


fl'HEsrs

 

i, LIBRARY i

% fdiemgan @tatz

University '

This is to certify that the

dissertation entitled

INTEGRAL EQUATION DESCRIPTION OF

INTEGRATED DIELECTRIC WAVEGUIDES

presented by

Jonathan Scott Bagby

has been accepted towards fulfillment

ofthe requirements for

Doctoral degree in Electrical

Engineering

r , z

ajor professor

Dennis P. Nyquist

Date 8/24/84

MSU is an Affirmative Action/Equal Opportunily Institution 0-12771



 

 

MSU .
LIBRARIES

“

  

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

 

 

 
  



INTEGRAL EQUATION DESCRIPTION OF

INTEGRATED DIELECTRIC WAVEGUIDES

BY

Jonathan Scott Bagby

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree or

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

and Systems Science

198“



ABSTRACT

INTEGRAL EQUATION DESCRIPTION OF

INTEGRATED DIELECTRIC WAVEGUIDES

BY

Jonathan Scott Bagby

An equivalent polarization integral equation is advanced for use

in the analysis of integrated dielectric waveguiding systems. This

inhomogeneous Fredholm equation of the second kind in the unknown

total waveguide core electric field provides a conceptually exact

formulation of the guidance properties of a wide class of practical

integrated dielectric waveguides.

The integral equation is applied to a generalized axially uniform

integrated dielectric waveguiding system. This axial uniformity

renders the axial integral convolutional in nature, prompting the use

of a spatial Fourier transform. ‘This results in an inhomogeneous

Fredholm equation for the unknown transformed total core field.

Subsequent inversion of the transformed field with the aid of the

residue theorem allows identification of two components of the total

core field: the surface waves of the guide and the radiation

spectrum. These are found in terms of the sources exciting the

waveguide, leading to conventional results for excitation of surface

waves and a new formulation of the excitation of the radiation

spectrum. The behavior of the kernel of the transformed integral



equation in the complex plane leads to general criterion for

prediction of the important phenomena of guided mode leakage. The

problem of line source excitation of the asymmetric slab is addressed,

as well as the determination of the eigenvalues of the uniform

rectangular strip waveguide.

The integral equation is also applied to the interesting problem

of plane truncated integrated dielectric waveguides. A modified

Weiner-Hopf technique is used to generate iterative formulae for

predicting the radiation and reflection of surface waves incident on

the truncation from within the waveguide, as well as the excitation of

surface waves due to sources outside of the truncated waveguide.

Rapid convergence 0f the iterative technique is demonstrated through

application to the truncated asymmetric slab waveguide.

Application of moment method and Neumann series techniques to the

integral equation is discussed. Utilization of the integral equation

for the analysis of microwave integrated circuits is identified as an

important avenue of further study.
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1. INTRODUCTION

The determination of the electromagnetic wave guiding

characteristics of open boundary dielectric structures has become a

problem of increasing importance in the past several years. This

increased interest has been sparked by the use of open boundary

dielectric waveguides in the areas of integrated optics and millimeter

wave integrated circuits [1A, 1.2]. Dielectric waveguides are

already in widespread use in the telecommunications industry, where

light waves guided along optical fibers are replacing the more costly

and bulky wire cables in key trunk lines. Integrated optical circuits

are typically used to generate and detect these optical fiber light

waves, and are envisaged for applications such as monolithic signal

repeaters and signal processing networks.

Open boundary dielectric waveguides can be defined for our

purposes as any dielectric structure capable of guiding

electromagnetic waves along and in close proximity to a waveguiding

axis. Such dielectric waveguiding structures typically consist of an

axially extended dielectric core region surrounded by a more or less

complicated dielectric background region, as shown in Figure 1A. If

the refractive index of the dielectric core region exceeds that of the

surrounding dielectric background region then the structure is capable

of guiding transversely confined electromagnetic waves. This guidance

is accomplished essentially by the phenomenon of total internal
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Figure 1.1: A general dielectric waveguide integrated over a tri-

layered background structure.
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reflection at the interface between the dielectric core and the

surrounding background region. For this reason dielectric waveguides

are often termed surface waveguides.

Open boundary dielectric waveguides support a rich variety of

waveguiding phenomena. They are capable of guiding a finite number of

distinct surface wave modes as well as a contribution to the total

guided field known as the radiation field. The guided surface waves

are characterized by a finite number of discrete allowable propagation

eigenvalues, whereas the radiation field posesses a continuum of

propagation eigenvalues which does not overlap those of the guided

surface waves. The total radiation field is a spectral superposition

along this allowed range of eigenvalues. ‘The guided surface waves are

typically divided into transverse electric and transverse magnetic

modes (denoted TE and TM modes, respectively) as well as hybrid modes.

The practical application of open boundary dielectric waveguides

in integrated optics and millimeter wave integrated circuits depends

critically on the propagation characteristics of these waveguides.

There has been enduring interest in the determination of the

propagation characteristics of practical dielectric waveguiding

structures, beginning in the early part of this century [1.3] and

intensifying to this date [1.A - 1.6].

Exact solutions for the electromagnetic fields in open boundary

dielectric waveguides exist for few structures, such as the asymmetric

slab waveguide [1.7] and uniformly clad uniform dielectric fibers of

circular and eliptic cross sectional shape [1.8]. The boundary

conditions obtaining at the dielectric interface between the core and

surround regions of other dielectric waveguiding structures are
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inseperable. This complication renders conventional differential

formulations [1J7-1.9] of the waveguide fields insolvable.

Differential formulations have provided approximate solutions in

some cases of interest. Among these is the interesting and practical

problem of surface wave propagation along the dielectric waveguide

configuration known as the uniform rectangular strip waveguide and the

uniform rectangular channel waveguide. These dielectric waveguide

configurations are depicted in Figures 1.3 and 1.A. The technique

used in the classic study by Marcatili [1.10] has been shown to yield

good results with minimal effort in the case of electrically large

uniform rectangular strip and channel waveguides. A potentially exact

solution for surface waves supported by the uniform rectangular strip

has been obtained by the circular harmonic analysis of Goell [1.11].

Practical time and storage considerations, however, render the

numerical results of this means of analysis necessarily approximate.

A similar difficulty obtains for the potentially exact mode matching

technique utilized by Peng and Oliner, et. al., in [1.A] and [1.5].

The radiation field of the uniform rectangular strip is also addressed

in this important work, but the continuous spectrum of radiation

eigenvalues is quantized by the introduction of distant conducting

boundaries. 'This renders the analysis necessarily approximate in

nature.

A shortcoming common to all of the above mentioned analyses is

their inability to incorporate refractive index variation in the

dielectric waveguide core region, commonly known as core grading, and

their inapplicability to dielectric waveguiding structures with more

general core cross sectional shapes. These considerations are of
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practical importance since current fabrication technology renders the

construction of the uniform rectangular strip waveguide difficult at

best. It is also found experimentally that the propagation

characteristics of circular dielectric fibers improve when the core is

transversely graded.

In this dissertation we utilize an integral equation formulation

to analyze a broad class of open boundary dielectric waveguides. This

equivalent polarization integral equation is related to the

polarization integral equation utilized by Katsenelenbaum [1.12]. It

was developed by Johnson and Nyquist in.[1.13]. The equivalent

polarization integral equation provides a conceptually exact

formulation of the total electric field in a generalized integrated

dielectric waveguiding system such as that depicted in Figure 1.1.

This integral formulation of the problem results in several

advantages over conventional differential formulations. First, the

above mentioned complicated boundary conditions are incorporated in a

general and natural manner into the dyadic Greenfis function which

forms the kernel of the integral equation. Thus physical phenomena

which may be obscured in the formulations using differential equations

plus boundary conditions specialized to a specific waveguiding system

(or even destroyed by the approximations used to simplify the

mathematics; see [1.A] and [1.51) can be analyzed in a general manner.

Secondly, the equivalent polarization integral equation is valid for

arbitrarily graded dielectric waveguide cores of arbitrarily variable

cross sectional shape. Thirdly, the integral equation is an

inhomogeneous Fredholm equation of the second kind. .A large array of

mathematical techniques have been developed for and are immediately



applicable to such integral equations, such as the technique of

Neumann series. Lastly, the domain of the integral in the equivalent

polarization integral equation is the waveguide core, rather than all

of space, as in other integral formulations that have been advanced.

Thus numerical techniques such as the method of moments are more

easily utilized.

The remainder of this dissertation is organized into four

chapters. In chapter two we sketch the development of the equivalent

polarization integral equation. ‘This development in part one of

chapter two is based on field equivalence principles and the

identification of equivalent polarization sources in the region of the

dielectric waveguide core. The result of this analysis is an

inhomogeneous Fredholm integral equation of the second kind for the

unknown total electric field in the dielectric waveguide core. In

part two of chapter two we detail and discuss the dyadic Greenfis

function which forms the kernel of the equivalent polarization

integral equation. The components of the Green's dyad are given as

two dimensional spatial frequency integrals of the infamous Sommerfeld

type. The rather arduous derivation of this dyadic Greenhs function

is relegated to Appendix A.

In chapter three we use the equivalent polarization integral

equation to analyze several problems involving longitudinally

invariant integrated dielectric waveguides. Such axially uniform

dielectric waveguides are an important special case of the more

general waveguiding systems of the type shown in Figure 1.1 since many

practical integrated optical systems include dielectric waveguides

which can be approximated as axially uniform. A typical
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longitudinally invariant integrated dielectric waveguide is depicted

in Figure 1JL The uniformity along the waveguiding axis displayed by

such systems allows us to bring the powerful tool of Fourier transform

theory to bear on the problems considered in the remainder of chapter

three.

This axial uniformity manifests itself in the equivalent

polarization integral equation by making the integration in the axial

variable convolutional in nature. This prompts a Fourier transform of

the entire equation on the axial variable, with a resulting reduction

in dimension of the domain of integration.

In the first part of chapter three we obtain the Fourier

transformed equivalent polarization integral equation. It is an

inhomogeneous Fredholm integral equation for the unknown Fourier

transformed total electric field in the waveguiding system. 'The

kernel of this integral equation is the axial Fourier transform of the

dyadic Greenfis function of the previous chapter. It is detailed and

discussed in the second part of chapter three. The remainder of

chapter three is devoted to applications of the axially transformed

equivalent polarization integral equation.

In the third part of chapter three we develop a general

excitation theory for axially uniform integrated dielectric

waveguides. This theory is based on formal Fourier inversion of the

unknown axially transformed total electric field in the waveguiding

system. The transformed field has in general both pole and branch

point singularities in the complex axial transform variable plane.

Deformation of the Fourier inversion contour in the complex transform

variable plane and subsequent application of the residue theorem of
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complex variables allows us to write the total field as a sum of two

distinct terms. The first term is a sum of the residues of the

transformed field at the poles enclosed in the deformed inversion

contour, and the second term consists of integrals around any branch

cuts associated with enclosed branch points. This decomposition

tallows us to characterize the complete modal spectrum of any axially'

uniform integrated dielectric waveguide: surface waves at the guiding

system are associated with the residues of the enclosed poles, and the

radiation field of the waveguide is associated with the branch

integrals. This analysis also provides us with the excitation

amplitudes of the various surface wave modes and radiation field

spectral components in terms of the incident excitatory electric field

or current. .Another feature of this analysis is its ability to

describe the important physical phenomena of guided mode leakage and

resonance. 'We close this part of the chapter by applying this

excitation theory to the problem of excitation of transverse electric

modes in the asymmetric slab waveguide. The resulting modal and

spectral component amplitudes are shown to be identical with those

predicted by conventional excitation theory.

Our last application of the Fourier transformed integral equation

is found in part four of chapter three. ‘We apply the axially

transformed equivalent polarization integral equation to the problem

of finding the surface waves supported by the rectangular strip

waveguide. This integrated dielectric waveguiding system is depicted

in Figure 1.3. It is a configuration of considerable interest to

workers in integrated optics (see for example, [1.A, 1.5, 1.10,

1.11]). We begin by postulating a sinusoidal representation with
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unknown amplitudes and transverse spatial frequencies for the unknown

axially transformed longitudinal components of the total electric and

magnetic fields in the waveguide core. The axially'transformed

version of Maxwellfls equations enable us to find all other transformed

field components in terms of these two generating functions.

Substitution of the resultant expression for the total axially

transformed electric field into the transformed integral equation and

point-matching the equation at four locations inside of the waveguide

core allows us to solve for the unknown amplitude and transverse

spatial frequency constants as well as the axial propagation constant

in our expressions for the total transformed electric field in the

waveguide core. We thus obtain an approximate closed form expression

for the fields of various guided surface wave modes of the integrated

rectangular strip waveguide. Numerical results of this analysis are

presented and compared with the results of other techniques.

In chapter four we apply the equivalent polarization integral

equation to the problem of coupling energy into and out of plane

truncated waveguides. “Truncated integrated waveguide structures such

as that depicted in Figure‘LS are of considerable interest to workers

in the area of integrated optics, where they are widely used as

integrated laser cavities. This type of structure is also used to

model junctions between separate integrated optical components.

We restrict ourselves to consideration of truncated integrated

waveguides that have generally transversely graded cores of arbitrary

but constant transverse cross sectional shape. The only allowed

variation of the refractive index of the waveguide core in the

longitudinal direction is of the form u(zO-zh where the waveguiding
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axis is taken as the z axis. This factor describes a waveguide core

that is truncated at the plane z = zo and vanishes for all z greater

than zo.

In the first part of chapter four we review some results from

chapter three on the complete modal spectrum of a waveguide and

develop notation to be utilized in the remainder of the chapter. We

also introduce the concept of partial fields in a truncated waveguide.

The two partial fields,_EL and ER, are the total electric field in the

system for points z behind and in front of the plane of truncation at

z = 20, respectively, and are zero elsewhere. 'The total electric

field in the waveguiding system can be expressed in terms of these

partial fields as Ei= EL + E“. 'The partial fields play a central role

in.the analysis that follows.

In the second part of chapter four we analyze the problem of the

reflection and radiation of a single surface wave mode of arbitrary

amplitude that is incident on the truncation from within the

waveguide. 'The partial field within the waveguide, EL, is written as

a modal sum with unknown amplitude coefficients, and is substituted

into the equivalent polarization integral equation. A linear integral

operator,£?h, is applied to the resultant expressions. This leads to

an iterative equation which can be used to find the unknown reflected

surface wave amplitudes in the modal expansion of EL. Once these

reflected wave amplitudes are determined, the expressions also allow

for evaluation of the electric field radiated out of the truncated

._).

waveguide, which is the partial field, ER.
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In the third part of the chapter we examine the converse problem,

that of excitation of surface waves in the truncated waveguide. 'There

we assume that an impressed electric field is incident on the

truncation from outside of the waveguide. .A technique similar to that

described above is applied to the equivalent polarization integral

equation, resulting in an iterative formula for the unknown amplitudes

of the surface wave modes excited in the waveguide.

We conclude the chapter in part four by applying the techniques

developed in chapter four to the problem of coupling energy into and

out of a truncated asymmetric slab waveguide. Numerical results are

presented and discussed.

We conclude in chapter five with some discussion and comments on

the results of our applications of the equivalent polarization

integral equation. Several promising areas for further study are

identified.



2. EQUIVALENT POLARIZATION INTEGRAL EQUATION

In this chapter we develop an equivalent polarization electric

field integral equation (EFIE) for the unknown total electric field in

a generalized integrated dielectric waveguiding system. “This integral

equation provides the mathematical formulation of all of the topics

addressed in this dissertation.

The physical system that the equivalent polarization integral

equation is applicable to is a generalization of the types of

integrated dielectric waveguides shown in Figures LA through L5, and

includes all of these waveguides as special cases. 'This generalized

structure is depicted in Figure 2A. The structure consists of an

inhomogeneous dielectric obstacle, intended to represent a generalized

integrated waveguide core, embedded in the ith layer of a background

region which is composed of an arbitrary number N of stacked,

homogeneous dielectric slabs. This background structure models a

generalized version of the typical substrate, film, and cover regions

of integrated dielectric waveguides.

The primary difficulty in obtaining the total electric field in a

situation such as that depicted in Figure 2.1 consists of finding that

part of the field scattered by the inhomogeneous dielectric obstacle

(the waveguide coreL. We will instead solve the much simpler problem

of finding the total electric field produced by a system of impressed

electric currents radiating in the layered background region in the

16
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absence of the inhomogeneous dielectric obstacle. ‘The effects of the

presence of the dielectric obstacle will be accounted for by the use

of field equivalence principles. This technique involves replacing

the inhomogeneous dielectric obstacle by a system of equivalent

induced electric polarization sources in the volume previously

occupied by the dielectric obstacle. ‘The total electric field in the

system is then given by the sum of the electric field produced by the

impressed electric currents radiating in the background structure in

the absence of the dielectric core plus the electric field produced by

the equivalent induced electric polarization sources radiating in the

same background region.

In this first part of the chapter we detail the mathematical

development described above of the equivalent polarization integral

equation. The second part of this chapter is devoted to presenting

the dyadic Green's function which forms the kernel of the equivalent

polarization integral equation. Details of the development of the

Green's dyad are relegated to Appendix A.

2.1 Integral Equation
 

The equivalent polarization electric field integral equation is

developed to describe the unknown total electric field in the system

depicted in Figure 2.1. The system consists of an inhomogeneous

dielectric obstacle embedded in the ith layer of a background region

composed of an arbitrary number N of stacked infinite, homogeneous

dielectric slabs. The inhomogeneous dielectric obstacle is described

by a generally complex, spatially varying refractive index, ndik The
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background slabs have uniform thicknesses t3 and constant complex

refractive indices nJ, with J=l,...,N.

A system of impressed electric currents, 390:), in the 1th layer

provides an impressed electric field, denoted E16). This impressed

field is defined as the electric field which would be maintained in

the system by the impressed electric currents 38 radiating in the

absence of the inhomogeneous dielectric obstacle, and thus includes

the effects of field reflection from boundaries between adjacent

uniform dielectric background layers. The impressed electric field is

augmented by the scattered electric field, ESQ). This scattered

electric field is produced in the ith layer by the interaction of the

impressed electric field with the inhomogeneous dielectric obstacle.

The total electric field in the 1th layer of the generalized waveguide

system is then given by the sum of the incident and the scattered

fields. We denote the total electric field in the ith layer as E03),

+ +1

*3
so that we have E = + E .

2.1.1 Ampere's Law and Equivalent Polarization

The development of the equivalent polarization integral equation

begins with Ampere's Law in the ith layer of the generalized

waveguiding system of Figure 2.1:

VXH=je+jw€OnZE (1)

where a complex harmonic time dependence of exp(jmt) is assumed and

suppressed. This convention is followed throughout the remainder of

this work. We now define a refractive index contrast factor, 5n2(r),
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in the ith layer:

anff) = n2(;) - n: (2)

The refractive index contrast is seen to be non-zero only in the

region occupied by the inhomogeneous dielectric obstacle. Amperefis

law can be written in terms of this contrast factor:

2

V x fi'. 3e + jweodn2(;)E + jweoniE' (3)

Consider the two displacement current terms on the right hand side of

equation (3L. we will associate the first displacement current term

with the impressed current by writing it in terms of an equivalent

+ +

pol ari zation current , Peq(r ):

+

jweoanE = ijé (A)
q

Note that the second displacement current term in equation (3) is that

which would be produced in the ith layer by the total electric field

in the absence of the inhomogeneous dielectric obstacle. Then, with

the impressed current written instead as an impressed polarization, 3e

+e . .
= JmP , we use equation (A) in equation (3) to obtain

.+ -> . 2+

V x H = Jm[Pe + Peq] + JweoniE (5)

Equation (5) is interpreted as stating that the total electric field

th + + . . .
in the 1 layer, E(r), is supported by two electric polarization

_).

sources: an impressed polarization current, Pe, which produces the

impressed field, Ei, and an equivalent induced electric polarization

current,T; , which exists in the region of the dielectric obstacle

eq

and produces the scattered electric field, ES. Then the total
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electric field is given as the sum of the impressed and scattered

fields, ii: = iii + ES.

What we have accomplished by using the definition (A) is to

replace the original problem of finding the unknown total electric

field in the system shown in Figure 2A with the equivalent problem of

finding the unknown total electric field produced by the electric

+ +

polarization sources Pe and Pe radiating in the 1th layer of the
Q

background structure in the absence of the inhomogeneous dielectric

obstacle. This equivalent problem, which is depicted in Figure ZJL

is more readily solved than the original problem of Figure 2J. The

solution of this equivalent problem is the subject of the next

section.

2.1.2 The Scattered Field

We now turn to the task of finding the scattered electric field,

FE. As mentioned above, this is the field produced by the equivalent

induced electric polarization sources occupying the volume of the

inhomogeneous dielectric obstacle, Peq, radiating in the 1th

background layer in the absence of the inhomogeneous dielectric

obstacle. ‘We will accomplish our task by first finding the scattered

electric Hertzian potential, Redrh produced by the equivalent

induced polarization, and then using the standard relationship between

electric Hertzian potential and the associated electric field to find

E803).

The electric Hertzian potential satisfies an inhomogeneous vector

Helmholtz equation [2A],



 
:
3

H

+ H

  

 

Figure 2.2: Field equivalent system to that in Figure 2.1 with

induced equivalent polarization sources replacing the

dielectric obstacle.
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(v24-k2Ri =-$/e (6)

Since the scattered Hertzian potential is supported by the equivalent

+

induced polarization Pe in the ith background layer, we have

q

2 2+8 _ _ +

(V + k1)“ -' Peq/Ei (7)

This forced vector Helmholtz equation has the well known (see [ZJED

formal solution

+ +

P (r')

is = E(FIF') ° :3...— dV' (8)
E.

V 1

0-) +

in terms of the dyadic Green's function, G(rIr'), appropriate to the

layered background structure of Figure ZJL This Hertzian potential

Greenfls dyad is detailed in part two of this chapter and derived in

Appendix A.

The scattered electric field is obtained from the scattered

electric Hertzian potential in the usual manner [2L3]:

+3 2 *3
E = (ki + VV°)TT (9)

Combining equations (8) and (9) results in an integral expression for

the scattered electric field:

—> + +>++ i; (3')

33(r> = (k: + vv-) ] C(rlr') - _3§____ dV' (10)
v .

i
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2.1.3 The Total Field

We now eliminate the equivalent induced polarization from

equation (10) by substituting its definition from equation (A). We

thus obtain

+ 2+' ++

fish) = (xi + Vim] WWHF') - E(r') dV' (11)

V n
C

+ + +

We write the scattered electric field as E8 = E - E1 in equation (11)

to obtain the equivalent polarization integral equation:

2+

2 n r'

E(F) - (k1 + vvq] 2.1 E(FIF')

V n3

++ +i+

° E(r')dV' = E (r) (12)

This is an inhomogeneous integral equation satisfied by the unknown

total electric field in the generalized dielectric waveguide system of

Figure 2.1, with a forcing function Ei(r). This integral equation has

several advantagescover alternative integral and differential

formulations of the problem. Since it is a Fredholm equation of the

second kind (the unknown total field appears both inside and outside

of the integral) it is in suitable form for application of iterative

solution techniques, such as the Neumann series solution (see [2JKD.

