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ABSTRACT

THEORY OF AN ELECTRIC-CURRENT-FLOW INDUCED
POLARIZATION EFFECT ON THE OPTICAL
ABSORPTION OF A SEMICONDUCTOR

By Carl A. Baumgardner

A calculation is made of the direct optical absorp-
tion in a current-carrying semiconductor. It is assumed
that the only effect of the d.c. electric field which pro-
duces the current, is to shift the distribution of carriers
in k space. It is found that the absorption depends on the
relative orientations of the electric field and the pol-
arization vector of the light. This polarization effect
is found to be proportional to the square of the carrier
drift. A physical picture of the effect is presented.
Curves of the effect versus photon energy are calculated
for both fundamental and inter-valence-band absorption in
indium antimonide, for both the intrinsic and extrinsic
semiconductor, and for various field strengths and temp-
eratures. The results are analyzed and found to be con-
sistent with the physical picture of the effect. Sug-
gestions are made for using the effect to investigate
the distribution functions and wave functions of a semi-
conductor and a comparison is made with a similar effect

measured in p-type germanium.
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I. INTRODUCTION

If a large external electric field is applied to a semi-
conductor in which there are free carriers, the most im-
mediate result is a change in the energy distribution of
those carriers. Many physical properties of semiconductors
depend on the energy distribution of the carriers and it
is to be expected that these properties will change with
the electric field. Since the 1930's many such changes
have been observed and studied; for example changes in the
mobility and the Hall effect. New effects, such as nega-
tive resistance and anisotropies in the conductivity, have
also been found to be associated with carrier streaming.
It is evident that an understanding of the energy distri-
bution of the carriers is fundamental to an understanding
of these changes of physical properties which have come to
be known as "hot-electron effects'". The fact that our
present-day knowledge of the distribution function as a
function of the electric field is to a large extent only
qualitative, is reflected in the large number of hot-elec-
tron effects for which there is not yet a good quantita-
tive explanation.l The purpose of this paper is to extend
the theoretical understanding of some recent experiments
aimed at obtaining quantitative information about the
distribution function under current flow conditions, and
to propose some new experiments with the same objective.

Much of the earliest work on the effects of large



electric fields on solids was directed toward understanding

2,3,4

the energy distribution function. Only recently, how-

ever have there been any successes in describing the dis-

5,6 The most notable of

7

tribution function gquantitatively.
these has been the work of Pinson and Bray' on the experi-
mental determination of the distribution function in p-type
germanium by means of "free-electron" absorption experi-
ments. The facts that a unique correlation between the
absorption frequency and the electronic energy of the ab-
sorbing state 1s possible, and that the amount of absorp-
tion at this frequency is a function of the number of car-
riers available to absorb the light, allowed the number
of carriers as a function of the energy to be roughly
determined.

It was noted by Pinson and Bray at that time,8 as

well as by others working independently,9

that the absorp-
tion was dependent on the direction of polarization of

the light relative to the electric field, and that this
effect yields some additional details concerning the
angular dependence of the hot-carrier distribution func-
tion. The complexity of the wave functions for p-type
germanium prevented a complete quantitative analysis

and thus impeded the theoretical explanation of the ef-
fect and the description of the distribution function.

In this paper we predict a similar polarization effect

for indium antimonide, and using the relatively simple



wave functions given by Kane10 for this semiconductor, we

analyze the effect in detail. Consideration of the results
yields a clear physical picture of the causes of the effect
and shows that measurements of the effect not only can be
a tool for understanding the distribution function, but
also can yield information about the wave functions of the
semiconductor.

In Chapter II of this paper the optical absorption co-
efficient is developed in a form particularly suited to
our problem. In Chapter III the polarization effect is
calculated in the approximation that the electronic wave
vector, k, is small. A physical explanation of the effect
is given in Chapter IV. The restriction to small wave-
vectors is removed in Chapter V and theoretical curves
of the polarization effect versus photon energy for
various distribution functions, temperatures and electric
field strengths are computed; a discussion of the results

is presented in Chapter VI.



IT. THE ABSORPTION COEFFICIENT

The amount of light of a certain frequency,w,

absorbed by a crystal upon which it is incident, is

described by the absorption coefficient,11 defined
by
o(w) = power absorbed per unit volume . (2.1)
incident flux
The power absorbed per unit volume is
Aory g (2.2)

where ¥ 1is Planck's constant divided by 2n. rynd is
the net rate of transditions induced in the crystal by
the light, per unit volume, per unit time, and is a
function of the frequency. The incident flux is the

magnitude of the time averaged Poynting vector,

S=c¢ E, xH . (2.3)
In
E; and H are the electric and magnetic field strengths

of the incident 1light.

In Chapters III, IV, and V we shall be interested
in calculating the absorption due to direct electron
transitions between energy bands in a semiconductor
(see figure 1). These can either be transitions bet-
ween two valence bands (dotted lines), or between a
valence band and the conduction band (solid lines).
The former is sometimes called free-electron absorp-

tion, because it lies in the same frequency range

y
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Fig. 1. Direct optical transitions



as true free-electron absorption, to distinguish it from the
latter which is called fundamental absorption. in this pa-
per we call them inter-valence band absorption and funda-
mental absorption, respectively.

The electric field of the light causing the transi-
tions ( not to be confused with the d.c. electric field, to
be introduced later to modulate the absorption ), can be
described by a vector potential,

A(r,t) = A, exp[i(s-r-wt)] + &t expl-i(s r-wt], (2.4)
where Ao =|Ao|exp(i8)&, is complex, &, is a unit vector in
the direction of Ao,, s is the wave vector and w the frequen-
cy of the electromagnetic wave. Our first step in calculat-
ing the rate of induced transitions will be to find the
interaction energy between this field and the electrons in
the bands.

The interaction energy, H', is found from the classi-
cal Hamiltonian, H, for a particle of charge e and mass m

in an electromagnetic fieldlz:

1

=

(p - % A )2 + es. (2.5)

p is the momentum, c the speed of light in a vacuum and
$ is the scalar potential of the electric field.

Multiplying out the squared term in Eq.(2.5), and
using the relation

f(r)p, - p f(r) = 14 %_f(;), (2.6)
X

which is true for any function that can be expressed in

a power series in x, y, and z, we have




H=p° -e Ap + le 7-A + e A% + eo. (2.7)
2m  mc mc 2me 2
_ . 3 3 3
Here Y_ = 1 Ix + 5 gy + K 32

where 1, §, R, are unit vectors in the x,y,and z direc-
tions. We choose the transverse (Coulomb) gauge, so that

Ve A =0

=0 .
We also drop the term in A2 as much smaller than the
remaining terms. Adding to Ef. (2.7) the potential
V (r) of the electron in the periodic lattice and sub-
stituting p = -i WUV, we arrive at the Hamiltonien for

an electron in a periodic lattice interacting with an

electric field. To first order
H = Ho+ H' (2.9)
with
H -8 v+ V(r) (2.10)
7 Zm =/ .
and
H= "2 Ap (2.11)
mC.— . .

Ho: is the unperturbed Hamiltonian leading to the un-
perturbed band structure of the semiconductor, and H
is the interaction energy we have been seeking.

Using time dependent perturbation theory we can
calculatel3 the probability that an electron in the
valence-band state ¢v at time t=0 will be induced by the
perturbation H' to change to the state ¢c in a higher
band (perhaps but not necessarily the conduction band)

at the later time t. This transition probability is



given by
T° (t,0) = |<¢_|Holé.>|2 x S(E) (2.12)
cv:? c!'"T! Yy :
where
4 8in?[(E (k) - E (k) - Hw)t/24]
S(E) = - > (2.12p)
[Ec(k) - Ev(k) - Hw]
<> indicates the quantum mechanical expectation, and
U e . >
Hp = -5 exp(is-r)A -p. (2.13)

Ec(kc) and Ev(kv) are the electron energies in states ¢c
and ¢V respectively, and are functions of k the wave vector
of the electron.

