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ABSERAC'I'

This thesis is concerned with the solution of the thermoeJastic

problems resulting from the sudden application and maintenance

of the following tanperature distribution on the surface of a

half-space initially at zero temperatureutbe temperature equals

a constant within a circle and zero elsewhere. The tanperature

distribution within the half-space exposed to the aforanentioned

surface temperature distribution is derived. Then under the

assumption of a quasi-static condition, the stresses and dis-

placenents inside the half-space and on its boundary are determined.

This quasi -static solution is obtained by transformation of the

problem into the Laplace subsidiary space and solving it there

by the introduction of a thermoelastic potential and the use of

the Galerkin-Westergaard method specialized in the case of

axial symetry to determination of Love's function and then

transforming the solution back into the original space. The

quasi-static solution so derived is physically descriptive for

all time with the exception of the first manent. To canplete

the physical description of stresses in the half-space, dynamic

effects due to the stress wave emitted because of the suddeness

of the application of this surface temperature distribution are

taken into account in the stress solution for small wines of time.

This asymptotic dynamic solution is produced by means of the

Iaplace transformation and a themoelastic potential. Finally,

sane numerical results pertinent to the steady-state solution



(a special case of the quasi -static solution) and asymptotic

dynamic solution are canputed and tabulated.
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I . Introduction.
 

In 1950 v. I. Danilovskaya [3]+solved the one-dimensional

themoelastic problem with dynamic effects inclined which results

frcn the sudden application of a constant temperature to the

bounding plane of a half-space and in 1952 she [h] generalized

this problen by maintenance of the medium instead of the surface

at constant temperature. In 1955 M. A. Sadowsky [21] adopted a

simplified model an! neglected dynamic effects to obtain a solution

for mail values of time of the axially symetric themselastic

problem in the half-space which results from the application of

a constant surface tamerature within a circle and zero surface

temperature outside this circle. Still more recently in January,

1957, s. Sternberg and E. L. McDowell [21:] using the method of

Green have solved the steady-state thermoelastic problem in the

half-space and obtained explicit solutions for three tauperature

distributions: surface temperature equals a constant within a

circle and zero outside, surface temperature equals a constant

within a rectangle an! zero. outside, and surface tanperature equals

a hemispherical. distribution within a circle and zero outside.

Earlier in 1937 J. N. Goodier [10] had utilized the thermoelastic

potential by means of which he reduced the general threedimensional

themoelastic problem in the entire space to determination of the

Newtonian potential for a mass distribution whose density coincides

with the given tenperature field. For domains other than the

entire space, this potential yields only a particular solution of

 

We numbers In square brackets‘refer to bibliography entries.
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the thermoelastic equations which in general will not satisfy

prescribed boundary conditions on the surface. Since for small

deformations the themoelastic equations are linear and the super-

position principle is valid, it renains to find a solution of the

classical homogeneous elasticity equations to superpose in order

to adjust the boundary values to those prescribed. This latter

solution can be obtained either by the Neuter -Papkovich [22,

p. 328 if] or Galerkin-Westergaani [29 , p. 119 ff.] methods. In

problems with rotational symmetry the Galerkin-Westergaazd

method simplifies to solution for Love's displacement function

[15, 1). 27km] .

Within this framework, the results derived in this thesis

are the following: (1) Given that the surface of a semi-infinite

three-dimensional Hookean body bounded by a plane is stridenly

subjected to a temperature distribution T = To within a circular

area and T = 0 outside this circular area and then maintained at

that tauperature distribution, the quasi -static solution is obtained.

That is, the bony is assuned to progress through successive

equilibrimn states slowly enough so that dynamic effects can be

neglected. This assmption is plausible except at the first

moment. From the quasi -static solution the corresponding steady-

Btate solution is then derived. (2) Given the same physical

situation as in (l) , the solution taking into account the

dynamic terms is obtained for mall values of time. That is,

in the second problem due regard is given the stress wave emitted

at the first manent. It is known that the dynamic effects may



- 3 -

be of great importance at the first moment but rapidly cease

to be of consequence after that. (3) Numerical values of the

steady-state stresses and displacements for thirty-one points

on the axis of symmetry and the surface and of the asymptotic

stresses for a twenty-seven point grid in a representative plane

containing the axis of symmetry are computed and tabulated.

The first result is obtained by use of the Laplace transfor-

mation, a thermoelastic potential, and the Galerkin-l-Iestergaard

method specialized in this case of rotational symetry to derivation

of the proper Love's displacanent function. For the second result,

the thermoelastic potential in the Laplace subsidiary epace giving

the desired solution directly is exhibited. The numerical evalua-

tion of the integral in the third result is accomplished by use

of Simpson's rule and the computation is done on the Michigan

State Illiac Computer, the Mistic.

Before initiating solution of the problems listed as (1) ,

(2), and (3) , the basic equations of thermoelasticity are reviewed,

the boundary value problem is formulated, and certain general

methods for solving it are discussed.
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II. Gmeral Considerations.

Thermoelastic problems deal with the derivation of the stresses

and displacements developed within bodies subjected to given heat dis-

tributions. If the tenperature is not unifom throughout the body,

the hotter parts of the body tend to expand more than the cooler parts,

but since the body remains solid, this expansion is restricted. The

restriction causes themal stresses. 'niese stresses and the resulting

strains are assmed to be related through Hooke's law and displacanent

derivatives are assumed mall. Problems in thermoelasticity involve

sixteen unlmomsusix independent strains, six independent stresses,

three displacements, an]. tauperature. For these sixteen unknowns,

there are the following sixteen equations:

0 = 00 on _ 1+, " u: u

a?! 2“ [EW‘ 1‘57" u 1:27“T‘§‘J] ““071 ‘57:

.0 - a“. 311' .0- ,o

367 30:. 36“. Na;

‘1) x,+Tz';*Txi’-J°W'

3T- a" T,3.5.... V

where 1,.) = 1,2,3, rectansfl-r comm-mt.“ (1,1,!) = (119x013),

0% = the me” on the surface 2,- = constant in the direction of in-

creasing xj, G = the modulus of shear, £ 2 the strain on the sur-

‘J

face 1; a constant in the direction of increasing 1', 7 = the

Poisson's ratio, e = the cubical dilatation, J}; = the Kronecker

delta, o( g the coeff Lcient of linear expansion, T = the absolute

tanperature, u- -.-.-. the displacanent in the direction of increasing

1; , f a the dmsity, t = the time, a = the diffusion constant,
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I. 3" ‘ " and the bod forces normal a e ri

in the third set a? equations are neglected. In addition three

other conditions of compatibility must be satisfied. These

equations express mathenatically the fact that the displacements

are single-valued. The counpatibility equations are usually

written in the form of six second-order differential equations.

