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ABSTRACT

This dissertation deals with the structure of finite automata and
sequential machines. The first chapter is an extension of Rabin and
Scott's work on finite automata. The sets of tapes acceptable to a finite
automaton are characterized through the use of equivalence classes.
This is done for four types of finite automata. These are:

(1) One initial state and not all states final.

(2) More than wne initial state and not all states final.

(3) One initial state and all states firal.

(4) All states both initial and final.

In the second chapter sets of input-output sequences that are
acceptable to a sequential machine are characterized through the
use of equivalence classes similar to those employed for finite auto-
mata. It is shown how the set of input-output sequences acceptable
to a sequential machine can be obtained from the characterization of
the set of tapes acceptable to a particular state of the sequential
machine. This characterization is used to prove some theo;ems
concerning the reduction of sequential machines to minimal state
form.

In Chapter III the st ructure of finite automata and sequential
machines is studied through the use of connection matrices. The
properties of a positive connection matrix which distinguishes it
from a strongly connected matrix are discussed. It is shown that
all the powers of a positive connection matrix are strongly connec-

ted, but the same statement for strongly connected matrices is
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not true. This condition is reduced to just the first n powers of an nx n
connection matrix need be strongly connected to insure that a connection
matrix is positive.

It is also pointed out that the theorems of Chapter III apply to prim-

itive matrices of non-negative real numbers.



STRUCTURE OF AUTOMATA

By

BRUCE HERBERT BARNES

A THESIS

Submitted to the School for Advanced Graduate Studies of
Michigan State University of Agriculture and Applied
Science in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSORHY

1960

Approved /272,,mﬂ(7 (7P o own




-ii-

ACKNOWLEDGMENT

The author wishes to express his gratitude to Professor Gerard
P. Weeg, for his guidance and encouragement throughout the writing

of this paper and during most of his graduate study.



-iii-

TABLE OF CONTENTS

INTRODUCTION . . P . . . . . . . 1
EINITE AUTOMATA . . . . . . . . . 4
SEQUENTIAL MACHINES . . . . . . . . 22

INDECOMPOSABLE MATRICES AND THE STRUCTURE OF

AUTOMATA . . . . . . . . . . 40

BIBLIOGRAPHY . . . . . . . . . . 50



INTRODUCTION

The investigation into the theory of sequential machines have
had a very recent origin. It was in 1955 and 1956 that Mealy [ 22],
Moore [ 23] and Huffman [ 17], published what are evidently the
pioneering papers in the field. These authors, and most later ones,
consider a sequential machine to be a device capable of assuming
any one of a finite set of internal states, such that when an input
symbol is presented to the machine, an output symbol is produced
by the machine and the sequential machine assumes another state.

There are three major areas in the study of sequential machines.
These are:

(1) The construction of electronic devices, which have proper-
ties similar to those mentioned above. Such devices are commonly
called sequential transducers. Considerable work has been done in
the area in recent years, especially since the advent of high speed
digital computers and other types of process control apparatus where
the process is sequential in nature. Huffman [ 17], Cadden [6], Unger
[26] and others have done a considerable amount of work in this field.

(2) The synthesis and analysis of state diagrams (these are
weighted graphs used to represent sequential machine) which are
used to facilitate the construction of sequential machines. This area
has been dealt with by Huffman [ 17], Mealy [ 22], Hohn [ 3], Aufen-
kaﬁp [1, 3, 4], Ginsburg [10, 11, 12, 13], Bellman [5], Gillespie

[1] and others.
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(3) The study of sequential machines as a mathematical system.
Kleene [ 19], Moore [ 23], Nerode [ 24], Rabin and Scott [ 25], Ginsburg
[9]. Weeg [18, 27] and several others have worked in this field.

This last area of sequential machines is the subject of this disser-
tation. Three separate but related topics will be covered in this disser-
tation. They are finite automata, sequential machines and connection
matrices.

A finite automaton is a sequential machine without outputs. The
set of sequences (called tapes) which are suitable for a finite automaton
are characterized through the use of equivalence classes. Four types
of finite automata are discussed in Chapter I.

The major result of the first chapter is that a set of tapes, U, is
the acceptable set of tapes for a finite automaton, in which each state
is an initial state and also each state is a final state, if and only if U
is complete (that is, if x is any tape in U, then any portion of x is in
U) and is the union of all but vne of the equivalence classes of a parti-
cular right invariant equivalence relation of finite index.

In Chapter II, the set of sequences of input-output symbols
(called I-0 sequences) which are suitable for a sequential machine are
characterized by the use of equivalence classge. These equivalence
classes are used to prove some theorems concerning special classes of
sequential machines. The main theorem of this chapter is similar to
that of Chapter I, except, due to the outputs, the conditions are more

stringent.
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For the purpose of study of the structure of sequential machines
a connection matrix is often used. A special class of these is the class
of strongly connected connection matrices. A subclass of the class of
strongly connected sequential machines is that of positive machines.
The properties which distinguish this subclass from the class of
strongly connected connection matrices are discussed in Chapter III.
The major distinction is that a positive connection matrix has all of
its powers strongly connected. It is shown that this requirement can
be reduced to the point that just the first n powers of an n x n connec-

tion matrix need be strongly connected to insure positiveness.



Chapter I

FINITE AUTOMATA

An automaton may be thought of as a black box which will accept
tapes (questions). As the tape proceeds through the box the internal
mechanisms of the box assume different configurations and when the
tape is completely accepted by the black box an answer is given (yes
or no). This answer depends on the configuration of the internal
mechanism of the black box. The method of giving the answer might
be by means of a light, which is on when the configuration of the inter-
nal mechanism corresponds to an answer of yes.

A tape (question) is called acceptable to a finite automaton if the
answer corresponding to this question is yes. Several interesting
questions arise concerning acceptable sets of tapes. Among these are:

(1) What are the properties of a set of acceptable tapes?

(2) For every set of tapes U is there an automaton having U as
its set of acceptable tapes?

(3) Given a set of tapes, is there an effective procedure to
ascertain if there exists an automaton accepting this set of tapes,
and if so, can this automaton be produced?

These are the problems that are discussed in this chapter.
Before these ideas are formalized, however, a few definitions
will be needed. These definitions will largely be similar to those

found in the literature.

-4.
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Definition 1. A tape x is a finite sequence of elements from a
non-empty finite set Z. The elements of T are called tape symbols
and X is called the alphabet. The null tape (i. e., the tape with no

symbols) is denoted by \.

Definition 2. The set of all finite tapes over the alphabet Z is
denoted by T. A tape x is written in the form x = 0T - Ty where

o, are elements of Z. Ifx =0, . . . 0 1 and y = ag - then

0 n-
by xy is meant the tape xy = T - -

" %m-1
S 9.1% C C  %mel A portion of
tape x is denoted by ixj’ which means that portion of the tape x beginning
with the ith position and continuing up to and including the j-1 posi-

tion. By i is meant the null tape.

Definition 3, [25, p. 116]. A finite automaton of type 1, also called
an automaton when no confusion will result, over the alphabet Z is a
system A* = (S, M, 8y F') where S is a finite non-empty set (called the
set of internal states of A), M is a function defined on the Cartesian
product S x  of all ordered pairs of states and input symbols with
values in S (called the table of transitions or moves of A¥), 80 is an ele-
ment of S (called the initial state of A*) and F is a non-empty subset of

S (the set of designated final states of A¥*).

