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ABSTRACT

YIELD AND RELAXATION

IN POLYMERIC GLASSES

BY

R, H. Beck, Jr.

The yield process in amorphous polymeric glasses may be a relaxation

phenomenon. A combined kinetic-energy/free-volume theory for molecular

mobility of polymer liquids is extended for use in the glassy state.

Expressions fbr tensile yield strain as a function of temperature,

strain rate, and time after quench during isothermal volume contraction,

and fbr relaxation rate as a function of temperature, tensile elongation,

and time after quench are derived.

Workers in the area of glassy yield generally have taken specimen

necking to denote tensile yield. From measurements of the volume

change undergone during extension by polymethylmethacrylate glass (PMMA),

and from the dependence of the fractional hysteresis of that material

upon elongation, it is shown in the present work that tensile yield

initiates prior to necking, near the proportional limit of the load—

elongation curve. Poisson's ratio, calculated from the volume measure-

ments, is found to vary from 0.33 to 0.41 between -20°C and 100°C.

Results of experimental measurements of tensile yield strain and

relaxation rate of PMMA as functions of temperature and free volume

are shown to be consistent with a yield-relaxation relationship.

Using the theory and measurements of volume change during extension,

1
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R, H. Beck, Jr.

a load-elongation curve is calculated which exhibits a distinct yield

point. Though qualitatively successful in describing yield strain and

relaxation rate, the theory is demonstrated to be quantitatively

applicable only to yield strain calculations for strain rates within

one decade of a reference rate.
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1 . INTRODUCTION

Although amorphous polymeric glasses are generally thought of as

brittle, such materials do, under certain conditions, yield and draw

without undergoing brittle fracture. Much attention has been given to

the phenomenon of glassy yield,lm12 especially experimentally, but

with little quantitative agreement between experimental results and

theoretical predictions. The purpose of the present work is to inves-

tigate yield in tension of polymethylmethacrylate glass (PMMA),* a

typical amorphous polymeric glass, and to describe quantitatively the

tensile yield process fbr that material in particular, and amorphous

polymeric glasses in general.

1.1 The Glassy State

As an amorphous polymer in the liquid state is cooled, its volume

decreases. The slope of the specific volume-temperature curve is

designated oi (Figure 1). At some temperature, the slope of the cooling

curve begins to decrease, and over a temperature range of about 30°C

becomes constant at a lower value, aé. In the region in which the

cooling curve slope is constant and less than for the liquid, the

polymer is in the glassy state. The temperature at which the slope

changes (fbund by the intersection of the extrapolated liquid and glass

lines) is called the glass-transition temperature, Tg. At temperatures

 

*

American Cyananid Acrylite MS—2; MIL-P-5425A, Finish A
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greater than T9, the polymer behaves as a viscous liquid, and below T

it acts as a rigid, viscoelastic solid. Typical polymers which are

glasses at room temperature are polystyrene, polycarbonate, and PMMA.
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Figure 1--Schematic drawing of a cooling curve fbr a typical amorphous

polymer.

The glass transition is rate-dependent, as is illustrated by

Figure 2, which shows schematic volume-temperature curves for three

cooling rates. The figure shows that the volume of the glass is

rate-dependent also; both the glass-transition temperature and the glass

volume decrease with decreasing cooling rate. The rate dependence of

the volume is a manifestation of the nonequilibrium.character of the

glassy state. If the polymer were cooled infinitely slowly, the rate-

controlled glass transition would occur at the true second-order thermo-

13, 14, 15

dynamic transition temperature, T2 (Figure 2). The state result-

ing from such cooling is called the hypothetical—equilibrium glass and the
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slope of the associated glass curve is designated dé The hypo-

(t'*°°) '

thetical-equilibrium glass is that state in which total polymer volume
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Figure 2--Schematic drawing of cooling curves, showing the rate

dependence of the glass-transition temperature and glass volume.

is made up only of the sum of the volume of the molecules themselves

and the volume characteristic of their thermal vibrations. If the

glass exists in any state other than this, it contains excess volume

over and above the hypothetical-equilibrium volume. The explanation

fOr this phenomenon will be given in a subsequent section.

1.2 Polymer Relaxation

If a strain so is applied very rapidly to a polymer, and the

force necessary to maintain that strain monitored as a function of time,

a curve similar to that of Figure 3 results, where the log of the
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apparent modulus, E(t), is plotted versus log time. The figure shows

that E(t) decreases with time, indicating that the force needed to
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Figure 3--Schematic drawing of a typical stress-relaxation curve.

maintain strain so decreases. It is said that the polymer relaxes.

The rate of relaxation is given by the negative of the slope of the

curve, (-Blog E(t)/alog t)T,e at any given time. A high rate indicates

greater mobility of the polymer molecules, or chains, than does a low

rate. It is said that a polymer which relaxes quickly has short

relaxation times. The meaning of the term "relaxation time" will be

made clear later.

Relaxation of the stress during such a test occurs as a result

of polymer chains' changing configuration under the influence of the

stress; such a test is called a stress-relaxation experiment. A series

of tests run over a range of temperatures for PMMA is shown in
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A particular modulus may be realized in two ways: by choos-

ing the test temperature where the initial modulus is suitable, or by

testing at

modulus is
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a lower temperature but waiting for a longer time--until the

lowered by relaxation.
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Figure 4--Series of stress-relaxation curves for PMMA.

The equivalence of time and temperature is the qualitative basis

of the time-temperature superposition principle,17 which states that

the effect of changing the temperature of a polymer is equivalent to

changing the time scale of the experiment. The most important parameter

in the theory of time-temperature superposition is the shift factor, aT.

The shift factor is a measure of the time-temperature equivalence. It

is obtained experimentally by superimposing stress-relaxation curves

for the various temperatures, to make a single "master curve." A
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master curve constructed using the data of Figure 4 is shown below.

The amount of horizontal shift, as measured on the log t axis,

necessary to produce the master curve is log aT. Log aT is a function

of temperature and is illustrated in Figure 4 for 95°C and 100°C,

where the shift reference temperature, To, is 105°C.
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Figure 5--Stress-relaxation master curve constructed using data given

in Figure 4.

1.3 The Glass Transition as a Relaxation Phenomenon

The glass transition is known to be relaxational in nature.15'18'19

As the polymer in the liquid state is cooled, the temperature change causes

the molecular segments to alter their configuration and increase the

density of the polymer. Figure 4 shows that the mobility of the

polymer chains decreases with decreasing temperature. This is

evidenced by the lowering of relaxation rate with lowering of temperature.
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Sometime during the cooling, a temperature is reached where the chains

are no longer able to respond at a rate equal to the cooling rate, owing

to their decreased mobility, and volume change begins to lag temperature

change. At that point the slope of the cooling curve begins to decrease

(Figure 1), since the chains are not responding as rapidly as at higher

temperatures. The slope continues to decrease, over a range of about

30°C, until the relaxation rate is so small compared with the cooling

rate that an apparent steady state results. The slope then appears

constant. As a result of the temperature dependence of polymer mobility,

the point at which the glass transition occurs is dependent upon cooling

rate. The glass-transition temperature shifts about 3°C for a

one-decade change in rate.

1.4 Yield as a Relaxation Phenomenon

Analogously, yield in amorphous glasses is believed to be relax-

ationally controlled. At small strains, the glass behaves as a visco-

elastic solid with long relaxation times (low chain mobility), and

reacts in a very nearly Hookean manner. The imposition of increasing

strain on the glass alters its character and has the effect of

shortening relaxation times. At some time during the loading, it is

surmised that chain mobility will have been increased to the point

where the relaxation rate of the glass is equivalent to the rate of

strain imposition, and that the glass responds within the time scale

of the test by yielding. At yield, the material acts as if a very

low stress were imposed upon it, but at a temperature quite near Tg.

That is, it behaves as if it were liquid-like in character. Possibly

as a result of the relaxational aspect of yield, the point at which
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yield occurs changes with strain rate, similar to the cooling-rate shift

of Tg. The yield point also changes with temperature. This would occur

as a result of the temperature dependence of the relaxation rate. As

the test temperature is increased, the relaxation rate in the unstrained

state is also increased, and the amount of strain necessary to increase

the relaxation rate to equivalence with the strain rate would be lowered.

Thus the yield strain may be expected to decrease with increasing

temperature.

1.5 The Present Work

The main objective of the present work is to investigate the

possibility that yield in polymeric glasses is a relaxational phenomenon,

as described above. It has been stated that applied strain increases

relaxation rate, thus causing yield. The first portion of the present

work will be concerned with the development of a mathematical

description for this proposed type of yield behavior.