a. )‘ a 3‘ 9

new?“ 2%: 555‘? 22Erf’*:>?"i’395‘]

. as. 3‘: 3‘5 2* _) a: a: e

‘8’ fievxffmi’ fip‘ifi‘abfi’+#*§ff”

I 3 3 l l e 1.3 x, 1: xi

Althougi it has been shown impossible to reduce these six equations

to a lesser number of second-order differential equations, it is

possible to write them as three differential equations of higier

order. The set of sixteen equations and the compatibility equations

can be reduced to four differential equations, the Navier equations

and the heat equation, in the three displacements and temperature

and the condition of single-valuedness of the displacements

respectively? This set of four equations is

Vim, 1 3e _.P at _2(i+r) 3 («'13)

(3) ‘ 17-27 TT- 5 3?“ 1-27 Xx;

= a" "T.5— V

We couplfng efleflis neglected. The change in heat of the body

due to its deformation is of second order with respect to the

temperature induced by the temperature distribution on the surface.
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where 1 = 1,2,3 and e = 31;:- + 3‘; ... gig- . Fran these differen-

tial equations one can make three pertinent observations: all

equations are linear so the superposition principle is valid, the

fom'th equation is independent of the preceding three, and each

of the first three equations contains all three displacements since

the cubical dilatation e contains than. The formulation of the

thermoelastic boundary value problan is completed by specification

of boundary conditions. These boundary conditions may be given

directly in terms of the displacements on the surface, indirectly

through specification of the stresses on the surface, or as a

mixttu‘e by specification of the displacement over part of the

surface and the stresses over the rest of the surface.

The first step in the solution of this boundary value problem

is the determination of the temperature distribution within the

body Rom the heat equation. With the temperature distribution

known, the four differential equations are reduced to three

nonhcmogeneous differential equations for the three displacements.

Because of the complicated nature of these three linear equations,

a thermoelastic potential ¢ defined by the equations 20a; = 51f

1i

is introduced in order to obtain a particular solution of the

equations and simplify the remaining boundary value problem to

one with hanogeneous differential equations. By substitution

of the appropriate ¢ expressions into the three equations for

the displacements, it can be sham that ¢ will produce particular

solutions if ¢ satisfies
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(4) V“? _ (l-ZHE bigg—21+”(MT

2(1-r)c

By use of Hooke's law in terms of the displacements, the definition

of ¢ in terms of the displacements, and equation (in) , the

following expressions are derived for the stresses correspondent

to ¢.

(5) a§=§%— v*¢£;,.+£,§-Z4’c§,

with 1,.) = 1,2,3. In general these stresses will not be those

specified in the boundary coalitions. To adjust the stresses

to those prescribed, a solution of the hanogeneous equations is

superposed. Since in the case of temperature independence the

thermoelastic equations reduce to the classical equations of

elasticity, the latter solution is obtained fran the classical

theory. That the final solution is unique up to a rigid motion,

even with the neglected coupling effects included, has been

shown by Weiner [28] .

After utilization of the thermoelastic potential to reduce

the remaining boundary value problem to one independent of

temperature, many physical problems of interest will admit a plane

stress or strain condition making the Muskhelishvili technique

and the powerful theory of canplex variable applicable. If the

’ temperature-independent problem will not admit either of these

simplifying assumptions, the Neuber-Papkovich or Galerkin-Westergaard

methods can be anployed. Both of these techniques reduce the
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Navier displacanent equations to more familiar equations «the

Neuber-Papkovich, to potential equations and the Galerkin-Westergard,

to biharmonic equations. In problems emibiting axial symetry,

the latter method can be simplified to solution for love's

displacement function. The problem in this thesis, being of the

axially symetric type, is solved by use of Love's function.
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III. The Temperature Distribution.

The bounding plane surface of a half-space initially at

zero tenperature is subJected to the suiden application of the

temperature distribution: T = To within a circle of radius b

and T = 0 outside this circle. After applied, the temperature

distribution is maintained for all succeeding values of time.

In this section the resulting temperature distribution in the

half-space is determined. With the introduction of cylindrical

coordinates (r, (’52) and use of the rotational symetry of the

problem to eliminate the dependence on 9:, the boundary value

problem in T = T(r,z,t) can be mitten

3.: -_-_ a" v‘r for t,z>o,

T(r,z,0) = O for all r,z>0,

(6) T(r,o,t) = To for r<b and t>0,

= O for r)b and t) 0,

|T(r,z,t)l ( M for all r,z, and t vhere M is a sufficiently

large positive number. By means of a formal application of

the Laplace transformation L {T(t)} :e TWP): [13“)th dt,

this boundary value problem transforms into the following one in

T* = T*(r,z,p) .

v’iw - grim - o,

(7) T*(r,0,p) = $9. for r(b,

= for rpb,

‘T*(r,z,p)l ( M for all r,z, and p.
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The differential equation, a wave equation, can be separated

in cylindrical coordinates to yield the solution

T*(r,z,p) =fA(p,;\) J. (Ar) e'deA,

I I 1'

where X(p,}\) = -L;-441 and where A(p,A) is to be determined

from the boundary conditions. Use of an integal relation

[26, p. 1406]

 

 

 

fJ,(/\b) J°(}\r) dA = % for r<b,

O

(8) = 2% for r=b,

= 0 for r>b,

and the boundary conditions on 2 = 0 gives A(p, A ) = Wag—45b)

Therefore

0’ 8-82

(9) T*(r,z,p) = n. f J, m) J. (Ar) 1, as.

and[7, p. 2146]

G

Hr fJ (Ab) J (Ar)
(10) T(r,z,t) == 12. o l o l

_ z ~2a At

.[e‘z mrcéggAt) + e 1“ Erfc( )] dA.

