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ABSTRACT

MAGNETIC MEASUREMENTS OF ANTIFERROMAGNETIC

KMnCl3'2H20 AND LlCuCl3'2H20

By
Peter Tone Bailey

A molecular field theory for calculating the ani-
sotropy and exchange fields from the magnetic phase
boundaries is given. The theory for LiCuCl3-2H20 assumes
an intersublattice exchange, Jl, and an intrasublattice
exchange, J2' and a uniaxial anisotropy. This gives the
field dependence of the transition temperature in terms
of J, and J,.

1 2

For KMnCl.,°*2H,0, a two dimensional Ising model

3 2
with eight sublattices is used. The centers of the
ferromagnetic dimers are coplanar, and the dimers have

an antiferromagnetic arrangement with each other. Assum-
ing that a particular sublattice flops 180° at each of
the four regions above the antiferromagnetic state, four
spin interactions are calculated from the four boundary

values at T=0°K. A brief theory of the effects of a non-

uniaxial anisotropy is mentioned.
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Specific heat measurements, field rotations, and
field sweeps were done adiabatically to determine the
magnetic phase boundaries. The apparatus and methods
are described. For LiCuCl.-:2H

3 2
triple point at 4.2°K and 12.7 kG. The ratio of JZ/Jl is

O, the results show a

17, implying a relatively large intrasublattice exchange.
The total exchange field is 12.5 kG, and the anisotropy
field is 3.1 kG. The rotations show that the spins flop
in the AC plane, and the variation of the paramagnetic
boundary for different field orientations indicates a
non-uniaxial anisotropy.

The results for KMnCl3'2H20 show five distinct
magnetic phases. Using field sweeps, two boundaries are
found near 12 kG and 14 kG that look like first order
spin flop boundaries. The other boundaries appear to be
second order phase transititions since the specific heat
shows an anomaly as the boundary is crossed. The magne-
tic field rotations show that in the first phase above
the antiferromagnetic state, some or all of the spins
may flop in one plane. Then in the second phase above
the antiferromagnetic state, the spins may flop in an-
other plane that is nearly perpendicular to the first one.

With the field perpendicular to the easy axis,
specific heat measurements indicate an antiferromagnetic
to paramagnetic boundary with less curvature than for

the case with the field parallel to the easy axis. In a
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second perpendicular position (90° from the above perpen-
dicular position), two boundaries were observed. One
boundary was similar to the other perpendicular one, and
the other was somewhat more curved.

After extrapolating the phase diagram boundaries
to T=0°K, the zero temperature field splitting for the
lower magnetic phases is comparable to that for the upper

magnetic phases as predicted from the Ising theory.
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INTRODUCTION

The purpose of this study is to further develop
the adiabatic method of studying antiferromagnets and to
investigate some new crystals having the spin flop pro-
perty. The unusual properties of KMnCl3°2H20 necessitated
using some improved methods to investigate the phase
boundaries. The use of a 21 kG magnet with a motor
driven rotating base, a linear sweep circuit for changing
the magnetic field, and a digital gaussmeter made data
taking more precise. This enabled one to record small
temperature changes by observing the output on a linear
chart recorder.

Since the spins of both of the crystals studied
were paired into dimers, modified molecular field theories
were used to account for the spin interactions both within
a dimer and between dimers. One could then estimate the
exchange and anisotropy fields from the results.

The results for LiCuCl '2H20 indicated that the

3
spins flop 90° in the AC plane. Since KMnCl3°2H20 has an
unusual number of phase boundaries, it appeared that the
spins could flop 180° (at least at 0°K), and an eight

sublattice Ising model was used in the analysis.



I. GENERAL THEORY

A. Models for Antiferromagnetism

Several models have been introduced to explain
the exchange interaction which leads to antiferromagne-
tism. The Heisenberg model uses an isotropic interaction
between a spin, §i' and its neighboring spins, §j' The

interaction potential energy of atom i is,

vy = -235;° (55 8,), (1.1)

where the exchange integral, J, is negative for antiferro-
magnets.

The Ising model represents a very anisotropic
case since it assumes that the interaction is between
spin components in only one direction. Then the inter-
action potential for atom i is,

vV, = -2Js;, I.S. . (1.2)
i i, 7373,

The often used Weiss molecular field approxima-
tion expresses the spin interaction in terms of an ex-

change field, H The z neighboring spins are represented

El
by their statistical average, <§j> '
Vi = -2235;0 <85> (1.3)

2



This can also be expressed as,

V. = u.°*H

i =1 —E' (1.4)

where u. = -gugpS., and the exchange field is thus defined

as,

2

Hy = 2z|J|gj/(gzuBz) - 2z|J|b_dj/(NgzuB ) . (1.5)

Its magnitude at T = 0 is given by

_ 2 2
H, = 2z|J|Mo / (Ng“ug

E Yoo (1.6)

where N is the density of spins per sublattice, gj is the
magnetization of the j sublattice, and Mo is the satura-

tion sublattice magnetization.

B. The Anisotropy Field

The anistropy energy for a uniaxial antiferro-

magnet may be expressed as,l

E,6 = -(1/2K(coszei + cos2

K ej), (1.7)

where K is the anisdropy energy per unit volume and ei and

ej are the angles that the sublattice magnetization vec-

tors, M, and Hj’ make with the easy axis. Differentiating,

= i e e i .
dEK K(sin ; cos 3 dei + 51n6j cosei dej). (1.8)

One can define anisotropy fields, HA and HA ’

1 J

by

E, = -H M, cosf6, - H M. cos6..
K A; i i Aj 3 8% (1.9)



If one considers that Mi and Mj are equal at zero applied

field and represents them by Mo’ then differentiating,

dEK = (HAi 51n6i dei + HAj 51n6j dej) Mo. (1.10)
Comparing this with 1.8, then
HAi= K cosei / Mo' HAj= K cosej / Mo' (1.11)

For small ei and ej, a general anisotropy field can be
expressed as,
Hy = K/ M. (1.12)

C. Spin Flopping

The change of the thermodynamic potential is

found by integrating
dd = -S 4T + V 4P - M dH. (1.13)

With the external field, H, parallel to the easy axis in
the antiferromagnetic (AF) state,

o _(H) = - jH M(H') dH' = - 2y, HZ (1.14)
AF o 2 X = ‘

assuming that the parallel susceptibility is independent
of the external field. With the field applied parallel
to the easy axis but with the spins flopped 90° to the
easy axis (SF state), there is an anisotropy energy per

unit volume, K, such that



I | 2
¢p(H) = K - > xgp H. (1.15)

If the anisotropy energy is very small compared

to the exchange energy, then XSF%X_L- Then,
. 1 2

The critical field for the AF-SF boundary can be found by

equating these two potentials; then
= - 1/2

A slight error is introduced by assuming that x”
is independent of field, since the molecular field approx-
imation shows that X” increases with H as XL is unchanged.
The low field values for x“ and %L are usually used, so
that the calculation of HAF-SF may then be slightly dif-
ferent from the experimental value.

The value of the critical field at T = 0 can be
expressed in terms of the anisotropy and exchange fields.

Starting with the perpendicular susceptibility,l

=1/ ()\+K/2M02), (1.18)

X
1
where A is the molecular field constant for nearest

neighbor interaction (1.6). Using Hy = K /Mo (egqn. 1.12),

X, = 2 M,/ (2Hg + Hp), (1.19)

and xJ-(Z HE + HA) K / MO = 2 K. (1.20)



Substituting into 1.17,

= 2 _ 1/2
Hypp_gp = [(2Hp Hy + HT) / (1 x”/x_l_)] ;
(1.21)
or at T = 0,
_ 2,1/2
HAF-SF(O) = (2 HpH, + Hy ) . (1.22)

To calculate the SF-P boundary field for a two
sublattice model at T = 0, first evaluate the exchange,
magnetic, and anisotropy energies of spins gi and §j'
which are from different sublattices. Using 1.1 and 1.9
and summing over the z nearest neighbors, the spin

energy is,

z z
E(0) = -2 J (gi'igk + §j'§§ )

- gug [(s; + §j) - H+ |§i.§A| + |§j.§A|]'

(1.23)
The anistropy energy is expressed in terms of a field
which is parallel to the easy axis.
Just above the AF-SF boundary, the spins are
flopped, perpendicular to the easy axis and antiparallel

to each other. Thus,

2

E(0) 4 2z J s”. (1.24)

AF-SF

In the paramagnetic region, the spins are parallel to

the external field, and



E(0), =-42J38° -2gu, s (H+H). (1.25)

Thus the field, H p’ needed to change the spins from

SF-
the perpendicular (SF) to the parallel (P) orientation is

found by equating the energies in 1.24 and 1.25. Then,

H(0)qp_p = - (4 23 S / g uy) - H,. (1.26)
SF-P B A

Using 1.6 and the fact that J is negative,

H(0)gp_p = 2 Hy - H,. (1.27)

D. Observing Spin Flop Boundaries

As the external field is changed adiabatically,

the temperature variation can be calculated as,2

(4T/dH) = (3T/3H)g _ -(3S/3H)
Wru P) (1.28)

where S is the entropy. Using the Maxwell relation
(BS/aH)T = (aM/aT)H, (1.29)

and T (BS/BT)H = CH(T,H), (1.30)

where CH is the constant field specific heat, then 1.28 is

(dT/dH)

-(T/CH)(BM/BT)H, (1.31)

or (dT/dH)

= (T H/Cy) (3X/3T) 4. (1.32)



In the antiferromagnetic state with x = xH and
(3x/aT) > 0, (dT/dH) is negative. In the spin flop state
with x = Xl and (3x/9T) = 0, (9T/3H) = 0. Thus with an
adiabatically increasing field aligned along the easy axis,
the sample temperature should decrease until the spins
flop and then should remain relatively constant.