It is also particularly well suited for application of moment-method

techniques, since the domain of integration extends only over the

volume occupied by the dielectric obstacle, rather than over all of

space.
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2.1.A Alternative Integral Equation

The equivalent polarization integral equation (MD can be cast

into an alternative form by formally interchanging the order of

integration and application of the differential operator (Ni + VV‘).

This differential operator acts on unprimed coordinates which only

occur in the dyadic Green's function. We can write the result as

an2<r‘-*') 4+
_.____ G (

2 e

V n1

115(3) - FIE”) ~E<Fv>dw = E16?) (13)

where we have defined the electric Greenfis dyad:

++ ++ 2 -(++ 4+ +

Ge(rlr') = i>.v.(1<i + VV°)G(rIF') + LN? - r') (1A)

The notation P.V. means that the integration in (13) is understood to

be in the Cauchy principle value sense [ZJJIL and the term t is a

depolarization dyad introduced to cancel any artificially introduced

polarization sources due to exclusion of principle volume region.

These considerations are necessary since differentiation of the

integrable Hertzian potential Greenfis dyad can lead to non-integrable

singularities in the electric Green's dyad (see [2.51). These points

are discussed in further detail in part two of this chapter.

2.2 Dyadic Green's Function
 

In this section we present the dyadic Hertzian potential Green's

function which forms the kernel of the equivalent polarization
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integral equation (12). The details of the derivation of this Green's

dyad are included in Appendix A.

The dyadic Green's function presented here is valid for a special

case of the general situation depicted in Figure 252; this special

case is shown in Figure 2.3. The Green's function describes the

electric Hertzian potential produced in the upper layer of a three

layered dielectric background region by an electric polarization

source in the upper layer. This Green's function is appropriate to

the ridge-type integrated dielectric waveguides of Figures 1A, 1.2,

1.3 and 1.5, where the three layered background represents the

substrate, film, and cover regions of these configurations. Note that

this Green's dyad is not valid for the channel-type dielectric

waveguide of Figure~1.A, since there the source and field points are

in the middle layer of the background region (the film layer). The

Hertzian potential Greenfls dyad appropriate to the channel waveguide

is also derived in Appendix A, but will not be used in this

dissertation.

2.2.1 Hertzian Potential Green's Dyad

The physical relationship between an electric polarization source

and the electric Hertzian potential produced in waveguiding system of

Figure 2.3 is as follows: an infinitesimal polarization source

—> —> i —>

P0")dV' at source point location r' produces at field point location

F the infinitesimal electric Hertzian potential die(r) given by (see

[2.2])
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Figure 2.3: Integrated tri-layered background structure described

by Hertzian potential Green's dyad.
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(13(3) 356%?) - m1“) dV' (15) 

c

We will henceforth dispense with the index notation of part one of

this chapter in describing the background regions, and instead use the

subscripts s, f, and c to indicate the substrate, film, and cover

regions of an integrated dielectric waveguide of the type in Figure

1.1.

It is clear from the geometry shown in Figure 2g3 that the total

electric Hertzian potential in the cover region should be composed of

two distinct parts, a principle part and a reflected part. The

principle part is defined to be that part of the total Hertzian

potential which is radiated directly through the uniform cover medium

from source point to field point without undergoing reflection by the

interfaces between adjacent dielectric background layers. The

reflected part of the Hertzian potential is defined to be the

remainder of Hertzian potential that does interact with the other

background media before arriving at the field point. By considering

equation (15) we see that this seperation of the total Hertzian

potential into two distinct parts should manifest itself in a

decomposition of the Hertzian potential Greenms dyad into two parts,

which we call the principle and reflected parts of the Green's dyad.

This fact is mathematically demonstrated in the derivation in Appendix

A.

By the above considerations, the principle part of the Hertzian

potential Green's dyad is seen to be the Green's dyad for the electric

Hertzian potential produced by an electric polarization source

radiating in an unbounded cover medium. This follows since such a
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physical situation would result Hertzian potential radiated directly

from source point to field point without undergoing reflection between

media interfaces, which was our definition of the principle part of

the Hertzian potential. This observation allows us to completely

characterize the principle part of the Greenfls dyad, since the

solution to an inhomogeneous vector Helmholtz equation such as

equation (7) in an unbounded region is well known (see [2J{D. First,

it is known that the vector direction of the solution depends solely

on the direction or the source term. Hence the principle Greenms dyad

should be proportional to the unit dyad, E; Secondly, the scalar

amplitude of the Green's dyad in this situation has the well known

form of the three dimensional Green's function for the scalar

Helmholtz equation in an unbounded medium of refractive index no.

There are no such simple arguements which allow us to deduce the

form of the reflected part of the Greenfls dyad. This is due in main

part to the complicated boundary conditions obtaining for electric

Hertzian potential at material interfaces, which include coupling

between spatial components of the Hertzian potential at the interface.

With this introduction, we now present the dyadic Hertzian

potential Greenhs function for the physical situation depicted in

Figure 2L3. As mentioned above, the Green's dyad decomposes into a

principle and a reflected part:

mam = twain + trail?) (16)

where the principle part is proportional to the unit dyad,fi:

13%|?) Jamil?!) (17)
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and the scalar amplitude of the principle part is the above mentioned

three dimensional Green's function for an unbounded medium of

refractive index nc:

cp(?|rv) = :5JkClt—r'l (18)
"FTFEF‘T“

and k0 = ncko, with k0 the free-space wavenumber, k0 = ui/c.

The reflected part of the Hertzian potential Green's dyad has a

more complicated dyadic form with non-zero off-diagonal terms. ‘The

off-diagonal terms are due to the coupling of Hertzian potential

spatial components at the media interfaces. The reflected Greenus

dyad is given by

P

C

Hr++ “PA A3 A r 8 PA AP.

G (rlr') - thx + y(§§ G x + any +15; Gcz) + zGtz (19)

The different components in the reflected Greenh3<dyad are derived in

Appendix A as two dimensional spatial inverse Fourier transforms.

These integral representations of the Sommerfeld type are shown there

 

   

to be

752m?“ °°.r RHE)W +

*Er + + ejE.(F-r')e~pc(y+Y') 2
‘ (r r').i = < R ( ) t d E

n i n5 2

r + + 'm 2(2“) PC (20)

L%e(r|r')J i C(g) J 
+

Here E is a two dimensional spatial frequency variable given by

E = 5,2 + 52%

2 2

52 = ax + 52 (21)

dZa = dax dtz
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and p0(€) is one among the transverse wavenumber parameters defined

for each dielectric layer as

2

p£(€) =\/g52 ' k9]

k2 ‘ “tko

A = s,f,c (22)

where subscripts c, f, and s indicate the cover, film, and substrate

regions of the background media in Figure 243, as mentioned above.

The reflection coefficients Rt(€) and Rn(E) for potential components

tangential and normal to the media interfaces, as well as the coupling

coefficient, C(E),a£ll depend on the constituitive parameters and

transverse‘wavenumbers of the various dielectric background layers in

a complicated manner. They are detailed in Appendix A.

The notation t, n, and 0 used in equation (19) indicates the

physical properties of the various Hertzian potential reflected

Greenfis dyad components. By considering equation (15) we see that the

reflected components of Hertzian potential tangential to the

background layer interfaces are maintained by tangential polarization

components through the terms involving the tangential reflected

Green's function GE. Similarly, the reflected component of Hertzian

potential normal to the background interfaces is maintained by normal

polarization sources through the normal reflected Greenhs function G;

and also to tangential polarization components through terms involving

derivatives of the coupling reflected Greenhs function G2. 'The

components of the reflected Greenfis dyad involving G2 are due to the

above mentioned complicated boundary conditions for Hertzian potential

that couple tangential and normal polarization components at material

interfaces.
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The total Hertzian potential dyadic Greenfls function shares an

important property with all such Green's functions in

electromagnetics. This property is the reciprocity of the Greean

dyad HIL7J), and is a consequence of the Lorentz reciprocity lemma.

Symbol ically, the reciprocity of the Green's dyad can be stated

r) - 1h?) (23)

where it is understood that the indicated equality holds when the

expression is integrated over both primed and unprimed coordinates.

Here, 716:) and E(r?) are two arbitrary electromaagnetic vector source

functions. 'This reciprocity property will be used several times in

the remainder of this dissertation.

We mention for future reference at this point that the reflection

and coupling coefficients detailed in Appendix A have pole

singularities when E becomes complex and also appropriate branches of

the now multi-valued transverse wavenumber parameters must be chosen.

This fact will allow us later to cast the integrals in equation (20)

in a.more tractable form by exploiting the residue theorem of complex

variables.

It is shown in Appendix A that the principle Hertzian potential

Green's function of equation (18) can also be represented in a form

first advanced by Bands [2L8] as a two dimension spatial inverse

Fourier transform. The result is the Sommerfeld-type integral

representation

3;»: . (F-F') -p Y"Y'
e Oi i d2€ (2“)

 

e

GWFIF') = f

-a’ 2(2TT)2pC

with the parameters of the integral defined as above.
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2 -2.2 Electric Field Green's Dyad

The physical relationship between an electric polarization source

and the electric field it produces in the waveguiding system of Figure

2.3 is as follows: An infinitesimal polarization source P(?')dV' at

source point location i" produces at the field point i)- the

infinitesimal electric field d—EGT) given by

. red

C

4-)-

dE(F) = 086?le dV' (25) 

The Hertzian potential Green's dyad incorporates a source point

singularity through the factor I? - F" in the principle Green's

function of equation (18). It is in this form an integrable

singularity (see [2.5], [29]). However, once we differentiate the

Hertzian potential Green's dyad as in equation (1A) to form the

electric field Green's dyad the singularity may no longer be

integrable. In that case the integration in equation (13) must be

performed in the principle value sense and a three dimensional

depolarizing dyad? must be introduced to cancel any artificially

introduced polarization sources due to exclusion of the principle

volume region V6. If S6 is the closed surface surrounding the

principle volume region, the:) is given by ([2.10], [2.11])

A'(++')

n 1"!"

I = - Lim f dS' (26)

sS‘s->0 a W-R'I 3

with h' the outward normal to the surface 86. This factor is

calculated for several common principle volume regions by Yaghjian in

[2.10].



3. LONGITUDINALLY INVARIANT WAVEGUIDES

In this chapter we specialize the equivalent polarization

integral equation of the previous chapter to the case of axially'

uniform waveguides. Several typical axially uniform integrated

dielectric waveguide configurations are shown in Figures 14L 1.3 and

1.A. The uniformity along the waveguiding axis displayed by these

systems allows us to bring the powerful tool of Fourier transform

theory to bear on the problems considered in this chapter.

This axial uniformity manifests itself in the integral equation

(2.12) by making the integration in the variable 2' convolutional in

nature. This prompts a Fourier transform of the entire equation on

the axial variable, with a resulting reduction in dimension of the

domain of integration.

In the first part of this chapter we obtain the Fourier

transformed equivalent polarization integral equation. It is an

inhomogeneous Fredholm integral equation for the unknown Fourier

transformed total electric field in the waveguiding system. The

kernel of this integral equation is the axial Fourier transform of the

dyadic Greenhs function of the previous chapter. It is detailed in

the second part of this chapter. The remainder of this chapter is

devoted to applications of the axially transformed integral equation.

In the third part of this chapter we develop a general excitation

theory for axially uniform integrated dielectric waveguides. This

.-1

id
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theory is based on formal Fourier inversion of the unknown axially

transformed total field in the waveguiding system. The transformed

field has in general both pole and branch point singularities in the

complex axial transform variable plane. Deformation of the Fourier

inversion contour in the complex transform variable plane and

subsequent application of the residue theorem of complex variables

allows us to write the total field as a sum of two distinct terms.

The first term is a sum of the residues of the transformed field at

the poles enclosed in the deformed inversion contour, and the second

term consists of integrals around any branch cuts associated with

enclosed branch points. This decomposition allows us to characterize

the complete modal spectrum of any axially uniform integrated

dielectric waveguide: surface waves of the guiding system are

associated with the residues at the enclosed poles, and the radiation

field of the waveguide is associated with the branch integrals.

This analysis also provides us with the excitation amplitudes of the

various surface wave modes and radiation field spectral components in

terms of the incident excitatory electric field or current. Another

feature of this analysis is its ability to describe the important

physical phenomena of guided mode leakage and resonance. We close

this part of the chapter by applying this excitation theory to the

problem of excitation of transverse electric modes in the asymmetric

slab waveguide. The resulting modal and spectral component amplitudes

are shown to be identical with those predicted by conventional

excitation theory.

Our last application of the Fourier transformed integral equation

is found in part four of this chapter. We apply the axially
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transformed equivalent polarization integral equationtx>the problem

of finding the surface waves supported by the rectangular strip

waveguide. This integrated dielectric waveguiding system is depicted

in Figure 123 It is a configuration of considerable interest to

workers in integrated optics. We begin by postulating a sinusoidal

representation with unknown amplitudes and transverse spatial

frequencies for the unknown axially transformed longitudinal

components of the total electric and magnetic fields in the waveguide

core. The axially'transformed version of Maxwell's equations enable

us to find all other transformed field components in terms of these

two generating functions. Substitution of the resultant expression

for the total axially transformed electric field into the transformed

integral equation and point-matching the equation at four locations

inside of the waveguide core allows us to solveefor the unknown

amplitude and transverse spatial frequency constants as well as the

axial propagation constant in our expressions for the total

transformed electric field in the waveguide cores ‘We thus obtain an

approximate closed form expression for the fields of various guided

surface wave modes of the integrated rectangular strip waveguide.

3.1 Transformed Integral Equation
 

In this section we will specialize the general equivalent

polarization integral equation of chapter two to the case of a

longitudinally invariant waveguiding systan. A generalized

longitudinally invariant integrated dielectric waveguide is depicted

in Figure 3.1. The axial uniformity of the waveguide will.eillow us to
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Figure 3.]; A general axially uniform dielectric waveguide integ-

rated over a tri-layered background structure.
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Fourier transform the entire integral equation on the axial variable.

The result is an axially transformed inhomogeneous integral equation

for the unknown transformed total electric field in the waveguiding

system.

3.1.1 Longitudinal Invariance

In the case of a waveguide core of arbitrary but constant

transverse cross section and arbitrary transverse grading, the

refractive index contrast factor of equation 6&2) depends only on

transverse position variables 3 - xi + yy. Thus we will write the

refractive index contrast as 6n2(3L It is also clear from the

infinite symmetry of the uniform dielectric background layers in

Figure 3.1 that the (zlz') dependence in the Green's dyadGG-IF') for

this structure is of the form (z-zO (see equations (220) and

(2.23)). Thus we can write the equivalent polarization integral

equation (2.21) in this case as

CD

2

E( ,z) -m(k: + vv.) ]--[ 6n.(pC)*G(pi3';z-z') -_E(3,z')dS'dz'

_).

0

CS .41)

—E( (1)

where CS denotes the constant transverse cross-section of the

waveguide core in Figure 3A. Note that the axial integral in

equation (1) is convolutional in nature. This prompts the use of a

spatial Fourier transform on the axial variable, 2, so that the

convolution property of Fourier transform theory can be exploited.
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3.1.2 Axial Fourier Transform

Given a vector field $03.2), we define the axial Fourier

transform, fig.C). as satisfying the relations [3:1]

(0

HOME) = [FR-5.2%? jr’zdz

-cn

(2)

(I)

F(Etz) '5 — f ?(-‘;9C)ej Cde

This relation will be written as

am) - virgin}

F(3,z) = 3'7{r(3.c)}

-> + -> + —> + + +

or, more simply, F(p.z) +-+ f(D.C). to denote that F(p,z) and f(o.C)

are an axial Fourier transform pair satisfying equations (2).

3.1.3 Transformed Integral Equation

In Fourier transforming the integral equation U) for axially

uniform waveguides we need two results of standard Fourier theory:

the differentiation theorem and the convolution theorem. ‘The former

allows us to transform the differential operators in equation (1L

Symbolically, it states 3%: ++ j; D32]. Thus we can transform the

del-operator as V ++~$, with

Ei=vt+ jga (u)

8
A ii. + 9 3— as usual. The convolution theorem can be written

Y

and Vt = x x

a

as FFE-++?-§, where the operation * denotes convolution of the dot
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product of two vectors [3JEL We use these results in Fourier

transforming equation (1). The result is

2 +

2 .~~. n '

gag,” - (kc . W.) [12111353130 .g(3,;)ds.

CS no

(5)

This is an inhomogeneous integral equation satisfied by the total

uniform axially'transformed electric field in the waveguide core. The

kernel of the integral equation is the Fourier transform of the dyadic

Green's function of the previous chapter. It is detailed in part two

of this chapter.

3.1.“ Alternative Transformed Integral Equation

An alternative Fourier transformed equivalent polarization

integral equation can be obtained by Fourier transforming the

alternative integral equation (2JED of chapter two. We first use the

results of section 3JL1 to specialize equation 6&13) to the case of

an axially uniform waveguiding system:

313.2) - _[ _[ 5n2%e(3l3'; z—Z') - E(3.z')dS'dz'

-m CS n3

= Ei(3,z) (6)

We now Fourier transform equation.(6) on the axial variable and

make use of the convolution theorem to obtain the alternative

transformed integral equatiom

Cj‘T6n:(:')4+ 'E.

2%.m- gec<p|3'>-e<p ,a;>ds' = 103m (7)
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The kernel of this integral equation is the Fourier transform of the

electric dyadic Green's function of equation (2.1“). Care must again

be exercised to perform the integration in equation (7) in the Cauchy

principle value sense. The transformed electric Green's dyad is

detailed in part two of this chapter.

3.2 Transformed Green's Dyad

In this section we present the Fourier transformed dyadic Greenfis

functions which form the kernels of the axially transformed equivalent

polarization integral equations of the previous section. The details

of the derivations of the original Green's dyads are given in Appendix

.A. It is an easy matter to Fourier transform the Green's dyads, since

they are derived in Appendix A as two dimensional inverse spatial

Fourier transforms. Thus, transforming the Greenfis dyads can be

accomplished by simply removing the Fourier inversion integral

corresponding to the axial transform variable.

3.2.1 Hertzian Potential Green's Dyad

The transformed Hertzian potential dyadic Green's function is

defined as

yfc’GTIF'H =EC<3|S'>e-ch' (8)

_>

where<a(3|r0 is as given in section 2JL1. The transformed Greenks

dyad has the following physical interpretation: an infinitesimal
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+

axially transformed polarization source p(35§)dS' at location 3'

produces at location an infinitesimal transformed electric Hertzian

potential, dmefiic). given by

7” >
dam) =3 (3|?) .122. as' (9)

C no

We know by equation GL16) and the linearity of the Fourier transform

that the axially transformed Green's dyad decomposes into two parts,

the principle and reflected parts. It thus has the form

++p++ ++r++

') = g (090') + gcmlo') (10)

The principle part is the Fourier transform of the principle Greenfis

function of equation (2.18). This transform is the well known [3.14]

two dimensional Green's function:

++ 4—)- ->-)- 4+ 1 ++

3'; (plp') = 13{Gp(r|r')} = I _ KO(Yclo-o'|) <11)
2n

where K0 is the modified Bessel function of the second kind of order

zero, and

2 _ 2
Yb = C kC (12)

The reflected part of the transformed Hertzian potential Greenfia

dyad has the more complicated dyadic form

8 (SW) =xg x+§(3—gr§<+gr§'+3€gr 2)
Ct 8X C0 in CC

(13)

where we have transformed equation @119) with the help of the Fourier

differentiation theorem. The components of the reflected Greenhs dyad
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are the Fourier transforms of the components of equation 6&20). .As

mentioned above, these transforms are easy to find since the

components of the reflected Hertzian potential Green's dyad in

equation (ZJKD are written as two dimensional inverse spatial Fourier

transforms. Thus we can forward transform equation «120) on the

axial variable by omitting the inversion operation corresponding to

the axial transform variable. This variable is 52 in equation CLZO).

In this chapter we are denoting the axial transform variable as ;, so

we also make the substitution £2 + C and Ex + E in equation ULZO)

and omit the Ez integral to obtain

 

13:,(3lb’vf w iatm‘

r ++ f eJTWXDX')enpc(y+y')

1 gcnwlo ) r = -00 Rn(€) > “We dg

1" ++

Legcmlo )j LC(€) . (114)    

where E is the remaining spatial frequency variable and a factor of 2n

was canceled by the same factor occuring in equation (2) defining the

inverse Fourier transform. We must also be careful to redefine the

transverse wavenumber parameters of equation (23%». They now become

-2 2_2
p£-\/§+C k2,

k2 = ngko

 

Q = c,f,s (15)

where the subscripts c, f, and 3 again indicate the cover, film, and

substrate regions in the system depicted in Figure 3A. The

reflection and coupling coefficients Rt' R and C are identical
n!

with those listed in Appendix A with the transverse wavenumbers given

by the new expressions in equation (15). They again depend in a
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rather complicated manner on the constituitive parameters of the

background media.

‘We can write the transformed principle Greenfls function as a one

dimensional spectral superposition integral by starting with the

expression of equation GL23) and following the same steps as outlined

above for the reflected Green's dyad. The result is

CD

J€(x-x') -p [Y’Y'l
p ++' e e C

3C(olp ) as] d E (16)

_m 11an

 

where the parameters in the integral are as given above.

This transformed Green's dyad satisfies a reciprocity property

similar to that discussed in chapter two. In this case the

reciprocity property is

4+

8

++

a , '(o C) ;(3|?) -b(3',c) -E£C(E'|E§) - 573.9 (17)

where it is understood that the above expression is integrated over

both primed and unprimed spatial coordinates.

3.2.2. Electric Green's Dyad

The kernel of the axially transformed alternative integral

equation includes the transformed electric Green's dyad, +§ This

ec'.

dyad has the following physical significance: an infinitesimal

axially uniform transformed polarization source-pfip,g)d8' at source

location 3' produces at field point p and infinitesimal transformed

. . ++ . .

electric field deCo,C) satisfying

+(+' c)O ,

dam) = 8653’?“ 3...---- ds' (18)
8

C
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This Greenfls dyad is obtained by Fourier transforming the electric

Green's dyad of equation (2.111) on the axial variable with the aid of

the Fourier differentiation theorem. The result is

#- ++ 2 ~~ 4+ —> 4+ + +

sec(o|o') = P.V.(ko + VV°)gC(3lO') + 26(0-0') (19)

where'we must again take care to evaluate the possibly improper

integral occuring in the integral equation in the Cauchy principle

value sense. The two dimensional depolarizing dyad, E, is included in

order to cancel any artificially introduced polarization due to the

axially'uniform excluded source region. IfC6 is the closed contour

surrounding the principle volume surface S then the appropriate
6’

depolarizing dyad can be found as in Yaghjian [BJXk

fiv +.+v

if. - mm f _££’_P_l_ w (20)
++ 2

c5+o 21r|p-p'|

with 8' the outward normal to the contour C5.