It renains to show that this formal solution is the actual solution

of the boundary value problem (6) . By proving T to be represented

by an integral uniformly convergent in t and z for t,z Z O and

then interchanging the limiting processes as t goes to zero and

as 2 goes to zero with integration, the initial and boundary

conditions can be verified. To show the differential equation

satisfied, the uniform convergence of integral representations
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of T together with the first and second time derivatives and the

first, second, and third space derivatives for t,z>0 can be

shown, differentiations and integrations can then be interchanged

[1, p. 1:810, and the solution T can be verified by direct

substitution. The integral for T can be shown uniformly convergent

with respect to z for z .>. 0 by the Abel Theorem: If ffbl) dz

converges and if for every value of z for 2?.0, the function

v( A,z) is non-negative, bounded for all z, A and never increasing

with A, then ffbl) v().,z) dA is uniformly convergent with

respect to z for 2?.0. Taking fol) = J,(/lb) J.(Ar) and v(}L,z)

" see + e"“wc<‘—s§€e= e z Erfc( one notes fran
:

(8) that Ifu) dA converges, that for t>0 v(}(,z) is positive,

bounded, and tending to zero as A increases if 2 f O or equal

2 if 2 =0, arni that for t = O v(/\,z) = 0. It remains yet to

show v()\,z) is a monotone function in A for z>0 and t>0.

Writing mm) = Wum) + y/wx ,2) where you) _g.

= M maW) and using the relation Erfc(§ )2 7%}—

.[l - 27].”: 1- &3), - %iufl [16, p. 126] valid for

large §>0 yields

W:cm [aft‘g-g-Erch) -|- z Erfc(§)] ,

A; ‘23-'W/Ee-g‘ 2: 3; _ l t...)]’

:8

=e*(7%rf+a‘-Xt) [_ 2aE+ gfxflg; _ ajtuJ],
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where E:  W vhich shows 3%(252) (0 for all

sufficiently large A. And

Wit/l , z) 512 [#f/E 3’7‘- 2 Erfc(7)] ,

= S” [3.379; J7 - 2(1 - Erf(7))]<0 for all

large /\ where 7: W because h‘f (:7)<0 for 7< 0.

Therefore v(,\ ,z) is a monotone decreasing function after a

sufficiently large A for z>0 and t>0. Hence the integral

for T is uniformly convergent with respect to z for a Z 0. Repetition

of a similar argunent with 2 replaced by t shows uniform convergence

with respect to t for t _>. O in the region :20. The integral for

T can be shown uniformly convergent with respect to r for r _>_ O

in the region z>0 by the Dirichlet-Hardy theorem: If

if(/\,r) dA, is bounded for all 3>a and for r?.. O, and if v(A)

is bounded, positive, non-ingeasing, and tends to zero as 2.

approaches infinity, then a! f(A,r) v(A) CIA is uniformly

convergent for r?. 0. It will suffice to show IJ,(Ab) J°()r)

2.. - a.

0 [ext Meg-1.5%) + e“ Erfc(3-§97T¢£)] d). uniformly

convergent where a is an arbitrarily large poisétive number. Here

r().,r) a JAM) Jami-M and ml): 1 Mai—W—E)

- I.

+ 3A“ Errc(z_éaa;f’,\t ). Use of the asymptotic expansions of

the Bassel functions gives J,(/\ b) J°(1\r) A. = 77%;" [sin A (1)-1‘)

- cos A.(b +r)] + 0(751’7) [16, P- 32] - Then “A,” all

= 1 _ cos )Jb-r) _ sin A (b+r)]x+ 0( 1 ) 18

7T? E b-r —_b+r a 7k.
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bounded for all x>a. For all z>0, v(A) is bounded, positive,

non-increasing, and tending to zero with increasing A by an

argmnent similar to the one used previously in connection with

the application of the Abel theorem. Therefore .£ J , (Ab) J°(/lr)

. [eAz MMW) 4- e4” Erdefl d/l is

uniformly convergent in r for r2 0 in the region z>0. With

the inclusion of the fact fJ, (Ab) J, (Ar) ERA.- converges

[16, p. 50] , the other integrals may be shown uniformly convergent

in manners analogous to those already demonstrated.
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IV. The Quasi-static Solution.
 

The temperature distribution derived in section III causes

stresses ani displacements in the half-space. In this section a

quasi-static condition is assured and the solution for those stresses

and displacanents is obtained. The assumption of the quasi -static

condition allows the neglection of the dynamic terms appearing

in the displacanent equations (3). Under this asswnption uith

the cylindrical coordinates introduced as in section III, the

displacement equations take the form

.u u + 1 be __ 2(1w) Bur)

‘9 1275“ “1-3733——

(ll) v=0,

1 3_ 21y3'r

vw+mz§w52¥akh

where u = displacement in the radial direction, v = displacement

 

in the 7’ direction, w = displacement in the z direction,

v1~=§t+:§_+g_:,e =§E+i~E +3_:.,ardTisglvenby

equation (10). Since the surface plane is free from external

loading, the normal stress 0;; and the shear stress 0;: must

vanish on that boundary. Using the asstmption from the linear

theory that the boundary conditions are applied to the undefomed

body and writing these boundary conditions on the surface 2::0 gives

0;,J=o:= 1%_[(1_3y)3_:+ 7(3-3 + 3-) - mama] ,

(12) Pa G3“ 3w 2:0

“74"-° Gr* 3- .
Zao =0
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Although the latter equalities expressing the stresses in terms

of the displacanents do not enter into the solution of the boundary

value problem in that form, they are included for completeness.

The differential equations (11) and the boundary conditions (12)

canprise the boundary value problem to be solved in this section.

As a first step in the solution, a thermoelastic potential

4: —._-_ 4>(r,z,t) is introduced in order to derifl a particular

solution ani thus reduce the differential equations to hcmogeneous

form. The themoelastic potential 4> defined through the

relations 2Gu; = 3-1? yields particular solutions to the

i

differential equations (11) if 4> satisfies the equation

 (13) v‘cs = “1335‘“ T .

Because of the simpler form of T in the Laplace subsidiary space,

the equation (13) is transformed there with L{<}>(t)} =¢(P)

a f¢(t) e’Pt dt.

0

(124) “P“ a may}; T*.

According to the heat equation, 3% z a"W and pT* a a‘v”T*.

 

Substituting fran this relation into (lit) yields

21+ 0 ‘ '1‘*

V‘fi" = V1 A 1,974“ 31'
2.

Then a particular solution of (it) is 95;? = 2(111-33G4a ?.

Fran use of Hooke's law and the defining relation for ¢, the

 

 

following equations relating the stresses and the thermoelastic
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potential are derived.

