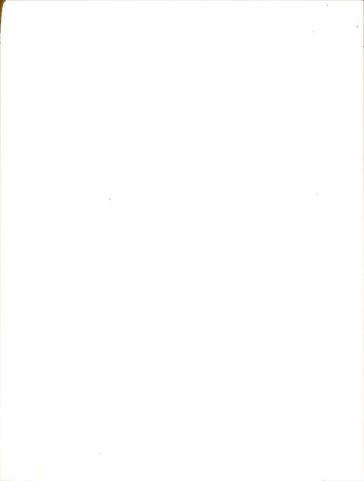
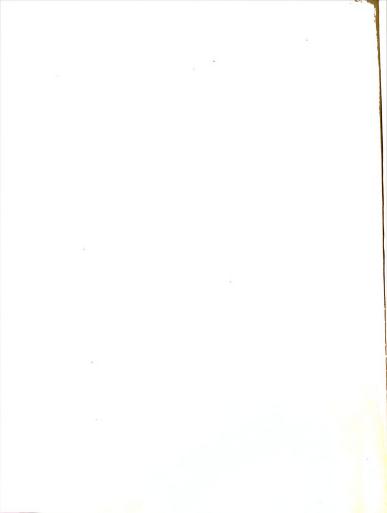
ANALYSIS OF THE LINE LAYOUT,
CABLE AND SHEAVE REQUIREMENTS,
AND FOUNDATIONS OF A 2000 FT.
T-BAR SKI-LIFT

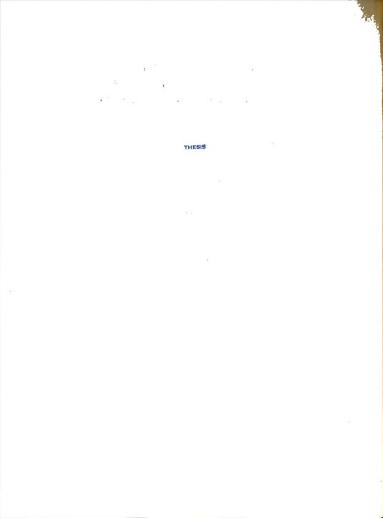

Thesis for the Degree of B. S.
MICHIGAN STATE COLLEGE
Emery Carlson
1948


THESIS

C. 2

SUPPLEMENTARY MATERIAL IN BACK OF BOOK

ANALYSIS OF THE LINE LAYOUT, CABLE AND SHEAVE REQUIREMENTS, AND FOUN-DATIONS OF A 2000 FT. T-BAR SKI-LIFT.


A thesis submitted to
The faculty of
MICHIGAN STATE COLLEGE
of

AGRICULTURE AND APPLIED SCIENCE

by Emery Carlson

Candidate for the degree of Backelor of Science

June, 1948

6/11/48

ACKNOWLEDGMENT

The writer wishes to take this opportunity to express his sincere appreciation to Mr. Blair Birdsall, Ass't Chief Engineer, Bridge Division of the John A Roebling's Sons Company; and to Mr. John R. Herr, Ass't Superintendent of American Steel and Wire Company for their kind consideration and advice. It was through the information they furnished that this paper was made possible. In addition, I would like to thank Professor Cade of the Michigan State College faculty for his advice throughout the project.

9-

ACKNOWLEDGMENT

The writer wishes to take this opportunity to express his sincere appreciation to Mr. Blair Birdsall, Ass't Chief Engineer, Bridge Division of the John A Roebling's Sons Company; and to Mr. John R. Herr, Ass't Superintendent of American Steel and Wire Company for their kind consideration and advice. It was through the information they furnished that this paper was made possible. In addition, I would like to thank Professor Cade of the Michigan State College faculty for his advice throughout the project.

TABLE OF CONTENTS

Page
Preface
Introduction
1. Evolution of ski-lifts from commercial transays
2. Discussion of the different type lifts 2
3. Description of the T-bar list system 2
Design Methods
1. Objectives of this paper 5 & 7
2. General Procedure 5
3. Limiting Requirements 6
4. Essential preliminary data 8
5. Assumptions made 9
Computations
1. Forces ecting on me in hauling rope 15
2. Derivation of an original formula 18
3. Computing sag and tension along the line 21
4. Selection of roce
5. Clearances in each span 36
6. Sheave loads
7. Foundation loads and design 45
Ribliography 50

PREFACE

I have chosen to analyze the design of a ski-lift for several reasons: first, being an ardent ski enthusiast, I have an intense interest in the subject and have had the opportunity to use and observe several different types of ski lifts while in operation. Secondly, since the sport of skiing has become popular in the United States only in the last ten years, it is a relatively new subject. The need for more and better skiing facilities is apparent to anyone who becomes well acquainted with the sport. I have chosen to analyze a T-bar lift because they seem to be the most practical in both the economic and engineering sense for the majority of slopes that are available in this section of the country. Since there are probably less than half a dozen companies in the whole United States that specialize in this type of work, the available material concerning the design of lifts is very limited. If the material presented here in any way helps further the efforts of those interested in the subject, the work I have put forth will have been well worth while.

The Secretary of the first of a Secretary of the second of The state of the s The Carlo Community of the Community of the Carlo Carl I will be the second of the se The Control of the Co the second secon and the contract of the contra \mathbf{v}_{i} and \mathbf{v}_{i} , \mathbf{v}_{i} The second of th (-2k/4) . The second of the second of k , and the contract of the contra • , . . .

INTRODUCTION

The engineering background for this type of structure is not new at all. For many years numerous companies have been designing and building this type structure for transporting freight of various types. The common name applied to these structures is "aerial ropeway" or "aerial tramway." These tramways have been long used by mining companies to carry ore or coal over mountainous terrain over distances up to 72 miles. They have been built and successfully used to transport such articles as sand, gravel, cement, rock. bananas, fish, and even optical instruments. Their use as a mode of transportation has been made economically feasible in instances where the ordinary methods proved too expensive or unhandy. The mining industry has by and large made the greatest use of the aerial tramway, though in recent years it has been used in the construction of several of the larger dams. Boulder Dam is a good example of where an aerial tramway was used to overcome especially difficult transportation comditions.

Development of aerial tramways for passenger conveyances was first developed to high degree by the Europeans. It was not until 1938 that the first aerial tramway was built in the United States. This was built on Cannon Mountain for the State of New Hampshire by the American Steel and Wire Company. Since that time, the sport of skiing and the facilities offered mushroomed until today there are an

estimated one-thousand lifts of every variety, including rope tows.

By applying the known and proven engineering knowledge used in building freight aerial tramways, conversion to passenger type structures was relatively easy. The principle problem lay in the field of safety. An economical, yet absolutely safe, structure was needed; one that required no physical alertness or agility on the part of the rider to safely use the lift.

Commercial tramways consist of four basically different types of structure: bi-cable tramway, twin-cable tramway, reversible tramway, and the mono-cable tramway. Since the fastest, most economical method was desired with no excessive weight requirements, a mono-cable or bi-cable type was chosen as most practical for a ski-lift. Of these two types, the mono-cable type has been most extensively used. Breaking the mono-cable types down into further classes. we find a chair lift, a T-bar lift, and a J-bar lift. The least expensive lifts, most simply constructed, are the T-bar and J-bar lifts. These types are of mono-cable variety and constructed so that the skier remains on the ground and is pulled up the hill. Since this type is better suited to general use than the most expensive chair types used for long steep hauls. I have chosen to analyze one of this type. A T-bar lift needs to be of heavier construction than the J-bar, but is used because of the increased capacity obtained.

The system consists of a row of towers supporting an endless wire rope which is constantly moving while the skiers get on and off the lift. Each towing outfit consists of a

estimated one-thousand lifts of ever vacious, including rope town.

ម្នាប់ ប្រទេសថា ប្រទេសថៃ ស្រែក ស្រែក សមាន បាន ប្រទេសថា ស្រែក ប្រទេសថា ប្រទេសថា ប្រទេសថា ប្រទេសថា ស្រែក សមាន ប្រទេសថា ប្រស្ស ប្រទេសថា ប្រទេសថា

[.]

rope grip attaching the outfit to the hauling rope, a hanger extending down from this grip, a so-called spring box on hydraulic take-up attached to the bottom of this hanger and a wooden T-stick which dangles from this spring box. The upper end of the T-stick is attached to a piece of small wire rope which is wound on a drum inside of the spring box. In the case of the hydraulic type take-up, the wire is shortened by the hydraulic cylinder device. Both are being successfully used at the present time.