The model itself is based upon the free-volume theory of molec-

ular mobility, according to which the rate of relaxation of a polymer

increases with increasing free volume. Equations for the probability

of a molecular transition, originally derived f0r the liquid state,

will be extended for use in the glassy state. It is hypothesized

that when the transitional probability of the glass reaches PT , the

or

"critical transitional probability," yield occurs. An expression for

PT , which is dependent upon temperature and free volume, will be

or

developed. Quantitative relations will also be obtained for yield

strain and relaxation rate as a function of temperature and free volume.
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In the area of glassy yield, it has been customary for workersl-12

measuring the yield point of a polymer to take the maximum in the tensile

load-elongation curve to denote yield (5 in Figure 6). This is also

B

the point at which necking is first observed, and although the existence

of a neck in the specimen provides certain evidence of yield, the

macroscopic character of the plastic deformation at that point makes it

equally certain that yield must have initiated at some prior point. It

would seem that any theory devised to describe yield should predict its

onset, and therefbre must utilize experimental data taken at yield

initiation, rather than at necking. One portion of this work will

address itself to the problem of experimentally determining the initial

yield point.
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Figure 6--Schematic drawing of tensile load-elongation curve showing

upper yield point, EB.

With the yield point properly defined, experiments will be

reported whereby the variation of initial yield strain with temperature,
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strain rate, and free volume were determined. Measurements showing

the dependence of relaxation rate upon applied strain and free volume

will also be described.

Results of the experiments will be compared with predictions based

upon the mathematical model, and final conclusions will then be drawn.



2. MATHEMTICAL DESCRIPTION OF YIELD AND RELAXATION

To determine quantitatively whether glassy yield in amorphous

polymers is relaxation in nature, it is necessary to have a mathematical

model for yield and relaxation. Such a model must include a strain-

induced relaxation rate increase and must relate that change in relaxation

rate to the yield point.

2.1 Free Vblume

The basis of the model presented here is the free-volume theory

of molecular mobility. First introduced by Doolittle,20 and Williams,

Landel, and Ferry17 to describe the temperature dependence of polymer

viscosity above the glass transition, the theory has since been extended

empirically by other workers6-9 to describe glassy yield. These efforts

have met with only moderate success. According to the theory, molecular

mobility is directly related to the amount of free volume in the polymer;

increases in free volume increase mobility. In the glassy state, it is

presumed that the volume increase which accompanies tensile deformation

constitutes a change in free volume, thus increasing mobility.

Free volume is not the only parameter on which the develoPment

of a yield theory could be based. Entropy18 or heat capacity, for

instance, might be used instead. An approach in which a parameter

other than free volume is used may seem more desirable from a

11
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theoretical point of view. Experimentally, however, it is much easier

to measure volume precisely than entropy or heat capacity, and hence

the former approach is taken in this work.

The thermal expansion of a polymer consists of two parts: free

volume, Vf, and occupied volume, Vc' Occupied volume corresponds to

the volume of the hypothetical-equilibrium glass. The free volume is

defined as that part of the thermal expansion which is "free" for

redistribution,21 and in the glassy state may be thought of as being

composed of an equilibrium component, v , and a nonequilibrium, or

f

"frozen," component, w .13 There is no physical difference between

f

vf and wf. The distinction is made because wf represents that portion

of the total free volume which will relax out of the polymer, given a

sufficiently long period of time, whereas v represents the value of the

f

total free volume at thermodynamic equilibrium.

The components of V are illustrated on the volume-temperature

f

diagram for PMMA shown in Figure 7. This shows that the temperature

dependence of equilibrium free volume is: = Aaf(T - T2), where

Vf

A0 = a' - a' . The value of w is a function of the thermal

f 2 g(t+W) f

history of the glass.

The basis of the free-volume theory is the assumption that the

probability of a molecular segment's making a transition, or jump, from

one equilibrium position to another depends solely upon the probability

of the existence of a "hole" of sufficient size such that the segment

can fit into it. Cohen and Turnbull21 calculated the probability,

PV' of the existence of a hole of volume equal to or greater than some

value V*, on the basis of a hard-sphere model, and found

PV °= exp (-YV*/Vf) (1)
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where y is a factor between 0.5 and l, and which is needed to correct

for overlap of free volume. Rusch13 has shown that yv* = 2.303C1C2A0f,

=T -T.andC2 o 2
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Figure 7--Experimental specific volume-temperature curve for PMMA.

When a material is subjected to a tensile strain, 8, a volume

increase generally accompanies the strain. The amount of volume increase

is given by

$3,- = (1 + e)1'2“ - 1 (2)

0

where AV is the volume change, V0 is the volume at zero strain, and

u is Poisson's ratio, defined by

-ln(l + 8t)

u = 1n(l + e ) (3)
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with at indicating the strain in a direction transverse to e. For small

strains the above equations reduce to

AV

3- = 8(1 - 2n) (4)

O

and

-€

11 = -—t-- (5)

Materials for which n = 0.5 deform at constant volume (as do liquids).

In extending the theory to glassy yield, Ferry and Stratton6

pointed out that the volume increase resulting from.the application of

a tensile stress could be assumed proportional to an increase in the

fractional free volume, f, and proposed the relation

3f _ _
3g - 8(1 211) (6)

where B is a constant which denotes the fraction of total volume

. . . . 7 .
dilation which is free volume. Newman and Strella equated this

volume dilation to that which results from a temperature increase.

Setting 8 = 1, they suggested the relation

€(l - 2n) = agAT (7)

where cg is the thermal expansion coefficient of the glass. This

equation indicated qualitatively that tensile strain effectively

shifts the temperature of the glass closer to T9 by an amount AT.

Yield is expected when AT = Tg - T.

Litt gt al38'9 later pointed out that mg is not a good approx-

:imation for the thermal expansion coefficient of the free volume in the

sglass, and proposed that it be replaced in Eq. (7) by (09 - ac)'
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where ac is the thermal expansion coefficient of the completely crys-

talline state. Litt's modification does result in a more accurate

description of yield behavior, but Eq. (7) cannot account for the

dependence of the yield strain on strain rate or free volume, as will

be shown. The existing free volume treatments give only a semi-

quantitative description of the yield behavior of glassy polymers.

2.2 Kinetic Energy

A conceptual difficulty also arises with the free-volume theory.

Though it is reasonable that a hole must exist in order for a segment

to jump, the segment must possess sufficient kinetic energy to over-

come the potential barrier opposing the transition. The free-volume

theory alone does not take this energy effect into account.

722
and later Weymann,23Previously, Eyring, treated this problem

as applied to melt viscosity. They assumed the probability of a

segment transition to be given by the product of two independent prob-

abilities; the probability that the segment possesses sufficient kinetic

energy, PE, and the probability that sufficient local free volume exists,

PV. Their treatments, however, erred in the calculation of PV' and the

resulting equation fails to describe the temperature dependence of the

viscosity of many polymer liquids.

It remained for Macedo and Litovitz24 to combine the approaches

of Eyring and Cohen and Turnbull to obtain an equation which describes

the temperature and pressure dependence of the viscosity of polymer

.liquids. From their treatment
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PE u exp(—E*/RT) (8)

and

PV °‘ exP("YV""/Vf) . (9)

The quantity E* has the form.of an Arhenius activation energy and

represents the height of the potential barrier, including chain-

restraining effects, between molecular segment equilibrium positions.

R is the gas constant.

The parameter E* is of significance in the present work. The

value of E* indicates the relative importance of free volume and

energy effects, according to the theory, in the yield and relaxation

processes. A high value of E* will be shown to mean that energy is

most important, whereas a low value implies the opposite.

The probability of a molecular segment's making a transition

is thus proportional to

PT = PE-Pv a exp(-E*/RT)~exp(-yV*/Vf). (10)

Equation (10) is the basis for the yield and relaxation theory

presented in the following pages. The equation was derived for, and

has previously been applied to, the liquid state. It will be presumed

in the following that Eq. (10) also is applicable to the glassy state.

Such a presumption would appear unreasonable for a material which is

crystalline as a solid, but seems plausible for an amorphous polymer,

which undergoes no phase change during solidification. Provided that

it can be extended to the glass, the above expression, derived for the

.liquid state, is entirely consistent with the model proposed in the

:introduction, as will be demonstrated.
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2.3 Relaxation Times

In viscoelasticity theory, the Maxwell element is the model

used to describe relaxation processes. The Maxwell element consists

of a spring of constant K and a dash pot of constant n connected in

series. The equation of motion of this element is

(11)x
.

ll

fi
l
m
-

+

J
|
h
j

where x is the extension of the element, and F is the applied force.

In terms of material parameters, Eq. (11) becomes25

0(t) + g_= 8E (12)

where 0(t) is stress, €(t) is strain, E0 is tensile modulus, and

n is viscosity.

The relaxation time, T, of the element is given by T = n/Eo.