Tgv 1s not the total transition probability. We
must multiply it by an occupation factor (distribution func-
tion), f(Ev), which is the probability that the state ¢ is
occupied, and also by the occupation factor [1 - f(EC)]
which is the probability that the state ¢c is not occupied.

Thus the total probability of a transition from state ¢V to

state ¢c is

- ! 2
Ty = <0, Hplo > [*S(E){L(E D[1 - £(E)I}  (2.14)

The probability that an electron in state ¢c at time
!
t = 0 will be induced by H to change to the state ¢v at
time t, can also be found by time-dependent perturbation

theory. It is



Tgc = |<¢V‘H%"¢C>P x 8(E), (2.15)
where
m= 22 exp (-is+z)Alp. (2.16)
It can be shownlu
l<ooluplo,>12 = J<o,lty log>]2 (2.17)
therefore
IO eI (2.18)

The occupation factor for TV is f(Ec)[l - f(Ev)]. There-

c
fore the net transition probability (the probability for
transitions upward minus the probability for transitions

downward) is

™ - (. ‘<¢C|H%’¢v>‘2 S(EB) [£(E) - £(E,)]
(2.19)
The rate of transitions is found by summing the
transition probabilities for all possible combinations of
e
summation is performed by multiplying by the density of

and ¢V and dividing by t. In the most general case the

states per unit volume, r§%77, and integrating over the
two bands ¢ and v. However conservation of momentum re-
quires that the momentum of the electron in the initial
state plus the momentum of the photon must equal the momentum

of the electron in the final state; i.e.
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Ak, + s = Mk . (2.20)
But s is so much smaller than k, or Ec that essentially

k., =k,
v T ¢

This establishes a one-to-one correspondence be-
tween the two states ¢V and ¢C which allows all possible
combinations of ¢V and ¢C to be included simply by integrat-
ing once over all k space. Therefore

Pina = &S 1<, Hp o 2|2 S(E)

ind t =Dy,
(2522)

K?
m)?

[f(EV) - f(Ec)] Sin® deéd¢dk.

To find the magnitude of S we use

194 =20 y 2
= -Elel Sin (s°r - wt + B)ao,

H=Y9xA=-25 x aO|A°| sin (s°'r - wt +8), (2.23)

sin®(s+r - wt + §) = %,
and
ke _ =
s index of refraction. (2.24)

Then using Eq. (2.3) we have,
2 2
[s] = F5la,1%. (2.25)

From Eqs. (2.25), (2.22) and (2.1) we arrive at

the absorption coefficient:
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a(w) = —=H  fl<o |a_-pl4.>]? S(E)
4r2nm2cwt 8 %
(2.26)

[£(E,) - £(E,)]k? siné deds.

We have used the fact that s is essentially zero to drop
the exp (is°r) in the matrix element.

The integral over k in Eq. (2.26) can be done im-
mediately even though we do not have explicit expressions
for the k- dependence of the energy or distribution func-
tion. This is possible because in the limit of large time,

t, we have for S(E) (Eq.(2.12b)):

4 sinl{E_(K)-E_(k)-Hole/24]  2mt
Lim < i = — S[E_(k)-E_(k)-Huw]
e [B_ (k)-E (1)-Hal? " ¢ i

(2e27)
Taking this 1imit makes sense physically if the light has
been turned on for a time long compared to the inverse of

its frequency, which is generally true experimentally.

Using
§LE(x)] = 1gf 6(x - x,) (2.28)
ax
Eq. (2.26) then becomes
i ) [<¢.la -ple,>]? sine [f(E)) - £(E )Ideds
2mm?cnw aE, - E) :
dk

(2.29)
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where k is now determined by
Ec(k) - Ev(k) - Aw = 0 (2.30)

If there are more than two bands involved in the
transitions we must sum Eq. (2.29) over all possible com-

binations of bands. The total absorption coefficient is

then
: » 2
D SRk I<oglay + plo,>|*L£(E,)-£(E,)] sin 6deds
c v 2mm?cnw a(E, - E)
dk
(2.31)

To proceed any further in a calculation of the ab-
sorption coefficient we need explicit expressions for the

matrix element, the energies and the distribution functions.




ITI. THE POLARIZATION EFFECT IN THE LIMIT
OF SMALL CARRIER WAVE-VECTOR

In this chapter we calculate the absorption coef-
ficient for intrinsic indium antimonide with a d.c. electric
field, E (which shall always appear with a vector sign to
distinguish 1t from the energy), applied perpendicular to
the direction of propagation of the light (See Figure 2).
We take the electric field to be in the z-direction and
consider two cases. In one case the vector potential, A,
is directed parallel to E, and in the other A is directed
perpendicular to E. The difference in the absorption for
these two cases is the polarization effect. We consider
in this chapter only the absorption due to transitions be-
tween a valence band and the conduction band; i.e. the
fundamental absorption, and this is calculated in the ap-
proximation of small k (electron wave-vector magnitude).

We assume that the d.c. electric field does not
change the band structure of the crystal. This assumption
is thought to be valid because many collisions take place
during the characteristic time of a polarization effect ex-
periment, which washes out changes that would otherwise

15

require consideration. We have chosen indium antimonide
as the model semiconductor for our calculation because of

its high mobility, which permits a large shift in its

13



Relative orientations
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Fig. 2. Shift of electrons in k-space under the

influence of an electric field.
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distribution function with relatively small electric fields,
and because accurate, relatively simple analytic expressions

for its wave functions are available.

1l. The Band Structure

The wave functions and energies for indium antimonide
have been calculated by Kane.lO He added to the classical
Hamiltonian Eq. (2.9), several spin dependent terms and
applied the resulting Schroedinger equation to the Bloch
function, exp (igog)uK(g), to arrive at the Schroedinger
equation for the cell-periodic function uK(g), which we
write as

B 4+ v(r) + Beep + B2 4 s 0 (2) = Eu (). (3.1)
2m - m— 2m 1-7K = K K*=
The first four terms result from the classical Hamiltonian

and S, 1s a spin-dependent term added by Kane. We have

1
dropped a second spin-dependent term because Kane found it
very small.

The solutions of Eq. (3.1) are found in terms of

the solutions of

2

(5= + v]u; = E,U, (3.2)

ivi
These solutions are known from group theory to be S+ and S+
for the conduction band, and X4, X+, Y+, Y+, Z4, and Z+
for the valence bands. S signifies a function with the

symmetry properties of an atomic s orbital under the operations
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of the tetrahedral group, and X, Y, and Z signify wave func-
tions with symmetry properties of the x, y, z atomic p-
functions. The s functions have energy Es and the p func-
tions all have energy Ep
For k in the z direction, Kane solved the Hamiltonian

matrix corresponding to Eq. (3.1) for its eigenvalues which
he found to be given by the equations

E =0 (3.3)

E(E - E(E +4) - k2P2(E' + 24/3) = 0. (3.4)

Here E, = E

G s» &= =3B,

g = E, - (A2/2m)k?, (3.5)

P = - Psip |2, (3.6)

and m 1s the free electron mass.

EG is the energy gap and A is the energy separation
of the "split-off band"; i.e. a valence band which is lower
in energy than the other two bands which are degenerate at
k = 0. Both parameters can be evaluated experimentally.

If k% is very small Eq. (3.4) is approximately equal

to
1 1] ]
E (E - EG)(E + 4) = 0, (3.7)
which has the solutions
! ] 1
E =0, E =E,, E = -A, (3.8)
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We can find an approximate solution of Eg. (3.4)
corresponding to each of these three values by writing it

in the form
(E' - E) = £f(E), (3.9)

where E_ is one of the values Eq. (3.8).