  

3.3 Excitation of Integrated Waveguides

In this part we address the problem of excitation of axially

uniform integrated dielectric waveguides. 'This theory is based on the

formal Fourier inversion of the unknown transformed total electric

field in the waveguide core, where the transformed total field

satisfies the transformed equivalent polarization integral equation

(5). The Fourier inversion process is carried out with the aid of the

residue theorem of complex variables.
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We modify the real line Fourier inversion integration path in

the transform variable plane to enclose the upper half complex plane

and then analyze the behavior of the transformed total field inside of

this closed contour. This analysis leads in a natural manner to a

division of the complete modal spectrum of any such axially uniform

dielectric waveguide into two distinct parts: the surface wave modes

of the waveguide and the radiation field.

The surface wave modes are associated with the residues of the

integrand of the Fourier inversion integral at simple poles inside of

the deformed inversion contour. It.is shown that the residues also

yield the amplitudes of the various surface wave modes in terms of the

incident field or current exciting the waveguide. Similarly, the

radiation field of an axially uniform dielectric waveguide is

associated with the integration around branch cuts in the complex

transform variable plane which the deformed Fourier inversion contour

must detour around. Such branch cuts are made necessary by the

presence of multi—valued transverse wavenumber parameters with branch

points in the upper half complex plane which occur in the dyadic

Green's function of the transformed integral equation. The branch

integrals are viewed as a continuous superposition of radiation field

spectral components, and give the spectral amplitudes of the radiation

field in terms of the incident field or current which excites the

integrated waveguide.

Another result of the complex transform variable analysis is a

mathematical description of the physical process of mode leakage in an

integrated dielectric waveguide. We are able to predict which surface

waves in a guiding system are likely to leak based on the location of
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pole singularities of the transformed reflected Green's dyad in the

complex plane.

We close this section with an example of this excitation theory

applied to a simple guiding structure. We examine the problem of line

source excitation of TE surface waves and the TE radiation field in an

asymmetric slab waveguide. The results are shown to be identical with

those obtained by conventional waveguide excitation theory.

3.3.1 Residue Theorem

Here we sketch the development of residue theorem of complex

variables, which forms the basis of our excitation theory. Consider

the closed path integral gflc) dc around a contour in the complex 2;

plane such as that shown in Figure 3JL The residue theorem states

that under certain conditions

n

fund; =2nJ£Res{r(z;)} (21)

w n C

where Res denotes the residue of the integrand at a pole enclosed by

the closed integration contour. The conditions under which this

formula is valid are that the function rug must be analytic at all

points inside of the contour except for pole singularities at the

gn, and must be analytic everywhere on the contour [36]. If the

integrand contains multi-wuilued parameters we must be sure to choose

suitable branches of these parameters in the complex plane, and to not

violate the choice anywhere inside of the integration contour. (hue

way to accomplish this is to choose a branch out extending from the

branch point of a multi-valued parameter out to complex infinity
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Figure 3.2: General integration contour in the complex C plane

enclosing poles and branch points of a complex function.
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[357], and then demand that the contour not cross over this branch

out, but rather detour around it. This situation is depicted in

Figure 3.2.

If we write the closed contour @ as the sum of the contour fig'

plus the branch contour QB as shown in Figure 3.2, we can write

equation (21) in an alternative form:

n

[“0“ = 2WjZRes{f(r,)} - éf(§)d§ (22)

g. n c
B

Equation (22) gives an alternative method for computing an integral

such as that on the left hand side. We can instead calculate and sum

the indicated residues at poles inside of the contour and then add on

the contribution from integration around any branch cuts. This

technique will be used to evaluate several key integrals in the

remainder of this dissertation.

3.3.2 Complete Modal Spectrum

The unknown total electric field in the core of an axially

uniform integrated waveguide is given by inverse Fourier transforming

the axially transformed total fielch where the transformed field

satisfies the transformed integral equation.(5). Mathematically,

—> 1 —> + '

E(Qsz) = —- [9(O,C)€J ()de (23)

2H _m

We will perform this Fourier inversion with the aid of the residue

theorem as outlined above.
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We need to modify the real line integral in equation (23) to form

a closed path in the complex plane. We modify the integration path

as follows: truncate the real line integration so that it extends

from I; - -L to l; = L, and then add a semi-circular path, @ , of

radius L and centered at Z; = 0 extending into the upper half complex

plane. This semi-circular path Joins the ends of the real line path

to form a contour enclosing a semi-circular sector of the upper half

plane, as shown in Figure 3.3. We will conceptually allow L to tend

to infinity, so that the real line integration path KR approaches the

integration path of the Fourier inversion integral of equation (23).

The integrand of equation (23) can in general have pole

singularities located inside of this closed contour and multi-val ued

parameters with branch points enclosed in the contour. As mentioned

in the last part, we will choose branch cuts emanating from the branch

points of any multi-valued parameters in the integrand, and then

insist that our closed contour detours around these branch cuts. This

is the reason for the branch integral path, QB, shown in Figure 3.3.

Since the complete closed contour now consists of the three

parts, 3R +38 + $00, the residue theorem states that

a)

42.33.12) ejczdc = [aimefim

R T” .

-- ZVJZRes{3(3.C)eJCZ} - [anger/2.. (2n)
n Cn m

-[ 3(3.C)ejczdé

8B

where we have allowed L to tend to infinity. Under certain conditions

the integral along goo vanishes. In this case we can combine equations

(23) and (211) to obtain the result
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Figure 3.3: Deformed Fourier inversion contour in complex Q plane

enclosing poles and branch points of transformed total

electric field.



52

E(Rz) = .127; {210' §R§:{3(3.c)e3‘32} -%{03(3.c)ej§zdc} (25)

B

The condition under which the integral alongggovanishes is that the

integrand vanishes as Ipl +00on this path. The presence of the term

exp(jCz) ensures the vanishing of the integrand as long as z is

greater than zero. The case of 2 less than zero can be accomodated by

having the inversion contour close in the lower half complex I; plane,

rather than in the upper half C plane, as presented here.

Equation (25) gives a natural decomposition of the total electric

field in any axially invariant integrated dielectric waveguide. One

part of the total field is associated with the residue terms, and the

other with the branch integrals. We characterize the total field in

the waveguide with the aid of equation (25%

The residue terms in equation (25) are the sum of surface wave

modes of the waveguide, complete with excitation amplitudes depending

in an explicit manner on the incident excitatory field or current. It

will be shown in the next section that these surface wave terms

satisfy the homogeneous form of the integral equation (5), as we would

expect by the conventional definition of surface waves.

The branch integral terms in equation (25) are a continuous

superposition or radiation field spectral components of the waveguide.

Again, these terms include the spectral excitation amplitudes

depending on the incident excitatory field or current. They are the

subjectcn’sectionji3.u.

What we have accomplished here is a complete characterization of

the total modal spectrum of a fairly general class of integrated

dielectric waveguiding systems“ ‘We deal with this modal
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characterization in more detail in the remainder of this part of the

chapter.

3.3.3 Poles of 3 and Surface Waves

We will now show that the residue terms in equation (25) are

indeed surface waves of the integrated dielectric waveguide. Surface

waves of the system are defined in the usual manner as those guided

fields that can be supported in the absence of excitation. Thus, we

must show that the residue terms of equation (25) satisfy the

homogeneous form of the transformed integral equation (5).

Suppose that the closed inversion contour of Figurejl3 encloses

a simple pole of the transformed total field 33.0 at I; s cm. Then

near this pole the transformed total field has the approximate form

3(3.c) s amem<3)(: - cm)" (26)

Substitution of equation (26) into the integral equation G” results

in

2

am(C - cm)"[em(3) - .I“5“ (p ) gec(olo') - em(o')dS'] (27)

CS nC

= g1 (39;)

when C is near Cm. Taking the limit as C -* Cm gives

2+' 4+ ++ + +

am Lim {(C - Cm)_1[gm(3) - _[ £2.fli_l geC(O|O') ° em(O')dS']}

Crém CS ng

+._> (28)

= e1(O,C )
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Now 31 is arbitrary, and thus is not in general singular at c s cm.

Since the term (r,-2;m)'1 on the left hand side of equation (25) is

singular, we conclude that the total left hand side is indeterminate.

This implies that 3o(3) satisfies the equation

+ + 6n2(3')<—> ++ + +

em(0) ' j. -——7§——- Segm (plp') - em(p')dS' = O (29)

CS n
C

from which we see that 3 is a surface wave of the waveguide with
m

propagation constant cm. Thus we have shown that the residue terms of

equation (25) represent a sum of surface waves of the integrated

dielectric waveguide.

We now prove that e has the form in equation (26) when Cm is an

eigenvalue of the surface wave mode equation (26L. TTds demonstration

also.allows evaluation of the modal excitation amplitude coefficient,

am'.

First operate on the transformed integral equation (5) with the

linear integral operator £?m, defined as

2 +. +

~93J°} = j, §2§£E_l 3o(o) - {-}dS (30)

CS no

This results in the expression

2 +' + + + +

]. EEESE—)em(o) - e(p.C)dS

CS no

2 2 +
6n ( ) n ( ')

-[ _.__2‘3 Em(3)-f §_2__p___*§o (3|?) . E(E,;)ds'ds (31)

cs no cs no C

6n2(3) + + +1 +

CS no
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Now use the reciprocity property from section 3.2.1 for the

transformed Green's dyad in equation’(31) to get

2+ + + 2+' + 2+ +

[Mem(o) - 3(3,r.)as -[ Eloikmuc ) (33.391? 9,3)-(
2 2 8?,

CS no CS no CS no

2+ (32)
an ( )

Zm(3)d3ds' = TE. 3m (0) ' e(p. ;)dS

CS no

When r, is near gm we can approximate the transformed Green's dyad by

the first two terms of its Taylor series expansion about Cm:

p') = E; (3'13) + 3’— ?e (3'|3>| (z; -c In) (33)
Cm 3: C 1;

m

Substitute equation (33) into the operated upon integral equation

(32). After using the surface wave integral equation (29) and taking

the limit as g + z; m we get

2
6n ( ) +(—> )Cfs m2 a -> +

I.im(r-z;m)I —-2—pe n2<3')-—C-§2(3|3')l 'em(o')dS'

C+Cm CS no no Cm

'1)
&1Z(++) + +

(3

=-f __3_ emm - e'm. cmms

CS no

Since 31 is arbitrary the right hand side of equation (311) is non-zero

_1+ +

in general. Thus we conclude that Lim (c— (gm) em(p.C) = O

~>~+ A} + —) -1 6

e(D,C) - amem(D)(C -C m) (3 )

when r is near Cm' Now substitute equation (36) into equation (35).

We can solve the result for am:
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2
-1 6n + + + +

am .. _ .____(_3_).eIn(o) ° ei(p , Cm)ds

c 2
m CS no

(37)

2+ 2+

5n ( ) +- + 6n ( )

em = [ I—‘l—emm) - ——_‘3—L§*e (3 3')| .é*m(p')ds'ds

CS CS n2 n2 3C 5 Cm
c c

where cm is a modal normalization constant.

We have found an expression for the excitation amplitude of the

mth surface wave mode in the waveguide in terms of an overlap integral

of the impressed electric field with the mth surface wave mode. This

result is of the same form as the results of conventional excitation

theory ([1.6]. [3.81).

We can derive an alternative form for the excitation amplitude of

equation (30) in terms of the impressed current maintaining the

impressed excitatory field. This is done by using the transformed

electric Green's dyad of section 3.2.2 to write the impressed

transformed electric field in terms of the impressed transformed

polarization:

peZ r,

31(3.cm) {ten-m) __.(._’__‘"c)13' (38)

8c

Substitution of this equation into equation (37) gives

1fp(p.5m)

Cm CS 5 c

4)

e

+

m0( )d8 (39)

where we have used the surface wave integral equation GED and the

reciprocal property of the electric Green%sdyad. Now substitute the

definition of the transformed polarization into equation (39). This

gives
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e

a -1 [L—EC(p’ Z) ~3m(3)e'Jsz dzdS (1)0)

0111 CS -«>

Now 3e = jwfi and “51,163sz =fi’, so we have the result

am = f3e(r) Em (r)dv ()41)

.168ch

which is in the form of the result of conventional excitation theory

(£1.61. [3.81) for impressed currents exciting a waveguide.

3.3.11 Branches of 3 and the Radiation Spectrum

We have made the identification in section 3.3.2 of the total

radiation field, fiRAD' of an integrated dielectric waveguide with

the branch integrals in equation (25). That is

+ '1 + '

ERADU’) = 55% 3((3 9C)eJCZdC (142)

where we recall that E(Km) in this equation is the solution to the

inhomogeneous transformed integral equation (5) for values of; along

branch cuts in the upper half complex c plane. We now turn to the

problem of finding how this radiated field depends on the impressed

sources, 39. We will make use of the technique of Neumann series

[3.9] to accomplish this.

We begin by substituting equation (38) for the impressed

transformed electric field in terms of impressed polarization sources

into the transformed integral equation (5). This gives
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[M 3(3''.z;) - Lepe(o'. 4:) dS']

CSco C no 60

where CSa,denotes the infinite cross section [3| < w . Define the

iterated Green's functions

‘9;1+1(3|3)= I <9 (33") 6“ :0 )E’eo(p"lp )dS" (nu)
CSoo no

Then repeated substitution of equation (”3) into itself gives the

result

4+

e(p C) = - f9(€9§(p|p') ~36“C) dS' ('45)

CS”; E:c

where

#' ++ 00 6» ++

godly) = 2 9o (plp') (us)

This is a formal result which assumes that the series of equation (M6)

converges. The physical significance of this resol vent Green's dyad

is as follows: an infinitesimal transformed polarization source

+8 + . . . .
p (p',§kfi¥ at location E) produces at an infinitesimal transformed

electric field d3(3,;) in the waveguide core given by

69(3' :C)

E:

C

Q

calla) = - $9 (3|3 ')- dS' (147)
C

. . . .‘*e. ,‘?e

Now substitute into equation (“5) the definition or p in terms or J

to obtain



-> -1 4" .+

e(6*.z;) = f S? (Elp ')- 39(3',;)ds' (us) 

Now use equation (H8) in equation (H2). This gives

1 - ++
'* = 352 - "* +1 ‘ie +1 0

gRADU') -—-—-—2ij80 I? 8 £3 g€(p|p ) o (p 9C)dS d (’49)

B 00

Equation (N9)'tells us explicitly that the radiation field depends

on the transformed impressed current at complex spatial frequencies on

the branch out, 3 . Equation (#9) also confirms the opinion that the

radiation field of an axially'uniform integrated dielectric

waveguide must in general be written as a two dimensional spectral

superposition of radiation field spectral components. This is evident

since EEC , and hence ii, involves the one dimensional superposition on

the spatial frequency variableg;, as seen in equation (13) and (15),

and the integration along‘%§ in equation (N9) is a spectral

superposition in c along the branch cuts in the upper half complex

plane.

3.3.5 Leakage of Surface Waves

We now turn to an examination of phenominon of surface wave

leakage from integrated dielectric waveguides. Note that the tri-

layered background structure of the general waveguiding system of

nFigure 3.1 is a dielectric waveguide in its own right. If {If > ns, C

then the background structure forms an asymmetric slab waveguide. The

physical explanation of the phenomenon of surface wave leakage is the

coupling of guided modes of the core to guided modes of the asymmetric
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slab background structure. Under certain conditions, such coupling

can occur, resulting in energy transfer from the surface waves of the

core to surface waves in the background structure. Im.is observed

experimentally that the excited surface waves of the background

structure guide energy away from the axis of the waveguide core

[3J0], hence the name of mode leakage.

This phenomenon manifests itself in our mathematical formulation

through the presence of simple pole singularities in the reflection

and coupling coefficients in the transformed reflected Greenfls dyad

for complex g. These singularities will be shown to occur at such

that will cause the factor A, with

12 = £2 + c2 (50)

which occurs in the definition (1H) of p2, to be an eigenvalue of the

TE or TM characteristic equation of the background asymmetric slab

waveguide. .An alternative representation for the components of the

reflected GreenFS dyad is provided by use of the residue theorem, by

which the real line integral on €;in equation (13) can be replaced by

a sum of residues of the integrand at any poles enclosed by a deformed

integration contour plus integrals around any necessary branch cuts.

This situation is illustrated in Figure 3JL Thus we see explicitly

the influence on the reflected Green's dyad of the surface wave

spectrum of the asymmetric slab waveguide which forms the background

medium for the integrated dielectric waveguide.

We now turn to finding the location of the singularities of the

reflected Greenh3<dyad. First we note from Appendix A that the

denominator of both the transverse reflection coefficient, Rtfi), and
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Figure 3.h: Deformed spectral integration contour in the complex

C plane for components of transformed Hertzian potential

Green's dyad.
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the coupling coefficient, C(ED, contain the factor

-2pkt
t t f

Dt(€) = 1 - Ref RSr e (51)

These coefficients are singular when this factor is zero.

Substitution of the definitions of Rgf and Rgf from Appendix A into

equation (51) and equating the result to zero gives

(p? + p0p3)tanhpft + pr(pc + p3) = 0 (52)

For surface wave modes of an asymmetric slab waveguide with kc.£ kS <

kf, it is known [3.11] that;; must lie between kf and ks. Thus we

define

p3 = A2 - k3 = v > 0 (53)

pf’j kf-A=jl<,l<>0

where A is as in equation (50) (compare with equation (1M)L

Substitution of these factors into equation (52) results in

+5

tan Kt = fél——Z (5”)

K “yd

which we recognize as the TB surface wave characteristic equation of the

asymmetric slab waveguide which forms the background structure of our

waveguide system [3.12].

The denominators of the reflection and coupling coefficients

Rn(g) and C(g) given in Appendix A contain the factor

-2pft

D (g) = 1 + R.“ R W e (55)
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Setting this factor equal to zero leads in a similar manner to the

equation

2 2 2
nf1<(nc 1r'+nS 6)

tan Kt = (56)

fling KZ-n? Y (S

 

which is the characteristic equation of TM surface waves of the asymmetric

slab waveguide [3.12].

We have shown that the coefficients Rt' R , and C associated with
n

the reflected Green's dyad have pole singularities at the surface wave

eigenvalues of the asymmetric slab waveguide. Rt is singular at TE

surface wave poles, Rn is singular at TM surface wave poles, and C is

singular at both TE and TM surface wave poles. These poles lead to

residue contributions to the transformed reflected Green's dyad which

correspond to the surface waves of the tri-layered background

structure.

Now let )‘P denote a surface wave pole of the background

asymmetric slab structure. We know that 1p must lie in the fourth

quadrant of the complex ; plane so that exp(-j), pr) represents a

decaying, outward propagating wave. Now the spatial frequency

corresponding to this surface wave pole satisfies

2 = l2 ' c2 (57)

The factor exp(jg|x-x' I) occuring in? tells us we must have Im{€p} >

0, so that we can write

 

g9:3 6")‘pV6J'Ap
(58)

From the construction in Figure 3.5 we see that in the low loss limit
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Figure 3.5: Complex Q plane construction defining arg{Ep}.
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we have two cases:

max(kc,kr) < Re{c} < lp ; Arg{€p} = W

(59)

Ap < Reic} < kf ; Arg{€p} = 7T/2

The residue contribution to E? at 5p contains the factor

exp(j 5p Ix-x'l ) which then becomes

JEpIN'I ‘Jlapllx-x'l
e = e

lgp||x-x'| (60)

e

for the two cases cited above. We see that this factor represents a

traveling:wave in the x direction in the first case and an exponential

decay in the x direction in the second case. The first case is one in

which the surface wave mode of the core leaks, or couples into the

surface waves of the background asymmetric slab structure, whereas in

the second case no coupling occurs and the mode is guided along the

waveguide axis only. This situation is illustrated in Figure 31%

where we identify the angle at which the surface wave leaks with

respect to the guiding axis as

tane =_L€_l_ (61)

Re{t}

(compare with equation (u) of [3.1M]).

3.3.6 TE Excitation of the Asymmetric Slab

We now turn to an example to illustrate the excitation theory

presented above. 1Ne will use the transformed integral equation (5) to

solve for the guided modes excited in the asymmetric slab waveguide by
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Core

   

Figure 3.6: Construction defining leakage angle for leaking waves

of an integrated waveguide.
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an x directed uniform line polarization source. 'This problem is

particularly easy to solve, since the infinite symmetry of the

asymmetric slab in the x direction permits closed form evaluation of

the spectral integrals in the transformed dyadic Green's function. We

will show that the line source excites TE surface waves and TE

radiation field spectral components in the asymmetric slab. The modal

and spectral excitation amplitudes are shown to be identical with

those predicted by conventional excitation theory.

Consider an asymmetric slab waveguide excited by an x directed

line current at location (y0,zo), as shown in Figure 3.7. The slab is

of infinite extent in the x and z directions, and is of thickness t.

The slab has a uniform refractive index n, and is surrounded above and

below by infinite uniform dielectric regions with refractive indices

nc and ns,:respectively. ‘The wave guiding axis is taken as the z

axis.

The field of any longitudinally'invariant dielectric waveguide

such as the asymmetric slab satisfies the transformed integral

equation (5). The transformed incident field is related to a

transformed impressed polarization 39(3,;) at location y > O by the

equation

91 —> 2 "W I 4+ +~> Be +19 )

e(p.§)= (kC+VV-) g (319')-.__E_.Eds' (62)

where the Hertzian potential Green's dyad is given in section 3.2 and

._)

CScndenotes the infinite transverse cross-section lpl < w . The

refractive index contrast factor of equation (2JD is in this case
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An2=n 2--n§, 0 < y < t

53(3) = (63)

0 , elsewhere

If we assume that the excitation is x invariant, then the Hertzian

potential Green's dyad can be simplified by evaluation of the E

integrals in equations (13) and (15). This is done by first

performing the x' integrals in the integral equation.(5)1and the

excitation equation (62) as follows:

m J£(x-x') -p f(y) m -p f(y)
e e c 5(g)e c

F d d ' = F(

I! (S) ""130 g x 1,, g) 2p(2

  

'Y f(y)

. no) Lci___ (611)
2Yc

where we have defined the reduced transverse wavenumber parameters

yfl related to the pi by

mm = p35 = 0) =Vc2-kf (65)

with 2 = c or s for the cover and substrate regions of Figure 3.7.

