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ABSTRACT

This thesis is concerned with the solution of the thermoelastic
problems resulting from the sudden application and maintenance
of the following temperature distribution on the surface of a
half-space initially at zero temperature--the temperature equals
a constant within a circle and zero elsewhere. The temperature
distribution within the half-space exposed to the aforementioned
surface temperature distribution {s derived. Then under the
assumption of a quasi-static condition, the stresses and dis-
placements inside the half-space and on its boundery are determined.
This quasi-static solution i1s cbtained by transformation of the
problem into the Laplace subsidiary space and solving it there
by the introduction of a thermoelastic potential and the use of
the Galerkin.Westergaard method specialized in the case of
axial symmetry to determination of Love's function and then
transforming the solution back into the original space. The
quasi-static solution so derived 1s physically descriptive for
all time with the exception of the first mament. To complete
the physical description of stresses in the half-space, dynamic
effects due to the atress wave emitted because of the suddeness
of the application of this surface temperature distribution are
taken into account in the strees solution for emall values of time.
Thies asymptotic dynamic solution is produced by means of the
Iaplace transformation and a thermoelastic potential. Finally,

same numerical results pertinent to the steady-state solution



(a special case of the quasi-static solution) and asymptotic
dynsmic solution are camputed and tabulated.
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I. Introduction.

In 1950 V. I. Danilovekaya [3]Yeolved the one-dimenstonal
thermoelastic problem with dynamic effects included vhich results
fram the sudden application of a constant temperature to the
bounding plane of a half-space and in 1952 she (4] gemeralized
thies prcblem by maintenance of the medium instead of the swrface
at constant temperature. In 1955 M. A. Sadowsky [21] adopted a
simplified model and neglected dynamic effects to obtain a solution
for amall values of time of the axially symetric thermoelastic
problem in the half-space which results from the application of
a constant surface temperature within a circle and zero surface
temperature outside this circle. Still more recently in January,
1957, B. Sternberg and E. L. McDowell [24] using the method of
Green have solved the steady-state thermoelastic problem in the
half.space and obtained explicit solutions for three temperature
distributions: surface temperature equals a constant within a
circle and zero outside, surface temperature equals a constant
vithin a rectangle anml zero outside, and surface temperature equale
a hemispherical distribution within a circle and zero outside.
Earlier in 1937 J. N. Goodier [10] hed utilized the thermoelastic
potential by means of which he reduced the general three.dimensional
thermoelastic problem in the entire space to determination of the
Rewtonian potential for a mass distribution whose density coincides
with the given temperature field. For domains other than the

entire space, this potential yields only a perticular solution of

¥ ™he numbers In square brackets refer to bibliography entries.
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the thermoelastic equations which in general will not satisfy
prescribed boundary conditions on the surface., Since for amall
deformations the thermoelastic equations are linear and the super-
position principle is valid, it remains to find a solution of the
classical hamogeneous elasticity equations to superpose in order
to adjust the boundary values to those prescribed. This latter
golution can be obtained either by the Neuber-Papkovich [22,
p. 328 £f] or Galerkin-Westergaard [29, p. 119 ff] methods. In
problems with rotational symmetry the Galerkin-Westergaard
method simplifies to solution for Love's displacement function
[15, p. 27U22.] .

Within this framework, the results derived in this thesis
are the following: (1) Glven that the surface of a semi-infinite
three-dimensional Hookean body bounded by a plane is suddenly
subjected to a temperature distribution T = T, within a circular
area and T = 0 outside this circular area and then maintained at
that temperature distribution, the quasi-static solution ie obtained.
That 1s, the body is assumed to progrese through successive
equilibrium states slowly enough so that dynsmic effects can dbe
neglected. This assumption is plausible except at the first
mament. From the quasi-static solution the corresponding steady-
state solution is then derived. (2) Given the same physical
situation as in (1), the soiution taking ¢nto account the
dynamic terme is obtained for mmall vaiues of time. That is,
in the secund problem due recerd is gliven the stress vave emitted

at the first mament. It 1s known that the dynamic effects may
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be of great importance at the first moment but rapidly cease
to be of consequence after that. (3) Mumerical values of the
steady-state stresses and displacements for thirty-one polnts
on the axis of symetry and the surface and of the asymptotic
stregses for a twenty-seven point grid in a representative plane
containing the axis of syumetry are computed and tabulated.

The first result is obtained by use of the Laplace transfor-
mation, a thermoelastic potential, amd the Galerkin-Westergaard
method specialized in this case of rotational symmetry to derivation
of the proper Love's displacement function. For the second result,
the thermoelastic potential in the Laplace subsidiary space giving
the desired solution directly 1s exhibited. The numerical ewalua-
tion of the integral in the third result ie accomplished by use
of Simpson's rule and the computation is done on the Michigan
State Illiac Computer, the Mistic.

Before initlating solution of the problems listed as (1),

(2), and (3), the basic equations of thermoelasticity are reviewed,
the boundary value problem is formulated, and certain general

methods for solving it are d1scussed.
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II. General Considerations.

Thermoelastic problems deal with the derivation of the stresses
and displacements developed within bodies subjected to given heat dis-
tributions. If the temperature is not uniform throughout the bady,
the hotter parts of the body tend to expand more than the cooler parts,
but since the body remains solid, this expansion is restricted. The
restriction causes thermal stresses., These stresses and the reaulting
strains are assumed to be related through Hooke's law and displacement
derivatives are assumed small. Problems in thermoelasticity involve
sixteen unknowns--six independent strains, six independent stresses,
three displacements, anl temperature. For these sixteen unknowns,

there are the following sixteen equations:

, = Y T S 14 o "=
G = %[+ Foe b 1:27’51‘“”'@7

v o oW du;
2£‘J = .z_x.;q-.,;:wlth Eu-f

e
I i i
vhere 1, = 1,2,3, rectangular coordinates (x,y,2z) = (x,,x,,x,),

Jd;' = the stress on the surface x; = constant in the direction of in-

v
creasing x J’ G = the modulus of shear, £ = the strain on the sur-

face x; = oconstant in the direction of 1ncreaeing x;, V= the
Polsson's ratio, e = the cubical dilatation, d/ = the Kronecker
delta, o = the coeff icient of linear expansion, T = the absolute
temperature, u; = the displacement in the direction of increasing
x;, f = the density, t = the time, a = the diffusion constant,
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v = g_‘ + %"_ 3_"‘ , and the Yody forces normally appearing
in the third set o‘f equatione are neglected. In addition three
other conditions of compatibdility must be satisefied. These
equations express mathematically the fact that the displacements
are single-valued. The compatibility equations are usually

wvritten in the form of eix second-order differential equations.

