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ABSTRACT
A HETEROGENEOUS CHEMICAL REACTOR WITH AN
INTERNALLY ISOTHERMAL BUT EXTERNALLY NON-ISOTHERMAL
CATALYST PELLET: SECOND-ORDER CATALYTIC REACTIONS
By

Kyung Jin Bae

A 1-3-1 multiplicity pattern was found for the
internally isothermal but externally non-isothermal catalyst
semi-infinite slab with second-order catalytic reactions.
The ranges of multiple steady states are generally rather
narrow but expands slightly for certain physico-chemical
parameters. For an isotropic and axisymmetric packed bed
reactor with plug flow in the bulk fluid phase, axial
convective heat transport and adiabatic conditions, a 3-1
multiple steady state pattern along the tube reactor was

obtained.
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INTRODUCTION

The strategy of operating heterogeneous chemical
reactors depends largely on the nature of the steady states
and on the stability of these steady states. The
understanding of the reactor dynamics is essential for
determining chemical reactor control policies. Normally,
the analysis of chemical reactor dynamics is preceded by
the analysis of these steady states.

For a heterogeneous chemical reactor, typified by a
packed bed reactor, the model that is usually employed
consists of material and energy balances, of the fluid phase
and the solid phase. Not unless the fluid velocity changes
drastically within the reactor, then the momentum
conservation equation can be discounted. Hence, for a truly
turbulent fluid having the mean velocity <v>, the fluid

phase material balance for component j is

[

G _ 2,6 X ® (3¢ \ : 1-< ,
Sk -%wmg-) v L20q35) <v>'§°§ + == aNg (1)
subject to CS (o, v, B) = Cjo (1.1)

3¢; ° et e
byt = <wrlogp - g t,0=03) L=r3 (1.2)

_ _ (1.3)
5&- [ , L=RZ
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Where NeJ Total effective flux of component j entering the

solid phase.
Other symbols are defined in the notation section. Notably,
this model presupposes axisymmetric concentration profile,
i.e., no ®-dependency. The solid catalyst material balance
for component j is

24+ gy SR
2 : = e
5t T Ne PSR &)
where Rj = turnover frequency, no. of molecules or
moles/cm? active surface area/time (or in-
trinsic rate)
S = total active area/gm catalyst
[ = catalyst bulk density, (gm/cm3)
& = cm3 solid/(cm3 solid + cm3 void)
l\_lelS = - Dej-!cj
De; =

)

Assuming symmetric conditions,

effective diffusivity of component j

2¢ =o at K=o
>n 4 = (2.1)
where 5% = derivative with respect to a normal
X = 0, represents the center of symmetry.
If there is an external mass transfer resistance,
: = - De2C = kg [Cf- G of K= 28 (2.2)
Nel(aﬂ) = De: .;“_CJ ka’ § 1] X
where 35

represents the external surface of the catalyst

pellet.
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The fluid phase energy balance is

N oA,
ZOCR R+ v = BONEY +

SEnV oP
| —— hed i or
(au‘r)? ot +<"7 ]+ "‘“oe t Q3
where Q =

= rate of heat transfer to the surroundings/reactor

volume.

%eaeffective heat flux leaving (or entering) the

catalyst pellet
A

V = specific molar volume of the fluid

Other symbols are defined in the notation section.

The heat balance for the catalyst pellet is

LOGZ ¢ v - cps o)
where $e = =N 9T =

Ne = effective thermal conductivity

effective heat flux

Assuming symmetric conditions,

2

giT =0 O\Jf h:o (4.1)

and for an external heat transfer resistance,

e(3) = AeZp = h[T-T1 ot x=22 (4,

Now, the 1ink between the fluid phase and the solid

phase is afforded by the concept of an effectiveness factor

of species j, ﬂj Thus

‘Yl- = SVP Rj dsr (5)




y
where V% = catalyst pellet volume

clst 2 differential catalyst pellet volume

Applying Gauss-Ostrograllskii's theoren,

Son @ Nejj r
i

Clearly, the numerator in equation (5.1) is interpreted as

the total moles of material j entering (or leaving) the
external surface of the catalyst pellet. Hence, the fluid

phase steady state balance can be rewritten as

)
0 = ab(Daa-—a—) + r'é?(DYa_gd') - <V7—£g_

o~

\- & . S n0 ° .EI_.—-
- T a’?fe?SRJccs'T)vPS;fP[ (5.2)

where NT‘E total number of catalyst pellet inside the
reactor. In the words of Carberry, the last term in
equation (5.2) is referred to as the observable rate.
Therefore, the solution to equation (5.2) requires the
calculation of the effectiveness factor.

In this work, a method based on the theory of elliptic
integrals and elliptic (Jacobian) functions is applied for
calculating the effectiveness factor of a second order
kinetics. The details of the diffusion-reaction model
assumptions is postponed to another section. A simulation
of the heterogeneous reactor model is also presented. Much
of the works involving diffusion-reaction systems have been

on first order kinetics and lately the focus of interest in
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the literature have been on Langmurian form of the kinetic
rate expression. A comprehensive review of research
pertaining to diffusion-reaction systems up to 1975 is
provided by Aris [7]. Upon examining this reference [7] and
the recent literature, it is clear that studies on the
second order kinetics is not fully explored.

