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ABSTRACT

THEORY OF AN ELECTRICfCURRENT-FLOW INDUCED

POLARIZATION EFFECT ON THE OPTICAL

ABSORPTION OF A SEMICONDUCTOR

By Carl A. Baumgardner

A calculation is made of the direct optical absorp-

tion in a current-carrying semiconductor. It is assumed

that the only effect of the d.c. electric field which pro-

duces the current, is to shift the distribution of carriers

in 5 space. It is found that the absorption depends on the

relative orientations of the electric field and the pol—

arization vector of the light. This polarization effect

is found to be proportional to the square of the carrier

drift. A physical picture of the effect is presented.

Curves of the effect versus photon energy are calculated

for both fundamental and inter-valence—band absorption in

indium antimonide, for both the intrinsic and extrinsic

semiconductor, and for various field strengths and temp-

eratures. The results are analyzed and found to be con-

sistent with the physical picture of the effect. Sug-

gestions are made for using the effect to investigate

the distribution functions and wave functions of a semi-

conductor'and a comparison is made With a similar effect

measured in p-type germanium.
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I. INTRODUCTION

If a large external electric field is applied to a semi-

conductor in which there are free carriers, the most im-

mediate result is a change in the energy distribution of

those carriers. Many physical properties of semiconductors

depend on the energy distribution of the carriers and it

is to be expected that these properties will change with

the electric field. Since the 1930's many such changes

have been observed and studied; for example changes in the

mobility and the Hall effect. New effects, such as nega-

tive resistance and anisotropies in the conductivity, have

also been found to be associated with carrier streaming.

It is evident that an understanding of the energy distri-

bution of the carriers is fundamental to an understanding

of these changes of physical properties which have come to

be known as "hot-electron effects". The fact that our

present-day knowledge of the distribution function as a

function of the electric field is to a large extent only

qualitative, is reflected in the large number of hot—elec—

tron effects for which there is not yet a good quantita-

tive explanation.1 The purpose of this paper is to extend

the theoretical understanding of some recent experiments

aimed at obtaining quantitative information about the

distribution function under current flow conditions, and

to propose some new experiments with the same objective.

Much of the earliest work on the effects of large



electric fields on solids was directed toward understanding

2,3,4
the energy distribution function. Only recently, how-

ever have there been any successes in describing the dis-

5’6 The most notable of

7

tribution function quantitatively.

these has been the work of Pinson and Bray on the experi-

mental determination of the distribution function in p—type

germanium by means of "free—electron" absorption experi-

ments. The facts that a unique correlation between the

absorption frequency and the electronic energy of the ab—

sorbing state is possible, and that the amount of absorp—

tion at this frequency is a function of the number of car-

riers available to absorb the light, allowed the number

of carriers as a function of the energy to be roughly

determined.

It was noted by Pinson and Bray at that time,8 as

well as by others working independently,9 that the absorp-

tion was dependent on the direction of polarization of

the light relative to the electric field, and that this

effect yields some additional details concerning the

angular dependence of the hot—carrier distribution func-

tion. The complexity of the wave functions for p-type

germanium prevented a complete quantitative analysis

and thus impeded the theoretical explanation of the ef-

fect and the description of the distribution function.

In this paper we predict a similar polarization effect

for indium antimonide, and using the relatively simple



wave functions given by Kane10 for this semiconductor, we

analyze the effect in detail. Consideration of the results

yields a clear physical picture of the causes of the effect

and shows that measurements of the effect not only can be

a tool for understanding the distribution function, but

also can yield information about the wave functions of the

semiconductor.

In Chapter II of this paper the optical absorption co—

efficient is developed in a form particularly suited to

our problem. In Chapter III the polarization effect is

calculated in the approximation that the electronic wave

vector, k, is small. A physical explanation of the effect

is given in Chapter IV. The restriction to small wave—

vectors is removed in Chapter V and theoretical curves

of the polarization effect versus photon energy for

various distribution functi0n8,temperatures and electric

field strengths are computed; a discussion of the results

is presented in Chapter VI.

 



II. THE ABSORPTION COEFFICIENT

The amount of light of a certain frequency,w,

absorbed by a crystal upon which it is incident, is

described by the absorption coefficient,11 defined

by

a(w) = power absorbed per unit volume . (2.1)

incident flux

The power absorbed per unit volume is

(2.2)
“wrind

where h is Planck's constant divided by 2n. rind is

the net rate of transitions induced in the crystal by

the light, per unit volume, per unit time, and is a

function of the frequency. The incident flux is the

magnitude of the time averaged Poynting vector,

S = 0 EL X'H . (2.3)

AR

EL and H are the electric and magnetic field strengths

of the incident light.

In Chapters III, IV, and V we shall be interested

in calculating the absorption due to direct electron

transitions between energy bands in a semiconductor

(see figUre 1). These can either be transitions bet-

ween two valence bands (dotted lines), or between a

valence band and the conduction band (solid lines).

The former is sometimes called free-electron absorp—

tion, because it lies in the same frequency range

A
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as true free—electron absorption, to distinguish it from the

latter which is called fundamental absorption. in this pa—

per we call them inter—valence band absorption and funda-

mental absorption, respectively.

The electric field of the light causing the transi—

tions ( not to be confused with the d.c. electric field, to

be introduced later to modulate the absorption ), can be

described by a vector potential,

A<;,t> = A. eXp[i(§°:-wt)] + A: eXpE-i(§'§-wt], <2.u)

where A0 =|Ao|exp(i6)ao is complex, a. is a unit vector in

the direction of A0, s is the wave vector and w the frequen—

cy of the electromagnetic wave. Our first step in calculat-

ing the rate of induced transitions will be to find the

interaction energy between this field and the electrons in

the bands.

The interaction energy, H', is found from the classi—

cal Hamiltonian, H, for a particle of charge e and mass m

in an electromagnetic fieldl2:

H=%—m(p_—%A)2+e<l>. (2.5)

p is the momentum, c the speed of light in a vacuum and

T is the scalar potential of the electric field.

Multiplying out the squared term in Eq.(2.5), and

using the relation

f(§)px — pr<3> = 1% r<;), (2.6)3.
3x

which is true for any function that can be expressed in

a power series in x, y, and z, we have

 



H = E: ’S;A°E + ieh V-A + e , A + e9. (2.7)

‘ m 2mc2m c

_ x 3 B 3
Here 2 — 1 5x + j 5 + R a

where i, 5, R, are unit vectors in the x,y,and z direc—

tions. We choose the transverse (Coulomb) gauge, so that

V° A = O

T = O

We also drop the term in A2 as much smaller than the

remaining terms. Adding to Eq. (2.7) the potential

V (3) of the electron in the periodic lattice and sub-

stituting p = -i My, we arrive at the Hamiltonian for

an electron in a periodic lattice interacting with an

electric field. To first order

H ; Ho+ H' (2.9)

with

H =1"-2 v2+ V(r) (2 10)
9 2m - ’ °

and

HI: -2 A02
(2 11)

mct-‘, ' '

H0 is the unperturbed Hamiltonian leading to the un-

perturbed band structure of the semiconductor, and H

is the interaction energy we have been seeking.

Using time dependent perturbation theory we can

13 the probability that an electron in thecalculate

valence-band state CV at time t=O will be induced by the

perturbation H' to change to the state CC in a higher

band (perhaps but not necessarily the conduction band)

at the later time t. This transition probability is



 

given by

T0 (t w) = |<¢ |H'|¢ >|2 x S(E) (2 12)
CV ’ c T v '

where

A Sin2[(EC(k) — Ev(k) - Mw)t/2Ml

S(E) = 2 ’ (2.l2b)

[Ec(k) - Ev(k) - Mm]

<> indicates the quantum mechanical expectation, and

' _ e . 2
HT - ‘53 exp(is°r)AO°p. ( .13)

Ec(kc) and EV(kV) are the electron energies in states ¢c

and ¢v respectively, and are functions of k the wave vector

of the electron.

