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ABSTRACT

THE MAGNETOTHERMOELECTRIC EFFECT IN ALUMINUM,

ALUMINUM ALLOYS, INDIUM, AND LEAD

BY

Robert Scott Averback

We have studied the effect of a transverse magnetic

field upon the low temperature absolute thermopowers of Al,

Al-alloys, In, and Pb, with primary emphasis upon the Al and

Al-alloys. Measurements were carried out on polycrystalline

specimens over a temperature range from 2.5K to 4.5K and with

magnetic field strengths up to 20 k-Gauss. The thermopowers

of the pure Al and Al-alloys were negative in zero magnetic

field, became more positive with increasing magnetic field,

and then saturated in the high field limit. In most cases,

this resulted in a magnetically induced sign change. The

thermopower of pure In also became more positive with increasing

magnetic field and saturated in high fields. The thermopower

of Pb, on the other hand, became more negative with increasing

magnetic field and showed no clear tendency toward saturation

in high fields. We associate this difference in behavior with

the different valences of these metals; Al and In each have

three valence electrons, while Pb is a "compensated" metal

having four valence electrons. The behavior of Pb is consistent

with a prediction for "compensated" metals by Azbel, Kaganov,

and Lifshitz.



Robert Scott Averback

In order to interpret the behavior of the Al and Al-alloys,

it was necessary to separate the total thermOpower into electron-

diffusion and phonon-drag components. The electron—diffusion

component was then found to be initially negative, to become

more positive with increasing magnetic field, and to saturate

in high fields. Although in zero field the electron-diffusion

thermopower varied from specimen to specimen, its total

variation from zero to high magnetic field was found to be

nearly the same for all of the specimens studied. A "two

band" model of the thermopower of Al is presented and shown

to adequately account for this general behavior, yielding a

predicted magnitude for the change with magnetic field within

a factor of 2.5 of the experimental value. The phonon-drag

thermOpower was found to be negative in zero field and, for

all but one alloy studied (Al-340 ppm Cu), to become initially

more negative with increasing magnetic field. In a number of

cases, the phonon-drag component reached a maximum value and

then decreased at higher fields. No satisfactory explanation

for this behavior is available. The phonon—drag thermopower of

the Al-340 ppm Cu sample was found to decrease slightly with

increasing field. We also have no explanation for the difference

in behavior of this alloy.

It was not possible to unambiguously separate the thermo-

power of the In samples into electron-diffusion and phonon-drag

components. But unlike in Al, the zero field phonon—drag

component was positive (this fact was confirmed by measurements

at higher temperatures), and most probably increased substantially



 

Robert Scott Averback

in magnitude with increasing magnetic field. The difference

in sign and magnetic field dependence between the phonon-drag

components of Al and In is tentatively associated with

differences in the forms of the Fermi surfaces in the third

Brillouin zones of the two metals.

During the course of these studies, we also obtained

information concerning the zero-field electron-diffusion

and phonon-drag components of the thermopowers of Al and A17

alloys. The electron-diffusion components were found to be

consistent with Kohler's theory for the effect of the concen-

tration of an impurity on the thermopower. The characteristic

electron-diffusion thermopowers of the impurities Cu, Th, and

Cd in A1 were found to be, respectively, SCu-Al = 0.56 i 0.02

-8 __ -8 . _.
x 10 V/K, STh-Al — 3.2 i 0.5 x 10 V/K, and SCd-Al — 4.0 i

0.6 x 10-.8 V/K. The phonon-drag component of the thermopower

was observed to be different for different impurities, differing

in the most extreme cases by more than a factor of three.
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I. Introduction

A. Sign Changes in the Hall and Righi—Leduc Coefficients
 

of Al and In:

In the free electron theory of metals, the signs of the

Hall coefficient R'H’ the Righi—Leduc coefficient, and the

absolute thermopower S, are all the same as the sign of the

charge carrier in the metal. It was therefore intriguing

when recent observations showed that the low temperature Hall(l’2)

(3,4)
and Righi—Leduc coefficients of aluminum and indium

change sign upon application of a sufficiently strong transverse

 

magnetic field. This is especially so, since both aluminum

and indium have nearly spherical Fermi surfaces(5), and the

electronic transport properties of aluminum had previously

been observed to be in reasonable agreement with the free

(6)
electron theory. The free electron theory is, however,

inadequate to account for these sign changes. For the reader

unfamiliar with transport in metals, we briefly review the

free electron theory of the Hall effect and the extension to

the "two band" model necessary to explain the observed sign

changes.

In the free electron theory, the Hall field is generated

as follows. Electrons drift in a metal with velocity vd

antiparallel to an applied electric field. Upon application

of a magnetic field transverse to the motion of the electrons,

the electrons experience a Lorentz force, are deflected in

the direction vdx H and thus accumulate on one side of the





specimen. The accumulation of negative charge creates an

electric field, EH. This charge continues to grow until EH

is sufficient to balance the Lorentz force, i.e.

(y x H) = eEH. (I-l)

Since the current density is

J = nev (1‘2)»- ~d'

where n is the number density of electrons, the Hall field is

E =__].'_...

.~H nec (g X E)' (IT3)

The Hall coefficient is defined as,

R = EH/(Q x H) (I-4)

and, in this model, is given by

R = l/nec. (I—5)

Since R does not depend upon the magnetic field, a magnetically

induced sign change is inexplicable.

The simplest addition to the theory which can be made

to account for a change in sign is the allowance for a second

group of carriers, holes. These carriers would have, effectively,

a positive charge. The holes would therefore establish a Hall

field of sign opposite to that produced by the electrons and

would compete with the electrons in determining the resultant

sign of the Hall coefficient. The possibility for a magnetically

induced sign change will then exist if the result of this

competition is dependent upon the magnetic field.

(7) (8)
Sondheimer and Wilson and Sondheimer originally

developed the two carrier model for metallic conduction.





In this model the Hall coefficient is given by the expression

2‘ R.O’.2

l l

1 1 + '\wcr)i2

 
I (1’6)

Oi(wcT)i 2i 2

[g 111w01)i ] + [ g 1+(wCT)i ]

where Ri is the Hall coefficient for the ith carrier acting

alone (i e. R. = ~34——) and (w T). = €E—‘T. where m? is the
' l niec c l mic 1 ’ 1

effective mass of the ith carrier and Ti is the relaxation time

for the ith carrier. The key to the possibility for a sign

reversal lies in the numerator of Eq. (I-6). At low fields

(wcTi<<l)’ the sign of RH is determined by the quantity

RO+RO. (I-7)

At high fields (wcri>>l), on the other hand, the sign of RH

is determined by the quantity

2 2

R101 R202
—————— —————— (I—8)

(w )2 (w )2
cT 1 cT 2

In going from the zero field to the high field limit, the

relative importance of the two carriers has been changed by

. 2
the square of the ratio (wcr)2/(wcr)l. If R1 and R2 have

opposite signs, this change in relative importance can lead

to a change in sign of R Thus Eq. (I-6) provides a meansH'

for understanding how the sign of the Hall coefficient can change

(9)
upon application of a magnetic field. Ashcroft has used

this model to explain the sign reversals observed in aluminum

and indium. Alternative calculations have been made by Feder

(10) (11)
and Lothe and by Van der Mark, Ott, Rasmussen and Sargent.

 



 



B. Previous Work on the Magnetothermoelectric Powers of
 

A1 and In:
 

In 1948 Sondheimer(8) developed a general two band model

to treat the effect of a transverse magnetic field on the

thermopower of metals. Unfortunately the form of his results

made them difficult to apply to real metals. Since then, a few

theoretical papers concerning this effect have appeared in

the literature, but these did not apply to either aluminum or

indium. The reason is twofold: l) the thermopower is a

difficult property to calculate properly; according to Ziman(l6)

it is "the most sensitive transport property of a metal"; and

2) there have been no experimental data to provide a basis

for a calculation.

This situation is however not surprising. Few laboratories

have had voltage measuring devices sufficiently sensitive to

measure the thermopower of these metals in a magnetic field.

Those devices which had adequate voltage sensitivity were also

quite sensitive to magnetic flux and were often difficult to

(12, 13, 14)
keep in operation. To perform these experiments

we have used a recently designed superconducting chopper

amplifier which is both insensitive to magnetic flux and

reliable.(15)



 

 



C. The Present Thesis:
 

As noted above(and shown in section III.A.1), in the free

electron theory, the thermopower, like the Hall coefficient,

is of the same sign as the charge carrier. It was therefore

(17) that the magnetically induced sign change insuggested

the Hall coefficients of Al and In might be reflected in a

similar magnetically induced sign change in the thermOpowers

of these metals.

This thesis began as a search for a sign change in the

thermopower of aluminum at low temperatures. When a sign

change was observed, the thesis was extended to include a

systematic study of the effect of a magnetic field on the

thermOpower of very dilute aluminum alloys and of two other

metals, indium and lead. By studying a pure metal of similar

electronic structure (indium) and pure metal of dissimilar

electronic structure (lead), in addition to the dilute aluminum

alloys, we hoped to ascertain whether the sign change was linked

more closely to the electronic structure or to the details of

electron scattering in aluminum.

In the process of making this study we have also obtained

information concerning the thermopower of dilute Al alloys in

the absence of a magnetic field which is relevant to two

questions raised by previous experiments.

It will be shown below that the thermopower of a metal

may be sensitive to the type of impurity atom present, but

for a given impurity it should not be sensitive to the concen—

tration of that impurity once the impurity concentration



 



exceeds a certain level. This "rule" is obeyed by several

(18) However, the available data makes it unclear

(l9)

metals.

whether it is obeyed by Al. DeVroomen et a1. did not

find the rule to be obeyed for AlMg alloys. Boato and Vig<20)

obtained data which led them to remark, "The observed concentra-

tion dependence appears to be random, and is not understood".

We therefore decided to investigate whether this rule was

obeyed in our alloys.

Additionally, the phonon-drag thermopower of many metals

(21)
(e.g. the noble metals ) varies with the type of impurity

present. Whether this is also true for Al is still unclear.

(19) (20) were able toBoth DeVroomen et al. and Boato and Vig

describe their data in terms of a constant phonon-drag contribu-

tion. And the values they obtained agreed to within 15%.

(22), on the other hand, reported a differenceHolwech and Sollien

between the phonon-drag contributions for the two alloys Al + Cu

and Al + Fe. But the uncertainty in their data made their

claim inconclusive. We have also investigated this phenomenon.

The remainder of the thesis is organized as follows:

Section II is a description of the experimental technique,

with particular emphasis on the problem of measuring low level

D.C. signals at liquid helium temperatures.

Section III provides the theoretical background for the

calculation of the thermopower in the absence of a magnetic

field. In this section we develop the two band model for the

thermopower of aluminum to provide the framework for the theory

of thermopower in a magnetic field.

 



 



Section IV contains the theory for the thermopower in

a magnetic field. In Section V we report our experimental

results and compare them with theory.





II. Experimental Technique:

A. INTRODUCTION: The Experimental Problem:
 

There are three thermoelectric effects; the Seebeck,

Peltier, and Thomson effects. The conditions under which

they are observed, are as follows:

1. Seebeck Effect:
 

When a temperature gradient is applied to a specimen

which is electrically insulated, an electric field is

established. The ratio of the electric field to the tempera-

ture gradient is called the thermopower, S, of the specimen.

To measure the thermopower of a conductor, potential leads

are attached to the specimen as illustrated in Figure (II-la)

and the voltage at the terminals is measured for AT # 0.

The Seebeck effect refers to this voltage, which is obtained

by integrating the electric field around the circuit, i.e.

B To T T+AT To

VAB = IA E°d£ = f(E/AT)dT = f S(A)dT + f S(B)dT + f S(A)dT

T T T T+AT

O O

T+AT

= f [S(B)-S(A)]dT (II-l)

T

Thus the measured voltage is determined by the difference in the

thermOpowers of materials A and B.

2. Peltier Effect:
 

When an electric current is passed from one metal to

another under isothermal conditions, heat is reversibly

generated or absorbed at the junction (Fig. II-lb). The
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Figure II-l: The Conditions for Measuring the

Thermoelectric Effects.
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Peltier coefficient HA is defined as the heat evolved per
B

second when a unit current passes through the junction,

 H = H - H = . (II-2)

3. Thomson Effect:
 

The Thomson effect refers to the reversible heat generated

by a conductor when a temperature gradient is maintained in

the specimen and an electric current flows in it, (Figure II-lC).

The measure of the reversible heat generated per unit volume

per second is the Thomson coefficient,

[
0
0

_ REV _
 

The Thomson coefficient is the only thermoelectric coefficient

which can be measured without reference to another material.

These coefficients are not independent. They are related

through the Kelvin—Onsager Relations:

1) n = TS (II-4)

2) u = T é§ (II-5)

It is therefore necessary to measure only one of the three.

Of the three, the conditions under which the Seebeck effect

is measured are most easily obtained experimentally.

The difference between the thermopowers of materials A

and B is proportional to the temperature derivative of the

generated thermal emf. If AT is kept below a few tenths of

a Kelvin (see page 42) the measurement becomes quasi-differen—

tial, and Eq.(II-l) becomes SB - SA = AV/AT. If material A
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is a superconductor (which has zero thermOpower in the super—

(23) AV . .
), measurement of AT yields directlyconducting state

the thermopower of material B. The experimental problem is

therefore reduced to the measurement of AV and AT.

The electron densities in metals are in excess of 1022/cm3.

Therefore, the electron system, which is a Fermi system, is in

the extreme degenerate limit, i.e. the Fermi energy, sf,

greatly exceeds the thermal energy KT. The degeneracy prevents

all but a small fraction of the conduction electrons, roughly

KT/Ef, from being thermally excited from the ground state.

. (24)

For this reason the magnitude of the thermopower of metals

at low temperatures is small, approximately 0.1 uvolt/K at

5K. The combination of a small thermopower and small tempera-

ture difference, AT, gives rise to a small thermal emf.

Therefore, special voltage measuring devices are necessary

for measuring the low temperature thermopowers of metals.

The following two sections, entitled voltage measurement
 

and thermometry and temperature control describe how these two
 

aspects of the experiments were handled. In order to clarify

the problems involved, this material is presented in

terms of the general problem of dealing with low level

signals at low temperatures. The next sections, magnetic

field, specimen preparation, alloys, and data taking and
   

analysis, are particular to these experiments, and provide

a detailed description of how the experiments were set up

and performed, and how the data were analyzed.
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B. Voltage Measurement:
 

The problem of accurately measuring low level D.C.

signals is two-fold: l) unwanted thermoelectric emfs are

developed in the leads which carry the signal to the measuring

device, and 2) the measuring device must be sufficiently

sensitive to detect the low level signal. The thermal emfs

which are develOped in leads carrying a signal from 4.2K

to 300K can be kept below about l uvolt, and fluctuations

in these "thermals" over a short period of time can be limited

to about 1 x lo"9 volts. If the constant "thermals" can be

eliminated, then the smallest signal which can be distinguished

from noise is about 1 nanovolt. Reversing switches (for

resistance measurements) and superconducting shorting switches<25)

(for thermopower measurements) have been used successfully

to eliminate the constant "thermals". Potentiometers used

in connection with sensitive photocell galvanometer amplifiers

have been developed to detect nanovolt D.C. signals. For the

present study it was necessary to detect signals considerably

smaller than lO_9 volts; beyond the limit of purely D.C.

measuring systems.

