RROPOSD ADDITION YO THE CTY (Of EAST LANFING

Thasiz for the Degree of B. S.
MCHIGAN STATM COLHEE
B. E Niwator B. B. Zlanka
1847

$$
c_{, 1}
$$

SUPPLEMENTARY

 IN BACK OF BOOK

Proposed Addition to the City
 of East Lansing

A Thesis Submitted to
The Faoulty of MICHIGAN STATE COLLEGE of

AGRICULTURE AND APPLIED BCIENCE

By
C. E. AtwaterD. P. ZiemkeCandidates for the Degree ofBachelor of Science
December 1947

THESIC
C. 1

Proposed Addition to the City of East Lansing

The land which was surveyed is located north of the city limits of East Lansing. It is trapezoidal in shape and is bounded by Bircham Drive on the south side. It is owned by the Walter Neller Realty Company, hence the name Neller Subdivision.

This land was chosen not only because of its location, but because the authors thought that its features were typical of those that would be encountered in most subdivision problems.

The problem was handled by dividing it in the following manner:

1. Reconnalsance
2. Location gurvey
3. Location of Bench Marks
4. Topograph1cal survey
5. Cross-section elevations
6. Street, sidewalks, and lot design
7. Water supply
8. Sewer design
9. Estimated cost of project

Reconnaisance and General
Description

Permission was obtained from Mr. Walter Neller for the use of his land. With the help of the City Engineer of East Lansing, the approximate boundaries were obtained. The authors went over the land carefully and decided on the portion before described.

The land is rolling at the north ond and decidediy level on the south end, as the topographical map will indicate. The general slope tends to begin at the upper NE corner and bear SW down to the SW corner. The level land on the southern end presented a good problem in the sewer design.

The East Lansing City Engineer was consulted for the location of the quarter section corner used and also the description of the property.

The quarter post, section 7, T4N, RIW, was located and a.line run from that point to the first control point. This was placed both in the field notes and on the topographical map.

Loaation of Bench Marks

With the help of the East Lansing City Engineer the looation of a known bench mark was obtained. From this the elevations of the control points were established as shown in the field notes. These were later used in the oross-sectioning for elevations.

Topographical Survey

From the point established by means of the quarter-section corner, a traverse was ruṇ close to the edge of the property to be subdivided. The deflection angles were repeated six times as indicated in the field notes. The traverse was then closed in computations that follow, by use of latitudes and departures in conjunction with the transit rule.

From the traverse that was established, the topographical features of the land were obtained with a transit and stadia rod.

Angles

> BOE $=10^{\circ} 13^{\prime} 45^{\prime \prime}$
> BOD $=26^{\circ} 59^{\prime} 05^{\prime \prime}$
> NOA $=83^{\circ} 43^{\prime} 50^{\prime \prime}$
> NOC $=89^{\circ} 56^{\circ} 50^{\prime \prime}$

The error is $-5^{\prime \prime}$ and it is all placed in angle DHA
as shown in the field notes.
Longths of 11ne
$B O=1166.16^{1}$
$E O=770.51^{1}$
$D 0=491.42^{\prime}$
$C O=625.95^{\prime}$
$\Delta 0=267.90^{\prime}$
BO
Latitude $=-1166.16^{1}$
Departure $=0.00$

BC
Lat, $=(625.95)$ cos $89^{\circ} 56^{\prime} 50^{\prime \prime}=+0.57587$
Dep. $=(625.95)$ sin $89^{\circ} 56^{\prime} 50^{\prime \prime}=-625.95$

CD
Lat. $=(491.42)$ cos $26^{\circ} 59^{\prime} 05^{\prime \prime}=+437.91910$
Dep. $=(491.42) \sin 26^{\circ} 59^{\prime} 5^{\prime \prime}=+222.98183$

DE
Lat. $=(770.51) \cos 10^{\circ} 13^{\prime} 45^{\prime \prime}=+758.25839$
Dep. $=(770.51) \sin 10^{\circ} 13^{\prime} 45^{\prime \prime}=+136.83487$

EA
Lat. $=(267.90)$ cos $83^{\circ} 43^{\prime} 50^{\prime \prime}=-29.25736$
Dep. $=(267.90)$ sin $83^{\circ} 43^{\prime} 50^{\prime \prime}=+266.29796$

Line	Latitudes		Departures	
	+	-	+	-
AB		1166.16000	0.0	-
BC	0.57587			0.0
CD	437.91910		222.98183	
DE	758.25889		136.83487	
EF		29.25736	266.29796	

Difference in Lats. $=+1.33650^{\prime}$
Difference in Deps. $=+0.16466^{\prime}$

Adjustment by Transit Rule

$\frac{\text { Lat. or Dep. oorr. }}{\text { rotal orror in Lat. or Dep. }}=\frac{\text { Lat. or Dep. of Ine }}{\text { Sum or all Lat. of Dep. }}$ BC.

