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ABSTRACT

This dissertation deals with the structure of finite automata and

sequential machines. The first chapter is an extension of Rabin and

Scott's work on finite automata. The sets of tapes acceptable to a finite

automaton are characterized through the use of equivalence classes.

This is done for four types of finite automata. These are:

(1) One initial state and not all states final.

(2) More than nne initial state and not all states final.

(3) One initial state and all states final.

(4) All states both initial and final.

In the second chapter sets of input-outputsequences that are

acceptable to a sequentialmachine are characterized through the

use of equivalence classes similar to those employed for finite auto-

mata. It is shown how the set of input-output sequences acceptable

to a sequential machine can be obtained from the characterization of

the set of tapes acceptable to a particular state of the sequential

machine. This characterization is used to prove some theorems

concerning the reduction of sequential machines to minimal state

form.

In Chapter III the structure of finite automata and sequential

machines is studied through the use of connection matrices. The

properties of a positive connection matrix which distinguishes it

from a strongly connected matrix are discussed. It is shown that

all the powers of a positive connection matrix are strongly connec-

ted, but the same statement for strongly connected matrices is
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not true. This condition is reduced to just the first n powers of an n x n

connection matrix need be strongly connected to insure that a connection

matrix is positive.

It is also pointed out that the theorems of Chapter III apply to prim-

itive matrices of non-negative real numbers.
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INTRODUCTI ON

The investigation into the theory of sequential machines have

had a very recent origin. It was in 1955 and 1956 that Mealy [ 22] ,

Moore [23] and Huffman [ 17] , published what are evidently the

pioneering papers in the field. These authors, and most later ones,

consider a sequential machine to be a device capable of assuming

any one of a finite set of internal states, such that when an input

symbol is presented to the machine, an output symbol is produced

by the machine and the sequential machine assumes another state.

There are three major areas in the study of sequential machines.

These are:

(l) The construction of electronic devices, which have proper-

ties similar to those mentioned above. Such devices are commonly

called sequential transducers. Considerable work has been done in

the area in recent years, especially since the advent of high speed

digital computers and other types of process control apparatus where

the process is sequential in nature. Huffman [ l7] , Cadden [6] , Unger

[26] and others have done a considerable amount of work in this field.

(2) The synthesis and analysis of state diagrams (these are

weighted graphs used to represent sequential machine) which are

used to facilitate the construction of sequential machines. This area

has been dealt with by Huffman [ l7] , Mealy [22] , Hohn [ 3], Aufen-

kamp [1, 3, 4], Ginsburg [10, ll, 12, 13], Bellman [5] , Gillespie

[l] and others.
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(3) The study of sequential machines as a mathematical system.

Kleene [l9] , Moore [23], Nerode [24], Rabin and Scott [25], Ginsburg

[9], Weeg [ 18, 27] and several others have worked in this field.

This last area of sequential machines is the subject of this disser-

tation. Three separate but related topics will be covered in this disser-

tation. They are finite automata, sequential machines and connection

matrices.

A finite automaton is a sequential machine without outputs. The

set of sequences (called tapes) which are suitable for a finite automaton

are characterized through the use of equivalence classes. Four types

of finite automata are discussed in Chapter I.

The major result of the first chapter is that a set of tapes, U, is

the acceptable set of tapes for a finite automaton, in which each state

is an initial state and also each state is a final state, if and only if U

is complete (that is, if x is any tape in U, then any portion of x is in

U) and is the union of all but One of the equivalence classes of a parti-

cular right invariant equivalence relation of finite index.

In Chapter II, the set of sequences of input-output symbols

(called I-O sequences) which are suitable for a sequential machine are

characterized by the use of equivalence classfle. These equivalence

classes are used to prove some theorems concerning special classes of

sequential machines. The main theorem of this chapter is similar to

that of Chapter 1, except, due to the outputs, the conditions are more

stringent.
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For the purpose of study of the structure of sequential machines

a connection matrix is often used. A special class of these is the class

of strongly connected connection matrices. A subclass of the class of

strongly connected sequential machines is that of positive machines.

The properties which distinguish this subclass from the class of

strongly connected connection matrices are discussed in Chapter III.

The major distinction is that a positive connection matrix has all of

its powers strongly connected. It is shown that this requirement can

be reduced to the point that just the first n powers of an n x n connec-

tion matrix need be strongly connected to insure positiveness.



Chapter I

FINITE AUTOMATA

An automaton may be thought of as a black box which will accept

tapes (questions). As the tape proceeds through the box the internal

mechanisms of the box assume different configurations and when the

tape is completely accepted by the black box an answer is given (yes

or no). This answer depends on the configuration of the internal

mechanism of the black box. The method of giving the answer might

be by means of a light, which is: on when the configuration of the inter-

nal mechanism corresponds to an answer of yes.

A tape (question) is called acceptable to a finite automaton if the

answer corresponding to this question is yes. Several interesting

questions arise concerning acceptable sets of tapes. Among these are:

(1) What are the properties of a set of acceptable tapes ?

(2) For every set of tapes U is there an automaton having U as

its set of acceptable tapes?

(3) Given a set of tapes, is there an effective procedure to

ascertain if there exists an automaton accepting this set of tapes,

and if so, can this automaton be produced?

These are the problems that are discussed in this chapter.

Before these ideas are formalized, however, a few definitions

will be needed. These definitions will largely be similar to those

found in the literature.

-4-
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Definition 1. A tape x is a finite sequence of elements from a

non-empty finite set 7‘... The elements of E are called tape symbols

and Z is called the alphabet. The null tape (i. e. , the tape with no

symbols) is denoted by X.

Definition 2. The set of all finite tapes over the alphabet Z‘. is

denoted by T. A tape x is written in the form x = 0'00’1 . . . on where

oi are elements of 2. If x = 0'0 . . . (Tn-l and y = 0.0 . . . urn-1 then

by xy 18 meant the tape xy 2 0'0 . . . Un-laO . . Qm-l' A portion of

tape x is denoted by ixj' which means that portion of the tape x beginning

with the ith position and continuing up to and including the j-l posi-

tion. By ixi is meant the null tape.

Definition 3, [25, p. 116] . A finite automaton of type 1, also called

an automaton when no confusion will result, over the alphabet 23 is a

system A* = (S, M, 80, E) where S is a finite non-empty set (called the

set of internal states of A), M is a function defined on the Cartesian

product S x Z of all ordered pairs of states and input symbols with

values in S (called the table of transitions or moves of A*), 30 is an ele-

ment of S (called the initial state of A*) and F is a non-empty subset of

S (the set of designated final states of A*).

There are several methods for specifying a finite automaton. One

common method is to give a table, called the table of moves, and a list

of final states.



-6—

Example: Let A* = (S, M, so, F) be defined over the alphabet

2‘. = { a, b, c} in the following way:

S = {$0, 81’ 52} , with S0 the initial state.

F = {$2} the set containing only 52‘

M is defined by Table 1, with the following interpretation.