To measure signals smaller than 10-9 volts, two possibilities—

exist. One method is to do away with the D.C. signal altogether,

and form the signal which carries the desired information by

A.C. techniques. This method fails for precision resistance

measurements of pure metals at low temperatures because of

the high reactive part of the impedance relative to the
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(12)
resistive part. For thermopower measurements this technique-

has been successfully applied at high temperatures where a

chopped light signal was used to heat the specimen and thereby

(26) At low temperatures this procedureproduce an A.C. signal.

is also possible, although difficult. Such measurements have

not yet been performed.

An alternative procedure is to convert the D.C. signal

to A.C. in the helium bath, where "thermals" are small, and

to bring the resulting A.C. signal out to room temperature.

In these experiments two devices were used to affect the D.C.

to A.C. conversion. The first device was a magnetic amplifier

(or saturable reactor) and the second was a superconducting

chopper amplifier.

1. Magnetic Amplifier:
 

A magnetic amplifier was used in the earliest experiments.

As the device is adequately described in detail elsewhere<27),

the description presented here is limited to a brief analysis

of the physical principle involved and a description of the

particular model used in these experiments. Figures (II-2a)

and (II-2b) illustrate the principle of the device. Figure

(II—2c) is a schematic of the amplifier circuit. The window

frame shaped core is comprised of several laminated plates of

mumetal with dimensions 1" x 3/4" x l/2". Two, one-hundred

turn coils of copper wire, coils "a" and "b" in Figure (II—2a),

are wound in series opposition on the two side posts of the

transformer so that the net flux they produce in the center
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Figure II-2: The Magnetic Amplifier System:

a) Schematic of magnetic amplifier;

b) Idealized hysteresis curve for mumetal;

c) Magnetic amplifier circuit.
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post is zero. An A.C. current is applied to these coils; at

its peak this current drives the point of operation of the

core on the B-H curve almost to saturation. By applying a

D.C. current to coil "c" (100 turns of tantalum) the symmetry

is altered, in that the D.C. flux adds to the flux on one side

post and diminishes the flux on the other. As can be seen

in Figure (II—2b) one side of the core is driven to saturation

but the other is not. This produces an unbalanced flux in

the center post. When the phase of the A.C. current has

changed by l80°, the roles of the side posts are reversed.

The flux in the center post thus fluctuates at twice the

frequency of the current in the side post windings. The

unbalanced A.C. flux produces an A.C. voltage in the 10,000

turn coil wound on the center post, coil "d". THis voltage

is then led out of the helium bath, amplified and phase sensitive

detected. This is shown schematically in Figure (II-2c).

The success of this device arises, in part, from the fact

that the D.C. signal is converted to A.C. at twice the frequency

of the current in the side post windings. This makes it possible

to discriminate against any undesired signal caused by imperfectly

balanced side fluxes. (In practice these signals are often

considerably larger than the signal of interest.)

The magnetic amplifier is a current sensing instrument,

whereas the information of interest is in the form of a voltage.

The conversion from current to voltage can be affected in two

ways. By inserting a known resistor, Rk' into the primary
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loop (see Figure (II-2c)), the D.C. signal can be nulled by

introducing a known current, ik’ into the circuit as shown.

When a null in the output occurs, all the current, passesik’

through Rk and the unknown voltage is i A second methodkRk .

makes use of a second coil on the center post, wound identically

to the coil in the primary loop. This second coil is used to

calibrate the phase sensitive detector output with respect to

the current flowing in the primary loop. The output is directly

calibrated by passing a known current through the second coil.

The unknown voltage is then the product of primary resistance

and the current measured in the magnetic amplifier. The

primary resistance is obtained by supplying a known current,

ik' to the circuit as shown in Figure (II-20) and measuring

the current flowing through the primary coil in the magnetic

amplifier. Elementary analysis shows that the primary resistance

is given by Rp = Rklk/Im, where im 18 the measured current
ri

in the magnetic amplifier.

Each technique had a difficulty; the calibration of the

device was not strictly linear for currents in the primary

larger than about 10”5 amps; the nulling was hampered by the

long time constant (3 sec.) of the device. By using a combina-

tion of the two methods these problems were overcome. A guess

at the correct nulling current was made and this current was

applied to the circuit. The remaining output was accounted for

by the calibration.

The device used in these experiments had a current sensiti-

vity of about 0.1 uamps which did not depend upon the temperature
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of the magnetic amplifier to above 80K. The circuit resistance

5 ohms at liquid heliumcould have easily been kept below 10-

temperatures, and we originally believed that voltages of

the order 10_12 volts could be resolved. However, as the

primarly impedance is reduced, the flux change in the center

post is also reduced. (By Lenz's Law, an induced current in

the primary circuit tends to impede flux change in the center

post.) This reduced the sensitivity of the device. To elimi—

nate the problem, an A.C. choke was installed in the primary

loop. The inductance of the choke was about 1 mh. corresponding

to an impedance of 1.5 ohms at the operating frequency, 260 Hz.

The time constant for the device is given by the inductance

divided by the resistance and hence the minimum primary

resistance commensurate with a reasonable time constant was

about 10_3 ohms. This yielded a voltage sensitivity of about

1 x 10—10 volts.

The relatively long time constant of the device made it

tedious to use. In addition,the experiments were carried out

in a magnetic field, which required the transformer to be well-

shielded and far-removed from the pole-faces of the magnet.

Despite the shielding, the device showed a considerable increase

in noise above 5 kG. Finally the voltage sensitivity, which

at best was 1 x 10"10 volts, limited the accuracy to about 2%.

Despite these drawbacks, the device operated reliably and

provided reproducible results. We do not present these results

as they were superceded by more accurate results obtained with

the superconducting chopper amplifier.
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2. Superconducting Chopper Amplifier: 

The superconducting chopper amplifier resolved the

difficulties of the magnetic amplifier. The specific advantages

of this device for the experiments carried out in this thesis

are as follows:

11 volts)1) excellent voltage sensitivity (2 x 10—

2) the time constant is determined by the phase sensitive

detector's filtered output (1 sec. was usually used.)

3) eliminates the need for shielding since it operates

virtually independent of field to above several kilogauss

4) can be constructed quickly, cheaply and reliably (The

final version was built in four hours for under $1.00

and has lasted several monthslundergoing several

cyclings from 300K to 2K with little change in sensitivity)

The principle involved in converting a D.C. signal to A.C. is

straightforward. By oscillating a piece of superconducting

wire into and out of the normal state, resistance is switched

into and out of a circuit. This periodic variation in

resistance produces an oscillating signal from a constant

potential. This signal can be detected by ordinary A.C.

techniques.

(12) wasThe first superconducting chopper amplifier

developed by Templeton who used tantalum wire as the chopping

element, and an oscillating magnetic field superimposed on a

D.C. magnetic field in order to break the superconductivity.

By using a D.C. magnetic field just below the critical field

of the superconducting element, the modulating field could
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Figure II-3: The Superconducting ChOpper—Amplifier System:

a) The superconducting chopper-amplifier

circuit;

b) Schematic (actual size) of the device.
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be kept small, thereby minimizing pickup. Even with this

procedure and elaborate shielding, the pickup had to be

(13)
balanced with an A.C. bias. DeVroomen later constructed

a similar device, using thallium as the superconducting

chopping element. Both devices were reported to have a

sensitivity around 1 x 10”11 volts.

Switching a superconductor with a magnetic field was

rejected for use in the present experiments for two reasons.

First, the experiments were to be carried out in a magnetic

field; this would require the amplifier to be extremely well

shielded. Second, the problem of constructing the chopping

assembly and balancing the pickup with a bias signal was felt

to be exceedingly difficult. We therefore decided to switch

the superconductor into and out of the normal state by means

(15) By winding a heater wireof an oscillating heat signal.

non—inductively on the superconductor, pickup problems can be

virtually eliminated.

The superconducting element was a length (1/2") of

.007" dia. niobium zirconium (NbZr) wire. The heating element

consisted of 6" of Evanohm wire (.0014" dia. 429 ohms/ft.)

wrapped non—inductively on the bare NbZr wire in one tightly

spaced layer. The chopping element was sealed into a 3/4"

length of glass capillary, (1/4" O.D., 1/32" I.D.) with

Apiezon grease. The capillary plus grease served as a thermal

resistance to the helium bath. The resistance of the segment

of superconductor when switched to the normal state was about
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0.02 ohms, allowing the specimen to have a relatively high

impedance. The power required to raise the NbZr element to

above its transition temperature of 10.8K, and thereby achieve

chopping, was about 50 mwatts. The heater current was taken

directly from an audio-oscillator (Krone—Hite, distortion

below 0.1%, at 200 Hz). It was found that the element would

switch prOperly anywhere in the range 200Hz to 2000Hz, although

at the higher frequencies the power supplied to the chopping

element was quite critical for smooth chopping. No advantage

was found in operating near 2000 Hz and so 200 Hz was chosen

for the heating signal.

Two tests were made to determine whether the sensitivity

of the device was limited by pickup from the oscillator. At

power levels below and above that necessary to achieve chopping,

the output of the phase sensitive detector is comprised solely

of pickup and noise. Increasing the power in the heater should

increase the pickup. As the power to the heater was increased,

the output was monitored and found to remain zero until the

chopping frequency was reached at which time the output jumped

indicating a D.C. signal. As the power was further increased

the output quickly died away to zero, and remained zero when

the chOpping element remained in the normal state. Since, in

this test, the input impedance without chopping is not the

same as when chopping occurs, a second test was performed. A

second heater was wound onto the superconductor and D.C. power

was supplied by it to raise the temperature of the NbZr to

near its transition temperature. A small A.C. signal was
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superimposed upon this signal to chOp the superconductor.

The noise level using this technique was the same as that

observed using A.C. power alone. We concluded that pickup

did not constitute a major problem. The reason for such

little pickup from the oscillator (aside from the careful non—

inductive winding of the heater wire on in the chopping

element) is that the power in the heater oscillates at twice

the frequency of the current in the heater wire.

2R + 1/2 i R cos(2wt).Power = i2R = 12 c082(wt)R = 1/2 10
0 O

II—6

The signal is thus chopped at twice the oscillator frequency.

This allows the pickup from the oscillator at the primary

frequency, w, to be eliminated by using phase sensitive

detection and detecting at 2w.

The transformers in the primary circuit were constructed

with teflon cores, 1/4" in diameter and 0.1" in length. The

primaries of the transformers consisted of five turns of a

superconducting material, niobium—titanium (NbTi), and the

secondaries contained 2,500 turns of 46 awg. copper wire.

The primaries were varnished in place, but not the fine wire

secondaries. Teflon was used for the core material instead

of mumetal, since mumetal would have needed shielding from

the magnetic field. The two transformers were screwed onto

a square of vector board and positioned so as to cancel stray

flux.

The reference resistor in Figure II-3 was a short segment

of copper wire, 8 x 10"6 ohms at 4.2K, its resistance being
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measured in place on various occasions. It was used for

nulling the unknown voltage.

The components of the chopper amplifier were positioned

as shown, actual size, in Figure (II-3). The components were

soldered to 0-80 brass screws which held them rigidly to the

vector board. In order to minimize the voltages generated

by the primary loops of the superconducting chopper amplifier

vibrating in a magnetic field, it was positioned 22" above

the pole faces of the magnet. A special Helium—Nitrogen dewar

with an extended tail section contained only 1/2 liter of

helium below the chOpper amplifier.

The signal was carried out of the dewar via a screened

twin cable to a shielded audio transformer. The transformer

had a balanced input and a turns ratio of 100. The signal

was then led to a low noise amplifier (PAR Model CR-4A),

using less than 6" of coaxial cable since the output impedance

of the transformer was in excess of l megohm. Finally the

signal was carried to a phase sensitive detector, (PAR Model

JB—4), and the output was monitored on either the panel meter

or an X-Y recorder. The frequency doubler shown in Figure (II-3)

served to provide a signal with even harmonics of the oscillator

frequency, to the reference of the phase sensitive detector.

Operation of the device is straightforward. A D.C.

signal of several nanovolts is applied across the known resistor

in the primary circuit, and the output is monitored. Initially

there is no signal. The power to the chopping element is
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slowly increased until a deflection in the output meter is

observed. The power, frequency, and phase are then adjusted

to maximize the output. Once these adjustments are performed,

the chopper amplifier needs no additional adjustment until

the bath temperature is changed, at which time the power

needs adjusting. The total time for these adjustments is

under a minute.

Although the output of the device appeared to be quite

linear, the device was used only as a nulling instrument,

since the accuracy of the nulling technique is limited only

by the sensitivity of the device. Using a calibrated output

the accuracy is limited by either the sensitivity of the device

or the accuracy of the output of the phase sensitive detector,

whichever is worse.

On occasion a small standing voltage was observed, less

than 2 x 10_10 volts. This voltage remained constant for

several minutes and was subtracted from the voltage readings.

When this occurred the standing voltage was checked before and

after each measurement for changes. The voltage sensitivity

of several devices ranged between 2 x 10—ll and 5 x 10”11 volts

in zero field. The sensitivity deteriorated to no worse than

3 x 10—10 volts at 20 k-Gauss, although a longer time constant

in the filtered output of the phase sensitive detector was

necessary (3 seconds). A superconducting shorting switch was

used once in connection with the superconducting chopper amplifier.

This device allowed the signal from the thermocouple to be shorted

until equilibrium was reached. The measurements could then be
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made instantaneously, which increased the sensitivity of the

device. Unfortunately, in the one attempt, the device

introduced a thermal into the circuit. The idea was

abandoned since the device was already sufficiently sensitive

for the present experiments.
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C. Thermometry and Temperature Control:
 

The temperatures of the thermocouple junctions were

obtained by using carbon resistor sensors. Nominally 100 ohm,

1/8 watt Ohmite resistors were used. These resistors are

well-suited to the temperature range over which these experi—

ments extended (1 - 6K), since the ”knee" in their resistance

vs. temperature curve occurs at about 6K. In addition these

(28) Unlessresistors show only a small magnetoresistance.

fields over 20 k-Gauss are employed, this magnetoresistance

can usually be neglected. Where necessary, formulas exist to

(29) In early experiments,correct for the magnetoresistance.

the resistance of each sensor was obtained by measuring the

voltage across the carbon resistor for a known current, about

one microamp. The voltage measurements were performed using

a Leeds and Northrup K-5 potentiometer in conjunction with

a galvanometer amplifier. The tedium involved in balancing

the potentiometer and averaging thermal voltages generated

in the leads prompted the abandonment of this technique in

favor of an A.C. Wheatstone bridge. The circuit was arranged

so that both the resistance of the cold end resistor and the

difference between the two resistances could be measured.

