AUTOMORPHISMS FIXING SUSNORMAL
AND NORMAL SUBGROUPS

Thests for the Degeoss of Ph. D,
MICHIGAR STATE UNIVERSITY

Alphonse H, Baartmans
1966




THESIS

L4y
LIBRARY
chhxgan State

'Univetsity

This is to certify that the

thesis entitled

Automorphisms Fixing Subnormal
and Normal Subgroups

presented by
Alphonse H. Baartmans
as been accepted towards fulfillment

of the requirements for

Ph.D.  gegree in_Mathematics

J. Adney
Major professor

Date_ May 5, 1967

0169










ABSTRACT

AUTOMORPHISMS FIXING SUBNORMAL
AND NORMAL SUBGROUPS

by Alphonse H. Baartmans

One of the main objects in the study of finite group
theory is the group of automorphismg of a finite group.
Our interest here centers around the set of all automorphisms
that fix chains of subgroups of a group. In particular, we
will consider the set of all automorphisms Bo that fix

every composition series, as well as the set of automor-

phisms that fix all chief series of a group. If s : G =

Go. ZUCq; Brrnrice i Go S 1 is a composition series of a solv-
able group, we define recursively the following:

So(s) = (6 ¢ A(G)/Gi =G; for i=0,1,2, ..., n)

si(s) = {6 ¢ A(G)/S/Gk_l/Gk =4 - for TSk Sn):

If we let C(G) denote the class of all composition

series of a finite solvable group, we may define Bg = 9

N Se¢(s) as well as By =0 o Si(s). In a similar

sec(G) sec(e)

manner, if we let D(G) denote the class of all chief

n So (s) and

series of a group G, we may define Ay =
seD (G)

A.(G) = 0. SiSi(e)e
% seD (G) %

In the course of study of a set of automorphisms E,

we are led to consider two special subgroups of the group

G; the group F(G;E) which consists of all x € G such

that xe = x for all 6 € E, and the group M(G:E)

<xex_1 / xe€G; 0 ¢ E). If one can say something about
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the groups F(G;E) and M(G;E), then presumably one can
say something about how the automorphism acts on the group
G. In Chapter I, we will prove some elementary results
about the groups F(G;E) and M(G;E).

In Chapter II, we determine what conditions are imposed
on the groups Bi if we assume that G 1is abelian, nil-
potent, supersolvable and finally solvable. Some of the
results obtained are:

(1) If @ 1s nilpotent w-group, then:

(1) B, 1s abelian

(11) By =B,= ... =B andis a r-group.

Our main interest is to determine what the structure
of the groups M(G;Bo) and B, must be if G 1s a solv-
able group. To this end we prove the following results for
M(G}BO):

(2) Let G be an arbitrary group.

(1) If H is a nilpotent subnormal subgroup
of @G, then M(G;BO) normalizes every
subgroup of H.

(41) If H 4s an abelian normal subgroup of
G, then M(G;BO) centralizes H.

By using result (2) effectively, we obtain the follow-
ing result for M(@;B,) for a solvable group G.

(3) If G 1s a solvable group and F¥* denotes the

Fitting subgroup of @G, then:
(1) M(6;B,)' is an abelian group

(11) M(@;B,)' < Z(F*)
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(111) M(G;Bo) is a normal subgroup of @, and 1is
nilpotent of class < 2
(1v) m(m(a;B,);B,) < z(F+).
By using result (3), we are in a position to character-
ize the group Bo by means of the following results:

(4) If @ is a solvable T-group then:

(1) B, 1s supersolvable

(11) Bé is an abelian w-group
(111) B, normalizes every subgroup of Bé
(1iv) B, has a unique maximal 7-subgroup B;,

which is the Hall T-subgroup of Bo‘

(v) A 7'-subgroup of B, 1s abelian.

Upon completion of the above, we turn our attention

to the groups A Some of the results obtained for Ai

4
are the followihgx
(5) If @ 4is a p-group, then:
(1) The Sylow-p subgroup, Ag of Ao’ is nor-
mal in A(@G)
1
(11) A,
1
Ao £ A
*
(111) A¥ = a,
(1v) A p'-subgroup of A, 1is abelian

is a p-group of class < n-1 and

(v) A, splits over Ag
(vi) If H 1s a normal nilpotent subgroup of
Ao' then H 1s a p-group
Next, we investigate AO(G) in case G i1s nilpotent

or supersolvable.
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We conclude the Chapter with a theorem relating a,,

Bo and I(G). We obtain:

(6) 1f G is a solvable group, then:

(i) Every normal subgroup of I1(G) is normal
in A,
(G3), "By belongs to the norm of 1(G).

In Chapter III we try to determine what conditions are
imposed on the group G, if we assume that @ admits an
automorphism that fixes all subnormal subgroups. 1In particu-
lar, we will investigate how the groups F(G;E) and M(G:E),
for E, a subgroup of Bo, are imbedded in G. We obtain:

(7) If 6 ¢ Bo(G) and F = F(G;6) and M = M(G:e),
then the following are equivalent:

ER
(ii) & 1is generated by F and M

(iii G is a semi-direct product of F and M

)
(iv) M = M(M;6) = M(F*;6), where F* is the
Fitting subgroup of G.
(8) Let E be a subgroup of Bo(G) and let F = F(G;E)
and Q = M(G;E). If G is generated by F and M, then:
(i) PnM=1
(ii) M = M(M;E) = M(F*;E), where F* is the
Fitting subgroup of G
(iii) M 1is a Hall subgroup of F* and M = Z(F¥)
(iv) F* 1is generated by M and F(F*;E)

(v) Every 6 ¢ E is a power automorphism on F¥.
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In Chapter II, we show that a group may admit an auto-
morphism 6 ¢ By such that (le].[e]) = 1. For these types
of automorphisms, as well as a more general class of auto-
morphisms, we obtain:

(9) 1If 6 € By, such that (le].[M(c:6)|) = 1, then:

(i) All conclusions of (7) hold.

(10) 1£f E is a subgroup of B,, such that
([E{,]M(G:E}J) = 1, then:

(i) All conclusions of (8) hoila.

(11) 1£ (|Bo[.|G|) = 1, then:

(i) 6 = M(G:E) x F(G;E) and M(G:E) = z(G)
and F(G:E) 2 G'.
(ii) F(G:E) is a normal Hall subgroup of G.
(iii) M(G:By) is abelian and its p-Sylow sub-
groups are elementary abelian
(iv) Bo(F(GiBy)) = 1.

Next, we investigate the inner automorphisms of G
that fix all subnormal subgroups. 1In particular, we study
the group W , having the property that if g ¢ N, then the
inner automorphism induced by g fixes all subnormal sub-
groups. We obtain:

(12) If G is solvable, then:

(i) N is supersolvable
(ii) 1If H is subnormal in N, then H is nor-
mal in N
(iii) N' is abelian and every subgroup of N

is normal in N



of
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(iv) N = z(F*).
We conclude the Chapter by investigating the structure
<

of G, if we assume that I(G) Z By or, equivalently, that

N = G.
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INTRODUCTION

Our main object of investigation is the study of the
automorphisms of a finite group G that leave chains of
subgroups invariant. In particular, we will center our
attention on the set B, of all automorphisms that fix all
composition series of a group, as well as on the set A,
of all automorphisms that fix all chief series of a group
a.

In Chapter I, we define the groups B, and A, and
we define recursively the groups A; and Bj . In the study
of a set of automorphisms E of a group G, we are led
to consider two special subgroups of the group @; the
group F(G;E) , which consists of all x e G such that
x® = x for all e ¢ E, and the group M(G;E) =
<x®x7t /X €@, e ¢ E). In Chapter I we will determine some
elementary properties of the groups F(G;E) and M(G;E).

In Chapter II, we determine what conditions are imposed
on the groups Bi if we assume that the group G 1s
abelian, nilpotent, supersolvable and finally solvable.

For a solvable group G, we shall determine the structure

of the group B, and the structure of the group M(G;Bo).

We will then focus our attention on the group Ao for the
case that G 1s a p-group and gfter that, for the case
that @ 41s nilpotent. ‘

In Chapter III, we determine what conditions are im-

posed on the group @, if we assume that @ admits an

1
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2
automorphism that fixes all subnormal subgroups. In par-
ticular, we will try to see how the groups M(G;Bo) and
F(G;Bo) are imbedded in the group G. We shall see in
Chapter II that a group may admit an automorphism 6 ¢ Bo .
such that (]9},16]) = 1. These automorphisms, as well as
@ more general class of automorphisms, impose strong condi-
tions on the group, as is shown in Chapter III.

We turn our attention next to the inner automorphisms
that fix all composition series of the group G. In par-
ticular, we will investigate the group N , having the
pbroperty that if x ¢ N then the inner automorphism in-
duced by x fixes all subnormal subgroups. We will con-
clude the chapter by investigating what the structure of a
solvable group must be if every inner automorphism fixes

all subnormal subgroups.
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CHAPTER I
BASIC PROPERTIES AND DEFINITIONS

If @G 1is a group, we let A(@) denote the set of
automorphisms of the group G and I(@) the set of inner
automorphisms of @G. If a 48 an automorphism of @ ,

we will define invariance under a as follows:

Definition 1.1: A subgroup H is invariant under

@ or fixed by a iff for every element h of H 5 n®
18 an element of H. If H 18 invariant under a, we
shall denote this by H® = H. A subgroup H is fixed
elementwise by a iff for every h , and element of H A

n% = n.

We will be concerned with automorphisms that leave
chains of subgroups invariant. For an arbitrary chain of

subgroups of a group @, we define the following:

Definition 1.2: Let s be a chain of subgroups

of the group @ of length n; s: G=00>Gl>62--->an-l

which terminates in the identity. As in [4] we define
9 coe
S,(s)={eca(a)/a; =@, for 1=1,2 , n} and
(]
8,(s) = {o ¢ 8;_,(8) / (6,x)° = @,x for all x e e _,} .

Definition 1.3: If s 1s a chain of subgroups of a

group @; s: @ e "'>°n—1> @, = 1. We define as in

(1] the stability group A(s) of the chain s as follows:

3
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n
A(s) = {o e a(a) / (0,%)° = G,x forall x e @
and for 1 =1, 2, ..., n}.

1-1

We note that the stability group of a chaixjx 8 of
length n 1s the group Sn(’) of Definition 1.2.

For an arbitrary chain s of length n, terminating
in the identity, Philip Hall in [1) has shown that A(s)
is nilpotent and of class¢l/2 n(n-1).

As in [4) we will be mainly concerned with chains of
normal and subnormal subgroups of G; in particular, chief
serles and composition series of @. If we let c(a) de-
note the class of all composition series of G, we may

define BO(G) thus:

Definition 1.4: B (@) = SGQ(G) 8,(s) eand B,(e) =

sed(e) Ba(s) 1=1,2, ... n
As in [4] we nhave that each B, = Bi(G) is a normal
subgroup of the automorphisms group of G and that Bo =
By(a) = (o ca(a)/ H® = H for all subnormal subgroups H
of @}.
If we let D(G) denote the class of chief series of

@, we may similarly define A (@) as follows:

Definition 1.5: A (@) = "Q(a) So(s) and Ai(G) =
0
8eD(@) si(')-
Again we have that each A; = Ai(G) is a normal sub-

group of the automorphism group of @ and that A, = A (@)
={e ¢ a(a) / H® = H for all normal subgroups H of @J.
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5
In what follows, we will have frequent occasion to

refer to the following subgroup of the automorphism group:

Definition 1.6: The dilation group A(G) of a group

G is the set of all automorphisms € of g that leave
every subgroup of G invariant. In other words, A(G) =

{6 ¢ A(G)ﬂHe = H for all subgroups H of G}.

If 6 1is an automorphism of G that fixes all sub-
groups of G , then 6 will surely fix all subnormal sub-
groups of G. Furthermore, if ¢ fixes all subnormal
subgroups of G , then # must fix all normal subgroups
°f G. Therefore a(G) = Bo(G) = ag(G).

We will exhibit the subgroups Bo. A¢ , and A(G)
by means of two examples.

e

Example 1: Let G =<a,b/a3 = b2 =1, b ab = a2),
then G is the symmetric group on three letters, A(G) =
<a,B/ad = B2 = 1; ﬁ_laﬁ = a2)> where q: a—> a ; b — ab

B: a —> a2; b — b.

Since the alternating group on three letters is the only
subnormal subgroup of G , we must have A(G) = Ay = Bg,
and A(G) = 1.

The next example shows that Ag, By, and A(G) may all
be distinct.

Example 2: Let G = A4 be the alternating group on
four letters. a, =<a,b,c/a%? = b2 = c3 = 1; c tac = ab;

¢ 'pe = a) then Ay = A(G). Bg(G) = <a,p) where:
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6
@: & — a; b —>» b; ¢ —» ac
Bt a —> a; b —> b; ¢ —> be
A(@) = 1, and we have that a(e) g By(a) & Ay (a).
In what follows we will have frequent occasion to use

the subgroups M(G;E) and F(G;E) which are defined below:

Definition 1.7: Let E be a complex of elements of
A(@) of a group @; an element ge @ such that g° =g
for all @ ¢ E 4s called an E-fixed element. The E-fixed
elemerits form a group F(G;E), the E-fixed subgroup and
P(e;x)-{gca/g.-gtorallecl}.

Definition 1.8: Let E be a complex of elements of
A(@) of a group @. Then an element gog'l is called an
E-multiplier element. The group generated by the E-multi-
plier elements is called the E-multiplier group and will

be denoted by M(G;E) = <g% /g ¢ @ and 0 ¢ E) .