As a skier mounts the lift, this rope is pulled out and is extended to its full length throughout the uphill travel of the skier. The passenger's skis remain on the ground and he is literally pushed uphill by means of the crossbar of the T-stick which rests against his hips. In normal operation two passengers are carred by each T-stick, although one may comfortably ride using a small degree of balance. As the skier lets loose the T-stick it is pulled up and out of reach of the skiers. At the lower end of the structure an anchorage tower is situated and the power is applied at this point.

At the upper end a tension terminal is located where the counter-weight is suspended, acting against the frame which contains the tension sheave. By controlling the weight of this counter-weight and having the tension frame free to ride on a truss of the tension structure, a known and uniform tension is imparted to the traction rope at all times, under all comittions of loading--no load to full load. As the wire rope wears and stretches, the counterweight lowers and the tension frame moves back.

The power is applied to the rope by a large horizontal

rope grip coveraing the consist not not hapithe as a proper extending dott from this query, and so consider all and the properties of the consistence of the consiste

sheave located in the anchorage terminal. The power is transferred to this sheave by means of a set of bevel gears, a right angle speed reducer, and a W-belt drive, or some combination of them. The power unit may be either a gasoline engine, diesel engine, or electric motor. The gasoline or diesel engine are used where electricity is not available, but the electric motor is better suited for most units.

The ground under the rope must be relatively smooth and level perpendicular to the line to keep the skiers from sliding off the tow trail. When in operation, three or four operators are required. One should be at the controls of the power unit at all times. Another operator is needed to pull down the T-stick and aid the skiers in getting started. Also, one operator should be stationed at the upper end of the tow as a safety precaution; if the skier doesn't leave the stick at the upper end he would have a free pathway to continue around the tension sheave. This point of the system presents the only point of danger and this is very remote. If a skier falls off the T-stick or becomes fouled in his skis on the tow path he merely lets go the T-stick and maneuvers himself off the path. The great advantage of this type lift is the simplicity by which it operates plus the large capacity it has. It can be used for any reasonable slope with relative comfort to the skier.

•

we are all the company that he had a company to the company to the company that the company the present to the color of the first transfer of the color of the col were the control of the day of the care problem control of the state while the programme of the company of the comp the control of the co grant of the second of the sec (2) • New York (1) A substitution of the control of the contr

and the second of the second o

, i i

In this paper, I will analyze a lift being installed at Jiminy Peak, Hancock, Massachusetts, by the John A. Roebling Sons Company. Since a complete analysis of all the fixtures making up the lift would require more time than is available and would entail many problems outside the field of the Civil Engineer, I will confine my analysis to the following items:

- Finding the tension of the Gable throughout the entire line on both the uphill (loaded) side and the downhill (empty) side.
- 2. Finding the maximum tension and size of rope required.
- 3. Finding the resultant forces on the towers.
- 4. Finding the number of sheaves required at each tower.
- Checking the distance between the rope and the ground at all points for all conditions of loading.
- Checking the design of the foundations against sliding, overturning, and excessive soil pressure.

In the usual procedure of designing a lift, the engineer would have to first make several assumptions based on his past experience and then check them and make the necessary corrections to finally arrive at workable solution. Taking the profile of the proposed lift and the capacity that is expected the designer proceeds along this lime.

First, he establishes the position of the towers. The tension and anchorage terminals are first put in at each end of the line. Next, a tower is put at every sharp break in the profile, sometimes spacing several relatively close if the break is very pronounced. Intermediate towers are then spaced between those needed at critical points. The length

Adjusted to the data of a control water of the data of the data.

ne veste ne verte en la companya de Companya de la compa

early and the annual water and

a de la companya de l

of span must be adjusted such that the sag of the cable will not be so great as to require unreasonably high towers. A good rough rule to use when picking the length of span is to assume the sag to be five percent of the span. The height of tower used in ski lifts may vary from 30 to 30 feet, but should keep within these limits. Knowing the approximate tower height to be used and clearances required of the cable, the distance between towers can be estimated. Once the tower sites have been selected the designer chooses a likely rope size and, using the sag previously allowed for, and the maximum expected load, will calculate the cable tension along the entire line. If the cable strength is sufficient to resist the maximum tension times the given safety factor the rope selected is used. If not, another trial is made.

After the tension at each tower has been calculated, the towers may be designed and the number of sheaves determined. When the maximum tension has been determined a counterweight is selected to keep a constant tension in the cable at the upper end. The anchorage terminal must be designed to accommodate the drive sheave and power plant and suitable frame structure and foundation to resist the tension of the cable. The tension terminal must be designed to contain a tower for suspending the counterweight and for the tension frame to ride freely upon. Speed of the rope must be such that the skier will have sufficient time to get mounted and this time usually determines the capacity of the lift.

The state of the rest of the second of the second content of the second of the second

Wy work will consist of showing the method the designer would use to check his first assumptions. I will use the plans and data given in the completed lift and show how they fall within the specifications. The whole design will be conducted with the following and results in mind:

- 1. That the tow have a capacity of 560 skiers per hour.
- That the maximum vertical distance between the rope and ground at any point on the ascending side of the line be 26 feet.
- That the minimum vertical distance between the rope and ground at any point be 16 feet.

and the second of the second o $\mathcal{L}_{\mathcal{L}}(\mathcal{L}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})(\mathcal{L})(\mathcal{L}_{\mathcal{L}}(\mathcal{L})$

IT'S MORE RUNS PER DAY!

... thanks to the Patented Constam Ski Lift -built by **ROEBLING**

It's FASTER: The twin seating on this lift means more skiers are on the way up at one time, therefore less waiting between runs. It's more congenial, too...gives you a chance to compare notes, have more fun.

H's EASIER: Even novices find it simple to engage the stick or to leave the lift at any level spot. The ride is smooth, pleasant...with just enough effort needed to prevent getting chilled.

It's SAFER: Your skis are on the snow through the whole trip up. And these lifts are engineered and built by Roebling...the builder of the world's great suspension bridges.

RESORT OWNERS: Facts prove that Roebling-built Constam Ski Liffs attract new crowds. And now is the time to get the fact about building a lift for the 1948-49 season. Write John A. Roebling's Sons Company, Trenton 2, New Jersey — exclusive licensee for the Patented Constam Ski Lift in the United States east of the 190th meridian.

Consideration No. 1

Determining whether the distance between the rope and snow is within allowable limits at all points.

Data -- (Distances)

- 1. Average snow depth -- 2 ft.
- Distance butween snow and contact point between T-stick and skier -- 2 ft.
 - 5. Contracted or minimum length of towing outfit -- 8'-8".
 - 4. Extended or maximum length of towing outfit -- 28'-8".
 - Note: In both 3 and 4 the lengths stated represent the distance from the center line of rope at the rope grip to the cross bar of the T-stick measured along the towing outfit. The tow outfit is connected to the grip by means of a swiveling joint so that this distance can always be considered to be a straight line.
 - 5. Minimum distance between rope and ground at any point-16 ft. (full load conditions)
 - Maximum distance between rope and ground at any point ft. (single skier)
 - 7. Towers are 16-21-and 26 ft. high.
- Coefficient of friction between skis and snow---lo%.
 (Weights)
- 1. Total weight of towing outfit -- 68 lbs.
- 2. Average weight of skier -- 165 lbs.
- 3. Weight of rope -- .9 lbs/ft.
- 4. Two skiers ride on each T-stick.

Consideration .o. 1 ...

Wetermining whether bis distance bettern! I move an apprilation with the allocate latter to the latest the

- (a) (a) -- 4-2
- .i .veruge .nov dasta -- . i.
- T. PRARIOCO POR SERVICE EN ENCLOPER E DE CENTRA PER EL PRESENTA PER EL PRESE
- Intermity and provide a substitution of the substitut
- the first of the constant fraction of the constant of the
- CONTRACTOR OF THE STATE OF THE
- $g(x,y) = g(x,y) \qquad \quad f(y) + e^{-ixy} \quad \forall i \in I \quad \forall i \in [n], \quad i \in$
- The second of th

- ent a contract of the contract
- - - - The second of th

- 5. Rope data -- 2" diameter cable, 47,400 lbs. (max. strength)
- 6. Safety factor on maximum tension -- 5
- 7. Spacing of tow outfits along rope -- 96.4 feet.

