'(n) 1is homeomorphic to A(n).

Proof. Let X, = (Xf\Di)\JB; then X, 1s a closed

subset of Di for each 1 =1,...,n and dim Xi <1l. OSo

there exlists 1in Int D, - X i=1,...,n, a sequence

i i’
{E(i,k) | ke Z+}'of mutually disjoint disks such that

;=1 E(i,k) 1is dense in D, and the diameters of the

E(1,k) converge to zero. Let G, =D * . Int E(1,k),

i . k=1
then by construction G1(Z X,. But G, 1s an S-curve [44],

that is a plane, locally connected, one-dimensional
continuum S such that the boundary of each complementary
domain of S 1s a simple closed curve and no two of these
complementary domain boundaries intersect. Hence by

Theorem 3 of [44] there exist homeomorphisms hi’
i=1,...,n, which are the identity map on Bd D

4 and map

n —
G, onto A(n)f\Di. If LJ1=1 G, = A'(n) then X C A'(n).
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Furthermore, the map h: A'(n) —» A(n) defined by h(x) = hi(x)

for x € G, 1s a homeomorphism of A'(n) onto A(n).



CHAPTER III

SOME PROPERTIES COMMON TO EUCLIDEAN SPACES AND N-BOOKS

In this chapter various properties of Euclidean
spaces are generalized to n-books. In particular the
notion of tameness, polygonal simple closed curves span-
ning 2-manifolds, and monotone unions of open n-books are
considered.

A topological polyhedron in Euclidean n-dimen-

sional space 1s said to be tamely embedded if there is a

homeomorphism of E" onto itself which transforms the
embedded polyhedron into a Euclidean polyhedron. It is
this notion which is generalized to n-books. For the
remainder of this chapter Bn will be considered embedded
in E3 in such a manner that each leaf 1s a Euclidean
2-simplex Thus Bn inherits a linear structure from E3
and the notion of tameness in B" can be introduced. A

set ACB" 1s sald to be a polyhedron lﬂ.@i if Aywhen con-

sidered embedded in E% is a Euclidean polyhedron. A
topological polyhedron embedded 1n the interior of an
n-book 1s sald to be tame in Eﬁ iff there is a homeomor-
phism of Bn onto itself which transforms the embedded

polyhedron into a polyhedron 1n B".

Lemma 3.1 If a Euclidean polyhedron 1s embedded in Bn

in such a manner that the image of the l-skeleton is the

25
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carrier of a subcomplex relative to some trilangulation of
Bn, then the image of the polyhedron 1s also the carrier

of a subcomplex relative to thils triangulation.

Proof. Let h be an embedding of a Euclidean polyhedron
|P|, with triangulation P, into B® such that h(|p{1)|) 1s
the carrier of a subcomplex of the triangulation K of B".
Let J = {o e K| o< 9 Int lollﬂh(lPl) # @, and o€ K}
then J 1s a subcomplex of K. It willl be shown that
|3] = n(|P]). By construction h(|P|)C|J|. To prove that
|7]Ch(|P]) assume not and reach a contradiction. Suppose
there exists x e |J| - h(|P]), then there are three cases
to consider.

Casel. x € |o| where o 1s a face, not necess-
arily proper, of a 2-simplex A € J. By definition of J,
there is a y € Int |A|Nh(|P]). So there is an arc t
Joining x to y such that t -{x}CInt |A|. Let z be the
first point of tNh(|P]|) in the direction from x. Then z
must belong to the image of the l-skeleton of P, since it
does not 1lie in the interior of an open 2-cell in h(|P]).
But z € Int |A], which contradicts the hypothesls that the
image of the l-skeleton 1s the carrier of a subcomplex of
K.

Case 2. x € |o| where ¢ 1s a 1l-simplex in J that
is not the face of any 2-simplex in J. But this 1mplies

there 1s a y € h(|P|)NInt |o] such that y must be the
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carrier of a O-simplex of K if h(lP(1)|) is the carrier of
a subcomplex of K. Thus this case cannot occur.
Case 3. x € |o] where 0 1s a O-simplex in J and
0 1s not the face of any other simplex in J. But by
the definition of J then o ¢ J so this case cannot occur.
The above three cases exhaust all possibilities

so |J|Ch(|P]) and the lemma follows.

The following two lemmas are proved elsewhere

but are needed 1n several arguments so are stated here.

Lemma 3.2 The intersection of two Euclidean polyhedrons

i1s a Euclidean polyhedron.

Proof. Corollary 2 to Lemma 1, Chapter 1 of [45].
Lemma 3.3 If |K|D|L| then there exists a subdivision

K' of K and L' of L such that L' is a subcomplex of K!'.
Proof. Lemma 4, Chapter 1 of [45].
The proof of the followling lemma depends upon

the plane Schoenflies theorem and is similar to one given

by Doyle in [16].

Lemma 3.4 Let T be a finite graph, not necessarily

connected, and h an embedding of T into the closed unit
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square D in E° such that h(T)N Bd D is a finite Euclidean
polyhedron. Then there 15 a homeomorphism g of D onto
itself such that g(h(T)) is the union of finitely many
straight line segments, and g restricted to the boundary

of K is the identity map.

Proof. Since h(T)NBA D is a finite Euclidean poly-
hedron, there are only finitely many points in Bd D that
are 1imit points of h(T)N Int D. Let {xi | 1 = 1,...,n}
denote these points plus the 1images of the vertices of T.
Let N(xi) be = closed symmetric neighborhoods of Xy
1 =1,...,n, in D such that any two are disjoint. Let
o(1,J), i =1,...,nand J = 1,...,k(1), denote the finite-
ly many arcs in h(T)f\N(xi) such that: (1) o(1,J) has
endpoints x, and Yy, p %Je Bd N(xi), and (2) o(1,3) - {yi’J}
is contained in IntDN(xi)..ALet,of(i,J):be a straight

line segment Joining'-xi to for 1 =1,...,n

yi,J
and § = 1,...,k(1). Then by the plane Schoenflies theorem
there are homeomorphisms gy i=1,...,n, such that:
(1) giID - Int N(xi) = the identity map, and

(11) gy(o(1,3)) =0'(1,3) J =1,...,k(1) .
Then n(T) - LT LJ?ii) o(1,J) 1s the union of finitely
10 i=1,...,m« Let Ui be a closed neighbor-
homeomorphic to a closed disk such that

many arcs t
hood of ti
Uif\h(T) 1s an arc. Let g" = g -.-8,, then

g"(Ui)r\g"(h(T) - Int ti) consists of two polygonal arcs,
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say a1 and bi

of the plane Schoenflies theorem. Let t} C Int g"(Ui)

be a polygonal arc Joining the endpoints of g"(ti) such

, which were obtained by the above application

that t] intersects g"(h(T)) only in its endpoints. Then
by the plane Schoenflies theorem there are homeomorpﬁisms
gi, 1 =1,...,m, such that:

(1) gi|(D - Int g"(Ui))u(aybi) 1s the

identity map, and
1 " = t!

(11) ei(e"(ty)) = tJ.
Then g = gi...gég" is the desired homeomorphism. That
1s, g | Bd D = the identity map and gh(T) consists of

finitely many stralght line segments.

The following theorem is a characterization of

those polyhedrons which are tamely embedded in B".

Theorem 3.5 An embedding of a polyhedron in Int B"

1s tame in B 1ff the polyhedron has a curved triangulation
such that the 1mage of the l-skeleton intersected with

the back of B" 1s a polyhedron in B".

