.91....- 31:2..- .111}: urn”... L’Axal‘hiuota ........ X- z 5. f - . a .. s l. .wmaufi._,b...va 2:? y L ‘ m m. . “lug: : J . . 2| E?! J a: ll. . ,. . 1.. 1 . 7) v . i u t... :31}!!! :55); . :1. E. 5.5. .3... :a . 1., . NW! \ . 1m. . e t; I. . l _ .1 Hhfihumnflx ._.1..sauur..sl. awn-Mr. .1. .319 R}. filin— .. a... gfilrmmvhbufiafinfixfi :3 1 a? 1 . .. . cl. afi 8‘ u . 5.. I u . si1}..i.1d$)tx titlflvh"; r v {“1 :.B‘Vh-Fiivi.bairxajljvafiflfiail. d... n Ju £39,...“ 91 5 ,iullia)..l111 it .1311... ll? ‘3‘ (I. tvfiikfilttlonicryilai ....... 315 3 .5. «a . . 5%.“.Sfihnw ......T.h§ 9.1,. ha... 5.822.513}... .. ,. . . . 7) .l .c .14 i an} 1“th ‘ b’i‘y‘ {1“ 7Q)K‘IAI‘|\ ‘5 I ll: . l) t, . 1.25. .. E. . d?hh1xfl.25ihht¢”¢$xc .{1k1rili0r 3! .' totaatlurtiht 5-iAg‘N‘P1HHxOAhPRh. thifl...fil.tluu. J5»? .. a : v ‘ .. . “an ’fi-ihnr:...»:..+.=J~.sallst:.v! rc: . .. 1.33:3; IVE... giQkfihfi‘VfiEli‘lall33.Y:l.fl.‘tL: bg‘tllphwul. an 52.1““ It! 3.. r A m. 3%..5‘1nigflahlrafl e. v . \ ~ .. .. 131i“??? #Ib‘ruvs....§llgwuiayh££$ff {it§.Yil.nfha\5;hnrifil.r3vvsuru , - Q Ili‘u‘HVA-Qn"ur..'htl¥\lllvI. 'i!‘ o, ‘ a . . pV-t‘ fl“ ‘p,|-\.1‘6!|’*' I... Iti§lt 4 1. -l ‘ v: vvvvv :{= 11 111.; It: . ‘ ‘ m. 2.753 till. i .1. z . ‘.firph.i’a.‘lr7I3‘l.Vi facufifirt 7 , .. a .x .39";th . is! .3. iv... ‘M.I..| 1-,!) C. .5 . “$5- 11:75.5!1913 I i: is. , It... . . . . _ 123‘s! w. . _‘ vihtfiirizfi‘al39i1lxitl 37..«§IA.I£...X‘O s. 3 «52‘ .‘I311 Kat nISII’Vfiahflszi :2. $3.45,}?! 7:? u if); . gain-hat...) nan-1.1 13.2. xgaui Infihgelafitififlltdv'nkI f , § . “wk 013%. t. «i: g' ‘ ‘ . .a..i..4?izfi§hzulu.PE“. Thiuruumuiihtgiéltit. ‘ . ‘ . ._ . hi: it}. ’ i§~fl..u.fi.u..t, .3 .xhurxiufiittlizrtuky . . . . .. 2.. : a . . . . . 2 1.3.: 11")...»fl» kittylwvsytp‘EEI-Iz: . .fi Lilian-kg 1a regrhhgiiii . , .V V . A Siggligi rt... ‘ . . a \ .y....ti\vt U I ‘3, ' i t’. l. a . glitlrg I! thIQ‘E-a: y . . ‘ splhflflmifiufl-gbzzs min-g5 unzinular g. .. , a I. . .23.}: I 21‘ Mb: I: 1th; 2.: :{lmgleasfil 33155 01.5: 9.. {Ila-5.3. v 1 :31 .\ {th‘rv II it 1:. :Innfikohrigig § Y. . I. 1:. 11.3.: li‘ VII. buzz! Lib-ti a t. :15. act . 3.... ‘ as: It 32.. 1!... :Isrilgalh .- I 30kg «.92. all: ,. 1!)... go XI . 9‘73; 0.: ii i titliiz M5 5‘... iv! a $13.4! (Ill:- , AS‘xLi-iu‘t z alight—{3.962. 1?: in “a I. I’l‘l ; ‘ l . i . , VINETIZA . m . §§§% . , Latin". % ~ , 1v: . I :. . . 3 \ >\\l . y . , m A? . w \ :Iu‘hb , h. Etiflfl‘iihig. igiiiniahWLKbuam %%5 ltjutitxié gttgfustitbfis x} .1.‘ stisgf ‘u- . $.46. it. .51..) hr. ) 6s gifi~§x§niigy \ $1.?“afvtsfifi Iii it. $.ll’lt‘.‘ ) K \ \ L.‘\‘t .lt‘vpb‘gikllhgilti 111‘. ... I\>B lr I .l _ [I y 1. .IV ‘35.}: I; 3 v \fii’ E B ‘1‘; fl. hilt ‘ )0 éggihA IM- .32.... I! at: It; . I . E. Era {zihlfittt $995151}?! .hlxlxsils \t. t I git} f. ‘ , . gaggiiz E7; . HOLE! aziéiitfiikl)’;s\i i{§§.§ i\5i.§\|il‘\t§ éiéhééug civflturvgg i‘i lain-3.72.... . «5.2.1! .11‘ I\, , TIDE ..§Muha.i?.§i%htvrxiiivig!s , 9180:... a Ziiizittiriflngalz ilzxtslls «:5! .5115): {32.3132 1: 5%. .ii‘itt}! . ,ulr. . 13 ill ., Kin.“ ‘ ii 1.1;. (I . Kai-3. ‘l‘ii. tutti: 31“}?[11‘ (1113‘ “g“; ‘43:!!!- Alihll‘z. all}; I‘ilb‘ :04... to? .7 .v! 11.. S.\.fn1.81\.l.v1.lyt\,.h‘ ((UNW Uflv‘ .23i1\3511kr5\11 Iifi‘i‘i“?!\f§.11%2u§il\ ME. bran. 3a». ... 1:33. 3.....3fisx121 um . 3,131? i, , . . 3413..« .1 :1 4.: x 3}! 2: . . .. ‘ 1x2 l;Z!3 .5. >1... £312.. . ..... .. I.......J..x........::.|<4 ‘x v. fill! ..L. A . m . L u! .11»! . ‘ I ”If i . . f . 111?. 2 fl .tynn; . . . K! WELL -.. "L'.1‘.)‘.Z.‘i=;..;' 2::L...~‘-;ex;-;t;e.2m"r Ara. 'rt ‘l h .. J J m t. 4‘ E Effie? 3.3.1? 0% 3%? 5. '57 £1?- " arehfiérsfiim- a "v 11* I O 49 £3,713) A . . , m?”~:.‘m 6‘35 xiv-er A Mflfimhflégguéam he”? 56.43. 0353 U a as id «135' sawemee trey ; This is to certify that the thesis entitled A HETEROGENEOUS CHEMICAL REACTOR WITH AN INTERNALLY ISOTHERMAL BUT ESTERNALLY NON-ISOTHERMAL CATALYST PELLET: SECOND-ORDER CATALYTIC REACTIONS presented by KYUNG JIN BAE has been accepted towards fulfillment of the requirements for MS’. eeeeeeeeamsfi. Wiper/W Major professor Date W MSU is an Affirmative Action/Equal Opportunity Institution MSU LIBRARIES m. RETURNING MATERIALS: Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below. A HETEROGENEOUS CHEMICAL REACTOR WITH AN INTERNALLY ISOTHERMAL BUT EXTERNALLY NON-ISOTHERMAL CATALYST PELLET: SECOND-ORDER CATALYTIC REACTIONS By Kyung Jin Bae A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Chemical Engineering 1983 -‘r’5/C) 13¢ ABSTRACT A HETEROGENEOUS CHEMICAL REACTOR WITH AN INTERNALLY ISOTHERMAL BUT EXTERNALLY NON-ISOTHERMAL CATALYST PELLET: SECOND-ORDER CATALYTIC REACTIONS By Kyung Jin Bae A 1-3-1 multiplicity pattern was found for the internally isothermal but externally non-isothermal catalyst semi-infinite slab with second-order catalytic reactions. The ranges of multiple steady states are generally rather narrow but expands slightly for certain physico-chemical parameters. For an isotropic and axisymmetric packed bed reactor with plug flow in the bulk fluid phase, axial convective heat transport and adiabatic conditions, a 3-1 multiple steady state pattern along the tube reactor was obtained. TABLE OF CONTENTS Page LIST OF TABLES . . . . . . . . . . . . . . . . . . . . iv LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . v NOTATIIONS . . . . . . . . . . . . . . . . . . . . . . vi INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1 THE KINETIC MODEL . . . . . . . . . . . . . . . . . . . 7 THE INTERNAL ISOTHERMAL, EXTERNAL NON-ISOTHERMAL MODEL OF THE CATALYST PELLET . . . . . . . . . . . 9 NECESSARY AND SUFFICIENT CONDITIONS FOR UNIQUENESS OF SOLUTION . . . . . . . . . . . . . . . . . . . 13 a. Dependency of Concentration on Temperature . 13 a-1. Variation of Concentration Profile with Temperature . . . . . . . . . . . . . . 1A b. Bounds for y . . . . . . . . . . . . . . . . 15 c. Necessary and Sufficient Conditions for Uniqueness of the Steady State: A Conservative Criteria . . . . . . . . . . . . 16 d. Van den Bosch and Luss Method for Uniqueness and Multiplicity of Steady States . . . . . . 17 e. Exact Uniqueness and Multiplicity of Steady State Criteria . . . . . . . . . 21 e-1. Bounds for u . . . . . . . . . . . . . . 21 e-2. Uniqueness of Internal Concentration Profile . . . . . . . . . . . . . . . . 21 e-3. The Solution . . . . . . . . . . . . . . 22 THE HETEROGENEOUS CHEMICAL REACTOR MODEL . . . . . . . 26 NUMERICAL IMPLEMENTATION AND DISCUSSION OF RESULTS a. Effectiveness Factor . . . . . . . . . . . . 29 ii Page b. Concentration Profile Inside the Catalyst Pellet . . . . . . . . . . . . . . . . . . . 35 c. The Tubular Reactor . . . . . . . . . . . . . A3 APPENDICES Appendix A. Computer Programs and Sample Calculations . . . . . . . . . . . #8 LIST OF REFERENCES . . . . . iii LIST OF TABLES Page Table 1 Uniqueness and Multiplicity Criteria Comparison Between Van den Bosch and Luss Analysis and the Elliptic Integral Solution . . . . . . . . . . 36 iv Figure 1 Figure 2 Figure 3 Figure A Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 LIST OF FIGURES Page Effectiveness factor versus Thiele modulus for various . 3': 10.0, Bim =00, Bih = 1.0 . . . . . . . . 31 Effectiveness factor versus Thiele modulus for various 9. I: 12.0, Bim :oo, Bih : 2.0 . . . . . . . . 32 Effectiveness factor versus Thiele modulus for various Bih. K: 10. 0, B: 0.0A, B1m = m) . . . . . . . . 33 Effectiveness factor versus Thiele modulus for various Bim. '2‘: 20.0, [3: 0.03, Bil,l : 0.5 . . . . . . . 3A Concentration profile for a low . 15:10.0, (3: 0.03, d) = 0.3, Bim =00, Bih : 1.0 . . . . . . . . . . . . . . . . . 37 Concentration profile for a case of multiple solutions i=10.0, p = 0.014, 4:: 0.22, 131m :00, Bih : 100 o o o o o o o o o o o o o o o o o 38 Concentration profile for a high d> ‘6: 10.0, p: 0.03, 0: 4.0, Bim =00, Bih = 100 o o o o o o o o o o o o o o o o o 39 Concentration profile for a finite biot mass case '6: 20.0, (s: 0.03, ct = 0.5, Bim = 50.0, Bih : 0.5 . . . . . . . . . . . . . . . . . A0 Concentration profile along the reactor length fvor unique solution case .[.