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ABSTRACT

JANUS: A REALTIME TIMESHARING COMPUTER SYSTEM

FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

By

John Oscar Kopf

A computer program called JANUS has been deve10ped for use on a

Scientific Data Systems Sigma Seven computer. JANUS is a computer op—

erating system, designed to permit many different users to share the

resources of the computer, such that each user is apparently in sole

control of the machine. These resources include the time available

for operation, the program and data storage available, and communi-

cation links with the world external to the computer.

A comparison of the means and mechanisms of resource management

provided by various computer operating systems, including JANUS, is

presented. Descriptions of inadequacies, both in hardware and in op-

erating systems, are given, with suggestions on possible improvements

in future implementations. In those cases where it has been possible

to measure various parameters under JANUS operation, the measurement

and a comment on its significance is provided. Reference manuals for

JANUS and various control monitor tasks are appended, as well as

thoughts on the possible implementation of other desireable processes.

A novel method has been developed to handle realtime processes.

The computer may be used to simultaneoushy control devices, acquire

data, and perform analysis and computation. Any process may be start~

ed or stopped at random, irrespective of the other usage of the machine.

The flexibility introduced into the use of the computer, compared with

conventional realtime systems, is impressive, since, if necessany, all



John Oscar Kopf

of the resources of the computer may be directed toward any goal, using

a single operating system, without the overhead normally associated

with such systems.

This is accomplished by providing within the resident monitor

only those primitive functions dealing with resources common to all

usage. Higher level functions, such as Input/Output, are provided by

independent timeshared tasks. These tasks, with the features normally

associated with conventional monitors, provide those functions neces-

sary and sufficient to the operation of a specific set of problems.
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1. INTRODUCTION

Physicists have used digital computers for as long as computers

have existed. Indeed, long before the first computer was built physi-

cists were suggesting that computing machines would be useful for gen-

erating astronomical and mathematical tables. More recently, with the

advent of quantum mechanics, people such as Hartree called for the de-

velopment of machines to perform computations for the calculation of

wavefunctions and energy levels of atomic structures.

As soon as electronic digital computers became available, they

were set the task of performing physical calculations. The usage of

computers took great strides with the successive introduction of as-

semblers (which freed the programmer from the nuisance.of bookkeeping

relevant to the computer but not to the Operation he wished to perform),

and compilers (which permitted the programmer to forget all details of a

specific computer, but instead to write programs usable on.a11 computers

which had a similar compiler available). The earliest languages (FOR-

TRAN, ALGOL) were developed as aids to computation. Their success lead

to the development of larger and faster computers. This in turn per-

mitted the development of more powerful programs, which 142d to concepts

of batch processing.

Batch processing was a logical development of the observation that,

over reasonably long periods of time, the computer averages as much time

spent reading cards and printing as it does computing. Since the bulk

of the operations involved were read, print and punch, the computer
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could obviously do more computation if these operations could be done

faster. However, there are limitations to how fast a device may be oper—

ated. Further, these operations could be performed by a tiny computer.

Thus multiple computer systems were developed, where a small computer

copied cards onto magnetic tape which was later read by the large com—

puter at much higher speed. The large computer then.wou1d write the

output on other magnetic tapes to be printed later by the small computer.

This provided improved usage of the large computer, and the value of the

additional computation more than offset the cost of the additional small

computer. However, since the computer now performed all operations auto-

matically, it was no longer possible for the programmer to know Just when

his problem was being processed, and to interact with it. Furthermore,

a fairly long time delay was required between submission of a problem

and the return of the results.

People soon discovered that the small computers were useful in

their own right, and that for many simple problems, results could be re-

turned faster than with the large batch processing systems, since almost

no computation was required. Thus a continuing development of small

computers paralleled the develOpment of the large computer’systems.

With the rise in computer technology, it became possible to build spe-

cial purpose computers, usually consisting of a hard-wired program and a

memory. In nuclear physics, these were best typified by multichannel

and later multiparameter analyzers. While extremely useful, the allow-

ed sequences of Operations were built into the machine and were relar

tively inflexible, being limited to specific configurations which could

be changed only with great difficulty if at all. It ... usually neces-

sary to do complex operations external to the analyzer. Further, it was
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not possible to manipulate the data once taken, but only to dump it onto

a secondary storage medium.

As computer technology improved, small computers became more power-

ful and less expensive. By the early 1960's, it became both feasible

and desirable to attempt to interface a small digital computer to a nu-

clear physics experiment 1). This was successful, and proved to be much

more flexible than a hard-wired analyzer. Similar systems began to

spring up in many places. As programs were written and used, it became

apparent that the main value of a computer attached to an experiment lay

not in its flexibility as an analyzer, but rather in its use in an inter-

active mode with the experimenter. For the first time it became possible

for the experimenter to provide flexible and elaborate checks on the ex-

periment, such that the computer could inform the experimenter of ques-

tionable operation or malfunction, or provide, on demand, a list of

parameters which would aid him in determining the status of the experi-

ment. Further, it became possible to analyze data as soon as it was col-

lected, and compare the experimental results with theory. Parameters

could be varied in both the theoretical calculations and the experiment,

allowing more accurate measurements of the quantities of interest. There

was a definite possibility that an experiment would proceed faster, since

it might be possible at an early state to determine that the effect of

varying one parameter was negligible, and could be ignored. Data analy-

sis could be completed with the experiment, and questionable data could

be retaken if necessary while the experimental configuration was still

operative.

There was, however, one serious drawback to this aystem. The com-

puter was dedicated exclusively to the use of only one person at a time.
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The period involved might cover days or weeks, during which time no

other person could use the computer. Since the experimentalists nor-

mally discovered a few days after their experiment that they would like

to vary another parameter with respect to the data they had collected,

since they already knew how to operate one computer, and since they

knew that they could analyze their data under an interactive system

much faster than by sending it to a computation center for batch pro-

cessing, computer usage became saturated. A struggle invariably devel-

oped between the person who was using the computer and those who wished

to use it for data analysis, data reduction, simple computation, and

development of new programs to make use of the computer. Each time a

new program was developed and added to the library of useful programs,

saturation increased. Furthermore, it was apparent that the computer

was not being used at full efficiency, since programs rarely used all

of the resources of the computer, and for long periods various resources

could be seen standing idle. Two or more people who required non-over-

lapping resource subsets could easily share the computer, if a mechanism

suitable for sharing were provided. Then “A" could analize his data

using a graphic display and teletype, "B" could be reading cards and

printing out the results of a computation based thereupon, while "C"

could copy a magnetic tape.

Such a mechanism exists, namely timesharing, based on the observa-

tion that if in an interactive mode of operation, a computer is normally

idle while waiting for a person to respond, then during this time it

could easily be responding to each of several users, without appreciable

degradation of response to any one. As a result, each user would feel

that the computer is devoted exclusively to his use. The computer could

still be providing a batch processing facility in the background of its
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Operation, or any other processing which was not time dependent. This

background usage would be degraded by the interactive usage, but would

still be keeping the computer busy and productive.

Timesharing schemes fall generally into three categories. These

may be classified as follows:

1. Systems where all users are running independently, but where

each is performing identical operations of computation, control, and in-

put. Such a system would use the same program for all users, each dif-

fering only in the unique storage area he was using. In this scheme, the

program is reentrant, such that it always assumes one or more pointers

to the current area of storage it is manipulating. This scheme is ef-

fective where each terminal that may interact with the computer is

identical in its capabilities and operation. Added flexibility may be

provided by allowing the individual user to use his own programs, exe—

cuting them from his storage area, to manipulate his data. However,

any interaction between the user and his program must be handled by the

main resident program, or monitor. Further, all allowed functions must

be built into the monitor, and adding or changing a function is a non-

trivial programming problem. A common example of such a timesharing

system is that used by airlines for ticket reservations. Such a scheme

is relatively easy to produce, since there is a finite set of operations

allowed and desired. Its greatest deficiency lies in its lack of flexi-

bility.

2. A second scheme is that of foreground-background usage, shown

in Figure 1. Here an area of the memory is set aside for one or more

foreground programs, which interrupt the program operating in the back-

ground as necessary to perform a specific set of functions and return"



 



Figure 1. Memory allocation under a foreground—background scheme of

timesharing. The vertical column represents core memory. The monitor

is used to provide all control functions. The area of core devoted to

background timesharing is successively occupied by a number of pro-

cesses, all limited to the size of the background area. The realtime

foreground area may be occupied by any one of a set of processes,

(or divided so that it may be used by more than one process), but any

realtime process generally locks out all other realtime processes.
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control to the background when done. Usually there is a method of check-

pointing the current background program, that is, saving it on an exter-

nal storage medium, replacing it with an extension of the foreground

program capable of performing certain complex operations, and when there

is no longer any need for this, restoring the background program and con-

tinuing its operation from the point it was checkpointed. However,

there is normally elaborate checking involved to insure that the fore-

ground and background programs do not interact, as there would be great

dissatisfaction on the part of the users if it was necessary, for example,

to sort output because the foreground and background punched alternate

cards or printed alternate lines. The big advantage of the foreground

scheme is that of fast response to events, thus permitting evaluation

of each event on its owh merits. The disadvantage lies in the difficul-

ty of changing the foreground. In a situation where the foreground is

used to monitor and control a process, such as the Operation of a manu-

facturing complex (eg. oil refinery) or complex machine (eg. accelerator),

where parameters may be varied but where the foreground program is rarely

changed, this is no real disadvantage. However, in a situation where

multiple foreground operations may be in operation simultaneously.

starting and stopping asynchronously with each other, severe problems

occur with respect to keeping track of free memory and making efficient

use of the memory.

3. In the third scheme each user is performing operations com-

pletely independent of all other usage of the machine. This scheme,

while being capable of the greatest degree of flexibility, is normally

found to be so difficult to implement that restrictions are placed upon

all usage. For example, no user is permitted to change the state of the
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machine himself, and must request all state changes from the resident

monitor. 'This monitor must on each request, determine if the request

is valid, if the Operation is permitted to the user, and perform other

bookkeeping functions before actually going ahead'and performing the

operation. A.typical operating'system could easily require 20,000-

uo,ooo words of memory at all times Just for the resident programs.

In addition, response time may be increased drastically such that,

while still adequate for response to people, the response time is orders

of magnitude slower than would be possible in a foreground system. This

would seriously limit the usefulness of the system in an environment

where events could occur thousands of times per second, such as in a

nuclear physics laboratory.

This thesis describes a new scheme of realtime timesharing, which,

while permitting the flexibility of scheme 3 above,_also permits the

response time associated with foreground programs, without many of the

disadvantages of either scheme. It has the further advantage that the

requirements Of a resident monitor are kept to a minimum, since the task

associated with each user performs all of his monitor functions, in-

cluding all communication with the external world (INPUT/OUTPUT or I/O).

This is shown in Figure 2. This is of great advantage in nuclear physics

experiments, where an I/O Operation might require a buffer of thousands

of words, wasteful to make resident unless used frequently enough to

Justify it. (The acquiring of a multichannel or multiparameter spec-

trum can be thought of as such an I/O operation, where the storage a1—

located to the spectrum is in effect a single buffer.)

The operating nystem described is called JANUS, for the Roman god

"...Of all going out and coming in,...also the god of entrance into a new

division of time“ 2), thus the god of timesharing.

!
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Figure 2. Memory allocation under JANUS. As in Figure l, the column

represents core memory, with JANUS at the bottom. Two tasks are shown,

with the independent task address spaces twining through memory. Not

all pages of a task need be in core at one time. The darkened pages

of core are dedicated to realtime processes specific to the task which

has the page.

 

 



 

 

 



 



2. THE USE OF CORE MEMORY

In order to provide a perspective for the discussion of JANUS, I

will first describe how various other timesharing systems Operate. Con—

sider first the problem of sharing the core memory of the computer. How

can more than one user make use Of the core memory without the possibility

that an error can interfere with another user? (Subsequent figures are

keyed to Figure 3.)

The simplest scheme is to have only one user in core at a time, and

all available core is his to use. This scheme is that used in Project

MAC of the Massachusetts Institute Of Technology on an IBM 7090 computer

(Figure h). It is also used in the Sigma 7 timesharing system developed

by the Hubble Chamber Group at Brookhaven Rational Laboratory 3). The

users program is brought into core from an external storage medium

(swapped), and started. If the program did not inform the resident exe-

cutive program that it wished to exit early, then at the end of a fixed

time increment execution is stOpped, the current status is saved, and

the program is swapped out to the external storage medium, freeing the

core for the next user. This process continues for each user, until

eventually the first user is swapped back into core, and his execution

is continued. While this scheme has the advantage Of simplicity, the

amount of time spent on nonproductive bookkeeping (overhead) is high, as

the computer is idle while swapping occurs. To provide a reasonable

response time to each user, the interval specified (timeslice or time

12
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Figure 4. Memory s110cstion--proJect MAC. User execution alternates

with swapping (the process where the program is transferred to or

from memory).
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quantum) must be short—~normalhy fractions of a second to each user. An

example of the problems involved for such a scheme is demonstrated in

the Brookhaven system, where the average time required to replace one

block of 8192 words with another is 56 milliseconds. With the 1 second

timeslice used, this provides 5.6% overhead, but with 6 active terminals

as much as 5 seconds may pass before the computer can respond to the user.

Three second response time is normally considered a reasonable upper

limit. To provide this response time, a time slice of .5 seconds would

have to be used, and overhead would increase to 78 milliseconds. Most

terminal usage consists of the computer reading in a typed record, ex-

amining it, possibly commenting upon an error, and requesting new input,

a process1vhich normally takes much less than 1 second. In this case,

the overhead would increase to a large value. Inter-user protection

need not be considered, however, since they cannot get at each other.

By constraining each user to a separate part of the core available,

such that more than one user mqyzfit into the core memory, advantage may

be taken of the fact that most computers suitable for timesharing are

capable of asynchronous I/O Operations. such that I/O may coexist with

program execution. Thus one user may be executing while another is

swapping in or out. The swapping I/O overhead is negligible as long as

the timeslice is greater than or equal to the swapping time. However,

a new problem arises--that of relocation. To make efficient use of the

memory, a program should be capable of executing correctly wherever it

may be located. Unfortunately, programs tend to reference absolute

addresses.

The simplist method of treating relocation is to ignore the prob—

lsm. This approach was taken by Dartmouth College with a GE 265 4) (and
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more recently a GE #15) computer (Figure 5). Available core is divided

into two areas, "high“ and “low" core. Execution is alternated between

high and low core..as low core is executing, high corn is undergoing a

swap. However, a program loaded into high core will not run in low

core, and vice versa. A bad Job mix can cause an excess of programs in

one area or the other, with the result that either the low density area

users get more computer time, or else the computer becomes inefficient,

as time must be spent waiting for swap in the high density area. Ad-

ditionally, any system library program which is available to all users

must be kept in both a high and low version. Protection is provided by

a bound register, which specifies the highest and lowest legal core

references permitted.

In order to treat relocation adequatehy, so that a program may

run in different areas of core without revision, special hardware must

be used: if the relocation operations were performed by software the

overhead would be tremendous.

There are three methods of automatic relocation used. Two of

these are almost identical, with only a.slight difference in emphasis.

The first of these methods uses a location register and relative

addressing. Each address is relative to the referencing instruction.

The actual reference is made by adding the location register to the ad-

dress specified. The block of code will now operate anywhere in core

automatically. This scheme has been most successfully applied to the

SDS Sigma 2, which is not however used for timesharing.

A second scheme uses a base register. Addresses specified are

relative to the beginning of the program, rather than to the address of

the instruction; otherwise operation is identical to that outlined above.
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Figure 5. Memory allocation-~Dartmouth project. A new program is

swapped into core memory while the current program is executing.

However, an imbalance in the number of Jobs assigned to high and low

storage causes a delay at the end of the third timeslice, as there is

nothing to do but wait between USER 3 and USER 1.
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This scheme is used on the IBM 360 computers (5’ 6), and in the PDP-6 7)

(and now in the PUP-10) computers (Figure 6). There are two advantages

of this scheme over the Dartmouth scheme. First, successive users are

placed where there is room in core, without the problems associated with

high and low core areas. Secondly, programs may be of variable length,

up to half the available space in extent. Short programs can coexist

with longer programs. This scheme further introduces the concept of

pages-~a basic unit of core sise. In the PUP-10 each program consists

of an integral multiple of 102“ word pages. Protection is again pro-

vided by a bound register, the lower limit of which is also the base

register.

The third scheme of auto-relocation involves a memory map. First

developed by Project GENIE at the University of California, Berkeley,

using an SDS 940 computer, it is also used by the IBM 360-6? (8' 9), and

JANUS in an SDS Sigma 7. Figure 7 shows the use in an SDS 9h0 computer,

which uses 2048 word pages. Note that pages which are modified (M)

while a program is active are flagged to be written back (W). Since for

unmodified pages there is a true copy on the external storage medium,

these pages are preferentially chosen to be overwritten thereby cutting

down the number of swap operations necessary. The penalty for reducing

the number of swap operations is the necessity of searching through a

table of content-associated core pages, to determine if a page of a pro-

gram is currently in core. Programs execute in a virtual address space,

connected to the real address space of the core memory through the map.

Thus contiguous virtual pages need not be in contiguous real pages of

core, but may instead by located wherever most desirable. Inter-user

protection is afforded by a multilevel page protection system, used to
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 Figure 6. Memory allocations—PDP—é computer. Swapping occurs con-

currently with execution, but the efficiency is higher than in Figure

5, as no limitation is imposed by the use of specific areas. Note

that a significant part of memory is rarely or never used.
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Figure 7. Memory allocation--project GENIE. Problems are initially

brought into free core. When no more core is free (TASK h), those

pages are chosen which are not currently in use and are identical to

the cOpy on the disk (unmodified), to be overwritten by new pages.

The resultant fragmentation of Jobs is offset by the use of a memory

map. Not until the sixth timeslice is it necessary toxwrite a page

out to the disk (TASK 1, Page 5). This scheme is also used in

JANUS. (The P numbers are pages within each user's address space.

M signifies that the page is modified, W indicates that it must be

written back onto the disk.)
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protect and monitor the usage of pages.

Under a mapped paging scheme, the usage of each page may be closely

monitored-~closely enough, in fact, to permit demand paging. If the exe-

cutive system can be informed whenever a page is referenced, and if the

user can be locked out of some of his own pages, there is no longer any

need of the uncle program being in core. Those pages currently being

used can be brought in, and if a valid reference is made to a page which

is not present (demanded), the current timeslice can be stopped, and

conditions set up such that the demanded page will be available during

the next timeslice for the program. Further, if a page is not referenced

for some period of time, it may be safe to assume that it will not be

referenced again for a while, and eased out of core memory in order to

make room for pages in use.

JANUS uses a mapped memory usage scheme, but with an important ad-

vantage over that specified above. Much of the executive is unique to

the task, rather than resident and common to all tasks. As a result, it

is entirely up to each task if demand paging is to be used. Furthermore,

any task's monitor may dedicate one or more pages, making that area

resident until undedicated (Figure 8). These portions may be connected

to interrupts, permitting realtime operations asynchronous to timesharing.

These pages form resident islands, and timeshared usage maps around them.

(All the advantages of foreground usage result, without the rigidity inr

herent in conventional foreground-background systems. The added ability

to solve problems which are actually larger than physical core, without

requiring special techniques of the programmer, such as overlays, is a

boon.
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Figure 8. Gross memory allocation under JANUS, showing realtime pro-

cesses. Using a large time scale. all short-term details of memory

usage are omitted. Shown instead are areas dedicated for realtime

processes. The blank area is available for swapping. The activation

of four tasks is shown, each of which immediately initiates a real-

time data input process. These tasks, in order of appearance, might

be MOIRAE, JBCM, DATA TAKER, and JFCM. Note the interleaving of

lineprinter output of tasks 1 and 2. The variable size scope dis-

play is a measure of the amount of realtime buffer area required as

a display is expanded to show relationships instead of detail.
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3. BULK STORAGE

Almost all timesharing schemes require, in addition to the core

mamory, additional bulk storage to keep programs, libraries, and data.