Proof. Let P be a polyhedron and h: P - B” an embedding.
If P 1s tamely embedded in Bn, then by definition there

1s a homeomorphism g of B" onto itself such that gh(P)

is a polyhedron in B". Let K be any triangulation of B"

and L any triangulation of gh(P), (then K and L are
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simplicial complexes 1in E3). By Lemma 3.3 there are
subdivisions L' of L and K' of K such that L' is a sub-
complex of K'. Then (gh)'lz |L'| > P 1s a curved triangu-
lation of P. The back of B" is a subcomplex of every
triangulation of Bq so by Lemma 3.2 |L'(l)|r\B is a
polyhedron in Bn.

Conversely, suppose that P has a curved triangu-
lation such that the image of the l-skeleton, denoted by
R, intersects the back of B" in a finite polyhedron.

Then RﬂD1 1s the topological image of a finite graph

and RNBd D, 1s a finite Euclidean polyhedron, i =1,...,n.

i

Hence by Lemma 3.4 there are homeomorphisms gy Di - Di’

1 =1,...,n, which are the identity map on Bd D, and such

that %1(R) consists of finitely many points and straight line
segments (when considered in E3). By Lemma 3.3 there 1is
a triangulation, say K', of B” such that gl...gn(R) is
the carrier of a subcomplex of K'!'. By Lemma 3.1
g1-~-8nh(P) 1s a Euclidean polyhedron,and h is a tame

embedding of P into Bn.

Every polygonal simple closed curve in E3 spans
an orientable surface in E3, that 1is, there exlsts a compact,

3 such that the mani-

connected orientable 2-manifold in E
fold boundary 1s precisely the simple closed curve. One
method of obtalning such an orientable surface 1s given

by R. H. Fox in [21]. By a polygonal simple closed curve
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in B3 1s meant a homeomorphic image of Sl that 1s a

polyhedron in B3. Theorem 3.8 characterizes those poly-

3

gonal simple closed curves in B~ that span compact, con-
nected 2-manifolds in B3. All such curves do not necessar-
ily span a surface as 1s indicated in Figure 3.1 (a).

Even 1f a polygonal simple closed curve does‘span a
2-manifold, as in Figure 3.1 (b), the 2-manifold need not

be orientable. In this case it is a MObius band.

(a) (b)

Figure 3.1

One approach to the desired characterization
i1s to consider the simplicial homology of B3 with coeffi-

clents in Z the group of integers modulo two. For an

2’
exposlition of simplicial homology theory and related termi-
nology see [Chapter 6, 25]. By a t-dimensional chain on a
simplicial complex K with coefficients in 22 is meant a

function m on the t-simplexes of K with values 1n 22.
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It farilitates notation ‘to let m also denote the .subcomplex
of K which:is.the simplicial closure'of all.t-simplexes of
K on which:'m has non-zero wvalue. The geometric

realizatlion of thils subcomplex will also be denoted by

m rather than |m|. No confusion should arise since Z,
coefficients are particularly well sulted to geometric
interpretation, and this notation will be used only in

relation to chains.

Lemma 3.6 If C is a polygonal simple closed curve

in B3

then there exlsts a mod 2 2-chain,,mc, on B3 such
that bmc = C and m, has the properties listed below.
(1) CCm, and m, 1s compact and connected.
(11) If x € m, - C then x has a neighborhood
in m, homeomorphic to an open disk.
(1i11) If x € C then x has a neighborhood in m,
whose closure is homeomorphic to-eilther:
(1) a closed disk,
(2) B,
(3) the union of two closed disks whose
intersection is precisely {x} , x being
an interior point of one disk and a
boundary point of the other disk, or
(4) the union of two closed disks which

intersect along an arc o with endpoints

Xx and p such that o is in the boundary
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of one disk and o - {p} 1s in the interior

of the other disk.

Proof. By Lemma 3.3_,B3

has a triangulation K such that
C is contained in the carrier of the l-skeleton of K.
Consider the simplicial homology of K with coefficients in

22, and let o, denote the l-chailn that has value 1 on all

1
l-simplexes of K that are contained in C and O on all other
l-simplexes of K. Since B3 is contractible, Hl(B3,ZQ),

3

the first simplicial homology group of B~ with coefficients

in 7 is trivial. Hence there is a 2-chain mc on K such

2’
that bmc = oy.
erties stated in the lemma.

It will now be shown that m, has the prop-

(1) Since o, =C, bmc =Cand m D>C. m, 1s
compact because 1t 1s the polnt set union of finitely many
compact 2-simplexes. To prove that m, is connec?ed assume
not and reach a contradiction. Suppose that m, can be
expressed as the disjoint union of two non-empty closed
sets, A, and A.,. Since C is connected it may be assumed

1 2

that, say, CCA Let mé be the 2-chain on K that has

1
non-zero value only on those 2-simplexes of K contained
in A,. Since Bmc = C, each 1-simplex of K in A, is the
face of an even number of 2-simplexes in AQ. Thus

dm! = 0, but H2(B3, Z,) = 0, since B3 1s contractible,

hence there must be a 3-chain on K whose boundary is mé.

Since the only 3-chaln 1s the zero 3-chain this implies
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A2 is empty and hence m, 1s connected.

(11) Let x € m, - C and show that x has a
nelghborhood in m, homeomorphic to an open disk. There
are three possible cases to consilder.

Case 1. X 1s contained in the interilor of a
2-simplex of m,. Then x clearly has a neighborhood in m,
homeomorphic to an open disk.

Case 2. x 1s contained in the interior of a
l-simplex in m,. Then thils l-simplex does not lie in C
and hence must be the face of an even number of 2-simplexes
in m,. By Corollary 2.11 if B" is embedded in Bn then
m <n, so this l-simplex is a face of precilsely two
2-simplexes 1in m, - Hence x has a neighborhood in m,
homeomorphic to an open disk.

Case 3. Lastly, consider the case when x is a
O-simplex in m,. Then |st(x,mc)| is the union of n closed
disks which contain x in their interior, since every
l-simplex in m, having x as a face must be the face of
preclsely two 2-simplexes in m,. So to show that x has
a nelghborhood in m, homeomorphic to an open disk, it
suffices to prove that n = 1.

If x € B3

- Bthenn=1. For if n > 2 then
|st(x,mc)| contains a topological umbrella which is
embeddable 1in the plane. If x € B and n > 2,there are
two closed disks, say E, and E2, in |st(x,mc)| such that

E,NE, = {x} . Lemma 4.1, of the next chapter, implies
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that x has a nelghborhood N, in E 1 =1,2, which is an

i i’
open 2-cell and 1is contained in precisely two leaves of B3.
But thils fact contradicts the disjointness of E1 - {X} and
E2 - {x} .

(1i11) Let x € C, and again consider the various
cases.

Case 1. If x is not a vertex of m,, then x
i1s contained in the interior of a l-simplex of m, that
lies in C. This l-simplex is the face of an odd number
of 2-simplexes in m,- By Corollary 2.11 1t is the face
of one or three 2-simplexes and hence x has a neighborhood
in m, homeomorphic to (1) or (2) of part (i1i1) of the
statement of this lemma.