When chemical reactions take place within a porous
catalyst pellet, the system may have multiple steady state
solutions for certain combinations of physico-chemical
parameters. Many studies have treated internal and external
transport resistances separately or together. 1In cases of
gas-solid catalytic reactions, the external mass transfer
resistance (Bim) is relatively much greater than the
external heat transfer resistance (Bih), so that the major
temperature gradient exists in the external film and the
catalyst pellet may be considered to be isothermal. This
internal pellet isothermality has been carefully examined
for the first order reactions analytically [6,8] and
experimentally [4,5]. Pereira et. al. analyzed the full
non-isothermal diffusion-reaction equation by regular
perturbation method for small Praeter temperature (@) and
finite B,/ ratios. The zeroth order solution of the full
problem justifies the internal isothermality [6]. Also
Cresswell studied the combined effects of internal and
external resistances on the uniqueness of the steady states
with internal isothermal model [8], while Hatfield and Aris
[9] studied the combined effects of the full non-isothermal

model with both linear and nonlinear kinetics.
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A number of studies have been devoted to develop a
priori bounds on physico-chemical parameter values for
multiplicity of solutions [10-17]. But, because of the
difficulty of handling coupled nonlinear differential
equations, necessary and sufficient conditions could be
obtained only for lumped parameter system while only
sufficient conditions found for distributed system. Luss
[16] developed a priori prediction of the unique steady
state conditions with nonlinear heat generation term for
arbitrary kinetics. Later, Van den Bosch and Luss [12]
developed uniqueness and multiplicity criteria for lumped
parameter model and for the intraparticle concentration
gradient model. They found that for lumped model the higher
the order of the reaction, the smaller was the parameter
region where multiplicity could occur, and for the model
with intraparticle concentration gradients, the multiplicity
parameter region is smaller than that for a corresponding
lumped model.

For first order reaction model, Pereira et. al. found
analytically a 1-3-1 multiplicity pattern for relatively
small @ and relatively large Bi,/Biy model and their
analytic criteria were compared with exact numerical
integration of the heat and mass balance equations [10].
Lately, Morbidelli and Varma [14] obtained explicit
approximate bounds for the multiple region.

For langmuir-Hinshelwood type of kinetic model, the

multiple steady state phenomenon depends on the adsorption
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rate constant values. The assumption of fixed adsorption
rate constants with temperature was a good approximation for
the relatively small @ cases. This assumption did not
change the multiplicity pattern for larger @ cases but
changed the numerical range [11].

Studies on multiplicity of the steady state solutions
is usually expressed in terms of the catalyst effectiveness
factor [13, 14, 18-21]. Hlavac&k and Kubfc¥k [20] developed
a simple approximation for evaluating the dependence of the
effectiveness factor on the Thiele modulus. And Copelowitz
and Aris [18] calculated the effectiveness factor for small
and large Thiele modulus values asymptotically and applied
the reasonable approximation to the rising part of the
effectiveness factor versus Thiele modulus plot.

For bimolecular Langmuir-Hinshelwood Kinetics,
Morbidelli and Varma [14] developed analytic solutions for
effectiveness factor for the full range of Thiele modulus,
in the 1imit of large adsorption inhibition constant, and
Wong and Szépe [21] found that for this kinetics, multiple
steady states might arise even when effectiveness factor is
less than 1, and that with higher reaction temperatures and
stronger surface chemisorption characteristics,

multiplicities in endothermic reactions are likely to occur.

THE KINETIC MODEL

The kinetics of interest here is typical of a

hydrogenation reaction involving an olefin, e.g., ethylene
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on a transition metal supported on ¥ -alumina.

Ky
—>
A+ x GET A-x (6.1)
Chemisorption K
Y
B + ¥ 2 B *
Qi: (6.2)
X e
Surface Ny + B ¥ T VN (6.3)
reaction 3 * %
ke,
Product { /C\ : C 4 2N (6.4)
desorption * % Eq

Here, we suppose the surface-reaction is rate controlling.

Thus, invoking the pseudo-steady state assumption.

A K4 =2
Ri = kg KK, (CaCp — KKK, Ce) S (6.5)

where Sz = fraction of the surface that is unoccupied

Ke =

= reaction constant for the surface

>IF
1l

reaction

e

2

equilibrium constant

"
I

Assuming the forward reaction proceeds at a much faster rate
than the backward reaction, and the surface does not exhibit
poisoning (or 32 is constant for all purposes), hence

equation (6.5) is transformed into
A ~
Ri = kKK S* CaCp (6.6)

for an equimolar concentration of components A and B within

the catalyst pellet void,
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Rj = k(T)Ca (6.7)

We will assume the Arrhenius dependency for k.

THE INTERNALLY ISOTHERMAL, EXTERNALLY NON-ISOTHERMAL
MODEL OF THE CATALYST PELLET
Hutchings and Carberry [1,2] have shown that the major

seat of temperature difference will most likely be in the
external fluid film, while the concentration gradient can be
expected to prevail primarily within the porous catalyst.
Lee and Luss have later refined this analysis [3]. Kehoe
and Butt's data [4] and Butt et. al. [5] presented some
results of an internally isothermal pellet but with a
limiting external heat transfer rate. Their experiments
yield various inter-intraphase temperature distribution data
for a single pellet in the Ni/Kieselguhr catalyzed
hydrogenation of benzyne. Hence with this consideration,

the steady state material balance is
. _ 2
Vbe - Ve = €pS kM ¢y (7.1)

where Kk(T) is the Arrhenius reaction rate constant. Upon
assuming that the effective diffusivity is independent of
pore geometry and the other diffusion effects, e.g. Knudsen
and surface diffusion, thus for a semi-infinite catalyst
slab,

2

eeSk(T) C1 (7.2)

LN
Q_L-Q;,
XL0
N
it
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For the symmetric pellet with a surrounding mass transfer

film,

0 (7.3a)

d¢
Hjé X=o
-Deg%%

g £ - il 3

X=38 (7.3b)
where & = half the particle's thickness.
The energy balance is
YNUT = —ePSkmc}(-c\H) (7.4)

Assuming an isotropic effective thermal conductivity, Ae

,thus for the semi-infinite catalyst slab,
T = e
e d‘o\zz = - €pskmg (-oH) (7.5)

Again, with the symmetric pellet and a heat transfer film

surrounding the pellet

a1
dax [ x=0 o (7.62)
aT . °
7‘6'&\,{=8 = h 0T 7451 (7.65)
Integrating equations (7.5) and (7.6) yields
$
W T[ges = 753 = ees[ (oM k(TI ¢ dx i