In general, this storage is addressable, in that a specific block of

storage may be located without searching all the storage medium. With

certain exceptions, magnetic tape does not fall into this category.

Instead, magnetic tape is a serial or ”stream” storage medium, where

records relative to the current record may be referenced. As such, it

is useful primarily as an archival storage medium, where data stored

thereon is not capable of change without either destroying all succeed-

ing records or requiring sleepy operation to move the data from a source

tape to a destination tape, making changes as necessary in the new copy.

This use is adequate for storing data, and for some functions such as

holding lineprinter output. It is inadequate for working bulk storage

in a timesharing environment where response time is critical.

In this environment, addressable storage is required. Commonly

used storage takes many forms, some of which are indicated in Figure 9.

Shown also is the typical access time and range of storage capability

for that form of storage, as well as cost. Cost and storage are in

terms of bytes, a byte containing 8 bits of data. It is readily appar-

ent that as access time decreases the cost increases. This factor of

cost/byte is what normally sets an upper limit to the practical storage

capability for a particular form of storage.
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Timesharing ayetems require an immense amount of bulk storage,

normally approaching infinity as closely as possible. In additon, it

is normally desired that access time be as low as possible. To be prac-

tical in terms of cost, it becomes necessary to build a bulk storage

structure, using a set of storage forms of differing characteristics.

Thus, one uses a fast, low volume medium as well as a slow, large vol-

ume medium.

This storage structure may take three possible forms, of which the

linear form is rarely used in comparison with hierarchical and hybrid

structures, at least for timesharing usage.

The most easihy understood structure, however, is the linear

structure, shown in Figure 10. Here the storage is an extension of the

core memory, but suffers from the difficulty and inconvenience of exe-

cuting programs directly from the storage. Its advantage lies in the

fact that there is a unique address associated with every piece of stor-

age, both core and bulk. Operation consists of cepying blocks of data

into core memory, manipulating them, and then replacing them.

The opposite extreme is the hierarchical or pyramid structure (Figs

ure 11). In this scheme, unused sets of data are kept at the lowest

(large capacity, slow accessibility) level of storage. If referenced,

the set of data is brought into core, and, if necessary, later written

back. The system executive does automatic accounting of usage-~if a

data set is used frequently enough, such that time spent accessing a

level of storage becomes significant because of frequent references, that

data set is copied through core to the next higher level of storage.

Depending on the algorithm used, the original block of storage may or

may not be freed (depending on whether or not the storage is referenced
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by a unique name, or by its areal name on the lowest level). As the use

of this procedure unaided would tend to fill higher levels of storage,

a mechanism must be provided to purge a level of some data sets, whose

usage frequency does not warrant such a high level of storage, to a

lower level. This may be done periodically, as well as upon demand.

Efficient use is made of bulk storage, but there are two disadvantages

to such a scheme. For ease of description, I will assume a data set

consists of a group of pages, and consider the use of a single page.

First, and most important, a page must be referenced by a unique

name. This name will have associated with it indicators telling the

current level and_location within that level of the specific page, as

well as some sort of usage indicator. A table is required to permit the

association to be made. In addition, some indication must be provided

for free pages on each level, as well as for free names. In order to

provide speed of reference, at least part of this table must be resident.

Since a minimum of one word/page is indicated, and since storage of

100,000,000 bytes (50,000 pages) may be available, it is readily appar-

ent that an excessive amount of core storage is required for the table.

There are alternatives, requiring only a list of the contents of the

highest level of storage, but these are expensive also, as each reference

requires searching the table to see if the reference is there--a time

consuming operation.

Secondly, the overhead introduced in purging levels is non-trivial.

A typical hierarchicalhy organized system is the IBM 360 Time

Sharing System (TSS) (8' 9). Using a complex algorithm to improve ef-

ficiency, measured overhead is still 80-90% 7).

The third form of storage structure (Figure 12) is the hybrid
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structure. Inthis scheme, all names are absolute rather than relocat-

able, and no resident table is required, except for a list of unused

pages for each storage medium, and an associative table of the pages

contained in core memory. Pages are allocated according to expected

use and duration of existence-~program libraries in slow storage, ac~

tive programs in fast storage. If a storage medium is full, space is

allocated from a slower medium. A.program is copied to fast working

storage and renamed when it is brought active, and that area is freed

when it exits. As a result, little overhead is required compared with

the hierarchical structure, and the benefits of the linear structure

apply, without the problems associated with nonexecutable storage.

JANUS uses a hybrid storage structure. As the MSU Sigma 7 conr

figuration includes only a single bulk storage medium (a 1.5 megabyte

H/T disk), it is a simple structure. However, only a relatively minor

change in JANUS is required to implement one or more additional stor-

age media.



4. SCHEDULING OF TIME

In any timesharing scheme, the timesharing is effected by dividing

the time available into quanta, or timeslices, which are allocated to

successive users. Scheduling involves two parameters-~timeslice dura-

tion, and ordering of users.

Timeslice duration may be fixed or variable, and a mechanism is

usually provided to terminate a timeslice early. A fixed timeslice has

obvious meaning; each user gets the same quantum of time for his prob-

lem.

A variable timeslice is normally used in a timesharing system

where the status of the machine, the system, and the previous history of

a particular task's usage is available. On the basis of these para-

meters (and possibly others, which may be defined by the user), an

“optimum" timeslice is calculated for each user each time. Thus, if

the machine and system are lightly loaded, a longer duration is provided

than if a heavy lead exists such that many users must be serviced with?

in a given period of time. Again, in a priority oriented system (see

below), the duration is related (perhaps proportional) to the amount of

time a user's problem has already taken. The rationahafor this scheme

is that, if a problem has already taken a certain period of time, a

longer timeslice alloted to it will cut down on time spent for system

overhead, and more productive work will be accomplished. For example,

a problem which has already required N timeslices of duration T may be
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given a duration of 2T for the next N timeslices. If still not done,

the duration might rise to “T for the next 2N timeslices. Since an

extremely long calculation, such as freQuently arises in scientific

work, might require hours of computer time, a mechanism must be pro-

vided to permit the abortion of a long timeslice, in order to allow

access to the machine by other users.

A further perturbing factor may be the admission of a user to'

specify his own timesharing, as in tasking under PL/l 10). In this

case, a.user may start subtasks to operate concurrently with the con-

trolling task, and specify what portion of the time the computer is

to spend on each. Then the duration allotted to the user must be di-

vided into appropriate sub-quanta to permit each of his tasks its pro—

per allowance of time.

The second phase of scheduling involves ordering the access of a

user tOIthe machine. The simplest ordering is to place all users into

a “ring“. In a simple ring, all users, both active and inactive, are

in a circular structure. Control passes from user to user sesuentially,

skippingIthose who are inactive. Users may pass from active to inr

active states and vice versa. The access time for a user then depends

on his position in the ring relative to the currently active user. (A

user is active if hisprogram can proceed with computation, rather than

wait, as for example for input.)

A more saphisticated approach is to have a ring of active users,

and a list of inactive users. When a user is activated (goes from the

inactive state to the active state), his task is inserted into the ring

as the next task to run. This has the advantage that an activated user

task has a short access time, and therefore fast response time. If
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the task stays active for longer than a timeslice, he enters the normal

ring sequence.

An extension of this scheme is the assignment of priorities to the

tasks (the above is a two-level priority scheme). A multilevel priority

system is generalhy an aristocratic system: all tasks at a given level

are exhausted before proceeding to a lower level. If a level is being

executed, and a task appears on a higher level, the lewer level pro-

cessing is discontinued. A task activated is normally entered into a

high level.

Under priority scheduling, there may be a pyramid of rings (Figr

ure 13). These rings leak-~if a task stays active for long enough, it

drops to a lower priority level. If it goes inactive, it drops to the

lowest (inactive) level. As described above, lower priority tasks may

be given a longer time quantum, to offset the fact that thay may be en-

tered less often.

In general, the parameters used to define priorities and time—

slice duration are produced by an empirical fitting process, based upon

some specific mix of possible Jobs. In a terminal-oriented timesharing

system, a .1 second quantum may be used for the highest priority, to

provide fast terminal response time, and may expand to several seconds

at a lower level, where long computations are performed.

JANUS uses a scheduling algorithm with a two—valued timeslice and

a four-valued priority scheme. A task is allocated a .1 second time-

slice, unless it is the only active task in the machine, in which case

it is alloted .h seconds. If a realtime process requires rapid response

from its associated task, it can bring the task active, and even effect

Jobchange for the currently active task.
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The possible priorities are inactive, normal, hurry, and rush, in

order of increasing level. The structure is that of a simple ring--an

activated task remains in its normal sequence. However, a task may be

placed in a higher priority level than normal. The use of a higher

priority overrides the normal sequence of Operation, and the first high

priority task encountered is used. I

The difference between hurry and rush priority is one of efficienqy,

Under rush priority, a task is made ready and started, even if another

task is ready to proceed. Under hurry priority, if another task is

ready to proceed, it does so, rather than have the computer wait while

the high priority task is readied. A task found in either high prior-

ity state is reduced to normallpriority on entry; thus high priority

applies only to the first access. On return from a high priority task,

execution will proceed with the next task in normal sequence from it,

unless another high priority situation exists.

Since JANUS is a system geared to realtime operations, there is a

second form of timesharing available. This is by means of interrupts

(Figure 14). A realtime event may be defined as the occurrence of an

event aaynchronously with the operation of the computer. If the event

is attached to a hardware interrupt, it is possible to rapidly switch

the complete state of the computer, interrupting the current process,

and transferring control to an interrupt routine. This routine may take

the necessary action based upon the event, and then return control to

the interrupted process. While the interrupt is active, it can have

performed various operations, including the activation of the associated

task. In general, all I/O Operations are associated with interrupts,

including data acquisition. Indeed, the basic JANUS functions of
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swapping and Jobchanging are associated with interrupts, although of

lower priority than those used for data acquisition.

Realtime processes operate in the foreground of the computer--

timeshared operations in the background. As a result, it is possible

to perform a nuclear physics experiment at several levels sinultaneoushy,

such as realtime data acquisition, realtime I/O (e.g., plotting), real-

tine timeshared data analysis, and tineshared theoretical computation.

Each of these can be treated as an independent process, and thus the

processes necessary to a particular experiment nay be selected and

started. If it is discovered that an additional process is required

during the course of an eXperiment, it may be selected and added to the

set of active processes. Similarly, a process no longer required may

be dropped.

 



5. DESIGN GOALS OF JANUS

JANUS was first designed to optimize realtime processes, specifi-

cally data collection, control, and interactive processes relating to

experimental nuclear physics. Only after it was decided that these were

the most important functions of the computer for our application, was an

attempt made to determine how to proceed 11). An anaLysis of projected

usage indicated that any realtime process had associated with it a large

body of associated data and program which was not used continuoushy,

and which was of low priority. Also indicated was the fact that, while

a realtime process was active, large portions of the computer resources

would be standing idle. Furthermore, the capability of operating mul-

tiple independent realtime processes simultaneously was desired.

It rapidly became apparent that a timesharing system was desired,

with a capacility of running realtime processes in the foreground, while

the associated programs (and independent ones also) would run in the

background. Efficient use of core memory indicated the need for a small

resident monitor, as well as memory mapping. Tasks were defined, and

their requirements and capabilities were delineated.

The result was the JANUS philosophy:

1. The highest priority use of the computer is to service in-

terrupts, and external data collection associated interrupts should be

of highest priority. There should be no critical timing requirements on

any sequence of code, requiring the inhibiting of interrupts.

42



43

2. Any hardware in a given installation should be available to a

user if he needs it.

3. The only restriction on any user should be that all other users

are protected from him, as he is from them.

4. No user should be aware of any other use of the machine, except

when a delay is required because of a request for a currently unavailable

resource.

5. It is the responsibility of the task associated with a user to

insure proper operation, as JANUS is to impose no arbitrary restrictions

by checking on the task. JANUS should be invoked only for control ‘

functions.

6. What a user does not know about the aystem should not hurt

him, as long as he follows reasonable conventions as to usage.

7. A user need not have any knowledge of anything he doesn't use,

to the extent that it does not exist in the machine he is using.

These goals have been met in JANUS.



 



6. UNIQUE FEATURES OF JANUS

The system is based on the observation that a piece of a program

need only be accessible while it is being referenced. In a timesharing

system, programs succeed each other at small intervals of time. The

only piece of any such program which need be in core at all times is

that piece which may be called upon asynchronoushy to the normal sequence

of timesharing. It is readily seen that this description is exactly

that of realtime operations, which can be extended to include all forms

of I/O. If a mechanism is provided for a task to make a part of itself

resident for the duration of a realtime reQuirement, then it becomes

feasible to timeshare monitor systems, since, in general, monitors

provide primarihy for realtime I/O functions and any operations or usage

which it is not desirable to allow to the user directly.

Further, if a mechanism exists to determine the usage of a block

of storage including its accessibility, then the only blocks which must

be available each time the task is active are those blocks to which the

mechanism does not apply. Other blocks need not be accessible, or even

in core, if a mechanism is provided for fetching them as necessary.

Again, if a mechanism exists for automatic relocation, such that a

given piece of program can be operated successfully from different parts

of the real computer memory, then these mechanisms can be used as a mem-

ory expander, such that programs can operate anywhere in the address

space (chapter 9) of the computer whether or not that address space

as
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corresponds in full to existing memory.

Furthermore, each task may operate in a completehy independent ad-

dress space, or several tasks may intersect in one or more blocks, which

need not, however, correspond to the same piece of address space in each

of the intersecting tasks.

In order to describe how these mechanisms are implemented in JANUS,

it will first be necessary to describe unique features of the target

machine, a SDS Sigma 7 computer. Certain features of JANUS have been

influenced greathy by the operations allowed by the hardware. Some of

the Operations necessary to JANUS are provided quickly and easily by the

hardware, showing the power and utility of such hardware, while others

equally important must be implemented in a less than straight-forward

manner, and would benefit greatxy from the existence of hardware suited

to the application.



7. THE TARGET COMPUTER

The SDS Sigma 7 computer 12) is a relatively new third generation

computer of which.MSU acquired the first sold. ‘A first generation com-

puter is generally typified as consisting of some form of memory and a

processor, which can acquire specific data words (instructions) from the

memory and based upon these instructions manipulate other data words.

This generation usually used vacuum tubes. Second generation computers

are typified by the use of transistors, and include such features as

index registers, I/O channels (a device which shares the memory of the

computer, and which, on command, can perform.asynchronous Operations for

the computer, such as transmitting a whole string of data elements,

rather than Just one), and interrupts, allowing multiple use of the com—

puter. The third generation computer is distinguished by the use of in?

tegrated circuits, and features such as privileged instructions, paged

memory, memory mapping, flexible memory protection, "scratch pad" re-

gisters, and I/O processors. These are discussed in turn below.

Privileged instructions: the computer may be operated in either

slave (computational) or master (control) modes. In slave node, all in-

‘structions relating to the internal use of the computer are permitted,

but certain control instructions are illegal, and memory usage is con-

trolled. Conversely, in master node, both internal and privileged con-

trol instructions are permitted, including those which change the status

of the machine, but the core monitoring capability is lost.

#6



47

A paged memory means that a natural unit of memory exists, such

that specific conditions may be applied to one page and not another. In

‘the Sigma 7, the size of a page is 512 words. These pages are indistin-

guishable in their usage except for the real memory sequence they are in,

‘with.special usage for the first page in this sequence (p160 zero).

Memory mapping is special purpose hardware to provide automatic re-

location by pages. Associated with this is a table, the map. which

specifies the usage to provide. Under this scheme, each.page of memory

is automatically, and with insignificant cost in time, mapped into a

specific real page of memory. There is no requirement of identity, and

thus the address space the computer is operating under need have no cor-

respondance with space in the real memory, except in special cases. .As

a result, a task may be loaded by pages in such a way that the most ef-

ficient use is made of the existing memory, independent of the address

space requirements of the task. There may be a one-to-one correspond-

ance in regions of the map, as an alternate device to the pointers

described in timesharing scheme 1 in the introduction.

Memory protection is that ability to specify the usage of certain

‘pages of memory under specific conditions. For example, in the Sigma 7

operating in mapped slave mode, four modes of usage may be specified for

each page, corresponding to the degree of access allowed, These access

protects are: 0. Complete access allowed, 1. Write prohibited,

2. Write and execution prohibited, 3. All reference prohibited.

While intended primarily as an aid in debugging and to provide security,

the access protect may also be used to monitor the usage of memory.

Memory is divided into fast and slow portiOns. The fast portion,

although strictly a storage medium, may be treated as a large set of
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registers with identical capabilities. These "scratchpad" registers

are normally treated as specific locations in memory, and thus all

registerbregister Operations are a natural extension of normal memory.

Indeed, execution of the program may proceed from the registers. The

onet effect is that of a two address computer, where one address space

is a.small subset of the other.

There is usually one or more I/O processors (IOP). These are es-

sentially the small computer, described in the introduction as the batch

processing system, built directly into the large computer, an IOP is more

powerful than a channel, in that it can provide simple operations, such

as collecting data sequentially from several places in memory and com-

biming them into a single record, or transmitting multiple records be-

tween the memory and a device.

These features describe the Sigma 7, but there are others which

are extremely powerful, although not unique to third generation computers.

The most important such feature is the inclusion of hard-wired subroutines.

(It is not generally realized that all floating point operations fall

into this category.) Since the Operation is hard-wired, it may proceed

relatively fast. Hard-wired subroutines are usually expensive, and are

normally recognized by being an optional feature on the computer. The

simpler ones may, however, be standard. The map and protection des-

cribed above fall into the category of a hard-wired subroutine.

Stacks: it is frequently desirable in a program to be able to

save information temporarily in a pushvdown list or stack, wherein the

last item entered is the first item removed. The major use of such a

feature is to provide dynamic allocation of storage. If all temporary

modifiable storage is used in a stack, less storage is required than if
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all storage were entirely static, its use is optimized, and recursive

routines (those which may call themselves) become easy to write.

Conversion: the Sigma 7 has instructions for conversion between

any two number aystems, provided that the two are related by a weighted-

number system.

Byte string: four standard and one optional instructions permit

the manipulation of strings of bytes (character), with operations such

as move, compare, translate, and search. These permit powerful text

editing facilities.

Floating point: optional. Including single and double precision,

this is useful whenever accuracy is unimportant, or the range or numbers

involved is unknown. Used in scientific calculation, where complex op-

erations are performed.

Decimal: optional. All operations are guaranteed good to 31

decimal digits. Numbers are carried around as binary coded decimal

quantities. Used primarily for business applications, where the oper-

ations are simple and quantity of operations is the criterion. (It must

be remembered that all operations on a single number must include the

time spent to translate the number to and from a character string, and

this may be appreciable.)

There is also an instruction (interpret) which is relatively power-

ful in juggling tables of non-numeric data, provided that they are of a

specific format.

In addition, the Sigma 7 provides variable data bases, such as

byte (8—bit), halfword (2-byte), word (u-byto), and doubleword (8-byte),

and independent instructions to manipulate these data bases. In con—

junction with these, a base addressing scheme is provided, such that any
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indexing operation is automatically at the reselution of the data base.

There is also a set of instructions, called immediate instructions,

which reference the registers only, using the 20 bit address field of the

instruction as a signed operand.

In general, the Sigma 7 is a well designed computer, with a power-

ful instruction set, designed for the convenience of the programmer,

rather than the engineer. However, it lacks a few features which would

be very useful.

Specifically, I feel that there are two sets of instructions mis-

sing. These may be classified as “logical immediate" and "queuing".