Case 2. If x 1s a vertex there are exactly two
l-simplexes, t1 and t2, in m, which lie in C and have x
as a face. Thus st(x,mc) contains two l-simplexes that
are a face of one or three 2-simplexes in st(x,mc) and
all the other l-simplexes are the face of two 2-simplexes
in st(x,mc). Using the fact that two closed disks which‘
intersect at a single point interior to each cannot be
embedded 1n B3, as shown above, one obtains the following
results. If t1 and t2 are both the face of only one
2-simplex in st(x,mc) then x has a closed neighborhood
homeomorphic to (1) or (3). If t, 1s a face of only one

2-simplex in st(x,mc) and t, 1s a face of three 2-simplexes

in st(x,mc),then X has a closed neighborhood homeomorphic
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to (4). 1If both t, and t, are the face of three 2-simplexes
in st(x,mc),then X has a closed neighborhood homeomorphic
to (2). This exhausts all the possibilities and the lemma

follows. Figure 3.2 shows the four possible closed

nelghborhoods.
y .
(1) (2)
’ (3) (4)

Figure 3.2

The proof of the next lemma 1s very similar to
that of Lemma 3.1 and so 1s omitted. Since the polyhedron
being considered is a 2-manifold weaker conditions can be

Imposed on 1ts 1l-skeleton.

Lemma 3.7 Let M be a compact, connected 2-manifold
with non-void boundary, C, embedded in B, 1f B” has a
triangulation K such that C is contained in the carrier
of the 1l-skeleton of K, then M is the carrier of a sub-

complex of K.
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Theorem 3.8 A polygonal simple closed curve in B3

bounds a compact, connected 2-manifold in B3 iff it 1s a
mod 2 cycle which 1is the boundary of a mod 2 2-chailn

whose geometric realization contains no umbrellas.

Proof. By Lemma 3.3, if C is a polygonal simple closed

3

curve 1n B” there 1s a triangulation K of B3 such that

cc|k(1)|. By Lemma 3.7 the 2-manifold M which C bounds

is the carrier of a subcomplex of K. Let z, be the mod 2

2
2-chain whlch has non-zero value only on those 2-simplexes

of K that 1lie in M. Then 6z2 = C and the geometric real-
izatlion of z2 1s M and hence contains no umbrellas.

Conversely, assume that C is a polygonal simple

3

closed curve in B~ that i1s a mod 2 cycle with respect to

3

some triangulation K of B-, and that there is a mod 2

2-chain z, such that 822 = C. By Lemma 3.6 there is a

2
mod 2 2-chailn m, with the properties stated there, such

that bmc = C. Hence a(mc - z,) = 0 which implies, since

o)
there 1is only the zero 3-chain on B3, that m, = Z,- Thus
by hypothesis m, contains no umbrellasy which implies that
points of C do not have neighborhoods in m, of type (2),
(3), or (4) of part (1ii) of Lemma 3.6. Hence every point
of m, has a closed neighborhood homeomorphic to a closed
disk, and C bounds m, which 1s a compact, connected

2-manifold in B3.
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Corollary 3.9 A polygonal simple closed curve spans

a disk in B3 iff 1t 1s a mod 2 cycle which 1s the boundary
of a mod 2 2-chain whose geometric realization contains
no umbrellas and every simple closed curve in the interior

of this 2-complex separates it.

Proof. A compact, connected 2-manifold M with non-
vold boundary 1s a disk iff every simple closed curve 1in

the interior of M separates M.

A topological space Y 1is sald to be the open
-]
monotone union of a space U if Y = l_]1=1 U(1), and U(1)

is open in Y, U(1) is homeomorphic to U for all 1, and
U(1)CU(1+1). 1In [9] Morton Brown proved that the open
monotone union of open n-cells 1s an open n-cell.
Theorem 3.10 states that the same kind of result 1is true
for n-books.

By an open n-book is meant a space homeomorphic

to Int B" which was defined as |l}_; Int D, U Int B.
The space A x [O,w) with A x O identified to a point v
is called the open cone, OC(A), over A. If X is a
topological space, a point x € X 1s said to have an

open cone neighborhood U if there 1s a homeomorphism f

of some OC(A) onto the open set U of X such that f(v) = x.

Theorem 3 of [30] states that if UTCU°C... 1s a se-

quence of open cone neighborhoods of x in a locally

compact Hausdorff space, then U = Ui is also an

[
i=1



39

open cone nelghborhood of x homeomorphic to each Ui. We

will use this theorem in the proof of the following theorem.

Theorem 3.10 If a topological space Y 1s the open

monotone union of open n-books then Y is an open n-book.

Proof. Let {Iﬁ'l 1 e Z+} be a sequence of open

1+1 1

i
n-books such that UiCIU , and U 1s open in LJ U- =Y.

o
i=1
Next it 1is established that Y is a locally compact
Hausdorff space. Let x and y be two distinct points of
Y, then there exists an integer n such that x, y € u".
U" is a Hausdorff space so there exist disjoint neighbor-
hoods, Vx and Vy, of x and y, respectively, such that Vk
and Vy are open 1in u". Since U" is open in Y, Vx and Vy
are open in Y, and Y i1s a Hausdorff space. Y 1s also
locally compact for let x € Yqthen x € Un for some n € Z+.
X has a neighborhood V in U” such that the closure of V in
Un 1s a compact set, denoted by ClUn V. Then " open
in Y implies V is open in Y; since Y is a Hausdorff space
ClUnV is also closed 1n Y. So V 1s a neighborhood of x in
Y whose closure in Y is compact.

Let A be the suspension of n distinct points,
then OC(A) 1s an open n-book. If x is a point on the back
of an open n;book Ui, one readily sees that U1 is an open
cone neighborhood of x. By an application of Corollary 2.11,

1

since UiCIU1+ , the open back of U1 must be contained in
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the open back of Ui+l. Thus choose a point x in the back

of Ul, by these remarks x 1s contained in the back of

Ui for 1 € z¥. So UlCZUQ(Z... is a sequence of open cone
neighborhoods of x in a locally compact Hausdorff space;

by Theorem 3 of [30],Y is homeomorphic to an open n-book.



CHAPTER IV
SUBSETS OF N-BOOKS IN E3

This chapter 1s concerned with extrinsic
properties of compacta in n-books, that 1s positional
properties of subsets of n-books embedded 1in E3. Euclid-
ean polyhedrons topologically embedded in tame n-books
are 1lnvestigated, and é characterization is given of

those polyhedrons tame 1in E3

by considering where they
can fail to be locally tame. Next, questions concerning
cellularity and n-books are examined.

The first lemma 1s, however, only concerned
with embeddings into n-books; the result will be useful
in characterizing wild points of polyhedrons embedded in

n-books in E3,

Lemma 4.1 Let h be an embedding of a disk D into B?
and let x be an interior point of D. Then x has a closed
2-cell neighborhood U in D such that h(U) is contained in

the union of two leaves of Bn.

Proof'. There are two cases to consilder.

Ccase 1. h(x) £ B, the back of B". Then there is
a neighborhood V of x such that h(V) is entirely contained
in the interior of some leaf of B'. By invariance of

domain, h(V) is open in this leaf, hence there 1s an ¢ > O

41
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such that the symmetric neighborhood §ET§T C h(V). Then
U = h_l(§ZT§T) is the desired neighborhood of x.

Case 2. h(x) € B, the back of B". Suppose there
does not exilst abneighborhood V of x in D such that h(V)
is contained in the union of two leaves of B". Then there
is a sequence of points {yk | k € Z+} converging to h(x)
such that y, € B - h(D). Since h(D)ZB, there is also a
sequence of points {xk | k e Z+} converging to h(x)

such that x, e (B" - B)Nh(D). Let a, be an arc in B"

k
Joining x, to y, such that a, N B = {y,} .- Moreover, we may
assume that the diameter of ék <A1/234n"smécéfh(D)n%ak 1s a
compact set there 1s a first element 2y of a, in the

direction from y,  to x, , such that z e h(D). Furthermore,

k

since y, £ h(D), Z, £ B. So zZ, € h(Bd D) for otherwise
an umbrella could be embedded in the plane. Because of

the manner in which the a, were chosen, the sequence

k
{Zk | k € Z+} converges to h(x). But this implies
{h-l(zk) | k e Z+} is a sequence of points on the bound-
ary of D converging to an interior point x of D which is

a contradiction. Thus there 1s a neighborhood V of x such
that h(V) 1s contained in the union of two leaves of B".