=10.0, (520.014, 42;:2.0,Bim=00, Bih : ,gz3 0, Da 2.0 o o o o o o o 0 “5 Concentration profile along the reactor length for multiple solutions case 25+ =10.0, (5+: 0.0a, ch: 1.11, Bim zoo, Bih : 0.5, Q°= 3.0, Da : 2.0 . . . . . . . A6 A, B,C F(y) F(‘P,k) NOTATIONS Chemical Species Ratio of external surface to volume of catalyst particle Defined by Equation (10.6a) Shape factor (1 for semi-infininte slab, 2 for cylinder 3 for sphere) Defined by Equation (8.25a) Biot heat number hS/Ae Biot mass number kng/Dej The upper bound of Equation (8.31) The lower bound of Equation (8.31) A normalization constant Concentration of component j Feed concentration of component 3 Heat capacity of component j Damk‘cihler number (l-ZIZ) QVP 695 (NT I L1) kf't Effective diffusivity of component 3 Diffusion coefficient of component j in radial direction Diffusion coefficient of component j in axial direction Constant in the Fourier-type expansion Defined by Equation (8.18) Elliptic integral of the first kind vi A! F ‘3[u(0)] fk 0,4910 8[u(0)] H(u3) (~AH) h h[u(o)] ggk) K3 Ke k(T) Defined by Equation (10.A) Defined by Equation (8.53) Defined by Equation (8.6a) Defined by Equations (8.35), (8.36), (8.A0), and (8.A1) Defined by Equation (8.53b) Defined by Equation (10.12) Heat of reaction Heat transfer coefficient Defined by Equation (8.53a) Jacobian matrix, defined by Equation (10.10) Equilibrium constant Rj/kj Reaction constant for the surface reaction, k3/E3 Arrhenius reaction rate constant Mass transfer coefficient for component j Rate constant for forward reaction Rate constant for backward reaction External surface area of catalyst particle Total number of interior collocation points Total effective flux of component j entering the solid phase Total number of catalyst pellet inside the reactor Pressure kth degree Jacobi polynomial Rate of heat transfer to the surroundings/reactor volume Effective heat flux leaving (or entering) the catalyst pellet Rate of reaction vii Gas constant R3 Observable rate of reaction A Rj Turnover frequency, number omeoles or molecules/cm2 active surfact area/time (or intrisic rate) r Radial distance of the tubular reactor 8 Total active area/gm catalyst S Fraction of unoccupied catalyst surface T Temperature T0 Bulk phase temperature T? Feed temperature t Time uj Dimensionless concentration cj/cg u? Dimensionless cgncentration defined relative to feed conditions cj/cjf ufi Defined by Equation (8.A7a) U Specific molar volume of the fluid Vp Catalyst pellet volume Fluid mean velocity W(§2) Arbitrary weighting function x Distance from the center of catalyst pellet y Dimensionless temperature T/TO yO Dimensionless temperature defined relative to feed conditions TO/T% Z Total length of the reactor 2 Distance along the reactor length Superscripts 0 Bulk conditions viii Subscripts f Feed conditions Greek Symbols «a fi?‘ 0“ ‘%3 c* o x 23mmtm Praeter temperature Dej(-AH)c3/WeT° Defined by Equation (8.1Aa) @Bim/Bih Dimensionle s adiabatic temperature rise (-AH)03f/p° p1? Dimensionless activation energy E/RgTo Dimensionless activation energy defined relative to feed conditions E/RgT? Half-thickness of the catalyst particle Krbnecker delta cm3 solid/(cm3 solid + cm3 void) cm3 catalyst/(catalyst + fluid) Dimensionless distance along the reactor length z/Z Effectiveness factor Effective thermal conductivity Thermal conductivity in radial direction Thermal conductivity in axial direction Dimensionless distance from center of pellet Catalyst bulk density Defined by Equation (8.55d) Exp [5(1 - 1/y)] Residence time Z/ Thiele modulus. Pek(To)82Cg/De Defined by Equation (8.25b) Defined by Equation (8.3A) Defined by Equation (8.39) ix INTRODUCTION The strategy of operating heterogeneous chemical reactors depends largely on the nature of the steady states and on the stability of these steady states. The understanding of the reactor dynamics is essential for determining chemical reactor control policies. Normally, the analysis of chemical reactor dynamics is preceded by the analysis of these steady states. For a heterogeneous chemical reactor, typified by a packed bed reactor, the model that is usually employed consists of material and energy balances, of the fluid phase and the solid phase. Not unless the fluid velocity changes drastically within the reactor, then the momentum conservation equation can be discounted. Hence, for a truly turbulent fluid having the mean velocity (V), the fluid phase material balance for component j is 0 ac- _ 3 ac’ a 9’ __ ’ i—Z . at "#0323? i tawfzsfit) 6~dependency. The solid catalyst material balance for component j is 80' A __l + . . = e at Y '38) 98 R1 (2) where Rj E turnover frequency, no. of molecules or moles/cm2 active surface area/time (or in- ‘ trinsic rate) 8 E total active area/gm catalyst ’0 1 catalyst bulk density, (gm/cm3) m cm3 solid/(cm3 solid + cm3 void) L191 9% Assuming symmetric conditions, m " Dej‘ZCj m effective diffusivity of component j E: C' = 0 0+ X = 0 2n 3 " (2.1) where§% E derivative with respect to a normal é : 0, represents the center of symmetry. If there is an external mass transfer resistance, __ a . .° . _ .3 :._ --—C :k-EC-C Q‘l‘ 23—352. (2.2) wherelafl.represents the external surface of the catalyst pellet. 3 The fluid phase energy balance is N '3 9° N — ~91" 1 oaT 2.3.93 CP3(~§€ ‘l" (V795— ?) " “5:357“ “393) +‘F9r(7\r'—F) 91m 9? .._.._.. __ +——— £01 Q (NAT):ch at +07%— :1 “be. + (3) where Q 2 rate of heat transfer to the surroundings/reactor volume. “beaeffective heat flux leaving (or entering) the catalyst pellet A V ESpecific molar volume of the fluid Other symbols are defined in the notation section. The heat balance for the catalyst pellet is 393? P33: + 17:93.; = 698 (~0H1R3 “4) where ifi E. ‘er i'r E. effective heat flux 7\e, :15 effective thermal conductivity Assuming symmetric conditions, and for an external heat transfer resistance, $e(9£)=“7\e% = hCTO’T] 0+ 33:952- (11.2) Now, the link between the fluid phase and the solid phase is afforded by the concept of an effectiveness factor of species 33%,. Thus ‘11- ‘2 EV? ARj dsr (5) 3 VP RSCC-j’, T°) u where V%'E.catalyst pellet volume c131 adifferential catalyst pellet volume Applying Gauss-Ostrograllskii's theorem, Sm 11' Sej all]: ’71). — VP ePsfijcql-TO) (5.1) Clearly, the numerator in equation (5.1) is interpreted as the total moles of material j entering (or leaving) the external surface of the catalyst pellet. Hence, the fluid phase steady state balance can be rewritten as ac° ° 96? O : 5%(D55-a-gfl + J;%(Drg%%) -— -a"; p l'é , A. ° 0 5.1.— ._ :— 0fl1€€SR3CC1;T)\/PS£1E (5.2) where NT‘E total number of catalyst pellet inside the reactor. In the words of Carberry, the last term in equation (5.2) is referred to as the observable rate. Therefore, the solution to equation (5.2) requires the calculation of the effectiveness factor. In this work, a method based on the theory of elliptic integrals and elliptic (Jacobian) functions is applied for calculating the effectiveness factor of a second order kinetics. The details of the diffusion-reaction model assumptions is postponed to another section. A simulation of the heterogeneous reactor model is also presented. Much of the works involving diffusion-reaction systems have been on first order kinetics and lately the focus of interest in 5 the literature have been on Langmurian form of the kinetic rate expression. A comprehensive review of research pertaining to diffusion-reaction systems up to 1975 is provided by Aris [7]. Upon examining this reference [7] and the recent literature, it is clear that studies on the second order kinetics is not fully explored. When chemical reactions take place within a porous catalyst pellet, the system may have multiple steady state solutions for certain combinations of physico-chemical parameters. Many studies have treated internal and external transport resistances separately or together. In cases of gas-solid catalytic reactions, the external mass transfer resistance (Bim) is relatively much greater than the external heat transfer resistance (Bih), so that the major temperature gradient exists in the external film and the catalyst pellet may be considered to be isothermal. This internal pellet isothermality has been carefully examined for the first order reactions analytically [6,8] and experimentally [A,5]. Pereira et. a1. analyzed the full non-isothermal diffusion~reaction equation by regular perturbation method for small Praeter temperature ((3) and finite Bih/ ratios. The zeroth order solution of the full problem justifies the internal isothermality [6]. Also Cresswell studied the combined effects of internal and external resistances on the uniqueness of the steady states with internal isothermal model [8], while Hatfield and Aris [9] studied the combined effects of the full non-isothermal model with both linear and nonlinear kinetics. 