1
Then substituting this same EO for the E s on the

right we have

_ MZRZ P2k2 2 1 _ ﬁzkz
Ec B EG LT 3 EE + IEG + A EG + 2mc
(3.10)
_ H2k? P2k2 __[f2k2
Ey = &7 - 2 3E, ©  am, (3.11)
_ 2 K2 p2)?2 H2k2
By = -0+ 5 - EG + 0 - AT “omg (3.12)

The highest valence band is the solution of Eq. (3.3),

which is

MZKZ

L= B (3.13)

This is inaccurate, as explained by Kane, so we use instead

24,2
E, =_M2§ , (3.14)
1

where m, is given experimentally. EC is the conduction
band, El is the heavy mass band, E2 is the light mass band

and E, is the split-off band.

3
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The wave functions that result from the diangonali-

zation of the Hamiltonian corresponding to Egq. (3.1) are:

b1y = ai[is+]' + b [(X - 1Y)4/v2]" + ci[z+]'
' ' (3.15)
18 = a,[154] + b, [-(X + iY)v/v2] + c,[z+]
61, = [(x + 1141 //2
(3.16)
01 = (X = 11)41'/V2

The index 1 takes on the values c, 2, 3 referring
to the conduction band, the second valence band and the
third valence band. The 1 refers to the first valence band.
Wave functions with first subscript the same but different
in the second subscript (a or B) are degenerate in energy
but differ in spin. The primes in Egs. (3.15) and (3.16)
indicate that for directions of E other than the z-direction,

t 1 1 ! ! !
X,Y, 2,8 ,+ and ¥ are obtained by the transformations:

1

+ exp (-1¢/2) cos (6/2) exp (i¢/2) sin (8/2)]|]*
1

¥ -exp (-1¢/2) sin (8/2) exp (i¢/2) cos (6/2)|}] ¢
(3.17)

X' tos 6 cos ¢ cos 6 sin ¢ -sin 8} |X

Y' = | -sin ¢ cos ¢ 0 Y

Z' sin 6 cos ¢ sin 6 sin ¢ cos 6 Z
(3.18)

S =38 (3.19)
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6 is the angle k makes with the z-axis and ¢ is the

angle k makes with the x-axis.

The aj bi’ and c; are real coefficients given by:
1
a; = kP(Ei + 2A/3)/N
/Z ' 20
! !
c; = (Ey - EG)(E; + 24/3)/N

!
and the Ei are the solutions of

Eq. (3.4). For small k Egs. (3.20) become:

— 2 2 2.1/2
where N = (ai + bi + ci)

a, = 1, b, = c, =0© (3.21)
a, = 0, b, = (1/3)1/2, ¢, (2/3)1/2

_ _ 1/2 _ 1/2
ag = 0, b3 = (2/3) R ¢y = -(1/3)

2. The Matrix Elements

Including spin differences, there are six valence
bands and two conduction bands. Therefore in the summation
over the conduction and valence bands in Eq. (2.31) we will
have twelve terms. We must calculate the matrix element
for each of these twelve terms and for each of the two di-
rections of polarizations of the vector potential A. Thus
there are twenty-four matrix elements to be calculated. In
the small k limit many of the coefficients of the wave

functions, as given in Eq. (3.21), are zero. However we
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shall derive the matrix elements for the general case, where

the coefficients are non-zero, since we shall need them in

that form in a later chapter.

The following properties of the wave function will

be useful in éalculating the matrix elements:

perturbi

]
<4t |y >

and like

and Eq.
<J
<¢ca|ao°

a) In the absence of spin-dependent terms in the

ng Hamiltonilan

<[exp(i¢/2) cos(8/2)+ + exp(-i¢/2) sin(6/2)+]|

|[-exp(-1¢/2) sin(6/2)t + exp(i¢/2) cos(6/2)+]>
= 0 (3.22)

wise

1 1 1 1 1
<V 4> =03 <+ |4 > =1; <v |+ > =1, (3.23)

b) Electric dipole selection rules, group theory,

(3.6) yielad:
<S|p,|z> = <S|p, |X> = E%E (3.24)
<z|p,|s> = <x|p_|s> =-E%E (3.25)
<S|pi|J> g4 = 03 J = X,¥,25 1 = x,y,2 (3.26)

n
<
v
=
-
N

Ipi|K> =0; 1i=x,y,2; J =X,Y,2; K (3.27)

We now calculate, as an example, the matrix element

R|¢2B> for A, (i.e., ao) in the x-direction.



<o 1Dy l00g> = <a [-184'1 + b [(X + 11)4/vZ] + c (2+] |p,

|a,01541" + by [-(X+1Y)4//2] + ¢, [2+] >

[Using Egs.
(3.22) and
(3.23)]

<a_[-181"[p |b,[-(X+ 1¥)/vZ] > +

+ <b_[(X+ 1Y)//§]'|px|a2[131'>

[Using Egs.
(3.18) and
(3.19)]

<ac[-iS]|px|b2[-(cos ¢ cos 6X+cos ¢ sin ¢Y-
sin 6Z)-i(-sin¢ X+cos ¢Y)]I> +
+ <bc[(cos 8 cos ¢X+cos 6 sin ¢Y-sin 6Z) +

+ i(-sin ¢X+cos ¢Y)]|px|a2[i53>,

[Using Egs. a b,

(3.26) and = 1—>5(cos 6 cos ¢-i sin 9)<S[p [X> +
(3.27)] V2
bca2
+ 1 (cos 6 cos ¢-1 sin ¢)<X|px[S>,
V2

[Using Egs.
(3.24) and
(3.25)]

mP/(KvV2)(cos 6 cos ¢-i sin ¢)(bca2-acb2).

The twenty-four matrix elements calculated in this way are
listed in Table I. 1In this table 1 = 2,3, D = mP/H,

G = (acci + ccai), and Gi- = (acbi - bcai).

i+
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TABLE I.--The matrix elements between the conduction and
valence bands in In Sb.

A in z-direction

%54 %48 %10 %18
0o | DcOSOG,+ (D—)sineGi— 0 -(D—)acsine
V2 V2
D D .
¢cB —(——)sineGi— DcoseGi+ -(——)a051n6 0
el V2
A in x-direction
%14 %18 %14 18
o Dsin6cos¢G, + _2_(cosecos¢- 0 Dac
co i —=(cosbBcos¢+
V2 /3
s1n¢)G, - 1 siné)
D Dac
ch —(cosbcos¢+ | Dsin cos¢Gi+ ——(cosbBcos¢- 0
V2 V2
i sin¢)Gi— i sin¢)

3. The Distribution Functions for Electrons
and Holes

We assume that the effect of the electric field is to
shift the distribution of carriers in k-space by the amount

k This is shown in Figure 2 for a Fermi-sphere.

q°
For non-zero temperatures the sphere of course will

not be sharply defined but will be "blurred" near the edge.

At zero electric field, the carriers will have the distribu-

tion given by the dotted circle. When the electric field is

applied in the positive z-direction the distribution shifts

in the negative z-direction by the amount kd. Thus carriers
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at k with a certain energy, E(k) will have an occupation
probability corresponding to k + d of the unshifted distri-
bution. d is a positive number which is equal to -kg, the
size of the shift in k due to the electric field. kd has
the same sign for the conduction and valence bands although
in our problem the sign is not important since the polariza-
tion effect is independent of this sign.

For the small k caléulation we take the distribution

functions to be:

exp {[Ep - E_(k + d)]/KT} (3.29)

for the conduction band, and

1 - exp {[E (k + d) - Eg]/KT} (3.30)

for the valence bands. EF is the Fermi energy, T is the
temperature, and K is Boltzmann's constant. These are
Fermi-Dirac distribution functions in the 1limit

|E - EF|>>KT. (3.31)

Eq. (3.31) is valid for intrinsic In Sb at all but very

high temperatures, except near the conduction-band edge
where it is good only up to about 300°K. Egs. (3.29) and
(3.30) are not necessarily the actual distribution functions
for In Sb. More likely the experimental crystal will be an
extrinsic semiconductor with some form of Maxwell-Boltzmann
distribution function with the normalization depending on
the concentration of impurities. However, these distribu-

tion functions do have the essential Boltzmann factor, and
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furthermore the simplicity of the intrinsic situation will

make the physical interpretation of the theory clearer.