Logical immediate instructions would be an addition to the immediate in-

struction group described above, to include AND immediate, OR immediate,

and EXCLUSIVE-0R immediate. The addition would be of great value for

non-numeric operations, as currently it is necessary to provide a mask

in core, even if needed only once. The queuing group would be harder

to implement, since it would need to be a hard-wired subroutine. A

complement to stacks, queues are cyclic stacks, of first-in-first-out

nature, rather than first-in-last-out. However, it would seen no more

difficult to implement queues than stacks.

Additional instructions which might be of use are list processing

instructions, where a list and count are provided, and the list is scan-

ned until some condition is satisfied.

As far as the Sigma 7 hardware is concerned, there is one major

failing. This can be traced to the expectation that the computer would

be used with a centralized monitor. As a result, there are a number of

items of machine status which cannot be read directly, but must be

represented by an image in core memory. These include the map, access



 

 



51

protect, and interrupt status. In a decentralized system, as under

JANUS, it is not convenient to keep a centralized record of all interrupt

status. As a result, while optional power failure interrupts are avail—

able for the Sigma 7, allowing the status of theomachine to be saved if

power isilost, it is impossible to save the statue of the interrupts.

A special instruction is provided to load the map and protection.

How much more useful it would be if the map and protect registers were

inside the address space of the computer, subject to normal protection.

Then normal addressing instructions could be used to modify these

registers, they could still be protected against a malevolent user, but

they would be readable.



 



8. STRUCTURE OF JANUS

JANUS is the name of both the system as a whole, and the resident

part specifically. As a whole, JANUS consists of a base (resident) and

a ring of tasks which fluctuate in size. JANUS operates on several

levels concurrently (Figure 15). At the lowest level is the set of

tasks, one of which is always current (active) or next. If active, the

task is executing, performing its set of operations for a given period

of time (time slice). While it is active, it may call upon JANUS re-

sident to provide or save information or perform a specific operation,

either explicitly or implicitly. At the end of the task's timeslice,

the task is placed on a higher (interrupt) level, that of Jobchanging.

After performing any operations unique to the task at slice end, the

task returns to the resident Jobchanger. The Jobchanger performs stand-

ard slice end operations, and then determines if a new task is ready to

proceed. If so, the computer is set up to execute the new task, and than

control is transferred back to the lower task level. However, Just be~

fore this control tranfer, the Jobehanger determines what task is to be

next after the current task. It may decide to start the Swapper, a rour

tine on a higher level than either the Jobchanger or task. The Swapper

will asynchronously interrupt the Jobchanger and active task as necessary

in order to bring into memory parts of the next task. Thus there is a

good chance that a new task will be ready to proceed when the current

task's time is up. In addition, the resident portion of JANUS is
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aaynchronously handling a number of specialized interrupts, which may

be fanned out to specific routines. During the timeslice of a task,

the task may request in a specific manner that a portion of itself be

dedicated and be attached to a realtime process (Figure 16). This re—

sident routine may then also operate aaynchronously to the timesharing,

and at a higher level. The dedicated portion may at any time signal the

task that a specific condition has occurred. Even if the task has put

itself on wait (inactive) status, this signal is sufficient to cause

the task to reenter the ring as an active task and take the proper ac-

tion with respect to the condition.

A task may, at any time, provide JANUS with the name of a subtask

to start (Figure 17) or delete from the ring of tasks. Any task may

signal a subtask, or a parent task, and is responsible for destroying

all subtasks before exiting itself.

Thus, at the task level, JANUS does nothing for the task, in the

sense of performing a high level operation. Instead, it performs a

bookkeeping operating to keep track of various aystem resources, and

allocates these to tasks on request if they are available. These bookr

keeping operations may make higher functions possible, such as by con?

necting an interrupt routine to the I/O interrupt, but JANUS will neither

do the I/O operation itself, nor check the legality of the request. The

assumption is always made that anytask which is performing such an op-

eration is doing its own internal bookkeeping, and has had the specific

device assigned to it before it proceeds to attach itself to that device

through the interrupt.

At a higher level, JANUS performs those functions common to all.

For example, if an I/O interrupt occurs, JANUS will asknowledge the
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Figure 16. JANUS form of control structure. Operations are divided

into three parts: mapped slave, mapped master, and unmapped realtime.

Paths of communication between the three parts are shown by arrows.
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interrupt in order to discover which device caused it, and will search

a table of active devices for this device. When the device is found,

associated with it will be an address of a routine in dedicated memory,

to which control is transferred in order that that routine can service

the interrupt. This operation is necessary since several tasks may be

doing independent I/O operations, and the computer has only one 1/0 in-

terrupt, to which all such processes are connected.

One of the resources which JANUS keeps track of is space on the

Rapid Access Disk (BAD). The disk is divided into a collection of disk-

pages, each of which is the same size as a page of memory. The hardware

of the Sigma 7 treats the slower core memory as an extension of the fast

scratchpad memory: JANUS tests the disk as a slow extension of core

memory. Indeed, a task is an ordered set of diskpages (diskfile). Just

as a set of operands from core memory may be in the registers during a

computation, so also a set of diskpages may be in core memory during the

execution of a task. A simple task, which is limited to only a few

pages, may be entirehy in core memory each time it is active, while a

large task, one using the full address space of the machine, would do

its own demand paging, such that a page was not in core until referenced

and when no longer used would rapidly retreat back to the disk.

JANUS treats resources in two categories, common and unique. A

unique resource is one which is asked for by name rather than by gen-

eric type. An I/O device is a unique resource, while a diskpage is com—

mon, since all diskpages are interchangeable.

Memory pages are also interchangeable, with one important exception,

that of pages which may be dedicated. Because JANUS uses the map to re-

locate around dedicated "islands" in core, the map is a resource shared
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by all tasks at the task level, and all interrupt routines must run out-

side the map. All unmapped code and storage must be loaded into a

specific page of real memory, since there is no automatic relocation.

Hence, certain pages of a task must be flagged as absolute pages, in

that they contain unmapped storage. In this case gal: does memory be-

come unique, although any page may have a unique set of attributes.

While all unique resources must be kept track of in resident

tables, this is not true of many common resources. The best example

of this is, again, diskpages. While the disk consists of hundreds of

diskpages, the load of usage is not normally critical. A list of

twenty diskpages is nominally sufficient to support at least one cycle

around the ring, especially since diskpages are allocated and freed

with equal frequency. JANUS keeps a resident stack, of twice the nom—

inal size, half full, permitting transfers in either direction.

All other free diskpages are kept in a list in a system task, the

Housekeeper. The Housekeeper's function is Just as its name implies,

to tidy up the resident. Any time the resident portion needs a specific

function which it is not profitable to keep resident, it calls upon the

Housekeeper task, using the standard JANUS mechanism of timesharing,

such as signals. Without this feature JANUS would have a resident por-

tion twice as large as it does. The Housekeeper and other system tasks

will be described at length in Appendix B, as well as the specific

JANUS mechanisms.



9. ADDRESS SPACES

Vital to an understanding of JANUS is a knowledge of the address-

ing scheme used (Figure 18). Each location in the computer is unique

in that it has a fixed address associated with it. The contents of the

location are referenced by a reference to the address. In any normal

form of program generation, either via assembler or compiler, it is

possible to assign a name to a location. This symbolic name has a value

associated with it, which nominally is identical to the address of the

location. However, in JANUS, or indeed any mapped system, there is no

longer any correlation between the address and a memory location, except

within page boundaries. Since there is no longer any requirement on

identity between address and location, except when a reference may be

made, many restrictions are lifted.

The most important of these is uniqueness. It is no longer

necessary that different programs use different parts of the available

address space. Instead, eaCh uses a unique version of the same address

space. Each task normally will execute in an address space orthogonal

to all other tasks (exceptions will be noted below). Thus tasks A, B,

and C may reference symbolic names X, Y, and 2, respectively, each of

which has an address of 10,000, but each of which is a unique location,

containing a unique quantity.

Let us consider what information may be required to assemble a

task to use under JANUS. In normal generation of code, the contents of
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Figure 18. Examples of address space usage, including files. The ver—

tical columns are independent task address spaces, resting on the JANUS

block common to all tasks. Two tasks are shown, with TASK 2 being a

subtask of TASK l. The two tasks have one page in common (TOPZ) which

appears in different parts of the two task address spaces. The two

tasks share a driven stream file, which is also referenced from dif-

ferent parts of the two address spaces. It differs from the TOPZ

usage, however, in that the file driver (TASK 1) may be several pages

ahead of the file receiver (TASK 2). The files are a collection of

diskpages, each of which may be used as the same address space page.

Only one page of a file is actually within the task address space at

any given time, however. Files may be linked internally, or may be

linked through a table residing within the task, as is shown in the

keyed file.
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successive locations are generated, and addresses are incremented. It

is therefore necessary to have a location counter (L0). (This is the I

basis of all assemblers.) It is conceivable that, under certain cir-

cumstances, it is desirable to generate code to be loaded in one place,

but capable of being moved to a specified place for execution. This

would, for example, be of use in overlay programming. We may thus

readily convince ourselves of the utility of both a load location

counter (LLC) and an execution location counter (ELO). Many assemblers

have only a LG, some have both LLC and ELC.

Under JANUS, each task is normally in the same address space as

all other tasks, implying an overlay structure. This is, however, no

problem, since each task is usually the result of a separate load. A

problem does exist, however, with respect to the unmapped address space

used by interrupt routines. All unmapped storage is in the same address

space, independent of the spaces of the controlling tasks. In addition,

in a task it is necessary to have intersections between the mapped and

unmapped areas.

It may be seen that it would be desirable to have mapped and un-

mapped location-counters (MLLC, MELC, ULLC, and UELC). Furthermore, it

would be desirable in a decentralized system, such as JANUS, for the

aystem loader to be capable of relocating unmapped code completely in-

dependently of the mapped storage, Optimizing the usage of real core

for dedicable pages.

As yet JANUS is not capable of these Operations due to the lack of

such a flexible assembler-loader. It is necessary to write tasks using

the STMBOL assembler provided by SDS. Since this has only an ELC ($)

and LLC ($3), it is necessary to perform certain coding tricks to generate
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mixed mapped and unmapped code. The most distasteful of these, for

aesthetic reasons, is the necessity of allocating unmapped pages for

interrupt routines before assembly, rather than at load time, making

JANUS much less flexible than it would be, given a good assembler-

loader. However, JANUS is still sufficiently useful to be adequate

for many operations. In order to include both mapped and unmapped

storage, as well as intersections, it becomes necessary to use one

counter for a mapped location counter (MLC), the other for unmapped

(ULO). Since a task has a unique address space, it is necessarily

loaded as one block, without overlays. This suggests that the SDS

SYMBOL's LLC be used as MLC; thus ELC becomes ULC. However, one must

take care that, in setting ULC so that it will track the unmapped

addresses correctly, the relocation of the task as a whole is included.

The alternative is to define each unmapped symbol as the mapped location

plus a suitable bias.

While all tasks are normally independent, there are exceptions.

The JANUS concept permits tasks to communicate. This may be through the

resident, common to alltasks, or it may be at a higher level of ab-

straction.

Higher level communication between tasks will generally mean

that at least some address space is common to both tasks. Further, any

task may start subtasks. In these cases, it will generally be true

that the master and subtasks will be generated as one load. This load

will then be studded with tasks, which need overlay each other at least

in.part (see description of task control page below). In this case,

using SYMBOL, LLC must be the LC for the whole task, while the ELC is

used for each task. As a result, unmapped storage has to be referenced
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without modifying ELC or LLC, forcing one to use references of the

form of LC+bias.

Since in this scheme the tasks may be almost completely inde-

pendent, it may be seen that the concept described above, with respect

to ELC and LLC, can be extended in an openrended process toinclude a

unique ELC and LLC for each address space which might be used by a task.

The case of unmapped and mapped counters can then readily be extended to

include UNMAPPED, MAPPEDl, MAPPED2,..., MAPPEDN, as well as multiple

computers using the same memory, even when they have different word size.

As far as this is concerned, JANUS is in effect a two-computer system,

where the unmapped computer is independent of the mapped computer, with

different usage. It is possible to have not only an openrended set of

mapped LC's, but also an openrended set of processor LC's. These would

include the 10?. For flexibility, it should be left for the programmer

to define the symbol he wishes to use for each LC.



10. JANUS AND BPM: A COMPARISON

Perhaps one of the best ways to evaluate a specific computer

operating system is to compare it with another operating system. Let

us therefore compare JANUS with one of the operating systems provided

by SDS, the Batch Processing Monitor (3PM) 13). This must be a quali-

fied comparison: whereas JANUS is a realtime oriented system, with

background capabilities, BPM is, as its name implies, primarily a back-

ground oriented.system1vith some realtime capability. The SDS BPM has

been selected because it is the most advanced system yet released by

the manufacturer. It is as valid a comparison to make as any other,

since there is no other computer system like JANUS.

Consider first that there are three basic means of acquiring an

Operating system. The easiest and fastest method is to use the manu-

facturer-supplied operating system with.no changes not supported by the

manufacturer. For most cases,this is the best approach, as the manur

facturer will continue to improve the system for the customer. The

limitation is that the user must live with the system supplied, and with

any inefficiencies in its operation.

A second alternative is to modify an operating system supplied, to

introduce nonstandard functions, or to counteract some inefficiencies in

operation. This is the most attractive approach when nonstandard func~

tions are desired, because one is building upon a working mystem, and

the implementation is speeded. This approach turns into a dead-end
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easily, because of,a hidden fault. By introducing a nonstandard func-

tion into a system, the system itself becomes nonstandard, and will no

longer be supported by the manufacturer. The customer is forced into

one of two paths-~either he is confined to an operating system which be—

comes more and more obsolete with time, as the manufacturer upgrades

and improves the system or even replaces it with more powerful systems,

or he must be prepared to repeat his work each time a newer version of

the system appears. In either case, the consequence of the initial

expediency becomes an unending source of annoyance at best. The.solur

tion is thus satisfactory only in a stable environment.

The third alternative is to build a completely independent system

as in JANUS. In doing so, one cuts oneself off from all support by

the manufacturer and sets himself an extended programming effort, but

in return ends up with a system optimized for the intended usage.

As a manufacturer-supplied system, BPM must of necessity be ex—

tremely general in applicability, so that the first situation described

will apply to most customers. As a result, there is a tendency toward

a comprehensive inclusion of all possibly desired function. Two con-

ditions result: the monitor is large, requiring extensive core and disk

storage, and slow, requiring a large partion of time in determining

which function is desired, and in doing that function.

In addition, SDS manufactures“ a second computer (the Sigma 5)

which is identical to the Sigma 7, except that it lacks the map, access

protection, and certain instructions (notably the byte immediate and cone

vert instructions). As a result, all Sigma 7 software is downward com-

patible, able to run in the Sigma 5 also. No advantage is taken of the

added power Of the Sigma 7.
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Because of these differences, it is difficult to compare specific

features Of JANUS and BPM. However, general comparisons in various

classes of usage are possible.

Perhaps the most striking difference between JANUS and BPM lies

in the contents of resident storage. JANUS contains a minimum Of resi-

dent storage, devoted to the minimum number of primitive routines neces~

sary to resource management. Conversely, BPM contains many high level

functions, most of which are a convenience rather than a necessity. Inr

deed, many of these functions could be deleted, and instead provided

by library routines. For example, both JANUS and BPM keep track of

time of day in resident storage. Under JANUS, tasks are informed

where to find the information if they ask for it. Under BPM, there is

a special resident routine which may be called, and which, after ex-

tensive checking as to the form of the request, physically transfers

the data to the area specified by the user. Again, BPM provides two

files for compressed I/O (M:CI and M:CO, used for Compressed Input and

Compressed Output, respectively). Use of these files causes automatic

translation between compressed mode (where text is compressed by re~

placing strings of blanks with a blank count, all bytes are compressed

to 6 bits, and punched onto cards in binary), and BCD, through resident

routines. Anyone desiring to use these functions could as easily call

upon a library routine, with no loss in speed, and with an increase in

available core if they were not used.

Under BPM, all I/O is done through files, each Of which has as-

sociated with it a Device Control Block (DOB), which is 90 words long.

Since there are l? resident DCB's, 1.5k of resident core is dedicated

to this storage, much of which is again superfluous. (The Basic Control
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Monitor, an earlier SDS monitor, has 6 word DCB's.) Included are such

parameters as the file name, tab settings, file keys, etc. Many of

these parameters again have no real Justification for inclusion in the

resident monitor; If such quantities are used in JANUS, they are unique

to a task, carried around with it, and not a system convention.

Let us now turn our attention to resource management. In this

respect, JANUS and BPM are so divergent that little comparison can be

made. While JANUS freely allocates resources to tasks upon request if

at all possible, it does not set any restriction on usage. 'By cone

trast, BPM is extremely paternalistic, thereby constraining permitted

operations. For example, BPM requires that each I/O Operation reference

the file associated DCB, which includes an account number (presumably

for billing purposes), a password (presumably for file security), ex-

piration date, and read and write account numbers (again presumably for

security). Under JANUS, any task which references a file knows the

name of the file, and tasks which have no need for the file do not

bother with it. If the file is write protected (e.g., a library disk

file) and is accessable to users, the task provides the necessary se-

curity. This is a much simpler (and faster) process.

Both JANUS and BPM have functions to allocate and free core memory.

However, while JANUS automatically allocates free pages for a task

during a timeslice and permits a task to get or free diskpages, the BPM

both permits and requires these operations of the slave-mode user. (In

JANUS tasks with demand paging, the function of demand allocation is

easily provided by the demand paging algorithm, and if desired the func-

tion of freeing pages within the address space is easily implemented.)

Realtime or foreground processes are exactly what JANUS is
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oriented and designed for. 3PM also has a foreground facility, and

monitor functions such as M:MASTEB, which permits a user to enter

master-mode if his is a foreground job. A.foreground user has two op-

tions under BPM. He may use the hardware structure of the computer for

speed, but act independently of the BPM. In this case, he is not per-

mitted to use any of the BPM functions, such as I/O, from his interrupt

routines. In order to do I/O from the interrupt routines, all inter~

rupts must pass through 3PM, so they can be monitored. The return

from such an interrupt routine requires three RAD operations, and thus

80 milliseconds. This time would be excessive for most experimental

applications.

One of the most important aspects of a realtime system is

security-not in the conventional sense of privacy of data, but instead

in terms of the freedom from the possibility of an individual introducing

a.program which destroys the system, and the realtime along with it. If

this can happen, intentionally or not, no one performing a realtime

process will trust another to use the computer in the background, es-

pecially if the process involves accumulating data over a long period

of time. If this situation can occur, a multi-user system, no matter

how elaborate, is useless.

Under JANUS, one invokes a specific task from a user library.

(While it is possible for tasks to be loaded from card decks using a

special task, this is understood to be strictly a debugging feature,

and not for general usage.) No task is added to the library until it

has been thoroughly debugged to the satisfaction of all concerned.

While a system-destroying error could lurk in any task, it is a rare

occurrence. No task can be told to destroy the system, nor will any



71

task permit the execution of a user program under its control which can

cause the destruction of the system. Such operations are not allowed

under the JANUS design philosophy.

By contrast, RPM is not at all safe. Programs can be written which

will cause the BPM to overwrite itself in any number of ways, and thus

destroy itself. A user can declare himself as a realtime process, enter

master-mode, and do untold damage. It is even possible to provide a

set of control cards which cause all system files to be irrevocably

freed, thus destrqying the system. Indeed, this is sometimes the only

way that some Jobs may be done, using limited resources. For example,

in using RPM with a 1.5 Mbyte RAD, an operation as simple in appearance

as assembling the FORTRAN compiler from a magnetic tape requires so

much disk storage that the system must be destroyed to accomplish it

(as an aside, this "simple" process necessitates the use of approxi-

mately #70 distinct cards, each of which must be correct and in the

correct sequence).