From these measurements the hot end resistor's resistance could

then be later deduced. The power input to the resistors was

kept at about 1 x 10_8 watts to prevent internal heating of

the carbon resistors. A phase sensitive detector, PAR model

HR-8 was used to detect the off balance signal in the bridge.
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A difference of 0.1 ohms could be resolved; at the highest

temperatures (~5K) this corresponded to about 0.4 milliKelvins.

To check for internal heating, the power level was varied

during several measurements. At a power level of 1.5 x 10—7

watts nearly every resistor used showed an increase in tempera-

ture of about 1 milliKelvin.

The resistors were calibrated below 4.2 K against the

pumped helium bath for each run. The pressure over the bath

was obtained by inserting a tube just above the liquid helium

level which led directly to a mercury manometer which was

mounted with a silvered scale backing. The pressures could

be read to about 0.3mm of Hg and were corrected for hydrostatic

head pressure and for the variation of mercury density with

temperature. Below 25mm of Hg a McCleod gauge was used,

although rarely did the experiments extend this low in tempera—

ture. The National Bureau of Standards 1958 tables were used

both to obtain the temperature for a given pressure and to make

the pressure corrections.

The bath temperature was controlled by a Walker Manostat

which seemed to control to better than a millidegree. It was

found that as the bath was pumped to lower temperatures, the

specimen temperature became increasingly unstable. The

condition was seriously worsened when power was applied to

the specimen to provide a temperature gradient. If it were

not for the fact that the difference in sensor resistance

was being measured, which remained stable to milliKelvins,
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rather than each junction temperature, measurements with the

bath temperature between 2.3K and 3.0K may well have been

impossible. This condition was attributed to bubbling on

the can surface, since below the lambda point, where no

bubbling occurs, no fluctuations were observed. In later

studies the bath temperature was maintained either above

3.4K or below the A—point. To reach temperatures above 4.2K,

a second heater was used to bodily raise the specimen tempera—

ture. It was mounted as shown in Figure (II—4). A germanium

resistor was positioned on the specimen between the two carbon

resistors and was used to calibrate the carbon resistors. To

check that the specimen was indeed at a uniform temperature,

the thermal voltage output of the specimen was monitored during

the calibration. For specimen temperatures up to 7K, no output

voltage was observed, indicating that the thermocouple junctions

were at the same temperature to within 0.1 milliKelvin.
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D. Magnetic Field:
 

The magnetic field was generated by a Harvey Wells iron

core electromagnet. With the pole faces set three inches

apart, the maximum field intensity was 21 kilogauss. The

pole faces were six inches in diameter and homogeneity was

better than 0.5% over a four inch region. Although the size

limit imposed on the specimen chamber by the magnet was not

serious, it did limit the absolute accuracy of measurements

to about 2%. The problem arose from the finite width of the

carbon resistors, and from their placement relative to the

junctions between the specimen and the two superconducting

leads which completed the thermocouple. For the maximum

specimen length of 2 1/2", the width of the carbon resistors

(l/l6") gave rise to a maximum error of 2%. This was the

largest error involved in the measurements. Since it was a

constant factor for a given specimen, it was not important

in the determination of the temperature and field dependence

of the thermopower. The magnetic field strength was measured

with a Hall probe manufactured by the F.W. Bell Company.

Its accuracy was about 0.1%.

The most serious problem caused by the magnet was an

increase in noise upon application of a sufficiently strong

magnetic field. Before careful precautions were taken, the

sensitivity of both the magnetic amplifier and the super-

conducting chopper amplifier were reduced by an order of

magnitude at 5 k-Gauss, and they were often unusable above
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10 k-Gauss. The problem arose from two factors: 1) noise and

instability in the magnet and 2) vibration of the primary

loop in the magnetic field. Since the signal was analyzed

using a phase sensitive detector, the noise should not have

significantly altered the sensitivity. (Most of the noise

was at a different frequency than the signal and had an

uncorrelated phase.) However, the induced voltages were so

large as to overload the amplifiers. To overcome this problem

several precautions were taken. Vibration transferred from the

forepump along the pumping line to the vacuum can was minimized

by a series of transverse hose connections. The diffusion

pump was mounted free of the dewar platform. All leads in the

primary loop were tightly twisted (see specimen preparation).

The tail of the dewar was wedged between the pole faces of the

magnet with clay. Finally, the specimen holder was placed

inside of a cylindrical c0pper pipe, 1/8" thick, 1 3/8" O.D.,

and 10" long, located in the helium bath. The attenuation

of 60 Hz noise by this pipe was computed to be a factor of

seven.(30) With these precautions, the sensitivity of the

superconducting chopper amplifier was not affected by fields

less than 10 k—Gauss and decreased only to 3 x 10'.10 volts

at 20 k-Gauss, although a longer time constant in the phase

sensitive detector was necessary as noted above.
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E. Specimen Preparation:
 

The loaded specimen holder is shown in Figure (II-4).

To accommodate two carbon resistors, a germanium resistor,

two heaters, and two potential and two current leads, and

yet to have sufficient surface area available to attach one

end of the specimen to a heat reservoir, the specimens were

all rolled into thin strips, about 3" long and 3/16" wide.

The following procedure was adopted to mount these elements,

with the intention of making specimen changing easy, while

introducing as little cold work as possible.

The annealed specimen was first washed with alcohol.

The potential and current leads were then attached as follows.

(These leads were niobium-titanium (NbTi) wires, which were

superconducting below 10K and had a critical field HC2 of over

100 k-Gauss.) The insulation and c0pper plating was removed

from one end of each lead, one inch from the end. The leads

were taped tightly to the specimen, so that the prepared ends

were in position for attachment. The leads ran from these points

to the center of the specimen from where they were twisted

tightly together as they led from the specimen. The tape

provided electrical insulation between these leads and the

specimen. For aluminum and lead, the potential and current

leads were spotwelded to the specimens. The tape proved quite

valuable in reducing cold-work during the spotwelding, since

it held the resilient NbTi wires in place. The main purpose

of the tape, however, was to hold the potential leads close
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to the specimen to reduce the area of the primary loop and

to prevent the wires from vibrating.

The resistance of the spotwelded joints was measured to

be under 5 x 10‘.5 ohms for one of the aluminum specimens.

This is well below the maximum resistance tolerable for the

superconducting chopper amplifier to work properly. A low

junction resistance was imperative for a second reason,

since the welded area has a thermopower different from that

of the specimen and the potential lead. With the specimen

temperature at 6K there is approximately a 2K temperature

difference between the specimen and the bath. The temperature

difference is divided between the junction region and the

potential leads according to:

W.

= _l. = _§E. _ATj W AT and ATSC W AT (II 7)

where W : Wj + Wsc' "j" indicates junction material, and "sc"

indicates superconductor. Assuming the Wiedemann-Franz Law

to hold and using the normal state resistance for the super-

conductor, (approximately 2 ohms), the temperature drop across

the junction region is about 5 x lO—SK. Unless the junction

material has an anomalously large thermopower, the thermal emf

generated at the junction would not be detected. It was noted

previously, section (II—c), that when the base heater was used

to bodily raise the specimen temperature, no thermal emf was

observed, thereby confirming that the junctions did not introduce

spurious voltages into the measurements. In the case of lead
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the thermal emf generated by the Pb versus NbTi thermocouple

for gradients of 2K was undetectable when both junctions

were below 7.8K, the transition temperature for lead. This

test was further evidence that the spotwelding technique

was suitable for thermopower measurements.

The same general procedure was used for the indium specimens,

except that the potential and current leads were "acid-welded"

to the specimens. Indium has the property that when the surface

is well cleaned with hydorchloric acid the surface will bond

to another indium surface similarly prepared; this procedure

is called "acid-welding". NbTi is not easily "wetted" with

indium and therefore it was necessary to have the copper bonding

(which could be wetted) on the NbTi wires at the tip. Indium

has a superconducting transition temperature of 3.4K, and it

was thus possible by measuring the thermopower below the

transition temperature to show that the copper plating introduced

no spurious voltages.

The specimen with all the leads attached was turned over

and the carbon resistors, heaters, and germanium resistor were

mounted. The carbon resistors were ground flat on one side

to increase the surface area in contact with the specimen. The

leads were 3 mil manganin wires. Cigarette paper saturated

with GE-703l varnish provided electrical insulation between

resistor and specimen, and the varnish held the resistor in

place. The maximum power which could be delivered to the carbon

resistor without causing a detectable change in resistor tempera—

ture, (AT~0.3 mk), was just under 0.1 uwatt. The power
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necessary to adequately measure the resistance of the carbon

resistor was under 0.01 uwatts. To prevent a heat leak

through the resistor leads, the manganin leads were attached

to a heat sink at a temperature within 0.01K of each carbon

resistor before being attached to a heat sink at the bath

temperature. These additional heat sinks were provided by

varnishing several turns of the manganin wire to copper posts

which were glued to the specimen 0.25" from each junction.

The heaters were made by wrapping several feet of Evanohm

wire non-inductively around a copper post and varnishing the

wire to the post. The copper post was then varnished to the

specimen. The power needed to provide the temperature gradient

in the specimen ranged between 1 and 40 mWatts. The power

necessary to raise the average temperature of the specimen

by l or 2K was typically a few tenths of a watt. The close

proximity of the heater to the carbon resistor made it possible

for the heater (part of which may have reached a temperature as

high as 30K) to radiate energy to the resistor and thereby

cause incorrect specimen temperature readings. To prevent

the realization of this possibility, a radiation shield was

mounted between the heater and carbon resistor. Finally, the

copper housing for the germanium resistor was varnished into

place with cigarette paper providing electrical insulation.

The germanium resistor was inserted into the housing after

the varnish dried.
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One end of the loaded specimen was inserted into the

copper clamp shown in Figure (II-4) and the other end was

taped to a styrofoam support. Although styrofoam provided

a heat leak from the gradient heater to the bath, it was

found that the resultant heat flow was insignificant compared

to that through the specimen to the bath. For thermopower

measurements the heat leak, even if large, has no significance.

However, the thermal conductivity of each specimen was being

measured simultaneously with the thermopower. For these

measurements any heat leak can be disasterous. To test for a

heat leak through the styrofoam, we used the base heater to

raise the average specimen temperature 2K above the bath tempera—

ture, and monitored the thermal emf generated by the specimen.

No emf was observed. This indicated that the ratio of the

gradient across the specimen to that across the styrofoam

support was less than 5 x 10-5. Hence, no appreciable heat

was being carried by the styrofoam when the gradient heater

was operating.

The many leads from the heaters and resistors were then

soldered to permanent leads on the back side of the aluminum

brace, Figure (II-4). The permanent leads were 36 awg. manganin

wire which entered the specimen chamber via the vacuum line.

These leads were wrapped around the COpper support and glued

to the aluminum brace before being soldered to the leads coming

from the specimen. The heater leads were 38 awg. copper wire

which also entered through the vacuum line. They were wrapped
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around a copper post before being attached to the copper support

and aluminum brace with the other leads. The potential and

current leads were spotwelded to permanent NbTi leads which

entered the specimen chamber through an epoxy seal. The seal

was made from Stycast GT-2850 manufactured by the Emerson

Company, according to a recipe published by A.C. Anderson.(3l)

The seal was extremely reliable, never developing a leak in

several cyclings between room temperature and liquid helium

temperatures. It was found, however, that unless the copper

plating was removed from the NbTi wire at the seal, the seal

would invariably have a superfluid leak.

Finally, the brass can was attached. The seal between the

can and the specimen chamber was made by squashing a Pb +0.05%

As O-ring between the can and the specimen chamber with 12

screws. The O—ring was made by wrapping the Pb +0.05% As wire

around the flange, Figure (II-4), twisting it tight, and

greasing it. Only one such O—ring developed a leak in these

experiments, and that was a superfluid leak. From the annealing

process to the time the specimen chamber was sealed, it should

be noted that the only time the rather delicate specimens were

handled was during the taping of the potential leads and the

spot welding.

 

Q
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F. Alloys:

The alloys were made according to the following procedure.

First a master alloy was prepared with a concentration of

about 0.1% solute material. This was done by heating the

aluminum and the solute material under vacuum in an induction

furnace. The aluminum and solute were contained in a carbon

crucible, which in turn was in a vycor collet. The crucible

had previously been cleaned and baked under vacuum. When the

aluminum and solute formed a molten solution in the crucible,

the solution was chill cast by pouring it into a cold aluminum

mold. The alloy was then etched to remove surface contaminents.

To provide better homogeneity, the alloy was remelted and chill

cast again. By diluting the master alloy with the appropriate

amount of pure aluminum, the desired concentration of the

solute could be obtained. The starting material was 69 grade

aluminum supplied by Cominco Inc. and had a bulk resistance

ratio, R(300)/R(4.2), of about 8,000. The solute materials,

copper, thallium, tin, and cadmium were also 69 grade.

The prepared alloys were first rolled in a stainless

steel mill to 50 mil diameter wires. The mill had been first

cleaned and a pure piece of aluminum rolled through it to

collect contaminants. The surfaces of the wires were probably

still dirty after rolling, and hence the specimens were etched.

The wires were then placed between clean sheets of mylar and

this arrangement was sandwiched between stainless steel plates.

The entire sandwich was then rolled in a mill, which in one pass,

reduced each aluminum alloy to a flat strip about 10 mils thick.
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A pure aluminum speciman, Al prepared according to this3,

procedure but with no intended impurities added, had a measured

resistance ratio of 4600. The high resistance ratio indicated

that the procedure introduced very few undesired impurities.

Table II-l is a list of the specimens used in this study

including for each alloy the intended concentration and the

measured resistance ratio. The fact that the resistance ratio

of AlTll is greater than AlTl

tion was greater for AlTl

2 although the intended concentra-

1 may indicate that the master alloy

was not sufficiently homogeneous.

Table II-l: The intended concentration (in P.P.M.) and

measured resistance ratio for the various

aluminum alloy specimens.

SpeCimen AlCul AlCu2 AlTll AlTl2 AlSn AlCdl AlCd2 Al3

 

Conc. 340 50 100 50 100 25 50 0

 

R(300)/R(4.2) 127 650 2600 1250 1200 2200 2000 4600
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G. Experimental Procedure and Analysis:
 

The taking of data was carried out in the following manner.