Tgv is not the total transition probability. We

must multiply it by an occupation factor (distribution func-

tion), f(EV), which is the probability that the state ¢v is

occupied, and also by the occupation factor [1 - f(Ec)]

which is the probability that the state Cc is not occupied.

Thus the total probability of a transition from state CV to

state Cc is

TCV = |<¢C|HT|¢V>|ZS(E){f(EV)[l - f(EC)]} (2.1M)

The probability that an electron in state CO at time

i

t = 0 will be induced by H to change to the state CV at

time t, can also be found by time-dependent perturbation

theory. It is



T30 = |<¢.V1H.'f'|¢c>|2 x S(E), (2.15)

where

$'= %% exp (—i§°r)A:°g. (2.16)

It can be shownlu

I<¢CIH§|¢V>|2 = |<¢V|Hyl¢c>|2 (2.17)

therefore

T30 = T‘gv (2.18)

The occupation factor for TV is f(EC)[l — f(EV)]. There—
c

fore the net transition probability (the probability for

transitions upward minus the probability for transitions

downward) is

THV = ch - Tvc = I<q>clHTl¢v>l2 8(E) [f(Ev) — f030)]

(2.19)

The rate of transitions is found by summing the

transition probabilities for all possible combinations of

¢

summation is performed by multiplying by the density of

c and ¢V and dividing by t. In the most general case the

. l . .
states per unit volume, (€573, and Integrating over the

two bands 0 and v. However conservation of momentum re-

quires that the momentum of the electron in the initial

state plus the momentum of the photon must equal the momentum

of the electron in the final state; i.e.

 



lO

KEV + Mg = Mk0. (2.20)

But s is so much smaller than kv or kc that essentially

k = 5
—v c'

This establishes a one—to-one correspondence be—

tween the two states ¢v and OC which allows all possible

combinations of ¢v and ¢c to be included simply by integrat-

ing once over all k space. Therefore

 

 

 

_ l_ ' 2

rind _ E Il<¢c|HT|¢v>l 8(E) x

(2.22)

k2

[f(EV) — f(EC)] Sine d6d¢dk.

(2M3

To find the magnitude of S we use

- g: 9A=-2_UJ. c AEL ‘c 8 CIAOI Sin (s r - wt + 6)ao,

H = I x A = —2§ x aOIAOI sin (s-E — wt +5), (2.23)

- 2 _ 1

Sin (s-r - wt + 6) — 2’

and

kc . .
—$ = n = index of refraction. (2.2A)

Then using Eq. (2.3) we have,

ISI = flu :2 <2 25>
2N0 o ' '

From Eqs. (2.25), (2.22) and (2.1) we arrive at

the absorption coefficient:



11

ezh
_ A . 2

Anznmzcwt f|<¢clao E|¢V>| S(E)

d(w) =

(2.26)

[f(EV) — f(EC)]k2 sine dedb.

We have used the fact that s is essentially zero to drop

the exp (is-r) in the matrix element.

The integral over k in Eq. (2.26) can be done im-

mediately even though we do not have explicit expressions

for the k- dependence of the energy or distribution func—

tion. This is possible because in the limit of large time,

t, we have for S(E) (Eq.(2.l2b)):

A Sin[{E (k)—E (k)—hw}t/2h] 2nt

Lim C V = ——— 6[Ec(k)—Ev(k)-hw]

Mt+°° [Ec(k)—EV(E)-bwl2

 

(2.27)

Taking this limit makes sense physically if the light has

been turned on for a time long compared to the inverse of

its frequency, which is generally true experimentally.

 

Using

_ l
6[f(x)] - Qfi 6(x - x0) (2.28)

dx

Eq. (2.26) then becomes

0(w) = _ezk2 lsbclaoiglbv>|2 sine [f(EV) — f(EC)]ded¢

2wmzcnw C1(EC — Ev) ,

dk

(2.29)

 



12

where k is now determined by

Ec(k) - Ev(k) — Mm = O (2.30)

If there are more than two bands involved in the

transitions we must sum Eq. (2.29) over all possible com—

binations of bands. The total absorption coefficient is

  

then

_ ezkz |<¢c|ao ' El¢v>|2[f(EV)—f(Ec)l sin ededq;

C(w) - Z Z
d (E _ E )

c v 2nm2cnw c v

dk

(2.31)

To proceed any further in a calculation of the ab-

sorption coefficient we need explicit expressions for the

matrix element, the energies and the distribution functions.

 



III. THE POLARIZATION EFFECT IN THE LIMIT

OF SMALL CARRIER WAVE-VECTOR

In this chapter we calculate the absorption coef-

ficient for intrinsic indium antimonide with a d.c. electric

field, E (which shall always appear with a vector sign to

distinguish it from the energy), applied perpendicular to

the direction of propagation of the light (See Figure 2).

We take the electric field to be in the z-direction and

consider two cases. In one case the vector potential, A,

is directed parallel to E, and in the other A is directed

perpendicular to E. The difference in the absorption for

these two cases is the polarization effect. We consider

in this chapter only the absorption due to transitions be-

tween a valence band and the conduction band; i.e. the

fundamental absorption, and this is calculated in the ap-

proximation of small k (electron wave-vector magnitude).

We assume that the d.c. electric field does not

change the band structure of the crystal. This assumption

is thought to be valid because many collisions take place

during the characteristic time of a polarization effect ex—

periment, which washes out changes that would otherwise

15
require consideration. We have chosen indium antimonide

as the model semiconductor for our calculation because of

its high mobility, which permits a large shift in its

13
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Fig. 2. Shift of electrons in g-space under the

influence of an electric field.
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distribution function with relatively small electric fields,

and because accurate, relatively simple analytic expressions

for its wave functions are available.

1. The Band Structure
 

The wave functions and energies for indium antimonide

have been calculated by Kane.lO He added to the classical

Hamiltonian Eq. (2.9), several spin dependent terms and

applied the resulting Schroedinger equation to the Bloch

function, exp (ik-r)uK(r), to arrive at the Schroedinger

equation for the cell-periodic function uK(r), which we

write as

 

2 2

E35 + V<£> + Mk-E + Mk
5— 2m + SlJuK<E> = EKu.K(;>. (3.1)

The first four terms result from the classical Hamiltonian

and S1 is a spin-dependent term added by Kane. We have

dropped a second spin-dependent term because Kane found it

very small.

The solutions of Eq. (3.1) are found in terms of

the solutions of

[P— + VJU. = EiU. (3.2)

These solutions are known from group theory to be St and 8+

for the conduction band, and Xt, X+, Yt, Y+, 2+, and 2+

for the valence bands. S signifies a function with the

symmetry properties of an atomic s orbital under the operations



16

of the tetrahedral group, and X, Y, and Z signify wave func-

tions with symmetry properties of the x, y, 2 atomic p-

functions. The 5 functions have energy ES and the p func-

tions all have energy Ep

For k in the z direction, Kane solved the Hamiltonian

matrix corresponding to Eq. (3.1) for its eigenvalues which

he found to be given by the equations

E = o (3.3)

E'(E' - EG)(E' + A) - k232(E' + 2A/3) = 0. (3.A)

Here EG = Es’ A = -3Ep,

E' = EK — (h2/2m)k2, (3.5)

.P_= "' %<SlpZ|Z>, (3-6)

and m is the free electron mass.

EG is the energy gap and A is the energy separation

of the "split-off band"; i.e. a valence band which is lower

in energy than the other two bands which are degenerate at

k = 0. Both parameters can be evaluated experimentally.

If k2 is very small Eq. (3.A) is approximately equal

to

I t i

E (E — EG)(E + A) = 0, (3.7)

which has the solutions

! t t

E 2 O, E 2 E E 2 -A. (3.8)
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We can find an approximate solution of Eq. (3.A)

corresponding to each of these three values by writing it

in the form

(13'- EO);= r(E'), (3.9)

where E0 is one of the values Eq. (3.8).