2 that an adiabatic rotation should

It can be shown
show a minimum in the AF state when the field is along the
easy axis. Also, if the spins flop in the plane of rota-
tion, there should be a relative maximum in the SF state
at the easy axis position. If the spins flop perpendicular
to the plane of rotation, there should be no temperature
change on rotating near the easy axis for fields slightly
above the AF-SF boundary. There the spins have almost no
component along the easy axis or in the plane of rotation.

Thus there is no change in the magnetic energy on rotating,

as long as the spins remain flopped.

E. Observing Paramagnetic Boundaries

The AF-P and SF-P transitions are of second order.
They can be observed by finding the discontinuity in the
specific heat as a function of temperature in a constant
field. Sometimes an isentrope can be used to denote the
crossing of the paramagnetic boundary. Schelling and

Friedberg3 noticed for MnBr2-4H20 that the intersection of



the isentrope with the AF-P phase boundary coincides with
an inflection point in the isentrope.

It can be shown4 that the isentropes cross the
paramagnetic boundaries tangentially. If Sb(H) is the
entropy on the AF-P boundary, the entropy can be repre-

sented by a new variable,
s =S - Sb(H). (1.33)
Taking partial derivatives,
(B/BH)S = (B/E)H)s - (dSb(H)/dH)(a/as)H. (1.34)

Then,

(aT/aH)s = (aT/aH)S + (dsb(H)/dH)(aT/as)H. (1.35)

From 1.30, (BT/SS)H = T/CH, and if the specific heat, CH'
diverges at the phase boundary, then the last term of 1.35
vanishes as s approaches zero. Then,

lim (BT/BH)S = (ST/SH)b, (1.36)
s=+0

where b refers to differentiation along the phase boundary.
Thus an isentrope near the boundary has the slope

of the boundary. Under perfectly adiabatic conditions,

the isentrope would continue along the boundary and would

not cross it. However, background temperature effects in

our experiments caused the isentrope to cross the boundary,

and an inflection point was observed.
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F. Demagnetization Corrections

The field, H', inside a sample is different from
the applied field, H, due to the magnetization of the

sample;

H' = g_ P_b_d ’ (1.37)

where D is the tensor demagnetizing factor. A sphere has
the lowest factor, a scalar 41r/3.l It would be difficult
to shape the samples into spheres and then align them
properly or to make demagnetization calculations for their
odd shapes.

These corrections might be significant in the re-

gion near T,, where the magnetization is changing rapidly

N
with temperature. In particular, the slopes of the isen-
tropes are field dependent (1.32) and might be affected
in this region. Since specific heat measurements were
used to find most of the boundaries near TN' the correc-
tions were not used. All of the fields measured may be
slightly higher than the actual field inside the crystal,

especially in the low temperature region where M approaches

its saturation value.



II. LiCuCl3'2H20 THEORY

For LiCuCl3'2H20, it is proposed that the copper
ions are arranged in pairs with their spins parallel in
each such dimer.5 The spins of the dimer are then anti-
parallel to those of the four nearest neighbor dimers
(see Fig. 1). This model could be represented by an ef-
fective molecular field (in addition to the applied field,
H) which represented the interaction between the spins of
the (+) and (-) sublattices. Following Heller,6 one may
write,

Hp + = -a°

Hp - g-M . (2.1)

N gty
The tensor, a, corresponds to the antiferromagnetic ex-

change interaction between spins on different sublattices.
The tensor, c, refers to the ferromagnetic exchange inter-

action within a sublattice, and M, refers to the magneti-

=+

zation on respective sublattices.

The anisotropy is included in these tensor coupl-
ing constants, and the contribution of the anisotropy to
the molecular field is assumed to be a linear function of

the sublattice magnetization. It is assumed that a and ¢

have tetragonal symmetry about the preferred axis with
values a” and c” along the axis and ap and cp perpendicular

to the axis.

11
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Figure 1, LiCuClj-ZHZO spin arrangement,
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For each sublattice there are N spins, S, per
unit volume, each with magnetic moment Sgug where up is
the Bohr magneton and g = 2, as determined by Date.7

With an applied field, H,

Mi =M BS(|§ - g.gx - §’§+|Sg“B/ kT), (2.2)
where BS is the Brillouin function,land
M_, = NSgug (2.3)

is the saturated sublattice magnetization. It is also

required that

M _be parallel to (H - a:M_ - c*M ). (2.4)

—t e

M
- = "+ =+

The reduced paramagnetic and antiferromagnetic parts of

the magnetization are defined as respectively

P

(M, + M )/2M__ (2.5)

A= (M, -M)/2M . (2.6)

The assumption that the contribution of the aniso-
tropy to the molecular field is linear in the magnetization
is not necessary for the cases with the field parallel or
perpendicular to the easy axis. For a parallel field, the

perpendicular components of and M are zero, and thus

M,

ap and cp are not used.

If one assumes this linearity for the case of a

perpendicular field, then by equation 2.4,
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M v M - and 2.7
A T e =
M ~“M (-~a_ - c.) + H, (2.8)
+ +
p p p p
since M_ = M, and M_ = -M+” by symmetry. By looking
P p

at 2.7 and 2.8, it can be seen that the contribution of
anisotropy to the molecular field must be linear in the
magnetization. Otherwise 2.4 would not hold.

Using the inverse Brillouin function, a new func-

tion is defined:

G(x) = Bs'l(x)(s + 1)/38. (2.9)
It can be shown that

G'(0) =1, G"(0) = 0, and

G" (0) = -B" (0)/[38'(0)]3 = (27/15) (252+25+1) / (5+1) °.
(2.10)
For a vector, V, G(V) is defined as,
G(V) = v G(|V]) /vl (2.11)

Using the unit vectors ;H‘and lp which are respectively

parallel and perpendicular to the preferred axis,

vVv=v,1 + V.1 (2.12)
= Il =l p—p

Using 2.2, 2.5, 2.6, and 2.11,

G + M -G(-a) = (LY p+al - 1Bl p-a)) (5+1)/3s,

(2.13)
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where 1 = §+/|§+|, and 1_ =M /|M |. For purposes of

simplification, write K as,

K = [G(P+A) - G(B-A)](3kT)/[gug(s+1)] (2.14)

=1|H-aM -¢cM| -1 |H-aM - c'M
-+ = - = 4+ T- = = T+ = -

The plane of spins is defined by the unit vectors l” and

l as shown in Fig. 2.
p g

From 2.4, the only non-zero components of

(H - a*M - c*M ) are those parallel to 1 . Then from

2.14,

K=1 0, (H - M_- + sin 6, (H_-a_M - M

K=1 [cos 6 _( - 2y r C|P*“) sin 6 ( p~3p - g +p)]

+ 1 o_(H- - + sin 6_(-H_+ a M_ +c M
1l [cos 6_( I alw+” c[w_“) sin 6_( p tagM, +c M )],

P P
(2.15)

Parallel and perpendicular components of K are taken using,

l+ =cos 6, 1 + sin 6_ lp
l = - 8 1 + sin 6 1
1 cos 6_ 1 sin 8_ 1.
Then,
_ 2 _ _ . _ _
K” = cos 6+(H” alp_” C|F+H)+cos 6, sin 6+(Hp apM_p cpM+p)

2
- cos” O_(H - - - 8 in 6 _(-H +a M, +c M
_( I al#*u clp_”) cos 6_ sin 6_( ptap +p S _p),

(2.17)
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Figure 2., Definition of angles and veotors.
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and,
Kp = cos 6 sin 6, (H” - a” M_ - c” M+” )
+ sin? 6, (Hp - apM_p - < M+p)
+ cos 6_ sin 6_ (H” - A M+” | M_” )
+ sin? o_ (B, + a M+p +c, M_p) (2.18)

