JANUS: A REALTIME TIMESHARING COMPUTER
SYSTEM FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
JOHN OSCAR KOPF
1968

- ey

I HESIS

LIBRARY
Michigan St~te
University

This is to certify that the

thesis entitled

Janus: A Realtime Timesharing Computer
System for use in Nuclear Physics
Experiment.

presented by

John Oscar Kopf

¢ has been accepted towards fulfillment :
of the requirements for

_Ph.D. degree in__Physics '

L.

Major' professor

Date /’J‘?" 63

0-169

ABSTRACT

JANUS: A EEALTIME TIMESHARING COMPUTER SYSTEM
FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

By
John Oscar Kopf

A computer program called JANUS has been developed for use on &
Scientific Data Systems Sigma Seven computer. JANUS is & computer op-
erating system, designed to permit many different users to share the
resources of the computer, such that each user is apparently in sole
control of the machine. These resources include the time available
for operation, the progrem snd data storage available, and communi-
cation links with the world external to the computer,

A comparison of the means and mechanisms of resource management
provided by various computer operating systems, inecluding JANUS, is
presented. Descriptions of inadequacies, both in hardware and in op-
erating systems, are given, with suggestions on possible improvements
in future implementations. In those cases where it has been possibdle
to measure various perameters under JANUS operation, the measurement
and a comment on its significeance is provided. Reference manuals for
JANUS and various control monitor tasks are appended, as well as
thoughts on the possible implementation of other desireable processes.

A novel method has been developed to handle resltime processes.
The computer may be used to simulteneously control devices, acquire
date, and perform analysis and computation. Any process may bde start-
ed or stopped at random, irrespective of the other usage of the machine.
The flexibility introduced into the use of the computer, compared with

conventional realtime systems, is impressive, since, if necessary, all

John Oscar Kopf
of the resources of the computer may be directed toward any goal, using
a single operating system, without the overhead normally associated
with such systems.

This is aecomplished by providing within the resident monitor
only those primitive functions dealing with resources common to all
usage. Higher level functions, such as Input/Output, are provided by
independent timeshared tasks. These tasks, with the features normally
associated with conventional monitors, provide those functions neces-

sary and sufficient to the operation of a specific set of problems.

JANUS: A BREALTIME TIMESHARING COMPUTER SYSTEM

FOR USE IN NUCLEAR PHYSICS EXPERIMENTS

By
John Oscar Kopf

A THESIS

Submitted to
Michigen State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPEY

Department of Physics

1968

S N
L5

o2 ‘/
M .

Dedication:
For my wife Peggy

Who minded the kids.

it

ACKNOWLEDGMENTS

I wish to acknowledge my indebtedness to all the people who
helped make JANUS, and this thesis, possible.

First and foremost, I am grateful to my advisor, Professor
Aaron Galonsky, for his patience and encoursgement, and for allowing
me a free hand in the design and implementation of JANUS.

Secondly, I acknowledge the great assistance of Mr. Phillip
Plauger, whose familiarity with other computers and computer opera-
ting systems, and whose willingness to engage in many all-night bull
sessions, helped immeasurably in t he design of JANUS, to say nothing
of the faet that the original idea to write the timeshering system
which became JANUS was his.

Third, I wish to thank Richard Au, Douglas Bayer, Carolee and
William Merritt, Francis Schiffer, and Laurence Wildbur for their pro-
gramning essistance in coding tasks, libraries, symbionts, and other
parts of JANUS, as well as their aid in finding and correcting errors
in JANUS. In leaving, I feel that JANUS is in good hands, and will
continue to grow in use.

Fourth, I acknowledge the assistance of Mr. Lester Hanson and
Mr. Doneld Freedman, who, &s on-site engineering representatives of
SDS, were instrumental in quickly verifying, redesigning, and changing
those design errors which are always present in a new computer. With-

out these changes, the Sigma 7 would be incapable of running JANUS., I

114

also wish to cite SDS, which delivered an operating system with the
computer, without whiech it would have been impossible to even begin
to start JANUS.

Fifth, I wish to thank Mr. Robert Belgard, who drafted most of
the figures presented, and Mrs. Susan West, who typed the theesls.

I also wish to thank all of the other people at the M.S.U.
Cyclotron Laboratory, too numerous to name, who in one way or another
helped with JANUS. My thanks especially to those people whose con-
stant insistance that I justify JANUS, thereby forced me to re-evaluate
the design of JANUS at all stages, and caused me to formulate a flexible
and self-consistent system.

Finally, I wish to acknowledge the financial assistance contri-
buted by the National Science Foundation and by Michigen State

University.

iv

TABLE OF CONTENTS

Chapter Page
Table of Contents. v

List of Figures . . « « « o o« e e e vil

1. Introduction o e . o e e . . e . 1
2. The Use of Core Memory 12
3. Bulk Storage 28
4. Scheduling of Time 35
5. Design Goals of JANUS 42
6. Unique Features of JANUS . . . o e Ny
7. The Target Computer . . . « « « + o o o L6
8. Structure of JANUS 52
9. Address Spaces 60
10. JANUS and BPM: A Comperison « . « .« .+ « « 66
11, Measurements . e s e e e e e e e e 72
12. Conclusions . . e e e e e e e e 76
Bibvliography 80
Appendix A. Glossary of Terms 82
Appendix B. JANUS Reference Manuel . . .« .+ .« 86

1. Resident Tables and Lists e e e e e e 86

2. Resident Routines . O 98

3. Demand Paging 105

L. Program Optimization 115

5. Signals and the Message Center ., 117

v

6.
7.

S.
10.
11.

12.

Appendix C.
Appendix D.

Appendix E.

Timekeeping . . .

Unique Resources . .

Prefices and the Console Teletype

Disk Files . . .

Symbionts . . .

Control Commands and the Amperscaner Task

The Housekeeper Task .

Under JANUS

vi

.

The JANUS Basic/File Control Monitors

Notes on Cyclotron Control Implementation

Notes on Conventional Terminal Implementation

119
122
127
131
134
136
138
141
146

151

LIST OF FIGURES

Figure

l. Memory allocation ynder a foreground-background scheme
of timesharing. The vertical column represents core
memory. The monitor is used to provide all control
functions. The area of core devoted to background
timesharing is successively occupied by a number of
processes, all limited to the gize of the back-
ground area. The realtime foreground area may be
occupied by any one of a set of processes, (or
divided 80 that it may be used by more than one pro-
cess), but any realtime process generally locks out
all other realtime processes.

2., Memnory allocation under JANUS. As in Figure 1, the
column represents core memory, with JANUS at the bot-
tom. Two tasks are shown, with the indepéndent task
address spaces twining through memory. Not all pages
of a task need be in core at one time. The darkened
pages of core are dedicated to realtime processes
specific to the task which has the page

3. Key to subsequent figures. (Note the use of the word
active, which in this context refers to a task executing
a. time'liceo) L] . [L] . . L] L]

4. Memory allocation--projeet MAC. User execution alternates
with swapping (the process where the program is trans-
ferred to or from WeRWOTY) .« .+« « + o o o e e

5. Memory allocation--Dartmouth proJect. A new program is
swapped into core memory while the curreant program is
executing. However, an imbalance in the number of jobs
assigned to high and low storage causes a delay at the
end of the third timeslice, as there is nothing to do
but weit between USER 3 and USER 1. R

6. Memory allocation--PDP-6 computer. Swapping occurs
concurrently with exeeution, but the efficiency is
higher than in Figure 5, as no limitation is im-
posed by the use of specific areas. Note that a sig-
nificant part of memory is rarely or never used. . .

7. Memory allocation--project GENIE. Problems are
initially brought into free core. When no more core

vii

8.

9.

10,

11.

12,

13.

4.

15.

is free (TASK 4), those pages are chosen which are
not currently in use and are identieal to the copy
on the disk (unmodified), to be overwritten by hew
pages. The resultant fragmentation of jobs is off-
set by the use of a memory map. Not until the sixth
timeslice is it necessary to write a page out to the
disk (TASK 1, Page 5). This scheme is also used in
JANUS. (The P numbers are pages within each user's
address space. M signifies that the page is modi-
fied.)w indicates that it must be written onto the
di.k.

Gross memory allocation under JANUS, showing real-
time processes. Using a large time scale, all short-
term details of memory usage are omitted. Shown
instead are areas dedicated for realtime processes.
The blank area is available for swapping. The ac-
tivation of four!tasks is shown, each of which im-
mediately initiates a realtime data input process.
These tasks, in order of appearance, might be
MOIRAE, JBCM, DATA TAKER, and JFCM. Note the in-
terleaving of lineprinter output of tasks 1 and 2.
The variable gize scope display is a measure of the
amount of realtime buffer area required as a display
is expanded to show relationships instead of detail.

Characteristics of various bulk storage media . .
Linear bulk storage structure. (Used by CDC 6600
(extended core atorage) to hold programs and non-
executable I/0 buffers.) . « .+ « o .
Hierarchical storage structure. Access time de-
creases with height. Each storage medium has an
independent address space

Hybrid storage structure

Priority scheduling. A task in a high priority ring

will be accessed more rapidly than one on a lower ring

#"Timesharing" by interrupts. Execution alternates
between the background (lower) and foreground (upper)
line, on the basis of interrupts. While a simple
case is shown, interrupts need not all belong to the
same foreground process

Typical world line of JANUS operation. The path of
operation (heavy line) proceeds through & task 1

from T, to T41, interrupted by the swapper. At each
T', it passes to the jobchanger, whieh performs
operations (interruptable by the swapper, as between
T)+ and TS)' and returns to the next task in the ring.
Fach interrupt by the Swapper is used to initiate a

viii

24

27
29

31

31
33

Lo

16.

17.

18.

19.
20.

21.

new RAD operation, or finish an old operation.
These RAD operations are used to ready the
next taﬂk °

JANUS form of eontrol structure. Operations are
divided into three parts; mepped slave, mapped

master, and unmapped realtime. Paths of communica-
tion between the three parts are shown by arrows . .

Tree structure of tasks. The first rank of tasks
below JANUS are the system tasks. One of these

(the Ampersecaner), can start subtasks, which may
start subtasks of their own. These subtasks may be
identieal copies of tasks which may be started by

the Amperscaner, or they may be unique

Examples of address space usage, including files.
The vertical columns are independent task address
spaces, reating on the JANUS block common to all

. tasks. Two tasks are shown, with TASK 2 belng a

subtask of TASK 1. The two tasks have one page

in ecommon (TCP 2) which appears in different parts
of the two task address spaces. The two tasks
share a driven stream file, which is also refer-
enced from different parts of the two address
spaces. It differs from the TCP 2 usage, however,
in that file driver (TASK 1) may be several pages
ahead of the file receiver (TASK 2). The files

are a colleetion of diskpages, each of which may
be used as the same address space page. Only one
page of a file is actually within the task address
space at any given time, however. TFiles may be
linked internally, or may be linked through a table
residing within the task, as is shown in the keyed
file

The Job Changer - flow chart
The Swapper - flow chart . R . . . o .

Dﬁnwd ‘pa.ging - flow Chﬂ'rt e

ix

53

56

57

62
92
98
107

1. INTRODUCTION

Physicists have used digital computers for as long as computers
have existed. Indeed, long before the firat computer was built physi-
cists were suggesting that computing machines would be useful for gen-
erating astronomical and mathematical tables. More recently, with the
advent of quantum mechanics, people such as Hartree called for the de-
velopment of machines to perform computations for the calculation of
wavefunctions and energy levels of atomic structures.

As soon as electronic digital cdnputers became avalilable, they
were set the task of performing physical calculations. The usage of
computers took great strides with the successive introduction of as-
semblers (which freed the programmer from the nuisance of bookkeeping
relevant to the computer but not to the operation he wished to perform),
and'compilera (which permitted the programmer to forget all details of a
specific computer, but instead to write programs usable on all computers
which had a similar compiler available). The earliest languages (FOR-
TRAN, ALGOL) were developed as aids to computation. Their success lead
to the development of larger and faster computers. This in turn per-
mitted the development of more powerful programs, which led to concepts
of batch processing.

Batch processing was a logical development of the observation that,
over reasonably long periods of time, the computer averages as much time
spent reading cards and printing as it does computing. Since the bulk

of the operations involved were read, print and punch, the computer

2
could obviously do more computation if these operations could be done
faster. However, there are limitations to how fast a device may be oper-
ated. Further, these operations could be performed by a tiny computer.
Thus multiple computer systems were developed, where a small computer
copied cards onto magnetic tape which was later read by the large com-
puter at much higher speed. The large computer then would write the
output on other magnetic tapes to be printed later by the small computer.
This provided improved usage of the large computer, and the value of the
additional computation more than offset the cost of the additional small
computer. However, since the computer now performed all operations auto-
matically, it was no longer possible for the programmer to know just when
his problem was being processed, and to interact with it. Furthermore,
a fairly long time delay was required between submission of a problem
and the return of the results.

People soon discovered that the small computers were useful in
their own right, and that for many simple problems, results could be re-
turned faster than with the large batch processing systems, since almost
no computation was required. Thus a continuing development of small
computers paralleled the development of the large computer systems.

With the rise in computer technology, it became possible to build ape-
cial purpose computers, usually consisting of a hard-wired program and a
memory. In nuclear physics, these were best typified by multichannel
and later multiparameter analyzers. While extremely useful, the allow-
ed sequences of operatiohs were built into the machine and were rela-
tively inflexible, being limited to specific configurations which could
be changed only with great difficulty if at all. It waé usually neces-

sary to do complex operations external to the analyzer. Further, it was

J

not possible to manipulate the data once taken, but only to dump it onto
a secondary storage medium.

As computer technology improved, small computers became more power—-
ful and less expensive. By the early 1960's, it became both feasible
and desirable to attempt to interface a small digital computer to a nu-
clear physics experiment 1). This was successful, and proved to be much
more flexible than a hard~wired analyzer. Similar systems began to
spring up in many places. As programs were written and used, it became
apparent that the main value of a computer attached to an experiment lay
not in its flexibility as an analyzer, but rather in its use in an inter-
active mode with the experimenter. For the first time it became possidle
for the experimenter to provide flexible and elaborate checks on the ex-
periment, such that the computer could inform the experimenter of ques-
tionable operation or malfunction, or provide, on demand, a list of
parameters which would aid him in determining the status of the experi-
ment. Further, it became possible to analyze data as soon as it was col-
lected, and compare the experimental results with theory. Parameters
could be varied in both the theoretical calculations and the experiment,
allowing more accurate measurements of the quantities of interest. There
was a definite possibility that an experiment would proceed faster, since
it might be possible at an early state to determine that the effect of
varying one parameter was negligible, and could be ignored. Data analy-
sis could be completed with the experiment, and questionable data could
be retaken if necessary while the experimental configuration was still
operative.

There was, however, one serious drawback to this system. The com-

puter was dedicated exclusively to the use of only one person at a time,

4

The period involved might cover days or weeks, during which time no
other person could use the computer. Since the experimentalists nor-
mally discovered a few days after their experiment that they would like
to vary another parameter with respect to the data they had collected,
since they already knew how to operate one computer, and since they
knew that they could analyze their data under an interactive system
much faster than by sending it to a computation center for batch pro-
cessing, computer usage became saturated. A struggle invariably devel-
oped between the person who was using the computer and those who wished
to use it for data analyeis, data reduction, simple computation, and
development of new programs to make use of the computer. Each time a
new program was developed and added to the library of useful programs,
saturation increased. Furthermore, it was apparent that the computer
was not being used at full efficiency, since programs rarely used all
of the resources of the computer, and for long periods various resources
could be seen standing idle. Two or more people who required non-over-
lapping resource subsets could easily share the computer, if a mechanism
suitable for sharing were pfovided. Then "A" could analize his data
using a graphic display and teletype, "B" could be reading cards and
printing out the results of a computation based thereupon, while "C"
could copy a magnetic tape.