Then using invariance of domaln and preceding as 1n Case 1,

a neighborhood U 1s obtained with the desired propertles.

Lemma 4.1 1s not necessarily true for x € Bd D

as 1s indicated in Figure 4.1. ERET
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Figure 4.1

Theorem 4.2 Let P be a Euclidean polyhedron embedded

in a tame n-book, and let Q be the set of points of P that
do not have open 2-cell neighborhoods in P. Then the

set of polnts at which P fails to be locally tame is
contalned in QNB and is a compact, totally disconnected

set.

Proof. Since Brl is tame, we may assume that Bn has

planar leaves. If x € P - Q then x lies in the interior
of a topological disk D in P. By Lemma 4.1 we may assume
that D lies in the union of two leaves of B". Let N be a

3 such that

closed polyhedral neighborhood of x in E
NNP CD. Then NNP is a Euclidean polyhedron and P 1s
locally tame at x.

If x € Q - B then there 1s a closed polyhedral
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nelghborhood V of x in B" such that V is homeomorphic to

a closed disk and such that Q intersects the boundary of
V in a finite Euclldean polyhedron. Then QNV is the
homeomorphic image of a finite graph, so by Lemma 3.4
there 1s a homeomorphism g mapping V onto V which is fix-
ed on the boundary of V and such that g(VNQ) is the union
of finitely many straight line segments and points. This
homeomorphism can be extended to a closed polyhedral

neighborhood N of x in E3

such that NNP = V and g| Bd N
is the identity map. By Lemma 3.1 g(NNP) is a Euclidean
polyhedron . Hence P 1is locally tame at x.

From the definition of local tameness it follows
that the set of points at which P falls to be locally tame

1s closed and hence compact. Since the back of B" is tame,

the set of wild points of P is also totally disconnected.

Corollary 4.3 If A is an arc in a tame n-book, then

A =EUT where T is the countable union of tame arcs and
E 1s a compact, totally disconnected set contained in the

back of the n-book.

Proof. By Theorem 4.2 the set of points, E, where A
fails to be locally tame 1s compact and totally disconnected
and contained in the back of the n-book. A - E 1is an open
subset of A and hence can be expressed as the countable
union of open arcs. These open‘arcs are locally tame and

have tame closures.
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The set of wild points of an arc in a tame
n-book may be uncountable as the next example shows.

By an almost tame arc is meant an arc. such that every point

lies on a tame subarc of the original arc [18].

Example 4.4 An example of a cellular arc with uncount-

ably many wild points that 1is not almost tame but is

embeddable 1in a tame 3-book in E3.

Let B3 be a 3-book in E3 with planar leaves such

that the back B of the 3-book is the unit interval [0,1]
3

on the x-axis of E°. Let {61 | 1 ¢ z+} be the sequence of

open intervals deleted from the unit. interval to obtain the
(- -]
- Uy 9y

Replace each closed interval 5, of B, i ¢ z¥, with a

Wilder arc J, [23] embedded in B3 so that the endpoints

usual Cantor ternary set, and let C = B

of J, concide with the endpoints of ©,, the diameters of

i
the J, tend to zero, and J,NJ, = g for 1 # k. Then

© 3
A= |JJ_; J;UC 1isanarc in E°. If x € C, then every
neighborhood of x in E3 contains a wild arc Ji for suffi-
ciently large 1; hence A falls to be locally tame on C

plus the set of points where LJ1=1

Ji falls to be locally
tame.

If x € C but is not an endpoint of 3; for any 1,
then x does not lie on a tame subarc of A. Thus, A falls

to be locally tame at uncountably many points and 1s not

almost tame.
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To see that A is in fact cellular we use a

g

definition and theorem due to Doyle [15]. If A is an arc

in S? we say that A 1s p-shrinkable 1f A has an endpolint q

and in each open set U containing q in Sn, there 1s a
closed n-cell FCU such that q lies in Int F while B4 F
meets A 1n exactly one polnt. If A is an arc in s” such
that for each subarc A' of A, A' is p-shrinkable, then
every arc in A 1s cellular [15]. Since Wilder arcs were
inserted, the constructed arc satisfles the necessary
conditions and 1s therefore cellular.

Of course, there are wild arcs with uncountably
many wild points in tame 3-books that are not cellular.
One example could be obtained by inserting Example 1.1
of [22] instead of the Wilder arcs in the above construc-
tion.

The next lemma 1s due to Persinger [40] and is

used in the proof of Theorem 4.6.

Lemma 4.5 Let D be a closed disk in a tame n-book.

Then D is tame iff Bd D is tame.

Theorem 4.6 A topological polyhedron P 1n a tame
3

n-book in E” is tame iff 1t has a triangulation such that
the image of the l-skeleton 1s locally tame at each point

where it meets the back of Bn.
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Proof. By Theorem 4.2 and the hypothesis of this theorem
the image of the l-skeleton 1s locally tame, and so Theorem 1.2
implies the l-skeleton is tame. By Lemma 4.5 the image of
each 2-simplex in P is tame. Theorem 3.1 of Doyle [14]

states that a topological polyhedron P in E3 is tame iff

each 2-simplex in P 1s tame and the l-skeleton 1s tame.

Using the notion of tame in Bn, which was defined

in Chapter III, one obtalns the following theorém.

Theorem 4.7 Let B” be a tame n-book and P a poly-

hedron tame in Bn, then P is tame in E3.

Proof. Let hlz E3 - E3 be a homeomorphism such that

the leaves of hl(Bn) are 2-simplexes. Since P 1s tame 1n
B", there is a homeomorphism hy: hl(Bn) - hl(Bn) such

that h2(hl(P)) is a Euclidean polyhedron. h, can be

extended to a homeomorphism of E3 onto itself, also called

. w3 3
h2. Then hzhl' E- - E- such that h2h1

polyhedron, and hence P 1s tame in E3.

(P) is a Euclidean

Corollary 4.8 Every topological umbrella in a tame

n-book 1s locally tame at 1its tangent point.

Proof. The tangent point x of the topological umbrella
T must lie in the back B of Bn, since an umbrella cannot

be embedded in the plane. By Lemma 4.1 there 1is a
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closed neighborhood U.of x in.the 2-cell of T that lies in
preclsely two leaves of Bn. U may be chosen homeomorphic

to a closed 2-cell and such that Bd UNB consists of two
points. Thus there 1s a subarc a of the handle of T

with endpoint x and such that a - {x} lies in the interior
of a leaf of B'. Since (UUa)NB is homeomorphic to an arc,
Theorem 3.5 implies UUa is tame in B". Corollary 4.7
implies UUa 1s tame in E3 and hence T 1is locally tame

at 1ts tangent point.

In the next theorem arbitrary 3-books in E3
are considered. Let D be a disk in Euclidean 3-space.
Let e be an arc such that DNne 1s a point p which is an
interior point both of D and of e. If for each suffi-
clently small open neilghborhood U of p, U - D 1s the sum
of two disjoint open sets each of which intersects the

component of UNe that contalins p, then e plerces D at p.

Theorem 4.9 ‘No .disk pierced by an arc lies 1in an

arbitrary 3-book in E3.

