TORSION 0F AXiALLY NON-UNIFORM CIRCULAR SHAFTS-iTERATiVE Fl-NiTE DIFFERENCE SOLUTIONS Thesis for 1515 Degree of Ph. D: MICHIGAN STATE UNIVERSITY Dipak Kumar Baza] 1964 {Tl-4531! LIBRARY Michigan State University ‘ This is to certify that the thesis entitled TORSION 0F AXIALLY NON-UNIFORM CIRCULAR SHAFTS-ITERATIVE FINITE DIFFERENCE SOLUTIONS presented by DIPAK KUMAR BAZAJ has been accepted towards fulfillment of the requirements for Engineering 7% i” I ’ Ci ’< (I [55‘ ”(a U (7 \Q (Just/2,.“ Major professor 0“ 1‘ f r . I , ( fl.) LLL fl 'L-«mcf \_{."Y*\/yng 67,4: 1. A. — I ’ P) t ' YV\' 4 ’Vfifnt/h‘ A," \ Date Q (,4 5‘» 491/ ‘3? ,5 ; /‘;. é y * k, L Q‘\ 0-169 RCOEfi USE ONLY. ROOM USE OiéLY ABSTRACT TORSION OF AXIALLY NON—UNIFORM CIRCULAR SHAFTS - ITERATIVE FINITE DIFFERENCE SOLUTIONS by Dipak Kumar Bazaj A method is developed to apply the iterative technique for solving finite difference equations to the torsion problem for axially non-uniform circular shaftss The method consists of making a general program which could be used for obtaining the shear stress distribution on an axial section for a variety of axial non-uniformities of the shafto A successive overarelaxation iterative method is used in theprogram and is found to converge rapidly enough so that one can solve this problem on a digital computers A fairly fine mesh size can be used in the program, which can be varied according to the capacity of the computer and avail- able times To demonstrate the use of the program we have considered some examples of collared, filleted and grooved shafts for the computation_of shear stresses and stress concentration factorsO The values of the stress functions for the collared shaft are compared with those obtained earlier by Do No deGa Allen using a relaxation methods The stress concentration factors obtained for the filleted shafts are compared with the experimental values of Lo 80 Jacobson (electrical analogy l method) an method) and of Ao Weigand (precision strain gages)o l‘x) § n TORSION OF AXIALLY NON-UNIFORM CIRCULAR SHAFTS - ITERATIVE FINITE DIFFERENCE SOLUTIONS BY Dipak Kumar Bazaj A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Mechanical Engineering 196% It Yalvern t ducted. I a guidance My Euidance “'30 have this Wor? c”. ' haelr‘ r. K r V T Q 4 2m of t‘ financia Fi aPPT‘9cia ACKNOWLEDGMENTS I wish to express my sincere thanks to Dr. Lawrence E. Malvern who suggested the problem and under whose pleasant counsel, lofty inspiration and supervision this work was con- ducted. I am also grateful to Dr. G. H. Martin, chairman of the guidance committee, for helpful suggestions and interest. My thanks are also due to the other members of the guidance committee: Dr. H. L. Womochel and Dr. D. W. Hall Who have contributed to the academic background necessary for this work, as well as to the staff of the computer center for their programming help. I am highly indebted to Dr. C. R. St.-Clair Jr., chair- man of the Mechanical Engineering Department, for providing financial support in the form of graduate assistantship. Finally, I dedicate this work to my wife, Manju, in appreciation of her patience, understanding and moral support. ii gamma 2m 0'.“ '1‘; LIST or 1 us: or A Chapter I. I IV . TABLE OF CONTENTS ACKNOWLEDGMENTS O O O O O 0 O O O O O O O 0 LIST OF TABLES. O O 0 O O O 0 O O O O O O 0 LIST OF FIGURES. o o o o o o o o o o o o 0 LIST OF APPENDICES o O O 0 O 0 0 O O 0 O O 0 Chapter I. II. III. IV. VI. INTRODUCTIONO O O O 0 O O 0 O O O 0 REVIEW OF LITERATURE. . o . o . o . FUNDAMENTALS O O O O O O O O O O O O 3.1 Elasticity Equations . . . . 3.2 Finite Difference Equations. 3.3 Irregular Star . . . . . . . METHOD OF ITERATION . o . o o o o o u.1 Solution of Linear Algebraic EquationSooooooooooo O O O O “.2 Gauss-Seidel Iterative Process . . . u.3 Application of the Iterative “a“ Flow Chart 0 o o o o o o o o PROGRAMMING O O 0 O O 0 O O 0 O 0 0 .1 Program Requirements . . .2 Program Techniques . . . .3 Flow Chart for MATGN . . .H . 5 5 5 5 Flow Chart for BOUGEN. EXAMPLES OF SOME NON-UNIFORM SHAFTS 6.1 Examples . . . . . 6.2 Collared ShaftS. . 6.3 Filleted Shafts. . 6.u Grooved Shafts . . O O 0 O 0 O O O O O O O O 0 O 0 iii MathOd o O O O O O O O O O O O O 0 O O 0 O O O 0 0 O O O O O O O O O O 0 O O 0 0 0 O O O 0 0 O O O 0 O O Page ii vii viii \10'301 11 11 12 1M 15 18 18 19 22 28 30 30 31 32 3k Chapter VII. C3 REFEREA CBS ‘n \Vfi? T‘C n:?£.lu&CL- Chapter VII. CONCLUSION. REFERENCES. . . . . APPENDICES. . . . . O O 0 iv Page #7 Q9 51 Table l. 2. 3A. 33. 34A, “B, 5A. SB, o m as: 7A. 73: She St} (I) LIST OF TABLES Table Page 1. Running Time and Number of Iterations. . . . . 39 2. Stress Concentration Factors for Grooved and Filleted ShaftS. o o a o o o o o o o o o “5 3A. Calculated Stress Function Values for the COllared Shaft o o o o -o., o o o o o o a o o o 52 38. Stress Function Values for the Collared Shaft by Allen 0 O O 0 O O O O O O 0 O O O O 52 3C. Calculated Shear Stress Values for the callared Shaft O O O O 0 O O O O O O o O O 0 53 uA. Stress Function Values for Filleted Shaft, 2r/830025000oooooooooooooo 5” “B. Shear Stress Values for Filleted Shaft, zr/S = 00250 O O O O O 0 O O 0 O O O O O O O 55 5A. Stress Function Values for Filleted Shaft, 2r/S=0.5................. 56 SB. Shear Stress Values for Filleted Shaft, 2r/83005o00000000000000oo 57 6A. Stress Function Values for Filleted Shaft, 2r/S=0.75................. 58 SB. Shear Stress Values for Filleted Shaft, zr/S = 00750 o O O 0 O O O O O O O 0 O O O o 59 7A. Stress Function Values for the Filleted Shaft, ZIP/S = 1000 o o o o F 0 C 0 o o o o o 60 7B. Shear Stress Values for the Filleted Shaft, 2r/S = 1000 O O O O O O O O O O O 0 O 61 Table 8A. 83. 11A. 118. Table Page 8A. Stress Function Values for the Grooved Shaft. 2r/S = 00250 a o o o o o o o o o o o 62 8B. Shear Stress Values for the Grooved Shaft, zr/S 3 0025 O O O O O O O O O O O O O O O O 63 9A. Stress Function Values for the Grooved Shaft, zr/S = 005 0 O O O O O O O O O O O O 6“ QB. Shear Stress Values for the Grooved Shaft, 2r/S 3 0056 O O o O O O O O O o O O O O O O 65 10A. Stress Function Values for the Grooved Shaft, 2r/S = 00750 a o o o o o o o o o o o 66 108. Shear Stress Values for the Grooved Shaft, ZP/S = 0075 o o o o o o o o o a o o o a o o 67 11A. Stress Function Values for the Grooved Shaft, 2r/S = 1.0 a o o o o o o o o o o o o 68 116. Shear Stress Values for the Grooved Shaft, 2P/S = 1000 O o O O O O O O O O O O O O O O 69 vi ‘5 ‘U. 11 ‘oo Figure LIST OF FIGURES Regular Star . . . . . . . . . . . . . . . . Example of Irregular Star. . . . . . . . . . Flow Chart for Gauss-Seidel Iteration Method Flow Chart for Subroutine MATGN. . . . . . . Alternative Method of Obtaining ER . . . . . Flow Chart for Subroutine BOUGEN . . . . . . COllared Shaft o o o o o a o o o o o o o o o Filleted Shaft, 2r/S = 0.25. . . . . . . . . Filleted Shaft, 2r/S = 0.5 . . . . . . . . . Filleted Shaft, 2r/S = 0.75. . . . . . . . . Filleted Shaft, 2r/S = 1.0 . . . . . . . . . Grooved Shaft, 2r/S = 0.25 . . . . . . . . . Grooved Shaft, 2r/S a 0.5. . . . . . . . . . Grooved Shaft, 2r/S = 0.75 . . . . . . . . . Grooved Shaft, 2r/S 1000 O O O G O O O O 0 Stress Concentration Factors for Grooved and Filleted Shafts.) o o o o o o o o o o 0 vii Page 17 26 27 29 31 35 36 37 38 no 1+1 1.2 #3 M6 H3 LIST OF APPENDICES Appendix Page A. Tables of the Calculated Values of the Shear Stress and the Stress Function . . . . . 51 B. Program in FORTRAN Language. . . . . . . . . . . 70 viii C; elastic; ifferex uniform first fo '...is is ' solution 01' itera1 tions im The prese Rifles to for axia ability 0 The 53853 in CHAPTER I INTRODUCTION Considerable progress has been made in solving plane elasticity problems, both by analytic methods and by finite difference methods. The elastic torsion problem for a non- uniform shaft has drawn much less attention, although the first formulation of such a problem was given as early as 1899. This is because of the difficulty of obtaining an analytic solution for such a problem and the absence until recent years of iterative schemes which could solve linear algebraic equa- tions involved in the solution by a finite difference method. The present work applies recently developed iterative tech- niques to the finite difference solution of torsion problems for axially non-uniform shafts, and studies the practic- ability of the methods. The study of the stress distribution and the maximum stress in shafts with non-uniform axial cross-section, subjected to torsional couple, is of considerable importance in the field of stress analysis, as it provides the stress concentration factors and the points of maximum and minimum stresses and thus is helpful in choosing appropriate factors of safety in the design criteria of machine parts. It can also be helpful in optimizing designs. Becaus« solution of * either used . ence methods ever, these 2 deficient in in particula: develop the i In rem speed digits dizensional 1 the finite d this work a 1 torsion prob 2 Because of the difficulty of obtaining an analytic solution of this problem, all the work done until now has either used analog-experimental solutions or finite differ~ ence methods using graphical or relaxation techniques. How» ever, these solutions always either lack generality or are deficient in accuracy or convenience. The relaxation method, in particular, requires practice, experience and patience to develop the skill required. In recent years, the use of matrix iteration with high speed digital computers has made it possible to solve two- dimensional elasticity problems to the desired accuracy by the finite difference methods using a very fine grid. In this work a general program is prepared which can solve the torsion problem for a variety of axially nonouniform shafts. fined-inn!