Such a mechanism exists, namely timesharing, based on the observa-
tion that if in an interactive mode of operation, a computer is normally
idle while waiting for a person to respond, then during this time it
could easily be responding to each of several users, without appreciable
degradation of response to any one. As a result, each user would feel

that the computer is devoted exclusively to his use. The computer could

still be providing a batch processing facility in the background of its

5
operation, or any other processing which was not time dependent. This
background usage would be degraded by the interactive usage, but would
8till be keeping the computer busy and productive.

Timesharing schemes fall generally into three categories. These
may be classified as follows:

l, Systems where all users are running independently, but where
each is performing identical operations of computation, control, and in-
put. Such a system would use the same program for all users, each dif-
fering only in the unique storage area he was using. In this scheme, the
program is reentrant, such that it always assumes one or more pointers
to the current area of storage it is manipulating. This scheme is ef-
fective where each terminal that may interact with the computer is
identical in its capabilities and operation. Added flexibility may be
provided by allowing the individual user to use his own programs, exe-
cuting them from his storage area, to manipulate his data. However,
any interaction between the user and his program must be handled by the
main resident program, or monitor. Further, all allowed functions must
be built into the monitor, and adding or changing a function is a non-
trivial programming problem. A common example of such a timesharing
system is that used by airlines for ticket reservations. Such a scheme
is relatively easy to produce, since there ig a finite gset of operations
allowed and desired. Its greatest deficiency lies in its lack of flexi-
bility.

2. A second scheme is that of foreground-background usage, shown
in Figure 1. Here an area of the memory is set aside for one or more
foreground programs, which interrupt the program operating in the back-

ground as necessary to perform a specific set of functions and return

Figure 1. Memory allocation under & foreground-background scheme of
timesharing., The vertical column represents core memory. The monitor
is used to provide all control functions. The area of core devoted to
beckground timeshering is successively occupied by & number of pro-
cesses, all limited to the size of the background area. The realtime
foreground area may be occupied by any one of a set of processes,

(or divided so that it may be used by more thsn one procus). dbut any
realtime process generally locks out all other realtime processes.

—— MONITOR

CONVENTIONAL
TIMESHARING
WITH REALTIME

Figure 1.

8
contfol to the bdackground when done. Usually there is a method of check-
pointing the current background program, that is, saving it on an exter-
nal storage medium, replacing it with an extension of the foreground
program capable of performing certain complex operations, and when there
is no longer any need for this, restoring the background program and con-
tinuing its operation from the point it was checkpointed. However,
there is normally elaborate checking involved to insure that the fore-
ground and background programs do not interact, as there would be great
diesatisfaction on the part of the users if it was necessary, for example,
to sort output because the foreground and background punched alternate
cards or printed alternate lines. The big advantage of the foreground
scheme is that of fast response to events, thus permitting evaluation
of each event on its own merits. The disadvantage lies in the difficul-
ty of changing the foreground. In a situation where the foreground is
used to monitor and control a process, such as the operation of a manu-
facturing complex (eg. 0il refinery) or complex machine (eg. accelerator),
where parameters may be varied but where the foreground program is rarely
changed, this is no real disadvantage. However, in a situation where
multiple foreground operations may be in operation simultaneously,
starting and stopping asynchronously with each other, severe problems
occur with respect to keeping track of free memory and making efficient
use of the memory.

3. In the third scheme each user is performing operations com-
pletely independent of all other usage of the machine. This scheme,
while being capable of the greatest degree of flexibility, is normally
found to be so difficult to implement that restrictions are placed upon

all usage. For example, no user is permitted to change the state of the

9
ﬁachine himgelf, and must request all state changes from the resident
monitor. IThib monitor must on each request, determine if the request
is valid, 1if the operation is permitted to the user, and perform other
bookkeeping functions before actually going ahead and performing the
operation. A typical operating system could easily require 20,000~
40,000 words of memory at all times just for the resident programs.
In addition, response time mgy be increased drastically such that,
while still adequate for response to people, the response time is orders
of magnitude slower than won%d be possidble in a foreground system. This
would seriously limit the usefulness of the system in an environment
where events could occur thousands of times per second, such as in a
nuclear physics laboratory.

This thesis describes a new scheme of realtime timegharing, which,
while permitting the flexibility of scheme 3 above, also permits the
response time associated with foreground programs, without many of the
disadvantages of either scheme. It has the further advantage that the
requirements of a resident monitor are kept to a minimum, since the task
associated with each user performs all of his monitor functions, in-
cluding all communication with the external world (INPUT/OUTPUT or 1/0).
This is shown in Figure 2. This is of great advantage in nuclear physics
experiments, where an I/0 operation might require a buffer of thousands
of words, wasteful to make resident unless used frequently enough to
Justify it. (The acquiring of a multichannel or multiparameter spec-
trum can be thought of as such an I/O operation, where the storage al-
located to the spectrum is in effect a single buffer.)

The operating system described is called JANUS, for the Roman god
", ..0of all going out and coming in,...also the god of entrance into a new

w 2)

division of time , thus the god of timesharing.

g

10

Figure 2. Memory allocation under JANUS. As in Figure 1, the column
represents core memory, with JANUS at the bottom. Two tasks are shown,
with the independent task address spaces twining through memory. Not
all pages of a task need be in core at one time. The darkened pages
of core sre dedicated to realtime processes specific to the task which
has the page.

11

JANUS
REALTIME
JANUS TIMESHARING

RESIDENT

STYLIZED REPRESENTATION OF
MEMORY USAGE UNDER JANUS

Figure 2.

2. THE USE OF CORE MEMORY

In order to provide a perspective for the discussion of JANUS, I
will first describe how various other timesharing systems operate. Con-
sider first the problem of sharing the core memory of the eomputer. How
éan more than one user make use of the core memory without the possibility
that an error can interfere with another user? (Subsequent figures are
keyed to Figure 3.)

The simplést scheme is to have only one user in core at a time, and
all available core is his to use. This scheme is that used in Project
MAC of the Massachusetts Institute of Technology on an IBM 7090 computer
(Figure 4). It is also used in the Sigma 7 timesharing system developed
by the Bubble Chamber Group at Brookhaven National Laboratory 3). The
users program is brought into core from an external storage medium
(swapped), and started. If the program did not inform the resident exe-
cutive program that it wished to exit early, then at the end of a fixed
time increment execution is stopped, the current status is aav?d. and
the program is swapped out to the external storage medium, freeing the
core for the next user. This proécss continues for each user, until
eventually the first user is swapped back into core, and his execution
is continued. While this scheme has the advantage of simplicity, the
amount of time spent on nomproductive bookkeeping (overhead) is high, as
the computer is idle while swapping occurs. To frovide a reasonable

response time to each user, the interval specified (timeslice or time

12

13

(*eoTT8smy3 ® Furindoex? 3883 ¥ 03
SI9JAd 9XI3U0D STYJ UT YOTYA ‘SATIO08 DIOM 9YJ JO 98n aYj dJ0N) ‘*seandyy juanbesqns 03 Aoy °f anIrgy

334
IAILOV
IAILOVNI

0 5S39908d NI dVMS 2 43sN
IAILNO3X3 | 43SN

S34M9Id 0L A3M

L3

Figure 4. Memory allocetion--project MAC. User execution slternates
with swapping (the process where the progrem is transferred to or
from mnmory).

CORE

o

Figure 4.

EXEC]

TIME—>%

UTIVE

P 2 OUT!

15

| user |‘
‘\\kul‘{ i

SWAP.
v | N

It
If
Il

et

SWAP | OUT'

SWAP 2 IN

16
quantum) must be short--normally fractions of a second to each user. An
example of the problems involved for such a scheme is demonstrated in
the Brookhaven system, where the average time required to replace one
block of 8192 words with another is 56 milliseconds. With the 1 second
timeslice used, this provides 5.6% overhead, but with 6 active terminals
as much as 5 seconds may pass before the computer can respond to the usger.
Three second response time is normally considered a reasonable upper
limit. To provide this response time, a time slice of .5 seconds would
have to be used, and overhead would increase to 78 milligeconds. Most
terminal usage consists of the computer reading in a typed record, ex-
emining it, possibly commenting upon an error, and requesting new input,
a process which normally takes much less than 1 second. In this case,
the overhead would increase to a large value. Inter-user protection
need not be considered, however, since they cannot get at each other.

By constraining each user to a separate part of the core available,
such that more than one user may fit into the core memory, advantage may
be taken of the fact that most computers suitable for timesharing are
capable of asynchronous I/0 operations, such that I/0 may coexist with
program execution. Thus one user may be executing while another is
swapping in or out. The swapping I1/0 overhead is negligible as long as
the timeslice is greater than or equal to the swapping time. However,

a new problem arises--that of relocation. To make efficient use of the
memory, a program should be capable of executing correctly wherever it
may be located. Unfortunately, programs tend to reference absolute
addresses.

The simplist method of treating relocation is to ignore the prob-

lem. This approach was taken by Dartmouth College with a GE 265 4) {and

17
more recently a GE 415) computer (Figure 5). Available core is divided
into two areas, "high" and "low" core. Execution is alternated between
high and low core..as low core is executing, high core is undergoing a
swap. However, a program loaded into high core will not run in low
core, and vice versa. A bad job mix can cause an excess of programs in
one area or the other, with the result that either the low density area
users get more computer time, or else the computer becomes inefficient,
as time must be spent waiting for swap in the high density area. Ad-
ditionally, any system library program which is available to all users
nust bq kept in both a high and low version. Protection is provided by
a bound register; which specifies the highest and lowest legal core
references permitted.

In order to treat relocation adequately, so that a program may
run in different areas of core without revision, special hardware must
be used; if the relocation operations were perforﬁed by software the
overhead would be tremendous.

There are three methods of automatic relocation used. Two of
these are almost identical, with only a slight difference in emphasis.

The first of these methods uses a location register and relative
addressing. ZEach address is relative to the referencing instruction.
The actual reference is made by adding the location register to the ad-
dress specified. The block of code will now operate anywhere in core
automatically. This scheme has been most successfully applied to the
SDS Sigma 2, which is not however used for timesharing.

A second scheme uses a base register. Addresses specified are
relative to the beginning of the program, rather than to the address of

the instruction; otherwise operation is identical to that outlined above.

18

Figure 5. Memory allocation--Dartmouth project. A new program is
swepped into core memory while the current program is executing.
However, an imbalence in the number of jobs assignsd to high and low
storage causes a delay at the end of the third timeslice, as there is
nothing to do but wait between USER 3 and USER 1.

<LNO S dUMS
2% Z

USER" 2

32

12

EXECUT|VE

-— 3400

TIME —=

Figure 5.

20
This scheme is used on the IBM 360 computers (5, 6). and in the PDP-6 7)
(and now in the PDP~10) computers (Figure 6). There are two advantages
of this scheme over the Dartmouth scheme. First, successive users are
placed where there is room in core, without the problems associated with
high and low core areas. Secondly, programs may be of variable length,
up to half the available space in extent. Short programs can coexist
with longer programs. This scheme further introduces the concept of
pages--a basic unit of core size. In the PIIP-10 each program consists
of an integral multiple of 1024 word pages. Protection is again pro-
vided by a bound register, the lower limit of which is also the base
register.

The third scheme of auto-relocation involves & memory map. First
developed by Project GENIE at the University of California, Berkeley,
using an SDS 940 computer, it is also used by the IBM 360-67 (8, 9). and
JANUS in an SDS Sigma 7. Figure 7 shows the use in an SDS 940 computer,
which uses 2048 word pages. Note that pages which are modified (M)
while & program is active are flagged to be written back (W). Since for
unmodified pages there is a true copy on the external storage medium,
these pages are pfeferentially chosen to be overwritten thereby cutting
down the number of swap operations necessary. The penalty for reducing
the number of swap operations is the necessity of searching through a
table of content-associated core pages, to determine if a page of a pro-
gram is currently in core. Programs execute in a virtual address space,
connected to the real address space of the core memory through the map.
Thus contiguous virtual pages need not be in contiguous real pages of
core, but mey instead by located wherever most desirable. Inter-user

protection is afforded by a multilevel page protection system, used to

21

Figure 6. Memory allocation--PDP-6 computer. Swapping occurs con—
currently with execution, but the efficiency is higher than in Figure
5, @8 no limitation is imposed by the use of specific areas. Note
that a significant part of memory is rarely or never used.

22

NI € dyMs.

FREE|

100 b dvMs

|
INACTIVE

<
1
)
(%2}
=)

—Zqor—>u
NI b dWMS

CORE

1N0 2 dvMS

INACT!

NI 2 dums =

U
o
o 0 S
fis oo
= wa\\\mmmu =
\ =
t r— —
i =
: = ——
g =<
=
===
NI e
= 4
=5
w NI | dYMS
14
m 1N0 € dYMS’
w
w
[/
w
NI € dUMS:
< o [e]
© w 2} <

o
R Q

EXECUTIVE

TIME

o]

Figure 6.

23

Figure 7. Memory allocation--project GENIE. Problems are initially
brought into free core. When no more core is free (TASK 4), those
pages are chosen which are not currently in use and are identical to
the copy on the disk (unmodified), to be overwritten by new pages.
The resultant fraguentation of jobs is offset by the use of a memory
map. Not until the sixth timeslice is it necessary to write a page
out to the disk (TASK 1, Page 5). This scheme is also used in
JANUS. (The P numbers are pages within each user's address space.

M signifies that the page is modified, W indicates that it must be
written back onto the disk.)

2L

64

60

50

40

30
P8

pr

W R T Nw
i
Il Pelllllmw

P6
P5
£4

20
P3
P2

P.l,

ZHIHIFHZ:

=E=

! EXECUTIVE

CORE

o TIME—

Figure 7.

25
protect and monitor the usage of pages.

Under a mapped paging scheme, the usage of each page may be closely
monitored--closely enough, in fact, to permit demand paging. If the exe-
cutive system can be informed whenever a page is referenced, and if the
user can be locked out of some of his own pages, there is no longer any
need of the whole program being in core. Those pages currently being
used can be brought in, and if a valid reference is made to a page which
is not present (demanded), the current timeslice can be stopped, and
conditions set up such that the demanded page will be available during
the next timeslice for the program. Further, if a page is not referenced
for some period of time, it may be safe to assume that it will not bde
referenced again for a while, and eased out of core memory in order to
make room for pages in use.

JANUS uses a mapped memory usage scheme, but with an important ad-
vantage over that specified above. Much of the executive is unique to
the task, rather than resident and common to all tasks. As a result, it
is entirely up to each task if demand paging is to be used. Furthermore,
any task's monitor may dedicate one or more pages, making that area
resident until undedicated (Figure 8). These portions may be connected
to interrupts, permitting realtime operations asynchronous to timesharing.
These pages form resident islands, and timeshared usage maps around them.
All the advantages of foreground usage result, without the rigidity in-
herent in conventional foreground-background systems. The added ability
to solve problems which are actually larger than physical core, without
requiring special techniques of the programmer, such as overlays, is a

boon.