6 A number of studies have been devoted to develop a priori bounds on physico-chemical parameter values for multiplicity of solutions [10-17]. But, because of the difficulty of handling coupled nonlinear differential equations, necessary and sufficient conditions could be obtained only for lumped parameter system while only sufficient conditions found for distributed system. Luss [16] developed a priori prediction of the unique steady state conditions with nonlinear heat generation term for arbitrary kinetics. Later, Van den Bosch and Luss [12] developed uniqueness and multiplicity criteria for lumped parameter model and for the intraparticle concentration gradient model. They found that for lumped model the higher the order of the reaction, the smaller was the parameter region where multiplicity could occur, and for the model with intraparticle concentration gradients, the multiplicity parameter region is smaller than that for a corresponding lumped model. For first order reaction model, Pereira et. al. found analyticallgra 1-3-1 multiplicity pattern for relatively small B and relatively large Bim/Bih model and their analytic criteria were compared with exact numerical integration of the heat and mass balance equations [10]. Lately, Morbidelli and Varma [1A] obtained explicit approximate bounds for the multiple region. For langmuir-Hinshelwood type of kinetic model, the multiple steady state phenomenon depends on the adsorption 7 rate constant values. The assumption of fixed adsorption rate constants with temperature was a good approximation for the relatively small 9 cases. This assumption did not change the multiplicity pattern for larger @ cases but changed the numerical range [11]. Studies on multiplicity of the steady state solutions is usually expressed in terms of the catalyst effectiveness factor [13, 1A, 18-21]. HlavaCEk and KubICER [20] developed a simple approximation for evaluating the dependence of the effectiveness factor on the Thiele modulus. And Copelowitz and Aris [18] calculated the effectiveness factor for small and large Thiele modulus values asymptotically and applied the reasonable approximation to the rising part of the effectiveness factor versus Thiele modulus plot. For bimolecular Langmuir-Hinshelwood Kinetics, Morbidelli and Varma [1A] developed analytic solutions for effectiveness factor for the full range of Thiele modulus, in the limit of large adsorption inhibition constant, and Wong and Szépe [21] found that for this kinetics, multiple steady states might arise even when effectiveness factor is less than 1, and that with higher reaction temperatures and stronger surface chemisorption characteristics, multiplicities in endothermic reactions are likely to occur. THE KINETIC MODEL The kinetics of interest here iS'typical of a hydrogenation reaction involving an olefin, e.g” ethylene 8 on a transition metal supported on'U-alumina. k1 ——> Chemisorption k 2. B + * :3 9>~* k1 (6.2) £3. C Surface A«* + B~* ‘R- / \ (6.3) reaction 3 * * In; Product _ i ;K\ ;;3 C .+ 2.* (6.A) desorption + * Here, we suppose the surface-reaction is rate controlling. Thus, invoking the pseudo-steady state assumption. A K4 "2. R3- : k,K.KzCCACB "W1 Cc) S (6.5) where SzEE fraction of the surface that is unoccupied -122, Ké : ‘E‘ E reaction constant for the surface '5 reaction L153; _ Ki = [C E equilibrium constant 1 Assuming the forward reaction proceeds at a much faster rate than the backward reaction, and the surface does not exhibit poisoning (or S2 is constant for all purposes), hence equation (6.5) is transformed into A “/1 R3 = kBK, K13 CACB (6.6) for an equimolar concentration of components A and B within the catalyst pellet void, 1 R3 = kmca (6.7) We will assume the Arrhenius dependency for k. THE INTERNALLY ISOTHERMAL, EXTERNALLY NON-ISOTHERMAL MODEL OF THE CATALYST PELLET Hutchings and Carberry [1,2] have shown that the major seat of temperature difference will most likely be in the external fluid film, while the concentration gradient can be expected to prevail primarily within the porous catalyst. Lee and Luss have later refined this analysis [3]. Kehoe and Butt's data [A] and Butt et. al. [5] presented some results of an internally isothermal pellet but with a limiting external heat transfer rate. Their experiments yield various inter-intraphase temperature distribution data for a single pellet in the Ni/Kieselguhr catalyzed hydrogenation of benzyne. Hence with this consideration, the steady state material balance is Y~t>e- . Va, = seekmca‘ (7.1) where k(T) is the Arrhenius reaction rate constant. Upon assuming that the effective diffusivity is independent of pore geometry and the other diffusion effects, e.g. Knudsen and surface diffusion, thus for a semi-infinite catalyst slab, 2. 935%??? = apSIdTm3 (7.2) 10 For the symmetric pellet with a surrounding mass transfer film, £10 = O 37% X=o (7.38) 66 -°tc — c1 1 37"§L1<=é>‘1 H 5 (7.3b) where 3 E half the particle's thickness. The energy balance is Y-De‘ZT = ~ epSk(T)c;(-AH) (7.11) Assuming an isotropic effective thermal conductivity,Ze ,thus for the semi-infinite catalyst slab, 1 38d 01:1 = — epgkmcj (-OH) (7.5) Again, with the symmetric pellet and a heat transfer film surrounding the pellet QI' " 0 dx 7:0 ’ (7.6a) = h o- _ MATH- 8 ET Thea] (7.6b) Integrating equations (7. 5) and (7.6) yields iii-Th:8 ~To] = 12936 (~0H)k(T)C; dx (7.7) So, if the internal temperature gradient is zero, and the heat of reaction is temperature independent, equation (7.7) reduces to 3 1 RETlH ~T°] = eps (—oH) k(T1,:57§ c3 dx (7.8) 11 The material and energy balance equations can be into the following dimensionless form i. I 1 U ‘- ) 9. ”5/ 7— ¢ 9 ( ‘8 U‘ 05/1 = o 3:0 05",;1‘ = 87m [1 - Uj |¥=lj 131,, 2 1 b’(|*“g‘) —— — = M- d ‘ e (5 (l3 1) ‘9 So 3 ‘5 where (Pt-5 Pék(T°)31C;/D€j -=— Thiele modulus % a dimensionless concentrations: Cj/Cg 3 E dimensionless temperature E T/TO K Edimensionless activation energy E.E/(RgTO) S zx/S EEPraeter temperature E De; (~0H)C§l7\eT° Blms Biot mass number 2 1(ng / Der] BlhEBiot heat number E 118 / 7\e casted (7.9) (7.9a) (7.9b) (7.10) In the perturbation framework of Varma et. al. [6], the full non-isothermal diffusion—reaction equations, “3 = 4): 8111““? Hz . 5 e (0.1) (7.11) ‘1” = ‘94; (aw—9) n1 . S 6 (0‘0 (7°12) 5:1 ~. u'=B;m(1—U) 3 3’: 131,,(3—1) (7.13a, b) 3:0 I \A,=0 ; g’: o (7.1Aa, b) has the zero order term in the regular perturbation expansion yielding equations (7.9) and (7.10). 12 . = 2 _.L Let R(u,g,[%) _ uexptb’u .33] (7.15) E a perturbation parameter thus assuming the following asymptotic sequences, u 32°)- ‘9”) (7.16) 3:0 N £2 5 - ‘3 3:09 ‘33 (7.17) M” : ¢1R(u,g;(s) ~ (91 g R(u.,go) + @[Rucumgaw + Rg<“°"é°)‘3'j 1“ (52 [DRutumga u}. + 21?.acuo,g.1gz + 214.3. Rugcuoqg + um” (um-3.) + gfawwmgnj + —---} N u: + (guy if (52 u; + (7.18) Hence, the zero order terms consist of the solution to the following equations: '3! : o (7.19) gzo : L3; :0 (7.19a) 5:1 : g", = o (7.19b) thus yO : constant (7.20) U: = 49 83(1- 1)") U: (7.21) E = O . u, = o g :1 : u; = 81m [141.] (7.22) yO is obtained from the first order term, thus lg” c)z R(u.,3.) (7,23, 3 = O : 3', = o (7.23a) ‘5 = l 1 $1,: Eéh'uéo“) (7.23b) Upon integrating equation (7.23), 30-, = % S: Rcumg.) (15 (7.24) The perturbation solution is not described here, but will be done in the future. The perturbation solution will provide stronger criteria (for small @ ) for the full non- isothermal problem. NECESSARY AND SUFFICIENT CONDITIONS FOR UNIQUENESS OF SOLUTION a. Dependency of Concentration on Temperature Consider again the catalyst pellet model equations where both intraparticle diffusion and thermal conduction occur, _.L ”3” ___ 4): 87$“ 5) ué'n m (8.1) ct" {(115 3g) with 8-1. 111 J. l- n 13” = — (3 11? e7“ '3) Mg (8.2) 115(0) :0 3 13(0) = 0 . (8.3) 1,15,“) =BTmCI-UJ'CD] 3 ‘j’(13=BThCl- 3(1):] (8.11) Variation of Concentration Profile with Temperature Assume there exists a maximal solution uj2 and a minimal solution uj1 such that HA?- __ ”5(13: g1) (8.5a) U), E (1103: g.) (8.5b) and g2 7 g, (8.50) If the differential equations satisfying these solutions are subtracted from each other, thus H6: - Us”, = (big 1C1 - {:1} (8.6) __L where (k EU“ 3K) k:l,'2_ (8.6a) Integrating from 5 :0 to g :1, 81,111,111- 83,1111f18g(1‘__.:_)1w 1.1118,, ,, using the derivative definition BTm{u3,m - 1132(1)} : q; 1:9“ 3‘3 3* where y* €.