“ sun- CHAPTER II REVIEW OF LITERATURE Michell (8, 1899) was the first to formulate equations defining the torsion problem for a solid of revolution. Foppl (3, 1905) undertook this problem independently in order to determine the maximum stress in filleted shafts. He suggested an indirect method of obtaining a displacement function v and then finding a contour s for which v is a solu“ tion by assuming a velocity potential function o. FOppl also used a hydrodynamic analogy assuming that most of the twisting moment is concentrated in a thin layer at the surface. This also was not very successful because of the nature of his assumption. Willers (22, 1907) was the first to put the torsion problem in a form involving thesxress function and the twist function. He used Runge's method of numerical integration to find the distribution of the shearing stress in fillets of a specifically dimensioned collared shaft. Between 1912 and 1933 many papers* were published, most of which extended the mathematical theory and obtained the stress distribution in the mathematical solids of revolu- tion such as ellipsoid, paraboloid, etc. In this connection *For further reference on these see Higgins (5, 19u5). 3 only one w' in a shaft process of obtain a ‘2 difference did this 1 mesh poin‘ of each 5< Hort applied r and obtai a SPecifi flicker, mical :: Very time Pelaxatic u the work of Timpe (17, 1912), Melan (9, 1920) and Neuber (10, 1933) are the basis of later development. Of all the authors mentioned above, Willers was the only one who furnished a means of determining the stresses in a shaft of an arbitrary contour, using a time-consuming process of numerical integration of limited accuracy. To obtain a better method Thom and Orr (13, 1930) used a finite difference procedure involving the stress function. They did this first by estimating the stress function values at mesh points and then by calculating the value at the center of each square and repeating this back and forth. More recently Southwell (13, l9u6) and Allen (1, 19u6) applied relaxation techniques to the finite difference method and obtained almost the same results as Thom and Orr did for a specifically dimensioned collared shaft. Their method is quicker, better formulated and much less vulnerable to arith- matical mistakes, than that of Thom and Orr, but still very time consuming, especially for one not an expert in relaxation techniques. In addition to the analytical method of solution of the torsion problem, there have been attempts to solve it by analog-experimental methods. In this connection Wyszo- mirski's (23, 191a) work using fluid flow through a thin slit and Jacobson's work (6, 1925) and later Thum and Bautz's (15, 193M) work using an electrical analogy are important. Timoshenko and Goodier (16, 1951) give results of Jacobson's electrical analogy. 3.1 Elastic: The net for circular texts on elas :cso tibilit' equation 5 or t 7‘ .' s ‘0‘ a dlSpla 30110: N Goodier ei'u‘ation .53; 3 3;( OF 32$ N K) ”L «me 0:11;, :2 I 1‘6 ‘ T62 CHAPTER III FUNDAMENTALS 3.1 Elasticity Equations The mathematical formulation of the torsion problem for circular shafts of variable diameter is given in most texts on elasticity. From the equations of equilibrium and compatibility for isotropic materials, a partial differential equation for a torsion stress function and another equation for a displacement function are derived. Following the notations and derivation of Timoshenko and Goodier (16) the final form of the partial differential equation for the stress function o in cylindrical coordinates with z axis along the axis of the shaft is: a 1 a. a 1 a. : ss‘;357)*s'z(;stz’ 0‘“ °Pfi§-§.l£+32¢=o (2) Pr 5 3r as The only non—zero stress components are Inaandtez, and these are related to the stress fun;tion ¢ by T = - 1 3¢ re ~ -— r2 32 - (3) T67. : l” 13 r2 3r A second equation, similar to equation (1) can be de- rived for the displacement function o, where V is the angle of rota: of the s F 4r V- ‘e as o Lu 5 .3 q | ‘ q . #4"? GI“ from the that 511; of the m 1 shaft 1 Where e end at CORdit c, , Men 5°: nt the he filth 1 6 of rotation of an elemental ring of radius rlin a cross~section of the shaft. The equation for e is 8 3 5r (r3 ar) 82 (r3 a ) = o, (a) 13¢_a 6;? “F ' 5g and _1 91,335 (5) Gfiaz—Sr‘. The boundary conditions for the function ¢. obtained from the requirement that the boundary be stress free, require that function ¢ be constant on the boundary of an axial section of the shaft. The magnitude of the torsional moment applied to the shaft is given by T = 21! (Ma)- #0)), (6) where «a)and «9)are the values of the function o at the boundary and at the axis, respectively. Equations (2) and (6), with the help of the boundary condition, are sufficient to determine completely the stress function ¢ at every point in the shaft for a given twisting moment T, and the shear stresses can then be calculated with the help of equations (3) by differentiating the function ¢ with respect to r and z. 3.2 Finite Difference Equations The partial differential equations (2) or (M) have been solved in closed form only for a few simple cases. For most practical shapes of the shafts we must resort to approximate sethods. A < on a digital the equation divided into algebraic eq ential equat gives the va Follow Timoshenko a ence equatio 01+e where O is t 2| 3’ '4 are ‘3 1the radiu 3:3 “£311 The f' no: . Curved boun ‘ c at . a distanc 7 methods. A convenient procedure for solving such problems on a digital computer is the finite difference method in which the equation is discretized. The section of the shaft is divided into a grid, and for each node in the grid a linear algebraic equation is derived from the original partial differ- ential equation. Solution of these linear algebraic equations gives the value of the required function at each node point. Following once again the notations and derivation of Timoshenko and Goodier (page #91) for a square grid, the differ- ence equation corresponding to (2) is given by 01+¢2+¢3+¢e-“¢o-§_11<¢1-¢3)=o, (7) Po where o is the point for which the equation is formed. 1, 2, 3, u are the neighboring points to right, top, left and bottom of point 0 Figure (1), h is the mesh interval and r0 is the radius at point 0. N 4 Fig. 1. Regular Star 3.3 Irregular Star The finite difference equation (7) is suitable only for nodes with a constant h, i.e. for a regular star. Near a curved boundary there will be one or more neighboring nodes at a distance less than h. Such points have irregular stars, and for 1 cooplica' in Fig. ah and t before, 0) Q) idare a. 7' .2 05 the cf -o: 0) lo) I “M 1 “MI-$52“ 3 3 5:50 3 5 or; 8 and for them the resulting difference equation becomes more complicated. For example, consider the irregular star shown in Fig. (2). Points 1 and u lie on the boundary at distances 2 a and b i 1 3 h’ cab—41 - ‘I‘ bb Fig. 2. Example of Irregular Starz ah and bh respectively from 0. Using the same notations as before, a. I a 21’¢o, 31 a ¢o’4’3 35' 01 ah ’ 3r 30 h where 31 is the approximation of the derivative at the center 3r ol . of the interval o-l and so is the approximation at the center 3? 30 0f 3'00 2 3 1 9 ‘¢o _ 90'93 (a) at? “ err—7w (4T. *5") o 2' Similarly 2 3 ¢ ~ 1 9 '9 90-92 (b) 3'27 O‘W)('%fi‘a"T Also . ~1 ¢-¢ eo-o3) 5% o '_ 2' ( ah + or Be 1 (o ~a¢ - (l-a) o ). s; . “2's. 1 3 ° Substituting these in equation (2) we get the finite differ» ence equation for an irregular star corresponding to equation (7). 2 _ 3 _g . + 2 . 