There are several methods for specifying a finite automaton. One
common method is to give a table, called the table of moves, and a list

of final states.
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Example: Let A* = (S, M, 50’ F) be defined over the alphabet

z = {a, b, c} in the following way:

S = {so, sy 82} , with 50 the initial state.

r
"

{_SZ} the set containing only 5.

M is defined by Table 1, with the following interpretation.

If 5, is the present state, o, the present input and s, the next

state, then M(si, O'j) =8

.

n

Table 1
Present State Next State
Present Input
a b c
5, 8, s, 5,
Ch s, 8, 5,
s, 5, 8, s,

For the purposes of analysis of an automaton, a pictorial display is
often useful. This is usually given in the form of a state diagram which
parallels Moore's transition diagram of a sequential machine. A state dia-

gram is a weighteddirected graph with each vertex corresponding to a state

of the automaton. The states are usually drawn as circles withan ordered
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pair (a, b) inside the circle, where a is the number of the state and b is 1,
if this state is final, and 0, if this state is not a final state.

If M(sk, O'i) = 8, then there is a directed line segment from vertex
k to vertex e labelled o, Figure 1l is the state diagram for the previous

example.

Figure 1

In the remainder of this chapter the given definition of an
automaton will be modified and its properties compared with those
given by Rabin and Scott [ 25]. In the Rabin and Scott:type automaton
M(si, crj) is defined for all combinations of s; in S and O'j in Z. This
property will now be weakened by requiring that transitions be defined
only for some state-input combinations, but not necessarily for all

state-input combinations.
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Definition 4. A finite automaton of type 2 over the alphabet Z is a

system A = (S, M, s,, F) where S is a finite non-empty set (called the

0,
internal states of A), M is a function defined on a subset L of the Cartesian
product S x X of all pairs of states and input symbols into the set of

internal states S, s, is an element of S (called the initial state) and F

0
is a non-empty subset of S (called the set of final states of S).
Henceforth, the symbol A* will be used for a Rabin and Scott type
automaton and A for a machine as defined according to Definition 4.
It is necessary for many of the proofs to extend the definition of

Mfrom L, a subset of Sx X, to H, a subset of Sx T. This is

accomplished in a manner similar to that of Rabin and Scott {25]:

M(s;, \) = 8

M(si, xtrj) = M(M(si, x), crj)

for 8, in 5, xin T, and crj in Z. If M(s;, x) is not defined or M(M(si. x), O'j)

is not defined, then M(si, xcrj) is not defined.

Definition 5. A tape x is called an acceptable tape for an automaton
A=(S, M, 8o F) of type 2 if M(so, x) is contained in F. The set of all
tapes which are acceptable to an automaton A of type 2 is denoted by T(A),

and is called the set of acceptable tapes for the automaton A.

Definition 6. The setj is the set of sets of tapes over the alphabet
X such that U is in 7 , if and only if U = T(A) for some automaton A over

X, of type 2.
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Theorem 1. If Uis a set of tapes such that U = T(A),for some
automaton A of type 2, then there exists an automaton A* of type 1 such
that U = T(A*) and conversely.

Proof: If U = T(A), then the automaton A* is constructable from
the automaton A. This is done in the following manner: Let S* = S{j{s '}
where S is the set of states for the automaton A and {s'} is the set

consisting of s' alone where s'is distinct from any state in S. Define:

M*(si, 0'j) = M(si, 0'j) if M(si, crj) is defined.
M*(si. O'j) =g'if M(si, O'i) is not defined and M¥*(s', Ui) =s'
for all O'i contained in Z .

g% = 8, and F* = F.

For any tape x in T(A), x is also in T(A*), because M*(so, x) =
M(so, x) and if M(so, x) is in F, M*(so, x) is in F. Likewise, if any
tape y is not in T(A), then it is also not in T(A*), for if M(so, y) is
defined, M*(so, y) = M(so, y) which is not in F and thus not in F*; while
if M(so, y) is not defined then M*(so, y) = s' which is not in F*.

One can also observe that an automaton A* of type 1 is also an
automaton A of type 2. We have,therefore, shown that U = T(A) if and
only if U = T(A*) for some A and A* of type 2 and 1 respectively.

The important difference between the two kinds of automata is that

an automaton A probably weould not require as many transitions and possibly
even fewer states than the automaton A*. This can be seen from the
following example.

Let U= {10101} . The automaton A of type 2 of figure 2 has U

as its set of acceptable tapes.
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B D)D)

Figure 2

The Rabin and Scott type automaton A* of figure 3 also has U as its
set of acceptable tapes. As can be seen the automaton A has one less

state than the automaton A* and 9 less transitions.

Figure 3
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Not every set U of tapes is a set of acceptable tapes for some auto-
maton. This has been shown by Rabin and Scott [ 25]. Their proof, how-
ever, produced a set of tapes not acceptable to any automaton A¥*, while

the proof of Theorem 2 is an existence proof.

Lemma 1. The cardinal number of the set”) is Ko'

Proof: Let c denote the cardinality of Z. If A = (S, M, Sy F) has
n states, then for each state s. M(si, Gj) can be any one of n states or not
be defined. Thus, there are (n-fl)C possible ways to define the function M
for each state and for any fixed n there are at most [(n-l-l)c] " possible
ways to define the function M. Since the number of non-empty subsets F
of S is 2"-1, and 8, can be any one of n states, there are n(2"-1)[ (n+1)€] i
possible machines with exactly n states. A countable number of sets, each
of which contains all possible finite automata with a given number of states,
can be formed. Hence, there are at most No finite automata and at most
Xosets of acceptable sets of tapes over the alphabet £. Let S be a set
of n states. Let 8, be the initial state and F the set containing only the

for 1<i%n and let cri be undefined for all i

state s . Let M(Si' Uj) =811

except 1, then this automaton accepts the tape 710 - - - 9 and only this
n
tape. In this way ;{ distinct sets of acceptable tapes are produced. This
o

shows that the cardinality of ; isx .
o

Theorem 2. There exist sets U of tapes, such that U is not the set

of acceptable tapes for any automaton A, of type 2.
Proof: Since the cardinality of T is }ﬁothere are Z}ﬁ‘> = C sets

of sets of tapes over the alphabet Z Thus making use of Lemma 1, there

exist sets of tapes which are not acceptable to any finite automaton.
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Rabin and Scott [ 25] give several theorems concerning acceptable
sets of tape, which are due to Myhill, Nerode, and themselves. We will
now generalize these theorems. Many of these theorems make strong use

of equivalence relations among the tapes of T.

Definition 7. An equivalence relation R over the set T of tapes is
right invariant, if whenever xRy, then xzRyz for all z in T. There is

also an analogous definition for a left invariant equivalence relation.

Definition 8. An equivalence relation over the set T is a congruence

relation if it is both left and right invariant.

Definition 9. An equivalence relation over T is of finite index if

there are only finitely many equivalence classes under the relation.

With these definitions available it is now possible to state the
following theorem, which is due to Myhill [ 25, p. 117], and prove its

applicability to an automaton A of type 2.

Theorem 3. Let U be a set of tapes over the alphabet Z. The
following three conditions are equivalent.