2
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Although 1t has been shown impossidle to reduce these six equations
to a lesser number of second-order differential equations, it is
possible to write them as three differential equations of higher
order. The set of aixt..eeu equations and the campatibility equations
can be reduced to four differential equations, the Navier equations
and the heat equation, in the three displacements and temperature
and the condition of single-valueiness of the displacements

respectivelyT This set of four equations is

, de _P I _ 2L T)
V““*%r -§ 5= 482 %:(?

(3) :
= a ip,
;— v

¥ The coupling efTect 1e neglected. The change in heat of the body
due to its deformation is of second order with respect to the
temperature induced by the temperature distribution on the surface.
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vhere { = 1,2,3 and ¢ = %—l- 1; + x_, . Fram these differen-
tial equations one can make three pertinent cobservations: all
equations are linear so the superposition principle 1s walid, the
fourth equation is independent of the preceding three, and each

of the first three equations contains all three displacements since
the cudbical dilatation e contains them. The formulation of the
thermoelastic boundary value problem is completed by specification
of boundary conditions. These boundary conditions may be glven
directly in terms of the displacements on the surface, indirectly
through specification of the stresses on the surface, or as a
mixture by epecification of the displacement over part of the
surface and the stresses over the rest of the surface.

The first step in the solution of this boundary value problem
i1s the determination of the temperature distridution within the
body from the heat equation. With the temperature distribution
known, the four differential equations are reduced to three
nonhamogeneous differential equations for the three displacements.
Because of the complicated nature of these three linear equations,

a thermoelastic potential ¢ defined by the equations 20u; = %2
[}
is introduced in order to obtain a particular solution of the

equations and eimplify the remaining boundary value problem to

one with hamogeneous differential equations. By substitution

of the appropriate ¢ expressions into the three equations for
the displacements, it can be shown that ¢b will produce particular

solutions if ¢ satisfies
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) oip - (L2X)P 8'% 1+w)c.‘

2(1-7)G

By use of Hooke's law in terms of the displacements, the definition
of ¢ 1in terme of the displacements, and equation (X), the

following expressions are derived for the stresses correspondent

to .
0 Gt ousek 324
J x; Jx; ¢g‘ Y

with 1,J = 1,2,3. In general these stresses will not de those
specified in the boundary comditions. To ad just the stresses
to those prescribed, a solution of the hoamogeneous equations is
superposed. Since in the case of temperature independence the
thermoelastic equations reduce to the classical equations of
elasticity, the latter solution is obtained fram the classical
theory. That the final solution is unique up to a rigid motion,
even with the neglected coupling effects included, has been
shown by Weimer [28] .

After utilization of the thermoelastic potential to reduce
the remaining boundary value problem to one independent of
temperature, many physical problems of interest will admit a plane
stress or strain condition making the Muskhelishvili technique
and the powerful theory of camplex variable applicable, If the
temperature-independent problem will not admit either of these
simplifylng assumptions, the Neuber-Papkovich or Galerkin-Westergaard

methods can be employed. Both of these techniques reduce the
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Navier displacement equations to more familiar equations--the
Neuber -Papkovich, to potential equations and the Galerkin-Westergaard,

to biharmonic equations. In problems exhiditing axial symmetry,

the latter method can be simplitied to solution for love's

displacement function. The problem in this thesis, being of the

axially symmetric type,is solved by use of Love's function.
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III. The 'rﬂerature Distribution.

The bounding plane surface of a half-space initially at
zero temperature is subjected to the sudden application of the
temperature distridution: T = T, within a circle of radius b
and T = O outside this circle. After applied, the temperature
distribution is maintained for all succeeding values of time.
In this section the resulting temperature distribution in the
half-space 18 determined. With the introduction of cylindrical
coordinates (r, ¢,z) and use of the rotational symmetry of the
problem to eliminate the dependence on ¢, the boundary value

problem in T = T(r,z,t) can be written

%.TE = a* Y*T for t,250,

T(r,z,0) = O for all r,z»0,

(6) T(r,0,t) = T, for r<b and t>0,
=0 forr>db end t>0,

|P(r,z,t)] < M for all r,z, and t vhere M 18 a sufficiently
large positive number. By means of a formal application of
the Laplace transformation L {T(t)} = T¥*(p)= ‘[T(t)e.pt dt,
this boundary value problem transforms into the following one in
T* = T*(r,z2,p).
T - g;_-'r* = 0,
(7 T*(r,0,p) = g-ﬂ for r<bd,
=0 forr)b,

|T*(r,2,p)] ¢ M for all r,z, end p.
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The differential equation, a wave equation, can be separated

in cyiindrical coordinates to yleld the solution

T*(r,z,p) :fA(p,/\) Jo (AT) e'de.;\‘

vhere X(p,}\) = —u—';x and where A(p,A) is to be determined

fran the boundary conditions. Use of an integral relation

[26, p. 406]

fJ,(Ab) J(AT) dA = % for r<b,
o
(8) = 2% for r=b,
= 0 forr>b,
and the boundary conditions on z = O gives A(p, A ) = E&%; (av) |
Therefore
7 =Yt
(9) T*(r,z,p) = Wy f I, (AD) Jg (AT) 3 dA,
[-]
and [ 7, p. 2u6]
(- J

J, (AD) Jc(Ar)

(10) T(r,z,t) = %-9- f

o[e’\z mfc(%'-;.%:-’ﬂ) 4+ et m‘fC(z—E'i%';ﬁ)] da .