The carbon resistors were first calibrated against the germanium

resistor using the base heater to bodily raise the specimen

temperature. After about ten points were measured, extending

up to 7K, the heater was turned off and measurements of the

thermopower, thermal conductivity, and electrical resistance

were begun. The gradient heater was switched on and the power

into it was recorded. The specimen came to equilibrium

instantaneously, and the resistors reached equilibrium before

the bridge could be balanced, a few seconds. Both the resistance

of the carbon resistor at the cold end and the difference

between the resistances of the two carbon resistors were

recorded. The thermal emf signal was then nulled and the

current necessary for nulling was recorded. If a standing

10
voltage greater than 1 x 10- volts had appeared before the

gradient heater was switched on, the heater was turned off

after the measurement to check if the "zero" had changed. If

not, as was usually the case, the heater power was increased

and the process repeated for about five points. When the gradient

was as large as could be tolerated for a differential measure-

ment, the base heater was switched on to increase the average

specimen temperature and more points were taken.

The base heater was useful to test for systematic errors.

It allowed the thermopower to be measured at the same average

temperature using both a large temperature gradient and a

small temperature gradient. We always found the thermopower
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to have the same value, regardless of the gradient used.

The magnetic field was then turned on and the same

series of steps carried out for about five field strengths.

For the higher field strengths the measurements were repeated

with the polarity of the field reversed. Taking fifty or

so points consumed about 90 minutes. Usually at this point

liquid helium was retransferred into the dewar. The bath was

next pumped down in 0.1K intervals and the carbon resistors

calibrated. Complete thermopower measurements were usually

carried out using three bath temperatures, 4.2K, 3.5K, and

2.1K. Electrical resistance measurements were obtained at

4.2K for each field intensity. Finally the copper standard

resistor was checked on various runs. No change in its resist-

ance was ever observed.

The carbon resistors were calibrated by fitting their

resistances to the equation:

 

+ b. (II—8)

By inverting Eq.(II-8) the temperature could be obtained

for any resistance value. Upon plugging the calibration

resistances into the inverted form of Eq.(II-8), the temperature

obtained never deviated by more than 0.5mK from the calibration

temperatures. Since the temperatures obtained from the

inverted form of Eq. (II-8) for the calibration resistances

of the two resistors were within 0.2mK of each other, the

determination of temperature differences was probably better
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than 0.5mK. Eq.(II—8) fit the calibration in the range 2.6K

to 4.2K so well that it was decided that extrapolation to

6K should not introduce significant errors. This assumption

was verified on two occasions using a germanium resistor.

Hence for most experiments the germanium resistor was not used.

The differential technique for measuring the thermopower

greatly simplifies the conversion from raw data to thermopower

data. By dividing the thermocouple voltage by the temperature

difference of the junctions, the thermopower is obtained. The

error introduced by using a finite temperature difference was

negligible for the conditions used in the present experiment.

This can be seen by the following argument. The voltage

generated by a material with its ends at different temperatures

is given by:

T2
v = f s dT. (II—9)

T1

Assuming a temperature dependence of the form aT + bT3 for the

thermopowers of the metals studied, one obtains:

_ , 4 _ 4 _
V — (aTavg AT) +(b/4)(T2 Tl) (II 9a)

where

Tavg = (T2 + Tl)/2 and AT = T2 - T1.

This reduces to:

_ 3 2 _

AV — aTanAT + [bTan+(b/4)(Tavg[AT] )]AT (II 9b)

and the calculated thermopower is:

s — AV A — + b 3 + b 4 A 2 (II 9 )
cal — / T — aTan Tavg ( / ) Tavg[ T] )' C
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The "error" thermopower is therefore (b/4)(Tavg[AT]2). For

aluminum "b" is known to be about 1 x 10_10 volts/K4.(19)

For lead it is roughly three times that value549) For

indium, it will be Shown to be near these values. At 4K,

with a temperature difference of 0.5K, the voltage due to

the "error thermopower" is just detectable with our

measuring system. At lower temperatures or with smaller

gradients it becomes too small to be detected. Above 4K

it is detectable with a temperature difference of 0.5K,

however in this range, the other two terms are much greater.

The thermal conductivity was just as easily computed.

Having measured the resistance of the specimen, R, the temperature,T,

and the temperature difference, AT, for a known heat current,Q, the

Lorentz number was obtained from the equation

 

_ Q'R . -
L — T.AT (II 10)

The Lorentz number was the physical property of interest in

these experiments. It could be converted to the thermal

conductivity through the relation:

PE
0

where

II

p [o(300)/[R(300)/R(4.2K)I],

and the resistance ratio, R(300)/R(4.2K), was determined

experimentally.



 



 

III. Theory of Thermoelectricity.
 

A. Electron Diffusion:
 

1. Introduction:
 

In the relaxation time approximation, the Boltzmann

transport equation describing an assembly of non—interacting,

indistinguishable Fermi particles under the influence of an

applied electric field and a temperature gradient is given

by(l6):

E(5)~EF 8fO(E)

flUfi) = f(h)—fo(€) = —T(]§)V(}§){—(——T—*—~
) 88(5) VT +

8fO(E)

e 850;)

1
(g - e— yep} (III-1)

where: .E = applied electric field; Ek = electron energy;

’V

e = Fermi energy; T(k) = relaxation time; f(k) = electronic
f

distribution function; fO(€) = equilibrium electronic

distribution function; and fl(k) = f(k) - fo(€) = non-

equilibrium part of the electronic distribution function.

To obtain Eq.(III—l), the following assumptions were

invoked:

l) the distribution function, f(k), does not deviate

far from equilibrium, so that only its lowest order

non-vanishing term need be used;

2) a time of relaxation exists, and is independent of

the type of perturbation. (This assumption is not in

general exact.)

A discussion of the limitations imposed by these assumptions

and of the general use of the Boltzmann Equation can be found

in several texts.(l6’24)

44
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Assumption (1) allows the electric and thermal currents to

be expressed as linear functions of the electric field and

temperature gradient

:1 = as E +2321: ° YT ”II-280

U = {11‘s. E + ifTT - yT (III-2b)

’v

The transport coefficients gij are in general tensors, but

if we limit the discussion to crystals of cubic symmetry,

they reduce to scalars. The thermopower is defined (page 8)

as the ratio of the electric field to the temperature gradient

which exists in the specimen when a heat current, but no

electric current, flows. From Eq. (III-2a) it follows that

the thermopower can be expressed in terms of the transport

coefficients as,

S=-L L (III-3)
EE/ ET'

To determine S we need to calculate the ratio LET/LEE' To

do so, we proceed via the Boltzmann Equation. We begin by

calculating the electric current density and setting it equal

to zero.

The electric current density is given by:

g = f e y(k) f(k) dk (III-4)

Since the equilibrium distribution function, fo(s), is

symmetric in k—space it does not contribute to the current.

The solution for fl(k) is Eq. (III—l) is

8f

_. _ O ,_ E]; _ o —_]; °151(k) .. { E—IIIIEIEI Ef)(T)( yr) g<g>1+eIEeyefI guy}

(III-5)



 
 



46

where £(k) = (k)T(k) is the mean free path.

Inserting Eq.(III-S) into Eq.(III—4), integrating, and

setting the result equal to zero, yields

K

_ E _ 1 _

S — VT " ETR— (III 6’
o

where the functions Kn are given by

' 2 2
__ _ .n 0(a) IL. 2 2 §___ _ 0(6)

Kn.-_ [(5 cf) ——jT—-+ 6 K T? 2 ((E Ef)-—jf- )-+ ...]€=€

e BE e f

(III-7)

To first order in the expansion of Kn the thermOpower is given

by

  

_ n K T { Sing

36 I6 } (III-8)

f

For a cubic material having an isotropic mean free path,

 

the conductivity is given by(l6),

2

O z e 1%
(III-9)

12n %

Under these conditions the thermopower reduces to,

2 2
_ —n K T 1 32 1 3A _

S - “33—— IT SE + A elef (III 10)

Two factors determine the sign of the thermopower, the mean

free path of the electrons, and the phase space available

for excitations (i.e. the geometry of the Fermi surface).

The determination of the sign of 3% is in general complex,

but in a classical model more energetic electrons would be

less likely to be scattered than slower ones and would thus

have longer mean free paths. Thus the mean free path will be
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an increasing function of energy at the Fermi energy. The term

gé-will then be positive and yield a corresponding negative

contribution to the thermopower. For free electron Fermi

surfaces, which are spherical, the surface area, A, is proportional

to the energy. Thus the contribution to the thermopower

from this term would also be negative.

2. Effect of Two Groups of Carriers:
 

Eq. (III-9) relies on the condition that Q be constant

on constant energy surfaces. Experimental evidence suggests

that for aluminum and indium, this assumption is not valid533’ll)

We therefore go beyond this assumption and break up the

conductivity integral into regions over which R is constant:

O = Zio. , (III-ll)

where oi is the contribution to the conductivity from a region

having constant mean free path ii. Substitution of Eq. (III-ll)

 

into Eq. (III—8) yields the well known result(34):

Ci
8 = Z. ——-S. (III-12)

i c i

where

TT2K2T afinoi

Si 2 3e { as lsf} (III-l3)

is the thermopower of region i.

In polyvalent metals, the Brillouin zones provide natural

boundaries for breaking up the electrical conductivity integral

in Eq. (III—ll). Consequently, as a first approximation, we

take the mean free path within a zone to be constant (for
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aluminum and indium there is some justification for this in

(9)).the literature Before applying Eq. (III-12) to the

specific cases of aluminum, indium and lead, we review briefly

how the Fermi surfaces of metals are mapped into various zones.

The periodic potential of the lattice serves to render

the energy contours in k-space discontinuous at a set of

planes. These planes, called Bragg planes, are determined

by the condition

2 pg - g = G2 (III—l4)

where G is a reciprocal lattice vector. They divide k-space

into regions called Brillouin zones. The first Brillouin zone

is defined as the smallest volume bordered by Bragg planes

which contain the origin, 5 = 0. Regions in k-space which

can be reached from the origin by crossing one Bragg plane

lie in the second zone; regions reached by crossing two planes

lie in the third zone; and so on for higher zones. Each zone

has the same volume as the first zone, and can be mapped

onto the first zone by translation of its pieces by a reciprocal

lattice vector.

To see how a Fermi surface is divided into zones, we begin

by drawing the free electron sphere in k-space, superimposed

upon the Brillouin zone structure. This corresponds to the

one O.P.W. Fermi surface in the extended zone scheme. In

Figure (III-l) the solid line represents a slice through the

Sphere for a metal with 3 electrons per atom. It resembles

a slice of the Fermi surfaces of aluminum and indium in the
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Figure III-l: Cross—section of the one O.P.W. Fermi

surface of aluminum in the (100) plane

superimposed upon the Brillouin zone

structure. The dashed line indicates a

constant energy surface above the Fermi

level.
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(100) plane. In aluminum and indium the first zone is full,

the second zone contains approximately one electron per atom,

the third zone contains approximately 0.03 electrons per atom,

and the fourth zone is empty. In lead, a four electron metal,

the first zone is full and the second, third, and fourth zones

are partially occupied. By translation of the pieces of the

Fermi surface lying in higher order zones back to first zone,

one obtains the Fermi surface in the reduced zone scheme. This

scheme is particularly useful for describing the electron system

in a magnetic field. We therefore defer further discussion of

it until we consider the effect of a magnetic field on the

thermopower.

Using the zone boundaries to define the regions 1 in

Eq. (III~ll), Eq. (III-12) for aluminum and indium can now

be written

S = :—2— 82 + 2}- S3. (III-15)

For lead, a contribution from the fourth zone would need to

be added. If, as we assumed above, the mean free path is

constant within each zone, Eq. (III—12) takes the form

2 2 3A 32 3A 3%

_ n K T 2 2 3 3

_ —3e ){Q2 86 + A2 38 + 23 38 + A3 BE }€

 

  

(III-l6)

CA.

where EA 2 2 A + Q A and is the rate of change with
1 1 2 2' 88 lef

energy of the area of that portion of the Fermi surface contained

in the ith zone.
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3A

In the second zone gg—IE is negative (as indicated

. f

by the dashed line in Figure (III-1)) and yields a positive

3A

contribution to the thermopower. In the third zone EE—le

f

is positive and yields a negative contribution. Within our

3A 8A

one O.P.W. approximation, the terms gzg-and 5E" are not

independent, since

3A2 8A3 3A

——— + 2 __EE , (111-17)
8 3E 88

8A8

where 38 p is the energy derivative of the Fermi surface

of a free electron sphere.

If the mean free path is isotropic (i.e. £2 = 23),

Eq. (III—l6) reduces to the free electron result

2 2 8A
_ n K T l s l 32 _

S I 3e {A BE + I _E}€=€ (III 18)
sp f

If 12 ¢ 23, S will not have the free electron value, and

3A

may even be positive. For example, the term 5E4-was found

to be negative. Therefore, if I >>£ the net contribution

2 3'

from the terms containing energy derivatives of the Fermi

surface area will be positive.

The gé-terms are in general complex and to even obtain

their correct signs requires a detailed knowledge of the

scattering potentials seen by electrons in the metal. For

example, for lithium and the noble metals, which have nearly

(31)
free electron Fermi surfaces, Robinson has shown that a

suitable choice of the scattering potential can account for

the anomalous positive sign of the diffusion thermopower.
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Because of the difficulty in determining gé-we will begin

by focusing our attention on the %% terms to see what aspects

of the thermopower can be understood without a detailed

knowledge of %& .

E 32 323

If Q = 2 , and if both ——— and ——— are zero, measurements

2 3 88 SE

of the thermopower would yield direct information about the

area of the Fermi surface, since then Eq. (III—l6) would

reduce to

2 2

S = n K T (

3e ——-)I . (III-19)

One way to approximate these conditions experimentally is

to make the specimen so thin (t<<£ where t is the specimen
bl

thickness and lb is the mean free path in the bulk material)

that all electrons with energy in the vicinity of 8f will be

scattered only by the Specimen surface. Then all these

electrons will have the same mean free path, 2 ~ t. Thus i

will be isotrOpic, and %%IE will be zero. On the basis of

f

our one O.P.W. model, we would expect S for aluminum to be

given by the value appropriate to the 3-electron sphere,

S = -2.1 x 10_9T (volts/K). Indeed, recent size-effect measure-

ments on dilute aluminum alloys (containing 5 ppm Fe and

20 ppm Cu, respectively), yielded just this value to within

(22)
eXperimental uncertainty. This result reinforces other

(35) and gives us confidence in theexperimental information

one O.P.W. model as a valid first approximation to the Fermi

surface of aluminum. (It also indicates that if the 3% term

can be accounted for, if not in fact solved for, then reasonable

agreement between theory and eXperiment is possible.)
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3. Effect of Two Types of Scatterers:
 

We will now show that the effect of impurities on the

thermopower can, in part, be understood without explicit

knowledge of %%° We limit this discussion by considering

only a metal with a single group of carriers (the extension

to two groups of carriers is straightforward but algebraically

(36)
cumbersome). Kohler has shown that, subject to certain

conditions, the thermopower can be written as

Wi
S = Z W— S (III-20)

where Wi is the contribution to the thermal resistivity of

the ith scattering mechanism and

TT2K2T ainpi

Si = 3e 36 lef (III—21)

 

is the "characteristic thermopower" of that mechanism. The

conditions are:

(l) the electronic conduction is a result of a single

homogeneous group of charge carriers.