Using these results we can state our problem as finding the solution

to integral equation

~~

e(y,§) — (k2 +vv- )[t_£nz_2gC(yly')- g(y'.£)dY'

0 no (66)

=(k§+ <
2
2
:

<
:
e
e

v

0
‘
,
d

n
A ‘
<

t
<

V

m

A

where we have defined V = y 3_ + zjg since .%_ = 0 here. We make use

by (X

of equation (611) to write the Hertzian potential Green's dyad in

cl osed form:
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gWJrWW

E; at: 25-3—37—
C

Er = xsrtx + y(srny + JCgccz) + zggtz

    

 

 

C

' r l 1
Sct Rt ]

r e'Yc(y+y')
4 82;“ , a 4 Rn ’ __

2Y

r C C

i 8C0 J . J

Yc-Ys NZYc'Ys

Rt = Rn = -—————— (67)
Y Y 2 .
c+ s N YC+Ys

2_ 2
C - 2vc(N 1) N2 nS

(NZYC+YS)(YC+YS) n2

where the reflection and coupling coefficient Rt' Rn, and C are

defined in Appendix A. If the impressed polarization in equation (62)

is x directed it is evident from equation (66) and (67) that the

resultant electric fields will be x directed as wellx Thus, this line

polarization source will excite only TE modes of the asymmetric slab.

This observation allows us to write equation (66) in scalar form.

We will solve our excitation problem for an x directed uniform

line polarization source at location (yo, 20), with y0 > 0 as shown in

Figure 3.7. Any arbitrary extended x invariant, x directed source can

he accomodated by superposing solutions for such line sources. Thus

we let

38(y.c) = xpee'jézOé<y-yo) (68)

where p8 is the constant strength of the line polarization source.

Then the integral equation (66) can be written
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2 2 t
e(y.c) - koAn fgc(yly')e(y'.c:)dy'

0
kgpe -jC (69)

= .53... e ZOSCWIYO)

with the scalar Green's function given by

1
3 =gp+gr=—

-y _! .. '

[e cly y| + R e Yc(Y+Y ) (70)

c c r, 2170 t J

The system of equation (69)znu1(70) can be solved in closed

form. One method of solution utilizing Fourier transforms is detailed

in Appendix B. The result is the transformed total field in the slab

  

core:

kgpe - [yc(yO-t)+jc zo] ocosoy+¥ssin0y

9(Y9C) 3 e (71)

90 D(;)

valid for 0 < y < t, where Y0 and Y3 are given in equation (65) and

' C (72)

The denominator factor D(c) is

D(c) = (02 - YCYS)sinOt - 0(YC + Ys)c080t (73)

We now turn to the task of inverting the transformed total

electric field of equation (71) with the aid of the residue theorem.

First note that the expression for e(y.CD has simple poles where D =

0. Setting equation (73) equal to zero results in

0(yb+ys)

tano t = ——————— (7“)

2- ,
o Ycls
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which is the familiar TE surface wave characteristic equation of the

asymmetric slab waveguide [3J2]. This equation is satisfied when

takes on values cm which are the eigenvalues for TE surface waves of

the asymmetric slab waveguide. (Calculation of the residues of the

integrand of the Fourier inversion integral (20) at these poles is

straight-forward but messy; We will assume that the waveguide is

slightly lossy so that Im{cn} < 0. If we write

ng = N( C)

e(y.c)e —_D(C) (75)

then the residue at a pole '5m in the enclosed upper half plane is

 

 

 

given by

N( )

Res{e(y,;)ejcz} = ——£—— (76)

-§ D'(§) -C

m In

Carrying out the indicated operations yields

2 e _ - -

jg kop [YOU'D t)+JCm(Z 20)}

Res{e(y,;)e } = - e e x

o

ocosoy+vssinoy

x (77)

ms 3; 1.
0 Y0 Y5

where c” ya, and vs are evaluated at -Cm and

2 _ 2 2 _
AQ — o + YR , R - 0,3 (78)

th
Now we claim that this residue is proportional the the m TE surface

wave modal field of the asymmetric slab, or
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. -Jcmz

jRes{e(y,C)eJCz} = amem(y)e (79)

'Cm

Here em is the mth TE surface wave modal field of the asymmetric slab,

and we further claim that am is the modal excitation coefficient

 

[3.15]

Lsmae(y.z)8m(y.z)ds

am g - °° <80)2
i?“’ _[ e§(y)dy

TE” '00

with ZTEM . qu/Cm. Note that the factors of 21T in the numerator and

denominator of the residue term in equation (22) cancel, leading to

the claim in equation (79).

I 3e 3e
Here we let the current in equation (80) be given by J = ij

+

with Pe as in equation (68). We will use Marcuse's [3.16] expression

for the mth TE surface wave of the asymmetric slab:

Y

emm = A[cos 0(y-t) - .5 sin0(y-t)] (81)
O'

Substitution of (81) and (60) into (80) results in

 

-ijz j§pe '[YC(yO-t)+jz;m(z-zo)]
amem(y)e = - ‘13—" e X

0

ocosoy+yssinoy

x (82)

GAoAs 1
t+ +__ 

1

G L 3; Ys

which is precisely j times equation (77) as claimed.

The transformed field solution of equation (71) also has branch

points in the upper half plane associated with the multi-valued

reduced transverse wavenumber parameters 0, Y0, and is. Fourier
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inversion of the transformed field is accomplished by deforming the

inversion contour to enclose the upper half of the complex 5 plane and

utilizing the residue theorem, as discussed in section 36% Closure

in the upper half complex g plane is dictated by the presence of the

factor expchZ) in the inversion integral of equation (20) when 2 >

20 in order to obtain convergence of the integrand on the infinite

semi-circular contour Coo 0f Figure 3.3. Since the branch points of o,

7c? and v5 are enclosed by the contour we must choose branch cuts for

these factors and ensure that our closed inversion contour detours

around these branch cuts.

The branches chosen for the transverse wavenumber parameters are

JO JO

Re 70 > 0 , Im { Yc ] > O (83)

Ys Ys

so that the factors exp(-ch), exp(YSy) appearing in the expressions

forgc in equation (70) represent waves traveling;and decaying in the

:y directions, respectively; The choice for the wavenumber parameter

is arbitrary, and will be shown to be immaterial in the subsequent

expression for the total electric field. If the dielectric media of

the cladding and substrate regions are slightly lossy, with

k2=kh-jk'§ ; k'g, k'}.>0 (814)

then the requirements of equation (83) lead to the equations

 Re{C} = ' J (85)

I
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describing the standard hyperbolic branch cuts shown in Figurej38

(see, for example Collin [3J7J).

The reason that the branch out corresponding to the transverse

wavenumber parameter 0 is immaterial as mentioned above is that an

examination of the form of the transformed electric field as given in

equations (71) and (73) reveals that this expression is even in 0.

Hence the path integrals up and down the branch out associated with

shown in Figure 3.8 will cancel, yielding no contribution to the

inversion integral by this portion of the branch out integration.

We will now consider the low loss limiting case for the cover and

substrate media. This specialization is accomplished by letting k"

approach zero from the left in equation (85) for the branch cuts. In

the low loss limit the branch cuts of Figure 3.8 coelesce to form the

single branch out shown in Figure BAL Note that the integration up

the left side of the branch out associated with.lb has cancelled part

of the integration down the adjacent right side of the branch cut

associated with 75. We have also removed the branch out associated

with o from Figure 349 for the reasons cited above.

We note in Figurej39 that the branch integral contribution to

the total radiation spectrum of the field decomposes naturally into

three cases: -ks < Rem} < -kC; 'kc < Re{§} < 0; and O < Im{C} < 0°.

The physical significance of these three cases will be detailed

presently.

In the following material we will make use of the following

notation:



76

Complex Imic}

C plane

 

 

 

 
:

¢Reic}

WR k k
- f - s

k k

c s kf

Figure 3.8: Deformed Fourier inversion contour in complex C plane

for total core field in the asymmetric slab.
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Im{C}

Complex

g plane

 :Re{C}

—k —k

 
Figure 3.9: Detail of branch cuts in the comple C plane for trans-

formed field in the asymmetric slab waveguide in the low

loss limit.
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YSL =\/2 4‘9, V‘: +kg

62 = Argiyli. e Argkikl} (86)
i—2-

6 16+ 6'
2‘§(2* 2)

These definitions are illustrated in Figure 3(HL

First consider the portion of the branch out integration in

Figure 3.8 where -kz.3 < Re{l;} < -kc, Im{ C} = 0. Along the lower

portion of the branch out we have

, 6 =0 (87)

e = O (88)

so that the transverse wavenumber parameters are

lower

yé =.: jv , side of branch out

, upper

Ye > 0 (89)

where \)= k2 - 62 > O. we can combine the integrals along the two
8

sides of this portion of the branch out so that only a single integral

along -ks < Re{c} < ”kc is necessary. To this end, define

e(y.C) = e(y,C)| - e(y.C)|

upper part lower part

or branch out Of branch out (90)

Using the above results in the transformed field of equation (71)

yields an expression for the transformed mode spectral component along
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Imic}

(1 + ..

Complex argH } = '1-(9 + 9 ).
Q 2 Z l

c plane

-9"

6+

47 2 >— ReiC}
-k£

k2

 
Figure 3.10: Complex C plane construction defining branch choice for

reduced transverse wavenumber parameters, YQ'
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this portion of the branch integration

x N
1

e1(y,C) = -E— [chin0(y-t) - Ocosc(y-t)], O < y < t

D1

- k3 < Re{C} < -k Im{C} = o (91)c t

where

2 e

kop ‘EYC(YO‘t)+jCzo]

e

o (92)

 N1 3 2J (IV

D? . 02(Osinot-chosot)2+v2(ycsinot+ocosot)2

Then the part of the total radiation field of the asymmetric slab

contributed to by integration along this portion of the branch out is

1 ”k

ERAD(y,z) = - 511‘ L; é,(y.r,)eJ'Czdc (93)

S

The integrand in this portion of the radiation spectrum is called a

partial radiation field spectral component L3J8]. The reason for this

name is that the field is oscillatory in the spatial variable y in the

substrate of the slab, but exponentially decaying in y away from the

slab in the cover region of the waveguide. This is evident by the

factors exp(:Y2y) in the transformed Greenfis function of equation (70)

and the observations made in equation (89).

The next portion of the branch out integration of Figure 3:9 is

that portion where -kc < Re{;} < O and Im{g} = 0. Along the lower

side of this portion of the branch cut,

(9“)

and along the upper side of the branch out
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(95)

so that the transverse wavenumber parameters can be written as

lower

73 = 1.3V , y = : 35 , side of branch out

upper (96)

with\)= kg - C2 > 0, 5= kg - C2 > 0 here. We once again combine the

integrals along the two sides of the branch out as in equation (90) to

 

obtain

. N2

e2(y.c) - D- {ocosoycos[6(yo-t)+w]+ usinoysin[5(yo-t)+¢]}

2

- kc < Re{;} < 0, Im{;} = 0 0 < y < t (97)

where

2 e _

N 23 kop 63:02

2 = -

6o

D; = [(02+6v)sinot]2 + [o(5+v)coso‘t]2 (98)

2

o +6v
tan = tan t

w o 5+v) O

The part of the total radiation spectrum contributed to by integration

along this portion of the branch out is given by

O

-1 A .

ERAD (y,z) = 2_ j. e2(Y.C)eJCZd; (99)
2 7T

_kc

The integrand in this portion of the radiation field is called a

full radiation mode spectral component [3J8] of the asymmetric slab.

The reason for this name is that the field is oscillatory in the
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spatial variable y away from the slab in both the cover and substrate

regions of the waveguide. This is evident from the factors exp(:y£y)

in the transformed Greenfls function of equation (70) and the nature of

as given in equation (96%

The last contribution to the total radiation field is

integration along that portion of the branch out of Figure 3.9 where

Reic} - O and O < Im{t;} < co. Along the right side of this branch out

the arguments of ya are as given.in equation (96) and along the left

side they are as in equation (97). Thus we have e3(y,;) identical in

form to equation (97), where we now havec; positive imaginary. The

part of the total radiation field due to integration along this

part of the branch out is

co-1 A

E (y,z) = — e (y. )e“ zd (100)
RAD3 2,, IO 3 C C .

The integrand in this portion of the radiation spectrum is called a

full radiation field spectral component for the reasons cited for

equation (99). Note, however, that in this case the radiation field

spectral components are exponentially decaying in the waveguiding

direction since C is imaginary on this part of the spectral

integration path.

What we have accomplished in this section is to use the

excitation theory developed in this chapter to recover several well

known results of conventional excitation theory. This fact gives us

confidence in our formulation, which can now be used to analyze

problems which were formerly intractable when dealt with by

conventional means.
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3.A Rectangular Strip Waveguide
 

The goal of this part of the chapter is to use the axially

transformed equivalent polarization integral equation developed in

this chapter to obtain an approximate, closed form solution for the

transformed total electric field distribution in the core of a uniform

rectangular strip waveguide. The uniform rectangular strip waveguide

consists of an axially infinite uniform rectangular dielectric core of

width 2a and height d integrated over the film layer of the tri-

layered infinite background structure introduced earlier. TTus

waveguide configuration is shown in Figure 3J1. It is a structure of

great interest to workers in the area of integrated optics due to its

practicality and ease of fabrication, and has been widely studied

(see, for example, [3.19], [3.20]).

We will proceed with our approximate closed form solution by

postulating the functional forms of the transformed longitudinal

electric and magnetic fields in the core. Chm'representations for the

transformed longitudinal fields are each in terms of two unknown

amplitude constants and two unknown transverse spatial frequency

constants. The propagation constant C is also unknown in the

expressions for the longitudinal fields. The Fourier transformed

version of Maxwell's equations allow us to find expressions for the

transformed transverse electric field components in terms of these

longitudinal field components.

The resulting expression for the unknown transformed total

electric field in the core of the strip waveguide is then substituted

into the transformed equivalent polarization integral equation of
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Figure 3.11: The uniform dielectric rectangular strip integrated

over a tri—layered background structure.
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section 3.1. The transformed integral equation is seperated into its

three spatial components, yielding three scalar equations in the

scalar components of the unknown total core field. Each component

equation is then enforced at four points inside the waveguide core,

allowing elimination of the four unknown amplitude constants in the

transformed field representations. What we are left with is three

determinental equations in the unknown wavenumber parameters. These

equations are solved simultaneously by numerical methods to find the

unknown wavenumbers. Once the values of the unknown wavenumber

parameters are determined, resubstitution into the matched component

equations allows for evaluation of the four unknown1amplitude

constants. We thus obtain an approximate closed form expression for

the unknown total transformed electric field in the waveguide core.

We first solve by this means the simpler problem of the

rectangular strip waveguide in a uniform background region with no =

nf - nS to familiarize ourselves with the analytic technique described

above. We then attack the full problem of the rectangular strip in

the tri-layered background region of Figure 3A1. This is a more

difficult problem since the phenomenon of guided mode leakage can

occur here, as discussed in section 341 Numerical results are

presented and compared with the results of other techniques.

3.N.1 Field Representation

In this section we postulate a general form for the longitudinal

components of the transformed total electric field and magnetic field

in the core of the strip waveguide. Parity arguments based on the
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Fourier transformed version of Maxwell's equations allow

identification of two classes of modes when the refractive index of

the core is even in the transverse position variable, x. ‘We restrict

ourselves to the case of longitudinal electric fields odd in x and

longitudinal magnetic fields even in x; the other field parity can be

handled in a similar manner.

The functional forms chosen for the axially transformed

longitudinal fields satisfy the transformed version of Maxwell's

equations and fit experimentally observed waveguide core field

distributions. There is one difference, however, between the forms

chosen here and those chosen by other workers [3.21]: we do not

assume that the transverse wavenumbers associated with the transformed

longitudinal electric field and magnetic field are identical. Given

these transformed longitudinal field components, the transformed

version of Maxwell's equations allow us to find all other transformed

field components in terms of them.

If the refractive index of the core of the rectangular strip

waveguide is assumed to be even in the transverse position variable x,

so that rfix,y) = n(-x,y), then the components of the transformed total

field, é<3;;n nnBt each posess either even or odd symmetry in x. The

relationships of the symmetries of the various transformed field

components can be found by considering the longitudinal parts of the

transformed Maxwell's equations

A A

+ +

(vt + jcz) x (et + zez) -jmuoh

(101)A + A

(Vt + jcz) x (ht + zhz) jmeg

where we have decomposed the transformed fields into their transverse
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and longitudinal parts. The longitudinal parts of equations (101) are

aey _ 3ex . h

a? W‘ 39102

any ahx (102)

___-_=+ e
.

8x 3y Jwe z

We see that if hz has a given parity in x, then ex has the same parity

and ey is of opposite parity. Similarly, hx and hy have the same and

opposite parity, respectively as e2. ‘The transverse components of the

transformed Maxwell's equations (101) can be solved to give

expressions for the transverse field components in terms of the

longitudinal components. We obtain

A

at = [vatez + 3.11102 . Vthzl (103)
wZqu-cz

Equation.(103),gives us the following parity rules for the transverse

components of the transformed electric field in the core of the

rectangular strip waveguide:

even odd even

ez in x ex , ey in x

odd even odd

even even odd

hz in x eX , ey in x

odd odd even

since 8 in equation (103) is even in x.

(1ou)

In the remainder of this section we will assume functional forms

for the longitudinal components 0f the transformed total core fields

that will make eX even in x and ey odd in x. The case of core fields
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of opposite parity can be handled in a manner identical to that

outlined below.

The general form we will assume for the longitudinal components

of the transformed total waveguide core fields is

e a sin K x [A'cos K2 y + B'sinKy y]
X Y

(105)

h - cos c x [C'cosoz y + D'sinoy y]
x Y

These transformed longitudinal fields match experimentally determined

field distributions and satisfy the transformed Maxwellfls equations

(101) if the transverse wavenumber parameters obey the relations

K§+K§=o§+o§=k2-;2 (106)

Other workers have assumed Kx = ox and Ky = 0y [3u21], whereas we

can find no a-priori reason for making such an assumption. We can

later use the results of our analysis as a check on the validity of

this choice.

Substitution of the transformed longitudinal fields of equation

(105) into equation (103) allows us to find expressions for the

transverse components of the transformed total core electric field.

We get

ex = Kxcosz x [Acos Ky y + Bsin Ky y] +0 yz cos 0* x [Csin 0y y

- Dcos C& y] (107)

ey = Kysin KX x [-Asin Ky y + Bcos Ky y] - cxzsin Ox x [Ccos 0y y

+ Dsin 0y y]

where we have defined
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A A'

we B . B'

z = _ , c = .35... c'

C 0 kZ-rz 0' (108)

We now have general expressions for the total transformed

electric field in the core of the rectangular strip waveguide. There

are seven unknowns involved: the amplitude constants A, B, C, and D;

and three of the wavenumber parameters, which we take as K ox and C.x'

Note that the other two transverse wavenumber parameters, Ky and Oy'

can be found from these by application of the realations in equation

(106L. We will use these forms of the transformed unknown total core

electric field in the transformed equivalent polarization integral

equation of section 3A. Demanding the integral equation be satisfied

will allow us to determine the pr0pagation characteristics and field

distributions in the rectangular strip waveguide.

3.”.2 Principle Terms

Before we substitute our expressions of part 3JL1 for the

transformed total core electric field into the transformed equivalent

polarization integral equation of section 3A we will rewrite the

integral equation in a slightly different form. Since the dyadic

Green's function in the integral of our integral equation (5) has two

parts as shown in equation (9), we can split the integral into two

terms, a principle and a reflected term:

3(3) - N2 (1% + 66-) f E’PQIS 0330831

CS

:. (109)

_. N2 (kg + Vv.)f 210(Kl3') . é??? ')d8' = O

O

k.)
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where we have specialized to surface waves of the rectangular strip

waveguide by setting the incident field equation to zero in equation

(5). Here CS denotes the rectangular cross section of the waveguide

core, -a < x' < a, O < y' < d, and N‘2 is the constant refractive index

contrast of the uniform dielectric core, N2 = n-§(n2 - n3). The

transformed principle and reflected Hertzian potential Greenfis

functions have the forms given in section 3&3and the c dependence of

all terms in equation (109) has been suppressed for clarity.

In this section we will deal with the terms in equation.(109)

corresponding to the principle Green's dyad. In the next section the

reflected terms in equation (109) are dealt with in a different

manner. The results of the analysis in this section can be considered

the solution of the problem of an isolated rectangular strip

waveguide. Imithis case the tri-layered background region is absent

and thus reflected part of the transformed Greenfls dyad is zero. If

the integral equation (109) is written as

—> ~> -> —> —> —>

e(p) - P(o) - R(p) = 0 (110)

—> —>

we are here concerned with the term P(0),

3(3) = 180% - 77-) f gp(3l3 ')g(3')dS' (111)

CS

If the Sommerfeld integral representation in equation (15) is

used for the transformed principle Green's function, then we obtain

th
_).

for them component of P the formula

—> 2 [53ng A .; z. + r
Pa(0) = N 'EFE; [kCQu(y) + xa (v Q(Y)]db (112)

—00
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where 01 = x, y, or 2. Here \7 = jg); + j)— y + 3;; since the x variation

8)!

in the integral terms in equation (109) is of the form exp(jgx). We

have defined 0(y) as the spatial integral

. , -p y-y' l

3(y) = _[ e’ng e Cl 3(3‘)ds' (113)

cs '

Substitution of the general transformed field expressions of equations

(96) and (98) into equation (103) gives

Qx — gKXCKEAch + BYSK] + oyzchfcyso - 0100]

0y a KyXSKE'AYSK + 810K] --0kzxsg[0yco + DYsO] (11A)

2 2
k -c

02 = __32__ XSKEAYCK + 313K]

where the results of the spatial integrals in (113) give rise to the

 

terms

x 1 sina(g-y) + sina(g+y)

{g}Y -J' 5'7 — E'VY

I (y) - 1 2p COSGY + -pc e.pcy (115)

(3)5 P§+52 c sinéy 6

pc(y-d) p00035d - ésindd >

-e

< pcsinéd + 5cosdd

~ ~ ->

Next we examine the term V(V'Q(y)) of equation (112). It is

)

Z —>

v - 0 = - g2[1<xXCV(AYCK + BY>
<

<
1
2
:

SK) + oyZ'.)(cg(CYso - DYCOH

+ jngEKyXSK(-AYSK+ BYCK) - OXZXSO(CY50' DYs0)]

*J(k2" éDxSK(AnH<+ BYSK)

_ ' » ._ l

. d— 3ng[KXXCK(AYéK+ BYéK) + oyZXCO(CYéO DYCOH

L
<

<
J
e
1

<
1
?
)
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+ chnySK(-Ang + Bng) - oxszOmxgO + 0yg0)1

2 - 2
+ pc(k c )XsK(AYéK + BYgK) (116)

A z: +

20 v v - Q = chKxxcK + BYSK) + OyZXco(CYso - DYCO)]

+ j(IpCEnysK(-A)(é,< + BYéK) - oxszOngm + 01:50)]

2_ 2

+ JC(k C )Xsk(Ach + BYSK)

where we have defined

Y{é, 5 =._%.§% Y‘s’s , Y{°}e5='§% Y{¢} 5 (117)

c c c s s

with Y6 as given in equation (115).

