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ABSTRACT

HIGH-ORDER UNSTAGGERED CONSTRAINED TRANSPORT
METHODS FOR MAGNETOHYDRODYNAMIC EQUATIONS

By

Qi Tang

The ideal magnetohydrodynamic (MHD) equations are one of the most important plasma

models. The equations model the dynamics of a perfectly conducting quasi-neutral plasma

and provide evolution equations for the macroscopic quantities of mass, momentum, and

energy density, as well as the magnetic field. MHD have been used successfully in many

plasma physics application areas, including in space weather prediction, astrophysics, as

well as in laboratory plasma applications such as flows in tokamaks and stellarators. In this

thesis, we focus on the development of high-order numerical methods for the ideal MHD

equations and its applications.

In the first part of the thesis, we develop a class of high-order finite difference weighted

essentially non-oscillatory (FD-WENO) schemes for solving the ideal MHD equations. In

the proposed methods, we control divergence errors in the magnetic field by using a novel

high-order constrained transport approach to solve the magnetic potential equations. The

potential equations are solved using a modified version of the FD-WENO scheme developed

for Hamilton–Jacobi equations. Special limiters based on artificial resistivity are also intro-

duced to help control unphysical oscillations in the magnetic field. Several two-dimensional

and three-dimensional numerical examples are presented to demonstrate the performance

of the proposed method. Numerical results have shown that with such methods we are

able to resolve solution structures that are only visible at much higher grid resolutions with

lower-order schemes.



In the second part of the thesis, we focus on the problems involving low density and

low pressure in the ideal MHD system. A maximum-principle-preserving flux limiter for

scalar hyperbolic conservation laws is extended to a novel positivity-preserving limiter for

the ideal MHD equations in this portion. The proposed limiter is applied to the ideal MHD

schemes proposed in the first part, resulting in a high-order positivity-preserving scheme.

The resulting scheme can achieve high-order accuracy, a discrete divergence-free condition

and positivity of the numerical solution simultaneously. Compared to the other positivity-

preserving limiter in the literature, our limiter has the advantage that there is no extra CFL

restriction from the limiting steps. Numerical examples in one dimension, two dimensions

and three dimensions are provided to verify the order of accuracy on smooth test problems

and to show the performance when the problems involve low density and/or low pressure.
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Chapter 1

Introduction

1.1 Plasma

In physics, matter in the universe is usually classified into four states: solid, liquid, gas and

plasma. The fundamental distinctions among those four states are based on difference of

the strength of the bonds between the particles of the states. It is also equivalent to say

the molecular interrelationships matter. A state is called solid if intermolecular attractions

keep the molecules in fixed spatial relationships such that the binding forces are very strong.

Liquid is the state in which the weak attractions keep molecules close, but not in fixed

relationships. When molecules are relatively separated and intermolecular attractions are

essentially absent, molecules are in the gaseous state. However, plasma is an ionized gas that

occurs at very high temperatures. The atoms or molecules in this heated gas have so much

kinetic energy that they are able to overcome the binding energy of the electrons. Although

the transition from a gas to a plasma is not a phase transition in the thermodynamic sense,

the distinct intermolecular forces by the heating process leads to the distinct properties of

plasma. As a result, plasma is treated as the fourth state of matter. On Earth, the common

states of matter are solid, liquid and gas, but most of the matter of the universe is found

in the plasma form. For instance, stars are mostly made of plasma. In this thesis, we are

generally interested in the fluid models of plasma.
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1.2 Models of plasma

There are mainly two distinct types of models for plasma: kinetic models and fluid models.

Both of them describe the particle locations and velocities and the electromagnetic fields

in the plasma. The kinetic models describe plasma by a distribution function of particles

at each point in the phase space, while the fluid models use macroscopic quantities such as

mass density and pressure to describe plasma. In general, kinetic models are expected to be

more accurate than fluid models. However it is also more computationally expensive due to

its higher dimension. In this section we briefly review several kinetic and fluid models.

1.2.1 Kinetic models

In general, kinetic models refer to the methods evolving some representation of particle

positions and velocities. One of the most fundamental equations to describe plasma is

the Boltzmann equation, which describes the evolution of a probability density function

fα(t,x,v). Here fα(t,x,v) is a distribution function of plasma species α in the phase space

(x,v) at a given time t. Mathematically, it is written as follows:

∂fα
∂t

+ v · ∇fα + aα · ∇vfα =

(
∂fα
∂t

)
coll

(1.1)

In the case where long range interactions between charged particles are described with

Maxwell’s equations, the acceleration aα is typically dependent only on the Lorentz force by

the electromagnetic field, i.e.,

aα =
Fα
mα

=
qα
mα

(E + v ×B), (1.2)

2



where mα represents the mass of species α and qα represents the charge of α. The term(
∂fα
∂t

)
coll

in (1.1) represents a general collision operator, which describes the change of

plasma due to particle collisions. In particular, the Vlasov equation is the case when the

collisions between particles are neglected, which can be resulted under certain scaling of the

the Boltzmann equation. In other words, we assume
(
∂fα
∂t

)
coll

= 0 resulting in the Vlasov

equation.

1.2.2 Fluid models

As we mentioned, the kinetic models are numerically expensive to solve due to the high

dimension of the phase space. As a result, people simplify the high-dimensional Boltzmann

equation by evaluating the moments in the velocity space (v-space). With a proper closure

for higher moments used in the process of moment evaluation, the resulting systems become

the fluid models whose unknowns only depend on the independent variables of the time t

and the space x. In this subsection we briefly present a general procedure to obtain fluid

models and and also review several important models of fluid models.

1.2.2.1 Equations of fluid models

In general, the unknowns in fluid models are defined by integral of moments of v over the

velocity space. Their corresponding equations can be obtained by integral of product of

the Boltzmann equation (1.1) with those v moments. For instance, multiplying the above

equation by some function χ(v) and integrating over the whole v-space, we get,

∫
χ
∂fα
∂t

dv +

∫
χv · ∇fα dv +

∫
χaα · ∇vfα dv =

∫
χ

(
∂fα
∂t

)
coll

dv. (1.3)
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Rearranging the above equation as:

∂

∂t

∫
χfα dv +∇ ·

∫
χvfα dv +

∫
χ(aα · ∇v)fα dv =

∂

∂t

∫
χ(fα)coll dv (1.4)

If we define the notation < χ >α as the average over v-space

< χ >α=

∫
χ fα dv,

then (1.4) will become a generalized transport equation:

∂

∂t
< χ >α +∇ · (< χv >α)− < (aα · ∇v)χ >α=

∂

∂t
(< χ >α)coll (1.5)

As an example, if we let χ be the moments of mα, mαv and 1
2mα‖v‖2 respectively, we obtain

three transport equations from equation (1.5):

∂ρα
∂t

+∇ · (ραuα) =
(∂ρα
∂t

)
coll

(1.6)

∂ραuα
∂t

+∇ · (ραuα ⊗ uα) +∇ · (Pα)− < Fα >α= Aα (1.7)

∂εα
∂t

+∇ · (εαuα) +∇ · (Pα · uα)− nαqαuα · E = Mα (1.8)

Here the fluid unknowns are the mass density ρα = nαmα = mα < 1 >α, the momentum

density ραuα = ρα < vα >α and the energy density εα defined by the pressure pα and the

kinetic energy,

εα =
pα
γ − 1

+
1

2
ρα‖uα‖2.

4



with γ being the ideal gas constant. Other terms in the equations are the pressure tensor

Pα = mα < (v − uα)⊗ (v − uα) >α and the collision terms,

Aα = mα

∫
v

(
∂fα
∂t

)
coll

dv, Mα =
1

2
mα

∫
‖v‖2

(
∂fα
∂t

)
coll

dv.

In general, this process can be extended to arbitrary number of moments of v. To obtain

a closed system, we have to cut the system for a certain number of moments. However, the

transport equation of the highest moment in the resulting system will require an even higher

moment in its flux function. This leads to the so-called closure problem, in which the flux of

the highest moment needs to be approximated by all the moments in the resulting system.

This approximation has to be reasonable in the sense that the system is solvable and the

solution has physical meaning.

1.2.2.2 Magnetohydrodynamic model

Plasma generally involves multiple species of particles. One species will lead to one system

following the procedure discussed in Section 1.2.2.1. In general, those systems influence each

other through the collision operator and the electromagnetic field. The magnetohydrody-

namic (MHD) equations further assume there is only one fluid in the system due to the scale

of the considered problem. In other words, the unknowns in the MHD equations are the

summation with respect to of the unknowns from Section 1.2.2.1, for instance, the first two

5



unknowns are

mass density: ρ(t,x) =
∑
α

nαmα,

momentum density: ρu(t,x) =
∑
α

nαmαuα.

With the additional assumption to simplify the pressure tensor Pα (this assumption is ac-

tually the closure condition), and no collisions on the right hand side, we can obtain three

conservation equations for the mass, momentum and kinetic energy densities by simply sum-

ming the corresponding equation for each species. Those three equations are exactly the

three conservation laws in the ideal MHD equations.

The last equation of the MHD equations comes from Faraday’s law,

∂B

∂t
+∇× E = 0.

Different from the full Maxwell equation case, the electric field in the MHD equation is

directly determined by the Ohm’s law.

For instance, we could consider the case when there are only two species, ions and elec-

trons, in the plasma. Following the process in Section 1.2.2.1, we could obtain two systems

of transport equations for both species. We further assume the unknowns such as the current

density J and the charge density ρc,

J = e(niui − neue),

ρc = e(ni − ne).
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Additionally, there is another important parameter. The Debye length λD is defined by the

typical number density n0 and the temperature scale T0,

λD =

(
ε0kBT0

e2n0

)1
2
.

In the MHD limit, the spatial scale of the problem is much larger than λD. From Gauss’s

law, it is equivalent to assume the plasma is quasi-neutral, i.e., ρc = 0 or ni = ne = n.

By taking the difference of two momentum transport equations, we could obtain the

generalized Ohm’s law as follows,

∂J

∂t
+∇ ·

{(
e

mi
pi −

e

me
pe

)
I + uJ + Ju− JJ

en

(
mi −me

mi +me

)}
− ρe2

mime
(E + u×B) +

e(mi −me)

mime
J×B = 0, (1.9)

which can be rewritten as,

E + u×B =
mime

ρe2

(
∂J

∂t
+∇ ·

{(
e

mi
pi −

e

me
pe

)
I + uJ + Ju− JJ

en

(
mi −me

mi +me

)})
+
mi −me

ρe
J×B. (1.10)

In the ideal MHD limit, the ratio me
mi

is assumed to be very small. If we take the limit

me
mi

= 0, the equation (1.10) can be simplified as,

E + u×B =
me

ne2

∂J

∂t
− 1

ne
∇pe +

me

ne2
∇ ·
(

uJ + Ju− JJ

en

)
+

1

ne
J×B. (1.11)

In the ideal MHD limit, the right hand side of the equation (1.11) is ignored due to the

spatial scale of the problem. One way to justify that is to assume the spatial scale length is
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much greater than the ions’ inertial length ( cωi
=

√
mi

µ0ne
2 ). This results in the ideal Ohm’s

law,

E + u×B = 0. (1.12)

If other terms in (1.9) are involved in the problem, the system is generally called extended

MHD. For example, if J×B (Hall term) is included, the whole system is called Hall MHD. In

this thesis, we only focus on the ideal MHD equations and the extension to other extended

MHD equations will be part of our future work.

1.2.2.3 Other fluid models

The MHD equations are still limited in their ability to fully describe a plasma. For instance,

in the ideal MHD equations, the magnetic field lines move with the fluid and thus will not

change its topology as time evolves. However, due to the momentum of the electrons, the

the magnetic field line in many problems can break and reconnect. Since the electrons are

massless in the ideal MHD, this effect is apparently beyond the limit of the ideal MHD

equations. So to study the problems of this nature, such as these magnetic reconnection

problems, other fluid models have been proposed and studied.

A natural generalization of the MHD equations is the two-fluid model, where the electrons

and ions are modeled by two sets of fluid variables. Depending on the closure of the equations,

the two-fluid models have several variations. If the system only evolves the energy or entropy

equations separately while still using single-fluid mass and momentum density equations and

Ohm’s law, the whole system is often called the two-fluid MHD equations. However a more

general case is to use the full Maxwell equation, in which case the electrons and ions are

modeled by completely separate fluid variables. For two-fluid models, Johnson has a good
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summary of different models in his thesis [41].

Another approach is to generalize the procedure of the Boltzmann equation to fluid

models. Instead of evolving only three conservation variables, the model uses more higher

moment of v. This is often called moment methods. The motivation of the moment methods

is that with more moments introduced, the resulting system will become a better approxima-

tion to the Boltzmann equation than the MHD system. It is advantageous that the system

still has the same dimension as the MHD equations. Grad’s 13-moment system [32] is one

of the early works in this area. However there are many difficulties in these methods. For

instance, it is generally hard to obtain a hyperbolic system by using the closure to close the

system for high moment systems. Recently, there have been some increasing interest in this

approach because people proposed novel approaches to close the system, e.g., [46, 72, 74].

But this approach still has a long way to go before it reaches a level of practical application.

1.3 Review of previous work

In this section, we review the previous work related to numerical methods for the MHD

equations. We mainly focus on four topics: (1) numerical methods for ideal MHD, (2)

adaptive mesh refinement (AMR), (3) numerical methods for the hyperbolic conservation

laws, and (4) positivity-preserving limiters.

1.3.1 Numerical methods for ideal MHD

Mathematically, the ideal MHD equations are a set of nonlinear hyperbolic conservation laws

with the additional restriction that the magnetic field must remain divergence-free for all

time. In fact, at the continuum level, if the initial magnetic field is divergence-free, then

9



the ideal MHD equations propagate this condition forward for all time. Unfortunately, most

standard numerical discretizations based on shock-capturing methods (e.g., finite volume,

weighted essentially non-oscillatory, discontinuous Galerkin) do not propagate a discrete

version of the divergence-free condition forward in time; and furthermore, there are some

observations in the literature that the failure to guarantee ∇ · B = 0 to round-off error

can lead to some unphysical solutions. For instance, Brackbill and Barnes [16] find the

unphysical flow due to the error from ∇ · B eventually even terminates the computation.

Another example is the Rotor problem in [10] that shows the solutions will be spurious

without any divergence cleaning step.

The main challenge in numerically simulating the ideal MHD system is therefore to

augment existing schemes so that they satisfy a divergence-free condition of the magnetic field

in some way. Roughly speaking, there are four kinds of approaches that have been proposed

in the literature: (1) the 8-wave formulation [56, 57], (2) projection methods [6, 16, 75, 83],

(3) hyperbolic divergence-cleaning methods [26], and (4) constrained transport (CT) methods

[3, 10, 22, 25, 28, 29, 34, 51, 52, 60, 62, 71, 75, 73].

The method in [16] is probably the first approach dealing with this constraint using

the classical projection method. They used Hodge decomposition to project the inaccurate

magnetic field to the divergence-free subspace by solving a Poisson equation. However,

this projection method is computationally expensive and generally difficult to extend to the

AMR frameworks. There are two factors driving here, first the need arises to solve a Poisson

equation each time step, second, solving the Poisson equation on an adaptive mesh can

be tricky. This treatment is still very popular because of its accuracy and flexibility. For

instance, Zachary et al. [83] splits the ideal MHD Equations into a conservative part and

another advective part, treated as a source. A new Riemann solver was introduced to get
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rid of most of unphysical states such as negative pressures and densities, and the projection

method was used to make the magnetic field satisfy the constraint. The second approach

invented by Powell in [56] is to treat the ideal MHD Equations significantly different, by

adding an additional source term (it is proportional to the divergence of the magnetic field)

to the MHD equations. Consequently, the original ideal MHD equations with the constraint

is changed into a 8× 8 hyperbolic system with a source term and no constraint. Therefore,

this system is easier to solve and the resulting 8-wave scheme is very robust and extension

to an AMR framework is much easier for this method. The drawback of this approach is

also very clear. The divergence is not enforced to machine precision and the new system

is not conservative any more due to the additional source term. It has been observed in

[75] that this non-conservation drawback can produce incorrect jumps in a rotated shock

tube problem. Another class of methods is the hyperbolic divergence-cleaning method first

proposed by Dedner et al. [26], which has a similar idea as the projection method. Instead

of solving an elliptic equation in the projection method, a mixed hyperbolic and parabolic

equation is introduced and solved for the divergence error of magnetic field. The method

damps the divergence errors away, instead of getting an exact divergence-free magnetic field.

The advantage of this method is that it is fully explicit, thus, efficient and fast, but the

disadvantage is that it has two tunable parameters: the speed of propagation of the error

and the rate at which the divergence error is damped.

In this thesis we focus on the CT methodology for producing a magnetic field that

satisfies a discrete divergence-free condition. The CT method was originally introduced by

Evans and Hawley [28], and, in their formulation, staggered electric and magnetic fields are

used to create appropriate mimetic finite difference (FD) operators that ultimately lead to

an exactly divergence-free magnetic field. Their constrained transport framework can be
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thought as a modification of the popular Yee scheme [82] from electromagnetics.