So, if the internal temperature gradient is zero, and the
heat of reaction is temperature independent, equation (7.7)

reduces to

2y L 3
hCTlhas -T°] = €ps (-of) k”lr—sﬂfz ax (7.8)
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The material and energy balance equations can be casted

into the following dimensionless form

L
2 a2 ¥( - ) 2
w' = ¢ e 4 Y (7.9)
uﬁ l;-—u (s (7.9a)
U lg., = BinCi- Ujlyed (7.9%
- i
Biy, - & (uray -9 (7.10)
ot = & [
where ¢"E eek(T“)é’C;/Dej =  Thiele modulus
u" = dimensionless concentration = Cj/CS-’

1]

dimensionless temperature = T/T®

dimensionless activation energy = E/(RSTO)

x/8

n

¥
5
P*EPraeter temperature = D%‘(“AH)C; [NeT®
Bin= Biot mass number = ks}& / Dej

Bi, =Biot heat number = hs / he

In the perturbation framework of Varma et. al. [6], the

full non-isothermal diffusion-reaction equations,

& e ¢ QTU-T) o T s

(7.11)

y" = -p¢ ew-%—) u* L e o (7.12)
521 WeB, mw 5oy e By (7.13a, b)

=0 * W =0 > oyl=ro (7.14a, b)

has the zero order term in the regular perturbation

expansion yielding equations (7.9) and (7.10).
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o = 2 B el
Let R(u,g,p) = ue(PEb’(I .3)] (7.15)
ﬁ = perturbation parameter
thus assuming the following asymptotic sequences,

u~ £ gy
j=o e uJ

(7.6
~ 3 i b4
Y 7 ¢ Y (7.17)
W o= ¢‘R(u,3;@>

~ 4 [ R, Yo) + L RUCU, Yod Us + Ry o,y Y]
T I2Ru e, god Ua T 2Ry CUos ) Ya
+ 2U Y Ruy e, god + U Ruu (U, 4o)
Y RygCderged] v - ]
B, e (5“'” + (fu{ i e, (7.18)

Hence, the zero order terms consist of the solution to the

following equations:

Yo &0 (7.19)
§=o 1 Yo =o (7.192)
x=) : 3; =0 (7.19b)

thus y, = constant (7.20)

e
g = ¢ ¥ (7.21)



¥=o0 5 u.ﬁ =0
=1 I Us = Biy Ul-ug (7.22)
Yo is obtained from the first order term, thus
4’ = " RUe.Yo ik
¥ =0

G (7.23a)
5=

s 'j| *® (5 (-‘éo—l)

(7.23b)
Upon integrating equation (7.23),
%(bz 1
Yoot = S R (U, ¥o) d¥ (7.24)
Blh .
The perturbation solution is not described here, but
will be done in the future.

The perturbation solution will

provide stronger criteria (for small @ ) for the full non-
isothermal problem.

NECESSARY AND SUFFICIENT CONDITIONS FOR
UNIQUENESS OF SOLUTION

a. Dependency of Concentration on Temperature
Consider again the catalyst pellet model equations

where both intraparticle diffusion and thermal conduction
occur,

o 2 ¥ - 1) m
U = ¢ e 4wy

8.1
$* £ euy 59

n



with

a-1.

14
L
1= m
' = - p & e Uy (8.2)
uj (0) =0 o Yy =0 » (8.3)
uj en = Bigli-gjei] 5 Yy =Bi, Cl- Y] (g4
Variation of Concentration Profile with Temperature

Assume there exists a maximal solution ujz and

a minimal solution ujq such that

ng = u-a(g e gl) (8.5a)
W = Uy (g =49 (8.5b)
and %z 7 %l (8.5¢)

If the differential equations satisfying these

solutions are subtracted from each other, thus

Wy - Uy = l{ 3 =l (8.6)
where .Fk = 3" um , k=12 (8.6a)

Integrating from ¥ =0 to ¥ =1,

Bim{ Ujt (D - U0} = q>§(’(‘ i )(‘j -40d% 5.7

using the derivative definition

BTM\{“)I(D = ujzm} = ¢ S 3y y*

where y* € (y1, y2). With the n®P order kinetics

(4o-40d¥  (5.8)

(n>0), equation (8.8) is written as
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{uM(l) u 0} J-F(uj y ){3 + ;} ;ﬂ R(‘jx y2dS(s.9)

Since it was already assumed earlier that Ujo

(a maximal solution) > uji (a minimal solution),
therefore the left-hand side is negative. This
indicates that,
. x »*2
au - W
‘3—53-{%* < T% ¥ S0 (8.10)
or, EﬁﬁL < 0 (8.11)
&

Another contradictory proof is to assume that
if 8L\§ /3% > 0, the integral is positive. Thus,
uj2(1) > uj1(1) will make the left-hand side nega-

tive. This is a contradiction.

Bounds for y
By adding equations (8.1) and (8.2) the heat balance
and the mass balance are uncoupled to yield

) + B UL - Y(E)
ub(S) = 8 ?(3 d (8.12)

For the internal isothermal-external non-isothermal

model,

B‘h Y- = uj’m = By L= uécl)] (8.13)

and recognizing y(1) = 7(%) ,thus,

L
WS B (8.14)
® Bim / BTy (8.14a)

£
=
o
5
o
-
-
mn
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)
Now, since —jL < 0 and u; & (0,1), therefore
Qua J

Yy e [1,1+g-] (8.15)
. Necessary and Sufficient Conditions for Uniqueness of
the Steady State: A Conservative Criteria

From the heat balance equation,

Biy, ’
il B -1 = U;
gD jw A
1 . 2! |~
= S dwp = ¢ geu '3)143’43 (8.16)
° o
the effectiveness factor defined relative to the bulk

conditions is

b=t
1 = gt %)g uj 4% 8.17)
Hence,
B, _ T = FW) (8.18)
e =8 Fy
A G
dy y-0*
Furthermore,

(8.20a)
F(%:(-&-(&L) 2o (8.20b)

F(lA=l) = +

Now, with e%?ation (8.17), X(l-Jﬁ | su
e e g )+ 200D s p3- 4
d—é— 7 (3-;)2 (8.21)