If 81 is the present state, oi the present input and 8n the next

state, then M(s., 0'.) = s .
1 j n

 

 

Table 1

Present State Next State

Present Input

a b c

so 81 s2 s2

S1 S2 81 so

52 so 81 s2      

For the purposes of analysis of an automaton... a pictorial display is

often useful. This is usually given in the form of a state diagram which

parallels Moore's transition diagram of a sequential machine. A state dia-

gram is a weighted directed graph with each vertex corresponding to a state

of the automaton. The states are usually drawn as circles with an ordered



pair (a, b) inside the circle, where a is the number of the state and b is 1,

if this state is final, and 0, if this state is not a final state.

If M(sk, 0‘1) = se, then there is a directed line segment from vertex

k to vertex e labelled oi. Figure 1 is the state diagram for the previous

example .

 

 

Figure 1

In the remainder of this chapter the given definition of an

automaton will be modified and its properties compared with those

given by Rabin and Scott [25] . In the Rabin and Scottltype automaton

M(si, a'j) is defined for all combinations of si in S and a'j in Z. This

property will now be weakened by requiring that transitions be defined

only for some state -input combinations, but not necessarily for all

state -input combinations .
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Definition 4. A finite automaton of type 2 over the alphabet E is a

system A = (S, M, s F) where S is a finite non-empty set (called the0.

internal states of A), M is a function defined on a subset L of the Cartesian

product S x Z of all pairs of states and input symbols into the set of

internal states S, 30 is an element of S (called the initial state) and F

is a non-empty subset of S (called the set of final states of S).

Henceforth, the symbol A* will be used for a Rabin and Scott type

automaton and A for a machine as defined according to Definition 4.

It is necessary for many of the proofs to extend the definition of

M from L, a subset of S x Z, to H, a subset of S x T. This is

accomplished in a manner similar to that of Rabin and Scott [125] :

M(si. X) = 81

M(si, xoj) = M(M(si, x), oj)

for si in S, x in T, and O'j in E. If M(si, x) is not defined or M(M(si, x), oj)

is not defined, then M(Si’ xcrj) is not defined.

Definition 5. A tape x is called an acceptable tape for an automaton

A = (S, M, so, F) of type 2 if M(so, x) is contained in F. The set of all

tapes which are acceptable to an automaton A of type 2 is denoted by T(A),

and is called the set of acceptable tapes for the automaton A.

Definition 6. The setj is the set of sets of tapes over the alphabet

2: such that U is in 7 , if and only if U = T(A) for some automaton A over

2'3, of type 2.
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Theorem 1. If U is a set of tapes such that U .= T(A)],for some

automaton A of type 2, then there exists an automaton A* of type 1 such

that U = T(A*) and conversely.

Proof: If U = T(A), then the automaton A* is constructable from

the automaton A. This is done in the following manner: Let 5* = SU{s '}

where S is the set of states for the automaton A and {8'} is the set

consistin of 3' alone where s' is distinct from an state in S. Define:g Y

M*(si, Uj) = M(Si’ crj) if M(si, Uj) is defined.

M*(si, Gj) = 8‘ if M(si, O'i) is not defined and M*(s', (Ti) = s'

for all “1 contained in Z.

s* -= 80 and F* = F.

For any tape x in T(A), x is also in T(A*), because M*(so, x) =

M(so, x) and if M(so, x) is in F, M*(so, x) is in F. Likewise, if any

tape y is not in T(A), then it is also not in T(A*), for if M(so, y) is

defined, M*(so, y) = M(so, y) which is not in F and thus not in F*; while

if M(so, y) is not defined then M*(so, y) = s' which is not in F*.

One can also observe that an automaton A* of type 1 is also an

automaton A of type 2. We have,therefore, shown that U = T(A) if and

only if U = T(A*) for some A and A* of type 2 and 1 respectively.

The important difference between the two kinds of automata is that

an automaton A probably would not require as many transitions and possibly

even fewer states than the automaton A*. This can be seen from the

following example.

Let U = {10101} . The automaton A of type-2 of figure 2 has U

as its set of acceptable tapes.
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0Wo 0 o so

Figure 2

The Rabin and Scott type automaton A* of figure 3 also has U as its

set of acceptable tapes. As can be seen the automaton A has one less

state than the automaton A* and 9 less transitions.

 

Figure 3



-11-

Not every set U of tapes is a set of acceptable tapes for some auto-

maton. This has been shown by Rabin and Scott [25] . Their proof, how-

ever, produced a set of tapes not acceptable to any automaton A*, while

the proof of Theorem 2 is an existence proof.

Lemma 1. The cardinal number of the set 7 is K0.

Proof: Let c denote the cardinality of Z. If A = (S, M, s F) has0.

n states, then for each state Si’ M(Si’ Uj) can be any one of n states or not

be defined. Thus, there are (n+1)C possible ways to define the function M

for each state and for any fixed n there are at most [(n+l)c] n possible

ways to define the function M. Since the number of non-empty subsets F

n

of S is 2n-1, and s can be any one of n states, there are n(2n-l)[ (n+1)c]
0

possible machines with exactly n states. A countable number of sets, each

of which contains all possible finite automata with a given number of states,

can be formed. Hence, there are at most Mo finite automata and at most

Rose” of acceptable sets of tapes over the alphabet 2- Let S be a set

of n states. Let s1 be the initial state and F the set containing only the

state an. Let M(si, oj) = si+1 for 1é-ién and let “i be undefined for all i

except 1, then this automaton accepts the tape 0'10'1 . . . 0-1 and only this

n

tape. In this way R distinct sets of acceptable tapes are produced. This

0

shows that the cardinality of ] iséfli .

0

Theorem 2. There exist sets U of tapes, such that U is not the set

of acceptable tapes for any automaton A, of type 2.

Proof: Since the cardinality of T isxthere are 2%" = 0 sets

0

of sets of tapes over the alphabet 21 Thus making use of Lemma 1, there

exist sets of tapes which are not acceptable to any finite automaton.
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Rabin and Scott [25] give several theorems concerning acceptable

sets of tape, which are due to Myhill, Nerode, and themselves. We will

now generalize these theorems. Many of these theorems make strong use

of equivalence relations among the tapes of T.

Definition 7. An equivalence relation R over the set T of tapes is

right invariant, if whenever ny, then szyz for all z in T. There is

also an analogous definition for a left invariant equivalence relation.

Definition 8. An equivalence relation over the set T is a congruence

relation if it is both left and right invariant.

Definition 9. An equivalence relation over T is of finite index if

there are only finitely many equivalence classes under the relation.

With these definitions available it is now possible to state the

following theorem, which is due to Myhill [25, p. 117] , and prove its

applicability to an automaton A of type 2.

Theorem 3. Let U be a set of tapes over the alphabet Z. The

following three conditions are equivalent.

(1) U is in T

(2) U is the union of some of the equivalence classes of a congru—

ence relation over T of finite index.

(3) The explicit congruence relation 5 defined by the condition

that for all x, y in T, x E y if and only if for all z, w in T, whenever
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zxw is in U, then zyw is in U, and conversely, is a congruence relation

of finite index.

Proof: As pointed out in Theorem 1, for every automaton A of type

2, there is an automaton A* of type 1 which has the same set of acceptable

tapes. Thus, if T(A) is in 7/, so is T(A*) and both sets have the same

preperties.

The-following theorem, which is a generalization of a theorem due

to Nerode [24, p. 543] , applies to automata A* of type 1, hence, to auto-

mata A of type 2.