Using 2.4 it is found that,

(H. - aM - cM, )= +¢tan 6, (H, - ay M - c M, )
- + + - +
P P-p Pt I I I | I
(H. - aM -aM )=-tan b (Hy - ay M, - ¢c) M ).
+ - - + -
p P+, Py I I I | I
(2.19)
Finally,
K, = (cos® 6, + sin 0.) (H -a|M_ -e M, )
I + + ™= Il | +”
- (COSZ 9_ + sil"l2 6_) (H” - a” M+”— C” M_”)
= (a” - y(M, - M_ ). (2.20)
I |
Similarly,
K = (c0829 + sinze ) (H - a M - c M )
P + + P Py Py
- (cosze + sinze ) (H. - a_ M - c M )
- - P Py Py
= (a_ - c. ) (M - M ). (2.21)
+ -
P p p p

Then returning to 2.14,
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—— [G(R + A) - G(2 - A)]
(s + l)gug
= EkT [(a”- C“)(§+“'§_”) + (ap - Cp)(§+p - E_p)]
NS (S + l)gzug (a“- c”) b—4+“— E'JJ ap-c l*_4+p - &p
= 3kT ZMOO a”-c” ZMOO
(2.22)

since Moo = NguBs. To simplify the constant coefficient,

consider the case with H along the preferred axis giving

M, =0=M_ . Then the right side of 2.22 is,
P P
NS (s+1) g2 2
3KT (a”-c”)(§+” - E_”)/ZMOO. (2.23)

Using 2.10, G(A) can be expanded in a series;
G(a) = A+ (a3/6) G"(0) + . . . (2.24)

As T approaches Tn from below (assuming a small field, H),

then the left side of 2.22 may be expanded to yield:

[G(P + A) -G (P -24a)]/2 = (b_4+”-M__ Y/2M o (2.25)

since M, and M are very small in this case. For 2.23

and 2.25 to be equivalent,
T, = (a; - ¢, ) NgZpg? s(s + 1)/3k. (2.26)
=l B
Then 2.22 is finally,

(G + &) -G -2A1/2= (4 + )/t (2.27)
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a - c
where t = T/T and Q = aﬂ_—cﬁ .
An expression can similarly be obtained for

[G(P + A) + G(P - A)] as done for equation 2.14:

e
I

[G(B + A) + G(B - A)I3KT/(gug(S + 1))

= L’-IE - g-ﬁ - g.

+1|H-aM

- COM
+ = —-

M| . (2.28)

Proceeding as was done for 2.16,

M_ -cpM+ )]

L=1 |[cosf, (Ha -c # ) + sinf, (H_-a
- - + - + +
II IW ” I ” P P P

+ P

-1 [cose_(H”-alw+”-c”M_”)+ s:.nB_(-Hp+apM+ +cpM_ )1.

p P
(2.29)
Then, as was calculated for 2.18,
2 .
= 6, (H|- - +cos9 9 -aM -c M
L” cos™0_ ( I a|W‘” C|M+”) cos®_ sin +(Hp 3, - p +p)
2 .
+ 8_(H - - ¢ 6 (-H_+ +
cos“0_( I a”M+” c”M_ﬁ+cos _ sinb_( Hp apM+p cpM_p)
= 2H, - + + . .
I (a” C” ) (M+H M_ | ) (2.30)
Also,
. L2
= 6 6 - - - -
Lp cosb  sin +(H“ a”M_” c|p+”)+51n 6+(Hp apM_p cpM+p)

. . 2
- 6 6 - - - 6 - + +
cosb_ sin _(H” a|p+” clw_”) sin“6_( Hp apM+ cpM_ )

=2H - (a_+c )M, +M ). (2.31)
P PP 4, o
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Thus,
[ ) (1l gvp [H - ( ) ( de -
G(P+A) + G(P-A)]1/2 = —sgr— 1 H;-(a|+c M, +M
== - = KT + -1 4M__
3 Ly U Gagpe)) O, 24—
( )NguBS
+1 [H_ - (a_+c ) (M +M_ ]
- PP M
1l
= = (F - WEH - ngp), (2.32)
where
a + c a + c
wegl =l r-2r 2, ana
I I |l I
gug(s + 1)
F = — H.

Upon using the expansion 2.24, the left side of
2.32 is equal to P for temperatures not too far below TN

(A<<1l) and in moderate applied fields (P<<l). This gives,
Py =PF t+W P =PF + RW). 2.33
Bi=E) / (t+W), P, _p/(t ) (2.33)

Since isotropic interactions predominate over anisotropic
interactions, ap/a”= 1= cp/c” . Thus Rx1l and P is pro-
portional and parallel to F for this case.

The bulk magnetization is,

M (T,H) + M (T,H) = X(T)°*H x X H (2.34)
-4 — — — — -— N-

where the tensor, X, is taken as a constant scalar, XN’

for our purposes. Then 2.34 may be rewritten as

P = XH/2M_ . (2.35)
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The temperature dependence of A is calculated from 2.27

by regarding P as a known quantity. Define
Gh(A) = [G(R + A) - G(B - A)]/2 (2.36)

and expand according to 2.24.

Gy (A) = [(p+a)- (2-A)+ (| p+a| % (p+a)-|P-A| 2 (P-A) )G™(0) /61 /2
1 . (2.37)
-1 [(g +2) [1+ (P2 + a2 + 2PA cos))G™(0)/6]
- (p-a) [1 + (P% + 2% - 2pa cosA)G”(O)/G]]
Or,
G, (a) = A [1+(P%+a%)G"(0)/6] + B(R-R)G™(0)/3. (2.38)

where the angle, A, is defined in Fig. 2.
Taking the components of 2.38 which are in the A

direction,

2 coszl G™(0) /3]

A [l + (A2 + Pz)Gm(O)/G + P
= (&) cosy + QA siny) /t

[(1-sin®y) + QsinZy]A/t, (2.39)

where the angle, Yy, is defined in Fig. 2. The components

of 2.38 which are normal to the A direction are

2

2 AP® sin 2\ G™(0)/6

P“A cosA sin) G™(0)/3

(-A/t) (1-Q)sinV¥ cosV.
(2.40)

= (-siny + cosy QAp)
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If the applied field is weak enough so that,

P2 G™(0)/6<<(1 - Q), (2.41)

then A is essentially parallel to l” , i.e., Y=0.
Then (1-Q)sin?y<<P?(1+2 cos?A)G™(0)/6, and since A% is

2

small compared to P“ (1 + 2 coszk), equation 2.39 may be

written with A~¢;
A[l + P2(1 + 2cos26)G™(0)/6] = A/t, (2.42)

where ¢ is defined in Fig. 2. From 2.10 and 2.35 this

becomes,
2
A/t = A |14-31(287+25+1) _ 1,000524)%x2 B2 | . (2.43)
2 2 N
40(s+1)° M
oo
For TN - TN(H)<<TN, this becomes

2
2 X
T (H) = T [1 - 3(2s +2s+1) ( N ) n2 (1+zcos2¢{]. (2.44)

40(s+l)2 Moo

When the field, H, is applied perpendicular to
the preferred axis, g* and M have equal lengths, Mo' as

they turn toward H. Then equation 2.27 yields, (with

6, = 6_)
GM/Mo) (M M ) /My = (M -M )/ (eM,) (2.45)
or GM_/M_ ) = M_/(tM_ ) (2.46)

assuming (M - M )#0. Since 2.46 is independent of H, M
+ - +

and M have a constant length as they turn toward H.
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In order to check the experimental results with
2.44, in particular, the phase boundary between the para-
magnetic (P) and antiferromagnetic (AF) states, the fol-

lowing molecular field calculations will be used,

2 2

= Ny gup

Xy s (s+1)/(6kT ) = thzug/(4zlJl) (2.47)

where Nt is the total number of spins per unit volume

and Mo = thuBS/Z. Assuming a general form for TN’

O

Ty =(2s(s+1)/(3k)) I zi|J.

l (2.48)
i 1

where Jl and J2 are the intersublattice and intrasublattice
exchange interactions respectively, and z; refers to the

number of nearest neighbors, then 2.44 becomes,

gzug(zllJlezlle)(252+Zs+l)(l+2cos2¢)H2

(T,-T) = , (2.49)
N 80k z,° J,° s(s+1)
or, z,|3,]
2 2'72 2 2 .2 2
(2s“+2s+1) [l+ EITEIT] g Hg H® (l+cos“¢)
(T, ~-T) = .
N 2
120 k™ Ty (2.50)
Assuming no intrasublattice interaction,
(2s2+25+1) g% 122 (1+2c0s2¢)
120 kT
N
where TN is written in terms of |Jl|, or
gzug(252+25+1)(l+2cosch)H2 (2.52)

T.-T
(Ty~T) 80 kz,[J,[s(s+1)



IIT. KMnCl3'2H20 THEORY

A. Ising Model

To explain some of the results for the phase dia-
gram of KMnC13-2H20 which indicates five distinct magnetic
phases and four boundaries at T = 0, an eight sublattice
Ising model is introduced. An eight spin unit has two
dimers8 with all the spins antiparallel- to those in its
other two dimers (Figs. 3, 4). Oguchi9 has done an analy-
sis using a four spin unit for CoC12~2H20. There are
four different spin interactions assumed, with J1 being
the intradimer exchange interaction between spins 3.85 A°
apart. The J2’ J3, J4 interactions are the average of
the interactions between a spin and its two neighbor
dimers with the interdimer separations being respectively
6.5 A°, 6.9 A°, and 7.4 A°. J4 represents the short
diagonal of a parallelogram whose long diagonal is 11l.1 A°,.
These interactions are shown in Fig. 4 which depicts a
plane of dimers. A dimer in this plane, which is parallel
to the AB plane, is 9.91 A° (along the C axis) from the
closest dimer in a neighboring plane.