As a final comparison, any time it is considered desirable, the

JANUS JBCM/JFCM tasks could be upgraded, by the addition of suitable

additional functions, into a JBPM, or JANUS Batch Processing Monitor,

without, of course, the realtime or other destructive characteristics

of BPM. In that case, JANUS could easily timeshare several JBPM's

simultaneously, Just as it now can do for the JBCM/JFCM.



ll. MEASUREMENTS

Since computer logic signals have two values, it is possible to

connect a logic signal to an electrical meter and directly measure the

fraction of time the logic signal is in one state or the other. Cali-

bration is relatively simple: with the logic signal in the "0" state,

the meter movement is adjusted to read ”0” exactly, in spite of the

probable existence of small currents. If we now switch the logic signal

to the "1” state, it is possible to adjust a variable resistance in

series with the meter to cause the meter to read exactly full-scale--if

necessary, these operations may be iterated for a higher degree of ac-

curacy. Furthermore, if a meter is chosen which has a high sensitivity

(such that a low load upon the signal is effected) and a 0-100 scale

(such as 0-100 microamperes) it is possible to read the average time that

the logic signal spends in the "1" state directly in percent, and short

term fluctuations are integrated out by the meter. These measurements

are accurate to the accuracy of the calibrated meter, nominally five

percent.

By a Judicious choice of logic signals, it is possible to measure

various operating conditions, and observe the effect of varying various

parameters. This was done on the MSU Sigma 7.

As timeshared JANUS runs under the map, and realtime JANUS runs

unmapped, the fraction of time spent in mapped mode is a measure of the

relative weight given each mode (note that the Swapper is an unmapped

realtime process). Consequently a meter was attached to the signal
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MAP, a level set while the computer is in mapped mode.

Similarly, under JANUS, slave mode is used for all problem solv-

ing (production), master mode is used for all control (overhead). As a

result, the signal NMASTER was used to monitor actual production opera-

tion.

JANUS uses the wait'instruction only once—~in the Jobchanger, under

the condition that no Job is ready to proceed. The associated signal

HALT provides a measure of the completely nonproductive overhead.

A fourth signal, PREl, while not actually useful for‘system para-

meters, does provide a measure of the efficiency of code. The signal is

raised once and only once for a fixed duration, in the course of each in—

struction execution. By choosing an instruction with a well-defined

time, such as branch (1 microsecond) and providing a timing loop, it is

possible to calibrate the meter directly in instructions/second.

The most important factor, in a realtime oriented system, is the

time required to service an interrupt. For other than clock interrupts,

which are of lowest priority and which are frequently inhibited, the

time required to service an interrupt is hardware, rather than soft-

ware, limited. This time is 6 microseconds + the time required to com—

plete the instruction interrupted, if there is no higher priority inter-

rupt active: 6 microseconds + the time required to complete servicing

all higher priority interrupts if any are active. While there are

patholigical situations which do cause interrupt inhibition, these are

demonstrably rare.

Similarly, 4 microseconds are required to exit from a realtime inr

terrupt process. (Compare with the SDS Batch Processing Monitor 13),

where an exit from a realtime process mny require as much as 80
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milliseconds.)

Actual metered measurements are more difficult to make, because

of the rapid fluctuations the system undergoes with time. However, it

is possible to provide quantitative numbers in certain relatively stable

situations, notably those which are not I/0 limited.

1. Single task active, requiring no swapping. An overhead of 2%

has been measured, and is entirely due to timeslicing the single task

to provide an entry for an asynchronously activated task.

2. Multiple tasks active, requiring no swapping. Times are 8%,

or Just four times those measured in case 1, attributed entirely to the

fact that the time quantum is four times longer for the single task

case.

3. One task active, performing demand paging for pages not in

core. Times vary from 5% overhead for well behaved programs to as much

as 50% for some cases, notably processors (such as the JBCM/JFCM Loader)

which are required to physically move multipage blocks of storage around

within the task's address space.

4. Two tasks active, swapping required. Times vary from 5% to

20$ overhead, the difference between case 3 and case 4 being attribur

table to the high probability that execution of one task is proceeding

concurrently with the swapping for the other.

5. Three or more tasks, all requiring swapping. In general,

overhead approaches 100% in this case. This problem and a possible

solution will be treated in more detail in Chapter 11.

6. Realtime scope display. These scope displays are unbuffered,

and must be refreshed periodically by the computer. They may be imple~

mented by computing the display points from a small data base (requiring
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little core but much computer time), by having a large data base ins

itialized in such a form that it may be written directly out to the

scope (requiring more core but less computer time), or a mixture of the

two. These displays are normally refreshed 20 times a second to avoid

screen flicker disturbing to viewers. Two cases are of interest, one

involving a static display (initialized storage), the other a dynamic

display (computed display).

A. Static display. The data analysis code MOIRAE, displaying

4096 points, plus three dynamic vectors and several characters-~60% of

the computer time is used to generate the display.

3. Dynamic display. The game code SPACEWAR, displaying 100 static

and 500-1000 dynamically generated points (position computed from orbit

equations as a function of real elapsed time)--10-30% overhead.

It is readily seen from these examples that multiple displays

would generally tie up the computer entirely, and the need for self-

buffered displays is indicated (such as storage scopes).





12. CONCLUSIONS

JANUS is finally operational, and is used for significant parts of

each day. The principal delay to fulltime Operation has been the lack

of systems programmers available to introduce additional capabilities

to the JANUS system which have not as yet been implemented (examples

of unimplemented capabilities are the lack of teletype and magnetic tape

handlers in the JBCM). The other difficulty is the necessity of re-

casting existing programs (especially realtime data acquisition) into

a timesharing form. These problems are, however, being met, and JANUS

will approach greater permanence as these implementations occur.

One of the most striking conclusions that can already be drawn

from observed operation of JANUS concerns demand paging. I feel that

JANUS has conclusively demonstrated the value of demand paging in a

batch processing configuration as a memory expansion device. By the use

of a relatively inexpensive map and RAD, one can simulate the existence

of a much larger, and more expensive, core memory. Since in any in-

stallation the majority of problems will fit into core, the use of demand

paging introduces no essential overhead. For the few problems which do

not fit, there must be a mechanism provided for execution, either through

overlays, Job-chaining, or through some other means. _Demand paging ex-

tends memory--no additional knowledge is required of a user in order to

demand page a large Job. The efficiency of the Job execution is his

problem, and it is relatively easy to eXplain how to optimize execution.
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Any other method requires the user to introduce a large number of con-

trol cards, and to have a thorough understanding of the structure in-

volved (requiring that more systems programmers be available to answer

user questions). The other side of the problem, system programming, is

of comparable difficulty under either method. In general, resident

buffers are required under demand paging, but the necessary amount of

space in the monitor may be prOvided by being able to delete control

card processing relative to overlays, and by deleting core allocation

functions. A loader capable of segmenting overlays is not necessary.

and the effort required for its generation and maintenance could be

directed elsewhere.)

However, the demand paging currently used in JANUS is impractical

for use in a timesharing environment where more than two or three tasks

are active. The difficulty with the JANUS implementation is the lack of

sufficient history to permit adequate Judgements as to usage of demand-

able pages. As JANUS permits each task to perform its own demand paging,

it is’a relatively easy matter to test different demand paging algorithms

by modifying some standard task. This has not been done as yet, be-

cause of a lack of available computer time, and the existence of higher

priority problems. The problem, and a possible solution, may be simply

stated.

Under JANUS, all memory or usage exists for only one timeslice.

In demanding a page not currently in core, jobchange must be effected.

Only those pages referenced the last time may be brought into core the

next time. If, as is frequently the case, three successive instructions

reference three different pages, in a hard-swapping environment only one

instruction will be executed each timeslice. By the time the third
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instruction is executed, the first is forgotten. Instead, what is

necessary is to keep a record of each page of a task, with a memory of

how recently the page was referenced. The demand paging routine, in ad—

dition to setting the "used this time" bit in the task control page,

would also have to set the corresponding entry of this table to "refer-

enced this time". At slice start, the task must reset each entry back

by one. At task end, all entries must be compared, and the N most re-

cently referencmd pages (where N is to be empirically determined, but

probably about 10) must be flagged in the TOP as "used this time". The

significance of this now changes from "used this time" to "used recently

enough to Justify its presence". An alternative, and more suitable,

method would be to flag up to N pages as above, but ignore all references

which occurred more than M timeslices ago, where M is also to be em-

pirically determined.

Similarly, the usage of core memory pages under JANUS does include

a two-bit (four level) memory as to how recently the page was used. This

is an inadequate memory, but unfortunately is so deeply imbedded in JANUS

that it would be extremely difficult to change. The point would be well

to remember, however, in future implementations.

(Crude measurements made since the bulk of this thesis was written

indicate that this approach has definite merit. With the case of four

identical tasks operating concurrently, total running time was within

10-20% of the time required to run the same tasks serially, using this

method. Using the previous approach, times differed by loo-200%.)

The JANUS capability of timeshared monitors, each capable of dedi-

cating realtime processes as necessary, has been successful. Many system

functions may be greatly streamlined, to produce an efficient system
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task. While suffering from the necessity of using two independent ad-

dress spaces, one of which (unmapped) is unique, it is possible to over—

come the problem by the construction of a relocatable task loader, pro-

vided that the multiple address spaces can be referenced in the process

generating the relocatable tadk. This will doubtless be a limitation in

the future, but is not yet a problem.

The use of a memory map is a great advance in computer design,

making possible demand paging and therefore, more efficient use of core

memory. In all probability, more and more computers will have a map

available. As the demand paged memory provides one of the most flex-

ible file systems available, I foresee that available address spaces

will increase to a large value, on the ordpr of 100,000,000 words and

more, even though it would be impractical to have actual core memories

of this size. This will be true especially of small, nonrtimeshared

computers, such as are used for batch processing, research, and process

control.

Finally, JANUS works as defined. There is room for improvement,

but more study of specific inefficiencies is required to optimize the

computer usage. It should be possible to make JANUS as efficient for

many active tasks as it is now when there are only two or three active.
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APPENDIX A.

Glossary of Terms

Absolute--any datum (including instructions) the value of which is

independent of its location in a storage medium.

Active--the word is used in two different senses, depending on context.

A task is active if it is not on wait status, when discussing

scheduling. Also, a task is active (current) if the current time-

slice is assigned to it.

Address space--the full range of addresses which may be accessed.

Algorithm-~the specific procedure used to implement a given process.

Associative addressing~~a method of referencing a datum by content

rather than by position. The datum consists of a key (the con—

tent referenced), and the associated information.

Background--a timesharing technique in which programs can be run con-

currently with realtime processes in those periods when no

realtime activity is required of the computer.

Byte--a unit of data, consisting of 8 bits. A.byte is identical to

one character.

Channel-~a means of initiating a single I/O data transfer which then

automatically runs to completion without needing further program

intervention.

Clock interrupt-~the Sigma 7 has two standard realtime clocks, one

"ticking" at 500 Hz, the other at ZKHz. These can be used to

time realtime processes.

Datav-a set of information, other than instructions, used in performing

a process.

Dedicate-~changing the usage of a resource from general availability

to a specific usage. For example, under JANUS, a page of a task

may be dedicated into a page of physical core memory, such that

the physical page is used only for that task, rather than being

available for all tasks.
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Double precisionr-the use of two words of computer memory to maintain

a single datum. The larger size permits a greater imformation

content to be provided than under single precision (one word).

Foreground—~a timesharing technique in which realtime processes can be

run concurrently with other processes, interrupting the backr

ground as necessary.

Honest task—-one which is careful to manipulate only those resources

which belong to it, and which does not indiscriminantly affect

those resources which belong to other tasks.

H/t disk--(head per track). A.diskfile where a read-write head is

positioned over each track, thereby requiring no head movement

on an I/O operation.

Inactive task--a task which can temporarily perform no operation be-

cause it is waiting to be synchronized with a realtime event,

such as the completion of an I/O operation.

Index register--a hardware feature permitting automatic arithmetic

operations during a reference to an address, such as the addition

of a displacement to a base address.

Interrupt—~a hardware feature which permits the computer to change

states in a rapid fashion-~interrupting the execution of one pro—

cess in order to execute a second process.

Intersection-~an area of storage common to two or more address spaces,

capable of being references by different names from each address

space.

I/O—~the abbreviation for Input/Output; the process of transferring

data to and from the computer.

Location counter-~a datum within an assembler to keep track of the

address of each datum generated (including instructions) relative

to some specific point such as the beginning of the assembly. Used

to generate relocatable binary code for the loader, and to define

addresses.

Map-rs feature permitting the automatic translation of an effective

address to the real address used to reference a storage medium.

See also relocation.

Mask-~a specific bit pattern used in performing logical operations

under computer control.

Master-~the mode of computer operation wherein all operations are per-

mitted. Master mode is used normally for control operations.

Memory mapping-~the process of using a map to translate addresses in

the computer core memory.
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Monitor--a program designed to supervise the usage of the computer in

executing a problem, and which provides the control functions

necessary and sufficient to that problem, or to a set of problems.

0verlay--a method of generating a program for execution in such a

manner that independent subsets of the program may alternately

be executed within the same address space, and be capable of

referencing common areas.

Page--a natural unit of memory which is machine dependent. In the

Sigma 7, one page contains 512 words.

PL/l-a relatively recently developed highrlevel programming language,

containing many of the functions provided by FORTRAN, ALGOL,

COBOL, and other special purpose languages in a fashion that per-

mits the statement of a problem in a manner much more powerful

and flexible than in any single special purpose language.

Pointer-~a datum indicating the location of a set of data, referenced

instead of the data set itself.

Eealtime--a realtime process is one which is initiated asynchronously

with respect to the normal flow of machine operation. A.realtime

process is normally associated with an interrupt.

Begister—-a.piece of hardware, normally consisting of an ordered set

of bi-stable elements, capable of operations in addition to a

storage function, such as arithmetic or logical operations. The

time required to access a register is much less than that required

to reference core memory.

Relocation-~the capability of a datum to have, in addition to a value,

information as to some other quantity to*which the value is

related.

Resident~~that portion of a monitor or supervisory system which is kept

permanently in core memory.

Slave--that mode of computer operation capable of being completely

controlled as to permitted Operations. Computational functions

are permitted, but control functions are not. A mechanism is

provided for a slave-mode process to request of the monitor that

a specific control process be performed.

Task--a set of processes capable of being timeshared as a unit, in-

dependent of any other usage of the computer, and containing

those monitor functions necessary and sufficient to its Operation.

Task control page (TGP)—~a block of storage under JANUS which is

always located in specific addresses in the address space of a

task. This contains the status of the task, including trap and

memory page usage. Also referred to as the state vector for the

task, and is unique to the task.
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Tum-address computer-a computer where each instruction specifies both

a source and a destination, as opposed to a single effective ad-

dress, in addition to a process to be performed.



iflflg—_

 
 



APPENDIX B.

JANUS Reference Manual

Some features of JANUS are of interest primarily to programmers

who intend to build tasks to operate under JANUS. As has been noted

previously, there are no aids to building a task currently available.

While many of the computational functions desired of a task may be writ-

ten in ahigher language, such as FORTRAN, it is still necessary that all

monitor and control functions be coded in assembly language. This re-

quires an understanding of specific functions available in JANUS, and

how they are used.

The following sections describe the properties of JANUS on a cod-

ing level, and the ryetem functions available. They are ordered in terms

of memory, disk, and address space usage, and then proceed into task com-

munications and realtime Operations.

The rather curious names which are sometimes used result from the

necessity of compromising between the need for helpful mnemonic names

and the SYMBOL defined constraint limiting a symbolic name to 8 charac-

ters or less.

B. 1 Resident Tables and Lists

JANUS concerns itself primarily with certain tables and lists kept

for the purpose of bookkeeping. I now inteend to provide a list of these,
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along with their use. Names may be mentioned which are as yet undefined

in this thesis; however, because of the interrelated nature of JANUS, it

is necessary to start somewhere. Table elements are almost always exact-

ly one addressable base in size, such as word or byte. This is because,

when an element may be referenced from more than one place, including an

interrupt routine, it is necessary to reference it in a way that is not

interruptable, either by setting a flag that it is not to be touched, by

perfdrming the operation in an instruction which can not be interrupted,

or by inhibiting the interrupt. JANUS is written to take advantage of

realtime, thus interrupts are inhibited as little as possible. As much

as possible is done with single noneinterruptable instructions.

However, there are certain abnormal conditions which may require ab-

normal action, including inhibiting all interrupts. These include actual

hardware errors (e.g. memory parity), software errors (e.g. traps from

unmapped code), and one additional special case. The latter results

from having a number of lists partially resident, with the rest of the

list existing on the disk within a task. Under normal circumstances.

the non-resident task (the Housekeeper) is brought in to tidy up. How~

ever, in freak cases, it may be discovered that a list is full or empty,

with no recovery procedure available for the requester. In this case,

a resident routine is invoked--the Troubleshooter. This routine sus-

pends all functions while bringing into core enough of the Housekeeper

to straighten out the difficulty. For the duration of this process, all

interrupts are inhibited. However, this is definitely a last ditch ef-

fort on the part of JANUS to stay viable, and thus happens extremely in-

frequently, provided all tasks and interrupt routines are correct and

honest. Any practice which is not completely honest, expecting certain
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timing relationships, etc, may work 99% of the time..the 100th time an

error will occur, frequently resulting in the destruction of the opera-

tion mystem. The method of getting around this problem is discussed

below.

This chapter will consider those tables used in timesharing tasks.

Let us consider first the one non-resident table, the Task Control Page

(TOP). This page is always the first unique page of the task, and is of

fixed format. It contains all information as to the current status of

the task which is of interest to JANUS. This includes pointers to rour

tines associated with traps, program status, Signals, and the task USAGE

table. The task USAGE table consists of a word (MAXSIZE) specifiying the

size of the task under the map in pages, and the list (USEPAGE) of pages

and their attributes. Each of the latter is in mapped sequence; that is,

the Neth entry corresponds to the Neth page of the address space. An

entry is null if diskpage 0 is specified, as this page is inaccessable to

all tasks. The entries are designed to take advantage of the INTerpret

instruction, such that the first four hits are usage information, the

next twelve are general information, and the last sixteen are the disk-

page address. The attribute bits have the following significance:

0. Absolute code (ABS) page. This page may be dedicated at any

time, and bits 8-15 of the entry will specify the unmapped page to load

this page into, if bit 0 is set. ABS pages will be loaded into core each

time the task is active.

1. Virtually dedicated page. This page must be in core for the

duration of any timeslice the task is active.

2. NEEDbNEXT. Used primarily in a demand paging task which cannot

proceed until that page becomes available.
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3. USED-LAST. Again used in demand paging, this bit is set during

a timeslice if the page is used. If not set, and no other bits are set,

no effort will be made to bring in the page. Bite 2 and 3 are cleared

at the start of each timeslice.

b. WRITEBACK. Indicates that this page is modified regularly,

and must be unconditionally written back on the disk.

5. Not used.

6-?. The.Access Protection Lower Limit (ACL, =O-3) which may be

used for this page without error.

8-15. Used if bit 0 is set, as described above. Otherwise ig-

nored, except at task generation and destruction. At generation, the

page will be copied onto a new diskpage and the copy used if this byte

is non-zero. At destruction, only if this byte is non-zero, will the

page be freed. This allows multiple use of an absolute task, since all

nonemodifiable pages used will be the original copy of the task, and are

shared by all task copies. Only the volatile storage will be different

for each task, and efficiency may be greatly improved. The convention

used is that, if the task allocates a page it did not start with, bit

14 is set, while if a copy of the page is used, bit 15 is set.

The table described above is the only one of which it is necessary

to have knowledge in order to write a task. However, other associated

tables are described in order to allow one to become more familiar with

the operation.