Theorem 1.9: If E is a complex of elements of A(G),
then M(G;E) 1s a normal subgroup of G. Moreover, M(G;E)
is invariant under E and is the smallest normal subgroup

whose factor group remains fixed, elementwise, by E.
Proof: Let g e G. Consider (seg"l)rl where h is
an arbitrary element of @. (g% 2)! = h'z% n
- 0 28(0®) 2% 1n = n"In®(n"1g)°(n 1g)2
= (%) (n 1) (0 te) ™
therefore (g% 1)" ¢ M(a;E). Since M(a;E) = (&% 1/geq; 0cE) .
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T
we must have n(a;x)h = M(@E); but h was arbitrary. Con-
sequently M(G;E) 48 normal in g@.

Let g% 1 be a generator of M(G;E), and let a ¢ E.

men: (% 71)% = g% (g%)1
=% ()7 & (67%) (92
= [(e® ()] (%) (%)

Since (ge)“(go)'l, gog'l and gug_l all belong to
M(6;E), we must have that (g% ')* 1s an element or M(a;E).
Consequently, M(G;E) is invariant under E.

Suppose H 18 a normal subgroup of @G such that
G/H 1s fixed elementwise by E. This implies that if Hg
is a coset of H in @, then (Hg)® = Hg® = Hg or g%t e x
for arbitrary g € @ and © ¢ E. Hence M(G;E) =
&% /g ¢ @; 0 ¢« E)SH and the result follows.

Definition 1.10: E is said to be a normal complex
of A(@) i1f o lea ¢ E for all « ¢ A(G) and for all

® ¢ E.

Theorem 1.11: Let E be a normal complex of A(G).

Then: (1) M(G;E) is characteristic in @.
(2) F(@;E) i1s characteristic in @.

Proof: Let g e @ © ¢ E and a ¢ A(G). Then
(8°8~1)a = (sa)a'lea(ga)—l, but o lea ¢ E since E is a
normal complex of .A(a); consequently (gog']‘)a e M(G;E)
and M(G;E) is characteristic in @.
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Let g e F(G;E) and ¢ ¢ a(G). If 6 ¢ E. bt =
is an element of E. Therefore o6 = Ba. Hence (ga)e
(gg)a, but 8 ¢ E whence gg = g. Hence (ga)@ - (gg)a
= g% or g% ¢ F(G;E) and F(G;E) is characteristic in G.

The next theorem shows that we only need to consider

subgroups of A(G).

Theorem 1.12: If E is a complex of elements of A(G),

then: (1) M(G:E) = M(G:<ED)

(2) F(c:E) = F(G:<ED).

Proof: If o and f are elements of E, then

P& N et B s

Therefore M(G;<E)) = M(G;E). Since E = {(E), we have

- a
g g

M(G;E) Z M(G;<{E)) and therefore M(G;E) = M(G;<E)) .
If g ¢ F(G;E), then, for ¢ and B elements of E,
gaﬁ = (ga)fj = g% = g and therefore F(G:E) Z F(G;<E)).

Consequently F(G;E) = F(G;<E)).
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CHAPTER II
STRUCTURE AND PROPERTIES OF THE GROUPS Bi AND Ai
Introduction:

The aim of this chapter is to investigate the proper-
ties of B, and Ai' We will start with abelian groups,
extend our arguments to nilpotent groups and finally deter-
mine the structure and certain properties of the By and

Ay for supersolvable and solvable groups.

I. The Structure and Properties of the Groups Bi’ io=142,

Somwy  The

Theorem 2.1: If G 1is a direct product of groups H

and K, E a subgroup of By, E the restriction of E

H
to H, Ex the restriction of E to K, then:
(1) M(G;E) = M(H;Eg) x M(K:Ey)
(2) F(G:E) = F(H:EH) X F(K;EK).
If (|H|,|K[) =1 and E = Bo, then:

(3) A(G) = A(H) x A(K)
(4) Bg(G) = Bg (H) X Bg(K).
If G is nilpotent and (|H|,|K|) = 1, then:
(5) Bg(G) = Bg (H) X B (K)
(6) A(G)/Bo(G) = A(H)/Bg (H) x A(K)/Bg (K)
(7) If M(H;Bo(H)) = 2z(H) and M(K:Bg(K)) S7(K)e,
then: M(G;Bg(G)) = Z(G).

9
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(8) If F(H:;Bo(H)) 2 H' ang F(K;Bo (K)) = K', then

F(GiBp(G)) Z g'.

Proof: I1f G = H x K, then every element g € G has
a unique representation of the form g = hk with h €-H,
k € K. The groups H and K are normal subgroups of G;

consequently if 6 ¢ E then HG = H and K9 = K. Let

geg_1 be an E-multiplier element of gG. Then
g7t = (nx) (nx)~?
= h%Cx1h?
= heh_lkgk_1 since the elements of

e ¢}

h' ana k%!

H and K permute. The elements h belong

) 6 =1
to M(H;EH) and M(K;EK). Consequently M(G;E) = {g°g” '/

g€G; 8B M(K;EK) X M(H;EH). Conversely M(H:EH)

and M(K;E are subgroups of M(G;E); moreover, they are

%)
normal subgroups of G. For if g € G, then g = hk with
heH keK. If ueH, then
g_l(u_lue)g = k_lh_l(u_lue)hk
=n )

= [(uh) " (un)®] (n )% ¢ M(H:E) .

Consequently M(H:Ey) = <Pu'/u € H; 6 ¢ E> is normal in G.

By a similar argument we obtain that M(K;EK) is normal in

G. since M(H;EH) ZH and M(K;EKJ = K, we have that

M(H;E_) n M(K;E,) ZH N K = 1. cConsequently the union of
eH "TK
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M(H:EH: and M(
<

M(K:EL) = M(GrE)

If ge F(G

Since

implies that h6

and k ¢ F(K;EK), and therefore F(G;E) = F(H;EH)

Conversely F(H;

F(G:E); for if

=1
9 "hg

Consequently F(G;E

11

K;EK) is a direct product and M(H;EH) X

- Therefore M(G;E) = . .
(G:E) M(H:E) x M(K/E,).

{E), then g = hk with h ¢ Hand %k ¢ K.

6 -1
1 =g7g

= (nkx)® (nx)"?
6, -1

= 6. -
= (n’n 1) (xX°x™7), the last equality

h7t o= 1 and kek_1 = 1. Hence

E and F(K;E

.
H' K)
h e F(G;EH), g = hik; € F(G;E)
= k3'hi'hhyk; = hi'hh,.

)

argument we obtain that F(K;EK) is normal in

h e F(H:EH)

X F(K;EK).

are normal subgroups of

then

is normal in F(G;E). By a similar

F(G:E).

Therefore F(G;EH) X F(K;EK) Z F(G;E) and (2) follows.

Let G =H
are characterist
morphism of H
6 = GH 5 QK is

6 = Oy - by is

H as EH does
automorphism of
is an automorphi
If 6 is an aut

H, GH’ is an aut

to K, 6+ is an

A(H) x A(K) and therefore

x K with (|H|,|K|) = 1, then

H and K

ic subgroups of G. If @H is an auto-

and eK is an automorphism of K, then

an automorphism of G. The product

to be interpreted as follows:

and on K as GK does. Then

H. Similarly 6 restricted to

6

e

acts on

is an
H

K, GK'

sm of K. Therefore A(G)Z A(H) x A(K).

omorphism of G then 6 restricted to

omorphism of H. Similarly 6

automorphism of K. Therefore A(G) =

a(G) = a(H) x A(K).

restricted

<
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Every automorphism 6 ¢ Bo may now be written in the

form ¢ = GH & GK where eH = 6/H and SK =6/K. If eH
does not fix all subnormal subgroups of H, then & does
not fix all subnormal subgroups G, similarly for GK.
Therefore Bo(G) = Bg(H) x Bo(K).

If 8, € Bo(H), 6k € Bo(K), where 8 induces the
identity on H and SH induces the identity on K, then
6 =6_-09 is an automorphism of G. If G is nilpotent,

H K
by Theorem [T-1] , every subgroup of G is subnormal in G;
hence if © € Bo(G), then 6 must fix all subgroups of G:
e . |
hence if y ¢ G, then vy~ = ys(y’e), where (s{y:6), |y|)

=1. If g = hk is an element of G, then

e
g = (nx)?.
6y O
If 6 =6, -6, then g% =nUK
= hs<h79) ks(k7e), where
(5(h79),]hj) =1 and (s(kx;e), |k|) =1. If t is an

integer, then gt = (hk)t = h*%®%. Cconsider the system:

t = s(h;6) mod |h|

1

t = s(k;0) mod ]k[.
This has a unique solution, t = t, mod lgi ¥ {h]lkl'

. t
= 50000 hs(h:@)ks(k,9)= ht@k o0chs

6 to
Consequently ge = (hk)” = h'k

Hence 6 fixes every cyclic subgroup of G and 6 is a

dilation of G. Consequently Bg(G) = Bo(H) x Bo(K), and
(5) follows.

From (3) and (5) we obtain (6).
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z(G) = z(") x Z(K) and G' = g' x K', together
with (1) and (2) give (7) and (8).

Corollary 2.2: If a group G is the direct product

of subgroups Hy, Hy, =-%, Hn’ E a subgroup of By and

E; the restriction of E to Hy, 1 21,8, %000, théns
(1) M(G:E) = M(Hy:E;) x M(Hy:E,) ... x M(H E ).
(2) F(G:E) = F(H,;E;) x F(Hz;Ep) ... x F(H :E ).

If the orders of the Hi are relatively prime in pairs and
E = Bo(G), then:

(3) a(e) = a(Hy) x Bl vis % A(Hn)

(4) Bo(G) = Bo(Hy) x Bo(Hp) ... x BO(Hn>.

If the orders of the Hi are relatively prime in pairs and

G is nilpotent, then:

(8) Bo(G) = Bo(Hy) x B(Hp) ... x B(H, ).

(6) a(6)/Bo(6) = A(H1)/Bo(H1) x A(Hp)/Bo(Hp) ... x
A(H, )/BO(H

i) 'aF M(H; :Bo(H;)) = z(H;), then M(G;Bo) = z(G)

(8) 1f F(H;;Bo(H;)) Z H;, then F(GiBo) ZG'.

The proof of the Corollary is the same as that of Theorem 2.1.
With the aid of Theorem 2.1 and Corollary 2.2 we are now in
a position to discuss the B for abelian and nilpotent

groups.

.. for abelian groups.
(a) B¢, Bi: Ba. . B, fora g

If G 1is an abelian group, then G 1is a direct product
of its Sylow-subgroups. Since the orders of these Sylow-

subgroups are relatively prime in pairs, we may apply
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Corollary 2.2, and it suffices to consider Bp for abelian
p-groups. If G is an abelian group, then By(G) = A(G),
for if U is a subgroup of G, then U is normal in G;
consequently uf = U, for 6 € Bo(G) and 6 ¢ Bo(G) fixes
all subgroups of G; therefore Bo(G) = a(G). But AfG) =
Bo(G), therefore Bo(G) = 4(G). R. H. Jischke in [3] has

shown :

Theorem 2.3: If G is an abelian group, and A(G) is
the set of dilations of G, then
(1) &(e) is an abelian normal subgroup of A(G).
(2) 1If 6 ¢ A(G) then 6 has the form ge = gs(e)
where s(@) is an integer relatively prime to
the exponent of G.
(3) A(G)  is isomorphic to the prime residue classes

modulo the exponent of G.

Corollary 2.4: If G 1is an abelian group, then Bg =
4(G), the set of dilations of G, and Bo(G) satisfies all
conclusions of Theorem 2.3.

Proof: This follows immediately from the discussion

preceding Theorem 2.3.

Definition 2.5: If G 1is a group,. the subgroup of G

generated by all the non-generators of G, is called the

Frattini subgroup G.
It can be easily shown that the Frattini subgroup of

G is the intersection of all maximal subgroups of G. The

Frattini subgroup of G will be denoted by ¢(G).
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We will next state two Lemmas that will be needed in

what follows.

Lemma 2.6: If g
(G) = 0(Hy) x o (Hy) x

Proof:

Lemma 2.7:

= H; X Hy X Hy x

*** X H_, then
n

X @(Hn).

The proof of this may be found in [6, page 165] .

Let G be a group and let U be a subgroup of

A(G) such that |u| = pk where k is an integer and k > 1.

Let M; and M; Dbe subgroups of G with M, 4 M;. 1If

Mf =M; and Mf = M; for all 6 ¢ U and |Mi/My | = p,

then every 6 ¢ U must induce the identity on M, /M,.
Proof: Let 6 ¢ U; let Mpx be a coset of M, in

M;; then (sz)e = sze. Since [M;/Mp| = p, we must have

szs = szk where (k,p) =1 and k < pP. Consider the

n
action of ep on M;/My:

pn
6
(Mpx)
On the other hand:
pn
¢}
(M%)
but by Fermat's Theorem
n
P = x

Consequently:

N R o
= Mpx since 8| =p .

p21
= (,x%)°
n
kP71
)
pn
= szk

= (Mpx

mod p.
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n n
P P
6 e k k
(M) = (Mpx ) = Mpx
Therefore:
) S
Mpx™ = Mpx or k =1 and therefore
(sz)e = Mpx and 6 induces the

identity on M;/M, and the lemma is proven.

We are now in a position to apply our results to
abelian p-groups and abelian groups in general. We will
first focus our attention on abelian p-groups and then

generalize it to arbitrary groups.

Theorem 2.8: Let G be an abelian p-group, then:

(1) B; is an abelian p-group

(2) By =By = --- =8B .