2 3 n_ . (a(I+a) 2' roa) l I+5 2 + (ha + 2' r ) 3 o + 2 e, g 2 + 2 - 3 (l~a)h ¢ _ o. (8) 5(I+5) '5 '5 2 roa ° ' If a=b=1, then equation (8) reduces to equation (7) for regular star. An alternative method of obtaining the second partial derivative of o with respect to r or z, i.e. equation (a) and (b), is by expanding the function o (r, 2) into a power series in the neighborhood of the point 0. (See, for example, Wang, (20), page 138.) Thus, considering o as origin, _ 2 2 d (r, z) - do + a1 r + azz + a3r + auz + asrz+ - - - At r = o, z = -h we have ¢ = ¢2 and at r = 0,2 = bh, ¢ = o“. Neglecting higher powers of r and 2, it follows 2 ¢2 . ¢O "' 32h + auh 2 and in 2 oo + a2 (bh) + a1+ (bh) . Solving these equations simultaneously we get 3 _ 2 .- 32 <¢t+ ¢o) + b (¢o ¢2) .bh(l+b) and an ”(¢u‘¢o)+b (¢2‘¢o) bh2(l+b) Similarly using point 1, o and 3, a1 = (cl-do) + a2 (do-ea) ah (1+a) and a3 a (cl-do) - a (do-d3) ah2 (1+a) At the point 0 (r = o, z = o) 2 _ a o - 2a = 2 ¢ -¢ ¢ -¢ 3‘7 3 H<1+a) l 1 9-- -9-3 P o ah h and 10 and 32 g 2a1+ . 2 ¢u'¢o ‘ ¢o’¢2 WTT, 32 0 These are the same equations as (a) and (b). t.l g: 1 obtain. a part: to use invers. linear PPopor Pmsen CHAPTER IV METHOD OF ITERATION “.1 Solution of Linear Algebraic Equations Little is known concerning the extent of approximation obtained by solving the difference equations corresponding to a partial differential equation. It is therefore desirable to use an extremely fine mesh size in order to get a good approximation. However, since the number of nodes increases inversely as the square of the mesh interval, the number of linear algebraic equations to be solved also increases in that proportion. Thus the problem of solving difference equation presents a serious practical difficulty. Methods for solving linear algebraic equations can be divided into two classes: direct and iterative. Direct methods such as Cramer's rule and Gaussian elimination methods are impracticable because of the size of the system. On the other hand the iterative method, which begins by assuming at each point an arbitrary value of the variable and then succes- sively improves the values, yields the answer only as a limit of a sequence of calculations, each extending over the entire field, and therefore becomes time-consuming. In addition to the fact that the iterative methods can solve a large number of equations, they can usually take full advantage of numer- ous zeroes in the storage of matrix A, of the matrix equation 11 the sc tions. by seI variai differ pre-de provec ally c i. 59.8 ‘1: Eraph 05 on: Cirec' ch‘o 0|. 12 Ad = B, obtained from the set of linear algebraic equations. The iterative method also tends to minimize the roundaoff error, because of its selfacorrecting nature. H.2 Gauss-Seidel Iterative Process A well-known linear iterative process for approximating the solution of a set of simultaneous linear algebraic equa- tions, is the method of Gauss-Seidel. This method is effected by selecting first arbitrary trial values for the set of variables and then improving these values gradually until the difference between the two successive values is less than a pre-determined number at every point. This method can be proved to be convergent for a strictly or irreducibly diagon- ally dominant matrix (for a statement and proof of the theorem see Varga (19), page 73). A matrix A is irreducible if and only if its directed graph is strongly connected. (Varga, page 20.) As the nature of our equation (7) and (8) of Chapter III is such that a directed graph for any ordered pair of points is always strongly connected, our matrix A is always an irreducible matrix. Also an irreducibly diagonally dominant matrix A 3 aij is defined to be one in which n 'aiilz 2 'aij'with strict inequality for at least 3°31 ji ~19- one i (Varga, page 23). The strict inequality always holds in our case for all the points adjacent to the boundary. The set of linear equations is n 2 a.. X. = b- (la) . = 1 l] 3 ‘ ‘ J 1:11279091‘) or in ma AX saccessi "€830? x equation by the v (Jacobi uses in :revious his has does not Vic's-d b' a, an u. t; ‘ ...aL A A “Tits \ b 3‘ Av- . 13 or in matrix notation AX = B (lb) . . . (d5 2%m . Starting with a trial vectorlxj or we improve these (1) [21 successively to X , X etc., which converge to the solution vector X. The improvement is effected by cycling through the equations, replacing only the ith component of the trial vector by the value necessary to satisfy the ith equation. The difference between the ordinary iterative scheme (Jacobi Method) and Gauss-Seidel method is that the latter uses in the process the improved values available of (i-l) previous components to improve the values of the ith component. This has an advantage, when working with the computer, that it does not require simultaneous storage of two sets of approxi- mation £K+D and MKiin the course of computation. It can also be shown that the rate of convergence of the Gauss-Seidel method for a symmetric matrix is greater than that of the Jacobi method (See, for example, Todd (18), page 90H). The basis of constructing an iterative scheme is pro- vided by dividing the matrix A into a lower triangular matrix L, an upper triangular matrix R and a diagonal matrix D such that A=L+D+R. (2) Assuming matrix A has no zero entries on its diagonal, we write DX = B - (L + R) X (3) from which we derive (K) i'1 (K) “ (K-l) + 00 e = - °' 0 ' - .' 0 e e u an x1 sail xJ 2a13 xJ b1, ( ) 3:1 j=i+l where i=1,2,---n , K 3. l a": .315 OVEF n: O f ,1) 1“ (K) and finally obtain X. by dividing by aii° J (K) 1’1 (K) “ (K=l) X. = - z a... X. + r. a... X. - bo (Ha...) 3- °-1 1] J 1'3 J ' 1 11- 3‘ j=i+l O This is the Gauss-Seidel iterative scheme. In this, now, we can introduce a relaxation factor w to obtain a successive over or under relaxation iterative scheme. ial x.(K) = (1-.) x (“'1’ + <./a..) - z a . x (K) i 1 ii 3:1 1] J n - 2 ai° X.l is found to give a better rate of convergence in the present problem (See also Forsythe and Wasow (u), page 260). 4.3 Application of the Iterative Method The importance of the iterative method of solving linear algebraic equations comes from the fact that it can take ad» vantage of some of the special properties of thg_ggefficient matrix A and the constant matrix B. These properties are - m MMMWM m “’m common in matrices derived from most elliptic partial differ~ ential equations. The properties are (a) Matrices A and B are usually of large order, but are sparse i.e. the non-zero elements are much less in number than the zero elements. (b) The non-zero elements of A and B are easy to gener» ate and therefore the coefficient matrices themselves do not require any storage place in the memory. These properties can be well utilized in the iterative method, since for a Gauss~Seidel iterative scheme only one equation is required at a time, which can be generated just befoz e an: ble 1 Hi U58 C of t? in Fi 15 before its use. Thus the storage of the coefficient matrix A and the matrix B is completely eliminated and it is possi- ble to solve a large number of linear algebraic equations. .— .~.-.m_W—..h--—..~mn~ “as; u.u"Flow Chart Ralston and Wilf.(12) give a detailed analysis of the use of the Gauss-Seidel method in a computer. On the basis of their summary of the calculation procedure, the flow chart in Fig. (3) and a description of the flow chart follows. ‘ Box 1: K is the counter which counts number of cycles of iterations. W is over-relaxation factor. Box 2: i identifies the equation. 1 5 i 5 n where n is the number of linear algebraic equations. ER is the error esti- mate summed over all point for the kth cycle of iteration. Thus, n -1) ER‘K) = r. x1153 XKKD i=1 1 Box 3: Qi is the value of the two summations under the square bracket in equation (5) of section 9.2. Box H: P1 is the final calculated valte of X‘K) Box 5: D is the difference value of X1 in Kth iteration and (K-l)th iteration. Box 6: D is added to ER to get summation of box 2. Box 7: X1 takes its value after Kth iteration i. e. X1 K): Pi° Circle A: If i=n which means all the n equations have gone through a cycle, then flow proceeds to box 9, otherwise the flow is directed to box 8. Box 8: i is increased by l for iterating the next equation. Flow is directed back to box 3. 16 Circle B: If ER 5 EC, then the X93 have reached the desired accuracy and the output can be printed or called. However, if ER> EC then the flow is directed to Box ‘9 and another iteration cycle starts. Box 9: K is advanced by one to start another cycle of iterac tion and the flow is back to box 2. SWFURT' * a m-nr w _ .32. f9 E ii“: +3»?er _ _ ' K- [E =: c b. paw/m, +(1-W)’X.; . i [3: Pii- X‘Efi‘ I at"; at) IDlj -1 1 M=oi Fig. 3.