It was not necessary to consider all the inter-
actions between a spin and the individual spins of neigh-

boring dimers. If this were done in the calculation

24
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below, the interactions from the two neighbor dimers would
be coupled together and thus could be represented by a
single interaction. However, the spin is usually closer
to one neighbor dimer than another (Fig. 5a). Then each
neighbor dimer would probably cause a different interac-
tion, and thus the J value represents the average of the
two interactions.

In summing up all the interactions in Fig. 4, the
interactions between the eight spin unit and neighboring
dimers are halved because only half of the interacting
spins belong to the eight spin unit. 1In Fig. 5a, one can
check whether the spins of a dimer (kl, k2) have similar
total interactions. Considering a factor of 1/2 for inter-
actions outside the unit (bounded by kl, k2, ll' 12), one
obtains similar totals, remembering that k1 and kl' are
of the same sublattice and thus both are involved in the
interaction. A similar figure for the k-j interaction
gives the same result.

There is a Zeeman term in addition to the Ising
spin interaction. For each of the boundary field values
(Fig. 5b), the energies of the two bounding regions are
set equal. The values of the exchange constants can thus

lz’ the z component

be found from these four fields. Si
of Siq1v is represented by i1® As shown in Fig. 4, the
sublattices are repeated through the crystal. The energy

is then found from equation 1.2,



-~ >, -~
/..)"., - - :'(-.’ § /..’."f -
[ - " - [~ S\
7 r
15 Ko I Ko

O

Figure 5. KMn013-2H20 ai&

interaction in BC plane
Ising spin model.
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-2 J, (il i2 + jl j2 + k1 k2 + 11 12)

1

-4 J,0(i1 + i2) (k1 + k2) + (31 +32) (11 + 12)]
-4 I3 + 12) (31 + 32) + (11 + 12) (k1 + k2)]
-4 J,0(k1 + k2) (31 + 32) + (11 + 12) (il + i2)]

~gug H (il + i2 + 31 + 32 + k1 + k2 + 11 + 12).

(3.1)

In the antiferromagnetic state (region A of Fig.

E,L =8 S2 (-3, + 4 J, + 4 J

A 1 5 3 " 4 J4). (3.2)

four other phases,

2

4 S (-Jl + 43, +4J, -4 J4) - 28 gug H (3.3)

2 3

(j1 changes sign)

-16 82 Jy - 4 s gig H, (k1 changes sign) (3.4)

4 s2 (-3, -43,-43

) 3 4 J,) -6 S gug H, (3.5)

(j2 changes sign)

2

-8 8" (J; +4J,+ 435+ 473,) -85 gy H (3.6)

2

(k2 changes sign)

E, = E, at their boundary field, H

A B 1’

- 8J,-8Jy+8J,) = gu, H/S. (3.7)
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Similarly for Ep = EC, EC = Ej, and Ej = EE’
(23, - 803, -84J3) =guy Hy/S, (3.8)
(-2 J, - 83J, -8 J3) = gip H3/S (3.9)
(-2 J, - 8J, -8 Jy - 8 J4) = gup H4/S. (3.10)

From equations 3.7, 3.8, 3.9, and 3.10,

J = ‘gUB (Hz = Hl)/8 S = "gUB (H4 - H3)/BSI (3.11)

4

From 3.8 and 3.9,

Jl = - dug (H3 - Hz)/4S. (3.12)

Using 3.11 and 3.12 in 3.7,

Jy + J3 = -gug (Hy + H3)/l6 S. (3.13)

The J2 and J3 interactions are coupled. It is interesting

to note from 3.11 that

H, - H, = H, - H,. (3.14)

4 3

If an exchange field is defined as Hj = Zz[JIS/guB,
and since the number of neighboring dimers from Fig. 4 is

z, = 1, z, =23 =2, = 2, then

= 1 - =1 =1 -
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B. Dipolar Anisotropy

It is believed that an anisotropic dipole-dipole
interaction could contribute significantly to the total
anisotropy. Since each spin has only one nearest neighbor,
there is no cancellation of dipole fields by symmetrically
positioned neighbors. The Mn-Mn separation is only 3.85 A°,
relatively short for manganese salts; and the interaction

is proportional to l/r3:

b 3 . . 5
Hy = M4 Ej/(rij) - 3(yy Eij)(ﬂj gij)/(rij) . (3.16)

The line joining the spins is Iige and p; = gugS. is the
spin magnetic movement.

The principal contribution to the anisotropy is
the spin-orbit interaction which results from the crystal-
line electric field quenching the spin-orbit degeneracy.

A change in the magnitude of the dipolar anisotropy could
shift the easy axis (total anisotropy direction) if they
are not collinear. From equation 3.16, the lowest energy
state is with p. and By parallel to Iiqe which is the
dipolar anisotropy direction. For KMnC13-2H20, this di-
rection is almost perpendicular to the easy axis, certainly
not collinear.

Taking the nearest neighbor dipole interactions

for the eight spin Ising model of Fig. 5b, the interaction

changes as the phase boundaries are crossed. In the
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antiferromagnetic state (A), the spins make equal angles
(6) of about 90° with r; thus cos?6<<l. For regions A
and E,

Hyp = Hgp =2(2 - 6cos?6) ul/r3 (3.17)

aa = Ha
The other regions give,

H. = H (2 - 6 cos?e) u2/r3, (3.18)

dB dab

Hyc = 0. (3.19)

If the Ising model is correct for this crystal,
an easy axis shift in going from region A to B should be
duplicated in going from B to C. Then there should be an
equal but opposite shift going from C to D and from D to
E. Thus regions A and E should have the same easy axis,

and likewise for B and D.

C. The AF-P Perpendicular Boundary

If a crystal has uniaxial anisotropy, one can
calculate an AF-P phase boundary for fields applied per-
pendicular to the easy axis. It is required that the
spins on one sublattice, ﬂl' be parallel to their total

effective field, geff ; or

=0, (3.20)
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where Eeffl = H - HEgz/MO, and HE is given by equation
106.
The interaction from the uniaxial anisotropy

field, , is assumed to be proportional to gl' With

Haz
the applied field, Hy’ along the y axis toward which the
spins rotate, and § being the angle made with the z axis

(which is the easy axis), 3.20 becomes

i bl k
0 (Hy-HEM251n6/MO) (HEM2+HAZM1)c056/Mo =0
0 (Mlsiné) (Mlcosd)
(3.21)
Then,
MlHy - [MlMZHE/Mo - (HEM2+HAZM1)M1/MO]sin6 = 0. (3.22)
10

From Shapira and Foner, Ml = M2 for a perpendicular
field, and siné = 1 (8§ = 90°) at the AF-P transition.

Then the AF-P boundary is given by

Hy = (2HE + HAZ) Ml(T)/MO, (3.23)

where the magnitude of Ml and M, is assumed to be inde-
pendent of the field, H.10

If an additional small anisotropy field, H, (H, <<H

Ay Ay Az

is assumed to have its axis parallel to y, then applying a

field, Hy, gives a different AF-P boundary. Using 3.20,

),
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i j k
0 = 0 [Hy+(HAyMl-HEM2)51n6/MO] (HEM2+HAZM1)cos<S/M° .
0 Mlsiné Mlcosd
(3.24)
Then,
0 = MlHy + (HAyMl—ZHEMZ-HAle)Mls:LnG/Mo. (3.25)
Since M, =M, and sind = 1 at the AF-P boundary,
Hy = (2HE + HAz - HAy)Ml(T)/MO. (3.26)

The anisotropy assists in aligning the spins with Hy’

and the AF-P intercept at T = 0 occurs at a lower field
that that given by equation 3.23.

With a field, H, applied perpendicular to this
HAy axis and the easy z axis, the spins rotate toward the
x axis. Then

i j k
(Hx-HEMzsiné/Mo) 0 (HEM2+HAle)cosa/M° =0
Mls1n6 0 Mlcosd (3.27)

This gives an equation similar to 3.22; and the AF-P

boundary is

Hy = (2H + Hy,) M, (T)/Mo. (3.28)
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Since the spins have rotated in a plane perpendicular to
HAY' this additional anisotropy has no effect in this
case.