Proof: Let G be an abelian p-group, then B,(G) is
a subgroup of Bg(G). By Theorem 2.3, we have that By is
an abelian group, hence B; is an abelian group. Let
€ ¢ B1(G), then € induces the identity automorphism on
G/M for every maximal normal subgroup M of G. Let Mx
be a coset of M in G, where x is an arbitrary element

of G. Then (Mx)e = mx? = mx, hence x°x™' ¢ M. since M
-1

and x are arbitrary, we must have xsx ¢ N{M/M maximal

normal}. Since all subgroups of G are normal, we have

g

N{M/M is maximal normal} = ¢(G). Hence x x = ¢ ¢(G) and

therefore M(G;B;) = ¢(G). By Theorem 1.9, B; must induce

the identity on G/¢(G). By Theorem [T-2] we have that B;

is a p-group. Consider now two subgroups M; and M, of
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G, where M2 is a maximal normal subgroup of M.

If 0cB , M?_=Ml and M) = Therefore 6 ¢ B,

X
must induce an automorphism on Ml/Mz’ Since IM:L/Mel =p
and |9| = pt for some positive integer t, we must have by
Lemma 2.7 that 6 induces the identity on Ml/Me' Since
Ml and M2 were arbitrary, 6 must induce the identity
on all composition factors of @. Therefore 0 e Bn and
consequently B, < B . Since B, < B, by definition, we
must have Bl = 52 0 = Bn’ and the Theorem follows.
Although Bl £ Bo in Theorem 2.8, we may not conclude

that B<> = B,), as may be seen from the following example.

Example 3: Let G be the elementary abelian group
of order 9. Then @ =<a,b/[a,b] =1, a3 = b3 = 1). Then
B, = <a/a2 = 1), where a%=2a%; b® = b2 oOn the other
hand, if o ¢ B;(G), then 6 must induce the identity on
6/4(a). Since ¢4(G) = 1, we must have that © must induce
the identity on G. Consequently 6 = 1 and therefore

B, = 1. We have therefore that Bl(G) £ B, (a).

Definition 2.9: Let w be a non-empty set of primes.
A T-number is a natural number each of whose prime factors
is8 in 7: a w-element of a group G 1s an element whose
order is a w-number; a m-group is a group each of whose
elements is a 7-element.

For any set of primes w, the number 1 1s a m-number;
the element 1 1s a w-element; and the subgroup 1 1s a

T-8ubgroup.
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The set of all the primes not in 7 will be denoted
by w'.

Theorem 2.10: Let G be a T-group. If s 18 a

chain @ = G°> 01 > ceed on =1 of subgroups of G, then
the stability group A(s) 1s a T-group. Furthgrmore, if s
is a chain of length 2, say s : @ ) Gy > G, = 1, then

A(s) 1s a 7-group if G, 1s a m-group.

Proof: Let [6] = p, 6 ¢ A(s) and (p,|a|) = 1.
Apply induction on the length of the chain. Since 6
fixes the chains s' ; Gy > Gy 03 tae ) @, = 1, we have
'@ eA(s'). since ([6],]a,|) =1, 6 restricted to (<N
is the identity.

. 0
Let g e, then g%  ca,. Let g°=gx witn

X € Gyt then gep = g; hence gop = gxp, and g = gxp
and xP = 1. But (Ipl,]@,]) = 1, hence xP %1 unless x = 1.
If x =1, then ge =gx =g and © 1s the identity. The
first part of the theorem follows by induction.

Let 8 be a chain of length 2, say s: G > Gy > Gy = 1.
Let \@ ¢ A(s) such that [0] =p and (p,|a,]) =1. If
g8 € G, then geg-l €@ and ge = g8 whgfi g € G-
stnce o] = p, & = g but gepé (;8)° = &l
Therefore g = gfg and gf = 1. sirce (p{IGll) =1,
Sf # 1 unless g =1. 1Ir & =_}, then ge =g8=8
and © 1s the identity. Therefore if @G; 1s a T-group,

then A(s) is a w-group.
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Theorem 2.11: If G is an abelian T-group, then:
(1) Be 1is an abelian group
(2) By is a r-group

(3) "By =iBy & convEipe

Proof: The group B, is a subgroup of A(G), so by
Theorem 2.3 we have that 4(G) is an abelian group and
consequently B, is an abelian group.

By Theorem 2.3 every 6 ¢ Bp has the form ge = gs;e)
where s(6) is an integer relatively prime to the exponent
of G. We will show that if 6 ¢ B,;, then s(6) =1 mod p;
for each prime divisor P; of the order of G.

Let M be a maximal subgroup of G of index p;-

6
Let Mx be a coset of M in G. If 6 ¢ By, then (Mx )~ =
6
mx® = mx. Since B; = A(G), we must have that x = x5(@)
6 _ Q5. s(6)
where (s(€). exp G) = 1. Consequently (Mx)” = Mx~ = Mx 4
s(8) SO0 € M. Since the

Therefore Mx = Mx ; hence x

index of M in G 1is equal to p; . we must have s(6)-1
= 0 mod Py and therefore s(6) =1 mod Py Since G

is an abelian group, then G must have a maximal subgroup

of index = for each prime divisor Py of G. Consequ-
ently s(6) =1 mod pi,for each prime divisor P; of the
order of G.

Let Gi/Gi+1 be a composition factor of G of order
P.. Let G X be a coset of Gi+1 in Gy and let 8 € Bj.

i i+1
2] s(6) g _
= . From the previous para
Therefore (Gi+1x) Gy X p

graph we have that s(6) = 1 mod p;- Therefore s(6) = 1+kp;
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where "k~ is an integer. Consequently (G

1+kp. kp. .
=G, . X ki =G, x plxl Pk p
i+1 i+1 = Gi+1(x ) ok But X 6 G,
d theref Piyk o
and there has 5
refore (x 7) e Gl+1, hence (Gi+1x)

N X
b |

=G (xP

X

1T

G . We have,therefore,that each € € B; must induce

i+1*
the identity on each composition factor. Hence B; =< B ;
but, by definition, B, = B;. and therefore B; = B - Since
By = BtE ki B, and B; = B,. we must have that
By =B = ... =8 .

The group B; induces the identity on all composition
factors of G; hence B; must belong to the stability group
of every composition series of G. By Theorem 2.10 this

implies that By 1is a m-group.

(BY). <iBgin B eloai B in case G is Nilpotent:

As was done for abelian groups, we will first discuss
the case for which G, is a non-abelian p-group, and then

generalize to nilpotent groups.

Lemma 2.12: If G is a nilpotent group,then

Bo(G) = A(G), the set of dilations of G.

Proof: If G 1is nilpotent,we have by Theorem [T-1

that every subgroup of G is subnormal in G. Since By

fixes all subnormal subgroups of G, we must have that By

fixes all subgroups of G. Hence 6 ¢ B implies 6 e A(G),
and Bg(G) = A(G). If an automorphism fixes all subgroups

of a group G, then it surely fixes all subnormal subgroups
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of G; therefore for any group G, A(G) Z Bo(G). Therefore

we must have that By(G) = 4(G), the set of dilations of g.

Next we will state a Theorem by Huppert [2] which will

be needed in what follows.

Theorem 2.13: If G is a non abelian p-group, then

Bo(G) is a p-group.

Theorem 2.14: If G is a non abelian p-group, then
the following hold.
(1) Bo is a p-group

(B} Bg By iy B -

Proof: By Theorem 2.13 we obtain (1).
Let 65 € Bg- Let M; and M, be two subgroups of G
such that M, = M; and |M;/Mp| = p. Now M, and M,

i 6
are subnormal in G. Therefore if 8 ¢ Bo(G), then My =

My , Mf = M; and consequently 6 must induce an auto-

morphism on M;/M;. But [M;/Mp| = p and [6] = pt for some

positive integer t. By Lemma 2.7 this implies that 6

must induce the identity on the factor group Ml/Mz. Since

6, My, and M, are arbitrary, we must have that B, induces

the identity on all composition factors, Hence By = B, but

B, = Bg; hence Bg = B, -

Definition 2.15: If G 1is a group, the intersection

of all the normalizers of all cyclic subgroups of G is

called the norm of G and will be denoted by N(G).
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We will state some results which will be needed in
later development, which have already been shown by H. J.

Jaschke in [3].

Theorem 2.16: If G is a group then the following
hold:
(1) M(e:a(6)) = n(a)
(2) G/E(G:n(G)) is nilpotent of class 2.
(3) () n 1(6) = 2(1(G)), hence A(G) N I(G) consist
of central automorphisms.

(4) M(N(G):4(G)) = z(G).

If G is nilpotent,then By = A(G) and the above
Theorem holds if we replace A(G) by Bg. With the aid
of the above Theorem we are now in a position to discuss

Bp for nilpotent groups.

Theorem 2.17: If G 1is a nilpotent w-group,then if
noreof its Sylow subgroups are abelian:

(1) By is an abelian m-group.

(&) - By S By wou ™ B -
If G has an abelian Sylow subgroup then:

(3) By is an abelian group

(4) By =By ... = B~ and is a 7m-group.

Proof: Let G =S X S e e XS be a decomposi-
G P1 P2 Py

of G into a direct product of its Sylow subgroups. By
Corollary 2.3, we have that Bg(G) = BO(spl) X BO(SPZ) ceo

% BO(Sp ). Since B;(G) = Bo(G), every 6 e B;y(G) may be
n
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written in the form 6 = 61 ° 05 °-- en where ei € Bo(Spi).
Moreover 6, acts trivially on spA £or: Vo 4y
B
We will show that 6, ¢ B1(Sp ) for all i. Let My
i
be a maximal subgroup of S_ . Then M, =s X S X eo.
Eilie p; 17 %py X %py

X S X M. X8 eleie $XS) is a maximal subgroup of G.
pi—l * pi+1 Pn

Since 6 ¢ B;(G), we must have that for every x € S_ ,
Pj

v a0 . 6_-1 -

(M.x)” = Mix = Mix. Consequently x x € Mi for every

X € 7 d th fore M(S_ :6) *M,. Since S is a
€5, an erefo ( 5 ) I My ;3 b,

i i

characteristic subgroup of G, we have M(Sp 20) =8

Therefore M(s_ ;0) = Hi ns M;. Since M; was

p.— 1

Py i
arbitrary, M(S_ ;8) = M. for all maximal subgroups M.
pP; 1 e
of S . Since 6 restricted to S is equal to ei
Pj p; :
we must have that M(S_ ;8) = M(S_ ;6.) = M; for all maxi-

p; p; i
mal subgroups Mi of Sp . Consequently Si induces the
i

identity on all factor groups Sp‘/Mi where Mi is a
b §

maximal subgroup of spi and therefore Gi € Bl(sp )

By Theorems: 2.8 and 2.14, we must have 6, ¢ Bn(sp Ve

Let MI/M2 be a composition factor of G, of order P; -

We may choose X; € Sp.

Let Mp,x be a coset of M, in M;y. i

as a coset representative of Mpx. For if x € G, then

. . erele each x., € S and
X = xq - xi X4 2 where 5 pj
n
j = aipe . Then
Ile = ij . Let y = XyXp cec Xy x4 X,
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ng pni pni pnl pni

a . 1 i i i i

X = x;y; but x '(ﬂY) =ﬂlyl =y ' . Since
byt bt
[My/Mp | = P;, we must have x * ¢ M, and vyt M.
ny n,

i 4 : =

Since ]yii 7. Pj7s we have (pi Jly][) =1 ana

j#L ny
p. p.
-
{y > =<y>. However Y e My; consequently y ¢ M,.

Therefore M,x = Mpyx, = Mpx, .

6
Let 6 € By(G)s then (Mpx)” = (szi)e = szg. Since

6.

6 =6 65 +++ B, «-- 9 r ’ 9 &

1 63 i n and X; € Spi, we have X X

6 ei
and (Mpx)~ = Mpx; . But 6, ¢ Bl(sp ) and therefore
bk

. = : &8

lei] = pi for some integer t. Furthermore, IMI/MZI = Pi”

Therefore by Lemma 2.7, Gi must induce the identity of M;/M,.
& B e B e e B 2o B O o
onsequently (Mpx)~ = Mpx~ = MpX; = Mpx, = = Mpx, = Mpx,

and 6 induces the identity on M1/M2- The composition
factor M;/M, was arbitrary; consequently 6 must induce
the identity on all composition factors. Therefore
B;(G) = B (G), but by definition B_(G) = B4(G)/ hence
B =

1(G) Bn(G).

If none of the Sylow subgroups of G are abelian, then

B¢ = By. For if 6 ¢ By, then 6 = g; 62 ... 6 where

6. € Bo(S_ ). Since each Sp is a non-abelian p;-group,

1 s .
pl b 8

we must have by Theorem 2.14 that 6, ¢ Bn<sp-) for all i.
&

If M is a maximal subgroup of G of index p;. we may

choose x; € sp as a coset representative of M in G.
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6.
0 6 _ g 2 X
Consequently (Mxi) = Mxi = Mxi . Since (ei[ =py for
some integer t and lG/M] = p;, we must have by Lemma 2.7
6 _ (- i e
that Mx; = Mx,. Therefore (Mx;)’ = Mx;~ =Mx; and 8

induces the identity on G/M. Since M was an arbitrary
maximal subgroup of G, € must induce the identity on
G/M for all maximal subgroups M of G. Consequently

6 ¢ Bl(G). The element 8 was chosen arbitrarily and
therefore we must have Bg(G) = B;(G). This establishes

the Theorem.

We shall now give an example to illustrate some of

these concepts and properties that were derived above.

Example 4: G a p-group.

Let G = (s, t/ s® = t%2 =1; t™'s £ = s3).