It remains to show that this formal solution is the actual solution

of the boundary value problem (6). By proving T to be represented

by an integral uniformly convergent in t and 2 for t,z 20 and
then interchanging the limiting processes as t goes to zero and
as z goes to zero with integretion, the initial and boundary
conditions can be verified. To show the differential equation

satisfied, the uniform convergence of integral representations
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of T together with the first and second time derivatives and the
first, second, and third space derivatives for t,z2>0 can be

shown, differentiations end integrations can then be interchanged
(1, p. ll814], and the solution T can be verified by direct
substitution. The integral for T can be shown uniformly convergent
with respect to z for z = 0 by the Abel Theorem: If ff(;l) da
converges and if for every value of z for z 20, the function
v(A,z) 1s non-negative, bounded for all z, A and never increasing
vith A, then -ff('\) v(A,z) dA 1s uniformly convergent with
respect to z for z20. Taking f(A) = J;(AD) Jo(Ar) amd v(A,z)
= ® Erfc(izg-rz%:ﬁ) + e’“l-:rfc(z—%é\ri) , one notes from

(8) that .orf(x) dA converges, that for t>0 v(A,z) 1e positive,
bounded , and tending to zero as A increases 1if 2 f 0 or equal
21f z = 0, and that for t =0 v(A,z) = 0. It remalns yet to
show v(A,z) 1s a monotone function in A for z>0 and t>0.
Writing v(A,z) = W(A,2) + Y(-A ,z) shere Y(A,z) e
= "% Erfc(z—%;—?{-.)-\—&) and using the relation Erfc(§ )zx 7%.—?
|1 -2.% -r-.é‘-'?%-,_ - _li%lf?q-r:t...] [16, p. 126J valid for
large §> 0 ylelds

%%?Al-zl:: M [aﬁ‘:g—; Erfc(§) + z Erfc(g)] ’

T
= A2 -%?es-p ?’.ef,- (-]? -z}f,t---):),
=e‘(7§;-f*a‘xt) [— 2a/t’

z 1 _1 t]
=t i Ep )
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2a*)t P (
where = %1% michshow.;ﬁﬁ\_ﬂ_) 0 for all
E- Y 228 (o tor

sufficiently large A. And

t)!{A(;A 22)

ez [%@ el E‘rfc(7)] ’

= ;M [%\E e_7 - z(l - Erf(z,))](O for all

large A where 7 = ?_5.;& because Erf (a,)<o for % < 0.
Therefore v(A ,z) 18 a monotone decreasing function after a
sufficiently large A for z>0 and t>0. Hence the integral

for T ies uniformly convergent with respect to z for z = 0. Repetition
of a similar argument with z replaced by t showe uniform convergence
with respect to t for t 2 0 in the region £20. The integral for
T can be shown uniformly convergent with respect to r for r Z 0

in the region z>0 by the Dirichlet-Hardy theorem: If

Jr(/\ r) dA 1s bounded for all A>a and for r2 0, and if v(A)
is bowmded, positive, non-inu'eaeing, and tende to zero as A
approaches infinity, then {1’(/\ r) v(A) dA 1s uniformly

convergent for r 2 0. It will suffice to show IJ,(Ab) Jo(ArT)
Py - 2
o [—eAz Erfc(-z—&?%-r'-\—t) + ej‘z Erfc(i-'fﬁ-r——m)} dA uniformly

convergent where a is an arbitrarily large positive number., Here
z + 2a® ;\t)

t(A,r) = J,

-AZ 2 &LAt
s . Use of the asymptotic expansiona of
+ A Exrfc (_W_) ymp

the Besesel functions gives J,(Ab) Jo(AT)A = —73—,- [sin A (b-r)

- cos A.(b +r)] + 0(—;—) (16, »- 32] . Then [ f(A,r) dA
coe A(b-r) sin A (b+r)] + of ___) is
= -
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bounded for all x>a. For all z>Q,v(A) is bounded, positive,
non-increasing, and tending to zero with increasing A by an
argunent similar to the one used previouely in con:ection with

the aspplication of the Abel theorem. Therefore £J, (AD) I (Ar)
. [e’\z Mc(%ﬁﬁ) + Az Erfc(z—-é;%a;r)i)] dA 18
uniformly convergent in r for r2 O in the region z>0. With

the inclusion of the fact f J, (AD) J,(Ar) d7\-*— converges

(16, p. 50] , the other 1n:.egrala may be shown uniformly convergent

in manners analogous to those already demonstrated.
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IV. The Quasi-static Solution.

The temperature distribution derived in section III causes
stresses and displacements in the half-space. In thie section a
quasi -static condition 18 assumed and the solution for those stresses
and displacements is obtained. The assumption of the quasi-static
condition allows the neglection of the dynamic terms appearing
in the displacement equations (3). Under this assumption with
the cylindrical coordinatee introduced as in section III, the

displacement equations take the form

de _ 2(1+¥) d(«T)
V'\l——‘l' 1 J_e' ( )21(“

(11) v=0,

2(1+%) 9 T)
T

wvhere u = displacement in the radial direction, v = displacement

in the @ direction, w = displacement in the z direction,

v g-:l...ra_faa:" _32 +gl'.,arr1'risglvenby

equation (10). Since the surface plane is free fram external
loading, the normal stress Czz and the shear stress 0, must
vanish on that bowdary. Using the assumption from the linear
theory that the boundary conditions are applied to the undeformed

body and writing these boundery conditions on the surface z=0 gives

|=0= I1,--[(1-;/) + 7(3-9-1- 2 - (1+V)0LT] )

(12) =0 au ow z=0
Guf=0 = ¢l + =

a0 =0
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Although the latter equalities expressing the stresses in terms

of the displacements do not enter into the solution of the boundery

value problem in that form, they are included for completeness.

The differential equations (11) and the boundary conditions (12)

canprise the boundary wvalue problem to be solved in this section.
As a first step in the solution, a thermoelastic potential

@ = ¢(r,z,t) 1s introduced in order to derive a particular

solution and thus reduce the differential equations to hamogeneous

form. The thermoelastic potential ¢b defined through the

relations 2Gu; = gi? yields particular esolutions to the

differential equations (11) if ¢b satisfies the equation

(13) V= 240

Because of the simpler form of T in the laplace subsidiary space,
the equation (13) is transformed there with L{gp(t)} = g (p)

= f¢(t) et at.
o
(1) V"’?* - ﬂi.'.'i)__ogﬁ T,

According to the heat equatiom, 3% = a* VT and pr* 3 atgfTH.
Substituting from this relation into (14) yields

2(1+)) Gxa" T¥
v = v g 5]'

&
Then a particular solution of (1) is ¢b¥ - 2(1 +:’)G<a ?.