26

Figure 8. Gross memory allocation under JANUS, showing realtime pro-
cesses. Using a large time scale, all short-term details of memory
usage are omitted. Shown instead are areas dedicated for realtime
processes. The blank area is available for swapping. The activation
of four tasks is shown, each of which immediately initistes & real-
time data input prccess. These tasks, in order of appesrance, might
be MOIRAE, JBCM, DATA TAKER, and JFCM. Note the interleaving of
lineprinter output of tasks 1 and 2. The variable size scope dis-
play is a measure of the amount of realtime buffer erea required as
& displey is expanded to show relationships instead of detail.

27

60}
50 SR
"~ DATA ACQUISITION
40+
\
30
201
15;;?20': START OF | START OF
START OF TASK 3 | TASk 4
TASK |
%)
2 1ok PLOT]
2
a
w
[0 et
(@]
(O]

0
TME——
Figure 8.

3. BULK STORAGE

Almost all timesharing schemes require, in addition to the core
mamory, additional bulk storage to keep programs, libraries, and data.
In general, this storage is addressable, in that a specific block of
storage may be located without searching all the storage medium. With
certain exceptions, magnetic tape does not fall into this category.
Instead, magnetic tape is a serial or "stream" storage medium, where
records relative to the current record may be referenced. A:>iuch. it
is useful primarily as an archival storage medium, where data stored
thereon is not capable of change without either destroying all succeed-
ing records or requiring & copy operation to move the data from a source
tape to a destination tape, making changes as necessary in the new copy.
This use is adequate for storing data, and for some functions such as
holding linepriater output. It is inadequate for working bulk storage
in a timesharing environment where response time is critical;

In this environment, addressable storage is required. Commonly
used storage takes many forms, some of which are indicated in Figure 9.
Shown also is the typical access time and range of storage capability
for that form of storsge, as well as cost. Cost and storage are in
terms of bytes, a byte containing 8 bits of data. It is readily appar-
ent that as access time decreases the cost increases. This factor of
cost/byte is what normally sets an upper limit to the practical storage

capebility for a particular form of storage.
28

29

*@1psm 3FeI038 J[NQ SNOTJIBA JO SO}387I9308I8Y)
(sa+4q) AWNTOA
o] Ol Ol Ol 0! o
T T T I 10
300V SWO0G-0
3714 XSIa
SS300VSW OG-0l .
— WSIQ L/H -0l
SS3D0OVSWOl-|
WNYa
SS300V ST Ol
AYOW3IW 3400 MO1S
— =100l
SS300VS™I-I
AHOW3W 340D 1SV
SS300V ST I-10
JWNT0A 2149 00G - |
| A | 3143/0G8-GI$ - SJO14dINd w 000!

6 sandyg

(SYV110Q) 244a/1S09

30

Timesharing eystems require an immense amount of bulk storage,
normally approaching infinity as closely as possible. In additon, it
is normally desired that access time be as low as possible. To be prac-
tical in terms of cost, it becomes necessary to build a bulk storage
structure, using a set of storage forma of differing characteristics.
Thus, one uses a fast, low volume medium as well as a slow, large vol-
ume medium.

This storage structure may take three possible forms, of which the
linear form is rarely used in comparison with hierarchical and hybrid
structures, at least for timesharing usage.

The most easily understood structure, however, is the linear
structure, shown in Figure 10. Here the storage is an extension of the
core memory, but suffers from the difficulty and inconvenience of exe-
cuting programs directly from the storage. Its advantage lies in the
fact that there is a unique address associated with every plece of stor-
age, both core and bulk. Operation consists of copying blocks of data
into core memory, manipulating them, and then replaciné them.

The opposite extreme is the hierarchical or pyramid structure (Fig-
ure 11). In this scheme, unused sets of data are kept at the lowest
(large capacity, slow accessibility) level of storage. If referenced,
the set of data is brought into core, and, if necessary, later written
back. The system executive does automatic accounting of usage--if a
data set 1s used frequently enough, such that time spent accessing a
leyel of storage becomes significant because of frequent references, that
data set is copied through core to the next higher level of storage.
Depending on the algorithm used, the original block of storage may or

may not be freed (depending on whether or not the storage is referenced

31

*90uds esexppe juepusdepu}l ue sey

*3qZTOY YITM FOSVOIOID SW[3 SSIVOY *aINJONIIS 2FVI0}8 T[WOFYIIBIITH

=——30vdS SS3y¥aav 3714

unipaw aFer038 yowvg

d3H10

37114 MSId
ASId L/H
WNHd

AHOW3WN 34004~

*IT #xndtg

(°s1973nq /I ®TqEINOVXI-UOU pU®

*9InjonIys 9381018 YTNQ JBIUTT

AHOW3N 3400,
dOVHOLS MINg 319VLNDO3IX3I-NON

swerdoxd proy 0% Aowduoan 3100 DPAPUIIXI) 0099 0D £q pesn)

*0T #aIndt4

32

by & unique name, or by its areal name on the lowest level). As the use
of this procedure unaided would tend to fill higher levels of storage,
a mechanigm must be provided to purge a level of some data sets, whose
usage frequency does not warrant such a high level of storage, to a
lower level. This may be done periodically, as well as upon demand.
Efficient use is made of bulk storage, but there are two disadvantages
to such a acheme. For ease of description, I will assume a data set
consists of a group of pages, and consider the use of a single page.

First, and most important, a page must be referenced by a unique
name. This name will have associated with it indicators telling the
current level and location within that level of the apecific page, as
well as some sort of usage indicator. A table is required to permit the
association to be made. In addition, some indication must be provided
for free pages on each level, as well ag for free names. In order to
provide speed of reference, at leagt part of this table must be resident.
Since a minimum of one word/page is indicated, and since storage of
100,000,000 bytes (50,000 pages) may be available, it is readily appar-
ent that an excessive amount of core storage is required for the table.
There are alternatives, requiring only a list of the éontents of the
higheat level of storage, but these are expensive also, as each reference
requires searching the table to see if the reference is there--a time
consuming operation.

Secondly, the overhead introduced in purging levels is non-trivial.

A typical hierarchically organized system is the IBM 360 Time
Sharing System (TSS) (8, 9). Using a complex algorithm to improve ef-
ficiency, measured overhead is still 80-90% 7),

The third form of storage structure (Figure 12) is the hybrid

33

*?danionays afexo04s prIqiy

-—3dWI1 SS300V ONISV3IYI3d
-—3J0VdS SS34AAV ONISVIYONI

*2T dandtyg

ERIEME

MSId L/H

WNyd

AHONW3IN 340D |{r

3k

structure. Inthis scheme, all names are absolute rather than relocat-
able, and no resident table is required, except for a list of unused
pages for each storage medium, and an associative table of the pages
contained in core memory. Pages are allocated according to expected
use and duration of existence--program libraries in slow storage, ac-
tive programs in fast storage. If a gtorage medium is full, space is
allocated from a slower medium. A program is copied to fast working
storage and renamed when it is brought active, and that area is freed
when it exits. As a result, little overhead is required compared with
the hierarchical structure, and the benefits of the linear structure
apply, without the problems associated with nonexécutable storage.

JANUS uses a hybrid storage struéture. As the MSU Sigma 7 con-
figuration includes only a single bulk storage medium (a 1.5 megabyte
H/T disk), it is a simple structure. However, only a relatively minor
change in JANUS is required to implement one or more additional stor-

age media.

4, SCHEDULING OF TIME

In any timesharing scheme, the timesharing is effected by dividing
the time available into quanta, or timeslices, which are sllocated to
successive users. Scheduling involves two parameters--timeslice dura-
tion, and ordering of users.

Timeslice duration may be fixed or variable, and a mechanism is
usually provided to terminate a timeslice early. A fixed timeslice has
obvious meaning; each user gets the same quantum of time for his prob-
len.

A veriable timeglice is normally used in a timesharing system
where the status of the machine, the system, and the previous history of
a particular task's usage is available. On the basis of these para-
meters (and possibly others, which may be defined by the user), an
Hoptimum" timeslice is calculated for each user each time. Thus, if
the machine and system are lightly loaded, a longer duration is provided
than if a heavy lead exists such that many users must be serviced with-
in a given period of time. Again, in a priority oriented system (see
below), the duration is related (perhaps proportional) to the amouat of
time a user's problem has already taken. The rationasle for this scheme
is that, if a problem has already taken a certain period of time, a
longer timeslice alloted to it will cut down on time spent for system
overhead, and more productive work will be accomplished. For example,

a problem which has already required N timeslices of duration T may be

35

36
given a duration of 2T for the next N timeslices. If still not done,
the duration might rise to 4T for the next 2N timeslices. Since an
extremely long calculation, such as frequently arises in scieatific
work, might require hours of computer time, a mechanism must be pro-
vtés; $0 pernit the abortion of a long timeslice, in prder to allow
accegs to the machine by other users.

A further perturbing factor may be the admission of a user to’
specify his own timesharing, as in tasking under PL/l 10). In this
case, a user may start subtasks to operate concurrently with the con-
trolling task, and specify what portion of the time the computer is
to spend on each. Then the duration allotted to the user must be di-
vided into appropriate sub-quanta to permit each of his tasks its pro-
per allowance of time.

The second phase of scheduling involves ordering the access of a
user to the machine., The simplest ordering is to place all users into
a "ring"., In a simple ring, all users, both active and inactive, are
in a circular structure. Control passes from user to user séquentially.
skipping thoge who are insctive. Users may pass from active to in-
active states and vice versa. The access time for a user then depends
on his position in the ring relative to the currently active user. (A
user is active if his program can proceed with computation, rather than
wait, as for example for imput.)

A more sophisticated approach is to have a ring of active users,
and a list of inactive users. When a user is activated (goes from the
inactive state to the active state), his task is inserted into the ring
as the next task to run. This has the advantage that an activated user

task has a short access time, and therefore fast response time. If

37

the task stays active for longer than a timeslice, he enters the normal
ring sequence.

An extension of this scheme is the assignment of priorities to the
tasks (the above is a two-level priority scheme). A multilevel priority
system is generally an aristocratic system: all tgsks at a given level
are exhausted before proceeding to a lower level. If a level is being
executed, and a task appears on a higher level, the lower level pro-
cessing is discontinued. A task activated is normally entered into a
high level.

Under priority scheduling, there may be a pyramid of rings (Fig-
ure 13). These rings leak—-if a task stays active for long enough, it
drops to a lower priority level. If it goes inactive, it drops to the
lowest (inactive) level. As described above, lower priority tasks may
be given & longer time quantum, to offset the fact that they may be en-
tered less often.

In general, the parameters used to define priorities and time-
slice duration are produced by an empirical fitting process, based upon
some sgpecific mix of possible jobs. In a terminal-oriented timesharing
system, a .1 second quantum may be used for fhe highe;t priority, to
provide fast terminal response time, and may expand to several seconds
at a lower level, where long computations are performed.

JANUS uses a scheduling algorithm with a two-valued timeslice and
a four-valued priority scheme. A task is allocated a .1 second time-
slice, unless it is the only active task in the machine, in which case
it is alloted .4 seconds. If a realtime process requires rapid response
from its agsociated task, it can bring the task active, and even effect

Jobchange for the currently active task.

38

suo uwy} Arprdes IIow pPIssadd® aq [TTM Futax A3TI0TXd YFTY @ U} X8V} ¥

ONIY ALI¥OIYd L1S3IMOT s \

ONIY ALIHOIYMd LS3H9IH

ONIY ALI¥OIYd ¥3IMOT OL m)
ONIVIT, XSVl @

*JurI IOMOT 8 uo
Jugrupeyos AL3rroyxg °€1 Indyg

WNLNVNO
NOILNO3X3
Q3SV3HONI

*

|
3WIL SS3J0V

Jd3Sv3yd3d

39

The possible priorities are imactive, mormal, hurry, aad rush, in
order of imcreasing level. The structure is that of a simple ring--aa
activated task remains in its mormal sequence. However, a task may bde
placed ir & higher priority.level tham mormal. The use of a higher
priority overrides the normal sequence of operatiom, amd the first high
priority task encountered is used. |

The differeace between hurry and rush priority is ome of efficiency,
Under rush priority, a task is made ready amd started, even if another
task is ready to proceed. Umder hurry priority, if another task is
ready to proceed, it does so, rather than have the computer wait while
the high priority task is readied. A task foumd ia either high prior-
ity state is reduced to mormal priority om entry; thus high priority
applies only to the first access. Om retura from a high priority task,
execution will proceed with the next task in mormal sequeance from it,
unless another high priority situation exists.

Since JANUS is a system geared to realtime operations, there is a
secoad form of timesharing available. This is by means of imterrupts
(Figure 14). A realtime event may be defimed as the occurrence of an
event asynchromously with the operatiom of the computer. If the event
is attached to a hardware interrupt, it is possible to rapidly switch
the complete state of the computer, iamterrupting the current process,
and transferring comtrol to am imterrupt routime. This routine may take
the necessary action based upom the eveat, and then returm comtrol to
the iaterrupted process. Whii; the interrupt is active, it cam have
performed various operatioms, includimg the activation of the associated
task., In general, all I/O operations are associated with imterrupts,

including data acquisition. Imdeed, the basic JANUS fumctioms eof

Lo

*88d00ad punox@exoy swss IY) 09 Fuoyeq TIe jou
poou 893dnIa Uy ‘uUmoys ST 9980 ITdwis ¥ GTIYL °*S3UNIISJU] JO SIBQ ¥YJ UO ‘url (x9ddn) punoadezor
pue (IIMOT) puNoJINOBq Y3 UIeMIIq $338UII[® UOTINOexy ‘s3dnizejuy £q ,Furreysswmrl, 41 dInITg

-— 3NIl

GNNOXOMOVE
SS3004d
L aNNOY93X0S

! b *

1dNYY3LNI 1dNYYILINI 1dNYY3LNI

41

swapping and jobchanging are associated with imterrupts, although of
lower priority tham those used for data acquisition.

Realtime processes operate in the foregrouad of the computer--
timeshared operatioas im the backgroumd. As a result, it is possible
to perform a nuclear physics experiment at several levels simultaneously,
such as realtime data acquisition, realtime I/0 (e.z., plottimg), real-
time timeshared data analysis, and timeshared theoretical computatioa.
Each of these can be treated as an independent process, and thus the
processes necessary to a particular experiment may be selected and
started. If it is discovered that an additional process is required
during the course of an experiment, it may be selected and added to the
set of active processes. Similarly, a process no lomger required may

be dropped.

5. DESIGN GOALS OF JANUS

JANUS was first desigmed to optimize realtime processes, specifi-
cally data collection, comtrol, and imteractive processes relatiag to
experimental nuclear physics. Only after it was decided that these were
the most importamt fumctions of the coxputer for our application, was an
attempt made to determine how to proceed 11), aa analysis of projected
usage imndicated that any realtime process had associated with it a large
body of associated data and program which was not uaea coatinuously,
and which was of low priority. Also indicated was the fact that, while
& realtime process was active, large portions of the computer resources
would be standing idle. Furthermore, the capability of operatimg mul-
tiple independent realtime processes simultaneously was desired.

It rapidly became spparent that a timesharing system was desired,
with a capacility of running realtime processes in the foreground, while
the associated programs (and independent ones also) would run in the
background. Efficient use of core memory imdicated the need for a small
resident monitor, as well as memory mapping. Tasks were defimed, and
their requirements and capabilities were delineated.