The relaxation time is a measure of the speed with which an applied

stress relaxes. To see this, we solve Eq. (12) subject to the con-

straints of a stress-relaxation experiment. These constraints are

that é = 0 and 0(0) = 00 = eoEo' We obtain

0(t) = ooexp(-t/T). (13)

Equation (13) describes the variation of stress with time

ciuring a stress-relaxation experiment. To obtain the expression
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defining the modulus during such a test, both sides of Eq. (13) are

divided by so, the initial applied strain. We obtain

E(t) = Eoexp(-t/T) (14)

where E = 0 /€ .

o o o

In order to describe the relaxation behavior of real polymers

adequately, it is necessary to assume the material to be made up of an

infinite number of Maxwell elements, with a distribution of relaxation

times. Equation (14) becomes

E(t) = _ZE(T)exp(-t/T)dln1 (15)

where H(T) is the relaxation-time distribution function.2

It is clear from Eq. (15) that relaxation processes are de-

termined by T and H(T). According to the WLF assumption,17 for

T > Tg' the effect of a change in temperature is to shift the relaxation

spectrum, shape unchanged, to higher or lower values of T. An

analogous assumption will be made for the glassy state in the present

work; it will be assumed that a change in free volume also shifts

the spectrum without changing its shape. Thus, to show the relation-

ship between yield and relaxation using the free-volume theory, it

is necessary to obtain expressions for T and yield strain from the

theory.

The relaxation times of a polymer can be assumed inversely

, , 24 7

proportional to the probability of a molecular tranSition. '2 Hence,

I a PT m exp(E*/RT)exp(yV*/Vf). (l6)
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wn that relaxation times decrease with decreas-

ndicates that the proportionality constant

t be positive. Equation (16) shows that as

pecimen, and thus as free volume increases

decreases, as it should in order to agree with

ation proposed in the introduction. Equation (16)

(ich relates relaxation to the free-volume theory.

(e used to derive an expression for the shift

factor is defined in terms of relaxation

a = Ja— <1»
0

'elaxation time at temperature T, and

,tion time at the reference temperature.

, one obtains

YV*[V (T ) - V (T)] E*(T - T)

f o f + 2 30§RT T— (18)Vf(To)Vf(T) . o

:ndence, according to the theory, of the shift

.d free volume. For temperatures greater than

;uilibrium and total free volume, Vf, is equal

me, vf. In this case, taking To greater

(r is given by

_ -C1(T — To) E*(T — To)

_ ____._______ _ ___________ 1

C + T - T 2.303RT T ( 9)

2 o o
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Saf), C2 = To - T2, and Vf(T) = Aaf(T — T2).

11d describe the behavior of the shift factor

3r than Tg. Equation (16) can be written for

2. 303cc

exp(E*/RT)eXP (20)

lTo

>elow the glass transition the polymer is not in

1nd total free volume is not equal to equilibrium

;es both an equilibrium and nonequilibrium

iequilibrium free volume wf, which determines

:acter of the glassy state through its dependence

:y of the polymer.

'19’28 that when an amorphous polymer is rapidly

1ture above its glass transition to a temperature

1e polymer continues to decrease with time even

_um has been established. This "isothermal

r be a result of nonequilibrium free volume

Lymer. Nonequilibrium free volume can then be

: of the total free volume which is not fixed

Lbrium free volume is determined completely by

lermal history of the polymer cannot alter its

and, wf is determined only by thermal history,

ire-dependent range, may assume any value.

lower than the glass transition, then,

: be rewritten to include wf. These expressions

“
'
I
‘



21

03c1fc2[C2AoLf-vf('rv)-w (TH E*(To - T)

 

 

+ (21)
C2[Vf(T) - Wf(T)] 2.303RTOT

2. 303C1C2Aaf

*
exp(E /RT)exp vf(T) + wf (T) (22)

e the dependence of relaxation times and the

rature and free volume in the glassy state.

plicated, a convenience in notation introduced

,. The effective temperature, Te, is defined as

= T + A f T < T

wa/af “—2

(23)

= T + A f T > T .wf/ af or __ 2

, one can show that the effective temperature

e nonequilibrium glass at temperature T has

cal to those of the hypothetical-equilibrium

(T). Recasting Eqs. (21) and (22) in terms

'ature gives

-C1(Te - To) E*(T - To) (24)

T=C +T -T _2.303RTT
2 e o o

2.1C23O3C

: exp(E*/RT)exp _To+ C2 (25)
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s conceptually useful in allowing Eqs. (19) and

e liquid state, to be used for the glass by

n the volume factors of those equations.

2.4 Yield Strain

f the occurrence of a molecular transition is

erse of T as defined by Eq. (25). According

pplied to the glass increases free volume.

volume is fixed by temperature, this strain-

rease amounts to an increase in nonequilibrium

g the case, Eq. (23) shows that applied strain

temperature of the glass. The amount of

on how much of the strain-induced volume cor-

, i.e., the value of B in Eq. (6). In the

taken as unity. This value implies that all

orresponds to free volume.

perature of the glass can then be thought of as

arts: Té, that part determined by temperature

en by Eq. (23), and ATe, the strain—dependent

-2

_ AV = il.i.§li__3_:l (26)

e 0A0:f 0A0!f '

 

ws that as Te increases, T decreases causing

T reaches some critical value, PT , dependent

or
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n rate, and thermal history, relaxational

fast enough to cause the material to relax

f the experiment and yield to initiate. Put

aches a critical value, yielding should begin.

strain as a function of temperature thus can

9

-2. 303C c

12 «P (27)
WRT) expW T

2 cr

ording to Eq. (26). To obtain an expression

alue of PT must be found.

or

some temperature at which, in the absence of

ume, the transitional probability is equal to

ure, an infinitesimal applied strain would

In order for this to happen, the polymer must

tate. Therefore the temperature at which the

t be near Tg. That temperature will be denoted

to Tg' nonequilibrium free volume must be nearly

*. Under these conditions, we may write

9

-2. 303C1C

a exp(-E*/RT*)exp T*_To +C: (28)

n Eqs. (27) and (28), and substituting ATe from

for Ey' the strain at yield initiation,is

{
M
i
r

'
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1 E*(T-T*)

5i_ l

c2 Te + c -T +T* + 2.303c c RT*T +1' (29)
2 o g l 2 g

 

ribes the variation of yield strain with tem-

temperature, and may be used to predict the

ain upon any variable which can be related to

re.

ain rate on yield strain is introduced through

TS, which will be taken to change with rate in

2 .

. It has been shown 9'30 that time—temperature

g

able to constant strain—rate experiments with

cates the strain rate at temperature T, for

response is identical to that at £0 and To. We

T* 3 T*

—£_— = - q . (30)

09 6 Blog a .
T,P E,P

ing Tp(T) from the inverse of Eq. (28), we have

 

 

(T; - To) E*(T; - To)

+ T* - T _ 2.303RT*T ' (31)

g 0 g 0

, one then obtains

0102 E* '1

+ . (32) 

;(€)_To] [C2+T;(€o)-To] 2.303RT;(€)T;(EO)

—
r
-
n
'

‘
-
h

.
‘
v
.
’



25

) calculate the strain-rate dependence of

:e dependence of ey.

2.5 Relaxation Rate

; defined as the negative of the slope of the

irve for a stress-relaxation experiment. From

___L_ m _
_ — [£109 t [log _£H(T)exp( t/T)dlnEE].T’€ (33)

ate with free volume and temperature can be

33) and (25). The effect of such a change on

(25). Then, from the change in T, one can

n rate using Eq. (33).

 



3. DETERMINATION OF INITIAL YIELD POINT

3.1 Vblume-Elongation Measurements

An experiment which should determine the initial yield point is

the measurement of the volume change undergone by a polymer glass during

extension. When a small tensile strain is imposed upon a material, the

volume increase which accompanies the strain is described by Eq. (4)

AV

E—-= V6(l-2u). (4)

Poisson's ratio, and thus the ratio AV/e, should be constant within the

Hookean region. As the glass is strained, the mobility of the chains

should increase until it is such that the relaxation rate approaches

equivalence with the strain rate, and the glass yields. Strained past

initial yield, the polymer should behave more like a liquid and less

like a glass because of increased chain mobility. A corresponding

increase in u will accompany the glass-liquid transition as well until,

at necking, u = 0.5 and the polymer draws as a viscous liquid. There-

fore, in monitoring volume versus elongation, one should observe a

constant slope up to yield initiation, then a decrease in the slope to

zero as draw is realized.