The lattice of subgroups (subnormal subgroups )

is the following:
G

<53,£> (s> <5215t>

\
(sh,t>  (st,s2ty  <s® S s

& (%) (stt) (st (s
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z(G) = {s%
Bp 1is generated by the following automorphism:
a:t—t s —> s3
B:t— ¢t s —»> sb
p s T A T s —> s7
Therefore:
Bo = <a,B,v/la:B] = [a,y] = [B.y] = 1; o2 =p2 = 42 = 1>
Hence B, 1is an elementary abelian group of order 8.
M(G;Bo) = (s4)
F(GjBo) = (s%,t).
Example 5: G nilpotent. G = Dg X Cg where Dg is
the dihedral group of order 8 and Co = <afa? = 1) is

a cyclic grou
<€ :g
5(6)

e
i.e,,
M(G;Bg)
F(G;Bo)

All automorph

The

(c)

p of order 9. Then A(G) is generated by:
= g% for all g ¢ G,

Bo(G) = {6/68 = 1>.

= cg = (a3

= Dg.

isms of By are power automorphisms.

for a solvable group G.

)

group Bg(G

In order
we shall need
in order that

development .

Lemma 2.

sesses a non-

to discuss the case By for solvable groups

several Lemmas. We shall present those first,

they may be used for reference in the later

is a solvable group,then G pos-

18: I1If G

trivial,normal,nilpotent subgroup.
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Proof: Since @ 18 solvable, G has a derived series

=02 0202 ...26"=1. Now o'/6**! 1s aveltan
and since every term in the derived series is characteristic,
we have @1 1s normal in a. Hence @"°1 A1 is a
normal nilpotent (abelian) subgroup of G.

Definition 2.19: The maximum, normal nilpotent sub-
group of a group @ is called the Fitting subgroup of G.

Lemma 2.20: If G 4is a solvable group, then G has

a nontrivial Fitting subgroup.

Proof: By Theorem [1-3] the product of two normal
nilpotent groups is a normal nilpotent group of @. Since
@ 1is finite, @ has only a finite number of normal nil-
potent groups. The product of all the normal nilpotent

groups 1s the Fitting subgroup of @.

Lemma 2.21: Let G be an arbitrary group and let
H(GJBO) be the B -multiplier group of G. If H isa
subnormal nilpotent subgroup of G, then M(G;BO) normalizes H.

Proof: If H 1is a subnormal nilpotent subgroup of G,

then every subgroup of H 1s subnormal in H. Since H 1s

subnormal in @G, we have by the transitivity of subnormality

that every subgroup of H is subnormal in G. Therefore if

© ¢ By(G), then © must fix all subgroups of H.
Let x ¢ G and let h € H, then x ‘hx ¢ H'. Since

K 18 isomorphic to H, H® is nilpotent. Furthermore,
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since any automorphism maps a composition series onto a com-
position series,  must occur in a composition series for
@, and n" is subnormal. Therefore, B is a subnormal
nilpotent subgroup of a. Consequently, if 6 ¢ Bo(o), then
6 must fix all subgroups of K. Then:
(x-lhx)° = (x-lhx)'(x_lhx’e) where (l(x'lhx,e), Ix'lhxl) =1,
On the other hand (x thx)® = x ®n%x®
= x'ehs(h‘o)xo where (s(h;@),|n|) = 1.
Therefore (x'lhx)'(x-lhx’o) - x%8(n30),0
x-lps(x"thx;0), _ . -6,8(n;0).0
Hence xox'lh'(x-lhx‘e) (x%x71)72 o po(nse)

Since (s(x"2hx;e),|x  hx|) = 1, this implies that _1
(l(x-lh.x;e), |n|) = 1. Consequently h;(i‘;.e) and n®(x "hx38)
are generators ¢f < h >. Therefore x x = normalizes every
subgroup of H. Since xox-l was an arbitrary generator

of M(G;Bo ), we have that H(G;Bo) normalizes every subgroup
of H.

Lemma 2.22t Let G be an arbitrary group and let M
be the Bo-muciplior subgroup of G. If A 1s a normal
abelian subgroup of @, then M centralizes A.

Proof: If A is a normal abelian subgroup of @,
then every subgroup of A 4is subnormal in G. Therefore
every o ¢ Bo(o) must fix all subgroups of A. By
Theorem 2.3, @ ¢ B (@) restricted to A has the form:
2% = 68(9) £or 211 & € A, where (s(0), exp A) = 1. Let

Xe@® ©eB (") and a e A, then xlax ¢ A. Therefore
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(x"2ax)® = (xax)®(®) yhere (s(e), exp 4) = 1
=l a8(0) L1 0,
On the other hand: (x':l‘a.x)° = (x°)'1 a® x°,
Therefore (x%)™ a® x® = x71 &% ( or (x®x71)71 a%(x%x71) = 2°.
Since - ® restricted to A 4is an ;s.utomozvphism of A, xex-l
must centralize all elements of A. Consequently,

M(a;B,) -<x-1x°/ x € G, 8 ¢ B (@)> must centralize A.

Theorem 2.23: Let G be a solvable group, M =,H(G;B°),
and let F#* denote the Fitting subgroup of @, then:

(1) M' 1s abelian

(2) W = M(a;B,)" < Z(F*)

(3) M is nilpotent of class < 2

(4) M(M;Bo) < Z(F*).

Proof: By Lemma 2.21, M normalizes every subgroup
of the F#. Every element of M 1nduces an automorphism
on F#, a.r;d since it also fixes every subgroup of F¥,
it must induce a dilation on F#. Since the dilations of
a group form an abellan group, \.ve must have that the inner
automorphisms induced by M' fix all elements of F¥.
Therefore M' must centralize F#. By Theorem T—llr, the
centralizer of F* is contained in F#; hence M' < Z(F#).
Since Zz(F#) 1is a.n abelian group, we };ave M' 1is abelian;
hence (1) and (2) follow. The center of ) F# 1s a normal
abelian subgroup; hence, by Lemma 2.22, M must centralize
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the Z(F¥). Since M' = Z(F*), then M centralizes M'.
Hence M' is contained in the center of M. Hence M is
nilpotent of class 2 or abelian.
Let x € M, ae F*, and 6 ¢ Bg, then:

—lax)s = (XG)-1 6 6

(x
If x € M, then x induces a dilation on F*, and since
the dilations of a nilpotent group form an abelian group,

we must have:

Consequently
6,-1_6 6 -1_6
) =5atng X X
or ((xg)x_l)—lae((xe)x_l) = a® or x%x! centralizee
F*. By Theorem [T-4], we must have ST Z(F¥). There-

fore M(M;By) = (xex_y X € M, 6 eB, = Z(F*).

Theorem 2.24: If G is solvable,then the following
hold:
(1) By is solvable

(2) By is abelian.

Proof: If G 1is solvable,then G has a composition

series whose factors are of prime order. Let G =
Go PGS HGg Hr i FUGLAS 1 be such a composition series
6
= p.. definition G = G, for all
such that lGi/Gi+1l p;- BY H i

6 € By. Hence By must induce an automorphism on each of

i £
the factor groups Gi/Gi+1' Since these groups are o

order Py their automorphism group has order pi—l and
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is cyclic. Hence By must induce the identity on all such
factbrs. Hence By is nilpotent of class n-1 by the
Theorem of Philip Hall [T-5] . But this implies that Bo
is solvable. We can, however, obtain a better condition on
the nilpotent class of Bg. Since By fixes G/M G:Bo),
and the restriction of By to M(G;Bg) 1is abelian, we
have that By fixes G/M(GiBo) and M(G:Bg). Hence B
fixes a chain of length 2. By Philip Hall's Theorem [T-5],

we must have that Bj§ is abelian.

Lemma 2.25: Let H be a normal subgroup of G. Let
S be the subgroup of A(G) consisting of all automorphisms
of G such that M(G;S) = H and such that H = F(G;S),
then:

(1) s is abelian

(2) M(G:s) = z(H).

Proof: (1) follows immediately from the Theorem by
Philip Hall [T-5], since S is contained in the stability

subgroup of the chain G > H > 1.
6 s
Let h e H, ge G then [h,g] = [h,g] since H qG.

On the other hand: 1

(h,91° = [(h" g 'hq1®

Since geg_1 € H, let ge = kg with k € H, then:
-1, 0\-1 C]

(ha1® =n* (") n g

= h 7 (xg)7'h (kg)

= [h, kgl



but
hence
Therefore

Theorem 2.26:

every subgroup of

Proof: Let

Fitting subgroup of G.

Bo

to F*

of a group form an abelian group, we must have that

centralizes F*.

identity on G/F*

the stability group of the chain

we have that M(G;

that M = N(F*).

Since

a
consequently na

induces the identity on

induces dilation on
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(h.kg] = [h,g](h,x)9 ;
(h.91” = (h,g] (K19
= (h,q].
= T e
[k,h] =1 hence k = g'g e Z(H).
If G 1is solvable then B, normalizes

M = M(G;By), and let F* denote the

We have that M X F*; consequently

G/F*. The group B, restricted

F*, and since the dilations

Bo

The group B§ therefore induces the

and on F* and consequently belongs to

G > F* > 1. By Lemma 2.25,

<

2.21, we have

)

Let

B§ Z(F*), and by Lemma

a € Bg, g € G, then:

with n, € N (F*)

with n __ € N(F¥).

a

we have that



Let 6 ¢ B§ -
then:
but
-1
ng
-1
Moreover ng
and n =
a
Therefore gO‘90
-1
s(a )
but g9 =n
b |
95(0 ),

If

and therefore

9 €G, g =N,g with ng € Z(F*),
60_1
= (ng)
-1
= 6 6\a
(ngg”)
-1
= (nag ) since 6 centralizes F*
-1
(n ngg)
™t ot
=n, ng n_g
a

-1
= psla ) where (s(a™'), exp z(F*))
€ z(F*) and therefore permutes with
-1 =1
=n ng n_, g
a
-1
a ol
n (n no_ g
] a ot
=1
=nd g
-1
= nS(a )g
s _5
e(a g. Therefore we have that afa

Bo

nO
Q

tab b

ng € zZ(F*), which is an abelian normal subgroup; hence

1.

-1

normalizes every subgroup of Bj.
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Theorem 2.27: If @ is solvable, then Bo 1s super-

solvable.
|
Proof: S8ince Bo is solvable, B") must ocour in a

chief series of Bo‘ We may refine this chief series to

a composition series for Box hence we have

B°=H°> H1> siece Hi-Bt') xi+1>--->1§‘-1. Now every
subgroup of B(', 18 normal in BO; hence the groups Hi'
H“,l, o0 I-t“ are normal subgroups of Bo' Since all sub-
groups of Bo that contain B"> are normal in Bo' the above
composition series is a chief series for By Since the
factors of a composition series for a solvable group are
of prime order, the above series is a chief series whose
chief factors have prime order.

We might be inclined to show that B, is nilpotent
if @ 41s solvable. This 1s not possible, as may be seen
from Example 1. In this example G = 83, the symmetric
lrmtﬁ on three letters, and consequently G 1s solvable,
but Bo = A(G) = 33 is not nilpotent.

At this point it might be worthwhile to i1llustrate some
of the problems that may oceur in what follows by means of

an example.

Example 6: Let G Dbe the seml-direct product of a.
eyelic group of order 7 and a oyecllc group of order 2.
Then @ =<a,b/ ;7 =1, b2 = 1, bab = 0.67‘ The chief series

of @ 41s i1ts composition serles: @& > <a>> 1. Therefore,
' !
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Ay =By = A(6). A(0) =<a,p/a” =1; BO -1 ana plap=ads
where a:a—a Bta— as

tb—ab tb —> b,
Note, however, that 3 divides |[B,| but 3 does not divide
the order of G. In other words; prime divisors of IBOI
are not necessarily prime divisors of the order of @G.

The previous example shows that although G 1s a

T-group, Bo need not be a m-group. If @ 1is a w-group,
and Bo possesses T-elements, we let Bg denote a maximal

T-subgroup of BO. Ir B, has no -r-elen-wnt, we let Bg = 1.

Definition 2.28: A Hall r-subgroup of a group G is

a subgroup whose index 1s a w'-number.

Theorem 2.29: If G 1s a solvable w-group, then:

(1) B, has a unique maximal 7-subgroup, Bj , which
contains every w-element and every w-subgroup of Bo.

(2) B 1s the Hall w-subgroup of G.

(3) B, splits over Bg.

(%) B, 1s a 7-group and & T'-subgroup of B, is abelian.

Proof: If Bo has no w-elements, then Bg = 1 and
(1), (2), and (3) hold. Without loss of generality, we
may assume that Bo has r-elements. Bé fixes each
subgroup in a composition series of G and induces the
ldentity on every composition factor of G. Hence Bé
belongs to the stability group of every composition chain.
Hence, by Theorem 2.10, Bé is a w-group. Let Bg be a
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maximal w-subgroup of B, that contains By »
normal in Bj. If x 1s a 7-element of By, and x £ BY ,

then Bg is

let K denote the product of Bg and <x> . Then Bg is
[B¥] |<x>|

properly contained in K. On the other hand, |K| = —2— " |

IBY N<x>|

Since [B¥|, |<x> |, [B#n<¢x> | are all 7-numbers, we must

have that |K| 1s a 7-number and therefore K 1s a

T-subgroup of Bo'

Since Bg is a maximal w-subgroup of G and Bg is

properly contained in K, we contradict the maximality of Bg;

consequently X ¢ Bg; or K= Bg.