The result was the JANUS philosophy:

l. The highest priority use of the computer is to service in-
terrupts, and external data collection associated imterrupts should be
of highest priority. There should be no critical timing requirements on

any sequence of code, requiring the inhibiting of interrupts.

42

43

2. Amy hardware in a given installatior should be available to a
user if he needs it.

3. The only restriction on any user should be that all other users
are protected from him, as he is from them.

4, ©No user should be aware of any other use of the machime, except
when a delay is required because of a request for a curreantly unavailable
rasource.

5. It is the responsibility of the task associated with a user to
insure proper operation, as JANUS is to impose no arbitrary restrictions
by checking on the task. JANUS should be invoked only for coamtrol
functions.

6. What a user does not know about the system should not hurt
him, as long as he follows reasonable conventions as to usage.

7. A user need not have any knowledge of anythiag he doesn't use,
to the extent that it does not exist in the machine he is using.

These goals have been met in JANUS,

6. UNIQUE FEATURES OF JANUS

The system is based om the observation that a piece of a program
need only be accessible while it is being referenced. In a timesharing
system, programs succeed each other at small intervals of time. The
only piece of any such program which need be in core at all times is
that piece which may be called upon asynchronously to the normal sequence
of timesharing. It is readily seen that this description is exactly
that of realtime operations, which can be extended to include all forms
of I/0. If a mechanism is provided for a task to make a part of itself
resident for the duration of a realtime requirement, then it becomes
feasible to timeshare monitor systems, since, in general, monitors
provide primarily for realtime I/0 functions and any operations or usage
which it is not desirable to allow to the user directly.

Further, if a mecharism exists to determine the usage of a dlock
of storage including its accessibility, then the only blocks which must
be available each time the task is active are those blocks to which the
mechanism does nog apply. Other blocks meed not be accessible, or even
in core, if a mechanism is provided for fetching them as necessary.

Again, if a mechanism exists for automatic relocation, such that a
given piece of program cam be operated successfully from different parts
of the real computer memory, then these mechanisms can be used as a mem-
ory expander, such that programs can operate anywhere in the address

space (chapter 9) of the computer whether or not that address space

Yy

ks
correspords in full to existing memory.

Furthermore, each task may operate in a completely indepeadent ad-
dress space, or several tasks may intersect in one or more blocks, which
need not, however, corregpond to the same piece of address space in each
of the intersecting tasks.

In order to describe how these mechanisms are implemented in JANUS,
it will first be necessary to describe umique features of the target
machine, a SDS Sigma 7 computer. Certairn features of JANUS have been
influenced greatly by the operations allowed by the hardware. Some of
the operations necessary to JANUS are provided quickly and easily by the
hardware, showing the power and utility of such hardware, while others
equally important must be implemented in a less than straight-forward
manner, and would benefit greatly from the existance of hardware suited

to the application.

7. THE TARGET COMPUTER

12) is a relatively new third generation

The SDS Sigma 7 computer
computer of which MSU acquired the first sold. A first generation com~
puter is generally typified as consisting of some form of memory and a
processor, which can acquire specific data words (imstructions) from the
memory and based uporn these instructions manipulate other data words.
This generation usually used vacuum tubes. Second generation computers
are typified by the use of transistors, and include such features as
index registers, I/0 channels (a device which shares the memory of the
computer, and which, on command, can perform tsyn;hronoul operations for
the computer, such as transmitting a whole string of data elements,
rather than just one), and imterrupts, allowing multiple use of the com—
puter. The third generation computer is distinguished by the use of im-
tegrated circuits, and features such as privileged imstructions, paged
memory, memory mapping, flexible memory protection, "scratch pad" re-
gisters, and I/0 processors. These are discussed in turn below.

Privileged imstructions: the computer may be operated in either
slave (computational) or master (control) modes. In slave mode, all in-
structions relating to the internmal use of the computer are permitted,
but certairn control instructions are illegal, and memory usage is con-
trolled. Conversely, in master mode, both internal and privileged con-
trol imstructions are permitted, including those which change the status

of the machine, but the core monitoring capability is lost.

L6

L7

A paged memory means that a matural unit of memory exists, such
that specific comditions may be applied to ome page and not another. In
the Sigma 7, the size of a page is 512 words. These pages are indistin-
guishable in their usage except for the real memory sequence they are in,
with special usage for the first page im this sequence (page zero).

Memory mappimg is special purpose hardware to provide automatic re-
location by pages. Associated with this is a table, the map, which
specifies the usage to provide. Under this scheme, each page of memory
is automatically, and with imsignificant cost in time, mapped into a
specific real page of memory. There is mo requirement of identity, and
thus the address space the computer is operating umder meed have mo cor-
respondance with space in the real memory, except in special cases. As
a result, a task may be loaded by pages in such a way that the most ef-
ficient wse is made of the existing memory, imdependent of the address
space requirements of the task. There may be a one-to-one correspond-
ance 1in regions of the map, es an alternate device to the poimters
degscribed in timegyharing scheme 1 in the introduction.

Memory protection is that ability to specify the usage of certain
pages of memory under specific conditions. For example, in the Sigma 7
oporati#g in mapped slave mode, four modes of usage may be specified for
each page, corresponding to the degree of access allowed, These access
protects are: 0. Complete access allowed, 1. Write prohibited,
2. Write and execution prohibited, 3. Ali reference prohidbited.
While intended primarily as an aid in debugging and to provide security,
the access protect may also be used to monitor the usage of memory.

Memory is divided into fast and slow portions. The fast portion,

although strictly a storage medium, may be treated as a large set of

48
registers with ideatical capabilities. These "scratchpad" registers
are normally treated as specific locations in memory, and thus all
register-register operations are a natural extenmsion of normal memory.
Indeed, execution of the program may proceed from the registers. The
net effect is that of a two address computer, where one address space
is & small subset of the other.

There is usually one or more I/0 processors (IOP). These are es-
sont;ally the small computer, described in the introduction as the batch
processing system, built directly imto the large computer, an IOP is more
powerful than a channel, in that it can provide simple operations, such
as collecting data sequentially from several places in memory and com=-
bining them into a single record, or transmitting multiple records bde-
tween the memory and a device.

These features describe the Sigma 7, but there are others which
are extremely powerful, although mot umique to third generation computers.
The most important such feature is the inclusion of bhard-wired subroutines.
(It is not generally realized that all floating point operations fall
into this category.) Since the operatiom is hard-wired, it may proceed
relatively fast. Hard-wired subroutines are usually expensive, and are
normally recognized by being am optional feature on the computer. The
simpler ones may, however, be standard. The map and protection des-
cribed above fall into the category of a hard-wired subroutine.

Stacks: it is frequently desirable in a program to be able to
save information temporarily in a push-down list or stack, whereim the
last item entered is the first item removed. The major use of such a
feature is to provide dynamic allocation of storage. If all temporary

modifisble storage is used in a stack, less storage is required than if

L9
all storage were entirely static, its use is optimized, and recursive
routines (those which may cell themselves) become easy to write.

Conversion: the Sigma 7 has instructions for conversion between
any two number systems, provided that the two are related by a weighted-
number system.

Byte string: four standard and one optional instructions permit
the manipulation of strings of bytes (character), with operations such
as move, compare, translate, and search. These permit powerful text
editing facilities.

Floating point: optional. Including single and double precision,
this is useful whenever accuracy is unimportant, or the range or numbers
involved is unknown. Used in scientific calculation, where complex op-
erations are performed.

Decimal: optional. All operations are guaranteed good to 31
decimal digits. Numbers are carried around as binary coded decimal
quantities. Used primarily for business applications, where the oper-
ations are simple and quantity of operations is the criterion. (It must
be remembered thet all operations on a single number must include the
time spent to translate the number to and from a character string, and
this may be appreciable.)

There is also an instruction (interpret) which is relatively power-
ful in juggling tables of non-numeric dats, provided that they are of a
specific format.

In addition, the Sigma 7 provides variable data bases, such as
byte (8-bit), halfword (2-byte), word (4—byte), and doubleword (8-byte),
and independent instructions to manipulate these data bases. In con-

junction with these, a base addressing scheme is provided, such that any

50
indexing operation is automatically at the reselution of the data base.

There is also a set of imstructions, called immediate instructions,
which referemce the registers only, usimg the 20 bit address field of the
imstruction as a sigmed operamd.

In general, the Sigma 7 is a well designed computer, with a power-
ful instruction set, desigmed for the convenieance of the programmer,
rather than the engineer. However, it lacks a few features which would
be very useful.

Specifically, I feel that there are two sets of imstructioas mis-
sing. These may be classified as "logical immediate" and "queuing".
Logical immediate imstructions would be an additiom to the immediate in-
struction group described above, to include AND immediste, OR immediate,
and EXCLUSIVE-OR immediate. The additiom would be of great value for
nomn-numeric operations, as currently it is necessary to provide a mask
in core, even if meeded omly omnce. The queuing group would be harder
to implement, since it would need to be a hard-wired subroutine. A
complement to stacks, queues are cyclic stacks, of first-in-first-out
nature, rather than first-in-last-out. However, it would seem ne more
difficult to implement queues than stacks.

Additional instructions which might be of use are list processing
instructions, where a list and coumt are provided, amd the list is scan-
ned until some condition is satisfied.

As far as the Sigma 7 hardware is concermed, there is omne major
failing. This can be traced to the expectation that the computer would
be used with a centralized monitor. As a result, there are a number of
items of machine status which cannot be read directly, but muast be

represented by an image in core memory. These imclude the map, access

51

pretect, ard imterrupt status. In a decentralized system, as under
JANUS, it is not convenient to keep a centralized record of all interrupt
status. As a result, while optional power failure imnterrupts are avail-
able for the Sigma 7, allowing the status of thé machine to be saved if
power il:IOIt, it is impossible to save the status of the interrupts.

A special instruction is provided to load the map and protection.
How much more useful it would be if the map and protect registers were
inside the address space of the computer, subject to normal protection.
Then normal addressing instructions could be used to modify these

registers, they could still be protected against a malevolent user, but

they would be readedle.

8. STRUCTURE OF JANUS

JANUS is the name of both the system as a whole, and the resident
part speeifically. As a whole, JANUS consists of a base (resident) and
a ring of tasks which fluctuate in size. JANUS operates on several
levels coneurrently (Figure 15). At the lowest level is the set of
tasks, one of which is always current (active) or next. If active, the
task is executing, performing its set of operations for a given period
of time (time slice). While it is sctive, it may call upon JANUS re-
sident to provide or save information or perform a specific operation,
either explieitly or implieitly. At the end of the task's timeslice,
the tesk is placed on a higher (interrupt) level, that of jobchanging.
After performing any operations unique to the task at slice end, the
task returns to the resident Jobchanger. The Jobchanger performs stand-
ard slice end operations, and then determines if a new task is ready to
proceed. If so, the computer is set up to execute the new task, and then
control is transferred baek to the lower task level. However, just be-
fore this eontrol tranfer, the Jobehanger determines what task is to be
next after the eurrent task. It may decide to start the Swapper, & rou-
tine on a higher level than either the Jobchanger or task. The Swapper
will esynehronously interrupt the Jobchanger end active task as necessary
in order to bdring into memory parts of the next task. Thus there is a
good chance that e new task will be ready to proceed when the current

task!s time is up. In eddition, the resident portion of JANUS is

52

53

‘}883 XU Y3 ApwIl 03 pIsn IIw suoyjBIado (VY eseyl °uotrgesado

PIO U®R YSIUTJ I0 ‘UOpjelado JVE MIU ® 33WPITUT 03

YT} 3XUW Oy3 03 suanyex pue ‘(55 pue g wesmysq ew ‘zaddems eyy £q erqesdnizau

Yotym ‘aadueydqop Iy3 ydnoxyi sessed 37 ¢,I yowe 3y
YFnoxyy spsavoxd (euyy £a8ay) uoypjeredo o yiyed ayg

pesn 81 Iaddems ey3 £q 3dnaxajul yoeyw

*Jurx Iyl ug

suoyjerado smxograd
)

*xsddems sq3 £q pejdnrxsjuy ..ma 04 ¢ Woxy 1 ¥Se} ®
*uoyjeredo SANVP JO SUTT DIIOM [eOFdAL °GT @andig

-—3NIL

- <1 MSVL

J3A37 XLI¥0INd

—— H3IONVHIBO"

(43ddvms) 071

Sk
asynchronously handling a number of specialized interrupts, which may
be fanned out to specific routines. During the timeslice of a task,
the task may request in a specific manner that a portion of itself be
dedicated and be attached to a realtime process (Figure 16). This re-
aident routine may then also operate asynchronously to the timesharing,
and at a higher level. The dedicated portion may at any time signal the
task that a specific condition has occurred. Even if the task has put
itself on wait (inactive) status, this signal is sufficient to cause
the task to reenter the ring as an active task and take the proper ac-
tion with respect to the condition.

A task may, at any time, provide JANUS with the name of a subtask
to start (Figure 17) or delete from the ring of tasks. Any task may
silgnal a subtask, or a parent task, and is responsible for destroying
all subtasks before exiting itself.

Thus, at the task level, JANUS does nothing for the task, in the
sense of performing a high level operation. Instead, it performs a
bookkeeping operating to keep track of various system resources, and
allocates these to tasks on request if they are available. These book-
keeping operations may make higher functions possible, such as by con-
necting an interrupt routine to the I/O interrupt, but JANUS will neither
do the I/0 operation itself, nor check the legality of the request. The
assumption is always made that any task which is performing such an op-
eration is doing its own internal bookkeeping, and has had the specific
device assigned to it before it proceeds to attach itself to that device
through the interrupt.

At a higher level, JANUS performs those functions common to all.

For example, if an I/0 interrupt occurs, JANUS will asknowledge the

55

Figure 16, JANUS form of control structure. Operations are divided
into three parts; mapped slave, mepped master, and unmapped realtime.
Paths of communication between the three parts are shown by arrows.

56

SNOILONYLSNI ouwuﬁZ&V (NOILVLNdWOD)

‘91 [3471 &

39vyoLs 3NDINN
d3.1VvIOOSSV

ANV S3NILNOH

3AOW3AVTIS

INILNOY ONV 39VHOLS NOWWOD

<

SIVNIIS

-

39VY0LS 3NDINN
g31vIO0oSSsY

Sdvdl VO

ANV S3NILNOY

(NOILO3SH3LNI) SNOILONNA
[TOYLNOD ANV 3JNIL-TV3Y H108 OL NOANWOOJ 39VHOLS

(TO4.LNOJ) 3AOWM3LSVIN

39vHO01S 3NDINN

d31VvIOOSSV
ANV 3ANILNOY

(AWIL-TV3Y) LdNHY3LNI

<>
4

TOHLINOD 1dNYY3LNI

SANVP ¥3ANN
NOILVOINNINNOD TTVNY3LNI
ANV 3dN10NYLS

57

*onotun 3q ALew LIY3 I0 ‘Iauedsidmy Y3 Aq pelels Iq Aem yO[ym 8)E83 JO 837dod TWITIUIPT 0q
Aew sysBIQNS IVIYJ, ‘UMO ITOYJ JO SYEBIQNS 3JI@3IS A YOTYM ‘siseqqns jIe3s ued ‘(IIuwosiadmy y3) I89Yg
JO sup °sYs8) We (848 eYj I8 SANVL MOTIQ S3iSB] JO NURI JSITF OYJ °SY8Y] JO 3INJONILS @0X] /.1 dInItd

_ .Fo..n.on _! AVHION _

_r 107daN _ — 101daN _

[avaon |

_ JWNAAN _ Wo4r

on_miw »o._a_ Tzo_m.fm :oz:a_ _ NVIDILYOW _

HINVOSHINY _mun_uux um:Oz_ _Eo_m:>m .rz_:m_ _hzo_mza o<um_

SNNVP

58
interrupt in order to discover which device caused it, and will search
a table of active devices for this device. When the device is found,
associated with it will be an address of a routine in dedicated memory,
to which control is transferred in order that that routine can service
the interrupt. This operation is necessary since several tasks may be
doing independent I/O operations, and the computer has only one I/0 in-
terrupt, to which all such processes are connected.