~=Flow chart for GauSSaSeidel iteration method _ 2- '._.1 _4'-1 .. tee-1311 . Qt) Vi newt-.0 I f ’lqi" E104! 9‘; +£35.99 1] 7 [a = c to. new... +c1-w)'x{ |3= — «a 6 I Ed”); es“) mi] apfl__ '2 lie—F2] Fig. 3.~-Flow chart for Gauss~Seidel iteration method CHAPTER V PROGRAMMING 5.1 Program Requirements One of the objectives of this work is to make a general program which could solve for the stress distribution in any axially non-uniform shaft. To fulfill this object, this prom gram must do the following things: (1) Locate the mesh points and number them. (2) Identify the mesh points having irregular stars and get the values of the factors a and b in equation 8 of Section 3.3. (3) Generate and label the non-zero coefficients of matrix A as often as is needed. (u) Modify the non-zero coefficients whenever an irregular star occurs. (5) Solve the matrix equation AX=B by an iterative scheme of the type in Section H.M. (6) Generate the boundary values at ends of the shaft. (7) Perform differentiation both in z and r direction and calculate the stress at each node. (8) Print the results thus far calculated in proper order and place. In addition, the program must have access to data pro- viding the radius of the shaft at each section, values of the 18 19 stress function at the center line and on the surface, and the mesh size. 5.2 grggram Technique To incorporate all the requirements of the program in Section 5.1, it is divided into three parts; two subroutines and a main program. The first subroutine (named MATGN), which forms the main part of the program fulfills the requirements (1) to (6) of Section 5.1. This has three overlapping loops. The outer- most loop is for the iteration cycle and this corresponds to v—— —._r_~-— the loop of the iteration scheme in Section u.u. The center loop generates the mesh by adding a mesh length to row (I-l) to get row I; then after obtaining the radius at the section where the I-th row occurs it generates the number of mesh points in this row. The innermost loop is for points belonging to the same row. It performs the following functions: (1) It selects the mesh points one at a time, starting from the center line, (2) numbers them in succession, (3) calculates the radial coordinate at the mesh point, (H) determines the non-zero coefficients of the matrix A, (5) determines the non-zero coefficient of the matrix B, (6) if the mesh point is adjacent to the boundary curve and has an irregular star, then it modifies coefficients of the matrix A, (7) it labels the neighboring four points, and (8) iterates the Ith row according to the iteration scheme. 20 After all the mesh points in one row are considered, the row is advanced by one and the inner loop is repeated until the whole section is covered. This completes one iteration cycle. This is continued until iteration is completed as in Section “.“. The stress function is constant on the center line and “constant also on the surface of the shaft. The difference between these constants is proportional to the torsional moment applied to the shaft (equation (6) of Section 3.1). In this work a constant value of moment, T, is chosen which gives the difference in the stress function at the center line and at the boundary as T/Zw. Although it does not in principle make any difference whether we assume zero value of the stress function on the surface or on the center line, it does simplify the program if the zero value is chosen at the surface, be- cause it facilitates the calculations with irregular stars. It is also possible to divide subroutine MATGN into two separate subroutines. The first one generates the non-zero elements of matrices A and B and then stores them. Since there are at most five non-zero elements in each row of matrix A, it is possible to store them in five different unidimensional arrays. The row number of the element in these arrays remains the same as in the original matrix, and the names of the arrays indicate for which of the points 0, l, 2, 3 and “ (Fig. 1) the element is generated. The matrix B also needs, in this procedure, a storage place. The second subroutine picks up row by row one element from each array and iterates according to the scheme of section “.“. 21 This procedure of dividing subroutine MATGN is found to take about 15% less computer time for approximately 1200 alge- braic equations, although it sharply cuts down the capacity of the program because of the storage space required. The second subroutine of the program (named BOUGEN) is for generating boundary values. On the basis of Saint- Venant's principle it is assumed that sufficiently far from the non-uniformity along z-direction, where the shaft is uni- form, the stress function is independent of 2. From our computations we noted that the value of the stress function is fairly independent of 2 at a distance greater than 0.75 the diameter on either side of the non-uniformity. The end boundaries for the solutions are therefore chosen beyond this distance and the boundary values at the mesh points on the ends are obtained from a mathematical solution for a uniform circular shaft. An alternative method of obtaining the boundary values of the stress function is by a numerical solution. In this the boundary values at the mesh points are obtained by per- forming iterations in the r direction only. Since the differ- ential equation here becomes z-independent, the terms ¢2 and 2“ do not appear in equation (7) of section 3.2. This equation can now b wr’tt 3h -2 + 3h = . e 1 en as ¢1(1-Tr7) o0 ¢3 (1+2?) 0 o o Southwell (13) and Allen (1) in use of relaxation method prefer to use the numerical solution for the boundary values. We have noted in this work that for the mesh size used, there is very little ‘5, .. ‘ _--'x. "'15ij V \J 22 difference in the values of the stress functions by the two methods. For numerical solution, the subroutine BOUGEN has the same basic form as subroutine MATGN. It has, however, much fewer points and they all lie on a straight line. The main program performs differentiation in the r and 2 directions. A three-point center derivative formula is used to obtain the derivative at each point lying inside the boundary curve. A one-sided three-point derivative for- mula is used to obtain derivatives on the surface. The latter is also used for points with irregular stars. From these derivatives, stresses are obtained by equation (3) of section 3.1, and the resultant shear stress is obtained at each point by a vector sum of the stresses in r and 2 directions. This part of the program also contains print statements to print the stress function and the shear stress in the same order and place as the mesh point on the section of the shaft. 5.3 Flow Chart for MATGN As the subroutine MATGN forms the main part of the pro- gram, a step by step description of its flow chart (Fig. “) is given below. Box 1: In this an over-relaxation factor, W=l.3, and a counter K which counts the number of iterations performed, are introduced. Box 2: ER is the error estimate and has the same meaning as ER in section “.“. IM is the counter which identifies the boundary values supplied by subroutine BOUGEN. Box 3: I and IR count and label the rows on the grid and the node points on the grid respectively. 23 Box “: Z and ZB are the distances of rows I and I + 1 re- spectively from the top end of the section. Y and YB are the radii of the shaft at rows I and I + 1 respectively. These radii can either be read from data, or an equation of the boundary curve with respect to some origin on the center line of the shaft can be supplied to compute them. Box 5: JN(I) is the number of mesh points on the Ith row Box 6: J is a counter which labels points lying in a row starting from the center line. 0 Box 7: R is the radius at any point J. AA, AB, AC, AD and AE are the non-zero coefficients of matrix A for points 0 l, 2, 3 and “ (Fig. 1) respectively for mesh point IR. For points which lie adjacent to the boundaries these coefficients will be modified in boxes 8 to 1“. Circle A: This selects all the points lying in row 1 and directs their flow via box 8. Box 8: IM is advanced by one each time this box is encountered. AB is set equal to zero and B takes the value BR(IM) supp by subroutine BOUGEN. B, if not modified, later becomes non-zero element of matrix B for point IR. Circle B: This selects all the points lying in the last and directs their flow via box 9. lied a POW Box 9: IM is once again advanced by one in this box every time it is encountered. AB is made zero and B=BR(IM) is supplied by BOUGEN as in box 8. Circle C: This