Proof. Suppose there did exist a disk D pierced by an

3 3

arc e such that DUe CB~” where B” 1is an arbitrary 3-book

in E3. Then Lemma 4.1 implies there 1is a closed neighbor-
hood D' of p,{p}= DNe, in D that is homeomorphic to a
3

2-cell and D' 1s contalned 1n precisely two leaves of B~-,
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say D1 and D2. Let the diameter of D' equal € > O.

Without loss of generallity, it may be assumed that e is
sufficiently small so that i1f U 1s a spherical neighbor-
hood of p in E3 of diameter e€,then U - D equals U - D',
and U -.D 1is the union of two disJoint open sets, V1 and
V2, each of which intersects the component e' of UNe
that contains p. Let x; e Vlf\e' and x, € V2r\e'. Since

D'CfDlLJDQ it follows that Xys X, € D3 and there is an

2

arc ACID3ﬂ U with endpoints x, and X, such that AND = a.

But this contradicts the fact that Xq and X, are in dis-
Joint components of U - D. Hence a disk pierced by an
3

arc does not.lie 1in 'ald arbitrary 3-book in E~-.

Next questions concerning cellularity and
n-books are consldered. Recall that a set C in E3 is said
to be cellular 1f there 1s a sequence of closed 3-cells

+
{Ci | 1 €2 } such that C,

1
If A is a subset of E?, then the cellular hull of A,

d ®
CInt C, and C =[] _; Cy-

denoted by?*(A), is a cellular set containing A such that
no proper cellular set BCW(A) contains A [16]. Thus

the cellular hull of a cellular subset of E3 is the set

itself. If A. and Al are two arcs in E3, then A is said

to be equivalent to Al if there is a homeomorphism h

mappling B3 onto itself such that Hh(A) = Aj.

Lemma 4.10 Let A be an arc in E3 and WCA be the set
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of points at which A fails to be locally tame. If W is
O-dimensional, then A is equivalent to an arc in a flat

3-book iff W lies in a tame set that embeds 1in E2.

Proof. This result follows easlly from a theorem of

Posey [41].

Theorem 4.11 An arc A in E3 has a cellular hull that

lies in a tame 2-complex iff A is equivalent to an arc in

a flat 3-book.

Proof. Assume A has a cellular hull that lies in a
tame 2-complex. Without loss of generality, it may be
assumed that A lies in the carrlier of a simplicial complex K
of dimension two. If WCA is the set of points at which

A falls to be locally tame, then by the argument of ..__.
Theorem 4.2, W 1s contained in the carrier of the l-skele-
ton of K. Furthermore W is a closed, totally disconnected
set, so W 1s contalined in a polygonal tree in IK(1)|.
Hence the conditions of Lemma 4.10 are satisfied and there
1s a homeomorphism h mapping E3 onto itself such that h(A)
is contained in a flat 3-book.

Conversely, assume A 1s equlivalent to an arc Al
in a flat 3-book B3 under a space homeomorphism h. The
intersection of a maximal chain (ordered by inclusion) of
cellular sets contalning A1 is a cellular hull of Al'

But B3:)Al and B3 is a cellular set. Consider a maximal
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chain of cellular sets (as above) containing B
L+ then h™ (H(a))) 1s

a cellular hull of A and lies in the tame 2-complex h'l(B3).

which gives
rise to a cellular hull?%(Al) of A

The following corollary follows from the proof

of Theorem 4.11.

Corollary 4.12 If A is an arc that lies in a tame

2-complex in E3, then A is equivalent to an arc in a flat

3-book.

Theorem 4.13 There 1s an arc A in E3 with the property

that: 1f M(A) is any cellular hull of A, M(A) does not

lie in a tame 2-complex.

Proof. By Theorem 4.11 it suffices to exhibit an arc
that does not embed in a tame 3-book. Let A be an arc
through a wild Cantor set 1n E3, for example an Antolne's
necklace [2]. From Theorem 1.3 it follows that no wild
Cantor set lies in a tame 3-book in E3 and so 7*(A)

does not 1lile in a tame 2—compiex.

Theorem 4.14utilizes the following result of
McMillan [36]: Suppose that K is a finite complex, L is
a subcomplex of K, and that K collapses to L. Let

h: K > M* be a homeomorphism where M° is a plecewilse-
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linear n-manifold. If n # 4 and if h(K) is cellular in
n

M, then h(L) 1s cellular. (For a definition of collapsing
see [45].)
Theorem 4.14 Ir B" is a cellular book in E3 then each

leaf 1is cellular and the back 1s cellular, but not

conversely.

Proof. Since an n-book collapses to any leaf of the
back, it follows immediately from [36] that if B” is a
cellular book 1n E3 then each leaf 1s cellular and the
back 1s cellular.

However, the converse 1s not true. That. is,
there are n-books 1in E3 such that each leaf plus the back
is cellular but the n-book 1s not cellular. One such
example, for n = 2, 1s obtained from the non-cellular arc
A of Example 1.1 of [22]. A can be expressed as the union
of two arcs A, and A, such that AjN A, = {x} , and x 15 a

1 2

point 1n the interior of A. Then Al and A2 are both cell-

ular since they are locally tame except at their endpoints.
The arc A can be swollen into a disk D such that D = DlLIDQ,

D 1 =1,2, 1s a cellular disk obtained by swelling Ai’

i,
and Dln D2 is a straight line segment. Thus D 1is a

2-book with cellular back Dlﬂ D2_ and cellular leaves Dl

and D2_ that 1s not cellular.
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In Theorem 4.18, we describe the wild points of
cellular arcs in arbitrary n-books in E3. In the proof of
this theorem we use Theorem 10 of C. D. Sikkema ["A duality
between certaln spheres and arcs in S3r Trans. Amer. Math.
Soc. 22 (1966) 339-415]. P. H. Doyle has recently given
an alternate proof of this result which we include. The
proofs of Theorems 4.15-4.17 are due to Doyle. Theorem 4.17
1s Theorem 10 of Sikkema in the above paper. The space X
is eilther the 3-sphere or Euclidean 3-space. If A is a
compact set in X, let Z be the space obtained by identifying

A with a point while n: X - Z 1s the natural map.

Theorem 4.15 Let AcX be a wild arc that is locally tame

at all points except an endpoint a and let b be the other
endpoint. If C is a flat 3-cell in X, A - {pb}CiInt C,
suppose b lies on Bd C so that AUBd C is locally tame at b.

Then n(Bd C) is wild in Z.

Proof. Let D be a 3-cell that 1s locally tame except
at a, Bd DNBA C is a disk E on the boundary of each cell
while A - ({a}J U {p})C Int D and b lies in Int E. D is
obtained by "swelling A".

By construction C - D is not a 3-cell, but it
has a wild 2-sphere boundary R. Note that n|] C - D 1is
a homeomorphism and so n(R) is wild in Z. If n(Bd4 C)
were tame in Z, then n(R) would have the point n(b)

accessible by a tame arc from the side having the 3-cell
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closure. But by [26] this is impossible.

Theorem 4.16 Let A be as in Theorem 4.15. If B is an

arbitrary arc in X, BNA = {b}, then n(B) 1is wild in Z.

Proof. There is a disk D that lies on a tame 2-sphere
52 such that S° bounds a 3-cell C, A -{t} CInt C, b lies
on 82 and AL182 is locally tame at bj; one may obtain D by
swelling A near b and 82 i1s obtained by the tameness of

D and an application of [5]. By Theorem 4.15 n(Se) is
wild in Z. Then by the same argument n(B) contains no
tame arc in X with n(b) as endpoint. So n(B) is wild in Z.
and A

Theorem 4.17 Let A be disjoint arcs in X that

1 2
are each wild and fail to be locally tame at Jjust one end-

point each, a, and as, respectively. 1If A3 i1s any arc in
X containing AlU A2 and having al and a2 as endpoints,

then A3 is not cellular.