Two of the resident tables are required only because the hardware

registers are not readable. These are the access protect image (ACIMAGE)

and the map image (MAPIMAGE). These are respectively 2—bit and 8-bit

entry tables, each with 256 entries, and are in map sequence.
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Another table is the image of unmapped core (TRUECORE). This is

again set up to take advantage of INTerpret, as was the usage table.

0. This bit is used by the troubleshooter as a flag for pages it

is using.

1. This page is in use by the currently active task.

2. This page is being subjected to swapping.

3. This page is part of the next task.

4. This page must be written back onto the disk before being used

for anything else.

5-6. Unused.

7. This page is dedicated to swapping, and may not be used for ABS

pages.

8. This page contains a TOP.

9. This page may become dedicated, and should be used only tem-

porarily.

10-13. Dedication level for this page.

14-15. Reuse priority for page.

16-31. Diskpage currently residing in memory page.

The last table actively associated with swapping is the stack of

Task Control Pages (TASKPAGE). Again a table of one word entries, this

is the only reference to a task which is kept resident. Bits used are:

0. This task must proceed immediately, regardless of the time-

sharing ring (RUSH bit).

1. This task must be started next in normal sequence; i.e., if

a task is being brought into core or is ready to go, JANUS will proceed

with it, but will cause this one to be the next task readied (HURRY bit).

2. This task is loaded and is ready to proceed.
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3-14. Unused.

15. This task is on wait status. This bit is set at the request

of the task, and is removed only on the receipt of a Signal or if bits 0

or 1 of this word get set. Bits 0, l, 2, and 15 are cleared each time a

task is started.

16-31. The diskpage address of the TOP of this task.

Associated with this table are an entry (TSXCNT) specifying the

number of tasks which exist, and an entry (NEXTTCP) specifying which

task the Swapper is currently manipulating as the next task. NEXTTCP

has these attributes, set by the Jobchanger:

O. This is a new task to load. Flag cleared by Swapper.

1. This task is on rush priority.

2. All tasks are on wait status.

In order to understand the timesharing process, it is necessary

to know that the lowest priority interrupt in the machine must be a

clock, (the Jobchanging interrupt). Tinesharing proceeds as follows

(Figure 19):

1. At some point in time during the execution of a task, the Job-

changing interrupt fires, either because the time is up, or because the

task has, for its own reasons, triggered the interrupt. As soon as

there are no higher level interrupts active, and there is no inhibit on

the clock, an Exchange Program Status Doubleword (XPSD) instruction is

executed, which references the TOP of the task. {As a result, the current

status of the task is saved, and control is transferred to a part of the

task (Slice-end routine) which performs all unique and necessary slice-

end functions, before transferring control to the resident Jobchanger

routine.
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2. The Jobchanger performs common slice-end cleanup, examining

each entry in table TRUECOBE. The reuse priority (P) is a measure of

how recently that page was in use, and to what degree it was used. The

lower the priority, the less it is necessary for that page to remain in

core. A.non-sero priority is reduced by one if the page was not part of

the current task. If the page was part of that task, the correspond-

ing entry in USEPAGE is found. If not flagged as ABS, virtualLy dedi-

cated, or USED-LAST, the priority is set to l--otherwise it is set to 3

if it must be written back, 2 if not. The flag for being a part of the

current task is also cleared.

3. If NEXTTCP does not contain its rush flag, TASKPAGE is scanned

for the presence of a RUSH flag. If found, the rush flag in NEXTTCP is

set, and the Swapper (RAD interrupt routine) is kicked. If only one task

is active, the Swapper is also kicked. In kicking the Swapper, the RAD

status is checked. If not operational, a comment is produced on the con—

sole teletype, and JANUS hangs the machine in an alarm loop until the

RAD becomes operational.

4. All tasks on wait status are checked for the presence of RUSH

or HURRY conditions, and for the presence of one or more Signals. 'If

any of these conditions hold, the task is removed from wait status.

5. If any Signals exist, all TCP’s which are in core are located

in turn. The map is set to reflect the location of each one, and a search

is made of Signals, to locate and transmit all Signals for that task, de-

leting each Signal found in the process.

6. The task specified by NEXTTCP is tested. If that task is not

ready to proceed, a WAIT instruction is executed, and after the next

interrupt, execution transfers back to step 3.
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7. If the task is ready to proceed, the map is set for the TCP,

and the access protects for all pages are set to 3. TBUEQORE is scan-

ned for entries flagged as part of the next task. For each such entry,

that flag is cleared, and the associated page name is picked up. Each

reference to that page i. found in table USEPAGE and the entry. is INTer-

preted. If it is flagged as ABS or virtually dedicated, the access

protect specified in USEPAGE is set. The map is set, according to the

locations of the references in both USEPAGE AND TRUECORE. If the USEPAGE

entry is flagged as having to be written back, the corresponding flag

is set in TBUECORE. All "NEED-NEXT” and "USED-LAST" flags are deleted

from USEPAGE.

8. The NEXT and HURRY bits of the TASKPAGE entry are cleared.

Routine FINDNEXT is called to locate the next task to process, and this

information is saved in NEXTTCP. If more than one task is active, the

Swapper is kicked, the timeslice duration is computed, and the Slice-

start routine of the new task is entered via an LPSD, resetting the Job-

changing interrupt.

A.typical example of the sort of timing problems which must be

always considered is seen here, in that, while the Jobchanger is the

lowest priority interrupt, the interrupt which ticks the clock is one

of the highest. Setting the clock and transferring to the task requires

two instructions. As the Jobchanging interrupt will fire only as the

clock runs through zero, and not at all if the interrupt is active, it

is conceivable that, as a result of heavy interrupt usage, the clock

may run out between setting and transferring control. The result

would be that a task would start with a timeslice, not of a nominal 100

milliseconds. but instead, of two months, the time required for the clock
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to tick 2 billion tines. As a result, the Jobchanger may not set the

clock itself, but instead tells the task how much time to ask for. Be-

cause of this, the Slice-start routine must always operate with the Job-

changer inhibited. Also, the task can play tricks. such as setting the

oledk to a fixed fraction of the time, and at the end of this partial

timeslice, start a different segment of itself for the remainder of the

time. 4A task may thus timeshare itself within a timesharing environment.

Let us now turn our attention to the Swapper, the resident RAD

interrupt routine (Figure 20). This routine may be entered in two ways:

normally through an I/O operation, or abnormally by being "kicked", that

is, by the execution of a specific and easily recognizable invalid I/O

operation, instigated from outside the interrupt routine, and which can

heccur only if the RAD is not busy.

1. Test if entered via kick. If not, check the last operation per-

formed. If an error was detected, go to POINT S. Otherwise determine

diskpage used, the entry of TRUECOBE referenced, and the operation per-

formed. If write, clear all flags from the TBUECOBE entry except 2

and 7-13. If read, set the diskpage into the TRUECORE entry, set bit 3,

and clear all bits but 3, 7, and 9-13. Finally, delete that operation

from the queue.

2. Test NEXTTCP. If flagged as a new task, clear that flag,

clear FLAGS, clear bits 2 and 3 from all TBUECOBE entries unconditionally,

and clear out the queue. Exit if no tasks should proceed, or if the

next task is ready.

3. Copy the diskpage specified in the TASKPAGE entry specified

by NEXTTCP. Determine if it is in core. If not, proceed to POINT A.

Otherwise set the flag in TRUECORE accordingly, and compute the
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unmapped address of USEPAGE for future reference.

4. Test FLAGS. If not set to indicate all ABS pages have been

found, scan USEPAGE for ABS entries. For each one found, determine if

in the correct place in core. If so, set bit 3 of the TRUECORE entry

and continue. If not, determine if the required page is free, and if not,

find a new task and continue to 2. if possible. If the page is free,

scan THUECORE for the desired diskpage. If found, copy into the cor-

rect page, writing the original contents out to the RAD if necessary.

Define the new contents, and free the page it was in. If the page was

not found, go to POINT F. When all ABS pages have been located, set

FLAGS to reflect the fact, so that 4. can be skipped in the future.

5. Check FLAGS to determine if all virtually dedicated pages

have been found. If not, scan through USEPAGE to locate all such on-

tries, ignoring all ABS entries. For each one, scan TRUECORE for the

diskpage specified. If not found, proceed to POINT A. Otherwise set

bit 3 in the TRUECORE entry and continue. When all virtually dedicated

pages have been located, set FLAGS to reflect the fact, so that 5. can

be skipped in the future.

6. Scan USEPAGE for all entries flagged "NEED-NEXT", ignoring all

ABS and virtually dedicated pages. Scan TBUECORE for that page. If not

found, go to A. Otherwise set bit 3 and continue, counting that entry.

7. If less than 5 pages were found in step 6, repeat the search,

looking for ”USED-LAST“ pages. As soon as a total of 5 pages have been

found in either of these latter categories, set the task ready to pro-

ceed (in TASKPAGE) and exit.

POINT A (Allocate). Two assignments are presented to this routine--

the weights to give the swap dedication (W3) and dedication (VD)
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attributes in TBUEOORE. Each entry of TBUECORE is INTerpreted to deter—

mine if dedicated, or in use for the current task or the next task. If

not, a value is computed on the basis of:

V = 2*(WBITEBACK)+WS*(swap dedication)+WD*(dedication)

+2*(reuse priority),

where quantities in parentheses are TRUECORE entry attributes. The page

with the lowest value V is passed to POINT F.

POINT F (Fetch). Set bit 2 (page undergoing swapping) in TBUECOBE

entry specified. If that page must be written back, generate an output

entry and put into the queue. Always generate an input entry for the

queue.

POINT 3 (Start I/O). Set up and initiate the I/O operations for

the first entry in the queue, and then exit.

As a result of the Swapper algorithm used, JANUS is a primitive

learning program, in that it tends to keep in core those diskpages used

most frequently. Given a set of tasks which may all fit into the machine

core memory simultaneously, and a demand paging scheme, only a few time

slices are required for JANUS to discover the pages required and bring

them into core, where they will remain until freed or replaced. As a~

result, in the case where everything fits into core, the overhead due

to Swapping, Jobchanging, and demand paging drops to an extremely low

value compared with other timesharing systems.

B. 2 Resident Routines

Since it is required of most tasks that they be able to manipulate

the resident tables, and since it should be unnecessary for a task to

have to know all the details of the tables, it is desirable to have a
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number of resident routines, callable from tasks, which will perform

the manipulative functions required.

The calling sequence is common to all routines. It is:

BAL,Rll ROUTINE

with.parameters transmitted in.R6-Rll as necessary. Any information is

normally transmitted back in the same fashion, and if necessary, OCH is

set to‘l if the request was satisfied successfully.

Consider in this section those routines which deal with the time~

sharing tables already described. These will be subdivided for the pur—

pose of description by the table they reference. Each descriptor will

be of the form: |

NAME“)

R Parameters transmitted Parameters returned

Comments

Where (s) is a flag in the descriptor to specify that a success code is

returned. Each parameter is described by contents and register thus:

B6 Value uOOFFXX

where 8 hexidscimal digits are displayed, and the characters mean:

* Unpredictable garbage, to be ignored

0 Zero

F All bits set to 1. Any hexidecimal digit may be used.

X Field of interest.

B. 2 (l) Routines Which Deal with the Map

A s GETMAP ‘ . 4 v

R6 Net used ' ******** Unmapped address OOOOOOXX

R7 Mapped address OOOOOOXX Unchanged OOOOOOXX

This routine permits referencing MAPIMAGE, in order to locate the



 

  



lOO

actual page a specified page maps into. The addresses are page addresses.

B. SETMAP

R6 Unmapped sddress OOOOOOXX

R7 Mapped address 00000011

This routine returns if the map is set as specified. Otherwise,

MAPIMAGE is updated as requested, and the map is reloaded before return.

B. 2 (2) Routines which deal with the Access Protection.

A. GETAC

R6 Not used "*’***‘ Current access OOOOOOOX

R? Mapped Address OOOOOOXX Net used ***‘****

This routines permits referencing ACIMAGE, to located the currently

used access for a page. Page addresses are used.

B. SETAC

R6 Access Protect OOOOOOOX

R7 Mapped address OOOOOOXX

This routine compares the access specified with.that in ACIMAGE,

returning if they are identical. Otherwise it updates the image, and

reloads the access protect registers.

B. 2 (3) Routines Which Deal with Table TASKPAGE.

These routines are all of the same form, since in each case:

R6 TCP NAME ""XXXX

All routines are called by name.

A. WAIT

The specified task is located, and placed on wait status.

B. RUSH

.The specified task is located and its RUSH flag is set. This

routine is reentrant and may be called from an interrupt level.
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C. HURRY

The specified task is located and its HURRY flag is set. This

routine is reentrant and may be called from an interrupt level.

D. KILL

The specified task is located, and removed from the ring of ac-

tive tasks to a stack of dead tasks, to be serviced by the system

MORTICIAN task. Since this routine has to rearrange a table which is

referenced from multiple interrupt levels, it is necessary to inhibit

both I/O and external interrupts for a brief period (31.0 microseconds).

However, this routine is called but once for each task--thus the con-

dition will not occur often. Furthermore, this is the only place in all

of JANUS where it is necessary to inhibit these interrupts as a normal

condition.

E. START

Unnecessary bits are masked off the task name, and an attempt is

made to add it to the ring of tasks. If successful, a "wake up" Signal

is sent to the task.

B. 2 (4) Routines Associated with Table TRUECORE.

All references are associative, in that the diskpage contained in

a page of memory is specified. In all but specific cases, the operation

will not succeed unless the specified page is in core, and flagged as

being part of the current task.

A. CURRENT‘

R6 Disk address *‘*!XXXX Unmapped page address OOOOOOXX

If the page is in core, it is flagged as being part of the current

talk.
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B. RITEBACK*

R6 Disk address ***‘XXXX Unmapped page address OOOOOOXX

The flag is set that the page specified must be written back onto

the RAD, because true copy no longer exists there.

C. REDEFINE*

R6 Old disk address *'*VXXXX Unmapped page address OOOOOOXX

R? New disk address ****XXXX Unused ‘*******

If the page specified by R6 is in core, change the name to that

specified by R7. This routine is used in disk copying operations, since

a task may bring a page into core, change its name (which is equivalent

to making a copy), then modify the copy independent of the original.

D. DROPFILE’

R6 Disk address. *‘*¥XXXX

This routine is used to get rid of pages not currently in use,

but which must be preserved. 'If the page is in core, and not dedicated,

the page is removed from the range of the task. If, in addition, the

page need not be written bask, the page of memory is freed.

E. DEDICATE¢

R6 Disk address ****XXXX

If in core, the dedication level of the page is increased by 1,

looking it in place as a resident page.

F. UNDEDICT*

R6 Disk address **‘*XXXX

If in core, the dedication level of the page is decreased by 1.

If the resultant dedication level is zero, the page is free to engage

in swapping again.

G. ALLOCATE!

R6 Disk address *’**XXXX Unmapped page address l"OOOOOXX
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This routine evaluated the worth of each page of TRUECORE, ignoring

all pages in use, dedicated, or which must be written back, and assigns

a value according to:

V = 4*(reuse priority) + 2*(dedicab1e page) - (Swap dedicated page),

where the quantities in parentheses are attributes of each TRUECORE

entry.

' If one or more pages are not ignored, the one of these with the

lowest value is assigned the new diskpage specified, and flagged as part

of the current task. This routine is used in attempts to acquire tem~

porary storage without proceeding through a Jobchanging cycle.

H. FREE*

R6 Disk address ***TXXXX

If the page in in core, and not dedicated, it is unconditionally

freed. That is, it is undefined, and will never be written back onto

the RAD.

B. 2 (5) Routines Associated with Disk Pages.

These routines deal with a stack of resources, which is only par-

tially resident. If at any time the stack is endangered, the Jobchanging

interrupt is triggered. Hence any task should permit Jobchange to occur

between each request to these routines. A diskpage address is a 16 bit,

non-zero, unsigned quantity specifying the location on the disk where

it may be found.

A. ALOCDISK"I

R6 Unused ******** Allocated disk page OOOOXXXX

If a disk page is available, it is allocated to the requesting

task. No effort is made to know to which task a specific diskpage is
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assigned.

B. FREEDISK

R6 Diskpage ****XXXX

The diskpage specified is returned to the pool of free disk pages.

Since JANUS does no elaborate checking, it is the responsibility

of the tasks to use these routines and resources properly. Typical ex-

amples follow, which illustrate the difficulty which may arise from

thoughtless use of the functions.

1. Over-dedicating a page. A page may be dedicated up to 15

times without difficulty. This is sufficient if it is dedicated once

for each interrupt routine which may reference it. However, if it is

dedicated a sixteenth time, an arithmetic carry occurs, such that the

page is no longer dedicated. In as much as such a page is normally

flagged as dedicable, that bit is also cleared, and the carry may extend

to defining the page as a TCP, or even dedicated for swapping. When

undedicated, the page enters the swap swirl. The first time an unmapped

mastermode transfer is made into the middle of data or mapped code, all

hell breaks loose.

2. Over-undedicating a page. The same arguments apply as in 1,

except that a borrow occurs, leaving the page totally dedicated.

3. Overdefining a page. Under certain circumstances, it is pos-

sible for a free diskpage to be in core. (For example, the last task

which freed the page may have been interrupted by the Swapper after

freeing the page, but before removing the reference from the TCP, such

that the Swapper did cause the page to be brought into core again, where

it might remain for a long time under low usage.) Also, a freshly freed

diskpage is most likely to be allocated next. As a result, one should
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never allocate a page directly, but should instead first check if the

page is in core. If not, it may be allocated. If allocation is un—

successful, then there is no recourse but to effect Jobchange, causing

the page to be actually loaded off the disk.

Similarly, in freeing a page, a task is being polite to all users

of the machine if it performs a sequence of:

A. Freeing the diskpage,

B. Deleting the TCP entry,

C. Checking if the diskpage was in core, and if so, freeing that

page of memory, all without permitting Jobchange to occur.

4. Difficulty can also ensue from freeing a disk page twice,

since the name will now appear in two places, and may be referenced by

multiple tasks in the future.

5. Making requests with invalid diskpage addresses. Any reference

to diskpage zero is ignored by the Swapper and Jobchanger, since disk-

page zero specifies an unused (null) entry in various tables. However,

if a task tries to look up page zero, and a null page exists in core,

then that page will be found. Similarly, defining a page to have a disk

page address outside the range of the'RAD, or requesting that such a

jpage be brought into core, will cause the Swapper to hang unconditionally.

The only valid diskpage names are those a task starts with, or has

allocated.

B. 3 Demand Paging

Under JANUS, it is possible for a task to operate without being

emxtirely in real memory at all times. This scheme is called demand

paging, in that a given page of the task is brought into the working
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memony upon demand, whenever referenced. The routine involved is over

half a page in length, and there is a point of diminishing returns, be-

yond which it is no longer economical to use a half page of virtually

dedicated code for demand paging. Since demand paging applies only to

slavemode code and references, this limit is reaChed when there are about

five pages demandable. If there are more than five, demand paging be-

comes profitable.

The demand paging algorithm is described here both for its use,

and to illustrate the use of previously described JANUS routines. This

routine is full~blown, in that it takes care of all eventualities and

idiosyncrasies of the Sigma 7 in addition to demand definition (the

automatic extension and definition of the task address space). Certain

features may be eliminated with previous knowledge of the task usage——

if it is known unconditionally that the trapping instruction will al-

ways do word addressing, and will always be present with the correct

map and access, esoteric tests may be dropped.

The demand paging routine is connected to the X'QO' trap (non-

allowed operations), which includes violations of memory protection.

There are two parts, shown in Figure 21--one of which deals with JANUS,

and is called by the second, which interpretively decodes the trapping

instruction. We consider first the JANUS oriented routine.

Function SCANPAGE(EWA)--S(A). EWA is the Effective Word Address.

