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ABSTRACT

ON THE EMBEDDABILITY OF COMPACTA IN N-BOOKS:

INTRINSIC AND EXTRINSIC PROPERTIES

by Gail Adele Atneosen

An n-book Bn is the union of n closed disks in E3

such that each pair of disks meets precisely on a single

arc B on the boundary of each. The disks are called the

leaves of Em, and the arc is called its back. The

embeddability of compacta in n-books is investigated from

two different vieWpoints. In Chapters II and III intrinsic

prOperties are considered and in Chapters IV and V extrin-

sic prOperties.

Chapter II is concerned with the embeddability of

certain continua in n-books. It is shown that all compact,

connected 2-manifolds with non-void boundary embed in a

3-book. Examples are given of a one-dimensional, locally

connected, locally plane continuum that embeds in a 3-book

but not in any 2-manifold, of a one-dimensional locally

connected continuum that does not embed in any n-book, and

of a one-dimensional locally connected continuum that embeds

in Bn but not in Bm for 2.3 m < n.

In Chapter III the concept of a polyhedron tame

in Bn is introduced, and those polyhedrons7tamély;embedded

are characterized. Necessary and sufficient conditions are
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given for a polygonal simple closed curve in a 3-book to

span a 2-manifold in the 3-bOOk. The monotone Open union

of Open n—bOOks is shown tO be an Open n-book.

In Chapter IV extrinsic prOperties Of subsets Of

n—bOOks in E3 are investigated. Necessary and sufficient

conditions are given for a tOpological polyhedron in a

tame n-bOOk to be tame in E3. It is shown that every

tOpOlogical umbrella in a tame n—book is locally tame at

its tangent point and that no disk pierced by an arc lies

in an arbitrary 3-bOOk in E3. Next questions of cellularity

are considered. The cellular hull of a subset A Of E3 is

defined to be a cellular set E containing A such that no

prOper cellular subset of B contains A. An are A has a

cellular hull that lies in a tame 2-complex in E3 if and

only if there is a Space homeomorphism h with the prOperty

that the image of A under h lies in a tame 3-book. If A

is a cellular arc whose set of wild points is non-empty and

does not contain an arc and A lies in an arbitrary n-book

in E3, then A has at most one wild point that is not con-

tained in the back of the n-bOOk.

In the last chapter tamely embedded cones over

n-books in E4 are investigated. It is shown that no wild

Cantor set lies in a tame cone over an n-bOOk in E4, and

that every 1- or 2-cell or 1- or 2-sphere in a tamely '

embedded cone over a l- or 2-bOOk is tame in E4. Examples

are given of wild 2- and 3-cells and 2-spheres in tamely

embedded cones over n-books, n > 2, in E4.
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CHAPTER I

INTRODUCTION

An n-bOOk Bn is the union Of n closed disks in

E3 such that each pair Of disks meets precisely on a

single arc B on the boundary Of each. The disks are call-

ed the leaves Of Bn and are denoted by Di’ 1 = l,...,n,

and B is its back.

In this paper we investigate the embeddability

of compacta in n—books from two different vieWpOintS.

In Chapters II and III intrinsic properties are consider-

ed and in Chapters IV and V extrinsic properties. This

investigation of n-books was initiated by P. H. Doyle in

[14] when he extended an earlier result [13], and showed

that if each Of the leaves Of an n—bOOk tOpologically

embedded in E3 is tame then the n-bOOk is tame. C. A.

Persinger continued the investigation of extrinsic

properties Of subsets Of n-bOOks in [38, 39, 40]. The

concept Of n—books has also arisen in a somewhat differ-

ent context in the work Of A. H. COpeland, Jr. [10,11]

where some results concerning intrinsic properties Of

subsets Of n-books are found.

Next we give a few comments on notation and

some definitions necessary for the reading Of this paper.

The following notation will be used.



N II the set Of positive integers.

En {x I x = (Xl’°"’xn) an n-tuple Of real

+

numbers, n e Z } .

En is assumed to have the topology determined by the

Euclidean metric an“

E: = {x I x = (xl,...,xn) Xn.2 O} .

n-l

s {x I dn(x,0) = 1}

A homeomorphic image of S1 is called a Simple closed

II

 

211232-

Closed n-cell = {x 5 En | dn(x,O) g_l} .

Open n-cell =I{x e En | dn(x,0) < l}..

By a disk will always be meant a space homeomorphic to

a closed 2-cell and by an arc a space homeomorphic to

a closed 1-cell. If A and B are topological Spaces, a

homeomorphism Of A into B is called an embedding.
 

By an n-dimensional manifold M is meant a
 

separable metric space such that each point has a neigh-

borhood whose closure is homeomorphic to a closed n-cell.

The interior gf_M, Int M, consists Of those points which

have neighborhoods homeomorphic to an Open n-cell; the

boundary g£_M, Bd M, is defined to be M - Int M. Thus

in discussing a disk D, it is clear what is meant by Ed D

and Int D. If boundary or interior is: used in the usual

topological sense then it will be denoted by Int A and
X

deA if A is a subset Of X. By the interior of an n-bOOk

is meant the set LJE=1 Int DiIJ Int B.



Next some terminology from combinatorial tOpology

is given; the definitions are essentially those Of

Zeeman [45].

 

By an n-Simplex Ah, 0 3.“: is meant the convex

hull Of n+1 linearly independent points (the vertices)

{XJ I J = O,...,nI in Ep, n g_p. By a r-face AT Of Ah’

denoted by AT < Ah, is meant the convex hull of r+l

 

distinct points Of [X3 I J = O,...,n} . A simplicial

complex, or complex, K Of Ep, p 2_l,is a finite collec-

tion of Simplexes of Ep such that:

(1) if A.e K, then all the faces Of A.are in K, and

(2) if A1, A2 6 K then Allq A2 is a common face Of

A1 and A2.

L is called a subcomplex Of K if L is a simplicial com-
 

plex and LCIK. If A1, A2 are Simplexes in Ep such that

the union of their vertices forms a linearly independent

set Of points in Ep, then A1 and A2 are Joinable. If A1

and A2 are Joinable, then the Join Of A1 and A2, denoted

by A1*A2, is defined to be the simplex spanned by the

union Of their vertices. The subcomplex Of K consisting

Of all q-simplexes Of K, where q s m, is called the

m—skeleton of K and is denoted by K(m). For A.e K the
 

set st(A,K) = Io e K I A < o} is called the star 93 A

in K. The underlying point set IKI Of a simplicial com-

plex K is called a Euclidean polyhedron or polyhedron.
 



Sometimes the phrase finite Euclidean polyhedron is used to

emphasize the fact that we are only considering simplicial

complexes consisting of finitely many Simplexes. By

Ist(A,K)I is meant the space |__|{|o-| I {tr e Ist(A,K)I.. If P is a

Euclidean polyhedron then a simplicial complex K such

that IKI = P is called a triangulation Of P, and P is said
 

to be the carrier Of K. If K is a simplicial complex and

and h is a homeomorphism Of IKI onto Q, then the set

Ih(|o|) | a e K} is said to be a curved triangulation Of
  

 

Q. The m-Skeleton Of Q is the set {h(ICI) I 0 e K(m) I.

A complex K' is called a subdivision of a complex K if
 

IK'I = IKI and each Simplex of K' is contained in some

simplex of K. The dimension Of a simplicial complex K
 

is the largest integer n such that K contains an n-simplex.

The carrier Of a 1-dimensional complex is called a graph,

note that a graph is not necessarily connected. By an

umbrella is meant the Euclidean polyhedron consisting

Of a disk D and an arc 0 such that DFIG’=Ix} where x is

an interior point Of D and an endpoint Of O. x is called

the tangent point Of the umbrella and O the handle.

Let I be the interval [O,l]<ZEl. For any space

 

X, the coneC(X) over XIIS the quotient Space (X x I)/ R
 

where R is the equivalence relation (x,1) ~ (x',l) for all

x, x' e x. Let J be the interval [-1,1]CE1. For any

Space X, the suspension §(X) of X.is the quotient space
 

(X x J)/ R, where R is the equivalence relation



(x,1) ~ (x',1), (x,-1) ~ (x',-1) for all x, x' e R.

Next we give a brief discussion Of the literature

and state some definitions and theorems that will be used

in later chapters. An n-book can be viewed as the double

cone over n distinct points, and thus can also be consider-

ed as the cone over a 1-dimensional complex. It is from

this vieWpOint they have arisen in A. H. Copeland's work

on the isotopy classes of 2-dimensional cones. The results

are Of an intrinsic nature. In [11] he divides the'

isotopy classes Of cones Of dimension less than or equal

to two into disjoint . sets a and B. Disregarding the

cones over homeomorphic spaces, which have the same iso—

topy type, there is only one member in each class Of a.

If Bn (n = O,2,3,4,...) is the isotOpy class of cones

containing an n-book (a O-bOOk is an arc) then B is the

set Of all these classes. Thus the only isotOpy classes

that contain more than one distinct member are those

containing n-books. In [10] necessary and sufficient

conditions are given for cones over finitely triangulable

spaces to be embeddable in a book.

n-manifolds have been extensively studied. In

considering intrinsic properties Of n-bOOks, we are mainly

concerned with compact, connect 2-manifolds. 2-manifolds

are particularly well-known. For a general discussion

Of 2-manifolds see [Chapt. 1, 34]; for a short proof that

all compact.2-manifolds'canobe triangulatedlsee [20].



In 1908 Schoenflies [43] proved the following

result which will be referred to as the plane Schoenflies

theorem.

Theorem 1.1 If J is a Simple closed curve in E2 and

h is a homeomorphism Of J onto the unit circle S1 in E2,

 

then h can be extended to a homeomorphism of E2 onto

itself.

A corollary to the Schoenflies result is that

an umbrella cannot be embedded in the plane. It also

follows that any polyhedron embedded in E2 can be mapped

by a Space homeomorphism onto a Euclidean polyhedron. It

is this notion which is formalized in the following def-

initions for higher dimensional Euclidean spaces.

A topological polyhedron P in En is tamely

embedded in En if there is a Space homeomorphism that

carries P onto a finite Euclidean polyhedron. Otherwise

P is wildly embedded. A set x in En is locally tame a
 

 

'a point p Of X if there is a neighborhood N of p and a

homeomorphism h Of N (the closure Of N) onto a polyhe-

dron in En such that h(NTIX) is a finite Euclidean poly-

hedron. A set X is said tO be Ell§.§£.§.2212£.2.1f

it is not locally tame at p. The definitions Of tame and

locally tame are due to Fox and Artin [22] and Bing [3],

respectively. A set P in En is locally polyhedral EE.§
 

point x.of P if there is a neighborhood of x whose clOsure



meets P in a finite Euclidean polyhedron.

The notion of wild and tame can also be applied

to Spaces that are not polyhedrons. By a Cantor set is
 

meant any homeomorphic image of the classical Cantor

ternary set, that is, any compact, perfect, zero—dimen—

sional, non—empty metric Space is a Cantor set. 'A Cantor

set ACEn is called tame if it lies on a tame arc in En;
 

otherwise A is said to be wild.