Proof. Suppose A3 were cellular. Then each subarc of
A3 must be cellular [35]. 1In Int A3 select a subarc Q
such that Kg_f_ﬁ_ is locally tame except at a; and a,.
Note that X modulo Q is topologically X again. So for A3
one may select an arc A that falls to be locally tame at

its endpoints and by [33) exactly one interior point. But

by [5) and Theorem 4.16 this 1s impossible.
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The proof of the following theorem could have
also been obtailning by using the techniques of Sikkema in

the paper mentioned on page 53.

Theorem 4.18 Let A be a cellular arc in the interior of

an arbitrary n-book 1in E3. If the set of wild points of A

1s non-empty and does not contain an arc, then A has at
most one wild point that is not contained in the back

of the n-book.

Proof. Let B” be an arbitrary n-book that contalns a
cellular arc A. Assume that A has two wild points a, and
an that are not contained in the back of B" and reach a
contradiction. There are three cases to consider.

Case 1. a, and a, are both interior points of A.

1 2
Let Al and A2 be disjoint subarcs of A such that a; € Int Ai
and Ai is contalned in the union of two leaves of Bn,

i =1,2. Then both A, and A, are cellular arcs by [35].

1 2
The argument of Theorem 5 of [5] establishes the existence

of a subdisk D' of the two leaves of B" containing Al such

that: (1) A, 1s contained in the interior of D', and (2)

D' lies on a 2-sphere Sl in E3. Theorem 1 of [32] states
3

that a cellular arc on a 2-sphere in E” has a set of wild

points that 1s empty, contains an arc, or consists of a
single point. Hence by the hypothesis of this theorem, a,
1 Let T1 and T2 be two subarcs
whose union 1s Al and whose intersection 1s a- We

is the only wild point of A

of A1

next show that both T1 and T2 fail to be locally tame at a,.
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By the Bing approximation theorem [4],1t may be assumed

that Sl is locally polyhedral except on A By the above

1°
argument, A1 is locally tame everywhere except at a

1 s Theorem 1

of [17] implies that S1 is locally tame except at a It

l‘
then follows from Theorem 9 of [3] that there is a space
homeomorphism h mapping Sl onto a 2-sphere that 1s locally

polyhedral except at h(a Then Theorem 5 of [17] implies

1)
that h(Tl) and h(Tg), and hence T, and T, are equivalently

embedded 1in E3. If 'I‘l and T2 are both locally tame at

as then by an application of Theorem 1 of [17], Al would
be a tame arc. Hence T1 and T2 both fall to be locally

tame at a. The same argument establishes subarcs Ul and U2

of A2 such that Ulu U2 = A2 1

U1 and U, both fail to be locally tame at a

and U;A U, = {a)}, and such that

o Let A3 be a

and a2, then these are isolated

2

subarc of A with endpoints a;

wild points of A, which is a cellular arc by [35]. But this

3

contradicts Theorem 4.17 and hence this case cannot occur.
Case 2. a, 1s an endpoint of A and as is an
interior point of A. Let A3 be a subarc of A with endpoints

a, and as- Then by the same argument as in Case 1, an is

an 1isolated wild point of A Let a, € Tc:A3, where T 1is

3 1
an arc contained in the union of two leaves of B". By an

argument as in Case 1, T may be assumed to lie on a 2-sphere
in E3. So by [32], a, 1s an isolated wild point of T. Thus

A, is a cellular arc by [35] such that its endpoints are

3
isolated wild points of the arc. This contradicts Theorem 4.17

and so this case cannot occur.
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Case 3. ay and a, are the endpoints of A. As
in Case 2, 1t follows that a; and a, are isolated wild
points of A. So by Theorem 4.17 this case cannot occur.

Since the above three cases cannot occur, it
follows that A has at most one wild point that does not

lie on the back of Bn.

Next we glve an example to show that this is the
best possible result for an n-book, n > 2. Example 1.2 of
Fox and Artin [22] can be swollen into a 3-cell that contains
Example 1.2 on 1ts boundary. Let D be a 2-cell contalned
in the 2-sphere boundary of the 3-cell, such that D contains
Example 1.2 1in 1ts interior and 1is locally polyhedral except
at the wild point of Example 1.2. Let B3 be a 3-book in E3
such that two of the leaves are 2-simplexes and the other
leaf is D, and let A be an arc in D that 1is equivalent to
Example 1.2 of [22] such that A intersects the back of B3
only in 1its endpoint z. Then Example 4.4 of this chapter
3

can be embedded in B~ in such a manner that it has z as

one of its endpoints, and 1t intersects A only 1in thils point.
The union of Example 4.4 and A 1s a cellular arc, by the
p-shrinkable criterion, that has unéountably many wild
points on the back of B3 and precisely one wild point con-

tained in the interior of a leaf of B3.



CHAPTER V

SUBSETS OF TAMELY EMBEDDED CONES OVER N-BOOKS IN Eu

In [40] Persinger considered wild and tame
subsets of tamely embedded n-books in E3. As was re-
marked in Chapter II, an n-book may be considered as
the double cone over n points. 1In this chapter wild and
tame subsets of tamely embedded triple cones over n
points in E)+ are considered, that 1s,subsets of tamely
embedded cones over n-books in Eu. A cone over an n-book
will be denoted by C(B").

The argument of the first theorem establishes
that there exist no wild Cantor sets in tame cones over
n-books in Eq, Just as in [40] 1t is established that

3

there exist no wild Cantor sets in tame n-books in E-.

Theorem 5.1 No wild Cantor set lies in a tame cone

over an n-book 1n Eu.

Proof. Let C(B") be a tamely embedded cone over an
n-book 1in Eu. Let h be a homeomorphism of E)4 onto 1tself
such that h(C(B")) 1s a Euclidean polyhedron with triangu-

lation K. Let s S, denote the 3-simplexes of K.

1,...
Suppose C 1is a Cantor set embedded in C(Bn). Then for each
i1, 11, C(\h-l(lsil) is contained in a Cantor set

-1
C such that C,Ch™"(|s;]). h(C;)Cls;l,and |s,| 1s a

i
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Euclidean 3-simplex in E4 and so 1s contained in a 3-
dimensional hyperplane of Eu. From Klee [28] it follows
that h(Ci), hence C,, 1s a tame Cantor set in Ea. Theorem 8
of Osborne [37] states that the countable union of tame
Cantor sets in E" 1is a tame Cantor set. Hence C CZLJ§=1Ci
and LJ§=1 Ci is a tame Cantor set in Eu, and so C 1is a

tame Cantor set.
The above proof is valid for any tamely embedded
(n-1)-complex in Euclidean n-space, hence the following

corollary.

Corollary 5.2 A tamely embedded (n-1)-complex in E"

contains no wild Cantor sets.

Next 1l-cells and l-spheres in tamely embedded
C(Bn) are considered. The fact that all such 1l-cells and
l-spheres are tame 1in E4 follows from Theorem 2 of Dancis
in [12]. This theorem states: A necessary and sufficient
condition that a k-complex K, which 1is a closed subset of
a combinatorial n-manifold (without boundary) n > 2k + 2,
be tame in M is that K 1lle in the union of a countable

number of locally tame (n-k)-simplexes in M.