One of the resources which JANUS keeps track of is space on the
Rapid Access Diak (RAD). The disk is divided into a collection of disk-
pages, each of which is the same size as & page of memory. The Hardware
of the Sigma 7 treats the slower core memory as an extension of the fast
scratchpad memory: JANUS treats the disk as a slow extension of core
memory. Indeed, a task is an ordered set of diskpages (diskfile). Just
as a set of operands from core memory may be in the registers during a
computation, so also a set of diskpages may be in core memory dﬁring the
execution of a task. A simple task, which is limited to only a few
pages, may be entirely in core memory each time it is active, while a
large task, one using the full address space of the machine, would do
its own demand paging, such that a page was not in core until referenced
and when no longer used would rapidly retreat back to the disk.

JANUS treats resources in two categories, common and unique. A
unique resource is one which is asked for by name rather than by gen-
eric type. An I/0 device is a unique resource, while & diskpage is com—
mon, since all diskpages are interchangeable.

Memory pages are also interchangeable, with one important exception,
that of pages which may be dedicated. Because JANUS uses the map to re-

locate around dedicated "islands" in core, the map is a resource shared

59
by all tasks at the task level, and all interrupt réutines mast run out-
side the map. All unmapped code and storage must be loaded into a
specific page of real memory, since there is no automatic relocation.
Hence, certain pages of a task must be flagged as absolute pages, in
that they contain unmapped storage. In this case only does memory be-
come uniQue, although‘any page may have a unique set of attributes.

While all unique resources must be kept track of in resident
tables, this is not true of msny common resources. The best example
of this ie, again, diskpages. While the digk consists of hundreds of
diskpages, the load of usage is not normally critical. A list of
twenty diskpages is nominally sufficient to support at least one cycle
around the ring, especially since digkpages are allocated and freed
with equal frequency. JANUS keeps a resident stack, of twice the nom-
inal size, half full, permitting transfers in either direction.

All other free diskpages are kept in a list in a system task, the
Housekeeper. The Housekeeper's function is just as its name implies,
to tidy up the resident. Any time the resident portion needs a specific
function which it is not profitable to keep regsident, it calls upon the
Housekeeper task, using the standard JANUS mechanism of timesharing,
such as signals. Without this feature JANUS would have a resident por-
tion twice as large as it does. The Housekeeper and other system tasks
will be described at length in Appendix B, as well as the gpecific

JANUS mechanisms.

9. ADDRESS SPACES

Vital to an understanding of JANUS is a knowledge of the address-
ing scheme used (Figure 18). Each location in the computer is unique
in that it has a fixed address associated with it. The contents of the
location are referenoed by a reference to the address. In any normal
form of program generation, either via assembler or compiler, it is
possible to assign a name to a location. This symbolic name has a value
associated with it, which nominally is identical to the address of the
location. However, in JANUS, or indeed any mapped system, there is no
longer any correlation between the address and a memory location, except
within page boundaries. Since there is no longer any requirement on
identity between address and location, except when a reference may be
made, many restrictions are lifted.

The most important of these is uniqueness. It is no longer
n?cessary that different programs use different parts of the available
address space. Instead, each uses a unique version of the same address
space. Each task normally will execute in an address space orthogonal
to all other tasks (exceptions will be noted below). Thus tasks A, B,
and C may reference symbolic names X, Y, and Z, respectively, each of
which has an address of 10,000, but each of which is a unique location,
containing a unique quantity.

Let us consider what information may be required to assemble a

task to use under JANUS. In normal generation of code, the contents of

60

61

Figure 18. Examples of address space usage, including files. The ver—
tical columns are independent tesk address spaces, resting on the JANUS
block common to all tasks. Two tasks are shown, with TASK 2 being a
subtask of TASK 1. The two tasks have one page in common (TCP2) which
appears in different parts of the two task address spaces. The two
tasks shaere a driven stream file, which is also referenced from dif-
ferent parts of the two address spaces. It differs from the TCP2
usage, however, in that the file driver (TASK 1) may bs several peges
ahead of the file receiver (TASK 2). The files are a collection of
diskpages, each of which mey be used as the same address space page.
Only one page of a file is actually within the task address space at
any given time, however. Files may be linked internally, or may be
linked through a table residing within the tesk, as is shown in the
keyed file.

Figure 18.

62

TASK |
/_\KEYED FILE
- REVERSABLE SCRATCH FILE
STREAM OUTPUT FILE
—
TASK 2
fLE
TREAM
DRNEN S
/
SUB
TCP
2
STREAM INPUT
FILE
—l
TCP Tcp
[2
/
JANUS ¢
\C - .

63
successive locations are generated, and addresses are incremented. It
is therefore necessary to have a location counter (LC). (This is the
basis of all assemblers.) It is conceivable that, under certain cir-
cumstances, it is desirable to generate code to be loaded in one place,
but capable of being moved to a specffied place for execution. This
would, for example, be of use in overlay programming. We may thus
readily convince ourselves of the utility of both a load location
counter (LLC) and an execution location counter (ELC). Many assemblers
have only a LC, some have both LLC and ELC.

Under JANUS, each task is normally in the same address space as
all other tasks, 1ﬁp1ying an overlay structure. This is, however, no
problem, since each task is usually the result of a separate load. A
problem does exist, however, with respect to the unmapped address space
used by interrupt routines. All unmapped storage is in the same address
space, independent of the spaces of the controlling tasks. In addition,
in a task it is neceassary to have intersections between the mapped and
unmapped areas.

ft may be seen that it would be desirable to have mapped and un-
mapped location counters (MLLC, MELC, ULLC, and UELC). Furthermore, it
would be desirable in a decentraligzed system, such as JANUS, for the
system loader to be capable of relocating unmapped code completely in-
dependently of the mapped storage, optimizing the usage of real core
for dedicable pages.

As yet JANUS is not capable of these operations due to the lack of
such a flexible assembler-loader. It is necessary to write tasks using
the SYMBOL assembler provided by SDS. Since this has only an ELC ($)

and LLC ($$), it is necessary to perform certain coding tricks to generate

64

mixed mappéd and unmapped code. The most distasteful of these, for
aesthetic reasons, is the necessity of allocating unmapped pages for
interrupt routines before assembly, rather than at load time, making
JANUS much less flexible thaﬁ it would be, given a good assembler-
loader. However, JANUS is still sufficiently useful to be adequate
for many operstions. In order to include both mapped and unmapped
storage, as well as intersections, it becomes necessary to use one
counter for a mapped location counter (MLC), the other for unmapped
(ULC). Since a task has a unique address space, it is necessarily
loaded as one block, without overlays. This suggests that the SDS
SYMBOL's LIC be used as MLC; thus ELC becomes ULC. However, o;e must
take care that, in setting ULC so that it will track the unmapped
addresses correctly, the relocation of the task as a whole is included.
The alternative is to define each unmapped symbol a&s the mapped location
plus & suitable bdias.

While all tasks are normally independent, there are exceptions.
The JANUS conceﬁt permits tasks to communicate. This may be through the
resident, common to all tasks, or it may be ;t a higher level of ab-
straction.

Higher level communication between tasks will generally mean
that at least some address space is common to both tasks. Further, any
task may start subtasks. In these cases, it will generally be true
that the master and subtasks will be generated a; one load. This load
will then be studded with tasks, which need overlay each other at least
in part (see description of task control page below). In fhia case,
using SYMBOL, LLC must be the LC for the whole task, while the ELC is

used for each task. As a resﬁlt, unmapped storage has to be referenced

65
without modifying ELC or LLC, forcing one to use references of the
form of LC+bias.

Since in this scheme the tasks may be almost completely inde-
pendent, it may be seen that the concept described above, with respect
to ELC and LLC, can be extended in an open-ended process to include a
unique ELC and LLC for each address space which might be used by a task.
The case of unmapped and mapped counters can then readily be extended to
include UNMAPPED, MAPPED;, MAPPED,..., MAPFEDy, as well as multiple
computers using the same memory, even when they have different word sigze.
As far as this is concerned, JANUS is in effect a two-computer system,
where the unmapped computer is independent of the mapped computer, with
different usage. It is possible to have not only an open-ended set of
mapped LC's, but also an open-ended set of processor LC's. These would
include the IOP. TFor flexibility, it should be left for the programmer

to define the symbol he wishes to use for each LC.

10, JANUS AND BPM: A COMPARISON

Perhaps one of the best ways to evaluate a specific computer
operating system is to compare it with another operating system. Let
us therefore compare JANUS with one of the operating systems provided
by SDS, the Batch Processing Monitor (BPM) 13), This must be a quali-
fied comparison: whereas JANUS ig a realtime oriented system, with
background capebilities, BPM is, as its name implies, primarily a back-
ground oriented system with some realtime capability. The SDS BFM has
been selected because it is the most advanced system yet released by
the manufacturer. It is as valid:a comparison to meke as any other,
since there is no other computer system like JANUS.

Conalder first that there are three basic means of acquiring an
operating system. The easiest and fastest method is to use the manu-
facturer-supplied operating system with no changes not supported by the
manufacturer. For most cases, this is the best approach, as the manu-
facturer will continue to improve the system for the customer. The
limitation is that the user must live with the system supplied, and with
any inefficiencies in its operation.

A second alternative is to modify an opereting system supplied, to
introduce nonstandard functions, or to counteract some inefficiencies in
operation, This is the most attractive approach when nonstandard func-
tions are desired, because one is building upon e working system, and

the implementation is speeded. This approach turns into & desd-end

66

67
eaglly, because of a hidden fault. By introducing a nonstandard func-
tion into a system.'the system itself becomes nonstandard, and will no
longer be supported by the menufacturer. The customer is forced into
one of two paths—-either he is confined to an operating system which be-
comes more and more obsolete with time, as the manufacturer upgrades
and improves the system or even replaces it with more powerful systems,
or he must be prepared to repeat his work each time a newer version of
the system appears. In either case, the consequence of the initial
expediency becomes an unending source of annoyance at best. The solu-
tion is thus satiafaétozy only in a stable environment.

The third alternative is to build a completely independent system
as in JANUS. In doing so, one cuts oneself off from all support by
the manufacturer and sets himself an extended programming effort, but
in return ends up with e system optimized for the intended usage.

As a manufacturer—-gupplied system, BPM must of necessity be ex~
tremely general in applicability, so that the first situation describded
will apply to most customers. As a result, there is a tendency toward
a comprehensive inclusion of all possibly desired function. Two con-
ditions result: the monitor is large, requiring extensive core and disk
storage, and slow, requiring a large partion of time in determining
which function is desired, and in doing that function.

In addition, SDS manufactures & second computer (the Sigma 5)
which is identical to the Sigma 7, except that it lacks the map, access
protection, and certain instructions (notably the byte immediate and con-
vert instructions). As a result, all Sigma 7 software is downward com—
patible, able to run in the Sigma 5 also. No advantege is taken of the

added power of the Sigma 7.

68

Because of these differences, it is difficult to compare specific
features of JANUS and BPM. However, generel comparisons in various
classes of usage are possible.

Perhaps the most striking difference between JANUS and BPM lies
in the contents of resident storage. JANUS contains a minimum of resi-
dent storage, devoted to the minimum number of primitive routines neces-
sary to resource management. Conversely, BPM contains many high level
functions, most of which are a convenience rather than a necessity. In-
deed, many of these functions could be deleted, and instead provided
by lidbrary routines. For example, both JANUS and BFM keep track of
time of day in resident storage. Under JANUS, tasks are informed
where to find the information if they ask for it. Under BPM, there is
a special resident routine which msy be called, and which, after ex-
tensive checking as to the form of the request, physically transfers
the data to the area specified by the user. Again, BPM provides two
files for compressed I/O (M:CI and M:CO, used for Compressed Input and
Compressed Output, respectively). Use of these files causes automatic
translation between compressed mode (where text is compressed by re-
placing strings of blanks with a blank count, all bytes are compressed
to 6 bits, and punched onto cards in binary), and BCD, through resident
routines. Anyone desiring to use these functions could as easily call
upon a library routine, with no loss in speed, and with an increase in
available core if they were not used.

Under BPM, all I/0O is done through files, each of which has as-
sociated with it a Device Control Block (DCB), which is 90 words long.
Since there are 17 resident DCB's, 1.5k of resident core is dedicated

to this storage, much of which is agsin superfluous. (The Basic Control

69
Monitor, an earlier SDS monitor, has 6 word DCB's.) Included are such
parameters as the file name, tab settings, file keys, etc. Many of
these parameters again have no real justification for inclusion in the
resident monitor. If such quantities are used in JANUS, they are unique
to a task, carried around with it, and not a system convention.

Let us now turn our4attention to resource management. In this
respect, JANUS and BPM are so divergent that little comparison can be
made. While JANUS freely allocates regources to tasks upon request if
at all possible, it does not set any restriction on usage. By con-
trast, BPM is extremely paternalistic, thereby constraining permitted
operations. For example, BPM requires that each I/O operation referonce
the file associated DCB, which includes an account number (presumably
for billing purposes), a password (presumably for file security), ex-
piration date, and read and write account numbers (egain presumably for
security). Under JANUS, any task which references a file knows the
name of the file, and tasks which have no need for the file do not
bother with it. If the file is write protected (e.g., & library disk
file) and is accessable to users, the task provides the necessary se-
curity. This is a much simpler (and faster) process.

Both JANUS and BPM have functions to allocate and free core memory.
However, while JANUS automatically allocates fre=e pages for a task
during & timeslice and permits a task to get or free diskpages, the BFM
both permits and requires these operations of the slave-mode user. (In
JANUS tasks with demand paging, the function of demend allocation is
easlly provided by the demand paging algorithm, and if desired the func-
tion of freeing pages within the address space is easily implemented.)

Realtime or foreground processes are exactly what JANUS is

70
oriented and designed for. BPM also has a foreground facility, and
monitor functions such as M:MASTER, which permits a user to enter
magter-mode if his is a foreground job. A foreground user has two op-
tions under BPM. He may use the hardware structure of the computer for
speed, but act independently of the BPM. In this case, he is not per-
mitted to use any of the BPM functions, such as I/0, from his interrupt
routines. In order to do I/O from the interrupt routines, all inter-
rupts must pass through BPM, so they can be monitored. The return
from such an interrupt routine requires three RAD operations, and thus
80 milligeconds. This time would be excessive for most experimental
applications.

One of the most importent aspects of a realtime system is
security-—not in the conventional sense of privacy of data, but instead
in terms of the freedom from the possibility of an individual introducing
a program which destroys the system, and the realtime along with it. If
this can happen, intentionally or not, no one performing a realtime
process will trust another to use the computer in the background, es-
pecially if the process involves accumulating data over & long period
of time. If this situation can occur, a multi-user system, no matter
how elaborate, is useless.