3
Examples Of wild arcs in E were known as early

as 1921 when Antoine [2] constructed a wild Cantor set

in E3, an are through this Cantor set is called an

Antoine's necklace and is wild. The Alexander Horned

Sphere published by Alexander [1] in 1924 is an example

Of a wild 2-Sphere in E3. In 1948 Fox and Artin [22]

gave a number of examples Of wild arcs and spheres in E3

with one or two wild points. These results revived in-

terest in the area Of embeddings and since 1948 this has

been an active area of research. As an example Of the

kind of results that have been Obtained, and one that we

will use later, we list the following theorem due to

Bins [3].

Theorem 1.2 Each locally tame closed subset K Of a
 

triangulated 3-manifold M with boundary is tame.

Furthermore, if C is a closed subset Of M such that K is

locally polyhedral at each point Of KFIC, and a is a



positive continuous function on M - C, there is a homeo-

morphism f of M onto itself such that x = f(x) on C,

p(x,f(x)) < d(x) on M - C, and f(K) is a polyhedron.

In connection with n-books Persinger proved in

[40] the following two theorems which we will use.

 

Theorem 1.3 NO wild Cantor set lies in a tame n-bOOk

in E3.

Theorem 1.4 There exist wild arcs and disks in tame
 

n—books in E3, n > 2.

Theorem 1.4 is interesting for it states that

3
wild arcs can lie in very simple subspaces of E . In

this connection, we note that the are A Of Example 1.1 Of

Fox and Artin [22] is embeddable in a tame 3—bOOk in E3

in such a manner that the images of a set Of generators

of W E3 — A) are also contained in the 3~bOOk. (The1(

fundamental group Of the complement Of A in E3, 1rl(E3 - A),

is non-trivial.) Another Simple subspace of E3 that

contains wild arcs is an infinite croquet game. By an

infinite croquet_game is meant a flat disk D in E3 union
 

countably many disjoint polygonal arcs {01 I i 6 2+}

that intersect D only in their endpoints and such that the

{01} converge to a point p in the interior of D. If A

is any are that lies in a tame 3-bOOk in E3 and has a

Single wild point, then it is easy to see that A is



equivalent to an arc that lies in an infinite croquet game.

A set C in En is said to be cellular if there

exists a sequence Of tOpological closed n-cells

+ on

{Ci | iezIsuch thatC CInt c1 and C=I—Ii=1 Ci.
1+1

This notion was defined in 1960 by M. Brown [8]. An arc

may be wild and also be cellular as Example 1.2 of [22].

Wild points of cellular subsets Of 2-Spheres in E3 are

considered by Loveland in [32]. McMillan in [35] has

Obtained results about cellular subsets Of higher dimen-

sional Space.

A k-cell in En, k‘g n, is said tO be flatly

embedded, or $193, if there is a Space homeomorphism Of

n

E onto itself mapping it onto a k-simplex. A (k-l)-

sphere in En is said to be flatly embedded, or flat,
 

if there is a space homeomorphism that maps it onto the

boundary Of a k-Simplex in En. Thus a polygonal trefoil

3
knot in E is tame but not flat. An n-book is flatly

3
embedded in if each of its leaves is a Euclidean

2-Simplex. If M is a k—manifold with boundary contained

in an n—manifold N, M is locally flat at‘a point p E Int M
 

if there is a neighborhood U Of p in N such that (U, UfWM)

is homeomorphic to the pair (En,Ek); M is locally flat
 

a£_a_point E.£.§§.M if there is a neighborhood U Of p

in N such that (U, UIIM) is homeomorphic to (En, EE).

These notions have been recently studied by Lacher [31]

and Kirby [27]. It is known that a locally flat k-cell



IO

in En is flat in En [31].

One other theorem that is used and Should be

mentioned is the Brouwer Theorem on the invariance of

domain.

Theorem 1.5 If U and V are homeomorphic subsets Of
 

Sr1 and U is Open in Sn, then V is Open in Sn.



MMNERII

CONTINUA IN N-BOOKS

This chapter is concerned with intrinsic pro-

perties of n-bOOks rather than, say, positional proper-

ties Of n-bOOkS in Euclidean space. In particular the

embeddability Of certain continua, that is compact

connected sets, in n-bOOks is considered.

Theorem 2.1 All compact, connected 2-manifolds with
 

non-void boundary embed in a 3-bOOk.

Proof. Figure 2.1 illustrates what is meant by a disk

with (a) a Single bridge, (b) a twisted bridge, (c) a

double bridge.

Figure 2.1

Using scissors—and-paste techniques (see Chapter 1 Of [34]),

it can be shown that all compact, connected 2-manifolds With

11



l2

non—void boundary are homeomorphic to:

(i) a disk with r _>_ 0 single bridges and h > 0

double bridges, or

(ii) a disk with r _>_ 0 single bridges and q 2 O

twisted bridges.

Thus to prove that all 2-manifolds with non-void boundary

can be embedded in a 3-bOOk, it suffices to show that

2-manifolds Of type (i) or (ii) can be embedded in B3.

Figure 2.2 indicates that this is, in fact, the case.

Figure 2.2 (a) consists of a disk with three double

bridges and five single bridges and (b) consists Of a

disk with two twisted bridges and four single bridges.

 

 

 
 

 

 
Figure 2.2

Corollary 2.2 All compact, connected 2-manifolds With
 

non-void boundary can be embedded in a 3-bOOk so as to

carry a subcomplex Of some triangulation Of the 3-bOOk.
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Corollary 2.3 1. Every prOper compacthubset70f a compact

connected 2-manifold embeds in a 3-bOOk.

Proof. If C is a prOper compact subset of a compact,

connected 2-manifold M, then M - C is a non-empty Open

set. Hence there is a closed disk D contained in M that

doesrxnzintersect C. M - Int D is a compact, connected

2-manifold with non-void boundary containing C and can

be embedded in a 3—book by Theorem 2.1.

 

Corollary 2.4 All graphs embed in a 3-book.

Proof. Let G be a graph and let n denote the number

of vertices of G. Select n distinct points on a 2-sphere

and accomodate each arc Joining two vertices by a "handle"

appropriately attached to the 2-Sphere. Thus G can be

embedded in a 2-sphere with handles which is a 2-manifold

without boundary. Hence by Corollary 2.3 G embeds in a

3-bOOk.

Corollary 2.5 All compact, connected 2—manifolds embed
 

in the triple cone over three points.

3
Proof. B is the double cone over three points, so it

suffices to show that all 2-manifOldS embed in C(B3).

Let M be a compact, connected 2-manifold; if Bd M # C

then by Theorem 2.1 M embeds in 133:0(133). If Bd M = D,
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then M - Int D embeds in B3 where D is a disk in M. But

C(B3) contains the cone over the boundary Of D and

(M - Int D)LJC(Bd D) is homeomorphic to M. Hence M embeds

in C(B3).

Corollary2.6 All compact, connected 2-manifolds embed

in a 2-dimensional continuum in E4 that fails tO be locally

 

polyhedral at only one point.

Proof. There are countably many distinct 2—manifolds

with non—void boundary. These can be polyhedrally embedd-

ed in B3, by Corollary 2.2, so as to converge to a point

p on the back Of B3. Consider B3<: E3 x O, a 3-dimension-

a1 hyperplane in B“, such that these countably many

distinct 2-manifolds are embedded in B3 as described

above. In E4 form the cone over the boundary components

of each of these 2-manifolds in such a manner that the

cones are disjoint and the vertices Of the cones converge

to p. Then B3 union these cones is a 2-dimensional

continuum that is locally polyhedral except at p and con-

tains all 2—manifolds with or without boundary.

In Corollary 2.3 it was noted that every prOper

compact subset Of a compact, connected 2-manifold embeds

in B3. Thus the question may be asked if there exists a

locally plane, locally connected, one-dimensional
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continuum that embeds in a 3-bOOk but not in any 2-manifold.

By locally plane is meant that each-point has a neighbor-

hood that embeds in E2. An example due to Borsuk [7] is

used to answer this question in the affirmative. His

example utilizes one of Kuratowski's primitive skew curves

[29] which is the union Of all the edges Of a tetrahedron

plus a segment joining two points lying in the interiors

Of two Opposite edges. This graph is not embeddable in

the plane.

Example 2.7 [7] A locally plane, locally connected
 

one-dimensional continuum that is not embeddable in any

2-manifold.

Let a b , and d be the vertices of a tetrahedron

1’ 1’ Cl 1

in E3, cn denote the point dividing the segment alcl in

the ratio 1: n-1, and dn the point dividing 5131 in the

same ratio,.for n e 2+. See Figure 2.3 below.

 

 
Figure 2.3
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Let

Xn = alElUalcnualdnUEIcnUEldnUcndnUcn+15[n+1 and

' a

X n=l Xn .

Note that X is not homeomorphic to any subset Of

a 2-manifold M. For if g' were such an embeddinthhen

there would exist a disk D in M such that g'(§:FI)<Z Int D

and for almost all indices n, g'(Xn)CZD. But this is

impossible because Xn is not planar.

Next X — 3:3; is mapped into a continuum in E2

which will enable X to be embedded in a locally connected

continuum Y and also show that Y is locally plane. Consi-

der the following points Of E2:

3' = (0:0): b' 3 (130): CA = (0,1/0), bA = (I’l/n):

 

d5 = (1, 2/(2n+1)), d; = (l, -1/n) for n e 2*;

and linear maps

f: EIEE-e ETET' with f(al) = a', f(bl) = b' ,

g: alcl-a‘ETEI with g(al) = a', g(c1) = 01 ,

fn: 5333-» Egdg' with fn(cn) = CA, fn(dn) = d5 ,

fr'l: We 33?; with fr'1(cn) = Cn’ fr'1(b1) = b;1 ,

f3: 5133-» 3ng with fg(al) = a', fawn) = (13

Then

 

P

f x) for x e b - IbiI,

 

g x) for x e alcl,

(

(

(x) for x 6 5—3—

(

(

 

 

h(x) = I rn n n - {an},

fé x) for x e cnbl - {b1},

H _

rn x) for x e 5163' {ddI,
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is a homeomorphism mapping X - bldl onto the set

 

  

_ IT ‘° 1 I n _ I 220 _ a b Ua'cgL U Un=l(brvlcnucrtldlnua dn) W11 CE .

See Figure 2.4.

Let L(n,i) for i = l,...,n and n e Z+ denote the

line segment parallel to 573; through a(i,n), where

a(i,n) is the point dividing a—'b_' in the ratio 1: (n+1-i),

with one endpoint on 3:5: and the other endpoint on 573:.

Then Y' = ZOLJLJ2=1 2:1 L(n,i) is locally connected and

l
the homeomorphism h- : ZO e»X — P151 can be extended to a

homeomorphism g of the set Y' onto a subset Of E3 - FEE;

SO that for every e > 0 there exists an n(e) such that

for all n > n(e) the diameters of the sets g(L(n,i)) are

less than e. let Y = g(Y')LIE:dI, then Y is a locally

plane, lOcally connected continuum that contains X and is

hence not embeddable in any surface.

 

 

  

 

a; b.

I I

Ch 7

. .6;

a' I 13'

:bd;

L(|,I) d1

. d?