We can now substitute the results in equations (11“) and (117)

into the expression in equation (112) for F. The result is presented

most compactly by collecting multiples of the four unknown amplitude

constants, A, B, C, and D. Each component of? then has the form

+ 01 + 01.

Pa(9) = AF1 (o) + BF2 (3) + CF; (3) + DFfi (3) (118)

for a = x, y, or z. The terms Fa in equation (118) are complicated

functions involving integration on the spectral variable, g. They are

detailed in Appendix C. It is important to note that the functions Fa

depend on the transverse position variables and the unknown

as dependent on thesewavenumbers K 0X, and c (we view K and 0

X’ Y Y

wavenumbers, as discussed above).

3.“.3 Reflected Terms

In this section we will find a closed form approximation for the

reflected Greenks function integral 8(3) of equation (110). This
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approximation is based on the fact that the transformed reflection and

coupling coefficients appearing in the integral expressions for the

components of the transformed reflected Green's dyad have simple poles

in the complex 5 plane. We will use the residue theorem to

approximate the components of the transrormed reflected Green's dyad

by its residues at these poles and neglect the branch integral

contributions.

This approximation corresponds to decomposing the transformed

reflected Green's dyad into a portion given corresponding to surface

waves of the tri-layered background structure and a portion

corresponding to the radiation field of the background, and then

neglecting the radiation field contribution to the reflected

Green's dyad. The validity of this approximation can be guaged by the

accuracy of the results it produces.

In section 3435 we found the locations in the complex 6 plane of

the poles of the transformed reflection coefficients Rt(€) and Rn(E)

and the coupling coefficient C(E) occuring in the integral expressions

for the components of the transformed reflected Greenhs dyad. Since

the parameters K, Y, and 5 in equation (53) depend on 52, then

if ED is a pole of one of these coefficients, then so is -€p.

This fact that the poles of the reflection and coupling coefficients

are symmetrically located in the E plane with respect to the origin is

illustrated in Figure 3JL As shown there, in using the residue

theorem to evaluate the real line 6 integral we must choose a

deformation of the integration contour into either the upper halr'or

lower half complex E plane. This choice is made based on the

convergence properties of the integrand. We want the integrand of the
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reflected Green's dyad components to decay on the infinite semi-

circular contour, 3’00. As evidenced by equation (13), the decay of

the integrands is governed by the presence of the factor exp(jg(x-

x')). Thus if x is greater than x' the closure must be made in the

upper half complex g plane, and otherwise in the lower half plane.

Both cases x > x' and x < x' can be accommodated at once.

(0

Consider the contribution to an integral ff(g)ej€(x'x')dg due to a

pair of pol es of f(g) at 1 gp. Here f(sg) re-pf‘esents the remainder of

the integrand of a component of the reflected Green's dyad. We assume

slightly lossy media so that Imigp} < 0. If x > x' we must choose

upper half plane closure to insure convergence along i?” (see Figure

3.11). The residue at enclosed pole at -gp is 21rjRes{f(g)}e'Jgp(X'X').

0n the other hand, if x < x' we must choose lower half plane closure

to ensure convergence along {600. The residue at the enclosed pole at

gp is -21rjRes{f(g)}eJEp(x-x'). The reason for the change in sign of

the residue contribution is that the orientation of the closed

integration contour has changed (see [3,22]). The contour had a

counter clockwise orientation for the case x > x', but now has a

clockwise orientation when x < x'. Now if the residue 0f f(g) is odd

in 5 we can write the residue contribution in the latter case as

2‘jRes{f(g)}e~j €p(x-X'). Comparing this with the residue term for the

case x > x' we see that both cases are accommodated at once if we

replace the exponential term with exp(jg| x-x' ). It will be shown
 

below that the residues of the transformed reflected Green's function

component integrands are indeed odd in g, and we will always assume

upper half plane closure for the deformed integration path with the

modified exponential term above.
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We now turn to the evaluation of the residues of the transformed

reflection and coupling coefficients in the reflected Greenks dyad.

In Appendix A it is shown that the tangential reflection coefficient

has the form

Nt(€)

Rt(€) = ////Dt(€) (119)

where Dt(€) is as given in equation (1111). The residue of Rt at a zero

of Dt is given by the usual formula: If is a simple pole of Rt then

Nt(€) a

Res{Rt(€)} = —— Dt(€)l (120)

8in 35 5n

Differentiation of equation (nu) for Dt is done with the aid of the

chain rule and the expressions in Appendix A. 'The result is

P N (E )

Res{Rt(€)} = r“ t 9

En 1 1 (121)

25“ t+ +___

pcn pfn

 

 

where pm = p£(€=€n). Note that this residue is odd in g as

mentioned above. The residues of the coefficients Rn and C are found

in an identical manner. The result is



Res{Rn(€)} =

E

Res{C(€)} =

E
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pann(€n)

2_ 2 2- 2

2g t+ 1 pfn psn + 1 Don pfn

n 2 2_ 2 2 2 2 2 2

Dan Nsrprn Nfspsn pon Nrcpcn+Ncrprn

1 New")

ReS{Rt(€)} o g

"6(5n)9n(5n) an

1
(122)

Nc(€n)

 n a zero of Dt

 ReS{Rn(€)} o E a zero of D

( Nn(€n)Dt(€n) an n
n

 

where the factors in equation (122) are given in Appendix A. Note

that these residues are also odd in 6.

We now turn to the approximation or the reflected term R( ) in

equation (110% It is given by

15(3) = N2(k§ + vv-) I ?('5'13') - E(E'MS'

cs

Now by equation (12) we have

4+ + A A 3 .

8

+ 28282

(123)

(12“)

We use the above results to write a residue contribution approximation

to the components of the reflected Greenha dyad

{ r ==.§: .__ e e

n

(
N

:
3

    .82) (C0 1

r‘ '

[3t 1 Rtn1 jEn‘x-x'l -pcn(y+y')

(125)

where the sum is over all TE and TM surface wave poles of the tri-

layered background structure located in the upper half complex 6
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plane. We have defined

 

    

'atnl Rt(g)1

(R 1 - 35“ Res ‘ R ( )>
nn 2pcn n 5

(Cu) LC(g) 1 (126)

The spatial integration in equation (123) can be done with the help of

equations (12”) and (125). It gives a result of the form

  

++ + .. A 3 A

6! gr . edS' a xItx + y(§; ch + Iny + ngcz) + zItz (127)

Here we have defined

Rtn] e ‘pcny

I =- 2: (a 1 J7(x)
t nn ““§“

In} a n n a

c \Cn J

a = x,y,z (128)

Janlx-x'l wen)" '

Jam = [e e ea(3')dS'

CS

th
where ea is the a component of E as given in equations (105) and

(107).

We can now differentiate equation (127). The result is

~~f+7-é’ds'—§<[I"- I"- I'-' I'+'I']
VV' CS g ‘ tx pcn cx pon ny Jgpcn cz JC tz

+ yE‘pcnItx + pc§(lcx + Iny + JCIcz) _ jcpcnltz] (129)

+ZEJCItA - ijcnucx + Iny + jCIcz) — CZItz]

89

with 1% = ___ Id? The result of the spatial integration in equation

axp

(128) is
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.93 = Kxch(Ay + BYSK) + o zx (cy - 0y )
CK Y 00 30 Co

Jy a KXXSK(-AYSK + BYCK) - Oxzsvmycc + DYSO)

C

.flz = j; XSK(AYCK + BYSK)

‘_ 2 COSyX] jEna { cosgnx ]

X c = jgn + e

{3’1' 72-23 sinyx -Jsingnx

cosYa sinYa

x Jan ‘+‘Y

sinYa -cosYa

c 1 Don e.pend pcn cosad_+ -6 sindd
6 "“_——’ '

{s} 52+pc§ 6 6

 

(130)

 

“
q

pcn

We are now in a position to evaluate 8(3) as in equation (123) by

substitution of equations (127) and (129% The results is expressed

most compactly by collecting1multiples of the unknown amplitude

constants, A, B, C, and D. Each component of R then has the form

+ a + +

Ra(0) = AG1(D) + 803(0) + CG§(3) + 003(3) (131)

for<1= x, y, or z. The terms Ga in equation (131) are complicated

functions involving factors such as those in equation (130% These

terms are detailed in Appendix C. It is important to note that the

functions Ga depend on transverse position variables and the unknown

wavenumbers KX, 0X, and Z;(we again view Ky and 0y as dependent on

these).

3.u.u Computational Considerations

We can now write out each component of the transformed integral

equation for the rectangular strip waveguide. By equation (110) we
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have the three component equations

—> —> ->

ea(o) - Pam) - Raw) = 0 (132)

where a.= x, y, or 2. Each term in equation (132) contains the four

unknown amplitude coefficients, A, B, C, and D. The functions

multiplying the amplitude constants are themselves dependent on the

three unknown wavenumbers Kx, ox, and c. We need to solve for all

seven unknowns to determine our approximate close form solution for

the total transformed electric field in the waveguide core.

We can eliminate the amplitude constants by evaluating equation

(132) at four points, (Xi' yi), with i-1,.",N, inside the

waveguide core. ‘This results in four equations of the type

A
a

C

D

where, for oc= x, y, or z, we define

multiple of 1th

a amplitude const. a a (13“)

H13 = in ea evaluated + F1(xj, yj) + Gi(xj, yj)

and F“, Ga are as given in equations (118) and (131). A non-trivial

solution for the transformed core field requires

Det{ufj(»<x, ox, 2;)} = 0 (135)

G.

for all three component equations. Since the matrix elements H1J

depend on the unknown wavenumbers K Ox' and Q, what we have found
x!

are three determinental equations in these three unknowns.
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We will solve these equations numerically by Newton's iterative

method. First write

4, Kx _, + neuron

w = 0X . D(w) = Det{HY(G)} (136)

c Detmzfi’m

+ 9+

We want to find "r with DOQJ = 0. If we are given an initial guess,

WC, at this root, Newtonwsiterative method tells us to calculate

[3.23]

+
—> { -> _++

w,+1 = w1 = [3DT(wi)] ‘D<w1) (137)

where 3DT is the transpose of the Jacobian matrix,

BDi

Given a sufficiently good initial guess, equation (137)‘mill converge

to the root Twp.

Once we have found a root of D we can find the core field

distribution byievaluating the amplitude constants A, B, C, and D. 'To

do this we choose one component matrix equation (133). Since this

matrix is singular, we set one of the amplitude constants equal to

one, eliminate one row of the matrix, and solve the resultant

inhomogeneous matrix equation for the other three amplitude

coefficients.
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3.“.5 Numerical Results

A computer program was written to implement this method of

solution for the transformed core electric field in an integrated

rectangular dielectric strip waveguide. In this section we present

numerical results of the execution of this program for several

different rectangular strip waveguide configurations.

The first waveguide configuration we consider here is the

isolated rectangular strip in a uniform dielectric surround. ‘This is

a particularly simple case to analyze since the reflected part of the

transformed Hertzian potential Green's dyad is zero in the absence of

the tri-layered background structure of Figure 3J1. This is clear

physically because there are no background structure interfaces to

reflect the primary Hertzian potential. This face is seen

mathematically by setting nS = nf = no. Then the reflection and

coupling coefficients Rt' R and C occuring in the Sommerfeldn'

integral representations of the components of the reflected Greenfis

dyad are zero, thus giving a zero result for the reflected Greenws

dyad in this case (set p0 = pr = pS in the expressions for Rt' Rn' and

C in appendix A).

The isolated rectangular strip waveguide examined here consists

of a uniform rectangular dielectric core of refractive index n = 1.5

surrounded by a uniform medium of refractive index n =‘LO. The
c

rectangular core is of width 2a and height d = a. The program was

executed for several electric core sizes by letting the ratio a/AO

vary with A0 = 2Wc/w as usual.
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The program requires an initial guess at the unknown wavenumbers

Kx, ox, and z; to begin iteration of the Newton's method root finder

(see equation (137)). We always assume that Kx = Ox and Ky = oy for

the initial guess. We input Kx and K3, and find c from equation (106).

The initial guesses for Kx and Ky were obtained by a method

essentially identical to that used by Marcatilli [3.211] to approximate

the eigenvalues of isolated rectangular strip waveguide. The

approximation of KK is accomplished by ignoring the y variation of the

core fields. This corresponds physically to allowing the rectangular

core height tend to infinity, giving rise to a structure uniform in

the y direction. Then the structure being considered is a symmetric

slab waveguide of width 2a as shown in Figure 3.12. The

characteristic equation of the symmetric slab is solved, yielding

which we use as our guess at K The approximation of K is

Y

accomplished in a similar manner by ignoring the x variation of the

x'_

core fields. The rectangular core width is allowed to tend to

infinity, giving rise to a symmetric slab waveguide of width d = a as

shown in Figure 3.12. The solution K for this symmetric slab is used

as the initial guess for Ky.

In table 3.1 we present the numerical results of the program for

the isolated rectangular strip waveguide. The agreement between the

Marcatilli approximation of K K and z; and the program results for
x' y

these wavenumbers is seen to be quite good for electrically large

waveguides, with decreasing agreement as a/iO approaches zero. We

also note that the assumption KX = 0x and Ky = 0y made by other

workers seems to be valid for large waveguides, but not for

electrically small guides. The program results for the transverse
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Surround, nc

I———-2a—-—--l

 

d l Core, nC n, Ky

 

 

 

  

Figure 3.12: Diagram illustrating Marcatili's approximation of the

eigenvalues of the isolated uniform rectangular strip

waveguide.
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wavenumbers are plotted versus normalized core size in Figure 3J1L

The propagation constant is normalized and compared with the numerical

results obtained by Goell.lIL25] in a different manner in Figure 3J1L

Good agreement is observed even for small waveguide core sizes. In

Figure 3.15 and 3.16 we plot the normalized dominant field component

in the waveguide core versus normalized position x/a and y/a,

respectively, for several core sizes. 'These plots reveal that we are

dealing here with the principle waveguide mode.

The next waveguide configuration considered here is a uniform

integrated rectangular dielectric rib waveguide. In this case the

refractive index of the rectangular core and the film layer refractive

index are identical, n - hr. 'The presence of the tri-layered

background structure gives rise to a non-zero contribution from the

reflected terms in the Green's dyad. The core and film refractive

indices are both 1.5, the substrate has refractive index ns = 1.1 and

the cover medium has refractive index nc - 14% The dielectric rib

has width 2a and height a, and the film thickness is t = a. The

program was executed for several sizes or waveguide by letting a/AO

vary.

In this case the initial guesses for the waveguide eigenvalues

were obtained by the effective dielectric constant (EDC) method (see

Oliner [3JHID. This method consists of finding effective dielectric

constants, n f =z;/k0, for the asymmetric slab waveguides made by
ef

letting the rib width go to zero and infinity, as shown in Figure

3;?L. The latter case gives a good approximation for the eigenvalue

1w.of the rib waveguide since we are essentially using the Marcatilli

method described above. An approximation for K is then obtained by
X
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solving the characteristic equation for the symmetric slab waveguide

with the effective dielectric constants found above. This is depicted

schematically in Figure 3.17.

The EDC and program results are summarized in Table 3.2. Here

ATE and ATM are the TE and TM surface wave eigenvalues of the

background asymmetric slab used to approximate the reflected Green's

dyad as described in section 3.11.3. The propagation constants

predicted by the EDC method are compared with the program results for

several rib waveguide sizes in Figure 3.18.
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H. PLANE TRUNCATED WAVEGUIDES

In this chapter we apply the equivalent polarization integral

equation to the problem of coupling energy into and out of plane

truncated waveguides. Truncated integrated waveguide structures such

as that depicted in Figure NJ are of considerable interest to workers

in the area of integrated optics, where they are widely used as

integrated laser cavities [MAIL This type of structure is also used

to model Junctions between separate integrated optical components.

We will restrict ourselves to consideration of truncated

integrated waveguides that have generally transversely graded cores of

arbitrary but constant transverse cross sectional shape. The only

allowed variation of the refractive index contrast factor of the

waveguide core in the longitudinal direction is of the form u(zO-z).

This factor describes a waveguide core that is truncated at the plane

2 = 20 and vanishes for all z greater than 20.

In the first part of this chapter we review some results on the

complete modal spectrum of a waveguide and develop notation to be

utilized in the remainder of the chapter. ‘We also introduce the

concept of partial fields in a truncated waveguide. The two partial

fields, EL and ER, are the total electric field in the system for

points z behind and in front of the plane of truncation at z = 20,

respectively, and are zero elsewhere. The total electric field in the

waveguiding system can be expressed in terms of these partial fields

lib
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as E = EL + ER. The partial fields play a central role in the

analysis to follow.

In the second part of this chapter we analyze the problem of the

reflection and radiation of a single surface wave mode of arbitrary

amplitude that is incident on the truncation from within the

waveguide. ‘The partial field within the waveguide, EL, is written as

a modal sum with unknown amplitude coefficients, and is substituted

into the alternativetform of the equivalent polarization integral

equation. .A linear integral operator,£fim, is applied to the resultant

expressions. ‘This leads to an iterative equation which can be used to

find the unknown reflected surface wave amplitudes in the modal

expansion of 88. Once these reflected wave amplitudes are determined,

the expressions also allow for evaluation of the electric field

radiated out of the truncated waveguide, which is the partial field,

0".

In the third part of the chapter we examine the converse problem,

that of excitation of surface waves in the truncated waveguide. Here

we assume that an impressed electric field is incident on the

truncation from outside of the waveguide. .A technique similar to that

described above is appliedtxnthe alternative equivalent polarization

integral equation, resulting in an iterative formula for the unknown

amplitudes of the surface wave modes excited in the waveguide.

We conclude the chapter in part four by applying the techniques

developed here to the problem of coupling energy into and out of a

truncated asymmetric slab waveguide. Numerical results are presented

and discussed.
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“.1 Preliminaries
 

In this part we review some background material that will be used

in this chapter. We first review some results from chapter three on

the complete modal spectrum of an axially uniform integrated

dielectric waveguide. ‘We establish notation for surface waves and the

radiation field and.review theiequivalent polarization integral

equation satisfied by surface waves.

We next introduce the notion of partial fields in a truncated

waveguide. The unknown total electric field in the alternative

equivalent polarization integral equation of chapter two is expressed

in terms of these partial fields. The resultant integral equation

forms the basis for the analysis in the remainder of the chapter.

u.1.1 Modal Expansion

Refering to the results of section 3412 we find that the total

field in an integrated dielectric waveguide can be written as a modal

expansion:

+ + +

m2) = iagsgm + 15mm?) (1)

at points to the right or left of all sources, respectively. The

surface wave modes have the form

I: .

JCnZ

agar) = ago). (2)

and they satisfy the following homogeneous form of the alternative

equivalent polarization integral equation:
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2 —->

+ _. 60 (p') . , , 1 , ,

nc

These results will be used in the following analysis.

H.1.2 Partial Fields

If the integrated waveguide under consideration is truncated in

the plane 2 - 20 as shown in Figure NJ. Then the refractive contrast

factor of equation (ZJD has the form

.y

.5an = an2<p)u(zo - z) (u)

where u(z) is the unit-step function, u(z) =1 for z > 0 and u(z) = 0

otherwise. In this case the alternative form of the equivalent

polarization integral equation in equation 0113) can be written

2 +,

f(F) -1 5213.3 u(zo - magma) - t<$v>dw = EH?) (5)
2

V nC

The presence or the factor EU*0u(zo-zfl in the integral prompts us to

define the two partial fieldstL and ER, as

0%?)

0M?)

20?)sz - z)

_, (6)

€(r)u(z - 20)

Then we can write the unknown total electric field in terms of these

EL+ERpartial fields, §'= . Using these definitions in the integral

equation (5) results in
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3%) + 8%) - 1 22.1000.) .§L(?')dv' (7)

nc

= €10?)

This is the form of the alternative equivalent polarization integral

equation that will be used in the remainder of this chapter.

An important result can be obtained immediately from equation

(7). If we multiply equation (7) by u(z-20) then the partial field EL

is annhilated and the partial field-ER is unchanged. The result can

be written

2+' ++ +

ER(?) = u(z - 20) J» iflgé3_18;(r|rv) . EL(;')dV' (8)

C

+1
+ u(z - zO)E (r)

The significance of this result is that it gives us an expression for

the partial fieldER in terms of the other partial field EL and the

incident electric field El.

u.2 Surface Wave Reflection and Radiation
 

In this part of the chapter we analyze the reflection and

radiation of a single surface wave mode traveling down the waveguide

and incident on the truncation at z = 20' This surface wave will be

partially reflected back up the waveguide and partially radiated out

of the waveguide through the truncation. This situation is depicted

in Figure Ada Note that mode conversion can occur at the truncation,
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Figure 0.2: Surface wave reflection and radiation in a plane trun—

cated dielectric waveguide when a single surface wave

is incident on the truncation.
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so that other surface wave modes and the radiation field may be

excited in the waveguide.

We will make use of the specialized integral equation 00 with a

zero incident field. ‘The surface wave which is incident on the

truncation is included in a modal expansion for the total field in the

waveguide. This total field in the waveguide also comprises the

reflected surface wave modes with unknown amplitude coefficients and

the reflected radiation field. Substitution of this modal

expansion for the partial field-E)L into the integral equation and

subsequent operation by a linear integral operatorQm results in an

iterative formula for the unknown modal amplitude coefficients for the

reflected surface waves. Then equation (8) will allow us to use the

resultant known surface wave modal expansion for EL to find the

partial field radiated out of the truncation.

u.2.1 Modal Expansion of EL

kth mode type is incident on theIf a single surface wave of the

truncation from inside the waveguide we set 01 in the integral

equation (7) equal to zero and incorporate this surface wave in the

modal expansion for the field in the waveguide core. Then partial

field EL can be written in accordance with the notation in section

u.1.1 as

§L(;) = u(zO - z)[AE;(:) + Z anE;(:) + ERAD(:)] (9)

n

kth
Here the constant A is the amplitude of the surface wave mode

incident on the truncation, assumed to be known. The coefficients an
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are the unknown amplitudes of the surface waves reflected by the

truncation.