(y1, y2). With the nth order kinetics ('12 $1M?) (8.8) (n>0),equation(8.8)is written as 15 Triumor 11310)}- {15013 13 01%;)“ 37%” ~8(‘32-‘,11)6\S(8.9) Since it was already assumed earlier that uj2 (a maximal solution) > uj1 (a minimal solution), therefore the left-hand side is negative. This indicates that, . r *2 8M __ u 333-15111 < #3?— <0 (8.10) 01", 3.3.9; < o (8.11) 3‘3 Another contradictory proof is to assume that if 31); /3% > 0, the integral is positive. Thus, u32(1) > uj1(1) will make the left-hand side nega— tive. This is a contradiction. Bounds for y By adding equations (8.1) and (8.2) the heat balance and the mass balance are uncoupled to yield + u-m— ( 3(1) (3’ 3 '3 5) (8.12) For the internal isothermal-external non-isothermal model, Blh (3-1) = uj’u) = BIWET— 1130)] (8.13) and recognizing y(1) : y(g) ,thus, 015: where %L L [1+p—13] (8.111) (saw/131,, (8.1ua) J: (5 IN 16 3 Now, since —jL < 0 and u- éi(0,1), therefore at” 3 fi 6. E ‘2 l+'@L J (8. . Necessary and Sufficient Conditions for Uniqueness of the Steady State: A Conservative Criteria From the heat balance equation, I Ha (I) H Bi}, ——-‘( *1) (5 ‘3 the effectiveness factor defined relative to the bulk conditions is ._ .L 1 1 Hence, fl = l E () (8. (57‘ ‘11" d F 13 9L}; = “17033” 7 fl (8 d3 (g-Ut)z Furthermore, FC‘3=|7 = + (>0 2 1 —l- 1 3' 8013’) = C? Sew 3'11; <13 (8. 18) (8.20a) F(g=1+@L) ”=’ o (8.20b) Now, with equation (8.17), __1_ I ~ '11 {lg-i (%—1) -1} + 2(g—1)e‘°’U WLUJCS‘)???‘ d S d3 — (3-1)1 (8.21) 11-1) ARUBA; 2%?dE) (8.21a) 17 7f 7! 1—2( —1)—1}—2( —l)e 2. .45. -1 1 3 1 -" 2. 3 (\3—1) It is clear from equation (8.21) that the necessary and sufficient condition for uniqueness of solution is lug—1) —1 so 3 or, 32—- 33 + ‘0’ 20 (8.22) Inequality (8.22) is satisfied iff ‘o’é4- which is also the necessary and sufficient condition for uniqueness of the steady state. Van den Bosch and Luss Method for Uniqueness and Multiplicity of Steady States If we define the effectiveness factor relative to the surface conditions, I "1 = UJ'UYZS U132 01% (8.23) D then the energy balance for the internal isothermal - external non—isothermal model results into B“ ‘ 7(1-L) 4.813-.) = 81506 8 115101); (5 __L _ 1 WU'é8 L z '— ((51): e (”15“?) (8.211) (7%? 131, ‘__—‘_—_—__ (8.25a) M" 18 _1_ c1)1 :— 63“ g) (H- (BL—LA) (8.25b) N _ _ (111(sL--13)11E§1 hence, B — 13(3) = T (8.26) QmFUJ) = 9/111 C1320+pL-g)1+£n1—M(g~l)(8.26a) thus, 11:11: 77:3)” = «818111.188;— !Wl —,_ (8.27) Since F(y = 1) = + K), F(y = 1 + @L ) : O and F(y) Z 0, the necessary and sufficient condition for uniqueness of solution is d 2. L 1 < nghECHfi—gfl + 5138.61 — a: _ o (%_D[gg{%$zm+ei_w Jrflinnflsl Ingé(1,HflLl8.28) Using the identity .11). .18.. ”l_ lifinami d 3 %%g_idflm[i~1jL;1+@— fl “11:75—31 (8.29) substituting equation (8.29) to the inequality (8.28) “‘1 L 3.11... _ d 51/1113? (1113 11)] 811mg] (3 01 d3 (1+—?L_ %@)+ 01% 1 El (8.30) 2.0-18513) 11 Tn (3:41.011?) 19 Suppose we can bound a. prior? be 5. fl— 3 19, (8.31) because §i5-< 0 for an nth (n > 0) order kinetics, it follows a—pfiqfi < 0 and b1£ 0. Van den Bosch and Luss [12] proved that for the slab, cylinder and sphere geo- metrics, b2 3 —1 (8.32) It follows from the inequality (8.30) that a sufficient uniqueness criterion can be obtained by substituting dfinfi ldLn§> by its upper bound b1. Hence, for the second order kinetics, (1+ 12133 + c8L+711+1;—')~ 0%?)ng — U(1+%3((3L+2)13 + 71(1+'321)(1+(3L) 20 to? 1 5‘3 i '1 (5L (8.33) For a conservative criteria, b1 is set to zero, resulting into a model where intraparticle diffusion is neglected. This is tantamount to a lumped parameter model. Hence for b1 : O, L CT:(@L) 11°" (3L E1 ML ‘5 11’1“?) '5 L L (8.311) ”(5 511(8) 101‘ (5 7—1 where 2 L‘ V2 1‘18““ 20+?) GM?) 5 1+21i(1*r——"’l+2m@1)]2 +3c1+211+w12 (8.35) 20 4(8L+2)((3L1+4@L+21 i2 8(216") L __ . 8.36) G111” = 3+2[‘ T ((122.1): ( (2.1-4.4)z (118x418? For the case where Elm—30o , (s s 8,118.. 1°) = 4‘ (8.37) It is clear that for (3" e (o, 00) , inequality (8.311) is satisfied for X5.- 11. Hence, US 11 is the most conservative uniqueness criterion. Multiple steady states exist for some B values when- ever inequality (8.30) is violated. Inspection of in- equality (8.30) indicates that a sufficient condition for its violation for some y e (1, 1 + (51‘) is to assume equal to b2. Hence, multiplicity occurs for some 18 values if (1+%)133 + [15L+(‘5—1)(1+-12§)] 13 — 3(|+—1’7—’_:)(21-(5)3 + 1111+ 18111.1.) £0 (8.38) for some yS in (1, 1 + (3L). A more conservative bound is obtained when b2 : -1 (see Van den Bosch and Luss [12]). Hence, L BL? C75((5L) for G El —- >112 (8L) 5 (8.39) L ”(3 ‘1 6111(8) fro. (1L 21 where L2 Ji L :3 (215(8) _ 6+2E11+C2+311+8L)]z) (8.110) 5114.1850— 6 (11119)] [2'11 3c1+nL)j’- + 21 L I L L? L L2 L __ 28 +3 2._ (28 +3)(2(3 +215 +3+413 ) In the case of Bim—> 0° or (3L -? 0° , a condi- tion for multiplicity of steady states for some values of B is given by 7528. Exact Uniqueness and Multiplicity of Steady State Criteria Before proceeding to derive the exact criteria, a proof of the uniqueness of the concentration distribution for a fixed temperature is set forth at the outset. e-1. Bounds for u Upon integration of equation (8.1) 3 _.1_ u-’ = 4:25 127‘“ Wu,“ d); O 3 (8.112) Since the integrand is positive, u; 7.0 1w 5 £1011) (8.113) but, (A; (1) = 1— fig 113,11) Hence, 0 s 113(1) 2 1 (8.111) as a corollary, O .4. (13(0) 5 115(1) f 1 (8.115) e-2. Uniqueness of Internal Concentration Profile Here again, the maximum principle is applied. Consider the maximal solution Ué(§ ) and the minimal solution G,(§ L Furthermore, let GE > G}. Hence, given a y, and using a comparison theorem approach, 22 l "" ~ . ~ (201,313) - Rcuug) 11.01— 111(1) = (1)21 1,1,— u, (”fuddg (8.116) upon using the limit theorem, 1 111,0) —- 011(1) : c125 ——- 3U (u.—u.)d8 (8.117) 11* where 111* e (u. , 11.) It is necessary and sufficient that if 9R >0 ._.—— 911 (8.48) then equation (8.47) is readily violated. For _.L [z = 3.511 13)”?- , the uniqueness of u is quickly established. The Solution The elliptic integral was used by DeVera and Varma [22] to solve for the optimum bulk phase composition in an isothermal catalyst slab with a second order kinetics. This approach is extended here. Applying the Clairut's transformation to the material balance equation, 01 I z 2 ’ £1141): = legging-113- (8.119) where 9(3) :3 8X? [6’ (1" ’lg‘)] (8.1198) and integrating from g : 0 to g I .L ”3' __. E 4) 92(3) 11013—1110)5 (8.50) 23 Equation (8.50) is an elliptic integral form [23], whose solution is given by 2121(0) F(1P(U; 11(0)),k) = T“? 92(3) 3 (8.51) where F(W,kfl E elliptic integral of the first kind k E some modulus E— (\1—3—‘3127/213 cosxp =5. [(15 +1) uco)—u’_] / [(15—1) uco>+uj For Bim-a M3, the centerline concentration is evaluated by using the boundary condition at S : thus the transcendental form for u(0) is F(W(1;u(o)),k) 7’11”“? 0) 109213) (8.52) Now, y is eliminated from equation (8.52) by using the heat balance, and the result iscasted into the form = [3"(u1onfljflmfg11g k(wonj E 3021(0)) (8.53) where -o.2s 11111111») =5 3 F(IP(I;u10)). k) N117?) (8.53a) 301(0)) 2((5/Bih1111—u1013 1101(0)) (8.53b) Furthermore, since 0 EIKO) 5-1, therefore for 11(0) = 1, (fi+1)_1 — O 1P(|;u(o):1): Amos—J — (1155—011 F(01 k) = 0 M1110): 1) = O H 1 3 and. 3'(1Mo)=l) For MUD) =0 ) 1PM, U(o)=o) = Arcos {-1) = Tr F (TY, k) [1 2K hcuco)=o) = % = +I>° and 3021mm) ” 1.113131111111117 = +00 It is clear that the necessary and sufficient condition for uniqueness of the steady state for all physico-chemical parameters is {ghfigg h(u10>)] + 31%)%hdl—u(o)3h(U(o)) s 3.3. 1).. [1,313 1.1 101 0110) 6 (0,1) (8.511) where __ 1—— {JUL _ 3u(o)zln(11(1>)) 81(u10)) =%h[l-U(0)3du(o) 2W (8.5148) 3201(0)) E 1+ YET—“#111013 Hum) 70 (8.5%) and ‘1 z _1 ~ ’% 0.25 51.11. = —211§{(11§—1)U110)+1} “Wampum/1101)} dune) _ We) Sin 19(1;u10)) 25 FWU; mo», k) 2U(O)\’U(o) (8.54c) Exactly the same approach is applied for finite Bim. Here, the criteria for uniqueness is expressed in terms of the external concentration, i.e., u(1), instead of u(O). Thus, equation (8.53) assumes the form, mum) a [g"cuu»+l] Mfig‘ mum] =%_ (8.55) -025 where Wm) '5 3 FttPcumMoLm/m (8658) v _ 3 3. '_ z 3 ac —{um — W)B‘mm W03} (8.55b) 3mm) Egh‘fuuf—ui k (mm 2 o (8.550 PLULD)Eexp[ZS(l—{I+EBT“U- Mm)”; )] (8. 55d) The bounds for u(1) are established by recognizing that since 0 £,u0 S.1 and for the monotonic increasing kinetic rate function, u' > 0, thus 0 ELR)< u S 1. The lowest bound for u(1)is therefore the lowest root of 1. 