An instrument with which to make such measurements, the tensile-

extension dilatometer, was designed and constructed. Details of the

design may be found in the Appendix. Measurements were made on PMMA

26
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from -20°C to 100°C in increments of 20°C; the experimental procedure

is also described in the Appendix.* Because of the method used for

the measurement of volume change, an irregular line for AV versus

elongation was obtained, a smoothed version of that curve f0r T = 60°C

is shown in Figure 8. Curves for the other test temperatures are shown in
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Figure 8--Tensile—extension dilatometer data for PMMA for T = 60°C.

the Appendix. These figures show that, as predicted, the slope of

the volume-elongation plot is constant to CA, then decreases to zero

at 63. Therefore, EA must correspond to yield initiation.

It should be noted that the behavior displayed in Figure 8

could arise from either bulk yield on a macroscopic scale,

or microscopic yield of small regions. Whichever is the

 

*All testing described in this report was carried out on an MTS

closed-loop, electro-hydraulic testing machine. The MTS was equipped

with an environmental chamber which held temperature constant to

within 0.25°C.
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case, on a molecular scale large deformation of molecular segments is

occurring, and yield is taking place.

The figure also shows that the point at which the slope of the

load-elongation curve begins to decrease, commonly termed the

"proportional limit," occurs at approximately the same elongation as

e . Similar results were obtained at each temperature at which a

A

volume-elongation yield point was observed, as shown in Table 1.

TABLE 1

YIELD ELONGATION VERSUS TEMPERATURE

OBTAINED FROM VOLUME MEASUREMENTS

 

 

 

T,°C Yield Elong.(vol),cm Prop. Lim. Elong.,cm

~20 pre-yield fracture pre-yield fracture

0 0.094 . 0.090

20 0.074 0.078

40 0.060 0.058

60 0.047 0.047

80 no observable Hookean region

100 no observable Hookean region

Analogous results were obtained by the author fbr polycarbonate, and

Whitney and Andrews11 have reported data f0r several glasses loaded

in compression which bear out these results.

3.2 Fractional Hysteresis-Elongation Measurements

A second experiment which should determine the point of yield

initiation is the measurement of the fractional hysteresis of a glass

as a function of maximum applied elongation for single tensile

load-unload cycles run at constant frequency. Linear viscoelasticity
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theory predicts that at a given frequency of test, fractional hysteresis

should be independent of applied strain. Fractional hysteresis is

defined as the difference between energy applied to the specimen during

loading and energy returned by the specimen during unloading divided by

the energy applied. For a single Maxwell element model, solution of

Eq. (12) subject to the initial condition 0(0) = 0 gives

0(t) = réEo(1 - e‘t/T). (34)

A constant-frequency, single-cycle load-elongation experiment is

described by the plot of applied strain versus time shown in Figure 9.

From Eq. (34) and Figure 9, the stress exerted on a specimen during
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Figure 9--Strain-time diagram for constant-frequency, single-cycle

load-elongation experiment.
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such an experiment can be calculated. For 0 :_t fi-to' that stress is

found to be

. (35)

By application of the Boltzmann superposition principle,31 the stress

in the region to §_t :Zto is obtained

E C

(l - e t/T) - 2TB E—'(l -

O

O 0

l
o e-(t-to)/T)

0(t) = TE . (36)

0 ”
-

Integration of Eqs. (35) and (36) in terms of strain, followed by

division of the sum of those integrals by the integral of Eq. (35)

gives the fractional hysteresis, W.

t /r + (e-to/T-l) (2 - e-to/T)

w = 1 + o - (37)

to/T + e-to/T - l

 

The above equation shows that fbr a single Maxwell element, W is

independent of so, and depends only upon test frequency t, and T,

the relaxation time of the element. Chang26 has shown that the same

result holds for a model consisting of an infinite number of elements

and a distribution of relaxation times.

It would seem that prior to yield, linear viscoelasticity should

hold, since in this region the relaxation times of the glass are such

that the rate of relaxation is much lower than the loading rate. In

such a situation the material should behave in nearly a Hookean manner,

and fractional hysteresis ought to be small and constant, or slightly

increasing (as a result of strain-induced mobility) with so. At the
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yield point, in accordance with the yield-relaxation relation proposed

in the introduction, the relaxation rate has become equivalent to the

strain rate, and the polymer chains are better able to respond to the

stress during the time of the test. As a result of the enhanced re-

laxation, some permanent, nonelastic deformation, or flow, will occur,

increasing the amount of energy lost in the deformation, and so

increasing W. The energy loss should continue to increase with

increasing strain past yield. When W is plotted versus 80, tests

should show a constant or slightly increasing value of W up to yield,

then W should continue to increase with to past yield.

Tensile tests were run on specimens of PMMA with cross-sectional

dimensions of 0.5 cm by 0.318 cm and with a distance of 5 cm between

grips. The loading function was that of Figure 9 with to = 10 seconds

and 8° varying. Measurements were carried out at temperatures of 0°C,

20°C, 40°C, and 60°C. Specimens were annealed at 130°C for one hour,

then quenched between steel plates at the test temperature. Testing

was begun 30 minutes after quench. Figure 10 shows the results of the

test at T = 20°C.

The zero-slope line represents the average value of the first

seven points. Zero slope was chosen for convenience, but according to

the theory it may be slightly positive. The line of nonzero slope is

a least-mean-squares fit to the remaining points. The load-elongation

curve shown in the figure corresponds to a maximmm elongation of 0.1 cm

which represents a median value of strains applied to the specimens.

The figure shows that the point at which linear viscoelasticity

begins to fail is near the proportional limit of the load-elongation
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Figure 10-—Fractional hysteresis data for PMMA for T = 20°C.

curve. Sudh correspondence held at each test temperature, as is shown

 

 

 

in Table 2.

TABLE 2

YIELD ELONGATION VERSUS TEMPERATURE OBTAINED

FROM HYSTERESIS MEASUREMENTS

T,°C Yield Elong.(hys),cm Prop. Lim. Elong.,cm

0 0.070 0.068

20 0.060 0.060

40 0.045 0.048

60 0.040 0.043
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Experimental data for the other test temperatures are given in the

Appendix.

Results of two independent tests, carried out over a wide tempera-

ture range, show that the initial yield point occurs at about the same

value of strain as the proportional limit of the tensile load-elongation

curve. This suggests that the proportional limit of the load-elongation

curve should be taken to indicate yield initiation, a finding which will

come as no surprise to metallurgists, who have accepted the fact for

netals for many years. It is likely to be considered unusual for

polymers, however, where the maximum of the curve traditionally has

been taken to denote yield. Probably the proportional limit would

have been recognized as the yield point earlier if more work had been

done on polymer glasses, rather than on melts and solutions.

It should be noted that one cannot state unequivocally that

yield begins exactly at the proportional limit. The proportional limit

itself is not an exact point, but varies slightly according to the

person choosing it. If the yield process is relaxational in nature,

then, just as the glass transition takes place over a range of tempera-

tures, yield will occur over a range of strain. This range, though

only few tenths of one percent strain, limits the precision with which

the yield point can be determined.



 

 



 

4. YIELD AND RELAXATION MEASUREMENTS

4.1 Yield Strain

Having determined that the proportional limit of the load-elong-

ation curve is indicative of initial yield, the investigation of glassy

yield was begun. The variation of initial yield strain with temperature,

strain rate, and free volume was studied. The effect of free volume was

assessed by testing during isothermal volume contraction.

Tension tests were run on PMMA from -10°C to 100°C, over a range

of strain rates from 0.015%/second to 120%/second. The geometry of

the test specimens is shown in Figure 11. The shape eliminates the

possibility of grip slippage and compressive end effects associated

with the standard tensile specimen, as well as being quickly and

easily mounted in the environmental chamber at all temperatures.13

The effective length of the specimens was found to be 6.6 cm, determined

by comparing the modulus of the tensile test specimens with the modulus

of flexure specimens tested under identical thermal conditions. For

the yield point tests, each specimen was annealed at 130°C for one hour,

quenched between steel plates to the test temperature, and held for

30 minutes prior to test. The proportional limit of each load—elonga-

tion curve was found. The results are plotted in Figure 12 as yield

strain versus temperature, where the estimated error in choosing the

proportional limit is indicated by a bar. No data points are shown for

34



  

  

h.l
0l“

l.-
(aI

OI‘
Otl

ltv
915

Ib‘
l

|\v.

-

IIAOL
ILA

bII'
Axfi

f

  



 

 

  
 

   

35

RADIUS =0.890m°-

RADIUS =O.63cm

CROSS SECTION

=0.250m x 0.32cm

TENSILE FORCE

PLASTIC TEST PIECE

RIGID ROD
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Figure 12--Yield strain of PMMA as a function of temperature and

strain rate.
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yield strains less than 0.5% or greater than about 2.5%. When the

yield strain was small, no Hookean region was observed, and when the

yield strain was high, specimen fracture occurred prior to yield.