The routine always expects a word address as an argument. The routine

determines the status of the page referenced, and returns Condition

Codes (CC) as follows:

1. CC - O, EWA in registers. 2. 001 - 1, EWA is not in core.

3. 002 8 l, situation improved-~EWA is available, but usage was
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limited by access protection. 4. CC3 = l, situation normal--EWA in

core, AC set as specified in TOP. 5. Error detected--unconditional

transfer to error routine.

Two quantities set by the main routine are referenced in addition

to the previously defined tables. These are: l. MODCOUNT: maximum

number of pages left which may be modified by this instruction.

2. EXUFLAG: a flag which indicates that the EWA is an instruction ad-

dress, and to be treated accordingly.

SCANPAGE IS OUTLINED:

1. If EVA is in registers, return with CC - O.

2. Make EWA a page address (EPA). Look up corresponding entny

in USAGE table, skipping to 9. if within range of task (EPA less than

MAXSIZE), and if page address is non-null.

3. If outside range of task, increase range to MAXSIZE = EPAel.

4. Call ALOCDISK to allocate a diskpage. If none available, set

001 = l (Page not in core) and return.

5. Use allocated page to make non~null entry in USAGE table,

thereby defining it.

6. Call CURRENT to determine if diskpage is in core. If so, skip

to 10.

7. Call ALLOCATE to get a core page. If successful, skip to 10.

8. Set NEED—NEXT flag in USAGE table, set 001 = l, and return.

9. Set USED-LAST flag in USAGE table. Call CURRENT to determine

if page is in core. Go to 8. if not.

10. Here if page is in core. Look up Access Protect Limit (ACL)

813ecified in USAGE table. If ACL = 3, error.

11. Call GETAC to discover the ACcess (AC) the page is operating
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under. If AC = AOL, set 0C3 = l (situation normal) and return.

12. Test and clear EXUFLAG. If not set, skip to l6.

l3. SetACcess to Set (ACS) = l.

14. If ACS less than ACL, error. If ACS less than AC, call SETAC

to set AC = ACS. Set C02 = l (situation improved) and return.

15. Otherwise set 0C3 - l and return.

16. Reduce MODCCUNT by 1 and test. If negative (page will not be

modified), set ACS = 2 and go to 14.

The main routine:

1. Save trap conditions and registers. If the trap conditions

do not include memory protect violation, error.

2. Set EXUFLAG to indicate instruction address reference, MOD—

COUNT to no memory being modified.

3. Get EWA of trapping location, and call SCANPAGE.

4.- If 001 is set, skip to 20--if CC2, return. If CC = 0, re-

load the registers.

5. Get the instruction and save it. If it is indirectly addressed,

call SCANPAGE using the indirect address as an.EWA. On return, skip to

20., if 061 is set.

6. Restore the registers. ANaLyZe the instruction, saving con-

ditions. Initialize various registers, and get the N—th entry from

table OPCODE, using it to set MODCOUNT. OPCODE is a table, in instruc—

tion sequence, of the maximum number of pages any one instruction.lmy

modify. (It is to be noted that, while 108 instructions of a possible

128 are defined, only 23 of these modify one or more pages of core.

Only one of these can modify as many as 3 pages with one instruction.)

Restore the ANaDyZe conditions and fan-out to various special handling
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(nos. 7.-ll.) on the basis of the instruction type.

7. If byte addressing, determine if decimal. If not, make word

address and skip to 18. Otherwise determine upper limit of memory ad-

dressed. Make both upper limit and lower limits word addresses, then

skip to 17.

8. If halfword, make word address and skip to 18.

9. If byte immediate, determine destination and source pages.

If not translate, go to 17.; otherwise, call SCANPAGE to test destinar

tion, save condition codes, then compute upper limit of source and skip

to 17.

10. If doubleword, make word address. Determine if stacking in-

struction. If not, skip to l7.; otherwise call SCANPAGE to test Stack

Pointer Doubleword. If CCl 3 1, skip to 20., otherwise determine upper

and lower limits of core referenced, going to 18. if one word referenced,

17. if more than one.

11. If word addressing, test for special cases and fan out to:

12. if EXU, 13. if BAL, 14. if ANLZ, 15. if Multiple, and 16. if convert.

If none of these, go to 18.

12. Here if EXU. Call SCANPAGE to test EWA. Go to 20. if CCl 3 1,

return if CCZ = 1. If CC3 = 1, EXU can proceed, but the target instruc-

tion (which may be another EXU) cannot. (This case is one of the design

faults of the Sigma 7, which of all instructions allows infinite levels

of referencing only to the EXU instruction. This capability is not only

unnecessary, but is indeed a handicap to use in demand paging, where

accessible address space may be larger than the actual machine, to the

end that a slave mode program could hang up the entire machine with a

large ring of EXU's.) As a result, it becomes necessary to "shave" a
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chain of EXU's, as follows. A special pair of locations are provided.

The target instruction is copied into the first of these locations. If

the address of the source EXU is not the special location, the second

location of the pair is formed into an unconditional transfer to the

instruction following the EXU. The trapping Program Status Doubleword

is modified to point at the special location, rather than at the source

EXU, and we return. This process, although slow, is safe in all cases

but one, namely BAL.

13. Here if BAL. Determine if the instruction was at the special

EXU location, and if not, skip to 18. If, however, the BAL was the tar—

get of a trapping EXU, call SCANPAGE to evaluate the EVA, and if 061 = l

is returned, skip to 20. Otherwise, look up the link register specified,

and force a link (using the second special location), and branch, plug-

ging the EWA into the PSD. Then return. This sequence, while not fool-

proof, does guarantee that one level of executing BAL will work correct—

ly, with respect to FORTRAflelike parameter lists.

14. Here if ANLZ. Call SCANPAGE to locate EWA. .Skip to 20. if

001 8 1. Otherwise determine if instruction being ANLZ'ed is indirect-

ly addressed, skipping to 18. if so, else to 19.

15. Here is LM or STM. Compute top address of sequence, and to

to 17. if more than 1 word referenced, otherwise to 18.

16. Here if OVA or CVS. Compute top address, as EWAe32.

17. Here to check out two addresses. If the second is in the

registers, skip to l8. If the first is in the registers, reduce MOD-

COUNT by 1 (if one or more pages may be modified, the first reference

will be of this class), and skip to 18. If both are in the same page,

skip to 18. Otherwise call SCANPAGE to evaluate the address, and save
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the conditions.

18. Here to evaluate a single address. Call SCANPAGE to do so,

merging conditions returned with previous conditions.

19. If all pages referenced are in core, return.

20. Otherwise effect Jobchange, and upon return, go to 2.

At this point it would be well to point out several anomalous

cases. These are the cases where a sequence of instructions may work

differently in a demand-paging environment than in a normal environment.

In as much as these are primarily hardware limitations, they must be

condidered as definite design errors in the Sigma 7. (It must be re-

marked, however, that in general the Sigma 7 is a well-engineered mar

chine, designed for the convenience of the programmer, rather than the

engineer. These design errors are due to a lack of foresight, since the

Sigma 7 was not planned with a demand paging capability; this device is

so powerful that it is frequently used, however.)

One of these cases is the previously mentioned infinite chain of

EXU's. A second is that of BAL, which the hardware treats as a link-

and-branch. That is, the link register is set while the effective ad-

dress is being computed and tested. If BAL traps because of an access

protect violation, the link register will have been modified from its

previous value. As a result, one cannot safely use the link register

to hold either an index or indirect address for BAL, as there will be

no recovery possible if a demand paging trap occurs.

A second nuisance is that of conditional branChes (BCS, BCR). The

hardware assumes that a branch will normally go, and thus in anticipa-

tion will access the effective address. If the branch doesn't go, the

hardware must recycle and get the next instruction. (This is why a
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branch that doesn‘t go takes 50 percent longer to not branch.) Each

of these references will trap, however. As a result, more pages may

be referenced than will be used, especially since the No-OPeration (N0?)

instruction, a favorite for parameter lists, is normally an unconditional

no-branch.

Yet another source of annoyance is that the access protection

necessarily used to implement demand paging does not apply to mapped

master-mode code. This has two results. First, all storage commonly

referenced by master-mode must be virtually dedicated or ABS to insure

that it will be in core at all times when it may be referenced. Second,

there is no guarantee that any non—virtually dedicated area will be in

core at any given time. On the execution of a CAL instruction (a

specific set of instructions which allow the slave-mode to make up to

64 unique requests to master-mode by trapping) the only pieces of non-

dedicated area guaranteed accessable are the instruction itself, any in-

direct address, a possible chain of EXU's leading to the CAL, and the

registers. Specific address references are guaranteed accessible only

until the first time Jobchange can occur. (The alternative is to use

a SCANPAGE-like routine to check each possible reference.) Hence, all

 
parameters must be transmitted through the registers.

The only real criterion for using master—mode is to perform op-

erations which are to be denied to the slave-mode directly. Let us

consider these operations briefly. They can be divided into two cate-

gories; the execution of privileged instructions, and the referencing

of storage in a way not allowed to the slave~mode. We can eliminate

many of the problems described by the extension of master-slave opera-

tion to include two more classes. Let us call these metarmaster and
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meta-slave operations. Master and slave would still have their present

form of operation. Meta-slave, however, would permit the execution of

privileged instructions, while applying all the addressing restrictions

of the access protection. Meta—master would also be restricted by the

access protection, except that write protection would not apply. With

this change, the only pages which need be virtually dedicated under

JANUS would be those containing the TCP and the x'uo' routine. The

X'hO' routine would be the only one which need run in master-mode;

all other monitor functions other than unmapped interrupt routines (to

which demand paging cannot appLy anyway) could run successfully in

meta-nodes.

In addition to meta-modes of operation, there are:3everal other

features, which, if implemented via hardware, would be a boon to demand

paging and timesharing in general. These would be in addition to read-

and writeable map access protection registers, single level executes,

and recoverable instructions, as discussed above.

One of these is a change register; containing one bit for each

mapped page of memony, the bit corresponding to a page would be unconr

ditionally set each time that page was written into. The change re-

gister could be cleared before each timeslice, and at the end of the

timeslice all modified pages could be located, looked up, and flagged

as having to be written back.

A second would be a reference register; like the change register,

a bit would be set whenever a page was referenced.

The access trap should be divorced from the non-allowed operation

trap, permitting independent operation.

The most powerful tool would be the introduction of a privileged,
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execution-analize instruction. One would initialize the registers,

specify the pseudo-mode to operate under, and execute this instruction.

It would interpretively execute the instruction at the effective address,

under the identical conditions under which the trap occurred, stopping

short of actually modifying core or registers. When a point is reached

within the target instruCtion where a trap would have occurred, execu~

tion would be aborted, and the instruction would cause a register to

contain three pieces of information-~the offending address which would

cause the trap, the protection currently set for the offending page,

and the maximum.ACcess Required (ACR) which would avoid the trap. Come

puting the page, one could compare ACR with AOL in the TSP; if less, an

error condition would hold. If AC was not 3, one could immediately gp

set AC = AOL. Writeback and USEDeLAST would be automaticalhy controlled

by the change and reference registers respectively, and would not have

to be manipulated by software on each trapping reference.

B. a Program Optimization

While almost any program will run under a demand paging scheme, it

is possible to write programs which are completely pathological, execur

ting almost no instructions per second. Conversely, it is also possible

to write programs which take advantage of timesharing and demand paging.

Fortunately, programs written in this fashion are not penalized when op-

erating in a normal environment. For example, because of demand paging,

it becomes feasible to use multirecord I/O buffers resident in core for

each device; manipulated by a task during a timeslice, and by an interrupt

routine asynchronously. Then only very slow devices, or interactive

<Levices where buffering is infeasible, will be a limit on the speed of
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the program. The program will no longer be primariry I/O limited, as it

would be when onhy a single record buffer was used, requiring waits.

The primary methods of optomization are those of limiting modifi-

cations and references. Limiting modifications means that one does not

rewrite areas within the address space indiscriminantly, but instead

causes all variables to be located in contiguous pages or blocks of

pages, such that a minimum number of pages will have to be rewritten on

the disk. A major item to avoid is rewriting sequences of code. The

designers of the Sigma obviously had this concept in mind when they

very carefully excluded all instructions which would allow one to

easily build instructions in core. Any time it is necessary to build

an instruction in line of code, the Sigma designers made it easier to use

indirect addresses, indices, or, if absolutely necessary, to build the

instruction in a register and execute it there. This holds true also

for the insertion of in-line parameter lists. Further, to avoid variab-

les imbedded in code, it is desirable to use common storage areas as

much as possible.

The second main facet of optimization is organization. If N

routines which are always referenced together are in the same page, the

program will execute more than N times faster than if each routine was

isolated in its own page, surrounded by little used routines. Remember

that demand paging is only a scheme of sutomated overlays, which cause

recently unused areas of core memory to be replaced with demanded pages;

if in each instruction it is necessary to fetch another page, efficiency

is decreased, since we are now executing useful (as Opposed to overhead)

instructions at a rate of one every 40—50 milliseconds, the delay being

.necessitated by waiting for a slow device, the RAD.
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B. 5 Signals and the MESSAGE CENTER

One capability required of any system involving asynchronous op-

erations is that of synchronization. Synchronization is effected by

the occurrence in time of an event of unspecified form and meaning de-

fined by common convention between the synchronizing and synchronized

parts. This idea can essentially be reduced to one bit of information-—

the event has occurred. It is not normally necessary 0r desirable to

be able to specify that the event has App; occurred, since this neces-

sitates defining Just.

In a timesharing system, especially one with as much flexibility

for asynchronous operations as JANUS has, this synchronizing capability

is especially important. Synchronization is necessary between tasks,

as when a subtask must inform its parent that it is done, and between

interrupt routines and their controlling task, to inform the task of

the occurrence of a condition. A task may be unable to proceed until

the occurrence of a specific event, and may have put itself on wait

status. The occurrence of the event should be capable of pulling the

task out of wait status.

In JANUS, synchronization of this form is provided by means of

Signals, of form:

OOXXYYYY,

where XX is a unique Signal number (0-255), and YYYY is the name of the

task it is directed to. The Signal number is eventually used as an index

to set a bit in the TOP: if greater than 255, the bit will still be

set, but not in the normal signal region. Two Signals have standard

definitions; Signal 0 is a wake-up Signal, Signal 1 is a standard

abort Signal to the task.

 





118

Signals may be sent from any level of JANUS--from the highest

level active interrupt routine to the lowest level of a task. Signals

are sent to the MESSAGE CENTER via the sequence:

BAL,R11 MESSCENT

R6 = Signal.

The MESSAGE CENTER will always accept a Signal, under all conditions of

interrupts. The operation performed is to push the Signal onto a stack.

In the event that the stack is full, the Troubleshooter is invoked to

handle the condition, and upon return, the attempt is made again. The

volume of the stack is checked, and if it is getting significantly full,

the Housekeeper task is flagged to HURRY and process the stack; if very

full, the Housekeeper is flagged RUSH priority, and Jobchange is ef—

fected. Thus only in extreme cases should the Troubleshooter be called

upon to handle Signal difficulties. If called in, the Housekeeper will

even out the resident stack, moving excess Signals to its own swappable

stack, or returning them if the resident stack becomes empty. Thus it

is possible that a time delay of up to seconds can occur between sending

and receiving a Signal, under heavy Signal usage..

Great pains have been taken to insure that Signals are neither

lost nor duplicated. This is done by the use of reentrant routines

and multiple stacks, all to avoid the necessity of having an accessible

copy of a Signal in more than one place. Thus the stack of Signals is

not scanned for a Signal for a specific task in order to remove that

Signal-~it is instead unstacked, saved in a second stack, and at a

later point, Signals are individually removed from the second stack,

and if not desired, returned to the first stack via the MESSAGE CENTER.

This degree of complexity is necessary because the stack of Signals
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may be simultaneoumly referenced from many levels. For example, while

referencing the Signal stack, a task may be interrupted to effect Job-

change, the Jobchanger interrupted by an interrupt routine while fetch—

ing a Signal, interrupt routines interrupting each other, and finally

when the stack is full, the Troubleshooter interrupts the current ac~

tive routine and locks cut all usage while it unscrambles the difficulty.

However, there are limits beyond which nothing can save a Signal.

These usually occur in the case of uncontrolled sending of Signals. 1

These can be avoided by reasonable operation. Tasks should permit Job~

change to function between sending Signals. Interrupt routines should

take care to send a Signal only once, even if the condition is recogr

nized repeatedly, until the interrupt routine knows that the task has

recognized and acted upon the Signal. A simple way to do this is to

use the preformed Signal as a flag. The Signal is placed in the re—

quired location by the task when necessary. The interrupt routine

would exchange a null entry for the Signal when necessary. and if the

Signal fetched was null, would ignore it. Thus a Signal would be sent

only once. There are other methods to accomplish the same ends. Null

Signals should not be sent to the MESSAGE CENTER indiscriminantly, as

a significant amount of time is required to delete them, for the dura-

tion of which valuable stack space is lost.

B. 6 Timekeeping

It is often desirable to perform temporal synchronization, either'

at the end of a specific delay, or at a specific time. As the computer

normally keeps track of time by clock interrupts, which are limited in

number, and as this function should be provided to all users in a time-

sharing system, a resident routine is called for. In JANUS, the lowest

 





120

level priority clock interrupt is the Jobchanger; the next higher is the

TIMEKEEPER. Time requests are performed by the calling sequence:

qugBEN

R6 XXXXXXXX Delay requested (milliseconds)

R7 SSSSSSSS Signal (Form 1)

R7 gz’tXXXX Unmapped address (form 2)

The time request is compared with the time delay remaining until

the next interrupt--if less, it is set as a new delay. The entry is

then pushed into a stack. .At each interrupt, each entry is pulled and

updated. If the specified time has elapsed, and the entry is of form

1, the Signal is sent on to the MESSAGE CENTER; otherwise the entry is

saved on a second stack, while the first is emptied. Then the entries

are removed from the second stack, one by one, and if the time is not

up, send back to BIG;BEN. Otherwise the entry is of form 2, and the

interrupt routine performs a BAL, R11 to that unmapped address. The

routine there can perform required operations before returning, and can

assume R6-Rll are volitile. This provides a capability of clocked ins

terrupt routines, such as might be used to generate an unbuffered

graphic display.

In using form 2, there are certain constraints which must apply to

the external routine. First, the routine may not manipulate the clock

inhibit bit in its PSD. Second, there is no automatic deletion of such

a request upon task exit--it is necessary for a task to wait until the

time actually runs out, and control is transferred to the external rour

time. While the external routine would normally request another delay

of the TIMEKEEPER, when exiting it must stop itself. Third, the ex~

ternal routine must always be in core when such a request is pending.

Fourth, any time delay requested by an external routine should be greater
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than the time normally required from request to return, otherwise the

computer will hang, spending all of its time in the interrupt routines.

Fifth, external routines should refrain from making more than one re-

quest at a time.

Form 1 requests allow the task to be signaled at the end of a given

time. Enough information is available to any‘task to allow it to com-

pute a time delay required to be signaled at a given time. Thus it is

possible for a task to be started, and thereafter perform some process

every hour on the hour, if so desired. Likewise a task performing a

low priority calculation could be brought awake only between midnight

and 6AM, or at some other time when the computer is light loaded.

Since a centralized routine is called for by the nature of things,

only a small increase in the code required enables the TIMEKEEPER to

perform time of day calculations. The current values are available to

any task which desires to reference them. These quantities are:

BCDTIME HHMM u bytes of hours and minutes on word boundary.

BCDDATE DDMMMYY 7 bytes of day, month, and year on a double-

word boundary.

BCDDAI DDDD 4 bytes of day of week on a word boundary.

TRUETIME XXXXXXXX l word of half—milliseconds elapsed to last

interrupt.

LASTTOCK XXXXXXXX l word of half-milliseconds to elapse between

interrupts.

TICK XXXXXXXX 1 word of half—milliseconds required until

next interrupt.