4, Calculation of the Polarization Effect

We now have explicit expressions for all the factors
in Eq. (2.31). We calculate the absorption due to transi-
tions between valence band one and the conduction band for
the case when A is polarized in the x-direction, perpendi-
cular to the d.c. electric field, as an example.

Substituting Egs. (3.10) and (3.14) 1in Egs. (3.29)

and (3.30) we have:

f(Ec) = exp{[EF Eg- 2m (k +d2 i+2k,d, cos 6)1/KT} (3.32)
f(EV) = 1- exp{[2M (k2 +di+2kld1 cos 6)-EFJ/KT} (3.33)

We have used
(k + d)+(k + d) = k* + d% + 2kd cos 6, (3.34)

and we have written k with a subscript because k is different
for transitions between different bands according to Eq. (2.30).

Substituting Egs. (3.32), (3.33), (3.10) and (3.14)
in (2.31) and summing over the four matrix elements involved
(two of which are zero), we have:

ai(m) = %Faéf(00528c052¢+sin2¢)sine[l—Allexp(Vllcose)

-4, exp(-VCl cos 6)1ded¢,
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where we have written

le?a?p? |k, |
ol = S L (3.36)
3cnw191 m—' + a—
c 1
Ay = (128 k2 + a2) - E_1/KT) (3.37)
11 T GXP 2m; 1 17 T °p :
2
Ay = exp {[Ep - Ej - gﬁ—c(k; + a2)/KT}  (3.38)
A2k, 4
Vi T (3.39)
1
Mzkldc
Ve1 = mXT - (3.50)
C

ai is the absorption in the 1limit T = 0, E = 0, for trans-

actions between valence band 1 and the conduction band.
The integral over ¢ gives a factor of w. The inte-
gral over 6 can be simplified with the change of variable

cos 6 = x which implies -sin 6d6 = dx. Eq. (3.35) then

becomes:

V. X -V _ X
2 v 11 cl
(x* + 1)1 - Aqe - A e )dx,

1

SRy

(3.41)

which integrates to



R %al{i o [(e 11_ 11, (e ll+e‘ 11, , (e ll;gs ll)]
1 03 11 Vi, Vi V.,
(3.42)
\Y -V \ -V \ -V
a [(e cl_o cl) (e cl,o cl) , (e cl_g cl)]}
cl v v .2 v .°
cl cl cl

On expanding the exponentials for

| Vi |<< 1 (3.43)
we find
A _V? A V2
ai - aé{l-Acl-All _Telel 1111 ,
Eq. (3.43) is valid if
k.d,
ﬁ2-%—£ << KT (3.40)

1

Since we have already assumed k is small this is good if

di is small: i.e. the drift velocity in band i must be much
less than the thermal velocity, which is true in InSb for
fields of 100v/cm or less.

Similarily we find:

11
0| = agli-Agy=Ay,]
2 200 . . . 1 . ,
o] = alimAiamhoam (AL Ve + AnsY5,) )
(3.45)
2 _ 20 . . 1 , ,
ap = e ll=A =hon= FOALV 5+ AyV55) ]
= ~3 = ~3rq2 _ -1 2 2
all U.J- ao[l AC3 A33 O(AC3VC3 + A33V33)]
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where ag, A A \ i =2, 3 are given by Egs.

ci’ ci® Viio
(3.36) through (3.40) with obvious changes in the sub-

ii?

scripts. || and | indicate the relative orientations of
E and A.
The polarization effect is given by

a; = aTI - ui ,1=1,2,3.

Thus we have

1_ 1 2
ap— ao [AClVCzil + Allvll] (3-“6)
I
ale-al (A V2, + A, V2 (3.47)
p- o c2'c? 22 22 *
3 .
o 0 (3.48)

The polarization effect (Egs. (3.46) through (3.48)
is roughly proportional to E? through the variables Vij.
The factors in the A's which are proportional to E (di in
Eq. (3.37) for example) are not important, since d is very
small, which makes exp (-d) nearly 1 and slowly varying.
The effect goes to zero with E as expected, however the
difference in signs of the first two equations and the zero
result for the last is noteworthy. This last result becomes
even more interesting when the integrals analogous to Eq.
(3.35) are written out for these transitions. One finds

the effect is identically zero no matter what distribution

function is used. This points to the wave functions as the
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cause of the peculiarites and as we shall see in the

next chapter, this inference is correct.



IV. THE PHYSICAL EXPLANATION OF THE POLARIZATION EFFECT

In Chapter III we suggested connections between cer-
tain features of the wave functions and certain pecullar-
ities of the polariéation effect. To clarify these
connections we investigate the matrix elements for the
different polarizations and different directions of
electronic motion given by k, for an idealized set of
wave functions.

Consider transitions between a conduction band with
a purely S-like wave function and a valence band with a
Z- like wave function, when k 1s in the z-direction.

For A also polarized in the z-direction, the matrix
element 1s
<Slpz| Z> =M . (4.1)

If we now take kK 1n the x-direction, S-S and
4+X by transformations (3.18) and (3.19). Thus the matrix
element 1is

<glp, x> = 0. (4.2)

Now take A to be polarized in the x-direction.

For k in the z-direction the matrix element is

<s |p,l2z> = o0, (4.3)
and for k in the x-direction it is

<S|p x> = M. (h.4)

Next we calculate the absorption associated with

29
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the two directions of k. (Picture two electrons doing
the absorbing, one moving in the z-direction and one

moving in the x-direction with the same speed; i<e. the
same magnitude of k.) Because the energy 1s a spher-

ically symmetric function of k we have

o, = [IM|2+ 0] D M| 2D, (4.5)

a = [0+ |M|2] D = }M|?%D, (4.6)

where qzand a.are the absorptions for the light polar-
ized in the z-"and x-directions respectively and D is
some constant which depends on the magnitude of k. We
see the sum total of gzand qxis the same for these
directfions. We call the z and x directdions correspond-
ing directions because what one contributes to qxthe
other contributes to A and vice versa.

When we consider the absorption due to electrons
moving in other directions, we find, because of the
spherical symmetry of the transformation equations and
the energy, that for each direction Bz there is a
corresponding direction Bx thet~gives the same contri-
bution to a, as BZ gives to a, and vice versa.

This 1s a one-to- one and single valued correspondence.
When we integrate over all angles as prescribed by

Eq. (2.31), we fing that a, = o  Jjust as in Egs.

(4.5) and (4.6).
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If we now insert in the absorption expression an
angularly dependent distribution factor, -exp(Cos® ),
like the one due to an electric field in the z-direction,

then, for k also in'the z-direction

a,= <8| p,| 2> D [-exp(1)] = - |M|? De

a.= <8 |p | 2> D [-exp(1l)] = oO.

For k in the x-direction
a, = <S |p,| X >D [-exp(0)] = 0
o, = <S8 |p,| Z >D [ -exp(0)] =-[M|? D
Adding up the total absorption for the two dilrec-
tions of k we have
o, = [-|M|% De40] = -|M|? De,

[ 0- |M?*D]=- |M|?D,

[*]
I

and therefdre

a,- o = al| = a] = - |M|?D (e-1)

Thus there is a polarization effect because the
absorption contribution from each of the corresponding
directions x and z is multiplied by a different occupa-
tion factor. Likewise~ when we integrate over all angles
there will be a polarization effect for the same reason.
The field acts to lowerc the absorption because of the
negative sign of the distribution factor.