Latitude correction $=-0,00032174$
Departure correction $=+0.082319$
CD
Latitude correction $=-0,24466429$
Departure correction $=-0.029324513$

DE

Lat1tude correction $=-0.4236373$
Departure correction $=-0.017995259$

EF

Latitude correction $=+0.016346012$
Departure correction $=-0.03502105$
$A B$
Latitude correction $=+0.6515306$
Departure correction $=0.0$

Line Corrected Latitudes Departures				
	$+$	- -		
AB		1166.81153	0.0	0.0
BC	0.57555		.	626.03232
CD	437.67444		222.95251	
DE	757.83525		136.81687	
EF		29.27371	266.26294	
	1196.08524	1196.08524	626.03232	626.03232

Gorrected sides of traverse

$$
\begin{aligned}
& \mathrm{AB}=1166.81^{\prime} \quad \mathrm{BC}=626.032^{\prime} \quad \mathrm{CD}=491.189^{\prime} \quad \mathrm{DE}=770.086 \\
& \mathrm{EF}=267.867^{\prime}
\end{aligned}
$$

Grosesection Flevations

From the traverse previously establlshed, the cross-seotion was planned. Points were placed at one-hundred foot intervals on the traverse lines. The level was placed at each of the one-hundred foot stations on line $A B$ and aligned on a previously established point on line $C D$ and $D E$, as the case was. On arbitrary lines intersecting both $A B$ and $C D$, or AB and DE , as the case was, perpendiculars were established at fifty foot intervals. Where these perpendiculars intersected the line established by sighting the level, elevations were taken. This grid system covered the area in question very satisfactorily.

The requirements for additions to the city of East Lansing were obtained from the City Hall, and are as follows:

1. Width of streets are 30^{\prime} back to back of curb
2. 60' right-of-way for streets
3. Lote not less than 5,000 square feet Since the authors wished to make the lots as desirable as poseible, most of them will exceed the minimum requirements. The lots were varied in size in order to relleve monotiony and to give a wider selection to the buyer.

The streets were designed with two main objectives In mind: first, to facilitate placement of the sewer lines; and, secondly, to place them in an attractive position.

The sidewalks were placed one foot inside of the right-of-way for easior construction and maintenance. The sidewalks are to be made 41 wide and constructed of ooncrete.

The plan view of the streets, sidowalks, and lots are on an enclosed plate. Also enclosed is a orosesection of the streets.

Location of existing water mains and specifications were obtained from the city of East Lansing. The speoifications and computations for the water mains are as follows:

An existing g" line runs under Bircham Drive, between Bailey and Abbott Road, at a depth of 5'. This was used as the source of supply for all mains in the subdivision. Pressure on the 8 " line 1s 50 psi.

The facts necessary for consideration in laying out the water lines were:

1. Feeders not more than 3,000 feet apart
2. Fire hyorant aupply pipes not less than 6" for residential areas, with 6" orossmains not to exceed 600 feet
3. Pressure on fire hydrants should not be less than 20 psi
4. Frost line for this region is 36 "

Computations

The longest water line of the subdivision will be 1404 feet. This line will serve 85 people. These figures are the maximum of any line in the subdivision. Fire demand for 85 people:

$$
\begin{aligned}
\text { F.D. } & =1020(0.085)^{\frac{1}{2}}\left[1-0.01(0.085)^{\frac{1}{3}}\right] \\
& =(1020)(0.292)(0.997) \\
& =298 \mathrm{~g} . \text { P.m. }
\end{aligned}
$$

For population of 85 at 100 g.c.d. the consumption will be:

Max. rate $=\frac{(100)(2.50)(85)}{60}=354$ g.p.m.
Total requirement for one line $=298+354=652$ g.p.m.
Pressure $=50$ p.s.1.
Using the Hazen-Williams formula for cast iron pipe with $C=100$:

The head loss of 14041 of $6^{\prime \prime}$ pipe with 652 g.p.m. is $521 / 100$ or $751 / 1404$
$75 \times 0.433=32.5$ p.s.1. drop
$50-32.5=17.5$ p.s.1. remaining in the line at the end of 1404'. This is at the extreme edge of the subdivision, and of Rast Lansing, so the deficiency of 2.5 p.s.1. is over-looked.