Figure 2.4

Theorem 2.8 There exists a locally plane, locally
 

connected one-dimensional continuum that embeds in a

3-bOOk but not in any 2-manifold.
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Proof. Example 2.7 is a locally plane, locally connect-

ed one-dimensional continuum that embeds in no 2-manifold.

To show that it is embeddable in B3 consider Figure 2.5.

(‘4

 

 
 
 

 

 
 

(b)

Figure 2.5
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Figure 2.5 (a) shows the embedding Of xlu xzux3 - —cI+d4.

In general,if LJn_l X1 — Cn+1dn+l has been embedded in B3,

3
then xn+ 'c-—T“‘m2n+2 is embedded in B as in Figure 2.5 (b).

Thus continuing in this manner it is clear that X embeds

in B3 and also that Y embeds in B3.

However, all one—dimensional continua do not

necessarily embed in Bn, for some positive integer n, as

the argument of the following theorem illustrates.

Theorem 2.9 There exists a one-dimensional, locally
 

connected continuum that cannot be embedded in an n-bOOk

for any positive integer n.

Proof. In order to define such a continuum let:

K = the graph which is the union of all the edges

Of a tetrahedron plus a segment joining two

points lying in the interiors Of two Opposite

edges,

J(1) =I(x,o,o) eE3 | 05x31},

K(l,2) = a graph in E homeomorphic to K whose diameter

is less than 1/2 and such that K(l,2) intersects

J(1) only in the point (l/2,0,0), and I

J(2) = J(l)UK(1,2).

Assume that J(n) has been defined and let:

J(n+1) = J(n)\J LJ3=1 K(m,n+l).

3
K(m,n+l) is a graph in E homeomorphic to K such that:
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(1) K(m,n+l){]J(n) = (m/(n+l),0,0) m = l,...,n,

(ii) K(m,n+l)tl K(m',n+l) = S if m g m', and

(iii) the diameter Of K(m,n+l) is less than 1/2n+1

for m = l,...,n.

n=l J(n) with the relative topology of E3. ThenLet J =

J is compact, connected, and locally connected by con-

struction; furthermore, J is one-dimensional Since it is

the countable union of closed one—dimensional sets.

Next it will be shown that J does not embed in

any n-bOOk. Suppose this is not the case, andlthere is

an embedding h: J a»B”, then h(J(l))CZB, the back or E“.

For if not, then there exists an x e J(l) such that

d(h(x), B) = e > 0. Since J is compact, h is a uniform

homeomorphism and there exists a 5 > C such that if

d(u,v) < 6 then d(h(u),h(v)) < E/3. Thus there exists

(m/p,0,0) e J(l) such that d(K(m,p),x) < 6 and hence

h(K(m,p))<: Di’ a leaf Of Bn. But this contradicts the

fact that K cannot be embedded in the plane so h(J(l))CIB.

Let 2 be an interior point Of the interval J(1),

and N a neighborhood Of h(z) in Bn such that N - h(J(l))

consists Of n components CiCZD i = l,...,n. Then there
i 3

exists integers m and p such that h(K(m,p»CZN. Since

h(J(l)) separates N, h(K(m,p) - (m/p,0,0)) CICi for some

i, but this again contradicts the fact that K cannot be

embedded in the plane. Hence there does not exist an

embeddingof J into any n-bOOk.
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Next it is shown that n~bOOks can be distinguish-

ed by the one-dimensional continua that embed in them.

A locally connected, one—dimensional continuum A(n) is

constructed with the property that if X is a compact set

of dimensiOn less than or equal to one in the interior Of

an n-bOOthhen XC:A'(n) where A'(n) is homeomorphic to A(n).

Theorem 2.10 There exists a locally connected, one-

dimensional continuum that embeds in En but not in Bm

for 2.3 m < n.

Proof. Let {Ei I i 6 2+} be a sequence Of mutually

disjoint disks in Br1 that do not intersect the boundary

of any Of the leaves of En, such that LJ:=1 E is dense
i

in Em, and such that the diameters Of theuEi-converge to

zero. Define A(n) = Bn - I Int E then A(n) is a
i=1 i’

locally connected, one-dimensional continuum that embeds

in Bn. Note that if D1 is a leaf Of Br1 then DifIA(n) is

homeomorphic to Sierpinski's universal plane curve [42, 44].

AsSume that there exists an embedding h mapping

A(n) into Bm for 2.3 m < n and reach a contradiction. By

definition of A(n), the back Of Bn is contained in A(n);

denote this set by B' in A(n). Then h(B')CIB, the back

of Bm. For if not there exists a z e B' such that

d(z,B) = 3e > 0. Since h is a uniform homeomorphism there

exists a 5 > 0 such that if d(u,v) < DJthen d(h(u),h(v)) < e.
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Note that A(n)flDi is arcwise connected. Let c(i) ,

i = l,...,n, be an arc in A(n)f‘I(Di - {z}) such that:

(1) d(c(i),z) < o, (2) c(i) intersects B' only in

its endpoints a and b, which are the same for all i, and

(3) if 5? denotes the line segment in B' joining a to

b then 2 e 53. Let a(i) denote an arc in A(n) joining

a point on c(i) - B' to 2 such that a(i)fIB' = {z},

(thus the diameter Of a(i) is less than 5). Then

h(l 2:1(c(i)Lja(i))LjaE) is a graph that is entirely

contained in a leaf Of Bm. This graph contains one of

Kuratowski's primitive skew curves which is not embedd—

able in the plane [29], thus h(B')CIB.

Next,using the fact that h(B')CIB it will be

shown that A(n) cannot be embedded in Bm. Let z e B'

such that d(h(z), IS- h(B')) is greater than 36 > 0.

Choose c(i) and a(i) as before, i = l,...,n. Then since

m < n there exists 1 % j such that h(c(i))IJ h(c(j)) is

contained in one leaf, say Dk’ Of Bm and

[h(c(i))umcunms ={h(aiu{h<b)I. Then h(c(i))UhI'é'B),

say, bounds a disk containing h(c(i)). But then h(a(j))

must intersect h(c(i)) which contradicts the fact that h

is an embedding. Hence A(n) cannot be embedded in Bm for

2.5 m < n.

The above argument also provides an entirely

different proof for Lemma 2.1 of A. H. Copeland in [11].
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This lemma is stated in the following corollary.

Corollary 2.11 If Bm is contained in Bn then m g_n.
 

If m > 2 then the back Of Bm is contained in the back of En.

The next corollary states that in some sense

A(n) is the "universal curve" for B“.

Corollary 2.12 If X is a compact set in the interior

Of an n-book Er1 such that dim x _<_ 1, then x c A'(n)

where A?(n) is homeomorphic to A(n).

Proof. Let X = (Xlei)IJB; then X is a closed
1 i

subset Of D1 for each i = l,...,n and dim Xi‘g 1. SO

there exists in Int Di — X1’ 1 = l,...,n, a sequence

{E(i,k) I k'e Z+I Of mutually disjoint disks such that

i=1 E(i,k) is dense in Di and the diameters Of the

N

E(i,k) converge to zero. Let G1 = Di - k=l Int E(i,k),

then by construction G1C: X1. But_G is an S-curve.[44],
i

that is a plane, locally connected, one-dimensional

continuum S such that the boundary Of each complementary

domain Of S is a simple closed curve and no two of these

complementary domain boundaries intersect. Hence by

Theorem 3 Of [44] there exist homeomorphisms hi’

i = l,...,n, which are the identity map on Ed Di and map

n — l
Gi onto A(n)FIDi. If l—Ji=l Gi — A'(n) then X CIA (n).
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Furthermore,the map h: A'(n)-a A(n) defined by h(x) = hi(x)

for x 6 G1 is a homeomorphism Of A'(n) onto A(n).



CHAPTER III

SOME PROPERTIES COMMON TO EUCLIDEAN SPACES AND N-BOOKS

In this chapter various properties Of Euclidean

spaces are generalized tO n—books. In particular the

notion Of tameness, polygonal simple closed curves Span-

ning 2-manifolds,and monotone unions Of Open n-bOOks are

considered.

A topological polyhedron in Euclidean n-dimen-

sional space is said to be tamely embedded if there is a
 

homeomorphism of En onto itself which transforms the

embedded polyhedron into a Euclidean polyhedron. It is

this notion which is generalized to n-books. For the

remainder Of this chapter Bn will be considered embedded

in E3 in such a manner that each leaf is a Euclidean

2-simp1ex Thus Bn inherits a linear structure from E3

and the notion of tameness in Bn can be introduced. A

set ACIBn is said to be a pplyhedron ip_B: if A,when con-
 

sidered embedded inlEi is a Euclidean polyhedron. A

topological polyhedron embedded in the interior Of an

n-bOOk is said to be Eamg.12_BE_iff there is a homeomor-

phism Of Bn onto itself which transforms the embedded

polyhedron into a polyhedron in Bn.

Lemma 3.1 If a Euclidean polyhedron is embedded in Bn
 

in such a manner that the image Of the l-skeleton is the

25
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carrier Of a subcomplex relative tO some triangulation of

B“, then the image of the polyhedron is also the carrier

Of a subcomplex relative to this triangulation.

Proof. Let h be an embedding of a Euclidean polyhedron

IPI, with triangulation P, into Br1 such that h(IP(l)I) is

the carrier Of a subcomplex Of the triangulation K of B“.

Let J = {0 e K I G'< Cl ,, ” Int IciIr\h(IPI) % C', and Ole K}

then J is a subcomplex Of K. It will be shown that

IJI = h(IPI). By construction h(IPI)CZIJI. TO prove that

IJICTh(IPI) assume not and reach a contradiction. Suppose

there exists x e IJI - h(IPI), then there are three cases

to consider.

Case~ld x e IOI where c is a face, not necess-

arily proper, of a 2-Simp1ex A.e J. By definition Of J,

there is a y 6 Int IAIFIh(IPI). SO there is an arc t

joining x to y such that t -[x‘ICInt IAI. Let 2 be the

first point Of tth(IPI) in the direction from x. Then 2

must belong to the image Of the l-skeleton Of P, since it

does not lie in the interior Of an Open 2-cell in h(IPI).

But 2 6 Int IAI, which contradicts the hypothesis that the

image Of the l-skeleton is the carrier Of a subcomplex of

K.

Case 2. x.e IOI where c'is a l-simplex in J that

is not the face Of any 2-simplex in J. But this implies

there is a y e h(IPI)f\Int IOI such that y must be the
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carrier of a O-simplex of K if h(IP(l)I) is the carrier Of

a subcomplex of K. Thus this case cannot occur.

Case 3. x.e IOI where O is a O-simplex in J and

O is not the face of any other simplex in J. But by

the definition Of J then 0 E J SO this case cannot occur.

The above three cases exhaust all possibilities

so IJICIh(IPI) and the lemma follows.

The following two lemmas are proved elsewhere

but are needed in several arguments SO are stated here.

Lemma 3.2 The intersection of two Euclidean polyhedrons
 

is a Euclidean polyhedron.

Proof. Corollary 2 to Lemma 1, Chapter 1 of [45].