The TIMEKEEPER deals in actual time, independent of usage. As a

result, the times are quite accurate. Each night at midnight the
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Housekeeper task is call in to update BCD ~TIME, ~DAY, and ~DATE. The

calendar is good to 10,000,000 years, and includes leap year calculations.

The time stack is another of those stacks and lists which extend

onto the disk via the Housekeeper. Whenever the stack threatens to

overflow, the Housekeeper is called in to tidy up. All entries are unr

stacked, converted to an absolute time, and saved in.the Housekeeper

stack. The Housekeeper then reorders‘this stack, and returns enough of

the imminent time requests to half fill the resident stack. As the re-

sident stack is emptied, the same process takes place. Thus, long de-

lays will drift onto the disk until they become imminent. Short delays

on the disk drift back to being resident. The delay is thus a guaran-

teed minimum delay—-it may actually be longer in duration than requested.

If the resident stack does overflow while a request is being made, the

Troubleshooter is invoked to unscramble things, just as it is for the

MESSAGE CENTER.

B. 7 Unique Resources

There are a number of unique resources available to the computer

which cannot be shared simultaneously, but must be sequentially allocated

to one task at a time from the system pool. Unique resources are charac~

terized by an almost universal association with interrupt routines, and

thus with I/O operations.

There are four routines used to allocate and free unique resources.

 
Each searches through the resident list of unique codes, returning fail-

ure if the device is not located (nonexistent). A "downed" device is

nonexistent.
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IOASK"I

R6 **’*XXXX Unique device code

R7 **‘*XXXX Name of requesting task

If the device is owned, the routine returns failure, otherwise it assigns

the device to the requesting task.

IOWAIT‘

R6 **"XXXX Unique device code

R7 SSSSSSSS Signal for requesting task

If the device is available, the routine operates exactly as does IOASK.

In this case the signal will never be sent--instead the task name from

the Signal will be used to assign the device. If the device is in use,

the request is added to a stack, and the Housekeeper is signaled, in

order to add the request to the non—resident queue for later assignment.

In this case, 003 = l is returned. When the task's turn for the device

comes up, the device is assigned to the task, and the Signal is sent to

inform the task that it now has the device.

IODOWN*

R6 ****XXXX Unique device code

R7 ***‘XXXX Name of requesting task

If the task discovers that the specific device is not operational

(usually by means of an operator key—in), this routine may be called.

The device is found, and checked to belong to the requesting task. If

so, the request is passed to the Housekeeper, to allow flagging the de-

vice down. A downed device cannot be allocated, and all requests, both

pending and future, will wait until the device is brought up.

IOFREE*

R6 ***‘XXXX Unique device code

R7 ****XXXX Name of requesting task

This routine operates exactly as does IODOWN, except that the re-

quest sent to the Housekeeper will not cause the device to be flagged

down, but instead passed either to the next register, or back to the  
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system pool. The device will be available as soon as the Housekeeper

has processed the request.

In the Sigma 7, unique resources are of two forms, treated dif—

ferently by the hardware, and thus by programs.

One form is used through the I/O processor (IOP). Characterized

by being sequential byte (character) oriented, the 10? is normally used

to transmit a buffer in to or out of core memory, and is connected to

I/O devices, such as the cardreader. These devices have a unique ad-

dress, which specifies a device subcontroller. A subcontroller may

have multiple devices attached (e.g., teletype with paper tape capa-

bility), but a task buys a subcontroller from JANUS. Interrupts gen-

erated by IOP devices all filter through a common port, necessitating

a common resident routine.

Four routines are specificalky associated with the IOP.

IOASSIGN

R6 ****OXXX Device address

R7 ***XXXXX Unmapped external interrupt routine address

The parameters are merged and inserted into the resident stack of

active devices.

IORELEAS

R6 ***‘0XXX Device address

The resident stack of active devices is scanned to find the entry

corresponding to the device specified. When found, the entry is re-

placed by the top entry in the stack, which is then deleted.

IOKICK

R6 XXXXXXXX Pseudo-A10 status

It is frequently desireable to be able to generate a device in-

terrupt without affecting the device. For example, the interrupt routine
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must be able to determine the device status. It is easier to kick the

interrupt routine than to have duplicate code outside the interrupt

routine. IOKICK makes this possible by pushing the pseudo-A10 status

into a "kick" stack (queue) and then triggering the I/O interrupt.

This, in effect, provides a signal path from the task to the interrupt

routine. The routine is reentrant, and may be called sparingly from any

interrupt level.

The interrupt routine is not directly callable.

0n interrupt, the interrupt is acknowledged (this AIO should be

the only one ever executed in the machine) and the device address re—

turned is then used to scan for the device in the active device stack.

If.not found, diagnostic information is saved and the Housekeeper is

signaled. If found, the calling sequence BAL,Rll is performed to the

address associated with the device, with R6 containing the A10 status.

Upon return, the A10 is again executed. This occurs until the A10

indicates that no interrupt was recognized. At this point, a unique

flag is added to the kick queue. The kick queue is not scanned, one

entry at a time. Each entry is treated exactly as an AIO status word,

and sent to the corresponding interrupt routine. When the flag pops

off the queue, the interrupt routine exits.

The second form of resource is that associated with the Direct

I/O (DIO) port. The DIO is characterised by word data transfers be—

tween the external world and the registers, under program control. It

is used primarily in situations where a buffer cannot be used because

the data must be manipulated before use. These resources include in-

terrupts, register pages (used exclusively by some interrupt routines),

and external devices (in the MSU configuration, these external devices
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are General Purpose Interface (GPI) half‘registers, and will henceforth

be referred to as such).

All devices are specified by an ll—bit address; a 3~bit prefix

code is defined to distinguish between different devices with the same

address. This code has the values:

0--10P,

l--external interrupt,

2--register page, and

4——GPI.

The DIO addresses are numbered sequentially, from the lowest to

the maximum number available. Thus, (MSU configuration) external inr

terrupts, 0-7: register pages, 1-3 (0 is common to all users); GPI, 0‘7.

The only resident routines geared specifically to the D10 are

those dealing with the external interrupts.

DTCHINTR

R6 *“**XXX Interrupt address

R? will is loaded with the standard system interrupt location

plug and then control is transferred to:

ATCHINTR

R6 **‘**XXX Interrupt address

R7 XXXXXXXX Instruction to plug into interrupt location.

The operation is performed.

One point must be stressed with respect to use of routine IOWAIT.

A task requesting a device through IOWAIT normally enters the wait

state if the device is not currently available. A situation can occur,

whereby two tasks, each using a unique device, can request the other's

device. They will then hang upon each other, both being out of service,

and keeping their device out of service until one or the other is

explicitly told to let go. Any task which can get into this situation
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should have a capability built in to provide for this occurrance. It

say be avoided by asking for the additional device through IOASK, by

using only one device at a time, freeing it before getting another,

or hy the use of synbionts.

The allocatable resources do not include the console teletype or

RAD, as these are permanently assigned to JANUS.

B. 8 Prefices and the Console Teletype

An operation cannon to almost alliasks is that of communication

with the operator. As JANUS handles the RAD through the Swapper, so

also does it handle the console teletype. The teletype handler is

shared by all users. Input is character directed, in that a unique prev

fix directs the input to the correct task. Input nay thus be scrambled,

not necessarily in the order of request. Output is strictly ordered,

such that each request is added to a queue, to be typed out in due tine.

If input is in progress when an output request is made, the input is

interrupted and a recovery procedure is set up, such that when the out-

put is done, the original input is echoed and input is then continued

at the point the interruption occurred.

Each request is accompanied by a unique prefix. Certain prefixes

are defined, such as & for JANUS, CR for the card reader, LP, 0?, PL,

TYS, MTO for other devices. A task which requires a unique profix may

get it fron JANUS in a manner analogous to diskpages. That is, there

are two routines which allow a task to get or return a prefix.

GETPREFX

R6 ***"*“ Not used CCCCCCCC Unique prefix allocated

PUTPREFX

R6 CCCCCCCC Unique prefix freed.
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A prefix is a word of TEXTC format; that is, the first byte is a

count of the useful bytes which immediately trail the count. Extra

unused bytes are blanks packed onto the end of the word.

Again like diskpages, prefix handling involves a small resident

stack, and a larger stack imnthe Housekeeper. The Housekeeper may be

called in to adjust the resident stack. and if the stack over~or under-

flews, the Troubleshooter is invoked to fix matters.

The teletype has a number of routines associated with it. I will

first list those which are callable from tasks, and then consider the

interrupt routine:

DISPLAY*

R6 XXYYYYYY Count of bytes: mapped address of record

R7 CCCCCCCC TEXTC profix

RB OOXXXXXX Signal to send

This routine is used primarily for low priority output, where it

is not desirable to dedicate a page containing a record. If the one—

record buffer is not free, failure is specified. Similarly, if the

output queue is full. Otherwise save the Signal, copy the record into

the display buffer, flagging it busy, then make up a new set of type

parameters to send a Signal to the Housekeeper on completion. (On re—

ceipt of this Signal, the Housekeeper frees the buffer, flags it not

buay, and Sends the Signal originally specified.) Then proceed to routine:

TYPE’

R6 XXYYYYYY Count of bytes; unmapped address of record

R7 CCCCCCCC TEXTC Prefix

R8 OOXXXXXX Signal to send

Registers are unchanged and failure is specified if unable to

accept the request. Otherwise ”kick" the interrupt routine, return

81100688 e
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ACCEPT‘ ~

R6 XXXXXXXX Count of bytes OOOXXXXX Byte address of RESBUF

R7 CCCCCCCC TEXTS Prefix OOOXXXXX Byte address of input

RB OOXXXXXX Signal to send

Registers are unchanged and failure is specified if unable to

accept the request. Otherwise, compute the addresses to return, then

return success.

When a task has received a Signal that the input requested has

occurred and is in RESBUF, the input should immediately be processed,

either by copying RESBUF into the task's storage area or directly. As

soon as possible, the buffer should be freed to allow other input to

proceed.

TTYFREE

This routine clears the flag that the input buffer is in use, and

"kicks” the interrupt routine.

Two routines are available to delete input requests. (This is a

job of the task on exit, and at certain other times.)

DELETETY

R6 ****XXXX Name of task

DELTYSIG

R6 SSSSSSSS Specific Signal

In either case, the entry is flagged to indicate the type of

search, saved in a "delete" cell, and the interrupt routine is "kicked".

The interrupt routine has five modes of operation.

1. Entered via "kick". Test if to delete input request. If so,

search and delete as necessary for all occurrances of the condition, then

clear the "delete" flag and exit.

If not delete, test if any requests are in the output queue. Skip
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if not, or if in override or type mode. Otherwise halt the current in—

put operation, initialize a recovery, and go start output.

If not type, check if buffer freed. If so, and not typing, start

new input~~otherwise initialize recovery.

2. Character mode. Used while inputting a prefix. If after 3

characters have been input, no match is found with any requests, a

question mark is output, and character mode is reinitialized. If the

prefix is recognized, copy the prefix into RESBUF, then proceed to read

the associated record. (BESBUF is the standard buffer for console tele-

type messages, and is of TEXTC format, including the prefix.)

3. Input mode. Used while inputting a record. If terminated by

EOM character, discard the entire line and revert to character mode after

repositioning the carriage.

a. Type mode. While active, enable the override. When one record

is done, remove from queue. If the queue is empty, disable the over-

ride, clear the override flag, and proceed to recovery. If not empty,

and override is not flagged, start the next operation. If override is

flagged, proceed to override mode.

5. Override mode. For the duration of the type mode, the console

interrupt is active as an override. If pressed at this time, override

is flagged, and at the end of the current line instead of proceeding to

a new record override mode is entered for the duration of one input re-

quest. The input is recovered, and any interrupted input is continued.

This allows an input to be forced through a large number of successive

outputs. Override mode is recognized by the console interrupt light

being lit while the mode is active.
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B. 9 Diskfiles

In a paged environment where contiguous pages are not necessarihy

available, there are two methods of combining a collection of pages into

I file. One method is to provide an ordered list of the component pages

of the file. This scheme is illustrated by JANUS tasks, which are no-

thing more than executable files. In this case, the list is the USAGE

table on the TOP. This scheme allows random access of file pages, but

requires the allocation of a fixed size block to hold the list, thus

setting an upper limit to the size of the file.

The second method is that of "chained" files, where each.page in—

cludes information as to the next and last pages in.the chain. While

necessarihy less flexible than the first method with respect to access,

the limitations on chained files are no stronger than would be imposed

by the use of addressable magnetic tape, where a single record innthe

middle of the file can be rewritten. The rest of this section will con-

cern itself with chained files exclusively.

JANUS has certain routines and tasks which deal with files. To

make use of these, the JANUS file conventions must be followed.

Each page of a file is a true page (512 words) of fixed format.

The format of each page is:

Word 0 OOOOXXXX Pointer to last file page in chain,

Word 1 OOOOXXXX Pointer to next file page in chain,

Word 2-511 Available file page data area.

A null (O) pointer indicates the last page of the file in that

direction. The first page of a file is in the FILE NAME.

One resident routine is:

Unfile’

R6 "***XXXX FILE NAME.
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The FILE NAME is pushed onto a resident stack. If successful, the

MORTICIAN task is signaled, and will eventually come in and chain for-

ward through the file, freeing the diskpages. In this case, only the

forward pointer on eaxh page is examined. Note that if a page in the

middle of a file is presented, preceeding pages are not touched.

In order to avoid confusion which might arise, I wish to define

certain terms.

A file consists of one or more blocks. END-FILE corresponds to

the terminal condition of the last block, going forward.

A block consists of one or more records, terminated by a MARK or

END-FILE. A MARK is completely equivalent to a tape mark, which how-

ever is sometimes referred to as an endfile. This usage is not fol-

lowed here. Similarly, a block is sometimes referred to as a file, but

this usage is again not followed.

A file is normally of constant format-RECORD or STREAM. A RECORD

FILE has as part of its specification, a fixed record size parameter.

In this case, all records are of identical size. These records are nor-

mally packed into a file page, with no spaces between them.

Conversely, a STREAM FIRE does not have fixed sizes. Instead, each

record has associated with it a record size discriptor (COUNT), normally

the first item in the STREAM RECORD. To locate the next record, it is

necessary to combine the record pointer with the COUNT to develop a new

record pointer. STREAM RECORDS have the advantage of improved packing

density. However, it is occasionally desirable to locate a previous re-

cord. In order to locate the beginning of a record, knowing the end,

we must have the size. Hence we define a REVERSABEE STREAM FILE, char—

acterized by SUPER-RECORDS, which consist of STREAM RECORDS bounded
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at each end by a SUPERCOUNT.

COUNTS and SUPERCOUNTS are normally of the same resolution as

the elements of the record: in all future discussion I will be refer-

ring to a record of bytes, COUNTS and SUPERCOUNTS which fit into a byte,

and which specify the number of bytes.

Given a record of N bytes, a STREAM RECORD would consist of N+1

bytes, the first of which (COUNT) would contain the value N. (This is

also referred to as TEXTC format, from the usage in the assembler.) A

SUPERrRECORD would consist of Ne3 bytes, where the first and last

(SUPERCOUNT) would have the value N42, and the N+l bytes between would

be a normal STREAM RECORD.

In addition to the records, it is desirable for the file to con-

tain control information. Immediately apparent examples are ENDeFILE,

ENDPAGE, and MARK. CONTROLS should be readily distinguished from normal

records-—as no normal record has a COUNT of zero, this is our identifier.

A CONTROL is a one-byte record with a COUNT of zero, except in one special

case. Thus there are 256 possible CONTROLS. A REVERSIBLE CONTROL has no

COUNT-~the control byte follows the initial zero SUPERCOUNT directly.

Except in the case of the ENDPAGE condition, each REVERSIBLE CONTROL is

three bytes of form OOeXX-OZ. In the special case of the ENDRAGE con~

dition, the rest of the page is the ENDPAGE RECORD, and the last half-

word on the page is the SURERCOUNT, which however is still a byte count.

This is necessary, as a single byte is too small to be able to specify

a large ENDPAGE RECORD.

It is important that these conventions for reversible files be

known, as one system task (SYSGEN) is capable of generating reversible

library files.
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Unique controls defined are as follows:

00 ENDPAGE. This is also the END—FILE condition, when there is

no forward chain specified for the page.

01 PAUSE. Normally causes the receiver of the file to halt until

some condition is satisfied.

02 MESSAGE follows. The record following is not a normal data

record, but instead contains special information to the reader.

09 File is switching to BINARY, or to UNFORMATTED mode.

OD File is switching to BCD, or to FORMATTED mode.

10 MARX. Used to identify the end of a block of records.

FF. Null. This control is Just filling space, and is to be ig—

nored. It may be used, for example, to clear a PAUSE condition on a

driven file. (A driven file is being read as it is being written, thus

the necessity of halting the receiver if it catches up to the driver.)

B..lO Symbionts

A symbiont is a task which performs a limited set of self-defined

operations on a file, usually transcribing it to another file. This

discussion will be limited to I/O symbionts only, where exactly two files

are involved, one of which is associated with a physical device.

Consider first the range of applicability of such a symbiont task.

Since it must be capable of transmitting a stream of records from suc-

cessive files, it cannot be used for an interactive (bi—directional) de—

vice, such as a keyboard or graphic display. Furthermore, since it deals

with STREAM FILES, positioning operations are not readily implemented,

or are meaningless if included.

In this context, we see that the range of applicability covers only
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those physical devices which are mono~directional. These would include

card readers, line printers, card punches, plotters, and under certain

circumstances, magnetic tapes, Specific idiosyncrasies of particular

devices require specific conventions,vvhich in general conflict with

those of other devices.

A set of symbiont tasks has been constructed for several of the

commonly used I/O devices. This set could be expanded, but currently

includes the cardreader, lineprinter, cardpunch, and plotter. These

symbiont tasks are system tasks, and special resident routines are pro-

vided to permit any task to communicate with the requested symbiont task.

The calling sequence is the same in all cases:

36 XXXXYYYY,

R7 SSSSSSSS Signal to sand on completion,

Where YYYY is the name of the first page of a standard non-rewindable

stream file. XXXX are attribute bits. Currently the only hit defined

is the first (8000), which signifies that the file may not be discarded

after the symbiont is through with it. Unless that bit is set, output

symbionts will return each component file page to the system pool as the

information thereon is used.

The resident entry points are:

CRAOBSYM,

LPAOZSYM,

CPAOHSYM,

PLA06SYM.

The operation in each case is identical.

On entry, R6—R7 are pushed onto a small resident stack unique to

the specific device. If not successful, 004 - 0 is returned-~otherwise
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a Signal is sent to the task, which is always on the ring of tasks.

When the task cycles through, it empties out the stack, putting

each request into a queue internal to the task, in the order requests

were made. If the task is working on a file, it is busy.

A busy symbiont, on completion of a file, frees the I/O device,

and deletes that file entry from the queue. If the queue is empty, the

task goes into the wait state, and upon return, checks the queue again.

If the queue is not empty, it requests the device anew, and when the de-

vice is assigned, proceeds with the next file in sequence. This mode

of Operation, freeing and reallocating the device after each file,

permits any other task to sneak in and acquire the device to perform

it's own I/O operations.

Once a symbiont has been given a file, it is controlled from the

teletype, by means of the device prefix. Valid key-in controls are:

GO Continue with the current operation.

DOWN Flag the device down, save the file for further continuation

when the device goes up.

ABORT Discard the rest of the file.

In using input symbionts, (currently the cardreader only), a page

is given to the symbiont. The symbiont will allocate further pages as

necessary, and perform all necessary chaining operations. The speci-

fied signal is returned to the controlling task when the END—FILE con-

dition arises.

B. 11 Control Commands and the Amperscanner Task

All useful operating systems incorporate some means of communica—

tion with the outside world. Under JANUS, this function is provided by
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a system task, the Amperscanner (the name is contrived from ampersand,

which is the teletype prefix used to direct input to JANUS, and scanner,

which function the task performs).