We can now understand the reason for the sign

difference between Egs. (3.46) and (3.47). The wave
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functions for small k given by Egs. (3.15) and (3.16)

with coefficients (3.21) show that for k in the z-di-
rection valence band number one has no Z component. Thus
it contributes little or nothing to azsall when the dis-
tribution factor is large. At the same time it contri-
butes most do a = o | when the distribution factor is
’large. Thus the action of the distribution factor is
larger for o] than al|, and because the sign of this
action is negative, the resulting polarization effect

is positive.

Valence band two, however, has a much larger contri-
bution from the Z-like wave than the X-like wave. Thus
it will tend to contribute more to a|| and less to a
when the distribution factor is large. Therefore the
action on a||is larger than the action on a] and the
sign of the distribution factor makes Eq. (3.47) neg-
ative.

The cause of the zero result for the third valence
band is also to be found in the coefficients (3.21.).
Because the relative probability of an electron, in this
band, being in the state X, Y, or Z is given by the
square of the respective coefficients of these functions,
we see from Egs. (3.21) and (3.15) that the probability
of an electron's being in X + i Y is twice the proba-
bility of its being in Z. Dividing the probability of
being in X and Y equally between the two, we find the

probabilities of being in X,Y, or Z are all equal.
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This is true for all directions of k because of the

spherical symmetry of the transformations (3.18). Thus
for any given direction, a|| = o |; i.e. the correspond-
ing directions are the same, and the distribution func-
tion can make no difference.

The deéscription of the polarization effect for small
k can be made in the simple terms used above because the
conduction band is completely S-like in this limit.
Away from k = 0 the conduction band rapidly becomes a
mixture of all four orbitals, and the valence bands
take on some S-like character and depart from the simple
combinations of X, Y, and Z orbitals that made the
above analysis so unambiguous. No matter how complicated
the admixtures become, however, an analysis similar to
that above can be carried out with the addifional re-
quirement that transitions proceeding downwards from the
conduction band to a valence band (or from a higher valence
band to a lower valence band ), are negative additions

to the absorption.



V. THE POLARIZATION EFFECT FOR ARBITRARY WAVE VECTOR

The approximate determination of the polarization
effect given in Chapter III cannot be used to plot a
curve of absorption versus frequency for a comparison with
experiment because the wave functions for small k rapidly
lose accuracy as we move just a small interval in fre-
quency from the absorption edge (see figs. 4,5,6).
Therefore in this chapter we calculate the polarization
effect using the wave functions for arbitrary k given
by Egs. (3.15) and (3.16) with coefficients (3.20).

We calculate first for the fundamental absorption and
then for the inter-valence band absorption.

Summing Eq. (2.31) over the conduction band and
valence bands, and using the matrix elements in
Table I,we find

2 g2 X
d(E -E.)l

™Mw

al | (k) =e?
cn i=1 H Wy

—d-rﬁ-_

(5.1)

m 2 . 2 2 .
fo{2(acci+ccai)81n6+[(acbi—bcai)—2(acci+ccai) ]Slge} X

{f(Ei)—f(Ec)}de, and
al= e? : p® k? X (5.2)

Hen i=1 H wi‘dZEc-Ei)’
dk

m 2 _ _ 2 .3
fo{[(acci+ccai) (bcai acbi) ] Sin’6 +
2

+2(bcai-acbi)2 Sin6} {f(Ei)-f(Ec)} dse
34
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where

Huw, = Ec(k)-Ei(k), (5.3)

and it i1s understood that

f(Ej) = f [Ej(k+dj)] 5 .j= csi,2>3° (5014)

The energy bands are labeled just as in Chapter III and
we have also used a1=0 b1=0, cl=0.

We have written a as a function of k because it will
be easier to calculate in this form. It is impractical
to solve Eq. (3.4) analytically for arbitrary k, there-
fore we must solve it numerically. It is more efficient
to find the three roots of Eq. (3.4) for several values

of k, use the values to determine ‘d(Ec- Ei)‘
dk

(approximately) for a certain k, then substitute this
result and the proper Mwi for that k;found from Eq. (5.3),
into the equation for a, than to choose a frequency w
and search for solutions of Eq. (3.4) that will satisfy
Eq. (5.3). Having determined the coefficient multiply-
ing the integral in the above manner, we than solve
(3.4) again for Ej(k+dj), j=c,1,2,3,compute the distri-
bution function and evaluate the integral numerically.
We should have used the term '"corrected solutions
to Eq. (3.4)" everywhere we mentioned the Ei”s above
because the actual energies used are corrected for
perturbations from higher bands as Kane showedlo.

These energiles are shown in fig. 3 while the coefficients

ai’bi’ci as a function of k2 are shown in figs. 4,5,6.
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The computer program which performs all the operations
described above 1is listed in the Appendix.

The polarization effect for the absorption due to
the inter-valence band transitions is calculated in the
same manner as that for the fundamental absorption. The
matrix elements between the bands involved are calcul-
ated as they were for the fundamental absorption in
Section 3.2. It may be noted that for this case the
matrix elements, and thus the absorption and polarization
effect, are all zero in the small k approximation, be-
cause according to Egs. (3.2.0) and (3.16), none of the
valence bands contain an S-1like contribution in this
limit, thus by selection rule (3.27) there can be no
transitions. The solutions fora||and a| for arbitrary
k can 1n this case be put in the same form as Egs.

(5.1) and (5.2) if we define

Hw, =E;-E,; Hw, = Ey-Eog; Mw3= E,-Es, (5.6)
and for the first two terms of the sum change the sub-
scripts according to the formula c-+ 1, 1+, 243 while
for the third term we use the prescription,c+2. The re-
sulting equations fora| and ol |are solved numerically
as before.

The parameters used in calculating the polarization

effect for InSb are shown in Table II.
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TABLE IT

Parameters used in calculations for InSb.

= - -s .
Eg (.23-9.6 x 10 °x T) ev mC Ol3mEg/.23
my = .54m m, = .015m m3 = .12m
A = .9ev P2= .44 atomic units
= 7x 10% x T7!'*'% cm? / uo=1.1 x 10% x T2 'em?

n v.sec p v.sec

The band parameters are as given by Kane 16 except Eg,

17

m, and my which are as given by Ehrenreich The values

of m_ determined by various experiments are not consistent.

1
We have chosen the value tabulated in preference to others
because 1t is most defensible, and it also produces theo-

retical absorption versus photon energy curves closer to
the experimental results., The mobilities vary with temp-

erature and hole concentration and are as given in ref-

erence 18.

The results of the computations are given in terms
of a dimensionless function we shall call the polari-

zation effect coefficient, defined by

PE=G'||-°‘ _L )

(5.7)
%zero
where % ero is the absorption at the temperature at which
a|] - a] is measured,for zero electric field.

Figure 7 shows the polarization effect coefficient

for the fundamental absorption for intrinsic InSb,as a
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function of the photon energy, for T = 300°K and EélOOV/Cm.

The exact Fermi - Dirac distribution function was used

in this case, not its Maxwellian limit as in Chapter IIT.
Fig. 8 shows the intra-valence band absorption at

T=300°K and E=100 V/cm’ which turns out to be much the

same whether we use the intrinsic Fermi-Dirac distribu-

tion or go to the extrinsic case for a hole concentra-

tion of 4 x 10‘5/cm3 and a Maxwell Boltzmann distribu-

tion given by

4m?ph® exp (E/KT)

= £(E) (5.8)

(27KT) 3/2(m13/2+ m, 3/2)

where we have averaged over the highest valence band
masses and p 1is the concentration of holes.

Fig. 9 shows P_. for inter-valence band absorption

E
in extrinsic InSb at 77% using the distribution Eq.(5.8),
at various field strengths and hole concentrations.