From use of Hooke's law and the defining relation for ¢b, the

following equations relating the stresses and the thermoelastic
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potential are derived.

o = 5E -,
% aé;'-t = V"4>*'
7 = 5o

o = -

Substituting g5 into equations (15) glves the stresses in the

S .
(|

(15)

form of integrals divergent on the surface z=0. For this
reason a harmonic function correspondent to the steady-state

temperature distribution must be superposed to secure convergence.

2(1+7)Gaat VT, e Az
Pt = - ( ?:)y L _OfJ,(Ab) Jo(AT) = dA 1e such a

f\mctimT The solution for the thermoelastic potential in the
subsidiary space is

@ e-)rz_ e-)\z
() gr,z,p) = c,f HAv) Lar) == aa,
o

21 +7)Gaa™ Mg
l-y ‘

space due to this potential are given by equations (15).

vhere C, = The stresses in the subsidiery

¥ This eelection of <AF 18 motivated by solution of the steady-
state problem not incluled eeparately here since it 1s obtained
subsequently as a special cese of the quasi-static solution by
letting t approach infinity.
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Yz -z 1,-d2_s4a-A2
(-]

AT Pt
L _J
2 Az o-J2

(-]
r ¥4
=0 [ qum gun L2225 a,
o

_ r e-b’z_ e-,\z 2
G;: =C, f J;(/\b) JJAI') I T— AT dA.,
o

The physical problem demands that the stresses be continuous

in the half-space and that the normal and shear stresses on the
plane ¢ = O vanish. That these § * and consequently the 7
are continuous in the half-space can be shown dy proving the integrals
uniformly convergent in the same manner as that used in the latter
part of esection ITI. Having shown the uniform convergence with
respect to z, the limiting process as z goes to zero can be
mterch:nged. with integration to note a_;,*_*_} = 0 and F:ﬂ

= ¢, I J,(AD) J,( Ar) l%é/\ A . Ae an exmmple of the
method for showing these integrale uniformly convergent and also
to show (g * exists on the boundary z = 0, ;¥ 1s proved a
continuous function of r and z in the half-space and on the
boundary, Thie proposition includes 5‘;* having a finite value
on the bounding surface z = O. The Dirichlet-Hardy thcorem as
stated in section ITI with £(A,r) = J,(ADd) J,(Ar)A amd v(A)
= X e¥% | AeA? 4 applicable;and as in section ITI, eince the

part of the integral from O to a need not be coneidered, the
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integral from a to oo where a is an arbitrarily large positive
number is used. The asymptotic expansion of £(A,r) 1s

1—.'.-7}-51- [cos A(b-r) = sin A_(b +r2] + 0(-;\1';-) (16, p. 32]

_ 1 sin A (b-r)
and the integral af(/‘l,r) dA = T [ T

4 oo A(b+T) a+ o(_i.) is bounded for all x>a. V(A) is

b+r
bounded, monotone, and tends to zero with increasing A for z 2 O.

Therefore the integral representing bf: 18 uniformly convergent in
r for r 2 0 in the region z 2 0 and G* 1s continuous in r for
r20and z 2 0. The Abel test as stated in section IIT with

2()) = WA J(AT) 4y o(a,2) = A€ - €4) shows

A
uniform convergence with respect to z for z 2 0. Therefore a—;*

is a ‘:ontinuous function of z for z 2 O having the value

C, f J, (Ab) J,(Ar) -L;;TA A dA on the surface z = 0. Since
the :mmal and shear stresses in the original space and thus

the same stresses in the subsidiary space must vanish, the
subsidiary shear strees derived fram the thermoelastic potential
must be ad justed to zero by the superposition of stresses obtained
iran a Love's function L. Because of the axial symmetry of the
problem, Lovers function glves a general solution of the hamo-
geneous elasticity equatione and theretore such a function is
known to exist. The boundary wvalue prodlem in lLove's function
L = L(r,z,t) can be written in the subsidiary space in L#

= L¥(r,z,p) as
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4

vi* = 0,
_ 26 ) J'1x
oIyl = 0 = (2-¥) L - ;]
(18) ““izao 1273 [ J;—z:o ’
Gr| = -S&Lﬂi{l‘__‘m)mr) = 15 J [(1-/) " -39-1"] p

vhere a'*::o [ 5"_*' dA . This function in the subsidiary space can
be obtained by cambimation of two functions, L¥ = z J(Ar) e
ad L = JAT) e

(19)  1%(r,z,p) = A(p,A) L#(r,z,p) + B(p,A) L¥(r,z,p),
where A(p,A.) and B(p,A) are to be determined such that the boundary
conlitions are satisfied. Substitution of L#¥ into the boundary con-

ditions gives the following two equations for the two unknowns A and

B.
0 1._.2.7 1[1-27) A +,13] IAr),

- 2 *
_c (Y A)/’} J{AD) I(AT) = 1_37 A [-2/1\ +AB] J(ar).

From equations (20)

(20)

Alp, A) = (1*")(1-27)«-129_11 /}1)1:4('“)

(21)
B(p,A) = -Q'§ﬂ A(p,A) .

The stresses in the subsidiary space due to Love's function are given

vy (29, ». 3].
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a
7 =y $ e - 5F)

(22 f‘,’."—-"‘?T["V“‘*” =],

T =I12'G7‘§?[ (1-Y)V‘l.*-%—%
JL

— G J 2. Liw .
B®=rey ¥ @ V- Ga
Use of equations (19), (21), and (22) and integration over A
yields the stresses necessary to adjust the normal and shear

stresses fram the thermoelastic potential to zero on the unloeded

plane z = 0. o

c f [(X_A)(z-Az-Z)’) J'(/Ib) ‘{L%‘i

+(¥ - M) (2-22) 3 (AD) L (Ar)] ePaan,

-

gg& f [.(x-l)(z-,\z.ay) J,(Ab)-{‘;(é-r-)—

it

:“."

(23) 27(¥-1) 3;(AD) I,(ar)] e ATadn,

(¢]

=& [ (-0 5 an 5 (a0 Fag,

[ -2 5,0 agan) e # ar.