(1) Uisin T

(2) U is the union of some of the equivalence classes of a congru-
ence relation over T of finite index.

(3) The explicit congruence relation = defined by the condition

that for all x, y in T, x 2 y if and only if for all z, w in T, whenever
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zxw is in U, then zyw is in U, and conversely, is a congruence relation
of finite index.

Proof: As pointed out in Theorem 1, for every automaton A of type
2, there is an automaton A* of type 1 which has the same set of acceptable
tapes. Thus, if T(A) is in 7/, so is T(A*) and both sets have the same
properties.

The:following theorem, which is a generalization of a theorem due
to Nerode [ 24, p. 543], applies to automata A* of type 1, hence, to auto-

mata A of type 2.

Theorem 4. Let U be a set of tapes. The following three condi-
tions are equivalent:

(1) Uis in ’J/

(2) U is the union of some of the equivalence classes of a right
invariant equivalence relation over T of finite index.

(3) The explicit right invariant equivalence relation E defined by
the condition that for all x, y in T, xEy if and only if for all z in T,
whenever xz is in U, then yz is in U and conversely, is an equivalence

relation of finite index.

Corollary 1. Let U be in 7/ If the number of equivalence
classes of T under the relation E is n, then the least number of
states in any automaton having U as its set of acceptable tapes is n-p,
where p is 1 if there exists an equivalence class [y], such that for
any x in [y], %z is not in U for all z in T; otherwise p is 0.

Proof: Let each equivalence class denote a state. Let 89 =

[A] (the equivalence class containing the null tape). Let F be the
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set of equivalence classes which contain a tape from U. Define M

as follows:
M([ x], O’J.) = [xcrj] )

Since M([A], x) = M(so, x) = [x], this automaton has U as its acceptable
set of tapes. If one of the equivalence classes does not contain a tape y
such that yz is in U, for some tape z in T, it is not necessary to have a
state corresponding to this equivalence class in this automaton. Thus,
this state and all the transitions emanating from it and terminating in it
can be removed. This can be seen from the following argument.

If xyfy then M(s,, x) # M(s,, y) for any automaton A of type2. We
have therefore, that for each equivalence tlass, which contains some tape x
such that M(so, x) is defined, a aistinct internal state in the machine. If we
define M([x], o) = [x0] where [x] and [xc] are equivalence classes con-
taining a tape y such that M(so, y) is defined, we produce an automaton which
accepts the set of tapes U, and which has exactly as many states as there
are equivalence classes under E which contain a tape for which M(so, x)
is defined.

The above corollary is a generalization of Nerode's theorem
[25, p. 118]. However, it is interesting to notethat with the gener-
alized definition of an automaton there may be bne less state needed to
produce an automaton which will accept the set of tapes U.

The next three theorems by Rabin and Scott depend only on the
equivalence relation and are, therefore, also true for the automata A

of type 2.
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Theorem 5. If x is in T, then {x} , the set consisting of x alone

is in ;

Definition 10. If x is the tape o SO then x* is the tape

172
C O 1 TR0y If Uis a set of tapes then U* is the set of tapes such

that x is in U if and only if x* is in U*.

Theorem 6. If U is in , then U* is in /T

Theorem 7. The class ; is a Boolean algebra of sets.

In the remainder of the chapter we will generalize the idea of an
automaton and acceptability of tapes. Through an evolution of automata
we will arrive at an automaton in which all states are initial states and
all states are final states, with a tape being acceptable if it '""reads"
through the ''reader'. This corresponds to the more generally accepted
idea of an automaton and also forms a good foundation for the next chap-

ter on sequential machine.

Definition 11. An automaton B of type 3 over the alphabet = is a
system B =(S, M, Q, F) in which M, S and F are defined as for an auto-

maton A and Q, the set of initial states, is a non-empty subset of S.

Definition 12. A tape x is acceptable to an automaton B of type 3
if M(si, x) is in F for some 5, in Q. The set of all acceptable tapes to
an automaton B of type 3 is denoted by T(B) and is called the set of

acceptable tapes for B.
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Theorem 8. Let U be a set of tapes.U = T(B) for some B of type 3
if and only if U = T(A) for a suitable automaton A of type 2.

Proof: Let S' be the set of all subsets of S, s,' the set Q, and let

0

F' be the set of all subsets of S which contain at least one state in F.

Define M' in the following manner: If s.' = 4s5, . . . , s then
n 1 %1 %n

M'(si', o—j) = U (M(sa_, aj)} . The definition of M' is extended
i=1 1

to S' x T the same way in which the definition of M was extended. Let A =

(S'. M', s,', F'). It can now be shown that the automaton A accepts the

0
same set of tapes as the automaton B. This is accomplished in the following
manner. Assume x is an acceptable tape for the automaton B. Then for
some state s, in Q, M(si, x) = Sj' which is in F. Let x = 0'001 SRR
Consider M'(Q, x) = sa'. Since M(s.l, x) = s‘j is a state in F and sj is in
s ', s 'is a state in F'.
a a

Assume now that x is acceptable to the automaton A. Then M'(Q, x)
= sn‘ is in F'. Since sn' is in F', sn' contains some state 5 in S such that
s, is in F. There is some state, say Sj’ such that sj is in Q and M(sj, x)
=5 . This can be seen by tracing the states of A back from sn'. Let
so', Coe ey sn' be the sequence of states of A which A assumes as A
accepts the tape x. There much be some state s -1 in sn_l‘ such that

M(s , 0.) =s_, otherwise s_ would not be in s_'. Likewise, there is
n-1 n n n n

. . . )

some state 5.2 such that 8 .2 i8 contained in L and M(sn_z, 0'n_2)

=8 . In general there will be a states_ .ins_ .' such that M(s_ ., 0_ .)
n-1 n-j n-j n-j- n-j

= sn-j-l—l' Thus, we see that there is a sequence of states beginning with a

state Q and ending in LI Since 8 is in F, x is acceptalle to the automaton B.
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If the set Q = {SO’} , a set containing only one state, then the auto-
maton B of type 3 is essentially equivalent to an automaton A of type 2.
Hence, a set of tapes is acceptable to an automaton B of type 3 if and only
if it is the acceptable set of tapes to an automaton A of type 2.

Even though the definition of an automaton and, hence, the accep-
tability of tapes for an automaton has been changed, we have not changed
the type of sets which are acceptable to an automaton. We will in many
cases, however, be able to use a smaller number of states to produce
the automaton accepting the set of tapes. If it is the case that Q = S, that
is, all states are initial, the set T(B) for an automaton B of type 3 has the
further property of terminal completeness. This means that if a tape x of
length n is in T(B), :the'nzlxn is in T(B) for all 0 <i<n. This property of
T(B) can be easily seen from the fact that if M(so, x) is in F, then
M(M(so, 0xi), ixn) is in F. Since M(so, 0xi) is in Q, i*n is in T(B).

In some cases it might not be possible to ascertain whether or not
the automaton stopped in a final state, although it would be possible to
determine if a tape has been ''read' in its entirety. This concept of
acceptability corresponds to all states-of an automaton being final. The
definition of an muteriiaton will now be changed to correspond to this new

concept of acceptability.