Equation (9) is now substituted into the homogeneous form of the

integral equation (7). The result can be written as

- ERG?) = u(zo - z)u'é;<?) + z antgai) + EgADG-n (10)
n

I 5n2(3')6> -> —> ++ —>

- ___§___ e(r|r') . u(zO - z')[AEk(r')

V
nc

_ +‘ +

+ z anEh(F') + ERAD(r')]dV'

n

Our goal now is to find the unknown reflected surface wave amplitude

coefficients an in equation (10).

N.2.2 Integral Operator

We now define a linear integral operator,5?m, and apply it to

equation (10) term by term. 53m is defined as

2+ _, ,

Emb} = Lim f 3:223:79);ch -{-}dV (11)

§+§m V no

with 3; as defined by equations (2) and C326). In the limit where c

. 8112 +

this operation becomes the dot product with _§_. 85(0) and

n
c

integration over the volume of the un-truncated waveguide core. The

Cm

reason for the limiting process in the definition will become apparent

shortly.
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Application of this operator to the left hand side of equation

(10) results in the term

2 +

6 -.

L =Zm1-ER(F)} = - Lim f lilacs). JCZ (12)

mam v n2

- ER(:)dV

where the limit C'+ Cm will be taken later.

Upon application of Sfm to the right hand side of equation (10) we

“
M
O
N

obtain six terms, denoted R = R1. The first three are

i .

1

R1 = gm{AE;(F)u(zo - z)}

2 + + + —>

A I 19.10%?) ~ E;<r)u(zo - z)dV
2 m

V no

R2 = 5?m{ 2 afiE;(F)u(zo - z)}

n

anj-____6r12(p)->++

nc

m(r ) E;(r)u(zO - z)dV (13)

R3 = semitgwdimuo - 2)}

2 +

5 ++ —> - ->

I igflgmm . ERAD(r~)u(zO - z)dV

Where the limit C + C m has been taken. The last three terms on the

right hand side are more complicated. The first of these is

 

I 002(0') 4+ —> —> ++ _)

Ru = 5?m -A G (rlr') - E (r')u(z - z')dV'
2 e k 0

V nC (1M)

2 +I 4.) _+ _

= -A j J .§E_Sil+;(+) 5n (0)G (r1r' ) ' E;(:')u(zo - z')dV'dV

V V n5 nC
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Where we have again taken the limit C + Car The integral on unprimed

variables in equation (91“) can be carried out with the help of the

reciprocity property of the electric dyadic Green's function given in

equation (2.23) and the natural mode integral equation (3). The

result is

2 +. +

0,, = - A J iléf’i‘égw) - E;(I~")u(zo - z')dV' (15)

nc

The fifth and sixth term on the right hand side are handled in an

identical manner upon application of£?h, resulting in

5n2(3')

05 = - 2 an I Tim» -§;<r‘~*')u<zo - z')dV'

n M nc

.+

6n2 ' + + +- +

s - j .___§1_3E$(r') ' ERAD(r')u(zO - z')dV'

V no

(16)

R6

Note that by the above equations we have Ru = -R1, R5 = -R2, and R6 =

-R3. By this analysis we may feel compelled to conzlude that the left

hand side,I.in equation (12),is zero, since12= 2 R1 =(L This is

not, however, the case, since we will show that th6=two terms R2 and

RS on the right hand side are singular when the modal summation index

n is equal to the linear integral operator index m. In this case the

two terms R2 and R5 do not add to zero, but rather assume an

indeterminate form. The other terms in the modal summation in

equations (13) and (16) with n ¥ m do indeed cancel between R2 and R5,

but when n = m we must proceed with caution. This is the reason

mentioned above for the presence of the limit as ; approaches g in
m

the definition in equation (11) of the linear integral operatoraPm.
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The singular nature of the terms R2 and R5 is due to the result

of the 2 integration. The modal fields 15;, and Er; in the integrals of

equations (13) and (16) have z dependences of exp(-ijz) and

exp(Jsz), respectively. Then if we perform the z integrals, we see that R2

and R5 contain the factor

-J(Cm - Cn)zo

m -J(r: -c)z e

_[ e m n u(zO - z)dz = - (17)

-°° J(r.m - Cn)

 

where we have assumed that 5m - Cn has a slightly positive imaginary

part so that the integral converges. Note that when n = m the

integral is divergent, giving rise to a singularity in R2 and R5 as 5+

Cm as claimed above. It is important to note that the other terms R1,

R3, Ru and R6 or the right hand side are not singular. In the cases

of R1 and RN this is due to the fact that the exponential in the 2

integration is exp(j(z;m+z;k)) which is always oscillatory, giving

convergence when integrated as in equation (17). In the cases of R3

and R6 we know that c of a radiation field component is always less

then the c of any surface wave mode, and this fact again renders the z

integral convergent. In summary, the terms R1 and Ru on the right

hand side are not indeterminate and thus cancel, as do the terms R3

and R6. The remaining terms R2 and R5 cancel for all values of the

summation index n except when n = m, in which case both terms are

singular. Thus the right hand side becomes

R = R2| + R5| (18)

n=m n=m

We now use equations (13) and (16) in equation (18) and take the

limit as g approaches : more carefully. We get
m



126

2 + ' 2
6n ( )..) + _. JCm

R = Lim am ] .-—-—3—e;(p)e JCZ - 3;(3)e u(zO - z)dV

19% V n0

2 + 2 +
5n()+—>_. 5n(')++->+

- Lim am If _—2__p_e;(p)e 3C2 - __é—p—. Ge(rlr') (19)

C+Cm V V n0 n0

JCmZ'

. 35(3')e u(zO - z')dV'dV

We first perform the z integrals in equation (19) with the result

 

‘J(c-tm)zo
-e 2 -)

5n )+ + -> —>

R = am Lim . f -——-:-p—-e;](o) ' em(p)dS

t+cm J(C‘Cm) CS nc

+ +

dn2(p)+ + _. 6n2( ')++

c»; 10 CS V no no

JCmZ'

- §fi(3')e u(zO - z')dV'dS

where we have used the definition of the transformed electric Green's

dyad given in equation (3.8) and CS denotes the transverse cross

sectional area of the waveguide core. We now evaluate the z' integral

in equation (20) and combine terms. This gives

-j(C-Cm)zo

e 2 + +

[an (0) e316)  

t+cm 3(0- cm) cs nC

(21)

._>

(010 v). 65(31)ds']ds

We can now see the indeterminate form of the right hand side as C

approaches Cm“ The first term in brackets is obviously singular, and

the second term is seen to approach zero in the limit with the aid of
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equation (3.26). Thus R has the form

(22)

with x(;), y(c)-+ 0 as C + Cm. We use Lkautal's rule to evaluate

the indeterminate form. The result is

2‘> 2 +

50(D)+ + dn ( )

”cf e*<p)[__§E’_age(pa1)|-‘é;l(31)ds'dsR = - 38
CS no 30

(23)

We now set the left hand side as given in equation (12) equal to

this right hand side. The result can be solved for the unknown

th
amplitude of the m reflected surface wave mode in the truncated

waveguide, am:

1 f 01213» -> .
am a —— Lim _.._—_2.__.e;1(o)e-ng - ER(r)dV

cm c-Hzm

, [anz(p)->+ [ 002(3')

Cm“ ‘Temmm" “‘7‘
CS nc CS nc (2M)

—> -

x gacmlz ')| - ’e’m(3')ds'ds

Cm

It is instructive to compare the normalization constant of equation

(2“) with that in equation 0331) which was derived for our excitation

theory. The two terms are seen to differ only by a factor of j.

M.2.3 Iterative Equation

We now use the results of the previous section to develop an

approximate, iterative scheme for evaluating the unknown amplitude
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coefficients of the reflected surface waves in the modal expansion for

the field in the truncated waveguide.

The iterative equation is obtained by substituting equation (8)

for ER in terms of EL into equation (2”) for am. Note that we again

*1
let E = O in equation (8). The result is

2+

1 n --

am = _— Lim [3.9—LEVI?» 3C2 ° u(z - z ) X

m C+C m V no

I 51’12(3')+* ++ +L++

x ._______ Ge(r|r') ~ E (r'r)dV'dV

V nz

This result gives us an equation for the amplitude of the mth

reflected surface wave in the waveguide in terms of the total field in

the waveguide. We can use equation (25) to implement an iterative

scheme for approximating am. First make a guess at the unknown modal

expansion inside the waveguide. Such a guess will be of the form

EN?) = u(zo - z)[AE;(:) + 2 anE;(:)] (26)
n

if we neglect the radiation field. Here the coefficients am are

our educated guesses at the reflected surface wave modal amplitudes.

Now substitute the expression of equation (26) for-EL into equation

(25). The resultant equation can be evaluated for all modal indices m

to find more refined values for the unknown reflected modal amplitude

coefficients. This process can be repeated to find better and better

values for the modal expansion coefficients if desired.
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”.2.” Radiated Field

Once the reflected modal expansion coefficients are obtained with

desired accuracy by the iterative technique described above we can use

the resultant expression for the partial field?L to find the field

radiated out of the waveguide truncation. This field, ER, is obtained

+ +

by using the expansion for EL in equation (8) after setting E1 = O.

 

”.3 Excitation of Truncated Waveguides
 

In this part of the chapter we examine the problem of excitation

of plane truncated integrated dielectric waveguides. Here we assume

that a source to the right or the truncation at z = 20 produces an

impressed field, §1, which interacts with the truncated dielectric

waveguide. This situation is depicted in Figure nay This incident

field will excite both surface waves and the radiation field of the

waveguide. Our aim is to find the amplitudes of the various surface

waves excited in the waveguide.

Our analysis proceeds in a very similar manner to that in the

previous part. The unknown partial field EL is expressed as a modal

expansion and substituted into the modified alternative equivalent

polarization integral equation (7% Application of the linear

integral operatorS?m defined in equation.(11) allows us to find an

iterative formula for approximating the unknown amplitude coefficients

of the surface waves in the modal expansion of the electric field

excited in the waveguide.
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cation.
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+1;

u.3.1 Modal Expansion of E

An electric field incident on the truncation from outside of the

waveguide will excite both surface waves and the radiation field of

the waveguide. These waves will then propagate up the waveguide in

the negative 2 direction. ‘This situation is illustrated in Figure

1L3. In this case the partial field EL can be written in a modal

expansion as

+L+ +_,—> +-->

E (r) = u(zo - z)[ 2 anEn<r> + ERAD(P)] (27>

n

If this representation is substituted into the modified alternative

integral equation (7) we obtain the result

E1(F) - §R(F) = u(zO - z)[ 2 anE;(?) + Eth<fii

n

]' 5n2(3') ++ »’+ +; +
- .___§___ Ge(r|r') ° u(zO - z')[ E anEn(r') (28)

V nc n

->- +

+ ERAD(P')]dV'

u.3.2 Integral Operator

We once again operate term by term on equation (28) by the linear

integral operatorlfb, as defined in equation (11). The left hand

side, L, of the result now consists of

L = srm{§i(?) - ER<F)} <29)

2 + . .

Lim 53—5333;<3>e‘JCZ . [E1<?) - ER<?)Jdv

c+cm v n2
C
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The right hand side of equation (28) yields four terms upon operation

bygm. These four terms are precisely the terms R2, R3, R5, and R6 of

section MJLZ. An analysis identical to that in the previous part

allows us to conclude that the terms R3 and R6 cancel, and all terms

with the summation index n i m in the modal expansions in terms 82 and

R5 also cancel. The terms in R2 and R5 where the modal summation

index n is equal to the integral operator index m are singular,

producing an indeterminate form which can be evaluated using

IJHopital's rule. This analysis leads to the same right hand side as

in equation (23), which is

R = - amcm (30)

with the normalization constant cm as given in equation (2“).

Equating the left hand side and the right hand side results in an

expression for the unknown surface wave modal amplitude coefficient,

am:

2+

1 n +

. um, I142.
V 2

m “(3):;jcz . mm - §i(?)ldv (31)

m C+Qn n

m

C

u.3.3 Iterative Equation

Now equation (8) can be written as

 

- 2+' ++ +—>

EM?) -E1(}*~) = u(z - 20) f 33.3 (D ) Ge(r|r')
2

V nC

+ . + (32)

. EL(?')dV' - u(zO - z)§l(f)

by noting u(z-20) = 1 - u(zO-z). Substitution of equation (32) into
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equation (31) gives the result

2 +

1 6n » -

aIn = __ Lim j .___£Elg+(3)e jcz . u(z - z )

m §+gm V nc

[(5n2(p')++ ++ +1.."

2 Ge(rlr') - E (r')dV'dV (33)

V nC

— Lim vf—5”2(9),,e*<9);ch . u(zO - z>Ei(?)dv

Cm c+cm

th surfaceThis result gives us a formula for the amplitude of the m

wave excited in the truncated waveguide in terms of the incident

electric field and the total field in the‘waveguide core. ‘We can use

equation (33) to implement an iterative scheme for finding the

amplitude of the surface waves excited in the waveguide.

A zero-order approximation can be made by assuming that gL = O in

equation (33) so that an can be found in terms of only the incident

field:

:
+

?) - u(zO - z)Ei(F)dv (3a)«1,21-m

a
t
e
!
0

n

A more refined expression for the amplitude coefficients in the modal

expansion can be found by using the zero-order coefficients to write

L—)- ~ _ —+

E (r) - u(zo z) z ag§n(r) (35)

n

+

and then substituting this expression for E into equation (33). This

procedure can be repeated to obtain greater accuracy in the expression

for the field in the waveguide core.
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H.3.N Radiation-Excitation Reciprocity

In this section we will demonstrate a reciprocal property of our

iterative technique for the coupling of energy into and out of a

truncated waveguide.

If the partial field inside the waveguide consists of a single

th mode incident on the truncation from withinsurface wave of the m

the waveguide then equation (8) tells us that the partial field

radiated out of the truncation is proportional to

2 +

a 6n( ') 4+ ++ -> —>

ERG?) I ___3__ Ge(r|r') - u(zO - zvmfnwmv' (36)

V n3

This expression corresponds to the radiated field due to a zeroth

order expression for the partial field EL - an expression where we

neglect all mode reflection at the waveguide truncation.

Now consider the problem of finding the amplitude of excitation

th surfaces wave mode due to a point current at location r'of the m

outside of the waveguide. Such a point current produces an incident

field

€10?) = , 1 ‘0’ (Fl?) - Jed") <37) 

.+ .

If this expression for E1 is used in equation (3“) for the zero order

modal amplitude coefficient, the result is

  

O “'1 +6, —> f (3112(3)4+ "5”

a = , _. (r')' _ Ge(r'r) ° u(z

J (1)8 Cm V n<22

O - z)E:n(:)dV (38)

where we have used the reciprocal property of the electric Green's dyad.
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Note that the integrals in equations (36) and (38) are identical.

This establishes a reciprocal property of the zero order coupling and

decoupling problems for the truncated waveguide.

H.“ Truncated Asymmetric Slab
 

In this part of the chapter we will apply the iterative

techniques developed.above to the plane truncated asymmetric slab

waveguide. The truncated asymmetric slab is shown in Figure RJL

In the first section we examine the phenomenon of surface wave

reflection from the truncation. The general iterative formula of

section NJL3 is specialized to this simple waveguide yielding results

which can be programmed.

In the second section we find the field radiated out of the

truncation of the asymmetric slab when a single surface wave is

assumed to be incident on the truncation. .Again the general formula

of the previous part is specialized for this case.

In the third section we find the surface waves excited in the

asymmetric slab by a uniform line polarization source outside of the

waveguide truncation.

In section four we present numerical results of this analysis for

the special case of the symmetric slab waveguide. These results are

compared to results of other methods of analysis.
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Figure h.h: The plane truncated asymmetric slab waveguide with a

surface wave incident on the truncation.
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N.N.1 Surface Wave Radiation

In this section we apply the iterative technique developed in

part two of this chapter to the problem of surface wave reflection in

a plane truncated asymmetric slab waveguide. 'We assume that a single

TE surface wave mode is incident on the truncation plane at z = 20

from within the asymmetric slab waveguide as depicted in Figure 14A.

The x invariance of this waveguiding structure allows us to conclude

below that the surface waves reflected back up the waveguide are of

the TE type. 'The x invariance of the waveguide will also allow a

reduction in dimension of the spatial frequency integrals occuring in

the Green's dyads used in the iterative formula. This reduction in

dimension is accomplished in a manner similar to that used in section

3.3.6.

We now turn to specializing the iterative formula in equation

(25) to the truncated asymmetric slab waveguide of Figure HAL We

first note that the substrate and film refractive indices are

identical in this case. ‘This fact will have later implications for

the reflection and coupling coefficients occuring in the spatial

frequency integrals for the electric Green's dyad. Now the refractive

index contrast factor is

An = n - n , O < y < t

anZG) = (39)

O , elsewhere

for the asymmetric slab. We will be working with TE surface waves of

the asymmetric slab, which have the form

t: f ? jlmz
hm(r) = x em(y)e (U0)
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where we have followed the notation established in section 11.1.1. If

such a TE surface wave is incident on the truncation then the

iterative formula (25) contains the factor Q-Ee. The x invariance of

the system implies that i-v - .3— = 0, so that the definition in

3x

equation (2.111) for the eiectric Green's dyad reduces to

A 4+ 2,. 4+

x - Ge = kcx- G (H1)

with? the Hertzian potential Green's dyad of chapter two. Now by

equations (2.17) and (2.19) we have

x - E; - kg [GP + GE] 3: (142)

so that only TE modes will be reflected from the truncation is a TE

mode is incident. Here the scalar Green's functions Gp and GE are

those given in equations (2.18) and (2.20).

We can use the x invariance of the waveguide to reduce the

expressions for Gp and GE to single spatial frequency integrals of the

Sommerfeld type. This simplification follows from the observation

that the only x' dependence in the iteration formula of equation (25)

is contained in the factor exp(jgx(x-x')) of the Green's function in

equation (112). Thus the x' integral in equation (25) can be evaluated

immediately, giving (see Papoulis, [11.21)

(D

jEx(x-X')

f e dX' = 2716(gx) (143)
-m

This factor now allow trivial evaluation of the spatial frequency

integrals in the definitions of Gp and GE. The result can be written
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@(Fl‘F') = J kgtcp + GEde'

0° ng(z-z' ) -Yoly-y1 "Yc (y+y' ) (1111)

H]. [e + Rte Jdg

u",.c

Here we have set Ez = E and defined the reduced transverse wavenumber

parameters

v£(€) = 10,0;X = o. a, = a) = 52 - ki (“5)

for 2 = c, s. The transverse reflection coefficient Rt(€) in equation

(MM) is obtained from the appropriate expressions in Appendix A by

setting nf = ns and 5x = 0. The result is

Yd‘Ys

YC+ Y8

(H6) 

The same simplifications made above can be applied to the

expression for the normalization constant, c in equation (2H). The
m!

x invariance of the system gives

64+

x- ge = kEEgg + g2 t] x (N7)

with g: and Sgt as in equations (3.11) and (3.111). Performing the x'

integral in equation (2“) results in

_ 2 p r

8C ' i kCESC + 8: tjdx'

(“8)

2 1 ‘YC|Y‘Y'I -Yc(y+y')

2
Yc

with and Rt as defined above.
Y0
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We can combine these results to write the iterative equation (25)

in the specialized scalar form

2 2

1 A“ Ifams _ Lim"1(7) em(y)e C u(z - zO)x

nc
0m c-H: v LCS

(H9)

x S9 (r r')EL(r' )dS'dV

where all fields are x directed. Here LCS denotes the longitudinal

cross section -w < z < m, 0 < y < t. The normalization constant is

HOW

A
emn=j<:zc>] I em(Y)—a(52;'m"g(y|y)|e(y)dyds (50)

o C
m

where CS is the transverse waveguide core cross section -<n< x <<n, O

< y < t.

We can now omit the integrals on x from -w to m that occur in the

numerator and denominator of equation (H9) (the denominator integral

is in the normalization constant cm of equaticw1(50)) since the

integrands are x invariant. The result is the final form of the

surface wave reflection iterative equation specialized to TE modes of

the asymmetric slab waveguide. It is

1 I I --am = 57 Lim em(y)e ngu(z - zo)

mg-rgm LCS LCS

x £(FIF')EL(F*')ds'ds (51)

with the modified normalization constant 96 given by

jdlj:em (Y)? 8 C(yly' )| em (y' )dy' dy (52)

m
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We now turn to the evaluation of the reflected surface wave

amplitudes when the electric field in the core of the truncated

asymmetric slab has the form

211?) = u(zo - 2) mg?) + 2 ag 33m] (53)

n

where Eli“) are the TE surface wave modes of equation (110). This

partial field is intended to represent either an initial guess at the

core field to begin the iterative procedure with or an intermediate

result of iteration with equation (5th. When equation (53) is

substituted into the specialized iterative equation (51) the result is

of the form

a = .1 [AImE + 2 aéO) 1an (511)

where the integrals I: are defined as

4.

1m; = Lim f: f: Jn(m :c)em men (y )dy dy

C+Q1

ej E(z-Z') ‘ycly-y'l

Jn(Y.y';c) = '10; ~10. IL 8jCZMZ - ZO) WYC [e (55)

-vc(y+y') -.

+ Rte ]u(zO - z')e+Jan'dz'dzd€

with em(y) as given in equation (3.72). The longitudinal integrals in

equation (55) can be evaluated by using the distributional relation (see

Papoulis, [H.3J)

U)

_- 1

[ u(z)e JCzdz = _jC + TTS(C) (56)
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Equation (55) ftm JI:_becomes with the help of equation (56)

1 'Ycly'y'| 'Yc(y+y') -J(C:Ln)zo

[e + Rte ]e x

c

 

+ co

JH(Y!Y'3C) = .1; LITTY

1 1

x T—y_ + “5(g-g)} {—————+n5(j_gn+g)}dg

{j C E 3(1Cn+€)

 

 

m ’J(C1Ln)zo

[ r1( )d e [ ] <57)3 Cvg t: + 8 -8

”m n 23(citn) En z

where

-yc|y-y1 -vg(y+y')

+ e +Rte -j(C:Cn)ZO

ffi(c.g) = e (58)

'4 wvc(c-€)(_+_cn+£)

and g; is as in equation (N8)

The integral of f: appearing in the equation (57) can be

simplified by invoking the residue theorem (see section 3g31). We

first modify the integration path to enclose the upper half complex

plane in the usual manner, as shown in Figure us; The illustrated

branch cuts ensure that the factors Yc and 75 have positive real and

imaginary parts (see the discussion in section 3436 for the physical

implications of this choice). 'The function f+ has a pole at -Cn

enclosed in the contour. 'The residue at this pole is

j(c+Cn)zO

e

2nj Res{r;(c.&)} = - ggn(y|y') (59)

-cn j(c+cn)

 

so that by equation (57) we have
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Complex Imié}

E plane

 

 ‘F==Re{€}

 
 

Figure b.51 Integration contour in the complex 5 plane for the

factor h—.
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J(;+§n)zo

e

J;(YaY';C) = " Ir;((;,€)d€ - [gcn + 8C] (60)
 

On the other hand, no pole of f- is enclosed, so that the result in

this case is

-J(C-Cn)zo

e

J;(Y9y';C) 3 " If;(C9g)dg + [gcn - 8c] (61)

ifs 2j(C-Cn) -

 

We are now in a position to evaluate 1+. ‘We take the limit as

CTan as indicated in equation (55) with no difficulty. We obtain

J(Cm+cn)zo

-e t +

Imn = 2 2 j. em(y)en(y)dy - an (62)

jkOAn(Cm+Cn) O

 

where we have used the one dimensional transformed asymmetric slab

1
surface wave integral equation given by setting e = O in equation

(3.69). Here we have defined

+ f t +

am; = f r;(a;n.g)em(y>en(y'>dy'dy dg (63)

%?B o o

This expression can be simplified by performing the spatial integrals

and specializing the branch integration to the low loss limit. This

procedure is carried out in Appendix D. For n ¢ m we obtain from

equations (55) and (61) the result

I = - B (6A)

where the branch integral defined in equation (63) is simplified in

Appendix D. If n = m we need to evaluate
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-J(C-Cm)zo

e t t

1m; = Lim j IIngMy') - gc(y|v')l x

c+t m 23(C-Cm) o o

 

(65)

x em(y)em(y')dy'dy - 8m;

This expression is indeterminate in the limit. We use LWkuutal's

rule on equation (65) to obtain the result

- B (66)

Equations (62), (6M) and (66) can be evaluated numerically and used in

the iterative equation (5“) to implement the iteration scheme for

surface wave reflection in a truncated asymmetric waveguide.