W
but, —z—-A— < 0, hence






-4

Abs(gi’uj %?_d\g) (8.21a)
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dE " {%z (g—x)—ﬂj —').('d-l)g

Y -1y

It is clear from equation (8.21) that the necessary

and sufficient condition for uniqueness of solution is

Ly-nv -1 =o

)
or, f— Ty o+ ¥ Zzo (8.22)

Inequality (8.22) is satisfied iff
¥ <4
which is also the necessary and sufficient condition for
uniqueness of the steady state.
d. Van den Bosch and Luss Method for Uniqueness and
Multiplicity of Steady States
If we define the effectiveness factor relative to
the surface conditions,

"'( = ua'cl)"L Sl u-; dx (8.23)

°
then the energy balance for the internal isothermal -

external non-isothermal model results into

B ot-i)
= y-n = @’gbe ¢ uf dx

8
2 T(F'ﬁ) 2
¢ e Uy e
> WU‘L) v 2
—Zﬂ(%ze P -y

(g Bi,
T (8.25a)
b :

I

(8.24)

Let E
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1
o= D (14 e - (8.25b)
i L+ g~ 3§
hence, B = F = —(——%:—?)lﬁ— (8.26)

Q’“F(ﬂ) = Q"‘{ $*C “GL-‘;D}*r!&v\’{—%(g—l)(s.eéa)
thus,

T-’Lt;pj; o ’2’“[51('1‘(5 gﬂ* b - 1 (8.27)

Since F(y = 1) = + 6, F(y = 1 + @ ) = 0 and F(y) > 0,
the necessary and sufficient condition for uniqueness of

solution is

d SIS d Sl

Hg[l,v@ G-yl + ag!wv[ = e
(3-\)[%{%&1(1+@L_5)} + %ﬂmﬂél rnge(l,HP‘)s.za)
Using the identity

d 07 L din | da&

T = 3 T

1 de[?}S(H a0 L ST
z%’%‘{’—_ﬂ_@—n_" 143 13}
substituting equation (8.29) to the inequality (8.28)

xa A
o [ dInE& -] %
g A

zu-r(s‘—-é)

"

n léé(l,l-r%")
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Suppose we can bound @ Prfor?

b. = %% < by (8.31)

because gﬂi_< 0 for an n*M (n > 0) order'kinetics, it
follows %% < 0 and by = 0. Van den Bosch and Luss
[12] proved that for the slab, cylinder and sphere geo-
metrics,
by, > -1 (8.32)

It follows from the inequality (8.30) that a sufficient
uniqueness criterion can be obtained by substituting
dimm /d1n$ by its upper bound b,. Hence, for the

second order kinetics,
e 2y ¢ s g+ v0r By - (3]
- yu+ By ey + YOy Zo
for 1 sy =arpt (8.33)
For a conservative criteria, b, is set to zero, resulting

into a model where intraparticle diffusion is neglected.

This is tantamount to a lumped parameter model. Hence

for by = 0,
. & (h) for p- 21
EY <y = i (8.34)
+§ Gy (B9 for Bz
where
264 Y2 =R+ 20460

&) = 1”—‘5("[1”(”@5]1 FAw20apnd® 8.35)
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4@+ @+ 4p7+2) 12, 84D e
(pr+1)* (p-+4) (14D (4+pH)*

For the case where Bip >0 ,

G = 2+2[1 +

T @@ =4 (8.37)

It is clear that for (BL € (0, ®) , inequality (8.34) is
satisfied for ¥< 4. Hence, ¥ U4 is the most conservative
uniqueness criterion.

Multiple steady states exist for some B values when-
ever inequality (8.30) is violated. Inspection of in-
equality (8.30) indicates that a sufficient condition for
its violation for some y € (1, 1 + PL) is to assume
equal to b,. Hence, multiplicity occurs for some B

values if
(1+8)y + [p+ 0+ 8]y - O+ 2)21py

+ oy 2yaepy =0

(8.38)
for some ¥, in ({1, 1 % PL).
A more conservative bound is obtained when by = -1 (see
Van den Bosch and Luss [12]). Hence,

L
dy Grs (B5) for BN =1
L 7YY = (8.39)
L

FHE 3 Gre () for B =z

where
2 L
Lo 2% z
Gsf) = e+2n(l+m+3“+ml> (8.40)

B (+ph [1- 6 Q+ph)]
L2+ 3Ci+pn]*
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L Ay L 2 L L2
28 +3 1z ( +3)(2€> +2e +3+4‘3 )
G Eé-\—é{l—qﬁ“),} - 2§((§+3)2(@L+l) (8.41)
In the case of By, —» ™ or (QL - , a condi-

tion for multiplicity of steady states for some values of
B is given by TZ8.
Exact Uniqueness and Multiplicity of Steady State
Criteria

Before proceeding to derive the exact criteria, a
proof of the uniqueness of the concentration distribution

for a fixed temperature is set forth at the outset.

e-1. Bounds for u

Upon integration of equation (8.1)

X 39
= 4)‘5 PP ax
°

L (8.42)
Since the integrand is positive,
u,‘/ Zo0 for § €(0,1) (8.43)
| ’
but, Uiy = b= e Ujtd
Hence, 0 = ww <1 (8.44)
as a corollary,
02 u'am < ui(‘) = (8.45)

e-2. Uniqueness of Internal Concentration Profile

Here again, the maximum principle is applied.
Consider the maximal solution U5(¥) and the minimal
solution 31(§ ). Furthermore, let U, > Uy. Hence,

given a y, and using a comparison theorem approach,
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1 by TS o
= RCU2 5 4) - RCUSY)
thay - daa) = ¢‘J T (Uaadd (g 45,

upon using the limit theorem,

1

~ ~ 2( 2R

W) = U = ==, (Uamuddl 4
1) = e ¢i Su\u* 2 (8.47)

where u* € (U, W)

It is necessary and sufficient that if

3R
3u 70 (8.148)

then equation (8.47) is readily violated. For
e
R = e](' 5) uz , the uniqueness of u is quickly

established.