Definition 13. An automaton C of type 4 is a system C = (S, M, 54)
where S is the set of internal states and M is a mapping of a proper subset
Lof Sx X into S and 8, is an element of S, called the initial state. A tape

x is acceptable if M(so, x) is defined. (If L were not a proper subset of

S x X, then the automaton C would accept all tapes).
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Definition 14. A set of tapes U is initially complete if it contains
all its initial segments, that is if x = 9%y + + - 9,.1 is in U than 0*n =

0—00'1 R is in U for 0< h <n.

Theorem 9. A set U of tapes, denoted by T(C), in T is the accep-
table set of tapes for an automaton C of type 4 if and only if U is initially
complete and U is the union of all but one of the equivalence classes of a
right invariant equivalence relation E over T of finite index, unless U=T
in which case U is composed of one equivalence class.

Proof: Let T(C) be the acceptable set of tapes for some automaton

Coftype4. lfx=o0

.o is in T(C) then M(so, x) is defined. This

071 - n-1

case occurs, however, if and only if M(so, x) is defined for all .x. in T(C).

071

Thus, T(C) is initially complete. That T(C) is the union of all but one of the
equivalence classes of a right invariant equivalence relation over T of finite
index is a trivial consequence of the fact that C is an automaton of type 2
with F = S and all classes except the one containing the tapes x such that
M(so. x) is not defined are contained in T(C).

Let U be an initially complete set of tapes which is the union of all
but one of the equivalence classes of a right invariant equivalence relation
over T of finite index. Since U is the union of some of the equivalence
classes of a right invariant equivalence relation over T of finite index, we
can construct an automaton A of type 2 which has U as its set of acceptable
tapes. If we choose some tape y not in U and remove M(so, y) from A along

with all transitions to and from this state we will again have an automaton.

This new automaton has U as its set of acceptable tapes and is of the type 4.
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Since thie state which was removed was not final and all but one of the states
of the avtomaton were final, all of the states of the new automaton are final.
Since U is complete, no state which is necessary for M(so, x) to be defined
for any x contained in U was removed, thus the new automaton C is of the
type 4 and accepts the set U.

An automaton will now be defined in the form most useful to the notion
of a sequential machine, the subject of the next chapter. The notion of
acceptability is now, 'Is there some state such that if the automaton is in
this state and a tape x is presented to it, will the automaton read the

entire tape?"

Definition 15. An automaton D of type 5 over the alphabet Z is a system
D = (S, M) where S is a non-empty set (called the set of internal states) and a
mapping M of a non-empty subset LL of S x £ into S.
is acceptable to the auto-

Definition 16. A tapex = ¢ Cpo .0

0 n-1

maton D of type 5 if there exists some s, in S such that M(si, x) is defined.

The set T(D) is the set of all those tapes and only those tapes acceptable to D.

Theorem 10. For every automaton D df type 5 there is an automaton
C of type 4 such that T(D) = T(C).

Proof: Since the automaton D of type 5 is also of type 3, according
to Theorem 3, an automaton A of type 2 can be found which accepts T(D).
Since each state of the automaton D is final, T(D) is initially complete and
the union of all but one of the equivalence tlasses of a right invariant

equivalence relation over T of finite index. This then gives us that
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the automaton A is also of type 4, and we have an automaton C of type 4
which accepts T(D).

Since the automaton D has each of its states as initial states the set
T(D) is terminally complete. Likewise, since each of its states is final,
the set T(D) is initially complete. This leads to the interesting property

of an automaton of the type 5, that of total completeness.

Definition 17. A set of tapes U is totally complete, if whenever a
tape x of length n is in U, then % is in U for 0€ i €j €n. That is, if the

tape x is in U then any contiguous portion of it is in U.

Theorem 11. A set of tapes U is totally complete if and only if it
is both initially and terminally complete.

Proof: If the set of tapes U is totally complete then by definition
it is both initially and terminally complete.

Assume the set of tapes U is both initially and terminally complete.
We wish to show that if x is in U then % is in U, for 05 i<j<n. Since
U is initially complete 0xj is in U. If we now apply the condition of ter-
minal completeness to 0xj we have that ixj is in U. It has, therefore,
been shown that the set of tapes acceptable to an automaton of type D is
not only initially and terminally complete but is also totally complete.

We have now arrived at one of the goals of this chapter, that is,
we have characterized the set of tapes acceptable to an automaton D of
type 5 which is similar to a sequential machine except that no outputs have

been associated with this automaton. In the next chapter we will consider
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sequential machines, which have outputs associated with them, and
point out in which ways these theorems will have to be changed to be

applicable to sequential machines.



Chapter II

SEQUENTIAL MACHINES

The idea of sequential machines has come into use in recent years
in many fields of study. It has been employed by McCulloch and Pitts [ 20]
and othere in the representation of nerve nets. Kleene [ 19] used this idea
for his work on the representation of events. Huffman [17}, Mealy [ 22],
Hohn [ 2], Aufenkamp [2, 3], and Ginsburg [ 10, 11, 12, 13] have dealt
extensively with the synthesis and analysis of sequential machines to be
used in the design and construction of computers and other types of prodess
control equipment, where the process is essentially sequential in nature.

In this chapter we will characterize the sets of input-output sequeneces
which are acceptable to a sequential machine. A sequential machine can be
thought of as a set of states (possibly internal configurations of a device)
"accepting'' input sequences and ''producing'' output sequences, such that
if the device is in a state and is given an input, the internal configuration
changes to a new state (possibly the same state again) and an output is
given.

There are two commonly used models of sequential machines. One,
the Moore [ 23] model, associates outputs with states. The other associates
outputs with transitions of one state to another with a given input. Sequen-
tial machines of this type are known as the Mealy [ 22] model, and are the
type that will be primarily discussed in this chapter. A Mealy model sequen-

tial machine is defined formally in the following way.

22-
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Definition 1. A sequential machine with input alphabet Z and output
alphabet 0 is a system A = (S, P) where S is a non-empty finite set {the
internal states of A), and P is a function defined as a non-empty (not necessarily
proper) subset J of the Cartesian product S x 0. Specifically if s, is in S
and O'j is in Z, P(si, O'j) =(M(si, crj), N(si, crj)) where M is defined as in
Chapter I and N is a function of the subset LL of S x Zinto 0.

An input-output sequence x is a finite sequence of ordered pairs
(O'i, Oj) where criIis an input symbol and Oj is an output symbol. x will
be written as x—% where xI is the input sequence and x0 is the output
sequence.

In order to discuss the idea of input-output sequences, it is neces-
sary to extend the definition of P. Let 6 be the set of all finite sequences
of input symbols, and A the null sequence of 8. Let & be the set of all
finite sequences of output symbols with & the null sequence of output
symbols. The function P is extended from S xZ to S x 6 by extending

the definitions of the two functions M and N. M is extended just as in

Chapter I, while N is extended to S x 6 in the following way:

N(sj, 50y - - crn_l) = N(sj, 0'0) N(M(sj, T oy O'n_l),
where sj is any state in S and 6Ty - - - T is any tape in Z such that

M(sj, 0'0) is defined. The function P is extended from S xX to S x 6 by

P(s;, x) = (M(s;, x), N(s;, x1)),
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where xI is an input sequence.