Theorem 4. Let U be a set of tapes. The following three condi-

tions are equivalent:

(1) U is in 7/.

(2) U is the union of some of the equivalence classes of a right

invariant equivalence relation over T of finite index.

(3) The explicit right invariant equivalence relation E defined by

the condition that for all x, y in T, xEy if and only if for all z in T,

whenever xz is in U, then yz is in U and conversely, is an equivalence

relation of finite index.

Corollary 1. Let U be in 7/. If the number of equivalence

classes of T under the relation E is n, then the least number of

states in any automaton having U as its set of acceptable tapes is n-p,

where p is 1 if there exists an equivalence class [y], such that for

any x in [y], xz is not in U for all z in T; otherwise p is 0.

Proof: Let each equivalence class denote a state. Let s0 =

[7k] (the equivalence class containing the null tape). Let F be the
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set of equivalence classes which contain a tape from U. Define M

as follows:

M“ x], 02].):[xo-j1‘

Since M([Px] , x) = M(so, x) = [x], this automaton has U as its acceptable

set of tapes. If one of the equivalence classes does not contain a tape y

such that yz is in U, for some tape 2 in T, it is not necessary to have a

state corresponding to this equivalence class in this automaton. Thus,

this state and all the transitions emanating from it and terminating in it

can be removed. This can be seen from the following argument.

If xEy then M(so, x) 7! M(so, y) for any automaton A of typerZ. We

have therefore, that for each equivalence class, which contains some tape x

such that M(so, x) is defined, a distinct internal state in the machine. If we

define M([x] , 0') = [xcr] where [x] and [x0] are equivalence classes con-

taining a tape y such that M(s y) is defined, we produce an automaton which0,

accepts the set of tapes U, and which has exactly as many states as there

are equivalence classes under E which contain a tape for which M(so, x)

is defined.

The above corollary is a generalization of Nerode's theorem

[25, p. 118] . However, it is interesting to notethat with the gener-

alized definition Of an automaton there may be one less state needed to

produce an automaton which will accept the set of tapes U.

The next three theorems by Rabin and Scott depend only on the

equivalence relation and are, therefore, also true for the automata A

of type 2.
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Theorem 5. If x is in T, then {x} , the set consisting of x alone

.. n7.”

Definition 10. If x is the tape 0' . on, then x* is the tape102.

(r If U is a set of tapes then U* is the set of tapes suchnO‘n-l . . . 0'20'1.

that x is in U if and only if x* is in U*.

Theorem 6. If U is in 7/, then U* is in 7

Theorem 7. The class } is a Boolean algebra of sets.

In the remainder of the chapter we will generalize the idea of an

automaton and acceptability of tapes. Through an evolution of automata

we will arrive at an automaton in Which all states are initial states and

all states are final states, with a tape being acceptable if it "reads"

through the ”reader". This corresponds to the more generally accepted

idea of an automaton and also forms a good foundation for the next chap-

ter on sequential machine.

Definition 11. An automaton B of type 3 over the alphabet Z is a

system B = (S, M, O. F) in which M, S and F are defined as for an auto-

maton A and Q, the set of initial states, is a non-empty subset of S.

Definition 12. A tape x is acceptable to an automaton B of type 3

if M(si, x) is inF for some 5.1 in Q. The set of all acceptable tapes to

an automaton B of type 3 is denoted by T(B) and is called the set of

acceptable tapes for B.
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Theorem 8. Let U be a set of tapes.U = T(B) for some B of type 3

if and only if U = T(A) for a suitable automaton A of type 2.

Proof: Let S' be the set of all subsets of S, s ' the set Q, and let
0

F' be the set of all subsets of S which contain at least one state in F.

Define M' in the following manner: If si' = {$01, . . . , so} then

n n

M'(si'. o-j) = U {M(sm, Uj’} . The definition of M' is extended
a: 1

to S' x T the same way in which the definition of M was extended. Let A =

(S', M', 80', F'). It can now be shown that the automaton A accepts the

same set of tapes as the automaton B. This is accomplished in the following

manner. Assume x is an acceptable tape for the automaton B. Then for

some state 81 in Q, M(Si’ x) = sj, which is in F. Let x = 0001 . . - O'n_1.

Consider M'(Q, x) = so". Since M(si, x) = SJ. is a state in F and sj is in

s ', s ' is a state in F'.
a. 0.

Assume now that x is acceptable to the automaton A. Then M'(Q, x)

= sn' is in F'. Since sn' is in F', sn' contains some state sn in S such that

sn is in F. There is some state, say sj, such that sj is in Q and M(sj, x)

= Sn' This can be seen by tracing the states of A back from sn'. Let

so', . . ., sn' be the sequence of states ofA which A assumes as A

accepts the tape x. There much be some state s in s ‘ such that
n-1- n-1

M(s , o- ) = s , otherwise 5 would not be in s '. Likewise, there is
n-l n n n n

. . . ,
some state Sn-Z such that Sn-Z is contained in sn_2 and M(sn_2, (rm-2)

= s . In general there will be a state s . in s .' such that M(s ., (T .)
n-1 n-3 n-3 n-3 n-3

= sn-j+l' Thus, we see that there is a sequence of states beginning with a

state Q and ending in sn'. Since an is in F, x is acceptable to the automaton B.
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If the set Q = {so} , a set containing only one state, then the auto-

maton B of type 3 is essentially equivalent to an automaton A of type 2.

Hence, a set of tapes is acceptable to an automaton B of type 3 if and only

if it is the acceptable set of tapes to an automaton A of type 2.

Even though the definition of an automaton and, hence, the accep-

tability of tapes for an automaton has been changed, we have not changed

the type of sets which are acceptable to an automaton. We will in many

cases, however, be able to use a smaller number of states to produce

the automaton accepting the set of tapes. If it is the case that Q = S, that

is, all states. are initial, the set T(B) for an automaton B of type 3 has the

further property of terminal completeness. This means that if a tape x of

length n is in T(B), :the'rmlxn is in T(B) for all 0 5i i n. This property of

T(B) can be easily seen from the fact that if M(so, x) is in F, then

M(M(so, 0xi), ixn) is in .F. Since M(so, 0xi) is in Q, ixn is in T(B).

In some cases it might not be possible to ascertain whether or not

the automaton stopped in a final state, although it would be possible to

determine if a tape has been "read" in its entirety. This concept of

acceptability corresponds to all statesrof an automaton being final. The

definition of..an;a:1rtmtiaton will now be changed to correspond to this new

concept of acceptability.

Definition 13. An automaton C of type 4 is a systemC = (S, M, so),

where S is the set of internal states and M is a mapping of a pr0per subset

L of S x 2 into S and s0 is an element of S, called the initial state. A tape

x is acceptable if M(so, x) is defined. (If L were not a prOper subset of

S x 22, then the automaton C would accept all tapes).
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Definition 14. A set of tapes U is initially complete if it contains

X =all its initial segments, that is if x = 0001 - - - O'n_1 is in U than h

o

oool. . . “h-i is inUtoroshén.

Theorem 9. A set U of tapes, denoted by T(C), in T is the accep-

table set of tapes for an automaton C of type 4 if and-only if U is initially

complete and U is the union of all but one of the equivalence classes of a

right invariant equivalence relation E over T of finite index, unless U = T

in which case U is composed of one equivalence class.