The data given above is required to make the initial computations.

Immediately, the following condition presents a problem where the first assumption must be made. It concerns the the angle that the tow outfit makes with the vertical as the skier prodeeds up the slope between the towers. I have shown this as angle (a) in the sketch labeled Figure 1. Since the tow outfit is extended to its full length all the time the skier is being pulled, the angle between the tow outfit and the vertical would vary as the distance between the ground and the main cable changed. This would cause the components of force exerted on the main cable to vary accordingly. This problem was solved by using the following assumptions:

- 1. Use an average slope for the entire lift.
- Use an average rope height above ground for the entire length of the lift. Figure 2 shows angle (a) with assumptions made.

With these two assumptions the following set vertical and horizontal forces were found to act upon the hauling rope. Figure 3 gives a sketch showing the forces and how they act. Figure 4 shows the angles used and distances used in computing the forces. The reaction at the main hauling more is broken down into a component of tension along the

the section to the contract of the terms of

to the contract of the second second

grandstate of the second of th

.

.

. .

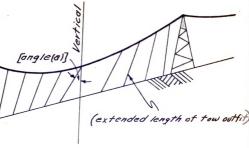
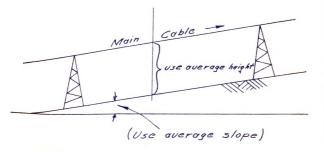
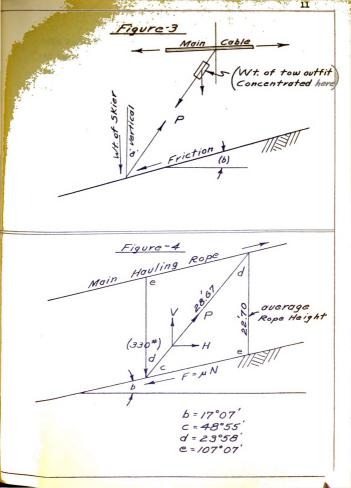




Figure -2

main hauling rope and a vertical component. The component of tension divided by the spacing of the towing outfits results in an average loss of tension per foot of rope length. Similarly, the vertical reaction plus the weight of the towing outfit divided by the spacing of the towing outfit result in an average vertical load per foot of rope length. This added to the unit weight of the rope gives the total load per foot of rope length for the uphill (loaded) side. The downhill (empty) side loading is simply the weight of the towing outfits and the rope.

Since the loss of tension per foot of cable along the span is known the tension at either end of a span can be calculated knowing one end. From this an average horizontal tension is computed and the following formulas for a uniformly loaded span applied.

The copy of all of the second of a second of the second of

COMPUTATIONS TO FIND THE AVERAGE SLOPE AND AVERAGE HEIGHT OF ROPE

Tower Number	Rope Elevation	Ground Elevation	Difference
nchorage Terminal	130.0	116.0	14.0
1	153.5	141.3 (/ 6 out)	18.2
2	200.6	179.7	21.9
3	292.7	266.5	26.2
4	397.4	371.5	25.9
5	466.7	439.5	27.2
6	634.4	613.5	20.9
7	690.8	664.9	25.9
ension Terminal	738.5	714.4	24.1
		Total	204.3

Average height of rope -- 22.7'

Total elevation Difference 738.5 of rope 130.0 608.5

Total elevation Difference 714.4 116.0 598.4

Average elevation Difference -- 603.5

Horizontal length of tow -- 1960'

tan of angle (b) in Figure 4 - .3079

Average slope -- .3079

	5.5						
1	:	1 ::5		1	acis vy		The officers
	•	1	• 14.4	!		1	# ATT
	•	,	• 5. /	i	• ola		J
							\$2.
							N.
						1	
							٠,
			•	i		v	
				1		1	
						;	

÷

i ·

* * *

Using the figures and dimensions shown in Figure 4, angles b, e, and d were found by the following method:

$$\sin e = \frac{(\sin 107007)(22.70)}{28.67} = .7537$$

From Analytical Mechanics

$$P = \frac{w (\sin b \neq u \cos b)}{(\cos c \neq u \sin c)} = \frac{(330) \int (.2943) \neq .1(.9557)}{(.6572) \neq .1(.7538)} = \frac{128.67}{(.6572)}$$

Using the Sine Law of Triangles:

Vertical Component

$$V = \frac{128.67 \text{ (sin } 48^{\circ}55^{\circ})}{\text{(sin } 107^{\circ}27)} = \frac{(.7537)(128.67)}{(.9517)} = \frac{101.91}{}$$

Horizontal Component

$$H = \frac{(128.67)(\sin 23^{\circ}58^{\circ})}{\sin (107^{\circ}27^{\circ})} = \frac{(128.67)(.4062)}{(.9517)} = \frac{54.92}{100}$$

FORCES ACTING ON THE MAIN HAULING ROPE

1. Ascending Side--

A. Vertical Components 101.91 lbs. due to weight of skier

68.00 " due to weight of tow outfit

169.91 lbs.

Note:

Horizontal spacing of tow outfits equals spacing along rope times cosine of angle (b) of Figure 4-(96.4)(.9557) = 92.13 feet.

B. Weight per Horizontal Foot $\frac{169.91}{92.13}$ = 1.85 lbs.

Weight per Horizontal Foot due to Cable =

C. Component along the Rope

=
$$\frac{54.92}{92.13}$$
 = .596 lbs/Horizontal Foot

$$=\frac{54.92}{96.40}$$
 = .570 lbs./foot of rope

2. Descenting Side --

A. Vertical Components $\frac{68}{92.13}$ = .74 lbs. due to weight of tow outfit

As I may be to the way of the

--- Lucial Automatica

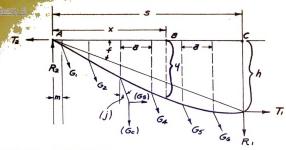
the contract of the contract of the contract of TO THE STATE OF TH

- B. Weight per Horizontal Foot --- (1.60)(sin b)
 (1.60)(.2945) = .470 lbs./foot
- G. Component along the Rope -- (.470)(cos b) (470)(9557) = .449 lbs./foot of rope
- 3. Total Pull on Cable (assuming no sag)

 Ascending (2055)(.5697) = 1170.7 lbs.

 Descending (2055)(.449) = 922.7 lbs.

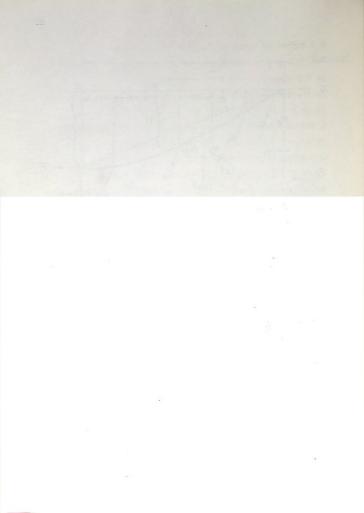
The problem of figuring the deflection tension, angles at supports etc. presented a special case not covered by the ordinary formulas for suspended cables. The case of the T-har lift consisted of a counterweighted span and loads having both vertical and horizontal momnonents. There are numerous equations for vertically suspended loads upon a counterweighted span based on either the estenory or pareholic curves. Upon studying the derivation of formulas presented by F. C. Constamphen in an article published in the A.S.C.E. Proceedings. I attempted to derive a formula for this special case using the same general methods. The formula is based unon a counterweighted seen having any number of evenly spaced loads. It applies to any position the loads may assume wlong the span and is set up for the case where the supports are at defferent elevations. It is presented as follows:


The second secon

.

4. 1

*


1

Nomenclature of Cuantities

y - Vertical Deflection from Upper Support to Point xy

- h Vertical Difference in elevation of Supports
- T Horizontal Tension of Cable at Lower Support
- T Horizontal Tension of Cable at Upper Support
- R Vertical Tension of Cable at Lower Support
- R Vertical Tension of Cable at Upper Support
- a Horizontal Spacing at loads
- m Horizontal distance from left support to first load
- n Number of concentrate loads
- Gs- Horizontal Component of the Concentrated load
- Go- Vertical Component of the Concentrated load
- f Angle between the Morizontal and a chora between supports
- s Horizontal distance between supports
- X Horizontal distance to the left of the point under consideration
- W Weight of cable per foot of horizontal span
- t Horizontal component of Cable tension

P = Number of loads to the left of the Point

Gs = G sin j b =
$$n(n-1)$$
 e = $p(p-1)$

In the derivation the cable is treated as a free body.