There are several methods for specifying a sequential machine.
Some of these are as follows:

(1) Transition and output tables. This is a table, called a next state-
output matrix by Ginsburg [ 12], which has a list of states in a vertical col-
umn and a list of inputs in a horizontal row. In the position corresponding
to the state s and the input O'j is the ordered pair (sp, oq) corresponding
to the next state and the output which occur when the machine is in the state s
and input O'j is given, that is P(Si’ O'j) = (sp, Oq). For example, let Z and 0
be the sets = = {a, b} and 0 = {a; [3} . Then let A be the sequential
machinewith S = { 0, 1, 2, 3, 4, 5} and with P defined by Table 1 with

the interpretation, that if the state is s and the input O”j, then the next

state and output pair is P(s.l, crj).

Table 1

State | Next State and Output | Next State and Output

Input a Input b
0 (0, a) 1, a)
1 (0, a) (2, a)
2 (0, a) (3, B)
3 (4, B) (3, p)
4 (5, B) (3, )
5 (0, a) (3, B
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(2) A pictorial method for displaying a sequential machine is the
state diagram. This is a directed graph in which the vertices represent
the states and the directed line segments represent transitions. If
P(si, trp) = (sj, oq), then the directed line segment from state 5 to state sj

is assigned the ordered pair ((rp, oq). The state diagram for the previous

example is:

Figure 1

(3) A useful tool for the analysis of sequential machines is the
connection matrix [2]. If P(s;, cp) = (sj, oq) then the i, j th position
is the ordered pair (0'p, Oq) or the formal sum of such pairs. If there

is no input crp such that M(si, cp) = sj then the i, j th position is zero.
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The connection matrix for the previous example is:

@, a) (b, a) O 0 0 0

(@ a) 0 (b, a) O 0 0

(@, a) 0 0 (b, ) O 0

0 0 0 (b, B) (a, a) O

0 0 0 (b, B) O (a, B)

(@, a) 0 0 (b, B) O 0 /
Figure 2

The work done by Rabin and Scott [ 25], together with the results of
Chapter I, when considered in the light of sequential machine theory, leads
us to the investigation of acceptability of sets of 1-0 sequences to sequential

machines. This will be the subject of the present chapter.

I

x
Definition 2. An input-output sequence x = T is acceptable to a

x
state sj of a machine A if N(sj, xI) = x0.

Definition 3. A set, to be denoted by T(Ai)' of I-0 sequences is the'
set of acceptable I-0 sequences for the state s, of the sequential machine A,
if all the I1-0 sequences in T(Ai) are acceptable to the state 8. of the sequen-
tial machine A and no other I-0 sequence is acceptable to the state 5, of the

sequential machine A.
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Definition 4. A partial segment ixj of an I-0 sequence x = Yo¥1: ¢ *Yn-1
is the sequence YiVisl © - yj—l where the y; are input -output pairs. By i

is meant the I-0 sequence 5 .

Definition 5. The number of input-output pairs that make up the 1-0

sequence x is called the length of x.

0xi is called an initial

segment and the partial segment X where x is of length n, is called a

Definition 6. The particular partial segment
terminal segment.

Definition 7. A set of I-0 sequences is initially complete if, whenever
an I-0 sequence x is in U, then all initial segments of x are in U. That is if

'x'is in U, then 0% is in U for all i <n, where n is the length of x.

- Definition 8. A set U of I-0 sequences is consistent if, whenever two
I1-0 sequences are in U, which have an initial segment Oin of their input sequen-

ces id. common, then they both have the same output sequences 0xiO.
Definition 9. The set of all finite input-output sequences is denoted by T.

Lemma 1. Let U be a consistent set of I-0 sequences. Define the
relation E by xEy, if and only if for all z in T, if xz is in U, then yz is in
U and conversely. If E is an equivalence relation of finite index and U is the

union of all but one of these equivalence classes, then U is initially complete.
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Proof: Since U is consistent one of the equivalence classes must
contain those I-0 sequences which are inconsistent with the I-0 sequences
in U. Thus, if xis in U, o%i must also be in U, since 0% i¥n is in U, and
must be in one of the equivalence classes different from the one containing
inconsistent I-0 sequences. Since U is the union of all but one equivalence

class Oxi is in U.

Theorem 1. A necessary and sufficient condition that a set U of 1-0
sequences be the acceptable set of 1-0 sequences for a state 5 of a sequen-
tial machine A is that U be consistent and the union of all but one of the
equivalence classes of the explicit right invariant equivalence relation E of
finite index.

Proof: Assume that U is the acceptable set of I1-0 sequences for state
s; of the sequential machine A, that is U = T(A,). Since N(s,, xlo) =
N(si, xl) N(M(si, xl), o), the set U is consistent.

Since U is consistent, there is only one output sequence associated
with any input sequence, thus only the input sequences xI need be consi-
dered. Let x and y be any two I-0 sequences contained in U. If
M(si, xl) = M(si, yl) then x and y are equivalent, for if z is any I-0
sequence contained in T, such that xz is in U, then M(si, szI) =
M(M(si, xl), zI) = M(M(si, yI), zI) = M(Si’ yIzI) and x and y are equi-
valent. Since M(si, xI) is unique, the set of I-0 sequences such that
M(si. x) = sq is either disjoint from the set of I-0 sequences such that
M(si, x) = sp for p # q or both sets are in the same equivalence class.

In the latter case sp and sq are called indistinguishable [ 23, p. 136].
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Likewise all non-acceptable 1-0 sequences are in the same equivalence
class because if x is not in U, xz is not in U for any z in T. Thus, if
A is an n state sequential machine, U = T(Ai) is the union of at most n
equivalence classes.

Assume a set U of I-0 sequences is consistent and that the given
equivalence relation has a finite index and U is the union of all but one
of these classes. Since the set U is consistent, U might possibly be
the set of acceptable 1-0 sequences for some state of some sequential
machine.

A sequential machine A = (S, P), which accepts U, can be con-
structed from the equivalence classes. First, let S be the set of all
equivalence classes [xil]’ [xz], R [xn-I] of T under E except for
that class which contains I-0 sequences inconsistent with 1-0 sequences
of U. The function P is defined as follows. Let x be any 1-0 sequence
in one of the equivalence classes contained in U and let (O'i, oi) be any
input-output pairs. If :x;.;_ is in an equivalence class contained in U,
then P([ x], o;) = ([xg—: 1, 0,). Repeating this for all equivalence classes
in U and all input-output pairs completely defines P.

To show that U is accepted by A, we proceed as follows:

Denote by 8, the state corresponding to the equivalence class %
containing the null input-output sequence. Let x be any I-0 sequence

in U. According to Lemma 1, U is initially complete and 0% is in U.

The equivalence class [Oxi] containing 0*1 is one of the states of A.
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. 0
Define: P(s,, g%;) = ([ox,]> 0*1)
Ploxls 1xp) = [gxgls e - oo
0
).

P.([Oxn-I]’ n-lxn) = ([Oxn]’ n-1%n

We see that 0*1’ d_x'z, © o s Xy T X are acceptable to the state 8, of the
sequential machine A. Since this is true for any x in U, the sequential
machine A accepts the set U of 1-0 sequences.'