Lemma 3.3 If IKIZDILI then there exists a subdivision

K' Of K and L' Of L such that L' is a subcomplex Of K'.

Proof. Lemma 4, Chapter 1 Of [45].

The proof of the following lemma depends upon

the plane Schoenflies theorem and is similar to one given

by Doyle in [16].

Lemma 3.4 Let T be a finite graph, not necessarily
 

connected, and h an embedding Of T into the closed unit
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square D in E2 such that h(T)r\Bd D is a finite Euclidean

polyhedron. Then there is a homeomorphism g Of D onto

itself such that g(h(T)) is the union Of finitely many

straight line segments, and g restricted to the boundary

Of K is the identity map.

Proof. Since h(T)rIBd D is a finite Euclidean poly-

hedron, there are only finitely many points in Bd D that

are limit points of h(T)rIInt D. Let {x1 I i = l,...,n}

denote these points plus the images Of the vertices Of T.

Let N(xi) be . closed symmetric neighborhoods of xi,

1 = l,...,n, in D such that any two are disjoint. Let

O(i,j), i = l,...,n and j = l,...,k(i), denote the finite-

ly many arcs in h(T)F\N(xi) such that: (l) c(i, j) has

endpoints Xi and yi,j’ 34,36 Bd N(xi), and (2) O((,i j)- {yi J}

is contained in IntDN(xi).. Let,o‘(i,j) be a straight

line segment joining [Xi to yi,jh

and j = l,...,k(i). Then by the plane Schoenflies theorem

for i = l,...,n

there are homeomorphisms g1, i = l,...,n, such that:

(i) giID — Int N(x1) = the identity map, and

(ii) s1(00(i 3)) =(0’(i,J) J = 1, .-,k(i)-

Then h(T) - _1LJkg i,j) is the union of finitely

i’ i = l,...,m. Let Ui be a closed neighbor-

homeomorphic to a closed disk such that

many arcs t

hood of ti

Uith(T) is an arc.‘ Let g" = g1...gn, then

g"(Ui)rIg"(h(T) - Int ti) consists Of two polygonal arcs,
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say a1 and b , which were Obtained by the above application

1

Of the plane Schoenflies theorem. Let t' C Int g"(Ui)
i

be a polygonal arc joining the endpoints.of g"(ti) such

that ti intersects g"(h(T)) only in its endpoints. Then

by the plane Schoenflies theorem there are homeomorphisms

gI, i = l,...,m, such that:

(i) gII(D - Int g"(Ui))U(a1ubi) is the

identity map, and

I " _ l

(11) si(s (t1)) — ti-

Then g = gi...gég" is the.desired homeomorphism. That

is, g | Bd D = the identity map and gh(T) consists of

finitely many straight line segments.

The following theorem is a characterization Of

those polyhedrons which are tamely embedded in Bn.

Theorem 3.5 An embedding Of a polyhedron in Int Bn
 

is tame in Bn iff the polyhedron has a.curved triangulation

such that the image of the l-skeleton intersected with

the back Of Bn is a polyhedron in Bn.

Proof. Let P be a polyhedron and h: P SIB“ an embedding.

If P is tamely embedded in B“, then by definition there

is a homeomorphism g of En onto itself such that gh(P)

is a polyhedron in Bn. Let K be any triangulation of En

and L any triangulation Of gh(P), (then K and L are
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simplicial complexes in E3). By Lemma 3.3 there are

subdivisions L' Of L and K' Of K such that L' is a sub—

complex Of K'. Then (gh)-l: IL'I-a P is a curved triangu-

lation Of P. The back Of Bn is a subcomplex of every

triangulation OfIBQ so by Lemma 3.2 IL'(1)IfIB is a

polyhedron in Bn.

Conversely, suppose that P has a curved triangu-

lation such that the image Of the l-skeleton, denoted by

R, intersects the back of Bn in a finite polyhedron.

Then RflD1 is the tOpological image of a finite graph

and Rled D is a finite Euclidean polyhedron, i = l,...,n.
1

Hence by Lemma 3.4 there are homeomorphisms g1: Di-a Di’

i = 1,o--,n, which are the identity map on Bd D1 and such

that gi(R) consists Of finitely many points and straight line

segments (when considered in E3). By Lemma 3.3 there is

a triangulation, say K', Of Bn such that g1...gn(R) is

the carrier Of a subcomplex Of K'. By Lemma 3.1

g1...gnh(P) is a Euclidean polyhedron,and h is a tame

embedding Of P into Bn.

Every polygonal simple closed curve in E3 spans

an orientable surface in E3, that is,there exists a compact,

connected orientable 2-manifold in E3 such that the mani-

fold boundary is precisely the simple closed curve. One

method Of Obtaining such an orientable surface is given

by R. H. Fox in [21]. By a polygonal simple closed curve
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in B3 is meant a homeomorphic image of S1 that is a

polyhedron in B3. Theorem 3.8 characterizes those poly—

3
gonal simple closed curves in B that Span compact, con-

nected 2-manifolds in B3. All such curves do not necessar—

ily span a surface as is indicated in Figure 3.1 (a).

Even if a polygonal simple closed curve does span a

2—manifold, as in Figure 3.1 (b), the 2-manifold need not

be orientable. In this case it is a MObius band.

 
 

   

Figure 3.1

One approach tO the desired characterization

is to consider the simplicial homology Of B3 with coeffi-

cients in 22, the group of integers modulO'tWO. TFOP an

exposition Of simplicial homology theory and related termi-

nology see [Chapter 6, 25]. By a t-dimensional chain on a

simplicial complex K with coefficients in Z2 is meant a

function m on the t-simplexes Of K with values in 22.
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It facilitates notationfto let m also denote the subcomplex

Of.K whichzis the simplicial closurefof:alLLtASImplexes of

K on.whichfim has non—zero.valuea‘ The geometric

realization of this subcomplex will also be denoted by

m rather than ImI. NO confusion Should arise since Z2

coefficients are particularly well suited to geometric

interpretation, and this notation will be used only in

relation to chains.

Lemma 3.6 If C is a polygonal simple closed curve

3 3
in B then there exists a mod 2 2-chain, me, on B

 

such

that Omc = C and mC has the properties listed below.

(1) CCch and m0 is compact and connected.

(ii) If x e mC 7 C then x has a neighborhood

in mC homeomorphic to an Open disk.

(iii) If x e C then x has a neighborhood in me

whose closure is homeomorphic to either:

(1) a closed disk,

(2) B3. '

(3) the union Of two closed disks whose

intersection is precisely {k} , x being

an interior point Of one disk and a

boundary point Of the other disk, or

(4) the union Of two closed disks which

intersect along an arc O with endpoints

x and p such that O is in the boundary
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Of one disk and O — {p} is in the interior

Of the other disk.

3 has a triangulation K such thatProof. By Lemma 3.3,B

C is contained in the carrier Of the l-skeleton of K.

Consider the simplicial homology Of K with coefficients in

Z , and let 0 denote the l-chain that has value 1 on all
2 l

l-simplexes of K that are contained in C and 0 on all other

l—simplexes Of K. Since B3 is contractible, H1(B3,Z ),

3
the first simplicial homology group Of B with coefficients

in Z is trivial. Hence there is a 2-chain mC on K such
2,

that amc = o1. It will now be shown that mC has the prop-

erties stated in the lemma.

(1) Since 01 = C, Bmc = C and chDC. mC is

compact because it is the point set union Of finitely many

compact 2-simplexes. TO prove that mC is connected assume

not and reach a contradiction. Suppose that mC can be

expressed as the disjoint union Of two non—empty closed

sets, Al and A2. Since C is connected it may be assumed

that, say, C(ZAl. Let mé be the 2-chain on K that has

non—zero value only on those 2-simplexes Of K contained

in A2. Since Omc = C, each l-simplex Of K in A2 is the

face of an even number of 2—simplexes in A2. Thus

Omé = 0, but H (B3, Z2) = 0, since B3 is contractible,
2

hence there must be a 3-chain on K whose boundary is mé.

Since the only 3-chain is the zero 3-chain this implies
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A is empty and hence m0 is connected.
2

(ii) Let x e mC - C and Show that x has a

neighborhood in mc homeomorphic to an Open disk. There

are three possible cases to consider.

Case 1, x is contained in the interior Of a

2-simplex of me. Then x clearly has a neighborhood in mC

homeomorphic to an Open disk.

Case 2. x is contained in the interior of a

l-simplex in me. Then this l-simplex does not lie in C

and hence must be the face Of an even number Of 2-simplexes

in me. By Corollary 2.11 if Bm is embedded in B“ then

m _<_n, so this 1-simp1ex is a face Of precisely two

2—simplexes in mc - Hence x has a neighborhood in mC

homeomorphic to an Open disk.

Case 3. lastly, consider the case when x is a

O-simplex in me. Then Ist(x,mc)| is the union Of n closed

disks which contain x in their interior, Since every

l-simplex in mC having x as a face must be the face of

precisely two 2-Simplexes in me. SO tO Show that x has

a neighborhood in mC homeomorphic to an Open disk, it

suffices to prove that n = 1.

If x e B3 - B then n = 1. For if n 2 2 then

Ist(x,mc)I contains a tOpological umbrella which is

embeddable in the plane. If x e B and n‘Z 2,there are

two closed disks, say E1 and E2, in Ist(x,mc)| such that

ElflE2 = {x3 . Lemma 4.1, of the next chapter, implies
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that x has a neighborhood Ni in E1,

3
Open 2-cell and is contained in precisely two leaves of B .

i = 1,2, which is an

But this fact contradicts the disjointness of El - {k} and

E2 ‘ {XI

(iii) Let x e C, and again consider the various

cases.

Case 1. If x is not a vertex of me, then x

is contained in the interior Of a l-simplex of mo that

lies in C. This l-simplex is the face Of an Odd number

Of 2-simp1exes in me. By Corollary 2.11 it is the face

of one or three 2-simplexes and hence x has a neighborhood

in mC homeomorphic to (l) or (2) of part (iii) Of the

statement Of this lemma.

Case 2. If x is a vertex there are exactly two

l-Simplexes, t1 and t2, in mC which lie in C and have x

as a face. Thus st(x,mC) contains two l-simplexes that

are a face of one or three 2—simp1exes in st(x,mc) and

all the other 1-simp1exes are the face of two 2-simplexes

in st(x,mc). Using the fact that two closed disks which

intersect at a single point interior to each cannot be

embedded in B3, as shown above, one obtains the following

results. If t1 and t2 are both the face Of only one

2-simplex in st(x,mc) then x has a closed neighborhood

homeomorphic tO (1) or (3). If t is a face Of only one
1

2-simplex in st(x,mc) and t is a face Of three 2-simplexes
2

in st(x,mc),then x has a closed neighborhood homeomorphic
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to (4). If both t1 and t2 are the face Of three 2-simplexes

in st(x,mc),then x has a closed neighborhood homeomorphic

to (2). This exhausts all the possibilities and the lemma

follows. Figure 3.2 shows the four possible closed

(1) (2)

i7
(3) (

neighborhoods.