To investigate the effect of changes in free volume in the absence

of temperature or rate changes, yield was measured during isothermal

volume contraction. A series of tests was carried out on PMMA from

40°C to 90°C. Specimens were annealed at 130°C for one hour, then

quenched between steel plates to test temperature. Testing was done at

increasing times after quench in flexure, with specimens 7.5 cm long,

2.5 cm wide, and 0.318 cm thick. Test pieces were supported on two

0.318 cm diameter rollers spaced five cm apart, with the load

applied by a third similar roller midway between the first two. Since

the flexure test is inherently nonlinear, even for a Hookean material,

2 to determine the location ofit was necessary to apply a correction3

the proportional limit. Yield was taken as the point of departure of

the calculated Hookean curve from the experimental curve, as shown

schematically in Figure 13.

The results of the tests are shown in Figure 14, where yield

strain is plotted versus the logarithm of time after quench, log tq.

The solid lines are least—mean-squares fits to the data. It should

be noted that neither of the currently accepted and commonly applied

theories of yield, the Von Mises deviatoric-strain—energy criterion,

nor the Tresca maximum—shear-stress theory, can account for the

dependence of the yield point upon free volume. It is necessary

that any theory proposed to describe yield of polymeric glasses

account not only for the temperature and rate dependence of yield,

but also for free volume-yield relationship.
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Figure 13--Schematic drawing showing method of yield point determination

for a flexural test.
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4.2 Relaxation Rate

In this work, the relaxation behavior of PMMA glass will be taken

to be indicated by the relaxation rate as measured during a stress-

relaxation experiment. The variation of relaxation rate with changes

in temperature, maximum.applied elongation, and time after quench

during isothermal volume contraction will be considered. The effect of

temperature upon relaxation rate is already well documented13 (Figure 15).

For the present work, the two other dependencies were investigated.
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Figure 15—-Ten—second relaxation rate of PMMA as a function of temperature.

Measurement of the ten-second relaxation rate as a function of

naximum applied elongation was effected at 60°C and 80°C using the

ring-shaped specimens previously described. The specimens were used
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in the as-received condition. A given elongation was applied to the

test pieces in 10-2 seconds, and the load required to maintain that

elongation was monitored as a function of time thereafter. From the

data, the ten-second relaxation rate, -(Blog E(T)/Blog t)t = 10 sec was

calculated. Testing was done for increasing values of elongation up

to specimen fracture. Figure 16 shows the results.
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Figure l6—-Ten—second relaxation rate of PMMA as a function of applied

elongation.

Measurement of relaxation rate as a function of time after quench

was carried out at 30°C and 50°C. Specimens were given the standard

thermal pre-treatment. Tests were run in flexure at various times after

quench. A midpoint surface strain of 0.1% was applied in 10”2 seconds,

and the ten-second relaxation rate was obtained. Figures 17 and 18

show the results.
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Figure 18--Ten-second relaxation rate of PMMA as a function of

time after quench for T = 50°C.



 
 



 

 

5. COMPARISON OF THEORY AND EXPERIMENT

5.1 Yield Strain

To compare theoretical with experimental results fOr yield strain

and relaxation rate, it is necessary to evaluate the material parameters

“I E*l C , C and Ad . Poisson's ratio, u, was determined for the present

1 2’ f

work from the volume-elongation measurements described previously. The

initial slope of the volume-elongation plot, AV/A£ (volume change/length

change), was measured, and Eq. (4) in the fionm

u = 0.5[1 - AV/(AA£)] (37)

where A is the cross-sectional area of the narrowest portion of the

specimen used to calculate u.

Results of these calculations are shown in Figure 19, a plot of

u versus temperature. Each data point is the average of two or more

measurements. It is seen that Poisson's ratio is temperature dependent.

Other workers have found values of u for PMMA from 0.34 to 0.4 at

11'33’34 However, no other results have been publishedroom temperature.

in which n is obtained from volume neasurements made over a wide

temperature range. Such an increase of Poisson's ratio with temperature

is not surprising since the glass does tend to become more like a

liquid as the glass transition temperature is approached. Several tests

were also run at a rate of extension ten times faster than the standard

41
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rate (0.001 cm/sec) and to within experimental error, no rate effect

was noted.
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Figure 19--Poisson's ratio of PMMA as a function of temperature.

The values of u used for each temperature are described by the

solid curve of the figure; these are listed in Table 3, along with

values of the specific volume (1/0) from Figure 7.

The constants E*, C1, C2, and Aaf are all interrelated and may

therefore be considered as a single parameter. In other words, if

the value of E* is determined, C1, C2

T > Tg' Eq. (19) should hold for log aT as a function of temperature.

, and Aaf are specified. At

For a given value of E*, using log aT data for T > T9 (Figure 20),

the factor (T - To)/[log aT + E*(T - To)/(2.303RTT°)] may be plotted

versus (T - To). The slope of the resultant straight line is

-1/C1, and its intercept is -C2/C1. In this manner, for any value of

E*, the corresponding values of C1 and C2 can be found.
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POISSON'S RATIO AND SPECIFIC VOLUME FOR PMMA

TABLE 3
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T,°c u l/p.cm /g

-20 0.333 0.8540

-10 0.337 0.8555

0 0.344 0.8563

10 0.353 0.8568

20 0.363 0.8585

30 0.376 0.8603

40 0.390 0.8622

50 0.398 0.8641

60 0.403 0.8649

70 0.407 0.8668

80 0.411 0.8689

90 0.413 0.8721

100 0.414 0.8746
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With E* and the calculated values for C1 and C2, data for log aT

in the glassy state may be used to obtain the effective temperature,

Te(T) from Eq. (24). The quantity Vt - Va is known from isothermal

volume contraction data. Vt is the polymer specific volume at time

t after quench from above T9, and V0° is the volume corresponding to

the extrapolation of the liquid line in Figure 7. It can be shown from

Eq. (23) that for any temperature

Te(T) = T + ——————— . (38)

From Eq. (38) and the isothermal volume contraction data,

Aaf is obtained. Time after quench must be the same for the log aT

data and for Vt’ in this case 104 seconds. Figures 20 and 21 show
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Figure 21--Vt - V; of PMMA as a function of temperature for tq = 104

seconds.
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respectively the log aT data and the isothermal volume contraction data

used in the present work.13 Although in the free-volume theory Adf is

assumed constant, the calculated values vary slightly with temperature

(about 10% from -20°C to 100°C). An average value is chosen.

By the above method, a consistent set of values for E*, C , C ,

1 2

and Adf may be found. Table 4 lists these values for several values of

E*. A value of E* of 35 Kcal/mole corresponds to an iso-free volume

state, since fOr that case, Aaf = 0i - 0%. This indicates that

aé(t+m) = 0%, so nonequilibrium free volume would be constant with

temperature. The value of 35 Kcal/mole therefore represents the upper

limit of E* consistent with the present theory. In this limit free

volume could have no relation to changes in yield or relaxation behavior

with temperature, and such phenomena would have to be attributed solely to

energy effects.

TABLE 4

CALCULATED MATERIAL CONSTANTS FOR.PMMA.FOR GIVEN VALUES OF E*.

 

 

 

 

E*, Kcal/mole C1,OC C2 Aaf,g/cm3-OC-104

0 16.1 49.8 3.45

5 15.1 47.4 3.37

10 14.0 44.9 3.29

15 13.0 42.3 3.22

20 12.1 39.8 3.14

25 11.1 37.1 3.06

30 10.2 34.5 2.98

35 9.3 31.8 2.90

Though C , C , and Ad may be calculated, given E*, the value of

1 2 f

E* itself must be known. The problem of determining this experimentally

;proved to be a difficult one. The quantity (310g aT/vi)T can be
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evaluated experimentally from the shift in relaxation modulus occurring

during isothermal volume contraction.19’35’36 A theoretical expression

fOr that quantity is obtained by differentiating Eq. (24) with respect

to Vf, which gives

-0 c 1

1 2 - (39) 

(Slog aT/vi)T = 2

(C +T -T ) Ad

2 e o f

Inasmuch as C , C , Te(T), and A0 are dependent upon E*, a comparison

1 2 f

of experimental results for (Blog aT/vi)T with those results

calculated for various assumed values of E* would seem to determine the

quantity.

The experimental procedure fOllowed in obtaining the dependence

of the shift factor on free volume is described below. Flexural

specimens were annealed at 130°C for one hour and quenched between

steel plates to the test temperature, then stress-relaxation experi-

ments were run at increasing times after quench. Testing was carried

out from 50°C to 100°C. A maximum midpoint surface strain of 0.1% was

applied in 10.2 seconds. Figure 22 shows a typical set of data. The

resulting data were shifted in the usual manner and plotted as shown

in Figure 23. The slope of the plot is (31og aT/BV This

f) 70'

quantity is then divided by the factor (BVf/alog tq)T, obtained from

isothermal volume-contraction data,13 to give the experimental values

0 . I a l OfOr (Slog aT/vi)T Table 5 lists the numbers used for (avf/ og tq)T

Theoretical curves were calculated from Eq. (39).