3‘ L

3 = 332;: “Vi“:

_. l 3 a. *

0;: = r35: “’4’ .

_ 3‘

a"*=rz’

0?: =5§€i-V‘¢*-

Substituting cfi into equations (15) gives the stresses in the

J
fi
l

(15)

form of integrals divergent on the surface 2:0. For this

reason a harmonic function correspondent to the steady-state

temperature distribution must be superposed to secure convergence.

 

.12

43* _.__ -aglgyl’cx‘nganflAb) J°(,\r) 25? dz is such a
2. ' 0

function}, The solution for the themoelastic potential in the

subsidiary space is

°° e-Xz_ e-Az

(16) ¢‘r’z’1°) =.- cafe wt) gar) -—5;-— as,

§1+Y)Ga(a"hro

1-7 °

space due to this potential are avian by equations (15).

there C, = The stresses in the subsidiary

 

Wis selection of $f Is motivated by solution of the steady-

state problem not included separately here since it is obtained

subsequently as a special case of the quasi-static solution by

letting t approach infinity.
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__e-Az 2- 42- 1 -/\z

a;:=qjgym)-L,%—J” 3———-“ell-JAM) gar) 1° Pf" M. 

-

-Az e-Xz

5:-=-. —c,][alum .MEl g3... 11... Juli) J(Ar) —.f—p. a). ,

(l7)

 

i
l
l

a

an

aclfJKXb) JMI') Xe-x2;Ac.’12A (1A,

a

 

_ O. e-Xz__ e-Az z.

0;; =0, f J,(/\b) JJAr) p; A «1/1.

0

The physical problal demands that the stresses be continuous

in the half-space and that the normal and shear stresses on the

plane a = 0 vanish. That these 5:" and consequently the 0—;

are continuous in the half-space can be shown by proving the integrals

uniformly convergent in the same manner as that used in the latter

part of section III. , Having shown the uniform convergence with

respect to z, the limiting process as 2 goes to zero can be

interchanged with integration to note 65:] = o and ‘67:}

= C, I J,(Ab) J,(,\r) lf/l dA . M‘s-i: example of the“

method for showing these integrals unifomly convergent and also

to show 5:: exists on the boundary 2 = O, 5:: is proved a

continuous function of r and z in the half-space and on the

boundary. This preposition includes 6:: hailing a finite value

on the bounding surface 2 =.- 0. The Dirichlet-Hardy theoran as

stated in section III with f(A,r) =-. J,(;tb) J,(Ar)A and v(A)

Jz -A2
a Xe - Ae is applicable; and as in section III, since the

part of the integral firm 0 to a need not be considered, the
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integral from a to co where a is an arbitrarily large positive

number is used. The asymptotic expansion of f(/1, r) is

W [cos A(b-r) -sin/\(b +r)]1+ 0(A---) [16, p. 32]

i A b-
and the integral fflfr) dA-a:W [Bb—rn ( r)

+ £08 ALbi-r) 8+ “1—) is bounded for all x) a. v().) is

 

 

b+r

bomded, monotone, and tends to zero with increasing A for z 2 0.

Therefore the integral representing 6?: is unifomly convergent in

r for r 2 O in the region 2 2.. 0 and E: is continuous in r for

r 2. O and z 2. 0. The Abel test as stated in section III with

WU = J,(Ab) Mir) and “A,” = Ask-h _ e-Az) show

A

uniform convergence with respect to z for 2 Z 0. Therefore 83*

 

is a gontinuous function of z for z 2 0 having the value

I J, (Ab) J,(Ar) 1%}5‘ A dA on the surface 2 = 0. Since

the homal and shear stresses in the original space and thus

the same stresses in the subsidiary space must vanish, the

subsidiary shear stress derived iron the thermoelastic potential

must be adjusted to zero by the superposition of stresses obtained

fun a Love's function L. Because of the axial symetry of the

problem, Love's function gives a general solution of the hunc-

geneous elasticity equations and therefore such a function is

known to exist. The boundary value problem in Love's function

L :.-.. L(r,2,t) can be written in the subsidiary space in L*

= L*(r,z,p) as



V41,“ = 0 ,

5?; - = airs-[32") Vi:6'}y] ’(18) 2‘0
7,80

0:31 = -W)J,0\r) = fg-EEU-I’) V11"z-JaitLif] 3

Z‘O _. no

where CT": f—*' (M. This function in the subsidiary space can

0

be obtained by canbination of two functions, L,’ = 2 {‘Ar) e"1

.12

an! L! .1: Jo“ r) e .

(19) L*(r,z,p) == A(p,A) Lr(r,z,p) + B(p,A) L:(r,z,p),

where A(p,}L) and B(p,).) are to be determined such that the boundary

conditions are satisfied. Substitution of L* into the boundary con-

ditions gives the following two equations for the two mknowns A and

 

B.

(20) O ’1'2327[(I'NHfiB]
gar),

-M.A)%£y(/Lb) J,(,ir) = 13:37 X’Ee/A-tas] J,(Ar).

Fran equations (20)

_ 1H) 1.27%" Li— A) glut)

Minx) — L L 11'9- an

(21)

B(p,/\) = --(-J=-';21-Z)-A(p,/1) .

The stresses in the subsidiary space due to Love's function are given

by [19, p- 73].
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E: 8 ,‘M-9a”
J

(22) as; = 3-;[YV‘V - fig-11

f:=:.§—[(1-Y
)V
v&*-%_fi

_ 2G ,) a.* 3‘;

azm-fi (2-7)VL -W 0

Use of equations (19), (21), and (22) and integation over 7\

yields the stresses necessary to adjust the normal and shear

stresses from the thermoelastic potential to zero on the unloaded

plane 2 = O.

C m
J(}\ r)n351: [(x-“Am: 122/) J, (Ab) 47——

+(x-mz- 112) mm JW]”Add,

Erie f B"“‘"’"‘”” “N” “fig0

+ 27(Y-A) J,(Ab) J.(Ar)] e'A‘AJ/x.

C

3:9: I (xANAz-l) am) mm e'A/id/l,
O

55* 9&1 (J-m was) Jaw) e *‘i‘dx.