(2) the electron scattering mechanisms act independently,

(Matthiessen's rule).

(3) electrons are solely responsible for the heat

transport in the conductor.

An alternative derivation of Eq. (III-20) can be made by

assuming that the Wiedemann-Franz Law holds (an assumption

which is valid for the aluminum specimens studied in this thesis).

By noting that o = l/p and using condition (2) above, the
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thermopower can be written as

2 2 BQan.

_ _ n K T i i _

S — 3e 38 IE (III 22) 

or

pi
S. (III-23)5:2—

10 l

which is the Gorter—Nordheim rule.(37)

Eq. (III-23) is identical to Eq. (III—20) when the

Wiedemann-Franz Law is valid. In addition it is also similar

in form to Eq. (III—12), the difference being that the former

describes the thermopower when two scattering mechanisms are

present, whereas the latter describes it when two groups of

carriers are present. Eq. (III-23) when rewritten in the form

0b
S = Simp + E— (Sb—Simp) (III-24)

(where "imp" signifies a particular impurity ion and "b"

signifies all other scattering mechanisms) provides a recipe

for obtaining the "characteristic thermopower", Simp' of a

given impurity. If the thermopower S is measured for a series

of alloys containing various concentrations of a known impurity,

then a plot of S vs. l/p will yield a straight line whose

slope is (Sb—Si )‘pb and whose intercept at 1/p=0, is Si
mp mp'

We see from Eq. (III—24) that S will be different for

different impurities, and that once pimp becomes much greater

than Oh, the thermopower becomes independent of the concentra-

tion of the impurity.
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B. Phonon Drag:
 

In the preceding discussion it was tacitly assumed that

the phonon system remained at all times in thermal equilibrium

with the lattice. This is, however, not true when a tempera-

ture gradient exists within the specimen. In such a case, a

net flux of heat is carried down the gradient by a phonon

(38) this current cancurrent. As first noted by Gurevich

transfer momentum to the electron system via the electron-

phonon interaction, and thereby drag electrons down the gradient.

(34) has shown,This phenomena is called phonon-drag. MacDonald

using a simple kinetic model, that the phonon drag contribution

to the thermopower is given by:

Sg = 1/3 [C/Ne] (III-25)

where C is the lattice specific heat and N is the number of

electrons per unit volume.

At low temperatures Eq. (III-25) reduces to

__ 3 _
Sg — 77.8 eNa [T/OD] (III 26)

where Na is the number of free electrons per atom and 6D is

the Debye temperature of the metal. The same result was

(39), using a more sophisticatedobtained by Sondheimer and Hanna

approach involving the solution of the coupled Boltzmann

Equations for electrons and phonons.

In obtaining Eq. (III—26) all phonon scattering events

other than electron-phonon scattering have been neglected.
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Such scattering events can be taken into account by writing the

phonon-drag thermopower as(34)

T

sg = 80 ( ?——§§—— ) (III-27)

Pe PP

where S0 = l/3[C/Ne], Tpe is the relaxation time for scattering

of phonons by electrons, and Ipp is the relaxation time for

scattering of phonons by everything else (e.g. phonons). At

low temperatures T<<OD, Tpp is much longer than Tpe, and Eq.(III-27)

, T is

D PP

shorter than Tpe (Tpp is dominated by phonon-phonon scattering,

since at high temperatures the lattice vibrations are no longer

reduces to Eq.(III-26). At high temperatures, T30

governed by a harmonic potential) thus

5 = S —BE (III-28)
g o I

pe

At high temperatures both the specific heat and '%e(24) are

independent of temperature. Tpp is, however, inversely

proportional to T (at high temperatures the number of phonons

is prOportional to T). Thus in this regime, the phonon-drag

thermopower should vary inversely with temperature.

In the derivation of Eq. (III—26), Sondheimer and Hanna

neglect Umklapp scattering. Umklapp scattering is distinguished

from Normal scattering by the appearance of a reciprocal

lattice vector G in the momentum conservation relation, i.e.,

k' — k = q + G (III—29)
1"

where q is the phonon wavenumber. For normal scattering the

reciprocal lattice vector is zero. For the case of a spherical
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Fermi surface, which does not intersect the Brillouin zone

boundaries, the effect of Umklapp scattering is readily

seen. An electron in state k having a velocity v is scattered

by a phonon of momentum q to the state k' and obtains the

velocity 3'. For spherical Fermi surfaces, v is proportional

tofik and therefore from Eq. (III—29) y' u y is parallel to q,

the phonon momentum absorbed. The electron system gains

momentum in the direction of g, which is down the gradient,

and thus yields a negative (normal) contribution to the thermo-

power. For Umklapp scattering y' - y is parallel to fi,+ G,

which is antiparallel to q. Hence Umklapp scattering increases

the electron momentum up the gradient, yielding a positive

(anomalous) contribution to the thermOpower.

To calculate the phonon—drag thermopower in a real metal,

whose Fermi surface may contact the zone boundaries (as for

the metals studied in this thesis), a more realistic approach

(40) (41)
is necessary. Ziman and Bailyn have both made use

of the variational technique to calculate the phonon—drag

thermopower, taking Umklapp scattering into account. At low

(40)
temperatures, Ziman obtains

Sg = K/en [CL/3Nk][—PlL/PLL] (III-30)

where

-P1L = ET If! (Ck—gmb PE. dk d (135' (III—30a)

~ ~ 9 -2 ~

and ~

__1 215' . _
p _ KT fff (Oq) qu a5 a3 a5 (III 30b)

~__,
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k

PEG is the probability for an electron to scatter from.k to k'

by absorbing a phonon of wavenumber q. Qk and Oq are functions

describing the deviation from equilibrium of the electron and

phonon systems respectively. It is not our intention to

delve deeply into these equations. However, one point is

essential to subsequent discussion in this thesis. Ziman

chose the trial functions

I

k

— 41.3 ° _Cg — Te k YE E (III 30c)

and
T

S
@q = ?— q°u (III-30d)

.e L ”’~

where u is a unit vector in the direction of the temperature

gradient, Tk and Tq are the relaxation times for electrons in

~

the state k’and phonons in the state g respectively, and Te

«.1

and IL are defined through the kinetic formulae

nNe2 Te/m (III-30e)0

II

_ l 2

K — 3 CLVLTL (III-30f)
L

Te and TL are chosen to make these formulae yield the correct

ideal electric conductivity and lattice heat conductivity.

With these assumptions, Ziman finds PLL to be positive definite,

so that both the sign and magnitude of Sg are determined by

_P1L° The essential feature of P1L is the factor

) (III—31)
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which shows that for a nearly free electron Fermi surface,

as noted above, the contribution of normal scattering to

the thermOpower tends to be negative and that of Umklapp

scattering, positive. These remarks lead to the approximate

rule that "the contribution to QL (Ziman's symbol for 89)

will be negative or positive according to whether the chord q

between the points k and k' passes through occupied or

(40)
unoccupied regions of the Fermi surface".

Bailyn arrives at the following expression for the phonon-

 

 

drag thermopower:(4l)

3N (qj) .

K2e22[——9—7——]Z(3q)<r(jq;kl,k'l) [v(k1)T(kl)-v(k'l')'r(k'l')].v(jq)
S = 3 OKT ~‘7” N ~ V ~ ~ ~ ,~ ~ V

g 3f

2 2 2 0

3e Zyjfil) T(]gl)[—88 I

(III-32)

in which a(jgiEl7E'l') is the relative probability that the

jg phonon will scatter an electron from state kl to 5'1'

(1 is the band index). There are two essential features in

this equation. First, the sum over k can be divided into

various regions of the Fermi surface such that

 

  

o.

9 O 91

where

2 2 2 8f0

Oi = -3- e XI (E1)\C(51) (I-‘gz- ) (III-33a)

and

3N (jq) . .

K-Z-QZX. {—3—]Z(j’q’l)oc(jq;kl;k'l')[v(kl)T(kl)-v(k'l')r(k'l')]
S = 3 3q BKT

gi 2 2 8fo

—2 V(kl) T(k1)[- ———J
3 ~ ~ . BE

. 35(qu

2 2 3f0

3'2 17,051) ”((351) [" —3_€— (III-33b)



 



60

This expression is particularly useful if each region

is characterized by a constant relaxation time, and if Sgi

is nearly constant throughout the region. If T is constant

within a band, then the T(kl)'s cancel out of Eq. (III-33b)

so that Sgi is independent of impurity. In such a case,

Sgi is affected by the presence of impurities only through

the weighting factors, Oi. If the Fermi surface consists

of only two different regions of different I which have

substantially different Sg's then measurements of the phonon-

 

drag thermopower for different alloys would yield direct

information regarding anisotropy in the scattering of electrons

by impurities (i.e. information about the quantities oi).(21)

In obtaining Eq. (III-33) from Eq. (III-32), it was

assumed that interregional scattering by phonons was small.

This assumption is best justified at low temperatures<4l),

where the present experiments were performed.

The second point concerns the determination of the sign

of Sgi' The sign of Sgi is the same as the sign of

Z E [ylkl)r(kl) - ZIE'l')TIE'1')]'XXjr§)' Bailyn's rule for

such a determination is "--When the shortest surface connection

between k and 5' (in the extended zone scheme, where 56 is the

equivalent state to 5' that is closest to k) lies on a convex

strip of surface (relative to the filled part) the contribution

tends to be normal (negative); but it the strip lies on a

.. (41)
concave part, the contribution tends to be anomalous (positive).

This is similar to Ziman's rule.



   



IV. Theory of the Magnetothermoelectric Effect

A. Electron Diffusion:
 

1. Introduction:
 

We begin by first describing electron dynamics in the

one O.P.W. model and offering a physical argument to explain

the observed variation of the thermopower with magnetic field.

The rate at which the state 5 of an electron changes

due to the Lorentz force is given semiclassically by

(
W
’

 

Since the force is perpendicular to the motion of the electron

in real space, the magnetic field does no work on the

electron, and the electron remains on a constant energy

surface in momentum space. This conclusion can also be

arrived at by noting that k is normal to y, and y is proportional

to the gradient of the energy. In addition the motion of

an electron in k-Space is confined to a plane perpendicular

to the magnetic field, and thus its trajectory in k—space

is the intersection of this plane with a surface of constant

energy. The Bragg planes are of fundamental importance in

determining these trajectories, since an electron moves on

a spherical arc of the Fermi surface, normal to the magnetic

field, until it either scatters or reaches a Bragg plane. At

a Bragg plane, barring magnetic breakdown, it is diffracted to

an equivalent site on the Fermi surface and hence remains in

the same band.

61
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In Figure (IV—l) the Fermi surface of aluminum and

indium in the second and third zone are shown in the reduced

zone scheme.

Figure (IV—1) also displays various intersections

possible for a plane normal to a symmetry axis (also the

field direction) with the Fermi surface. The orbits shown

in Figure (IV-l) are obtained from the one O.P.W. representation

of the Fermi surface of aluminum. In this approximation, the

arcs in each orbit are portions of spheres and thus

3t_k (IV—2)

m

V:

thereby allowing Eq. (IV-l) to be rewritten

k: 9— (k x H) (IV-3)
A. mc ~~ ,c'

The state k therefore moves with constant angular

velocity w: = 2% along the Fermi surface until (in the

extended zone scheme) it reaches a Bragg plane, at which

time it is diffracted to another portion of the Fermi

surface and continues its motion again with angular velocity

0
we. The time required to complete an orbit in this model

can be computed from the following rule for the frequency.

0
Zfiwc

we : ‘26—,— . (IV—'4)

i

0. = angle through which the electron moves on the ith arc.

l





Figure IV-l:
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The one O.P.W. Fermi surface of aluminum

in the reduced zone scheme. Cyclotron

orbits in the second and third zones are

indicated in the (001) plane. (After

Ashcroft, Ref. 9).
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From Figure (IV—l) it is clear that electrons in the second

zone move along orbits which, for the most part, have path

lengths comparable to those for orbits of free electrons;

whereas electrons in the third zone sample very little of

k-space.

Using Eq. (IV-4) and assuming I to be approximately

the same for both zones (or alternatively, using results

I

of cyclotron resonance experiments to estimate wet for

 

the second and third zones), one obtains the ratio,

(“CH3 - (9)
IZEIT—-_ 10.

c 2

With these results and the equation for the zero field

thermopower in the two band model,

5 r (III-15)

we can qualitatively understand the observed variation of the

electron diffusion thermopower with magnetic field. The

weighting factors Oi dictate the relative importance of the

contribution of each band to the total thermopower. For

electrons on a closed surface, in a strong magnetic field,

i.e. in the limit that the electrons complete several orbits

before scattering, the contribution to the conductivity tends

(42) that for such electronsto zero. It can in fact be shown

the conductivity OXX+ A/(wcr)2 as (wcT) + w. Herein lies

the mechanism for the field variation of the thermopower of

aluminum and indium. As H + w, 02(H)/O3(H) + 10002(0)/O3(0)
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and thus S + S . In Section III it was shown that S (due

2 3A 2

to the negative §E£|€f) was more positive than S3. Thus

the total thermopower becomes more positive than its zero

field value, and then saturates in high field. In making

this argument we have assumed that Si does not vary with

field and have used a scalar equation for S rather than

the apprOpriate tensor equation (See Eq. (IV-8) below).

We now turn to the formal solution for S(H). We will

show that the free electron model (i.e. no Bragg reflections)

is totally inadequate to explain the observed variations of

the thermopowers with magnetic field in the metals studied.

We will also show that, with certain approximations, the

formal solution for S(H) yields a result similar to that

obtained with the simple argument just presented.

2. Formal Theory for Aluminum and Indium:
 

In the presence of a magnetic field, the electric and

thermal current densities can be expressed as linear functions

of the electric field and thermal gradient.(l6)

g.=.£EE(H) ..E +,gET(H) °,ET (IV-5a)

and

.2 = gTE(H) "E + ~TT(H) ’ET (IV-5b)

In section II, the tensorsJLij reduced to scalars as a result

of the cubic symmetry of the crystals. However, the magnetic

field introduces a preferred direction into the problem and

in its presence the tensor nature of Lij must be retained.
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We assume that the magnetic field is applied in the z—direction

and that the voltage and temperature differences are measured

between points on the x-axis (Figure IV-2)

IZ

I

   
 

 

Figure IV—2: Experimental Condition for Measuring the

Adiabatic Magnetothermoelectric Power.