X

4
:
-

V

Figure 3.2

The proof of the next lemma is very similar to

that of Lemma 3.1 and SO is omitted. Since the polyhedron

being considered is a 2-manifold weaker conditions can be

imposed on its l-skeleton.

Lemma 3.7 Let M be a compact, connected 2-manifold

with non-void boundary, C, embedded in Bn. If Bn has a

triangulation K such that C is contained in the carrier

Of the l-skeleton Of K, then M is the carrier of-a sub-

complex Of K.



37

Theorem 3.8 A polygonal simple closed curve in B3

bounds a compact, connected 2-manifold in B3 iff it is a

mod 2 cycle which is the boundary of a mod 2 2-chain

whose geometric realization contains no umbrellas.

Proof. By Lemma 3.3, if C is a polygonal simple closed

3
curve in B there is a triangulation K Of B3 such that

CCZ|K(1)I. By Lemma 3.7 the 2-manifold M which C bounds

is the carrier Of a subcomplex of K. Let 22 be the mod 2

2-chain which has non-zero value only on those 2-simplexes

of K that lie in M. Then Bz2 = C and the geometric real—

ization Of z2 is M and hence contains no umbrellas.

Conversely, assume that C is a polygonal simple

3 that is a mod 2 cycle with respect to

3

closed curve in B

some triangulation K Of B , and that there is a mod 2

2-chain z such that 822 = C. By Lemma 3.6 there is a
2

mod 2 2-chain me, with the prOperties stated there, such

that Omc = C. Hence a(mC - z = 0 which implies, since2)

there is only the zero 3-chain on B3, that mC = Z2. Thus

by hypothesis mC contains no umbrellas,which implies that

points Of 0 do not have neighborhoods in mC Of type (2),

(3), or (4) Of part (iii) Of Lemma 3.6. Hence every point

of mo has a closed neighborhood homeomorphic to a closed

disk, and C bounds mC which is a compact, connected

2—manifold in B3.
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Corollapy 3.9 A polygonal simple closed curve spans
 

a disk in B3 iff it is a mod 2 cycle which is the boundary

Of a mod 2 2-chain whose geometric realization contains

no umbrellas and every simple closed curve in the interior

of this 2-complex separates it.

Proof. A compact, connected 2-manifold M with non-

void boundary is a disk iff every simple closed curve in

the interior Of M separates M.

A topological space Y is said to be the Open

m

monotone union pf‘a space H.if Y = l—Ji=l U(i%,and U(i)
 

is open in Y, U(i) is homeomorphic to U for all i, and

U(i)CIU(i+1). In [9] Morton Brown proved that the Open

monotone union Of Open n-cells is an Open n-cell.

Theorem 3.10 states that the same kind of result is true

for n-books.

By an Open n-bOOk is meant a space homeomorphic
 

to Int En which was defined as l—J?=1 Int DiIJ Int B.

The space A x [0,») with A x 0 identified to a point v

is called the Open cone, OC(A), over A, If X is a
 

topological Space, a point x e X is said to have an

Open cone neighborhood U if there is a homeomorphism f
 

Of some OC(A) onto the Open set U Of X such that f(v) = x.

Theorem 3 Of [30] states that if U1CIU2CZ... is a se-

quence of Open cone neighborhoods Of x in a locally

compact Hausdorff Space,then U = :=1 U1 is also an



39

Open cone neighborhood Of x homeomorphic to each U1. We

will use this theorem in the proof of the following theorem.

Theorem 3.10 If a tOp61ogical Space Y is the Open
 

monotone union of Open n-bOOks then Y is an Open n-bOOk.

Proof. let ‘{U1 I i e 2+} be a sequence Of Open

1+1 1
n-bOOks such that UiC U , and U1 is Open in LJ:=1 U = Y.

Next it is established that Y is a locally compact

Hausdorff space. Let x and y be two distinct points Of

Y, then there exists an integer n such that x, y e Un.

Un is a Hausdorff space so there exist disjoint neighbor-

hoods, Vx and Vy, Of x and y, reSpectively, such that Vi

and Vy are Open in Un. Since Un is Open in Y, Vi and Vy

are Open in Y, and Y is a Hausdorff space. Y is also

locally compact for let x e Y,then x e Un for some n 6 2+.

x has a neighborhood V in Un such that the closure of V in

Un is a compact set, denoted by ClUn V. Then Un Open

in Y implies V is Open in Y; since Y is a Hausdorff space

ClUnV is also closed in Y. SO V is a neighborhood of x in

Y whose closure in Y is.compact.

Let A be the suspension Of n distinct points,

then OC(A) is an Open n-bOOk. If x is a point on the back

Of an Open n¥bOOk U1, one readily sees that U1 is an Open

cone neighborhood Of x. By an application Of Corollary 2.11,

1+1 1
since UiCIU , the Open back Of U must be contained in
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the open back Of Ui+1. Thus choose a point x in the back

Of U1, by these remarks x is contained in the back Of

i l 2
U for i e Z+. SO U CLU (I... is a sequence Of Open cone

neighborhoods of x in a locally compact Hausdorff space;

by Theorem 3 Of [30],Y is homeomorphic to an Open n-book.



CHAPTER IV

SUBSETS 0F N-BOOKS IN E3

This chapter is concerned with extrinsic

prOperties Of compacta in n-bOOks, that is positional

properties Of subsets of n-bOOkS embedded in E3. Euclid-

ean polyhedrons tOpologically embedded in tame n-bOOks

are investigated, and a characterization is given of

those polyhedrons tame in E3 by considering where they

can fail to be locally tame. Next, questions concerning

cellularity and n-bOOks are examined.

The first lemma is, however, only concerned

with embeddings into n—books; the result will be useful

in characterizing wild points of polyhedrons embedded in

n-books in E3,

Lemma 4.1 Let h be an embedding Of a disk D into B?
 

and let x be an interior point Of D. Then x has a closed

2-ce11 neighborhood U in D such that h(U) is contained in

the union of two leaves Of Bn.

Proof. There are two cases to consider.

Case 1, h(x) A B, the back of B“. Then there is

a neighborhood V Of x such that h(V) is entirely contained

in the interior of some leaf of En. By invariance of

domain, h(V) is Open in this leaf, hence there is an e > 0

41
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such that the symmetric neighborhood W c h(V). Then

U = h_l(S:T§T) is the desired neighborhood Of x.

Case 2. h(x) e B, the back of En. Suppose there

does not exist a neighborhood V Of x in D such that h(V)

is contained in the union Of two leaves Of Bn. Then there

is a sequence of points ‘ka I k e Z+I converging to h(x)

such that yk e B - h(D). Since h(D)¢fB, there is also a

sequence of points {xk I k e Z+} converging to h(x)

such that x e (Bn - B)f\h(D). Let a be an arc in Bn
k k

joining xk tO yk such that akFIB = {y£I.c Moreover, we may

assume that the.diameter Of ak~<.l/2Kst“S¢hcéjh(D)FFak is a

compact set there is a first element zk Of ak, in the

direction from yk to Xk’ such that 2k 6 h(D). Furthermore,

Since yk f h(D), zk t B. SO zk e h(Bd D) for otherwise

an umbrella could be embedded in the plane. Because Of

the manner in which the a were chosen, the sequence
k

{Zk I k 6 2+} converges to h(x). But this implies

{h-1(zk) I k e ZII is a sequence of points on the bound-

ary Of D converging to an interior point x of D which is

a contradiction. Thus there is a neighborhood V Of x such

that h(V) is contained in the union Of two leaves Of Bn.

Then using invariance Of domain and preceding as in Case 1,

a neighborhood U is Obtained with the desired prOperties.

Lemma 4.1 is not necessarily true for x 6 Ed D

as is indicated in Figure 4.1.” ~5 unun;
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Figure 4.1

Theorem 4.2 Let P be a Euclidean polyhedron embedded
 

in a tame n—bOOk, and let Q be the set Of points Of P that

do not have Open 2-cell neighborhoods in P. Then the

set Of points at which P fails to be locally tame is

contained in QFIB and is a compact, totally disconnected

set.

Proof. Since Br1 is tame, we may assume that Br1 has

planar leaves. If x e P - Q then x lies in the interior

Of a tOpological disk D in P. By Lemma 4.1 we may assume

that D lies in the union Of two leaves Of Bn. Let N be a

3 suchlthatclosed polyhedral neighborhood of x in E

erP CID. Then erP is a Euclidean polyhedron and P is

locally tame at x.

If x 6 Qt“ B then there is a closed polyhedral
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neighborhood V Of x in Br1 such that V is homeomorphic to

a closed disk and such that Q intersects the boundary of

V in a finite Euclidean polyhedron. Then Qr1V is the

homeomorphic image Of a finite graph, SO by Lemma 3.4

there is a homeomorphism g mapping V onto V which is fix-

ed On the boundary Of V and such that g(Vle) is the union

Of finitely many straight line segments and points. This

homeomorphism can be extended to a closed polyhedral

neighborhood N of x in E3 such that NTWP = V and gI Bd N

is the identity map. By Lemma 3.1 g(NflP) is a Euclidean

polyhedron . Hence P is locally tame at x.

From the definition Of local tameness it follows

that the set Of points at which P fails to be locally tame

is closed and hence compact. Since the back Of Bn is tame,

the set Of wild pOintS Of P is'alsovtotally disconnected.

Corollary 4.3 If A is an arc in a tame n-bOOk, then
 

A = ELJT where T is the countable union Of tame arcs and

E is a compact, totally disconnected set contained in the

back of the n-book.

Proof. By Theorem 4.2 the set Of points, E, where A

fails to be locally tame is compact and totally disconnected

and contained in the back Of the n-bOOk. A - E is an Open

subset Of A and hence can be expressed as the countable

union Of Open arcs. These Open arcs are locally tame and

have tame closures.
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The set of wild points Of an arc in a tame

n—bOOk may be uncountable as the next example shows.

By an almost tame arc is meant an arc.such that every point

lies on a tame subarc of the original arc [l8].‘

Example 4.4 An example of a cellular arc with uncount-
 

ably many wild points that is not almost tame but is

embeddable in a tame 3-bOOk in E3.

Let B3 be a 3-bOOk in E3 with planar leaves such

that the back B Of the 3-bOOk is the unit interval [0,1]

3
on the x-axis of E . Let {61 I i 6 2+} be the sequence Of

Open intervals deleted from the unit interval to Obtain the

‘ i=1 51'

Replace each closed interval 5: CH?EL i e Z+, with a

[23] embedded in B3

usual Cantor ternary set, and let 0 = B

Wilder arc J so that the endpoints
i

of J concide with the endpoints Of 5—, the diameters Of
i

the J tend to zero, and Jir‘Jk = C for 1 % k. Then
i

_ w 3
A —- LJi=l JiLJ C is an arc in E . If x e C, then every

neighborhood of x in E3 contains a wild arc Ji for suffi-

ciently large 1; hence A fails to be locally tame on C

plus the set of points where LJ:=1 J fails to be locally
1

tame.