Figure 24 shows that the quantity (Blog aT/vi)T is not very

sensitive to E* and suggests therefore that the data are not sufficiently
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Figure 22—-Series of stress-relaxation curves for PMMA for various

times after quench fOr T = 70°C.
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Figure 23--Log aT of PMMA as a function of time after quench for T = 70°C.
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accurate to determine the parameter. It does appear that E* lies

between 0 and 25 Kcal/mole, but yield-strain data seems needed to

obtain E* accurately.

TABLE 5

DEPENDENCE OF FREE VOLUME UPON TIME AFTER QUENCH

 

 

 

T,oC -(3Vf/Blog tq)T,cm3/g-1O2

-10 2.82

0 2.94

10 3.07

20 3.20

30 3.33

40 3.46

50 3.58

60 3.71

70 3.84

80 3.97

90 4.10

100 4.22

 

Equation (29) was used to fit the yield strain data for

é = 1.2% per second, and the value of T; was chosen as that which gave the

best fit to the data with E* = 0, 97°C. This was thought to be reason-

able since the specific volume-temperature curve of Figure 7 indicates

a T of about 94°C. Theoretical curves were calculated using

T3 = 97°C and values of E* of 0,5,10,15,20,25,30, and 35 Kcal/mole.

These are presented in Figure 25, along with the data for e = 1.2% per

second. The figure shows that E* = 20 Kcal/mole gives the best fit to

the data, and this value is consistent with the range obtained by

shifting the log aT data. In the following calculations, E* will be

taken as 20 Kcal/mole, and C1' C2, and Aaf will be given the corresponding

values from Table 4.
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3.0

II

«5 if, POLY-(METHYL METHACRYLATE)

25p (3 .90 .

‘ O E'I.2%/SEC

p O

I

'
2
’
»
.
0

G

i

E‘IO :‘\\

'
u l

‘
Y
I
E
L
D

S
T
R
A
I
N
(
T
E
N
S
I
O
N
)
.
x

0 0
| I

"
I I
.

.
'

"
I

.
t

O

  
 

- 20 0 20 40 60 80 I00 I20

TEMPERATURE, t

Figure 25--Yie1d strain of PMMA as a function of temperature for

e = 1.2%/second and theoretical curves for various values of E*.
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The full set of yield strain data for all strain rates, together

with the theoretical curves calculated using E* = 20 Kcal/mole are

shown in Figure 26. The curves were determined by applying Eq. (29),

with values of T; for rates other than 1.2%/second being found from

Eq. (32). Also éo = l.2%/second and T; (£0) = 97°C. The values of
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Figure 26——Yield strain of PMMA as a function of temperature and

theoretical curves for E* = 20 Kcal/mole.

T; are listed in Table 6, and Table 7 lists the values of Te(T)

corresponding to E* = 20 Kcal/mole used in the yield—strain calculations.

These values of effective temperature were obtained from Te as determined

from the log aT data. The data for (avf/alog tq)T listed in Table 5

Were used to calculate values for Te corresponding to tq = 1800 seconds,

applicable to the yield strain data.
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TABLE 6

T* VALUES FOR VARIOUS STRAIN RATES

9

 
 

 

e,%/second T;,°C

0.015 93.6

0.12 95.1

1.2 97.0

12 99.1

120 101.5

 

TABLE 7

EFFECTIVE TEMPERATURE FOR E* = 20

Kcal/mole AND tq = 1800 SECONDS

 
 

 

T, C T , c

e

-10 91.29

0 91.30

10 91.38

20 91.51

30 91.82

40 92.12

50 92.68

60 93.38

70 94.48

80 95.99

90 98.33

100 102.55

 

The slopes of the lines in Figure 13 represent the derivative

Bey/810g tq. These slopes were divided by the values of BVf/alog tq

from Table 5, to obtain experimental values for aey/an. Equation (29)

was used to calculate the dependence of yield strain upon Vf, since
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Te is a function of free volume. Differentiation with respect to Vf

gives

-1 A.
38 -p l E*(T-TE? l-Zu

—-Y- = — Au T -c —'1" + + +1
av 1-2u p f o 2 e c +T*-T 2.303c c RT*T ' (40’

f 2 g o 1 2 g

the equation which was employed to determine theoretical values of

 

Say/BVf. Both theoretical and experimental results are summarized in

 

 

 

Table 8 .

TABLE 8

DEPENDENCE OF YIELD STRAIN UPON FREE VOLUME

T 0C -38 /3V ex /cm3 -3€ /3V calc /cm3I Y f’ Pig Y fl .9

40 4.25 5.30

50 4.42 5.65

60 4.04 5.94

70 3.55 6.19

80 3.98 6.43

90 3.22 6.69

 

5.2 Relaxation Rate

Equation (33) provides the basis for calculating the dependence

of relaxation rate on temperature, elongation, and free volume.

Equation (25) shows that T depends upon Te and T, but since T6 is

dependent upon temperature and free volume, as expressed by Eq. (23),

Eq. (25) can be used to calculate the relations between T and those

parameters. The dependence of relaxation rate on temperature and free
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volume is a result of its dependence on T. The relaxation spectrum,

H(T), used in the calculation is a modification of a spectrum for PMMA

at 40°C due to Tobolsky.36 That spectrum was extrapolated to the

log H(T) = 0 axis, and shifted along the 109(T) axis so that the

calculated and experimental values of relaxation rate would agree at

40°C. The spectrum is shown in Figure 27. Because of the analytic
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Figure 27--Relaxation spectrum used in integration of Eq. (33).

intractability of Eq. (33), numerical integration was carried out using

the trapezoidal rule and intervals of 0.5 on the 109(1) axis.

Temperature dependence of the relaxation rate was calculated using

Eq. (33). For T > T9 the WLF assumption, that the effect of a temperature

change is to multiply all the relaxation times by the shift factor aT,

is known to hold.13 A similar assumption will be made for the glass,

however, in this case not only a change in temperature but also a change

.in effective temperature can cause a shift. Since T is known to within
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a constant through Eq. (25), the ratio of T's for any two sets of

values of T and Te can be calculated. Thus, given the set of T'S for

the spectrum fOr any one state, the T'S fOr any other state can be

calculated. Then from Eq. (33) the relaxation rate may be obtained by

numerical integration.

Since the relaxation-rate-versus-temperature data correspond to

t = 104 seconds,13 and since the spectrum was shifted so that theoretical

and experimental relaxation rate agree at 40°C, the final spectrum

should correspond to the glass at 40°C and tq = 104 seconds. The

values of Te(T) used are those fbr E* = 20 Kcal/mole and tq = 104 seconds.

Because the location of the spectrum on the log(r) axis is known

for the 4O°C,lO4 sec state, the position fOr any other state can be

fOund by multiplying the T's of the known state by the ratio of the

T's for the shifted and known states. For the case of temperature

dependence, with tq the same for all temperatures, we have

_ T(T)
1(T) - 1(40) ¥7€§£| (41)

or

exp(E*/RT)exp(2.303C1C2/[Te(T)-TO+C2])

exp(E*/Ro313)exp(2.303C1C2/[364.3-TO+C2])'

(42)
 T(T) = 1(40)

defining T by Eq. (25). Equation (15) was employed to calculate

E(t) at t = 7.95 and 12.6 seconds (log t = 0.9 and 1.1), and the

numerical derivative obtained at each temperature. The BASIC computer

;program used fbr the relaxation rate determinations is given in the

Appendix. As listed, the program is for calculation of temperature

dependence. The results of the calculation are shown in Figure 28.
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Figure 28—-Ten—second relaxation rate of PMMA as a function of

temperature and theoretical curve.

The dependence of relaxation rate upon elongation is determined

by shifting the spectrum in a manner similar to the above. The

spectrum of Figure 27 corresponds to an applied strain of 0.5%, since

the relaxation-rate—temperature data, for which the spectrum was

standardized, were obtained with that level of applied strain. For

the specimens employed, this corresponds to an elongation of 0.033 cm.

Changes in applied elongation cause the effective temperature to

change according to Eq. (26), and that expression was used to calculate

Te as a function of elongation in increments of 0.025 cm. For each

value of Te' the set of 1's was determined and the relaxation rate

obtained as described above for temperature dependence. It should be

noted, however, that Eq. (26) only applies prior to yield, since just to

that point does u remain constant. For the strain rate applied during
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the testing, the yield point occurs at about 0.1 cm elongation, so

the elongational dependence of the relaxation rate is calculated up

to that value.

Because the specimens used in the experiment were not annealed

and quenched, but rather used in the as—received condition, it was

not possible to calculate a value for initial effective temperature.