Since the introduction of the CT methodology, there have been many modifications and

extensions, especially in the context of high-resolution shock-capturing schemes. DeVore [27]

developed a flux-corrected transport implementation of the constrained transport approach.

Balsara and Spicer [10], Dai and Woodward [25], and Ryu et al. [62], all developed various

strategies for constructing the electric field via Ohm’s law in the CT framework. Londrillo

and Zanna [51, 52] proposed a high-order version of the Evans and Hawley approach. De

Sterck [71] developed a similar CT method on unstructured triangular grids. Balsara [1]

developed from the CT framework an AMR scheme that also included a globally divergence-

free magnetic field reconstruction. There is a careful description and comparison of several of

these methods in the article of Tóth [75], in which he also showed that a staggered magnetic

field is not necessary, and then introduced several unstaggered CT methods.

In recent years, unstaggered CT methods have attracted considerable interest due to their

ease of implementation and applicability to AMR strategies. For instance, Fey and Torrilhon

[29] presented a way to preserve divergence-free condition through an unstaggered upwind

scheme. Rossmanith [60] developed an unstaggered CT method for the 2D MHD equations

on Cartesian grids based on the wave-propagation method [45]. Helzel et al. [34, 35] extended

this unstaggered CT method to the 3D MHD equations and to mapped grids.

In addition to the above mentioned papers, several other high-order methods have been

proposed in recent years for the ideal MHD equations using a variety of discretization tech-

niques. Balsara [4] developed a weighted essentially non-oscillatory (WENO) method for

ideal MHD using a staggered magnetic field to reconstruct a globally divergence-free mag-

netic field. Balsara et al. [7, 8] developed a class of high-order ADER-WENO schemes, again

using a staggered magnetic field to reconstruct a globally divergence-free magnetic field. Li
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et al. [49] and Cheng et al. [19] introduced a class of central discontinuous Galerkin schemes

that evolves the MHD equations on a primal as well as a dual mesh, and by intertwining these

two updates, they showed that a globally divergence-free magnetic field could be obtained.

Kawai [42] devloped a high-order finite difference method with artificial resistivity, where

the finite difference operators were specifically constructed to guarantee that an appropriate

definition of the magnetic field divergence is propagated forward in time by the numerical

scheme.

1.3.2 Numerical methods for hyperbolic conservation laws

In this thesis, we use the method of lines approach to solve the hyperbolic conservation

laws. The idea of this approach is first to discretize the time-involved PDEs only in space

to generate a semi-discretized system of ODEs, and then to apply an ODE solver to the

resulting system. Many numerical methods have been developed for spatial discretization

of the conservation law over the recent decades, such as the discontinuous Galerkin method

[23], the finite volume/finite difference ENO schemes [33, 69, 70], and finite volume/finite

difference WENO schemes [39, 50]. Among various methods, WENO schemes are shown

to be very robust and efficient especially when solutions may contain discontinuities, sharp

gradient regions and other complicated solution structures. In this thesis, we use WENO

method to service as a fundamental solver for the ideal MHD equations.

For the time integrators, the non-oscillatory property is desired for the problems of the

conservation laws, such as Euler equations and MHD equations. Thus, strong stability

preserving Runge–Kutta (SSP-RK) methods (also called total-variation-diminishing in the

earlier literature) are very popular for those problems. SSP methods are higher-order meth-

ods that preserve the strong stability properties of first-order Euler time stepping for the
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spatial discretization. The optimal third order SSP-RK method (SSP-RK3) is given by [69]

q(1) = qn + ∆L(qn)

q(2) =
3

4
qn +

1

4
q(1) +

1

4
∆L(q(1))

qn+1 =
1

3
qn +

2

3
q(2) +

2

3
∆L(q(2))

(1.13)

In Chapter 4, we use the above SSP-RK3 method as our time integrator to design a positivity-

preserving limiter. In Chapter 3, we use a low-storage fourth-order SSP-RK method to solve

the problems, which is presented in the work [43].

1.3.3 Positivity-preserving limiter

Another major focus of this thesis is the design of high-order schemes that preserve the pos-

itivity of the density and pressure of the MHD system. Even with divergence-free methods,

negative density or/and pressure can still be observed in numerical simulations, such as those

simulating the low-β plasma. This negative quantity can lead to a complex wave speed that

breaks the hyperbolicity of the system and causes the numerical simulations to break down.

A lot of effort has been dedicated to addressing this issue in the literature. For instance, Bal-

sara and Spicer [9] proposed a strategy to maintain the positivity of pressure by switching the

Riemann solvers based on different wave situations. Janhunen [37] designed a new Riemann

solver for the modified ideal MHD equations and demonstrated its positivity-preserving

property numerically. In [76], a conservative second-order MUSCL-Hancock scheme was

shown to be positivity-preserving for the 1D ideal MHD equations and the extension to

multidimensional (multi-D) cases was constructed based on similar ideas as Powell’s 8-wave

formulation [56, 57]. Balsara [5] developed a high-order positivity-preserving scheme for ideal

14



MHD through limiting high-order numerical solutions by a conservative bounded solution.

Another class of important methods for the ideal MHD equations is discontinuous Galerkin

(DG) methods [47, 48, 49, 61, 81]. Recently, Cheng et al. proposed positivity-preserving

DG and central DG methods for the ideal MHD equations [19], in which they generalized

Zhang and Shu’s positivity-preserving limiters for the compressible Euler equations [84]. In

[19], it was proved that the first-order Lax-Friedrichs scheme is positivity-preserving for the

1D MHD under the restriction CFL≤ 0.5. This first-order scheme also serves as the building

block for the positivity-preserving limiter in this thesis.

Besides the aforementioned work for MHD equations, several high-order positivity-preserving

schemes have been developed recently for compressible Euler equations. Zhang and Shu

developed arbitrary-order positivity-preserving finite volume WENO and DG methods by

limiting the underlying polynomials around cell averages [84]. A flux cut-off limiter was

proposed by Hu et al. [36] for finite difference WENO schemes to maintain positivity of

density and pressure for the compressible Euler equations. Recently, Xu has proposed a

maximum-principle-preserving flux limiter for finite difference WENO schemes for the scalar

conservation laws in [79]. This limiter has later been extended to a positivity-preserving

limiter for finite difference WENO schemes [78]. In the recent work of [20], we generalized

this limiter to high order finite volume WENO schemes on triangular meshes for the scalar

conservation laws and Euler equations. In another recent work [65], we successfully applied

the above positivity-preserving limiter to the single-step method for Euler equations [63].

The approach developed in [20, 65, 78] is novel because the parametrized limiter maintains

the accuracy of the base scheme without sacrificing the CFL excessively and is more efficient

than the other versions of the limiters [36, 84].
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1.3.4 Adaptive mesh refinement

The AMR algorithm was first developed for hyperbolic conservation laws in [15]. The original

idea is to refine the mesh around complicated solutions structure, such as shocks, resulting in

a better resolution and decrease of computational effort. In [15], a fundamental framework

of patch-based AMR has been established. The original method starts from a uniform rect-

angular mesh, using Richardson extrapolation to estimate local spacial errors to determine

the refinement regions. After the regions are refines, the algorithm solves the original hyper-

bolic equations locally with appropriate local boundary conditions. Since the algorithm also

refines time steps locally, the computation is very efficient because the CFL of the coarse

meshes is not restricted by the CFL of the finer meshes.

Since then, the AMR algorithm has been very popular in a large variety of areas such

as space physics, atmospheric modeling and aerospace engineering. Accompany with the

applications, there are also many efforts on developing the theories of AMR algorithms. In

[13], Berger and Colella investigated the global conservation of the solution in AMR, achieved

by the modification of the updating flux on the interface between fine and coarse grids. Later,

Bell et al. [12] extended this idea to 3D hyperbolic conservation laws. In [14], this patched-

based AMR was also successfully combined with the finite volume wave-propagation method

that was proposed by LeVeque in [45].

There have been a lot of studies of AMR algorithm in Euler Equations and MHD Equa-

tions. A package called Gerris [55] is designed for incompressible Euler Equation. The

algorithm uses the fully threaded tree data structure of [44] and invented a multi-grid Pois-

son solver to implement the projection method based on Hodge decomposition. For MHD

equations simulations, Rossmanith [59] was able to extend the unstaggered CT method to
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AMRCLAW framework for 2D ideal MHD equations. Another extension of the CT meth-

ods to AMR framework was proposed by Fromang et al. [30], in which they use the AMR

framework, MUSCL scheme and the standard CT method to evolve the induction equations

in time. In [2], the CT method from [10] was also extended to AMR hierarchy by Balsara.

1.4 Outline of the thesis

In the work, we mainly consider two numerical difficulties when solving the ideal MHD

equations. First, we would like to solve the ideal MHD equation in such a way as to maintain

the divergence-free property of the magnetic field. Second, we would like to maintain the

positivity of both density and pressure when the method is used to model any plasma

problem.

In Chapter 2 we introduce the mathematical form of the ideal MHD equations. We

also present its hyperbolic property by discussing its eigenvalues. We further introduce the

general constrained transport method and the 2D and 3D versions of the magnetic potential

equations used in this work.

In Chapter 3 we propose a class of novel finite difference schemes for the 2D and 3D mag-

netic potential equations. The proposed schemes are coupled with regular WENO scheme for

hyperbolic conservation laws to obtain a fourth-order finite difference numerical schemes for

the ideal MHD equations. The schemes successfully control the oscillations in the solutions

thanks to the WENO approach and novel schemes we proposed for the magnetic potential

equations. The resulting schemes are tested with several test problems, including 2D and

3D smooth Alfvén wave problems, 2D rotated shock tube problem, Orszag-Tang vortex, and

2D, 2.5D and 3D cloud-shock interaction problems.
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In Chapter 4 we propose a positivity-preserving limiter for the schemes we proposed in

Chapter 3. The limiter is a natural extension of a similar limiter for the Euler equations.

The limiter generally has two steps: first it maintains positivity of the density by a linear

process, and then it modify the flux to keep the pressure positive by a nonlinear process.

After the proposed limiter is applied to the constrained transport schemes in Chapter 3, the

resulting scheme can solve the problems with low density and pressure with a CFL number

of 0.5. We further test it with several problems, including 1D and 2D vacuum shock tube

problems, torsional Alfvén wave pulse problem, smooth vortex problems, and 2D and 3D

blast problems.
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Chapter 2

Ideal MHD equations

2.1 The ideal MHD equations

The ideal MHD equations in conservation form can be written as

∂

∂t



ρ

ρu

E

B


+∇ ·



ρu

ρu⊗ u + (p+ 1
2‖B‖

2)I−B⊗B

u(E + p+ 1
2‖B‖

2)−B(u ·B)

u⊗B−B⊗ u


= 0, (2.1)

∇ ·B = 0, (2.2)

where ρ, ρu, and E are the total mass, momentum and energy densities of the system, B is

the magnetic field, and p is the hydrodynamic pressure. The total energy density is given by

E =
p

γ − 1
+

1

2
ρ‖u‖2 +

1

2
‖B‖2, (2.3)

where γ = 5/3 is the ideal gas constant. Here ‖ · ‖ is used to denote the Euclidean vector

norm. A complete derivation of the MHD system (2.1)–(2.2) can be found in many standard

plasma physics textbooks (e.g., pages 165–190 of [54]).

This chapter previously appeared in [22]: A.J. Christlieb, J.A. Rossmanith and Q. Tang. Finite difference
weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J.
Comput. Phys., 268: 302–325, 2014.
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2.2 Hyperbolicity of the governing equations

Equations (2.1), along with the equation of state (2.3), form a system of hyperbolic conser-

vation laws:

∂q

∂t
+∇ · F(q) = 0, (2.4)

where q = (ρ, ρu, E ,B) are the conserved variables and F is the flux tensor (see (2.1)).

Under the assumption of positive pressure (p > 0) and density (ρ > 0), the flux Jacobian

in some arbitrary direction n (‖n‖ = 1), A(q; n) := n · ∂F∂q , is a diagonalizable matrix with

real eigenvalues. In particular, the eigenvalues of the flux Jacobian matrix in some arbitrary

direction n (‖n‖ = 1) can be written as follows:

λ1,8 = u · n∓ cf : fast magnetosonic waves, (2.5)

λ2,7 = u · n∓ ca : Alfvén waves, (2.6)

λ3,6 = u · n∓ cs : slow magnetosonic waves, (2.7)

λ4 = u · n : entropy wave, (2.8)

λ5 = u · n : divergence wave, (2.9)
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where

a ≡
√
γp

ρ
, (2.10)

ca ≡

√
(B · n)2

ρ
, (2.11)

cf ≡

1

2

a2 +
‖B‖2

ρ
+

√(
a2 +

‖B‖2
ρ

)2

− 4a2 (B · n)2

ρ


1
2

, (2.12)

cs ≡

1

2

a2 +
‖B‖2

ρ
−

√(
a2 +

‖B‖2
ρ

)2

− 4a2 (B · n)2

ρ


1
2

. (2.13)

The eight eigenvalues are well-ordered in the sense that

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7 ≤ λ8. (2.14)

2.3 Magnetic potential in 3D

Although there are many available numerical methods for solving hyperbolic systems (e.g.,

finite volume, WENO, and discontinuous Galerkin) and most of them can in principle be

directly used to simulate the MHD systems, the main challenge in numerically solving the

MHD equations is related to the divergence-free condition on the magnetic field. First, we

note that the MHD system (2.1) along with (2.3) is already a closed set of eight evolution

equations. Second, we note that ∇ · B = 0 is an involution instead of a constraint (see

page 119–128 of [24]), because if ∇ · B = 0 is satisfied initially (t = 0), then system (2.1)

guarantees that ∇ · B = 0 is satisfied for all future time (t > 0). Unfortunately, most

numerical discretizations of MHD do not propagate some discrete version of∇·B = 0 forward
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in time. As has been shown repeatedly in the literature, failure to adequately control the

resulting divergence errors can lead to numerical instability (see e.g., [6, 47, 56, 60, 71, 75]).

To address this issue, we will make use of the magnetic potential in the numerical methods

described in this work.

Because it is divergence-free, the magnetic field can be written as the curl of a magnetic

vector potential:

B = ∇×A. (2.15)

Furthermore, we can write the evolution equation of the magnetic field in the MHD systems

(2.1) in curl form:

∂B

∂t
+∇× (B× u) = 0, (2.16)

due to the following relation

∇ · (u⊗B−B⊗ u) = ∇× (B× u). (2.17)

Using the magnetic vector potential (2.15), evolution equation (2.16) can be written as

∇×
{
∂A

∂t
+ (∇×A)× u

}
= 0. (2.18)

The relation (2.18) implies the existence of a scalar function ψ such that

∂A

∂t
+ (∇×A)× u = −∇ψ. (2.19)
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In order to uniquely (at least up to additive constants) determine the additional scalar

function ψ, we must prescribe some gauge condition.

After investigating several gauge conditions, Helzel et al. [34] found that one can obtain

stable solutions by introducing the Weyl gauge, i.e., setting ψ ≡ 0. With this gauge choice,

the evolution equation for the vector potential becomes

∂A

∂t
+ (∇×A)× u = 0, (2.20)

which can be rewritten as a non-conservative quasilinear system,

∂A

∂t
+ N1

∂A

∂x
+ N2

∂A

∂y
+ N3

∂A

∂z
= 0, (2.21)

where

N1 =


0 −uy −uz

0 ux 0

0 0 ux

 ,N2 =


uy 0 0

−ux 0 −uz

0 0 uy

 ,N3 =


uz 0 0

0 uz 0

−ux −uy 0

 . (2.22)

One difficulty with system (2.21)–(2.22) is that it is only weakly hyperbolic [34]. In order

to see this weak hyperbolicity, we start with the flux Jacobian matrix in some arbitrary

direction n = (nx, ny, nz):

nxN1 + nyN2 + nzN3 =


nyuy + nzuz −nxuy −nxuz

−nyux nxux + nzuz −nyuz

−nzux −nzuy nxux + nyuy

 . (2.23)
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The eigenvalues of matrix (2.23) are

λ1 = 0, λ2 = λ3 = n · u, (2.24)

and the matrix of right eigenvectors can be written as

R =

 r(1) r(2) r(3)

 =


nx nyuz − nzuy ux(u · n)− nx‖u‖2

ny nzux − nxuz uy(u · n)− ny‖u‖2

nz nxuy − nyux uz(u · n)− nz‖u‖2

 . (2.25)

If we assume that ‖u‖ 6= 0 and ‖n‖ = 1, the determinant of matrix R is

det(R) = −‖u‖3 cos(α) sin(α), (2.26)

where α is the angle between n and u. In particular, there exist four degenerate directions,

α = 0, π/2, π, and 3π/2, in which the eigenvectors are incomplete. Hence, the system (2.21)

is only weakly hyperbolic.