We note that the effect-is much larger at the lower temp-
erature. This is because the zero absorption does not
change much over this temperature range because of the

abundance of holes, buta||-a| changes inversely with

temperature.
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VI. DISCUSSION OF RESULTS

The behavior of the polarization effect coefficient
curves we calculated in the last chapter, can be under-
stood in detail using the principles discussed in Chapters
IIT and IV. We next discuss each of the previously pre-

sented P_-curves in turn, and point out how curves of this

E
type can be used as experimental checks on the distribution
function and wave functions involved.
1. Figure 7

The rapid rise and fall of the curve can be attributed
to the fact that the Fermi function is changing rapidly in
this region. The effect rises sharply near the absorption
edge because the carriers are plentiful here. The fact
that the effect rises from zero ( and does not come down
from infinity for example) is due to the fact that at
slightly higher energies the Boltzmann like approximation
is valid for the Fermi function and Eqs. (3.46) and (3.47)
say the effect goes as k? in that region. The continuity
of the equations results in the curve going to zero with
k. However, before the true k? dependence sets in the
number of carriers drops sharply and the effect (which
is caused by the shift of these carriers with the elec-
tric field) drops with them.

The fact that the curve due to valence band one ex-

hibits a simple positive peak while that due to valence
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band two goes negative, then positive, can be explained
by the band structure. The first band has no Z or S
component for any k. Thus the only transitions allowed
are those between the X-like (or Y-1like) functions in
the valence band wave function and the S part of the
conduction band functlon. As shown in Chapter IV, an
X-1l1lke term produces a larger ai, and since the sign
of the distribution factor is negative ( see Chapter
IV), we get a positive PE'
Valence band two, however, has a dominant Z-1like
component near k=0 which together with the dominant
S-1ike part of the conduction band leads to a negative
polarization effect. Away from k=0,valence band two
gains a rapidly increasing S-1like part while its Z-1like
component decreases. In the conduction band almost the
opposite happens. The S-like part decreases while the
Z-like part increases rapidly. Thus the direction of
the absorptions reverses with respect to the S and Z
waves and therefore the sign of PE must reverse.
Generally speaking this curve does not offer a good
chance of checking the distribution functions and wave
functions because the absorptions due to valence bands
one and two overlap, therefore it would be hard to
distinguish the effects of one from the other. However
a slight amount of S-Wwave in the first valence band
would bring the X-andZ-1like parts of the conduction band

into consideration which could significantly alter the
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total effect. Thus there are possibilites of using this
kind of curve as a check on the S-content of the first
valence band. The effect 1s small for this intrinsic
case, but since the total absorption is large the ab-
solute magnitude of o||- o] is about .06/cm. We shall
discuss this magnitude later with reference to other
experiments. We have not discussed the third valence
band transitions because the effect is insignificant

in this case.

2. Figures § and 9 .

These figures involve transitions between the second
and third valence bands and the first valence band. Be-
cause the first valence band contains no S-1like part we
can disregard the X-andZ-like parts of valence bands two
and three. The absorption should therefore be charac-
teristic of transitions between a higher X-band and a
l1dower S-band except that the size of the latter increases
with k (see figures 5 and 6). Approximation (3.31) is
always good in the valence bands for intrinsic semicon-
ductors, and for the extrinsic case we are using Eq.
(5.8), therefore the Boltzmann form of the distribution
function is valid for both cases. Also, the mobility
in the valence bands is much smaller than that of the
conduction band, therefore d is much smaller and approx-
imation (3.43) is valid for much larger values of k.

This is the same situation we discussed in Chapter IITI,



L6

therefore the results should be the same as for Eq. (3.46)
except that since we are now considering transitions from
a higher X-like band to a lower S-like band, the sign of
the effect should be reversed. The figures show the re-
quired k2 dependence. The curvature in the effect for
valence band two is due to the curvature in this band as
a function of k? . The masses of valence bands one and
three are constant therefore Hw k? and the curve is a
straight line. Eventually,as k gets bigger,approximation
(3.43) should become invalid, the number of holes should
diminish and the effect should decrease. However at the
higher values of k in these figures, the absorption has
become so small that the effect would not be measurable.
Because the absorption spectra for the two transitions
considered in figures 8 and 9 are widely separated,
curves of this type should be a good test of the theory.
Again a slight addition of some S-like part to valence
band one would bring the X-like and Z-like parts of
bands two and three into consideration and could change
the effect considerably. Note the large change in PE
with E. Changing E is equivalent to increasing the dis-
placement of the distribution function. Thus this ex-
periment should be a sensitive test of this displacement.
Earlier in the discussion we mentioned the absolute
size of the polarization effect, a||-a], for the fund-
amental absorption of the intrinsic semiconductor at

100V/cm was about .06/cm. The effect is also of a
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comparable magnitude for the extrinsic inter-valence
band absorption at fields of 150V/cm (or larger), but
elsewhere it is much smaller. The smallness of the ab-
sorption change suggests an experiment using the 4iff-

19

erential measurement technique. Using this technique

experimenters have measured modulations of the absorp-
tlon due to a d.c. electric field to about .Ol/cmeo.
This measurement was for the fundamental absorption in
silicon which is of the same order of magnitude as that
in InSb, so if a like experiment could be arranged to

measure P in the above two situations it would involve

E?
a measurable effect. Instead of measuring the difference
in the absorption between the field on and off situations,
as was the case for the experiments referred to, one

might measure the difference between the field parallel

and the field perpendicular situations.

One could also hope to increase the absolute magnitude
of the effect by doping,or the absolute and percentage-wise
size by increasing the electric field. 150V/cm is near
the 1limit where funny thingsstart happening to the mob-
ility of InSb under normal circumstances, but a magnetic
field greatly increases the size of the electric field
one can apply before breakdown occurs. The effect of
a magnetic field on the polarization effect considered
here is not known.

It should be noted that the size of the effect mea-

sured in germanium by Pinson and Bray8 and other59 is
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considerably larger than in any of our theoretical curves
(compare figures 10 and 11). Their effect was large enough
to be measured without the sophistication of the differ-
ential technique.21 Besides the facts that their measure-
ments were made on a ddfferent material and at higher
voltages than those for which our curves were drawn,

there are several other possible reasons for this diff-
erence in magnitude.

We have not considered in our theory the heating of
the electron population by the field. Since the absorp-
tion shifts toward higher energy and becomes broader
with increasing temperature, heating could account for
the shift and broadening of the experimental o] and al |
curves. The heating would not change our analysis
since we could account for it by simply changing the
temperature in our calculations to match the shift in
the experimental curves.

The heating does not explain the large size of the
difference between the absorption parallel and absorp-
tion perpendicular measurements of Pinson and Bray. How-
ever the ratio of drift to thermal velocity in their
experiment was about .5 while the largest value we used
in the inter-valence band curves which correspond best
to their experiment, was about..l. This difference
amounts to increasing our field to 750V/cm ( which is
impossible, of course, for InSb without a magnetic field).

Since the effect goes about as E? this could account for
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and a] on expanded scale for E=150V/cm.
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Fig. 11. Anisotropic absorption of polarized light
by hot carriers in p-type germanium, ior E = 760V/cm,

T = 77°K, as measured by Pinson and Bray.8
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the large size of the measured result.

Finally we mention what might possibly be the best
use of this experiment. The method of numerical solution
and programing for the theoretical calculation of this
effect makes it quite easy to change distribution func-
tions in the problem. One merely changes a few cards in
the computer program. Thus one could, if he had some
experimental data and had a fair idea of the wave func-
tion, substitute any distribution function he desired in
the program - perphaps even insert an expansion of some
kind and vary the parameters to fit the experimental
curves. On the other hand if the wave functions of the
material were not well understood, one could insert a
rough distribution function and vary the coefficients
of the wave function to try to match the general shape
of the curve.