One can calculate the AF-P perpendicular boundary
near TN for a two sublattice Ising or Heisenberg model.
Assuming no anisotropy for the Heisenberg case, a field,
Hy' is applied perpendicular to the easy axis, z, (as in
3.21) with § the angle made with the z axis (geff=§y-1§2).

Then from 3.20,

i j k
0 Mlsind Mlcosd = 0.
0 Hy—AMzsinG AMzcosd (3.29)
Then as in 3.22,
siné = Hy/[ZAMz(O,T)]; (3.30)
or at the AF-P boundary where § = 90°,
Hy = 2AM2(O,T). (3.31)

0

For T just below T, at zero field,l

N

1/2(1-T/TN)1/2. (3.32)

M, (0,T)=Ngu S [10 (S+1) %/ (65%+65+3) ]
Then using kT = (2/3)S(s + l)zl|J1|, the AF-P boundary
is,10

(T -7) = (282 2, 2.2
N"T) = (28% + 25 + 1)g%u 2525, k2T ). (3.33)
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With the Ising model, only the z components con-

tribute to the effective field,

Then, M; X H . = 0 = (AM;M,siné - M,H)cos$, (3.35)

and siné = Hy/AMz, or at the AF-P boundary,
H = AMz(O,T). (3.36)
Using this in 3.32 would give
2

(T -1) = (2s% + 25 + 1)g?uy®n?/30k%T, (3.37)

which is four times the result obtained from equation 3.33.



IV. EXPERIMENTAL METHODS

A. Experimental Apparatus

l. Dewar and Calorimeter

The low temperature apparatus consisted of the
pyrex helium dewar shown in Fig. 6, and the calorimeter
shown in Figs. 7 and 8. The dewar was made to specifica-
tions by H. S. Martin and Son, Evanston, Illinois. The
lower portion was tapered to fit between the poles of a
magnet. With the dewar filled with liquid helium and the
outer vacuum can (C) evacuated, a temperature of 1.0° K
could be attained by pumping on the bath in the helium
can (A).

Heat leaks to the helium can (A) were reduced by
several means. German silver, having a low thermal con-
ductivity, was used for the pumping lines from the outer
can flange to the inner can (B) and helium can (A). The
pumping lines leading from the main dewar was used for
the inner can (B) and helium can (A). A nylon spacer was
put in the outer can (C) to prevent this outer can from
touching the inner can (B). The inner can pumping lines,
containing the electrical leads, were surrounded at their

lower ends by the liquid helium in the helium can (a).

37
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Figure 6. Pyrex helium dewar.
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Fig.7 . Cross section of body of calorimeter.
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The electrical leads were varnished to the bottom of the
helium can (A) for good thermal contact.

To reduce radiation, right angle bends were put
in the pumping lines to the inner can (B), helium can (34),
and outer can (C). Also, a brass radiation shield was
placed below the ends of the inner can pumping lines, and
an extra shield was placed at the end of the outer can
pumping line. To increase the thermal resistance between
the sample and bath in order to isolate the sample, the
sample was supported by a nylon holder which was attached
to the bakelite terminal board. The terminal board was
connected to the helium can (A) by a strip of German

silver.

2. Sample Holder

A nylon c-clamp was made to size for each sample
and was attached to the nylon support (see Fig. 9). Nylon
was used for its low thermal conductivity, and also since
it could be cut easily and tapped for bolt threads.2
Screws had to be tight since the crystal would experience
a torque in the magnetic field. The larger nylon support
was used when it appeared that the KMnCl3-2H20 crystal
may have moved during a rotation experiment. When this

much stronger support was used, no change in crystal

position could be observed.



Figure 9.
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The nylon support and c-clamp provided a thermal
path between the bath and sample. On rotating the field,
the sample temperature would change considerably, and the
thermal path would tend to slowly bring the sample tem-
perature back to its original value. This heat leak would
have less effect on a sample with a large heat capacity.
Thus, the smaller support, with a lower thermal conduc-

tivity, was used for the smaller samples.

3. Vacuum Pumps

A Welch Duo-Seal pump was used to maintain a vacuum
on the U-tube manometers and to evacuate the McLeod gauge
after a reading. Another such pump was used as a forepump
for the air cooled Veeco EP 2AI 350 watt diffusion pump
which could attain a pressure of 10-6 mm Hg. This system
was used to pump out the inner and outer cans. A high
capacity Stokes vacuum pump was used to pump on the dewar

or the bath in the helium can. The pumping system is

shown schematically in Fig. 10.

4. Pressure Gauges

A mercury filled U-tube manometer was used to mea-
sure helium can pressures above 2.5 cm Hg. Below that
pressure an oil filled U-tube manometer was used to roughly
observe the lowering of the pressure in equal temperature
intervals for thermometer calibration, while a McLeod

gauge measured these pressures accurately.



- swo3sks putdund jo wexabelp oTjewsayos Ol -bta

N
t- L
- S | L¥0d LSNVHX3 ¥VM3Q
HYM3Q — _.\_ _I
=2
- S |
m
dWnd - T W3L1SAS
Iv3asona aAwA |6 o ¥313IWONVW
HOTIM a ,
U w Y8 | = IATVA 0SI-HA Y
dwnd 2 z =
Noisn4 4ia © c | o -
| x | & —
- w <
3 S - —
IATVA
o
Nt et
3I9NVO l
WNNOVA | S1NdNI av3d
V21819313 HVAOM

JATIVA JATIVA




45

The high vacuum system for the inner and outer
cans could be read on a NRC 831 vacuum ionization gauge.
This simultaneously gave readings for the ion gauge at
pressures below .001 mm Hg and for two thermocouple gauges.
Both the helium can and the dewar had a U.S.G. pressure
guage which gave rough readings (30 in. vacuum to 15

P.SOI.).

5. Thermometer Current Supplies

The sample and bath thermometers were 1/10 watt,
56 ohm, Allen Bradley carbon resistors. One set of leads
carried a constant current of one or ten microamperes,
while another set measured the voltage across the resistor
potentiometrically.

The sample thermometer current supply consisted of
two 28 volt Mallory mercury batteries in series with three
precision resistors, a variable 20 megohm carbon potentio-
meter, and a 100 K ohm precision resistor, all totalling
56 megohms. The current could be adjusted to one micro-
ampere by setting the variable resistor while potentio-
metrically measuring the voltage across the 100 K ohm
resistor. The bath thermometer supply had 5.6 megohms
and 10 microamperes. It was noticed that room temperature
variations would give rise to fluctuations in these cur-

rent supplies. After the supplies for the sample and bath



46

thermometers were enclosed in a 1/2-inch thick wooden box,

these fluctuations were substantially reduced.

6. Measuring Electronics

The sample thermometer voltage was measured by a
Leeds and Northrup K-3 potentiometer with a galvanometer
system consisting of a Leeds and Northrup 9835-B microvolt
amplifier and a Leeds and Northrup dual pen Speedomax G
recorder with a 5 millivolt range card. The amplifier
could be adjusted to give the amount of sensitivity de-
sired. The bath thermometer voltage was measured by a
similar system using the other pen of the two pen recorder
with a 10 millivolt range card. The circuits are diagrammed
in Fig. 11.

The voltage across the sample heater was measured
with a Data Technology 323 integrating digital voltmeter.
The heater current was measured by using a Leeds and
Northrup Speedomax G single pen recorder to read the
voltage across a precision resistor in series with the
heater. A filtered Lambda LM263 power supply (0 to 32
volts) in series with a set of variable résistors totaling
10 megohms provided the heater current. The heater was
turned on and off by a relay connected to an electronic
timer which was preset to run for a selected time inter-

val.
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7. Magnet and Gaussmeter

The magnetic field was provided by a water cooled
Harvey Wells 22 KG magnet with a Harvey Wells DC power
supply providing up to 200 amperes at 80 volts. An elec-
tric motor with two reduction boxes could rotate the
magnet at 2.8, 14, or 70 degrees per minute. Angles were
measured using the 360 gear teeth on the base of the mag-
net. The field could be increased or decreased linearly
at any desired rate up to 3000 gauss per minute. This
sweep circuit compares the output from a stationary coil
on the magnet pole with the set reference voltage. This
voltage difference drives the integrator and high frequency
correcting amplifier, forcing the field to be proportional
to the time integral of the reference voltage. Using a
constant reference voltage gave a constant sweep rate.