I

Then substituting this same EO for the E s on the

right we have

 

  

 

_ MZKZ P2k2 2 l _ hzkz

Ec _ EG + 2m + 3 E_ + E + A _ EG + 2m
G G

(3.10)

— Mzkz szz __M2k2

E2 ' 2m ' 2‘3Eé ‘ 2m2 (3'11)

— h2k2 P2k2 MZKZ

E3 ‘ "A + ‘25— ' 3(EG + A) "A ‘ ‘25; (3°12)

The highest valence band is the solution of Eq. (3.3),

which is

2 2

E1 = M2§ . (3.13) 

This is inaccurate, as explained by Kane, so we use instead

 

__M2k2

El - 2m 3 (3.14)

l

where ml is given experimentally. EC is the conduction

band, E1 is the heavy mass band, E2 is the light mass band

and E is the split-off band.

3
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The wave functionstflmfizresult from the diangonali-

zation of the Hamiltonian corresponding to Eq. (3.1) are:

¢ia = eitis+]' + bi[(X — iY)+//2]' + ci[z+]'

. . (3.15)

¢iB = ai[i8+] + bi[-(X + iY)+//2] + Ci[Z+]

¢la = [(X + iY)+J'//2

(3.16)

$16 = [(X - iY)+l'//§

The index i takes on the values c, 2, 3 referring

to the conduction band, the second valence band and the

third valence band. The 1 refers to the first valence band.

Wave functions with first subscript the same but different

in the second subscript (d or B) are degenerate in energy

but differ in spin. The primes in Eqs. (3.15) and (3.16)

indicate that for directions of k other than the z—direction,

I i t I i l

X , Y , Z , S , t and + are obtained by the transformations:

     

      

F.1 '- 7F.)

t exp (-i¢/2) cos (6/2) exp (i¢/2) sin (6/2) t

l

L+ L-exp (—i¢/2) sin (6/2) exp (i¢/2) cos (6/2) L+,

(3.17)

{‘9‘} '3 17

X Cos 6 cos ¢ cos 6 sin ¢ -sin 6 X}

Y. = -sin 9 cos O O Y

_Z'J Lsin 6 cos 9 sin 6 sin 9 cos 6 _[Z_

(3.18)

S = S (3.19)



l9

6 is the angle k makes with the z-axis and O is the

angle k makes with the x—axis.

The ai, bi’ and c1 are real coefficients given by:

'

ai = kP(Ei + 2A/3)/N

/2 ' 20)

V l

Ci - (E1 - EG)(Ei + 2A/3)/N

l

where N = (ai + bi + c:?L)l/2 and the E1 are the solutions of

Eq. (3.A). For small k Eqs. (3.20) become:

aC = l, bC = C0 = o (3.21)

_ _ 1/2 _ 1/2

a2 — 0, b2 - (1/3) , c2 - (2/3)

a3 = 0, b3 = (2/3)l/2, c3 = -(1/3>1/2

2. The Matrix Elements
 

Including spin differences, there are six valence

bands and two conduction bands. Therefore in the summation

over the conduction and valence bands in Eq. (2.31) we will

have twelve terms. We must calculate the matrix element

for each of these twelve terms and for each of the two di—

rections of polarizations of the vector potential A. Thus

there are twenty-four matrix elements to be calculated. In

the small 5 limit many of the coefficients of the wave

functions, as given in Eq. (3.21), are zero. However we
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shall derive the matrix elements for the general case, where

the coefficients are non-zero, since we shall need them in

that form in a later chapter.

The following properties of the wave function will

be useful in Calculating the matrix elements:

a) In the absence of spin-dependent terms in the

perturbing Hamiltonian

'

<t |+ > <[exp(i¢/2) cos(6/2)t + exp(-i¢/2) sin(6/2)+]|

l[-exp(-i¢/2) sin(6/2)+ + exp(i¢/2) cos(6/2)+]>

= O (3.22)

and likewise

' l i l '

<+ |+> = o; <+ |+ > = 1, <+ |+ > = l. (3.23)

b) Electric dipole selection rules, group theory,

and Eq. (3.6) yield:

— -111:<S|pZ|Z> — <S|pX|X> _ M (3.2A)

_ =_imP
<leZIS> — <X|pX|S> -F_ (3.25)

<SlpilJ> J¢i = o; J = X,Y,Z; i = x,y,z (3.26)

<lei|K> = 0; i = x,y.z; J = X.Y.z; K = X.Y.z (3.27)

We now calculate, as an example, the matrix element

<¢Ca|aoop|¢28> for A, (1.e., a0) 1n the x-direction.



 

 

<¢ca|px|¢28> =

[Using Eqs.

(3.22) and

(3.23)]

[Using Eqs.

(3.18) and

(3.19)]

[Using Eqs.

(3.26) and

(3.27)]

[Using Eqs.

(3.2A) and

(3.25)]

<ac[—is+'] + bc[(X + iY)+//§J' + cc(z+l'|pX

|a2[is+]'-+b2[e(x+ii)+//2]' + o2[z+]'>

<aC[-iS]'|pX|b2[—U(+ iY)//2]'> +

+ <bc[(X+ iY)//2]'|px|a2[iSJ'>

<ac[—iS]|px|b2[—(cos ¢ cos 6X+cos 9 sin OY-

sin 6Z)-i(-sin¢ X+cos ¢Y)]> +

+ <bc[(cos 6 cos ¢X+cos 6 sin OY-sin 6Z) +

+ i(-sin ¢X+cos OY)]|pX|a2[iS]>,

 

 

a b2

i 0 (cos 9 cos ¢—i sin ¢)<S|p |x> +
a X

bca2
+ 1 (cos 6 cos o-i sin ¢)<X|p |S>,

@ X

mP/(h/2)(cos 6 cos O-i sin ¢)(bca2-acb2).

The twenty-four matrix elements calculated in this way are

listed in Table I. In this table i = 2,3, D = mP/M,

G = (acci + ccai), and Gi— = (acbi - bcai)°
1+
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TABLE I.—-The matrix elements between the conduction and

valence bands in In Sb.

 

A in z-direction

 

 

     
 

 

¢ia ¢is ¢1o d’18

¢ca Dcos6Gi+ (2—)sin6Gi- O -(2—)acsin6

/2 /2

D D .

¢CB —(;E)sin6Gi— Dcos6Gi+ -(;E)a081n6 O

A in x-direction

¢io ¢iB ¢1o. $18

p Dsinecos¢G + -2—(cos6cos¢- O Dac
ca i ;:—(cos6cos¢+

2

Sin‘bmi' i sin¢)

D Dac

A08 ——(cos6cos¢+ Dsin cos¢Gi+ ———(cos6cos¢- O

/2 /2

i sin¢)Gi- i sino)      
3. The Distribution Functions for Electrons

and Holes

 

 

We assume that the effect of the electric field is to

shift the distribution of carriers in k-space by the amount

k This is shown in Figure 2 for a Fermi-sphere.d’

For non-zero temperatures the sphere of course will

not be sharply defined but will be "blurred" near the edge.

At zero electric field, the carriers will have the distribu-

tion given by the dotted circle. When the electric field is

applied in the positive z-direction the distribution shifts

in the negative z—direction by the amount kd. Thus carriers
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at A with a certain energy, E(A) will have an occupation

probability corresponding to A + g of the unshifted distri-

bution. d is a positive number which is equal to ‘kd: the

size of the shift in k due to the electric field. kd has

the same sign for the conduction and valence bands although

in our problem the sign is not important since the polariza-

tion effect is independent of this sign.