N.H.2 Surface Wave Radiation

In this section we specialize equation (8) for the radiation of

surface waves out of a truncated dielectric waveguide to the case of

the truncated asymmetric slab. We then assume that a modal expansion

is given for the slab core field in terms of TE surface waves and

evaluate the resultant expression for the radiated field, ERO~L

If the truncated slab core field EL consists of a TE surface wave

modal expansion such as that given in equation (53) then the

simplifications of the previous section apply here as well. Equation

(8) becomes

ER(F) = u(z - zo>k§An2[A1;<?) + z an1;(?)] (67)

n
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The modal expansion for-EL might be the result of the specialized

iterative method of the previous section. ‘The terms I:.in equation

(67) are defined as

+ + w ejg(z-z ) -ycIy-yq "b(Y*Y')

150') =]:j: L “77—0—————-——[e + Rte 3

'Jsz' (68)

x u(zO - z')em(y')e dEdz'dy'

The longitudinal integral is again evaluated with the aid of equation

(56). The result is

. t °° 1 "Y ly-y'l -v (y+y')

15(13- [ j [e ° + Rte ° lem(y')

o w u"Yc

J€(Z‘Zol)e’J szo { -1

31:19,)

 

(69)

x e + "5(61Cm) } dady'

The second term in the integral is easily evaluated with the aid of

the one dimensional transformed surface wave integral equation (369)

with the result

00

+ 1 +‘J szO

I (r) = ———————E+(r) - e H€)e (y' )dEdy' (70)

2k§An2 m It M

5
l
+

where we have defined the integrand

we ly-y'i wow-3")

e +Rte j€(z-zo) (71)+

ha(g) = e

“wjvcfiicnp

 

We will simplify the integral of h: by using the residue theorem. The

term 2 - Z0 is greater than zero so that upper half 6 plane closure

such as shown in Figure M.5 is required. We see that the term h+ has
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a pole enclosed by the contour with residue

-jgm(z-ZO)

2N3 Res{h$(€)} = 8Cm(y|y')e (72)
-Cm

whereas h- has no pole inside of the contour. The result of this

contour integration is

431.2;sz + +

1 15:16?) + e c-(r) (73)
+ + _

1m“) “‘ ”‘sz
2kOAn

5

+

where C; contains the branch cut integration term of the residue

theorem. It is defined as

+ _) f t +

can) -= Ihfi(€)em(y')dY' at (7'4)

938 o

with h: as in equation (71). This term can be simplified by

performing the spatial integration and specializing the branch cuts to

the low loss limit. This procedure is carried out in Appendix D.

Equation (73) can be evaluated numerically and used in equation

(67) to find the field radiated out of the truncated asymmetric slab

waveguide.

A.A.B Line Source Excitation

In this section we apply the theory developed in section “433 to

the problem of excitation of surface waves in a truncated asymmetric

slab waveguide by an x directed line polarization source.

We assume that the incident electric field is supported by a

->

uniform line polarization source of strength Pe at location (yflz')
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with z' > 20, as shown in Figure 14.6. This impressed polarization is

39(3) -- {é 996(y-y')6<z-z') (75)

It produces an x directed incident electric field in accordance with

equation (2.25). The simplifications noted above due to the x

invariance of the problem apply here as well. We obtain the incident

field

-1 + Fe + —>

E (r') = €— S9(rlr') (76)

c

with F' = y'y + z'z and gas given in equation (1114).

The iterative equation (33) for the amplitude coefficients of the

surface waves excited in a truncated waveguide has two terms. The

first term is exactly the right hand side of the surface wave

reflection iterative equation (25% This term was dealt with above in

the case of the truncated asymmetric slab. We will here consider the

second term in the iterative equation (33). It is identified in

equation (3“) as the zero order approximation for surface wave

excitation when the waveguide field EL is equal to zero. The x

invariance of the truncated asymmetric slab allows us to write

equation (3”) as

1 ’3: Z P9 —>—>
a(o)=-_ f em(y)e m u(zO-z)-— (rlr')dS (77)
m

C& LCS EC

with the normalization constant 96 as in equation (52). Substitution

of equation (nu) into this expression gives
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n
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Figure h.6: Uniform line polarization excitation of the truncated

asymmetric slab waveguide.
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(0) 1 kgpe t m “ e3§(z'z') ’YclY'Yl ‘Yc(y+y')

am =-_.. I [f T____[. at.
CT?) E:C: 0 co 00 ”YO

"JC 2
m

x u(zO-z)em(y)e dgdzdy

We see that this term has exactly the same form as that in equation

(68) describing the radiation of surface waves from the truncated

asymmetric slab waveguide. Thus we have

 

2 e

k P

351°) = - .1 ° :56“) (78)
E

c& c

with I+ as given in equation (73%. This ability to use the results of

the radiation problem considered above is due to the radiation-

excitation reciprocity discussed in section aria. The result in

equation (78) can be numerically evaluated to find the modal expansion

or the field excited in the truncated slab by a line polarization

source 0

A.A.“ Numerical Results

The above results were programmed for the truncated symmetric

slab waveguide by setting nC = n The first results presented here

8'.

are for the reflection of TE surface waves of the symmetric slab form

a plane truncation at 20 = 0. We assume that the incident surface

wave consists of a unit amplitude TEO mode. ‘We assume that the

Fresnel reflection coefficient [A.A]

 

RI.= (79)
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is a good approximation for the amplitude of the reflected TEO surface

wave, and that no other reflected surface wave modes are excited.

The results of both single and multiple iterations with equation (5”)

are graphed in Figure 11.7 versus normalized slab thickness. In Figure

14.8 we plot normalized radiated power as

585“?) = u(zO-z>[EgG~*) + aregdin (80)

versus normalized slab thickness. In Figure ’4.9 we plot the results

of equation (67) in the far field versus a, where I3 = rsiney + rcose’z.

PRAD'1' )Zlanl2 (81)

‘ n=O
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l iterationo-..

D -- 5 iterations

Gelin, et. a1.15--

n = 3.16 n
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0-0 1.0 2.0 3.0 4.0

Normalized slab thickness, kod

Figure h.7: Normalized reflected mode amplitudes in truncated sym-

metric slab versus normalized slab thickness compared

to the results of Gelin, et. al.
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Normalized radiation and excitation patterns for the

truncated symmetric slab versus aspect angle in degrees

compared with the results of Angulo, et. a1.



5. CONCLUSIONS

This dissertation investigated the application of an equivalent

polarization integral equation to several problems involving

integrated dielectric waveguides. Specificallyu we applied this

integral formulation to both longitudinally'invariant waveguiding

systems and to plane truncated dielectric waveguides.

Several important results were obtained for the case of axially

uniform integrated dielectric waveguides. First we developed an

excitation theory for a broad class of integrated waveguiding

structures. ‘This excitation theory1allowed us to identify two major

components of the total guided electromagnetic field - the surface

waves of the system and the radiation field. The surface waves were

shown to satisfy the expected homogeneous form of the equivalent

polarization integral equation. On the other hand, the expressions

found to be satisfied by the radiation field of the waveguiding system

are to our knowledge new results. We were able to identify radiation

field spectral components in a general manner and verify the conjecture

that the full radiation field must in general be written as a two

dimensional spectral superposition of such radiation field spectral

components. We were also able through this analysis to generalize the

recent theory by Oliner, et. al., regarding the leakage of surface

waves from integrated dielectric waveguides. The leakage waves

discovered by Oliner and Peng through geometrical and physical

155
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arguments for uniform rectangular strip waveguides were shown to be a

general phenomenon which occurs for a much broader class of integrated

dielectric waveguiding structures. We were able to identify a new

general criterion for determining if a given mode on an integrated

dielectric waveguide will leak; We also applied this excitation

theory to the special case of the asymmetric slab waveguide. We were

able to recover several well known results of conventional excitation

theory, thereby imparting confidence in our formulation. Finally, we

established the feasability of using the equivalent polarization

integral equation for generating numerical results for practical

integrated dielectric waveguides. By postulating a general

representation for the axial fields in a uniform rectangular strip

waveguide we generated numerical results for the propagation

characteristics of the rectangular strip which compared favorably to

results of other analyses.

The results or our investigation of plane truncated integrated

dielectric waveguides assumed the form of iterative equations.

Although a-priori knowledge of the surface wave field distributions is

required, we are able to find the amplitudes of the surface waves

generated in a truncated waveguide by an external impressed field, as

well as the reflected and radiated fields when a surface wave is

incident on the truncation from inside the waveguide. 'The numerical

results of this iterative technique as applied to the truncated

symmetric slab compare favorably to the results of other techniques.

Future studies utilizing the equivalent polarization integral

equation could benefit by rapid numerical techniques of evaluating the

Sommerfeld integrals involved in the dyadic Greenfis function
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components. The use of standard trapazoidal integration routines

proved to be slow and expensive in the work in chapter three. Several

promising methods for increasing the efficiency and speed of such

computations are proposed by Drachman and Nyquist in [5.1].

The method of moments could be used to generate numerical results

similar to those of chapter three for more general transversely graded

dielectric waveguides. This line of inquiry is being persued by Cloud

[3&2], and would also benefit from the rapid numerical techniques

discussed above.

The equivalent polarization integral equation used here can also

be applied in a special simplified form to microstrip integrated

circuits. This is another part of the proposal [5.1].
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APPENDIX A: HERTZIAN POTENTIAL GREEN'S DYAD

In this appendix we derive the dyadic Green's function for the

electric Hertzian potential produced by an electric polarization

source radiating in the top or middle layer of a tri-layered infinite

uniform dielectric background structure. The dyadic Green's functions

developed here are the kernels of the equivalent polarization integral

equations of chapter two.

The dielectric medium that the Green's dyad describes is the tri-

layered background structure of the integrated dielectric waveguides

of Figures 1.1 through 1.5. It consists of an infinite uniform

dielectric slat>of thickness t and generally complex refractive index

nr. This slab is surrounded below and above by infinite uniform

dielectric media of complex refractive indices nS and no,

respectively.

Two different dyadic Green's functions are derived here. The

first is valid when the polarization source and the location at which

we want to find the Hertzian potential are both in the cover medium.

This is the Greenhs dyad used in the strip-type dielectric waveguides

of Figures 1.1, 1.2, 1.3, and 1.5. The second Green's dyad describes

the situation where both the source point and field point are located

in the film layer. This Green's dyad is the one applicable to channel

waveguides such as the one depicted in Figure 1.A.

158



H"
 



159

The dyadic Green's functions are derived by direct solution of

the inhomogeneous vector Helmholtz equation GL7) satisfied by the

electric Hertzian potential subject to the appropriate boundary

conditions at the infinite planar interfaces at y = O and y - -t.

This solution is obtained via the use of two dimensional Fourier

transformation in the spatial variables tangential to the planar

interfaces. In the inverse transform expressions for the Hertzian

potential we are able to identify a dyadic Green's function for the

problem in the form of a two-dimensional spectral superposition

integrals of the Sommerfeld type.

Field Relations and Boundary Conditions
 

The electric Hertzian potential satisfies the inhomogeneous

vector Helmholtz equation (27) in a uniform dielectric medium of

permittivity a. At a boundary between different dielectric media such

as that in Figure A.1 the Hertzian potential components satisfy the

following boundary conditions [Afl]

"1a = N5102a , O. = X, y, Z

__ _ 2 iL _

aynia ‘ N21 ay"2a ’ a " X’ z

(1)
.13. __a_ _ 2_ 1L ___3_

aynéy ’ ayn1y ‘ (N21 1)(ax'n2x azn22)

.“_2
”21 = n

We will separate the total Hertzian potential in each uniform

dielectric layer into two parts, a primary part and a scattered part.
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=
1
1

Region 2

2

£2 = n2eo, u = no, 0 = 0

Figure A.1: Hertzian potential boundary conditions at a dielectric

interface.



161

The primary part is that part of the total Hertzian potential which

propagates directly through the dielectric layer from a source in the

layer to field point in the layer. The scattered part of the Hertzian

potential is that part of the total Hertzian potential that arrives at

field point after being scattered (reflected or transmitted) from

interfaces between adjacent dielectric layers. By the above

definitions, if we denote the principle and scattered parts of the

Hertzian potential by WP and 33, respectively, we have

3' = 3p + We

KP -P/e

(V2+k2){+s}={ :

n 0

Note that by the above definitions, the scattered Hertzian potential

(2)

satisfies the homogeneous form of the vector Helmholtz equation (ZJIL

By the descriptions above we see that the Greenls dyad for the primary

part of the Hertzian potential is the one given in equations (2J73

18) (see the discussion in section 2JL1). Thus the primary Hertzian

potential is given by

POLCF')

np=fiprU~r'r———*-dV' , d = x,y, z (3)

a e

V

We will solve the Helmholtz equations (2) by use of two

dimensional Fourier transformation on the tangential spatial variables

x and z. To this end, we define the two dimensional transform pair
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00 + +

~ + —> —'€or

fa(g,y) -fffa(r)e J dxdz

a. (A)
1

w .+ +

-> _ ” Ja-r
fa(r) - (2")2jf fa(g,y)e dgxdz
 

+ . A

where €= 2%x + Eiz is a two dimensional spectral frequency; ‘We will

denote this relationship

. + +

+ -1 ~

ram = 3?” regain}

The homogeneous Helmholtz equation CD for the scattered potential

transforms with the help of the Fourier differentiation theorem to

32 ”

<_+p2>TTS=IO , p2=£§+€§'k2 (6)

where p is one of the transverse wavenumbers as given in equation

UL22). The boundary conditions in equation (1) transform to

~ ~

1T1a 3 N21fl20 ' a = x, y’ 2

if _ 2 3—11 _

Byfl1a - N213y 2d ’ a ‘ x, Z (7)

3 ~ 3 ~ ”
_____2_. "

ayfl2y ayn1y ' (N21 1>£3€xfl2x + ngfl2z]

The primary Green's function Gp of equation (2.18) transforms to

m + .+.+'

3x Z{GP(F’|F?')} = Gp(€,y y')e_J€ r

’ | (8)

. 9'13 W1
8mm» = -———,—p—

so that by the convolution theorem of Fourier theory we have the

transformed primary Hertzian potential
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~ —>

~ P (g .Y') ,'+."*'

j. _£L______'EP(E, yly')e'3€ r dy' (9)

e

The homogeneous form of the transformed Helmholtz equation (6) has a

simpl e sol uti on

~

n: = Wd(€)e:py
(10)

This will be the prototype solution for the transformed scattered

potentials, whereas the prototype solution for the transformed primary

potentials is given by equation (9%

Strip Guide Green's Dyad
 

In the case of both source and field points in the cover medium,

the total transformed potential in the cover consists of two parts as

depicted in Figure A.2:

= n p + n r (11)

with “Ed the potential wave in the cover reflected off of the cover-

film interface,

~ ‘PCY

n” -w" e (12)

and the transformed principle polarization as in equation (9). Note

that the minus sign was chosen in equation (10) to represent an upward

propagating wave of reflected potential.

The transformed total potential in the film layer consists of two

transformed scattered potential waves, a potential wave transmitted

through the cover-film interface and a potential wave reflected off of
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Substrate, n n
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Figure A.2: Principle and scattered Hertzian potential components

for a source in the cover medium.
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the film-substrate interface. These scattered waves are illustrated

in Figure A.2. They are written

"fa fa + Trta

~P P 'pfy

“m = ”m e (13)

~ pry

t t

"rd 3 wfd e

where the signs of the exponentials were chosen to give the proper

direction of propagation for the scattered potential waves in the film

layer.

The total potential in the substrate consists of only a potential

wave transmitted through the film-substrate interface, as shown in

Figure A.2. It is written

~ psy
_ "t g t

Tr30L - “3a wsa e (1”)

We now apply the transformed Hertzian potential boundary

conditions in equation (7) to our prototype solutions to find the

functions Wu. We begin with the tangential boundary conditions at the

interface between cover and film at y = 0. They become

 

 

_ r t t r _

WOOL + NI'CEWI’OL + wfa] - Va

, O. = X,Z

2

WP + to [wP - w? — v (15)
Cd p0 Ia Id a

~ + -pr'

Pa(€!y') e _..+ “h

Va = I. e J€.r dY'v a = X:Y:Z

E:c 2pc



w H
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t. r r
We can solve equations (15) for Wed and wfa in terms of Wfa and Va.

The result is

r _ t t r

wed - chvd + chwfa

r t r '

”fa = Torva * Rcf fa

where the tangential reflection and transmission coefficients

associated with the cover-film interface are defined as

pc'pf
 

  

t t t
R g R g - R I

fc pc+pf of to

T1.t = 2Nr2 pr T g = 2 pc
0 C C

Pc*Pr Mfg Pc*Pr

(16)

(17)

We now apply the tangential boundary equations at the film-substrate

interface at y = -t. They give

‘D t P t ‘P t
t f r f _ 2 t S _

’ C1 = X ,Z

-pft pft p -p t

t _ r _ 2 3 t S _

. . r t t
We can solve equations (18) for Wra and Wsa in terms of Wra.

result has the form

-2prt

r _ r t
wt-a - RSI. e wt.a

: (1 = X92

wt _ T (pg-pf)t t

ca ‘ fse “re

(18)

The

(19)

where we have defined the tangential reflection and transmission

coefficients associated with the film-substrate interface as
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pf-ps t 2 pr

sf + Tfs ' 2 +

pf ps st pf ps

(20)  

We now combine the results of equations (16) and (19). Substitution

of equation (19) into equations (16) leads to results in terms of Va

only

wt = D-1T tv
fa t 01" 0.

-2p t
-1 f

r t t

wfa 3 Dt chRsfe Va

(p -p )t

t _ ‘ t t 3 I
Wed - Dt Tchfse a (21)

-1 (Ps'Pr)t
r _ t t t

-2pft

t _ t t

D 3 1 Rchsfe

We now turn to application of the normal boundary conditions from

equation (7). ‘At the interface between cover and film layers at y = 0

they take the form

- r 2 t r a
W + NfCEWfy + wry] v

 

c

y y (22)

N 2-1
r pr t r to . t r . t r

wcy + E; [wry _ wry] = VY + p0 [ng(wfx + wfx) + Jgz<wfz + wfz)J

Now, by equations (19) and (21).

 

 

p
t r C

Wra + wra = 2 FVQ , a = x,z

NrC-I (23)

Nfg-1 t t-2pft

F = p Dt Tcr(1 + Rsfe )

C

so that equations (22) becomes



'y H
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_ r 2 t r _

pr
r t _ r _ .

We combine equations (2%) to solve for wgy and WEY in terms of wgy and

the Vd. The result is

I" n n P . .

ch 3 RI’cvy + chwfy + C1EJ€XVX + ngvz] (25)

t n r C1
wfy = Tchy — ngwfy + §_§ [JEXV +J€zvzl

fc

where the normal transmission and reflection coefficients associated

with the cover-film interface are

2

N p ‘p
fc c f

n

Nfcpc+pf

pf
pC

n _ n _

Trc‘2‘7— Tcr"2“§‘—
chpc+pf chpc+pf

and the first coupling term is

2 2_ _

Nfc(Nfc ‘) -1 t 2prt

= Dt (1 + Rsfe ) (27) 

C1
2

Nfcpc+pf

Now apply the normal boundary equations to the film-substrate

interface at y = ‘t. we obtain in manner identical to that used above

the results
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r prt t

wfye = Rsgwfy + CZEJEXVX+J€ZVZJ

(28)

-(p -p )t C
t S f _ t 2 . .

Wsye - Tfs Iy + 2 [JEXVX + JEZVZ]

Nsr

where the normal transmission and reflection coefficients associated

with the film-substrate interface and the second coupling term are

 

2

Nsrpr’Ps n pr

3f -‘_—§—___- Trs = 2 __§_____

stpf+ps stpf+ps

(29)

2 2

NSf(NSf-1) ‘1 t t

C2 ' 2 Dt Tchfs

stpf+ps

We can now use equations (25) and (28) to solve for all the W3, in

terms of the Va only. The result takes the form

r '1 n n -2pft ’1 n ‘2
ny = Dn chRsfe Vy + Dn (Rstfc C1 + CZ)

-2pft

x e [ngvx + ngvz]

-2p t

wt.y — Dn Tcrvy + on (Nch1 ch C2e )

x [jixvx + jEsz]

r 'E n n n ‘2pft

wcy = Dn Danc + chngche )Vy (3O)

-1 n n -2 'ZPrt

+ Dn [DnC1 + ch(Rsf fccl + C2)e ]

x [JEXVX + jEZVz]

-(p -p )t
t S I _ ‘1 n n ‘ ‘2

wsye ‘ Dn chTfsVy + Dn EDnstCZ



H'
H
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n '2 _ nC ‘2prt . .