Proof: Let T(C) be the acceptable set of tapes for some automaton

Coftype4. Ifx=0' . 0'0' . is in T(C) then M(s , x) is defined. This

0 1 n-l 0

case occurs, however, if and only if M(so, x) is defined for all x. in T(C).
0 1

Thus, T(C) is initially complete. That T(C) is the union of all but one of the

equivalence classes of a right invariant equivalence relation over T of finite

index is a trivial consequence of the fact that C is an automaton of type 2

with F = S and all classes except the one containing the tapes x such that

M(so, x) is not defined are contained in T(C).

Let U be an initially complete set of tapes which is the union of all

but one of the equivalence classes of a right invariant equivalence relation

over T of finite index. Since U is the union of some of the equivalence

classes of a right invariant equivalence relation over T of finite index, we

can construct an automaton A of type 2 which has U as its set of acceptable

tapes. If we choose some tape y not in U and remove M(so, y) fromA along

with all transitions to and from this state we will again have an automaton.

This new automaton has U as its set of acceptable tapes and is of the type 4.
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Since the state which-was removed was not final and all but one of the states

of the automaton were final, all of the states of the new automaton are final.

Since U is complete, no state which is necessary for M(so, x) to be defined

for any x contained in U was removed, thus the new automaton C is of the

type 4 and accepts the set U.

An automaton will now be defined in the form most useful to the notion

of a sequential machine, the subject of the next chapter. The notion of

acceptability is now, "Is there some state such that if the automaton is in

this state and a tape 2 is presented to it, will the automaton read the

entire tape? "

Definition 15. An automaton D of type 5 over the alphabet Z is a system

D = (S, M) where S is a non-empty set (called the set of internal states) and a

mapping M of a non-empty subset L of S x E into S.

Definition 16. A tape x = 0' cl . . . O'n_1 is acceptable to the auto-
0

maton D of type 5 if there exists some 5.1 in S such that M(Si’ x) is defined.

The set T(D) is the set of all those tapes and only those tapes acceptable to D.

Theorem 10. For every automaton D cff type 5 there is an automaton

C of type 4 such that T(D) = T(C).

Proof: Since the automaton D of type 5 is also of type 3, according

to Theorem 3, an automaton A of type 2 can be found which accepts T(D).

Since each state of the automaton D is final, T(D) is initially complete and

the union of all but one of the equivalence classes of a right invariant

equivalence relation over T of finite index. This then gives us that
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the automaton A is also of type 4, and we have an automaton C of type 4

which accepts T(D).

Since the automaton D has each of its states as initial states the set

T(D) is terminally complete. Likewise, since each of its states is final,

the set T(D) is initially complete. This leads to the interesting property

of an automaton of the type 5, that of total completeness.

Definition 17. A set of tapes U is totally complete, if whenever a

tape x of length n is in U then.ixj is in U for Oéi éj -_4n. That is, if the

tape x is in U then any contiguous portion of it is in U.

Theorem 11. A set of tapes U is totally complete if and only if it

is both initially and terminally complete.

Proof: If the set of tapes U is totally complete then by definition

it is both initially and terminally complete.

Assume the set of tapes U is both initially and terminally complete.

We wish to show that if x is in U then ixj is in U, for 051 {‘j4- n. Since

x. is in U. If we now apply the condition of ter-U is initially complete 0 J

minal completeness to x. we have that ixj is in U. It has, therefore,

0 J

been shown that the set of tapes acceptable to an automaton of type D is

not only initially and terminally complete but is also totally complete.

We have now arrived at one of the goals of this chapter, that is,

we have characterized the set of tapes acceptable to an automaton D of

type 5 which is similar to a sequential machine except that no outputs have

been associated with this automaton. In the next chapter we will consider
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sequential machines, which have outputs associated with them, and

point out in which ways these theorems will have to be changed to be

applicable to sequential machines.



Chapter II

SEQUENTIAL MACHINES

The idea of sequential machines has come into use in recent years

in many fields of study. It has been employed by McCulloch and Pitts [20]

and others in the representation of nerve nets. Kleene [ 19] used this idea

for his work on the representation of events. Huffman [11]], Mealy [22] ,

Hohn [2] , Aufenkamp [2, 3], and Ginsburg [ 10, 11, 12, 13] have dealt

extensively with the synthesis and analysis of sequential machines to be

used in the design and construction of computers and other types of prodess

control equipment, where the process is essentially sequential in nature.

In this chapter we will characterize the sets of input-output sequences

which are acceptable to a sequential machine. A sequential machine can be

thought of as a set of states (possibly internal configurations of a device)

"accepting" input sequences and “producing" output sequences, such that

if the device is in a state and is given an input, the internal configuration

changes to a new state (possibly the same state again) and an output is

given.

There are two commonly used models of sequential machines. One,

the Moore [23] model, associates outputs with states. The other associates

outputs with transitions of one state to another with a given input. Sequen-

tial machines of this type are known as the Mealy [22] model, and are the

type that will be primarily discussed in this chapter. A Mealy model sequen-

tial machine is disfined formally in the following way.

-22-
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Definition 1. A sequential machine with input alphabet Z: and output

alphabet O is a system A = (S, P) where S is a non-empty finite set (the

internal states of A), and P is a function defined as a non-empty (not necessarily

proper) subset J of the Cartesian product S x 0. Specifically if si is in S

and 0'j is in Z, P(si, O'j) =(M(si, O‘j), N(si, O'j)) where M is defined as in

Chapter I and N is a function of the subset L of S x Zinto 0.

An input-output sequence x is a finite sequence of ordered pairs

(0'1, Oj) where O‘iIis an input symbol and Oj is an output symbol. x will

be written as :1- where xI is the input sequence and x0 is the output

sequence.

In order to discuss the idea of input-output sequences, it is neces-

sary to extend the definition of P. Let 6 be the set of all finite sequences

of input symbols, and k the null sequence of 6. Let Q be the set of all

finite sequences of output symbols with p- the null sequence of output

symbols. The function P is extended from S x E to S x 9 by extending

the definitions of the two functions M and N. M is extended just as in

Chapter I, while N is extended to S x 9 in the following way:

N(sj. X) = it

N(sj, 0'00'1 . . . (Tn-l) .-.- N(sj, 0'0) N(M(sj, 0‘0 ), crl . . . (Tn-1),

where sj is any state in S and cool . . . (Tn-1 is any tape in): such that

M(sj, 0'0) is defined. The function P is extended from S x 2 to S x 6 by

P(si, x1) = (M(si, x1), N(si, xI)),
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where xI is an input sequence.

There are several methods for specifying a sequential machine.

Some of these are as follows:

(1) Transition and output tables. This is a table, called a next state-

output matrix by Ginsburg [12], which has a list of states in a vertical col-

umn and a list of inputs in a horizontal row. In the position corresponding

to the state 31 and the input O'j is the ordered pair (sp, oq) corresponding

to the next state and the output which occur when the machine is in the state si

and input O'j is given, that is P(Si’ 03) 2 (sp, Oq). For example, let 2 and 0

be the sets 2‘. = {a, b} and O = (a, B} . Then let A be the sequential

machine with s = { o, 1, 2, 3, 4, 5} and with P defined by Table 1 with

the interpretation, that if the statue is Si and the input crj, then the next

state and output pair is P(s.1, oj).