Theorem 5.3 There exlst no wild arcs or wild simple
4

closed curves in tame cones over n-books in E .




60

In the case n =1 or 2, this result can be
obtained in another manner which 1s indicated in the proof
of Theorem 5.6. All arcs, simple closed curves, and disks
in a tame 1- or 2-book in E3 are tame in E3 [40]. The
next two theorems are an analogous kind of result for cones
over 1l- or 2-books tamely embedded in Ea. These theorems
depend strongly on some recent results of Kirby [27],
and results on embeddings of subsets in 3-dimensional
hyperplanes in Eu of Klee [28], Bing and Klee [6], and
Gillman [24].

A finite sequence of distinct 3-simplexes in
En, Sqyse++s5,, is called a circult if:

(1) §=1 lSJI 1s homeomorphic to a closed

3-cell for 1 <1< r, and

(2) ( LJ§=1 ISJI)f\|Si+l| for 1 < r is a

2-cell on the boundary of LJ§=1 |SJ|

and on the boundary of |[s, ,|.
A circult which 1s a sequence with r members is said to
have length r.
Lemma 5.4 Let B be a Euclidean polyhedron in E4
homeomorphic to a closed 3-cell, K a triangulation of B8,
and 0 a 1-simplex of K. Then the collection of 3-simplexes

of K that have o as a face can be ordered in such a manner,

8ay Sqs+++58,s 8O that thils sequence 1s a circuit.
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Proof. The collection of all circuits, such that the
members of the sequence are 3-simplexes of K having o as
a face, 1s non-empty and contains a finite number of ele-
ments. Thus there 1s a circult of maximal length,
SqseeesSy. To prove the lemma 1t 1s necessary to show
that k = r, where r 1s the number of 3-simplexes of K
having o as a face. Suppose k # r and reach a contra-
diction. Let G = lsllu ...leskl, then G is homeomorphic
to a closed 3-cell. There are two cases to consider.

Case 1. There exists x € |o|NInt G. Then x
has an open 3-cell neighborhood N in G which, by invari-
ance of domain, 1s also a neighborhood of x in B. If
there exists s'e K, where s!' i1s a 3-simplex with o as a
face and s' # s;91 = 1,...,k, then.Int }8'|. intepsects
every neighborhood of x in B. But Int |s'|NN = @, hence
there does not exlst such an s?'.

Case 2. There does not exist x e |o|NInt G.
Then |o|CBd G and there are two 2-simplexes, say 0¥<x,>
and o*<x2>;which have ¢ as a face and lie 1in Bd G.
(Denote the J-simplex with vertices Qoo+ -2 dy by
< qgseesay>)

Next it will be shown that both o*<xl> and
0*<x2> lie in the boundary of B. Suppose not, and that
Int |o*<x,>| CInt B. Then 0*<x;> 1s the face of two 3-
simplexes in K, one of which 1lles in G and the other

s!' = 0*<x1,b> which 1s not a member of the circuilt
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determining G. Then
[s'|nG = |o*<x,>| or
|o*<x >y |o*<b>],

for all the 3-simplexes in G have o as a face. Hence
|s'| intersects G in a 2-cell on the boundary of each,
and |s'|UG 1s homeomorphic to a closed 3-cell. But
then sl,...,sk,s' i1s a circuit which contradicts the
maximal léngth of s

S Hence both c*<x1> and

12025
o*<x2> lie in the boundary of B.

Since both o*<x1> and_o*<x2> lie in the boundary
of B, if x € Int |o| then x has a nelghborhood N in G,
which by invariance of domain, is also a neighborhood of

Xx in B. S0 by the same reasoning as 1in Case.1l, there

does not exist a 3-simplex s' of k with o < s! and s' # Sy

for 1 = 1,...,k. The lemma follows from the above argument.
Theorem 5.5 A tame 3-cell B in E4 is flat.
Proof. Since B is tame 1t may be assumed that B is a

Euclidean polyhedron in E4 with triangulation K. 1In the
appendix of [31] Lacher gives a proof that locally flat
cells‘in E® are flat. So it sufficés to prove that B 1is
locally flat. In [27] Kirby also proves that if By and
B, are two locally flat (n-1)-tells in E” with

B,N B, = Bd pyNBd B, = Bn-? where Bn'2 is an (n-2)-

cell which 1is locally flat in Bd Bl and Bd 62, then ﬁlL}62
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is a flat (n-1)-cell in E®. This theorem along with
Lemma 5.4 implies that B is locally flat except possibly

at its vertices and hence by the previous remarks B is flat.

Theorem 5.6 There exist no wild 1- or 2-cells or

1- or 2-spheres in a tamely embedded cone over a 1l- or

2-book in Eu.

Proof. The cone over a 1- or 2-book 1s homeomorphic
to a closed 3-cell. Hence by Theorem 5.5,we may assume

that C(B") n = 1,2 is contained in the hyperplane E3 x 0

in Ea. By a theorem of Klee [28], any 1-cell embedded in

a 3-dimensional hyperplane of'E4 is tame in Eu. In [6]

Bing and Klee prove that every simple closed curve in E3

is unknotted in Eu. By Theorem 3 of Gillman in [24] every

2-sphere or 2-cell in a 3-dimensional hyperplane of E4

y

is tame in E'. Thus every 1l- or 2-cell 6r 1l- or 2-sphere

y

in a tamely embedded cone over a 1l- or 2-book in E " is

tame in Eu.

The question of whether or not there exist
wild 3-cells in tame C(BnL n = 1,2, has not been answered.
However, there do exist wild 2-.and 3-cells in tamely
embedded cones over n-books, n >» 2, in Eu. To show that
this 1s the case it 1s necessary to introduce some defini-

tions from [5]. Let D be a disk. We say that a map of
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the map can be extended to take D into Y. YCX is

locally simply connected at a point p of ¥ if for each

nelghborhood U of p in X there 1s a neighborhood V of p
in X such that each map of Bd D into VNY can be shrunk

to a constant in UNY.

Theorem 5.7 If A is an arc in E" whose complement

fails to be locally simply connected at an endpoint p

1 n+1 n+1

of A, then A x [0,1]CE" x E* = E 1s a wild disk in E

Proof. Assume A x [0,1] is tame in g+l

and reach a
contradiction. Since A x [0,1] 1is tame there exists
t € (0,1) such that 1f p' = p x t then A x [0,1] is

locally flat at p'. Hence EVT!

- (A x [0,1]) 1s locally
simply connected at p'. A x t 1s embedded in E" x t as

A 1is embedded in E". A contradiction will be reached by

proving that En x t - Axt 1is locally simply connected

at p', and hence that E” - A 1is locally simply connected

at p.

Let U be any neighborhood of p' in E™ x t, then
U' =U x (0,1) 1s a neighborhood of p' in EML. Since
g+l _ (A x [0,1]) is locally simply connected at p', there

exists a neighborhood V' of p' in En+1 such that each map
of Bd D into V'r‘\(Em'1 - (A x [0,1])) can be shrunk to a
constant in U'F\(En+l - (A x [0,1])). Let V be a neighbor-
hood of p!' in E” x t such that VCV', and prove that each

map of Bd D into VA(E" x t - A x t) can be shrunk to a
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constant in UN(E" x t - A x t). Let f be any mapping of
Bd D into VN(E® x t - A x t), then f(Bd D) is contained

in V'ﬁ(En+1 -(A X [O,lD). Hence f can be extended to

a map, denoted by f', where f' maps D into U'f\(En+l

1

@ X [O,l]». Let o be the projection of En+ onto E™ x t 5
a 1s a continuous map. Then af' maps D into Uﬂ(En Xt -

A x t) and 1s an extension of f. Thus E" x t - A x t is
locally simply connected at p'. Hence En - A is locally
simply connected at p which 1is a contradiction to the
hypothesis of the theorem. So A x [0,1] 1s a wild disk

in En+l.