The thermOpower is defined subject to the condition that

the electric current density vanishes. With this condition

Eq. (IV—5a) yields

_ _ -1

,g- [(LEE(H)) gETIHII 1T
.V

(IV-6)

Due to the nonvanishing RighiwLeduc coefficient in Al and

In(3’4), we must distinguish between isothermal and adiabatic

boundary conditions. The isothermal (in the y direction)

condition requires (ET)y = 0, whereas for adiabatic conditions,

U = 0. In the present experiment adiabatic conditions

Y
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apply, and it is the solution to Eq. (IV—6) under these

conditions that we will be concerned with. However, the

solution for isothermal conditions is also interesting and

will be discussed.

Under adiabatic conditions the thermopower, S, is

given by the relation

(VT)

  

 

_ _ _ -l _ -l y
S — Ex/(VT)X — [(‘I‘EEEIHH [LIET(H)] [(EEEWH éET(H)]xy(VT)X

. . _ (Iv—7)

and the Righi-Leduc Effect is determined by

LTELET

[LTT _ L 1 K
EE xy xy

AT /ATX = = K , (IV-8)

y L L xx

TE ET

7 [LTT L 1
EE XX

where Kij is the thermal conductivity tensor.

The thirty-six components of the four transport tensors

ETT’ gTE' EET'IEEE are not all independent, but must satisfy

the Onsager Relations,

Lij<§) = LjiI—g) (IV-9)

In addition, if consideration is limited to isotropic poly-

crystalline specimens, the number of independent components

reduces to nine.(l6) To obtain these remaining coefficients

the transport equation must be solved. Under the prescribed

conditions (i.e. VT#0, H#0, E#0) the Boltzmann Equation in

the relaxation time approximation is given by(16)

af 3f (5)

O . O _l§_
—§L_o_a__

SE 3??“ .3T 3 TEE—"T — IE+CIX X.E) kak avlfIIE)
rd

(IV-10)
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The relationship between L and L is therefore the same
EE ET

in a magnetic field as in absence of a magnetic field, i.e.

 

 

HZKZT 8

£ET(H) = 7 3e ( SE'EEE(H))e=ef . (IV-15)

Similarly

gTT(H) = - LOTgEE(H) (IV-16)

n2K2

where L0 is the ordinary Lorentz number, L0 = 2 .

3e

This argument, that the thermomagnetic properties can be

derived from the galvanomagnetic properties (in the relaxation

 

 

time approximation), was originally developed by Kohler<43)

and can be found in Electrons and Phonons.(l6) Using Eq.(IV-15),

Eq. (IV—7) can now be rewritten

2 2 (VT)
_ n K T -l BO(H) -l 30(H)

S — 3e {(G(H) BE '6 xx + [(O(H) 38 IE ]xy (VT) }
f f X

(IV—17)

Eq. (IV—l7) provides a prescription for calculating the

thermopower in a magnetic field similar to that prescribed in

zero magnetic field by Eq. (III—8). The complexity of such

a calculation can be appreciated from the difficulty confronted

in the zero field calculation. However, by making various

assumptions to simplify the problem, Eq. (IV—l7) can be used

to compute the change in the thermopower, S(H=W) - S(H=0),

semiquantitatively.

We begin by solving Eq. (IV—l7) for the case of a free

electron Fermi surface, to show that for this case, the thermo-

power should not be affected by the presence of a magnetic

field. According to Eq. (IV—l7)
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2 2
_ n K T

ij — 3e {(0(H))
-l

 

80(H)

} l
~3E——- e (IV-18)

f 13

(Note the distinction between the tensor Sij and S).

The elements of the conductivity tensor are in general given

by the expression<44)

2 8f (8) m

Oij — Z;§;2f __§E—— dE [wdkzzwa f0 Vi(6)d6fevj(¢)d¢ exp{ f96;?;TE)}

(IV-l9)

where:

mg and ma are the effective mass and cyclotron frequency

 

of an electron making an orbit of type d;

Vi(8), Vj(¢) are the velocities at points 9 and ¢ on the orbit

(measured from an arbitrary origin);

and T(w) is the relaxation time appropriate to the orbit d at

position w. The sum is over all orbits defined by E and k2.

For free electrons, wCT is constant and vi(e) and Vj(¢) vary

sinusoidally around the Fermi surface. Under these conditions

Eq. (IV—l9) reduces to

 

/ l w T 0

0o

G = 2 —w T l O (IV—20)

c

l + (wcT) 2

0 O 1+(w T)

c

where

2

O = e RA

I

O 12n3h

is the zero field conductivity, and

eH

c mc
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Figure IV-3:

 

 

 

 

The velocities, VX(6), of electrons

executing the orbits shown in Figure IV-l.

The dashed lines represent the velocities

for a Fermi surface based upon the free-

electron sphere. The dotted curves

represent the function-c056, normalized

at e=n to the maximum value of VX(6).

(After Ashcroft, Ref. 9).
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Substitution of Eq. (IV—20) into Eq. (IV-18) yields

 

 

Tr2K2T l 800 wCT a(wcr)

S = ————-—{——-—*——-- } (IV-21a)

xx 3e 0 36 2 38

o l+(wCT)

2 2 8w T ‘

Sx : Tr3: T { l 2 a: } (IV—21b)
y 1+(w T)

AT ny Oxy

JAT : 'K—-— = ;— : LDCT (IV‘ZlC)

x xx xx

so that from Eq. (IV-l7)

1T2K2T 30

3e

0

Be lef

s = }, (III-8)

 

 l_
G

which is just the zero field value.

In evaluating Eq. (IV—l9) to obtain Eq. (IV-20), the

effect of zone boundaries was ignored (since we were treating

free electrons), so that the velocities vi(e) and Vj(¢) varied

sinusoidally around the Fermi surface. For aluminum and indium

we cannot neglect Bragg reflections. The correct velocities

for representative orbits are shown in Figure (IV—3). In the

one O.P.W. model we can solve Eq. (IV-l9) exactly, at least

in principle, since the velocities are known. This is, however,

difficult, and we use an alternative procedure which allows an

approximate solution which we believe retains the essential

physics of the problem.

We first expand the Vij(6) in a Fourier series,

\

v (e) = z Vix elne (IV-22)

n

where an are the Fourier transforms of Vi(6), and assume

 



”L 
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that (wCT)i is constant within band i. The Fourier transforms

can be obtained, since Vi(6) is known. Thus Eq. (IV—20)

could be integrated term by term. We note, however, that

the first term in Fourier series is clearly the most important

term (see Figure (IV-3)), and should therefore be a reasonable

first approximation to the correct velocity. We therefore

assume that it is the only term present. Physically this

approximation changes the orbits from those shown in Figure (IV—l)

to circular orbits. For the values of ma in Eq. (IV-l9)

we use the average cyclotron frequency of the band; the

variation within the band being much smaller than that between

the bands. The solution to Eq. (IV—l9) is now greatly simplified,

and in fact reduces to the tensor

1 w T O
. c

c l

o.(H) : o —wCT l 0 (IV-23)

3* l+(w r)2 2
c i O O 1+(w T).

c i

where i : 2,3 designate the second and third zones respectively.

The total conductivity is

C(H) = O (H) + 03(H). (IV-24)
2

Upon inserting Eq. (IV-24) into Eq. (IV—7) we obtain the

following results:

1) in the limit H+O,
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in agreement with Eq. (III-l7).

2) in the high field limit, H + m,

  

  

 

   

  

 

 

   

  

 

   

 

  

 

 

' _ /o3(0)2 03(0)02(0)‘ S, 02(0)2 03(0)02(0)

— (0) + +

XX ((w T) (w T) (w T) 3 (w T)2 (w T) (w T)
c 2 c 3 c 2 c 2 0

03(0) 03(0)02(0) > a(wCT)3

{(wcT)§ (wcT)2(wc T)2 36

{03(0) 02(0) 2 {7%T) 330 (0) (wCT)202(0) 2
+

Um T)§ (w +i(:c)T) (NOT):

(0)2 o (0)0 (0) 2M 1)
_f’2 3 2 “’c 2
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( >2 < )2 + ( )2 + ( )2L0G T wcT 2 (HOT 3 wCT 3

(IV-25a)

2
03(0) 03(O)02(0) + 203(0)02(O) a(wcT)3

s' _ (wCT)3 (wcT)§(wCT)§ (wCT)§(wCT)2 , Se

xy — -- 2 ,_ 2
03(0) 02(0) (wCT)3O3(0) + (wCT)202(0)]

(m r>2 (w n2 (w T)2 (w T)2 J
- c 3 c 2 — c 3 c 2 _

(62(0)2 02(0 )03 (0) + 3(0)02 (0) amenz

[(wCT):O(wCT)3 c): (wcT)23(wc T)3 86

03(0) “(wCT) 330 ()0 + 3(wCT)202(fl2

(w T)2 (wcT) (wC T)? (w T)2 I
c 3 c 2 _

 

(IV-25b)

\BSZ(O) +

3

+
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2 2 .

ny = 33X = (wCT)3(wCT)203(O) + (wcT)2(wCT)302(O) (IV-25c)

Kxx Tx (w T)20 (0) + 0 (O)(w r)2
c 2 3 2 c 3

where

S(H)

S'(H) =

TZKZT

3e

The parameters in these expressions are estimated as

follows:

1) The cyclotron frequencies of the two zones are

obtained according to the procedure described earlier. The

(wCT)3

ratio, 75—?7- , is taken to be 10.

c 2

2) The zero field conductivity of each zone is obtained

from Eq. (III-9) and hence the relative contribution to the

zero field conductivity is given by the percentage of the

Fermi surface within each zone (assuming an isotrOpic mean

free path). From a graphical construction using the one

(45) estimates that 76% of the surface
O.P.W. model, Pippard

area liea within the second zone while 24% lies in zone three.

(He notes also that rounding off of the monster arms in the

third zone reduces significantly both the area within that

zone, and the velocity; the latter reduces the mean free

paths. Pippard therefore estimates the third zone to contribute

only 12% of the total zero field conductivity.)

3) We estimate the ratio Sé(O)/S;(O) from the equations,

s'(0) = £—-353 3%
2 A e

|

2 a 6f 2

(IV—26a)
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83(0) = A_ as e

]E (Iv—26b)

3 f 3 f

We begin with the terms involving the logarithmic

derivatives of the areas. Since, as we noted earlier

8A2 3A3 BASp

35— + §E_ = _§E_ , we need calculate only EE— .

For a sphere intersecting a plane, the surface area of

the segment is 2Tr(r—d) where r is the radius and d is the

distance from the center of the sphere to the plane. Thus

22
Sr

in aluminum intersecting the Brillouin zone boundaries

~ 2nr for r~d. This situation resembles the Fermi sphere

separating the second and third zones. However the inter-

sections are much more numerous and complicated, in that the

spherical segments often contact more than one plane.(46)

As a rough estimate we approximate this situation with a

 

 

 

8A

sphere intersecting an octehedron and obtain 5E; = 28fir %% .

Since sp = 8Tr £3 , we get ——— = 20fir EE and
as 88 Be 36

3A3 8A2

(F)/(a—€—)=7/5-

If we again use our one O.P.W. estimate that A /A = l/3
3 2

8£nA3 aznAz 21

then the ratio of ( _§E_— ) 38 = E— ~ 4.

Unless the logarithmic derivatives of the mean free paths

82n£3 32n22

dominate the thermopower and have a ratio ( as )/( _§E__ )

greater than four, the ratio of the two thermopowers

S3(O)/SZ(0) will be less than or equal to four. In fact, we

82n£3 BQnQ

3e )/( 88

With these estimates, the leading term in the high field

) to be closer to unity.  would guess the ratio (

thermopower is



 

 L
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2 2 3A 31

S(H+m) = { Egg + %—

2 2

N 
E }€f I (IV—27)

v
r
a

0
)

which is simply the thermopower of the second zone. With

S3(O)/SZ(O) = 4, the next term is approximately 12% of the

leading term. For smaller values of S3(O)/SZ(0) the correction

term decreases in magnitude relative to the leading term.

We therefore conclude, in agreement with our physical

model, that S(H)+SZ(O) as H+W. To obtain the variation in

the thermopower with magnetic field in the high field limit,

we write

 

 

   

2 2 8A 3% 82 3A

S(H+w) = W K T {i_ __g + i. __g _ _l_ __§B 1 __EE } .

3e A as 2 8 2 as A Be a
2 2 sp f

(IV—28)

8A2 3 5

Using the estimates A = 0.76 A and ——— = —2.5 p ,

2 sp as as

Eq. (IV—27) reduces to

AS =_n2K2T [4 2( 1 BAsp ) + £_ 322 _ 1 325p

3e L' A as 2 as 2 Be
sp 2 sp

(IV—29)

The first term in Eq. (IV-29) yields the value

AS = 8.7 x 10’9area T V/K (IV-30)

We cannot calculate the terms involving logarithmic

derivatives of the mean free path. To do so we would need

detailed knowledge of the form of both the scattering

potentials seen by the electrons and the electronic wave

functions.  
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For free electrons the two terms involving logarithmic

derivatives would cancel. It therefore seems reasonable to

assume, as a first approximation, that only the first term

in Eq. (IV—29) is important. In this case the change in S

with H should be the same for all impurities.

If the logarithmic derivatives are significantly different

from each other, and comparable in magnitude to

(l/Asp)3ASp/8€, we would expect the total variation of S(H)

to depend upon the type of impurity present. Thus an

investigation of the dependence of the magnitude of the

change in S upon the nature of the impurities present should

provide information concerning the importance of these terms.
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B. Phonon drag: Theory
 

The theory for the effect of a magnetic field upon the

phonon drag thermOpower is limited. In 1956 MacDonald and

Pearson, in theisztudy of the effect of a magnetic field

on the thermOpowers of the "one electron metals" sodium

and c0pper, had written "we assume, as appears reasonable

that the presumed "phonon-drag" component will be uninfluenced

by the magnetic field ...."(47) More recently (1969)

(48)
Sugihara showed that a sharp minimum in the thermOpower

 

of the semi-metal bismith, at low temperatures and high

magnetic fields, could be explained as a magnetically induced

change in the phonon drag component. There have been no

calculations for Al and In. We therefore suggest a possible

mechanism which can account for variations in phonon drag

with magnetic field in these metals.