Table l

 

 

 

State Next State and Output Next State and Output

Input a Input b

0 (0, c1) (1, 0.)

1 (O, o.) (2, a)

2 (0. a) (3, B)

3 (4. s) (3. p)

4 (5, s) (3. [3)

5 (0, c1) (3, (3)     
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(2) A pictorial method for displaying a sequential machine is the

state diagram. This is a directed graph in which the vertices represent

the states and the directed line segments represent transitions. If

P(si, Up) = (sj, oq), then the directed line segment from state si to state Sj

is assigned the ordered pair (op, oq). The state diagram for the previous

example is:

 

 

(a, a. .

(b, <1)
0 1 (b. a) a

i}
(a, 0.)

 

(b: {3

 

 

 
Figure 1

((3) A useful tool for the analysis of sequential machines is the

connection matrix [2] . If P(si, Up) = (sj, oq) then the i, j th position

is the ordered pair (op, Oq) or the formal sum of such pairs. If there

is no input crp such that M(si, up) = sj then the i, j th position is zero.
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The connection matrix for the previous example is:

(a, o) H» a) o o 0 o

(a. a) 0 (b, o) (1 o o

(a, o) o o (b, s) o o

o o o (b. 5) kn o) 0

o o o (b, s) o (a, p)

(a, o) o o (b, s) o o ,/

Figure 2

The work done by Rabin and Scott [25] , together with the results of

Chapter I, when considered in the light of sequential machine theory, leads

us to the investigation of acceptability of sets of L20 sequences to sequential

machines; This will be the subject of the present chapter.

I
x

Definition 2. An input-output sequence x = '3’ is acceptable to a

x

state 33. of a machine A if N(sj, x1) = x0.

Definition 3. A set, to be denoted by T(Ai)’ of I-O sequences is the'

set of acceptable I-O sequences for the state si of the sequential machine A,

if all the I-0 sequences in T(Ai) are acceptable to the state 8.1 of the sequen-

tial machine A and no other I-O sequence is acceptable to the state si of the

s equential machine A.
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Definition 4. A partial segment ixj of an I-O sequence x = yoyl. . 'Yn-l

is the sequence yiyi+1 . . . Yj—l where the yi are input-output pairs. By i’xi

is meant the 1—0 sequence % .

Definition 5. The number of input-output pairs that make up the I-0

sequence x is called the length of x.

Definition 6. The particular partial segment oxi is called an initial

segment and thelpartial segment ixn’ where x is of length n, is called a

terminal segment.

'Definition 7. A set of 1-0 sequences is initially complete if, whenever

an I-O sequence x is in U, then all initial segments of x are in U. That is if

1618 in U, then 0xi is in U for all iSn, where n is the length of x.

» Definition 8. A set U of I-O sequences is consistent if, whenever two

I—O sequences are in U; which have an initial segment 0xiI of their input sequen-

icres in. common, then they both have the same output. sequences 0xi

Definition 9. The set of all finite input-output sequences is denoted by T.

Lemma 1. Let U be a consistent set of I-O sequences. Define the

relation E by xEy, if and only if for all z in T, if xz is in U, then yz is in

U and conversely. If E is an equivalence relation of finite index and U is the

union of all but one of these equivalence classes, then U is initially complete.
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Proof: . Since U is consistent one of the equivalence classes must

contain those I-O sequences which are inconsistent with the 1—0 sequences

in U. Thus, if x is in U xi must also be in U, since Oxi ixn is in U, and
’ 0

must be in one of the equivalence classes different from the one containing

inconsistent I-O sequences. Since U is the union of all but one equivalence

class x. is in U.

0 1

Theorem 1. A necessary and sufficient condition that a set U of I-O

sequences be the acceptable set of I-O sequences for a state si ofa sequen—

tial machine A is that U be consistent and the union of all but one of the

equivalence classes of the explicit right invariant equivalence relation E of

finite index.

Proof: Assume that U is the acceptable set of I-O sequences for state

81 of the sequential machine A, that is U = T(Ai)' Since N(si, x10“) =

N(si, x1) N(M(si, x1), 0'), the set U is consistent.

Since U is consistent, there is only one output sequence associated

with any input sequence, thus only the input sequences xI need be consi-

dered. Let x and y be any two I-O sequences contained in U. If

M(si, x1) = M(Si’ yI) then x and y are equivalent, for if z is any I-O

sequence contained in T, such that xz is in U, then M(Si’ szI) =

M(M(si, x1), 21) = M(M(si, yI), 21) = M(si, yIzI) and xand yare equi-

valent. Since M(Si’ x1) is unique, the set of 1—0 sequences such that

M(si, x) 2 sq is either disjoint from the set of I-O sequences such that

M(si, x) = sp for p 75 q or both sets are in the same equivalence class.

In the latter case sp and 5(1 are called indistinguishable [23, p. 136] .
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Likewise all non-acceptable I-O sequences are in the same equivalence

class because if x is not in U, xz is not in U for any 2 in T. Thus, if

A is an 11 state sequential machine, U = T(Ai) is the union of at most n

equivalence classes.

Assume a set U of 1—0 sequences is consistent and that the given

equivalence relation has a finite index and U is the union of all but one

of these classes. Since the set U is consistent, U might possibly be

the set of acceptable I-O sequences for some state of some sequential

machine.

A sequential machine A = (S, P), which accepts U, can be con-

structed from the equivalence classes. First, let S be the set of all

equivalence classes [xi] , [x2] , . . . [Kn—l] of T under E except for

that class which contains I-O sequences inconsistent with 1-0 sequences

of U. The function P is defined as follows. Let x be any I-O sequence

in one of the equivalence [classes contained in U and let (oi, oi) be any

input-output pairs. If 3;:- is in an equivalence class contained in U,

then P([ x] , oi) = ([xC—cg- ] , oi). Repeating this for all equivalence classes

in U and all input-output pairs completely defimess .P.

To show that U is accepted by A, we proceed as follows:

Denote by si the state corresponding to the equivalence class %

containing the null input-output sequence. Let x be any I-O sequence

x. is in U.
0 1

The equivalence class [0x1] containing Ox1 is one of the states of A.

in U. According to Lemma 1, U is initially complete and
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. 0

Define: P(si, 0x1) = ([ 0x1], 0x1),

P([OXIJ’ 1X2) = ([oxz]: 1X20), . . .,

P([Oxn-11’ n-lxn) = “0an n-lxno)°

We see that 0x1, 6x2, . . ., 0xn = x are acceptable to the state si of the

sequential machine A. Since this is true for any x in U, the sequential

machine A accepts the set U of I-O sequences. '

Assume that x is not in U. Then there exists some initial segment

0xi for OS. 1Sn such that Oxi 18 not in U, but 0xi_1 is 1n U. Thus,

N(si, 0x11) # Oxio and x. is not acceptable to state 81 of the sequential
0 1

machine A. Since U is complete x cannot be acceptable to state si of the

sequential machine A. This shows that state si accepts U and only U,

and that U = T(Ai)'

As previously mentioned we have been dealing with Mealy's model of

a sequential machine. It is interesting to note the differences in the sets of

acceptable I-O sequences to a state of a Mealy model sequential machine and

those acceptable to a state of a Moore's model sequential machine. Nerode

[24, p. 542] has shown that in order for a set U of 1-0 sequences to be accep-

table to a Moore model sequential machine it must be "causal". A set of 71-0

sequences is causal if for any x and y in U, if x and y have some initial seg-

ment in common then the outputs associated with the next inputs even if the

next inputs are different must be the same. That is, if x and y are two I-O

sequences such that OXiI = OYiI’ then 0xi.”0 = 0yi+10. Using this fact it can

be shown that Mealy's model is more general than Moorels model. Consider

the set U of I-O sequences it over the alphabet 2 = {a, b} with output alpha-

bet 0 = {11, (3} such that x is in U if and only if x always has a associatdd
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with a and S with b. This set is consistent and the equivalence relation E

is a right invariant equivalence relation of index two. Thus a Mealy model

sequential machine can be constructed to accept the set U of I-O sequences.