The procedure employed to initialize Te was to choose that value

which caused the theoretical and experimental relaxation rate for

60°C to agree at the first data point. The initial value for 80°C

was found by adding to the 60°C value the difference in effective tem-

peratures for 60°C and 80°C from Table 7. The values of Te actually

used are: Te(60) = 86.6°C and Te(80) = 89.2°C. Calculated results,

along with the experimental data are shown in Figure 29.
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The variation of relaxation rate with time after quench, tq, is

assumed to come about as a result of nonequilibrium free volume relaxing

out of the polymer. Thus, the dependence of effective temperature

upon tq is obtained from

3T 3T 3V 1 3V 1

e = e . f _ = _.__.f (43)
310g t BVf Slog t Aaf 3109 t

q T T q T q T

where the values of the derivative (BVf/alog t ) are those listed in

q T

Table 5.

For each temperature the spectrum was shifted as for the previous

calculations and the relaxation rate determined for various values of

tq. The results are shown in Figures 30 and 31.
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Figure 30—-Ten—second relaxation rate of PMMA as a function of time

after quench for T = 30°C and theoretical curve.
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Figure 31--Ten-second relaxation rate of PMMA as a function of time after

quench for T = 50°C and theoretical curve.

5.3 Direct Yield-Relaxation Relation

If yield is relaxational in nature, then, based upon the present

free-volume theory and viscoelasticity theory, it should be possible

to calculate a load—elongation curve from the data obtained with the

tensile extension dilatometer. Equation (34), which describes stress

as a function of time during tensile loading of a single Maxwell

element, is rewritten for a series of elements as

0(t) = s_ZTH(T)[l - exp(-t/T)]d1nr. (44)

Using numerical integration, and shifting the spectrum according to

the measured volume changes of Figure 8 and their relation to effective

temperature, the stress experienced by the specimen was calculated.
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Owing to the complex thermal history of the dilatometer

specimens (see Appendix), comparison flexural tests to determine the

effective length of the test pieces were not made. The length was

simply taken as 6.6 cm, equal to that of the standard ring tensile

specimens. For this value, the initial unstrained effective temperature

of the specimens was calculated from the yield point using Eq. (29)

with E* = 20 Kcal/mole. Te was found to be 90°C. The unstrained

volume of the specimen was taken to be 6.6A, where A is the area of

the narrowest cross section. Assuming uniform deformation, the load

on the specimen was calculated according to

LOAD = STRESS-VOLUbE/LENGTH (45)

where VOLUME means the sum of the unstrained volume and the strain—

induced volume, and LENGTH refers to the strained length.

In order to have a meaningful comparison of the experimental and

calculated load-elongation curves, the height of the relaxation spectrum

was adjusted so that the initial modulus of the calculated curve was

equal to that of the experimental one. Both curves are shown in

Figure 32.
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Figure 32--Experimental and calculated load-elongation curves for

PMMA for T = 60°C.
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6 . DISCUSSION

It was stated in the introduction that glassy yield is relaxational

in nature, and that the imposition of strain causes an increase in

relaxation rate in much the same way that temperature causes such an

increase. When the relaxation rate of the glass in the strained state

reaches that value characteristic of the unstrained glass at T3, yield

is presumed to occur. Relaxation rate then becomes equivalent to strain

rate. This qualitative description of yield was expressed mathematically

by assuming that chain mobility is dependent upon two parameters, free

volume and kinetic energy, and that the volume increase which accompanies

applied strain corresponds in its entirety to an increase in free volume.

It can be seen from Figure 16 (relaxation rate as a function of

elongation) that the rate does increase with increasing strain, and

from Figure 17 (relaxation rate as a function of time after quench)

that it does depend upon the specific volume of the glass in a manner

consistent with the theory. Figures 12 and 14 fOr yield strain as a

function of temperature, strain rate, and time after quench show that

that parameter also behaves as predicted by the theory.

Because of the increase in relaxation rate with temperature

(Figure 15), yield strain decreases with temperature. Yield strain

increases with strain rate as a result of the increase in relaxation

rate necessary to compete with the externally applied strain rate.

The decrease in relaxation rate with decreasing specific volume causes
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a corresponding increase in the applied strain needed to bring the

relaxation rate of the strained glass to that level characteristic of

the unstrained glass at T3. The experimental data, then, qualitatively

verify the description of the yield process presented in the introduction

and thus the concept of the relaxational character of yield.

Figure 26 demonstrates that the mathematical theory as embodied

in Eqs. (25) and (29) agrees with the data for yield strain as a function

of temperature and strain rate only strain rates within one decade of

the reference rate. At low and high rates the agreement is marginal.

As indicated in Table 8, experiment and theory are not in good

agreement for the specific volume dependence of yield strain. The data

and theoretical values trend in opposite directions with increasing

temperature. In part at least, this may be a result of inaccuracies in

the data, as the scatter (shown in Figure 14) is substantial.

Figures 28-31 clearly show the theory to be unsatisfactory for

quantitative calculation of relaxation rate as a function of temperature,

elongation, or time after quench. Qualitatively the theory is successful;

it predicts changes in relaxation rate with the parameters which are in

the same direction as experimental results. But quantitatively, it

predicts a greater dependence upon temperature and elongation than is

experimentally observed. As regards time after quench, in the case of

30°C the experimental dependence is greater than predicted by theory,

whereas for 50°C the opposite is true.

The theory is partially successful when used to calculate a

load-elongation curve from measured volume changes. Figure 32 shows

that the calculated curve, though not coincident with the experimental

one, does exhibit a distinct yield point at an elongation of 0.033 cm.



 



 

63

The experimental yield point occurs at 0.045 cm. However, the cal-

culated curve predicts a greater change of load with elongation past the

yield point than is actually observed.

The fact that a yield point can be calculated using actual volume

measurements indicates that the theory is consistent with the yield-

relaxation model. And though it provides good evidence fbr accepting the

yield-relaxation idea, it does not prove such a relation to be fact.

Likewise, the agreement between theory and experiment for yield strain

and relaxation rate qualitatively indicates that yield is relaxational

in nature, but cannot be considered proof. To provide such proof, it

would be necessary to establish the equivalence between relaxation rate

and strain rate at the yield point.

The basis of the derivation of Eq. (29) for yield strain as a

function of temperature and effective temperature is that the critical

transitional probability can be calculated for an unstrained specimen

when T 2 T9. This implies that for yield at temperature T, T is

T

equivalent to TT , and thus that the relaxation rate of the glass at

9

the yield point is equal to the relaxation rate of an unstrained

specimen at T9. Such an implication can be checked, on a macroscopic

scale, using the data previously presented.

Taking as an example the particular specimen whose load-elongation

curve is shown in Figures 8 and 32 (the dilatometer specimen for 60°C),

we find the yield elongation to be 0.045 cm. With an effective length

of 6.6 cm, yield strain is 0.7%. The elongation rate of 10.3 cm/second

indicates that yield occurred at t = 45 seconds, and this elongation

rate corresponds to a strain rate of 0.015%/second, which from Table 6

gives a T; value of about 94°C. Figure 4 shows that the 45-second
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relaxation rate for a specimen strained 0.5% at 94°C is approximately

14.0X10’2.

The relaxation rate for the unstrained state can be approximated

from Figure 16. For 60°C and 80°C, the slopes of the relaxation

rate-elongation curves are 2.13‘10-l cm_1 and 2.6310—1 cm—1 respectively.

Extrapolated linearly, a value of 3.0X10-l cm.1 is obtained fer 94°C.

A strain of 0.5% for the specimens of Figure 4 corresponds to an

elongation of 0.033 cm for the dilatometer specimen. By substracting

the relaxation rate increase due to the elongation of 0.033 cm, the

relaxation rate of an unstrained specimen at 94°C can be calculated

to be about 13X1o'2.

Figure 4 shows that the 45-second relaxation rate fOr 60°C and

0.5% strain is 4XlO—2. Adding the rate attributable to the difference

in strain between the 0.5% of Figure 4 and the 0.7% of the dilatometer

specimen, the relaxation rate of the specimen at yield is about 4.5X10—2.

Therefore, this rough calculation shows that for 60°C the relaxation

rate of a specimen at the yield point and the rate of an unstrained

specimen at T; differ by about a factor of three. This is approximately

the same difference in rate between 60°C and 94°C shown in the data of

Figure 15, which was taken at equal values of applied strain for all

specimens. On a macroscopic scale, then, relaxation rate-strain rate

equivalence appears not to be valid. This does not disprove the model

on a microscopic scale, however, since relaxation rate-strain rate

equivalence could be reached in localized regions of the specimen as

a result of stress concentrations near inhomogeneities.