2.4 Magnetic potential in 2D

A special case of the situation described above is the MHD system in 2D. In particular, what

we mean by 2D is that all eight conserved variables, q = (ρ, ρu, E ,B), can be non-zero, but

each depends on only three independent variables: t, x, and y. From the point-of-view of

the magnetic potential, the 2D case is much simpler than the full 3D case, due to the fact
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that the divergence-free condition simplifies to

∇ ·B =
∂Bx

∂x
+
∂By

∂y
= 0. (2.27)

It can be readily seen that solving B3 by any numerical scheme will not have any impact on

the satisfaction of the divergence-free condition (2.27). In other words, using the magnetic

potential to define B3 is unnecessary. Instead, in the 2D case, we can write

Bx =
∂Az

∂y
and By = −∂A

z

∂x
, (2.28)

which involves only the third component of the magnetic potential, thereby effectively re-

ducing the magnetic vector potential to a scalar potential. Consequently, the CT method in

2D can be simplified to solving an advection equation for the third component of the vector

potential:

∂Az

∂t
+ ux

∂Az

∂x
+ uy

∂Az

∂y
= 0. (2.29)

This has the added benefit that (2.29) is strongly hyperbolic, unlike its counterpart in the

3D case.

2.5 General framework of CT algorithm

In the unstaggered CT method for the ideal MHD equations [35], Helzel et al. coupled a

conservative finite volume hyperbolic solver for the MHD equations with a non-conservative

finite volume solver for the vector potential equation to solve the ideal MHD systems. Using
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their approach as the basic framework for our 2D and 3D schemes, the work in this paper

is mainly focused on extending the 3rd-order finite volume CT method to a high-order and

computationally efficient finite difference CT method but still keeping all the advantages of

the unstaggered CT method. In this section, we will summarize the general unstaggered CT

method briefly.

Assume the semi-discrete form of MHD equations (2.1) has a general form

Q′MHD(t) = L(QMHD(t)) (2.30)

and the semi-discrete form of the evolution equation of the magnetic potential ( (2.21) for

3D case and (2.29) for 2D case) has a form

Q′A(t) = H(QA(t),u(t)) (2.31)

where the abstract A is introduced to denote the vector potential A in 3D case or the

scalar potential Az in 2D case, QMHD(t) represents the grid function at time t of conserved

quantities in the ideal MHD system and QA(t) represents the grid function of the magnetic

potential A or Az.

For simplicity, we only present the CT schemes coupled with forward Euler stepping to

solve the MHD systems. When the problem is solved from the current state t = tn to a new

state t = tn+1, a single time step of the CT method consists of the following substeps:

0. Start with QnMHD and QnA (the solutions at tn or the initial condition at t0)

1. Build the right hand sides of both semi-discrete systems (2.30) and (2.31) by some
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spatial discretizations and update the systems by

Q∗MHD = QnMHD + ∆tL(QnMHD)

Qn+1
A = QnA + ∆tH(QnA,u

n)

(2.32)

where Q∗MHD = (ρn+1, ρun+1, E∗,B∗), B∗ means the predicted magnetic field without

satisfying the divergence free constraint and E∗ will be updated based on the option

in Step 4.

2. Correct B∗ by the magnetic potential Qn+1
A at new stage by a discrete curl operator

Bn+1 = ∇×Qn+1
A (2.33)

3. Set the total energy density En+1 based on the following options:

Option 1: Keep the total energy conserved:

En+1 = E∗ (2.34)

Option 2: Keep the pressure the same after the correction of magnetic field:

En+1 = E∗ +
1

2
(‖Bn+1‖2 − ‖B∗‖2) (2.35)

This helps preserve the positivity of the pressure for low pressure problems, which

increase the stability of the numerical solver, although it sacrifices energy conser-

vation.
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Chapter 3

FD-WENO with constrained

transport for ideal MHD

In this chapter, we develop a class of high-order finite difference weighted essentially non-

oscillatory schemes for solving the ideal MHD equations in 2D and 3D. The philosophy of

this work is to use efficient high-order WENO spatial discretizations with high-order SSP-

RK time-stepping schemes. Numerical results show that with such methods we are able to

resolve solution structures that are only visible at much higher grid resolutions with lower-

order schemes. The key challenge in applying such methods to ideal MHD is to control

divergence errors in the magnetic field. We achieve this by augmenting the base scheme

with a novel high-order constrained transport approach that updates the magnetic vector

potential. The predicted magnetic field from the base scheme is replaced by a divergence-free

magnetic field that is obtained from the curl of this magnetic potential. The non-conservative

weakly hyperbolic system that the magnetic vector potential satisfies is solved using a version

of FD-WENO developed for Hamilton–Jacobi equations. The resulting numerical method

is endowed with several important properties: (1) all quantities, including all components

of the magnetic field and magnetic potential, are treated as point values on the same mesh

(i.e., there is no mesh staggering); (2) both the spatial and temporal orders of accuracy are

This chapter previously appeared as [22]: A.J. Christlieb, J.A. Rossmanith and Q. Tang. Finite difference
weighted essentially non-oscillatory schemes with constrained transport for ideal magnetohydrodynamics. J.
Comput. Phys., 268: 302–325, 2014.

28



fourth-order; (3) no spatial integration or multidimensional reconstructions are needed in

any step; and (4) special limiters in the magnetic vector potential update are used to control

unphysical oscillations in the magnetic field.

The outline of this chapter is as follows. In Sections 3.1-3.4, we describe different parts of

the numerical discretization of the proposed method. In Section 3.1 we detail the 5th-order

FD-WENO spatial discretization for the MHD system. In Section 3.2 we outline the time

stepping techniques. In Section 3.3 we describe the spatial discretization of the 2D scalar

potential evolution equations and the 3D vector potential equations. The numerical curl

operator and its properties are then discussed in Section 3.4, which completes all the steps

of our CT methods. The resulting 2D and 3D schemes are implemented and tested on several

numerical examples in Section 4.4.

3.1 Spatial discretization of ideal MHD

In this section, we describe the semi-discrete finite difference weighted essentially non-

oscillatory scheme that comprises the base scheme in the constrained transport framework

described in Section 2.5. Our method of choice is the FD-WENO method developwed by

Jiang and Wu [40]. We will refer to this method as the WENO-HCL1 scheme. In what fol-

lows, we describe the basic WENO-HCL scheme in one space dimension for the ideal MHD

equations. We then briefly discuss the straightforward extension to higher dimensions.

We write the MHD system (2.1) in 1D as follows:

∂q

∂t
+
∂f(q)

∂x
= 0, (3.1)

1WENO-HCL := Weighted Essentially Non-Oscillatory for Hyperbolic Conservation Laws.
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where

q = (ρ, ρux, ρuy, ρuz, E , Bx, By, Bz)T , (3.2)

f(q) =

(
ρux, ρuxux + p+

1

2
‖B‖2 −BxBx, ρuxuy −BxBy, ρuxuz −BxBz,

ux
(
E + p+

1

2
‖B‖2

)
−Bx(u ·B), 0, uxBy − uyBx, uxBz − uzBx

)T
.

(3.3)

For convenience, we also introduce

w = (ρ, ux, uy, uz, p, Bx, By, Bz)T (3.4)

to denote the vector of primitive variables.

Due to the hyperbolicity of the MHD systems, the flux Jacobian matrix ∂f
∂q has a spectral

decomposition of the form

∂f

∂q
= RΛL, (3.5)

where Λ is the diagonal matrix of real eigenvalues, R is the matrix of right eigenvectors and

L = R−1 is the matrix of left eigenvectors.

We consider the problem on a uniform grid with N + 1 grid points as follows:

a = x1
2
< x3

2
< · · · < x

N+1
2

= b, (3.6)

and we denote

Ii = [x
i−1

2
, x
i+1

2
], xi =

1

2
(x
i−1

2
+ x

i+1
2

), ∆xi = ∆x =
b− a
N

.
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Let qi(t) denote the approximate solution of the MHD system at the point x = xi. The

WENO-HCL scheme for system (3.1) can be written in the following flux-difference form:

dqi(t)

dt
=

1

∆x

(
F̂
i+1

2
− F̂

i−1
2

)
. (3.7)

To obtain the numerical flux, F̂
i+1

2
, in the above semi-discrete form, the following WENO

procedure is used:

1. Compute the physical flux at each grid point:

fi = f(qi). (3.8)

2. At each x
i+1

2
:

(a) Compute the average state w
i+1

2
in the primitive variables:

w
i+1

2
=

1

2
(wi + wi+1) . (3.9)

(b) Compute the right and left eigenvectors of the flux Jacobian matrix, ∂f∂q , at x =

x
i+1

2
:

R
i+1

2
= R

(
w
i+1

2

)
and L

i+1
2

= L

(
w
i+1

2

)
, (3.10)

where L
i+1

2
= R−1

i+1
2

.
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(c) Project the solution and physical flux into the right eigenvector space:

Vj = L
i+1

2
qj and Gj = L

i+1
2

fj , (3.11)

for all j in the numerical stencil associated with x = x
i+1

2
. In the case of the

fifth-order FD-WENO scheme: j = i− 2, i− 1, i, i+ 1, i+ 2, i+ 3.

(d) Perform a Lax-Friedrichs flux vector splitting for each component of the charac-

teristic variables. Specifically, assume that the mth components of Vj and Gj are

vj and gj , respectively, then compute

g±j =
1

2

(
gj ± α(m)vj

)
, (3.12)

where

α(m) = max
k

∣∣∣λ(m)(qk)
∣∣∣ (3.13)

is the maximal wave speed of the mth component of characteristic variables over

all grid points. Note that the eight eigenvalues for ideal MHD are given in Section

2.2.

(e) Perform a WENO reconstruction on each of the computed flux components g±j

to obtain the corresponding component of the numerical flux. If we let ΦWENO5

denote the fifth-order WENO reconstruction operator (see Appendix for a detailed
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description), then the flux is computed as follows:

ĝ+
i+1/2

= ΦWENO5

(
g+
i−2, g

+
i−1, g

+
i , g

+
i+1, g

+
i+2

)
, (3.14)

ĝ−
i+1/2

= ΦWENO5

(
g−i+3, g

−
i+2, g

−
i+1, g

−
i , g

−
i−1

)
. (3.15)

Then set

ĝ
i+1

2
= ĝ+

i+1
2

+ ĝ−
i+1

2

, (3.16)

where ĝ
i+1

2
is the mth component of Ĝ

i+1
2

.

(f) Project the numerical flux back to the conserved variables

F̂
i+1

2
= R

i+1
2

Ĝ
i+1

2
. (3.17)

Remark 3.1.1. In Step (a), although one could define the average state at x
i+1

2
using

the Roe averages developed by Cargo and Callice [18], we instead define the state at x
i+1

2

via simple arithmetic averages of the primitive variables (equation (3.9)). The arithmetic

averages are computationally less expensive to evaluate than the Roe averages and produce

good numerical results in practice. It was pointed out in [40] that there is little difference in

the numerical results when different approaches for defining the half-grid state are used in

the base WENO scheme.

Remark 3.1.2. In Step (b) there are several different versions of right eigenvectors scalings

[11, 17, 56, 57]. In this work we make use of the eigenvector scaling based on entropy

variables proposed by Barth [11]. This approach is advantageous in that it is relatively simple
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to implement and gives the optimal direction-independent matrix norm of the eigenvector

matrix.

Remark 3.1.3. In Step (d) we use a global Lax-Friedrichs flux splitting, meaning that the

α(m)’s are computed as the maximum of the mth eigenvalue over the entire mesh. One could

just as easily use a local Lax-Friedrichs flux splitting and only maximize the eigenvalue over

the stencil on which the flux is defined. In all of the numerical test problems attempted

in this work, we found no significant differences between the global and local approaches.

In some applications where the eigenvalue changes dramatically in different regions of the

computational domain it may be advantageous to switch to the local Lax-Friedrichs approach.

In the 1D case, we find that the above WENO-HCL scheme applied to MHD can produce

high-order accurate solutions for smooth problems and can accurately capture shocks without

producing unphysical oscillations around discontinuities. The scheme as described so far can

be easily extended to higher dimensions, simply by applying the FD-WENO definition of

the numerical fluxes dimension-by-dimension.

The multi-dimensional version of the method described in this section serves as the base

scheme for our proposed constrained transport method for ideal MHD. However, as has

been well-documented in the literature, direct application of only the base scheme will lead

to divergence errors in the magnetic field, which in turn will lead to numerical instabilities

(e.g., see Example 4.4.2.3 in Section 4.4). In order to overcome this problem, we also need

to directly evolve the magnetic potential as outlined in Section 2.5. In Section 3.3 we show

how to modify the WENO-HCL scheme to create a high-order accurate numerical update

for the magnetic vector potential equation, which will then be used to correct the magnetic

field that is predicted by the WENO-HCL base scheme.

34



3.2 Temporal discretization

In this section we describe the time-stepping procedure used in this work. In our CT methods,

we use 5th-order WENO-HCL as our base scheme for the semi-discrete form (3.1). However,

it has been pointed out in [77] that it is linearly unstable when 5th-order WENO-HCL is

coupled with forward Euler time stepping or many other 2nd-order Runge–Kutta stepping,

and we find those methods show instability in the ideal MHD systems as time evolves, even

for a smooth problem. Consequently, high-order SSP-RK methods are used for temporal

discretization to improve numerical stability. In this work, we use the 10-stage 4th-order

SSP-RK scheme with low-storage implementations (SSP-RK4) [43]:

q(1) = qn, q(2) = qn,

for i = 1 : 5

q(1) = q(1) +
1

6
∆tL(q(1)),

end

q(2) =
1

25
q(2) +

9

25
q(1),

q(1) = 15q(2) − 5q(1),

for i = 6 : 9

q(1) = q(1) +
1

6
∆tL(q(1)),

end

qn+1 = q(2) +
3

5
q(1) +

1

10
∆tL(q(1)).

We remark here since the SSP-RK4 method is a convex combination of Forward Euler

operators, coupling it with the CT steps turns out to be straightforward. In addition, the
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corrections of B∗ and E∗ (Step 2 and 3 in Section 2.5) are performed in each stage of SSP-

RK4 in this work. For smooth problems, this overall procedure gives a solution of 4th-order

accuracy in time. This will be confirmed numerically by convergent studies in Section 4.4.

The readers are referred to [35] for more details of the CT methods coupled with Runge–

Kutta time stepping.

When solving 1D shock-tube problem [17], we find SSP-RK4 coupled with WENO per-

forms very well for the CFL number up to 4.5. In Section 4.4, we use a CFL number of 3.0

for most of the numerical examples and obtain satisfactory results. The 4-stage 4th-order

non-TVD/SSP Runge–Kutta method (RK44) is also coupled with WENO for ideal MHD

systems in [40]. The typical CFL number of RK44 is 0.8 in that method. Consequently,

even through SSP-RK4 has 10 stages, which is more than what RK44 has, SSP-RK4 is still

more efficient than RK44 due to a much larger CFL number in SSP-RK4. Besides, any

non-TVD/SSP time stepping has a risk to introduce more spurious oscillations than SSP

time stepping, which is important for problems involving shocks and discontinuities in the

MHD systems. Another important feature of SSP-RK4 is its low-storage property, which

will be a great advantage for a 3D simulations or GPU implementation. Due to the above

reasons, we choose SSP-RK4 as our time integrator in this work.

3.3 Spatial discretization of the magnetic potential equa-

tion

In this section we discuss a novel approach for discretizing the magnetic potential equa-

tions in 2D and 3D. There are two main challenges in obtaining such discretizations: (1)

we must design a high-order finite difference method capable of solving the non-conservative
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and weakly hyperbolic system that the magnetic potential satisfies; and (2) we must design

appropriate limiting strategies that act on the update for the magnetic potential, but which

control unphysical oscillations in the magnetic field. The approach we develop is a modifica-

tion of the WENO method of Jiang and Peng [38], which was designed for Hamilton–Jacobi

equations. We begin by describing the 1D version of WENO scheme of Jiang and Peng

[38], then show how to modify this approach to solve the scalar 2D magnetic potential equa-

tion (2.29), and finally describe how to generalize this to the more complicated systems 3D

magnetic potential equation (2.21).

3.3.1 WENO for 1D Hamilton–Jacobi

Consider a 1D Hamilton–Jacobi equation of the form

∂q

∂t
+H

(
t, x, q,

∂q

∂x

)
= 0, (3.18)

where q is a scalar solution to the equation and H is the Hamiltonian. Jiang and Peng [38]

developed a semi-discrete approximation to (3.18) of the following form:

dqi(t)

dt
= −Ĥ

(
t, xi, qi, q

−
xi, q

+
xi

)
, (3.19)

where Ĥ is the numerical Hamiltonian and is consistent with H in the following sense:

Ĥ (t, x, q, u, u) = H (t, x, q, u) , (3.20)
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and q−xi and q+
xi are left and right-sided approximations of ∂q

∂x at x = xi. The values of q−xi

and q+
xi are obtained by performing WENO reconstruction as follows:

q−xi = ΦWENO5

(
∆+qi−3

∆x
,
∆+qi−2

∆x
,
∆+qi−1

∆x
,
∆+qi
∆x

,
∆+qi+1

∆x

)
, (3.21)

q+
xi = ΦWENO5

(
∆+qi+2

∆x
,
∆+qi+1

∆x
,
∆+qi
∆x

,
∆+qi−1

∆x
,
∆+qi−2

∆x

)
, (3.22)

where

∆+qi := qi+1 − qi, (3.23)

and ΦWENO5 uses the same formula as the one for WENO-HCL (see Appendix). The differ-

ence here is that the reconstructions (3.21) and (3.22) are applied to the central derivative

of the solution q, while the reconstruction in WENO-HCL is applied to the fluxes on grid

points. The new reconstruction helps us control unphysical oscillations in ∂q
∂x not q. This is

in an important distinction since with Hamilton–Jacobi we are solving for a potential, the

derivatives of which produce a physical variable.