5 R

The final streeses in the subsidiary space are obtained by
addition of the stresses derived from the potential and those
fram Love's function. These final stresses in the subsidiary

Space are
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e

= C, f {ataw) 2az) [p‘ + (arrera) (x.,u-x)T_J
+ J(av) {‘Ar) [ +<,1(a.,\,) (/-))M) J}M.

2u) % Cf {":0“’) -,{“,‘-'—)['A" + Q2227 (1’"‘)“"}—1—_]

+ J(Av) q,ou-) -1—1-274\(1-/\) -;_—z:”. aA,

9
I

R
"

G [ J(Ab) Jur)[lY; B +<1ag-1) (X-A -,a*}_r_:] aa,
=G f Jjar) {,(u)[ + <A‘t(l-,l) -A‘) J aA.

In order to complete the stress determination, the final stresses in

N
N

the subsidiary space must be transformed back into the original space.
This is done by interchanging the inverse laplace operator with
integration. In omder to Justify this interchange of limiting
processes, the integrals can be shown uniformly convergent in p by
the Abel theorem in a marmer analogous to that used in the latter
part of section ITI. This inverse transformation involves terms of
five types. These transformations are listed below and derived
subeequently.

@G =

(® 17 ;" } _ L-l{e _ } %[ AT prpo(Et2R At)

+ oM h'fc(-zw—) ’
o5 { i (B M e 1

pr JT  cata

—-ﬁ
(25) -Xz 'IP.”A
@ g = {5
2t 2a*At -1z
= BAAL Mmoo - Tarx o
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_(praitz
(o) L—niio"z}___% "{/E"A" e« d J=- 1+Az+2u‘,\‘t o A2
Erfc("a‘ t) + l-az:2a 4‘1; eA

L
.Mo(%?‘ﬁ-ﬁ)_'_ 1'[—' .@s,\&t +¢17t

Transformation (a) is an elementary transformation tabulated directly.
Transformation (b) can dbe obtained from the tabulated transformation
for 2(p+P)-' e_,"/np%- [7,1’. 2116] by means of the shifting theorem:
r#(p-a) in the sudbsidiary space corresponds to e‘tf(t) in the original
space. Transformation (c) can be derived by use of the tabulated
transformations for % and {2‘%_1712' (7, . 235] and the canvolution
theorem: f¥(p) - £#(p) in the subsidiary space corresponds to

f t4:,(1:--1.‘) q_f) 4T in the original space. with‘tthe substitution of
0= T'{5]=1 0 go=1T {E_—j- . o3 ErE(aaf®),

! Ju‘.}."} ..j}zm dfgmj "'} + ﬁrfv"ag The
first of these integrals can be evaluated by a chango of nr!.able

§ = F" ; the second, by the Dirichlet formula: f dx £ £(x,y) dy

= ;dy f f(x,y) dx. In the evaluation of the second integral,
AT A e
-5
fdt' ‘15 _f ? ’, ."!i"a.fd,’ oa,e a§

JMF ¢ fafi‘ ui_g.&
:aﬂ_..i‘_ fdg qo iy = T--. T e "d§

FYYL
—-@ Erf(a AVY) - —r'if g" -5 a§ . The latter integral,
fls‘!-j af , can be evaluated by {nserting a parameter z

aafé‘
to define F(z) = g e z8’, a§ , observing F(z) = £{z) vbere
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aalt

)= - [ e e ag = g’;mfmm), and noting F(1)

to be the integral in question. Cambination and simplification
ylelds transformation (c). Use of the shifting theorem and chenges
of variable o= a*A* and x = ; reduces the evaluation of trans-

- e”?
formation (d) to evaluation of L { . By writing £*(p)

- -f'x -F'x -z
- C 1 e 11 e 1
= (p-c(f‘ P + 2 p W p 2 (o)’ employing the

[7, p. 245] , eand using the

tabulated transformation for
operational formula: %; £%(p) in the subsidiary space corresponds
to ( j;t atT )n £(T) in the original space, the evaluation of
the simplified transformation (d4) is reduced to solution of

the following differential equation: o (t) — 2o 21 (t)+ o L(t)

— X 1 solution of this differential
= sy _;7. The genera
<t

equation 18 the sum of the hamogeneous solution, £(t) = (A +Bt) e
vhere A and B are thus far arbitrary, and the particular solution,

[2 ginh X - € R‘mf(f‘t‘-m:)

£(t) = (C+Dt) e *t  herecC=
_eﬂx Erf(f_-'-t-z-??)] andD.-coehf_'x-{- %[

Erf( V= & - 27!) - e™E mep(fxT + 771}] . Instrumental
in the derivation of the particular solution by the method of

variation of parameters is Horenstein's evaluation [12] of two

integrals;:
L= e (- £ ) ax = O com 20+ =
. [e-zab Erf(d »/?w) - ez‘“’m‘f('b Jo - ?%r)]o
t 1 4L sere I,1e given in

I=)x exp(- & - b¥x) dx = - FF T

the preceding equation. To find the 1pitial conditions £(0) and
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£¢(0) in order to evaluate A and B, the theorem [5, vol. 2, p. 45]
--if 11m f(t) exists then lim P P*(p) = li.m f(t)--ie applicable.

By employing the fact that the solution f(t) = (A+Bt) e“t

+ (C+Dt) &t

vhere A and B are arbitrary and where C and D

are known functions bounded as t approaches zero, one can note

that ]';i.n:‘f(t) exists. Thié theorem yields the result £(0) = £1(0)=0.

Use of these initial conditions shows A= B = O. The evaluation of
{ = );} 18 thus campleted. A second aspplication of the shifting

theorem ylelds the transformation (d). The last of the transforma-

tione, transformation (e), 1s obtained through differentiation of

z
transformation (d) with respect to 7 -

The inverse Laplace transformation of the stresses in the
subsidiary space from equations (2k) by means of equations (25)

campletes the stress determination 1n the quasi-static case.