Under JANUS, one invokes a specific task from a user library.
(While it is possible for tasks to be loeded from card decks using a
special task, this is understood to be strictly a debugging features,
and not for general usage.) No task is added to the library until it
has been thoroughly debugged to the satisfaction of 21l concerned.
While & system-destroying error could lurk in any task, it is a rare

occurrénce. No task cen be told to destroy the system, nor will any

71
task permit the execution of a user program under its control which can
cauge the destruction of the system. Such operations are not allowed
under the JANUS design philosophy.

By contrast, BFM is not at all safe. Programs can be written which
will cause the BPM to overwrite itself in any number of wsys, and thus
destroy itself. A user can declare himself ss a realtime process, enter
master-mode, and do untold damage. It is even possible to provide a
set of control cards which cause all system files to be irrevocably
freed, thus destroying the system. Indeed, this is sometimes the only
way that some jobs may be done, using limited resources. For example,
in using BPM with & 1.5 Mbyte RAD, an operation as simple in appearance
ags assembling the FORTRAN compiler from a magnetic tape requires so
much disk storege that the system muat be destroyed to accomplish it
(as an aside, this "simple" process necessitates the use of epproxi-
mately 470 distinct cards, each of which must be correct and in the
correct sequence).

As a final comparison, any time it is considered desirable, the
JANUS JBCM/JFCM tasks could be upgraded, by the addition of suitable
additional functions, into a JBPM, or JANUS Batch Processing Monitor,
without, of course, the realtime or other destructive characteristics
of BPM. In that case, JANUS could easily timeshare several JBPM's

simultaneously, just as it now can do for the JBCM/JFCM.

11. MEASUREMENTS

Sinee computer logic signals have two values, it is possible to
connect a logic signal to an electrical meter and directly measure the
fraction of time the logic signal is in one state or the other. Cali-
bration is relatively simple: with the logic signal in the "O" gtate,
the meter movement is adjusted to read "O" exactly, in spite of the
probable existence of small currents. If we now switch the logic signel
to the "1" state, it is possible to adjust & variable resistance in
series with the meter to cause the meter to read exactly full scale--if
necessary, these operations may be iterated for a higher degree of ac-
curacy. Furthermore, if a meter is chosen which has a high sensitivity
(such that a low load upon the signal is effected) and a 0-100 scale
(such as 0-100 microemperes) it is possible to read the average time that
the logic signal aspends in the "1" state directly in percent, and short
term fluctuations are integrated out by the meter. These measurements
are accurate to the accuracy of the calibrated meter, nominally five
percent.

By a judicious choice of logic signals, it is possible to measure
various operating conditions, and observe the effect of varying various
parameters. This was done on the MSU Sigma 7.

As timeshared JANUS runs under the map, and realtime JANUS runs
unmapped, the fraction of time spent in mapped mode is a measure of the
relative weight given each mode (note that the Swapper is an unmapped

realtime process). Conlequéntly e meter was attached to the signal

72

73
MAP, a level set while the computer is in mapped mode.

Similarly, under JANUS, slave mode is used for all problem solv-
ing (production), master mode is used for all control (overhead). As a
result, the signal NMASTER was used to monitor actual production opera-
tion.

JANUS uses the wait instruction only once--in the Jobchanger, under
the condition that no job is ready to proceed. The associated signal
HALT provides a measure of the completely nonproductive overhead.

A fourth signal, PRE1l, while not actually useful for system pars-
meters, does provide a measure of the efficiency of code. The signal is
raised once and only once for a fixed duration, in the course of each in-
struction execution. By choosing an instruction with a well-dofiﬁed
time, such as branch (1 microsecond) and providing a timing loop, it is
possible to calibrate the meter directly in instructions/second.

The most important factor, in a realtime oriented aystem, is the
time required to service an interrupt. For other than clock interrupts,
which are of lowest priority and which are frequently inhibited, the
time required to service an interrupt is hardware, rather then soft-
ware, limited. This time is 6 microseconds + the time required to com—
Plete the instruction interrupted, if there is no higher priority inter-
rupt active: 6 microseconds + the time required to complete servicing
all higher priority interrupts if any are active. While there are
patholigical situations which do cause interrupt inhibition, these are
demonstrably rare.

Similarly, 4 microseconds are required to exit from a realtime in-
terrupt process. (Compare with the SDS Batch Processing Monitor 13).

where an exit from a realtime process may require as much as 80

74
milliseconds.)

Actual metered measurements are more difficult to make, because
of the rapid fluctuations the system undergoes with time. However, it
is possible to provide quantitative numbers in certain relatively stable
situations, notably those which are not I/0 limited.

1. Single task active, requiring no swapping. An overhead of 2%
has been measured, and is entirely due to timeslicing the single task
to provide an entry for an asynchronously activated task.

2. Multiple tasks active, requiring no sﬁupping. Times are 8%,
or just four times those measured in case 1, attributed entirely to the
fact that the time quantum is four times longer for the single task
case.

3. One task active, performing demand paging for pages not in
core. Times vary from 5% overhead for well behaved programs to as much
as 50% for some cases, notably processors (such as the JBCM/JFCM Loader)
which are required to physically move multipage blocks of storage around
within the task's address space.

4, Two tasks active, swapping required. Times vary from 5% to
20% overhead, the difference between case 3 and case 4 being attribu-
table to the high probability that execution of one task is proceeding
concurrently with the swapping for the other.

5. Three or more tasks, all requiring swapping. In general,
overhead approaches 1004 in this case. This problem and a possible
solution will be treated in more detail in Chapter 1l.

6. Realtime scope display. These scope displays are unbuffered,
and must be refreshed periodically by the computer. They may be imple-

mented by computing the display points from a small data base (requiring

75
little core but much computer time), by having a large data base in-
itialized in such a form that it may be. written directly out to the
scope (requiring more core but less computer time), or a mixture of the
two. These displays are normally refreshed 20 times a second to avoid
screen flicker disturbing to viéwern. Two cases are of interest, one
involving a static display (initialized storage), the other & dynamic
display (computed display).

A. Static display. The data analysis code MOIRAE, displaying
4096 points, plus three dynamic vectors and several characters—-60% of
the computer time is used to generate the display.

B. Dynamic displsy. The game code SPACEWAR, displaying 100 static
and 500-1000 dynamically generated points (position computed from orbit
equations as a function §f real elapsed time)--10-30% overhead.

It is readily seen from these examples that multiple displays
would generally tie up the computer entirely, and the need for self-

buffered displays is indicated (such as storage scopes).

12, CONCLUSIONS

JANUS is finally operational, and is used for significant parts of
each day. The principal delay to fulltime operation has been the lack
of systems programmers available to introduce additional capabilities
to the JANUS sgystem which have not as yet been implemented (examples
of unimplemented capebilities are the lack of teletype and magnetic tape
handlers in the JBCM). The other difficulty is the necessity of re-
casting existing programs (especially realtime data acquisition) into
a timesharing form. These problems are, however, being met, and JANUS
will approach greater permanence as these implementations occur.

One of the moat striking conclusions that can already be drawn
from observed operation of JANUS concerns demand paging. I feel that
JANUS has conclusively demonstrated the value of demand paging in a
batch processing configuration as a memory expansion device. 3By the use
of a relatively inexpensive map and RAD, one can simulate the existence
of a much larger, and more expensive, core memory. Since in any in-
stallation the majority of problems will fit into core, the use of demand
paging introduces no essential overhead. For the few problems which do
not fit, there must be a mechanism provided for execution, either through
overlays, job-chaining, or through some other means. Demand paging ex-
tends memory--no additional knowledge is required of a user in order to
demand page & large job. The efficiency of the job execution is his

problem, and it is relatively easy to explain how to optimize execution.

76

77
Any other method requires the user to introduce a large number of con-
trol cards, and to have a thorough understanding of the structure in-
volved (requiring that more systems programmers be available to answer
user questions). The other side of the problem, system programming, is
of comparable difficulty under either method. In general, resident
buffers are required under demand paging, but the necessary amount of
space in the monitor may be provided by being able to delete control
card processing relative to overlays, and by deleting core allocation
functions. A loader capable of segmenting overlasys is not necessary,
and the effort required for its generation and maintenance could be
directed elsewhere.

However, the demand paging currently used in JANUS is impractical
for use in a timesharing environment where more than two or three tasks
are active. The difficulty with the JANUS implementation is the lack of
-uffiéiont history to permit adequate judgements as to usage of demand-
able pages. As JANUS permits each task to perform its own demand paging,
it is‘a relatively easy matter to test different demand paging algorithms
by modifying some standard task. This has not been done as yet, be-
cause of a lack of available computer time, and the existence of higher
priority problems. The problem, ana a possible solution, may be simply
stated.

Under JANUS, all memory or usage exists for only one timeslice.

In demanding a page not currently in core, jobchange must be effected.
Only those pages referenced the last time may be brought into core the
next time. If, as ia frequently the case, three successive instructions
reference three differen€ pages, in a hard-swapping environmeant only one

instruction will be executed each timeslice. By the time the third

78
instruction is executed, the first is forgotten. Instead, what is
necessary is to keep a record of each page of a task, with a memory of
how recently the page was rcforcnc;d. The demand paging routine, in ad-
dition to setting the "used this time" bit in the task control page,
would also have to set the corresponding entry of this table to "refer-
enced this time". At slice start, the task must reset each entry back
by one. At task end, all entries must be compared, and the N most re-
cently referenced pages (where N is to be empirically determined, but
probably about 10) must be flagged in the TCP as “used this time". The
significance of this now changes from "used this time" to "used recently
enough to justify its presence". An alternative, and more suitable,
method would be to flag up to N pages as above, dut 1énore all references
which occurred more than M timeslices ago, where M is also to be em-
pirically determined.

Similarly, the usage of core memory pages under JANUS does include
a two-bit (four level) memory as to how recently the page was used. This
is an ingdequate memory, but unfortunately is so deeply imbedded in JANUS
that it would be extremely difficult to change. The point would be well
to remember, however, in future implementations.

(Crude measurements made since the bulk of this thesis was written
indicate that this eapproach has definite merit. With the case of four
identical tasks operating concurrently, total running time was within
10-20% of the time required to run the same tasks serially, using this
method. Using the previous approach, times differed by 100-200%.)

The JANUS capability of timeshared monitors, each capable of dedi-
cating realtime processes as necessary, has been successful. Many system

functions may be greatly streamlined, to produce an efficient system

79
task. While suffering from the necessity of using two independent ad-
dress spaces, one of which (unmapped) is unique, it is possible to over-
come the problem by the construction of a relocatable task loader, pro-
vided that the multiple address spaces can be referenced in the process
éenorating the relocatable insk. This will doubtless be a limitation in
the future, but is not yet a problem.

The use of a memory map is a great advance in computer design,
making possible demand paging and therefore, more efficient use of core
memory. In all probability, more and more computers will have a map
available. As the demand paged memory provides one of the most flex-
ible file systems available, I foresee that available address spaces
will increase to a large value, on the order of 100,000,000 words and
more, even though it would be impractical to have actual core memories
of this size. This will be true especially of small, non-timeshared
computers, such as are used for batch processing, research, and process
control.

Finally, JANUS works as defined. There is room for improvement,
but more study of specific inefficiencies is required to optimize the

computer usage. It should be possible to make JANUS as efficient for

many sctive tasks as it is now when there are only two or three active.

BIBLIOGRAPHY

1.

2.

9.

10.

11,

12,

13.

14,

15.

BIBLIOGRAPHY

On-line Computers for Research, Nucleonics, January-March 1967.

Dictionary of Classical Antiquities, Oskar Seyffert, Meridian
Books, 1957.

Users Manual: Brookhaven Scheduler for Data Terminal Network,
B.J. Shepard, April 10, 1968,

Timesharing Systems Manual, General Electric Corp., May 196€.

An Advanced Computer-Based Nuclear Physics Date Acquisition System,
H.L. Gelernter et. al., Nuclear Instruments and Methods 54 (1967)
77-90.

Initial Operating Experience with the Yale-IBM Nuclear Data
Acquisition System, M.W. Sachs et. al., Internal Report No. 32,
Wright Nuclear Structure Laboratory, Yale University.

Time-sharing: A Computer for Everyone, Jeffrey N. Bairstow,
Electronics Design, April 25, 1968.

System/360 Model 67 Timesharing Systems Preliminary Technical
Survey, IBM form C20-1647-0.

IBM System/360 Model 67 Timesharing System Technical Summsry,
IBM, August 18, 1965.

IBM System/360 Operating System PL/1 Languege Specifications, IBM
form C28-6571~4,

A Scheduling Philosophy for Multiprocessing Systems, Butler V.
Lampson, Communications of the ACM 11 (Mey, 1968), 347-360.

SDS Sigma 7 Computer Reference Menual, November 1967.

SDS Sigma 5/7 Batch Processing Monitor Operations Manual, January,
1968.

SDS Sigma 5/7 Basic Control Monitor Reference Manual, liay 1968.

Basic Language Reference Manual, General Electric Corporation, Msy,
1967.

80

81

General References

A new remote-accessed men-machine system, General Electric
Corporation, (from Proceedings, Fell Joint Computer Conference, 1965).

SDS Sigma 5/7 Batch Processing Monitor Reference Manual, July, 1968.

APPENDICES

APPENDIX A.

Glossary of Terms

Absolute--any datum (including instructions) the value of which is
independent of its location in a storage medium.

Active--the word is used in two different senses, depending on context.
A task ie active if it is not on wait status, when discussing
scheduling. Also, a task is active (current) if the current time-
slice is assigned to it.

Address space--the full range of addresses which may be accessed.
Algorithm—-~-the specific procedure used to implement a given process.

Associative eddressing-—-a method of referencing a datum by content
rather than by position. The datum consists of a key (the con-
tent referenced), and the associated information.

Background--a timesharing technique in which programs can be run con~
currently with realtime processes in those periods when no
realtime activity is required of the computer.

Byte--a unit of data, consisting of 8 bits. A dyte is identical to
one character.

Channel--a means of initiating a single I/0O data transfer which then
automatically runs to completion without needing further program
intervention.

Clock interrupt--the Sigme 7 has two standerd resltime clocks, one
"ticking" at 500 Hgz, the other at 2KHz. These can be used to
time realtime processes.

Date--a set of information, other than instructions, used in performing
a process.

Dedicate~-changing the usage of a resource from general availebility
to a specific usage. For example, under JANUS, a page of a task
may be dedicaeted into a page of physicel core memory, such that
the physical page is used only for that task, rather than being
available for all tasks.

82

83

Doudle precision--the use of two words of computer memory to meintain
& single datum. The larger size permits a greater imformation
content to be provided than under single precision (one word).

Foreground--a timesharing technique in which realtime processes can be
run concurrently with other processes, interrupting the back-
ground as necessary.

Honest task--one which is careful to manipulate only those resources
which belong to it, and which does not indiscriminantly affect
those resources which belong to other tasks.

H/t disk--(head per track). A diskfile where a read-write head is
positioned over each track, thereby requiring no head movement
on an I/0 operation.

Inactive task--a task which can temporarily perform no operation be-
cause it is waiting to be synchronized with a realtime event,
such as the completion of an I/0 operation.

Index register——a hardware feature permitting automatic arithmetic
operations during a reference to an address, such as the addition
of a displacement to a base address.

Interrupt--a hariware feature which vermits the computer to change
states in a rapid fashion--interrupting the execution of one pro-
cegs in order to execute a second process.

Intersection~~an area of storage common to two or more sddress spaces,
capable of being references by different names from each address
space.

I1/0—~the abbreviation for Input/Output; the process of transferring
data to and from the computer.