For the small k calCulation we take the distribution

functions to be:

exp {[EF — EC(A + g)l/KT} (3.29)

for the conduction band, and

l - eXp {[Ev(5 + g) - EFJ/KT} (3.30)

for the valence bands. EF is the Fermi energy, T is the

temperature, and K is Boltzmann's constant. These are

Fermi-Dirac distribution functions in the limit

IE — EF|>>KT. (3.31)

Eq. (3.31) is valid for intrinsic In Sb at all but very

high temperatures, except near the conduction-band edge

where it is good only up to about 300°K. Eqs. (3.29) and

(3.30) are not necessarily the actual distribution functions

for In Sb. More likely the experimental crystal will be an

extrinsic semiconductor with some form of Maxwell-Boltzmann

distribution function with the normalization depending on

the concentration of impurities. However, these distribu—

tion functions do have the essential Boltzmann factor, and
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furthermore the simplicity of the intrinsic situation will

make the physical interpretation of the theory clearer.

A. Calculation of the Polarization Effect
 

We now have explicit expressions for all the factors

in Eq. (2.31). We calculate the absorption due to transi-

tions between valence band one and the conduction band for

the case when A is polarized in the x-direction, perpendi-

cular to the d.c. electric field, as an example.

Substituting Eqs. (3.10) and (3.1A) in Eqs. (3.29)

and (3.30) we have:

M2

_ 2 2
f(EC) — exp{[EF-EG-ch(kl+dc+2kldc cos 6)]/KT} (3.32)

2

f(EV) = 1-exp{[%%:(ki+di+2kldl cos 6)-EF]/KT} (3.33)

We have used

(5 + g)-(g + g) = k2 + d2 + 2kd cos a, (3.3A)

and we have written k with a subscript because k is different

for transitions between different bands according to Eq. (2.30).

Substituting Eqs. (3.32), (3.33), (3.10) and (3.14)

in (2.31) and summing over the four matrix elements involved

(two of which are zero), we have:

di(w) = ggaif(cosz6cos2¢+sin2¢)sin6[1-Allexp(Vllcose)

-A exp(-VCc1 cos 6)]d6d¢,
l
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where we have written

222

1 4e aCP |k1|

 

  

a =
(3.36)

O 3canl+ l— + £—
m m
c l

A- - ex {FEE-(k2 + d2) E J/KT} (3 37)
11 ' p 2ml 1 1 ‘ F ‘

A - {[E’ E M2(k2 + d2)/KT} (3 38)
cl ‘ eXp F 5 G ' 2R; 1 c '

hzk d
__ 1 1

V11 - _5;HT_ (3.39)

hzkldc

VCl = _mc—KT_ . (3.140)

a: is the absorption in the limit T = O, E = O, for trans-

actions between valence band 1 and the conduction band.

The integral over 9 gives a factor of R. The inte-

gral over 6 can be simplified with the change of variable

cos 6 = x which implies —sin 6d6 = dx. Eq. (3.35) then

becomes:

V -x -V x
l_3ll 2 _11 Cl

Oi - 8&0 {l (x + 1)(l - Alle - Acle )dx,

(3.41)

which integrates to



 

   

   

a1 = %Gl{£ - A [(e ll_e ll) - (e ll+e‘ 11) + (e 11.65 11)]

L o 3 11 V11 V11 V11

(3.42)

V -V V —V V -V

-A [(e Cl-e 01) _ (e Cl+e C1) + (e Cl-e Cl)]}

cl V V 2 V 27
Cl cl cl

On expanding the exponentials for

I Vij |<< l (3-A3)

we find

A v2 A v2

oi = aO{l-Acl—All - 01 c1 —;%~ll }

Eq. (3.A3) is valid if

k.d.

M2—%—i << KT (3.44)

1

Since we have already assumed k is small this is good if

di is small: i.e. the drift velocity in band i must be much

less than the thermal velocity, which is true in InSb for

fields of lOOv/cm or less.

Similarily we find:

1 _ 1
all — do[l Acl All]

2 _ 2 _ _ _ _; 2 2

“L ‘ O‘oEl Ac2 A22 12(Ac2Vc2 + A22V22)J

(3.45)

2 _ 2 _ _ _ 1 2 2

0‘ll ' O‘o':l Ac2 A22 3(Ac2vc2 + A22V22)]

3 3 = 3 _ _ _ i 2 2

0‘II “1 0‘o[1 Ac3 A33 0(Ac3vc3 + A33V33)]
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O A A.. V . V i = 2, 3 are given by Eqs.where a. ..

1’ ci’ 11’ 01’ 11’

(3.36) through (3.AO) with obvious changes in the sub—

scripts. II and 1 indicate the relative orientations of

E and A.

The polarization effect is given by

i = i _ d1 . = .

up all IL , 1 1,2,3

Thus we have

cl: o1 [A v2 + A V2 J (3 A6)
' 0 cl cl 11 11 °

Q2F+dl [A V2 + A V2 l (3 A7)
p 1 0 c2 c2 22 22 ’

3= 4up 0 (3. 8)

The polarization effect (Eqs. (3.A6) through (3.A8)

is roughly proportional to E2 through the variables Vij'

The factors in the A's which are proportional to E (d: in

Eq. (3.37) for example) are not important, Since d is very

small, which makes exp (-d) nearly 1 and slowly varying.

The effect goes to zero with A as expected, however the

difference in signs of the first two equations and the zero

result for the last is noteworthy. This last result becomes

even more interesting when the integrals analogous to Eq.

(3.35) are written out for these transitions. One finds

the effect is identically zero no matter what distribution

function is used. This points to the wave functions as the
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cause of the peculiarites and as we shall see in the

next chapter, this inference is correct.



IV. THE PHYSICAL EXPLANATION OF THE POLARIZATION EFFECT

In Chapter III we suggested connections between cer-

tain features of the wave functions and certain peculiar-

ities of the polarization effect. To clarify these

connections we investigate the matrix elements for the

different polarizations and different directions of

electronic motion given by A, for an idealized set of

wave functions.

Consider transitions between a conduction band with

a purely S—like wave function and a valence band with a

Z— like wave function, when A is in the z-direction.

For A also polarized in the z-direction, the matrix

element is

<S|pzl z> = M . (4.1)

If we now take A in the x-direction, 8+8 and

2+X by transformations (3.18) and (3.19). Thus the matrix

element is

<§|pZ|X> = 0. (A.2)

Now take A to be polarized in the x-direction.

For A in the z-direction the matrix element is

<S leIZ> = O, (4.3)

and for A in the x-direction it is

<SIpXIX> = M. (A.A)

Next we calculate the absorption associated with

29
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the two directions of A. (Picture two electrons doing

the absorbing, one moving in the z-direction and one

moving in the x-direction with the same speed; ice.'the

same magnitude of A.) Because the energy is a spher-

ically symmetric function of A we have

dz: [|M|2+ O] D
IMIZD:

(14.5)

ax: [O+|N|’] D = 1MIZD, (4.6)

where dzand uxare the absorptions for the light polar-

ized in the z-iand x-directions respectively and D is

some constant which depends on the magnitude of A. We

see the sum total of dzand axis the same for these

directions. We call the z and x directions correspond-

ing directions because what one contributes to uxthe

other contributes to dz, and vice versa.

When we consider the absorption due to electrons

moving in other directions, we find, because of the

spheriCal symmetry of the transformation equations and

the energy, that for each direction Bz there is a

corresponding direction Bx thatigives the same contri-

bution to ax as Bz gives to dz and vice versa.

This is a one-to- one and single valued correspondence.

When we integrate over all angles as prescribed by

Eq. (2.31), we find that dz = dx just as in Eqs.

(A.5) and (A.6).
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If we now insert in the absorption expression an

angularly dependent distribution factor, —exp(Cose ),

like the one due to an electric field in the z-direction,

then, for A also innthe z—direction

a = <S| pZI Z> D [-exp(l)] — |M|2 De

a = <S Tp I Z> D [-exp(l)] O.
xv x

For A in the x-direction

a = <S IpZI X >D [-exp(0)] = O

a = <S Ipxl Z >D [ -exp(0)] =-IMI2 D

Adding up the total absorption for the two direc-

tions of A we have

d = [—lMl2 De+O] = —IM|2 De,

[ o — |M|2 D ] = — IMIZD,Q

II

and therefdre

az- aX = all - al = — IMIZD (e-l)

Thus there is a polarization effect because the

absorption contribution from each of the corresponding

directions x and z is multiplied by a different occupa-

tion factor. LikewiSee when we integrate over all angles

there will be a polarization effect for the same reason.