If p is a prime divisor of |[B /B¥|, then B_/B¥
has an element x of order p. By the Homomorphism Theorem
B(> must contain a subgroup H such that B < H< B, and
[#:B] = p. If p 1s & T-number, then [H| = [H:BX] |[B¥|
is a m-number; consequently H 1s a m-subgroup which
contradicts the maximality of Bg. Therefore p 1s
& 7'-number and [B :BY] 1is a 7'-number. Therefore B¥
is a Hall w-subgroup of Bo. If H 1s a Hall m-subgroup
of B,, then H 1is a m-subgroup of B,. By the first part
of the theorem, H < B¥. Consider the index of H in B3
[B,:H] = [B,:B%] [B4: H]. Since [B,:H] 15 & 7'-number
[B#:H) 1s & 7'-number. Since B¥ 1is a m-group, [B¥:H] is a
T'-number iff [B#H| =1 or H = Bf. Hence B} 1s the
Hall w-subgroup of Bo'

Since Bg 18 a normal Hall w-subgroup of BO, we may
apply ‘the Schur-Zassenhaus Theorem [T-6] from which we obtain
that Bo = Bg H and Bgn H= 1. Consequently Bo splits
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over Bg .
If H 1is a w'-subgroup of Bo’ then H' <« Bé , but
Bé is a w-subgroup of Bo' Since H 1s a w'-subgroup of

Bo‘ we must have H' =1 or H is abelian.

II. The Structure and Properties of the Group A .

Introduection

We will discuss propertieg,.and the structures of Ao

for abelian groups, p-groups and nilpotent groups, and derive
a few properties of Ao for solvable groups.

If G 1s an abelian group, then every subgroup of G
is normal in G. Consequently A, must fix all subgroups
of @ and therefore A, = BO(G) = A(G). We have, therefore,
that all the conclusions of Theorem 2.11 hold.if we replace

Bi by Ai'
Theorem 2.30: If G 1s a direct product of groups H
and K, and E is a subgroup of AO; 1 EH and EK are

the restrictions of E to H and E to K respectively, then:
(1) M(a;E) = M(H;By) X M(K;Ey).
(2) F(a;E) = F(H;Ey) X FK;Ey).
Proof: The proof follows the same pattern as that of
Theorem 2.1.

Before we go any further, it might be worthwhile to
illustrate the difficulties that will be encountered with

an example.
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Example 7: G =<a, b, c/a3 =p3 - c3 =1;
b lab = ¢ lac = a; ¢ be = ba>.

Ay =<0, 8,0/ 0a%=p3m6®1; [4,8] = [0,0] = [B,6] = 15
We observe that 2| [A | although 2 f |g].

The previous‘;xample shows that although G 1is a
p-group, Ao neednhot be a p-group. If G is a p~gfbup,
and p| IAO[, we let A% denote a Sylow p-subgroup of A,
It pf |ajl, we let A¥ = 1.

Theorem 2.31: If G is a p-group of order pn, then:

(1) A, 18 a p-group of class < n-1  and A")f A

(2) The Sylow p-subgroup Ag of Ao is normal in A(G).
(3) ax = Ay

(4) A p'-subgroup of A, 1s abelian.

(5) A, splits over A¥.

Proof: 8Since G 1s a p-group, all chief factors of
G have order p. 8ince ]GI = pn, a chief series of @
must be of length n. Let 8: G =G, > G 2 022--12% =1
be such a chief series. The group Ao must fix all normal
subgroups of G. Therefore every © e Ao must induce an auto-
morphism on each chief factor Gi/ G, 1=0,1, ..., n-1.
Since A(a,/ G,,,) 1s cyclic of order p-1, Al must induce
the identity on Gy A (T for 1=0,1, ..., nil. Consequently,
Ay ¢ A(s). By Theorem 2.10, A(s) 1s a p-group and therefore
Ay 18 a p-group. By Theorem [T-5] , A, 1s a p-group of

class < n-l;
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Let Ag be a Sylow subgroup containing A(') + Since any
subgroup containing the commutator subgroup is normal, we have
that Ag 18 normal in Ao' The Sylow subgroups- of a group
are conjugate; therefore Ag 1s characteristic in Ao. Since
A, 18 normal in A(a), A% must be normal in A(@).

If s 1s a chief series for @, then 8,(8) = a(s).
By Theorem 2.10, sn(s) is a p-group. Since A=, DD(G)sn(’)’
we must have that An is a p-group.

Let 8: G = Goz Gla..zan =1 be a chief series

for @. If © ¢ A% , then G? = @,. Therefore, 6 must

induce an automorphism on 01/ °1+l' Since Ag is a p-Sylow
subgroup of G, [6| = p®. oOn the other hand, MGy / 0y,)

18 cyelic of order p-1. By Lemma 2.7, © /g, ERER

hence © ¢ 8 (s) . Since s was arbitrary, © ¢ . €q)(o)sn(s) = A
therefore AgsAn. Since A,ﬂ 1s a p-group and Ag is a

p-Sylow subgro;p of Ao, we must have Ag = An »

Let H be a p'-subgroup of Ao’ then H'< Aé .

Since IA")I =p’and H' 1sa p'-subgroup of A , we
must have H' =1 or H 1s abelian.

We may now apply a theorem by Schur-Zassenhaus [T-6]
from which we obtain A, = A% H and A¥N H =1, where H
is a p'-subgroup of Ao‘

If @& 1is a p-group, Ao need not be a p-group, as

may be seen from Example 6. We have, however, the following

result:

Theorem 2.32: Let @ be a p-group. Then‘x
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(1) If H is a normal nillpotent subgroup of A,s then
H 1is a p-group.
(2) ‘“Ao) is a p-group.
(3) 1r A, 1s nilpotent, then A, 1s a p-group.

Proof: Let Q be a Sylow g-subgroup of H, where q # p.
Since H 1is nilpotent, Q 1s a characteristic subgroup of
H. 8ince H 18 normal in Ao’ we must have that Q is
normal in A,- The inner automorphism group I(G) is con-
tained in A , and therefore [Q,I(6))< [Q,AJ < Q. Since
I(@) 1s a normal subgroup of A(G), we must have [ 1(a)]
€1I(a). Therefore [Q,I(¢)] < @N I(G) =1, since Q 4is
8 q-group and I(G) 1s a p-group. Therefore Q and I(@)
permute, and by Theorem [T-7] we have that M(a;Q) < Z(G).
Since (|Q|,p) = 1, we have by Theorem T-8 that a' > z(a).
The group M(G3Q) < 2z(G) < @' and consequently Q must
induce the identity on G/¢(G). By Theorem [T-2], this im-
plies that |Q| = pk for some positive integer k. There-
fore Q=1 and all q-Sylow subgroups of H are equal to
the identity. Consequently H 1s a p-group.

Result (2) follows from (1), since ¢(A,) 1s a normal
nilpotent subgroup of Ao‘ If A° 18 nilpotent, then a
Sylow q-subgroup Q of A, 1s normal in A, and by the
first result Q = 1 and therefore Ao 1s a p-group.

Theorem 2.33: If G 1s a solvable group, then:
(1) Every normal subgroup of I(G) is normal in Ay
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(2) B, normalizes every subnormal subgroup of I(G).

Proof: Let a e Ay 5 © € I(@G). Let H @ I(@). By the
Homomorphism Theorems, there is a one to one correspond-
ence between the normal subgroups of I(G) and the normal
subgroups of @, which contain the centér of G. Let H
correspond to H4 G. Let © ¢ H and let g ¢ H such
that the inner automorphism induced by g is 6. If X ¢ @,
then x“-lea = (g_l(xa_l)g)u = (@)1 xg but g ¢ ®
and H < G; hence g® ¢ H. Hence the inner automorphism

induced by g% ¢ H. Hence a %

6a ¢ H and H« Ao and
(1) follows.

Let H be a subnormal subgroup of I(@). Let H be
the subgroup of G that corresponds to H wunder the homo-
morphism of @ onto I(G). Since Haa I(@), we have Ha <« @.
If ©.¢ H, let © be induced by g € @. If x ¢ G, then

a"tea a"1,60 -1 071 @ eyt a =
= =(x* ) =("x g) =(g) xg. Sinceg e H
and a e Bo’ then gu e H hence a_le a € H and (2) follows.

We will now generalize Theorem 2.31 for nilpotent
groups, the proof of which follows the same pattern as
that of Theorem 2.31.

If @ 1s a w-group, and Ao possesses m-elements, we
let A% denote a maximal 7-subgroup of A,. If A, isa
T'-subgroup, we let Ag =1,

Theorem 2.34: If G 1s a nilpotent w-group, then

(1) A, has unique maximal T-subgroup A¥, which
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contains every r-element and every w-subgroup of Ao'
(2) A% 1s the Hall w-subgroup of A,
(3) A, splits over A%.
(%) A(') is a 7-group and a r'-subgroup of A, 1s abelian.

We shall now proceed to derive a few properties far

Ao in case @ 1is supersolvable.

Theorem 2.35: If G 1s a supersolvable T-group, then
(1) A} 1s a 7-group and A, 1s nilpotent

(2) A, 1s solvable

(3) A 7'-subgroup of A, 1is abelian.

Proof: If @ 41s supersolvable, then every chief series
of @ has chief factors of prime order. Let s be such
a chief series, i.e., 8: @ = G, > Ol> >0n = 1., Then
G: =@ for all i, for all 6 ¢ A,+ Moreover © e Aj
induces an automorphism on @,/@G, .. Since |A(Gi/ai+1)|
= p-1 and A(01/01+1) is cyclic, A} must induce the
ldentity on @,/@,,, for 1 =0,...,n-1. Hence A; < A(s).
By Theorem 2.10, Ay 1s a w-group, and by Philip Hall's
Theorem T-5 , Aé is nilpotent.

Since A! 1s nilpotent and Ao/Aé is abelian, the
group Ao is solvable.

Let H be a 7'-subgroup of Ao' then H' < A‘;;
but Ay, 1s a w-subgroup of Aj. Consequently H' = 1 and

H is abelian.







CHAPTER III

In this chapter we will try to answer the following
question: If a group G admits an automorphism that
fixes all subnormal subgroups, what conditions, if any,
does this impose on the structure of @G? We will re-
strict our attention to solvable groups.

In particular we will investigate how the groups
F(G;E) and M(G;E), for a subgroup E of B,, are imbed-
ded in @. Purthermore, we will place conditions on the
groups M(@;E) and F(G;E) and see what this must imply
about the structure of @G. We will begin the chapter with
two results which hold for arbitrary automorphisms of the
group G.

Next we will focus our attention on automorphisms in
B, for which F(@;8) N M(@;6) = 1. We saw in Chapter II

(]
that although @ 1s a w-group, B_ need not be a T-group.

()
For the r'-elements of Bo, as well as a more general class
of automorphisms, we obtain the condition that F(G;0)N M(G;e)
= 1. For a group @, it is not only possible that B° may
contain a 7'-element, but that a subgroup of B , or even
the whole group Bo’ is a 7'-group. The condltion that B,
be a 7'-group if G 4is a w-group, places strong conditions
on the group .
We will next turn to the inner automorphisms of G

which are elements of Bo, and in particular, we will try

43




44
to determine some properties of the group ﬁ, which has
the property that if x ¢ N, then the inner automorphism

induced by x fixes all subnormal subgroups.

Lemma 3.1: Let E be a subgroup of the automorphism
group of a group G. Let M = M(G;E) = <x9x_1 / x € G and
6 e E) and F = F(G;E) = (g € G / ge = gJ.

If W 1is the subgroup generated by M and F, then

M(W;E) = M(M;E).

Proof: By Theorem 1.9, we have that for any subgroup E
of A(G), M is normal in G. Hence if W is generated
by M and F, then W must be the product of M and F;

therefore W =M + F. If w e W, then w = mf with m e M

1

o (mf)e(mf)- =

and f ¢ F. Therefore if 6 € E, wsw_

e nt = P!, Hence ww! ¢ M(M;E) for all 6 ¢ E
and for all w ¢ W. Consequently, M(W:E) = <w9w_1/w ew
and 6 ¢ E) = M(M;E); but M =W and therefore M(M;E) =
M(W;E); hence, M(W;E) = M(M;E).

Theorem 3.2: Let 6 Dbe an automorphism of G and
M = M(G:6), F = F(G;8). If F(M;6) = 1, then G is gener-

ated by M and F.

proof: If F(M;e) = 1, consider the map

for x ¢ M. Then o is a map from M into M(M;6). Now

. i (o QR0 Bia=d s
o is a one to one map, for if x° = ¥7 then x'X

yey_l or (y_lx)e = y_lx. Hence, y_lx e F(M;0) =1 or
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A :
Y X =1 or x =y. Since M(M;6) = M(G;0) and the group
G 1is finite, we must have M = M(M;6). 1In particular, if

X € M, then x = yey_1 for some y ¢ M. Let Mg

6; =

be a coset of M in G. 1If 9~ = g, then let g be the

coset representative of M. If ge # g, then geg—1 €M

and geg_l # 1. Hence there exists an x € M such that

-1 6 -1 )9 =

Ox7t - g°g"". Therefore, (=ig)” =y it

g) and x'g e F;
but x_lg € Mg. 1In this case, let x—lg be the coset
representative of Mg. Hence there exists a collection of
coset representatives for M in G that is fixed element-
wise by 6. If g € G, then g € Mx with x € F; hence

g *=mx with me M and x € F, or G is the product of

M and F.

The hypothesis of the previous Theorem that F(M;8) = 1
is equivalent to F N M = 1.