Location counter--a datum within an assembler to keep track of the
address of each datum generated (including instructions) relative
to some specific point such as the beginning of the assembly. Used
to generate relocatsble binary code for the loader, and to define
addresses.

Map--& feature permitting the automatic trenslation of an effective
address to the real address used to reference & storage medium.
See also relocation.

Mask--a specific bit pattern used in performing logical operations
under computer control.

Master-—-the mode of computer operation wherein all operations are per-
mitted. Master mode is used normelly for control operstions.

Memory mapping--the process of using e map to translate addresses in
the computer core memory.

84

Monitor--a program designed to supervise the usage of the computer in
executing a problem, and which provides the control functions
necessary and sufficient to that problem, or to a set of problems.

Overlay--e method of generating a program for execution in such a
manner that independent subsets of the program may alternately
be executed within the same address space, and be capable of
referencing common areas.

Page--a natural unit of memory which is machine dependent. In the
Sigma 7, one page contains 512 words.

PL/1--a relatively recently developed high-level programming language,
containing many of the functions provided by FORTRAN, ALGOL,
COBOL, and other special purpose languages in a fashion that per—
mits the statement of a problem in a menner much more powerful
and flexible than in any single special purpose langusge.

Pointer--a datum indicating the location of a set of date, referenced
instead of the data set itself.

Realtime~-a realtime process is one which 1s initiated asynchronously
with respect to the normal flow of machine operation. A realtime
process is normally associated with an interrupt.

Reglster——a piece of hardware, normally consisting of an ordered set
of bi-steble elements, capable of operations in addition to a
storege function, such as arithmetic or logical operations. The
time required to access a register is much less than that required
to reference core memory.

Relocation--the capability of a datum to have, in addition to a value,
information as to some other quantity to which the value is
related.

Resident--that portion of a monitor or supervisory system which is kept
permenently in core memory.

Slave--that mode of computer operation capable of being completely
controlled as to permitted operations. Computational functions
are permitted, but control functions are not. A mechanism is
provided for a slave-mods process to request of the monitor that
a specific control process be performed.

Task-~a set of processes capable of being timeshared as a unit, in-
dependent of any other usage of the computer, and containing
those monitor functions necessary and sufficient to its operation.

Task control page (TCP)--a block of storage under JANUS which is
alweys located in specific addresses in the address space of a
task. This containe the status of the task, including trap end
memory page usage. Also referred to as the state vector for the
task, and is unique to the task.

85

Two~address computer~—a computer where each instruction specifies both
a source and a destination, as opposed to a single effective ad-
dress, in addition to a process to be performed.

APPENDIX B.
JANUS Reference Manual

Some features of JANUS are of interest primarily to programmers
who intend to build tasks to operate under JANUS. As has been noted
previously, there are no aids to building a task currently available.
While many of the computational functions desired of a task may be writ-
ﬁen in a higher language, such asIFORTRAN. it is still necessary that all
monitor and control functions be coded in assembly language. This re-
quires an understanding of specific functions available in JANUS, and
how they are used.

The following sections describe the properties of JANUS on a cod-
ing levelf and the system functions available. They are ordered in terms
of memory, disk, and address space usage, and then proceed into task com-
munications and realtime operations.

The rather curious names which are sometimes used result from the
necessity of compromising between the need for helpful mnemonic names
and the SYMBOL defined constraint limiting a symbolic name to 8 charac-

ters or less.

B. 1 Resident Tables and Lists
JANUS concerns itself primarily with certain tables and lists kept

for the purpose of bookkeeping. I now inteend to provide a 1list of these,

86

87
along with their use. Names may be mentioned which are as yet undefined
in this thesis; however, because of the interrelated nature of JANUS, it
is necessary to start somewhere. Table elements are almost always exact-
ly one addressable base in size, such as word or byte. This is because,
when an element may be referenced from more than one place, including an
interrupt routine, it is necessary to reference it in a way that is not
interruptabdble, either by setting a flag that it is not to be touched, by
perf&rming the operation in an instruction which can not be interrupted,
or by inhibiting the interrupt. JANUS is written to take advantage of
realtime, thus interrupts are inhibited as little as possible. As much
as possible is done with single non-interruptable instructions.

However, there are certain abnormal conditions which may require ab-
normal action, including inhibiting all interrupts. These include actual
hardware errors (e.g. memory parity), software errors (e.g. traps from
unmapped code), and one additional special case. The latter results
from having a number of liasts partially resident, with the rest of the
list existing on the disk within a task. Under normal circumstances,
the non~resident task (the Housekeeper) is brought in to tidy up. How-
ever, in freak cases, it may be discovered that a list is full or empty,
with no recovery procedure available for the requestor. In this case,

a resident routine is invoked--the Troubleshooter. This routine sus-
pends all functions while bringing into core enough of the Housekeeper
to straighten out the difficulty. For the duration of this process, all
interrupts are inhibited. However, this is definitely a last ditch ef-
fort on the part of JANUS to stay viable, and thus happens extremely in-
frequently, provided all tasks and interrupt routines are correct and

honest. Any practice which is not completely honest, expecting certain

88
timing relationships, etc, may work 99% of the time..the 100th time an
error will occur, frequently resulting in the destruction of the opera-
tion system. The method of getting around this problem is discussed
below.

This chapter will consider those tables used in timesharing tasks.
Let us consider firast the one non-resident table, the Task Control Page
(TCP). This page is always the first unique page of the task, and is of
fixed format. It contains all information as to the current status of
the task which is of interest to JANUS. This includes pointers to rou-
tines associated with traps, program status, Signala, and the task USAGE
table. The task USAGE table consists of a word (MAXSIZE) specifying the
sige of the task under the map in pages, and the list (USEPAGE) of pages
and their attributes. Each of the latter is in mapped sequence; that is,
the N-th entry corresponds to the N-th page of the address space. An
entry is null if diskpage O is specified, as this page is inaccessable to
all tasks. The entries are designed to take advantage of the INTerpret
instruction, such that the first four bits are usage information, the
next twelve are genéral information, and the last sixteen are the disk-~
page address. The attribute bits have the following significance:

0. Absolute code (ABS) page. This page may be dedicated at any
time, and bits 8-15 of the entry will specify the unmapped page to load
this page into, if bit O is set. ABS pages will be loaded into core each
time the task is active.

1. Virtually dedicated page. This page must be in core for the
duration of any timeslice the task is active.

2. NEED-NEXT. Used primarily in & demand paging task which cannot

proceed until that page becomes availeble.

89

3. USED-LAST. Agein used in demand paging, this bit is set during
a timeslice if the page is used. If not set, and no other bits are set,
no effort will be made to bring in the page. Bits 2 and 3 are cleared
at the start of each timeslice.

4. WRITEBACK. Indicates that this page is modified regularly,
and must be uneonditionally written back on the disk.

5. Not used.

6~7. The Access Protection Lower Limit (ACL, =0-3) which mey be
used for this page without error.

8-15. Used if bit O is set, as described above. Otherwise ig-
nored, except at task generation and destruetion. At generation, the
pege will be eopied onto a new diskpage and the copy used if this bdyte
is non~-gero. At destruction, only if this byte is non-zero, will the
page be freed. This allows multiple use of an absolute task, since all
non-modifiable pages used will be the original copy of the task, and are
shared by all task copies. Only the volatile storage will be different
for each task, and effielency may be greatly improved. The convention
used is that, if the task allocates & page it did not start with, bit
14 is set, while if a copy of the page is used, bit 15 is set.

The table described above is the only one of which it is necessary
to have knowledge in order to write s task. However, other associated
tables are described in order to allow one to become more familiar with
the operation.

Two of the resident tables sre required only because the hardware
registers are not reasdable. These are the access protect image (ACIMAGE)
and the map image (MAPIMAGE). These are respectively 2-bit and 8-bit

entry tables, each with 256 entries, and are in map sequence.

90

Another table is the image of unmapped core (TRUECORE). This is
again set up to take advantage of INTerpret, as was the usage table.

O. This bit is used by the troubleshooter as a flag for pages it
is using.

1. This page is in use by the currently active task.

2. This page is being subjected to swapping.

3. This page is part of the next task.

4. This page must be written back onto the disk before being used
for anything else.

5-6. Unused.

7. This page is dedicated to swapping, and may not be used for ABS
pages.

8. This page contains a TCP.

9. This page may become dedicated, and should be used only tem-
porarily.

10-13. Dedication level for this page.

14-15. Reuse priority for page.

16-31., Diskpage currently residing in memory pege.

The last table actively associated with swapping is the stack of
Task Control Pages (TASKPAGE). Again a table of one word entries, this
is the only reference to a task which is kept resident. Bits used are:

O. This task must proceed immediately, regardless of the time-
sharing ring (RUSH bit).

l. This task must be started next in normal sequence; i.e., if
a task is being drought into core or is ready to go, JANUS will proceed
with it, but will cause this one to be the next task readied (HURRY bit).

2. This task is loaded and is ready to proceed.

91

3-14. Unused.

15. This task is on wait statua. This bit is set at the request
of the task, and is removed only on the receipt of a Signal or if bits O
or 1 of this word get set. Bits O, 1, 2, and 15 are cleared each time a
task is started.

16-31. The diskpage address of the TCP of this task.

Associated with this table are an entry (TSKCNT) specifying the
number of tasks which exist, and an entry (NEXTTCP) specifying which
task the Swapper is currently manipulating as the next task. NEXTTCP
has these attributes, set by the Jobchanger:

O. This is a new task to load. Flag cleared by Swapper.

1, This task is on rush priority.

2. All tasks are on wait status.

In order to understand the timesharing process, it is necessery
to know that the lowest priority interrupt in the machine must be a
clock, (the Jobchanging interrupt). Timesharing proceeds as follows
(Figure 19):

1. At some point in time during the execution of a task, the Job-
changing interrupt fires, either because the time is up, or because the
task has, for its own reasons, triggered the interrupt. As soon as
there are no higher level interrupts active, and there is no inhibit on
the clock, an Exchange Program Status Doubleword (XPSD) imstruction is
executed, which references the TCP of the task. As a result, the curreat
status of the task is saved, and control is transferred to a part of the
tesk (Slice-end routine) which performs all umnique and necessary slice-
end functions, before transferring control to the resident Jobchanger

routine,

92

FIND NEXT TASK

KICK SWAPPER
SET JOB CLOCK

RETURN SIGNALS|

AND REMOVE
TASK FROM WAIT

AN N\ FOUND ONE
& DEDICATE | SET_FLAG
o SET MAP
MORE
NONE JANUS JOBCHANGER ALGORTHM FLOW CHART
IDEDICATE ANY '\ YES
G SIGNALS
o 0 TASK
TE _
PAGE

Figure 19. The Job Changer - flow chart.

93

2. The Jobchanger performs common slice-end cleanup, examining
each entry in table TRUECORE. The reuse priority (P) is a measure of
how recently that page was in use, and to what degree it was used. The
lower the priority, the less it is necessary for that page to remain in
core. A non-gzero priority is reduced by one if the page was not part ef
the current task. If the page was part of that task, the correspond-
ing entry in USEPAGE is found. If not flagged as ABS, virtually dedi-
cated, or USED-LAST, the priority is set to l--otherwise it is set to 3
if it muet be written back, 2 if not. The flag for being a part of the
current task is also cleared.

3. If NEXTTCP does not contain its rush flag, TASKPAGE is scanned
for the presence of a RUSH flag. If found, the rush flag in NEXTTCP is
gset, and the Swapper (RAD interrupt routine) is kicked. If only one task
is active, the Swapper is also kicked. In kicking the Swapper, the RAD
status is checked. If not operational, a comment is produced on the con-
sole teletype, and JANUS hangs the machine in an alarm loop until the
RAD becomes operational.

4. All tasks on wait status are checked for the presence of RUSH
or HURRY conditions, and for the presence of one or more Signals. If
any of these conditions hold, the task is removed from wait status.

5. If any Signals exist, all TCP's which are in core are located
in turn. The map is set to reflect the location of each one, and a search
is made of Signals, to locate and transmit all Signals for that task, de-
leting each Signal found in the process.

6. The task specified by NEXTTCP is tested. If that task is not
ready to proceed, a WAIT instruction is executed, and after the next

interrupt, execution transfers back to step 3.

9k

7. If the task is ready to proceed, the map is set for the TCP,
and the access protects for all pages are set to 3. TRUECORE is acan-
ned for entries flagged as part of the next task. For each such entry,
that flag is cleared, and the associated page name is picked up. Each
reference to that paée is found in table USEPAGE and the entry is INTer-
preted. If it ise flggged as ABS or virtually dedicated, the access
protect specified in USEPAGE is set. The map is set, according to the
locations of the references in both USEPAGE AND TRUECORE. If the USEPAGE
entry is flagged as having to be written back, the corresponding flag
is set in TRUECORE. All "NEED-NEXT" and "USED-LAST" flags are deleted
from USEPAGE.

8. The NEXT and HURRY bitas of the TASKPAGE entry are cleared.
Routine FINDNEXT is called to locate the next task to process, and this
information is saved in NEXTTCP. If more than ome task is active, the
Swapper is kicked, the timeslice duration is computed, and the Slice-
start routine of the new task is entered via an LPSD, resetting the Job-
changing interrupt.

A typical example of the sort of timing problems which must be
always considered is seen here, in that, while the Jobchanger is the
lowest priority interrupt, the interrupt which ticks the clock is one
of the highest. Setting the clock and transferring to the task requires
two instructions. As the Jobchanging interrupt will fire only as the
cleck runs through zero, and net at all if the interrupt is active, it
is conceivable that, as a result of heavy interrupt usage, the clock
may run out between setting and traneferring comtrol. The resgult
would be that a task would start with a timeslice, not of a nomimal 100

milligecends, but instead, of two months, the time required for the cleck

95

te tick 2 billion times. As a result, the Jobchamnger may not set the
cleck itself, but imstead tells the task how much time to ask for. Be-
cause of this, the Slice-start routine must always operate with the Jeb~
changer inhibited. Also, the task can play tricks, such as setting the
cleck to a fixed fraction of the time, and at the end of this partial
timeslice, start a different segment of itself for the remainder of the
time. A task may thus timeshare itself within a timesharing enviremment.

Let us now turn our attention to the Swapper, the resident RAD
interrupt routine (Figure 20). This routine may be entered in two ways:
normally througﬁ an I/0 oferation. or abnormally by being "kicked", that
is, by the execution of a specific and easily recognizable imvalid 1/0
operation, instigated from outside the 1nt§rrupt routine, and which can

.occur oaly if the RAD is mnot busy.

1, Test if entered via kick. If not, check the last operation per-
formed. If an error was detected, go to POINT S, Otherwise determine
diskpage used, the entry of TRUECORE referenced, and the operation per-
formed. If write, clear all flags from the TRUECORE entry except 2
and 7-13. If read, set the digkpage into the TRUECORE entry, set bit 3,
and clear all bits but 3, 7, and 9-13. Finally, delete that operation
from the queue.

2. Test NEXTTCP. If flagged as a mew task, clear that flag,
clear FLAGS, clear bits 2 and 3 from all TRUECORE entries unconditionally,
and clear out the queus. Exit if no tasks should proceed, or if the
next task is ready.

3. Copy the diskpage specified in the TASKPAGE entry specified
by NEXTTCP. Determine if it is im core. If not, proceed to POINT A.