The Solution

The elliptic integral was used by DeVera and
Varma [22] to solve for the optimum bulk phase
composition in an isothermal catalyst slab with a
second order kineties. This approach is extended
here. Applying the Clairut's transformation to the

material balance equation,

d A 3 2 7
a5 (uj) = 2¢ (’“J) uj uj (8.49)
where ?(%) = exp ExXir= 'é‘)j (8.49a)

and integrating from ¥ = 0 to ¥

, L
W =J§5 q;ez(g)\u;-vlw)s (8.50)
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Equation (8.50) is an elliptic integral form [23],

whose solution is given by

2u(m

F(wcus won k) = (5 ¢ P“g) H (8.51)

where F(¥,k) = elliptic integral of the first
kind
k = some modulus = (V3-3[2)/203

cos P

1l

LW+ uw-ul /CUE-Du+ul

For Bip —> 09, the centerline concentration is
evaluated by using the boundary condition at ¥ =

thus the transcendental form for u(0) is
FOpQs won, ky = 2‘“” %y (8.52)

Now, y is eliminated from equation (8.52) by using
the heat balance, and the result is casted into the

form

= [g-l(u(m)_‘_\]%[ég hwo)] = FUw)  (8.53)

where
htwo) = 3 " F s uo, k) /oo (8.53a)
Juwy) = (@IB.M -uy h(ucw)) (8.53b)

Furthermore, since 0 < u(0) £ 1, therefore for

u(o) = 1, W3+ -1 L8
P(ls Uue)=1) = ArecosT—— - =

(B=1) +1
F(o, k) = o
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h(ud=1y = o

]

F(uw =1y
For WU() =0

-0
>

WY(l, uy=o0) = Arcos (1) = T

F(m k) = 2K
huom=0) = % =gt

I

and Fuw=o) = IuZ§hiuen =

It is clear that the necessary and sufficient
condition for uniqueness of the steady state for

all physico-chemical parameters is

{8032 hon] + 31%%5‘ VI= U@ h(uco)
£ 39t [5)3 0]

for Uy € (o, 1)

(8.54)
where
au(o) h(uw)
Jwo) = &, [\l U\(O)’du(o) ZN-uor (8.54a)
d(u0) = 1+ %h\ll-mo)“ huwy >o (8.54b)
and 2 2.2 - it
sl B _2@{N§ﬂ)mm+® “—kSmUU)WQﬁ

duw - W© Sy (15 U
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__F(das uon, k)
2u(o)\)u(9)

(8.54c)

Exactly the same approach is applied for finite

Bi,. Here, the criteria for uniqueness is expressed
in terms of the external concentration, i.e., u(1),
instead of u(0). Thus, equation (8.53) assumes the

form,

Fuw) =[g'wan+] W[ hwwm] =T (.56

where h(Uuw) = 3_015]:(1?(“(\),”0),'()/!]“_9- (8.55a)

- 3
Uy —{um = W)B‘m‘:‘ ‘“‘ﬂ;} (8.55b)

Jua) = B, ,uu? whw) zo (8.55¢)

£Bim

puw) = exp [5€1- {1475 ~ (1= -uo}H] (s.55)

The bounds for u(1) are established by
recognizing that since 0 €uj <1 and for the
monotonic increasing kinetic rate function, u' > 0,
thus 0 <ug < u £1. The lowest bound for u(1) is

therefore the lowest root of

2
3 By 2
3 ™
Uy’ = ———— [I-ux] =
280 () (8.56)
Moreover, F(ugl)) = + 60 and FUW =1)= -6 ,

hence the necessary and sufficient condition for

uniqueness is
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d Imh(ua) d dngCuar)
[[*’3(“(‘)1 du 5#% d&u) [J:h(““))]

1 (8.57)

for Ux (1) € U

where

dimh | [I-uaJB ¥ Ri
A(ua) —q;J— B.h {E' Ul Fuc) WE !}(8.57a>

02dh Cawidund _ FOROMW, .k due (8.57b)
duwy o 1- Keiny 2U0 VT, au,
due
ae _—2 Cuo 3 zu.] (8.57¢)
duy T LB Ue- U] ST Cum)
due  _ B Bin, T -UW) o (1-UC)Y BB
duw - {um Y2p pm 2 \+?>B\m Ci-uwt) Bn:]}(s S

THE HETEROGENEOUS CHEMICAL REACTOR MODEL

Here, an adiabatic tubular type reactor with a plug
flow velocity of the fluid phase model is employed. This
assumption is generally valid for a high aspect ratio (i.e.,
reactor length/tube diameter). Hence, for the isotropic
bed, with negligible pressure drop and axisymmetric flow,

the steady state equation (5.2) reduces to
acs |- € Ny 4 q =
= L - =S amM. Ve €pS —/R; (C =
VY d} z ﬂAVF 4 B Ra 4 SAIRA=I0; (9.1)

The energy balance assumes that since the reactor is
adiabatic and for a large aspect ratio, the radial transport
of energy has a smaller contribution than the axial
transport of energy. In this work, it is further assumed

that the reactor bed is relatively dilute or low solids
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density. This enables the model to neglect the axial thermal
conduction contribution and thus, the energy transport is
solely by a convective transport. For higher solids
density, the axial thermal conduction contribution along the
reactor length can no longer be neglected. This effect
would definitely create more exotic behavior of the steady
state multiplicity pattern; perhaps, more complex than the
number of steady states in a single catalyst particle.
Furthermore, the question of the steady state stability
would be difficult to address. These studies will be later
investigated in another research. With this model, the

energy balance collapses into

oo d7° |- & o =
-p CF<V>B\7 v 122 0. 0 d

where %e is the effective thermal conductivity flux
entering or leaving the catalyst pellet.
Now, the heat balance in the solid phase, assuming an

effective thermal conduction flux, is expressed as

~ A
V-?g,,_ = é?S (—AH)RA- (9.3)

and for a temperature independent heat of reaction,

2 = 5. a3
[Tgedr= [ nqedr = cpstan(fdr
(9.4)