In general, given a distribution function, if the
experimental results show a larger than predicted polar-
ization effect, this indicates a greater disparity bet-
ween the relative amounts of X and Z (or Y and Z) in the
wave function for the band. A smaller than predicted
effect indicates a more symmetrical arrangement of the
distribution function, with the relative amounts of
X,Y,Z more equal. The sign of the effect tells which
is the greater, the X part or the Z part. Given a wave
function, a larger effect means a more violently dis-

placed distribution function. If for certain values of
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k there are peculiarities in the distribution function,
for instance an abnormal asymmetry, this will be reflec-

ted in an increase in the effect at that k.
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APPENDIX

PROGRAM POLEFF
PROGRAM WHICH CALCULATES TWE POLARIZATION EFFECT

TO CHANGE THE DISTRIBUTION FUNCTION CHANGE' CARDS WITH D IN
CALUMN ONE,

(NOT ALL CARDS HWAVE TO BE CHMANGED WI1TH ALL NDISTRIBUTION
FUNEGTIONS) .

COMMON/RLOCKY/EGAP,VMASS(4),DELTA
COMMON/MAINAPZ/REFIND
COMMON/MAINABS/T,TK,EFERM!
COMMON/MAINABR/EFIELDsSOBILC4) . NSR
COMMON/MAINENS/SQPsCKANE, EGARAD(4)
Ts3n0,

DELTA=.9

SQP=.44

EGAPZERO=E,23
EGAP=EGAPZERO=9,6Fw5wT

EGAPTE, 48

EGAPAD(1)=,18=EGAP

SO0BIL(1Y=7 .Fe8/(Tww(¢1,6))

DO 5 J=2,4

EGAPAD(J)=0,
SOBIL(JUYs=1,1E+A/(Tex(2,1))
VMASS(1)3,043*ERAP/EGAPZERD
VMASS(2)3e,015

VMASS(3)=e.12

VMASS(4)ze,54
CKANE=2,%(1,/VMASS(4)=1,)
BOLTZC=8,61E=5

TK=T»BOLT2C

EFERMI= EGAPT/2,+ 3,*TKeLOGF(=VYMASS(4)/VMASS(1))/4,.
REFIND=3,96

CALL ‘ENERGY

CALL ABSORBZ

EFIELD=4 00,

NSR=80

FORMAT (5%, 4KHNSR=,158)

PRINT 7,NSR

CALL ABPARPER

END
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SUBROUTINE ENERSY

THIS SUBROUTINE FINNS TWE E SUB K OF' EQUATION(3,5) BY SOLVING EQ.
(3.4), THEN ADDINA THE FREE ELECTRON ENERGY (EFREELEC) AND
CORRECTIONS FOR HIGWER BANDS (HWPERT),

COMMQN/BLOCKllﬁﬁAPBVMASS(‘),DELTA
COMMON/ENABS/SWV(102)2A(4,102),B(4,402),C(4,102),EKANE(4,102),S(10
12)

COMMON/MAINENS/SQPscKANE» EGAPAD(4)
COMMON/ENBRBYS/HHO2M,EPS»DD,DP,DB

D!MENSIQN E(3) M]3
HHMO2MB(4,0544¢6,582/(2,+#9,108¢5,2917¢5,2917))1,0E+3

EPSa21,0E~$S

DD=NELTA=EGAP

DP=NELTA®EGAP

DB=DELTA®2,/3.

E(L4)Y=EGAP

g(2)=0.

E(3)=s=DFLTA

SWV(1)=el,0B6

PRINT 14,FGAP,DELYTA,SQP,EPS,CKANE.EGAPAD(Y)

FORMAT (5X:BHEGAPI)F7,3.5Xp6HDELTA8.F7.3.5X,4HSQP=.F7.3o5X.4HEPS=:
1E1g0205X:6HCKANE’:F8.2:5X010HEGAPAD¢C)=.F9,5)

PRINT 12

FORMAT («0 K SQUAREN IN ATOMIC UNITS, ENERGY IN ELECTRON VOLTS.
4 NI=NUMBER OF ITERATIONS FOR ENERGY Iw)

PRINT 13

FORMAT(«0 K SQUARED ENERGY(C) ENERGY (V1) ENERGY(V2)

1 ENERGY(VI) NE NV2 NV3»)

DO 75 K=2,102

IF (K=22)18,18,20
SWV(K)=SWV(K=1)el1,0E"6

GO Y0 22
SWV(K)=SWV(Krt)e2,0F"5
S(K)I=SQP*SWV(K)#27,21¢27,21
EFRFELEC=HHO2M*SHWV (K)
TASDP*S(K)

TB=DBeS(K)

DO 65 J=1,3

DO 45 L=1,10

MICJ)=L
FESE(J)ee3+DDY*ECJI*R(J)eTARE(J)-TB
DFE23,*E(J)*E(J)+2,eDD*E(J))=TA
DELTAE=FE/DFE
E(JYSE(J)=DELTAE

IF (EPS=ABSF(DELTAE))45,55,55
CONTINUE

TFsR(J) DR

TG=F(J)wEGAP

ANS(S(K)ee,5)eTF
BN=NB®TG/1,414244

CN=YGeTF

FNORMS (AN AN&BNeBN+~ANECN) ex 5
ACJ,K)=AN/FNORM
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BCJ,K)=RN/FNORM

C(J,K)=CN/FNORM
HPERT=(B(J,K)#B(J,K)/24¢CCJ,K)#C(JsK) ) #CKANESEFREELEC
EKANE(J,K)=E(J) +EFREELEC*HPERT#EGAPAD(J)
EKANE(4,K)=EFREELEC/VMASS (4) +EGAPAD(4)

AC4,K) =0,

B(4,K) =1,

Cl4,K) =0,

FORMAT (E13,3,4F14.9,317)

PRINT 69, SWV(K),EKANE(1,K) s EKANE(4sK) s EKANE(2,K) » EKANE(3,K) s
IMIC1)aME(2),M1(3)

PRINT 81
FORMAT ¢wn K SQUAREN AC RC cc Av2 BvV2
1 cv2 AV3 BV3 CV3+)

DO 85 122,102

FORMAT (E13,3,9F9.3)

PRINT 83,SWV(1),AC1, 10,801, 1),CC121),AC2,1),B(2,1),C(2,1),A(3,1).8
1€3,1).Ce3, 1)

RETURN

END
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SUBROUTINE ABPARPER

THIS SUBROUTINE CALEULATES THE ABSORPTION FOR A PARALLEL TO
E (ABSPAR)Y AND FOR A PERPENDICULAR TO E (ABSPER), USING
THESE AND THWE RESULTS OF: SUBROUTINE ABSORBZ IT THEN
CALCULATES VARIOUS nURVES OF INTEREST,

COMMON/BLOCKL/EBAP» VMASS(4),DELTA

COMMON/MAINABS/T,TK,EFERMI

COMMON/MAINABR/BFIELD.SOBIL(4),NSR

COMMON/ENABS/SWV(102)+A(4,102),B(4,102),C(4,102).EKANE(4,102),S(10
12)

COMHON/ABSORPS/GNSaWV(102)nDENOM(AnlOZ)nGA(4o102)oGB(4.102):EPHOTO
IN(4,102),ALPHAQ(4,102),ABZERD(4,402)

COMMON/ABRENGY/EZERA(3) ,ENTHETA(4)

D!MENSION DRIFTt4); nRPLUSK(4),DISFUN(2,4),SUMS3(2,4),SUMS1(2,4),AR
1EAS3(4),AREAS1(4),PALFEC(4,{02),CHGPAR(4),CHGPER(4),X(2),C0(2),SI(
22),FK(2,4),ABSPAR(4,102),ABSPER(42102),POLFOA(4,102)

RMASSE=9,10RE=2R

MBAR=(1,0844/5,.2947Y*1,E-48

DO 199 t=4,4

199 DRIFT(I)=VMASS(1)eRMASSE*SORIL(I)*EF]JELD/HBAR
2n0 FORMAY ¢07?H TYEMP=,F6.0,94 EFERMI3,F8,5,9H EFIELD=,F6,0,9H EMOB
1IL=.512.4,9H HMOBIL=,E12,4)

PRINT 200, T.EFERMIEFIELD,SOBIL(1),SOBIL(2)