P a

The final stresses in the subsidiary space are obtained by

addition of the stresses derived from the potential and those

fran Love's function. These final stresses in the subsidiary

Space are
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0;: = C, f{J,(Ab)M49.1.). [1.2.3. + (10.21.2142) (I—A-Afi-r—J

+ J,(1b) tariff +<,1(2.,\,) (1.1)”)J}M,

(21:) r: c'I{Jlub)Jrfifti
: + (Maya-21)A(g.,g+,1>g

::]

+ JP“) ‘19:)[-15— +27A(X—A) fez-:1} (1A

 

q ll

.
3
3

= c,fJ,(Ab) flur)[::'Tfi +éuz-1) a.» {>14 M,

= c, flab) gar)[J‘-‘-;1— + (250-2.) '2‘);4:] cu

In order to casplete the stress detemination, the final stresses in

N N

the subsidiary space must be transformed back into the original space.

This is done by interchanging the inverse Iaplace werator with

integration. In order to Justify this interchange of limiting

processes, the integrals can be shown uniformly convergent in p by

the Abel theoren in a manner analogous to that used in the latter

part of section III . This inverse transformation involves terms of

five types. These transformations are listed below and derived

        

 

subsequently.

('0 L129“= M 47.75?

-I _L"{B- p: 1}:H%[22 mo(3+2.LAt)

+ eA” Eddm-fl a

(o) 17%;; .-. i:- L"' {L35}= fir’a‘" t mmm+--F .451”,

_Vp+a"A'z

(25) {1:17,

(‘1) 31“} {—1———,—.—-—
_ “3.;tha“ ”0‘”23‘1") _ 2%é3 (’1‘

Om¢(-ME%¢‘E) ,
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(e) L {grfgiLq Euro }____,_ “gig-Mt A:

- quW—h‘a‘l‘) 4- 1.112531% e”A

n _ ._ 2‘

.m-még'fil)... %
g e (a? AI-t +$¢

Transformticn (a) is an elementary transformation tabulated directly.

Transformation (b) can be obtained fran the tabulated transformation

for ape-9).! («"57" [7,1). 2116] by means of the shifting theorem

1’"(p-e) in the subsidiary space corresponis to e'tf(t) in the original

space. Transformation (c) can be derived by use of the tabulated

transformations for % and mtg-‘5' [7, p. 235] and the convolution

theorau: ff(p) o f*(p) in the subsidiary space corresponds to

ftht-t) fit) df in the original space. With the substitution of

J‘A’t

4t)=L'1{ }=H1and4t)=17¥E=Ep— +sAErf(~W'5),

{Wk—3.}? _j}§n df=m£*%€dt2‘+r.&22-]:th'5(if. The

first of these integrals can be evaluated by a change of variable

f:6f? 3the second, by the Dirichlet forumls: fbdz ff(x,y) dy

= idy,J:f(z, y) d1. In the eveluation of the second integral,

jdff gfi=~ffd
7] 2:11:30 7.3.215.

a S 4— '15}: 7 ’l

aa;°;_ 1:]? 1&0

= .175: ’1 ‘ 7= Fri

aa/F_L

:EZ";Erf(e“SW "T‘i f 5e dg . The latter integral,

55%-: d5 , can be evaluated by inserting a parameter n

EL61"?

to define Na): £ 3"e 3d; , observing F(z) = dz) where
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all? ‘

f(z)== -1; {‘3 a: = - gmfium), and noting 3(1)

to be the integral in question. Canbination and simplification

yields transformation (0). Use of the shifting theorem and changes

of variable = a‘A" and x s :- reduces the evaluation of trans-

formation (d) to evaluation of L-'{ 65"? By writi f*( )
W ° “3 1’

e45“: 9'51! 2 1 e41?! 81 e45.1

= 57:75-37 "' °‘ 3 r5725; °‘ 5:13:29, “PM“ W
- I

3,, [7, p. 2’45] , and using the

1

operational formula: 5;,- f*(p) in the subsidiary space corresponds

 

tabulated transformation for

t

to ( L d1: )n fit) in the original space, the evaluation of

the simplified transformation (d) is reduced to solution of

the following differential equation: f'(t) -— 2qf‘(t)+ (fit)

-x/‘fi.

_ I e an differential
__ W 7tL. The general solution of s

4t

equation is the sum of the hanogeneous solution, f(t) z: (A +Bt) e

where A and B are thus far arbitrary, and the particular solution,

““5 — I [2 sinhE‘x - e-Rxfih'fl/«t' - ‘
fa?) =3 (014313) e where C— W :7?)

.. e'q.x Erf(f:?+ 2717)] and D = ooshFZ'z + §[e-Ex

oErf( J x t' - fig) - em‘ MHZ? + 1%] . Instrumental

in the derivation of the particular solution by the method of

variation of parameters is Horenstein's evaluation [12] of two

integrals;

I'=Lx-%en(- if. ‘b2_1) dz = __a_ 00811 28b + .[g—

. [e-zab mfib Nair) - eubErflb J? 4’ firfl.

*
1 dl

1

Laf£%exp
(- a: - be) dz 3. - fi W‘vmere

I, 18 given n

O

the preceding equation. To find the initial conditions {(0) and
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f‘(0) in order to evalmte A and B, the theorem [5, vol. 2, p. 1&5]

--if limf(t) exists then limp f*(p) = limf(t)--is applicable.

By employing the fact that the solution f(t)a: (A+Bt)ea“

+ (C +Dt) ext there A and B are arbitrary and where C and D

are known functions bounied as t approaches zero, one can note

that lain f(t) exists. This theorem yields the result f(0) = f'(o)s0.

’0

Use of these initial conditions shows A = B a O. The evaluation of

7—D-)‘

theorem yields the transformation (d). The last of the transforma-

L.' }is thus ccmpleted. A second application of the shifting

tions, transformation (e), is obtained through differentiation of

z

transformation (6.) with respect to '3- -

The inverse Laplace transformation of the stresses in the

subsidiary space from equations (214) by means of equations (25)

canpletes the stress determination in the quasi-static case.

¢r3C1.[{J,(I\b) -éE-' [Avg-L“‘1':(3+ AQ:+2/-2)e""‘1,L——'{:1}

 

42

-AM-(Az+211)e"'1,"1,i’§."{f] + Jpn?) «Ii/11') [' 2'72- L’Ifi- }

-1L{51-Jr} '- lu"2)°.l‘1‘“{5}

(26)

+A‘(A¢-1)°'M1fl{1l,zfl} ‘1"

a.q.,....:._clJ:D{4(,\-n)A21113.). {L 1‘1," { 5:? - Auti‘W-QW”II-fit}

-{z

+JL”(Az+2”-1)°'Ln-%'{Q'f Jab) Jur)[-:L- {5-}

mun-:23; -222s-Az2-n{;.] } 22,
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{Ignacio},J().b) J.()~r)[7LL"{L°:h} + MMDe'1,”1,493,}

0

- X’s e‘M'L-W $3

02-50, [4(a) .mr) [AL-'{§2a} + x: a” $1}

.. z-(lz+1)e‘kl." {$31 «1)..