Similar to the electron diffusion component, the phonon-

drag component of a two band metal in zero field is given by,

02 03

8g = 3— ng + E— Sg3 (III—33)

02
We have shown previously that the ratio 3— changes in

3

a magnetic field and will show below thatES is different

g2

from 593. If we assume that Eq. (III—33) also applies when

a magnetic field is present, then we would expect S9 to

change in a magnetic field. Since we cannot determine the

(section V) we cannot predict whether

93 03(H) 03(0)

Sg should decrease of increase as E;Tfi7’+ IEBEETBT-in high

sign or magnitude of S
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magnetic field. Perhaps the observed variation may be viewed

S

as a measure of the ratio —32 .

ng



 

 



V. Experimental Results and Discussion:

A. Zero Magnetic Field:

1. Introduction

The thermopowers of pure specimens of aluminum, indium

and lead are shown in Figures (V-l) and (V—2). The data for

lead above 7.2K is due to Christian et al.(49), for aluminum

above 10K, to Gripshover et al.(50), and for indium between

10K and 300K to Averback and Greig.(51) The data below 10K,

Figure (V—2) have been plotted as S/T versus T2 in anticipation

of a thermopower of the form S=aT+bT3. The thermopowers

above 10K, Figure (V-l), have been plotted versus the reduced

temperature T/BD. The variation with temperature of the

thermopowers of these metals are seen, when plotted versus

T/B to be quite similar to each other in general form.
DI

We can understand this in the following way. The thermopower

of a metal is the sum of electron diffusion and phonon-drag

components(52), i.e

S = Sdiff + Sg . (V-l)

From the discussion of section III, we obtain

S = aT + bT3 for T<<6D (V-la)

and

S = cT + d/T for TieD . (V—lb)

80
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Figure V-l: The thermopowers of Al, In, and Pb versus

the reduced temperature, T/GD.
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Figure V-2: The variation with temperature of the thermOpowers of Al,

 
In, and Pb below 6K. A straight line indicates a thermo-

power of the form S = aT + bT3.
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The linear term in each equation is the electron diffusion

component; the coefficients 'a' and c' are determined by the

dominant scattering mechanism in the metal in the particular

temperature region, i.e. impurities at low temperatures,

and phonons at high temperatures. The other term in each

equation is the phonon—drag component. Thus at low tempera- ’

tures the magnitude of the thermOpower increases substantially

with increasing temperature due to phonon-drag. At approximately

GD/S, phonon—phonon scattering begins to dominate electron-

phonon scattering, and thereby reduces the effect of phonon—

 

drag (see Eq. (III-27)). The electron diffusion term is

responsible for the monatonic increase in magnitude near the

Debye temperature. Finally, for T>8D the thermOpower becomes

approximately linear in temperature, signaling that the phonon-

drag contribution has become small.

2. Aluminum:

We are concerned here only with the low temperature

thermopower of aluminum; the high temperature thermOpower

has been discussed in detail elsewhere.(50)

Electron Diffusion:

The coefficients "a" in Eq. (V-la) for the various

aluminum specimens are listed for zero magnetic field (and

also for a series of magnetic fields) in Table V-l. It is

clear that in zero magnetic field, the electron diffusion

thermopower is sensitively dependent upon the type of impurity

present. This is expected from both theory (Eq. (III-23)
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Table V-l: Values of a(H), b(H), and residual resistance

ratios for aluminum and aluminum alloys.
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(19,20) We
and from observation by other experimenters.

examine the dependence of the thermopower upon the concentra—

tion of a given impurity in terms of the equation

0

_ b _ _
S — Simp + p (Sb Simp) (III 24)

or, Since S = aTé Slmp = aimpT’ and Sb = abT,

_ 2 _ _
a — aimp + p (ab aimp). (V 2)

For pb and S we use the measured values for a referenceb’

specimen prepared identically to the alloys, except that no

impurities were intentionally added. Figure (V-3) is a

plot of "a" versus 1/p for three aluminum alloys. For each

alloy, the intercept at 1/p = 0 yields aimp' We find for

the characteristic thermopowers of these impurities the

following values:

8
1) Copper in aluminum, aCu—Al = 0.56i0.02 x 10 V/K.

. . . _ -8
2) Thallium in aluminum, aTh—Al — 3.2iO.5 x 10 V/K.

. . . _ -8
3) Cadmium in aluminum, aCd-Al — 4.0iO.6 x 10 V/K.

The quoted uncertainties represent the differences in

the values obtained for two specimens of each alloy. The

large uncertainties in Al + T1 and Al + Cd arise from the

low concentration of these impurities, coupled with the

difficulty of maintaining S and ob constant in the various
b

specimens during the alloying process. For example, the

open circle in Figure (V-3) represents a four mil aluminum

specimen which was rolled from the same starting material

as that which was used for the reference specimen, but which
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The coefficient of the electron diffusion
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did not go through the process used to produce the alloys.

We see that for very pure specimens (resistance ratios above

3,000) is very sensitive to small variations in treatment.
pb

We attempted to produce more concentrated alloys so that the

0

term —9 (S -S. ) would be less important, but, for unknown
0 b imp

reasons, only a fraction of the impurity atoms appear to have

gone into solution with the aluminum.

Phonon—Drag:

The values for the zero magnetic field phonon-drag coefficient

'b', are listed in Table V—l. These values do not appear to

vary in a systematic fashion with either the type or concen-

tration of the impurity atoms in the aluminum. To account

qualitatively for the fact that there are substantial variations

we make use of the equation

Oi
S9 = Z 3_ Sgi . (III-33)

Since Sgi was shown to be independent of the type of impurity

(see Section III), the variation in Sg due to impurities

must be a consequence of anistropic scattering (i.e. 02#03),

in combination with a difference between the values for

592 and S

93'

To understand why the scattering may be anistropic we

consider the effect of electron scattering through a small

angle in both the second and third zones. Over most of the

second zone, small angle scattering produces only a small

change in the electron velocity. Several such events are
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Il— .— ‘_\.
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Figure V—4: A schematic illustration of electron—phonon

scattering events in the second and third zone

portions of the Fermi surface of A1.
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therefore necessary to relax the electron to equilibrium

(i.e. randomize its velocity). In the third Zone, on the

other hand, small angle scattering can drastically alter

the electron velocity and hence few such events are necessary

to relax an electron in the third zone.

Exact determination of 892 and S93 is a formidable

task. However, it is not difficult to see that they are

probably not the same. Figure (V-4) is a cross-sectional

view of the Fermi surface in the second and third zones in

which several possible electron-phonon scattering events

are indicated. We consider both the relative probability

for each scattering event, and its relative effectiveness

in contributing to phonon—drag (see Section III). Transitions

across the open portion of the second zone are effective,

due to the large transfer of momentum (i.e. 2,. (yiji) is

large), but these transitions are not probable at 4.2K.

At low temperatures only phonon modes of wavenumber about

q = (T/GD)°kf are pOpulated and, except in corners, a transi-

tion across the Open portion would require a phonon corres-

ponding to temperature near 0D. In the corners, transitions

are possible but here the Fermi surface area is small, so

that the weighting factor Oi in Eq. (III-33) is small, and

the contribution from the corners to S9 should be small.

These transitions, according to Ziman's rule (q passing

through an open region) contribute a positive thermopower.
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Transitions in the second zone in which k remains on the

same spherical segment are ineffective since q ° (v — vi)
N ~ ~

f

is small. However, these transitions are possible at all

temperatures, and the large surface area available probably

makes them important. They provide a negative contribution

to the phonon drag. This leaves, on the second zone, only

Umklapp scattering. These scattering events are effective

and have a large Fermi surface available. But they require

phonons corresponding to temperatures well above 4.2K.

These transitions yield a negative phonon-drag. On the third

zone there are also three types of transitions. Transitions

on the same spherical segment act the same as in the second

zone. In total they are perhaps 30% as important as those

in the second zone, due to the smaller amount of Fermi surface

available. Transitions across a monster arm are effective

and have a considerable amount of Fermi surface available.

But they require a phonon corresponding to approximately 40K.

They contribute a negative phonon-drag component. The last

type of transition is across the Open regions of the third

zone. These would be effective, and have a large Fermi

surface area available. The significant portion of that area

is near corners so that low phonon wavenumbers can affect

electron transitions. These transitions contribute a positive

phonon drag. We therefore surmise that l) the second zone

produces a net negative contribution to the phonon drag, and

2) the third zone's contribution is determined by a delicate
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balance between positive and negative contributions. Without

a detailed calculation, it cannot be determined which contri-

bution will dominate in the third zone. But it is unlikely

that S will be exactly equal to S We can therefore

93 92'

understand qualitatively the fact that the phonon drag thermo—

power is different for different impurities, since different

regions in the Fermi surface have different Sgi and through

gi the relative importance of these Sgi will be dependent

upon the type of impurity. When detailed calculations of

Sgi are performed, these experiments should yield useful

information regarding the anisotrOpy of the scattering from

impurities.

3. Lead

From the low temperature data of Christian et a1.

between 7.2K and 10.0K, the coefficients "a” and "b" are

8 ~10 V/K4,
found to be -O.98 x 10" V/K2 and —3.5 x 10

respectively. The data below 5K were obtained with the

specimen in an 800 gauss transverse magnetic field. (The

field was necessary to switch lead out of the superconducting

state; its transition temperature is 7.2K and its critical

field is 800 gauss.) The data at these lower temperatures

are not well described by the simple form of the thermopower

of Eq. (V—la). Inspection of Eq. (III-20)

S = Z ~— S. (III-20)

shows that the electron diffusion component of lead within
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the temperature range of these experiments should in fact

not be linear in temperature.

We now rewrite Eq. (III-20) as

imp _ _

Th w (Simp STh) (V 3)

where "Th" indicates a thermal scattering mechanism,

"imp" indicates an impurity scattering mechanism, and

 

W = Wimp + WTh.

At low temperatures<l6>(Appendix I),

Wimp = A/T (V-4)

and

w — BT2 (V-S)
Th" '

so that Eq. (V-3) becomes

A/T

S . = s + (s. — S ). (V-6)
diff Th (A/T) + 8T2 imp Th

. . 2

At suffiCiently low temperatures, (A/T)>>BT and Sdiff Simp'

At higher temperatures (this temperature depends upon sample

2
hpurity through A) BT >>(A/T) and Sdiff = STh' The lead

specimen of Christian et al. was sufficiently pure so that

BT2>>(A/T) at 7.2K; consequently their data is well described

by Eq. (V-la). For our specimen, which was measured below

SK, the ratio W. /W was about 0.18 at 4.8K and 0.4 at

imp Th

3.3K. Thus the diffusion thermopower should not be linear

in temperature. (These ratios were obtained by measuring

the thermal conductivity of the specimen simultaneously with

the thermopower.)
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If we draw a line tangent to the highest temperature

data in Figure V~2, we can obtain an approximation for the

phonon—drag coefficient "b", since the non-linear portion

of the electron-diffusion term is becoming small. The value

obtained is 4.8 x 10”10 V/K4, about 25% higher than that

obtained by Christian et a1. From the shape of the curve in

Figure V-2 and the expected temperature dependence from

Eq.(V—6), it appears that the slope will decrease at higher

temperatures and thus be in better agreement with the Christian

et a1. value. In any case the agreement should not be exact,

since our data were obtained in an 800 gauss magnetic field.

Unfortunately, the curves in Figure V-l4 cannot be reliably

extrapolated to zero magnetic field.

4. Indium:

The low temperature data for Indium (see Figure V-2),

like those for lead, are not well described by Eq. (V-la).

The reason is believed to be the same as for lead, since

the ratio Wimp/WTh z 0.6 at 4K. This ratio was obtained by

measuring the resistance ratio of the indium specimen and

using the Wiedemann-Franz law to determine W. The value
imp'

(53,54)
for W was taken from the literature. Since Eq.(V-la)

Th

does not apply to the data, we cannot make an unambiguous

separation of S into electron diffusion and phonon-drag

components. But if we assume that the electron diffusion

term is approximately linear in this temperature range, then
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we can infer that the phonon-drag component is positive,

in agreement with the results of measurements at higher tempera—

tures (Figure V-l).

In View of the similarity between the Fermi surfaces of

indium and aluminum, it is perhaps surprising that the two

metals have phonon-drag thermOpowers which differ in Sign.

Because aluminum is face—centered-cubic, whereas indium is

face-centered-tetragonal with c/a ratio of 1.08, their Fermi

surfaces are not identical. The second zone in indium is

believed to be very similar to that in aluminum. The most

significant difference between the two Fermi surfaces is

found in the third zone, where the so-called "d—arms" are

(11) Inpresent in aluminum, but apparently not in indium.

aluminum we found that the second zone should contribute a

negative phonon-drag component, but that the sign of the

contribution from the third zone was unclear without detailed

calculations. It appears from comparison between the aluminum

and indium data that the third zone is important in determining

the sign of the phonon-drag thermopower, which is quite sensitive

to the exact shape of the Fermi surface and to the scattering

potentials.

Finally, we note that above the primary phonon-drag peak

at 0D/5, the thermopower of our indium specimen decreased

rapidly and even became slightly negative (Figure V—l). It

may be that we are seeing here the effect of a second phonon—

drag peak, having negative sign.
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B. Magnetothermoelectric Power: 

The effects of a transverse magnetic field on the thermo-

powers of pure aluminum, indium, and lead at 4.5K are shown

in Figure (V—5). For each metal, similar results were obtained

with specimens of comparable purity obtained from different

sources. It is clear that, although the temperature dependences

of the thermopowers of these metals are similar, Figure (V-l),

the magnetic field dependences are not. The thermopowers of

aluminum and indium become more positive in a magnetic field

and saturate at high fields. The thermopower of lead, on the

other hand, becomes more negative with field, and shows no

strong tendency toward saturation. The significant difference

in the electronic structures of these metals is that aluminum

and indium are trivalent, whereas lead is quadrivalent.

Apparently the electronic structure is important in determining

the general form of S(H).

In order to compare experimental results with the theory

of section IV, it is first necessary to separate the electron

diffusion and phonon drag components. We do this by assuming

that the thermopower has the form

3

s = a(H)T + b(H)T (V-7)

in the presence of a magnetic field. In section IV we showed

that the electron diffusion component retains its linear

dependence on temperature in a magnetic field. For the phonon

drag component there exists no reliable theory to guide us.
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1. Aluminum:

Figures (V-6) through (V-13) are plots of S/T versus

T2 for a series of magnetic field strengths for our purest

aluminum specimens and for several dilute aluminum alloys.

Indeed, the data are generally consistent with Eq. (V-7).

The coefficients a(H) and b(H) are listed for the different

specimens, along with their respective resistance ratios, in

Table V-l. In this table, subscripts distinguish specimens

having different concentrations of the same impurity.

Electron Diffusion:

According to Eq. (IV-27) and (IV-30), a(H) should become

more positive with increasing H, should saturate in high field,

and its total variation should be given by

9
a(H=w) - a(H=0) = 8.7 x 10‘ Volt/K2. (v—a)

Figure (V-l4) is a plot of a(H) versus wCT for several

representative specimens. wCT is defined here according to

R(300K)/R(4.2K) H

p(300K) nec

 the free electron model (i.e. wCT = ),

and is not to be confused with the quantity (wCT)i defined

above.