The Amperscanner always has a request pending for input on the con—

sole teletype, unless it is actively precessing a line of input. Input

is formally free field——that is, keywords may have no imbedded blanks,

and must be separated by one or more blanks or other delimiters.

The control commands are formed by a keyword, followed by pos-

sible modifiers. Unused modifiers are ignored, unless they actively

garble the meaning of a command. In the case of a garbled or unknown

command, no action is taken, and a question mark is output on the tele—

type. Keywords fall into three main categories.

One keyword category is that where they keyword is the name of a

library task. In this case, the Amperscanner will locate the task in

the library, and will proceed to make a working copy of the task, per~

forming a copy operation on all those pages which will be modified, on

the basis of information kept in the master cepy of the TOP. The copy

is then added to the ring of tasks. and signaled to start. If unable

to start a task, either because of a lack of diskpages, or because

JANUS can accept no new tasks, an appropriate comment is produced and

the operation is aborted. The Amperscaner is the parent of all such

tasks. and will take care of destroying them after they exit.

A second categony permits changing various system parameters, such

as time and date.

The third category permits one to query JANUS as to the status of

various features, such as resources. One keyword in the category (MANUAL)

causes a standard system file to be printed, providing a manual of
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operation which lists all keywords implemented, and includes a brief

description of each one's significance.

3. 12 The Housekeeper Task

As mentioned previously, all possible effort has been made to

keep the JANUS resident as small as possible. To this end, all large

data sets and little used code which need not be resident are kept in

the Housekeeper task, and brought into core on demand on a timeshared

basis. Thus, infrequently used functions, such as the calendar and

date computations. are provided by the Housekeeper, without tying up

core memory.

Since the Housekeeper is the major non—resident system task, it

has certain non—standard features. For example, the housekeeper TCP is

dedicated permanently in core, in the first page above JANUS. In this

sense, it is the Task Control Page of JANUS itself--thus JANUS can be

considered a task. In normal circumstances, the TOP of all other tasks

map over the JANUS TCP, and it is not seen by other tasks. To all other

tasks, there is just an additional page of memory which is inaccessible.

However, it is the TOP of unmapped JANUS, and thus any unmapped trap

which occurs funnels through the Housekeeper TOP. (Unmapped traps are

discouraged, and are normally a sign of either programming or machine

error.) In addition, this page contains a number of standard system

console teletype messages used by the Housekeeper and Amperscanner.

These are kept here so that valuable mapped task address space will not

be cluttered up by storage not relevant to the tasks.

The Housekeeper is invoked whenever an unusual circumstance occurs.

This includes the case where a resident stack is depleted or surfeited.
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Whenever the Housekeeper is executed a standard function is to cause

all resident stacks to be adjusted until exactly half full.

In certain freak cases (which experience has shown occur most

rarely), it is possible that a request from a task to JANUS, which af—

fects one of the resident stacks, cannot be fulfilled. In this sit—

uation, it is possible for resident routines at any level to call upon

the Troubleshooter, a special resident routine. This routine has the

power to override.the whole system, in a last-ditch effort to stay

sane. It can, if necessary, actually take the RAD away from the

Swapper, checkpoint storage, and bring in enough of the Housekeeper to

attempt to recover. If it was necessary to checkpoint core, that core

will be restored after the recovery attempt.

Because of the interruptable nature of tasks, and because of the

possibility that the Troubleshooter may be invoked by a high level in—

terrupt, it is necessary that the Housekeeper be reentrant. As a re—

sult, resources are normally kept track of in three different areas,

in such a way as to defeat the interruptable nature of the Sigma 7. For

example, stack manipulation instructions are not interruptable. As a

result, resources have a resident stack, an intermediate Housekeeper

stack, and the Housekeeper data set. Data are transferred via stack op-

erations between registers and stacks. The intermediate stacks are buf-

fer stacks; kept half full, data may be transmitted between them and

the resident stacks by both the Troubleshooter (which uses the inter—

mediate Housekeeper routines) and the Housekeeper. The Housekeeper

calls upon the intermediate routine to straighten out resident storage,

and then transfers data between the intermediate stacks and the main

data sets of the Housekeeper. While unwieldy, this process permits

 



  



1&0

JANUS to run without inhibiting external interrupts used for realtime

applications. and still guarantees that no datum will be lost or dup—

licated.

By adequate arranging of routines in the Housekeeper, such that

all reentrant storage is at the beginning, it is possible for the

Troubleshooter to need only a part of the Housekeeper. As JANUS now

stands, it is only necessary for the Troubleshooter to use one page

in addition to the Housekeeper TOP.

In addition to the above functions, the Housekeeper may be sig~

naled by the Amperscaner to perform certain operations. such as out-

putting standard messages to the console. It may be called upon by

JANUS for similar functions, as when a machine error (such as watchdog

times runout) occurs.

w_fie..___ .177- . ,,,_ Vi: . ,, (a.

 



APPENDIX C.

The JANUS Basic/File Control Monitors

When JANUS was undertaken, it was realized that the execution of

FORTRAN programs would be a major requirement. It was felt that, since

SDS had supplied with the computer a Basic Control Monitor (BCM) 1“) and

various processors such as FORTRAN, SYMBOL assembler, LOADER, and DUMP—

ING LOADER--some of which would be used in generating JANUS-~it would

be an excess waste of effort to generate our own version of the pro-

cessors, especially since SDS would maintain theirs. As a result, it

was decided to build a timesharing monitor which would interface the

SDS-provided processors to JANUS.

A brief examination of the BCM showed that it could not be read-

ily changed to our requirements, if for no other reason than that it

was inadequately documented. (One of the requirements of acceptable

JANUS coding arose from this experience-—all code was to be adequately

documented with comments in the source such that anyone familiar with

the computer could easily understand any part of any JANUS code.) As

a result, it was decided to start completely anew to write the JANUS  
Basic Control Monitor (JBCM) which would perform the necessary inter-

facing functions.

With certain exceptions, the JBCM is used in exactly the same way

as the ROM. These exceptions are usually minor, and except for some

lbl
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changes in certain control cards, a program which operates under the

BGM will also operate under the JBCM.

The difference in control cards are as follows:

1. The JOB card must have the users name on it. This is fre-

quently the only way to identify output from several tasks.

2. Assignment of files to T2101 (the console teletype) are in—

valid and are sufficient reason to exit a Job.

3. The SDS-defined BIN, BCD, and EOD cards are replaced by the

standard JANUS BIN, BCD, and MARK cards, respectively.

4. In an effort to cut down the number of control cards used,

the leader was modified so that the data card is no longer needed, or

acceptable.

5. Many of the operator system keyins have been deleted, leaving

only 1:, E, and I (no; which will abort the task).

Further changes are that, since the I/O is buffered in the JBCM,

the check function is a null operation. Devices are also addressed

differently than under ecu.

In compensation, additional features have been implemented.

These are:

1. Additional system DCB‘s, namely M:SI, MzGO..HéGI; MéGO' M:MAP,

and Mzah. Some of these are defined in/the SDS Batch.Processing Mon?

itor (3PM), a higher level monitor than the BCM. The default device

assignments are GRAD}, DFAFO, CRA03, CRAQQ, DIAFO, and PLAO6 respectively.

2. Default specifications are assigned to the FORTRAN DCB's, to

agree with the FORTRAN usage for READ, PRINT, and PUNCH.

3. MzBI and MzBO are assigned to DEAFO (as was M:GO).

4. M:GO is rewound at the beginning of a Job, and when a LOAD
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card is encountered. As a result of these default specifications, the

control cards required for a load-and-go FORTRAN Job are:

JOB NAME

FORTRAN

(

( roam moss

(

LOAD

RUN

(

( DATA DECKS

(

5. Certain monitor functions implemented in RPM but not in ROM

have been implemented in the JRCM. These may be found in the RPM manual

under the titles:

M:TINE,

sznrxu.

MaTFILE.

6. Reasonable English language error messages. (This was a

major complaint with the ROM since the error message ERR 65 02 01 00

covered more than fifteen different errors, from referencing nonexis-

tant memory to the floating point calculation -A#A .)

7. The inclusion of extra control commands, such as UNLOAD.

By allowing multirecord I/O buffers, the timesharing capability is

greatly extended. As a result, there is one page of monitor alloted to

each I/O device, used for buffer and interrupt routines. In addition, a

demand paging algorithm is included, as are certain other functions.

 





lhh

The JBCM is divided into two areas: slave and master. The

master-mode area is interfaced directly to JANUS. The slave—mode area

contains those functions which provide the personality of the DOM. All

control card, I/O, trap handling, and other functions specific for the

ROM operate in slave-mode, and are demand paged. The slave-mode moni-

tor area is five pages in extent. However, when a program is running,

using the JBCM only for I/O, only one of those pages need be in.

Furthermore, these pages are write protected and need never be written

back to the RAD, improving swap efficiency.

A recent rewrite of the JBCM introduced a new feature. By re-

arranging the mastermode storage, and adding code which was assembled

on the basis of an assembly parameter, it became possible to reassemble

the JBCM in the JFCM mode. The JFCM (JANUS File Control Monitor) dif—

fers from the JBCM mainly in the mastermode area. Whereas the JBCM is

device oriented, the JFCM is file oriented, and does all I/O operations

using the system symbionts. The JBCM permits one to provide a program

parameters in a conversational mode, since the JBCM is connected dir-

ectly to the devices. The JFCM conversely causes an entire card file

to be input before starting, and does not cause output until the Job is

done. As a result, it "swallows" jobs, freeing all I/O until the end of

the Job, and runs truly inthe background. Since it uses no I/O devices

directly, multiple copies of the JFCM may run simultaneously. Further—

more, since over half of the JFCM is never modified, the original copy

of the page is used in each copy running, and is thus common to all the

JFCM tasks. As a result, there is a much higher probability that part

of the monitor is in core, necessitating no RAD operation, and making

swapping more efficient. The JFCM has the obvious capability of being
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fed a long Job, and then feeding short Jobs to another JFCM or to the

JBCM, to be completed and output while the first Job is still being

digested, thus shortening turn-around time for short Jobs, without

significantly affecting the time required for long Jobs.

 





APPENDIX D.

Notes on Cyclotron Control Implementation

One of the design goals for the use of the Sigma 7 is the control

of the cyclotron by the computer on a timeshared basis. In the ultimate

form, this would be powerful enough for an experimenter to invoke the

task, type in a minimum set of parameters (such as particle, energy,

beam intensity, energy resolution, and experimental station), and then

wait the necessary time for the computer to inform him that the cyclo—

tron is operating under those conditions. The computer would then con-

trol the cyclotron, informing the experimenter when the beam was outside

the range specified, or if an abnormal condition occurred. This would

continue until the experimenter signed off, at which point a diagnostic

listing would be printed out, giving information of use to the cyclo-

tron service personnel.

How much of this dream is possible? Since the computer is re—

placing people to make adjustments and measurements, the access time re-

quired is of human speed, on the order of seconds. It becomes perfectly

feasible to control the cyclotron from a demand paged slave-mode task.

This is good, since a program of the complexity described would have

to be written in a higher level language, such as FORTRAN, which is

notoriously untrustworthy for computer control operations. Such a pro—

gram can be written. Where then do the constraints lie?
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The first constraint is obviously the matter of hardware suitable

for computer control. Since this is outside the range of this thesis,

I will not comment further, and continue under the assumption that it

is available.

The second constraint is the task monitor. This would be similar

to the JBCM or JFCM in many respects, but not identical. (For control,

a realtime capability is required, and if this were available in the

JFCM, any user could accidentally or maliciously send false control

signals.) On the other hand, many of the functions provided in the

JBCH/JFCM could be eliminated. Under the mild constraint that the FOR-

TRAN be compiled under the JBCM/JFCM, one can delete all processor and

control card handling. Furthermore, the FORTRAN runtime and math lib-

rary actually reference the monitor in only three or four places, pri—

marily for I/O. By changing these routines to interface directly with

the mastermode monitor, then all of the JBCM/JFCM slave-mode storage

could be eliminated completely.

Again, I/O can be limited to files in addition to a teletype. As

a result, the obvious candidate for the monitor would be the JFCM. From

this, one could probably delete all I/O but plotter and lineprinter,

since a JANUS Cyclotron Control Monitor (JCCM) would not need to read

or punch.

Thus, the JCCM could be made fairly simply from the JFCM by adding

a small realtime handler (probably under 40 words), changing the FORTRAN

runtime, and deleting great pieces of JFCM code. When this action is

finally desired, it can be done in a relatively short time.

The third constraint, and probably the greatest, is the cyclotron

controling program written in FORTRAN. It will undoubtedly be based upon
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or similar to the SETUP program, in order to compute the operating con-

ditions. There will then be additional subroutines to read the cyclo-

tron parameters, compute the correction required. and perform the neces-

sany control operations. At this point, the additional complexity in-

troduced, of recognizing components which are drifting excessively so

that maintenance may be performed, will quite likely be a minor per-

turbation on the amount of work involved. The program will doubtless

be written piecemeal, with each new capability checked first under com—

puter simulation (which must also be written and debugged), and then in

real life. Furthermore, a new control capability may well contradict

an older capability, requiring reprograming and even redesign of hard—

ware.

Before any great amount of work is done on cyclotron control, an

effort should be made to define the problem for all concerned. Once a

definition is agreed upon and is available, it is time to specify hard—

ware, software, and scheduling configurations. A control program of

this complexity cannot work well if built of independent modules-—each

function will interact with others. and must be thoroughly checked,

first for correctness of operation. then for interactions. and finally

for successful Operation in a timesharing environment. As for any com-

plex realtime JANUS task, it is desireable to first develop an operational

stand—alone system, with the foreknowledge that it will eventually be

timeshared, and only when it is working rationally in a stand-alone con-

figuration should the timesharing features be added. This is simply

because for basic testing, timesharing is superfluous, serving only to

confuse results, and without any real gain, since any realtime program

could not be trusted in a timesharing environment with any other user
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until completely debugged. Simulations can be performed under JBCM/JFCM,

but any actual control attempts should be completely debugged under the

DOM as a stand-alone system.)

What sort of problems might one encounter in a cyclotron control .

program? There would, of course, be various codes for computing initial

parameters for a specific operating configuration on the basis of theory.

Associated with these would be a capability to set the cyclotron con-

trols to the correct value, in the correct sequence and with the proper

timing. This phase could be readily generated from programs which exist

today, such as the SETUP code. There would also have to be procedures

available to make actual measurements, from quantities as simple as volt-

age, current, and pressure, to patterns as complex as the cyclotron turn

pattern. These would introduce the need for pattern recognition codes

capable of analyzing the current state of the cyclotron, and determin-

ing how the machine should be returned for best operation. There might

be "learning" features. such that the program could vary parameters

used in calculation such that control operations would converge faster.

(Under JANUS, this could be readily implemented by keeping these para-

meters in a set of pages in the task libraly, modifiable and of which

the original copy would always be used by the task. Learned parameters

would thereby be changed in the library source.) These features will

probably take a great deal of time to deve10p.

Thus, cyclotron control programs contain three types of functions--

initialization. sequencing and stabilization, and tuning. The first two

have already been implemented to some extent without the use of an on-

line computer. They could be implemented fully without the computer

through standard feedback techniques at probably less cost than if the  
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computer were used. The real advantage of using an on—line computer

would come about by implementing the third-~and hardest-—category.

As a result. while I feel that this goal is possible and probably

feasible, an actual computer controlled cyclotron of any significant

value is probably a minimum of two years away, and the system.described

in the opening paragraph is more likely five years away.

 





APPENDIX E.

Notes on Conventional Terminal Implementation Under JANUS

One of the most important uses of conventional timesharing sys-

tems has been to allow simultaneous access to the computer from several

remote terminals. These terminals generally consist of low speed I/O

devices. such as teletype keyboards and paper tape. High speed devices.

while not technically impossible. are uncommon due to the cost of a

wide-band data link. required for a high data rate. Let us consider

terminals consisting of teletypes only. possibly with low speed paper

tape facilities. How might multi-terminal operation be implemented

in a tasking environment such as JANUS?

Consider first the manner in which a large number of terminals

would be coupled to the computer. The easiest (and most expensive)

method would be for each terminal to be connected to the IOP separately.

Much more likely would be the use of a communications link. In a

communications link, a large number of terminals are connected together

as a single I/O device, which includes a computer controlled switch-

board. A mechanism is provided to sean all terminals for the presence

of an input signal. as are remote addressing mechanisms. If the link

were not busy, the presence of an input signal would cause an interrupt.

The interrupt routine would have to perform a scan to locate the

specific terminal requesting service, perform the necessazy operations
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to switch the data link to that terminal, and initiate a data transfer

(normally one character). After the data transfer was accomplished,

the character input would need to be examined to determine if it were a

specific ”break" character, such as a carriage return, necessitating

specific action. Once that action was initiated, the terminals would

be rescanned for more input requests. If present, the process would be

repeated. If not, any output pending would have to be precessed, again

by setting the data switchboard to the specific terminal and initiating

a character transfer.

The use of a communications link implies the use of a centralized

I/O handler. The question of terminal implementation can thus be re-

phrased in terms of the broader issue--that of implementing centralized

I/O in a highly decentralized task structure such as used in JANUS. To

put the following discussion on a firmer basis, I will specifically dis-

cuss the simulation of an existing timesharing system, the BASIC system

developed at Dartmouth College and expanded by General Electric 15).

Assume that each active terminal requires a loo-byte input buffer,

a loo-byte output buffer, and approximately 50-bytes of status informa-

tion, such as a list of current break characters. Assume further that

the communications link controlled 6n terminals. A possible implemen-

tation might be as follows:

Under these conditions, it would be necessary to dedicate 4-k words

(64 terminals x 64 words/terminal) for terminal data blocks. This im-

mense I/O package would be a part of a LINK task. The LINK task would

have one main function--when a terminal signed on, the LINK would start

a subtask, unique to that terminal, by making a copy of a standard

TERMINAL task, and informing it, through the medium of the TOP, of the
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location of the specific buffer block allocated to that terminal. The

LINK task would also have the job of destroying a TERMINAL task after

sign-off, and of communicating specific items of information (such as

reports of system changes) to the terminals when they were inactive.

The TERMINAL taskvrould have many functions, including user re—

cognition, accounting, and recognition of standard commands. For some

standard commands and functions. such as OLD, it would have the capabil-

ity of locating the user's entry in the system file, locating his

specific file therefrom, and finding a specific program file therein.

For other functions. such as RUN, it might actually start a specific

subtask, providing it with the terminal block information and an input

file. The extent of using subtasks for various functions depends

greatly on their complexity. As only one function is in use at a time,

the decision as to whether to demand page functions within a task, or

to start subtasks, is somewhat academic, being limited primarily by the

fact that the maximum size of a task is bounded by address space limi-

tations. One main function of the TERMINAL task, however, would be the

taking of appropriate action on each line of input (as signaled by the

interrupt routine in the link task), performing the necessary operations

if a command, and transferring the line to the appropriate file if not

(in a duplex system, the interrupt routine would be charged with the

echoing of input, and such Operations as backspacing). By using large

buffers, the TERMINAL task need not have a small access time, especially

as the BASIC system does not check syntax until execution time, and

therefore there is little problem with fast response with diagnostic

messages.

The implementation described is not the only possible or best
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implementationr-since terminal usage of this sort is not forseen at

our installation, little effort has been expended to work out all the

details required. other than the broad outline. to determine if JANUS

could be used in such an application. From the above discussion it

should be clear that it can, and may even be capable of handling as

many as several hundred terminals at once. How well JANUS would do

would depend on many other factors, including the actual implementa-

tion used and the efficiency of code develoPed (how much code could be

used in common to several terminals). and is therefore open to

interpretation.
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