Fx = 0

$$T - (G_1 \neq G_2 \neq G_4 \neq G_5) (\sin j) - T_1 = 0$$

 $(R \neq R_{-}) - (n G \cos j \neq ws) = 0$

Me = o

$$R_{p} = (s-m)G \neq (s-m-a)Go \neq (s-m-2a)Go \neq (s-m-na)Go \neq \frac{ws^{2}}{2} \neq T.h$$

$$\neq Gs(m \text{ tan } f) \neq Gs(m \neq a) \text{ tan } f) \neq Gs((m \neq 20) \text{ tan } f) \neq Gs$$

$$((m \neq na) \text{ tan } f) + \dots$$

Let tan f = X

R = n Go-nmGo -
$$\sqrt{n(n-1)}$$
Go a $\neq \frac{\pi s}{2} \neq \frac{\pi h}{s} \neq \sqrt{n \frac{Gs \tan f}{s}}$
 $\neq \sqrt{n(n-1)}$ G Gs tan f

Mb 2 o

yt = xR -
$$\frac{wx^2}{8}$$
 - PxGs - pmGs $\neq \sqrt{\frac{p(p-1)}{2}}$ Gs - $\sqrt{\frac{pm}{2}}$ Gs tan F/

$$y = \frac{xR}{t} - \frac{wx^2}{2t} - \frac{pxGs}{t} - \frac{pm Gs}{t} \neq \sqrt{p(p-1)} \text{ a Gs} - \sqrt{pm Gs} \text{ tan } f$$

$$-\sqrt{p(p-1)} \text{ a Gs tan } f$$

Substituting R in the equation for y.

than out to that mis or summa to the section = 1 11-11-0 - 11-11-0 - 1, ... 0 - 40 11-11-0 - 00 . The probability of $g_{ij}(y_i,y_j)$ is the probability of the $g_{ij}(y_i,y_j)$ and $g_{ij}(y_i,y_j)$ (a) = (a) - (a) (b) (b) - (b) (b) S. 7 1 1 1 1 1 1 1 •

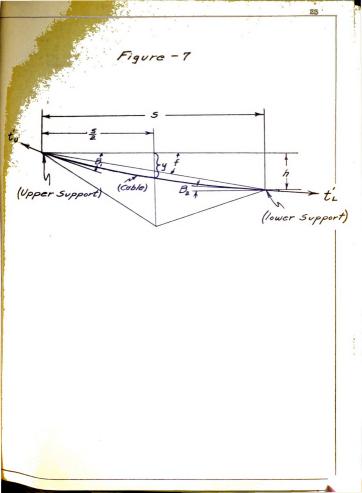
Reducing terms

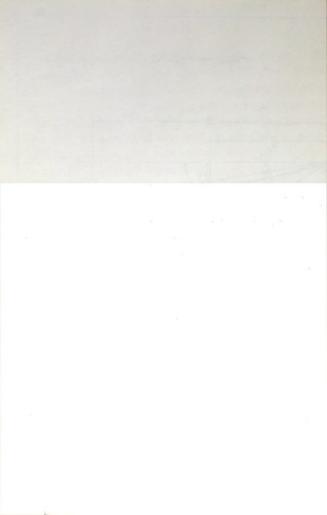
$$y = \underbrace{\frac{Ge}{s} \left(n - \underbrace{nm}_{s} - \underbrace{\frac{ba}{s}} \right) + \underbrace{\frac{x}{t} \left(\frac{\pi s}{2} + \underbrace{Th}_{s} \right) + \underbrace{\frac{xGs}{ts} \tan F}_{2} \left(nm + \underbrace{bd}_{2} \right)}_{s} - \underbrace{\frac{x}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(pm + ca \right)}_{t} - \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs}_{t} + \underbrace{\frac{f}{t} \left(\frac{\pi x}{2} + p \right) Gs$$

$$y = \frac{(150)(522)}{6672} \left[3 - \frac{(3)(58.42)}{300} - \frac{3(91.58)}{300} \right] + \frac{150}{6672} \left[\frac{(986)(300)}{2} + \frac{(6583)(92.1)}{300} \right] + \frac{(150)(117.7)(.307)}{(6672)} \left[\frac{3(58.42)}{2} + \frac{(3)(91.58)}{2} \right] + \frac{150}{6672} \left[\frac{86(150)}{6672} + 117.7 \right] + \frac{117.7}{6672} (58.42) \right] - \frac{(117.7)(.307)(58.42)}{6672} = \frac{47.54}{6672}$$

Obviously, the above formula is much too cumbersome and for too precise to be gractical for the design of a ski lift of this type where considerable leeway is permissible. No attempt has been made to derive a simplified formula covering the special cases of one or two loads centered on the span, although they could be derived by the same methods.

Checking the deflection in Span 5 by this formula, I find the deflection at the center to be 47.54 feet.


Using the approximate mothod used by the J. H. Roebling Company, I find the deflection at the center to be 50.61. Although there appears to be considerable discrepancy in the results the approximate method gives a larger result and would be more toward the safe side in this case than were the reverse true. It is my belief that the derived formula gives the more accurate results since no assumptions are used in its derivation, while the approximate method requires using an average of values and assumes a uniform load which is not the case. Since my derived formula is too unwieldy in its present state and since time is too limited to further investigate, I will use the approximate method in my calculations.


Using the estimated value of 8000 lbs. as the tension at the lower end of the ascending side of the Cable, I worked out the tension along the line toward the top. I found the tension at the top would exceed the strength of the cable I had chosen after applying the safety factor.

A more practical method is to start from the upper end

minoration of the state of the

where the tension is known and kept constant by the counterweight. Then as one works down along the span the only thing limiting the design is the amount of sag. If the tension become so low at the lower end of the cable as to allow excessive sag, allonger cable and higher initial tension at the upper end would have to be used. On my second trial I worked from the upper end and found the sag to be within limits of the specifications so only two trials were necessary. I calculated the descending line in the same matter from the upper end down. •

THE FOLLOWING NOMENCLATURE AND FORMULAS WERE USED IN THE DESIGN OF THE CABLE.

y -- Vertical deflection from upper support to point xy

s -- Horizontal distance between supports

h -- Vertical Difference in elevations of supports

w -- Weight per foot of horizontal length of span

? -- angle between the horizontal and a chord between supports

B, -- Angle between the horizontal and a tangent to a cable curve at the upper support

B2-- Angle between the horizontal and a tangent to cable curve at the lower support

t_ -- Horizontal component of cable tension at lower support

t, -- Maximum cable tension at lower support

tay- Vertical component of cable tension at lower support

tu - Horizontal component of cable tension at upper support

tuv- Vertical component of cable tension at upper support

t' - Meximum cable tension at upper support

tau- Average horizontal component of cable tension in the span

Cable tension approaching and leaving each tower is equal making thof one span equal to the next higher span.

Since the horizontal component of tension is the case of this ski lift is not the same throughout the span an average value of the horizontal component at either end will be used instead.

$$y = \frac{ve^2}{8t} \neq \frac{h}{2}$$

THE POLICE OF SEA MOLECULES OF SEASON OF SEASON WERE

- g to the support of t

B₂ = ws - tan f tu = (t' of next higher span) (Cosine B) tau= tu - (<u>length of span</u>) (Tension Difference per Horizontal Foot)

t_L = tu - (length of span)(tension difference per horizontal foot)

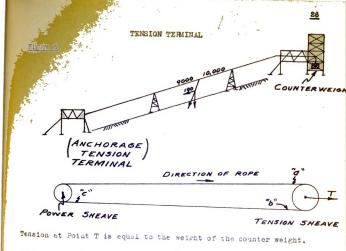
 $t_{V}^{*} = tu \text{ sec } B,$ $t_{L}^{\prime} = t_{L} \text{ sec } B_{2}$ $tuv = t_{V}^{\prime} \sin B_{\ell}$ $t_{LV}^{\prime} = t_{L}^{\prime} \sin B_{2}$

Since the maximum deflection is all that is required it is necessary to celculate the deflection only at the center of the span.

Because of the large slope angle B_2 will be found to be an angle above the horizontal exerting an upward pull at the tower which in the case of towers 1 and 5 exceeds the downward pull of the cable in the adjacent span. This condition requires the use of depressor sheaves.