If x e C but is not an endpoint of E; for any i,

then x does not lie on a tame subarc Of A. Thus, A fails

tO be locally tame at uncountably many points and is not

almost tame.
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TO see that A is in fact cellular we use a
./

definition and theorem due to Doyle [15]. If A is an arc

in S? we say that A is peshrinkable if A has an endpoint q
 

and in each Open set U containing q in Sn, there is a

closed n-cell FCZU such that q lies in Int F while Bd F

meets A in exactly one point. If A is an arc in SD such

that for each subarc A' Of A, A' is p-shrinkable, then

every arc in A is cellular [15]. Since Wilder arcs were

inserted, the constructed arc satisfies the necessary

conditions.and is therefore cellular.

Of course, there are wild arcs with uncountably

many wild points in tame 3-bOOks that are not cellular.

One example could be Obtained by inserting Example 1.1

Of [22] instead Of the Wilder arcs in the above construc-

tion.

The next lemma is due to Persinger [40] and is

used in the proof Of Theorem 4.6.

Lemma 4.5 Let D be a closed disk in a tame n—bOOk.
 

Then D is tame iff Ed D is tame.

Theorem 4.6 A topological polyhedron P in a tame

3

 

n-bOOk in E is tame iff it has a triangulation such that

the image Of the l-skeleton is locally tame at each point

where it meets the back Of B“.
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Proof. By Theorem 4.2 and the hypothesis Of this theorem

the image Of the l—skeleton is locally tame, and SO Theorem 1.2

implies the 1-skeleton is tame. By Lemma 4.5 the image Of

each 2-simplex in P is tame. Theorem 3.1 Of Doyle [14]

states that a tOpological polyhedron P in E3 is tame iff

each 2-simplex in P is tame and the l—skeleton is tame.

Using the notion of tame in Bn, which was defined

in Chapter III, one Obtains the following theorem.

 

Theorem 4.7 ' Let Bn be a tame n-book and P a poly-

hedron tame in Bn, then P is tame in E3.

Proof. Let hl: E3 aIE3 be a homeomorphism such that

the leaves of h B“) are 2-simp1exes. Since P is tame in
1(

B , there is a homeomorphism h2: hl(Bn)-a hl(Bn) such

that h2(hl(P)) is a Euclidean polyhedron. h2 can be

extended to a homeomorphism Of E3 onto itself, also called

. 3 3
h2. Then h2hl. E .9 E such that h2hl

polyhedron, and hence P is tame in E3.

(P) is a Euclidean

 

Corollary 4.8 Every topological umbrella in a tame

n—bOOk is locally tame at its tangent point.

Proof. The tangent point x Of the tOpological umbrella

T must lie in the back B of Bn, since an umbrella cannot

be embedded in the plane. By Lemma 4.1 there is a
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closed neighborhood UJOf x in the 24cell of T that lies in

precisely two leaves of Bn. U may be chosen homeomorphic

to a closed 2-cell and such that Bd UTIB consists Of two

points. Thus there is a subarc a Of the handle of T

with endpoint x and such that a - {x} lies in the interior

Of a leaf Of Bn. Since (ULJd)rIB is homeomorphic to an arc,

Theorem 3.5 implies ULla is tame in Bn. Corollary 4.7

implies ULJd is tame in E3 and hence T is locally tame

at its tangent point.

In the next theorem arbitrary 3-books in E3

are considered. Let D be a disk in Euclidean 3-space.

Let e be an arc such that Drle is a point p which is an

interior point both Of D and of e. If for each suffi-

ciently small Open neighborhood U Of p, U - D is the sum

Of two disjoint Open sets each Of which intersects the

component Of Ufle that contains p, then 3 pierces P.§E.E°

Theorem 4.9 "NO.dISk pierced by an arc lies in an

arbitrary 3-bOOk in E3.

 

Proof. Suppose there did exist a disk D pierced by an

3 3
arc e such that DIJeCZB where B is an arbitrary 3—book

in E3. Then Lemma 4.1 implies there is a closed neighbor-

hood D' of p,{pI= Dn e, in D that is homeomorphic to a

3
2-cell and D' is contained in precisely two leaves Of B ,
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say D1 and D2. Let the diameter Of D' equal 6’) 0.

Without loss Of generality, it may be assumed that e is

sufficiently small so that if U is a spherical neighbor-

hood Of p in E3 Of diameter e,then U — D equals U — D',

and U —LD is the union Of two disjoint Open sets, V1 and

V2, each of which intersects the component e' Of Urle

that contains p. Let x1 e Vlrle' and x2 5 V2FIe'. Since

D'CfDlUD2 it follows that x1, x 5 D3 and there is an

2

3FIU'with endpoints x1 and x2 such that AFID = O.

But this contradicts the fact that x1 and x2

joint components of U - D. Hence a disk pierced by an

3
are does not lie in an arbitrary 3-bOOk in E .

arc ACD

are in dis-

Next questions concerning cellularity and

n-books are considered. Recall that a set C in E3 is said

to be cellular if there is a sequence Of closed 3—cells

{Ci | i 6 2+} such that C (2 Int C and C = Fl" C
i+l 1 i=1 i'

If A is a subset of E3, then the cellular hull 2£:fl’
 

denoted by?+(A), is a cellular set containing A such that

no prOper cellular set BC7‘HA) contains A [16]. Thus

the cellular hull Of a cellular subset Of E3 is the set

itself. If A- and A1 are two arcs in E3, then A is said

to be egpivalent tO Al if there is a homeomorphism h

3

 

mapping E onto itself such that ’h(A) = A1'

Lemma 4.10 Let A be an arc in E3 and WCZA be the set
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Of points at which A fails to be locally tame. If W is

O—dimensional, then A is equivalent to an arc in a flat

3-bOOk iff W lies in a tame set that embeds in E2.

Proof. This result follows easily from a theorem Of

Posey [41].

Theorem 4.11 An arc A in E3 has a cellular hull that
 

lies in a tame 2—complex iff A is equivalent to an arc in

a flat 3-bOOk.

Proof. Assume A has a cellular hull that lies in a

tame 2-complex. Without loss Of generality, it may be

assumed that A lies in the carrier of a simplicial complex K

Of dimension two. If Wc:A is the set Of points at which

A fails to be locally tame, then by the argument Of ‘nlsr

Theorem 4.2,W is contained in the carrier of the l-skele-

ton of K. Furthermore W is a closed, totally disconnected

set, so W is contained in a polygonal tree in IK(1)I.

Hence the conditions Of Lemma 4.10 are satisfied and there

is a homeomorphism h mapping E3 onto itself such that h(A)

is contained in a flat 3-book.

Conversely, assume A is equivalent tO an arc A1

in a flat 3-b00k B3 under a space homeomorphism h. The

intersection Of a maximal chain (ordered by inclusion) of

cellular sets containing A1 is a cellular hull Of A1.

3
But B3:)Al and B is a cellular set. Consider a maximal
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3
chain Of cellular sets (as above) containing B

1’ then h'1(I+(A1)) is

a cellular hull Of A and lies in the tame 2-complex h'1(B3).

which gives

rise to a cellular hu117M(Al) Of A

The following corollary follows from the proof

Of Theorem 4.11.

Corollary 4.12 If A is an are that lies in a tame
 

2-complex in E3, then A is equivalent to an arc in a flat

3-book.

Theorem 4.13 There is an arc A in E3 with the prOperty
 

that:if 2¥(A) is any cellular hull Of A, 3%(A) does not

lie in a tame 2-complex.

Proof. By Theorem 4.11 it suffices to exhibit an arc

that does not embed in a tame 3-bOOk. Let A be an arc

through a wild Cantor set in E3, for example an Antoine's

necklace [2]. From Theorem 1.3 it follows that no wild

Cantor set lies in a tame 3-bOOk in E3 and so 1+(A)

does not lie in a tame 2-comp1ex.

Theorem 4.14utilizes the following result Of

McMillan [36]: Suppose that K is a finite complex, L is

a subcomplex Of K, and that K collapses to L. Let

h: K-a Mn be a homeomorphism where Mn is a piecewise—
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linear n-manifold. If n % 4 and if h(K) is cellular in

n
M , then h(L) is cellular. (For a definition Of collapsing

see [45].)

Theorem 4.14 If Bn is a cellular book in E3 then each
 

leaf is cellular and the back is cellular, but not

conversely.

Proof. Since an n-book collapses to any leaf Of the

back, it follows immediately from [36] that if En is a

cellular book in E3 then each leaf is cellular and the

back is cellular.

However, the converse is not true. That is,‘

there are n—bOOks in E3 such that each leaf plus the back

is cellular but the n-bOOk is not cellular. One such

example, for n = 2, is Obtained from the non-cellular arc

A Of Example 1.1 of [22]. A can be expressed as the union

of two arcs A and A such that A10 A2 = {x} , and x is a
1 2

point in the interior of A. Then A1 and A2 are both cell-

ular since they are locally tame except at their endpoints.

The arc A can be swollen into a disk D such that D = DlLlDQ,

D i = 1,2, is a cellular disk Obtained by swelling A1,
1,

and D10 D2 is a straight line segment. Thus D is a

2-bOOk with cellular back Dln D2_ and cellular leaves D1

and D2, that is not cellular.
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In Theorem 4.18, we describe the wild points Of

cellular arcs in arbitrary n—books in E3. In the proof of

this theorem we use Theorem 10 Of C. D. Sikkema ["A duality

between certain Spheres and arcs in 83: Trans. Amer. Math.

Soc. 22 (1966) 339-415]. P. H. Doyle has recently given

an alternate proof Of this result which we include. The

proofs of Theorems 4.15-4.17 are due to Doyle. Theorem 4.17

is Theorem N) Of Sikkema in the above paper. The space X

is either the 3-Sphere or Euclidean 3-space. If A is a

compact set in X, let Z be the Space Obtained by identifying

A with a point while n: X.» Z is the natural map.

Theorem 4.15 Let Ac:X be a wild arc that is locally tame
 

at all points except an endpoint a and let b be the other

endpoint. If C is a flat 3-cell in X, A - {OECZInt C,

suppose b lies on Bd C SO that ALJBd C is locally tame at b.

Then n(Bd C) is wild in Z.

Proof. Let D be a 3-cell that is locally tame except

at a, Bd DTle C is a disk E on the boundary of each cell

while A — ({a} u {b])c Int D and b lies in Int E. D is

Obtained by "swelling A".

By construction C—:_D is not a 3-cell, but it

has a wild 2-sphere boundary R. Note that nI'C_:ID is

a homeomorphism and so n(R) is wild in z. If n(Bd C)

were tame in Z, then n(R) would have the point n(b)

accessible by a tame arc from the side having the 3—cell
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closure. But by [26] this is impossible.

Theorem 4.16 Let A be as in Theorem 4.15. If B is an
 

arbitrary arc in X, BrlA = {b}, then n(B) is wild in Z.

Proof. There is a disk D that lies on a tame 2—sphere

82 such that 82 bounds a 3-cell C, A {b} CInt C, b lies

on 82 and AL182 is locally tame at b; one may obtain D by

swelling A near b and 82 is Obtained by the tameness Of

D and an application of [5]. By Theorem 4.15 n(Se) is

wild in Z. Then by the same argument n(B) contains no

tame arc in X with n(b) as endpoint. SO n(B) is wild in Z.

and ATheorem 4.17 Let A be disjoint arcs in X that
 1 2

are each wild and fail to be locally tame at just one end—

point each, a and a respectively. If A3 is any arc in

l 2’

X containing AlUA2 and having al and a2 as endpoints,

then A3 is not cellular.