3 s: 2 3 m MU) ~ —— [1— them] 0 2¢‘Q(u*m) (8.56) Moreover: 3(U*U)) :: + be and q(UU) :1) : _ DO , hence the necessary and sufficient condition for uniqueness is 26 [I +3(u(-I))] dflmhmm) S égmhfég MIND] dUU) due) for (“(1) é um) 31 (8.57) where 57m h elf/uh +~L‘I (8039381)“ 30M») =¢J§e 87h ’é‘m l"“)]o\(zl(n+ 23, {1+ “ID-mu] ‘}(8.57a) 0.25,“, = CdLP [dam] __ F(7~P(M(I),Mo),k) duo (8 57b) dun) “Mali-£39m 2mm d“) ' duo _ 9.1L = ”2Cuc"du(1) 3°] (8.570) dun) ‘ [(fi—nuo—uufl STnWCU(‘7) due ’2/5 z B?1 tn—um‘} (I—UL\))U 5% = o ( + m dud) “ u {an 24>: WWWEE (HLBW‘U- muff) 57h }(8 57d) THE HETEROGENEOUS CHEMICAL REACTOR MODEL Here, an adiabatic tubular type reactor with a plug flow velocity of the fluid phase model is employed. This assumption is generally valid for a high aspect ratio (i.eq reactor length/tube diameter). Hence, for the isotropic bed, with negligible pressure drop and axisymmetric flow, the steady state equation (5.2) reduces to 2 dc? l—E A -0”??? _ onévfegsm—LI— RQCCZ T°>=0 (9.1) The energy balance assumes that since the reactor is adiabatic and for a large aspect ratio, the radial transport of energy has a smaller contribution than the axial transport of energy. In this work, it is further assumed that the reactor bed is relatively dilute or low solids 27 density. This enables the model to neglect the axial thermal conduction contribution and thus, the energy transport is solely by a convective transport. For higher solids density, the axial thermal conduction contribution along the reactor length can no longer be neglected. This effect would definitely create more exotic behavior of the steady state multiplicity pattern; perhaps, more complex than the number of steady states in a single catalyst particle. Furthermore, the question of the steady state stability would be difficult to address. These studies will be later investigated in another research. With this model, the energy balance collapses into .— A 0 ~ 0 o (11” 1—6 ~ _ ~QCFT + MD: - 0 (9.2) ‘3 e where %e is the effective thermal conductivity flux entering or leaving the catalyst pellet. Now, the heat balance in the solid phase, assuming an effective thermal conduction flux, is expressed as ~ A . = 6 —-A R. (9.3) y 3;. cs ( H) a and for a temperature independent heat of reaction, SV-v— .$e dsi : S9511} . $641!: : ées (~OH)SVRJ‘ <13}: (9.”) jig—g9 dzr = Saga-99842: (9.5) and using the effectiveness factor definition and equations 28 (9.3) to (9.5), the energy balance in the fluid phase is transformed into " (1° - _I\_)__ :15 OH) €€SVFVIJ RjCijT°)-'— O (9.6) the initial boundary point conditions for equations (9A) and (9.6) are provided by the feed conditions. If the following dimensionlessvvariables are defined Dd ':—: Damk'ohler number '5 [:26— OVP CQST; [(+12 T: E residence time 5 Z/(y7 where 35 2. total length of the reactor §£ : feed concentration 60 E/RaT; = dimensionless activation energy defined relative to feed conditions flfio E feed temperature, hence, the dimensionless material and energy balances are expressed as 75°0- Au° .‘fo BL") 81. ——-3* ‘+ ‘Da'ng (Lu, % ) 53 C(Jgj " O dg (9.7) o a __.L. 0 53—35— — (30D0‘m(u§’jo)exu g)CHj31=o (9.8) with initial conditions of uj O(O) : 1 and yO(O) = 1. ° : — .° ° ° is the dimensionless 8 _ (oH)cH/E9 CF11] adiabatic temperature rise. Equations (9.7) and (9.8) are uncoupled to yield 3": l+(5°(|—Ul§) (9.9) Qualitatively, u 0 £_1 for O s S £31 and although the J solution to equations (9.7) and (9.9) is unique at glance, 29 the multiplicity of solutions to equation (9.7) depends on the continuity properties of the field, i.e” the second term in equation (9.7). From theory of first order ordinary differential equation, a unique solution is guaranteed if and only if the field is Lifschitz continuous. This requirement is satisfied sufficiently if the field is piecewise continuous in the interval and domain of interest. Since the field in equation (9A) is not necessarily continuous because of the possibility of multiple solutions for the effectiveness factor, therefore the concentration profile of the fluid phase could likewise be multiple. Their number‘is equal to the number of steady states provided by the number of steady state effectiveness factor. The steady state multiplicity pattern could change along the reactor length and it is largely governed by how the bulk fluid phase concentration change. It is possible to have a 3 to 1 pattern, a 1 to 3 to 1, etc. NUMERICAL IMPLEMENTATION AND DISCUSSION OF RESULTS a. Effectiveness Factor The complexity of the transcendental functions for Bim—a #3 in inequality (8.54) prevented the development of an a priori criteria for uniqueness. However since u(O) is bounded, the numerical implementation of equation (8.59) is not difficult but not practical if a quick estimate of the uniqueness criteria is derived, and the stronger criteria by Van den Bosch and Luss [12] would 3O suffice. On the positive aspect, the violation of equa- tion (8.54) can provide not an a priori criteria but provides for the calculation of the multiple steady states, their number, multiplicity patterns and the bifurcation points. The bifurcation points are obtained from the solution of <15 <12? du(o) = duco)‘ .= o . O 5 ”(”51 (10.1) All the calculations involve a straight forward root searching, e.g., the half-interval method, and they are rather fast converging and not cumbersome. An example of these calculations are found in Appendix A. As in the case of Bim—9 “I, no a priori criteria can be derived, however, the numerical calculation of the criteria given by equation (8.57) is easily implemented by a simple two-stage root searching technique. The first involves the calculation of u*(1) and the second involves the testing of the criteria for uniqueness, i.e., equation (8.57). Figures 1 to A exhibit a plot of effectiveness factor versus Thiele modulus. The effectiveness factor is written as Rate of reaction in the presence of diffusion a” “ Rate of reaction evaluated at bulk fluid phase conditions $EW EXP[%(1- 4%)] ‘For ELM—700 (10.2a) L‘? [l- (1(1):) 4:015 4171116 BTm (10'2b) (P 31 100.0 10.0 0.1 1.0 ¢ 10.0 Figure 1 Effectiveness factor versus Thiele modules for various 0 . 1: 10.0, 131m =(><>, 81h = 1.0 32 100.0 ~ (3:0.1 $.08 “I u 06 0.011 10.0 — 1.0 1 1 0.1 1,0 ¢ 10.0 Figure 2 Effectiveness factor versus Thiele modules for various 0 . 75: 12.0, Bi =00, Bi = 2.0 m h 33 100.0 10.0 l I 0.1 1-0 (p 10.0 Figure 3 Effectiveness factor versus Thiele modules for various Bih. 25: 10.0, D: 0.09, 131m = (>0 3A 1000.0— 100.0— 10.0 — 0.1 1.0 ¢ 10.0 Figure A Effectiveness factor versus Thiele modules for various Bim. 15: 20.0, (5: 0.03, Bih = 0.5 35 For all the physico-chemical parameters reported here, the range of multiple steady states is relatively narrow. However, fora given value ofBih, U andBi therange m’ of multiple solutions expands as the Praeter temperature, fi’ increases (Figures 1 to 3). A similar situation exists for increasing Bimzflza given value of@,'6and Bih (Figure A). The range of multiple solutions also expands as the resistance to external heat transfer increases (compare Figures 1 and 2). There was no multiplicity pattern other than the 1-3-1 type that was found using the physico—chemical parameters reported here and those which are not reported here. Table 1 illustrates the uniqueness and multiplicity criteria comparison between the Van den Bosch and Luss analysis [12] and the elliptic integral approach. Except for very small values of the Praeter temperature, the Van den Bosch and Luss [12] analysis indeed present a workable criteria. Concentration Profile Inside the Catalyst Pellet Figures 5 to 8 show the concentration profiles using various physico-chemical parameters for the catalyst pellet. Figure 5 in particular compares a Fourier—type of orthogonal collocation solution (represented by A's) with the closed form solution. The trial solution for the orthogonal collocation is . N“ 2:. [AA N E‘ dug (10.3) 36 TABLE 1 Uniqueness and Multiplicity Criteria Comparison between Van den Bosch and Luss Analysis and the Elliptic Integral Solution j Bim Bin @ Van den Bosch and Luss Elliptic 10 0° 1.0 0.02 yes no 0.03 yes yes 0.04 yes yes 0.06 yes yes 0.1 yes yes 0.5 yes yes 12 00 2.0 0.04 yes no 0.06 yes yes 0.08 yes yes 0.1 yes yes 10 00 0.1 0.04 yes yes 0.5 yes yes 1.0 yes yes 20 30 0.5 0.03 yes yes 50 yes yes 75 yes yes where d; E a constant in the Fourier-type expansion N For the Bi Ill total number of interior collocation points m —+ «acase, the collocated differential equations (8. 