Assume that x is not in U. Then there exists some initial segment
0% for 0= i <n such that o%i is not in U, but 0%i-1 is in U. Thus,
N(si, Oin) # Oxio and 0% is not acceptable to state 8, of the sequential
machine A. Since U is complete x cannot be acceptable to state 8, of the
sequential machine A. This shows that state s, accepts U and only U,
and that U = T(Ai)'

As previously mentioned we have been dealing with Mealy's model of
a sequential machine. It is interesting to note the differences in the sets of
acceptable 1-0 sequences to a state af a Mealy model sequential machine and
those acceptable to a state of a Moore's model sequential machine. Nerode
[24, p. 542] has shown that in order for a set U of I-0 sequences to be accep-
table to a Moore model sequential machine it must be '"causal''. A set of 1-0
sequences is causal if for any x and y in U, if x and y have some initial seg-
ment in common then the outputs associated with the next inputs even if the
next inputs are different must be the same. That is, if x and y are two I-0
sequences such that Oin = Oin’ then Oxi+10 = Oyi+lo‘ Using this fact it can
be shown that Mealy's model is more general than Moore}s model. Consider

the set U of I-0 sequences x owver the alphabet Z = {a, b} with output alpha-

bet 0 = {a, p} such that x is in U if and only if x always has a associatdd
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with a and B with b. This set is consistent and the equivalence relation E
is a right invariant equivalence relation of index two. Thus a Mealy model
sequential machine can be constructed tp accept the set U of I-0 sequences.

In particular, the sequential machine in figure 3 accepts the set U.

(a, a) v (b, B)

Figure 3

This set of I-0 sequences, however, is not causal. This can be seen

by considering the I-0 sequences 2, b and 2: 2
a, B a, a

ment % in common but the next outputs are different. Thus there is no Moore

These have the initial seg-

model sequential machine which will accept the set U.

Any set of I-0 sequences acceptable to a Moore model is,. however,
also acceptable to a Mealy model. The following algorithm, in fact, gives
a method of converting a Moore model sequential machine to a Mealy model
sequential machine:

Remove all outputs from the states and associate the output which
was associated with a state with all input symbols emanating from this
state. Figure 4 is a Moore model sequential machine and figure5 is its
equivalent Mealymodel sequential machine. We have shownthatany set of I-0
sequences acceptableto a Moore model sequential machine is alsoacceptable to
a Mealymodel sequential machine, but the converse is not true. Thus, Mealy's

model of a sequential machine is the more general of the two.
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Figure 4

Figure 5
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It is now appropriate to consider the set of I-0 sequences that are
acceptable to a sequential machine A, if the sequential machine is allowed
to start in any state. It will be assumed that each sequential machine A
has some state say 8g called the connecting state, such that for each 5
there is an I-0 sequence x such that M(so, xI) =8 Such a machine is
called a connected sequential machine. We will also assume that the

sequential machine A is in reduced form [ 3, p. 282].

Definition 10. An I-0 sequence x is acceptable to a sequential machige

A if there exists some state 8, in S such that N(si, xI) = xo.

Definition 11. The set of I-0 sequences composed of all and only
those I-0 sequences acceptable to A is called the acceptable set of 1-0
sequences for A and is dendted by T(A).

Let T(Ao) be the set of I-0 sequences acceptable to the state 5y
This is bthe union of all but one of the equivalence classes of the given
equivalence relation of finite index. Let us now look at one of these
equivalence classes. It represents the set of I1-0 sequences thatterminate
in a particular state.

Thus, if from each I-0 sequence in T(Ao), which has an initial seg-
ment which is identical with an I-0 sequence of the equivalence class
corresponding to state 8;» the initial segment 0% is removed, the termi-
nal segment i*n will be an I-0 sequence acceptable to the state 8, of the

sequential machine A. The set of all such terminal sequences is the set

of acceptable I-0 sequences for state 8, of the sequential machine A.
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Call this set T(Ai)' This set, of course, satisfies the given right
iavariant equivalence relation over T. If we repeat this process for all
states we produce the set of I-0 sequences acceptable to each state. Thus,

n-1

the set T(A) of I-0 sequences acceptable to the machine A is u T(Ai)'
0

These ideas are summarized in Theorem 2.

Definition 12. The difference of an equivalence class of I-0 sequences
[x] from a set of I-0 sequences U, written U - [x], is a set of I-0 sequences,

such that .x is in U - [x] if and only if 0%; X, is in Usnd x, is in [x].

Theorem 2. The set of acceptable I-0 sequences for a sequential
n

machine A is T(A) = U T(Ai)’ where each T(Ai) satisfies the conditions
i=1

of Theorem 1. Also T(A;) = T(A) - [x] where s, is the connecting state

and [x] is an equivalence class of T(A,)-

Theorem 3. Let U be a set of I-0 sequences. Assume there exists

a subset U, of U and that the given right invariant relation E separates U0

into a finite number of equivalence classes. Assume also that the differ-

ences U; = U, - [x]i, where [x],, . . ., [x]n_1 are distinct equivalence

classes contained in U, are divided into a finite number of equivalence
n-1

classes by the given equivalence reldtion. Then if U = u Ui and each
i=0

Ui is consistent then a sequential machine can be constructed which will
accept U.

Proof: The sequential machine A is formed by constructing the
sequential machine which has some state say 89 which will accept the

set UO' This machine will then have for its set of acceptable I-0
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sequences for its other states 5 the sets T(Ai)' But each T(Ai) = U0 - [x]i.

Hence A accepts the set U.

Theorem 4. Let U be a set of 1-0 sequences. U is the set of accep-
table I-0 sequences for a sequential machine A, if and only if the following
three conditions are true.

(1) The relation R defined by xRy if for all z and w in T, if zxw is
in U, then zyw is in U, and conversely, is a congruence relation of finite
index.

(2) U is the union of all but 1 of the congruence classes of the rela-
tion R.

(3) Each of the congruence classes contained in U is consistant.

Proof: Let A be a sequential machine. Let R be a relation such that
xRy, if M(si, xI) = M(si, yI) for all 8, in S whenever both M(si’, xI) and
M(si, yl) are defined, or both are not defined for the same 8, Then R is
a congruence relation. The proof of this follows that of the similar theorem
for finite automata. . If xRy, then x and y must be in the same equivalence
class of the right invariant equivalence relation E, and accordingtoTheorem 1,
the congruence classes are consistent. If there are r internal states in A
then for a fixed 1-0 sequence x, M(si, xI) can be any one of r states or be
undefined, Thus, the relation R separates T into at most (r+1)r equiva -
lence classes and consequently R is of finite index.

Assume that U is the union of all but one of the congruence classes
of the given torngruence relation and that each equivalence class contained
in U is consistent. Let [x] denote a congruence class and let each congru-

ence class contained in U denote a state. Define P as follows: if [x] and
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[y] are two congruence classes, such that [x] contains an inftial segment
oVn-1 of some I-0 sequence oYn of [y], and if n-1¥n is %, then
P(x ], cri) =([vy], oi). This, then, completely defines am1 sequential machine A.
The proof that U = T(A) is analogous to that of Theorem 1.
To this point we have been studying as much of the structure of gen-
eral sequential machines as could be distinguished by condidering only
input-output sequences. However, most sequential machines which will be
useful in actual switching circuits design have the property that for any
pair of states 8, and s-i there is an 1-0 sequence x such that M(si, xI) = sj.
Such machines are said to be strongly connected. In the remainder of
this chapter we will make use of the characterization of the set of accep-
table I-0 sequences to prove some interesting properties of strongly

connected sequential ma chines and a certain subclass of such machines,

positive sequential machines.