selects all the points lying adjacent to the center line and directs their flow to box 10. Box 10: AD is made zero. A constant value of 0.398T is added 2a to B. This is obtained from equation (7) of Section 3.3 and from the assumption that the stress function has a constant value of T/2n on the center line. Circle D: This selects all the points which lie adjacent to the boundary curve and also are the last points in the row and directs their flow to box 11. Box 11: AB is set equal to zero. ‘1 Circle E: If the last point in a row has an irregular star, i.e., if Y-th then the flow is directed to box 12. Box 12: In this the values of factors a and b are obtained as follows: J a = Y-R and from the equation z=f(y) of the boundary the value ZL is determined where Y=R. Then b = ZL-Z. If b is found greater or equal to one, then its value is taken as one. Values of AA, AB, AC, AD and AE are modified accord- ing to equation (8) of section 3.3. Circle F: If the number of points in row I is greater than that in row I+l and if b is less than or equal to one then the flow is directed to box 13. Box 13: AB is set equal to zero. Circle G: If any of the internal points, where J = JN(I) are adjacent to the boundary, then J > JN(I + l) and the flow is directed to box 1“. Box 1“: AE is set equal to zero. Box 15: This identifies the number of the neighboring points 1, 2, 3, “ of IR by giving them number KR, LR, MR and NR 25 respectively. Box 16: From this box onwards the iteration process starts and the steps are very similar to that of Section “.“. In this box : QsQi: X. 1 Aij i i CquM: 43-" Since all the Aij's except those corresponding to AB, AC, AD, and AE are zero we get Q = AB-X(KR) + AC°X(LR) + AD'X(MR) + AE'X(NR). Box 17: In this n P = P5 = (B - Q) W/AA + (l-W) X(IR) which follows directly from section “.“. Box 18: D is the error estimate for point IR and since P is the latest value of X(IR) from equation (5) of section “.“ D = X(IR) - P. Box 19: ER is the sum of the error estimate for all the points ER = ER +113]- I Box 20: Here iteration of point IR is over. J is advanced by one to the next point in the row. X(IR) takes its latest Value P. B is set equal to zero and IR is advanced by one. Circle R: If J > JN(I) i.e. if the last point in the row is already considered then the flow is directed to box 21, other- wise the flow is directed to box 7. Box 21: I is advanced by one to change over to next row. Circle K: If I is greater than the total number of rows by one, which means that all the section has been considered, then flow is directed to box 22. Otherwise the flow is to box “. zoa ouzu - 3.3 . a m .. +~ "on .5 u u i 33.? L .Efih A A» 27 Box 22: K is advanced by one, indicating completion of one more iterative cycle. BC is the error criterion, which in this case is assumed to be 0.001(IR). Circle L: If ER 5 EC i.e. if the desired accuracy of X's has been attained, the flow proceeds to box 23. If ER > EC, the flow proceeds to box 2 where IM and ER are set to zero and another complete cycle of iteration beginso Box 23: The values of X can be printed or called by some other subroutine. K also may be printed to get the total number of iterative cycleso Later in the work an alternative method of obtaining the error estimate ER is also triedo In this ER is defined 38 EfiK)= Max {K'1'- Km) 1 ix) for Kth iteration: (For previous definition see section “on, box 2). Boxes 18 and 19 are modified to make these changes as shown in Pig. (5). The explanation of the figure followso IS M Box17——>~ D: lxgéhg‘ 13>? fiBOX 20 EF2=IJ Figo 50 Alternative method of obtaining ERo Box 18: Here D is the ratio of the difference between the two successive values of X and the latest value of X at a point. Circle M: In this if D > ER then in box 19 ER is set equal 28 to D. In this way after all the points are considered, ER has the maximum value of D. The maximum value of ER over all the points is compared with BC the error criterion as before in circle L, Fig. (4). However, here EC is given a constant value 0.0001. 5.“ Flow Chart of Subroutine BOUGEN As stated earlier, subroutine BOUGEN, Fig. (6), is basically the same as MATGN and, therefore, we do not give here a step by step description of its flow chart, which is self explanatory once the flow chart of MATGN is understood. However, some of the variables which do not appear in the sub- routine MATGN are described here. Also, since two sets of values of the stress functions are to be generated in this subroutine, one for each end of the shaft, there are state- ments which make a shift to the next set after the first is calculated. The calculated values of the two sets are stored under the same array name in the order of their calculation and in the order they are required by subroutine MATGN. The variable ID in box 1 takes the value of IR in box 17 when the first set of calculations is over and then in the second set the labeling of points starts from ID + 1 in box u and 6. Circles A and F determine the shift from one set to another. L is the value of large radius and S is that of small radius at the ends. T corresponds to variable B in subroutine MATGN. IG determines number of points considered in one set for the purpose of calculating the error criterion. If the alternative definition of ER is used, a modification similar to subroutine MATGN (Fig. 5) is required in boxes 13 and 1H. zmonom mcflusoansm pom Hpmno soHMIe.m .mmm pa umnumi Inassmmdl‘ + , («>0 LB... . - n. u a w T +mnnmx Exommm compocsm mmmspm .mm magma momN mmmq mno mom or ¢~ e. NomN emN_ 0.0 mom or ea 0. DOWN nmNu Nuo 0cm mfi dd co OQMN FFNn 000 M¢N Mb M~ G. ome mom" Noe New or mu e. 10mm 0mm" oom 0mm Nh mg q. ONMN mama 00m FNN 00 Na Mo OONN fl¢~u 0mm ¢~N m0 N— no "MGM u¢0~ ONO~ ~G¢ mod ufl «a m. booc omoe ooom mmom Nmmm eth mmmm ooflm room one" moo mes mm" om .o~ m. O¢O¢ noon MNOM #Nmfl FFOM ~0¢fl ¢¢~m FQON NFON mmflm how FO¢ Ohu mm #00 Mo WMO¢ FPO” 000” thn ¢~0m momm WHOM flmmN ¢m0_ OOM~ NFF NON m0~ Nm moG Mo ummnm concaaoo ecu mom mosam> cowuocsm mmouum oeumasoamu .00” New 0.0m Oom Hmmnm memHHoo 0:9 now 5Hm> mumppm amonm omvmasoamo .Um NNNNNNMMMP) .OOOOOOOOO m10010r~r~>r~h-h «ahcncae'msor~c>m O... MOONNMI‘CDO‘O‘ 50 oo.mm >m.mm mm.mo oo.os oe.ob ms.om oo.om on you oo.mm sm.mm mm.mo oo.o> om.o> m>.om oo.om so you so.mm sm.mm mm.mo oo.o> om.oh m>.om oo.om me you so.mm mm.mm cm.mo oo.ob om.oh m>.om oo.om on 30a mo.mm om.mm mm.mo 01.0» om.oh m>.om oo.om mm 30a oo.mm oo.mm om.mo o~.oh om.oh mb.om oo.om om 30a 1h.mm mo.mm mm.mo m~.oh ~m.o> m>.om oo.om cm 30a ob.mm or.mm mo.mo m_.ob mm.o> mh.om oo.om mm :oa om.mm mm.mm No.oo o~.oh mm.o> ch.om oo.om 0 30a so.¢m oo.om om.oo mm.oh hm.ob cr.om oo.om me zoa mm.¢m em.om ~m.oo me.o> No.o> m>.om oo.om 00 you do.mm ~m.>m ho.0h hc.oh oo.oh bh.om oo.om cc aoa em.mm hm.om oo.os mo.>b om.o> ob.om oo.om me you mm.o~ sm.mc mm.mo Hm.ms ov.bb mo.oh Em.om oo.om oe you N~.h mo.m1 mo.mm 0m.>m h¢.mm o>.mo mo.mb oo.m> mo.om mm.om oo._m mm soc b>.NH oo.em om.mm 1m.b¢ mm.om ¢>.mo No.¢h o¢.m> NN.om om.om oo.~m cm 30a o>.o~ oo.om mo.m¢ o~.¢m oo.mc 10.ns mo.m> _o.ms cm.om mm.om oo.~m em you sm.o~ cs.¢m m¢.s¢ so.mm .¢.oo mo.m> ob.oh mm.os 00.00 oo.om oo.~m mm 30a so.om mm.hm mm.om o¢.oo _N.mo m>.m> om.r> m¢.o> mm.om ~o.om oo.~m cm 30& oo.sm oo.om m_.mm mo.mo om.oo m¢.¢b o>.>> m0.o> mm.om mo.om oo.~m mm zoa mo.m~ 00.05 mm.mm o_.mo 01.0» mo.¢> mo.mh >>.o> _o.om mo.om oo.~m om 30a co.mm ~>.o¢ ”o.¢m oh.mo 00.05 1m.m> -.mb mm.oh «0.0m eo.om oo.~m em you ~m.mm ¢~._c mc.¢m oa.¢o oo.o> mm.m> mm.ms ~o.oh co.om co.om 00.10 mm 30a mc.mm mc.~¢ o>.¢m b¢.¢o 1m._> so.mh ~¢.m> co.or so.om co.om oo.~m om 30a oo.mm om._¢ mo.¢m mo.¢o mm.~> o>.ms >¢.mb >o.o> mo.om co.om oo._m mm 30& ro.mm "v.10 “H.mm h>.¢o «0.1» mm.m> om.mh oo.ob oo.om co.om oo.~m em you m>.mm o>.~¢ om.mm mm.¢o 1m.~h >m.m> mm.mb oo.om oo.om co.om oo.—m em you m>.mm em.~¢ om.mm oo.¢o mm.~h oo.mb mm.mb oo.om oo.om co.om oo.~m NH 30a m>.mm mm.1¢ om.mm co.¢o mm.~> No.m> cm.mb _o.om oh.om mo.om oo.~m on you os.mN Ho._¢ ¢m.mm so.¢o 10.1b qo.m> >m.m> mo.om ob.om mo.om oo..m w you ~m.m~ mo._¢ om.mm oo.mo mo.~> mo.ms mm.mh mo.om o>.om mo.om oo._m c you mm.mm mo.‘¢ mm.mm mo.mo co.~> oo.m> mm.mb mo.om o>.om mo.om oo.~m c you mm.mm eo.~¢ o¢.mm mo.me mo.~h >o.mh om.m> mo.om o>.om mo.om oo..m N :01 mm.o u m\n~ .pmmnm omuoaawm pom monam> cowuocsm museum .<: magma 55 00.00 00.0m N0.om 00.0N 0m.om mN.m. 00.o. o0.0 00.00 00.0m m0.0m 00.0N 0m.om m~.m. 00.0. 00.0 00.00 00.0m 00.0m o0.mm 0m.om NN.0. 00.o. o0.0 00.00 00.0m «0.0m o0.mN 0m.om NN.m. mo.o. o0.0 .0.00 00.0m N0.0m 00.0N 0m.om 0N.m. 00.0. 00.0 m0.00 00.0m ~0.0m 00.0m mm.0m 0..0. «0.0. 