204 FORMAT (07H CMASS=;F9,5,3X,7HVIMASS=,F9,5,3X,7HV2MASS=,F9.5,3X,7HV
13MASS3F9,58,3X,9HDRIFT(C)=+E12,5,3X,40HDRIFT(V1)2,E12.5)

PRINT 201,VMASS(t1),VMASS(4),VMASS(2)+VMASS(3),DRIFT(1),DRIFT(4)

204 FORMAY (en KSQUARED FK(ODD,C) FK(EVEN,C) FK(ODD,V1) FK(O
1DN,v2) DISFUNCE,C) DISFU(CEsVL)Y DISFU(E,V2) ENTHETA(C) ENTHET
2A(V2) )

PRINT 204

E2ZERO(1)sEGAP

EZEROC2)=n,

EZERO(3)==DELTA

DO 280 K=3,102

DO 210 1s1,4

210 DRPLUSK(I)Y=SWV(K)«DRIFT(I)*NRIFT(I])

He3,1415927/(2,+NSR)

DO 2185 N=4¢,2

DO 214 =2,4

SUMS3(N,J)=0,

214 SUMS1t(N,J)=0.
215 CONTINUE

DO 260 1A=1,NSR

X(1)=(2,#NSRe . w2,01A)*H

X(2)s(2,¢ANSR=2,.01A)eH

CO(1)=COSF(X(1))

CO(?2)=eCOSF(X(2))

SIC(4)SSINF(X(1))

ST(2)SSINF(X(2))

po 250 J=4,4

DO 240 N=4,2

FR{N,J)DRPLUSK(J)Y+2.*WV(K)®DRIFT(JISCO(N)

CALL ENBY(J,FK(N,J))
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D 221 DISFUN(N,J)= 1,/ 1, ¢ EXPF((ENTHETA(J) = EFERMI)/TK))

IF (Jr13240,240,224
224 SUMS3N,J)=SUMSS(N, 1)+ (STINY**3)«(DISFUN(N, J)=DISFUN(N,1))
SUMS1 (N, J)=SUMST (N, J)+ST(N)#(DISFUN(N»J)-DISFUN(N,1))
240 CONTINUE
250 CONTINUE
260 CONTINUE
PROD=CNS*S(K)
DO 270 J=2.4
AREAS3(J)=He(4,+SUMS3(1,J)+2,*SUMS3(2,J))/3,
AREAS1(J)=H#(4,e5UMS1(1,J)+2,%SUMS1(2,J)) /3.
ABSPAR(J,K)=PRON*((GB(J,K)=2,#GA(J,K))IwAREASI(J)+2.%GA(JsK)*AREAST
1(J))/CEPHOTONCJ, K)Y«NENOM(J,K) )
ABSPER(J,K)=PROD* ( (GA(J,K)=GB(J,K)/2,)¥AREAS3I(J)+GB(J,K)*AREASL(J)
1)/ (EPHOYON(J,K) «DENOM(J,K))
270 POLFEC(J,K)=ABSPAR(J,K)=ABSPER(J,K)
279 FORMAT (E11,3,9€13.5)
280 PRINT 279,SWV(K),FKt1s1),FK(2,1),FK(1,4),FK(1,2),DISFUN(2,1),DISFU
AINC2,4),DISFUN(2,2),ENTHETA(1),ENTHETA(2)
281 FORMAT (%0 KSQUARED IN ATOMIC UNITS,  EPHOTON IN EV,  ABSORPTION
1S IN INVERSE CENTIMETERS®)
PRINT 281
282 FORMAT («0 K SQUAREN  EPHOTON(V1) ABSPAR=ABSPERL  ERKOTON(V2)
1ARSPAR-ABSRFR2  EPHOTON(V3) ABSPAR=ABSPER3*)
PRINT 282
DO 284 K=3,102
283 FORMAT (E11,3,3tF14,7,E16.7))
284 PRINT 2R3,SWV(K),EPHOTON(4,K),POLFEC(4,K),EPHOTON(2,K),POLFEC(2,K)
1,EPHOTON(3,K),POLFER(3,K)

285 FORMAT («n EPHOTON(V1) ABSPAR(V1) ARSPER(V1) EPHOTON(V2)
9 ABSPAR(V2) ABSPER(V2) EPHOTON(V3) ABSPAR(V3) AB
2SPER(V3)w)

PRINT 285

DO 290 K=3,102

289 FORMAT (3(F12,7,2F146.7))

290 PRINT 289,EPHOTON(4,K)»ABSPAR(4,K),ABSPER(4,K),EPHOTON(2,K)»ABSPAR
1(2,4) ABSPER(2,K),EPHOTON(3,K), ABSPAR(3,K),ABSPER(3,K)

292 FORMAT (ef EPHOTON(V1) CHANGERAR(VL)  CHANGEPER(V1) EPHOTON(V2)
1 CHANGEPAR(EV2)  CHANGEPER(V2) EPHOTON(V3) CHANGEPAR(V3)  CHAN
2GEPER(V3)+)

PRINT 292

DO 299 K=3,101

DO 294 J=2,4
POLFOA(J,K)=POLFEC(.1,K) /ABZERO(J,K)
CHGPAR(J)=ABSPAR(J,K)=ABZERO(J,K)

294 CHGPER(J)=ABSPER(J,K)=ABZERO(J,K)

295 FORMAT (3(F12,7,2E14.6))

299 PRINT 295,EPHOTON(4,K),CHGPAR(4),CHGPER(4), EPHOTON(2,K),CHGPAR(2),
1CHGPER(2),EPHOTON(3,K)»CHGPAR(3), CHGPER(3)

300 FORMAT (en K SQUAREN  EPHOTON(V1) PAR=PEROABZERO1 EPHOTON(V2)
1PAR=PERDARZFRO2 FPWOTON(V3) PAR-PEROABZERN3*)

PRINT 300
DO 304 K=3,101
303 FORMAT (E41,3,3(F14,7,E16,7))
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3n4 PRINT 303,SWVCK),EPHOTON(4,K),POLFOA(4,X),EPHOTONt2,K),POLFOA(2,K)
1,EPHOTON(Z,K),POLFOA(3,.x)
RETURN
END
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325

345
355

365
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SUBROUTINE ENGY(I,FK)
THIS SURROUTINE CALCULATES VALUES OF E(K+D), (ENTHETA),CALLED FOR
BY SUBROUTINE ARPARPER.

COMMON/BLOCK1/EGAP,VMASS(4),DELTA
COMMON/ENERGYS/HHO2M, EPS,DD,DP, DB
COMMON/ABRENGY/EZFRN(3),ENTHETA(4)
COMMON/MAINENS/SQR, CKANE,EGAPAD(4)
EFREELEC=KHO2M*FK

1F(4-1)32n,320,325
ENTHETA(4)=FFREFELEC/VMASS(4)+EGAPAD(4)

GO TO 345

S=SOP*FK#27,21#27.24

TASDP*S

TR=NBwS

DO 345 L=1,20
FESEZERO(I)*##3+NDeE7ERO(I)*EZERN(I)~TA®EZERO(I)-TB
DFE=3,«FZERO(I)wEZERO(1)+2,#DDeEZERD(I)=TA
DELTAE=FE/DFE

EZERO(I)=EZERO(1)=DFLTAE
1IF(EPS-ABSF(DELTAF) 345,355,355

CONTINUE

TF=EZERO(!)*DB

TG=EZERN(1)=EGAP

ANZ(Swe ,5)0TF

BN=NB*TG/1.414214

CN=TG*TF

FNORM= (AN®AN+BN+BN«N*CN)#w 5

B=BN/FNORM

C=CN/FNORM
HPERT=(R%B8/2,+CeC)*nKANE*EFREELEC
ENTHETACI)Y=FZERN(1)+EFREELEC*HPERT+EGAPAD(])
RETURN

END
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