... - EN E

Contract (A) = (A) =

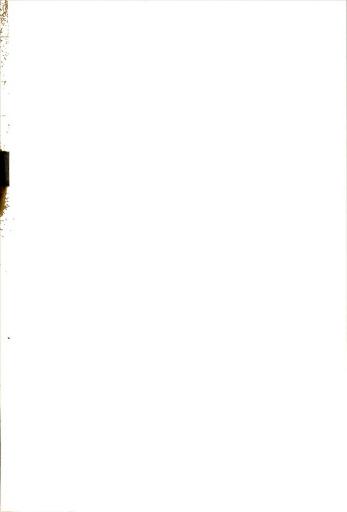

Translation -

.

. . .

..

*



Increased tension in cable due to bending over sheaves applied at either side of tension sheave (a & b) and is .33% of maximum rope tension = (.0033)(9480)= 31%

Tension at C may be roughly estimated as follows:

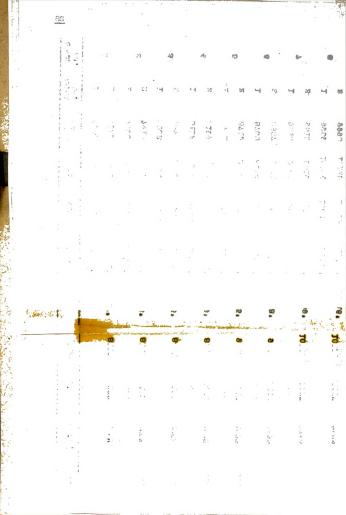
Assume tension at b = 9200

c = 9200-31-1700 = 8000#

SPAN 1 -- 1st TRIAL

Assume: t' = 8000#
$$B_2 = 8^054$$
' from angle f
Trial:
t_ = (8000)(Cosine 8054')= (8000)(.988)= 7904
tu = (7904) \neq (150)(.596) = 7993
tau = 7949
tan $B_Z = \frac{(2.71)(150)}{(2)(7949)} - (.1566) = 7^028$ '
t_ = (8000)(9915) = 7932
tu = (7952) \neq (89) = 8021
tau = 7977

tan
$$B_2 = \frac{(2.71)(.0247)(150)}{(2)(7977)} - (.1566) = .1310$$
 $B_2 = .7031$


tan B, =
$$(.0247) \neq (.1566) = .1813$$
 B, = $10^{\circ}17^{\circ}$
 $t_{\perp}' = (t_{\parallel}')(\sec B_{\parallel}) = (7904)91.0087) = 7972$

$$y = \frac{(2.71)(150)^2}{(8)(7949)} \neq 11.75 = 12.71$$

w = 2.71 lbs./foot

) = = . - -• . .

4 6	, o	9			20	n .	20				80	, ;	. P		Span Trial	
	9515	9540	8637	8700	8719	8701	8199	8182	7877	8082	7912	7993	7932	7904	al t	
	9619	9644	7 8861	8924	8880	8862	8396	8 8361	8056	8261	1009	8082	8 8021	7993	tu	
10099	9567	9592	8749	8812	8800	8783	8298	8272	7967	8171	7957	8038	7977	7949	tau	
11011	16034	16034	21016	81017.	120081	120071	14041	14040	14022	140251	120591	12059	7031	7028	822	-
	19009		26048*		160350		20019*		19043		15043		100170		B ₁	
	10183		9927		9265		8915	4.60	8461	terst-sal	8132	erologa, M	8120		t'u	Y
	9927	9953	9268	9337	8168	8889	8476	8458	8131	8345	6118	8196	7972		et.	
	3340		4472		1875		3095		2855		2203		1457		tuv /	
	2830		3362		2644		2145		2015		1824				£74	

4.																	29
•	D		4	•	•	,	th .	•	•	•	ja '	,	bo		-	No.	apan
25. 22		29.27		89.28		37.42		56.81		49.87		24.50		12.71		¥	
510		175		375		269.7		351.3		300		150		150		Span	Length
125		104		224		161		197		179		89		89		in Hor.Tens.	Length ofTot.Diff.
83		57 20		311		18		98		89		45		\$ 51		Diff.Tens.	i Total
12°45'	: (2	170521	al n	240061		14°23'	a. :	170321	4	17004.		14022*		8054		-	
ter	ä ,	•	,,,,,								-				الله المالية المساولات	T	1
2262		.3223		.4472		2565		.3160		.3070		. 2560		.1560		tan r	
23.75		28.20		83.85		34.65		52.35		46.05		25.55		11.75		100	Þ
. 2543	. 2546	.3471	.3470	-5053	.5049	.2979	.2980	.3701	.3702	.3580	.3568			.1813	£181.	tan B ₁	
1981	.1978	.2975	.2906	.3891	.3895	.2149	.2148	.2619	.2618	. 2560	. 2572	.2307	. 2307	.1310	.1310	tan B	

SPAN 8 -- 2nd TRIAL

Assume: B, =
$$14^{\circ}30^{\circ}$$
 from lst Trial
 $tu = 9200 \text{ } \#$

$$tu = (9200)(\cos B_1) = (9200)(.9680) = (8906)$$

t, = 8906 - 125 = 8781

tau = 8906 - 63 = 8843

tan B, = $\frac{(2.71)(210)}{(2)(8843)}$ + (.2262) = .2584 B, = 14059.

Assume: B, = 140591

tu = (9200)(.966) = 8887

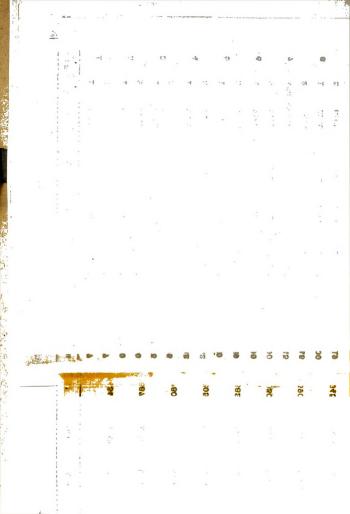
t_ = (8887 - 125) = 8762

tau = (8887 - 63) = 8824

tan B, = $\frac{(2.71)(210)}{(2)(2843)}$ / (.2262) = .2584 B, = 14°59*

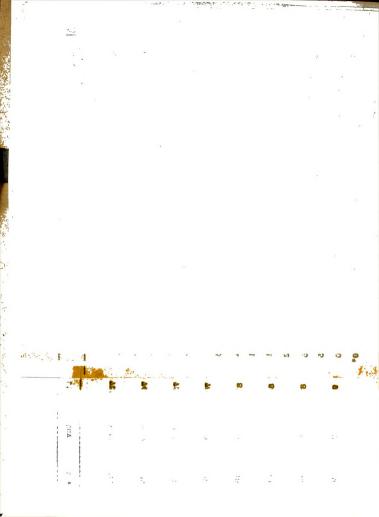
 $tan B_z = (.2262) - (.0322) = .1940$ $B_z = 10^{\circ}59^{\circ}$ tu' = (tu)(sec B) = (8906)(1.0352) = 92.9# Maximum