0rr=Cy .[{J:(/\b) [/1 L'{ } + /\(/\z'fa‘v-Z)e"‘z "{ b"}
1 ¥
sttt 4] ¢ w0 [ b
S XA REE
st (L] g,
¢ s
_.C, j{-];(;\b) ..&El- [_ Alx;"{ .‘.z - A (Azt-2)e L-Yp‘-f
-7z
+XOz42r-1) e '{ }] + J) J(Ar)[- z, ;— ]

raya ety {’{;A - 2""“.1121‘—'{5‘] } Ay

(26)
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-c,f 300) o) [ar” {“ } o+ ae-ne” (4]
SRt L] w,

EC=C J’J(Ab) JAr) [A 1 5 T } § % e i

L(Azt1)e A 1.}] aA.
That the shear and normal stress on the plane z= O vanish can
be verified by substitution z =0 in equations (26). By use of
equations (8), (25), and (26), one can observe that for t

approaching zero on the surface z = 0

21+/ 0Ty g r b,

0;::0;;:- 1-y7
= - S%B—Tz for r=D,
(2m)
=0 for r> b,
a:‘l=a:;=0 .

This result is of interest because it was conjectured earlier on
the basis of classical work on the quenching of spheres and
cylinders. The stress solution of the correesponding steady-state
problem is obtained by letting t approach infinity in the quasi-
static stress solution given by equations (26). After a Justl-
fiable interchange of limiting processes, the steady-state solution
becomes

G =-2(1+7) GV, r [3(an) Lhar) = 3(Ap) g,%;l
(28) ; ax
=-2(1+7)Gabl, ]Pag(u) 4 HAT) oAt =2,
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On=-2(1+7)Gabr, f J(AD) ‘-Tl%:r—)- e*® ap,

™ 92220 -

The displacements are camputed as the sum of displacements
due to the thermoelastic potential plus those due to Lovers
function. As differentiation under the integral sign can be
permitted in this case, the displacemente in the subsidiary space

due to the potential are

= 19 ¢, [ g(av) J(Ar) efr oA A QA
o g e - [HA 0 T A,
(29)
! -Jz ) e-)"
™ o= 0P %IJ,(M) gyaxr) L2 pf aa,

vhich, after justification of the jnterchange of the inverse

laplace operator and integration, yleld in the original space

T = -g&fd’,(a\b) gan [ 7 —-.-h} e "{ }]Adﬂ,
- ﬁm gan [ {% 5 2ot Bl

<
|

In the subsidiary space the displacements due to Iove's function

{19, ». 73] are

oo Az
W= L f J(ab) JAr) (2-27-3) -L-l‘-)—— a,

o

(31)
= L [2(1-;') 7L* -g—:-’,‘:-*],

= % f J(ap) Yar) (2
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shich, after valid interchange of limiting processes, yield in

the original space

TR P S B LR

(32)
Ta- G [ g0 Y (2 e? (' h) AT (G) eA

Combination of results (30) and (32) determines the final dis-

placements in the quasi-static case.

=T+¥= S_E’I')_E‘_‘Eoﬁr(u) JAr) [ (2-27-Az)e”

- AL ;f;"} - A(-erg) e i*ﬂ aaA,

Ar, n{ f

(33)
oo " ¢
¥4 T G f s gn) [ (awzmade™ Y
-1 {Xe } +,\,(2-2¥+Az)e p'-f] aA.
The displacements in the corresponding gteady-state problem

by letting t approech infinity are

obtained from equations (33)

u = (1+n«w°£pr) sax) o 42,
(34)

-Az
v = =-(1t7) a('lﬂ',f-l;@u’) Jélu') e d:""_
o
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On the axis of symmetry and on the surface with § = % ,
r
7 =%, and x = Az, for r=0 the steady-state stresses and

displacements of equations (28) and (34) can be written [16, p. 47]

’a.* '-
G:Fcl 2;;;:!' ’

- \/ +1l -
(35) G2 5 ’
a:z= a;l=0’
u=o0,

and for £ =0 [16, pp. 49-50],

é for 7£1'
Gr=0y |
2-5,_ for %>1,
1l for »<1,
5 7
q;—.:c,_ 0 ror7=l,
1l
- 2_gli’c::r n>1,
(36) a;’-z= @220,
3 for <1,
u =¢

1 1
=, for % 71,

R}, 4515 ") for %<1,
V= = { for 17: 1,

2
=
2.1,-’ ,F;(i,%:2:%;)ror n>1,
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vhere C, = —2(1+¥)GaT, , C3= (1 +Y)a W, , ,F(a,b;c:2)

ab 2z a(a+1)b(b+l) 2z*
=1+ 5 nt “serny 2 ¥ oo
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V. The Dynamic Effects at the First Mament.

The temperature distribution of section ITI causes &
gtress wave to be emitted through the half-space. At the
first moment such stress waves can be of coneiderable consequence.
As this strese wave is obviously a dynamic effect, the dynamic
terms of the Navier displacement equations must be retained.
In this section en asymptotic stress solution of the boundary
value problem consisting of the Navier equations with dynamic
terms included and the boundary conditions implied by the vanishing
of the normal and shear stresses OVer the surface z =0 18

obtained tor small values of time. The boundary value problem

can be stated

2 z 2 Y T
T

v=0,
v _ 2(1+¥) 2 (xT)
(37)vl'+1217$%“g'2‘€‘='-'§2’7’7§—"

@751‘0=°=1%7[(1'7) -3—,! + ¥4t - am ]

Za0
Oz)=0 = G[%'%"‘%‘IT’],

Z20 Z=0

vhere all symbols are defined as in equations (1) and (11) and

vhere as in equations (12) the poundary conditions are written

in terms of displacements for comp leteness but are not utilized

in that form. A particular solution of the aifferential equations®

of (37) can be obtalned vith the aid of the thermoelastic potential
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defined ae in section IV from the relations 2Gu; = aa;é The
2
potential so defined provides particular solutions if it satisfies

the following equation:

(38) V%—Ccp D’%— 2(1+7)GQ T,

12/
vhere C,_ = é-u-s;%af . To eliminate the time derivative and eim-

pliry the temperature expression, equation (38) is traneformed

into the lLaplace subsidiary space.

(39) v’gﬁ*-c,_ prh*= iﬂg)vg.ﬁ- ™

swhere use has been made of the fact that at t = 0, feé- 0.