As described in detail in Appendix, the WENO reconstruction formulas, ΦWENO5, de-

pend on smoothness indicators, β, that control how much weight to assign the different finite

difference stencils. In the standard WENO-HCL framework, the weights are chosen so as to

control unphysical oscillations in the conserved variables. In WENO-HCL the smoothness

indicator is computed as follows [39]:

βj =
k∑
`=1

∆x2`−1
∫ x

i+1
2

x
i−1

2

(
d`

dx`
pj(x)

)2

dx, (3.24)
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where pj is an interpolating polynomial of the values qi in some stencil and k is the degree

of pj . Note that the smoothness indicator is computed by including the normalized total

variation of the first derivatives of pj (i.e., the ` = 1 term), leading to an essentially non-

oscillatory solution qi. However, βj could be dominated by the total variation of d
dxpj(x),

which is not important in controlling the oscillation of ∂q
∂x .

Based on the above observation about WENO reconstruction, we realize if the recon-

struction is applied to
∆+qi
∆x as in (3.21) and (3.22), the new pj becomes an interpolating

polynomial of ∂q
∂x . The same smoothness indicator formula (3.24) evaluates the smoothness

of the interpolating polynomial of ∂q
∂x in this case. So if ∂q

∂x is not smooth, this procedure

will approximate the derivative q±xi by essentially using the stencil that has the smoothest

derivative. In other words, the oscillations in ∂q
∂x can be controlled. A similar idea is used in

the method of Rossmanith [60], where a TVD limiter is applied to wave differences instead

of waves so as to control the oscillation in the computed solution derivatives.

Finally, in order to evaluate the numerical Hamiltonian, Ĥ, Jiang and Peng [38] intro-

duced a Lax-Friedrichs-type definition:

Ĥ
(
t, x, u−, u+) =H

(
t, x,

u− + u+

2

)
− α

(
u+ − u−

2

)
, (3.25)

where

α = max
u∈ I(u−,u+)

∣∣∣∣∂H∂u (t, x, q, u)

∣∣∣∣ , (3.26)

where I(u−, u+) is the interval between u− and u+.

We refer to the scheme discussed in this section as the WENO-HJ scheme. To compare
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the WENO-HJ scheme with the WENO-HCL scheme, we consider a simple test problem on

which both WENO-HJ and WENO-HCL can be applied. We consider the 1D linear constant

coefficient advection equation,

∂q

∂t
+
∂q

∂x
= 0, (3.27)

on x ∈ [0, 1] with the periodic boundary condition and the following piecewise linear initial

condition:

q(0, x) =



0 if 0.00 ≤ x ≤ 0.25,

(x− 0.25)/0.075 if 0.25 ≤ x ≤ 0.40,

2 if 0.40 ≤ x ≤ 0.60,

(0.75− x)/0.075 if 0.60 ≤ x ≤ 0.75,

0 if 0.75 ≤ x ≤ 1.00.

(3.28)

This problem was considered by Rossmanith [60], where it was also used to test a limiter

especially designed to control oscillations in the derivative of q.

The solutions and their numerical derivatives computed by WENO-HCL and WENO-HJ

schemes are presented in Figure 3.1. Both approaches use fifth-order WENO reconstruction

in the spatial discretization and SSP-RK4 for the time integrator. We use a CFL number of

1.0 and compute the solution to t = 4. Shown in this figure are 3.1 (a) the solution obtained

by the WENO-HCL scheme on a mesh with N = 300, 3.1(b) the derivative of this solution as

computed with a fourth-order central difference approximation, 3.1(c) the solution obtained

by the WENO-HJ scheme on a mesh with N = 300, and 3.1(d) the derivative of this solution

as computed with a fourth-order central difference approximation. Although both solutions
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Figure 3.1: 1D advection equation. Shown in these panels are (a) the solution obtained
by the WENO-HCL scheme with (b) its derivative, and (c) the solution obtained by the
WENO-HJ scheme with (d) its derivative. For interpretation of the references to color in
this and all other figures, the reader is referred to the electronic version of this dissertation.

agree with the exact solution very well, the computed derivative ∂q
∂x(4, x) of WENO-HCL is

much more oscillatory than that of WENO-HJ. The proposed WENO-HJ scheme is able to

control unphysical oscillations both in the solution and its derivative. The result of our new

approach is comparable to that of existing finite volume approaches [34, 35, 60].
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3.3.2 2D magnetic potential equation

In the CT framework described in Section 2.5, during Step 1 we must update the magnetic

potential by solving a discrete version of

∂Az

∂t
+ ux(x, y)

∂Az

∂x
+ uy(x, y)

∂Az

∂y
= 0, (3.29)

where, as described in Section 2.5, the velocity components are given functions from the

previous time step (or time stage in the case of higher-order time-stepping). Because ux and

uy are given, we can view (3.29) as a Hamilton–Jacobi equation:

∂Az

∂t
+H

(
x, y,

∂Az

∂x
,
∂Az

∂y

)
= 0, (3.30)

with Hamiltonian:

H

(
x, y,

∂Az

∂x
,
∂Az

∂y

)
= ux(x, y)

∂Az

∂x
+ uy(x, y)

∂Az

∂y
. (3.31)

To solve this equation we can directly apply a two-dimensional version of the WENO-HJ

scheme described above (just as with WENO-HCL, the 2D version of WENO-HJ is simply

a direction-by-direction version of the 1D scheme). The 2D semi-discrete WENO-HJ can be

written as

dAzij(t)

dt
= −Ĥ

(
Az−xij , A

z+
xij , A

z−
yij , A

z+
yij

)
=− uxij

(
Az−xij + Az+xij

2

)
− uyij

(
Az−yij + Az+yij

2

)

+ α1

(
Az+xij − A

z−
xij

2

)
+ α2

(
Az+yij − A

z−
yij

2

)
,

(3.32)
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where

α1 = max
i,j

∣∣∣uxij∣∣∣ and α2 = max
i,j

∣∣∣uyij∣∣∣ .
The approximations A3±

xij and A3±
yij are calculated with formulas analogous to (3.21) and

(3.22). α1 and α2 are chosen as the maximal value over all grid points based on a similar

idea of the Lax-Friedrichs flux splitting in Section 3.1. We remark here the scheme (3.32)

with this global αm can be too dissipative for certain pure linear Hamilton–Jacobi equations.

Another obvious choice is to evaluate αm by taking the maximal value on the local stencil.

Although this local version of αm can be much less dissipative for a certain pure Hamilton–

Jacobi equation, in numerical experiments for MHD we find that the differences between

the local and global approaches are negligible. Therefore, we will only present the numerical

results by the global version of αm in the numerical examples section (Section 4.4).

Except for the last remaining detail about how the discrete curl of Az is computed (see

Section 3.4), this version of the WENO-HJ scheme coupled with the WENO-HCL scheme

as the base scheme completes our 2D finite difference WENO constrained transport method.

In the numerical examples section, Section 4.4, we will refer to this full scheme as WENO-

CT2D.

3.3.3 3D magnetic potential equation

The evolution equation of the magnetic potential (2.21) in 3D is significantly different from

the evolution equation of the scalar potential (2.29) in 2D, and hence the scheme discussed

in Section 3.3.2 cannot be used directly. As pointed out in Section 2.3, a key difficulty is the

weak hyperbolicity of system (2.21). Helzel et al. [34] found that the weak hyperbolicity of
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(2.21) is only an artifact of freezing the velocity in time, i.e., the full MHD system is still

strongly hyperbolic. Furthermore, they found that the magnetic vector potential system

can be solved by an operator split finite volume scheme with an additional limiting strategy

added in certain directions. Helzel et al. [35] handled the weakly hyperblic system (2.21)

through a path-conserving finite volume WENO scheme without appeal to operator splitting.

In order to explain the scheme advocated in this work, we take inspiration from the

operator split method of Helzel et al. [34] and separate system (2.21) into two sub-problems:

Sub-problem 1:

∂Ax

∂t
+ uy

∂Ax

∂y
+ uz

∂Ax

∂z
= 0,

∂Ay

∂t
+ ux

∂Ay

∂x
+ uz

∂Ay

∂z
= 0,

∂Az

∂t
+ ux

∂Az

∂x
+ uy

∂Az

∂y
= 0.

(3.33)

Sub-problem 2:

∂Ax

∂t
− uy ∂A

y

∂x
− uz ∂A

z

∂x
= 0,

∂Ay

∂t
− ux∂A

x

∂y
− uz ∂A

z

∂y
= 0,

∂Az

∂t
− ux∂A

x

∂z
− uy ∂A

y

∂z
= 0.

(3.34)

We emphasis here that our final scheme will not contain any operator splitting, and that

the division of the magnetic potential evolution equation into the above two sub-problems

is only for the purpose of exposition.

The first sub-problem is a combination of three independent evolution equations, each of

which has the same mathematical form as the 2D scalar evolution equation (3.29). Further-
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more, this sub-problem is strongly hyperbolic. Thus, at least for this sub-problem, we can

simply use the WENO-HJ scheme described in Section 3.3.2 to solve these three equations

independently.

The second sub-problem, (3.34), is only weakly hyperbolic. For this problem we apply a

WENO finite difference discretization using arithmetic averages to define solution derivatives

at grid points. For instance, for the first component Ax in (3.34), the semi-discrete form

becomes

d

dt
Axijk(t) = u

y
ijk

Ay−xijk + A
y+
xijk

2

+ uzijk

(
Az−xijk + Az+xijk

2

)
, (3.35)

where Aα±xijk again uses the WENO reconstruction given by (3.21)–(3.22). The semi-discrete

forms for the other components in (3.34) are similar.

Note that semi-discrete formula (3.35) lacks the numerical dissipation terms found in

(3.32). This is due to the fact that system (3.34) (by itself) does not represent a transport

equation. Therefore, the above described discretizations for (3.33) and (3.34) generally do

not introduce sufficient numerical resistivity in order to control unphysical oscillations in the

magnetic field for a 3D problem. To be more precise, when solving system (3.33), artificial

resistivity is introduced from the WENO upwinding procedure (see formula (3.32)), but

only in 2 of the 3 coordinate directions (e.g., for Az there is artificial resistivity in the x and

y-directions). When solving system (3.34), no additional artificial resistivity is introduced

(e.g., see (3.35)). This lack of numerical dissipation was also pointed out by Helzel et al.

[34, 35]; they introduced explicit artificial resistivity terms into the magnetic vector potential

equation. We follow a similar approach by modifying sub-problem (3.34) as follows:
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Sub-problem 2 with artificial resistivity:

∂Ax

∂t
− uy ∂A

y

∂x
− uz ∂A

z

∂x
= ε1∂

2Ax

∂x2
,

∂Ay

∂t
− ux∂A

x

∂y
− uz ∂A

z

∂y
= ε2∂

2Ay

∂y2
,

∂Az

∂t
− ux∂A

x

∂z
− uy ∂A

y

∂z
= ε3∂

2Az

∂z2
.

(3.36)

These additional terms give us artificial resistivity in the missing directions (e.g., the equation

for Az now has an artificial resistivity term in the z-direction). In the above expression, the

artificial resistivity is take to be of the following form:

ε1 = 2νγ1 ∆x2

δ + ∆t
, (3.37)

where 0 ≤ δ � 1 is small parameter that can be set to ensure that ε1 remains bounded

as ∆t → 0+, γ1 is the smoothness indicator of Ax, and ν is a constant used to control the

magnitude of the artificial resistivity.

In all the simulations presented in this work, we take δ = 0 (∆t and ∆x have the same

order of magnitude for all the problems considered in this work). The smoothness indicator

γ1 is computed as follows:

γ1
ijk =

∣∣∣∣ a−

a− + a+ −
1

2

∣∣∣∣ , (3.38)

where

a− =

{
ε+

(
∆xAx−xijk

)2
}−2

and a+ =

{
ε+

(
∆xAx+

xijk

)2
}−2

, (3.39)
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and ε is taken to be 10−8 in all of our numerical computations. Here a− and a+ are used

to indicate the smoothness of Ax in each of the − and + WENO stencils, respectively.

The artificial resistivity parameters ε2 and ε3 in the other directions can be computed in

analogous ways.

The smoothness indicator γi is designed such that sufficient artificial resistivity is intro-

duced to avoid spurious oscillations in the derivatives of Ai when Ai is non-smooth, and

high-order accuracy of the scheme is maintained when Ai is smooth. For the case when ∂Ax

∂x

is smooth:

Ax−xijk − A
x+
xijk = O(∆x5) and γ1

ijk = O(∆x5).

In this case the artificial resistivity term in (3.36) will be of O(∆x6), which will not destroy

the fifth-order spatial accuracy of the scheme. For the case when ∂Ax

∂x is non-smooth:

Ax−xijk − A
x+
xijk = O(1) and γ1

ijk ≈
1

2
,

which indicates that numerical resistivity should be added. For both the smooth and non-

smooth cases, we note that γ1 < 1
2 , which means that for forward Euler time stepping, ν in

the range of [0, 0.5] will guarantee that the numerical scheme will be stable up to CFL = 1.

For the fourth-order 10-stage SSP-RK4 time-stepping scheme, we found that ν in the range

of [0.02, 0.2] seems to satisfactorily control the unphysical oscillations in 3D problems.

The constrained transport method that we advocate in this work is a method of lines

approach, and thus is not consistent with the operator splitting approach. However, through

numerical experimentation, we discovered that operator splitting is not necessary to obtain
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accurate and stable solutions, as long as the above artificial resistivity limiting strategy is

included in the time evolution. In order to write out the final scheme as advocated, consider

for brevity only the first equation in the magnetic vector potential system with artificial

resistivity:

∂Ax

∂t
− uy ∂A

y

∂x
− uz ∂A

z

∂x
+ uy

∂Ax

∂y
+ uz

∂Ax

∂z
= ε1

∂2Ax

∂x2
. (3.40)

Using the above discussion about sub-problems 1 and 2 as a guide, we arrive at the following

unsplit semi-discrete form for the full Ax evolution equation:

dAxijk(t)

dt
=u

y
ijk

Ay−xijk + A
y+
xijk

2

+ uzijk

(
Az−xijk + Az+xijk

2

)

+ 2νγ1

(
Axi−1jk − 2Axijk + Axi+1jk

δ + ∆t

)

− uyijk

(
Ax−yijk + Ax+

yijk

2

)
− uzijk

(
Ax−zijk + Ax+

zijk

2

)

+ α2

(
Ax+
yijk − A

x−
yijk

2

)
+ α3

(
Ax+
zijk − A

x−
zijk

2

)
,

(3.41)

where

α2 = max
i,j,k

∣∣∣uyijk∣∣∣ , and α3 = max
i,j,k

∣∣∣uzijk∣∣∣ .
The semi-discrete forms for Ay and Az of the system have analogous forms. For brevity we

omit these formulas.

Except for the last remaining detail about how the discrete curl of A is computed (see

Section 3.4), this version of the WENO-HJ scheme coupled with the WENO-HCL scheme
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as the base scheme completes our 3D finite difference WENO constrained transport method.

In the numerical examples section, Section 4.4, we will refer to this full scheme as WENO-

CT3D.

Finally, we note that the artificial resistivity terms included in the semi-discrete equation

(3.41) with (3.37), (3.38), and (3.39) are specifically designed for solving the ideal MHD

equations (2.1). In future work we will consider non-ideal corrections, including physical

resistivity and the Hall term. In these non-ideal cases, modifications will have to be made

to the artificial resistivity terms advocated in this work.

3.4 Central finite difference discretization of ∇×A

During each stage of our CT algorithm, a discrete curl operator is applied to the magnetic

potential to give a divergence-free magnetic field. In this section we describe the approach

to approximate the curl operator and discuss its important properties.