t', = (t)(sin B) = (8781)(1.0187)= 8945#

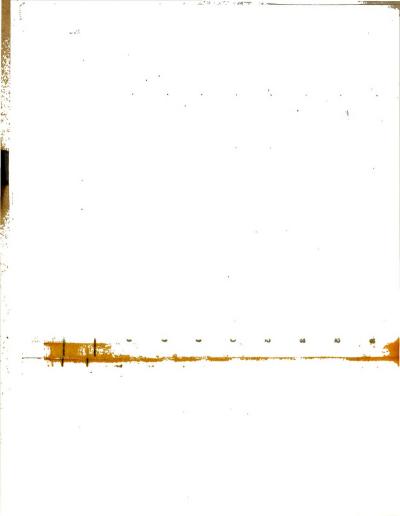

tuy = (tu)(sin B) = (9219)(.2585) = 2383

 $t_{LV} = (t)(\sin B) = (8945)(.1905) = 1704$

 $y = \frac{2.71 (210)^2}{(8)(8843)} \neq 25.75 = 25.44$


DATA FROM SECOND TRIAL OF ASCENDING SI

SpanTrial tu No. No. 1 6477	10				46.	0 -6	o m	* 0 %	0 4 0	0 . 0	0 0 4 0 0	0 0 4 0 0	4 0 0 4 0 2	4 0 0 1	0 4 0 0 4 0
647		-	60	۳		80	P 10	to 1− to	- to - to	20 H 20 H 20	H 20 H 20 H 20	** T ** T ** T **	H 20 H 20 H 20 H 20	20 14 02 14 02 14 05 15 150	H 20 H 20 H 20 H 20 H 20
1	6473	6517	6516	6771		6762	7196	7196 7183	7196 7183 7658	7196 7183 7658 7681	7196 7196 7183 7658 7681	7196 7183 7658 7681 7743	7196 7185 7185 7688 7681 7745 7729	7196 7198 7183 7658 7681 7743 7729 8305	7196 7196 7183 7658 7681 7743 7743 8305 8441
-	6384		64.27		6583			6986	6986	698 6 7520	698 6 7520	6986 7520	6986 7520	6986 7520 7505	6986 7520 7505 8337
tau 6432	6428	6472	6471	1899	6672		7097	7097	7097 7084 7587	7097 7084 7587 7600	7097 7084 7587 7600	7097 7084 7587 7600 7631	7097 7084 7587 7600 7631 7617	7097 7084 7587 7600 7631 7617 8253	7097 7084 7587 7580 7600 7617 8253 8389 8843
B ₁	10040	160021	160021	200121	200121	2016	20 40	20046	20046	20°46° 16°56°	20°46° 16°56° 16°56° 27°12°	20°46° 16°56° 16°56° 27°12°	20°46° 20°46° 16°56° 16°56° 27°12° 27°12°	20°46° 16°56° 16°56° 27°12° 27°12° 19°20°	20°46° 16°56° 16°56° 27°12° 27°12° 19°20° 14°59°
90 PR	7°08*		12040			TO 50	50	14°11.	14011.	14011.	14°11.	14°11' 11°46'	14°11°	14°11' 11°46' 20°50'	14°11' 11°46' 20°50'
\$58 9	6587	6780	6780	7205	7205		7682	768 2	768 2 768 2 8030	768 2 768 2 8030	768# 768# 8039 8039	7682 7682 8039 8039	7682 7682 8030 8030 8690 8690	7682 7682 8030 8030 8039 8690 8690 8945	7682 7682 8030 8030 8690 8690 8845 8945
	6434		6587		6780			7205	7205	7205	7205	7205 7682 8030	7205 7682 8030	7 205 7 68 2 8 6 9 0	7205 7682 8030
tuv	1219		1873		2488	-		2724	2724	2724 2339	2724 2339	2724 2359 3972	2724 2359 3972	2724 2339 2972 2959	2724 2359 2972 2959
t 4	738		1445		1583			1765	1765	1765 1566	1765 1566	1765 1566 2856	1765 1566 2856	1765 1566 2856 2451	1765 1566 2856 2451



				6 1		ea	200	
25.44		29.44	90.11	37.89	57.59	50.61	24.75	18.94
210		175	375	269.7	331.3	300	150	150
125		104	224	161	197	179	89	69
	14°50*	20000	27000	17030	. 8	200		18000
12045		17 ⁰ 52	24006	14°23	170324	17004	14022	3 ⁰ 54
		400	•	•	•	2		-
	2262	3223	4472	. 2565	.3160	-3070	2560	1560
	23.75	28.20	83.85	34.65	52.35	46.05	23.55	11.75
	. 2584	.350 6	.5140	.3045	.3793	.3678	. 2874	.1882
	.1940	. 2940	.3804	. 2083	. 2527	. 2462	. 2246	.1250

																	3	3
* .	0		7	•	0			•	•	•	6			•	٠	•	No Spa	1
	50	-	80	-	80	-	50	-	80	-	80	۳	80	-	50	۲	No. No.	
PTH		_	_	_			~	_	.,	.,		.,					1	-
H1gh-9200 Low7355	8936	010	8548	8567	7964	7956	8095	8088	7715	7729	7434	7424	7297	7305	7358	7293	Ħ	
	~		_						_		-3							
	8837		8466		7788		7968		7559		7293		7226		7287		"	
*	©	62	00	00	72	72	00	8	9	9	7	7	7.	7.	77	9	١.	-
*Assumed Meximum Tension	8886	1168	8547	8526	7876	7870	3208	8025	7637	7651	7363	7353	7262	7270	7323	7258	tau	
Maxi	13046	13046+	180431	180451	250551	250531	15049	15049	19019	18019+	180461	18046	15215	15°15	9049		В	
	46*	461	CR.	Č.	55	53	40	497	191	191	461	461	15	15,	484		-	
Tens:																		
#O#	11043		17001		22015		12056*		150431		15021		13°28		70591	70591	B	
	9200	9200	9025	9025	8652	8854	8414	8414	8175	8175	7851	7652	7563	7563	7431	7430	t'u	
k:	•	ě	6	•	***	*	4	*	5	Ç3	۲	20	Si	Ğ	F,	8	1	
				00		ф		œ		2		9	*	,	9			1
		9025		8854		8414		8175		7852	6	563	00		7555*			
		2190		2896		3864		2317		2604	ţ	2526	2014	3	1273		tu ▼	
		ŏ		õ		4		7		ď.	6	5	i	•	ci			
		1833		2592		3186		1830		21.27	5	2002	1750	1 1 2	1022		t 4	
		ea		100		Ö		Ó		-3	i	2	Č	•	10		1	- 1

Span Span No. y Leng		12.37 1		25.91 150		48.50 30			55.25 35							
pan Diff. in Length Hor. Tens.		160		8			300		G							
f. in Tens.		71		71			141	141	166	156	156	156	156	777 1277 141 141 141 141 141 141 141 141 141 1	141 156 127	156 157 170
Assumed B ₁ for 1st Trials	11°00'		15000		19000			190001	19°00'	18°00.	19°001	16°ບ0" 26°ບ0"				
ь		8054		14°22°		17004			17032	170321	17 ⁰ 321	17 ⁰ 32* 14 ⁰ 23*	17 ⁰ 32' 14 ⁰ 23'	17 ⁰ 32* 14 ⁰ 33* 24 ⁰ 06*	17 ⁰ 32' 14 ⁰ 33' 24 ⁰ 06'	17 ⁰ 52' 14 ⁰ 23' 24 ⁰ 06'
tan f	Supplier at N	.1560		.2560			.3070	.3070	.5160	.5160	.5160 .256 5	.5070 .5160	.5160 .256 5	.5070 .5160 .256 5	.5160 .256 5	.3160 .256 5
alos .		11.75	25.55		46.05		52.35			34.65	34.05	34.65 85.85	34.05 85.85	34.65 85.85	34.05 85.85 28.20	34.05 85.65 28.20
tan B1		. 1000	2725		.3396		3506			2833	2833	2933 -4853	.2933 .4953	.2953 .4853	.2933 .4953 .2367	.2933 .4953 .2367
ten Bg	1402	i d	.2395		. 2744		2814			. 2295	. 229	.2295 .4093	.2295 .4091	.2295 .4091	.2295 .409	.2295 .4091 .3055

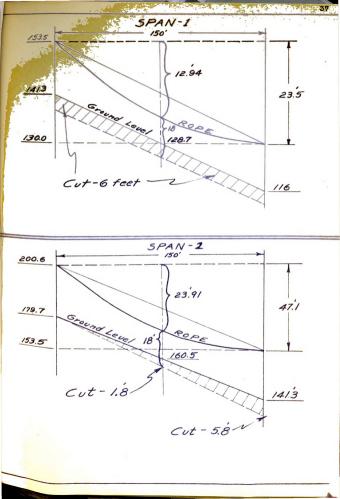
SELECTION OF ROPE

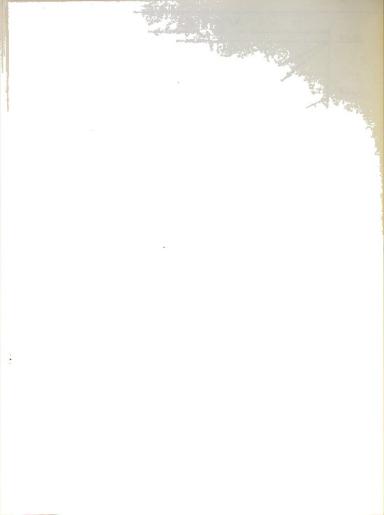
Since the lift has been designed for a maximum tension of 9200# and a safety factor of 5 is required, the following rope was selected:

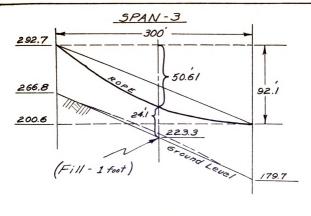
6 x 19 Standard Hoisting Rope 3/4 inch diameter of Monitor Steel and a breaking strength of 47,800 lbs., and weight of .90 lbs./foot.