If A 1s the arc of example 1.1 of Fox and Artin
[22]4 then B3 A is not locally simply connected at an
endpoint of A. The proof of this fact may be readlly obtained by
considering the presentation of the fundamental group of

the complement of the arc given in [22].

Theorem 5.8 There exists a wild disk in a tamely
M

embedded cone over an n-book, n > 2, in E

Proof. Example 1.1 of [22] can be embedded in a poly-
hedral 3-book, B3C:E3; Then B3 X [-2,2]CE4 is homeomorphic

3 and 1s tamely embedded 1n @4. By the

to the cone over B
remarks preceding this theorem and Theorem 5.7, it follows
that A x [0,1] is a wild disk contained in a tamely embedd-

ed cone over a 3-book.
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Next 1t will be established that there exist

wlld 3-cells in tamely embedded cones over n-books, n > 2.

Theorem 5.9 If D is a 2-cell in E3 whose complement

fails to be locally simply connected at a point p of Bd D,

then D x [0,1] 1s a wild 3-cell in Eu.

Proof. Assume D x [0,1] is tamely embedded and reach
a contradiction. Let h be a homeomorphism of E4 onto
itself such that h(D x [0,1]) is a Euclidean polyhedron
with triangulation K.

If there exists t ¢ (0,1) such that h(p x t)
lies in the interior of a 2-simplex of K, then
E4 - (D x [0,1]) is locally simply connected at p x t.
If, however, h(p x [0,1]) is contained in the l-skeleton
of K then there exists t € (0,1) such that h(p x t) is
contained in the interior of a l-simplex of K. The polnt-
set realization of all those 3-simplexes of K that have
this l-simplex as a face 1s a closed 3-cell by Lemma 5.4.
Furthermore, by [27] and Lemma 5.4, it is a flat 3-cell.
Hence E4 - (D x [0,1]) 1s locally simply connected at
p X t. Using the same argument as in the proof of
Theorem 5.7, one obtains that D is locally simply connect-
ed at p. Thus a contradiction is reached so D x [0,1]

is wildly embedded in Eu.
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Theorem 5.10 There exists a wild 3-cell in a tamely

embedded cone over an n-book in Eu, n > 2.

Proof. Example 1.1 of [22] can be swollen 1n’E3hinto a
2-cell D whose complement in E3 fails to be locally simply
connected at an endpoint p of Example 1.1, which by the
"swelling construction" lies on the boundary of the 2-cell.
Furthermore, D can be embedded in a polyhedral 3-book in

3

E Then D x [0,1] lies in a tamely embedded cone over

an n-book (as in the proof of Theorem 5.8). By Theorem 5.9

D x [0,1] is a wild 3-cell in Eq.

To obtain an example of a wild 2-sphere 1in a
tamely embedded cone over an n-book,n > 2, that is
constructed in a somewhat different manner then the wild
2- and 3-cells above, we utilize an example of Doyle and
Hocking [19].

Let BS be a flat 3-book in ES. Let B3, 1 e Z°,

be a sequence of disjoint 3-books embedded in B3 such

3
i

when considered embedded in E3, (2) the books Bf converge

that: (1) the leaves of B are Euclidean 2-simplexes

to a point p on the back of B3, and (3) the diameter of

B3 is less :than 1/21. Denote the back of B3 by B 1 e Z+.

1 1 1
By [40] a trefoil knot can be polyhedrally embedded in a

3-book. Let T,, 1 e z¥, ve a polygonal trefoil knot

3 1n such a manner that T, 1s contained in

embedded in ?i 1
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the 1nterior of Bf except for two stralght line segments
t1 and S; on the boundary of a leaf of Bf and in such a

manner that tiU sic:Dl, a leaf of B3, for all i e zT.

let E., 1 ¢ Z*, be a polygonal disk in B> such that:

i’
+
(1) E,CD, for all 1 e 27, (2) E,NT, =t, and
- » 3 _
EsNTyp = 83400 (3) E;N L5, By = 64U sy,
(4) Eir\EJ =@ for 1 # J, and (5) the diameters of the

E, tend to zero. See Figure 5.1.

i

-t = —— —

p
S Ef’
Ea
<\ 3
Ba
- -IXINTRE,
\\ ?tl D‘
)
\
\\ 317
S, <8
Figure 5.1
Let B3 be embedded in the 3-dimensional hyper-

y

plane E3 x 0CE*. Let 2'(B3) denote the suspension of

83 1n E* with suspension points u and v, and let Cu(Bi)

denote the cone over Bi which is obtalned by Joining points

in By to u,andwCV(Bi) denote the cone over B, which is
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obtalned by Joining points on Bi to v. Let 2 be a

point in Cv(Bi) - (BiLj{V}) and let u, denote a point in

Cu(Bi) - (BiLJ{u}). Choose the points v, and uy, 1 € Z+,

so that the sequences {ui | 1 € Z+}and {Vi | 1 € Z+}converge

to p. Let Z'(Bf) denote the suspension of B% in EY with
the same suspension points as B3, then Z'(B?)CIZ'(B3).

y

If Z(Ti) denotes the suspension of T, in E° with suspen-

i

sion points u, and v,, then Z(Ti)CZZ;(Bf). This fact

i,
can be verifiled using the convexity of the cones over the

leaves of Bf in Z'(Bf) and the fact that u,
3

chosen 1n the suspension of the back of Bi Hence

and vy were

{Z(Ti) | 1 € Z+} consists of a sequence of disjoint
2-spheres converging to the point p. These 2-spheres are
now Jjoined together in such a manner that a wild 2-sphere

is obtained. The E, can be swollen into a polyhedral 2-

i
spheres Eli 1n E4 containing E, such that: (1) EiCIZ'(Dl),

(2) EIN E3 =g for 1 £ 3, (3) EIN Z(Ti) is a polyhedral

2-cell containing t, and E! N Z(Ti+1) is a polyhedral

1

2-cell containing s,, (4) the diameters of the E}

to zero, and (5) S = LJI=1 (Z(Ti)L}Ei) is locally poly-

converge

hedral except at p.

Then S 1s homeomorphic to a 2-sphere and 1is the
example of Doyle and Hocking [19]. Furthermore by con-
struction SC?Z'(B3),-and.Z'(B3) is homeomorphic to the
cone over B3. Z'(B3) is tamely embedded in Eu. A tamely

embedded 2-sphere in E4 can fail to be locally flat at
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only finltely many points, the vertices of a triangulation
of the 2-sphere. S falls to be locally flat at the se-
quences {Vi | 1 € Z+} and {u1 | 1 € Z+} which converge

to p. Hence S 1s wildly embedded in Eu. The above dis-

cussion ylelds the followlng theorem.

Theorem 5.12 There exists a wild 2-sphere in a tamely
i

embedded cone over an n-book, n > 2, in E .

It 1s interesting to note that the wild 2-sphere
S constructed above 1s locally tame everywhere except at
p and that S fails to be locally flat on a sequence of
points converging to p. Furthermore,every arc embedded
in S 1s tamely embedded in E“. Also S can be expressed
as the unlon of elther two wild 2-cells or two tame 2-cells.
The wild 2- and 3-cells in tame cones over n-books,n > 2,
constructed in this chapter were both products of cells;

therefore, they are both cellular.
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