Let us now turn our attention to automorphisms that
fix all subnormal subgroups of G. As in Chapter I and II,
we will restrict our attention to solvable groups. The
next two theorems will show that the action of such an auto-
morphism is to a great extent characterized by its action
on the Fitting subgroup F(G) of G. Since the work in
this chapter depends upon some of the results of Chapters I

and II, we will summarize these results, as in the following

two theorems:

Theorem 3.3: Let G be a solvable group and E a

subgroup of Bg(G); then:
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(1) If H 1s a subnormal nilpotent subgroup of @,
then H and all subgroups of H are fixed by E.
(2) If H 1s a subnormal nilpotent subgroup of @,
and if © 1s an element of E, then @ restricted
to H 18 a dilation of H. Hence if h ¢ H,
n® = 00 iore (s(nse), |n|) = 1.
(3) If H 1s an abelian normal subgroup of @
and © 1is an element of E, then © restricted

to H 1s a power automorphism of H and he =

h'(o) for all h ¢ H where (8, exp H) = 1.

Theorem 3.4: Let G be a solvable group. Let F*(G)
be the Fitting subgroup of @G. Let E be a subgroup of
B,(@). Then:

(1) M(G;E) = ¢ xex-l/x € G; © ¢ E> 1s contained in

the norm of F*(G).
(2) If @ ¢ E is a power automorphism on F#(@), then

M(G;0) € Z(F#*).

Proof: (1) follows from Theorem 2.23.

If © ¢ E, restricted to F(@), 1s a power auto-
morphism, let X € G, f e F*#(@). Then (x'lfx)e =
(x'lrx)’(e), since © 1s a power automorphism on F¥, and

xLrx ¢ F#(@). Therefore (x"."fx)e - x1e8(0)y .

(xo)-lro!o & (x°)'lr'(°)x° and (xex-l)—lfs(e)xex-l - ¢8(0),
Since xex'l centralizes f’(e), it must centralize every
power of r‘(e), but < £3> = ¢ £> ; hence *x%x71 centralizes

f. Since f was arbitrary, ©Ox1 e OG(F*) = Z(F*). But,
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X was arbitrary; consequently, M(G;G) . <Xe><‘1 / X € 9>

= z(F*).

The last two theorems show that a careful analysis of
the action of the automorphism on the Fitting subgroup of
G, should reveal information of the action of the auto-
morphism on the whole group G. 1In most instances, we
will place a condition on an automorphism 6 € By (G), and
see what this must imply about the structure of the Fitting
subgroup. From the structure of the Fitting subgroup in
turn, we try to obtain some information about the structure

of the group G.

Lemma 3.5: Let E be a subgroup of By and let

M = M(G;E). Then:
(1) M(M;E) is an abelian subnormal subgroup of G.

(2) M(M;E) = z(F*), where F* 1is the Fitting sub-

group of G.

Proof: 1In Chapter II, Theorem 2.23, we have shown
that M(M;E) is contained in the center of the Fitting

subgroup of G. Since this is an abelian group, this must

imply that M(M;E) is abelian. In Chapter I, Theorem 1.9,

we have shown that M(G;E) is a normal subgroup of G.

Since M(M;E) is a normal subgroup of M(G;E), we must

have that M(M;E) is subnormal in G.

Theorem 3.6: Let E be a subgroup of Bg(G), and

M = M(M;E) iff F(M;E) = 1,

M = M(G;E), and F(G;E) = F? then

In this case, M is an abelian group of odd order.
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Proof: Let M = M(M;E) and let us assume that
F(M;E) ¥ 1. We will show that this leads to a contra-
diction.

If M = M(M;E), then by the previous Lemma, M is
an abelian normal subgroup of G. By Theorem 3.3, we have
that for @ ¢ E and any g ¢ M, ge = gs(e), where
(s(e), exp M) = 1.

If F(M;E) ¥ 1, then FN M= F(ME) #1. Let xe FNM,
such that |x| = p. Then if © ¢ E, x° = x*(®) gince
X € M. One the other hand, xe = x 8ince x € F. Con-
sequently x’(e) =x and s(6) =1 mod p for all © ¢ E.
Since © 1s a power automorphism on M, we must have fory
all g e M, ge = g’(e), where 8(6) =1 mod p for all
® ¢ E.

Let H be a maximal subgroup of M of index p.
Then H 18 normal in M, hence subnormal in @&, or I-fe =H
for all © ¢ E. Consequently every © ¢ E must induce an
automorphism on M/H. Let g € M and consider the coset
Hg. Por © ¢ E, (Hg)® = Hz®(®) but, 5(6) =1 mod p or
8(8) = 1 + kp; therefore (Hg)9 = Hss(e) = ngl™P = H(Sp)ks-
8ince the index of H in M 1is equal to p, (gp)k e H;
consequently He® = H(gp)kg = Hg. Therefore He® = Hg
end g% 1 ¢ H forall g ¢ M and for all @ ¢ E. Hence,
MOGE) = <x°x 1 /x eM; 6 ¢ B> < H¢M Since M(ME) =N,
we have a contradiction. Consequently if M(M;E) = M, then

F(M;E) = 1.
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Conversely, let F(M;E) = 1. By Theorem 2.23, we have
that M is nilpotent and of class 2. Therefore, M is
a direct product of its Sylow subgroups. Let M = Py X Py
X: ey K Pn where Pi is a pi—Sylow subgroup of M. If
M is not abelian, then there exists a pi—Sylow subgroup
Py which is nonabelian. Moreover, P; is a subnormal
subgroup of G. Let 6 ¢ E; then Pf =P, and 6 is a
dilation of P;. Since the dilations of a nonabelian
p-group form a p-group, we must have by Lemma 2.7, that

if x ¢ P of order Py then xe = X. Since 6 was

arbitrary, we must have xe =x for all 6 € E. There-
fore, x € F(M;E), a contradiction. We may assume then,
without loss of generality, that all pi—Sylow subgroups of
M are abelian, and consequently M is abelian.

Since M 1is abelian, we have for g ¢ M, and 6 € E
that ge = gs(@) where (s(6), exp G) = 1} therefore
geg—I = gs(e)_l. Let the greatest common divisor of 5(9)—1
and |M| be d(6); i.e., d(8) = (s(6)-1, |M|). We will
show that the greatest common divisor of the d(6) for
6 ¢ E is equal to 1. If the greatest common divisor of
the d(6) for 6 ¢ E is not equal to one, then there exists
a prime p, such that p divides d(6) for all 6 € E.
Hence d(6) = p t(6); then s(6)-1 = p u(6) and
s(6) =1 + pu(6). Since p divides the order of M, p
must divide the exp M. Therefore exp M(G;E) = pw, where
If w =1, then M has exponent

w 1is a positive integer.
. 0 xs(e) = x17P u(9)=

p and if x ¢ M of order p, then
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x for all 6 ¢ E. Consequently xe = x and

£ x(xp)u(e) =
X € M N F = F(M;E). This is a contradiction since F(M;E) = 1.

Therefore w # 1; hence MY = (g% / g e M(G:E)) # 1. 1If

9" € M(G;E) and g” # 1, then for 6 ¢ E, (g")8 = (g¥)1*Pu(e)

wpu (&
wgwpu(6) _ gw(ng)u(a) = g". Therefore, ¢ ¢ F A M =

(g

F(M;E) but F(M;E) = 1, a contradiction. Therefore the
greatest common divisor of the d(e), for 6 ¢ E, is equal
to cne.
Since the greatest common divisor of the d(e) for
6 € E 1is equal to one, we must have, for every P; dividing

[M|, a Si € E such that p; X s; - 1. Let M =P; X P, X

eee X Pn be a direct product of its pi—Sylow'subgroups, P,

ny i1 o Bt .
where lPi[ =P;". If g, ¢ P;, then 9,79, 9 and
_ Gi bad si—l
l9; 95 = |9y = lgi[ since p, 1 Si_l’ Consequently
0 6,

i -1 o i -1 =
<gi Gy o= (gi>. Therefore M(Pi;ei) = <gi 9; i 9; ¢ Pi> =
; o . < X < Y 4

P,. Since P, = M(Pi,ei) Z M(PE) = P., we must have

M(P,;E) = P,. Therefore M(M;E) = M(Py;E) X M(Py;E) X
JE) = = .E). £
cee X M(P JE) = Py X Py X ... X P, = M(G;E). Hence the
first part of the Theorem follows.
If we assume that M(M;E) = M and 2 divides {M[, let
x ¢ M(G;E) such that |x| = 2. Then, since every 0 ¢ E
0.

must fix the subgroup generated by x, we must have x = x

for all 6 € E. This leads to x ¢ F(M;E), a contradiction.
One would be inclined to prove Theorem 3.2 for an arbi-

trary subgroup E of Bg(G). That this cannot be done can

be seen from the following example:
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Example 8: Let @ = 83, the symmetric group on three
letters. Then @ 1is generated by a and b, subject to
defining relations 83 = b2 = 1 and b lab = a2, The only
composition series of @G is the chain @ ><a> > 1. 8Since
<a> 1s the only subgroup of G that is normal in G, we
must have that < a> 1s characteristic. Therefore BO =
A, = A(G). Let E = A(@) =<a,p/ a3 = 52 =1; B_laﬂ =
a?> 5 then F(G;E) = 1, M(@;E) =<a> . Hence F(G;E) N
M(G;E) = 1, but W = F(G;E) - M(G;E) = Ag < e

Theorem 3.7: Let G be a nilpotent group and E be a
subgroup of B (@). If F(G;E) = 1, then G = M(G;E), and

G 1s abelian of odd order.

Proof: 1In Theorem 3.6, we showed that the condition
F(M;E) = 1 implies M(M;E) = M, where M = M(G;E). To
prove this result, consider the following: the only property
of M = M(G;E) that was used, was that M(G;E) was nil-
potent. Therefore, if we assume that G 1s nilpotent, then
F(@;E) = 1 will imply that @ = M(G;E), by the same argu-

ment as was used in Theorem 3.6.

Definition 3.8: A group G 1s sald to be a seml-
direct product of its subgroups H and K iff H i1s normal

in @, G =HK and HNK=1.
Lemma 3.9: Let E be a subgroup of BO(G). Let
M = M(G;E) and F = F(&E). If G 1s generated by M

and F, then:
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(1) FPAM=1 and G is a semi-direct product of
M and F.
(2) M =M(M;E) = M(F*;E), where F* is the Fitting

subgroup of G.

Proof: If G 1is generated by F and M, by Lemma 3.1,
we must have that M(M;E) = M and, by Theorem 3.6, this
implies that F(M;E) = 1; but, F(M;E) = F N M = 1. From
the normality of M in G, we obtain that G is a semi-
direct product of M and F.

The Fitting subgroup F* 1is contained in G. Hence
M(F*;E) = M, but M < F*; therefore, M(M;E) = M(F*;E).
Since M = M(M;E), we must have M(F*;E) =M = M(M;E) =

M(F*;E) or M(F*;E) = M.

Theorem 3.10: If 6 € Bo(G) and F = F(G;6) and
M= M(G;e), then the following are equivalent:
(1) G is generated by F and M
(2) G 1is a semi-direct product of M and F
(3) M = M(M;6) = M(F¥;6) and is an abelian group of
odd order

(4) FNM=1.
Proof: The Theorem follows from the previous Theorems

and Lemmas: (1) => (2) by Lemma 3.9, (2) => (3) by Lemma

3.9 and Theorem 3.6, (3) => (4) by Theorem 3.6, (4) => (1)
by Theorem 3.2.
For a subgroup E of Bg(G), we have the following

result.
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Theorem 3.11: Let E be a subgroup of By(G) and
let F = F(G/E), M = M(G;E) and let F* (G) denote the
Fitting subgroup of G. If F n M =1, then
(1) M = z(F*(G)).
(2) M is a Hall subgroup of F*
(3) F* is generated by M and F(F*;E).

(4) Every 6 ¢ E is a power automorphism on F*.

Proof: By Lemma 3.9 we have that M = M(F*;E). We
will show that M(F*;E) is a Hall subgroup of F* and

that M(F*;E) = z(F*).

Since M(F*;E) N F(F*;E) =M N F = 1, we have that
M(F*;E) N F(F*;E) = 1. Now M(F*;E) = N(F*), the norm of
F*. Hence if x € M(F*;E), then the inner automorphism

induced by x is a dilation on F¥. Since the dilations

of a group commute, we have for x € M(F¥;E), y € F(F¥;E)
G)x = ( x)e' Since y € F(F*;E), we

and 6 € E, that (y Y

have that y8 = y; therefore (yé)x = y*. on the other

hand:
&) = ()
. |

9)—1y9x6
e

-1
VKT s

n
x

-1

Ix 7ty (x¥x 1) =y

= 6,-1
Therefore x 1yx = (x°) "yx'; hence x'x
Consequently Fx e CF*(<Y>)' Since x, y and 6 are
arbitrary, M(F*;E) = <x6x_1 [/ x e F*, 6 ¢ E) 2 Cp, (F(F*;E)).

)
We are now in a posifion to show that (|M|, |F(F*;E)[) = 1.
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If p is a prime divisor of |M(F*;E)| ana |F(F*;E) |,
let x € M(F*;E), y € F(F*;E), such that x| = |y|

If 6 € E, then

(XY)8 = (xy)s(xyje)l since xy € F*
= xs(xy,e)ys(xyte)/ since x centralizes vy.
On the other hand, (xy)e = xsys
= xys(y79), since x € F(F*;E).
Therefore xs(xy;e) ys(xy;e) = xys(y79) or

- -8
iy (xy:0) o

= yS(¥i8) =s(xy:0)

Since F(F*;E) N M(F*;E) = 1, we must have X—xxs(xy;e) =

and ys(xy;é) y—s(y;e) = 1. The former gives xs(xy;e) R
1

or s(xy;8) = mod p; the latter gives ys(xy;e) =

s(yse) or s(xy;6) = s(y:;6) mod p. Consider the congruence

Yy
system:
s(xy;6) = 1 mod p

s(xy;6) = s(y:6) mod p.