The field acts to lowero the absorption because of the

negative sign of the distribution factor.

We can now understand the reason for the sign

difference between Eqs. (3.A6) and (3.A7). The wave
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functions for small A given by Eqs. (3.15) and (3.16)

with coefficients (3.21) show that for A in the z-di—

rection valence band number one has no Z component. Thus

it contributes little or nothing to aZEall when the dis-

tribution factor is large. At the same time it contri—

butes most to aXE a i when the distribution factor is

llarge. Thus the action of the distribution factor is

larger for ai than all, and because the sign of this

action is negative, the resulting polarization effect

is positive.

Valence band two, however, has a much larger contri-

bution from the Z-like wave than the X-like wave. Thus

it will tend to contribute more to all and less to ai

when the distribution factor is large. Therefore the

action on allis larger than the action on ai and the

sign of the distribution factor makes Eq. (3.A7) neg-

ative.

The cause of the zero result for the third valence

band is also to be found in the coefficients (3.21.).

Because the relative probability of an electron, in this

band, being in the state X, Y, or Z is given by the

square of the respective coefficients of these functions,

we see from Eqs. (3.21) and (3.15) that the probability

of an electron's being in X + i Y is twice the proba-

bility of its being in Z. Dividing the probability of

being in X and Y equally between the two, we find the

probabilities of being in X,Y, or Z are all equal.
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This is true for all directions of A because of the

spherical symmetry of the transformations (3.18). Thus

for any given direction, all = a i; i.e. the correspond—

ing directions are the same, and the distribution func—

tion can make no difference.

The deScription of the polarization effect for small

A can be made in the simple terms used above because the

conduction band is completely S-like in this limit.

Away from A = O the conduction band rapidly becomes a

mixture of all four orbitals, and the valence bands

take on some S—like character and depart from the simple

combinations of X, Y, and Z orbitals that made the

above analysis so unambiguous. No matter how complicated

the admixtures become, however, an analysis similar to

that above can be carried out with the additional re-

quirement that transitions proceeding downwards from the

conduction band to a valence band (or from a higher valence

band to a lower valence band ), are negative additions

to the absorption.



V. THE POLARIZATION EFFECT FOR ARBITRARY WAVE VECTOR

The approximate determination of the polarization

effect given in Chapter III cannot be used to plot a

curve of absorption versus frequency for a comparison with

experiment because the wave functions for small A rapidly

lose accuracy as we move just a small interval in fre-

quency from the absorption edge (see figs. A,5,6).

Therefore in this chapter we calculate the polarization

effect using the wave functions for arbitrary A given

by Eqs. (3.15) and (3.16) with coefficients (3.20).

We calculate first for the fundamental absorption and

then for the inter—valence band absorption.

Summing Eq. (2.31) over the conduction band and

valence bands, and using the matrix elements in

Table I,we find

M
t
»

al|(k) =e2 p2 k2 x

Hon i=1 B—w. d(E -E.3

1 ——aE——r—l

 

 
(5.1)

R 2 . 2 2 .§
lo{2(acci+ccai)SIn6+[(acbi-bcai)-2(acci+ccai) ]S1 6} x

{f(Ei)-f(EC)}d6, and

3

91: _e_2_ '5 92 k2 X (5.2)
hcn 1=l h mi d(EC—Ei)|

dk
 

n 2 _ _ 2 . 3
lo{[(acci+ccai) (bcai acbi) ] Sin 6 +

2

 

+2(bcai-acbi)2 Sine} {f(Ei)-f(EC)} d6
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Fig. 3. Energy Bands Fig. A. Conduction Band
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Fig. 3. The energy bands for m1 = .5Am.

Figs.A,5,6. Wave function coefficients for the energy

bands of indium antimonide after Kane.lO

35



36

where

hwi = Ec(k>-Ei<k>. (5.3)

and it is understood that

f<Ej) = 1‘ [‘Ej<k+dj)1 ; j= c.i.2.3. (5.4)

The energy bands are labeled just as in Chapter III and

we have also used al=O bl=0’ cl=0.

we have written a as a function of k because it will

be easier to calculate in this form. It is impractical

to solve Eq. (3.A) analytically for arbitrary k, there-

fore we must solve it numerically. It is more efficient

to find the three roots of Eq. (3.A) for several values

 

of k, use the values to determine ld(EC- Ei)l

dk

(approximately) for a certain k, then substitute this

result and the proper hwi for that k,found from Eq. (5.3),

into the equation for a, than to choose a frequency w

and search for solutions of Eq. (3.A) that will satisfy

Eq. (5.3). Having determined the coefficient multiply-

ing the integral in the above manner, we than solve

(3.A) again for Ej(k+dj), j=c,l,2,3,compute the distri-

bution function and evaluate the integral numerically.

We should have used the term "corrected solutions

to Eq. (3.A)" everywhere we mentioned the Ei"s above

because the actual energies used are corrected for

perturbations from higher bands as Kane showedlo.

These energies are shown in fig. 3 while the coefficients

ai’bi’ci as a function of k2 are shown in figs. A,5,6.
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The computer program which performs all the operations

described above is listed in the Appendix.

The polarization effect for the absorption due to

the inter-valence band transitions is calculated in the

same manner as that for the fundamental absorption. The

matrix elements between the bands involved are calcul-

ated as they were for the fundamental absorption in

Section 3.2. It may be noted that for this case the

matrix elements, and thus the absorption and polarization

effect, are aD.zero in the small k approximation, be-

cause according to Eqs. (3.23) and (3.16), none of the

valence bands contain an S—like contribution in this

limit, thus by selection rule (3.27) there can be no

transitions. The solutions forcnlanchLfor arbitrary

k can in this case be put in the same form as Eqs.

(5.1) and (5.2) if we define

Mwl =El-E2; W112 = El-E3; 16413: E2-E3, (5.6)

and for the first two terms of the sum change the sub-

scripts according to the formula C->1, 1-2, 2.8 while

for the third term we use the prescription,c-£. The re-

sulting equations foral_and allare solved numerically

as before.

The parameters used in calculating the polarization

effect for InSb are shown in Table II.
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TABLE II

Parameters used in calculations for InSb.

—

= _ ‘5 ..._..Eg (.23 9.6 x 10 x T) ev mC Ol3mEg/.23

m1 = .5Am m2 = .Ol5m m3 = .12m

A = .9ev P2: .AA atomic units

_ a -1.5 2 = e -2.1
“n - 7x 10 x T cm /v.sec up 1.1 x 10 x T cmyv.sec

 

The band parameters are as given by Kane 16 except Eg,

17
m0 and m which are as given by Ehrenreich . The values

I

of m determined by various experiments are not consistent.

1

We have chosen the value tabulated in preference to others

because it is most defensible, and it also produces theo-

retical absorption versus photon energy curves closer to

the experimental resultS. The mobilities vary with temp-

erature and hole concentration and are as given in ref—

erence 18.

The results of the computations are given in terms

of a dimensionless function we shall call the polari-

zation effect coefficient, defined by

PE=OL.|__|_:.O:_£ ’ (5 7)

0L

ZEI‘O

where aZ is the absorption at the temperature at which
ero

all - ai is measured,for zero electric field.

Figure 7 shows the polarization effect coefficient

for the fundamental absorption for intrinsic InSb,as a



39

function of the photon energy, for T = 300°K and Aé100V/cm.

The exact Fermi - Dirac distribution function was used

in this case, not its Maxwellian limit as in Chapter III.

Fig.53 shows the intra—valence band absorption at

T=300°K and §?100 V/cm’ which turns out to be much the

same whether we use the intrinsic Fermi-Dirac distribu-

tion or go to the extrinSic case for a hole concentra-

tion of A x lOls/Cmg and a Maxwell Boltzmann distribu—

tion given by

Aflaphfexp(E/KT)

' NE) (5.8)
(2HKT) 3/2(m13/2+ m2 3/2)

where we have averaged over the highest valence band

masses and p is the concentration of holes.