Proof. Suppose A3 were cellular. Then each subarc Of

A3 must be cellular [35]. In Int A3 select a subarc Q

such that Ag—T—Q_ is locally tame except at al and a2.

Note that X modulo Q is tOpologically X again. SO for A3

one may select an arc A that fails to be locally tame at

its endpoints and by [33] exactly one interior point. But

by [5] and Theorem 4.16 this is impossible.
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The proof Of the following theorem could have

also been Obtaining by using the techniques Of Sikkema in

the paper mentioned on page 53.

Theorem 4.18 Let A be a cellular arc in the interior Of

an arbitrary n-bOOk in E3. If the set of wild points Of A

 

is non-empty and does not contain an arc, then A has at

most one wild point that is not contained in the back

Of the n-book.

Proof. Let Bn be an arbitrary n-bOOk that contains a

cellular arc A. Assume that A has two wild points al and

a2 that are not contained in the back of BH and reach a

contradiction. There are three cases to consider.

Case 1. a and a are both interior points Of A.
1 2

Let Al and A2 be disjoint subarcs Of A such that a1 6 Int A1

and A is contained in the union of two leaves Of Bn,
1

i = 1,2. Then both Al and A2 are cellular arcs by [35].

The argument Of Theorem 5 of [5] establishes the existence

of a subdisk DI of the two leaves Of Br1 containing Al such

that: (l) Alis cOntained in the interior Of D', and (2)

D' lies on a 2-sphere Sl in E3. Theorem 1 of [32] states

that a cellular are on a 2—Sphere in E3 has a set of wild

points that is empty, contains an arc, or consists of a

single point. Hence by the hypothesis Of this theorem, al

1' Let T1 and T2 be two subarcs

and whose intersection is al. We

is the only wild point Of A

of Al whose union is Al

next Show that both T1 and T2 fail to be locally tame at al.
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By the Bing approximation theorem [4],it may be assumed

that S1 is locally polyhedral except on A

argument, A

1. By the above

is locally tame everywhere except at a
l

Of [17] implies that S

1 ; Theorem 1

It1 is locally tame except at al.

then follows from Theorem 9 Of [3] that there is a space

homeomorphism h mapping S onto a 2—sphere that is locally
1

polyhedral except at h(a Then Theorem 5 Of [17] implies
i)-

that h(Tl) and h(T2)’ and hence T and T2,are equivalently
1

embedded in E3. If T1 and T2 are both locally tame at

al, then by an application Of Theorem 1 Of [17], Al would

be a tame arc. Hence T1 and T both fail to be locally

2

tame at al. The same argument establishes subarcs U1 and U2

of A2 such that U1U U2 = A2 and Uln U2 = {a2} , and such that

U and U both fail to be locally tame at a Let A3 be a
l 2

subarc Of A with endpoints a1 and a2,

which is a cellular arc by [35]. But this

2.

then these are isolated

wild points Of A3

contradicts Theorem 4.17 and hence this case cannot occur.

is an endpoint of A and a2 is an

be a subarc Of A with endpoints

Case 2. al

interior point Of A. Let A3

al and a2. Then by the same argument as in Case 1, a2 is

an isolated wild point Of A Let a e TCZA3, where T is

3' 1

an arc contained in the union of two leaves of Bn. By an

argument as in Case l,T may be assumed to lie on a 2-sphere

in E3. SO by [32], a1 is an isolated wild point of T. Thus

A is a cellular arc by [35] such that its endpoints are

3

isolated wild points Of the arc. This contradicts Theorem 4.17

and SO this case cannot occur.
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Case 3. al and a2 are the endpoints of A. As

in Case 2, it follows that al and a2 are isolated wild

points Of A. SO by Theorem 4.17 this case cannot occur.

Since the above three cases cannot occur, it

follows that A has at most one wild point that does not

lie on the back Of B”.

Next we give an example to show that this is the

best possible result for an n-book, n > 2. Example 1.2 of

Fox and Artin [22] can be swollen into a 3-ce11 that contains

Example 1.2 on its boundary. Let D be a 2-cell contained

in the 2-sphere boundary Of the 3-cell, such that D contains

Example 1.2 in its interior and is locally polyhedral except

at the wild point Of Example 1.2. Let B3 be a 3-bOOk in E3

such that two of the leaves are 2—simplexes and the other

leaf is D, and let A be an arc in D that is equivalent to

Example 1.2 of [22] such that A intersects the back of B3

only in its endpoint z. Then Example 4.4 Of this chapter

3
can be embedded in B in such a manner that it has z as

one Of its endpoints, and it intersects A only in this point.

The union Of Example 4.4 and A is a cellular arc, by the

p-shrinkable criterion, that has uncountably many wild

points on the back Of B3 and precisely one wild point con-

tained in the interior Of a leaf of B3.



CHAPTER V

SUBSETS OF TAMELY EMBEDDED CONES OVER N-BOOKS IN E4

In [40] Persinger considered wild and tame

subsets Of tamely embedded n-bOOks in E3. As was re—

marked in Chapter II, an n-bOOk may be considered as

the double cone over n points. In this chapter wild and

tame subsets Of tamely embedded triple cones over n

points in En are considered, that is,subsets Of tamely

embedded cones over n-bOOks in E4. A cone over an n—bOOk

will be denoted by c(B“).

The argument Of the first theorem establishes

that there exist no wild Cantor sets in tame cones over

n-bOOks in E4, just as in [40] it is established that

3
there exist no wild Cantor sets in tame n-bOOks in E .

Theorem 5.1 NO wild Cantor set lies in a tame cone

over an n-bOOk in E4.

 

Proof. Let C(Bn) be a tamely embedded cone over an

n—book in E4. Let h be a homeomorphism Of E)4 onto itself

such that h(C(Bn)) is a Euclidean polyhedron with triangu--

lation K. Let s1,...,sr denote the 3-simplexes Of K. .

Suppose C is a Cantor set embedded in C(Bn). Then for each

i, 1 3’1 3 r, C(\h-1(IsiI) is contained in a Cantor set

C
-l

i such that CiCIh (I31I)- h(Ci)(:IsiI,and IsiI is a

58
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Euclidean 3-simp1ex in E4 and so is contained in a 3-

dimensional hyperplane Of E4. From Klee [28] it follows

that h(Ci), hence 01’ is a tame Cantor set in E4. Theorem 8

Of Osborne [37] states that the countable union Of tame

Cantor sets in En is a tame Cantor set. Hence C CILJ§=10i

and LJ§=1 C1 is a tame Cantor set in E4, and SO C is a

tame Cantor set.

The above proof is valid for any tamely embedded

(n-l)-complex in Euclidean n-space, hence the following

corollary.

Corollary 5.2 A tamely embedded (n—l)—complex in En
 

contains no wild Cantor sets.

Next l-cells and l-Spheres in tamely embedded

C(Bn) are considered. The fact that all such l—cells and

1-spheres are tame in El1L follows from Theorem 2 Of Dancis

in [12]. This theorem states: A necessary and sufficient

condition that a k-complex K, which is a closed subset Of

a combinatorial n-manifold (without boundary) n 2.2k + 2,

be tame in M is that K lie in the union of a countable

number Of locally tame (n-k)-simplexes in M.

Theorem 5;; There exist no wild arcs or wild Simple

4

closed curves in tame cones over n-bOOks in E .
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In the case n = l or 2, this result can be

Obtained in another manner which is indicated in the proof

Of Theorem 5.6. All arcs, simple closed curves, and disks

in a tame l- or 2—book in E3 are tame in E3 [40]. The

next two theorems are an analogous kind Of result for cones

over 1— or 2-bOOkS tamely embedded in E4. These theorems

depend strongly on some recent results Of Kirby [27],

and results on embeddings Of subsets in 3-dimensional

hyperplanes in E4 Of Klee [28], Bing and Klee [6], and

Gillman [24].

A finite sequence Of distinct 3-simplexes in

"Sr’ is called a circuit if:

(1) LI?=1 ISJI is homeomorphic to a closed

3-cell for l S i‘g r, and

(2) (LIZ;=1 ISJI){IISi+lI for i < r is a

2-cell on the boundary of LJ3=1 ISJI

and on the boundary Of I31+1I'

A circuit which is a sequence with r members is said to

have length r.

Lemma 5.4 Let B be a Euclidean polyhedron in E4
 

homeomorphic to a closed 3-cell, K a triangulation Of B,

and O a l-simplex Of K. Then the collection Of 3-simp1exes

Of K that have 0 as a face can be ordered in such a manner,

say 81,...,S 130 that this sequence is a circuit.
I.)
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Proof. The collection Of all circuits, such that the

members Of the sequence are 3-simplexes Of K having 0 as

a face, is non-empty and contains a finite number Of ele-

ments. Thus there is a circuit of maximal length,

81,...,Sk. To prove the lemma it is necessary to show

that k = r, where r is the number Of 3-simplexes Of K

having O'as a face. Suppose k # r and reach a contra-

diction. Let G = Isllu ulskl, then G is homeomorphic

to a closed 3-cell. There are two cases to consider.

Case 1. There exists x e IOIFIInt G. Then x

has an Open 3-cell neighborhood N in G which, by invari-

ance Of domain, is also a neighborhood Of x in B. If

there exists s'e K, where s' is a 3-simplex with 0 as a

face and s' # s1,i = l,...,k, then Int ISII-interseCts

every neighborhood Of x in B. But Int IS'IFIN = ¢,hence

there does not exist such an s'.

Case 2. There does not exist x e IOIfIInt G.

Then IOIc:Bd G and there are two 2-simplexes, say Oi<xl>

and O*<x22,which have 6 as a face and lie in Ed G.

, (Denote the j-simplex with vertices qO"°°’qj by

< qo,oo~,qJ>-)

Next it will be shown that both O*<xl> and

0*(X2> lie in the boundary Of B. Suppose not, and that

Int IO*<xl>|c:Int B. Then O*<Xl> is the face Of two 3-

Simplexes in K, one Of which lies in G and the other

S' = O*<xl,b> which is not a member of the circuit
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determining G. Then

IS'IrIG = IO*<xl>I or

I°’*<Xl>| u I0*<b>| .

for all the 3—simplexes in G have C as a face. Hence

Is'I intersects G in a 2-cell on the boundary Of each,

and IS'ILJG is homeomorphic to a closed 3-ce11. But

then s .,sk,s' is a circuit which contradicts thel".

maximal length Of s Hence both G*<Xl> andl""’Sk'

O*<X2> lie in the boundary Of B.

Since both O*<xl> and O*<X2> lie in the boundary

Of B, if x 6 Int IOI then x has a neighborhood N in G,

which by invariance of domain, is also a neighborhood Of

x in B. SO by the same reasoning as in Case;l, there

does not exist a 3—Simp1ex s' Of k with O < s' and s' # si

 

for i = l,...,k. The lemma followsufrom the above argument.

Theorem 5.5 A tame 3-cell B in E4 is flat.