Definition 13. Two states s and sj of a connected sequential
machine A are equivalent if there exist two I-0 sequences x and y siich
that M(so, xI) =8, and M(so, yI) = sj and both x and y are in the same
equivalence class of T under the given right invariant equivalence relation

E. This definition compares with that given by Hohn and Aufenkamp [ 3].

Definition 14. A connected sequential machine is in reduced form

if it does not possess any pair of equivalent states.
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Theorem 5. A connected sequential machine with n states is in

reduced form if and only if T(Ao), when s, is the connecting state, is the

0
union of n equivalence classes of the given right invariant equivalence
relation E over T.

Proof: Assume A is a reduced connected sequential machine with n
states. Since A is connected, for any i there exists an I-0 sequence x such
that M(so, xI) =8,. Since A is reduced, if x and y are two I-0 sequences
such that M(so, xI) # M(so, yI), then x and y are in different equivalence
classes. It has been shown that each state corresponds to an equivalence
class and that there are n equivalence classes.

Assume T(A,) is the union of n equivalence classes. Since there are

I

o)

only n states M(s, xI) # M(s,, vy if [x] is not equivalent to [y]. Thus

the sequential machine A is in reduced form.

Definition 15. A sequential machine A with n states is strongly con-
nected if for each i and j (i, j& n) there exist some input-output sequence x
such that M(si, xI) = Sj'

Theorem 6. Let A be an n state sequential machine. If for
i=1,2, ..., n, T(Ai) is the union of n equivalence classes of the given
right invariant equivalence relation E, then A is strongly connected.

Proof: Each equivalence class of T(Ai) consists of the I-0 sequences
that terminate in distinct states. That is, distinct I-0 sequences in different
classes of T(Ai) end in distinct states. Thus, if there are n states and

T(Ai) is the union of n classes then there is an I-0 sequence x such that
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M(si, x) = sj forj=1, 2, . . ., n. Since this is true for alli, A is
strongly connected.

This condition is not necessary, for two I-0 sequences may termi-
nate in different states and still be in the same class, that is if these
states are equivalent. For a reduced machine, however, the conditions

of the previous theorem are also necessary.

Theorem 7. The reduced form of a strongly connected sequential
machine isa: strongly connected sequential machine.
Proof: Let A be a strongly connected sequential machine and let
8, and sJ. be any two states of the reduced form of the sequential machine A.
If 8 and sj are not states which were merged in the formation of a reduced
sequential machine then there still exists x such that M(si, xI) = sj. Let
either s, or sj be a state of the reduced machine produced by the merging
of two states of A. Since there exists an I-0 sequence x such that the
function M of one of the states forming s, and x! is in one of the states form-
. I
ing sj, then M(si, x) = sj.
Definition 15. A sequential machine A is positive if there exists
some r such that for all i and j (i, j< n) there exists an I-0 sequence
x of length r such that M(si, xI) = sj.

Theor em 8. The reduced form of a positive sequential machine is

a positive sequential machine.
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Proof: The proof of this theorem is similar to that of the previous

theorem.

We have completed one of the major objectives of this study, that of
charecterizing the sets of acceptable 1-0 sequences for a sequential machine
and have also shown the usefulness of this chanacterization in proving some

theorems concerning the structure of sequential machines.



Chapter III

INDECOMPOSABLE MATRICES AND THE STRUCTURE

OF AUTOMATA

The definition of a strongly connected sequential machine was intro-
duced by Moore [ 23, p. 140] and was used by him mostly for the determi-
nations of the minimal length experimeamt necessary to distinguish one
machine from another. Weeg and Kateley [ 18] used this idea of strongly
connected machines to prove equivalente of a certain class of sequential
machines. Seshu, Miller and Metze [ 21] studied strongly connected
machines as such. They made use of connection matrices, which are simi-
lar to the connections matrices to be used in this chapter.

The concept of a positive machine was introduced by Weeg [ 27]. Its
connection matrix corresponds very closely to the idea of a primitive matrix
studied by Frohenius [ 7], Herstein [ 15], Holladay and Varga [ 16] and others.

Various types of matrix representations of sequential machines have
been employed in the study of sequential machines. Hohn and Aufenkamp
[3] use a connection matrix which has the formal sum of all I1-0 pairs of
the $ort (a, a) in the i j position if P(si, a) = (sj, a). They make use of
this representation to reduce a sequential machine to minimal form.

Seshu, Miller, and Metze [ 21] employ another kind of connection
matrix called a transition matrix. Coreesponding to each input symbol o,

a transition matrix Ti is defined. If M(Si’ cri) = sj then there is a one in

the i, j th position of T'. If there is no such transition then the i, jth

-40-
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position is 0. If the alphabet T contains exactly the symbols Tpr Ops o v os O
n .

then the matrix C as used in[3] is C = Z o, T', where addition signifies
i=1

Boolean inclusive or. Gill [ 8] assigns a prime number to each transition
and inserts this number in the i, j th position if the transition carries state
85 to state sj.

Weeg [ 27] used the following definition for a connection matrix which
is similar to the transition matrices of Seshu, Metze, and Miller [21]. If
for some crp in Z, M(si, trp) = sj then there is a one in the ikj th position of
the connection matrix C. Otherwise the i, j th position is 0. This is the
definition that will be employed in this chapter. The connection matrix

for the example in figure 1 of Chapter II is:

Figure 1

By C” is meant the rth power of the connection matrix C, where
multiplication is the normal matrix multiplication with Boolean arithmetic.
The sum of two connection matrices, written A (U B, is the elementwise

addition with Boolean arithmetic. It is to be noted that the definition of a
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connection matrix is independent of input symbols and output symbols, thus,
the connection matrix and all the theorems of this chapter apply to bothfinite
automata and both Mealy's and Moore's model sequential machine. They
also apply to precedence matrices for directed graphs, as discussed by
Harary [ 14] and others.

In common with current literature, the term path of length n from
8 to sj will be used to denote that there exists some input sequence x of
length n such that M(si, x) = sj. It is to be notéd that a 1 in the i, j th

position of C* means that there is a path of length r from s, to Sj'

Definition 1. A sequential machine is strongly connected if there is

a path from each state to each other state of the sequential machine.

Definition 2. A connection matrix is strongly connected if the sequen-

tial machine which it represents is strongly connected.

In the remainder of this chapter the terms connection matrix and the
sequential machine which it represents will be used synonymously, and the
rows and columns will be used synonymously with the states they represent.

A necessary condition that a connection matrix be strongly connected
is that it have a non-diagonal 1 in each row and in each column. For
suppose some row does not have an off diagonal 1. Then there is no path
from this state to any other state. If there is a column without any off
diagonal ones, then there is no path which terminates in this state, and

thus there is no path to this state from any other state. This condition is
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not, however, sufficient. As can be seen from the connection matrix of

figure 2, it isnotpossibleto havea pathfrom state 840r sgto s, §,, Or ;.

0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
Figure 2

The connection matrix in figure 1 is strongly connected, as there

is a path of length 5 passing through each state.

Definition 3. An n x n connection matrix C is indecomposable if

there is no permutation matrix P for which

where A11 and A22 are square submatrices. (A12 may not be square).