The failure of the theory adequately to describe relaxation,

while working fairly well fbr yield strain, may arise as a result of
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several factors. First, it is not surprising that the poorest agree-

ment is achieved in the description of relaxation rate. Yield strain

according to Eq. (29) is approximately proportional to (T; - Te)3’

whereas relaxation rate is proportional to exp(-t/T), where T itself

varies exponentially with l/Te. Therefore, any inaccuracies in

effective temperature which could arise as a result of errors in

measuring log aT or volume--or in the determination of E*--have a

much greater effect upon relaxation rate than upon yield strain.

The numerical integration and the subsequent differentiation of

Eq. (33) are also potential sources of error. Integration over equal

intervals along the log T axis means that along the T axis the

intervals become very large. Numerical differentiation also may lead

to error, since by its nature differentiation tends to accentuate

inaccuracies, rather than smooth them out.

The most probable cause of the differences noted, however, is

the failure of Eq. (25) to describe the dependence of relaxation times

upon free volume in the glassy state. Such a failure could come about

simply because the equation is not applicable to the glassy state, or

it could arise from the assumption that only free volume and temperature

control uolecular nobility. In any case, it is apparent that the use

of Eq. (25) to shift the spectrum of relaxation times results in

calculating a greater change in relaxation rate than is observed

experimentally.

One other deficiency exists in the free—volume treatment-~the

failure of the theory to describe the yield process in stress fields

other than those with a tensile component. No volume increase

accompanies compressive strain, for instance; instead, the volume

decreases. Therefore, assuming uniform compressive deformation, the



 

F

"
m
w



66

free-volume theory predicts that the glass will never yield, which is

not the case.ll'37

The first explanation of this apparent inconsistency is that

proposed by V'olkov.38 He has suggested that as a result of inhomo-

geneities within a material, even though the bulk stress field is com-

pressive, regions around such inhomogeneities are in tension, and thus

that failure and yield, originating in these areas, actually occur in

tension. Thomason39 has done some work on steel which would appear,

qualitatively, to bear out this mechanism. It is also a possibility,

of course, that two separate mechanisms are involved in tensile and

compressive yield, so that the free volume concept holds in tension,

whereas some other mechanism obtains in compression.

The final possibility is that volume itself does not control

glassy relaxation, but only reflects some controlling thermodynamic

parameter. One can envision a mechanism whereby the work term of an

entropy equation, which is directly related to the dilational component

of the applied stress, would promote yield in tension but retard it in

compression. This possibility appears to be particularly strong in

light of results which show that the yield stress in compression fer

PMMA glass is 15-20% higher than in tension.ll'37

The ultimate objective of any investigation of yield should be

a generalized yield criterion applicable to any stress field. Free

volume, as it now stands, cannot be considered as such a criterion.

What is needed is a series of biaxial and multiaxial stress-strain

measurements in which initial yield point is measured. Other workerslo'll

have made biaxial yield measurements, but all have been of the upper

yield stress, or the stress required to craze the material. Such a
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series of measurements of initial yield point would serve as a starting

point for the determination of a generalized yield criterion for

polymeric glasses.
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7 . CONCLUSIONS

The modified free-volume theory is useful fOr predicting initial

tensile yield strain, defined as the strain at the proportional limit

of the load-elongation curve, for strain rates within one decade of

the reference rate. Agreement is marginal fbr rates which differ

from the reference rate by more than a factor of ten. The theory,

although applicable for qualitative purposes, is not successful quantitatively

fOr calculating the dependence of initial yield strain upon time after

quench to the glassy state from a temperature greater than T9.

The theory is inadequate for quantitative calculations of relaxation

rate. In general, fbr the dependence of rate upon temperature, applied

elongation, and time after quench, the theory predicts greater changes

than are observed experimentally, although qualitative agreement is

found.

Whether glassy yield of amorphous polymers is a relaxational

phenomenon, as is the glass transition, is still unresolved. Although all

of the data presented here are consistent with such a relationship, none

offer positive proof. If relaxation-rate/strain-rate equivalence is

realized in the glass, it must occur locally, since on a macroscopic

scale the rates do not agree.

Therefore, though the modified free-volume theory may serve as a

starting point for describing the yield and relaxation behavior of PMMA
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(and perhaps other amorphous thermoplastic polymer glasses), consider-

able additional refinement would be necessary for quantitative

applicability.
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A . DILATOMETER

The present dilatometer is similar in design to one employed by

. 0 . . .

Smith to make volume measurements on rubber. Figure 33 is a schematic

drawing of the instrument. It consists of a cylindrical barrel (A)
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Figure 33--Schematic drawing of tensile-extension dilatometer.

through which extends a round shaft (B). The shaft has a notch cut

out which mates with a matching piece (C) bolted inside the barrel.

Both shaft and matching piece are fitted with carriers (D) by which

the specimen (E) (Figure 34) is held. The notch and the matching

piece are sized to allow the shaft a travel of 1.6 cm relative to the
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matching piece and barrel. The bolts (F) which fix the matching piece

inside the barrel are sealed with rubber '0' rings (G), and the ends of

the barrel through which the shaft extends are sealed with special

teflon gaskets (H) which are secured by threaded rings (I). The shaft

is held parallel to the barrel by ball bushings (J), mounted in end

caps (K).

 

Radius 8 l.l4cm

   

  

Radius - 0.63cm

Radius- |.27cm

     

 

Thickness . 0.320m    
 

Figure 34--Tensile-extension dilatometer Specimen.

Volume changes are measured using a 0.1-cm diameter precision-bore

capillary (L) in which the height of the confining fluid, mercury, is

fellowed. The capillary is connected to the barrel by a short length

of 0.13-cm I.D. teflon tubing (M). Mercury was chosen as the fluid

owing to the inertness of polymer glasses with reSpect to it. All

metal parts of the instrument were fabricated of ASA 1020 steel to avoid

amalgamation of the mercury with alloying elements.
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Calibration of the dilatometer in the absence of a specimen

. -43 .
showed a reproduCible volume change of -8-10 cm , attributed to

deformation of the teflon gaskets, which was taken into account in all

testing.
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B. EXPERIMENTAL PROCEDURE FOR DILATOMETER

The procedure followed in specimen preparation and testing is

outlined below.

1. Anneal specimen for one hour at 130°C.

2. Quench specimen to room temperature between steel plates

and hold for five minutes (thermal equilibrium is established

within two minutes).

3. Assemble dilatometer with specimen.

4. Evacuate dilatometer to 10”5 m Hg.

5. While still under vacuum, fill dilatometer with mercury, then

open to atmospheric pressure.

6. Mount instrument on test machine within temperature chamber

and allow thermal equilibrium to be established (about three

hours). Because of the need to assemble and fill the instrument

then bring it to the test temperature, the thermal history of

the Specimens is not well defined and is different for each

test temperature.

7. Carry out test.

The machine used to extend the specimens is an MTS closed-loop,

electro-hydraulic testing machine. The temperature was controlled by

enclosing the dilatometer in a chamber capable of holding temperature

constant to within 0.25°C. Because of the large mass of the dilatometer

and the small oscillations of the chamber temperature, the specimen

temperature remained constant once established. Testing was done at a

linear rate of 10-3 cm/second.

During extension the height of the mercury column was followed by

means of a cathetometer telescope instrumented with a D.C. position
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*

transducer which allowed recording volume changes as small as

- 3

10 cm . Two recorders were employed, one for each of the two plots

obtained: load versus displacement, and mercury height versus dis-

placement.

 

*

G. L. Collins Co. model number 85205.



 

 



 

C. DILATOMETER AND HYSTERESIS DATA
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Figure 35--Tensile-extension dilatometer data for PMMA for T = —20°C.
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Figure 36--Tensile-extension dilatometer data for PMMA for T = 0°C.
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Figure 37--Tensi1e-extension dilatometer data for PMMA for T = 20°C.  
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Figure 39—-Tensile-extension dilatometer data for PMMA for T = 80°C.
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Figure 40--Tensile-extension dilatometer data for PMMA for T = 100°C.
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Figure 41--Fractional hysteresis data for PMMA for T = 0°C.
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Figure 43--Fractional hysteresis data for PMMA for T = 60°C.



 

 



D. BASIC PROGRAM R-RATE USED FOR RELAXATION RATE

CALCULATION-TEMPERATURE DEPENDENCE

 



 

 



TO

El

Cl,C2

T(I)

H(I)

Tl

T2,T4

A(J)

    

log T shift necessary to cause agreement between experimental

and theoretical relaxation rate at T

E*

gas constant

1’ 2

4

T (T), °K, for t = 10 seconds

e q

log H(T)

T, °K

1n T and In (T + 0.5) (lines 420, 430)

T and T + 0.5 (lines 440, 450)

E(9.9) and E(lO.l) for J = l, 2
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EXPLANATION OF SYMBOLS USED IN RrRATE
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