From Figure (V-l4) we see that, indeed, a(H) becomes

more positive with increasing H and appears to saturate in

high field. In more cases this behavior leads to a magnet-

ically produced change of sign in a(H). (In addition to

the sample shown in Figure (V-l4), two other samples —-A1Cd2

and AlTl2 -- also did not change sign in high magnetic field.)
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Figure V—6:

l l I 41
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22

T(K)

The temperature dependences of the thermopowers

of All(O) and Ali(x) for a series of magnetic

fields. A straight line indicates a thermOpower

of the form S=a(H)T+b(H)T3. The magnetic fields

are denoted by: a)0, b)0.5, c)l.0, d)l.5, e) and

f)5.0, g)12.0 k—Gauss.
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Figure V-7:

of a thin

The temperature dependence of the thermopower

(thickness~ electronic meannfree-path) Al specimen,

A1 for a series of magnetic fields. A straight line2!

indicates a thermopower of the form S=a(H)T+b(H)T3. The

symbol 0 indicates two indistinguishable data points. The

magnetic fields are denoted by: a)0, b)1,0, c)3.0, d)5.0,

e)10.0 k-Gauss.
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Figure V-8: The temperature dependence of the thermopower

of specimen A1 for a series of magnetic fields. A straight
3

line indicates a thermopower of the form S=a(H)T+b(H)T3.

The magnetic fields are denoted by: a)0, b)0.5, c)1.5,

d)3.0, e)5.0, f)10.0 k-Gauss.
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Figure V-9:

specimen AlCul for a series of magnetic fields. A straight

3 The
line indicates a thermopower of the form S=a(H)T+b(H)T

The temperature dependence of the thermopower of

The

b)3.0, c)5.0,I

 

symbol O indicates two indistinguishable data points.

d)10.0,
magnetic fields are denoted by: a)0

e)15.0, f)20.0 k—Gauss.
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Figure V-lO: The temperature dependence of the thermopower of

specimen AlCu2 for a series of magnetic fields. A straight

line indicates a thermopower of the form S=a(H)T+b(H)T3. The

symbol 0 indicates two indistinguishable data points. The

magnetic fields are denoted by: a)O, b)1.0, c)3.0, d)5.0,

e)l0.0, f)20.0 k-Gauss.
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Figure V-ll: The temperature dependence of the thermopower of

 

specimen AlCd for a series of magnetic fields. A straight
1

line indicates a thermopower of the form S=a(H)T+b(H)T3. The

magnetic fields are denoted by: a)0, b)0.5, c)1.0, d)3.0,

k—Gauss.





106

 
 

  

-l.0 -  I I l l l l l l l l l l L l

0 2 4 6 8 |01|2 l4 l6 |82022 242628

T2 (K2)

Figure V-12: The temperature dependence of the thermopower of

 
 

specimen AlTll for a series of magnetic fields. A straight

line indicates a thermopower of the form S=a(H)T+b(H)T3. The

symbol § indicates two indistinguishable data points. The

magnetic fields are denoted by: a)0, b)l.0, c)3.0, d)5.0,

e)10.0 k-Gauss.
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Figure V-l3: The temperature dependence of the thermopower of

the specimen AlSn for a series of magnetic fields. A straight

line indicates a thermopower of the form S=a(H)T+b(H)T3. The

symbol 0 indicates two indistinguishable data points. The

magnetic fields are denoted by: a)0, b)1.0, c)3.0, d)5.0,

e)10.0, f)15.0 k-Gauss.
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igure V—14: The electron diffusion coefficient a(H) vs. wcT

for representative specimens: a)A1Cul; b)A1Cu2; c)Al3;

, , = R(300)/R(4.2) H
1’ e)AlSn, f)AlCdl. Here wCT 0(300) nec

R(300)/R(4.2) is the measured resistance ratio of the

d)AlTl where

specimen and 0(300) is the resistivity of A1 at 300K.
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From Table V-l we see that the total change in a(H)

8 Volt/K2. These values areranges from 2.1 to 2.6 x 10-

approximately two and one-half times greater than predicted.

In View of the approximations made in obtaining Eq. (IV—30)

(e.g. using only the first term of the Fourier expansion

in Eq. (IV-22); estimating rather than calculating 8A3/86;

and assuming that the logarithmic derivatives of the mean—

free-path exactly canceled) this agreement is heartening,

and suggests that the basic mechanism is correct. We believe

that the observed differences in the total variation of a(H)

are real, and arise from anisotrOpy in the scattering of

electrons, a factor which was neglected in obtaining Eq.(IV-30).

With these results and assumptions, two interpretations

of the experimental data are possible: 1) that the two terms

(1/AS )BASp/ae and ((1/22)822/86 - (l/Qsp)8£Sp/86) are compar-

P

able in magnitude, and that the term involving logarithmic

derivatives of the mean—free-path varies only moderately

from impurity to impurity; or 2) that the term (l/Asp)8ASp/86

dominates the thermOpower change, in which case the other

term may vary strongly from impurity to impurity. Our data

do not allow us to choose between these two possibilities.

A more precise calculation of the two terms is necessary.

As an aside, we briefly consider the theoretical expectation

for the magnetothermoelectric power measured under isothermal
 

conditions. For these conditions

S(H) = SXX' (V-9)
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and in the high field limit (see Eq. (IV-25a)

RZKZT BQDAZ 82n22 82nwcT

+ + —————— )l (IV-25a)

8f

 

 

SXX(H+m) + 3e ( 86 86 86

Noting that £=VT, and assuming we to be independent of energy

(this is valid in the free electron model and is consistent

with the approximations invoked in section IV) Eq. (IV—25a)

reduces to

RZKZT ( 82nA2 8£nV

3e + )I (V—lO)

8f

 

 

Sxx(H+m) + 86 86

This result is independent of the type of impurity present,

(so long as the impurity concentration is sufficiently small

so that the band structure of the specimen is not altered).

Thus the magnetothermoelectric power measured under isothermal

conditions should become more positive with magnetic field,

and should saturate at a constant value independent of the

nature of the impurities present. This is just the behavior

(1'2) We seeobserved in measurements of the Hall effect.

that the isothermal magnetothermopower would be expected to

behave like the Hall coefficient, but that the adiabatic

magnetothermopower does not.

Phonon Drag:

It is clear from Figures (V-6) through (V-13), or from

Table V—l, that the phonon drag component of the thermOpower

(i.e. the slopes of the lines in Figures (V-6) through (V-13))

varies with magnetic field strength. For all the specimens
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except AlCu the phonon drag component initially increases2,

substantially with magnetic field. At high fields the data

suggest the existence of a phonon drag "peak" in the magnetic

field dependence for specimens AlSn, AlCu2, A13 and AlTlZ.

Because of the difficulty in obtaining reliable high—field

phonon drag data (at 4K the phonon drag component is only

10% to 20% of the total thermopower, thus small systematic

errors which would not much affect the value of the electron

diffusion component may significantly alter the value of the

phonon drag component) we examine the possibility that this

peak is associated not with the thermopower of aluminum,

but with some breakdown in the measuring technique at high

field. The difficulty might arise for three reasons:

1) carbon resistors show a noticeable magnetoresistance

above 10 Kgauss.

2) probe effects (all spurious voltages not accounted

for by reversing the magnetic field) may be serious.

3) the superconductivity reference leads may acquire a

nonzero thermopower, either by becoming normal over

a small region or due to flux flow motion.

We treat these problems in turn.

The magnetoresistance in the carbon resistors was measured

at 4.2K and found to be small; at 20.0 K—gauss the change in

resistance from the zero field value corresponded to approxi-

mately 0.4% of the absolute temperature (i.e. 15 millidegrees
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higher than the actual temperature). Since both the hot

and cold resistors show nearly the same magnetoresistance,

the percentage errors in AT should be comparable to 0.4%.

This is much too small an error to explain the "peak".

Confirmation that the error was small was obtained from

measurements which showed the Lorentz number to be constant

up to 20 k—Gauss. (see Appendix I) This is as expected

from theory, (Eq. (IV—16)), and indicates that the measure-

ments of T and AT were indeed correct to within a few percent.

Probe effects often cause spurious results in measure-

ments of magnetoresistance, and may be the cause of spurious

results in measurements of thermOpower in a magnetic field.

However, since the phonon—drag components all show a decrease

in magnitude at high fields, we do not think that probe effects

are responsible for the observed peaks. We would imagine

that probe effects would have been as likely to increase

as to decrease the phonon-drag component, depending upon which

junction was most in error. We should therefore have seen

some increases as well as decreases.

Finally, we tested whether the reference leads acquired

a nonzero thermopower by constructing a thermocouple consisting

of NbZr and NbTi spotwelded to a pure aluminum intermediary

held at a uniform temperature. The aluminum intermediary was

used to simulate the experimental conditions involved in the

measurement of the thermopower of aluminum. Upon raising

the temperature of the aluminum piece in a field of 20 k—Gauss,
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Ive found no voltage output (to within our measuring uncertainty

()f 2.3 x lO_lOV) until one of the superconductors turned

normal, at which point the superconducting chopper-amplifier

stopped chopping. So long as the system was chopping, no

signal appeared. We conclude that any effects of alloying

at the superconductor-aluminum junctions or of flux flow

were small; too small to explain the "peak" in the phonon-drag

thermopower with increasing magnetic field.

At present we have no explanation for these peaks.

2. Indium and Lead:
 

The data for indium and lead are shown in Figures (V-15)

and (V-l6) respectively. Since we cannot separate the electron

diffusion and phonon-drag components from each other (see

sections V-2 and V—3), it is difficult to compare the magneto-

thermoelectric powers of indium and lead with theory. We

therefore make only some general comments.

The data for indium are interesting in that at high

fields the two specimens had the same thermOpower to within

2% (the data for the less pure specimen has been omitted for

clarity), but at low fields their thermopowers were consider-

ably different. This behavior is quite different from that

of the thermopower of aluminum, which for different samples

shifted by approximately equal amounts at high and low fields.

From the fact that the zero field thermopower of indium does

3
not deviate much from the simple form S = AT + BT , we

conjecture that the phonon—drag term increases substantially
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with increasing magnetic field, and dominates the high field

thermopower.

Unlike aluminum and indium, lead is a compensated metal;

it has equal numbers of electrons and holes. Azbel, Kaganoff,

and Lifshitz<55) calculated that for a compensated metal

the “xx component of the Thomson coefficient tensor should

vary linearly with magnetic field in the high field limit.

Since the Righi-Leduc effect vanishes in a compensated metal

in the high field limit, we can calculate S using only uxx'

Using Eq. (II—5) to relate the thermOpower to the Thomson

coefficient, we find that the thermopower should also be

linear in magnetic field in the high field limit. Our results

are in reasonable agreement with this prediction. However,

we do not wish to over-emphasize this agreement, both because

we have not gone to extremely high fields, and because the

theory applies to the electron-diffusion component of the

thermopower alone. Since our data include the phonon-drag

component, a strict comparison with theory may be misleading.

3. Conclusions:
 

We have investigated the effect of a magnetic field

upon the thermOpower of aluminum and aluminum alloys. We

find that the electron-diffusion component of the thermopower

becomes more positive with increasing magnetic field, and

saturates at high field. The change in this component from

zero field to high field is nearly the same for all samples

studied. We have shown that these results can be understood
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semi-quantitatively in terms of a simple "two-band" model.

A comparison of data taken on In, Pb, and Al alloys with

data for pure Al suggeSts that the basic mechanism in the

field dependence of the thermOpower is associated with the

band structure of the metal, rather than with the details

of electron scattering. It would therefore be interesting

to study the effect in oriented single crystals of aluminum

and dilute aluminum alloys. Additional impetus for such a

study is given by data shown in Figure (V—l7), which contains

a plot of the crossing field, (i.e. the field at which the

thermopower is zero), versus rotation angle for sample All.

Here the sample is being rotated around a vertical axis,

with the magnetic field in the horizontal plane. Sample All

is not a single crystal, but a rolled and annealed foil.

As can be seen in Figure (V—l7), the crossing field varies

as much as 20% during the rotation, and has four—fold symmetry.

This data demonstrates that the sign change is not a size

effect —— for which we would expect two-fold symmetry.

However, it also demonstrates that the sample is not a collection

of randomly distributed crystals —- for which we would expect

no angular variation. Rather, we suSpect that preferential

alignment of crystallites is responsible for the four-fold

symmetry observed. The fact that there is an angular variation

suggests that studies of oriented single crystals will be

fruitfhl.
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In addition to the information concerning the electron-

diffusion thermopower in aluminum in the presence of a magnetic

field we have also obtained information concerning the phonon-

drag thermopower in the presence of a magnetic field and

both the electron-diffusion and phonon-drag thermOpowers

in the absence of a magnetic field. In the presence of a

magnetic field, the phonon—drag component first becomes more

positive, and then appears to "peak" and become less positive

with increasing field. Neither phenomena is understood.

Our data indicate that Kohler‘s theory (Eq. III-24) is approxi-

mately valid for the electron-diffusion thermopower in dilute

aluminum alloys containing Cu, Th, and Cd. Our data also

show that the magnitude of the phonon-drag components of

these alloys is senSitive to the type of impurity present.
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Appendix I. Thermal Conductivity of Aluminum

The thermal resistivity of metals at low temperatures

is expected to have the form(l6)

w = A/T + BT2 . (A-l)

The first term on the right represents the contribution to

the thermal resistivity of impurity scattering, whereas the

other term is the contribution of phonon scattering. Plotting

WT versus T3 should yield a straight line with "A" given by

the intercept and "B" by the slope. Figure (A-l) is such

a plot for the purest aluminum specimen, A1 The coefficient3.

"A" is a measure of impurity scattering and thus varies with

the impurity content. "B", on the other hand, is a measure

of phonon scattering and therefore should be insensitive

to impurities. We obtain B = 3.3 x 10-5 cm/K-Watt which is

5
in good agreement with the value, 3.6 x 10- cm/K-Watt found

in the literature.(19)

Although both the electrical and thermal resistance

resistivities of metals vary in a magnetic field, the Lorentz

number should not vary with field when the resistivity is

dominated by elastic scattering, Eq. (IV-l6). Table A-1

lists the measured Lorentz number, L = %%T’ (Q is the heat

transported by the specimen and R is the resistanCe of the

specimen), of AlCu, for various magnetic field strengths.

It is observed that indeed L is independent of magnetic field.
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Figure A-l: The temperature dependence of the thermal resistivity

of specimen 913. A straight line indicates a thermal resistivity

of the form W = A/T + BT2.
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Table A—1. The Lorentz number (in 10_8 watt-ohms/Kz) of

AlCul for various magnetic fields at 4.5K.

Field (kG) 0 l 3.0 5.0 10.0 15.0 20.0

Lorentz Number 2.43 2.42 2.42 2.43 2.48 2.43 2.43
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