The field was measured to within 10 gauss with a
Bell 660 digital gaussmeter using a Hall probe. The probe
was taped to the face of the pole, slightly off center,
where the field strength was equal to that on the mid-
point of the axis of the poles. The calibration of the
gaussmeter was checked with a Rawson-Lush rotating coil
gaussmeter using a Rawson-Lush 501 indicator. A nuclear
magnetic resonance experiment had demonstrated the Rawson-

Lush gaussmeter to be accurate to within 50 gauss.
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B. Experimental Procedures

l. Sample Preparation

The LiCuCl3°2H20 crystals were grown from an
aqueous solution containing approximately 14.9 grams of
LiCl and 60 grams of CuC12'2H20, both reagent grade chemi-
cals. For KMnCl3’2H20, the solution contained approximately
*4H

179 grams of MnCl O and 27.0 grams of KCl, also re-

2 2
agent grade chemicals. These amounts were determined by

11 The solutions

examining the solubility phase diagram.
were kept at room temperature in a dry box which had a
small dehumidifier to enhance the crystal growth. The
crystals were generally grown to approximately one gram
in size.

The crystallographic axes were determined from
the prominent crystal faces and, if necessary, by x-ray
diffraction. From proton resonance and x-ray diffraction
data, LiCuCl3'2H20 has its easy magnetization axis in the
AC plane which is represented by a face normal to the B
axis. Since the crystal has the tendency to deteriorate
on handling, the x-ray work was done rapidly in order to
check the B axis orientation.

With KMnC13-2H20, the crystal faces were not easily
recognized, and the easy magnetization axis was not per-

pendicular to any crystal axis. Thus, x-ray work was

imperative, not only for determining the axes but also to
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decide whether the crystal was single or twinned. Figs.
1 and 3 show the crystal spin arrangements of LiCuCl3'2H20

and KMnCl3-2H20 respectively.

After determining the crystal axes, the crystals
were weighed. Then, a heater (approximately 400 ohms of
1.4 mil diameter, double enameled Evanohm* wire) was wound
on the crystal, and a 1/10 watt, 56 ohm Allen Bradley car-
bon resistor thermometer was mounted on the crystal. Both
heater and thermometer were connected at each end with two
six inch coiled manganin wires with nominal resistivity of
thirty ohms per foot. The resistors were cooled by a fan
during soldering to reduce any damage from overheating.

To protect the crystals and to provide mechanical
support for the heater and thermometer, the KMnCl3-2H20
crystals were coated with a thin layer of clear glyptal
(G.E. 1202 varnish). The LiCuC13‘2H2O samples, however,
were coated with Fluorolube** grease since they were not
sufficiently stable at room temperature to allow varnish
to dry. An 1/8" thick nylon c-clamp was then put on the

crystal and tightened so the crystal would not turn when

placed in a magnetic field.

*Obtained from Wilbur B. Driver Co., Newark, N.J.

**Obtained from Cenco.
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2. Preparing for Experiment

Using information on the morphology of the crystal
as well as the direction of easy magnetization, generally
obtained from x-ray work and nuclear magnetic resonance,
the crystals were mounted so that the axis of easy magne-
tization was in the plane of the magnet's rotation. It
was possible to do this within five degrees of the desired
position. Further, the orientation first chosen was gen-
erally the one which was the least ambiguous in its di-
rection. Sometimes there was a small alignment error,
indicated by the fact that the critical fields were un-
usually high. Furthermore, the discernment of this
critical field by the adiabatic method became more and
more difficult at higher temperatures.

During the first run, a plot was made of the
critical field as a function of magnet rotation. This
plot would serve as a guide for insuring proper alignment,
since the minimum critical field generally was obtained
for the best alignment. This plot also served to indi-
cate any alignment error when the sample was rotated
ninety degrees about the magnetization axis. The small
corrections in angle were achieved trigonometrically by
measuring the positions with a cathetometer. This tech-
nique was repeated until the spin flop field was at its

lowest value.
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After the clamp and sample were mounted on the
nylon holder, the leads were soldered to the terminal
board. Then the inner can (B) was sealed with low tem-
perature Cerrolow 117 solder, and the electrical leads
were checked at the terminals on top of the calorimeter.
Lead O-rings were fitted to the outer can (C) which was
then bolted tightly in place. To help keep the LiCuC13-2H20
samples from melting during this preparation, the inner
(B) and outer can (C) evacuation lines were shut; and the
cans were submerged in liquid nitrogen.

Next the calorimeter was lowered into the dewar
and the dewar was then evacuated. The outer dewar was
filled with liquid nitrogen, and after about twenty minutes,
helium gas was put into the dewar to cool the calorimeter
overnight. The outer can (C) was usually checked for
leaks by pumping on it; and if vacuum tight, it was then
filled with helium gas.

3. Helium Transfer and
Thermometer Callibration

Prior to the liquid helium transfer, the sample
thermometer resistance, atmospheric pressure, and room
temperature readings were taken with the sample at liquid
nitrogen temperature. To further check for any possibility
of vacuum leaks, the inner (B) and outer (C) cans were

evacuated separately to a pressure of 2x10-4mm Hg. 1If
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the system appeared to be tight, approximately 2 mm Hg of
helium exchange gas were put into both cans.

The needle valve to the liquid helium can (A) was
closed and four or five liters of liquid helium were
transferred into the helium dewar by pumping on the dewar
to keep its pressure about one pound below the pressurized
storage dewar. The sample and bath thermometers were
monitored to observe their cooling. Using a level sensor
consisting of four carbon resistors placed at different
levels in the liquid helium dewar, it was possible to
check the height of the incoming liquid helium.

After transferring, the needle valve on the liquid
helium can (A) was opened to permit filling. Then the
magnet was rolled into position and the field was brought
up to the value chosen for calibration. The outer vacuum
can (C) was then evacuated in order to thermally isolate
the inner vacuum can (B) and liquid helium can (A) from
the liquid helium dewar. When the sample and bath thermo-
meters had reached equilibrium, the thermometer calibra-
tion was begun. This involved pumping on the liquid in
the helium can (A) which necessitated closing the helium
can needle valve. Generally 10-15 calibration points were
taken in the temperature range 4.2-1.0° K. The calibra-
tion process consisted of reading the vapor pressure of
the liquid on a mercury manometer and a McLeod gauge, and

reading the resistance of the sample thermometer on a
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Leeds and Northrup K-3 potentiometer with a fixed current

of one microampere through the carbon thermometer.

4. Adiabatic Field Rotations

After the calibration had been completed, the
inner vacuum can (B) was evacuated to isolate the sample.
With the field at the calibration value, the magnet was
rotated while the sample resistance was observed. A maxi-
mum in resistance (minimum temperature) was sought, as
this indicated the position of the easy axis. The magnet
was then fixed at this position (equivalent to being
parallel to this easy axis). The field was then increased,
and the temperature of the sample changed along this adia-
batic curve. After the critical field was determined, 180
degree rotations were done in the antiferromagnetic and
spin flop phases. The rotations in the spin flop state
enabled one to determine the direction to which the spins
flopped.

During a rotation, the bath temperature was held
nearly constant, but the small heat leak through the sam-
ple holder would cause the sample temperature to differ
slightly at positions 180 degrees apart. Because the
sample temperature tended to differ from the bath tempera-
ture during most of the rotation experiment, this caused
an annoying background warming or cooling in the sample.

For this reason any maximum or minimum temperature
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position could be shifted and had to be corrected for
this heat leak. The background temperature effect could
be observed by stopping the rotation and noting that the
sample had not reached an equilibrium temperature. It
was for this reason that it was necessary to do rotations
of a few degrees, so that the sample could not be very
far from temperature equilibrium, and hence the minimum

position could be found more accurately.

5. Adiabatic Magnetizations

To determine the first order SF-AF (spin flop-
antiferromagnetic) boundary, the field, aligned with the
magnetization axis, was swept at 1000 or 2000 gauss per
minute. It was observed that the sample cooled while
still in the antiferromagnetic state; and when the spin
flop boundary was reached, the sample temperature would
either increase or would remain unchanged in agreement
with the expected effect from equation 1.32. Generally
data were taken at slower field sweeps, over smaller
field increments in order to minimize any possible heat
leaks.

The critical field for the SF-AF boundary was also
checked at several angles. The magnetic field was in-
creased to higher values in order to see whether the SF-P
(spin flop-paramagnetic) boundary could be reached. The

SF-AF boundary was consequently mapped out by taking
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adiabatic curves for different starting temperatures. For

the case of KMnCl,*2H,0, inflection points were observed

3 2
at the SF-P boundary and at the AF-P (antiferromagnetic-
paramagnetic) boundary by sweeping the field near these

boundaries. Both of these boundaries were also obtained

more accurately from specific heat data.

6. Specific Heat Measurements

In order to observe the AF-P boundary and SF-P
boundary, specific heat measurements were taken. With a
uniform slight warming or cooling of the sample thermometer
as a background, a heater current of approximately 10 micro-
amperes was used for twenty to forty seconds. Parameters
recorded were the heater voltage, current, time, and also
the number of divisions the chart recorder pen moved dur-
ing the heating period. Calibration of the chart was also
obtained by recording the pen positions at the extrema of
the chart.