Y &r = Nn-qe d2
NTSM = gan— et (9.5)

and using the effectiveness factor definition and equations
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(9.3) to (9.5), the energy balance in the fluid phase is
transformed into
—g’€§<v>d—;’— + ‘;— a "t: (o) €PSYp; Ry (6, T)= 0
(9.6)
the initial boundary point conditions for equations (9.1)
and (9.6) are provided by the feed conditions.
If the following dimensionless’\_variables are defined
Do = Damkdhler number = Ejé—é a\/P ees k;t
T = residence time = Z/<v>
where Z = total length of the reactor

C;;E feed concentration

¥° = E/RZT: = dimensionless activation energy

defined relative to feed conditions

n

11 feed temperature,
hence, the dimensionless material and energy balances are

expressed as

dug it SHIORE ke
3¢t DaMyy,y) e Cul = 9.7
3y ey s e e B b el (9.8)
ax - @Da'ﬂ;(b\j,'ﬂ)e HJ =0 .
with initial conditions of ujo(O) = 1 and y°(0) = 1.

e -0 R o fo e is the dimensionless
(3 = ( H>CH/ [P CF T; J

adiabatic temperature rise. Equations (9.7) and (9.8) are
uncoupled to yield
Y = l+(3°(|-bl5) (9.9)
Qualitatively, uj° <1 for 0 £ § < 1 and although the
solution to equations (9.7) and (9.9) is unique at glance,
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the multiplicity of solutions to equation (9.7) depends on
the continuity properties of the field, i.e., the second
term in equation (9.7). From theory of first order ordinary
differential equation, a unique solution is guaranteed if
and only if the field is Lifschitz continuous. This
requirement is satisfied sufficiently if the field is
piecewise continuous in the interval and domain of interest.
Since the field in equation (9.1) is not necessarily
continuous because of the possibility of multiple solutions
for the effectiveness factor, therefore the concentration
profile of the fluid phase could likewise be multiple.
Their number is equal to the number of steady states
provided by the number of steady state effectiveness factor.

The steady state multiplicity pattern could change
along the reactor length and it is largely governed by how
the bulk fluid phase concentration change. It is possible

to have a 3 to 1 pattern, a 1 to 3 to 1, etc.

NUMERICAL IMPLEMENTATION AND DISCUSSION OF RESULTS

a. Effectiveness Factor
The complexity of the transcendental functions for
Bip—> &0 in inequality (8.54) prevented the development
of an a priori criteria for uniqueness. However since
u(0) is bounded, the numerical implementation of equation
(8.54) is not difficult but not practical if a quick
estimate of the uniqueness criteria is derived, and the

stronger criteria by Van den Bosch and Luss [12] would
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suffice. On the positive aspect, the violation of equa-
tion (8.54) can provide not an a priori ecriteria but
provides for the calculation of the multiple steady
states, their number, multiplicity patterns and the
bifurcation points. The bifurcation points are obtained

from the solution of
a7 4%
P = Joer o 3 O < u(o) £l (10.1)

All the calculations involve a straight forward root

searching, e.g., the half-interval method, and they are
rather fast converging and not cumbersome. An example of
these calculations are found in Appendix A.

As in the case of Bip—» @ , noa priori criteria can
be derived, however, the numerical calculation of the
criteria given by equation (8.57) is easily implemented
by a simple two-stage root searching technique. The
first involves the calculation of ux(1) and the second
involves the testing of the criteria for uniqueness,
i.e., equation (8.57).

Figures 1 to 4 exhibit a plot of effectiveness
factor versus Thiele modulus. The effectiveness factor
is written as

Rate of reaction in the presence of diffusion

ﬂﬂ = Rate of reaction evaluated at bulk fluid phase
conditions

—(%E‘l-um)’ exP[%U— -’.3')] for Bin (10.2a)

Blm 1o uwyd o finite Bim  (10.29)

¢
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100.0

10.0

Qs 1.0 ¢ 10.0

Figure 1 Effectiveness factor versus Thiele modules

for various 9 .

¥ = 10.0, Bi =00, Biy = 1.0




100.0 -

10.0 |-

1

Figure 2

1.0

Effectiveness factor versus Thiele modules
for various ¢ .
12.0, Bi =, Bi
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100.0

10.0

1 1
0.1 1.0 q) 10.0

Figure 3 Effectiveness factor versus Thiele modules

for various Bih.

B Lae o, ) &
§=10.0, B=o0.04, Bi_ = 0
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1000.0

100.0f

10.0

0.1 1.0 ¢ 10.0

Figure 4 Effectiveness factor versus Thiele modules
for various Blm.

¥=20.0, B=0.03, Bi, = 0.5



35
For all the physico-chemical parameters reported here,
the range of multiple steady states is relatively narrow.

However, for a given value of Biy, ¥ and Bi the range

me
of multiple solutions expands as the Praeter temperature,
@, increases (Figures 1 to 3). A similar situation exists
for increasing Bij at a given value of@, ¥ and Bip

(Figure 4). The range of multiple solutions also expands
as the resistance to external heat transfer increases
(compare Figures 1 and 2). There was no multiplicity
pattern other than the 1-3-1 type that was found using

the physico-chemical parameters reported here and those
which are not reported here. Table 1 illustrates the
uniqueness and multiplicity criteria comparison between

the Van den Bosch and Luss analysis [12] and the elliptic
integral approach. Except for very small values of the
Praeter temperature, the Van den Bosch and Luss [12]

analysis indeed present a workable criteria.