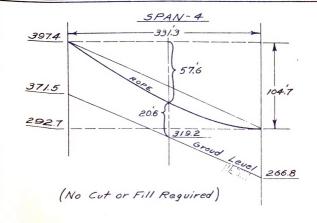
This conforms with the weight used in the design and agrees with the rope selected by the Roebling Company. A standard hauling rope was selected instead of the locked coil type usually used on tramways because a ski lift would not wear the rope nearly as severely and a great saving in rope cost could be had.

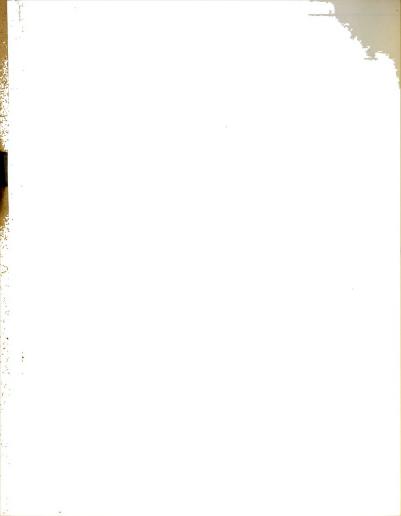
the state of the state

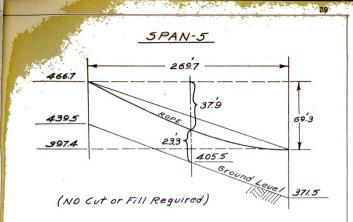

DISTANCE BETWEEN ROPE AND SNOW

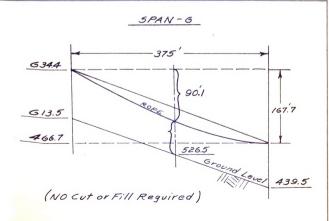

Span No.	Ascending () Descending	Clearance on Ascending	on Descend	ing Req'é
1	12.94	12.37	11.86	12.43	6.14
2	24.73	23.91	16.2	17.02	1.8
3	50.61	48.50	24.1	26.2	fill.0
4	57.59	55.23	20.6	23.0	None
5	37.89	36.47	23.3	24.7	None
6	90.11	87.42	17.8	20.5	None
7	29.44	22.91	22.2	22.7	None
8	25.44	24.74	13.2	13.9	cut ₆

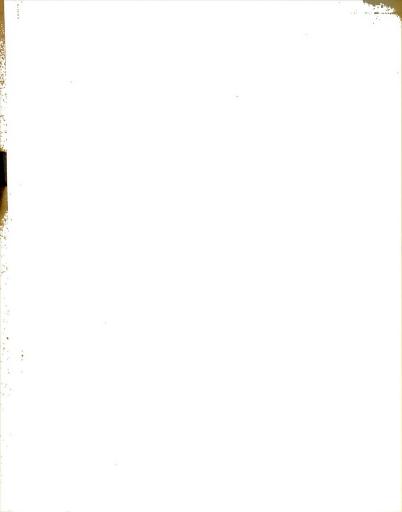

Note: Maximum allowable clearance = 28'
Minimum allowable clearance = 18'

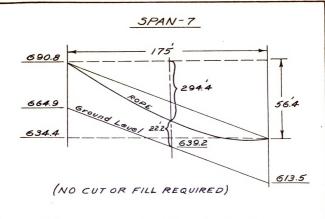

Committee of the Commit

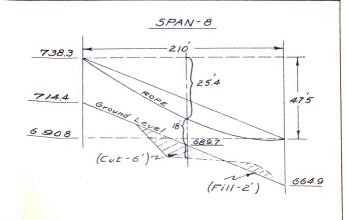

	i.	6.14.9.31	1 1 50 12	111 17 G
		 		1
4.1				:
•				÷,
	•			
				1

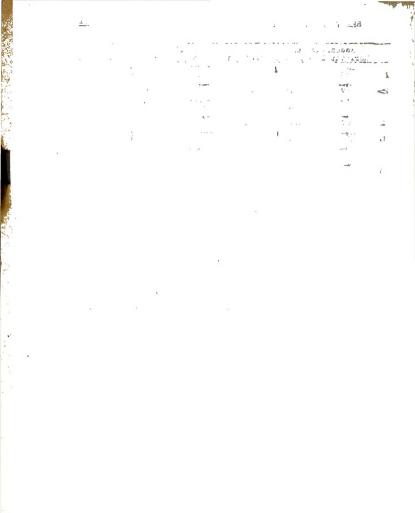











-	Ascendin Korizontal	g Side Vertical	Resultant	Dese Horizontal	ending 814 Vertical	e Resultant
1	46	186	154	188	457	476
8	77	290	298	4	18	15
•	224	723	757	125	899	418
4	857	1158	1210	253	774	814
5	176	517	546	807	869	922
6	608	1521	1630	502	1272	1370
7	321	1255	1200	289	1063	1100

Each sheave takes one-half the resultant load which in no case exceeds the following specifications:

Maximum allowable pressure on each support sheave along the line -- 700 lbs.

Maximum allowable pressure on each hold down or depress sheave along the line -- 525 lbs.

Minimum allowable pressure on any sheave -- 200 lbs.

DATA CONCERNING THE TOWERS

The total weights of the various towers can be assumed to be as follows:

- 1. 16 ft. tower -- 4,250 lbs. applied along a vertical line 1'6" uphill from the center line of downhill anchor belt group.
- 2. 21 ft. tower -- 4,500 lbs. applied along a vertical line 2'0" uphill from the center line of downhill enchor bolt group.
- 3. 26 ft. tower -- 5,100 lbs. applied along a vertical line 2.4" uphill from the center line of downhill anchor bolt.

The forces acting through the sheaves can be assumed to act through the center line of the tower and at the rope elevation.

The weight of the concrete foundations were figured using 140 lbs. per cubic foot and are as follows:

- 1. 16 ft. tower -- 8,660 lbs.
- 2. 21 ft. tower -- 10,000 lbs.
- 3. 26 ft. tower --11,500 lbs.

Resisting force of the soil against sliding is taking 1000 lbs. per square foot as recommended by Peele's Handbook of Mining Engineering.

Soil pressure figured by Formula fs =
$$\frac{P}{A} \left(1 \neq \frac{Gc}{b}\right)$$

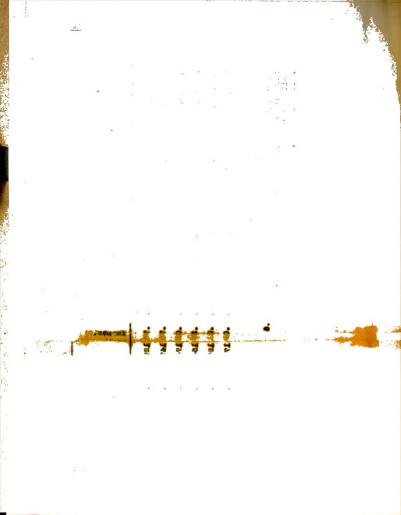
in a second distribution of the second secon