The design will then consist of all $6^{\prime \prime}$ pipe at a depth of 5^{1} : s shown on the drawings.

All valves were placed so as to assure the isolation of any section without olosing the remaining lines.

Sewer Design

Speoifications for sewers in East Lansing were obtained from the City Ingincer and are as follows:

$$
\text { 1. Minimum size of pipe is } 12^{M}
$$

2. Catch basin type of inlet to be installed
3. Combined sewer systom is required
4. Minimum oover is 7.5'

One of the objectives in the street location design was the adaptability of the streets to a sewer system. The sewer lines were placed with respect to lot location, and the direotion of flow determined. Distance between manholes was Iimited to 400' maximum and preferably 350'. Manholes were also placed at any appreciable change in direction of the streets, in order to facilitate cleaning, keep off private property, and also maintain somewhat of an equal distance from sewer lines to opposite lots. Catch basins were placed at street intersections in such a manner that water would not gather at cross-walks.

Gomplete rainfall data for the past 26 years was obtained from the East Lansing weather bureau station. The five storms of greatest intensity were plotted for each "time of duration" group. The rainfall data was converted to intensity of rainfall in inches per hour, and these values plotted against time of duration: of each storm. Curves.were drawn through the two highest points plotted. The design was based on the
second or thirteen year ourve. This represents a liberal allowance for a residential district.

The subdivision area was divided into smaller areas draining into separate manholes. These divisions are shown on a map enclosed. The inlet time for the most remote drainage area was taken to be ten minutes. A recognized value of 0.4 (built-up residential district) was used for the coefficient of permeability (I) in the design computations.

Velocities were kept between 3.5 and 10 feet per second. An effort was made to have the sewer grade conform to the grade of natural ground, but this was not possible in all cases. In the cases of unfavorable natural ground slopes, it was attempted to balance cost of deeper excavation against cost of greater size pipe. Maximum depth of pipe is 13.1 feet.

In all cases, the design is such that pipes meeting at manholes will have their crowns on the same plane. In the case of 90° changes of direction, a 0.3 foot drop was allowed for velocity head loss. For changes of direction of less than 90°, a 0.1 foot drop was allowed.

The point of concentration for the entire subdivision is at manhole 19. The sewage was led from manhole 19 to an existing $48^{\prime \prime}$ city sewer whioh is referred to as manhole 20. Since manhole 20 is approximately 23' feet underground, a drop manhole will
will be necessary in order for it to reoelve the subdivision sewage at the least possible cost.

Fietimated Gost of Project

The oost of the project was arrived at in the following manner:

4338' of 6" water pipe © $\$ 2.00$
\$ 8,676.00
12 fire hydrantse $\$ 150.00$
15-6" water valves © $\$ 50.00$.
2299' of $12^{\prime \prime}$ sewer pipe (av. depth-9')

- \$2.36 3,424.64

19 Manholes © $\$ 161.00$
3,059.00
38 ortch basing © \$100.00
3,800.00
11,660 sq. Jds. conorete pavement © $\$ 3.00$ 34,980.00
6,994' of ourb and gutter © $\$ 1.50$ 10,491.00
22,176 eq. ft. concrete sidewalke © $\$ 0.15$ 3,326.40
3,335 ou. yds. of cut and fill for etreets

- \$0.50 1,667.50

15\% addition for engineering \& contingencies 12,301.81
5\% for sales expense
4,715.70
Cost of 15.21 acres land $\$ 200.00$
3,042.00
25\% for owner's profit
25,517.90
total
$\$ 127,589.50$
Therefore, cost of average lot 1s $\$ 2500.00$

The selling price. for the arerage lot may seem somewhat high at $\$ 2500.00$. However, it must be remembered that the lots in this. subdivision are larger than the average oity lot. Also, the market is far from normal in that labor and material costs are viery high, and because of the soaroity of building materials, the demand (and therefore the price) for building sites is low.

Printed ia US.A

$$
[
$$