1) and (7.10) or the weighted residuals are n - 2 v 22:: (k—1)(21<— walks? 2'“ 2) 4) 9(g)[§:l‘dk33(k 0] =0 5 F1. for i =1-) N (10.4) N+l 2:.Ak — = where €(g) E EN‘H (10.5) exp [210—15)] ‘3 = 131 4) ”(U 11;;(3 1> 13M?) 0 fl) 3 O. ,;3 a). l h 37 Low .8 ' .6 — .11 — .2 - 1 1 I 1 oo 2 .4 6 8 1. Figure 5 Concentration profile for a low ¢ . 0: 10.0, (3: 0.03, (t: 0.3, Bim =83, Bih = 1.0 ( _——_ : analytic calculation, A I collocation calculation) .8— .6— .4— .2 _ I l 1 1 0.0 2 4 .6 8 l 0 Figure 6 'Concentration profile for a case of multiple solutions. 25: 10.0, (I): 0.011, 4>= 0.22, Blm =00, B1h = 0.1 ( ——— 1 analytic calculation, A :collocation calculation) 39 Figure 7 Concentration profile for a high (1) . (1: 10.0, (s: 0.03,q>=11.0, Bim =00, Bih =1.0 Figure 8 Concentration profile for a finite Biot mass number case. 6: 20.0, (a: 0.03. d): 0.5, Bim = 50.0, Bih = 0.5 111 for the Fourier-type trial function u: __ N+1 2 + NH g? 3 — IE1 QL 521k“ Q°Qk (10°6) kit . 2(L-l7 where Q. E J; E (10.6a) Hence, 0 1 1- N1 N ' ; - r11. = '33 .435 SM nd‘s + 2+: fl 4.438 32: H‘ 2] 3 L=I o L=l E; or, N+l A: N+IM+| dadk In) _ L=14(L—D+l + 1:1 '12:" 2(L+I<-2)+1 (10.7) 1 The exterior boundary was collocated because the trial solution did not satisfy the exterior boundary condition. The collocation points 3i are obtained from the orthogonal property of the following Jacobi polynomial l ~— SW.) 11.191919)? ld; = 0.5-.1. .k=1»2»"‘5~"<1o.8> and Si satisfies FL(§L) : C where FkCE) is a kth degree Jacobi polynomial 01k E Kanecker delta E a normalization constant C. 0’. m shape factor (= 1 for semi-infinite slab, :2 for cylinder, : 3 for the sphere% W(‘5‘)Earbitrary weighting function (usually 1-E? or simply 1% These orthogonal points are calculated efficiently from the computer program developed by Michelsen and Villadsen 42 [2”]. The solution for g are secured by a Newton-Raphson iteration, or 3“ .—. .1“ — g“(.1_‘<1’_13(<_1") (10.9) The Jacobian matrix is N — 3F). I |(4k) 3‘: 931 14k (10.10) thus, 31:1; __ C2k 4) BIT; — 2(k 1)(21<- 3)§ k-D 2 NZ‘HA g2(1c—1):I g3 >5.“ 2(‘ 1) ‘3 + 5L L fori:1—-)N (10.11) 3FN+1 .5}:— = (10.12) Essentially, the calculation proceeds in the following fashion: i) assume g ii) calculate y iii) calculate the next guess via the Newton-Raphson iteration iv) calculate the convergence tolerance A specimen of the computer program using this technique is found in Appendix A. 43 The concentration profiles reveal that for a very diffusion-limited reaction, the profile becomes rather steep (Figure 7). An interesting case is when multiple steady states do arise, the upper branch steady state (in the context of the effectiveness factor plot) shows a steep profile. This must be safeguarded whenever instability indeed occur. The control poliCy should always be to keep the lower branch steady state. The Tubular Reactor The numerical implementation employs a discretization of the inverted fluid phase balance, i.e ’9 o .L d‘; _ “3(1— ) o a 92 .4: _. 3713’ ‘8 ‘3' (Danjwyjfluljk —H(u3)(10.13) It is assumed here that for an infinitesimal change in u?, the effectiveness factor is approximately constant. Hence,bye”)IMSLDGEARsubroutine,the valueof § atug + AU? is obtainedo from U‘) 3k 3 kil . o SHdS = . H(03)Auj (10.111) 5k ”Pk o . ° 3' ° ‘3 . and "(3 (L19 , 13) at some Us 6 (U3 , 1151-0113) is evaluated from the previous discussions. In terms of the bulk phase conditions the physico-chemical parameters are redefined as 45‘ _=_ 4): 8111(1— 51’) US 75 751 / 3° P ‘5 P1 ”3 M1" [11 MU where ¢; 2, Thiele modulus evaluated atfked condi- tions 64 a dimensionless activation energy evaluated at feed conditions Q; g adiabatic temperature rise evaluated at feed conditions Figures 9 and 10 show the concentration profile of the bulk fluid phase reactant. The bulk phase temperature profile is not shown, but qualitatively, it increases along the reactor length. Clearly, the effectiveness factor decays along the reactor length, and therefore the conversion is decreasing, especially towards the reactor exit. Since the AME/d3 is steep at the vicinity of the reactor entrance, the majority of the catalytic activity is situated near the reactor entrance. Furthermore, a 3-1 multiplicity pattern for the reactor tube was found and noticeably, the lower steady state profile has the highest catalytic activity. Hence, for controllability and optimality, the choice should be the lower steadystate butwith thereactorsize reduceto a sizeable fraction equivalent to some tolerable outlet conversion. Finally, the case of high solids density should be interesting, because the inclusion of the axial thermal conductive heat transport can induce multiplicity patterns other than those obtained from a single particle. Furthermore, it should be realized that an internally isothermal, but externally non-isothermal L15 .98- .96_ .92 .86- .811 ~— \\ Lt Figure 9 Concentration profile along the reactor length for unique solution case. 6+ = 10.0, {54: 0.01.1, c134: 2.0, Bim =00, Bih = 0.1, e°= 3.0, Da = 2.0 1.0 .93 .96 _91; .. 92 “ 90 r fl: 1 1 L i 0.0 2 U .6 R 1.0 Figure 10 Concentration profile along the reactor length for the multiple solution case. U; = 10.0, {34: 0.015%2 1.1:, O Bim =00, Bih = 0.5, Q = ?.0, Da = 2.0 47 catalyst pellet was used as a model here such that the consequences of these, as compared to the full non- isothermal case, is only but the later's shadow. However limited, it yet provides some insights into heterogeneous chemical reactor design. APPENDICES Appendix A. Computer Program and Sample Calculations 48 INPUT;*AP (INPUT;CUTFUT9TAP S , n r OUTPUT) EC 6 FINITE LSCthN' CE”TFR T! TH‘DO FOR T =F R 511M FINIT 0.0“ a 4 2 I 4 A : . 3 4 3R0 3 C I T {Ii/.26..))/;c:‘)/SQRT‘3.;D ) 4 4,. 132 l\ .| 7 ... — .3 7. )fi,.. F“. J U FCJ or... v. 5 A. Iu A, a... La. ‘ 4 (is 0:1. - TAD 1W5; - .E 51C; \1 .1...“ :u.3 IQ. 4 no a «N1... ’11 (11 HIV f. A I .m.’. : _....lu.._1w...:_.K M ILL—7.2.44 TJIJDHVKW, JD,T¢T.\UKRL 9h. .v . «.11 TAU iv 9/ . Oi. .Ivi. L 1Tb. Q 9 'YFLH 1:15 vi F D I \l \l 7.“ 9... e V- . h ‘ 7‘ ...1 T. v .V .N Y. .Q — \I a) a. . .t .3: v: a .l ,3 .1 a _ K. V \I - H” .0 . x]. mm» .. a“ 1. . «5.. _,. 4‘ k C .7. + 2.» :4) ”K .1 .ltknJchxfi JirxT. Z. l : 3: : :1)_0.3. CJIIAJTTT IYTT-D 4R3. _w. 1... A... TI NU G ) .., I. o T L .1 ‘ 1‘ P; l. ......,. D T\. r; .Lu... .L Ll. r; .r T. )r.... n: ..:Ln_.f.v arr: \7 ”AVAIL L n1.._3fl.vl\ T. u : : Cu Ti: Til...) .JT...J.JI:O C 7.. 1‘ o I fix. a H i a C, t + I: \I \l \r. 1 \l ) n «. .Y. . 1 .. s» O a. Vi .1 2 \J n... 4. t‘ 0 I\ ‘r. .7. no VI Q . V: r. T. i 0.. Yfi a... O \I «L _\J C; :J ”C . 5‘ F. .7 I I4 I. g .I Vx h \l .l to \I an; \I is. K. V: r. \l .4 n. H )- .M i T . .. C I, ! 2 J..; F a a a. .J i. he . fl . u... t. T; if; v ’ T I 0“. 7» .L: 11,.“255 2.1%. ..I 1 2K)( r. -W.mi).\\l% I\ U. glavlvl T. 1,1»? I a. .1. tT: o I\ * ac...L U v.1...iR a: T '71:. n o S \I . Pal __ L5 Ownjrdl‘lal‘fiufih I E IT. 013 ‘1 2H. ...Vu(\...w...\._TZi CJTFL .(n «.2531! I1 1.».fi )IL:§TI..3 n\.?/J\L .201..AC.P1!II\ '8 : .1 ..;..I.LD.‘P:H 1:3... I . .Ulvzr u(TS( RT. .3711» 0.3.! 411375.? ) 3311.571”? a t .13... YY : ...V|,\.. :rr :JHT.T.Y V.YL.S.H fir rind.) .5 2.”.7 __ :)\ .J(ImT.... :. .2 :H/ 2‘). 2T.) : ‘1 ....)>Jn:. :L9T L2”; : : :T.)K.....).C.(Lr02,\(rirlvi : : : : ICU],JTJail.ASTTTIFHXJ33:.3331125 .UY...0VIY1UYTTD.Q\QDwAJIY.UY.C.iDrnaPncnUCC 4. .1. a .1. In. x f... ,. 1.1 4...: n‘n.‘ 1+9 ‘ n. : It. It 'C / HIT. \I 7. .4; Y. 1.C .\. O." r». .I , l| !v« .5 7.. 5.. if... PC 1.. ' 1 .LJ. T. u ' u ..r..L 1.! Q i pH r. A T. 2.1 .5. OF II V. 9 A. . N n ,./. x} c: m. . 1.x... .H PL .5 2 K121 vl KT 9. nLq in“. mi .t .3. 9M 1. C C C n.) .1» Fl .38. HI}. ‘ .1. .C I T, I: T .C 1L .b C 1X ) ....P u D O ..: .1 D1. I \I 1. f ) UVA .u r} . )Fk..i K. T. 7. C T .. .. o. 6 .1 TT ’)1 a 9 ...;. L I s. C l u .1... ) 1 .U U... ) :U:/ :1. .U r... f. l U . 1.. C u , :3 1.. WHY 0.; V C. .U i v . m 7;: C, M” u Y — _. .Cl.f 1 9 \l \l u. \I .. .1": m l\ - .'.(. .L \I) .7 V v o 1. ,U 9. ) ) v... :..I.. . c v.. CL/ .C “.1 n) )\I o 9" T. K 3 .J w ...L - 1 i .C) U .b t l. ! ... .. ..|. a 24:... «a .... VA. 0 t E: ...14. L t ,.. a,“ c .Io C 1‘ a ch (V. .. T ,,.; o. _,_ 2.. c :1 C C..,... o J - 1. .17.. .D 1. ,LC...‘ (.7 9V ! .u. 1. l / .C . L. FuL C o... C .Cr: 1 rr l/rv TM...un L. \1 IL... .1 .rn a c r 4.. ( .2-.. .L 95 24...... 7.1.- ? riY, o : .1. Q: t P . (CA . 13...).1 1 3.7... .L rb . KU r. E .w K Carin. ,\CL 3. Y .L..i,.