That the shear and normal stress on the plane 2:: 0 vanish can

' be verified by substitution 2 =0 in equations (26). By use of

equations (8), (25), and (26), one can observe that for t

approaching zero on the surface 2 = 0

were: 2.22.. 

 

0;: 0;: l-y

2: «- BBQG“ Ti for 1‘: b,

(27)

= o for r) b,

0:1: Q: 0 .

This result is of interest because it was conjectured earlier on

the basis of classical work on the quenching of spheres and

cylinders. The stress solution of the corresponding steady-state

Problem is obtained by letting t approach infinity in the quasi-

B’Oatic stress solution given by equations (26) . After a Justi-

fiable interchange of limiting processes, the steady-state solution

becomes

a;'=.2(1+Y)G«Hr.f[-I,(l~b) £01”) " JP“) 9‘fo

(28) °
Ar) 3-112 (111

24(1+’)G4W0 flow) a
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6;=.2(l+I)G«br. I J;(Ab) $2. 942 M,

0.7..” 0250-

The displacements are canputed as the sum of displacements

due to the thermoelastic potential plus those due to Love's

function. As differentiation under the integral sign can be

permitted in this case, the displacements in the subsidiary space

due to the potential are

 

 

- a c m (A. > “I” - 3""
11‘" = E1 r = - zfi IJK :5 r P]- A M.

(29)
4: '11!

3 == 221: a: = - gain/1b) gar) 1" 5,3” M,

O

which, after Justification of the interchange of the inverse

Laplace operator and integration,
yield in txhe original space

- ‘ ' - - 1

t = - 3,5 from .y(1:)[ L ' {5;- } - 6M1. {PU/1M,

_. Ag: flan) gar) [ L"{€;;h}-ze"‘L"{%*U
2m,

0

(30)

fl

\

In the subsidiary space the displacements due to Ipve's function

[19, p. 73] are

as _ ”’1'

is = - 3:57 3* = 3d4m») Wt) (2‘2"3‘) mg' “=1,

(31)

is: I127[2(1-10Vi*-§;¥

- 42

~_-. 33 fJMb) gm (am-m 54%: cu,
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which, after valid interchange of limiting processes, yield in

the original space

g = 3‘5 J,(A_b) Jpx) (2--2)’-/11=)°"1“(Wig-J #1177 it!)

(32)

ta. 5%: 2m) 4111‘) (1-2Mz)e*‘(r‘{$} sill-1,20 dz.

Canbination of results (30) and (32) determines the final dis-

placements in the quasi-static case.

 

u=5+g= (My)?a‘vrorJub) Jar) [(2.2%)th"1.)""{P1}

~11.q;“r A(l-2/-Az)e"1zf'{1pd]
a1,

(33)

2 t 2. s- Witch) 2‘22) [ ('1+2”'*‘>°’”L”{ 5‘

.. 12—h} + A. (22.1.22).”171,2) ] u.

The displacements in the corresponding steady-state problem

by letting t approach
infinity

are

obtained from equations (33)

u = (1+nsvr2fwb) 31‘”) ‘4': 7"

(31!)
71! M

w =: -(l+/) «WI
.JIQb) JJAI) e
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On the axis of symmetry and on the surface with f = g. ,

r
7 =-- b' , and x = A2, for r=0 the steady-state stresses and

displacements of equations (28) and (3b) can be written [16, p. 147]

In", '-E

0:05:01 euguil ’

_ J +1-

(35) 0'7 C’ 2s '

0:2: 05:01

a: o,

W=C3(§"V;+":

and for z =0 [15, PP. 1'9-50] 9

l
.2. for 751'

arr—=0:
233,1 for 7>1,

1 for 7(1,

2'

q": C, for7sl,

3,22?qu>1

(35) 01;: 0:230

3 for'7sl,

u =03

2.13:] for’)71,

:le1) 2222,22

v: fog-37:1,

2—11E(%:2'2 r51)!” 7)]?
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where cz =.2(1+)’)cour° , c3: (1 +V)e<m:, , ,F,(s,b;c:z)

ab 2 a(a+l)b(b+1) 2‘

= 1+ '6 I2+ c(c+l) + H"
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V. _'111_e_ Dynamic Effects at the First Moment.
 

The temperature distribution of section III causes a

stress wave to be emitted through the half-space. At the

first moment such stress waves can be of considerable consequence.

As this stress wave is obviously a dynamic effect, the dynamic

terms of the Navier displacanent equations must be retained.

In this section an asymptotic stress solution of the boundary

value problem consisting of the Navier equations with dynamic

terms included and the boundary conditions implied by the vanishing

of the normal and shear stresses over the surface 2 s O is

obtained for small values of time. The boundary value problem

can be stated

1
‘ air I)

V“'51+1=%7 3%" $13 =42?’31-'92“ :

v=0

v‘w + 1&73'3’53'
3'; = 2§1+fl )zgwr),

(37)

0;!) 2,. 0:12:72“ [(14) 3—} + y(%%+§) -— (1+/)°<- T310:

2)
aft-10:0 =-. G[-a%+%¥] ’

2:0

where all symbols are defined as in equations (1) and (11) and

where as in equations
(12) the boundary conditions

are written

in terms of displacem
ents for completene

ss but are not utilized

in that form. A particula
r solution of the differenti

al equations

or (37) can be obtained
with the aid of the thermoela

stic potential
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defined as in section IV from the relations 2Gu; a. 33;?

l.

potential so defined provides particular solutions if it satisfies

the following equation:

(38) V%-- C4. 31?: 2(1+)’)Gq T

.2

where 0,, =H . To eliminate the time derivative and sim-

plify the temperature expression, equation (38) is transformed

 

into the laplace subsidiary space.

 (39, V2,;S*_C+ 132.99: 2(lg-ILGK 'r*

where use has been made of the fact Shat at t=0, ¢-3?: O.

2.