In particular, the sequential machine in figure 3 accepts the set U.

(a, a) v (10» (3)

Figure 3

This set of I-O sequences, however, is not causal. This can be seen

by considering the I-0 sequences a, b and a, a

a a, S a, u

ment 3 in common but the next outputs are different. Thus there is no Moore

  These have the initial seg-

model sequential machine which will accept the set U.

Any set of I-O sequences acceptable to a Moore model is}. however,

also acceptable to a Mealy model. The following algorithm, in fact, gives

a method of converting a Moore model sequential machine to a Mealy model

sequential machine:

. Remove all outputs from the states and associate the output which

was associated with a state with all input symbols emanating from this

state. Figure 4 is a Moore model sequential machine and figure5 is its

equivalent Mealy model sequential machine. We have shown that any set of I-O

sequences acceptable to a Moore model sequential machine is also acceptable to

a Mealy model sequential machine, but the converse is not true. Thus, Mealy's

model ofa sequential machine is the more general of the two.
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Figure 5
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It is now appropriate to consider the set of 1-0 sequences that are

acceptable to a sequential machine A, if the sequential machine is allowed

to start in any state. It will be assumed that each sequential machine A

has some state say so, called the connecting state, such that for each si

there is an 1-0 sequence x such that M(so, x1) = 9i. Such a machine is

called a connected sequential machine. We will also assume that the

sequential machine A is in reduced form [3, p. 282].

Definition 10. An I-O sequence x 138 acceptable to a sequential machine

A if there exists some state si in S such that N(si, x1) = x0.

Definition 11. The set of I-O sequences composed of all and only

those I-O sequences acceptable to A is called the acceptable set of 1-0

sequences for A and is denoted by T(A).

Let T(AO) be the set of I-O sequences acceptable to the state so.

This is the union of all but one of the equivalence classes of the given

equivalence relation of finite index. Let us now look at one of these

equivalence classes. It represents the set of I-O sequences that terminate

in a particular state.

Thus, if from each I-O sequence in T(Ao), which has an initial seg-

ment which is identical with an I-O sequence of the equivalence class

x. is removed, the termi-
O 1

nal segment ixn will be an I-O sequence acceptable to the state si of the

corresponding to state si, the initial segment

sequential machine A. The set of all such terminal sequences is the set

of acceptable I-O sequences for state si of the sequential machine A.
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Call this set T(Ai)' This set, of course, satisfies the given right

invariant equivalence relation over T. If we repeat this process for all

states we produce the set of I-O sequences acceptable to each state. Thus,

n-l

the set T(A) of I-O sequences acceptable to the machine A is U T(Ai)'

0

These ideas are summarized in Theorem 2.

Definition 12. The difference of an equivalence class of I-O sequences

[x] from a set of I-O sequences U, written U — [x] , is a set of I—O sequences,

such that ixn is in U - [x] if and only if 0xi ixn 13 in U and Ox.1 is in [x] .

Theorem 2. The set of acceptable I-O sequences for a sequential

n

machine A is T(A) = U T(Ai), where each T(Ai) satisfies the conditions

i=1

of Theorem 1. Also T(Ai) = T(AO) - [x] where 50 is the connecting state

and [x] is an equivalence class of T(AO).

Theorem 3. Let U be a set of 1-0 sequences. Assume there exists

a subset U of U and that the given right invariant relation E separates U
0 0

into a finite number of equivalence classes. Assume also that the differ-

ences U.1 = U0 - [XJi’ where [x]0, . . . , [x]n_1 are distinct equivalence

classes contained in U, are divided into a finite number of equivalence

classes by the given equivalence retétion. Then if U = U Ui and each

Ui is consistent then a sequential machine can be constrlu-fted which will

accept U.

Proof: The sequential machine A is formed by constructing the

sequential machine which has some state say so, which will accept the

set U0. This machine will then have for its set of acceptable I-O
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sequences for its other states si the sets T(Ai)' But each T(Ai) = Uo - [XJi'

Hence A accepts the set U.

Theorem 4. Let U be a set of I-O sequences. U is the set of accep-

table I-O sequences for a sequential machine A, if and only if the following

three conditions are true.

(1) The relation R defined by ny if for all z and w in T, if zxw is

in U, then zyw is in U, and conversely, is a congruence relation of finite

index.

(2) U is the union of all but 1 of the congruence classes of the rela-

tion R.

(3) Each of the congruence classes contained in U is consistent.

Proof: Let A be a sequential machine. Let R be a relation such that

ny, if M(si, x1) = M(si, yI) for all si in 5 whenever both M(si’, x1) and

M(si, yI) are defined, or both are not defined for the same si. Then R is

a congruence relation. The proof of this follows that of the similar theorem

for finite automata. . If ny, then x and y must be in the same equivalence

class of the right invariant equivalence relation E, and accordingttoTheorem l,

the congruence classes are consistent. If there are r internal states in A

then for a fixed 1-0 sequence x, M(si, x1) can be any one of r states or be

undefined. Thus, the relation R separates T into at most (r-tl)r equiva-

lence classes and consequently R is of finite index.

Assume that U is the union of all but one of the congruence classes

of the given tbflgruence relation and that each equivalence class contained

in U is consistent. Let [x] denote a congruence class and let each congru-

ence class contained in U denote a state. Define P as follows: if [x] and
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[y] are two congruence classes, such that [x] contains an initial segment

Oyn-l of some I-O sequence Oyn of [y], and if n-lyn is 2—, then

P([x ], ai) = ([ y] , 0.1). This, then, completely defines a1 sequential machine A.

The proof that U = T(A) is analogous to that of Theorem 1.

To this point we have been studying as much of the structure of gen-

eral sequential machines as could be distinguished by conéidering only

input-output sequences. However, most sequential machines which will be

useful in actual switching circuits design have the pr0perty that for any

pair of states 8i and sj there is an 1-0 sequence x such that M(si, x1) = sj.

Such machines are said to be strongly connected. In the remainder of

this chapter we will make use of the characterization of the set of accep-

table I-O sequences to prove some interesting properties of strongly

connected sequential rm chines and a certain subclass of such machines,

positive sequential machine 3 .