00.0 00.00 00.0m ~0.0m 00.0m 0m.om m..m. mo.o 00.0 mm.00 m0.mm N0.0m 00.0N om.0m 00.m. .o.o .0.0 00.00 .o.mm 00.0m om.0m 00.0m 00.0. 00.o 00.0 0o.00 00.0m 00.0m 00.0m 00.o. 00.0. 0m.o mm.0 m0..0 0m.0m om.0m m0.0~ mm.o. m..0. mN.o 0m.0 00.m0 oo.0m 00.0m 00.mm .m.0. 0m.m. .0.m N..0 0m..0 00.0m 00.0m .o..m 00.0. om.~. .0.0 00.m 00.0 .0.0 mo.o 0o.mN m0.0m om.om 00.mm 00.o. mm.0. .o.0. 0..0 mm.m .0.m 00.0 0..0 00.0. .m..m o0..m o0.m. o0.m. 00.m. 0m.o 0..0 0o.m mm.0 m0.0 00.m 00.m. .0.0. 0m.m. 00.0. m0.m. 0m.o. 00.0 0m.m .0.N mm.m 0..0 00.0 0m.o. 00... 0o... 00... m~.0. 00.0 00.0 m0.0 m..m 0m.o 0..0 .m.o 00.o 0o.o 00.o 00.o 00.0 0..0 00.m 00.m .0.. 00.0. mm.o 00.o 0m.o m..o .0.m mm.m mm.0 0..0 00.0 0N.m 00.. oo.0. 0m.o. m0.o m..o 00.m m..m m0.0 00.0 00.0 mN.0 00.m 0m.. 0m... mm.0. 00.o 00.0 .0.0 .0.0 no.0 No.0 oo.0 00.m o0.m mm.. 00... 00.0. 0m.o 00.0 00.0 00.0 «0.0 00.0 00.0 00.m .0.~ 0... 00... .0.0. 0o.o m0.o 0..0 .m.0 «0.0. 00.0 00.0 00.m 0~.N 0... o0... 00.0. 00.o mo.o m..m NN.0 o~.0 mm.m mm.0 m~.m o..m 00.. 00... no.0. 0o.o mo.o o0.m 0..0 .m.0 0N.0 0N.0 0N.m 0..m «0.. om... 0o.0. 00.o mo.o 00.m m..0 0..0 0..0 0..0 m..m o..m 00.. .o... mo.o. oo.0. mo.o 00.0 oo.0 N..0 0..0 m..0 ...m 00.0 oo. mo... 00... .0.0. mo.o 00.0 00.0 0..0 ...m ...0 o0.m 00.m mo. 0o... .0... .0.0. mo.o 00.0 00.0 00.0 o0.m 00.0 00.m 00.m 0o. mo... .0... No.0. mo.o 00.0 00.0 00.0 00.0 00.0 00.m m0.m 0o. 0o... «0... No.0. mo.o 00.0 00.0 00.0 00.0 00.0 00.m 00.m 0o. 0o... No... mo.o. mo.o 00.0 00.0 00.0 00.0 00.0 mo.m .o.N 0o. 00... m0... mo.o. mo.o mo.o 00.0 00.0 00.0 no.0 N0.m 00.m mo. ...0 m\0~ .00000 0000.... 000 mm:..> .00000 00000 .0: 0.000 56 00.mm omomm mmowo oo.00 o0.o0 m0oom oo.0m 00 30a 00.0m 0m.mm mm.mo 00.00 00.00 m0.om oo.0m N0 30a 00.mm 0m.mm mm.m0.oo.00 00.00 00.0m 00.00 00 30a 00.mn 0m.mm mmomo 00.00 0m.oh whoom oo.0m mm 30a 000nm 0momm mmomo 00.00 om.00 whoom 00.00 cm 30a hoonm mmomm wmomo 00.00 omoab Whoom 00.0m cm 30a 00.mn mmomm cmomo 00.00 omomb m0.om 00.00 mm 30a moomm 00.mm mmomo 0..00 om.00 mboom 00.00 om 30a 000nm Noomm 00.00 ...00 om.00 Whoom 00.00 00 30a 00.0m 00.mm .o.m0 0.000 .m.00 whoom mo.om 00 301 Nmonm 00.mm moomo 0..00 mm.00 00.0m 00.00 00 30a mo.mm mo.mm N..00 0N000 mm.00 00.0m 00.om N0 30a Nmocm Nmoom 00.00 om.00 om.00 whoom mo.om 00 30a N..mm mo.bm Nm.oo om.00 00.00 00.00 00.0m mm 30a mmohm 0momm om.00 Fmoob m0.00 whoom 00.0m on 30a no... om.N0 mo..0 m0..0 mmobh hm.Ob 0m.om 00.00 cm 30a N0.0 00.oN ooooc NN.¢0 0o.N0 00.00 .0.00 Nmoom oo..m Nn 30a .o.0 mo.o. 00.0N ocomc 00.0m mmoho 00.00 owomb m..om mmoom oo..m on 30a 00.m. awomm 0N.mm 00.0m Nmo.o 0momo 00.m0 chomb mN.ow hmoom ooo.m 0N.!Oa 00.0. 00..m 00.00 00.mm No.00 m0..h 00.00 00.00 om.0m om.0m oo..m 0N 30a mm.o. 00.mm mm.m¢ mo.om om.00 m..m0 mo.00 mmooh m0.om .0.0m oo..m.¢N 30a 0N..N 00.0m mo..m m...0 .0000 00.00 «mobh mm.o> mmoom Nooom oo..m NN 30a ON.NN om.0m mmomm omomo .0.00 00.00 0m.00 00.00 om.0m mo.om 000.0 ON 30a m0.NN om.00 0m.mm hmomo 0m.00 ...m0 ...m0 00.00 mo.om mo.om oo..m m. 30a c..flN mmooc 0..0m No.00 omco0 omomb 0N.m0 0m.o0 mo.om 00.0m 000.0 0..)Om mnonm mN..0 00.0m 00.00 mo..0 mmomb 0momb No.00 00.00 00.0m oo..m ¢._10¢ nmonN 000.0 hmocm 0moco 0N..0 .0om0 «comb mo.oh 00.0m 00.0m oo..m N. 30m no.0N m0..¢ moomm 00.00 om..0 o0.m0 ovomh $0.00 mo.om ¢ooom oo..m 0. 30a Obcnm 00..¢ 0.9mm NQ.0O m0..0 m®.m0 Nmomh 00.00 00.0m 00.0m oo..m 0 30a mhonN nmo.¢ mmomm 00.00 mmo.0 oo.mb mm.mh 00.00 00.00 00.0m 000.0 0 301 whomw 000.0 mm.mm 00.00 om..0 mo.m0 0mom0 .ooom 00.0m mo.om oo..m 0 Doc .monm co..¢ 000mm ooomo no..0 00.mb mmowh No.00 00.0m mo.om oo..m N 30a 0.0 . m\s~ .00000 0000.... 000 mus.0> 00.0000. 0.0000 .00 0.0.0 57 on.o¢ 00.mn mo.on om.mN mn.om 0N.m. mo.o. oo.0 on.o¢ 00.mn mo.on om.m~ 0m.om 0N.m. 00.o. oo.0 on.o¢ 00.mn mo.on om.mN 0n.om nN.m. 00.0. 00.0 00.00 00.mn mo.on om.mw fin.ON nN.m. 00.o. Ob.¢ 00.00 00.mn mo.on om.mN Fn.ON nN.m. 00.0. 00.0 00.00 00.mn mo.on om.mN on.om NN.m. 00.0. 00.0 00.00 m0.mn mo.on 00.mN 0m.om NN.m. mo.o. 00.0 .0.00 m0.mn mo.on 00.mN mn.om .N.m. mo.o. mh.¢ N0.o¢ 00.mn mo.on n¢.mN nn.ON o..m. no.0. Fhoc m0.o¢ mb.mn mo.on 00.mN on.ON m..m. 00.0. 00.0 om.00 .m.mn mo.on N¢.mN 0N.ON no.m. 00.o Nh.¢ .0.00 hm.mn .0.on 0n.mN N..ON no.0. 00.0 00.0 nn.o¢ 00.mn 0m.on m..mN oo.0. no.0. 00.0 n .0 nn..0 nN.©n 00.on nm.¢N 00.o. 0n.¢. nn.o ¢¢.¢ m0.N0 00.0m mo.on ...0N N0.m. Nh.n. mo.o nN.¢ 00.00 mo.on nn.nN OF.NN 0m.o. nb.N. nn.n no.n .h.n0 nh.Nn 00.mN on.om nh.m. 0m... 0m.o Fm.n oo.0 No.0 .0.N. on..N om.0m oo.0N 00.0N 0..0. mm.n. mo.o. no.0 m..n 00.m 00.m oo.0. n0.m. om.m. n..n. 00.0. 00.0. on... nm.n 00.m Nh.N mo.o 0..0 NN.o .n... oc.n. 00.n. 00.m. N0... 00.o NN.F nn.¢ Nn.N .Oom 0m.o 0..0 .N.o. 00.0. 0.... nm.o. 00.0 Fm.h bo.0 0..0 00.. no.0 on.o nn.o nm.o 00.0 00.0 No.m 00.0 oo.0 o..m .m.n 00.. no.0. no.0 Nm.o 0m.o 00.m nm.n mm.h 00.0 0n.m nm.¢ ho.n $0.. ..... mn.o. mo.o N..o 0m.n oo.0 NN.0 Nn.0 0N.m oo.0 00.m Nn.. N0... 0m.o. 00.0 00.0 0m.o No.0 00.0 mm.m 0m.¢ nh.n .mow .N.. .0... ch.o. 0m.o 00.o nN.n .¢.h 0m.o 00.m 0m.¢ .m.n 0n.N n... 00... 0m.o. mo.o no.0 0..m 0N.F fin.0 .com .¢.¢ mn.n MN.N no.. mo... oo.0. mo.o no.0 ...m o..0 0N.0 om.m 0N.¢ mN.n F..N 00.. km... 00.0. 00.0 no.0 no.0 0..0 n..o .N.m .N.¢ n..n N..N .o.. 00... 00.0. oo.0. no.0 00.m 0..0 n..0 m..m m..¢ n..n 00.m 00. no... 00.0. .0.0. no.0 mo.o no.0 0..0 ...m ...0 oo.n mo.N no. mo... .0... mo.o. no.0 00.m oo.0 oo.0 mo.m no.0 oo.n no.N #0. 0.0 ..m\0~ .00000 0.00.... no. mos.0> mmogpm 000:0 .00 0.000 58 oo.mm hm.mm mo.oo 00.00 00.00 m>.om 00.00 mo you oo.mm hm.mm mm.mo 00.00 om.0h mh.om 00.0m 00 you 00.nn hm.mm co.mo 00.o» om.0b m0.oo 00.00 00 you 00.mm mm.mm comma 00.00 om.0h m>.oo 00.00 No you wo.nm 0m.mm mo.oo o..oh om.0h nh.om 00.oo om you o>.mm .0.mm bo.oo ...oh om.0h m0.om 00.0m om you m>.mn mo.mm 00.00 m..o> .m.0> mr.om 00.00 cm you 00.0m m0.mm o0.mo 0..00 mm.0> 00.00 00.om cm you m0.mm om.mm No.00 mm.o> cm.0> ¢>.oo 00.00 mm you om.0m 0..om om.0o mm.o> om.0h m>.oo 00.0m om you cm.¢m om.0m 00.00 00.00 no.0r 00.oo 00.om o0 you 00.0m mo.om 0m.oh 00.00 «0.0» >>.om 00.om c. you mm.h 00.00 ...00 mm..b m..hb 00.00 00.oo 00.om.¢¢ you mm.mm 0m.>¢ co.mo oc.m> om.00 00.00 .m.om 00.0m No you om.m oo.0. 00.0m 00.mm ...oo 00.00 oo.mh o~.om 00.00 oo..m 0. you m0.m 00.m. mm.mm 00.o. om.0m om.mo o0.¢> mm.m> mm.om om.0m oo..m on you or... 00.mm we... m..nm cm.no m0.o> o0.mh .0.m> mo.oo om.0m oo..m on you 0m.o. m¢.nm 0m.o¢ om.0m 0..00 om.mb m>.o> mm.0h 00.00 00.00 oo..m on you 00.0m mo.om 00.00 00.00 00.00 mo.op .n.hr 00.00 mo.om .0.om oo..m NM you mo..m 0m.om ch..m om._o mm.0o 0m.¢> N0.>h mo.0> 0m.om m0.om oo..m on you 00.mm .m.0m co.mm m0.mo 00.00 .0.00 00.00 00.00 .0.00 m0.om oo..m mm you m0.mm 0m.o. hm.mm mo.mo mm.o> om.mh 0..oh 00.00 00.00 m0.om oo..m em you om.nm mo..¢ 0m.cm N..¢o «0.00 00.mh mm.mh 00.00 00.00 00.0m oo..o em you m¢.mm on... nh.¢m N¢.¢o >...h mo.mb 00.o» 00.00 00.0m c0.oo oo..m mm you hm.nm om... m0.¢m No.00 mm._h m>.m~ oc.mw 00.00 mo.om 00.00 oo..m om you oo.n~ 0o..¢ 0o.mm «0.00 mc..b .m.m> om.m> 00.00 00.00 00.om oo..m 0. you ~>.nm >0... m..mm «0..0 0¢.~h om.mb mm.m> 00.00 00.00 c0.om oo..o @— you ¢>.mm mm._¢ mm.mm 00.00 0m..> 0m.mh 0m.o» oo.om 00.0m 00.oo oo..m c. you 00.mm hm..¢ 0N.mm n0.¢o hm..> .0.mh 0m.o» .o.oo oh.om m0.om oo..m N. you 00.nm o0... Nm.mm o0.¢o oo..h m0.mb 0m.oh .o.om o>.om m0.om oo..m o. you oo.m~ N0... mm.mm 00.00 «0..0 00.mh 0m.o» mo.oo 00.0m m0.om oo..m w you .m.n~ «0..0 hm.mm oo.mo no..b m0.m> mm.m> mo.om oh.om m0.om oo..m 0 you No.nm m0..¢ 0m.mm No.mo mo..h o0.mh 0m.oh mo.om oh.oo m0.oo oo..@ 0 you no.nm >0... o¢.mm mo.mo oo..h 00.mh 0m.or mo.om oh.oo m0.oo oo..m w you mh.o « m\p~ .ummnm 00.0.... no. mm:.m> cowuocsm mmmuum . amonpm ammnm .mm «Hams 60 oo.mm 0m.mm mm.mo 00.00 00.00 m>.oo 00.0m or you oo.mm 0m.mm mm.mo 00.00 om.0h nh.om 00.00 mo you no.mm 0m.mm mm.mo 00.00 om.0h m>.om 00.00 00 you 00.mn mm.mm .m.mo 00.00 om.0b my.oo 00.0m 00 you mo.mm 0m.mm mm.mo 0..00 om.0b mb.om 00.00 No you 00.mm .o.mm om.mo ...ob om.0h m>.om 00.00 00 you N>.mm co.mm 0m.oo m..o> .m.0> m>.om 00.0m am you 00.mm .>.mm .0.00 m..ob mm.0> 00.om 00.00 mm you mm.mm .m.mm 00.00 0m.o. cm.0> 00.0m 00.00 em you N..cm o..om mm.0o 0m.or hm.0b 00.00 00.00 mm you mo.cm mo.om mm.0o «0.00 No.00 m>.om 00.00 om you mo.om oo.0m o..or mo.ob 00.00 00.0m 00.0m me you .m.m m¢.0m .m.0m 00.00 .0.00 00.00 00.0m 00.0m 0. you .0.0. mm.mc m..mo 00.m. «...0 ~0.0h .w.om 00.0m .0 you mo.o mc.mm 00.nm ...mo mo.o. .0.00 mo.om mo.om oo..o No you 00.. mb.o. 0m.om o..mc ...0m 00.00 >m.¢h hm.m> m..om mm.ow oo..o 0. you mm... mo.om mm.>m mo.om om._o 0..00 No.m> 00.mh .m.om 00.0m oo..m on you 0m.o. N0.om 0o... oo.mm mo.mo .0..» 00.00 ...00 ...om 0m.om oo._m on you 0..0. 0..mm om.m¢ 00.mm mm.>o 0..m> 0..0» 0m.0> 00.0m .0.00 oo..m em you 00.0N N>.