Fig. 9 shows PE for inter—valence band absorption

in extrinsic InSb at 77A<using the distribution Eq.(5.8),

at various field strengths and hole concentrations.

We note that the effect is much larger at the lower temp-

erature. This is because the zero absorption does not

change much over this temperature range because of the

abundance of holes, butall-ai changes inversely with

temperature.
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VI. DISCUSSION OF RESULTS

The behavior of the polarization effect coefficient

curves we calculated in the last chapter, can be under-

stood in detail using the principles discussed in Chapters

III and IV. We next discuss each of the previously pre—

sented P -curves in turn, and point out how curves of this
E

type can be used as experimental checks on the distribution

function and wave functions involved.

1. Figure 7

The rapid rise and fall of the curve can be attributed

to the fact that the Fermi function is changing rapidly in

this region. The effect rises sharply near the absorption

edge because the carriers are plentiful here. The fact

that the effect rises from zero ( and does not come down

from infinity for example) is due to the fact that at

slightly higher energies the Boltzmann like approximation

is valid for the Fermi function and Eqs. (3.A6) and (3.A7)

say the effect goes as k2 in that region. The continuity

of the equations results in the curve going to zero with

k. However, before the true k2 dependence sets in the

number of carriers drOps sharply and the effect (which

is caused by the shift of these carriers with the elec-

tric field) drops with them.

The fact that the curve due to valence band one ex-

hibits a simple positive peak while that due to valence

A3
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band two goes negative, then positive, can be eXplained

by the band structure. The first band has no Z or S

component for any k. Thus the only transitions allowed

are those between the X—like (or Y-like) functions in

the valence band wave function and the S part of the

conduction band function. As shown in Chapter IV, an

X-like term produces a larger a1, and since the sign

of the distribution factor is negative ( see Chapter

IV), we get a positive PE.

Valence band two, however, has a dominant Z—like

component near k=0 which together with the dominant

S-like part of the conduction band leads to a negative

polarization effect. Away from k=0,valence band two

gains a rapidly increasing S-like part while its Z-like

component decreases. In the conduction band almost the

opposite happens. The S-like part decreases while the

Z-like part increases rapidly. Thus the direction of

the absorptions reverses with respect to the S and Z

waves and therefore the sign of P must reverse.

E

Generally speaking this curve does not offer a good

chance of checking the distribution functions and wave

functions because the absorptions due to valence bands

one and two overlap, therefore it would be hard to

distinguish the effects of one from the other. However

a slight amount of S-WaVe in the first valence band

would bring the X-andZ—like parts of the conduction band

into consideration which could significantly alter the
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total effect. Thus there are possibilites of using this

kind of curve as a check on the S-content of the first

valence band. The effect is small for this intrinsic

case, but since the total absorption is large the ab-

solute magnitude of all— ai is about .06/cm. We shall

discuss this magnitude later with reference to other

experiments. We have not discussed the third valence

band transitions because the effect is insignificant

in this case.

2. Figures 8 and 9 .

These figures involve transitions between the second

and third valence bands and the first valence band. Be-

cause the first valence band contains no S—like part we

can disregard the X—andZ-like parts of valence bands two

and three. The absorption should therefore be Charac-

teristic of transitions between a higher X-band and a

lbwer S-band except that the size of the latter increases

with k (see figures 5 and 6). Approximation (3.31) is

always good in the valence bands for intrinsic semicon-

ductors, and for the extrinsic case we are using Eq.

(5.8), therefore the Boltzmann form of the distribution

function is valid for both cases. Also, the mobility

in the valence bands is much smaller than that of the

conduction band, therefore d is much smaller and approx-

imation (3.A3) is valid for much larger values of k.

This is the same situation we discussed in Chapter III,
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therefore the results should be the same as for Eq. (3.A6)

except that since we are now considering transitions from

a higher X-like band to a AQHEE S—like band, the sign of

the effect should be reversed. The figures show the re-

quired k2 dependence. The curvature in the effect for

valence band two is due to the curvature in this band as

a function of k2 . The masses of valence bands one and

three are constant therefore hw~k2 and the curve is a

straight line. Eventually,as k gets bigger,approximation

(3.A3) should become invalid, the number of holes should

diminish and the effect should decrease. However at the

higher values of k in these figures, the absorption has

become so small that the effect would not be measurable.

Because the absorption spectra for the two transitions

considered in figures 8 and 9 are widely separated,

curves of this type should be a good test of the theory.

Again a slight addition of some S-like part to valence

band one would bring the X-like and Z-like parts of

bands two and three into consideration and could change

the effeCt considerably. Note the large change in PE

with A. Changing A is equivalent to increasing the dis-

placement of the distribution function. Thus this ex—

periment should be a sensitive test of this displacement.

Earlier in the discussion we mentioned the absolute

size of the polarization effect, all-a1, for the fund-

amental absorption of the intrinsic semiconductor at

lOOV/cm was about .06/cm. The effect is also of a
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comparable magnitude for the extrinsic inter—valence

band absorption at fields of 150V/cm (or larger), but

elsewhere it is much smaller. The smallness of the ab-

sorption change suggests an experiment using the diff-

l9
erential measurement technique. Using this technique

experimenters have measured modulations of the absorp-

tion due to a d.c. electric field to about .01/cm20.

This measurement was for the fundamental absorption in

silicon which is of the same order of magnitude as that

in InSb, so if a like experiment could be arranged to:

measure P in the above two situations it would involveE’

a measurable effect. Instead of measuring the difference

in the absorption between the field on and off situations,

as was the case for the experiments referred to, one

might measure the difference between the field parallel

and the field perpendicular situations.

One could also hope to increase the absolute magnitude

of the effect by dOping,or the absolute and percentage-wise

size by increasing the electric field. l50V/cm is near

the limit where funny thingsstart happening to the mob-

ility of InSb under normal circumstances, but a magnetic

field greatly increases the size of the electric field

one can apply before breakdown occurs. The effect of

a magnetic field on the polarization effect considered

here is not known.

It should be noted that the size of the effect mea-

9
sured in germanium by Pinson and Bray8 and others is
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considerably larger than in any of our theoretical curves

(compare figures 10 and 11). Their effect was large enough

to benwasuredmflthout the sophistication of the differ-

ential technique.21 Besides the facts that their measure—

ments were made on a different material and at higher

voltages than those for which our curves were drawn,

there are several other possible reasons for this diff-

erence in magnitude.

We have not considered in our theory the heating of

the electron population by the field. Since the absorp—

tion shifts toward higher energy and becomes broader

with increasing temperature, heating could account for

the shift and broadening of the experimental ai and all

curves. The heating would not change our analysis

since we could account for it by simply changing the

temperature in our calculations to match the shift in

the experimental curves.

The heating does not explain the large size of the

difference between the absorption parallel‘ and absorp-

tion perpendicular measurements of Pinson and Bray. How—

ever the ratio of drift to thermal velocity in their

experiment was about .5 while the largest value we used

in the inter-valence band curves which correspond best

to their experiment, was about .1. This difference

amounts to increasing our field to 750V/cm ( which is

impossible, of course, for InSb without a magnetic field).

Since the effect goes about as A2 this could account for
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the large size of the measured result.

Finally we mention what might possibly be the best

use of this experiment. The method of numerical solution

and programing for the theoretical calculation of this

effect makes it quite easy to Change distribution func-

tions in the problem. One merely changes a few cards in

the computer program. Thus one could, if he had some

experimental data and had a fair idea of the wave func-

tion, substitute any distribution function he desired in

the program - perphaps even insert an expansion of some

kind and vary the parameters to fit the experimental

curves. On the other hand if the wave functions of the

material were not well understood, one could insert a

rough distribution function and vary the coefficients

of the wave function to try to match the general shape

of the curve.