3.4.1 Curl in 2D

We look for a discrete version of the 2D curl given by (2.28) of the following form:

Bxij := D
y
ij A

z and B
y
ij := −D x

ij A
z, (3.42)

where D x and D y are discrete versions of the operators ∂
∂x and ∂

∂y . In particular, we look

for discrete operators Dx and Dy with the property that

∇ ·Bij := D x
ij B

x +D
y
ij B

y = D x
ij D

y
ij A

z −D y
ij D

x
ij A

z = 0, (3.43)
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which means that we satisfy a discrete divergence-free condition. In the second order accu-

rate, unstaggered, CT methods developed by Helzel et al. [34], Rossmanith [60], and Tóth

[75], the obvious choice for Dx
ij and D

y
ij are second-order central finite differences. In this

work, in order to maintain high-order accuracy, we replace second-order central differences

with fourth-order central finite differences:

D x
ij A :=

1

12∆x

(
Ai−2 j − 8Ai−1 j + 8Ai+1 j − Ai+2 j

)
, (3.44)

D
y
ij A :=

1

12∆y

(
Ai j−2 − 8Ai j−1 + 8Ai j+1 − Ai j+2

)
. (3.45)

3.4.2 Curl in 3D

We look for a discrete version of the 3D curl of the following form:

Bxijk := D
y
ijk A

z −D z
ijk A

y, (3.46)

B
y
ijk := D z

ijk A
x −D x

ijk A
z, (3.47)

Bzijk := D x
ijk A

y −D y
ijk A

x. (3.48)

where D x, D y, and D z are discrete versions of the operators ∂
∂x , ∂

∂y , and ∂
∂z . In particular,

we look for discrete operators Dx, Dy, and Dz with the property that

∇ ·Bijk := D x
ijk B

x +D
y
ijk B

y +D z
ijk B

z

= D x
ijkD

y
ijk A

z −D x
ijkD

z
ijk A

y +D
y
ijkD

z
ijk A

x

− D
y
ijkD

x
ijk A

z +D z
ijkD

x
ijk A

y −D z
ijkD

y
ijk A

x = 0,

(3.49)
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which means that we satisfy a discrete divergence-free condition. To achieve higher-order

accuracy we again use fourth-order central finite differences:

D x
ijk A :=

1

12∆x

(
Ai−2 jk − 8Ai−1 jk + 8Ai+1 jk − Ai+2 jk

)
, (3.50)

D
y
ijk A :=

1

12∆y

(
Ai j−2 k − 8Ai j−1 k + 8Ai j+1 k − Ai j+2 k

)
, (3.51)

D z
ijk A :=

1

12∆z

(
Ai j k−2 − 8Ai j k−1 + 8Ai j k+1 − Ai j k+2

)
. (3.52)

3.4.3 Important properties

For smooth solutions, the spatial accuracy of our overall scheme will be fourth-order ac-

curate. This fact is confirmed via numerical experiments in Section 4.4. Furthermore, for

solutions with discontinuities in the magnetic field, the fourth-order central discretization of

the magnetic potential curl will introduce spurious oscillations. However, as we demonstrated

via numerical experiments, we are able to control any unphysical oscillations in the mag-

netic fields through the limiting strategy that was designed in Section 3.3 for the WENO-HJ

scheme.

Finally, we point out the following property of the proposed scheme:

Claim 3.4.1. The constrained transport method as described in this work globally conserves

the magnetic field from one Runge–Kutta stage to the next.

Proof. Using the same idea as the proof of the conservation of B in Rossmanith [60], we

can show the total amount of each component of B can be modified only through loss or

gain across its physical boundary. Thus the components of the magnetic field are globally

conserved. We omit the details of proof here.
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3.5 Numerical results

In this section, the 2D and 3D WENO-CT schemes are applied to several MHD problems.

First, both the 2D and 3D schemes are tested on the 2D and 3D smooth Alfvén wave

problems, respectively. These problems are used to demonstrate that the proposed methods

are fourth-order accurate. The scheme is also tested on a rotated shock tube problem in

order to examine the shock-capturing ability of the method, as well as to demonstrate the

success in controlling divergence errors. Also considered are the 2D Orszag-Tang vortex

problem and the 2D, 2.5D, and 3D versions of the cloud-shock interaction problem.

For all the examples computed below, the gas constant is γ = 5/3 and the CFL number

is 3.0. In this section, we make exclusive use of Option 1 and thus conserve the total energy.

3.5.1 Smooth Alfvén wave problem

We first consider 2D and 3D versions of the smooth Alfvén wave problem to demonstrate

the order of accuracy of the proposed schemes.

3.5.1.1 2D problem

We perform a convergence study of the 2D scheme for the 2D smooth Alfvén wave problem.

The initial conditions and the computational domain for this version are described in detail

in several papers (e.g., Section 6.1.1 on page 3818 of Helzel et al. [34]). The L2-errors and

L∞-errors of the magnetic field and the magnetic scalar potential are shown in Tables 3.1.

Fourth-order convergence rates of all the quantities are observed when CFL = 3.0, which

confirms the temporal and spatial order of accuracy.
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Table 3.1: Convergence study of the 2D Alfvén wave for CFL = 3.0. Shown are the L2-errors
and L∞-errors at time t = 1 of the magnetic field and magnetic potential as computed by
the WENO-CT2D scheme at various grid resolutions.

Mesh Bx By

L2-error order L∞-error order L2-error order L∞-error order

16× 32 9.73e-05 - 2.70e-04 - 2.13e-04 - 5.79e-04 -
32× 64 4.07e-06 4.58 1.09e-05 4.64 9.34e-06 4.51 2.47e-05 4.55
64× 128 2.02e-07 4.33 4.81e-07 4.50 4.62e-07 4.34 1.09e-06 4.50
128× 256 1.17e-08 4.11 2.73e-08 4.14 2.60e-08 4.15 6.06e-08 4.17
256× 512 7.15e-10 4.03 1.65e-09 4.05 1.55e-09 4.07 3.62e-09 4.07
512× 1024 4.44e-11 4.01 1.02e-10 4.01 9.50e-11 4.03 2.22e-10 4.02

Mesh Bz Az

L2-error order L∞-error order L2-error order L∞-error order

16× 32 2.83e-04 - 7.32e-04 - 3.03e-05 - 6.98e-05 -
32× 64 9.39e-06 4.91 2.59e-05 4.82 1.37e-06 4.47 3.08e-06 4.50
64× 128 2.88e-07 5.03 7.94e-07 5.03 7.07e-08 4.27 1.56e-07 4.30
128× 256 9.30e-09 4.95 2.50e-08 4.99 4.14e-09 4.09 9.21e-09 4.09
256× 512 3.40e-10 4.77 8.13e-10 4.94 2.54e-10 4.03 5.67e-10 4.02
512× 1024 1.55e-11 4.46 3.61e-11 4.49 1.58e-11 4.01 3.53e-11 4.00

3.5.1.2 3D problem

We also perform a convergence study of the 3D scheme on a 3D variant of the smooth

Alfvén wave problem. The initial conditions and the computational domain for this version

are described in detail in Helzel et al. [34] (page 3819 in Section 6.2.1). The results of the 3D

scheme are presented in Tables 3.2. Fourth-order accuracy in all components are confirmed

by this test problem.
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Table 3.2: Convergence study of the 3D Alfvén wave for CFL = 3.0. Shown are the L2-errors
and L∞-errors at time t = 1 of all the magnetic field and magnetic potential components as
computed by the WENO-CT3D scheme on various grid resolutions.

Mesh Bx By

L2-error order L∞-error order L2-error order L∞-error order

16× 32× 32 6.92e-05 - 3.07e-04 - 1.16e-04 - 5.47e-04 -
32× 64× 64 2.73e-06 4.66 1.20e-05 4.68 4.98e-06 4.54 2.10e-05 4.70

64× 128× 128 1.28e-07 4.41 5.09e-07 4.56 2.45e-07 4.34 9.56e-07 4.46

Mesh Bz Ax

L2-error order L∞-error order L2-error order L∞-error order

16× 32× 32 1.06e-04 - 5.47e-04 - 6.36e-06 - 3.04e-05 -
32× 64× 64 4.27e-06 4.64 1.80e-05 4.93 3.31e-07 4.27 1.28e-06 4.57

64× 128× 128 2.07e-07 4.37 8.21e-07 4.45 1.84e-08 4.17 6.72e-08 4.25

Mesh Ay Az

L2-error order L∞-error order L2-error order L∞-error order

16× 32× 32 1.42e-05 - 5.24e-05 - 1.53e-05 - 6.24e-05 -
32× 64× 64 5.82e-07 4.61 2.24e-06 4.55 6.31e-07 4.60 2.45e-06 4.67

64× 128× 128 2.88e-08 4.34 1.11e-07 4.33 3.06e-08 4.37 1.16e-07 4.41

3.5.2 2D rotated shock tube problem

Next we consider a 1D shock tube problem rotated by an angle of α in a 2D domain. The

initial conditions are

(ρ, u⊥, u‖, uz, p, B⊥, B‖, Bz) =


(1,−0.4, 0, 0, 1, 0.75, 1, 0) if ξ < 0,

(0.2,−0.4, 0, 0, 0.1, 0.75,−1, 0) if ξ > 0,

(3.53)

where

ξ = x cosα + y sinα and η = −x sinα + y cosα, (3.54)

and u⊥ and B⊥ are vector components that are perpendicular to the shock interface, and

u‖ and B‖ are components that are parallel to the shock interface. The initial magnetic
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Figure 3.2: The rotated shock tube problem. Shown in these panels are ρ of (a) the base
WENO scheme and (b) the WENO-CT2D scheme. 30 equally spaced contours are shown
for each graph in the ranges ρ ∈ [0.1795, 1].

potential is

Az(0, ξ) =


0.75 η − ξ if ξ ≤ 0,

0.75 η + ξ if ξ ≥ 0.

(3.55)

We solve this problem on the computational domain (x, y) ∈ [−1.2, 1.2]× [−1, 1] with a

180×150 mesh. We take α = tan−1(0.5). Zero-order extrapolation boundary conditions are

used on the left and right boundaries. On the top and bottom boundaries all the conserved

quantities are extrapolated in the direction parallel to the shock interface. In addition, to be

consistent with zero-order extrapolation boundary condition on B, the linear extrapolation

of the magnetic potential Az is used along the corresponding directions.

Shown in Figure 3.2 are the density contours of the solutions as computed using the base

WENO scheme and the WENO-CT2D scheme. From this figure we note that the solution

from the base scheme suffers from unphysical oscillations that are due to to divergence

errors in the magnetic field, while the WENO-CT2D does not suffer from this problem. In

55



(a) −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Density at t = 0.3 [Base WENO]

 

 

2D
1D

(b) −0.3 −0.2 −0.1 0 0.1 0.2
0.4

0.5

0.6

0.7

0.8

Density at t = 0.3 [Base WENO]

 

 

2D
1D

(c) −1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Density at t = 0.3 [WENO−CT2D]

 

 

2D
1D

(d) −0.3 −0.2 −0.1 0 0.1 0.2
0.4

0.5

0.6

0.7

0.8
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Figure 3.3: The rotated shock tube problem. Shown in these panels are (a) a 1D cut along
y = 0 of ρ as computed with the base WENO scheme, (b) a zoomed in view of the same
plot, (c) a 1D cut along y = 0 of ρ as computed with the WENO-CT2D scheme, and (d) a
zoomed in view of the same plot. The solid line is a highly resolved 1D solution.

Figures 3.3 and 3.4 we also present a comparison of the 2D solutions along y = 0 compared

against a 1D fifth-order WENO-HCL solution on a mesh with N = 5000. From these figures

it is again clear that the base WENO scheme produces extra oscillations and larger errors,

while the solution by the WENO-CT2D scheme are in good agreement with the 1D solution.
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Figure 3.4: The rotated shock tube problem. Shown in these panels are 1D cuts along y = 0
of the magnetic field (a) perpendicular (B⊥) and (b) parallel (B‖) to the shock interface
as computed with the base WENO scheme and 1D cuts along y = 0 of the magnetic field
(c) perpendicular (B⊥) and (d) parallel (B‖) to the shock interface as computed with the
WENO-CT2D dscheme. The solid line is a highly resolved 1D solution.

3.5.3 2D Orszag-Tang vortex

Next we consider the Orszag-Tang vortex problem, which is widely considered as a standard

test example for MHD in the literature (e.g. [25, 60, 75, 83]), since the solution at late times

in the simulation is quite sensitive to divergence errors. The problem has a smooth initial
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Figure 3.5: The Orszag-Tang vortex problem. Shown in these panels are ρ at times (a)
t = 0.5, (b) t = 2, (c) t = 3, and (d) t = 4 as computed with the WENO-CT2D scheme on
a 192× 192 mesh. 15 equally spaced contours were used for each plot.

condition on the double-periodic box [0, 2π]× [0, 2π]:

ρ(0, x, y) = γ2, ux(0, x, y) = − sin(y), uy(0, x, y) = sin(x), (3.56)

p(0, x, y) = γ, Bx(0, x, y) = − sin(y), By(0, x, y) = sin(2x), (3.57)

uz(0, x, y) = Bz(0, x, y) = 0, (3.58)
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Thermal Pressure at y = 0.625π and t = 3

Figure 3.6: The Orszag-Tang vortex problem. Shown in these panels are (a) the thermal
pressure as computed with the WENO-CT2D scheme at t = 3 on a 192× 192 mesh and (b)
a slice of the thermal pressure at y = 0.625π.

with the initial magnetic potential:

Az(0, x, y) = 0.5 cos(2x) + cos(y). (3.59)

Periodic boundary conditions are imposed on all the boundaries. As time evolves, the so-

lution forms several shock waves and a vortex structure in the middle of the computational

domain.

We solve the MHD equations on a 192 × 192 mesh with the WENO-CT2D scheme. In

Figure 3.5, we present the contours of density at t = 0.5, 2, 3, and 4. A slice of the pressure

at y = 0.625π and t = 3 is shown in the right panel of Figure 3.6. Although different papers

display the solution at different times and resolutions, our results are in good agreement

with those given in [25, 60, 75, 83]. We did not observe significant oscillations in any of the

conserved quantities, even when the system is evolved out to long times. Our simulation

was successfully run to t = 30 without the introduction of negative pressure anywhere in
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the computational domain. On the other hand, the base scheme without CT step produces

negative pressures at around t = 4.0 on a 192× 192 mesh.

3.5.4 Cloud-shock interaction

Finally we consider the so-called cloud-shock interaction problem, which involves a strong

shock interacting with a dense cloud that is in hydrostatic equilibrium. For this problem,

we consider the 2D, 2.5D, and 3D versions of the proposed method. The 2D and 2.5D

versions have the same physical setup. However, 2D means the problem is solved using the

WENO-CT2D scheme, and 2.5D means that the magnetic field and the potential are solved

using the WENO-CT3D scheme, i.e., with all the components of the magnetic field updated,

although all the quantities are still independent of z.

3.5.4.1 2D problem

In this version we consider an MHD shock propagating toward a stationary bubble, with the

same setup as the one in [60]. The computation domain is (x, y) ∈ [0, 1]× [0, 1] with inflow

boundary condition at x = 0 and outflow boundary conditions on the three other sides. The

initial conditions consist of a shock initialized at x = 0.05:

(ρ, ux, uy, uz, p, Bx, By, Bz)(0, x, y)

=


(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182,−2.1826182) if x < 0.05,

(1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) if x > 0.05,

(3.60)
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(a) (b)

Figure 3.7: The 2D cloud-shock interaction problem. Shown in these panels are schlieren
plots at time t = 0.06 of (a) ln(ρ) and (b) the norm of B. The solution was obtained using
the WENO-CT2D scheme on a 256× 256 mesh.

and a circular cloud of density ρ = 10 and radius r = 0.15 centered at (x, y) = (0.25, 0.5).

The initial scalar magnetic potential is given by

Az(0, x, y) =


−2.1826182(x− 0.05) if x ≤ 0.05,

−0.56418958(x− 0.05) if x ≥ 0.05.

(3.61)

The solution is computed on a 256 × 256 mesh. Shown in Figure 3.7 are schlieren

plots of ln(ρ) and ‖B‖. In general, the solution shows good agreement with the one in

[60], although the WENO-CT2D schemes shows some higher-resolution features. There is

a noticeable extra structure that can be observed around x = 0.75 of the density plot (see

Figure 3.7(a)). We also find that when the resolution of the solution using the second-order

finite volume solver [60] is doubled to a mesh of 512 × 512, a similar structure starts to

appear2. A similar structure can be observed in the solution of Dai and Woodward (Figure

2This test was done using freely available MHDCLAW [58] code.
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18 in [25]) on a 512× 512 mesh, although their problem setup is slightly different (i.e., they

used a stationary shock instead of a stationary bubble). From another perspective, a similar

structure around x = 0.75 can always be observed in the schlieren plots of ‖B‖ solved by

different methods. Due to those facts, it is reasonable to believe that the solution should

consist of this structure and that the high-order solver with less numerical dissipation can

obtain this structure with fewer grid points than low-order methods.

3.5.4.2 2.5D problem

We also consider the 2D version problem with the magnetic field solved by WENO-CT3D

scheme so as to compare our 3D and 2D schemes. We call this problem the 2.5D version to be

consistent with [34, 35]. The problem is initialized in 2.5D with the same initial conditions as

the 2D version (3.60). However, as discussed in Section 3.3, the magnetic potential evolutions

of 2D and 3D are significantly different.

In 2.5D, since all quantities are independent of z, the magnetic vector potential satisfies

the following evolution equation

∂Ax

∂t
− uy ∂A

y

∂x
− uz ∂A

z

∂x
+ uz

∂Ax

∂y
= 0,

∂Ay

∂t
+ ux

∂Ay

∂x
− ux∂A

x

∂y
− uz ∂A

z

∂y
= 0,

∂Az

∂t
+ ux

∂Az

∂x
+ uy

∂Az

∂y
= 0.