.Definition 13. Two states si and sj of ‘a connected sequential

machine A are equivalent if there exist two l-O sequences x and y such

that M(so, x1) 2 8i and M(so, y1) = 3j and both x and y are in the same

equivalence class of T under the given right invariant equivalence relation

E. This definition compares with that given by Hohn and Aufenkamp [3] .

Definition 14. A connected sequential machine is in reduced form

if it does not possess any pair of equivalent states.
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Theorem 5. A connected sequential machine with 11 states is in

reduced form if and only if T(Ao), when s is the connecting state, is the
0

union of n equivalence classes of the given right invariant equivalence

relation E over T.

Proof: Assume A is a reduced connected sequential machine with 11

states. Since A is connected, for any i there exists an I-O sequence x such

that M(so, x1) = 81. Since A is reduced, if x and y are two I-O sequences

such that M(so, x1) 7! M(s yI), then x and y are in different equivalence0’

classes. It has been shown that each state corresponds to an equivalence

class and that there are n equivalence classes.

Assume T(A is the union of n equivalence classes. Since there are

I

0)

only n states M(so, x1) # M(so, y if [x] is not equivalent to [y]. Thus

the sequential machine A is in reduced form.

Definition 15. A sequential machine A with 11 states is strongly con-

nected if for each i andj (i, jé 11) there exist some input-output sequence x

such that M(si, x1) = Sj'

Theorem 6. Let A be an n state sequential machine. If for

i = l, 2, . . . , n, T‘Ai) is the union of n equivalence classes of the given

right invariant equivalence relation E, then A is strongly connected.

Proof: Each equivalence class of T(Ai) consists of the I-0 sequences

that terminate in distinct states. That is, distinct I-O sequences in different

classes of T(Ai) end in' distinct states. Thus, if there are n states and

T(Ai) is the union of n classes then there is an I-O sequence x such that
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M(si, x) = sj forj = 1, 2, . . . , n. Since. this is true for all i, A is

strongly connected.

This condition is not necessary, for two I-O sequences may termi-

nate in different states and still be in the same class, that is if these

states are equivalent. For a reduced machine, however, the conditions

of the previous theorem are also necessary.

Theorem 7. The reduced form of a strongly connected sequential

machine i'satstrnng’ly connected sequential machine.

Proof: Let A be a strongly connected sequential machine and let

8i and Sj be any two states of the reduced form of the sequential machine A.

If 8i and sj are not states which were merged in the formation of a reduced

sequential machine then there still exists x such that M(si, x1) = sj. Let

either si or sj be a state of the reduced machine produced by the merging

of two states of A. Since there exists an 1-0 sequence x such that the

function M of one of the states forming si and xI is in one of the states form-

. I
mg 33., then M(si, x) = sj.

Definition 15. A sequential machine A is positive if there exists

some r such that for all i andj (i, jé n) there exists an I-O sequence

x of length r such that M(Si’ x1) = Sj'

Theorem 8. The reduced form of a positive sequential machine is

a positive sequential machine.
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Proof: The proof of this theorem is similar to that of the previous

theorem.

We have completed one of the major objectives of this study, that of

characterizing the sets of acceptable I-O sequences for a sequential machine

and have also shown the usefulness of this characterization in proving some

theorems concerning the structure of sequential machines.



Chapter III

INDECOMPOSABLE MATRICES AND THE STRUCTURE

OF AUTOMATA

The definition of a strongly connected sequential machine was intro-

duced by Moore [23, p. 140] and was used by him mostly for the determi-

nations of the minimal length experiment necessary to distinguish one

machine from another. Weeg and Kateley [ 18] used this idea of strongly

connected machines to prove equivalen‘te of a certain class of sequential

machines. Seshu, Miller and Metze [21] studied strongly connected

machines as such. They made use of connection matrices, which are simi-

lar to the connections matrices to be used in this chapter.

The concept of a positive machine was introduced by Weeg [26‘] . Its

connect ion matrix corresponds very closely to the idea of a primitive matrix

studied by Frohenius [7] , Herstein [ 15] , Holladay and Varga [ 16] and others.

Various types of matrix representations of sequential machines have

been employed in the study of sequential machines. Hohn and Aufenkamp

[3] use a connection matrix which has the formal sum of all I-O pairs of

the isort (a, o.) in the i j position if P(si, a) = (sj, a). They make use of

this representation to reduce a sequential machine to minimal form.

Seshu, Miller, and Metze [21] employ another kind of connection

matrix called a transition matrix. Corresponding to each input symbol (Ti

a transition matrix Ti is defined. If M(si, oi) = s. then there is a one in

the i, j th position of T1. If there is no such transition then the i, j th

-40-
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n

position is 0. If the alphabet 2 contains exactly the symbols 0-1, oz, . . . , 0'

n .

then the matrix .C as used in [3] is C = 2 0'1 T1, where addition signifies

i=1

Boolean inclusive or. Gill [8] assigns a prime number to each transition

and inserts this number in the i, j th position if the transition carries state

si to state sj.

Weeg [27] used the following definition for a connection matrix which

is similar to the transition matrices of Seshu, Metze, and Miller [21] . If

for some GP in Z), M(Si’ Up) = sj then there is a one in the ikj th position of

the connection matrix C. Otherwise the i, j th position is O. This is the

definition that will be employed in this chapter. The connection matrix

for the example in figure 1 of Chapter II is:

Figure 1

By CI. is meant the rth power of the connection matrix C , where

multiplication is the normal matrix multiplication with Boolean arithmetic.

The sum of two connection matrices, written A U B, is the elementwise

addition with Boolean arithmetic. It is to be noted that the definition of a
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connection matrix is independent of input symbols and output symbols, thus,

the connection matrix and all the theorems of this chapter apply to bothfinite

automata and both Mealy's and Moore's model sequential machine. They

also apply to precedence matrices for directed graphs, as discussed by

Harary [ l4] and others.

In common with current literature, the term path of length n from

S1 to sj will be used to denote that there exists some input sequence x of

length n such that M(si, x) = Sj' It is to be notdd‘that a l in the i, j th

position of Cr means that there is a path of length r from si to Sj'

Definition 1. A sequential machine is strongly connected if there is

a path from each state to each other state of the sequential machine.

Definition 2. A connection matrix is strongly connected if the sequen-

tial machine which it represents is strongly connected.

In the remainder of this chapter the terms connection matrix and the

sequential machine which it represents will be used synonymously, and the

rows and columns will be used synonymously with the states they represent.

A necessary condition that a connection matrix be strongly connected

is that it have a non-diagonal l in each row and in each column. For

suppose some row does not have an off diagonal 1. Then there is no path

from this state to any other state. If there is a column without any off

diagonal ones, then there is no path which terminates in this state, and

thus there is no path to this state from any other state. This condition is
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not, however, sufficient. As can be seen from the connection matrix of

figure 2, it is notpossible to havea pathfrom state s4or ssto 81’ 82’ or $3.

0 l 0 0 O

0 0 l 0 0

l O 0 0 0

0 0 0 O l

0 0 0 l 0

Figure 2

The connection matrix in figure 1 is strongly connected, as there

is a path of length 5 passing through each state.

Definition 3. An n x n connection matrix C is indecomposable if

there is no permutation matrix P for which

where All and A2.2 are square submatrices. (A12 may not be square).