The second of th

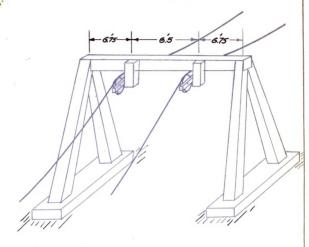
							Tower Number
	7	0	•	•	60	۳	Weight of
	-	۳	-	۳	۳	_	Foundation in Lbs.
	11300	ĕ	1720C	130	1000	8660	
	ŏ	ō	ŏ	ŏ	ŏ	6	Weight of
	**	4	en	**	•		Tower in
	9100	€500	200	5100	4500	4250	Lbs.
	0	0	0	0	0	0	Vertical
	1202	1471	7	5	-	Cit	Sheave
	20	71	785	1041	196	345	Pressure
							Horizontal Sheave
	310	572	263	308		103	Pressure
	0	50	Ğ	Œ	3	G	Overturning
							Moment
	•	10	H	~			about (a)
	8800	13400	15610	8750	990	2634	
	ō	ō	0	ō	ō	4	Resisting Moment
				-		•-	about (d)
	92000	36,	71400	91700	71030	39700	, , ,
	Š	ĕ	8	8	8	8	
							Overturning
	_						SafetyFact.
	Ö					-	1
	•	.0	4	0	72	15.	Distance
	10.6	6.0	4.6	10.5	72	15.1	Distance (e) in ft.
	8	6.0 .01	4.6 .50	10.5 .08	72 .75	15.1 .72	
(0 _{,01}	8	È	8	8	.75	7	(e) in ft.
(0,0	8	6.0 .01 15970					(e) in ft.
(S.o.	-09 17600	01 15970	- 50 T26TO	.08 17440	.75 14700	.72 12910	(e) in ft.
(* _{(*}	-09 17600	01 15970	- 50 T26TO	.08 17440	.75 14700	.72 12910	(e) in ft.
(* _{(*}	8	È	8	8	.75	7	(e) in ft.
(¹⁰ _c ar	-09 17600	01 15970	- 50 T26TO	.08 17440	.75 14700	.72 12910	(e) in ft. Parce (A) in Sq. Inches Soil Pressure
*	-09 17600	01 15970	.50 15610 23.1	.08 17440 25.1	.75 14700 20.4	72 12910 17.7	Area (A) in Sq. Inches
P.a	-09 17600	01 15970	- 50 T26TO	.08 17440	.75 14700 20.4	.72 12910	(e) in ft. Parce (A) in Sq. Inches Soil Pressure

fs in

for any Tower giving a wide margin of safety. Overturning Safety Factor never dropped


safe pressures for any ordinar

Lower

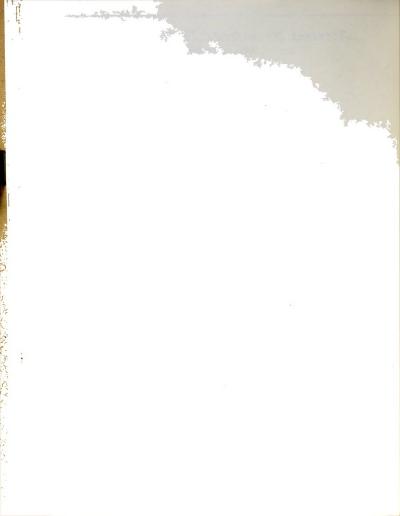

then The

> 717 780 277 695 ئۆ**30** 292

conditions. Pressure shows

Stresses Trensfered To The Tower

Forces on Right Foundation:


13.25 or (663) x (Resultant of ascending side)

6.75 or (.338) x (Resultant of decending side)

Forces on Left Foundation:

(.663) (Resultant of decending side)

(.338) (Resultant of ascending side)

FURCHS TRANSFERRED TO FOUNDATIONS

	A.O	cending	5140		D	Descending Side			
	Horisontal		Yert	IAA.	Horiso	ntal	Vertical		
	66	.34	.66	. 54	.66	.54	.66	.54	
1	80	16	88	45	87	45	302	155	
2	44	25	192	98	3	1	9	4	
3	148	76	477	246	83	42	265	136	
4	222	115	764	394	167	86	537	277	
5	116	60	341	176	203	104	609	315	
6	402	206	1005	517	332	170	904	466	
7	212	109	ප 28	427	191	98	786	374	

Foundations which will be checked are as follows:

- 1. Descending side of Tower 1.
- 2. Ascending side of Tower 2.
- 3. Ascending side of Tower 4.
- 4. Descending side of Tower 5.
- 5. Ascending side of Tower 6.
- 6. Ascending side of Tower 7.

Total

	Ascend 1		Descending Side			
-	Horizontal	Vertical	Horizontal	Verti cal		
1	75	258	1.03	345		
2	43	1.96	20	107		
3	190	61.3	159	509		
4	508	1041	282	951		
5	220	654	263	785		
6	572	1471	538	1421		
7	310	1202	300	1153		

Note:

Only foundations under the sides marked "x" will be checked.

Each different type of loading will be checked. Only the worst loading conditions for each type loading need be checked. If they check all right, the others with less load may be assumed to also be correct.

Checking over the forces acting on the foundations as given in the above table, six different possible types of loading exist. Different height towers, varying length of span, and varying slope causes the differences in cable tensions and angles. Thus, different load conditions are created.

Foundations will be checked for three possible types of failure—aliding, overturning, and soil bearing failure in the direction of the lift. Since the lift is assumed to be nearly perfectly aligned from tower to tower in a

The state of the s

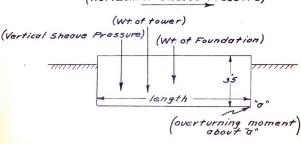
on the towers excepting wind. Although the wind forces may be considerable and include the wind forces on 1/2 the span of cable on each side of the tower, they are not enough to cause failure of the foundation because of the wide transverse spread.

Checking all Foundations Against Sliding

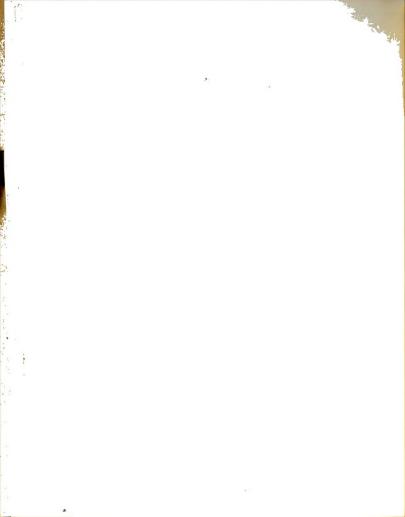
Face Area = (3 × 2.46) = 7.38 sq.ft.

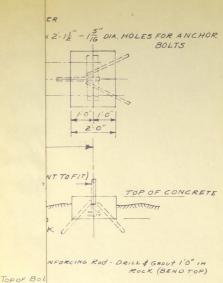
Resisting Force = (7.38)(1000) = 7380 Lbs.

Greatest Sliding Force on Foundation = 572 16 Safety Factor = 7380 = 12.9 OK


Two General Cases of Foundation Loading

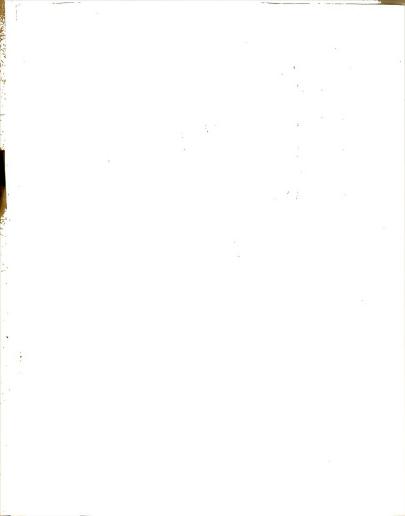
(Horizontal Sheave Pressure (Wt. of Tower)


(Vertical Sheave Pressure) (Wt. of Foundation) 3.5 overturning length figured about " "


This case applies to foundations at towers 1 \$5

(Horizontal Sheave Pressure)

This case applies to foundations at towers 2,3,4,6



TOP OF CONCRET OTING - ROCK TYPE

	1/5	
4	EYE BAR	(F. B.O.)
	HEX SEMI-FINISH	ED NUT (F. B.O.)
3-0" MIMIN		(F. B. O.)
FINISHED		

TH FOOTING SHALL PENETRATE

BIBLIOGRAPHY

- EngineerNews Record (May 30, 1989) by M. P. Morrison, Tramway Engineer at the American Steel and Wire Company, Aerial Tramway Development for Construction Haulage.
- Aerial Tramways, by F. C. Carstorphen, M. Am. Soc. C.E., Vol. 53, pp. 2102, A.S.C.E. Proceedings.
- Simple Method of Computing Deflections of a Cable Span
 Carrying Multiple Loads Evenly Spaced, by F. C.
 Carstorphen, Vol. 83 of Am. Soc. of C.E. Transactions,
 p. 1383.
- 10.000 Aerial Tramways, by F. C. Carstorphen, Vol. 142 (August, 1941) Engineers and Miners Journal, p. 110.
- Handbook of Mining Engineering, by Peeles, Vol. 2.
- Wire Rope Engineering Handbook by American Steel and Wire Company.
- Analytical Mechanics for Engineers by Seely and Ensign.
- Mechanical Engineer's Handbook (Fourth Edition) by Lionel S. Marks.

TE TO THE TOTAL TOT

.

DEG 5-1961 M

A ...

Pocket has: 2 suppls.