+ ch(Nch1 Rfc 2e )1 X [ngvxflgzvz]

-2p t
f

_ n n
Dn - 1 + RfcRsfe

By equation (11) we need W2 to find the total transformed potential in

the cover region. We can use the above results to write

WEOL = Rtva , a = x,z

(31)

We; a any + CEngVx + ngvz]

where we have from equations (21) and (30)

‘1 t t t t-prt

Rt 3 Dt [Dthc + chRszfce 1

-2p t

‘1 n n n f
Rn = Dn [DnRrc + chnngrce J (32)

-2p.t

C 3 Dn [DnC1 + ch(Rstch1 + C2)e J

Now the total Hertzian potential in the cover region is

‘1 ~ ‘1 ~

flea = "go + “2a = 37 {nga} + 57 {NEG} (33)

The principle part of the potential is given by inverse transforming

equation (9):

 

 
 

i -pC|y-y'|

-1 P (3.3m e _.+ +,

.8 = 37 I. e J§°r dy'

a x,z ac 2pc

(314)

I PW ] efi-G~*—I~*'>e-p.w-v'1 2
= _i d ng'

v 8c ~w 2(2n)2pc

where we have made use of the Fourier convolution property. By
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equations (12) and (31) we also have

-1 -pr

 
 

 

  

17‘; a fix-z e [fiatvx + {Mojngx + RnVy + CJEsz) + Entvz]

’5" 00 + +.+v v

- if PX“. r) I R 9J5.“ r )e pc(y+y ) d2€dv

V Ec 50° t 2(211)ZPC

yf{(_P___Xpool [7 ej‘g.(?—F')e—pc(y+yv) 2

+ C d E

v 8c 3" -.. 2(2TT)2pc

PYO‘") j. ejE-(F-F')e-pc(y+y') 2 (35)

+ R d 5

EC. -00 n 2(2fl)2pc

  

P (F') °° EJFF") -p (y+y')
z 3— [1C eJ e c

6c 32 -.. 2(2..)2pc

A P

.zf

V

dzg dV'

00 + -)- ->

Ja-(r-r') -p (y+y')

I R e e c d2&iV'  

t

'00 2(2n)2pc

where we have used the differentiation theorem and the convolution

property to obtain (35). The total Hertzian potential can be written

more compactl y as

 

Trc
+ mpg: [spam . it” dv'

V

 

V 8c (36)

 

where by equations (3“) and (35).
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,+ +—>

ng-(r-r’)e-pc|y-y'| d

 

 

‘3? A? GP = i’ 25;

-oo 2(21r)2po

(37)

6 A A A A A I" A

Gr = ngx + y(%3E ng + Gay + %2 G2) + zGEz

and

+ +

GEU‘Ir') co Rt(§) jg (17L?!) .1) (y+y')

03(313') = If. Rn(g) e e c dzg
. 2

+ + -00 2(2") DC (38)

Gg(r|r') C(E)

Thus we have identified a dyadic Greenfls function for the total

potential in the cover medium.

Channel Guide Green's Dyad
 

In this case we place both source and field points in the film

region of the tri-layered background. The total potential in the film

layer consists of a principle part and a scattered part satisfying the

Helmholtz equations (2% The prototype transformed solutions for the

two potential parts are given by equations (9) and (10). Referring to

Figure A.3 we have

~ ~

= ~p r ~ r =
”fa ”fa + fired + "fsa , a x,y,z (39)

We will write the total transformed potential in the cover medium as

~ ~ "p Y

_ t _ t C _
“Ca - “ca" WCG e , a — z,y,z (MO)

in accordance with equation (10). In the film region we have
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Figure A.3: Principle and scattered Hertzian potential components

for a source in the film layer.



 

r 2% (H1)

pry -pry

e + W r e , a = x,y,z
I"

+ w rsa1'00

and in the substrate we write

~ p t
_ t _ t 3
- nsa - wad e (M2)

We first apply the transformed tangential boundary conditions from

equation (7) to our prototype solutions at the film-cover interface at

y = 0. We obtain in a manner similar to that in the previous section

r _ t r

waa " Rcf [wrsa + V ]

 

c

a , a = x,z (u3)

t _ t r

wca " ch [wfsa + vca]

with

~ + -pr'

I P (5’)") e -303 1:).

V = a e ' dy , = x,y,z (nu)
for. 6f pr a

and the tangential transmission and reflection coefficients for the

film-cover interface as defined in the previous section. Application

of the tangential boundary conditions at the film-substrate interface

at y = -t gives results of the form

-2p t

r t r f
W. = R . [W. + V. ]e
rs st I Ia Co a , a = X,Z (“5)

-(p.-p )t

t _ t r I S

wSa - TfS [waa + Vraje

with
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~ + ' -pr'

= fPa(€.y)e a?

f e'JE°
a 8f 2pf

V 'dy' , a = x,y,z (N6)

We can combine equations (N3) and (45) to get

-1
‘2pft

wrga s Dt (ngacgv
ca + ngvfu)

e

”f2“ = Dt1(Rc§
vca + RSERCE

ane2pf
t )

Hg“ - D;1(Trgvc
a + RSETrgVfi1

;2prt )
(M7)

”gm = D;1(ngv
ca + RszngnQ

e-(pf‘p
s)t

Dt = 1 - RCERSEe-p
rt

Now implement the normal boundary conditions at the film*cover

interface at y = O. The result is

2_ t
] + (NI,c 1)(1+RCr

 

r n r

wfcy ‘ Rcf [wfsy + ch

x [jngx + jngz]

2 2 t

N (N ’1)(1+R )
f1 + f0 :0 0 (H8)

(Nfcpc+ps)Dt

 

t _ n r

W ‘ ch [wfsy + Vcy CY

x [jngx + ngVz]

-2prt

- _ t _
Va - Vca + Rsfvrd e , a —X,y,z

Similarly, application of normal boundary conditions at the film-

substrate interface at y = -t results in
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2 2_ t
r 2Pft n E r + v J + st(st 1)Trs

wfsye = Rsf wfcy fy 2

(stpf+ps)Dt

x [jExVx' + JEZVZ']

- 2_ t

wsye g Tfs [wfc + vfy] 2

(stpf+ps)Dt

x [jixV¥' + jgzvg']

_. t _

Va 8 RCvaa + vfa ’ a ‘ x,y,z

(“9)

We can now combine equations (M8)auui(u9) and solve for the terms

w§sy and wgcy in terms of the source terms V; and V3 only. This

procedure gives

r '1 n n n -2pft

wfsy ' Dn (Rszcfvcy + Rsfvsy)e

+ C1 Engvcx + jgzvczJ + C2 [jngfx + jgzvfz]

‘1 v
r n n n

wfcy ' Dn (Rcfvcy + Rchsf V )fy

+ C1'Engvcx + J‘EzchJ + C2":jngfx + ngvfz]

2_ n n' 2_ n' t

-1 -1 (”re 1)Tchsf (st 1)Tfs Rcr
C1 3 Dt Dn +

pf+pc pf+ps

  

2 2_ n n' t 2_ n'

-1 -1 ch(Nfc 1)chRsf Rsf (st 1)Tfs

C2 = Dt Dn + ___.__.__

pf+pc pf+ps

 

2 2_ n

-1 ch(Nfc 1)ch

 c ' = R 9c + D
1 cf 1 t pf+pc

2 2_ n

R ”C -1 ch(Nfc 1)ch

2 ‘ cf 2 + Dt 

pf+pc

(50)
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Here the prime in R and T denotes multiplication of the factor by

expC-Zprt). We can write the results of equations ("7) and (50) in

the abbreviated form

12r _ 11

waa ' Rt vca + Rt Vfa

, a = x,z

r 21 22

"rag. " Rt Vca * Rt Vra

r _ 11 22 11 . .

Wrcy — Rn ch + Rn vry + C [ngvcx + JEZVCZ] (51)

_ 12

- C [J an. + 1521er

P __ 21 22 21 . . 22 . .

wfsy ‘ Rn vcy + Rn ny + C [JEXVCX + Jgzvcz] + C [Jaxvfx + ngvfz]

where we have defined

11 _ ‘1 t 11 _ ‘1 n 11 _

Rt ' Dt Rcf Rn ' Dchf C« ‘ C1'

12 _ ‘1 t t' 12 ’ n' 12 _

Rt ’ Dt Rchsf Rn ’ Dn Rchsf C ‘ C2.

(52)

21 12 12 __ 21 21 _
Rt = Rt Rn — Rn C - C1

22 _ ‘1 t' 22 _ ‘1n' 22 _

Rt ’ Dt Rsf Rn ‘ Dn Rsf C ‘ C2

Now the total potential in the film region is

= p + r + r

“f “r "f ”f

0‘ 0‘ C“ s” (53)

-1 ~p -1 ~ r -1 ~ r

= 3 “rd, + y Trim + L;- TrI'Sa

X,Z X92 X32

The principle part of the potential is obtained by inverse

transforming the first term of equation (H1h
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~ (“’ ) ‘p-ly-y'l

‘1 P g,y' e +

113 = 3 f 0‘ ej€°r'dy'

“ x,z 5r pr

(5‘1)

[1%) I10 ejz<r-r>.y-p.1r'12 ,
c1ng

2
2(2fi) pf

where we have used the Fourier convolution theorem. By equation (111)

we have

‘1 PY
f

r 11 12
“foo: 3' :e [Rt Vea +Rt V1911]:

X:

VI“PO‘(r) [7‘ RC .335.o(r-r' )epfdeEdV'

 

 

 

 

 

2(2W)2pf

r ‘1 -pfy 2122
firsa a g e [Rt 1100" + Rt; Vf a]

x,z

—> 00 —> —> —>

I Rah") [ r ei€°(r-r')e-pry 2 '
= Rt d EhV

e 2
V I‘ -°° 2(211) pr.

P - 37.1 e pf(R‘1 v + R12 v + C11E v + a v JT‘fcy xz n cy fy Jgxcx J zcz

+ C12[J ng J 911ml): (55)

m +' + +

P . - '- f (r ) I] R0 8.15; (1" r )ep deEGV'

‘ n

‘m 2(2n) pt

P (r ) 00 613- (r-r')epIy

+ j 2. _[[ 0 d2ng'
E 8X _00 2(211) pt

I P (F ) 8 9° eJE-(?-?')epry

+ ._ j c0 ngdv'

Q
)

N

3 R
)

A R
)

:
1

V

R
)

'
U

H
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'1 “Pry
r _ 21 22 21 . .

“fSY - grx z [e r(Rn vccy + Rn Vry + C [JEXVCX + Jazvz:I

9

+ CZZEngVer +wjgzvrz1)

j‘_Py (r' ) Qi (r-r' )e-Pfy 2

= R: d EdV'

2(21r)2pf

Px (r ) °° +.(?'?') -p y

+ j. *3- 1763Sejg e f d2€dV'

V 3X .00 2(21r)29f

m -> -) ->

+ j—z_—_—P2 (17") g-fjcsSng-(r‘r')e‘PfY ngdV!

where we have defined

11 pry. 12e -pfy'
RE ‘ Rt 6 + Rt

21 pry' 228 -pry'

R? = Rt e + R (56)

c 11 pry. 12 -pfy' c 11 pry. 12 -pfy'
Rn = Rn e + Rn e C = C e + C e

pry -pr' pr' -pr'

R3 = Rfi‘ e + R32 e C8 = C21 e + C22 e

We can write equation (55) more compactly by defining

farm:IV“) 1% ) dv, + formal?1)- 13%.) av,

6

er f

  

(57)

  

81

+ [tram-m . 3"”)dv' = [1523: 3f". (W
V

with



 

 

2(2n)2pr g

A c

“a? {g} = gag {g} §+§(_g_xcg {g} £+Gg{%} y+:_ZG’c‘{§} i)

(58)

+ g G? {g} 2

Here

(cg g} (515“) (Rt{§} (5)1 (59)

00 .+ ++ +

r {g} ++' g {c} eJE-(r-r1)e-pfy 2

10 (r |r ) I] {Rn s (531 2(211)2pr d E

 
  



APPENDIX B: TRANSFORMED FIELD IN THE ASYMMETRIC SLAB

131this appendix we solve the transformed equivalent polarization

integral equation for the case of the asymmetric slab waveguide

excited by an x invariant line polarization source at location

(y0,zo). The geometry of the problem is shown in Figure 34L

It is shown in section 34&6 of chapter three that the

transformed equivalent polarization integral equation specializes in

this case to

 

t

_ 2 2 1 1 1e<y.r,) koAn [ 33ny >e<y .c)dy
2 o (1)

kope -cho

= ( ly )80 e 3c y 0

with the scalar Greenfs function given by

1 -vcly-y'l -vc(y+y')

ggfly') = 2—10' e + Rte (2)

We will solve the specialized integral equation (1)tw'usehof Fourier

transformation on the spatial variable y. To this end, let e(y,C) be

written as the inverse transform of the forward Fourier transform

;(U,C):

(X)

1 A .

e(y.c) = .27 ]e(n,:)e3”ydn (3)

--:o

181-
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Then substitution of equation (3) into the integral equation (1) and

subsequent interchange of spatial and spatial frequency integrals

gives

03

A . t

  
 

‘00 O

2 (N)

2flkope -cho

= —— ( ly )
e e 3; y o

o

For 0 < y < t the y' integral in equation (11) is

t . t ‘YCIY‘Y1 -vc(y+y')

2v0 1. 8C(YIY')e3ny'dy' = j. [e + Rte Jejny'

o o

‘YcY -1 e(Yc+Jn)t-1 ch e(""c+3“)t
= e + Rt . + e .

Yc+Jn ‘Yc+Jn ‘YC+J”

(5)

2y

+ eJnY : .._9

Y§+n2

Substitution of equations (5) and (2) into the integral equation (u)

gives

   

 

oo 2 2
.

A k An -Y y - (- +3 )t-
- o e c 1 e Yc 1

f e(nsz;) e‘Jny 1 " + —— kg n2 . + Rt .

-m Y§+n2 2Y0 YC+Jn Yc+Jn

ech 2 2 e (‘YC+J n>t

+ _. k . dn (6)

2Y0 O -Yc+Jn

2 e

ZWKOP -(cho+jCZO) ech R e-ch

.1.
=__________e t

80 2Y 2YC

  

C
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Now if we have-y: + n2 = O in equation (6) then the three exponential

terms in y occuring in the equation are linearly independent.

Matching the coefficients of the terms involving expflhnfi in equation

(6) gives the result

These are the only two values of the spatial frequency variable can

take on in order that equation (96) is satisfied. Then the only way

to get a nontrivial transformed core field e(y,C) is if e(n.C) is of

the form

émo =- A(z;)6(n - o) + am m + o) (8)

Substitution of this form for e(rtc) into the integral equation (96)

gives the result

    

   

   

e’ch -1 e(‘Yc+JO)t-1 eYcY e(+Yc+JO)t

A(2;) """—T'- " Rt + -02Y0 YC+JU -YC-JO 2Y0 -YC+J

+ ( ) e'Ycy -1 + e(-Yc‘J°)-1 ech e('Yc-j0)t.]

B 4 21 7:33 Rt -1 -30 + ‘27“ -1 -jo J
c c c c c

ane -(cho+jczo) ech e‘ch

= e
t

EOAn2 2Y0 2Y0 (9)

We again utilize the linear independence of the y variation of

exp(:ycy) in equation (9) to write this as two independent equations

irlthe unknown functions A09 and 8(0:



(
D
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ejot e-jot znpe -[YC(yO-t)+JCzO]

A(c)-——-——— + B(;) ————T— = —————— e

-YC+JO -YC-JO EOAnZ

-1 e(‘Yc+JO)t-1 -1 e( -Yc‘JO)t-1

A(C) + Rt + E(C) j + Rt    

yc+jg -'YC+JO -Yc-j0

2npe -[choczo]
(10)

Rte 

EoAn2

Solution of the system in equation (10) yields

kgpe -[YC(yO-t)+jCzo] O-JYS

eA(C) E  

o D(C)

(m

nkgpe -[yc(yo-t)+jczo] o+Jys
eB(;) ——E;__ BYE?—

where we have defined

D(C) = (02 ' ycys)Sinot ‘ (Yc + YS)COSot (12)

We can now substitute equation (11) into the expression of equation

(8) for the transform field e(Y1C). Fourier inversion as in equation

(3) is trivial. It results in the solution to the original integral

equation (1). We obtain

kgpe ‘Evc(yo‘t)+jczol ocOSOy+yssinoy

e D(C) (13)e(y.c) =  

O

This is the result quoted in section 3g&6 of chapter three.



APPENDIX C: PRINCIPLE AND REFLECTED TERMS FOR THE RECTANGULAR STRIP

In this appendix we detail the functions F and G appearing in

equations (3J18) and C&J31) of our analysis of the rectangular strip

waveguide. These are the functions which multiply the unknown

amplitude constants of the closed-form expression for the core field,

once this expression is substituted into the transformed integral

equation.

We can show

X KO 2 2 2 KO

F1 = Kxxccc<g $1 + nyc:;(apc) - (k - c >1030<a)

x K 1K0 g2 E2 K K1 5 I

F2 ' xIccs( ‘ c) ‘ yIcsc( p0) ‘ (k2 ' C 2)Icss(g )

F; = Z{oy1003(22 - kc2) + oxlcsc(apc)}

x

F4 = Z{ OyIccc(E2 ' kc2) + OxIcss(€pc)}

y _ _ 2

F1 = KyIsss<Kc ) + KxIscc(€pc) + KyIsss(pc) (k2 C )Issc(pc)

Y K2 2 2 K1

F2 = KyIssc(Kc ) + KxIscs(€pc) KyIssc(pc) ‘ k - C )Isss(pc)

Fy — Z{o I 00(k2 ) + o I O1( ) + I 02( )}
3 ‘ x ssc y scs Epc Ox ssc pc

Y 01 0

PM = Z{Oxlsss(kc) ‘ OyIscc(€pc) + Oxlsss(pc)}

Z ‘ 2 _‘ 2 KO 2 .9 2 ¢ 2 KO 2 K1

F1 = (k C )Issc(kc C ) XE I300(9) - Cy Isss(pc)
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KO 2 2 2 KO 2 K1

k ) KXC 1303(5) + KyC Issc(pc)
- 2 - 2 -

(k C )Isss( c C

oo 01

Z§2{-Gylscs(€) - OxIssc(pc)}

oo 01

Zszylscc“) ‘ OxIsss(pc)}

" __ i

2 —- —- - - 2 2 '-

KXERCRtnXCK + KnXCKJYCK + [KypcannYSK + (k - C )KnYCKJXSK

" _ _ O

2 - - - 2 2 '-

KXEKthanK + KnchJYsK + [‘KypcannYcK + (k ‘ C )KDYSKJXSK

' I
2

z°y{[chtnxco + KDXCOJYSG + pcannxsoYco}

2 ._ .— .—,-

ZOy{‘[chtnxco + Knxcohco+ pcannxsoYso} (1)

X

_ t _ — 2 2 -
2 - 2 -

LnEKxxc + (k C )XSKJYCK Ky(kc + pcnmnn SKYSK

2 ._

(kc + pcnmnn sKYcK

>
<

'

LHEKXXCK + (k I C )XSKJYSK + KY

.1 _. 2 _.

zio L x y - ox(kc + pcn)RnnX Y }
ynCoSo soco

_.'_. 2 2 - ——

Z{-°yLanoY0g Ox(kc + pcn)RnnX30Yso}

_ 2 -' 2 _ 2 - - , 2 —-'—

[ Kxc ancK + (k C )MHXSKJYCK kyC pCDRnnXSKYSK

_ 2 -' 2 _ 2 - - 2 ‘— '—

[ Kxc anCK + (k C )MDXSKJYSK + kyC pcann SKYCK

2 _ —-'—- - —- -

ZC { OyanCGYSO OxpcannXsoYco}

'

2 ——_.
ZQ {Oyknxcoycg prcannxngso}

we have defined
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Y

I " (O)=N2 fgcosgx} D ngdeE

{g} YB o singx 27rpc Y

 

A.

X c = sinaKg-y) + sina(g+y0

{3M a—y ‘ an

K II

Rtn ‘ ponCn

2
(kcI

.
"

ll 2 -

pon)Cn pcnRtn (2)

3

ll

2

n “‘0 - L2)Rtn - Epcncn

and the other factors in equations (1) and (2) are found in sections

3.4.2 and 3.14.3.



APPENDIX D: BRANCH INTEGRALS FOR TRUNCATED ASYMMETRIC SLAB

In this appendix we specialize the branch integrals of sections

4JL1 and MJLZ to the limiting case of a lossless asymmetric slab

waveguide. ‘This allows for considerable simplification of the branch

integrals, which can then be easily programmed to obtain numerical

results.

The branch integral terms Bih and C% are defined in equations

UL63) and 0L7“), respectively. Both expressions involve integration

around the branch contour @B' This contour is illustrated in Figure

1L5. Note that his contour is identical to the one of Figure 31% In

the limit of zero loss this contour becomes one along the limiting

branch cuts shown in Figure 3.9. As discussed in section 3.3.6,

integration along this limiting contour decomposes into three cases.

If we define E =Ll+ jv, then these cases are: - kS <11< - kc' v =();

- kc < u < 0, v = O; O < v < 0°, u = 0. Defining our branch choices of

as shown in Figure 3.10, we have

Case I: upper side - *5 = Y, Y5 = ~jV , Y2 - u2 - kg

lower side- Yo: v, YS=jV , V2: k§--u2

Case II: upper side - Yc = Y*36,YS = *jv , 52 = kg - u2

lower side - Yc = jd ’Ys = jv

Case III: upper side ~ Yc = ~jd, vs = ~jB , a2 = v2 + k5

lower side ~ vb = ja, Vs = 35 , E2 = v2 + k3



Now for

Then we

|
+

n1
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a function q(€) we define

=q| ‘ql

upper lower ,

side side

-q| -q|

upper lower ,

side side

=q ‘ql

left right ,

side side

can show

e‘J(TITn)zo
 

“n(T‘U)(:jn+u)g1

eJu(z-z1) A

Unj(u:jm) g1

e'J(T:In)zo A

141T (T‘U) (1 T +U)82

 

n

eju(z-zo) A

“um(um) 82

e“j(T:Tn)ZO A

 

14M T‘jv)(:Tm+jV) 83

e-v(2*zo)

 

unj<jV1Tm) g3

‘ks < u< ‘kc

-kc < u < O

O < v <<n

(2)

(3)



190

+ +

Here I“n and ha are as defined in equations (11.58) and (11.71),

respectively, and

~ N'v -
81 a 23 2 e Y(Y+Y')

ks‘kc

.. 23
g2 =.g—[coss(y-y') + Ft20036(y+y')] (u)

Q3 = §1[003a(y-y') + §t3cosa(y+y')]

_ G‘v R a‘8
_ t3 = ___

6+v a+B

 

These expressions can be spatially integrated in closed form. If we

define

t “'+

mni a]. :rni em(y)en(y')dy'dy

(5)

t +

cmni 3 .I “51 em(y')dy'

0

with em(y) as given in equation (3.81), then we have the result

-kc o

_[ bmnidu +_[.c banzdu + ‘j‘l:%n3dv

(6)

“ 0

=1: =2===+1c052du + j ‘]:ccm3dv
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