Proof. Since B is tame it may be assumed that B is a

Euclidean polyhedron in E4 with triangulation K. In the

appendix Of [31] Lacher gives a proof that locally flat

cells in En are flat. SO it suffices to prove that B is

locally flat. In [27] Kirby also proves that if B1 and

B2 are two locally flat (n-l)-Cells in En with

n-2

BlrlB2 = Bd BlrIBd B2 = B“.2 where B is an (n-2)-

cell which is locally flat in Bd B1 and Ed B2, then BlLlB2
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is a flat (n—1)-ce11 in En. This theorem along with

Lemma 5.4 implies that B is locally flat except possibly

at its vertices and hence by the previous remarks B is flat.

Theorem 5.6 There exist no wild l- or 2—cells or
 

l— or 2-spheres in a tamely embedded cone over a l- or

2-bOOk in E4.

Proof. The cone over a l- or 2-bOOk is homeomorphic

to a closed 3-cell. Hence by Theorem 5.5,we may assume

that C(Bn) n = 1,2 is contained in the hyperplane E3 x O

in E4. By a theorem Of Klee [28],any l-cell embedded in

a 3-dimensional hyperplane Of'El‘l is tame in E4. In [6]

Bing and Klee prove that every simple closed curve in E3

is unknotted in E4. By Theorem 3 of Gillman in [24] every

2-Sphere or 2-cell in a 3-dimensional hyperplane Of E4

4

is tame in E . Thus every 1— or 2-cell Or 1- or 2-sphere

4

in a tamely embedded cone over a l- or 2-bOOk in E is

tame in E4.

The questionl of whether or not there exist

wild 3-cells in tame CCBnL n = 1,2,has not been answered.

However, there do exist wild 2-.and 3-ce1ksin tamely

embedded cones over n-bOOkS, n > 2, in E“. To Show that

this is the case it is necessary to introduce some defini-

tions from [5]. Let D be a disk. We say that §_p§p 93

Bd D into a set Y can be shrunk to a constant in Y if
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the map can be extended to take D into Y. YCIX is

locally simply connected at a point p Of'Y if for each
 

neighborhood U Of p in X there is a neighborhood V of p

in X such that each map Of Bd D into VFIY can be shrunk

to a constant in UFIY.

Theorem 5.7 If A is an arc in En whose complement
 

fails to be locally simply connected at an endpoint p

of A, then A x [O,l]c:Er1 x E1 = En+1 is a wild disk in En+l,

Proof. Assume A x [0,1] is tame in En+1 and reach a

contradiction. Since A x [0,1] is tame there exists

t e (0,1) such that if p' = p x t then A x [0,1] is

locally flat at p'. Hence En+1 — (A x [0,1]) is locally

simply connected at p'. A x t is embedded in En x t as

A is embedded in En. A contradiction will be reached by

proving that En x t — A x t is locally simply connected

at p', and hence that En - A is locally simply connected

at p.

Let U be any neighborhood of p' in Enix t, then

1
U' = U x (0,1) is a neighborhood Of p' in En+ . Since

En+1 — (A x [0,1]) is locally Simply connected at p', there

exists a neighborhood V' Of p' in En+1 such that each map

Of Bd D into V'r\(En+1 ~ (A x [O,l])) can be Shrunk to a

constant in U'r\(En+l - (A x [O,l])). Let V be a neighbor-

hood Of p' in En x t such that VCIV', and prove that each

map Of Bd D into V{'\(En x t - A x t) can be shrunk to a
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constant in Ufl(En x t - A x t). Let f be any mapping Of

Bd D into Vn(Er1 x t - A x t), then f(Bd D) isfcontained

in V'f\(En+1 -(A x [0,1]». Hence f can be extended to

‘a map, denoted by f', where f' maps D into U'fl(En+1 -

1 onto En x t ;@ x.[O,l]». Let a be the projection: Of Er1+

a is a continuous map. Then af' maps D into Ufl(En x t -

A x t) and is an extension of f. Thus Er1 x t - A x t is

locally simply connected at p'. Hence Er1 - A is locally

simply connected at p which is a contradiction to the

hypothesis Of the theorem. SO A x [0,1] is a wild disk

in En+l.

If A is the arc of example 1.1 Of Fox and Artin

[22],then E3 - A is not locally simply connected at an

endpoint Of A. The proof Of this fact may be readily Obtained by

considering thepmesentation Of the fundamental group Of

the complement of the arc given in [22].

Theorem 5.8 There exists a wild disk in a tamely

4

embedded cone over an n-book, n > 2, in E .

 

Proof. Example 1.1 Of [22] can be embedded in a poly-

hedral 3-bOOk, B3CIE3; Then B3 x [-2,2]C'_'E4 is homeomorphic

to the cone over B3 and is tamely embedded in E4. By the

remarks preceding this theorem and Theorem 5.7, it follows

that A x [0,1] is a wild disk contained in a tamely embeddr.

ed cone over a 3-bOOk.



66

Next it will be established that there exist

wild 3-cells in tamely embedded cones over n—bOOkS, n.) 2.

Theorem 5.9 If D is a 2—cell in E3 whose complement
 

fails to be locally simply connected at a point p of Bd D,

then D x [0,1] is a wild 3-cell in E4.

Proof. Assume D x [0,1] is tamely embedded and reach

a contradiction. Let h be a homeomorphism of E4 onto

itself such that h(D x [0,1]) is a Euclidean polyhedron

with triangulation K.

If there exists t e (0,1) such that h(p x t)

lies in the interior Of a 2-simplex Of K, then

ELl — (D x [0,1]) is locally simply connected at p x t.

If, however, h(p x [0,1]) is contained in the l-skeleton

of K then there exists t e (0,1) such that h(p x t) is

contained in the interior of a l-simplex of K. The point-

set realization of all those 3-simplexes of K that have

this l-simplex as a face is a closed 3-cell by Lemma 5.4.

Furthermore,by [27] and Lemma 5.4,it is a flat 3-cell.

Hence E4 - (D x [0,1]) is locally Simply connected at

p x t. Using the same argument as in the proof of

Theorem 5.7, one Obtains that D is locally Simply connect-

ed at p. Thus a contradiction is reached SO D x [0,1]

is wildly embedded in E4.
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Theorem 5.10 There exists a wild 3-ce11 in a tamely
 

embedded cone over an n-bOOk in E4, n > 2.

Proof. Example 1.1 of [22] can be swollen inTE3 into a

2—ce11 D whose complement in E3 fails to be locally Simply

connected at an endpoint p Of Example 1.1, which by the

"swelling construction" lies on the boundary of the 2-cell.

Furthermore, D can be embedded in a polyhedral 3-bOOk in

E3. Then D x [0,1] lies in a tamely embedded cone over

an n-bOOk (as in the proof Of Theorem 5.8). By Theorem 5.9

D x [0,1] is a wild 3-cell in Eu.

TO Obtain an example Of a wild 2-sphere in a

tamely embedded cone over an n-book,n > 2, that is

constructed in a somewhat different manner then the wild

2- and 3-cells above, we utilize an example of Doyle and

Hocking [19].

Let B3 be a flat 3—bOOk in E3. Let RE, i e z+,

3
be a sequence Of disjoint 3-bOOkS embedded in B such

3

1

when considered embedded in E3, (2) the books Bf converge

that: (1) the leaves Of B are Euclidean 2—simplexes

to a point p on the back Of B3, and (3) the diameter Of

B3 is less than 1/21. Denote the back of B3 by B i e Z+.
1 1 1’

By [40] a trefoil knot can be polyhedrally embedded in a

3-bOOk. Let T1, 1 e Z+, be a polygonal trefoil knot

3 in such a manner that T is contained inembedded in B1 i
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the interior of Bi except for two straight line segments

ti and si on the boundary Of a leaf Of Bi and in such a

manner that tiLlsichl, a leaf of B3, for all i e Z+.

Let E i e 2*, be a polygonal disk in B3 such that:
i)

+

(l) E1CD1 for all i e z , (2)E1n T1 = t1 and

L a 3 _

Ein T1+1 " Si+l’ (3) Ein L—Ij=l Bj ‘ tiU Si+l’

(4) EiFIEJ = C for i f j, and (5) the diameters Of the

E1 tend to zero. See Figure 5.1.
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Figure 5.1

Let B3 be embedded in the 3-dimensional hyper-

4

plane E3 x OCIE . Let 2'(B3) denote the suspension Of

4

B3 in E with suspension points u and v, and let Cu(Bi)

denote the cone over Bi which is obtained by joining points

in B denote the cone over Bi which isi to u,anduCV(Bi)
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Obtained by joining points on Bi to v. Let vi be at

point in CV(B - (B1L1[v}) and let ui denote a point in1)

C (Bi) — (BiLJ{u]). Choose the points vu and ui, i e Z+,
i

SO that the sequences {ui I i e Z+}and {vi I i e Zf}converge

to p. Let Z'(B§) denote the suspension of B? in ELl with

the same suspension points as B3, then Z'(B§)CZZ'(B3).

4

If 2(T denotes the suspension of T in E with suspen-
1) i

Sion points ui and Vi’ then 2(T1)CIZI(B§). This fact

can be verified using the convexity of the cones over the

leaves of B? in Z'(B§) and the fact that ui

3
chosen in the suspension Of the back of Bi Hence

and vi were

{2(T1) I i e Z+I consists Of a sequence of disjoint

2-spheres converging to the point p. These 2-spheres are

now joined together in such a manner that a wild 2—Sphere

is Obtained. The E1 can be swollen into a polyhedral 2-

spheres EI? in E3 containing E1 such that: (l) EICCZ'(D1),

(2) EIFIE3 = O for i # j, (3) EIr\Z(T1) is a polyhedral

2-cell containing t and EII‘] 2(T ) is a polyhedral
1 1+1

2-cell.containing s1, (4) the diameters of the E' converge
1

to zero, and (5) S =I_I:=1 (2(T1)LIEI) is locally poly-

hedral except at p.

Then S is homeomorphic to a 2-sphere and is the

example of Doyle and Hocking [19]. Furthermore by con-

struction SCIZ'(B3),Land.2'(B3) is homeomorphic to the

cone over B3. Z'(B3) is tamely embedded in E“. A tamely

embedded 2-sphere in El‘l can fail to be locally flat at
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only finitely many points, the vertices Of a triangulation

of the 2-Sphere. S fails to be locally flat at the se-

quences {vi I i e Z+I and {ui I i e Z+} which converge

to p. Hence S is wildly embedded in Eu. The above dis-

cussion yields the following theorem.

Theorem 5.12 There exists a wild 2—Sphere in a tamely

4

embedded cone over an n-bOOk, n > 2, in E .

 

It is interesting to note that the wild 2-Sphere

S constructed above is locally tame everywhere except at

p and that S fails to be locally flat on a sequence Of

points converging to p. Furthermore,every arc embedded

in S is tamely embedded in E4. Also S can be expressed

as the union Of either two wild 2-cells or two tame 2—cells.

The wild 2- and 3-cells in tame cones over n-bOOkS,n > 2,

constructed in this chapter were both products Of cells;

therefore,they are both cellular.
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