>m om.0m ho..o _>.mo mo.¢> om.00 0m.0h mm.om m0.om oo..m mm you ...Nm om.0m 0c.Nm mq.mo 00.00 or... 00.00 .0.00 00.00 n0.om oo..m on you mh.mm 0m.o. .m.mm cm.mo 0m.o. N..m> ...mr .m.0> mo.om m0.om oo..m mm you m..mm mm.o¢ 0..0m m0.mo 00.o. o..m> om.mh mm.0> mo.om 00.00 oo..m om you hm.mm mm... 0m.¢m 0m.co mo..> mm.mh >m.m> «0.00 00.0m «0.00 oo._m cm you mm.mm >0... mm..m mm.¢o om._b 00.m. ¢¢.m> m0.0> mo.om c0.om oo._m mm you mo.om no... no.mm 00.00 mm..h mh.m> mc.m0 00.00 mo.om 00.0m oo..m om you mo.mm m0... c..mm 0h.¢o ov._h 0m.m> .m.mh 00.00 00.0m 00.00 oo.~m w. you m>.mm om... mm.mm om.00 Nm..h mm.m> mm.m> oo.om 00.00 c0.om oo..w 0. you m>.nm mm... 0N.mm .0.00 mm.~b o0.mb mm.m> .o.om 00.0m 00.om oo..m .. you m>.mm mm... om.mm 00.00 mm..h m0.mb 0m.o. .o.om 00.0m m0.om oo..m N. you 00.mm o0... mm.mm 00.00 oo..h m0.m> hm.mb .o.om 00.0m m0.om oo..m 0. you om.mm N0..¢ mm.mm 00.00 mo..h m0.mh 0m.o0 mo.om 00.0m m0.om oo..m w you .m.mm .0... hm.mm .o.mo mo..b o0.mh mm.mh mo.om o>.om m0.om oo._m c you mo.om m0... 0m.mm No.mo mo... 00.mb 0m.or mo.om 00.0m m0.om oo..m . you mm.m~ 00... oc.mm mo.mo oo..b 00.mh 0m.or mo.om 00.0m m0.oo oo..m N you 6.. u m\p~ .vmmnm oo.0...» 0:. pom mo:.m> cowuocom mmmaum .<> 0.9.9 61 0..0. «0.00 00.00 00.00 00.00 00.0. 00.0. 00.. 0..0. 00.00 00.00 00.00 00.00 00.0. 00.0. 00.. ...0. 00.00 00.00 00.00 00.00 .0.0. 00.0. 00.. 00.oc 00.0m 00.00 00.00 00.00 00.0. «0.0. 00.. m<.o< 0..00 00.00 00.00 00.00 0..0. No.0. b... .0.0. 00.00 00.00 «0.00 00.00 0..0. 00.0 «0.. 00.0. 00.0m «0.00 00.00 0..00 00.0. 00.0 00.. 00.00 00.0m 00.00 00.00 00.00 .0... 00.0 «0.. «0... 00.00 00.00 00.00 00.0. 00... 00.0 0 .0 00... 00.00 00.00 mm.¢m n..0. 00.c_ 00.0 00.. 00... "p.00 _m.0m 00.00 00.00 00.0. 00.0 N... 0.... _>.¢m ...wm 0>.~m 00.0. 00.0. 00.0 .0.m 00.00 00.00 00.00 00.0. .0.0. 00.0. 00.. n..0 00.00 00.00 «0.00 rm.0~ 00.00 «0.0. 00.0 00.0 00.0 00.0 00.0 .0.0. mm... 00.0. 0¢.>0 n>.00 00.0. 00.0. 00.0 00.0 00.0 00.0 ¢_.> 00.0. .0.0. 00.0. 0>.m~ >0.m. 00... ...0 00.0 no.0 «0.0 00.0 00.0 .m.0 00.00 0m._. >_.~. ...0. 00.0 00.0 00.0 00.0 00.. 00.0 00.0 00.0 ¢>.0 00.0 00.0 00.0 00.» 00.0 00.0 ...0 00.. 00.0. 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.0 00.. 00.0 0... 00.0. 00.0. 00.0 0..0 00.0 00.0 00.0 00.0 00.0 00.. 00.0 .0.. 00... 00.0. 0..0 00.0 00.0 .0.» _0.0 00.0 00.. 00.0 00.0 00.. 00.0. m>.o_ 00.0 00.0 «0.0 00.0 «0.0 00.0 00.. 00.0 00.0 00.. 00... 00.0_ 00.0 «0.0 0..0 00.0 00.0 00.0 0... 00.0 «0.0 00.. .0... 00.0. 00.0 00.0 00.0 00.0 00.0 00.0 00.. 00.0 ...0 .0.. 00... .0.0. 00.0 00.0 00.0 0..0 0..0 00.0 .0.. 0..0 0..0 No.0 00... 00.0. 00.0 00.0 00.0 0... 00.0 0_.m 0... ...0 00.0 00.. 00... 00.0. 00.00 00.0 00.0 00.0 0..0 n..0 n... ...0 00.0 00. 00... 00... 00.0. 00.0 00.0 00.» 00.0 ...0 00.. 00.0 00.0 00. c0... .0... .0.0. 00.0 00.0 00.0 00.0 00.0 00.0 >0.m «0.0 00. 00... .0.0_ 00.0. 00.0 00.0 00.0 00.0 00.0 00.. 00.0 00.0 >0. 00... 00... 00.0. 00.0 «0.0 00.0 00.0 00.0 00.. 00.0 00.0 00. 00... 00... 00.0. 00.0 00.0 .0.. 00.0 00.0 00.. c0.m _0.0 00. 00... 00... 00.0. 00.0 00.0 «0.0 oo.0 00.0 .0.. 00.0 .0.N 00. ~0.__ 00... no.0. no.0 00.0 00.0 «0.0 .0.0 00.. 00.0 00.0 00. o.. m\p~ .pmmnm 0.00.... an. pom mms.m> mmmpum p.000 .0. 0.0.0 62 .>.m. >m.mo om.m> .0.0> N..00 00.00 00..0 00 you 0..0N 00.>. .m..0 mm.m> N..0> ...00 00.00 00..0 0. you .N.> 0.... 00.0N >N.0m 0>..0 00.00 0...> 00.0> .N.00 00.00 00..0 0. you .0.N. .0..N >0.mm 0..0. .0.00 0..00 0m.m> N>.0> 00.00 00.00 00..0 .. you .0.0. >0.om Nm.m. 00..0 0...0 N...> 0N.0> .0.0> 00.00 00.00 00..0 N. you 0..0. >0..m 0>.>. 00.00 o>.00 00.N> m0.0> Nm.0> >..00 00.00 00..0 0. you No..N mm.>0 00.00 m>.00 0..00 00.m> 0..>> mm.0> .0.00 No.00 00..0 00 you .0.NN ...00 00.N0 0N.N0 .0.00 0m..> m0.>> 00.0> 00.00 00.00 00..0 00 you 00.NN 0..0. 0..00 0N.00 >N.0> 00.m> 00.0> 0>.0> No.00 00.00 00..0 .0 you 00.0N 00.0. ....m 00.00 m>.o> >m.m> 0N.0> >0.0> 00.00 .0.00 00..0 Nm you 00.0N .N... 00..0 >N..0 00..> >0.m> 00.0> N0.0> >0.00 .0.00 00..0 on you Nm.mN >.... 00..0 00..0 0N..> .>.m> ...0> 00.0> 00.00 .0.00 00..0 0N you 00.0N .0... .0.00 o>..0 0m..> 0>.m> 0..0> 00.0> 00.00 .0.00 00..0 0N you 00.0N m>... 0..0m .0..0 0...> m0.m> Nm.0> 00.0> 00.00 .0.00 00..0 .N you .>.0N N0... .N.mm 00..0 .m..> 00.m> .m.0> 00.00 00.00 .0.00 00..0 NN you >>.0N >0... 0N.mm 00..0 00..> N0.m> 00.0> .0.00 o>.00 00.00 00..0 0N you 0>.0N 00... 00.00 00..0 00..> m0.m> >m.0> .0.00 o>.00 00.00 00..0 0. you 00.0N N0... 00.00 00..0 N0..> m0.m> >m.0> No.00 o>.00 00.00 00..0 0. you .0.0N .0... >m.mm 00.00 00..> m0.m> 00.0> No.00 o>.00 00.00 00..0 .. you N0.0N 00... 00.00 .0.00 .0..> 00.m> 0m.0> No.00 o>.00 00.00 00..0 N. you N0.0N 00... 00.00 No.00 mo..> >0.m> 0m.0> No.00 o>.00 00.00 00..0 0. you 00.0N 00... 0..00 00.00 mo..> >0.m> 0m.0> 00.00 o>.00 00.00 00..0 0 you 00.0N >0... ...mm .0.00 00..> 00.m> 00.0> 00.00 o>.00 00.00 00..0 0 you 00.0N >0... ...mm .0.00 00..> 00.m> 00.0> 00.00 o>.00 00.00 00..0 . you 00.0N 00... N..mm 00.00 >0..> 00.0> 0m.0> 00.00 o>.00 00.00 00..0 N you mN.o u m\...N .#...M£m 00>OOL0 w...“ (.0... mdem> COHHOCDW mmmfivm om 0>..N m>.>. 00.N. .0.0 00.0 .m>.N 00.0 >0.. ...0. ....N .0.00 00.0N 0N.NN 0>.0. m..N. 00.0 00.0 00.N 0..0 No.0 >N.0 .0.0. 00..N 00.0N N0.>. 00... 0.... 0..0 0N.m 0..N 0N.0 00.0 00.0 0..N. .>... 0..0. 00.0. 00... 00.0 ...> 00.. NN.N 00.0 0N.0 no.0 0..0. mm... .0... ..... 0>.0 00.0 N..0 00.. 00.. .0.0 NN.0 0N.0 No.0 .0.0 >0.0 0N.0 .N.0 00.0 >N.m .m.0 o>.. 0..0. >0.0 0..0 0N.0 0..0 .>.0 00.0 o..> >0.0 00.. 0..0 0... 00... 0m.o. 00.0 ...0 00.0 >0.0 .m.> 0..0 .m.m .... >>.N .0.. >0... 00.0. >>.0 00.0 0..0 00.> >0.0 00.0 .0.. 0>.0 00.N NN.. 00... N>.0. 00.0 00.0 mN.0 ...> >0.0 00.0 .0.. Nm.m 00.N .... N>... 00.0. N0.0 .0.0 >..0 0N.> 00.0 0..0 N... 00.0 0N.N 00.. .0... 00.0. 00.0 00.0 N..0 0N.> 0N.0 0N.m 0N.. mN.m >..N .0.. >0... .0.0. 00.0 00.0 00.0 ...> 0..0 .N.m 0N.. >..m ...N .0.. 00... >0.0. 00.0. no.0 >0.0 ...> ...0 0..0 m... N..0 00.N 00. N0... 00.0. .0.0. 00.0 00.0 00.> 0..0 N..0 .... 00.m 00.N 00. .0... 00... .0.0. 00.0 00.0 >0.> 00.0 00.0 00.. >0.0 .o.N >0. m0... .0... No.0. 00.0 .0.0 00.> >0.0 >0.0 >0.. 00.m 00.N >0. 00... N0... No.0. 00.0 .0.0 mo.> 00.0 00.0 00.. 00.0 N0.N 00. 00... N0... No.0. 00.0 .0.0 mo.> 00.0 00.0 00.. .o.m .o.N 00. >0... N0... 00.0. 00.0 .0.0 .o.> 00.0 00.0 .0.. 00.0 .o.N 00. >0... 00... 00.0. 00.0 00.0 .0.> .0.0 .o.m .0.. 00.0 00.N 00. >0... 00... 00.0. 00.0 00.0 .o.> .0.0 .0.0 00.. No.0 00.N 00. >0... 00... 00.0. 00.0 00.0 .o.> .0.. .0.0 00.. No.0 00.N 00. >0... 00... 00.0. 00.0 00.0 00.> 00.0 00.0 00.. No.0 00.N 00. >0... 00... 00.0. 00.0 00.0 00.> 00.0 00.0 00.. .o.m 00.. m0. m~.o u m\0m ..0mnm 00>oopw 0:. 00. mms.m> mmmppm 000:0 .00 0.009 6H 00.5 05.n. 00.5. 00.0. 0n..N 0N.NN N0.NN 0..nN .0.nN 00.nN 00.nN .5.nN 05.nN 55.nN 05.nN 00.nN .0.nN N0.nN N0.nN n0.nN n0.nN n0.nN n0.nN 5..0. 0..0N ...Nn 05.0n 00.0n 00.0n 5n.00 00.00 0n..0 n0..0 00..0 55..0 n0..0 00..0 00..0 N0..0 00..0 00..0 00..0 00..0 50..0 50..0 00..0 .0.5 05.5N 00.0n 00.00 05.00 0...0 00.N0 00.n0 5N.00 00.00 N0.00 00.00 0..00 0N.00 0n.00 nn.00 0n.00 5n.00 0n.00 0n.00 00.00 .0.00 .0.00 .0.00 00... oo.0n N0.N0 .0.00 00.00 NN.00 0N..0 00.N0 00.n0 00.00 0n.00 00.00 05.00 00.00 00.00 00.00 50.00 00.00 00.00 .0.00 No.00 no.00 00.00 00.00 00.00 00.00 5..00 00.00 0..50 00..0 0..00 0n.50 n0.00 00.00 00.05 00.05 n...5 .n..5 N0..5 o0..5 00..5 00..5 o0..5 N0..5 n0..5 00..5 00..5 00..5 00..5 00..5 50..5 N0..0 00.N0 0..00 00.50 5..05 50..5 0N.n5 0..05 05.05 5..05 00.05 N0.05 05.05 .0.05 00.05 00.05 N0.05 00.05 00.05 00.05 00.05 50.05 50.05 50.05 00.05 00.05 ...0 u;m\.~ ...mgm um>oogw mg. so. 00.N> 0>.N> >m.m> 00..> 00.m> om.0> m..>> 0m.>> N0.>> ...0> 0N.0> 00.0> 0..05 om.0> mm.0> mm.0> 00.05 >0.0> >0.0> 00.05 00.0> 0m.0> 0m.0> 0m.0> 0m.0> 0m.0> 50.55 05.55 00.05 n0.05 .0.05 n..05 00.05 00.05 05.05 00.05 00.05 n0.05 00.05 00.05 00.00 .0.00 .0.00 00.00 00.00 No.00 00.00 00.00 no.00 no.00 no.00 00.00 .0.00 .0.00 N..00 00.00 Nm.om N..00 00.00 00.00 00.00 no.00 00.00 50.00 00.00 00.00 00.00 00.00 05.00 05.00 05.00 05.00 05.00 05.00 05.00 05.00 05.00 05.00 00.00 00.00 .0.00 00.00 00.00 00.00 .0.00 N0.00 00.00 00.00 .0.00 .0.00 .0.00 00.00 .0.00 .0.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 000.0> 00.0000. mmwnpm 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 00..0 300 300 300 303 300 300 300 300 300 300 300 300 300 300 300 300 30C 300 300 300 300 300 300 300 300 300 .0000 0:0 000 000H0> wmmhpm gmwzm .mm 0HQMH 66 0«.00 00.00 05.05 ««.55 «0.05 "0.00 00.00 «m 300 0«.5 50.0« 0«.00 00.05 00.55 50.05 00.00 00.00 00 300 00.00 00.5« «5.00 00.05 00.55 «0.00 00.00 00.00 00 300 50.0 00.50 00.50 50.«0 00.00 00.