Since T satisfies the heat equation m= 8V‘T, P'1'*== a VJTK

The latter equality suggests #3 ICE" as a particular solution

‘I’

of (39) . K is determined by substitution of 95, into equation

(39) to be

2(1+/)ca(a" _.__._ l4(14»’) 05¢ a”

p - - is p - - f8

The relationship between the thermoelastic potential and the

(140) K =

stresses is given by equations (5). In the subsidiary space

these relationships written in cylindrical coordinates (r, 5p, 2)

for this axially synimetric case are

2. 4* l 3- *

5;: = is? - V¢>*+ 32%- 4%

" at

53:51:31. - (7‘494-325-6'5,
(”1)
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5:? =3¥—v‘¢*+1’2§f 4;:

there again use has been made of the fact that ¢= 3?: O at

t = 0. As in the quasi-static case, #3,” yields stresses in the

form of integrals divergent on the surface 2:30. For this reason

it is necessary to superpose on 4)? a solution of the homogeneous

wave equation V3¢*- Cfp" ¢*= O in order to make the stress

integrals convergent for z = 0. Separation of the wave equation

in cylindrical coordinates in the case of axial symetry yields a

solution of the form ¢3:—=rA(p,/\) J°(,{r) 3'8” M where

A(p,A) is arbitrary and ,6:0JG“) ‘+A" - With a convenient

choice of A(p,A

“‘2’ ¢* = 22; +42: = foam (.4: - e'P‘) n,
2.

where c __ Kbr. Jl(,\b)_ h(l+)’)G:ata1&5?ng Use of

equations (111) gives the stresses in the subsidiary space result-

ing fran the potential ¢"°

0'3: f0: [4xtg-N'h-F15+#290a” J(Ar)

+A (e — 2'1”) tom] dA,

(143) E;=f°: [(A- [flagser‘ (A- (34?):F).g(;1r)

—é<e""— 2'”) sum] 41

02m.-"'- ,9 it“) Jim 1 ax,

C; (A‘s:- fag-)e'fi- (A+ rig-k‘5') .3111“) d1,

a
L
g

2
:
!

25
1'
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Since in this section only small values of time in the original

space are involved, only large values of p in the subsidiary

space need be considered [9] . For large values of p, it will

now be shown that the normal and shear stresses vanish on the

surface 2 = O. For large p, CfacD ill-€133)— where D

= ..W. a! and P can be expanded binanially

to give

7:. V

at = (1) +9») =[(5‘+e1)‘ -2225] 2: (ffi‘m)

'E' W5” -. . .3,
WEN-aAh

'

’/z.
2.

V;

@=(‘34P"+ 23) = [(Wp-M) -2A/737p] = (,IE; 1,“)

A(C_'p

Both of these expansions converge for all positive p and A

l

2

5 “I

sufficiently large , X and P may be replaced in the integrals

since the form 5 f < 1. Now it will be shown that for p

byfi;+/\ and VIE: p+ A respectively.
From the binomial expansions

0f ex and p and the fact that a constant times the geometric

“

l 1

series E 7517;, = TIT

m" k P
ved sible to

binomial expansions to be neglected, it is obser pos

is greater than those parts of the

€+A)l and
select so large as to make 5 ——(

P
‘ (fa-Pv-A)?’

|p -(/'61 lat-A). and therefore (e'x‘ - e

“a

and ‘ e'P - e'(@p+
A”! as small as desired. The 0"

integrals can be shown unifomly convergent in p by use of the

ed in section III.

Abel theorem in a manner analogous to that us x

15:!" dl'<£

0Then for am 6 there exists an x such that ‘0'“ -
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there 5"" is the integrand of the 5:" integral and by the

Justifiable interchange of limiting processes I a“ .. 1:1?“

with lie-@4511 and p—p/Ep +A] dA'< E for

sufficiently large p. Substitution of the asymptotic expansions

for C: , X , and '5 into equations (113) and retentionofonly the

higher order p terms gives

“:55. ((5:11)) I (r,z),

masses 22,-

0-‘* :20
(MI) ’2 1

5:: 2 g (9-3“? - ([022?) I(r,2),

where I(r,z) _-—.-_ 1:1,(Ab) J°(/\r)e"udz . The transformations

necessary to transform the subsidiary stresses to the original

space are [7, pp. 2145 and 2141]

 

_2

L" 5—35. =-. straw,

('45) L-'{§;'€‘p} =0, 0<t< Celt =ny

1, t>/€,‘z.

The final stresses in the original space for small t corresponding

to large values of p in the subsidiary space are

g 306 Hr.0,72%?- _.21+ at [m°(§.;¥)

(1.6) o t < 46::

]I (r,z),
’

"’ f“7.23;, t) (2,:
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4'23 0,

:{O,yt<\/—'z

]I(r,z).

1, 1:) 0+2

At this point it can be observed that the asymptotic normal and

(“6)

shear stresses are zero on the surface 2 =- 0. Since, within the

approximations made forlarge p, the stresses due to the thermo-

elastic potential satisfy the boundary conditions, no stresses

need to be superposed as in the quasi-static solution. In this

case the thermoelastic potential has produced the asymptotic

stress solution for mall t to boundary value problem (35) .

With 53 «E, '73 %, and: =Az, forr=Othedynamic

stresses for small values of time given by equations (16) can be

written [16, p. 147]

_a;'2%
E(§,t):

0:130,

‘1... -

fizg‘JTrTj‘H 1" 5")

for Z: O [16, P. 50],

(1'7)

‘
0

l , *7 <1,

0:.” 0;“ CL-rvl-fiy % ’ ’1‘1 ’ 4" bo’

(he) 0 , V1:

6,1230,

Q80 ,for t>0 ;
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and for neither r nor 2 equal zero,

6;": $42 Esta-1311“”),

(1:9) 07?“:

@flji‘flng :7 )1

where 0‘ = --W , M; ,t) = c,‘ [mfiéfig

o , t<fi2b§ b o ,t<fé';b§

. y r ], F(§,t) = C‘ [MC(EH
-

J,

127, 17> thS
i,t>./E;hg

Ind 1(5a’2)= Jfl‘x) $0?!) 9-: dx . It can be noted that equations

0

(1‘8) describing the surface stresses in the dynamic case for mall

values of time are the same as equations (27) describing the surface

stresses in the quasi -static case for time approaching zero. That

is, the surface stresses for time approaching zero are given correctly

by the quasi -etatic solution. This result is in agreenent with the

work of perineum: [3 and h] .
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VI. Numerica1.Results.