( I\ \ a. .1 a//./ A .. tvr .. 1‘ r7..) (‘-| T7:Ql\)1.3\ 31 1.Dl I. t I (1.. I’V.N.CD. ,..MI I a“-.. )9 ) 91 Krr£u I PU * 0.. .:7.U Yv. YU Fri... U... IVIUCH LU ..UC.r,hX.,C. M. )L :4.“ TGC 1.. rirf : ~T. L m. .L . rib .; x. : 7.1.... .....;. a..m..u.g..i(l .- K .. c C. 0 .,,C.. .2 .L L r. K fianCC t/nu “Ct... ET. .9. 4 . .rr 1.. .2T..7.l.v.r..i.r...h.:tCULT/rt AC CUFF L n u... u: Dr 1 I. :.D(D.\ wind... .37... .‘LLv 1nd .. n 73.1.. 1. (c.1411... RR. R... L H 0.5(71 : atl“) .\ 0 lulu/C £CCI\ UuUll orJnU .. 11.. .1... r.) + a: . o. .. 1.11.1.1. .z. b : (S _..._. .C: :. u : : : CCCIK L‘VKRCCC BlLF. JvHAIIn/ClCP . .J 5 741.7752... 7- 1.. 1. (no .37. P X __ .r L... m. I... .4 C r: >X...(.). L/Z; : :b11 u .5: :UR 033......471753 . 9YY J Vii!) .. C...:C..UL __ C: .F. ,- : C....FJ.:..,.. 9.542493. : h : x L.. (. ._ x; v Cl... C P : Cw. EJ : : 221%.; :11) :(T33 m... (7.317.... DJHN :m..n..( d.UC(..J.\Z(n ru(X(J].JJ(M.\..((J.-Jc 1.3 4.3.3.11“.Td_fi..r~1 2.; .JTJ. IU...F7,.CI 903.0 1,5 E ...»..n....l.in.lvx.i.Lu_ ivghrrw... 0F:F,.x U \C \CFnUAUFF. “F; .:_ L- a CCCC y... n .. .v..... 7 v... CBS; FPlSID 3? 3r CI €me a.D.»..f;.:b.l..x.zzoSat!.C.........FGC. : .Lr.C.1.1Fvu—r_r Qr u. 1 # T. L, .L D. 1.. «a 2.» .1 67 . fl. 7:4 It 1. C1 9 CCC 14 1C... 3 14.1 12 ll 50 1. 1 M1 .2 :TA: “1 p 3. .v :3 ,. ..a I. A 7 . c 1 E .3 r. :. .. A. au 2 2 .2. h V. Y. caacx 3'0 Jéafi‘ .11 ;.. 2.... U MI I. P“ T? DEF LC‘ u- 51 =INPUT9TAPEE=0UTPUT) E5 PROGRAM C0LL0(INPUT,OUTPUT9TAP _L o H D TED HH FTT 0 .1 NM NI OHN ITO \l TYLI 7 \l AHT ( 7. R A D l. TSC 9 D NED ‘1 9 [LL I4. ) CIL to 6 NFO ( ( 00C A D CR E 9 FL Dr. \I R A A .5 ptNI K ( TOM H D N10 9 9 FLTN s) ’ CAVI (c) 4. DxL :lrJ H‘ ETO vnl‘ ID HNP 9T 8! TE )0 9) CL 80 A3 SNA 9R T( EON 8V 7.0 NCO (9 B9 T. G B) 9)H MUD 9293918322I RNH )(Dv1.C2935P(B PLAT 8V610019.“ 90/ T R 9F804=¢OOM 92 ETO FF14C,815A\IF DE (I3235flu361t1 AEI NNI452E5A).U RPS 03.135789.9*Aru 6U1100000059T01 0T SSUOOCCO(SE o + RS 9 NM.” : : : : : __ 01.353 N PYT EE))))))AD:: : CALCJLATE THE ROOT 0F V FOR A GIVEN SET OF D VECTOR C C C .U T. 1 T T. c. 1 \l T ‘1 + AU ) o ) 1 C + O \l T. \l + 2 s) . ) ‘I 'U D 1. + N . T. U I l\ 0 0‘ T B T. A ( A 0 V O L L F R \I))\I F * 0 )3)G t 0 F D. 0M 0 0 o 0101 o 2 P Y V.”v_ 4 ( 0 T. MI nUfiU/P/M ( ( V I A o .0030 ( / : C G)22.V.V I 4) V I *V//l(1( \l \I L )C))(/(/ \l n_..u ) P USVV . ) . \I I T‘ MI. I oICC.UC.rbV.. Ix DD 0 .l 4088 .0 00 101.16.. V L .(IIlVIV PtPP ) J M‘F. U MTDD(F(F N)NN)I T. 2 o M AR+.i(tl‘ 97199.1( IMFE GQVVMFVD 0.311311 oDETS/L E (QVAAAXAX o._.D::Q(U+t00 T ::GGGEGEDOOI¢IJE(NIZ.M A VV(( : : 2 : o: : ( 0 211812 L CC: :FD.MM1T..U?.:4.¢..UJT.T : :P U 333 “3303:1I I (IV:M.V:( C IIOCVVVVVTEOlOOFlONZZF L DDVVFCFC- TDTDDITCSBBI A C 1 C C C 2 4 THE ROOT OF V(ROOT SEARCH) ESTIMATE 8 O T O G \II n. c C o T. \I G 5 M o 5 cu ) 5 i \l 2 2 0 ) B ( T ) (6V 0 V . F G I HVOF 0 IQCTII \I c )HOD V0 1. CLG. V. (x 0X \I Dr— . 1:)1 .N 0 .)1.( V. o VT. 0V :T MFSFIDITNO .1 AXHFI(+O(T _:Ln.J—LLI(I\JAUC W. 1:: :XDFF:RIG IJHH IIJV CONDITIONS OF UNIQUE V M O O C C C CH STOPS BECAUSE THERE ARE ONLY 3 ) M s *0 ) 21 \1 Bl L ( V 5 D V .0 1 ) O I )T RR 2 H N 0 L0 A0 0 ( T I c HG [F T V E J 1 / s O F M 9 ( )) S G F 1) - 05 TT I L :J 0 o. 00 1: D A dd .)10 00 3 : V d(V1L. o RR o ) R TV(HLT IV E CODQ(VL 3E E8 W5‘V5 T JPO+MP(0 :L 0 V0 N :9RLAX(L JB h02+OF+O I N VVGE:F I (T2VTFVT — IO::::£.( NS FOI:OI:G F JDLRLLFF ES IGIVGDVG L VVHH I H0 A UP H 5 1 VHH IIVGVG FL IS NEGATIVE fiv 1 CCCl VHH IIVGVG 7 PJ 1 CC ) 2.)*X(d)**FLOAT((2*I)-4) 2o0*X(d)**FLOAT((2*I)-1) + 7 T _ \I 2 \I 0 T 8 O + o 1 ) ) 1 u ) \I .7 ) V ) ) ) D 1* ) 1 H 2 . D K) . I t‘) (3 K ( Mt) *- § T 82) 2) I A fiTV (I ( 0 2;: Ti 0T L BHV ) A2 2A F ‘1‘ V C( 20 t .)/ i L( L 0102) V Ft OF ODOPZ ( *) lTi ZDliT I *1 p00 ‘M(2* ) 1 1). NG- (D/pI MNP P01 9 2 /tI(D AvN N(( 1)( )HD.D 61 9 ,X‘ ..I( IwaJV i=1 1(T Ko/E‘2VTD HJ: 2*; G)UDBD:* ( I K)OOCEKN:::)M D 3020(: (:HDDDJ( 40 : ::73:73MVV(( DDOZOZ3TDITCDDDA DTDTT O 8 C D 1 2 3 3 2 2 53 .-1)t‘(2*K)-3))*D(K))*(X(d)**FLOAT((2*K) OPDE 2N: .— \l ’)) 212?. + : + .7 NKNN Z : 0.»; CE .01520 :U N)8\IN HUS}. .1 IT.‘ ICCUNT+1 NFI NP2)).LE.TOL) ICOUNT 19 K9 T ‘T.NE.NP1) 5010 1 NTRATION PROFILE IDGT—e NT:C 50 K 88(8 INUE COUN CONC OX,"X"910X9"CONCENTRATION"g/l) (H14 TCH. o IAPTO PO... 1 )2 NLi)F—D 0 9 CFIO 0.01 9/ 2* HGX o . afi/ :nuvl-onrUT 9/ I 0‘ 9.1+C1 6(0— 2!,D(I 06 EAOISRIFEATH TM 2 (2F_(T.M __ TO 1331a). INDIDJI(TI ROH :00 :ROhFO HFTYDD. VIHFTIG 260 300 =19NP1) GUESS F0R 0(1) HHEN V IS MULTIPLE AD(59*) (D(K)9K IE(JIN.EQoI) GOTO 999 — R; NEH X CONCENTRATION 0.0050 .957059 .0500 .957165 .IOOO .957482 .1500 .958011 .2060 .958752 .2500 .959706 .3500 .960872 .3500 .962251 .4000 .963644 .4500 .965652 .5000 .967675 .5500 .959914 .6900 .972371 .6500 .975f46 .TFOO .977941 .7560 .981056 .8535 .984394 .8500 .9879F6 .9000 .991743 .9503 .995757 1.0000 1.030000 :03 05/19/83 1862628 357 Lines print. ages print. Cost at R62 is s 3.36 55 PROGRAM PFR (INPUT.0UTPUT,TAP55 OUTPUT) INPUTgTA°E6= S N I 5 0 RH o T. AT 0 T L t A UN 1 L BI 9 U U 0 C TD ) P. L E g E A ”NT K 0 Z C 0A 9 3 U LL R l\ i R FU E T \l \l 0 1 C I R 3 \I T 3 GL 9 G l. \I C UA )) S I O A 0 ) LC 32 O I H R F. ) T O 9 P (It 9 HT. 7. 0 l O o c. S IK _L C T 9 Z s o 2 G 1 0 ET. HH 2 o O) ) Y S 1 T o I H TI U 2 I2 ) / E + t ) 0) ( T5 99 9 I B... 0 0 N U) \1 rd of T T )Xu-Iu ) 9.1 R . E .0 5) . 10 R GS 3E 9A ) 1H 0 E 1 V 1Y T) C .Y O NV- (DDD 0 IT R Z (x T. u t (V o )i 8 0L ANNI o H 9 E U G. T )\I TI 1 E F.) t LA DI—tA 2 P) 2 - R0 C On... ) Rf... 1. L 00 ‘1 AT 19X! I 91U 0E. Ev... 50. . Y. I A ARTA nu 1.! . 7.1 F .1 . S1. 0 ) *1 H EC 9ELD 29 AI H 1 Y( F ‘1. ) 1..)tl‘ T \I \I. ) D. L \ITO 9 23 ATH C ( It E 0) K (O). 0 2 0) K / IH 3ITOJ 7:. DET A ... OM .0 M TYHC G I. C .0 M ) FT (M 9RN 5. 9B9 E uh. RA R 10 o RiTo F o.$o 0)) OT. 09XEC 2) 890 A E6 0 +3 C))0)01 .1 F) 2+3 C04 RH UH 92F 1 00 AIR R T077... F )1. 90480.1( 1 I2 R/)( 9 QT. P 9T)Y 9 0 2 . TME 0 OERUP UT)2 0T... YB* . D( 0 E)GT)23( D .135 9N C 43 5A7. F REE... X V .R1K3()*/) 0 it. v. TR .R1K(T NF. 2M31C U 1‘ BGU {(7.15 3QTXCTIOA0) 5:. F )F D IO30TXTR 0K 1‘ 9(MF 0 ST N Z+YA .— D (S... 9TRHYT .62 0.1 T. 1T. 0. 9Y(S( 9R0 1C FNKA 100Q9R1))) O UO/Tl .N T(S1.RQD.5\E2TTTD D (D Y)\11+T‘.SIQS TA F HGL 83 .503... t t I. . .lEI 1. A R(.UT.QS/(B/( . N: :21F :1 JJ__LR(OI$/ AP T.R 9 A an. 001. IS 0 9 9 9 T fluiMBH : Q‘CSS/1.(MP2U)1):1F\11 : ((IOQ(CS 93 R o DEVINN 60 o 1(0p355 A ozA D. T0 E SlAPi320¢AXTO221T11.$1 00 YS/APET TRM G CR : O: :l‘:((( L 1.00:( NY. 0 (1.:(OTT oQGERC( (N D( 1)UUO((1:(O( NOA LELME R: :OK:UDDD U :R:A: US Y. (T1:Y:(1 .(: ._IFCFUO(FO+J: :5:(T1FY( .LTR ATAHT rIJDYMZLA‘AA C ..:._v:TT. P13: : :I: :1: :1:2F(FTF 3T(FTJ(L3\ .1: :I: : : CCG FLNFKUX TYYPOKpL—LEE L ZZAEH :CC .0 1.1534225ZGTIFICICOFIG:00000113342 NAO RIRCE IDSUCXDRRR A UYGBP JIY N TTPTTTTTVTRDIDGDIGIDGJUTYDYTTD TTT OER C I CRP F C 1 1. 1 3 CCCCC CCC CCC 8 C CCCT. 1 2 3 3 56 9 9 X X 3 E 1 D 9 \I N I n» I 9 O 9 9 e 1 N R 0 O : E 2 T E T l G R I F 0 U M 9 ) T 9 I 3 ) A H : ( ) C\ T I T. b. E E H H T P M T T ( MT. 9 n c T E ) L 9 R R T 8 H O X 0 0 u \r o T T 3 o S 9 \I 2 G 9 1. 0 / X .1 1. N D 9 o 3 3 V 4 F E N I 1. T 1. I M 9 L .U C E 9) a ( 9 .U R n n. a, X 66 T t / o r. : R 2 1. 9 o o G .l 9 1 T S 0 V. Inn/.2 o 5) 2 a. ( ) t S T O O 9 All ) T) 3 1.) . 9 3 E C T ET H. OFF 2 (V 06 flu E M N A O 20 9 T. 9 9 ( T/ 0 2 o o G R E E G UG X Au u 9.1 RC T6 .5 1.6 1 Y E V 9 R o 9 n. 9:: 9H 0 o 04 a. FF... ( i T T. 9 ) 3) J 2 )OP 9.! 939.. G .1 VP. *)E t T H 3 1.3 N IRO o E..( 0 0 On 9 )CO)2)C O C o / o C 0 (ET 0R 0). )T T 9: u R C .YlMHJE T A E U0 F T IZC T0 YHU CO 0 VE: O .3t4R1F 0 E N LE 9 0 HUA C o *T o .5 r0 90?. T fié/EMEAF G o E t N F: Tn F. Gnu U E01. 0 EYT. C ICORTDE) T I DI C v. 99 o L 09... o) ) 0» D A M .YEtIn 2 .1 A o 9 o F ) + ZXS )1 E YB: EC 0 Y 9n F IA2(T1A 9( C D )D) ) 9 8 r.) U38 C o D 9/) .L o o X 9 H61. . (M XF Y S SN 1. SKNI UN 2 2T. 1E .T . EAO) .0 nu )3X S PfTOTR)3F P N 9A O 1(A( (1.)... UCD) 9N 1.6 0 0T .62) o o 513 S /(R .RESII U 0 1. . 0 9T .A ARR . .INS/F. o o R YE2TT2E E E 91. E rJPQlGTS 900 o T. :1. 0 IAID DAET UHET/V T) E (B/( . (L L E 9/ 9 N «XS(S.. 9/ :v..T T T. a )0 :0 0T..JT.rLT.GEE oTX 9/1.... 61.97. .(MP2F oECEG QEUEU6(/ E 1E _. )6()DG A Q 1.01. n IKLQABAG 9 oUUl: . 6(TU 0(9U UQAXTFF0505F050N(T 9 V : : :1:J(T1.+ .1. R 0F. ( 001. : : FE:1: DKRNN..)0(TCN E19: .UGERIIY. Y. Iv. YIEAB I 12344(EA(OO T n. . EIn:J:RXC: .d d HEIIOI .EAEI 2H 0 1. 0.4.: :DD: O:OD:O :TTUL o T MMMMMATMFYYO N 2... 