Consequently, s(y;6) =1 mod p or
48 = ys(vie)
y1+kp
= ()
=y, since Nt

Hence y ¢ F(F*;E) NM=1, a contradiction. Hence

(M|, |F(F*;E)|) = 1.
Let P be a p-Sylow subgroup of F*. If x € P such

that x6 = x for all 6 ¢ E, then x e F(P;E). Consequently

M(P;E) = M(G;E) must be equal to the identity, since
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(|F(F*:E)], [M(F*:E)|) = 1. Hence, if p divides [F(F*;E)|,
then the p-Sylow subgroup of F* is contained in F(G;E).
Hence F(F*:E) is a Hall subgroup of F* and is chéracter—
istic in F*. Hence F(F*;E) has a complement K in F*,
We claim that M(G;E) 1is contained in K, for if g e F¥*,

fk with f ¢ F(F*;E), k ¢ K; then for 6 € E, geg_l =

" as Bl
(kf)v(kf) = x’k™*. Hence M(F*;E) = M(K;E) = K. Using

g

F(K;E) = 1 by Theorem 3.7, and the fact that K is a nil-
potent group, we have M(K;E) = M(G;E) = K and F =
F(F*;E) x M(G;E). (2) and (3) follow.

Since M(F*;E) 1is abelian, we must have that every

6 € E must induce a power automorphism on M(F*;E). 1If

e _ s(8)

X € M(F*;E) and y € F(F*;E), then x° = x where

s(6) =1 mod exp M and ye =y. If g e F*, then g = xy,

with x € M, y e F(F*;E). Therefore:

g® = (xy)®

o xs(e)y
=l e
= x'y
= (xy)t and € is a power automorphism
on F*. Here, t is the solution to the congruence system
x = s(6) mod exp M
x = 1 mod exp F(F*;E).
Since (exp M, exp F(F*;E)) = 1 and exp M exp F(F¥;E) =

exp F*, the above congruence system has a unique solution,
modulo the exponent of F¥*.
In Chapter II we saw that a solvable m-group may admit

i '
automorphisms 6 € Bg, whose order is a 7'-element. For
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these automorphisms,as well as a more general class of auto-
morphisms, we are in a position to apply some of the pre-
vious results. We will start with a fundamental theorem

which will be needed in what follows.

Theorem 3.12: (62 5y X Jaschke) Let B be a group of

automorphisms of a group G, U a solvable subgroup of G,
and let M be a collection of cosets of U in G. If

(IBl, |[u]) =1 and B leaves U invariant and permutes

the cosets of M, then there exists a collection of coset repre-
sentativesfor the cosets of U in G which remains fixed

elementwise by B; and the B-fixed subgroup F(G;B) is a

supplement for U in G.

Proof: For the cosets of M let K = (ry, Ty, ..., rn)
be a corresponding collection of coset representatives.
5 € K will denote the coset representative of the coset
Ug € M, which contains the element g of the complex UK

of G. sSince B permutes the cosets of M, we have for

a € B, g € UK:

(Ug)? = ug® = ug® with g% ¢ K.
0 22 =3
Hence there exists ug,a € U such that g = ug,ag
For q,B € B, r € K we have:
o - B
rtSu T
“aB T e b,
a af - ayB - P a
¥ p = ur,aﬁr (urlar ) urlau__
5B

By the equality of coset representatives, we have:



5]
a u
r,af r,a “— .
B
g~1 Pt
Hence (1) u” =q uP y
r,af b oY o4 =
r,p

Consider (1) for all B8 ¢ B and fixed a € B and fixed
r € K. As B runs through B, we obtain ]B[ equations

of type 1. If we multiply these |B| equations and let

-1
* (=)
w. = u; ~ rwWe obtain
BeB o
-1 -1 -1
u*Q: T U.(QB) a = uB € o uﬁ 2
b BeB r,af BeB r,af acB .00 ;a i
,

The elements u ¥ with g e UK, vy ¢ B, permute modulo

s |
U'. Hence, letting uX = 7 u? , we obtain
g 9.8
peB
-1
a -1 .
(2) uw¥ =7 u L u = uiﬁi WUE_ = ulﬁg u*_ mod U'.
feB 2,5 8 £
Since (|B|, |U|) = 1, we have that [B| has a unique in-
-1
verse ‘B|_1 modulo the order of wu. " , and since uglﬁ[
=u mod U' we have:
g /4
SN, =a R, T ;_.= u r% mod U'.
(3) (u.x) u-r L Yy -
r o

for @ € BT €k

U' is characteristic in U; hence U' remains invariant

under B. Hence B leaves U' invariant and permutes,

according to (3), the cosets:

-1 -1 g
Ut ULy Ut urz rg ... of U' in G.
1
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Apply induction on the solvable length of the subgroup U,
assuming the theorem holds for all solvable subgroups whose
derived length is smaller than that of U. Then there
exists for the cosets U’u;lrl " u"u;: s eso0of ' in a,
a system of coset reprasentitives K#* -(rf ’ r‘a’ s sos)s

which 1s mapped onto itself by B. Since U'u;l

r C Ur
for every r e K, then K% is also a collection of coset
representatives K which is mapped onto itself by B. If
B leaves every coset of U 4in @ invariant, then K

remains fixed elementwise and hence K < F(G;B). Hence,

for every g ¢ G, we have g ¢ Uk or g=uk with u e U,
k e K < P(@;B); hence @ = U. F(@;B) and the theorem

follows.

Theorem 3.13: Let E be a subgroup of BQ, such that
(8|, |M(a;E)|) = 1; then:
(1) @ 4s the semi-direct product of M(G;E) and
F(asE).
(2) M(a;E) 4is a normal complement for F(G3E).
(3) M(a3E) = M(M(G;E);E) = M(F*;E).
(4) M(@G;E) 1s an abelian group of odd order. '

(5) Every © ¢ E induces a power automorphism on F*,

Proof: By the previous Theorem, we have that @ 1is
generated by F(G;E) and M(GE). By Lemma 3.9 F(G3E) N
M(G;E) = 1 and M(G3E) = M(MG;E);E) = M(F*;E). By
Theorem 3.6, we obtain (4) and by Theorem 3.11, we obtaln (5).
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At this point it might be worthwhile to give an example.

Example 9: Let G; = <a,b,c /a® =b3 = c3 = 1} [a,b]
= la,e] = 1; [b,c] = a), |G =33, 6; 1is nilpotent and
Gi = ¢(Gy) = 2(G6,) =<a)>. If 6 ¢ Bo(Gy), then 6 must
fix all subgroups of Gy; moreover, since G; is a non-abelian
3-group, we must have that Bo(Gy) 1is a 3-group. Hence 6
has order a power of 3. Since |[{ap| = [<b>| = [{D| = 3,
then ae =a;b =b; c =c. We must have that 6 in-
duces the identity on the subgroups <a) , <bp and {c).

Hence 6 is the identity on G; and Bg(Gy;) = 1. Let

G=<G; , 4| a2 =1; [a,d] = [b,d] =1 ; [d,c] = cD}

then Bo(G) = 1. For if 6 e By(G), then 6 restricted

to G; is a dilation of G;! hence 6 must induce the
identity on Gj. Since ]G/Gl| = 2, 6 must induce the
identity on G/Gl. Hence 6 must belong to the stability
group of the chain G > G; > 1. Consequently xex_1 € 2(Gy)
=¢<a) for all x € G. If de = d, then 6 is the identity
on G. If ded_1 # 1, then ded_1 =a or ded_1 = a?;
then d° = aa or a? = a%d,; then |d6| = |a| |d]| or [ds|
, 1% =6;but (& = |a| = 3,

€ =z d and 6 is the identity on

= |a%| |d|. At any rate

a contradiction; hence d

G.
We are now in a position to give an example of a super-
solvable group, admitting a subgroup E of Bg, such that

(el [e]) = 1.
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Example 10: Let G = G x Ci1, where G is the group
of the previous example and Ci1 1is the cyclic group of
order 11. Let C;; = <{e/ell = 1>. Since (]G[, |C11[) et 1

the map,

@

: e — e? x—> x for all x € G is an auto-

morphism of G. Since & is a dilation on Cy;1 and a

|

dilation on G and (|G|.|cy1|) =1, € is a dilation of
G. Now [6| = 10; consequently (le]. [e]) = 1. mM(G:0)

=Cy1, F(G;6) =G , G = F(G;6) x M(G;6) and all other

properties of the previous theorems can be shown to hold.

The previous examples show that a solvable group may
admit automorphisms 6 e Bg, such that ([6], [G|) = 1. The
next example shows that the whole group By can have order
relatively prime to the order of the group G, even though

the group is not nilpotent.

Example 11: Let G; =<a,b,c /a7 =b7 =c7 =1;

[a,b] = [a,c] = 1; [b,c] = ay. The same argument as in
the previous example, shows that Bo(Gy) = 1. Let G =
{G;,d / a =1, [d,c] =1, [d,a] =1, [d,b] = a%)>; again

Bo(Gy) = 1. Let G = GxCy1, where C;; is the cyclic group

of order 11 C;; = <(x / x* = 1>. Then By(G) =
< / %% = x2; ge =g for all g e G>. Then |Bo(G)| = 10,

Bo(G) 1is cyclic and (|Bo(G)]|. |e|) = 1.

For the case that ([Bo(G)|.|G|) = 1, we will obtain

some special results about the structure of the group G.

We first have the following definition:
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Definition 3.14: If 6 is an automorphism of G such

that M(G;6) = 2(G), then 6 is said to be a central auto-

morphism.

Theorem 3.15: If E is a subgroup of By such that
E is normal in A(G) and if ([E|, |M(G;E)|) = 1, then:
(1) E consists of central automorphisms.
(2) 6 = M(G:E) x F(G/E) where M(G;E) = Z(G) and
Flo:E) =%,

(3) F(G:E) 1is a normal Hall subgroup of G.

Proof: If (|E|, [M(G:E)|) = 1, then if 6 ¢ E,
6 induces the identity automorphism on G/M(G;E). By

Theorem 3.12, G is generated by M(G:;E) and F(G:E).

By Lemma 3.9, this implies that M(G:;E) = M(M(G:;E);E), and
by Theorem 3.6, we must have that M(G;E) is an abelian
group. Since M(G;E) 1is an abelian normal subgroup of G,
an automorphism 6 ¢ E must induce a power automorphism
on M(G;E). Since the power automorphisms of a group are
contained in the center of the automorphims group, the
group [E, I(G)] must belong to the stability group of

the chain G > M(G;E) > 1. Therefore, by Theorem 2.10,

[E, 1(G)] is a m-group if M(G;E) is a m-group. Since

E 1is a normal subgroup of A(G), we must have that

[E, 1(G)] = E. Since [E, I(G)] is a m-group and E 1is

a 7'-group, we must have [E, I(G)] = 1 and therefore E

and I(G) permute. By Theorem T-7, this implies that

M(G;E) = 2(G) and that E consists of central automorphisms.
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If M(G;E) = Z(G), then F(G;E) is a normal subgroup
of G. By Theorem 3.13, we have that G 1is the semi-direct
product of F(G;E) and M(G;E). Since F(G:E) 1is normal
in G, we must have that G is the direct product of
M(G;E) and F(G;E).

1f F(G:E) = 1, then F(G;E) is a Hall subgroup of
G. If F(G:E) # 1, let F* =Gy <Gy < -+ <G, =G bea
composition series joining the Fitting subgroup and G.
If we consider E restricted to G;, then E consists of
central automorphisms on G;; moreover, Gi = F¥*; therefore
Gy Z F(F*;E). By Theorem 3.11, we have that F(F*;E) is a
Hall subgroup of F*. Since M(F*;E) = M(G;E), we must have
that M(Gy;E) = M(G;E). If p divides (|F(Gy:E)|, [M(Gy:E)]),
then p does not divide |G| since F(F*;E) ZG; and
(IF(F*rE)i . IM(G:E)|) = 1. Let y ¢ F(Gy;E) and x ¢ M(Gy:E)
such that |x| = |y1 = p. We may choose x and y as coset
representatives of GI/G;. If 6 € E, then 6 induces a
power automorphism on Gl/Gi. In other words:

s(e) where (s(6), exp G/Gy) = 1. Hence
>6

(Giz)e = Gy2

(Gix)e = G;x6 = Gixs(s> and (Giy) = Giy = Gpy, but

1
o

y € F(Gy1;E); hence y6 = Ys(@) = y. consequently d(@)

8

' Ol =1
mod p; hence (Gix) = GiX %X

- Gix1+kp T Gix or €

9 .
Gy N M(Gy;E) = 1. Therefore x = x, hence x ¢ M(Gy:E) N

F(Gy:E) = 1; consequently x = 1, and ([M(GI;E)1,|F(G1;E)]) = 1.
We may assume (]F(Gi;E)], ]M(Gi;E)\) =1 for i =
1,2, ---, n-1. Then G' = F(G:E) and since G' =
F(Gn_l;E), we must have (]G'],]M(Gn_17E)l) = 1;
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but M(Gn-17E) = M(Gn;E). Consequently ({G‘i,[M(G;E)|) =1.
If y € F(G/E) and x ¢ M(G;E) such that [x] = |y| = p.
then the same argument as for G; shows that x € F(G;E) N
M(G;E) = 1. Hence |F(GE)| , [M(G;E)[) = 1, and the

Theorem is proven.