(3.62)

The magnetic field satisfies

Bx =
∂Az

∂y
, By = −∂A

z

∂x
, and Bz =

∂Ay

∂x
− ∂Ax

∂y
. (3.63)

For this version of the cloud-shock problem, the magnetic vector potential is initialized as
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Figure 3.8: The 2D cloud-shock interaction problem. Shown in these panels are Bz at time
t = 0.06 on a 256× 256 mesh as solved with (a) the WENO-CT2D scheme and (b) the 2.5D
version of the WENO-CT3D scheme. 25 equally spaced contours were used in each of these
panels.

follows:

A(0, x, y) =


(0,−2.1826182(x− 0.05),−2.1826182(x− 0.05)) if x ≤ 0.05,

(0, 0.56418958(x− 0.05),−0.56418958(x− 0.05)) if x ≥ 0.05.

(3.64)

The difference between the 2D and 2.5D schemes is essentially that Bz is not corrected

in the CT step in the 2D scheme, while in the 2.5D we update Bz by partial derivatives of

Ax and Ay as described above. It is also worthwhile to point out that Bz,z is identically zero

in this case, so the update of Bz in (3.63) will not influence the divergence error. In the end,

the two approaches produce very similar results. Shown in Figure 3.8 are contour plots of

Bz using the two different approaches. For the WENO-CT3D scheme the diffusive limiter

described in Section 3.3.3 was used with ν = 0.1.

Although these methods compute Bz in the very different ways, the two solutions in

Figure 3.8 are in good agreement. This result gives us confidence that the proposed 3D
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scheme is able to solve the problem even with strong shocks. In addition, there are no

significant oscillations observed in the 2.5D solution. These results also compare well with

the results of the split finite volume CT approach of [34] and by the unsplit MOL finite

volume CT approach of [35].

3.5.4.3 3D problem

The last problem we consider is a fully 3D version of the cloud-shock interaction problem.

The initial conditions consist of a shock initialized at x = 0.05:

(ρ, ux, uy, uz, p, Bx, By, Bz)(0, x, y, z) =
(3.86859, 11.2536, 0, 0, 167.345, 0, 2.1826182,−2.1826182) if x < 0.05,

(1, 0, 0, 0, 1, 0, 0.56418958, 0.56418958) if x > 0.05,

(3.65)

and a spherical cloud of density ρ = 10 and radius r = 0.15 centered at (x, y, z) =

(0.25, 0.5, 0.5). The initial conditions for the magnetic potential are the same as (3.64).

The solution is computed on the domain of [0, 1]3. Inflow boundary conditions are imposed

at x = 0 and outflow boundary conditions are used on all other sides. The solution is com-

puted on a 128×128×128 mesh using the WENO-CT3D scheme. In Figure 3.9 we show the

density of the solution at t = 0.06, which is in good agreement with the solution in [34, 35],

although our solution shows less oscillations and higher-resolution compared with previous

work. We again observe an extra structure in the density plot, same as in our solution of the

2D problem. Here the diffusive limiter as described in Section 3.3.3 was used with ν = 0.1.
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Figure 3.9: The 3D cloud-shock interaction problem. Shown in this plot is ln(ρ) as computed
with the WENO-CT3D scheme on a 128× 128× 128 mesh.
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Chapter 4

Positivity-preserving limiter for ideal

MHD

In this chapter, we utilize the maximum-principle-preserving flux limiting technique, origi-

nally designed for high order WENO-HCL methods for scalar hyperbolic conservation laws,

to develop a positivity-preserving limiter for the FD-WENO methods for the ideal MHD

equations. The resulting scheme, under the constrained transport framework, can achieve

high order accuracy, a discrete divergence-free condition and positivity of the numerical

solution simultaneously.

The outline of this chapter is as follows. In Section 4.1 and 4.2, we present positivity-

preserving limiters for the 1D and multi-D MHD equations. In addition, we also detail the

temporal discretization in this work in Section 4.2. The proposed schemes are implemented

and tested on several 1D, 2D and 3D numerical examples in Section 4.4.

4.1 1D case

In this section, we describe our positivity-preserving limiter on a 1D MHD system. The

divergence-free condition ∇ · B = 0 in 1D case is equivalent to Bx = constant. Since the

This chapter is to appear in [21]: A.J. Christlieb, Y. Liu, Q. Tang and Z. Xu. Positivity-preserving finite
difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations.
SIAM J. Sci. Comput., to appear, 2015.
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WENO hyperbolic conservation law solver (WENO-HCL) in [39, 40] without CT approaches

will produce a solution with constant Bx, we use it as our MHD base scheme in 1D, to which

we apply a positivity-preserving limiter.

The MHD equations in 1D (3.1) has been discussed in Section 3.1. Again, we let qi(t)

be the numerical solution at the grid point xi. The finite difference WENO-HCL schemes

solve (3.1) by a conservative form:

dqi(t)

dt
+

1

∆x

(
F̂
i+1

2
− F̂

i−1
2

)
= 0, (4.1)

where F̂
i+1

2
is defined as a high-order numerical flux constructed by WENO-HCL. The

design of F̂
i+1

2
has been addressed in Section 3.1. One numerical difficulty is that the wave

speeds of the MHD system involve the term 1
ρ . To avoid the possibility of an infinite wave

speed during the computation, we assume there is a small lower bound ε0 for both density

and pressure in the exact solution of the problem we considered.

The semi-discretized equation (4.1) can be further discretized in time by high-order time

integrators. While our proposed scheme can be applied with any SSP-RK method, we take

the third-order SSP-RK method (1.13) as an illustrative example. Here we let

L(qni ) = − 1

∆x
(F̂n

i+1
2
− F̂n

i−1
2

). (4.2)

If we use F̂n
i+1

2
, F̂

(1)

i+1
2

and F̂
(2)

i+1
2

to denote the numerical fluxes reconstructed based on qn,

q(1) and q(2), the final stage of RK discretization (1.13) can be rewritten as

qn+1
i = qni − λ(F̂rk

i+1
2
− F̂rk

i−1
2

), (4.3)
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where

λ =
∆t

∆x
, F̂rk

i+1
2

=
1

6

(
F̂n
i+1

2
+ 4F̂

(2)

i+1
2

+ F̂
(1)

i+1
2

)
. (4.4)

F̂rk
i+1

2
can be viewed as a linear combination of high-order numerical fluxes from different

stages. Following the ideas in [78, 79], we need to modify the numerical flux F̂rk
i+1

2
by a

positivity-preserving flux to design a high-order positivity-preserving MHD scheme.

Cheng et al. [19] proved the simple Lax–Friedrichs numerical flux coupled with forward

Euler time discretization is positivity-preserving for the 1D MHD equations (3.1) under the

restriction CFL≤ 0.5. When the Lax–Friedrichs scheme is used to solve the high-order

solution qn from tn to tn+1, we have

q̂n+1
i = qni − λ(f̂

i+1
2
− f̂

i−1
2

), (4.5)

where q̂n+1
i is introduced to denote the low-order solution at xi and t = tn+1, and the

Lax–Friedrichs flux is formulated as

f̂
i+1

2
=

1

2

(
f(qnj+1) + f(qni )− α(qnj+1 − q

n
i )
)
, (4.6)

where the maximal wave speed α is defined by

α = max
i

(
|ux|+ cf

)
. (4.7)

Here cf is the fast speed of the MHD system, see Section 2.2.
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The density and pressure computed by the first-order scheme (4.5) satisfy


ρ̂n+1
i > 0,

p̂n+1
i > 0.

(4.8)

We can use the first-order solution q̂n+1 to define the numerical lower bounds for the density

and pressure for the high-order solution qn+1, which are

εn+1
ρ = min

i
(ρ̂n+1
i , ε0), (4.9)

εn+1
p = min

i
(p̂n+1
i , ε0). (4.10)

Throughout the simulations for this work, we take ε0 = 10−13. It can be certainly taken as

a smaller number if it is required by the problem and allowed by the machine precision.

Following [78, 79], to guarantee the positivity of the high-order solutions by the WENO

scheme (4.3), we need to find a modification of the numerical flux as follows:

F̃
i+1

2
= θ

i+1
2

(F̂rk
i+1

2
− f̂

i+1
2

) + f̂
i+1

2
, (4.11)

where the limiting parameter θ
i+1

2
∈ [0, 1]. We seek a combination of θ

i+1
2

, such that the

solutions satisfy


ρn+1
i ≥ εn+1

ρ ,

pn+1
i ≥ εn+1

p .

(4.12)

Our positivity-preserving limiting technique follows a two-step procedure. First, as out-
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lined below, we describe a strategy to guarantee the computed density positive. To facilitate

the discussion, we denote the first-order flux of the density in f̂ as f̂ρ, whereas fρ and f̃ρ

are the corresponding flux components in F̂rk and F̃, respectively.

To preserve positive density, we need to find upper bounds Λ
ρ

±1
2 ,Ii

of the limiting pa-

rameters θ
i±1

2
at each cell Ii, such that, for any combination (θ

i−1
2
, θ
i+1

2
) ∈ [0,Λ

ρ

−1
2 ,Ii

] ×

[0,Λ
ρ

+1
2 ,Ii

], the following inequality holds:

ρn+1
i (θ

i−1
2
, θ
i+1

2
) = ρni − λ(f̃

ρ

i+1
2

− f̃ρ
i−1

2

) ≥ εn+1
ρ , (4.13)

where f̃
ρ

i+1
2

= θ
i+1

2
(f
ρ

i+1
2

− f̂ρ
i+1

2

)+ f̂
ρ

i+1
2

, Since we know ρ̂n+1
i = ρni −λ(f̂

ρ

i+1
2

− f̂ρ
i−1

2

), (4.13)

is equivalent to

ρ̂n+1
i − λ(θ

i+1
2

(f
ρ

i+1
2

− f̂ρ
i+1

2

)− θ
i−1

2
(f
ρ

i−1
2

− f̂ρ
i−1

2

)) ≥ εn+1
ρ . (4.14)

Due to the positivity-preserving property of the first-order scheme and the definition of εn+1
ρ

(4.9), we have ρ̂n+1
i ≥ εn+1

ρ . Thus, the inequality (4.14) can be rewritten as,

λθ
i−1

2
(f
ρ

i−1
2

− f̂ρ
i−1

2

)− λθ
i+1

2
(f
ρ

i+1
2

− f̂ρ
i+1

2

) ≥ εn+1
ρ − ρ̂n+1

i (4.15)

with the right-hand side εn+1
ρ − ρ̂n+1

i ≤ 0. For abbreviation, we introduce a notation

∆f
i+1

2
= f

ρ

i+1
2

− f̂ρ
i+1

2

.

Following the same idea in [78, 79], we will determine the upper bounds of the parameter

θ
i±1

2
by a case-by-case discussion based on the signs of ∆f

i−1
2

and ∆f
i+1

2
. In particular,

we decouple the inequalities (4.15) based on the following four cases:
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• If ∆f
i−1

2
≥ 0 and ∆f

i+1
2
≤ 0, then

(Λ
ρ

−1
2 ,Ii

,Λ
ρ

+1
2 ,Ii

) = (1, 1).

• If ∆f
i−1

2
≥ 0 and ∆f

i+1
2
> 0, then

(Λ
ρ

−1
2 ,Ii

,Λ
ρ

+1
2 ,Ii

) =

1,min

1,
εn+1
ρ − ρ̂n+1

i

−λ∆f
i+1

2

 .

• If ∆f
i−1

2
< 0 and ∆f

i+1
2
≤ 0, then

(Λ
ρ

−1
2 ,Ii

,Λ
ρ

+1
2 ,Ii

) =

min

1,
εn+1
ρ − ρ̂n+1

i

λ∆f
i−1

2

 , 1

 .

• If ∆f
i−1

2
< 0 and ∆f

i+1
2
> 0,

– if the inequality (4.15) is satisfied with (θ
i−1

2
, θ
i+1

2
) = (1, 1) then

(Λ
ρ

−1
2 ,Ii

,Λ
ρ

+1
2 ,Ii

) = (1, 1).

– otherwise, we choose

(Λ
ρ

−1
2 ,Ii

,Λ
ρ

+1
2 ,Ii

) =

 εn+1
ρ − ρ̂n+1

i

λ∆f
i−1

2
− λ∆f

i+1
2

,
εn+1
ρ − ρ̂n+1

i

λ∆f
i−1

2
− λ∆f

i+1
2

 .

This procedure has been discussed in [78, 79]. It is easy to show when (θ
i−1

2
, θ
i+1

2
) ∈

[0,Λ
ρ

−1
2 ,Ii

] × [0,Λ
ρ

+1
2 ,Ii

] with the bounds Λ
ρ

±1
2 ,Ii

obtained by the above strategy that, the

inequality (4.15) holds, i.e., the density ρn+1
i is positive at each grid xi. We define this set
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as Sρ,Ii :

Sρ,Ii = [0,Λ
ρ

−1
2 ,Ii

]× [0,Λ
ρ

+1
2 ,Ii

]. (4.16)

We next describe a strategy to obtain positive pressure. First we discuss some properties

of the pressure function

p(q) = (γ − 1)

(
E − 1

2

(ρux)2 + (ρuy)2 + (ρuz)2

ρ
− 1

2

(
(Bx)2 + (By)2 + (Bz)2

))
. (4.17)

We note the pressure function is concave with respect to q = (ρ, ρux, ρuy, ρuz, E , Bx, By, Bz)T .

Similar as the function ρn+1
i (θ

i−1
2
, θ
i+1

2
), we can define a function pn+1

i (θ
i−1

2
, θ
i+1

2
) as

follows:

pn+1
i (θ

i−1
2
, θ
i+1

2
) := p(qn+1

i (θ
i−1

2
, θ
i+1

2
)). (4.18)

We need the following lemma to construct the limiter.

Lemma 4.1.1. The pressure function satisfies

p
(
qn+1
i

(
α
−→
θ 1 + (1− α)

−→
θ 2
))
≥ αp

(
qn+1
i

(−→
θ 1
))

+ (1− α)p
(
qn+1
i

(−→
θ 2
))

(4.19)

for any α ∈ [0, 1] and
−→
θ 1,
−→
θ 2 ∈ Sρ,Ii.

The proof of this lemma is straightforward, as long as we use the concave property of

p(q) and note that the solution qn+1
i is a linear function of its limiting parameters, i.e.,

qn+1
i

(
α
−→
θ 1 + (1− α)

−→
θ 2
)

= αqn+1
i

(−→
θ 1
)

+ (1− α)qn+1
i

(−→
θ 2
)
.
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A similar lemma for the Euler equations has been use in the past [20, 78].

We want to identify a subset of the set Sρ,Ii , denoted by Sp,Ii , such that pn+1
i (θ

i−1
2
, θ
i+1

2
)

is positive, i.e.,

Sp,Ii = {(θ
i−1

2
, θ
i+1

2
) ∈ [0,Λ

ρ

−1
2 ,Ii

]× [0,Λ
ρ

+1
2 ,Ii

] : pn+1
i (θ

i−1
2
, θ
i+1

2
) ≥ εn+1

p }. (4.20)

Due to Lemma 4.1.1, Sp,Ii is a convex set. To determine Sp,Ii , we can only focus on its

vertices.

If we denote the four vertices of Sρ,Ii to be P k1,k2 = (k1Λ
ρ

−1
2 ,j
, k2Λ

ρ

+1
2 ,j

), with k1, k2

being 0 or 1, similarly we can define the vertices of Sp,Ii to be P̂ k1,k2 .

We determine the P̂ k1,k2 based on the following strategy. For (k1, k2) 6= (0, 0), if

pn+1
i (P k1,k2) ≥ εn+1

p , we let P̂ k1,k2 = P k1,k2 ; otherwise we find a scalar parameter of

r such that pn+1
i (rP k1,k2) ≥ εn+1

p and let P̂ k1,k2 = rP k1,k2 . The resulting three vertices

P̂ k1,k2 with the origin (0, 0) form Sp,Ii .

Next, we can identify a rectangle inside Sp,Ii denoted by

Rρ,p,Ii = [0,Λ−1
2 ,Ii

]× [0,Λ
+1

2 ,Ii
], (4.21)

where

Λ−1
2 ,Ii

= min
k2=0,1

(P̂ 1,k2), Λ
+1

2 ,Ii
= min
k1=0,1

(P̂ k1,1). (4.22)

73



After repeating this procedure for all j, we let

θ
i+1

2
= min(Λ

+1
2 ,Ii

,Λ−1
2 ,Ii+1

), (4.23)

and this finishes our discussion for the 1D limiter.

Remark 4.1.2. The limiting technique here is used only to guarantee the positivity of the

solution at the final stage of RK methods. If there is negative density or pressure in the

intermediate stage, in this work we take the absolute value of the density and pressure in

the code where a positive solution is required. The first place that needs a positive solution

is to estimate the speed waves of the system. For instance, the speed of sound is taken as

c =
√
γ|p|/|ρ| in the intermediate stage. The second place requiring a positive solution is

to estimate the eigenvectors of the Jacobian matrix of the flux function. Those treatments

will not degrade the order of accuracy, because the WENO algorithm only needs an estimate

of the local eigenvalues and eigenvectors and we always use the true solution to compute

the numerical flux even when it becomes negative in the intermediate stage. On the other

hand, we also remark that the limiter can be applied to each stage when the positivity in the

intermediate stage is required.