Concentration Profile Inside the Catalyst Pellet

Figures 5 to 8 show the concentration profiles using
various physico-chemical parameters for the catalyst
pellet. Figure 5 in particular compares a Fourier-type
of orthogonal collocation solution (represented by A's)
with the closed form solution. The trial solution for

the orthogonal collocation is

: L 2%
U~ LZ-\ di ¥ (10.3)
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TABLE 1
Uniqueness and Multiplicity Criteria Comparison

between Van den Bosch and Luss Analysis
and the Elliptic Integral Solution

¥ Bim  Bin e Van den Bosch and Luss  Elliptic
10 o] 1.0 0.02 yes no
0.03 yes yes
0.04 yes yes
0.06 yes yes
0.1 yes yes
0.5 yes yes
12 (o) 2450 0.04 yes no
0.06 yes yes
0.08 yes yes
0.1 yes yes
10 [ 0.1 0.04 yes yes
0.5 yes yes
1.0 yes yes
20 30 0.5 0.03 yes yes
50 yes yes
15 yes yes

where di = a constant in the Fourier-type expansion

N

m

total number of interior collocation points
For the Bij —» 60 case, the collocated differential
equations (8.1) and (7.10) or the weighted residuals are

o —1) w2 -
ziz*: (k=1)(2k-3)dy Sz(k % 4)‘9(-3) ':Z:“ékif(k l)] =oz R

)

for i = 1 =N (10.4)
N+ ~

z dp =V = o = Fyuy (10.5)
where oY) = exp [3([_-}3—)]

y = ll+%h¢1'7(5
((ujess e.y>ds

[

E]

a

2
P

[




37

Lo e e
8
6
T
.2k
1 1 L 1
0.0 e R .6 .8 1.C

Figure 5 Concentration profile for a low ¢

¥ = 10.0, @=0.03, $=0.3,
Bi =60, Bl = 1.0
( analytic calculation,

A 1 collocation calculation)
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130) - »
L8k
S6IF
S
g &
1 1 1 1
.0 2 4 .6 ] 1.0
Figure 6 " Concentration orofile for a case of

multiple solutions.
¥=10.0, B=o0.04, $=0.22,
Bi =0, Bl = 0.1
( — t analytic calculation,

&t collocation calculation)
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1.0
2 8iks
.6
AT
2
| ke J +
0.0 .2 A .6 .8 1.0

Fimpure 7 Concentration profile for a high Cb .
9= 10.0, @=0.03, 0= 1.0,

Bi, =&, Bi, = 1.0






Lo

or a finite

igure 8 Concentration profile
Biot mass number case.
§=20.0, p=0.03, ¢=0.5,

Bi_ = 50.0, Bi, = 0.5
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for the Fourier-type trial function

2 N+ 2 N+ N+

W, = a; + = o
) = % Z T %ok (10.6)
k¥
where oL = di EZ(L—|7 (10.6a)
fepess 1 N+l Nt !
N+ aGi- + Ltk-
o= Bl 5%y B F dugl g
y) = o =t E °
or, =
N+ dY N+ Nt didk
qu T S atom e t:" 2(L+k-2)t+ 1 (10.7)

i

The exterior boundary was collocated because the trial
solution did not satisfy the exterior boundary condition.
The collocation points Si are obtained from the

orthogonal property of the following Jacobi polynomial

l N_
SW(ZI) P (B PL(ED) i 4% = ciSin Sk=L2 e ey

and %; satisfies F&(gi) =0

where Pk(i) is a kbh degree Jacobi polynomial
8ik = Krdnecker delta
G

[}

a normalization constant

n

n

shape factor (= 1 for semi-infinite slab, =2
for cylinder, = 3 for the sphere).
WC?)Earbitrary weighting function (usually 1-;2
or simply 1).
These orthogonal points are calculated efficiently from

the computer program developed by Michelsen and Villadsen
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[24].
The solution for d are secured by a Newton-Raphson

iteration, or

4t 2w g = T EH EEY (10.9)
The Jacobian matrix is e

?:l(ék) = %;__ Ak (10.10)
thus,

7 2(k -1)(2k- 3>§<2k &

ody

2(k-1)
i Zq)z[NZH Ak Ez(k 4 e(;a) ——-[;— (k l)[é ‘:lks ]
i

2(e-1)

S for i =1 — N  (10.11)
oF,
R (10.12)
FER

Essentially, the calculation proceeds in the

following fashion:
i) assume &
ii) calculate y
iii) calculate the next guess via the Newton-Raphson
iteration

iv) calculate the convergence tolerance

A specimen of the computer program using this technique

is found in Appendix A.
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The concentration profiles reveal that for a very
diffusion-limited reaction, the profile becomes rather
steep (Figure 7). An interesting case is when multiple
steady states do arise, the upper branch steady state (in
the context of the effectiveness factor plot) shows a
steep profile. This must be safeguarded whenever
instability indeed occur. The control policy should

always be to keep the lower branch steady state.

The Tubular Reactor
The numerical implementation employs a
discretization of the inverted fluid phase balance, i.e.

as  _ é‘?f’(“'ff)

-l
crids {oegroyr) = Hag

(10.13)
It is assumed here that for an infinitesimal change in
ug, the effectiveness factor is approximately constant.

Hence, by an IMSL DGEAR subroutine, the value of § at u?

J
+ b ug is obtained from
Skt Wt -
S dg = H(U‘Q)Juj (10.14)
Sk U3

© ° ° ° °© »
and (73 (ug 5 tj") at some Uj € (UJ 5 Hj +0Uj ) is
evaluated from the previous discussions. In terms of the

bulk phase conditions the physico-chemical parameters are

redefined as 4)1 = 4>2 e’l&“_ —a‘-) us
¥y %y
b= beup /Y

m
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where ¢; = Thiele modulus evaluated at feed condi-
tions
U{ = dimensionless activation energy evaluated
at feed conditions
@4 = adiabatic temperature rise evaluated at
feed conditions

Figures 9 and 10 show the concentration profile of
the bulk fluid phase reactant. The bulk phase
temperature profile is not shown, but qualitatively, it
increases along the reactor length. Clearly, the
effectiveness factor decays along the reactor length, and
therefore the conversion is decreasing, especially
towards the reactor exit. Since the th /dS is steep at
the vicinity of the reactor entrance, the majority of the
catalytic activity is situated near the reactor entrance.
Furthermore, a 3-1 multiplicity pattern for the reactor
tube was found and noticeably, the lower steady state
profile has the highest catalytic activity. Hence, for
controllability and optimality, the choice should be the
lower steady state but with the reactor size reduce to a
sizeable fraction equivalent to some tolerable outlet
conversion.