Sometimes it was possible to visually observe on the
recorder the position of the maximum in the specific heat.
This occurred when the number of chart divisions suddenly
increased for a given heat input. These specific heat
measurements were taken for different values on the magnetic
field, thus enabling one to plot out the AF-P and SF-P

boundaries.
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After a specific heat measurement at a given field,
it was generally necessary to introduce a small amount of
exchange gas into the sample container in order to cool
the sample to lower temperatures (and hence below the phase
boundary) before the start of another specific heat mea-
surement at another field. The inner can (B) was then

evacuated before more data was taken.

7. Removing Crystal

At the end of the experiment, the helium in the
dewar and helium can (A) was pumped away. If an experiment
was to be rerun with the same sample orientation, the 1li-
quid nitrogen dewar was filled up so that the sample would
remain cold. Procedures outlined in C. were then repeated
for the next experimental run. When there would be several
days between runs for KMnCl.,-2H

3 2
to warm up (not adding any liquid nitrogen) with nitrogen

O, the dewars were allowed

gas in them and in the inner can (B), both of which were
vented to the atmosphere by a one-way valve.

To remove the calorimeter, the liquid helium dewar
was filled with nitrogen gas. The inner vacuum can (B)
was filled with air or nitrogen before it was unsoldered.
Then the sample orientation could be changed or the crystal

could be removed after unsoldering the leads.
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C. Data Analysis

l. Converting Pressure
to Temperature

The manometer pressures were changed to pressures
at 0°C by correcting for the density change of the mercury,
and a hydrostatic pressure correction was made for all
points above the lambda point of helium to account for the
height of liquid helium above the sample. Below the lambda
point there is no temperature gradient in the liquid helium,
and hence no hydrostatic correction was necessary.

All pressures were read on a mercury manometer, ex-
cept those below 2.5 cm Hg, for which a McLeod gauge was
used. The corrected helium pressure readings were con-

4

verted to temperatures using the "1958 He Scale of Tem-

n12

peratures. The first calibration point was taken at

ligquid nitrogen temperature for which the temperature can

be calculated using13

255.821

§.49594 - log;, P + 6.6.

T =

Here P is atmospheric pressure read in millimeters and

corrected to 0°C.

2. Thermometer Calibration

Equation

A least squares fit to the calibration points was

performed using a Hewlett Packard 9100A calculator and us-

ing the standard equation14
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19%—5 = a+ b log R.

This calculation was done immediately after the calibra-
tion was completed so that the results could be used as a
close check on temperatures while running the experiment.

For the M.S.U. CDC 6500 computer, the equation was
modified to give a better fit:

_ a + b log R

1-Ic_ (log R)™
(o]

A fourth degree polynomial gave the best fit to the cali-
bration points below 4.2°K. When extrapolation above these
points was needed (as e.g., for LiCuCl3'2H20), the poly-
nomial was omitted giving the basic two parameter equation.
This linear fit gave the best results when only the six
highest points were used.

3. Chart Recorder
Calibration

For specific heat points, magnet rotations, and
field sweeps, the data was taken with the chart recorder
pen offset from its null position. The thermometer resis-
tance, RT’ could be calculated on the computer from the
potentiometer setting, Ro’ and the number of divisions,

D, that the recorder pen was to the right of null, using

the following equation:2
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2 3
Ro - [Cl-CzR - 2C3R - 3C4R 1D

RT =

1+ [C, + 2C,4R + 3C4R2]D

3

An iteration process was used to determin R by in-
itially setting R equal to Ro to obtain a first approxima-
tion of Rn. This new Rn value was then substituted for R
in the above equation, to determine a second approximation
to RT' etc. This process was repeated until two succes-
sive values for RT differed by 0.1%.

The coefficients, C, were found from a least squares
fit to the voltage calibration points using the relation:

ROL - ROR

—Sr—=obr - C1 * CoRp * C3(RT)2 + C4(RT)3.
A voltage calibration point was taken whenever the increase
or decrease of sample temperature necessitated moving the
recorder pen across the recorder chart by changing the
potentiometer setting. The resistance change in these two
settings is represented by (ROL - RoR)’ and (DL - DR) is
the corresponding change in divisions (see Fig. 1l2a). The
resistance value, RT’ used for the calibration point was
approximately by the average resistance, (RoL + ROR)/Z,
since the null was at the page center and the pen was

moved from one side of the page to the other.
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(a)

RECORDER PEN PATH
| NULL
La—POSITION

Ro =Rl

an (DR)—"{__

|

| _100°
: 90°
: 80°

Figure 12, Example of data on chart recorder.
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4, Specific Heat, Rotations,
Field Sweeps

For specific heat points, the heat input was the

product of the heater voltage, current, and heating time.
The sample mass and molecular weight were used in order
to convert heat capacity measurements to specific heat
results. The heat leaks were subtracted out graphically
as in Fig. l12a. Resistances were calculated for the
start and end of each specific heat point. The tempera-
ture difference was used in the specific heat calculation,
and the average of the two temperatures was taken as the
temperature for that point.

For magnetic rotations and field sweeps, the chart
recorder was marked when a certain angle or field was
reached. As in the specific heat measurements, the tem-
perature was determined from the resistance, which was
calculated from the potentiometer setting and the divisions
from the null position. Voltage calibration points were
taken whenever the pen had to be moved, as with specific

heat points (see Fig. 12b).



*2H,0 RESULTS

V. LJ.CuCl3 2

A. Adiabatic Rotations

In order to align the crystal so that the external
field lies along the direction of easy magnetization, it
is necessary to perform an adiabatic rotation of the ex-
térnal field in the AF state. The easy axis is determined
as the temperature minimum in this rotation. This can be
seen in Fig. 13a for H = 9.0 kG, when the rotation was
done in the AC plane (see Table 1 in Appendix). In fact,
this indication (Fig. 13b) is taken as a sign that the
spin-flopping has occurred.2 Furthermore, this type of
behavior also indicates that the spins have flopped in
the plane (rather than out of it).

For comparison, rotations in the BC' plane (Figs.
14 and 15, and Table 2 of Appendix) show a small cusp
starting to develop at 11.2 kG at the easy axis position.

The cusp gets larger but fades out above 13 kG.

B. Adiabatic Magnetizations

When the field is increased adiabatically, the
sample cools until the spin flop critical field is reached.

Then the sample temperature would level out or increase

63
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Li Cu Cly*2H,0
(9.0 kG,BC' PLANE,C'=110°)
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Figure 14, Licw13-2H20 BC' plane isentropic rotation.
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Figure 15, LiCuCl3 2H,0 BC' plane isentropic rotations.
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as predicted by equation 1.32. These adiabatics are shown
in Fig. 16 and Table 3 in Appendix. The AF-P and SF-P
boundaries were found by specific heat measurements (Figs.
17, 18) and the magnetic phase diagram is shown in Fig. 19
(Tables 4, 5, and 6 of Appendix).

At the lowest temperatures, the AF-SF boundary
was slightly lower for the AC plane than for the BC' plane
(C' is the easy axis in the AC plane) (see Fig. 19). It
was thought that the easy axis might have been slightly
out of the rotation plane for the BC' case. At higher
temperatures, however, the AF-SF boundary for the AC
orientation occurred at higher fields and was more diffi-
cult to resolve than for the BC' case. Most of the dif-
ficulty lay in the reduced sensitivity of the sample
thermometer near 4°K, causing a lower signal to noise
ratio, and the fact that the temperature change of the
isentropes was smaller than that found for other antifer-
romagnets.

An interesting effect in the BC' plane is that at
the easy axis position there is a maximum for the critical
field as a function of angle (Fig. 20a and Table 7 of Ap-
pendix). However, the sharpest anomaly for a field sweep
occurred at the easy axis position, and the anomalies be-
came broader and less distinct as the angle differed from

the easy axis.
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Figure 17. LiCuC13-21-120 specific heat data.
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In the AC plane (Fig. 20b) there is a slight in-
crease in critical field as the angle is varied from the
easy axis. This is a more common effect and can be more
easily understood, since the field strength along the C'

axis is diminished when the field is off axis.