9T oy, prr= O
Since T eatisfies the heat equation g = 2 v T
The latter equality suggests # = KT* as a particular solution

»
of (39). K is determined by substitution of ¢, into equation

(39) to bve

2(1+7)Gaat - b(1+7) G a*

W‘W'

The relationship between the thermoe lastic potential and the

(W) kK =

stregeses 1s given by equations (5). In the subsidiary space

these relationships written in cylindrical coordinates (r, 92 z)

for this axially symmetric case are
2 4 a
o= 9 o B
F S
B=19%. oy

(¥1)
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where again use has been made of the fact that ¢= g-?.—. 0 at

= 0. As in the quasi-static case, ¢:\f yielde stresses in the
form of integrals divergent on the surface z=0. For this reason
it is necessary to superpose on ¢f a solution of the homogeneous
wave equation V'¢*- Cfp" ¢*= O in order to make the stress
integrals convergent for z= 0. Separation of the wvave equation
in cylindrical coordinates in the case of axial symmetry ylelde a
golution of the form ¢:’ =fA(p,A) Jo(AT) o dA where
A(p,A) 18 arbitrary and g = JC,,p"-Q-L" . With a convenient

chotce of A(p,A ),
(h2) g = PF+ Pt = ﬁ’s‘L‘Ar) . ey aa,

vhere Cs = KbTo gL(Ab) —. h(l+)’)Ga<a"b1‘$ ;‘!(lé]‘b . Use of

equations (41) gives the stresses in the subeidiary space result-

ing fram the potential ¢ .

7= [or [T gD yar

F 2Tt qan] e,

(43) ?é:-—:fcs [(a b’ﬁ-g%-)e'h ( A*- /5+92%)e P).y;u-)

—2 (e B oY gan ] aa,

G (Y eV p o) JAr) A aa,

Cs (l-o-g%-)c ¥ _ (2+-@§—)eﬂ> IAr) 4A,

I
o'~—~.g

ﬂ oyl
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Since in this section only small values of time in the original
space are involved, only large values of p in the subsidiary
space need be considered [9] . For large values of p, 1t will
now be shown that the normal and shear stresses vanish on the

surface z = 0. For large p, Cs 2D g-l(—p’yj—) vhere D

— - ﬂi&’%ﬁ;{l‘ﬁﬁ_f‘_ . af and B can be expanded binamially

to glve
/. Y
ol = (pratn) =[(Fen’ - 20aE] = (Fred
f- - D

Wr+an)?
h 2 b
8= (cpte A= [(G p+n" =225 2] = (5 p+2)
A, p

Both of these expansions converge for all positive p and A

v

2
§+7
sufficiently large , § and B may be replaced in the integrals

gince the form < 3 1. Nov it will be ghown that for p

by{r—a—+;\ and /F: p+ A respectively. From the binomial expaneions

of a¥ and B and the fact that a constant times the geametric
a0

series z (ﬁ%“ = ﬁrl_-r

h=i
binomial expansions to be neglected, it is observed possible to

select p so large as to make ‘ y - (-@4—/\)' and

F
- 2
T ] o st 40
-(/Cyp + A)" as mmall as desired. The a*

1s greater than those parts of the

and , e -
integrals can be shown uni formly convergent in p by use of the

in section III.

Abel theorem in a manner analogous to that used .
ff*' QA'<£
[}

Then for any £ there exists an X such that ‘ﬁ"‘* -
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vhere F* 1s the integrand of the J ' integral and by the
Justifiable interchange of 1limiting processes , T* - j: [6""'
with 8—’-@*-/1 and ,6-’/3;1) +A] dAl( £ for
sufficiently large p. Substitution of the asymptotic expansions
for C; , ¥, and B 1into equations (43) and retentionof only the

higher order p terms givee

_ N -{C
U;,'& 6::222'0% (e :&,- 1:,_/7-‘ /_’.zp) I(r,z),

T* ~ o
oy

2

f: = % (e-gﬁ? - .-/5.:@) I(r,z),

vhere I(r,z) = f"ll (AD) Jo(/\r)e'ﬂzd.a . The transformations

pnecessary to transform the subsidiary estresses to the original
space are [7, pp. 245 eand 2u1]
Ul

- -3/P

L ;—I } = Brte(spps

-l ( @ Ta TP / 1-27)
(h')-)L‘{g_ﬁ: }:0, O<t<vr€.;l = é.(r:;-yg z,

1, t > .

The final stresses in the original space for small t corresponding

to large values of p in the subsidiary space are

G _2(1+7)Catm, [m"‘z_.;t')

0, t< VG2
- 717, 1;>.,..c..';‘z]l(r,.-.),

(16)
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Gz2x 0,

Qx 2 l+)’) G [&f"(zﬁ

0, t< V¢
.{ c"'z]I(l',z) .
1, t>vQe

At this point 1t can be observed that the asymptotic normal and

(46)

ghear Stresses are zero on the surface z = 0. Since, within the
approximations made forlarge p, the stresses due to the thermo-
elastic potential satisfy the boundary conditions, no stresses
need to be superposed as in the quasi-static solution. In this
case the thermoelastic potential has produced the asymptotic
stress solution for amall t tO boundary value problem (39).

With § = 5—, ”n = i,ani.x = A%, for r = O the dynamic
gtresses for small values of time given by equations (46) can be
witten [16, p. 47]

a;':\z —-@T‘i E(g %),

0;19‘0,

, T, T
G Y #(5,9

for z= 0 [16, p. 501,

(¥7)

-e

1, M<L,
Gp22 G, == cb"ri'l'%y b, =1, fr %
(18) o, 3>L
0,220,

0;;-!0 p for t»0
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and for neither r nor z equal gero,

G Gae HBaHL1(5,y),
(49) 0y£¥0,

Eatlit 1(y 1),

vhere G, = _Eﬂ_‘:l%%*_l'o , B(5,t) = c,‘[krfc(ﬁfc)
, t <fcvg o ,t <lCv§
, F(§,8) = Erfe (s - ’ !
{17 o> gl TP o et {1 o> ot

and I(§,7)= ﬁ(-tx) ~L(1’Lx) e ax . Tt can be noted that equations

(48) describing the surface stresses in the dynamic case for small
vyalues of time are the same as equations (27) describing the surface
stresses in the quasi-static case for time approaching zero. That

is, the surface stresses for time approaching zero are given correctly

by the quasi-static solution, This result is in agreement with the

work of Denilovskaya [3 amd 4] .
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VI. DNumerical Results.