2H : .H—LEIDJAOAL 9T.TTR(1TMFT UTCR :1:2F((D\TLT(LTD\NI:\4 C RRRRRDIR: :(T r. (lUTLDTTD V(DT3L<(VNEI:ID\:.N ((T... 5:6TIFFOOOOFOOOORCI E EEEEEIROIOFO C 0:. : : :0:EINOEFIOIAHFOOZHZROEO FFOZ TVTRDIIYGYGIYGYCHFF F TTTTTAHFDYIG N DINXYTHMMIDXIAGACIICCUTUHF» C IIGU . F O o + + E C 5 .. 1 CO 5 n. 6 2 53 6 5 I. 9 98 CC 7 0 4 3 45 CCCC p: 1. CCC9 1.1. 1.2 2CCC 57 -UZERO 00 08 1 :0 FLT 20 TN SE CC9 CCC M)-(SINPSI*COS(PSI)/( 0 2 0 T 0 G \l 0 5 . E 0 M. o 2 1 T o t E 28L KU. SS) tFB E+U OMS CUFEE r399 11 00 TT 00 GB ‘1) )‘l 08". 9 CU 228 //.F. IT.- PPK ((MH 0 .0 TQC LE... 0 .firv K 0 2 0 0?. 9 T 2T 2 C t 1 8 1 G a) 0 1.. 1 3 TI) T ) 0M 0 \l O 0 s) 0 0 \1 6X 6 K T T 0 T .U 0 t 6 M 0 0 o O 1. o )0 ) 1 0 G G 1. G . 1. Co 0 C + E . 82 8 0M. 9 ) s: M ) G M .( . T2 2 \l \l x 000 o x El E 0T K 0 O o 000 1 t 0) 0 6* X 0 o S lllN O c to 0 \l 9 2 2 o EEEEE o 10 1. )2 1. / I U. OCODL 2 .1 0 UK 10.1 T. .Mooolo ( F: E as 859. P C (X1118))* LM L 0. P61... ( n. t * o/l/EIt oX 0 El. (2 o 21 1)MNEMNMOSD,M).. ) or F95 QI 9MUELUEUCPNX20 M )E 56 ES 0 OITND oNDNITI... K o 2 M0 N1 0 up. 1 0T. o:TIINIIIBNSt$2)T0 . C 04121.31 ISIIMABBEBBB(I:2(()(.NITIS(UU11.50 11.11.1118 : PS ._ T as LSD. P. CSPOP: 0: M9..l\T.t\T.TI UIFOFSOS FPIGIPGP DJHTN 0 : .. nU .. : : SSIKS‘MSA‘.‘ BIBFSNN1121CMN 1 3 + N : PMOLMNIMNEB :SXB(XB/2: EM:U1FUEBUEOAPP :A : * AM(BOBMATTPPNOMSU : ND(NDC(VN2(MO(X(UTJU(NN((JTUFT3 IszloMIIFIIIFIIKFz 0F : FSOSSFOOFFSOS : EN BFTBDXBBIBBBISSSITZINIFGFFICCIIFGFFRE : : BIT. 67 00 11 12 SS: :UR 8’3 11 58 CCC 'E FCN(N9X9Y9YPRIME) R0)))/(DA*AIDAJ* ) D P 9 Y ' XX ,9 N) (N .09 NN C9. F0 P E9. NN) IN OUT GER Y( RN U33 TTL EAL ETU N3 T SIRRE 59 10E= .0014451905 TEMPERATURE: 5.9508423? 01F: 0.000000 EFFECTIVENESS: 44.20394969 YOE= .0181947795 TEMPERATURE: 2.28039119 DIF= .000000 EFFECTIVENESS: 11.43206424 YOE= .4171244597 TEMPERATURE: 1.13480076 DIP: 0.000000 EFFECTIVENESS: 1.20357822 UZERC= .990000 THI= .000075 EFFECTIVENESS FACTOR: 44.203950 UZERO= .990000 THI= .000292 EFFECTIVENESS FACTOR: 11.432064 UZERO: .990000 THI= .002770 EFFECTIVENESS FACTOR: 1.203578 YOE= .0015558120 TEMPERATURE: 5.62562623 DIF= 0.000000 EFFECTIVENESS: 35.46469569 YOE: .0181870902 TEMPERATURE: 2.24302814 DIF= .000000 EFFECTIVENESS: 9.5303019? YOE= .3599677158 TEMPERATURE: 1.15474818 DIF= -.003000 EFFECTIVENESS: 1.18645495‘ 6O UZERO= .980000 THI= .000230 EFFECTIVENESS FACTOR: quRo= .9écboo THI= .000375 EFFECTIVENESS FACTOR: UZERO= .980000 THI= .007895 EFFECTIVENESS FACTOR: TOE: 00917283939 35.464696 9.530302 1.186455 TEMPERATURE: 5.2530188? DIF= -.000000 EFFECTIVENESS: 28.40852006 YOE= .0175682262 TEMPERATURE: 2.23051404 DIF= .000000 EFFECTIVENESS= 8.21935759 YCE= .3110135554 TEMPERATURE= 1.17450726 DIP: “0030000 EFFECTIVENESS: 1.16564096 UZERO=' .970000 - THI= .000542 EFFECTIVENESS FACTOR: UZERO= .970000 THI= .002040 EFFECTIVENESS FACTOR: UZERO= .970000 THI= .017817 EFFECTIVENESS FACTOR: 28.408520 8.219358 10165641 61 YOE: .0019935515 TEMPERATURE: 4.83562908 _DIF= -.eooooa EFFECTIVENESS: 22.61875262 YOE= .0162490481 TEMPERATURE: 2.24836615 DIF= .000000 EFFECTIVENESS: 7.36163081 YOE= .2700877915 TEMPERATURE: 1.19355393 «DIP: - 0.000050 EFFECTIVENESS: 1.14138995 UZERO= .960000 THI= .001174 EFFECTIVENESS FACTOR: 22.618753 UZERO= .960000 THI= .004354 ' EFFECTIVENESS FACTOR= 7.361631 UZERO= .960000 THI= .037397 EFFECTIVENESS FACTOR: 1.141390 YOE= .0024224507 TEMPERATURE: 4.3667104? DIF= ‘ 0.000000 EFFECTIVENESS: 17.74185493 YOE: .0141333163 TEMPERATURE= 2.31049110 DIF= .030000 EFFECTIVENESS: 6.90601196 YOE= .2366469109 TEMPERATURE: 1.2112479? DIE: 0.000000 EFFECTIVENESS: 1.11323228 62 UZERO=‘ .950000 THI= .002445 ‘EFFECTIVENESS FACTOR= 17.741855 UZERO= .950000 THI= .008958 EFFECTIVENESS FACTOR: 6.906012 UZERO= .950000 THI: .076342 EFFECTIVENESS FACTOR: 1.113232 TOE: .0032401414 TEMPERATURE: 3.80965589 DIF= 0.000000 EFFECTIVENESS: 13.38010514 YOE= .0110275784 TEMPERATURE: 2.45970353 OIF: .OOOOOO EFFECTIVENESS: 5.95138032 YOE: .2099453041 TEMPERATURE: 1.22687901 DIF= O.OOOOOO EFFECTIVENESSz 1.08044015 UZERO= .940350 THIz .005001 EFFECTIVENESS FACTOR: 13.380105 UZERC: .940050 THI= 0018130 EFFECTIVENESS FACTOR: 6.951380 UZERO= 0900000 THI= 0154062 EFFECTIVENESS FACTOR: 1.080440 63 YCE= .1891399813 TEMPERATURE: 1.23978371 DIF: 0.000000 EFFECTIVENESS: 1.04256630 UZERO= .930300 THI= .309364 EFFECTIVENESS FACTOR: 1.042566 ¥0E= .1733213659 TEMPERATURE: 1.24949420 DIF= 0.000000 EFFECTIVENESS: .99985193 UZERO: .920000 THI= .619856 EFFECTIVENESS FACTOR: .999852 YOEZ .1616009484 TEMPERATURE: 1.25584484 DIF= 0.000000 EFFECTIVENESS: .95331954 UZERO: .910000 THI= 1.240753 EFFECTIVENESS FACTOR: .953320 LIST OF REFERENCES LIST OF REFERENCES 1.Hutchings, J” and Carberry,.L J.,"The Influence of Surface Coverage on Catalytic Effectiveness and Selectivity. The Isothermal and Nonisothermal Cases," AIChE J. 12, 20 (1966). 2. Carberry, J. J., "On the Reactive Importance of External-Internal Temperature Gradients in Heterogeneous Catalysis," Ind. Engng. Chem. Fundls. 13, 129 (1975). 3. Lee, J.CL M.,and Luss,‘D” "Maximum Temperature Rise Inside Catalytic Pellets," Ind. Engng. Chem. Fundls. §, 596 (1969). H. Kehoe, J.Fh G” and Butt,.L B.,"Interactions of Inter- and Intraphase Gradients in a Diffusion Limited Catalytic Reaction," AIChE J. lg, 34? (1972). 5. Butt, J. 8., Downing, D. M., and Lee, J.VL, "Inter- Intraphase Temperature Gradients in Fresh and Deactivated Catalyst Particles," Ind. Engng. Chem. Fundls. 16, 270 (1977). 6. Pereira, C..L, Wang, J.IB” and Varma, A.,"A Justificatin of the Internal Isothermal Model for Gas-Solid Catalytic Reactions," AIChE J. 25, 1036 (1979). —— 7. Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, 2 Volih, Oxford (1975). 8. Cresswell, IL I“, "On the Uniqueness of the Steady State of a Catalyst Pellet Involving both Intraphase and Interphase Transport," Chem. Engng. Sci. gg, 267 (1970). 9. Hatfield, B., and Aris, R., "Communications on the Theory of Diffusion and Reaction-IV. Combined Effects of Internal and External Diffusion in the Non-Isothermal Case," Chem. Engng. Sci. 23, 1213 (1969). 69 65. 10. Pereira, C..L, Carberry, J..L, and Varma, A” "Uniqueness Criteria for First Order Catalytic Reactions with External Transport Limitationsfl' Chem. Engng. Sci. 33, 239 (1979). 11. Pereira, C. J., and Varma, A., "Uniqueness Criteria of the Steady State in Automotive Catalysis," Chem. Engng. Sci. 33, 1635 (1978). 12. Van den Bosch,IB” and Luss,lD” "Uniqueness and Multiplicity Criteria for an nth Order Chemical Reaction," Chem. Engng. Sci. 32, 203 (1977). 13. Gattifredi, J.(L, Gonzo, E.EL, and Quiroga, 0.1L, "Isothermal Effectiveness Factor-I," Chem. Engng. Sci. 39, 705 (1981). 13. Morbidelli, M” and Varma, A” "Explicit Multiplicity Criteria for First-Order Catalytic Reactions with External Transport Limitations," Chem. Engng. Sci. 36, 1211 (1981). 15. Jackson, R., "Some Uniqueness Conditions for the Symmetric Steady State of a Catalyst Particle with Surface Resistances," Chem. Engng. Sci. 21, 2205 (1972). 16. Luss, D” "Uniqueness Criteria for Lumped and Distributed Parameter Chemically Reacting Systems," Chem. Engng. Sci. _2_6_, 1713 (1971). 17. Drott,IL‘w” and Aris, R” "Communicationscnmthe Theory of Diffusion and Reaction-I. A Complete Parametric Study of the First—Order, Irreversible Exothermic Reaction in a Flat Slab of Catalyst," Chem. Engng. Sci. 23, 531 (1969). 18. Copelowitz, I., and Aris, R., "Communications on the Theory of Diffusion and Reaction-VI. The Effectiveness of Spherical Catalyst Particles in Steep External Gradients," Chem. Engng. Sci. 23, 885 (1970). 19. Maym6,.L A.,and Cunningham,fh E” "Effectiveness Factors for Second Order Reactions," J. of Catal. 6, 186 (1966). 20. Hlavéc‘ék, V., and Kubicgk, M., "Modeling of Chemical Reactors--XXII. Effect of Simultaneous Heat and Mass Transfer Inside and Outside of a Pellet on Reaction Rate--II," Chem. Engng. Sci. 23, 1761 (1970). 21. 22. 23. 23. 66 Wong, S. H., and Szepe, 8., "Effectiveness Factors for the General Non-Isothermal Case of Bimolecular Langmuir-Hinshelwood Kinetics," Chem. Engng. Sci. 31, 1629 (1982). DeVera, A.I“, and Varma, A” "Optimal Bulk Phase Composition for an Isothermal Second-Order Reaction in a Catalyst Slab--Elliptic Integral Method," Ind. Engng. Chem. Fundls. 13, 320 (1980). Byrd,I%.F.,and Friedman,bL D” Handbookcfi‘Elliptic Integrals for Engineers and Scientists, Spinger- Verlag, New York, 1971. Villadsen, J., and Michelsen, M., Solution of Differential Equation Modelstanolynomial Approximation, Prentice-Hall, 1978. “111111112111111111111111111111s