C. Antiferromagnetic-Paramagnetic

Boundary

1. Fielg Parallel to
the Easy Axis

This boundary is obtained from specific heat mea-
surements, the data for which is given in Figs. 17, 18,
and Table 4 of Appendix. For T close to Ty+ One can use
equation 2.52 which neglects any intrasublattice inter-
action and assumes that the anisotropy energy is small
compared to the exchange energy. For the case with the

external field parallel to the easy axis this becomes,

3g?ug? (2s® + 25 + 1) H

Iy~T) = —gokz; 10,1 S(E+ 11 (.1

2

A linear least squares fit to T vs. H2 constrained
to pass through TN at H = 0 is shown in Fig. 21. The fit
is,

(Ty-T) = 1.35 X 1072 g2, (5.2)

with H in gauss. Using equation 5.1, with S = % and

z, = 4, one obtains on comparing coefficients,
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Figure 21, LiCuClBoZHZO fit to AF-P boundary,
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% = 0.42°K. (5.3)
Then the exchange field can be approximated using 1.5,

28z, |J, |
H, = M = —t—2 (5.4)
E gHg
The result is, HE = 12.5 kG.
If one uses the more general form for TN (equation

2.48), it is possible to calculate an intrasublattice ex-

change interaction, i.e., using equation 2.50,

2, J
(282+2s+1) gzuB?‘ I:l+ 2 2]H2

2. J
(TN - » 171
40 k TN
(5.5)
This gives,
zZ, J
(Ty - T) = .26 X 10 91 + zijﬁ He, (5.6)
171
Jo
With z, = 4 and z, =1, — * 17.
1 2 Jl

Such a large intrasublattice exchange is in agree-

ment with the large amount of short range ordering per-

sisting above the Neel temperature.15 As deduced from

the specific heat measurements, 48% of the total magnetic

entropy is recovered above T Although the above calcu-

N.
lations have been made assuming that (TN - T) is propor-

2

tional to H®, it is of interest to examine how the present

data deviate (if any) from this relationship. For this
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reason a plot has been made of (TN - T) vs. H, as shown in

Fig. 22a. This result is given analytically as

(TN - T) = 5.38 X 10'9 Hl‘38. (5.7)

This deviation is not too suprising since the present data
are extended over a wider range of temperature than is
possibly valid for the two-sublattice molecular field
approximation.

This notion is further substantiated by using the

16

equation of Bienenstock describing the AF-P boundary as

28z, J
_ _ H . .2]G _ 171
T = TN [} (—ﬁ;) ] , Hc = ——Eﬁg_- ' (5.8)

based on a two sublattice model. Plotting log (—%—) vs.
N
log [} - (—%—)%] , as in Fig. 22b, does not give a
c

straight line. However, a line drawn roughly through the
points gives G * .02, which is lower than Bienenstock's
values of G = .35 and .36 for the simple cubic and bcc
lattices respectively. Although the crystal structure of
LiCuC13°2H20 is neither simple cubic nor bcc, the differ-
ence given above can not be accounted for merely on the
basis of crystal structure.

2. Field Perpendicular to
the Easy AXis

With the external field aligned along the b axis

and perpendicular to the c' axis, there are four data
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points (see Fig. 19) which can be approximately fit by

(4.39 - T) = .54 X 10~ 2 HZ2. (5.9)

The ratio of this coefficient to that for the field paral-
lel is 0.4. From equations 2.50 and 2.51 we would have
expected a ratio of 0.33.

However, for the field perpendicular to both the b

and c' axes, an approximate fit gives,

(4.42 - T) = 0.04 X 102 H2. (5.10)

Thus it would appear from this brief evidence that the
anisotropy in these two directions is not similar (see
3.23 and 3.26). Consequently the assumption of tetragonal
symmetry about the easy axis may not be valid for
LiCuCl3'2H20, so that a modification in the original
equations might be necessary.

D. Antiferromagnetic-Spin
Flop Boundary

The AF-SF boundary has a slight curvature and can

be fit to the equation,

H=29.36 + 0.078 T + 0.173 T2. (5.11)

This boundary intersects the paramagnetic boundary at the

triple point, 4.2°K and 12.7 kG. The zero temperature

intercept is 9.36 kG (H(O)SF_AF). Equation 1.22,
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1/2
_ 2
H(O)SF__AF = (ZHEHA + HA ) , enables one to calculate an
anisotropy field (HA) of 3100 gauss. Expressing the aniso-

tropy field as a temperature gives,

Mgty o
TA = 5 = 0,21°K. (5.12)

This is comparable to the temperature depression
by the external field of the AF-P boundary at the triple
point. This suggests that equation 2.44 is valid for
LiCuCl3'2H20 much closer to TN than has been assumed.

Such a difference also indicates that the anisotropy plays
a larger role in LiCuCl3'2H20 than originally expected.
A more detailed comparison would require a modification

of equation 2.51, so that the anisotropy is taken into

account more explicitly.

E. Spin Flop-Paramagnetic Boundary

A linear least squares fit to T vs. H2 gives,

T = 4.323 - 0.654 X 10" ° HZ, (5.13)

with H in gauss. The zero temperature intercept is 81.5 kG,
and the zero field intercept is 4.323°K. The latter tem-
perature depression is expected aon the basis of the
molecular field approximation. Furthermore, one would
expect that the spin flop case should be similar to the
case with the field perpendicular to the easy axis, save

for the anisotropy energy. One finds that the coefficient,
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0.654 x 10_9, is not much different than the coefficient,
0.54 x 10-9, in equation 5.9 which represents the case of
the external field perpendicular to the easy axis and

along the b axis.

F. Anisotropy Energy

The anisotropy energy per unit volume can be found
from 1.17,

H

= - 1/2

17

From a plot of magnetization vs. external field, the

susceptibilities at 1.4°K are,

(%L—X”)=(.026-.0078)emu/mole=.0182emu/mole.

(5.14)
Using the density of .0113 mole/cc, this can be expressed

4

as 2.06 x 10 ° emu/cc. Since the spin flop field is 9.7

kG, the anisotropy energy is therefore,
K = 9700 ergs/cc. (5.15)

An alternative calculation can be made for K using

l.6 and 1.12, where A can be written as l/KL. Then,
K= H_H, X,. (5.16)

Using %L=.000294 emu/cc, one obtains K=11400 ergs/cc,

which is in reasonable agreement with 5.15.



VI. KMnCl32H20 RESULTS

A. Adiabatic Rotations

The first crystal tried was twinned, as is not un-
common for these crystals.ll Performing magnetic rota-
tions in plane 1 (see Fig. 23), two temperature minima
were observed in the AF state (Fig. 24 and Table 8 of
Appendix), corresponding to two magnetization axes about
70° apart. At a field of 12.5 kG (Fig. 24), each minimum
is replaced by a relative maximum which indicates that
the spins have flopped within the plane of rotation. At
18 kG, this spin flopping effect disappears (Fig. 25 and
Table 8 of Appendix).

Rotating in plane 2 (see Fig. 23), an orientation
that was obtained from plane 1 by rotating 90° about the
easy axis, there is only one minimum in the AF state, as
expected (Fig. 26 and Table 9 of Appendix). Moreover, at
13 kG and 15 kG (Fig. 26 and Table 9 of Appendix) the
rounded minimum becomes flattened, which indicates that
the spins may have flopped normal to the plane of rotation
(Chapter I, Part D).

It was desirable to check these results by using a

single crystal. Using x-ray diffraction, a crystal was

81
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found that showed no twinning in plane 1. Now a rotation
in plane 1 confirmed that it was single (Fig. 27 and

Table 10 of Appendix). There was some evidence of spin
flopping in this plane as evidenced by the small hump in
the minimum position at 12.3 kG (Fig. 28, and Table 10 of
Appendix). As before, the small peak disappears at higher
fields. 1In plane 2 (Fig. 29 and Table 11 of Appendix),
there is a small flat region near the easy axis for 18 kG.

When investigating the AF-P perpendicular boundaries,
a rotation (Fig. 30 and Table 12 of Appendix) was done in
plane 3, which is perpendicular to the easy axis (shown
in Fig. 23). The temperature change on rotating is more
than could be explained by not having the easy axis gquite
perpendicular to the rotation plane. This minimum tem-
perature position was designated the second easy axis
which was believed to have a lower anisotropy energy than
the principal (first) easy axis. This was deduced from
the relative temperature changes during the rotations.

The next rotation was in the plane of the first
and second easy axes (plane 4 of Fig. 23). These results
show a definite peak at the easy axis position at and
above 15 kG (Figs. 31, 32, and Table 13 of Appendix). The
peak becomes higher and broader as the field increases.

Thus in region B of the magnetic phase diagram
(Fig. 33), some of the spins may flop 90° in plane 1 and

then do not remain flopped in regions C and D. In region

TN e - pp—
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C, some of the spins may flop 90° in plane 4, and then do

not show flopping in region D.

B. "Antiferromagnetic-Spin Flop"
Boundaries

The boundaries between regions A and B and between
B and C are shown in the magnetic phase diagram (Fig. 33
and Tables 14 and 15 of Appendix). Some of the isentropes
are shown in Fig. 34 (Table 16 of Appendix). As shown in
Fig. 35 (Table 17 of Appendix), the lowest value of ch
(upper boundary) was usually at a different angle than
the lowest value of H (lower boundary). In Fig. 35a,
the isentrope slope change was the sharpest at 137°, and
it was not resolvable below 135°. 1In Fig. 35b, the slope
change could not be resolved below 162°.

Corresponding diagrams (Figs. 36, 37 and Table 18
of Appendix) are shown for the twinned crystal. The
symmetry of the twin is evidenced by ch in Fig. 36, as
the 140° minimum corresponds to the 224° minimum. In both
figures, the two rotation minima at a given field corre-
spond to the Hcl curve. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>