«5 _0.05 00.00 00.00 00._0 0« 300 00.0 00.00 0«.00 50.0« 00.00 00.00 «0.05 00.05 00.00 50.00 00.00 0« 300 00.«~ 00.00 0_.0« «0.00 00.00 50.05 50.05 00.05 50.00 00.00 00.00 «« 300 «0.0_ 00.00 00.0« 5«.50 00.00 00.05 00.05 00.05 0«.00 00.00 00.00 0« 300 ««.00 05.00 55.0« m_.00 00.00 00.05 00.55 0«.05 00.00 00.00 00.00 0« 300 ~5._0 00.00 .0.00 50.00 00.00 0«.«5 05.55 00.05 00.00 00.00 00.00 00 300 0«.00 00.00 00.00 00.00 00.05 m0.«5 00.05 55.05 00.00 00.00 00.00 00 300 50.00 00.0« 00.00 05.00 00.05 00.05 «0.05 00.05 «0.00 «0.00 00.00 «0 300 00.00 00.0« ««.«m 0~.«0 00.05 00.05 00.05 00.05 00.00 «0.00 00.00 00 300 5«.00 0«.~« 55.«0 0«.«0 .0._5 50.05 0«.05 00.05 50.00 «0.00 00.00 00 300 00.00 0m.~« 00.«m m0.«0 00.05 55.05 5«.05 50.05 00.00 «0.00 00.00 00 300 50.00 05.0« 0_.0m 05.«0 0«._5 «0.05 00.05 00.05 00.00 «0.00 00.00 00 300 05.00 00.0« 00.00 00.«0 00.05 00.05 «0.05 00.00 00.00 «0.00 00.00 «0 300 05.00 00._« 50.00 _0.«0 0m._5 00.05 00.05 00.00 00.00 00.00 00.00 00 300 05.00 00.~« .0.00 m0.«0 0m._5 00.05 00.05 _0.00 05.00 00.00 00.00 00 300 05.00 00.0« «0.00 50.«0 00._5 «0.05 50.05 00.00 05.00 00.00 00.00 00 300 00.00 00.~« 00.00 00.«0 00._5 00.05 00.05 00.00 05.00 00.00 00.00 00 300 00.00 «0._« 50.00 00.00 00..5 00.05 00.05 00.00 05.00 00.00 00.00 «_ 300 00.00 m0..« 00400 _o.m0 «0._5 00.05 00.05 00.00 05.00 00.00 00.00 NH 300 00.00 00.~« 00.00 00.00 00.05 50.05 00.05 00.00 05.00 00.00 00.00 00 300 00.00 00.0« 0«.00 00.00 m0._5 50.05 00.05 00.00 05.00 00.00 00.00 0 300 00.00 50._« 0«.00 «0.00 00.05 50.05 00.05 00.00 05.00 00.00 00.00 0 300 00.00 50.«« 0«.00 «0.00 00._5 00.05 00.05 00.00 05.00 00.00 00._0 « 300 00.00 00.~« _«.00 00.00 50._5 00.05 00.05 00.00 05.00 00.00 00.00 0 300 05.0 n m\n~ .pmmnm 00>oogo may now mosam> 00000000 000900 . 00.0 06.0 00.6 00.N F0." 0N.- F6.0~ mfi.0 -.0 06.0 0h.b 00.0 00.0 "0.0 60.0 00.N 0N." Nm.—~ F0.0— 60.0 00.0 00.0 00.N 00.0 ab.m 00.6 00.0 06.N mm.— 00.- 00.0~ 00.0 60.0 0H.0 00.F 06.0 06.m b6.6 06.0 FN.N 00.~ 0b.- 00.0“ 60.0 00.0 0~.0 0N.h 00.0 00.0 N0.6 NN.0 0~.N mo." 00.mn 00.0m b0.0 00.0 0~.0 0~.b "N.0 0N.m 0N.6 0~.0 0~.N N0." 00.- 00.0" 00.0 00.0 >0.0 N~.F mm.0 h~.m b~.6 6_.0 00.N 00." NO.—— 00.0~ 00.0m 00.0 00.0 00.F ~—.0 0~.m N~.6 0H.0 00.N 00. 0O.- 00.~— “0.0a 00.0 00.0 F0.F 00.0 O~.m 0_.6 00.0 60.N 00. mo.- ~0.~— N0.0~ 00.0 00.0 00.N 00.0 00.0 00.6 00.0 00.N F0. 00.~— ~0.- N0.0~ 00.0 60.0 mO.F 00.0 #0.0 F0.6 00.0 N0.N hm. 00.nu N0.~— No.0“ 00.0 60.0 mO.F 00.0 00.0 00.6 60.0 00.N 00. 00.n“ N0.~_ N0.0~ 00.0 60.0 00.N 00.0 00.0 00.6 60.0 _O.N 00. FO.- NO.H~ 00.0" 00.0 60.0 60oF 00.0 00.0 60.6 00.0 ~0.N 00. >0.n~ 00.—~ 00.0~ 00.0 00.0 60.F 60.0 60.0 60.6 00.0 00.N 00. h0.- 00.- 00.0” 00.0 00.0 60.F 60.0 60.0 00.6 No.0 00.N 00. 50.nn 00.- 00.0" 00.0 00.0 60.5 60.0 60.0 00.6 No.0 00.N 00. h0.~n 00.- 00.0m 00.0 00.0 00.F 00.0 00.0 00.6 No.0 00.N mm. F0.- 00.nu 00.0“ 00.0 00.0 00.h 00.0 00.0 00.6 «0.0 00.N mo. mh.o n m\&w .#m0£m 00>0090 03H pom 003H0> mmmppm hmmnm .moH GHQMH 68 ««.00 00.00 0«.05 00.55 00.05 00.00 00.00 0« 300 0«.0 00.0« 00.00 05.05 00.55 00.05 00.00 00.00 0« 300 00.00 00.0« «5.00 00.05 00.55 00.05 00.00 00.00 «« 300 5«.0 00.00 00.00 ««.00 00.05 00.05 00.00 «0.00 00.00 0« 300 00.0 55.00 00.00 00.0« 50.50 00.00 o5.«5 ««.05 00.00 00.00 00.00 0« 300 00.0. 00.00 0«.50 55.00 00.00 00.05 05.05 00.05 00.00 00.00 00.00 00 300 00.00 50.00 0..«« 05.00 00.00 00.05 00.05 «0.05 0«.00 00.00 00.00 00 300 0«.0~.00.00 00.0« 00.00 00.50 «0.05 00.55 00.05 00.00 00.00 00.00 «0 300 00.00 05.50 _0.00 0_._0 05.00 0«.«5 00.55 00.05 00.00 00.00 00.00 00 300 0_.00 00.00 00.00 00.00 «5.00 05.«5 00.55 05.05 00.00 00.00 00.00 00 300 05.00 00.0« 00.00 00.00 0«.05 «0.05 00.05 00.05 00.00 00.00 00.00 00 300 «0.00 00.0« 00.«0 00.00 00.05 0«.05 00.05 00.05 00.00 «0.00 00.00 00 300 00.00 00.0« 00.«0 00.«0 00.05 00.05 00.05 00.05 50.00 «0.00 00.00 «0 300 «0.00 00.0« 00.«0 50.«0 00.05 05.05 0«.05 00.05 00.00 «0.00 00.00 00 300 «0.00 00.0« 00.00 05.«0 0«.05 00.05 0«.05 00.05 00.00 «0.00 00.00 00 300 05.00 05._« 00.00 00.«0 0«.05 00.05 00.05 00.00 00.00 «0.00 00.00 00 300 «5.00 00.0« 00.00 00.«0 «0.05 00.05 00.05 00.00 00.00 «0.00 00.00 00 300 55.00 50.0« 00.00 «0.«0 00.05 00.05 00.05 00.00 05.00 00.00 00.00 «H 300 05.00 00._« 00.00 50.«0 00.05 «0.05 50.05 00.00 05.00 00.00 00.00 00 300 00.00 00.0« 00.00 00.«0 00.05 00.05 00.05 00.00 05.00 00.00 00.00 00 300 00.00 «0.~« 00.00 00.00 «0._5 00.05 00.05 00.00 05.00 00.00 00.00 0 300 00.00 00._« 00.00 00.00 00.05 50.05 00.05 00.00 05.00 00.00 00.00 0 300 00.00 00.0« 0«.00 00.00 00..5 50.05 00.05 00.00 05.00 00.00 00..0 « 300 00.00 50.0« 0«.00 «0.00 00.05 00.05 00.05 00.00 05.00 00.00 00.00 0 300 o.H u m\0~ .ummnm 00>ooao 009 000 000H0> 00000000 000000 .0000 000 000 m0sam> 000000 00000 .0HH 00009 APPENDIX B 70 71 PROGRAM 1TSLN4 DIMENSION X(800019JN(500)0AH(100).BH(100)OBR(IOO)Q 128(500)9YB(8000).ER(40) COMMON X.JN.IR.1.AH.BH.IGR.BR NH=8 900 FORMAT (3HROW913911(F602)) 920 FORMAT(12(F602)) NG=5 DN=100 w=lo3 155:0 NF=O CALL BOUGEN (NHcNC) CALL MATGNI (NC.DN.NF9NG.NH.W) K21 100 1:2 LS=25 L=LS+JN(1)‘2 103 PRINT 9000(10(X(J)9J=LSOL92)) 1=1+2 18:1-2 IAzl-l LS=LS+JN(18)+JN(IA) L=LS+JN(1)‘2 106 IF(1-K)10301039107 107 1:1 1000 HN=FLOATF(NH)/2.0 1R=JN(I1 KL=K-l DO 1006 1:2.KL 398 R=0.0 NP=JN(I1 1A=1“l DO 1006 J=19NP 1R=IR+1 RzFLOATF(J)/FLOATF(NH) KR=1R+1 LR=1R-JN(1A) MRle-l NR=IR+JN(11 TX=(X(MR)‘X(KR))*HN TY=(X(LR)‘X(NR))*HN 1F(J‘1)1003.100301004 1003 TX=(81.O-X(KR))*HN 1004 1F(J-JN(1))100601005o1005 1005 TX=X(MR)*HN ZB(1)=(4.O*X(1R)‘X(MR)1*HN/(R+l.0/FLOATF(NH))**2 1006 YB(IR)=(SQRTF(TX**2+TY**2)1/(R**2) K=K-2 (CONTINUED ON NEXT PAGE 72 200 132 LS=25 L8L$+JN(11‘2 203 pRINT9200(YB(J)9J=LSOL02’QZB(1’ 131+2 1331‘2 IA=I-1 LSBLS+JN(1A1+JN(IB) LRLS+JN(1)-2 206 1F(1-K)20302039207 207 CONTINUE 1017 CONTINUE END SUBROUTINE MATGNI (NCQDNQNFQNGQNHOW) D1MEN510N X18000)QJN(500)9AH(100)OBH(100)QBRCIOO) COMMON XOJNQIROIOAHOBHQIGROBR 900 FORMAT (18H NO OF ITERATIONs=v131 350 FORMAT(1H093HAA=9F150603HAC3oF150693HAD=9F1506) 250 FORMATCIH003HAH(01292H139F159693HBH(91202H1=9F15061 DO 460 L1=108000 460 X(L113000 KNT=O CN =FLOATF(NC1 HN=FLOATF(NH) FNBFLOATF(NF’ GN=FLOATF(NG1 470 ER=000 159:0 1M=O ZSIOO/HN 131 1R30 300 1F(Z-GN+100/HN)30103129302 301 Y=300 YB=Y C03000 CURVE‘O. GO TO 306 312 Y=300 YB=3OO GO TO 306 302 1F(Z-GN-DN)303v3100304 303 ZA=Z*GN ZB=ZA+100/HN CO=OOO C03001F Y83o ATZ=GN0CO=NON ZERO 1F Y ISNOT 3. AT Z=GN CURVE=10 GO TO 311 310 ZA=Z-GN (CONTINUED ON NEXT PAGE 304 305 306 307 308 409 30 31 32 704 702 703 701 73 2832A CURVano Y=*(SQRTF(1oo-‘ZA’10)**2)1+300 YB=-(SQRTF(100‘(ZB-1o1**211+300 GO TO 306 1F(Z-GN-DN-FN)305030506 Y=Y YB=Y CURVE‘OQ JN(1130 RzloO/HN 1F(Y-R)40994090308 R=R+100/HN JN(113JN(1)+1 GO TO 307 NP=JN(I) pNzFLOATF(Np) Do 200 J=loNP 1R=1R+1 RRFLOATF1J1/HN AAZ‘QO ABB-(100"(3oO/(200*HN*R)1) ACS-IOO AD='(100+(300/(200*HN*R1)1 ASS-100 1F(1-1)10192 AC=OOO IM=IM+1 8389(1M)+B 1F(J‘1)39304 AD:OOO B=B+8100*205 1F(z-GN.DN-FN)70505 AESOOO 1M=1M+1 ACB-ZQO IAxl-l IB=1+1 JN(15180 RB=100/HN IFCYB-RB)32032931 RB=RB+1.0/HN JN(1818JN(IB1+1 GO TO 30 1F(J-JN(1B))1097049702 1F‘J-JN(111100703010 1FCJ-JN(I)) 7010703010 1F(CURVE)999022 1F‘CURV517089709‘708 (CONTINUED ON NEXT PAGE 7” 709 A53000 GO TO 10 9 A3800 1F(CO‘2001109710910 710 A53000 GO TO 10 22 IF(JN(1)-JN(IB))33933034 33 AB=OOO IGR816R+1 BH(IGR)=100 AE=-1.0 GO TO 35 34 AB=OOO 708 AE=000 IGR=IGR+1 399 BH(IGR13-(SQRTF(100’(R-3001**2))+100 BH(IGR)=(BH(IGR)‘ZA)*FLOATF(NH) 35 IF(J-JN(I))70517060706 705 AH(IGR)3100 GO TO 707 706 AH(IGR)=(Y-R)*HN 707 CONTINUE AA=(2o/AH(IGR)+20/BH(16R1-(3o*(10-AH(16R),1/(J*20 1*AH(IGR)) AC=*(20/(1+BH(IGR))) AD=‘(2o/(1+AH(IGR)+30/(20*J)1 1F(KNT-1)23024924 23 PRINT 25001GR9AH(IGR)QIGRQBH(1691 PRINT 3509AA9AC0AD 24 CONTINUE 10 1F(1-1)11911912 11 LR=0 GO TO 13 12 LR=IR-JN(IA) I3 KR=IR+1 IF(J-1)14914015 14 MR=1 GO TO 16 15 MR=IR“1 16 NR=IR+JN(1) 20 03000 Q=AB*X(KR)+AC*X(LR)+AD*X(MR)+AE*X(NR) P8(B’Q)*(W/AA)+(100‘W)*X(IR) D=(X(IR)-p)/P 1F(ER-ABSF(D))7IO72Q72 71 ERBABSF(D) 72 X(IR)=P 200 83000 z=Z+100/HN (CONTINUED ON NEXT pAGE) 21 150 04> 71 72 10 100 75 I=I+1 GO TO 300 KNTzKNT+1 IF(00001-ER)470021021 PRINT 9009KNT END SUBROUTINE BOUGEN (NHQNC) DIMENSION X(BOOO)QJN(500)0AH(100’0BH(IOOIOBR(100) COMMON XOJNOIRQIQAHQBHQIGRQBR 1080 DO 150 JA=IQIOO BR(JA13000 ”3100 HN=FLOATF(NH) Y=300 N=23 IR=O ERBOOO IF(Y-200)29992 IR=ID N315 DO 7 J‘ION R=FLQ‘TF(J)/HN T300 IR=IR+1 AA=200 AQ=-(I.0*(3oO/(200*HN*R)1) AC3-(IOO+(3oO/(200*H~*RII) IF(J*1)49394 AC=OOO T3810*205 GO TO 6 KR=IR+1 MR=IR*1 Q3000 OBAB*BR(KR)+AC*BR(MR) P=(T-O)*(U/AA)+(100‘W)*BR(IR) D=(BR(IR)*p)/P IF(ER-ABSF(D))71972072 ER=ABSF(D1 CONTINUE BR(IR)8P IF(00001-ER)19808 Y3200 ID=1R IF(N‘15)101091 pRINT 1000(BR(J)9J=191R1 FORMAT(1H0017(F70111 END END "'Wififlflfnljlfll‘lgfulflfiflflfflifliflmfififimfim 8812