Theorem 1. An 11 x n connection matrix is strongly connected if

and only if it is indecomposable.

Proof: The transformation P C PT corresponds to a permuation of

the numbers assigned to the states. But the property of strongly connectedness
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is independent of the numbering of the states. Now if C is decom-

posable as

PCP

A22

then there can be no path from any state corresponding to the rows of A22

into any state corresponding to the rows of All' Hence C would not be

strongly connected.

On the other hand, suppose that the n x n matrix C is not strongly

connected. Then there is some set 8' of p<n states for which M(si, (75)

is in S' for all s in S' and all (rj in 2. If the permutations are performed
1

which make these states correppodctvto the last columns of the connection

matrix, the first n-p entries of the last p rows of the connection matrix

will be zero. Hence, if P is that permutation matrix then

P C P =

where All is of dimension (n-p) x (n-p), A12 is (n-p) x p, A22 is p x p,

and 0 is p x (n-p). But then C is decomposable, so that. we have proved

that if C is indecomposable, then C is strongly connected.

Definition 4. An n x n connection matrix C is positive if there exists

some positive integer r suchthat c:r =U, where U is the nxn matrix which

has 1 in each position.
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The connection matrix for figure 1 is positive; in fact C5 = U.

Holladay and Varga [ 16, p. 631] give the following definition of a

primitive matrix.

Definition 5. A matrix A on non-negative real numbers is primitive

if there exists some positive integer r such that Ar has all positive entries.

It is to be noted that a positive real number in the powers of a primi-

tive matrix corresponds to aone'in the powers of a connection matrix.

That is, to each non-negative matrix A = (aij) there corresponds a connec-

tion matrix C = (Cij) such that if aij ;! 0 then cij :2 1, while if a.ij = O, c.. = 0.

Thus if one is only interested in the structure of a matrix, and not in the

magnitude of the value of its elements, then one need deal only with the

corresponding connection matrix. This approach to many of the problems

concerned with primitive matrices appears to lead to simpler proofs.

As pointed out by Weeg [27] every positive connection matrix is

strongly connected, but the converse statement is not true. Thus the

class of positive connection matrices is a subclass of the class of strongly

connected connection matrices. It is this subclass of positive connection

matrices and the differences which distinguish this subclass from the

class of strongly connected connection matrices that will be studied in this

chapter.

As previously noted [27] all powers of a positive connection matrix

are positive and thus strongly connected, whereas all the powers of a

strongly connected connection matrix are not necessarily strongly connected.

This can be seen from the example in figure 3. C is strongly connected

but C3 is not.
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Figure 3 F”

In fact the class of positive connection matrices is exactly that class of

strongly connected connection matrices all of whose powers are strongly

 
connected, as is shown by the next theorem.

Theorem 2. An 11 x n connection matrix C is positive if and only if

Cr is strongly connected for all integers r21.

Proof: As previously pointed out if C is positive, Cr is. strongly

connected for all integers r21.

Suppose that Cr is strongly connected for all integers r21. In par-

ticular, then, C is strongly connected, so that for eachi = l, 2, . . ., 11

there must exist an integer mizl for which cii(mi) = 1. (By Cijh.) is

meant the ij entry of Cr). Further, if Cii(mi) = 1, so also does cummi) = l

for any integer qu. Hence, cii(mlm2 ' ° ' mn) -. 1 for i = 1, 2, _ , ,, 11,

m1 . . . m . .
so that C n has a l for each diagonal entry. But Herstein

[ 15, p. 20] has proved that if C is indecomposable and each diagonal entry

is positive, then C is primitive. Since all powers of C are strongly

- m
connected cml ' n is strongly connected, so that C is positive, as

was to be proved.
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If a connection matrix C is not positive then there is an integer r such

that C1‘ is not strongly connected. It will be shown that if a strongly connec-

ted n x n matrix C has some power Cr which is not strongly connected, then

in fact one of the first n powers is not strongly connected. This will be

shown without recourse to Herstein's Lemma [15, p. 20].

Theorem 3. Let C be an n x n connection matrix. Cr is strongly

connected for l E r g n, if and only if C is positive.

Proof: If C is strongly connected, then for any i there is a path k of

length p S- n which carries state si back to state si. For any pair i, j

there is a path h of length pq, q Sn from state si to state sj. This is true

since CP is strongly connected.

However, for any i and j there is a l in the i, j th position of

I Z
.

[C(n") This follows from the fact that the path, which is comprised of

(NF-pq

P

lengt

copies of the path k, followed by one copy of the path h, is of

hmB-po )2

in

this is true for all pairs 1, j,

p + pq = (n! and carries state si into state sj. Since

C(n!)z has a l in each position and the'

matrix C is positive. The proof of the converse is trivial.

As can be seen from the probf the conditions of the previous theorem

are too strong. All that is needed is that if pi is the minimum length of

any path which carries state si back to state sj then Cpi is strongly

connected. This gives the following:

Corollary 1. Let C be an n x n connection matrix and let pi En be

Wflsi.the least integer such that cii C is a positive connection matrix
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p.

if and only if C 1 is strongly connected for i = 1, 2, . . . , n.

It is now a simple matter to prove Herstein's Lemma [15, p. 25] ,

which was used in the proof of Theorem 2.

Corollary 2. (Herstein's Lemma [15, p. 20]). If C is an n x n

strongly connected connection matrix and cii = l for léién, then C

is a positive connection matrix.

Corollary 3. Let C be a strongly connected connection matrix. If

pi, 15 i én, is an integer such that there is a path of length pi which

P. P

carries state si back to state Si and if C 1 - n is strongly connected,

then C is a positive connection matrix.

Proof: Since p1 . . . pn is an integer multiple of pi for each lé‘ién,

p . i

C 1 n has a l in each diagonal position and according to Corollary 1

C is positive .

Corollary 4. If C is a symmetric connection matrix, such that C and

C2 are strongly connected, then C is positive.

Proof: Since G is a symmetric matrix and strongly connected,

C2 has a 1 in each diagonal position. Thus according to Corollary 1 C

is positive.

Weeg [27] has shown, that if C is strongly connected, then

IU CJ: Ci = U. This can be used to show another interesting property

1:

of strongly connected matrices.

Theorem 4. If C is strongly connected then CLJC2 is positive.
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Proof: To show that CLJC2 is positive it is sufficient to produce

the power of C LJC2 which is U. But

cnu U0)n

Cn(IUCUCZU. . . Us“)

CnU.

(c U62)n

Since C is strongly connected there is a path of length n emanating

from every state. Also there is a path 26f length n terminating at each

state. Thus, there is a 1 in each row and column of Cn. This gives that

CnU = U and C U C2 is a positive connection matrix.

As one notices during the review of this chapter, the major differ-

ence between strongly connected connection matrices which are not posi-

tive, and those that are, is in the strongly connectedness of the powers

of a positive connection matrix. The similarity of positive connection

matrices and primitive matrices is also of interest. All of the theorems

of this chapter, since they deal only in the structure of the matrix, apply

to primitive matrices. It seems to be the case that certain results can be

obtained more easily by resorting to the machines corresponding to a

matrix than by analyzing the matrix itself. Thus, Herstein's Lemma is

easily proved in this fashion though its original proof was not so simple.
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