In this section the steady-state strceses and displacements of
equations (35) and (36) are tabulated for thirty-one equally spaced
points on the axis of symmetry and on the surface in a representative
Plane containing the axis of symmetry, the integral I = J.:J, (-;Lx)
-Jo(.?. x)¢¥ dx 1e evaluated for fourteen of twenty-seven grid pointe
in this plane, and the dynemic stresses for amall values of time
given by equations (47), (48), and (49) are tabulated for these
twenty-seven grid pointe in terms of E( §,t), and F(§,t). Because
of axial symmetry the evaluation of I and the asymptotic dynamic
stresses actually involves camputation at only seven and sirxteen
points respectively. The sixteen grid points for wvhich the asympto-
tic dynamic stresses are computed are shown below in figure 1. The
seven points in this grid neither on the axis of symmetry nor on the

surface are those at which I is computed.

08-1?—@*' 3 %ﬁ # —> 7

10 O o)

3 0 O

PO o

109 Fiqure |
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The values of the steady-state stresses and displacements for
the indicated points on the axis and on the surface are given to
fowr-digit accuracy in table 1. Since the steady-state normal
and shear stresses are zero throughout, they are not included in

this tabulation.
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The vilue of I is approximated for the seven imner points
of figure 1 by terminating the integration at x =12 vith a maximun
-6
error leas than (3.7)10 since IJ' (-]5 x) J (2 !)I <6 and
- —e § §
A e "dx ¢ (6.1)10 . The integral terminated at x =12 is then
approximated by Simpson's rule:
2 h &
ff(z) dx=x(f,+4f +25,+ ify+ +4f +2f +Uf + o fw
A UG +E 4+ L HUE 26 FUE rD) — s £ ()
vhere h = the length of one subinterval = .03, n = the even number
designating the number of subintervals = Loo, fy= f(x+kh), and
0< §<€12. The maximum error in approximating I(§,%) can be
bounded in the following mamner. Let the integrand £(x)
-X
= g(x) Jo(af' x) where g(x) = J‘(l‘g.. x) e . Since, for all the
inner points marked in figure 1, the absolute valuea of both J,(-lg— x)

and ¢ as vell as all tl;z‘eir derivatives are Bounded by one,
g;—%— <2". JBecause 'g;g Jo.(.x‘)l < 1, ’&%’5 Ja(-%- x)’ < (-?-) P
Therefore % £'Y (x) <€ (5.4)10 [16+ 32 ?.1- 211(—;’-)"-1- 8(.?-)’+ (.;1.)_]
for all x>0. Hence one can easily show that at all the marked immer
points of figure 1 except §=1end 7= 6 the maximum total error
inherent in this approximating scheme for I(S§, %) is less than
('4)10.: and that at § =1 and % =6 this error is less then

(2.3) lO—‘f Round —off error can enter the camputation from the
approximation in the tabulation of the Beseel ani exponential functions
and from the operations performed vithin the computer. The round -off
errar due to approximating the Bessel and exponential functions is
held to a minimum by use of a minimm of nine digits in their
tabulation (23] . It is easily showm that for these seven grid

-5
points this round -off error is less then 10 . The rourd -off error
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within the computer has been checked by instructing the camputer to
make the calculation once rounding down and again rounding up.
Comparison of these results ascertains the maximum round -off error
within the computer also to be less than 10-:at all seven points.
In other words the round-off error cannot be of any consequence
in the four-digit tabulations which follow.

The value of I at the seven aforementioned grid points has
been camputed with the Micaigan State T1lliac Computer, the Mistic,
by the followlng program:

*

Program'’
1. Four hundred values of e‘x for x = .03 tox=121in intervals
of .03 are camputed and stored in the Mistic.
2. Four hunired values of J; (3’: x) far x = .03 to x =12 in
intervals of .03 end for § fixed are input.
3. One value of Jo(-}- x) for x = .03 then x=.06...upto
x = 12 and for -;-Lﬁxed is input and one f,, §,, .
fx- + - Tyoo where £, = f(x +.03k) is camputed.
4, The Smpaozfs rule routine which evaluates the integral up
to the i™ sumand 1s " Jjumped into”.
5. The program returns to step three fourundred times. Then
step six 1s executed.

6. The result ies output.
7. Thevalue of 7 je raised to the next higher value acrosg

the grid.

‘f This program was written by Dr. Gerard P. Weeg.
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8. If all values of » for a given § are not yet used, the
program returns to step three; 1if they are all used, then
the program continues to step nine.

9. The § value is raised to the next higher wvalue down the
grid. If all § wvalues in the grid are used, the program
stops the computer; 1f not, then the program takes ”

at 1ts lowest value and returns to step two.

The values of I determined from this progrem are written in

table 2, All diglits tabulated are significant.

1=! 1=3 n=¢
€21 ] I = .1767 L0174 .002
¢=3| I = .1346 .0595
t=¢| I = .0785 .0295
Table 2

By use of table 2 and equations (47), (48), end (L9), the
asymptotic dynamic stresses are written in table 3. In table 3
E(n,t) and F(n,t) defined on page 36 are abbreviated as E, and F,
respectively. The t in the argumentsof Eond F is teken as positive
in table 3. Because the shear stress vanishes throughout, it 1s not

included in table 3. As in tables 1 and 2, all digits tabulated are

eignificant.
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VII. Conclusion.

The basic theory of the thermoelastic problem has deen
reviewed and the temperature distridbution within a semi-infinite,
three-dimensional half-space bounded by a plane due to a tempera-
ture distribution of T = constant within a circular areq and T= 0
outside mainteined on the surface has been obtained. The original
results of this theasis inclule the deriwation of the quasi-static
stress and displacement distributione within the half-space and
on the boundary and the derivation of the dynemic stress dis-
tribution within the half-space and on the boundary for small
values of time due to the previously indiceted temperature dis-
trivution. In eddition numerical results relevant to the steady-

state and asymptotic dynamic solutions have been tabulated.
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