Remark 4.1.3. From the limiting steps, we can see the overall scheme has a CFL constraint

of 0.5, which is same as the Lax–Friedrichs scheme. When the above limiting technique is

applied to the intermediate stages, there is no extra restriction because the time step of the

intermediate stage is typically no greater than ∆t.

Remark 4.1.4. One numerical difficulty is to satisfy p(rP k1,k2) ≥ εn+1
p . This can be done

by solving a root r for the equation p(rP k1,k2) = εn+1
p . Through a simple derivation, it can
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be easily shown that the solution qn+1
i (rP k1,k2) satisfies

qn+1
i (rP k1,k2) = rqn+1

i (P k1,k2) + (1− r)q̂n+1
i ,

where q̂n+1
i is again used to denote the solution solved by the first-order flux f̂

i+1
2

. This

property is independent from the dimension, which makes it naturally extendable for the

multi-D cases. More importantly, qn+1
i (P k1,k2) and q̂n+1

i are both computationally cheap to

evaluate. So with qn+1
i (P k1,k2) and q̂n+1

i known, we can solve a root r for the equation

p(rqn+1
i (P k1,k2) + (1− r)q̂n+1

i ) = εn+1
p .

In the MHD equation case, this equation is a cubic function of r in general. We note that

there exists at least one root in the interval [0, 1], which can always be found by Newton

iteration. However, in the implementation, we only used a simple bisection method with a

maximum of 10 iterations to find the root, because our purpose is to obtain a positive pressure

p(rqn+1
i (P k1,k2)) instead of finding an accurate r. During the numerical simulations, we

found the effect of the number of iterations on the solution quality and accuracy is negligible.

A similar approach to find a limiting parameter can be found in the design of the positivity-

preserving MHD scheme [5].

4.2 Multi-D case

In this section, we briefly describe the positivity-preserving limiter in the multi-D case. To

control the divergence error, our base scheme is taken as the WENO-CT scheme outlined in

Chapter 3. In the discussion below, we only focus on the 2D case, keeping in mind that the
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extension to 3D case is quite straightforward.

The 2D MHD system (2.1) can be rewritten as:

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= 0. (4.24)

We need to solve (4.24) to get the update for the conserved quantities. If a general RK

method is used as the time integrator, the WENO-HCL scheme solves (4.24) by a conservative

form:

qn+1
ij = qnij − λx(F̂rk

i+1
2j
− F̂rk

i−1
2j

)− λy(Ĝrk
ij+1

2
− Ĝrk

ij−1
2

), (4.25)

where F̂rk and Ĝrk are linear combinations of high-order numerical fluxes from three RK

stages and λα = ∆t
∆α . Let f̂

i+1
2j

and ĝ
ij+1

2
again be the first-order Lax–Friedrichs fluxes.

Then we modify the high-order numerical fluxes F̂rk and Ĝrk by the Lax–Friedrichs fluxes

f̂
i+1

2j
and ĝ

ij+1
2

to achieve the positivity of the solution, i.e.,

F̃
i+1

2j
= θ

i+1
2j

(F̂rk
i+1

2j
− f̂

i+1
2j

) + f̂
i+1

2j
, (4.26)

G̃
ij+1

2
= θ

ij+1
2

(Ĝrk
ij+1

2
− ĝ

ij+1
2

) + ĝ
ij+1

2
. (4.27)

For each grid xij , we use a two-step strategy similar to the 1D case. Firstly, we follow a

similar strategy to guarantee the computed density positive, i.e., to find four upper bounds

Λ
ρ
L,Iij

, Λ
ρ
R,Iij

, Λ
ρ
U,Iij

and Λ
ρ
D,Iij

such that for any (θ
i−1

2j
, θ
i+1

2j
, θ
ij−1

2
, θ
ij+1

2
) ∈ Sρ,Iij ,
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where

Sρ,Iij = [0,Λ
ρ
L,Iij

]× [0,Λ
ρ
R,Iij

]× [0,Λ
ρ
D,Iij

]× [0,Λ
ρ
U,Iij

], (4.28)

the computed density satisfies,

ρn+1
ij (θ

i−1
2j
, θ
i+1

2j
, θ
ij−1

2
, θ
ij+1

2
) ≥ εn+1

ρ . (4.29)

Secondly, we can find a rectangular set Rρ,p,Iij = [0,ΛL,Iij ] × [0,ΛR,Iij ] × [0,ΛD,Iij ] ×

[0,ΛU,Iij ], which is a subset of Sρ,Iij , such that for any (θ
i−1

2j
, θ
i+1

2j
, θ
ij−1

2
, θ
ij+1

2
) ∈

Rρ,p,Iij , we have,

pn+1
ij (θ

i−1
2j
, θ
i+1

2j
, θ
ij−1

2
, θ
ij+1

2
) ≥ εn+1

p . (4.30)

Here εn+1
ρ and εn+1

p are the 2D lower bounds with similar definitions as the 1D case (4.9)

and (4.10). The strategy to find the set Rρ,p,Iij is similar to the Euler equations case [78].

We omit the details here. An important different from the 1D case in Section 4.1 is, the step

4.22 in 1D case becomes

ΛL,Iij = min
k2,3,4=0,1

(P̂ 1,k2,k3,k4), ΛR,Iij = min
k1,3,4=0,1

(P̂ k1,1,k3,k4), (4.31)

ΛD,Iij = min
k1,2,4=0,1

(P̂ k1,k2,1,k4), ΛU,Iij = min
k1,2,3=0,1

(P̂ k1,k2,k3,1). (4.32)
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After repeating this procedure for all nodes (i, j), we let

θ
i+1

2j
= min(ΛR,Iij ,ΛL,Ii+1j

), (4.33)

θ
ij+1

2
= min(ΛU,Iij ,ΛD,Iij+1

). (4.34)

This whole procedure will produce a numerical solution with positive density and pressure

after Step 1 in CT framework. Followed by Step 2 and 3 with Option 2, we achieve high

order accuracy, a discrete divergence-free condition and positivity of the numerical solution

simultaneously. The overall scheme shares the same CFL constraint as the low-order Lax-

Fridrichs scheme. There are no extra CFL restrictions from the limiting process.

As pointed out in [19], there is still no rigorous proof that the Lax–Friedrichs scheme or

any other first-order scheme is positivity-preserving in the mutli-D case when the divergence-

free constraint is considered. In this work, we still use the first-order Lax–Friedrichs scheme

as the low-order correction scheme for the multi-D cases. Like [19], we take CFL ≤ 0.5 as the

constraint for the positivity-preserving Lax–Friedrichs scheme in the multi-D cases. On the

other hand, our limiting technique is independent from the choice of the low-order scheme.

The overall scheme will be improved as long as a provable positivity-preserving scheme is

found and used as the building block.

4.3 Temporal discretization

In this section we describe some details of time-stepping techniques used in this work. In

Chapter 3, we use SSP-RK4 as our time integrator and also correct the magnetic field each

time step. Here we make some adjustments so that the limiting schemes become more
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efficient.

First, we make exclusive use of Option 2 in this work, so as to preserve the positivity

of the pressure after the magnetic field is corrected. This is a common technique in the CT

framework for problems involving low-β plasma [10, 75]. Under this option, if the density

and pressure after Step 1 are positive, they will remain positive in the overall computation.

Therefore, with the proposed limiter, the numerical solutions maintain positive throughout

the whole CT steps.

Second, since the limiter is only applied to the final stage of the RK methods in this

work, the RK methods with larger CFL number (such as SSP-RK4 method used in Chapter

3) is not very stable by this treatment. So instead, we use traditional SSP-RK3 method as

the tested integrator with a CFL number of 0.5 being used.

Another difference of the schemes lies in the implementation of the correction steps (Steps

2 and 3). We propose to perform the correction steps only at the end of each time step tn

instead of each stage of RK methods in Chapter 3. Thanks to this modification, we can

simply focus on the final stage of the solution when implementing the limiting technique

in Section 4.1. Numerical results show negligible differences between the two approaches

when SSP-RK3 time-stepping is used. However, we note that this modification may result

in accumulation of the divergence error especially for RK methods with large stage numbers.

For those time stepping schemes, this kind of modification is not recommended and the

correction steps have to be performed at each stage. Thus, if SSP-RK4 method is used for

those low density and pressure problem, both the proposed limiter and the correction steps

(Steps 2 and 3) have to be applied at each time step.
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4.4 Numerical examples

In this section, we perform numerical simulations with the resulting positivity-preserving

schemes in 1D, 2D and 3D. SSP-RK3 scheme serves as the time integrator in all the examples,

whereas the fifth-order finite difference WENO-HCL scheme is used for solving the base MHD

equations in different examples. In multi-D, our fourth-order CT method is used to obtain

a divergence-free magnetic field. Unless otherwise stated, the gas constant is γ = 5/3 and

the CFL number is 0.5.

4.4.1 Test cases in 1D

In this subsection, we test our positivity-preserving scheme with several 1D MHD examples.

We note that for all the cases presented in this subsection, negative pressure or density is

observed if the base MHD scheme is applied without a positivity-preserving limiter. Here,

the base MHD scheme is a fifth-order WENO-HCL scheme.

4.4.1.1 Vacuum shock tube test

We first consider a 1D vacuum shock tube problem. This example is used to demonstrate

that our positivity-preserving MHD solver can handle very low density and pressure. The

initial condition is

(ρ, ux, uy, uz, p, Bx, By, Bz) =


(10−12, 0, 0, 0, 10−12, 0, 0, 0) if x < 0,

(1, 0, 0, 0, 0.5, 0, 1, 0) if x > 0.

(4.35)

It is similar to the vacuum shock tube problem in [76]. The computational domain is

[−0.5, 0.5] and zero-order extrapolation boundary conditions are used. Shown in Figure
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Figure 4.1: The vacuum shock tube problem. Shown in these panels are plots at time t = 0.1
of (a) ρ and (b) the thermal pressure. The blue circle is a solution solved on a mesh with
N = 200. The solid line is a highly resolved solution.

4.1 are the density and pressure of the solution on a mesh with N = 200 and the highly

resolved solution with N = 2000. We can observe the solutions of low resolution and high

resolution are in good agreement.

4.4.1.2 Torsional Alfvén wave pulse

We also consider the torsional Alfvén wave pulse problem [9, 19]. The initial condition is

(ρ, ux, uy, uz, p, Bx, By, Bz) = (1, 10, 10 cosφ, 10 sinφ, 0.01,−10 cosφ,−10 sinφ, 0), (4.36)

where φ = π
8 (tanh(0.25+x

δ + 1))(tanh(0.25−x
δ + 1)) and δ = 0.005. The computational

domain is [−0.5, 0.5] and periodic boundary conditions are used. In this test problem, the

initial pressure is so small that the problem is very sensitive to the dissipation introduced

by numerical schemes. Further, the existence of a strong torsional Alfvén wave discontinuity

makes the problem difficult to simulate. In the simulation without the limiter, the base

WENO-HCL introduced a negative pressure in a few time steps and the solutions become

unphysical immediately. With the limiter, our scheme can simulate the problem stably and
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Figure 4.2: The torsional Alfvén wave pulse. Shown in these panels are plots at time t = 0.156
of (a) the energy and (b) the thermal pressure. The solution was obtained on a mesh with
N = 800.

the numerical results at t = 0.156 are shown in Figures 4.2 and 4.3 with N = 800. Shown

in the figures are plots of the energy, the thermal pressure, uy, uz, By, and Bz. It is

observed that our method successfully captures the two discontinuities and the results are

comparable with those in [9, 49]. However, small bumps can still be observed around one

of the discontinuities of both uy and uz. As pointed out in [9], this is because the MHD

solver introduced too much numerical dissipation to keep the pressure positive. The primary

reason is the Riemann solver around the discontinuities is not selective enough.

4.4.2 Test cases in multi-D

In this subsection, we consider several 2D and 3D examples to demonstrate the accuracy

and efficiency of our positivity-preserving multi-D MHD solver in the CT framework. In the

following tests, we implement fourth-order WENO-CT2D and WENO-CT3D schemes as the

MHD solver, to which we apply our positivity-preserving limiter. Unless otherwise stated,

we use Option 2 for the multi-D simulation.
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Figure 4.3: The torsional Alfvén wave pulse. Shown in these panels are plots at time t = 0.156
of (a) uy, (b) uz, (c) By and (d) Bz. The solution was obtained on a mesh with N = 800.

4.4.2.1 Smooth vortex test in MHD

We consider the smooth vortex problem with non-zero magnetic field to demonstrate the

scheme can maintain the designed accuracy within the CT framework. We consider a mod-

ification of the smooth vortex problem considered in [3, 48, 80]. The initial condition is a

mean flow

(ρ, ux, uy, uz, p, Bx, By, Bz) = (1, 1, 1, 0, 1, 0, 0, 0), (4.37)
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with perturbations on ux, uy, Bx, By, and p:

(δux, δuy) =
κ

2π
e0.5(1−r2)(−y, x), (δBx, δBy) =

µ

2π
e0.5(1−r2)(−y, x),

δp =
µy(1− r2)− κ2

8π2
e1−r2 .

The magnetic potential is initialized as

Az =
µ

2π
e0.5(1−r2).

Here r2 = x2 + y2.

We set the vortex strength µ = 5.389489439 and κ =
√

2µ such that the lowest pressure

in the center of the vortex is 5.3 × 10−12. Similar to [48], we use computational domain

(x, y) ∈ [−10, 10] × [−10, 10] such that the error from the boundary conditions will not

influence the overall convergence study. The periodic boundary condition are used on all

sides. Because fourth-order CT steps are used, the overall scheme is fourth-order accuracy.

The L1-errors and L∞-errors of the velocity and magnetic field for t = 0.05 are shown in

Table 4.1, in which one can conclude the proposed positivity-preserving scheme can maintain

fourth-order accuracy as expected. We remark that negative pressure is observed on meshes

coarser than 320× 320 when the limiter is not applied.

4.4.2.2 Smooth vortex test in hydrodynamics

In the previous example, we demonstrate the proposed scheme can attain the designed order

of accuracy when there is very low pressure in the solution. In this example, we demonstrate

the proposed scheme can also attain the designed order of the base MHD solver by the
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Table 4.1: Accuracy test of the 2D vortex evolution in MHD. Shown are the L1-errors and
L∞-errors at time t = 0.05 of the density as computed by the positivity-preserving WENO-
CT2D scheme at various grid resolutions.

Mesh ux uy

L1-error order L∞-error order L1-error order L∞-error order

40× 40 7.38e-04 - 1.79e-02 - 8.03e-04 - 1.94e-02 -
80× 80 7.20e-05 3.35 4.33e-03 2.05 7.36e-05 3.45 5.22e-03 1.90

160× 160 3.46e-06 4.38 1.92e-04 4.49 3.72e-06 4.31 2.18e-04 4.58
320× 320 1.80e-07 4.27 1.42e-05 3.76 1.96e-07 4.25 1.64e-05 3.73

Mesh Bx By

L1-error order L∞-error order L1-error order L∞-error order

40× 40 1.02e-03 - 1.49e-02 - 1.04e-03 - 1.57e-02 -
80× 80 7.73e-05 3.73 1.27e-03 3.56 7.73e-05 3.75 1.16e-03 3.77

160× 160 4.75e-06 4.03 8.25e-05 3.94 4.74e-06 4.03 7.16e-05 4.01
320× 320 2.85e-07 4.06 7.66e-06 3.43 2.84e-07 4.06 6.36e-06 3.49

2D vortex evolution problem from hydrodynamics, where there are very low density and

pressure. The initial condition consists of a mean flow

(ρ, ux, uy, uz, p, Bx, By, Bz) = (1, 1, 1, 0, 1, 0, 0, 0), (4.38)

and perturbations on ux, uy and the temperature T = p/ρ:

(δux, δuy) =
ε

2π
e0.5(1−r2)(−y, x),

δT = −(γ − 1)ε2

8γπ2
e1−r2 ,

with no perturbation in the entropy S = p/ργ . Here r2 = x2+y2. In this case, we let γ = 1.4.

The computational domain is (x, y) ∈ [−5, 5]× [−5, 5] with periodic boundary condition on

all sides. We set the vortex strength ε = 10.0828 such that the lowest density and lowest

pressure in the center of the vortex are 7.8× 10−15 and 1.7× 10−20 respectively. The exact
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Table 4.2: Accuracy test of the 2D vortex evolution in hydrodynamics. Shown are the
L1-errors and L∞-errors at time t = 0.05 of the density as computed by the positivity-
preserving WENO-CT2D scheme with CT steps turned off. The solutions converge at fifth-
order accuracy.

Mesh L1-error order L∞-error order

40× 40 6.22e-03 - 2.30e-01 -
80× 80 5.64e-04 3.46 3.98e-02 2.53

160× 160 1.09e-05 5.69 1.16e-03 5.10
320× 320 1.79e-07 5.93 2.75e-05 5.40
640× 640 4.92e-09 5.19 8.71e-07 4.98

solution to this problem is just the convection of the vortex with the mean velocity.