In.this section the steadyastate stresses and displacements of

equations (35) and (36) are tabulated for thirty-one equally Spaced

points on the axis of symmetry and on the surface in a representative

plane containing the axis of symmetry, the integral I - :J, (2L1)

"Jot?- x)?! dx is evaluated for fourteen of twenty-seven grid points

in this plane, and the dynamic stresses for small values of time

given by equations (M7), (NB), and (M9) are tabulated for these

twenty-seven grid points in terms of E( f, t), and F( f, t) . Because

of axial symmetry the evaluation of I and the asymptotic dynamic

stresses actually involves canputation at only seven and sixteen

points respectively. The sixteen grid points for which the asympto-

tic dynamic stresses are computed are shown below in figure 1. The

seven points in this grid neither on the axis of symmetry nor on the

surface are those at which I is computed.

 

6 IO 7’

C)

C)

Figure I
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The values of the steady-state stresses arrl displacements for

the indicated points on the axis and on the surface are given to

four -digit accuracy in table 1. Since the steady-state normal

and shear stresses are zero throughout, they are not included in

this tabulation.
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The value of I is approximated for the seven inner points

of figure 1 by terminating the integation at x = 12 with a maximum

error less than (3.7) 10.6 since IJ, (.].§'. 1) J00? 1)| (,4. and

J’s-x dx < (6.1) 10". The integral terminated at x =12 is then

apgroximated by Simpson's rule:

”" h nh'r w

Lin) axe3-(r,+ur,+2r,+ur,+. . .+14f».;+2f,,.1rhfw*fi,)— 186‘? (3)

where h = the length of one subinterval = .03, n = the even number

designating the number of subintervals = 1:00, fl" f(1+kh) ,

0 < f < 12. The maxinmm error in approximating Hg ,7) can be

bounded in the following manner. let the integrand f(x)

==JS(X)0(3§_ x) where 8(1): J,(.__. x) e”x . Since, for all the

inner points marked in figure 1, the absolute values of both J, (_x

and e as well as all their derivatives are bounded by one,

82;"? < 2": nh5_]3ecause ’a—fi Jo(x)l < l, 'd—JJo(-7- I), < (1)"

Therefore 180' f"(x) < (5. u)1o"[16+ 32 34- 2M1)+ (sq—h- (1)3

for all x) 0. Hence one can easily show that at all the marked inner

points of figure 1 except 5 = l and ‘7: 6 the maximmn total error

inherent in this approximating scheme for I( g, 1’) is less than

(1010.: and that at g = l and 31 = 6 this error is less than

(2.3) 10-1 Round-off error can enter the computation fran the

approximation
in the tabulation of the Bessel and exponential functions

and from the operations performed within the computer. The round -off

error due to approximating the Bessel and exponential functions is

held to a minimum by use of a minimum of nine digits in their

tabulation [23] . It is easily sham that for these seven grid

-:

points this round-off error is less than 10 . The round-off error
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within the computer has been checked by instructing the computer to

make the calculation once rounding down and again rounding up.

Canparison of these results ascertains the maximum round-off error

within the computer also to be less than 10-:at all seven points.

In other words the round-off error cannot be of any consequence

in the four -digit tabulations which follow.

The value of I at the seven aforementioned grid points has

been computed with the Michigan State Illiac Computer, the Mlstic,

by the following program:

Programt

1. Four hundred values of e“X for x = .03 to x = 12 in intervals

of .03 are canputed and stored in the Mistic.

2. Four hundred values of J, (1;!) for I = .03 to I = 12- in

intervals of .03 and for 5 fixed are input.

3. (he value of Job?" x) for x = .03 then x = .06 . . . up to

1 =12 and rm. .ELflgad is input and one f,,, f,,.

where f“ 2 f(x+.03k) 18 canputed.
r“. . . rm

14. The Simpsozis rule routine which evaluates the integral up

to the if" sumnand is "Jumped into”.

5. The program returns to step three fourhinired times. Then

step six is executed.

6. The result is output.

7. Thevalue of ‘7 is raised to the next higher value across

the grid .

1' This program was written by Dr. Gerard P. Weeg.
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8. If all values of 3, for a given 5 are not yet used, the

program returns to step three; if they are all used, then

the program continues to step nine.

9. The S value is raised to the next higher value down the

grid. If all g values in the grid are used, the program

stops the computer; if not, then the program takes 17

at its lowest value and returns to step two.

The values of I determined from this program are written in

table 2, All digits tabulated are significant.

 

 

’18! 7:3 i=6

gs: I = .1787 .01724 .002

5:3 I = .1316 .0595

5:4 I = .0785 .0295

Table 2

By use of table 2 and equations (‘47), (148), and (119), the

asymptotic dynamic stresses are written in table 3. In table 3

E(n,t) and F(n,t) defined on page 36 are abbreviated as E... and F,1

respectively. The t in the arguments of Bend F' is taken as positive

in table 3. Because the shear stress vanishes throughout, it is not

included in table 3. As in tables 1 and 2, all digits tabulated are

significant.
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A :1 xi :4 am _ ,7

oo Fizz Era: 1.0000 .5000 0 0

E. 0 00;: ~ 0 O O

‘6' "

I %8%3 .2929 .1787 .0174 .002

. 787 out .002EL 3:. .2929 .1 .

E

3 £35: .0513 .0049 .0198

E, a" 01m 019822;, .0513 . 9 .

F3

15530-5: 2 .0136 .0131 .00119

6 E‘ E‘ 00490;; ~ .0136 .0131 .
‘F‘. .—

IO [m 3 £32 .0050

Etc 5,.

girl... .0050

i 6‘.

Table 3
E
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VII . Conclusion.
 

The basic theory of the thermoelastic problem has been

reviewed and the temperature distribution within a semi -infinite,

three-dimensional half-space bounded by a plane due to a tempera-

ture distribution of T = constant within a circular area and T8 0

outside maintained on the surface has been obtained. The original

results of this thesis include the derivation of the quasi -static

stress and displacement distributions within the half-space and

on the boundary and the derivation of the dynamic stress dis-

tribution within the half-space and on the boundary for small

values of time due to the previously indicated temperature dis-

tribution. In addition nmnerical results relevant to the steady-

state and asymptotic dynamic solutions have been tabulated.
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