In general, given a distribution function, if the

experimental results show a larger than predicted polar-

ization effect, this indicates a greater disparity bet-

ween the relative amounts of X and Z (or Y and Z) in the

wave function for the band. A smaller than predicted

effect indicates a more symmetrical arrangement of the

distribution function, with the relative amounts of

X,Y,Z more equal. The sign of the effect tells which

is the greater, the X part or the Z part. Given a wave

function, a larger effect means a more violently dis-

placed distribution function. If for certain values of
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A there are peculiarities in the distribution function,

for instance an abnormal asymmetry, this will be reflec-

ted in an increase in the effect at that A.
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APPENDIX

PROGRAM POLEFF

PROGRAM WHICH GALCULATES THE POLAR!ZATION EFFECT

TD CH‘NGE THE DISTR’BUTION FUNCTION CHANGE‘CARDS WITH D IN

COLUMN ONE.

(NOT ALL CARDS HAVE To BE CHANGED WITH ALL DISTRIBUTION

FUNCTIONS).

COMMON/BLOCKi/EBAP.VMASS(4).DELTA

COMMON/MAINAPZ/REPIND

COMMUN/MAINABS/TbTK.EFERM!

COMMON/MAINABRIEFIELDaSOBILt4).NSR

COMMON/MAINENS’SQPICK‘NEOEG‘PAD(4,

TISnO.

DELTA3.9

50P3b44

EGAPZERO=.23

EGAP=EGAPZER099.6E-stf

EcApT-.§8

EGAPAD(1)=.1BeEGAP

SOB!L¢1!=7.E08/(Ttt(1.6>)

DO 5‘J321‘

EGAPAD(J)'00

SOB!L(J)-91.1Eta/(Tot(2.1))

VMASS(19=.013*EfiAP/EGAPZER0

VMASS(2)3e.015

VMASS(3)=9.12

VHASS¢4)=:.54

CKANE=2.*(1./VMASS(4)!1.)

BOLTZC=8.616~5

TK=TrBOLTZC

EFERH1= EGAPT/2.* 3.*YKtLOGF(eVMASSC4)/VHASS(1)>14.

REF!ND=3.96

CALL-ENERGY

CALL ABSORBZ

EFIELD=1on.

NSR=80 _

FORMAT (5Xa4HNSR=.IS)

PRINT 7.NSR

CALL ABPARPER

END
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suaaourtue ENERGY

THIS SUBRDUTINEFINDS THE-E sue K OPEEQUATIONt3.5) BY SOLVING 50.

(3.4). THEN ADDING THE FREE ELECTRON ENERGY (EFREELEC) AND

CORRECTIONS FOR HIGHER BANDS (HPERT).

COMMON/aLocx1/EaAE.VMASS(4).DELTA

‘COHMON/ENABSISHV‘loz)aA(4¢162)23(40102)90(4.102)aEKANE(4:102)oS(10

12)

GOMMON/MAINENSISGE.cKANEbEGAPAD¢4>

COMMON/ENERGYSIHHozu.5P5.00.09.08

DIMENSION~E¢3).MI<31

HHOZMt<i.0544*6.582/(2.*9.10805.291705.2917))t1.oE*3

EpsainOE’R

‘DD=DELTAvEGAP

DP=UELTAEEGAP

DB=DELTA*2./3.

E!1)=EGAP

E!2)=O.

E(3)=aDELTA

SNV(1’=31.0506

PRINT 11.66AP.DELTA.SQP.EPS.CKANEnEGAPAD(1)

FORMAT (5x.BHEGAParr7.3.5X.oHDELTAz.F7.3.5x.4HsoP=.F7.3.5x.4HEP8=.

1510.2;5X:6HCKANE=.F&.2:5X:10HEGAPADCC)=1F9.5)

PRINT 12

FORMAT (*0 K SOUAREh IN ATOMIC UNITS. ENERGY IN ELECTRON VOLTS.

NI=NUMBER 0F ITERATIONS FOR ENERGY 1*)

PRINT 13

FORMAT(§O K SOUARED ENERGY(C) ENERGY(V1) ENERGY(V2)

ENERGY(V3) NC ~v2 st.)

Do 75 K=23102

1F (K'22’18018120

SWV(K)=SNV(K91)¢1.OE'6

GO TO 22

SHV!K!=SNV(K91)O2.OE'5

S(K)=SQPtSHV(K)t27.21027.21

EFREELEC=HH02M*SNV(K)

TA=DP¢S¢K3

TB=DB*S(K)

DO 65 J31.3

DO 45 L81.10

M!(J)IL

FE!E(J)¢¢3+DD*E(J)¢E(J)eTAtE(J)-TB

DFE33.*E€J>*E(J)+2.¢DD*E(J)eTA

DELTAE=FEIDFE

E(J)=E(J)EDELTAE

1F (EPSEABSFthLTAE))45.55.55

CONTINUE

TF=E(J)§DB

TG=E(J)IEGAP

AN=¢S(K)Et.5)tTr

BN:DB*TG/1.414214

cN=TG¢TP

FNORMI(ANOANtBNtBN+fiNECN)**.5

A(J.K>=AN/FNORM
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58

acJ.K)=RN/F~0RM

C(J.K)=CN/FNORM

HPERT'(B‘JoK)*3(J:K)/2v+C(J0K)'C(JnK))*CKANE¢EFREELEC

EKANE‘JEK)=E(J)tEFREELEC’HPERTOEGAPAD(J)

EKANE‘4pK)=EFREELEC/VMASS(4)fiEGAPADC4)

A¢4,K)=g.

8(41K’=1.

C(4.K)=O.

‘FORMAT (61303.4F14000317)

PRINT 69:3”V‘K)aEKAME‘laK,nEKANE‘4OK)DEKANE(20K)JEKANE(SOK)D

1MI‘1’QMI(?)RHI(3)

PRINT a1

FORMAT ¢.n K SOUAREn AC ac cc AV2 BV2

1 cvz AVS Rvs CV3.)

no as 1g2.102

FORMAT (E13.3.9F9.35

PRINT 83.5wv<1).A¢1.1).e(1.1).c<1.1).A(2.1>.ec2.I).C(2.1).A(3.1).a

1‘30!)AC(331)

RETURN

END
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SUBROUTINE ABPARPER

THIS'SUBROUTINE‘CALgULATES'YHE ABSORPTION FOR A PARALLEL T0

E (ABSPAR) AND FOR A PERPENDICULAR 70 E (ABSPER). USING

THESE AND THE RESULTS 0F!SU8ROUTINE ABSORBZ IT THEN

CALOULATBS VARlOUS CURVES OF INTEREST:

COMMON/BLOCKi/EGARiVMASS(4).DELTA

COMMON/RAINABSIT.TK.EFERMI .