We remark that the magnetic field is initialized as zero and the exact magnetic field will

be zero for all the future time. Although the numerical solutions by the MHD solver has

a nonzero magnetic field, the affect of the computed magnetic field to the whole system is

insignificant compared to the other quantities. As a result, the influence of CT steps to

the results is negligible for this case. We solve this problem with the positivity-preserving

WENO-CT2D scheme with CT steps turned off. The L1-errors and L∞-errors of the density

at t = 0.05 are shown in Table 4.2. We clearly observe a fifth-order convergence of the base

schemes. We remark that negative density or pressure is observed during the computation

of all the meshes in the table when the proposed limiter is not applied.

4.4.2.3 Rotated vacuum shock tube problem

In this example, we consider the vacuum shock tube problem rotated by an angle of α in a

2D domain. The initial conditions in this case are

(ρ, u⊥, u‖, uz, p, B⊥, B‖, Bz) =


(10−12, 0, 0, 0, 10−12, 0, 0, 0) if ξ < 0,

(1, 0, 0, 0, 0.5, 0, 1, 0) if ξ > 0.

(4.39)
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Figure 4.4: Rotated vacuum shock tube problem. Shown in these panels are plots at time
t = 0.1 of (a) ρ, (b) ρ cut at y = 0, (c) the thermal pressure and (d) the thermal pressure cut
at y = 0. 40 equally spaced contours are used for the contour plots. The solid lines in (b)
and (d) are 1D highly resolved solutions. The solution was obtained on a 240× 100 mesh.

where

ξ = x cosα + y sinα and η = −x sinα + y cosα, (4.40)

where u⊥ and B⊥ are perpendicular to the shock interface, and u‖ and B‖ are parallel to

the shock interface. The magnetic potential is initialized as

Az(0, ξ) =


0 if ξ ≤ 0,

−ξ if ξ ≥ 0.

(4.41)
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We solve this problem by the positivity-preserving WENO-CT2D scheme on the computa-

tional domain (x, y) ∈ [−0.6, 0.6] × [−0.25, 0.25] with a 240 × 100 mesh. α = tan−1(0.5).

Zero-order extrapolation boundary conditions are used on the left and right boundaries. On

the top and bottom boundaries, all the quantities are set to describe the exact motion of the

shock.

The solutions are plotted in Figure 4.4, where the 1D cut of density and pressure at y = 0

is also plotted to compare with the 1D highly resolved results. We clearly observe that the

2D solution is consistent with the 1D solution. Without the limiter, negative density and

pressure are observed in numerical solutions, which quickly leads to blow-up of the numerical

simulation.

4.4.2.4 2D blast problem

In the blast wave problem, a strong fast magnetosonic shock formulates and propagates

into the low-β plasma background, which will likely lead to negative density or pressure

in numerical solutions. In this subsection, we first investigate a 2D version of the problem

[8, 10, 49]. The computational domain is (x, y) ∈ [−0.5, 0.5] × [−0.5, 0.5] with outflow

boundary conditions on all the four sides.

The initial conditions of the problem consist of an initial background:

(ρ, ux, uy, uz, p, Bx, By, Bz) = (1, 0, 0, 0, 0.1, 100/
√

8π, 100/
√

8π, 0), (4.42)

and a circular pressure pulse p = 1000 within a radius r = 0.1 from the center of the domain.
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Figure 4.5: 2D blast problem. Shown in these panels are plots at time t = 0.01 of (a)
ρ, (b) the thermal pressure, (c) the norm of u and (d) the magnetic pressure. 40 equally
spaced contours are used for each plot. The solution was obtained on a 256× 256 mesh by
positivity-preserving WENO-CT scheme.

The initial scalar magnetic potential is simply given by

Az = 100/
√

8πy − 100/
√

8πx. (4.43)

The solution is computed on a 256×256 mesh. Shown in Figure 4.5 are plots of the solution.

The solution shows good agreement with those in [8, 49].

In Table 4.3, we use this example to compare four different schemes, WENO-HCL,
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Figure 4.6: 2D blast problem. Shown in these panels are plots at time t = 0.01 of (a) ρ, (b)
the thermal pressure, (c) the norm of u and (d) the magnetic pressure. 40 equally spaced
contours are used for each plot. The solution was obtained on a 256 × 256 mesh by the
WENO-HCL scheme.

WENO-CT-OP1, WENO-CT-OP2 and PP-WENO-CT-OP2. Here WENO-HCL is referred

to the base WENO-HCL scheme without CT or the limiter. WENO-CT-OP1 is referred

to the WENO-CT2D scheme choosing Option 1 without the limiter. WENO-CT-OP2 is

referred to the WENO-CT2D scheme choosing Option 2 without the limiter. Finally, PP-

WENO-CT-OP2 is referred to the positivity-preserving WENO-CT2D scheme with Option

2 chosen. From Table 4.3, we observe that the base WENO-HCL scheme is unstable for
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Table 4.3: Comparisons of different schemes solving the 2D blast problem. The column of
P indicates whether the numerical solutions remain positive in the simulations. The column
of S indicates whether the simulations run stably to t = 0.01. In order to make a fair
comparison, the positivity of density and pressure is only checked at each time step tn.

Mesh WENO-HCL WENO-CT-OP1 WENO-CT-OP2 PP-WENO-CT-OP2
P S P S P S P S

150× 150 No No No No No Yes Yes Yes
200× 200 No Yes No No No Yes Yes Yes
256× 256 No Yes No No No No Yes Yes

the resolution 150 × 150 and becomes stable in the higher resolutions. WENO-CT-OP1 is

unstable for each resolution and applying the positivity-preserving limiter will not be able to

stabilize this because the negative pressure is from the correction step of the magnetic field.

WENO-CT-OP2 is stable in the lower resolution but becomes unstable for the resolution

256 × 256, and negative pressure is observed in all the resolutions. Finally, the positivity-

preserving WENO-CT scheme is stable for all the resolutions. From those results, it is very

clear that the positivity-preserving WENO-CT scheme is the most stable method in these

four methods.

Another concern for this CT framework is that the energy is not conserving in our

positivity-preserving WENO-CT scheme due to Option 2. We also use this example to

study this issue. We compare the results by the base WENO-HCL scheme and the positivity-

preserving WENO-CT scheme. In Figure 4.6, we show the results by the base WENO-

HCL scheme with the same resolution as Figure 4.5. The results look similar to those by

the positivity-preserving WENO-CT scheme, except there are some unphysical oscillations

around the center region in Figure 4.6. That is due to the divergence error in the base scheme.

If we plot the divergence error in the time domain, we can clearly see that the divergence

error of the positivity-preserving WENO-CT scheme stays around 10−12, while the error of
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Figure 4.7: Comparisons between WENO-HCL scheme and positivity-preserving WENO-CT
scheme for the 2D blast problem. Shown in these panels are plots of (a) the divergence error
and (b) the relative error of the total energy in the whole domain. The x-axis denotes the
time t ∈ [0, 0.01].

the WENO-HCL scheme is around 100 during the simulation. Here the divergence error is

defined as L1-norm of ∇·B, where the numerical ∇· operator is defined as a regular fourth-

order central finite difference discretization. As a common drawback in the CT framework

when Option 2 is chosen, the correction step leads to a loss of the conservation of the total

energy.

To study this issue, we compute the total energies in the whole domain solved by two

schemes and compare them with the initial numerical value. The results are plotted in

Figure 4.7. We can see the relative error of the positivity-preserving scheme is around

10−3, while the conservative WENO-HCL scheme has an error about 10−12. On the other

hand, when we perform a convergence study for the total energy in the whole domain,

a first-order convergence has been observed for the positivity-preserving scheme when the

computed total energies are compared with the exact value, although the scheme is not

energy-conserving. However, we remark that the conservation of energy is important for some

problems, such as those involving nonlinear strong discontinuities. A high-order positivity-
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(a) (b)

Figure 4.8: 3D blast problem. Shown in these panels are 3D plots at time t = 0.01 of (a) ρ
and (b) the thermal pressure. The solution was obtained on a 150× 150× 150 mesh.

preserving conservative scheme with the divergence error being controlled will be part of our

future work. However, it is very difficult, if not impossible, in the CT framework to satisfy

all the requirements simultaneously. A better way to control the divergence error is needed

for this purpose.

4.4.2.5 3D blast problem

The last problem we investigate is a fully 3D version of the blast problem. It is used to

test the behavior of the positivity-preserving WENO-CT3D scheme. The initial conditions

consist of an initial background,

(ρ, ux, uy, uz, p, Bx, By, Bz) = (1, 0, 0, 0, 0.1, 100/
√

8π, 100/
√

8π, 0), (4.44)

and a spherical pressure pulse p = 1000 within a radius r = 0.1 from the center of the

domain. The initial conditions for the magnetic potential are

A(0, x, y, z) = (0, 0, 100/
√

8πy − 100/
√

8πx). (4.45)
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Figure 4.9: 3D blast problem. Shown in these panels are plots at time t = 0.01 and cut at
z = 0 of (a) ρ, (b) the thermal pressure, (c) the norm of u and (d) the magnetic pressure. 40
equally spaced contours are used for each plot. The solution was obtained on a 150×150×150
mesh.

The computational domain is [−0.5, 0.5]3. Outflow boundary conditions are used on all

sides. The numerical simulation is performed on a 150 × 150 × 150 mesh. To distinguish

this 3D case from the 2D blast case, we present the 3D plots of the density and pressure in

Figure 4.8, which clearly indicates its spherical structures. In Figure 4.9 we show the results

of the solutions cut at z = 0. The solution is comparable to the 3D results in [31, 53, 85].

We note that negative pressure is observed at time t = 0.0033 if the positivity-preserving
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limiter is not applied.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this work we developed a class of finite difference methods for solving the ideal MHD

equations. A summary of the key features of the proposed numerical method are listed

below:

1. All quantities, including all components of the magnetic field and magnetic potential,

are treated as point values on the same mesh (i.e., there is no mesh staggering).

2. The base scheme is the fifth-order FD-WENO scheme of Jiang and Shu [39]. With this

method we are able to achieve high-order using dimension-by-dimension finite difference

operators, instead of the more complicated spatial integration and multidimensional

reconstructions used by Helzel et al. [35].

3. The corrected magnetic field is computed via fourth-order accurate central finite dif-

ference operators that approximate the curl of the magnetic vector potential. These

operators are chosen to produce a corrected magnetic field that exactly satisfies a

discrete divergence-free condition.

4. All time-stepping is done with the SSP-RK methods. In Chapter 3, we use a fourth-

order version and in Chapter 4 we use a third-order version.
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5. Using a particular gauge condition, the magnetic vector potential is made to satisfy a

weakly hyperbolic, non-conservative, hyperbolic system. This system is solved using a

modified version of the FD-WENO scheme developed for Hamilton–Jacobi equations

[38]. For 3D problems, special limiters based on artificial resistivity are introduced to

help control unphysical oscillations in the magnetic field.

6. A positivity-preserving limiter is proposed and applied by modifying high-order WENO-

HCL flux with the first-order Lax–Friedrichs flux so as to produce positive density and

pressure.

In Chapter 3 the numerical methods were tested on several 2D, 2.5D, and 3D test prob-

lems, all of which demonstrate the robustness of our approach. On smooth problems, we

achieve fourth-order accuracy in all components, including the magnetic field and the mag-

netic potential. For problems with shocks, we are able to accurately capture the shock waves

without introducing unphysical oscillations in any of the solution components. In addition,

the cloud-shock interaction problems also indicated that there is a possible advantage of

using a high-order method compared to traditional second-order methods. For instance,

using a 128× 128 mesh in our methods, we are able to see the same structures that can only

be observed by a second-order finite volume methods on much finer grid resolutions. This

phenomenon is observed in both 2D and 3D. Another advantage of the proposed methods is

that they do not involve any multidimensional reconstructions in any step, while traditional

high-order finite volume methods commonly need several multidimensional reconstructions

in each grid cell. For instance, for the same resolution on a 3D simulation, our finite difference

code uses less CPU time than the third-order finite volume code in [35].
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In Chapter 4 we demonstrated the effectiveness and efficiency of the resulting positivity-

preserving schemes with 1D, 2D and 3D problems. Through smooth problems, we showed

the proposed limiter will maintain the designed order of accuracy of the base schemes. We

also tested the schemes with several practical problems such as the low-β problems and found

the proposed limiter can increase the numerical stability of the schemes. In particular, we

also studied the effect of energy correction steps in the constrained transport method by a

blast wave problem.

5.2 Future work

The numerical schemes as developed so far can only be used to solve problems on either a

uniform grid or on a smoothly varying mapped grid, which is a common disadvantage of FD

ENO/WENO schemes. Thus, our methods are less flexible compared to the finite volume

CT methods developed in [35], in which the scheme has been successfully extended to non-

smoothly varying grids. However, a promising approach for overcoming this restriction is to

place the existing WENO-CT method for ideal MHD into an AMR framework. Since our

methods are fully explicit and fully unstaggered, it is possible to incorporate them into the

WENO-AMR framework developed by Shen et al. [66]. To better achieve the goal, currently

we are working on a high-order single-step single-stage ideal MHD solver by extending the

work in [63].

In addition to AMR application, we are also interested in including non-ideal terms, such

as Hall term and resistivity term, into the ideal MHD solver so that it can simulate more

physical phenomena such as magnetic reconnection. The non-ideal term will potentially

become very stiff if its effect is significant for the system. Consequently, this term needs
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to be treated implicitly and one may need other time stepping approaches such as implicit-

explicit time integration methods and fully implicit methods. Recently, we have been also

applying the proposed schemes to several practical problems, such as simulating gas-puff

Z-pinch plasmas.
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WENO reconstruction

The main idea of WENO reconstruction is to compute a finite difference stencil using a

weighted average of several smaller stencils. The weights are chosen based on the smoothness

of the solution on each of the smaller stencils. The full procedure can be found in [39,

64, 67, 68]. For completeness, we also include a brief description of the 5th-order WENO

reconstruction as used in this work and define the operator ΦWENO5 that was used in Section

3.1.

We consider the problem on a uniform grid with N + 1 grid points,

a = x1
2
< x3

2
< · · · < x

N+1
2

= b, (1)

and let the cell averages of some function h(x) on the interval Ii =

(
x
i−1

2
, x
i+1

2

)
be denoted

by

h̄i =
1

∆x

∫ x
i+1

2
x
i−1

2

h(x) dx. (2)

We would like to approximate the value of h(x) at the half node x
i+1

2
by WENO reconstruc-

tion on the stencil: S = {Ii−2, Ii−1, . . . , Ii+2}. There are three sub-stencils for node x
i+1

2
:

S0 = {Ii−2, Ii−1, Ii}, S1 = {Ii−1, Ii, Ii+1} and S2 = {Ii, Ii+1, Ii+2}. Through a simple

Taylor expansions of h(x), we can obtain 3rd-order accurate approximations of h
(i)

i+1
2

on each
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sub-stencil Si as follows:

h
(0)

i+1
2

=
1

3
h̄i−2 −

7

6
h̄i−1 +

11

6
h̄i, (3)

h
(1)

i+1
2

= −1

6
h̄i−1 +

5

6
h̄i +

1

3
h̄i+1, (4)

h
(2)

i+1
2

=
1

3
h̄i +

5

6
h̄i+1 −

1

6
h̄i+2. (5)

The approximation h
i+1

2
is then defined as a linear convex combination of the above three

approximations:

h
i+1

2
= w0 h

(0)

i+1
2

+ w1 h
(1)

i+1
2

+ w2 h
(2)

i+1
2

, (6)

where the nonlinear weights are defined as

wj =
w̃j

w̃0 + w̃1 + w̃2
, (7)

w̃0 =
1

(ε+ β0)2
, w̃1 =

6

(ε+ β1)2
, w̃2 =

3

(ε+ β2)2
. (8)

In our computations we take ε = 10−6 and the smoothness indicator parameters, βi, are

chosen as in [39]:

β0 =
13

12
(h̄i−2 − 2h̄i−1 + h̄i)

2 +
1

4
(h̄i−2 − 4h̄i−1 + 3h̄i)

2, (9)

β1 =
13

12
(h̄i−1 − 2h̄i + h̄i+1)2 +

1

4
(h̄i−1 − h̄i+1)2, (10)

β2 =
13

12
(h̄i − 2h̄i+1 + h̄i+2)2 +

1

4
(3h̄i − 4h̄i+1 + h̄i+2)2. (11)
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From these we define ΦWENO5 in Section 3.1 as follows:

ΦWENO5(h̄i−2, h̄i−1, h̄i, h̄i+1, h̄i+2) := w0 h
(0)

i+1
2

+ w1 h
(1)

i+1
2

+ w2 h
(2)

i+1
2

. (12)

The approximation value h
i+1

2
has the following properties:

1. If h(x) is smooth in the full stencil S, h
i+1

2
is a 5th-order accurate approximation to

the value h

(
x
i+1

2

)
.

2. If h(x) is not smooth or has discontinuity in the full stencil S, the nonlinear weights are

computed in such a way that h
i+1

2
is mainly reconstructed from the locally smoothest

sub-stencil. Consequently, the spurious oscillations can be effectively controlled.
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