Lemma 3.16: Let H and K be subgroups of a group
G. Let G =H XK with ([H| , [K|[) = 1. Then:
(1) Any dilation on K or H may be extended to a
dilation for G.

(2) Any power automorphism on K or H may be ex-

tended to a power automorphism for G.

Proof: Let 6 be a dilation of K; let 6 be the
extension of 6 to G such that 6 restricted to H is
the identity. Then 6 is an automorphism of G. Let

g € G; then g = hk, with h € H, k € K.

ge = (hk)e =hx’ = hks(k’e) where (s(k;6),|k|) = 1.
Now if t 1is an integer,

gt = (nx

)t = htkt/ since H and K permute.
The congruence system
t = s(k;6) mod |k |

ti=2l mod |h| has a unique solution, modulo

. Hence 6 maps every g € G

the order of |hk|= |h| |k

onto a power gs(g;@) : hence 6 is a dilation of G.

0. =
If 6 is a power automorphism of K, then k~ =k,

where (s(6), exp K) =1 for all k € K.
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The congruence system
X = 5(6) mod exp K
bics =l | mod exp H
has a unique solution modulo, the exXp G, since (exp K,
exp H) = 1; exp K-exp H = exp G. Hence gg = (hk)§
= hks(s) = W% = (hk)x and € is a power automorphism

on G.

In case ([Bo|,[G|) = 1, the group G must have a

special structure as will be shown from the following theorem.

Theorem 3.17: If (|B°[,|G|) =1, then

(1) 6 = M(G;Bg) X F(GiBy), where M(G;By) = Z(G);F(GiBg)
Z G,

(2) F(GiBg) 1is a normal Hall subgroup of G.

(3) M(G:Bo) is abelian.

(4) 1f P, is a p;-Sylow subgroup of M(G;Bg),
then Pi is an elementary abelian pj-group.
Moreover, (%jl, [G])-

(5) Bg consists of power automorphisms.

(6) By 1is abelian.

(7) Bo(F(GiBg)) = 1.

Proof: Theorem 3.15 implies (1), (2) and (3).

The group M(G;Bg) 4is a Hall subgroup of G. Hence,

by the previous Lemma, any dilation or power automorphism
of M(G;By) may be extended to a dilation or power auto-

morphism of G. If 6 € Bo(G), then 6 must fix F(G;Bg)
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elementwise. Moreover 6 must induce a power automorphism
on M(G;Bg), since M(G;Bo) is abelian: therefore all of
its dilations are power automorphisms. By Lemma 3.16, 6
is a power automorphism on G. Consequently B, consists
of power automorphisms. Since the power automorphisms of
a group are contained in the center of the automorphism
group, we have that B, is abelian.

Since M(G;Bo) is abelian, we have that M(G;By) =

/

P PaaX. Pn where Pi is an abelian pi—Sylow sub-

group of M(G;Bg). Consequently, Bg(M(G:iBg)) = Bo(Py) X

BolPa) X ivs' X Bo(Pn). Since every dilation of Bo(Pi)

can be extended to a dilation for M(G;Bg) and consequently
to a dilation for G, we can consider BO(Pi)' By a
previous Theorem, we have that Bo(Pi) is isomorphic to
the prime residue classes module the exp Pi' Therefore if

n,-1i

n
exp P = pii then |Bo(Pi)\ = pil (pi—l). Consequently

if n, > 1, P. has a dilation of order P« Therefore G
i

. This

has a dilation of order = but Py divides [G
is contrary to the fact that (|Bo(G)|,|G|) = 1. There-
fore n; = 1, and P, is an elementary abelian p;—group.
By the same reasoning, we obtain that (pfl, le]) = 1;

therefore (4) follows.

Let F = F(G;Bg). Let Bg(F) denote the group of all

automorphisms of F that fix all subnormal subgroups of

G. Let 6o € Bo(E) extend 6 to an automorphism 6 of

G by letting @& be the identity of M(G;Bp). Let H be

o
a subnormal subgroup of G, then H = H for all a ¢ B(G).
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Since (‘BO(G)J'[M(Hfgo)[) = 1, we must have that H =
F(H;Bo(G)) X M(H;Bo(G)). Now F(H;Bo(G)) = H N F(G;Bg)

and since H and F(G;By) are subnormal in G, F(H;Bo(G))

is a subnormal subgroup of F = F(G;BO). Hence He =

) 6 - 2
F(H;Bo(G)) X M(H;Bo(G))" = E‘(I-I;BO(G))e b4 M(H;BO(G))Q. The
automorphism 6 fixes all subnormal subgroups of H and

is the identity on M(G;By). Therefore:

B = B(H:80(6))° x M(H;Bo(G))°
= F(H:Bo(G)) X M(H:Bo(G))
= H.

fixes all subnormal subgroups of G; con-

|

Therefore

€ Bo(G). If B € Bo(G), then 6 must induce

@]

sequently
the identity of F(G;Bo). Hence 6 is the identity and
Bo(F(G:Bg)) = 1.

Let us now turn our attention to the inner automor-

phisms of G that fix every subnormal subgroup of G.

Every inner automorphism ag of G is induced by an ele-

ment g € G. We would like to investigate the subgroup
N of G such that g ¢ N Aif ag the inner automorphism

induced by g, fixes all subnormal subgroups of G.

Lemma 3.18: N = 0N NG(H)
Ha<aG

Proof: If x ¢ N, then Hx = H for all Hd4aG; there-

fore x ¢ NG(H). Since this holds for all H44G, we must

have x ¢ N No(H) and N = N N (H) .
HaaG Ha 4G

then HS = H for all H<4G. Consequently

Conversely, if

X e N NG(H)/
H4 4G
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X € N and therefore N > n NG(H).
H<4G

Theorem 3.19: If G is solvable,then N = N N_(H)
H 44G i

has the following properties:
(1) N is a characteristic subgroup of G.
(2) If H 1is subnormal in N, H is normal in N.
(3) N is supersolvable.
(4) N' 1is abelian and N' = Z (F*), where F* 1is the

Fitting subgroup of G.

Proof: If o ¢ A(G), and H44G, then H%44G and

N.H)% =N (H%). Hence N = _n N. (Y = n N,(®H)
G G Ha G G
44G H 444G

and N is characteristic.
If H is a subnormal subgroup of N, then, since N
is normal in G, we must have H44G. Consequently N
NG(H). Since HZ N, this implies that H is normal in N.
Since N =G and G is solvable, we must have that
N is solvable. Hence N has a composition series with

composition factors of prime order and, since every composi~

tion subgroup of N is a normal subgroup of N, this im-
plies that N has a chief series with chief factors of
prime order. Hence N is a supersolvable group.

If x ¢ N, and H 1is a subgroup of the Fitting sub-
group F¥* (G) of G, then Hx = H since H d4<4G ; there-

fore x ¢ N must induce a dilation on F*. Since the

dilations of F* form an abelian group, then [x,Y]

x 'y 'xy must centralize F¥ Hence [x,y]e¢ Cg (F*) = Z (F¥) .
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Since x and y were arbitrary, this means that N' = Z(F*).

Since the subgroup N possesses such nice properties,
one might conjecture that N is nilpotent. This is not
the case, as may be seen from Example 1. 1In this example
G = S3, the symmetric group on three letters. Since Az,
the alternating group on three letters is the only sub-
normal subgroup of G, we must have N = G. Consequently
N is not nilpotent.

If every inner automorphism fixes every subnormal sub-
group of G, then this imposes strong conditions on the
structure of the group G, as may be seen from the follow-

ing Theorem.

Theorem 3.20: Let G be a solvable group. If 2 X G
and N = G, then:
(1) Every subnormal subgroup of G is normal in G.
(2) G 1is supersolvable and G' is abelian.
(3) All sylow subgroups of G are abelian; i.e.,
G 1is an A-group.
(4) 6 =G'K, G'NK=1 and K =N;(K) = CG(K).

(5) F*(G) = G'2(G).
Proof: (1) and (2) follow from the previous Theorem.

If G is supersolvable, then G has a Sylow Tower

for the natural ordering of the primes. In other words, G

has a normal chain:

128, = (TR N - ceeeS = G, where S_.
P1 SP1 P2 P1 P2 Pn i
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is a P;-Sylow subgroup of G and P1 Zpy 2 «e0 2 p
n

If H is a subgroup of Spl, then H is subnormal in
spl. Since SPx is normal in G, H must be subnormal
in G. By (1), H is normal in G. Hence, all subgroups
of s are normal i i i

p1‘ mal in Spl , and spl 1s a Hamiltonian
group. Since p is odd, we must have by Theorem T-9 that
Sp is abelian. The same argument as above shows that
3 i-1 i-1
T S / T S is an abelian subgroup of G/ T LS ve
= =1 Pj jm1 Ps

J 3 J
S T S is isomorphic to , we h
/ E pj p. spi W ave
that s is abelian for i = 1,2, °**, n. Therefore G .

:

is an A-group.

By a Theorem of Taunt [6], we have that G' can be
complemented. Therefore G = G'K with G' NK = 1.
Let x € NG(K) N G' , then for all y e K , [X,¥y] € G' N K

= 1. This implies that x permutes with all elements of

K. Hence x permutes with G' and with K; consequently

X € Z2(G) N G'. By another Theorem of Taunt [6], we have
that for an A-group, G' N 2(G) = 1, consequently, NG(K) = K.
Since K2 G/G' , we have that K is abelian; therefore

NG(K) s CG(K) = K.
Since G' = F* and F* 1is normal in G, we must have

F* = G'(F* N K). Let x € F¥ N K. Since K is abelian,

X permutes with K. Moreover x permutes with all elements

of F* since F* is abelian. Therefore x permutes with

G' and with K. Consequently x ¢ Z(G). Therefore
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F* N K 2= 2(G); Hence G'(F¥ NK) =G'Z(G). Since G' and
Z (G) are both abelian normal subgroups of G, we must have
G'Z(G) = F*. Therefore, F¥ = G'(F N K) 2 G'Z2(G) = F*.

Consequently, G'Z(G) = F*.




INDEX OF NOTATION

I. Relations:

[ Is a subset of

$ Is a proper subset of

< Is a subgroup of

i Is a proper subgroup of

Q Is a normal subgroup of
< Is a subnormal subgroup of

Is isomorphic to

ne

Is an element of

m

Is congruent to

II. Operations:
)

(] The image of G under the mapping ©
g* x Lax

£/8 Automorphism of S induced by f

G/H Factor group

[x,¥] The commutator of x and ¥y

Gn The nth derived group of @

X Direct product of groups

G:H Index of H 1in @

[8,K)] Subgroup generated by all [h,k], h e H, k € K
< > Subgroup generated by

{ } Set whose members are

{x|P} Set of all x such that P 1s true
|a| Number of elements in G

|g] Oorder of the element g

T1
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III. Groups and Sets, and Miscellaneous:

M(G;E)

F(G:E)

Automorphism group of G

Inner automorphism group of G

Dilation group of G

Chain of subgroups of the group G;
s:G=G0>G1>GZ>'-'>Gn=1

{EEA(G)‘Gi=Gi for i =1,2, ..., n)

| 6
6 ¢ Syl (Gix) = Gix}
Class of all composition series of G

Set of all automorphisms of G gixing all

subnormal subgroups

n S. (s)
seC (G)

Class of all chief series
Set of all automorphisms fixing all normal
subgroups

n S, (s)
seD (G)

<geg—1\ g € G; 6 ¢ E; where E 2 A(G))

(g € G| ge =g for all 6 € E; where
E 2 a(G))

Norm of G

(g € G| a4 € Boi Ay is the inner auto-
morphism induced by g])

Center of G

Centralizer of H in G

Normalizer of H in G

Frattini subgroup of G

Fitting subgroup of G

Symmetric group of degree n.
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APPENDIX

THEOREMS

Theorem T-1:
If @ is a finite group, the following are equivalent:
(1) @ 4s nilpotent.
(11) If M is a maximal subgroup of G, then M < G.
(141) H < @, then H $ Ng(H).
(4v) @ 1s a direct product of its Sylow subgroups.

Theorem T-2:
If @ 1is a finite p-group and a 1s an automorphism
of @, inducing the identity automorphism on G/¢(G), then

|a| = pi for some positive integer 1.

Theorem T-3:

If A and B are normal nilpotent subgroups of a
group G, then AB 1s also a normal nilpotent subgroup of

a.

Theorem T-4:

If @ 41s a solvable group having a maximum nilpotent character-—

istic subgroup H, then H > CG(H).

Theorem T-5: (P. Hall, 1)
If @ is a group and s: @ = G > G, > R 1

is a chain terminating in the identity and A(s) 18 the
stability group of s, then:
(1) A(s) 4s nilpotent of class<l/2 n(n-1).
Th
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(ii) I1If s is a normal chain, then A(s) is nilpotent

of class = n-1.

Theorem T-6:
If H is a normal Hall subgroup of a group G, then

H has a complement.

Theorem T-7:
If 6 is an automorphism of G, then the following
are equivalent:
(i) € 1is central

(ii) © permutes with all inner automorphisms.

Theorem T-8:
If G 1is a p-group and € is an automorphism of G
such that (\Qllp) =1, and 6 fixes all normal subgroups

of G, then the upper and lower central series coincide.

In other words, if 1 =29 22y =2(G) 2 -+ 22 =G is

the upper central series and 2° =G >~ z' >~ --- > 2% =1,
n-i

is the lower central series of G, then Zi =2 for

alls 3s

Theorem T-9: (5, pp. 253-254)

A group G is Hamiltonian iff G = A X B X C, where
A is a guaternion group, B is an elementary abelian 2-
group, and D is a periodic abelian group with all ele-

ments of odd order.

