COMMON/MAINAaR/ErrELo.soexL(4).Nsn

COMMON/ENABSISHV(102)1A(41102)38(40102)aC(4a102)EEKANE(4:102):S(10

12,

COMMON/ABSORPS/ONSpNV‘lOZ):DENOH(4E102)EGAC4:102)cGB(4n102):EPH0T0

1N(4}102,oALPHA0(4:102):ABZERO‘41102)

COMMON/ABRENGY/EZERO(3).ENTHETA(4’

DIMENSION DRIFTCA)3HRPLUSK(4)aDISFUN(2.4).SUN83(2a4).SUM81(2.4).AR

1§As3(4)pAREA31(4)EPOLFEC(43102’ECHGPARC4)1CHGPERC4):XCZ):CO(2):SI(

22’1FK(234)1ABSPARC4;102):ABSRER(4:102):POLFOAC4o102)

RMASSE=9.108E82R

HBAR=(1.0544/5o2917$*1uE'18

DO 199 13134

199 DRlFTCI’:VMASS(I)QRMASSE*SOBIL‘!)REFIELD/HBAR

200 FORMAT (07H TEMP=nF690:9H EPERMI‘oF8.5:9H EFIELD=:F6.039H EMOB

11L=.E12.4.9u RM091L=.E12.43

PRINT ZOOETEEFERMIoEFIELDoSOBXL‘l)ESOBILNZ’

201 FORHAY (07H CMASSB$F995oSX:7HV1MASS'JF9osa3X:7HV2HA5331F9oSE3X:7HV

13NA533F9.5:3Xo9HDRIFTKC)3:512o5p3X;10HDRIFTCV1)81512o5}

PRINT 2O1:VHASSC1,3VMASS(4)nVHASSCZ)aVMASS(3)oDRlFT(1)gDRIFT(4)

204 FORMAT (tn KSQUARED FK(ODD:C) FK(EVENnC’ FK(ODDnV1) FK‘O

1091V2’ DISFUN(E:C) DISFU(E:V1) DISFU(E:V2) ENTHETACC) ENTHET

2A‘V?)')‘

PR‘NT 204

EZERO(1)=EGAP

EZERO¢2,'RO

EZER0(3)3!DELTA

DO R80 K=3.102

DO 210 :3194

210 DRPLUSK(!)=SHV‘K)*DRIFT(I)*DR1FT(I)

H33.1415927/(2c*NSR3

DO 215 N311?

Do 214 J3204

SUMSStN.J)=o.

214 SUMSi‘N.J)=O.

215 CONTINUE

Do 760 1A811NSR

X(1,=(2.*KSR¢1oI2.*IA)'H

X(23=l2.*k$R92.tIA)oH

C0(1)'COSF(X(1)’

COC?)3COSF(X(2))

S!‘1)'S!NE(X(1))

S!‘?)!SIN'(X(2’,

DO 250 J3114

D0 240 N313?

FK‘NtJ)IDRPLUSKCJ’*Qo'HVCK)*DRIFT(J,¢CO(N’

CALL ENGY(JOFK‘NlJ),
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D 221 DISFUN(N1J)I 1./ (1. * EXPF((ENTHETA(J) - EFERHI)/TK))

IF (J'1)240.240.224

224 suns3tN.JI=5un$5<N.J)a(5I(Nat-SI-(OISFUNIN.J)-DISFUN(N.1)I

SUMSltN.J)=SUH31(N.J)#SI(N)o(DISFUNthJ)-DISFUN(N.1))

240 CONTINUE

250 CONTINUE

260 CONTINUE

PR0O=CNS~5<KI

DO P70 4:204

AREASS(J)=H¢(4.¢SUMS3(1aJ)*2o*SUM83(2aJ))lS.

AREASIIJIsHoI4..SUMRIII.JI+2.-SUNSI<2.J))Ia.

ABSPAR(J.K)=PROO*((GB(J.K)-2.*GA(J.K))tAREASS(J)+2.'GA(JaK)*AREA81

1(J)I/(EPHOTON(J.K)tnENOM(J:K))

ABSPERIJ.K>=PRon-<(nAIJ.KI~GBIJ.KI/2.>~AREAS$IJ>+GB<J.K)~AREA51(J)

1I/(EPHOTONIJ.KI«DENnM(J.K>)

27o POLEEC(J.K)=ABSPAR(J:K’sABSPER(J:K)

279 FORMAT (E11.3.9El3.5)

280 PRINT 279.SNVIKI.PKT1.II.FKI2.1I.FKI1.4>.th1.2).OISFUN(2.1).OISFU

1N(2.4I.OISFUNI2.2I.ENTHETA(1).ENTHETAI2I

281 FORMAT («a KSOUARED IN ATOMIC UNITS. EPHOTON IN EV. ABSORPTION

Is IN INVERSE CENTINFTERSRI

PRINT 281

282 FORMAT I-n K SQUAREO EPHOTON(V1> ABSPAR-ABSPERl EPHOTON(V2)

1ARSPAR-ABSRER2 EPHOTON(V3) ABSPARnABSPERSt)

PRINT 282

D0 284 K=a.102

253 FORMAT (511.3.3IFI4.7.516.7I)

284 PRINT 283.8NVIK)aEPHOTON(4.K)oPOLFEC(4.K).EPNOTON(2.K).POLFEC(2.K)

1.EPHOYON(3.K).POLFEC(3oK)

265 FORMAT (In EPHOYON(V1) ABSPAR(V1) ARSPER(V1) EPHOTON(V2)

1 ABSPAR(V2) ABSPER(V2) ERHOTON(V3) ABSPAR(V3) AB

ZSRER(V3)t)

PRINT 285

D0 790 K=3o102

289 FORMAT (3(F12.7p2516.7))

290 PRINT ZaqlEpHoTnN<4gK)IABSPAR<4IK)DABSPERt4JK,IEPHOTON‘QJK)DABSPAR

1(21K)oARSRERCZIK)IEPH0TON(3IK)nABSPAR‘SaK):ABSPER(3:K)

292 FORMAT ('6 EPHOYON(V1) CHANGERAR‘Vl’ CHANGEPER(V1) EPHOTON(V2)

1 CHANGEPAR‘V2) CHANGEPERCVZ) EPHOTON‘V3, CHANGEPAR(V3) CHAN

ZGEPERIV3)t)

PRINT 292

DO 299 K=31101

D0 994 J=2,4

POLFOA(JIK)IPOLPEC(JJK)/ABZERO(JIK)

CHGRAR(J)=ABSPAR(J:K)BAQZERO‘JaK)

294 CHGRER(J)IABSPER(J:K)9ABZER0(J0K1

295 FORMAY (3(F12-7.2516.6))

299 PRINT ZQSIEPHOTnN(4.K’:CHGPAR“)ICH69ER‘4,oEPHOTON(2-K):CHGPAR(2):

1CHGRER(?)nEPHOTON(3,K)oCHGPAR(3)pCHGPER‘S)

300 FORMAT (in K SQUARE” EPHOTON‘Vl) PAR'PEROABZEROl EPHOTON(V2)

1PARQPEROABZER02 EPHOYON(V33 PAR'PEROABZEROS')

PRINT 3ND

D0 30‘ K330101

303 FORMAT (511.3:3(F14.71516-7))
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304 PRINT SOSISWV(KInEPH0T0N(4:K)TROLF0A(4oK).EPHOTON(2:K).POLF0A(2nK)

1.EPHOTON(3:K)nPOLFOA(3nK)

RETURN

END
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SUBROUTINE ENGYQInFK)

THIS SUBROUTINE CALCULATES VALUES 0F E(K*D>n(ENTHETA):CALLED FOR

BY SUBROUTINE ABPARPER.

COMMON/BLOCKI/EOAP.VMASSI4).DELTA

COMMON/ENERGYSIHHoau.EPS.OD.DP.OB

COMMON/ABRENsv/EZERN(3I.ENTHETAI4I

COMMON/MAINENSISQP.CKANE:EGAPAD(4)

EFREELEC=HH02MfiFK

!F(4-I)32n.520p325

ENTHETAI4)=EFREELEC/VMASS(4INEGAPADI4)

GO To 365

SBSOPfiFKt27o21'27.21

TA=OPNS

TRBOBNS

DO 345 L=I.2o

FE=FZERO(I)vi3*ODtE7ERO(I)NEZEROII)-TAREZERO(I)-TB

DFE=3.EEZERO(I)0EZEROII)*2.ODDtEZERO(I)9TA

DELYAE=FEIDFE

EZEROIII=EZEROIII~DELYAE

IF(EPS-ABSF(DELTAE)I345.355.355

CONTINUE

TF=EZERO(I)NDB

TO:EZEROIIIEEGAP

AN=IS-t.5)tTF

BN=OB*TG/I.414214

cN=YGRTF

FNORMI(AN.AN¢BN~BN¢CN*CN)0'.5

BaBN/FNORN

c:CN/FNORP

HPEPT=(HRS/2.NCOCINCKANE'EFREELEC

ENTHETAIII=EZERn(I).EEREELEC~HPERT+EGAPAOIII

RETURN

END
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