Theorem 1. An n x n connection matrix is strongly connected if
and only if it is indecomposable.
Proof: The transformation P C PT corresponds to a permuation of

the numbers assigned to the states. But the property of strongly connectedness
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is independent of the numbering of the states. Now if C is decom-

posable as
PCPT =

then there can be no path from any state corresponding to the rows of A22
into any state corresponding to the rows of All’ Hence C would not be
strongly connected.

On the other hand, suppose that the n x n matrix C is not strongly
connected. Then there is some set 8' of p <n states for which M(si, O'j)

is in S' for all s, in S' and all O'j in Z. If the permutafions are performed

i
which make these states correppadd4o the last columns of the connection
matrix, the first n-p entries of the last p rows of the connection matrix

will be zero. Hence if P is that permutation matrix then
PCP" =

where A, is of dimension (n-p) x (n-p), A, is (n-p) x p, A,,is pxp,
and 0 is p x (n-p). But then C is decomposable, so that we have proved

that if C is indecomposable, then C is strongly connected.

Definition 4. An n x n connection matrix C is positive if there exists
some positive integer r suchthat C' =U, where U isthe nxn matrix which

has 1 in each position.
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The connection matrix for figure 1 is positive; in fact C5 = U.
Holladay and Varga [ 16, p. 631] give the following definition of a

primitive matrix.

Definition 5. A matrix A on non-negative real numbers is primitive
if there exists some positive integer r such that AT has all positive entries.

It is to be noted that a positive real number in the powers of a primi-
tive matrix corresponds toaonein the powers of a connection matrix.
That is, to each non-negative matrix A = (aij) there corresponds a connec-
tion matrix C = (cij) such that if a5 # 0 then ¢ = 1, while if a5 = 0, c., =0.
Thus if one is only interested in the structure of a matrix, and not in the
magnitude of the value of its elements, then one need deal only with the
corresponding connection matrix. This approach to many of the problems
concerned with primitive matrices appears to lead to simpler proofs.

As pointed out by Weeg [ 27] every positive connection matrix is
strongly connected, but the converse statement is not true. Thus the
class of positive connection matrices is a subglass of the class of strongly
connected connection matrices. It is this subclass of positive connection
matrices and the differences which distinguish this subclass from the
class of strongly connected connection matrices that will be studied in this
chapter.

As previously noted [ 27] all powers of a positive connection matrix
are positive and thus strongly connected, whereas all the powers of a
strongly connected connection matrix are not necessarily strongly connected.
This can be seen from the example in figure 3. C is strongly connected

but C3 is not.
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0 1 1 0 0 0
c= 0 c? - c’ =
0 1 0 0
Figure 3

In fact the class of positive connection matrices is exactly that class of

strongly connected connection matrices all of whose powers are strongly

connected, as is shown by the next theorem.

Theorem 2. An n x n connection matrix C is positive if and only if
c’is strongly connected for all integers r=1.

Proof: As previously pointed out if C is positive, c’is strongly
connected for all integers r =1.

Suppose that c’ is strongly connected for all integers r=1. In par-

ticular, then, C is strongly connected, so that foreachi=1, 2, . . ., n

(r)

there must exist an integer mi21 for which cii(mi) =1. (By cij is

meant the ij entry of c’). Further, if cii(mi) = 1, so also does cii(qmi) =1

(mm, . .. Mm)) _Jfori=1, 2 ... n

for any integer q=1. Hence, i
m]...m . .

so that C n has a 1 for each diagonal entry. But Herstein

[15, p. 20] has proved that if C is indecomposable and each diagonal entry

is positive, then C is primitive. Since all powers of C are strongly

- m

connected ¢l n is strongly connected, so that C is positive, as

was to be proved.
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If a connection matrix C is not positive then there is an integer r such
that C* is not strongly connected. It will be shown that if a strongly connec-
ted n x n matrix C has some power c’ which is not strongly connected, then
in fact one of the first n powers is not strongly connected. This will be

shown without recourse to Herstein's Lemma [ 15, p. 20].

Theorem 3. Let C be an n x n connection matrix. C’ is strongly

connected for 1 = r = n, if and only if C is positive.

Proof: If C is strongly connected, then for any i there is a path k of
length p = n which carries state 5, back to state 8- For any pair i, j
there is a path h of length pq, q =n from state s, to state sj. This is true
since CP is strongly connected.

However, for any i and j there is a 1 in the i, j th position of

12 .
»C(n") . This follows from the fact that the path, which is comprised of
ne _
(n)* - pq copies of the path k, followed by one copy of the path h, is of
P2
length 1n(;)pq) P+pq= (n!)2 and carries state 8 into state Bj' Since
P

- . . (Y
this is true for all pairs i, j, C

has a 1 in each position and the'
matrix C is positive. The proof of the converse is trivial.

As can be seen from the probf the conditions of the previous theorem
are too strong. All that is needed is that if P, is the minimum length of

any path which carries state s; back to state Sj then Cpi is strongly

connected. This gives the following:

Corollary 1. Let C be an n x n connection matrix and let P, =Sn be

the least integer such that Cii(pi) = 1. C is a positive connection matrix
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P
if and only if C lis strongly connected fori =1, 2, . . ., n.
It is now a simple matter to prove Herstein's Lemma [ 15, p. 25],

which was used in the proof of Theorem 2.

Corollary 2. (Herstein's Lemma [ 15, p. 20]). If Cisan nxn
strongly connected connection matrix and S 1 for 1< i<n, then C

is a positive connection matrix.

Corollary 3. Let C be a strongly connected connection matrix. If
P, 1<i<n, is an integer such that there is a path of length P, which

b P

carries state s back to state sj and if C ! - n

is strongly connected,
then C is a positive connection matrix.
Proof: Since P - - - Py is an integer multiple of P; for each 1< i<n,

Py - !

C N has a 1l in each diagonal position and according to Corollary 1

C is positive.

Corollary 4. If C is a symmetric connection matrix, such that C and
C2 are strongly connected, then C is positive.
Proof: Since C is a symmetric matrix and strongly connected,
C2 has a 1 in each diagonal position. Thus according to Corollary 1 C
is positive.
Weeg [ 27] has shown, that if C is strongly connected, then
1V q Ci = U. This can be used to show another interesting property
i=

of strongly connected matrices.

Theorem 4. If C is strongly connected then CL]C2 is positive.
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Proof: To show that CUC2 is positive it is sufficient to produce
the power of C L)CZ which is U. But
n
(cUc? cra Uy
calJcUc*U . .. UJch

c"u.

1]

1]

Since C is strvongly connected there is a path of length n emanating
from every state. Also there is a path of length n terminating at each
state. Thus, there is a 1 in each row and column of C". This gives that
c"U =Uand C U CZ is a positive connection matrix.

As one notices during the review of this chapter, the major differ-
ence between strongly connected connection matrices Which are not posi-
tive, and those that are, is in the strongly connectedness of the powers
of a positive connection matrix. The similarity of positive connection
matrices and primitive matrices is also of interest. All of the theorems
of this chapter, since they deal only in the structure of the matrix, apply
to primitive matrices. It seems to be the case that certain results can be
obtained more easily by resorting to the machines corresponding to a
matrix than by analyzing the matrix itself. Thus, Herstein's Lemma is

easily proved in this fashion though its original proof was not so simple.
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