Finally, the case of high solids density should be
interesting, because the inclusion of the axial thermal
conductive heat transport can induce multiplicity
patterns other than those obtained from a single
particle. Furthermore, it should be realized that an

internally isothermal, but externally non-isothermal
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.98}

.96}

9L

.92

.88 -

.86

Figure 9 Concentration profile along the reactor
length for unique solution case.
8 = 10.0, B4 = 0.00, de= 2.0,
Bi =%, Bl = 0.1, %°= 3.0, Da = 2.0
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—
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e}
e

.96

b
e

Figure 10 Concentration profile alonec the reactor
lenpgth for the multiple solution case.
¥ = 10.0, Q{: o.o!‘,tb\c:- Tl
Bi_ =&, Bi, = 0.5, Q" 3.0, Da = 2.0
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catalyst pellet was used as a model here such that the
consequences of these, as compared to the full non-
isothermal case, is only but the later's shadow. However

limited, it yet provides some insights into heterogeneous

chemical reactor design.







APFENDICES




Appendix A. Computer Program and Sample

Calculations
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PROGRAM FINITECINPUT, CUTFUT9TAPZS=INPUTy TAPLEZ0UTPUT)
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=INPUT,TAPEE=OUTPUT)

£S5

PROGRAM COLLO(INPUToOUTPUTTAP
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YOE= 0014451905
TEMPERATURE= 5695084237
DIF= C.000008

EFFECTIVENESS= 44.20394969
YOE= (1181947795
TEMPERATURE= 202803911°
DIF= «00320C
EFFECTIVENESS= 11.43206424
YCE= 4171244597
TEMPERATURE= 113482076
DIF= 0.033000

EFFECTIVENESS= 1.203%782C

UZERC= «990002

TH1= «000J753

EFFECTIVENESS FACTOR= 44,203950
UZERO= «990C00

THI= «0002%92

EFFECTIVENESS FACTOR= 11.4320¢€4
UZERQO= «990500

THI= 002773

EFFECTIVENESS FACTOR= 1.203578
YOE= oCC155581290

TEMPERATURE= Se62562623

DIF= €.003000

EFFECTIVENESS= 35446469569
YOE= «C1818709C2
TEMPERATURE= 2424302814
DIF= «0C0000
EFFECTIVENESS= 9.53030197
YOE= 3599677158
TEMPERATURE= le1547481¢8
DIF= ~«00300C0

EFFECTIVENESS= 1.18645495
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THI= «00C23C
EFFECTIVENESS FACTOR=
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YOE= 00175682262
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EFFECTIVENESS= £42193575S

¥YCE= 4311C136554

TEMPERATURE= 1417450726

DIF= -«0300C0

EFFECTIVENESS= 1.1656409¢

UZERO= «970C000

- THI= «C0C542

EFFECTIVENESS FACTOR=

UZERGC= eST730CO
THI= « 002040
EFFECTIVENESS FACTOR=
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THI= «017817
EFFECTIVENESS FACTOR=

28 0408520
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YOE= +001993561¢
TEMPERATURES  4.835€29C8
_DIF= -+000000

EFFECTIVENESS= 22.61875262
YOE= 0162490481
TEMPERATURE= 224836€15
DIF= «CCCOOC

EFFECTIVENESS= Te36163081

YOE= 27008773215
TEMPERATURE= 1019355393
DIiF= - 0e«COO0CO

EFFECTIVENESS= 1.1413893¢

UZERO= «96000C

THI= «001174

EFFECTIVENESS FACTOR= 22€18753
UZERO= «260000

THI= « 004354

EFFECTIVENESS FACTOR= Te3€1631
UZERO= «9€003J0

THI= e 037397

EFFECTIVENESS FACTOR= l1.1413°9C
YOr= 40024224537

TEMPERATURE= 443667104¢

DIF= ~ 0000000

EFFECTIVENESS= 174741854923
YOE= 00141333163
TEMPERATURE= 2031349110
DIF= «020€00
EFFECTIVENESS= 649063119¢
YOE= 23664691073
TEMPERATURE= 121124797
DIF= 0.000000

EFFECTIVENESS= 1011323228
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UZERC= «950300

THI= «002445

_EFFECTIVENESS FACTOR= 17.74185S5
UZERO= «95023030

THI= « 008958

EFFECTIVENESS FACTOR= €Ee906012
UZERC= 950030

THI= «076342

EFFECTIVENESS FACTOR= 1.213232

YOE= 0032401474

TEMPERATURE= 3¢803€5589
DIF= 00200300

EFFECTIVENESS= 13.38010514
YOE= (011027578%
TEMPERATURE= 244597C353
DIF= «0CO00GCO
EFFECTIVENESS= €.95138032
YOE= 42099483041
TEMPERATURE= 122627501
DIF= 0e.CCCOO0O0

EFFECTIVENESS= 1.0834401S

UZERO= «5403090

THI= «CU5001

EFFECTIVENESS FACTOR= 13.3201CS
UZERC= «9403C0

THI= 018130

EFFECTIVENESS FACTOR= £95138¢
UZERO= «9400C0

THI= e154062

EFFECTIVENESS FACTOR= 1.080440
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YCE= +1891399813
TEMPERATURE= 1.23978371
DIF= 0.03006¢C

EFFECTIVENESS= 14C0425€€63°C

UZERO= 930333
THI= «3093€4
EFFECTIVENESS FACTOR= 1.042566

YOE= 1733213653
TEMPERATURE= 1.243439420
DIF= 0.000000

EFFECTIVENESS= «599€E5193

UZERO= «322000
THI= «£1985%
EFFECTIVENESS FACTOR= «935852

YOE= +1€£16005484
TEMPERATURE= 1425584484

DIF= 04000000

EFFECTIVENESS= «95331954

UZERC= «910C0C
THI= 1.240753
EFFECTIVENESS FACTOR= «95332¢C
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