Otherwise set the flag in TRUECORE accordingly, and compute the

96

TASK
REINITIALIZE
No
YES TASK
'READY'
‘No
RETURN
TeP
N NO A
CORE
YES
€T POINTER
TO TCP
AL\ yes
PAGES,
IN
FOUND ONE N
FOR ABS
PAGE,
COPY ABS 483
PAGE INTO £ IN NO MORE
RIGHT
PLACE Ve
ALL
YES NO YES N
EO
Is s 4
s P YES _usaBLE?
o
Y o AN rouno one
J s
EED>
L] 1S
POINT TO | YES ANY NO MORE PAIt;E YES
OTHER
INEW TASK SCANTYPE « R
JASKS, EQUIRED NEXT
NO
o COUNT= 5 A
RETURN —_
ScaN
FOUND ONE
FOR SCAN
YPE,
IS
NO PAGE "\ NO
MORE IN A
QORE,
YES
COUNT -1=COUNT
NO
COUNT> 0 —]
NN\ no —
TYPE * SCANTYPE :
N USED USED LAST -
T, -
YES
SET 'RE
RETURN

Figure 20.

The Swepper - flow chart.

ALLOCATE BEST
CORE PAGE

[START 110
FOR TOP
JQUEVE ITEM

97
uamapped address of USEPAGE for future reference.

4, Test FLAGS. If not set to indicate all ABS pages have been
found, scar USEPAGE for ABS entries. For each one found, determine if
in the correct place in core. If so, set bit 3 of the TRUECORE entry
and contimue. If not, determine if the required page is free, and if not,
find a new task and continue to 2. if possible. If the page is free,
scan TRUECORE for the desired diskpage. If found, copy into the cor-
rect page, writing the originasl contents out to the RAD if necessary.
Define the new contents, and free the page it was in. If the page was
not foumnd, g£o to POINT F. When all ABS pages have been lecated, set
FLAGS to reflect the fact, so that 4. can be skipped in the future.

5. Check FLAGS to determine if all virtually dedicated pages
have been found. If not, scan through USEPAGE to lecate all such en-
tries, ignoring all ABS entries. For each one, scar TRUECOEE for the
diskpage specified. If not found, proceed to POINT A. Otherwise set
bit 3 in the TRUECORE entry and continue. When all virtually dedicated
pages have been lecated, set FLAGS to reflect the fact, so that 5. can
be skipped in the future.

6. Scan USEPAGE for all entries flagged "NEED-NEXT", ignoring all
ABS and virtually dedicated pages. Scan TRUECORE for that page. If not
found, go to A. Otherwise set bit 3 and continue, counting that entry.

7. If less than 5 pages were fourd in step 6, repeat the search,
looking for "USED-LAST" pages. As soon as a total of 5 pages have been
found in either of these latter categories, set the task ready to pro-
ceed (in TASKPAGE) and exit.

POINT A (Allocate). Two assignments are presented to this routine--

the weights to give the swap dedication (Wg) and dedication (Wp)

98
attridutes in TEUECORE. Each ertry of TRUECORE is INTerpreted to deter—
mine if dedicated, or im use for the current task or the next task. If
not, & value is computed or the basis of:

V = 2%(WRITEBACK)+Wg*(swap dedication)+Wp*(dedication)

+2*(reuse priority),
where quantities in parentheses are TRUECORE entry attributes. The page
with the lowest value V is passed to POINT F.

POINT F (Fetch). Set bit 2 (page umdergoing swapping) in TRUECORE
ertry specified. If that page must be written back, generate an outpﬁt
entry and put into the queue. Always gemerate an input entry for the
queue.

POINT S (Start I/0). Set up and initiate the I/O operations for
the first entfy in the gqueue, and then exit.

As a result of the Swapper algorithm used, JANUS is a primitive
learning program, in that it tends to keep im core those diskpages used
most frequently. Given a set of tasks which may all fit into the machine
core memory simultaneously, and a demand paging scheme, only a few time
slices are required for JANUS to discover the pages required and bring
them into core, where they will remain until freed or replaced. As a
result, in the case where everything fits into core, the overhead due
to Swapping, Jobchanging, and demand paging drops to an extremely low

value compared with other timesharing systems.

B. 2 Resident Routinmes
Simce it is required of most tasks that they be able to mamipulate
the resident tables, and since it should be umnecessary for a task te

have to kmow all the details of the tables, it is desirable to have a

99
number of resident routines, callable from tasks, which will perform
the manipulative functions required.

The calling sequence is common to all routines. It is:

BAL,R11 ROUTINE
with paran;ters transmitted in R6-R1ll as necessary. Any information is
normally transmitted back in the same fashion, and if necessary, CC4 is
set to 1l if the request was satisfied successfully.

Consider in this section those routines which deal with the time-
sharing tables already descriﬂed. These will be subdivided for the pur—-
pose of description by the table they reference. Each degcriptor will
be of the form:

NAME(*)

R Parameters transmitted Parameters returned

Comments
Where (*) is a flag in the descriptor to specify that a success code is
returned. Each parameter is described by contents and register thus:

R6 Value **00FFXX
where 8 hexidecimal digits are dieplayed, and the characters mean:

* Unpredictable garbage, to be ignored

0 Zero

by All bits set to 1. Any hexidecimal digit may be used.

X Field of interest.

B. 2 (1) Routines Which Deal with the Map

A. GETMAP .)
R6 Not used it Unmapped address 000000XX
R7 Mapped address 000000XX Unchanged 000000XX

This routine permits referencing MAPIMAGE, in order to locate the

100
actual page a specified page maps into. The addresses are page addresses.
B. SETMAP
R6 Unmapped sdiress 000000XX
R7 Mapped address 000000XX
This routine returns if the map is set as specified. Otherwise,

MAPIMAGE is updated as requested, and the map is reloaded before return.

B. 2 (2) Routines which deal with the Access Protection.

A. GETAC
R6 Not used BEAEREES Current access 0000000X
R? Mapped Address 000000XX Not used I

This routines permits refereacing ACIMAGE, to located the currently

used access for a page. Page addresses are used.

B. SETAC

R6 Access Protect 0000000X

R?7 Mapped address 000000XX

This routine compares the access specified with that in ACIMAGE,
returning if they are ideantical. Otherwise it updates the image, and

reloads the access protect registers.

B. 2 (3) Routimes Which Deal with Table TASKPAGE.

These routines are all of the same form, since in each case:
R6 TCP NAME ***#XXXX

All routimes are called by nanme.

A. WAIT

The specified task is located, and placed on wait status.

B. RUSH
. The specified task is located and its RUSH flag is set. This

routine is reentrant and may be called from an interrupt level.

101

c. HURRY

The specified task is located and its HURRY flag is set. This
routine is reentrant and may be called from an interrupt level.

D. KILL

The specified task is located, and removed from the ring of ac-
tive tasks to a stack of dead tasks, to be serviced by the system
MORTICIAN task. Simce this routine has to rearrange a table which is
referenced from multiple interrupt levels, it is necessary to inhibit
both I/O and external inmterrupts for a brief period (31.0 microsecends).
However, this routine is called but once for each task--thus the cona-
dition will not occur often. Furthermore, this is the only place in all
of JANUS where it is necessary to inhibit these interrupts as a normal
condition.

E. START

Unnecessary bits are masked off the task name, and an attempt is
made to add it to the ring of tasks. If successful, a "wake up" Signal

is sent to the task.

B. 2 (4) Routines Associated with Table TRUECORE.

All references are associative, in that the diskpage contained in
a page of memory is specified. In all but specific cases, the operationm
will not succeed unless the specified page is in core, and flagged as
being part of the current task.

A. CURRENT»

R6 Disk addreas ****XXXX Unmapped page address 000000XX

If the page is in core, it is flagged as being part of the current

task.

102

B. RITEBACK*

R6 Disk address ****XXXX Unmapped page address 000000XX

The flag is set that the page specified must be writtem back onto
the RAD, beceuse true copy no longer exists there.

c. REDEF INE*

R6 01d disk address ****XXXX Unmapped page address 000000XX

R? New disk address ****XXXX Unused SRS ARRE

If the page specified by R6 is in core, change the name to that
specified by R7. This routine is used in disk copying operatioms, since
a task may bring a page into core, change its name (which is equivalent
to making a copy), then modify the copy independent of the original.

D. DROPFILE*

R6 Disk address- *ERXXXX

This routine is used to get rid of pages not currgntky in use,
but which must be preserved. ' If the page is in core, and not dedicated,
the ﬁage is removed from the range of the task. If, in additiom, the
pege meed not be written back, the page of memory is freed.

E. DEDICATE=*

R6 Disk address ****XXXX

If in core, the dedication level of the page is increased by 1,
locking it in place as a resident page.

F. UNDEDICT*

R6 Disk address ****XXXX

If in core, the dedication level of the page is decreased by 1.
If the resultant dedication level is zero, the page is free to engage
in swapping again.

G. ALIOCATE=*

R6 Disk address ****XXXX Unmapped page address *00000XX

103

This routine evaluated the worth of each page of TRUECORE, ignoring
all pages in use, dedicated, or which must be written back, and assigns
a value according to:

V = 4*(reuse prierity) + 2«(dedicable page) - (Swap dedicated page),
where the quantities in parentheses are attributes of each TRUECORE
entry.

| If ome or more pages are not ignored, the one of these with the
lowest value is assigned the new diskpage specified, and flagged as part
of the current task. This routine is used in attempts to acquire tem-
porary storage without proceeding through a Jobchanging cycle.

H. FREE*

R6 Disk address ****XXXX

If the page ia in core, and not dedicated, it is uncormditionally
freed. That is, it is undefined, and will never be written back onto

the RAD.

B. 2 (5) Routines Associated with Disk Pages.

These routines deal with a stack of resources, which is only par-
tially resident. If at any time the stack is endangered, the Jobchanging
interrupt is triggered. Hence any task should permit Jobchamge to occur
between each request to these routines. A diskpage address is a 16 bit,
non-zero, unsigned quantity specifying the location on the disk where
it may be found.

A; ALOCDISK*

R6 Unused (*%%&rk*x Allocated disk page O000XXXX

If a disk page is available, it is allocated to the requesting

task. No effort is made to know to which task a specific diskpage is

104
assigned.

B. FREEDISK

R6 Diskpage ****XXXX

The diskpage specified is returned to the pool of free disk pages.

Since JANUS does no elaborate checking, it is the respomsibility
of the tasks to use these routines and resources properly. Typical ex-
amples fellow, which illustrate the difficulty which may arise from
thoughtless use of the fuanctions.

l, Over-dedicating a page. A page may be dedicated up to 15
times without difficulty. This is sufficient if it is dedicated ﬁnce
for each imterrupt routine which may referemce it. However, if it is
dedicated a sixtesnth time, an arithmetic carry occurs, such that the
page is no lomger dedicated. In as much as such a page is normally
flagged as dedicable, that bit is also cleared, and the carry may extemd
te defining the page as a TCP, or even dedicated for swapping. When
undedicated, the page enters the swap swirl. The first time an unmapped
mastermode transfer is made into the middle of data or mapped code, all
hell breaks loose.

2. Over-undedicating a page. The same arguments apply as in 1,
except that a berrow occurs, leaving the page totally dedicated.

3. Overdefining a page. Under certain circumstances, it is pos-
sible for a free diskpage to be in core. (For example, the last task
which freed t he page may have been interrupted hy_the Swapper after
freeing the page, but befofc removing the rofercnc;‘fron the TCP, such
that the Swapper did cause the page to be brought into core agair, where
it might remair for a lomg time under low usage.) Also, a freshly freed

diskpage is most likely to be allocated next. As a result, ome should

105
never allocate a page directly, but should instead first check if the
page is in core. If not, it ﬁay be allocated. If allocation is un-
successful, then there is no recéurse but to effect Jobchange, causing
the page to be actually loaded off the disk.

Similarly, in freeing a page, a task is being polite to all users
of the machine if it performs a sequence of:

A. Freeing the diskpage,

B. Deleting the TCP entry,

C. Checking if the diskpage was in core, and if so, freeing that
page of memory, all without permitting Jobchange to occur.

4, Difficulty can also ensue from freeing a disk page twice,
since the name will now appear in two places, and may be referenced by
multiple tasks in the future.

5. Making requests with invalid diskpage addresses. Any reference
to diskpage zero is ignored by the Swapper and Jobchanger, since disk-
page zero specifies an unused (null) entry in various tables. However,
if a task tries to look up page zero, and a null page exists in core,
then that page will be found. Similarly, defining a page to have a disk
page address outside the range of the RAD, or requesting that such a
page be brought into core, will cause the Swapper to hang unconditionally.
The only valid diskpage names are those a task starts with, or has

allocated.

B. 3 Demand Paging
Under JANUS, it is possible for a task to operate without being
entirely in real memory at all times. This scheme is called demand

Paaging, in that a given pege of the task is brought into the working

106
memory upon demand, whenever referenced. The routine involved is over
half a page in length, and there is a point of diminishing returns, be-
yond which it is no longer economical to use a half page of virtually
dedicated code for demand paging. Since demand paging applies only to
slavemode code and references, this limit is reached when there are about
five pages demandable. If there are more than five, demand paging be-~
comes profitable.

The demand paging algorithm is described here both for its use,
and to illustrate the use of previously descriﬁed JANUS routines. This
routine is full-blown, in that it takes care of all eventualities and
idiosyncracies of the Sigma 7 in addition to demand definition (the
automatic extension and definition of the task address space). Certain
features may be eliminated with previous knowledge of the task usage--
if it is known unconditionally that the trapping instruction will al-
ways do word addressing, and will always be present with the correct
map and access, esoteric tests may be dropped.

The demand paging routine is connected to the X'40' trap (non-
allowed operations), which includes violations of memory protection.
There are two parts, shown in Figure 2l1--one of which deals with JANUS,
and is called by the second, which interpretively decodes the trapping
instruction. We consider first the JANUS oriented routine.

Function SCANPAGE(EWA)--S(A). EWA is the Effective Word Address.
The routine always expects & word address as an argument. The routine
determines the status of the page referenced, and reéurns Condition
Codes (CC) as follows:

l. CC = 0, EWA in registers. 2. CCl = 1, EWA is not in core.

3. CC2 =1, situation improved--EWA is availadble, but usage was

=

30D
NI LON 9Vd
AX3N Q3YINO3Y 13S

107

«qa8yo MOTJ - Fupded pusweq °TZ INIT4

[y
ON

(3000d0) W L3S
3000 dO HOL3d

(v) 3dAl
OL SNKHOJIV
NOILONYLSNI
3HL 3ZKAVNV

108
limited by access protection. 4. CC3 = 1, situation normal--EWA in
core, AC set as specified in TCP. 5. Error detected--unconditional
transfer to error routine.

Two quantities set by the main routine are referenced in addition
to the previously defined tables. These are: 1. MODCOUNT: naximum
number of pages left which may be modified by this instruction.

2. EXUFLAG: a flag which indicates that the EWA is an instruction ad-
dress, and to be treated accordingly.

SCANPAGE IS OUTLINED:

1. If EWA is in registers, return with CC = 0.

2. Make EWA a page address (EPA). Look up corresponding entry
in USAGE table, skipping to 9. if within range of task (EPA less than
MAXSIZE), and if page address is non-null.

3. If outside range of task, increase range to MAXSIZE = EPA+l.

4. Call ALOCDISK to allocate a diskpage. If none available, set
CCl = 1 (page not in core) and return.

5. Use allocated page to make non-null entry in USAGE table,
thereby defining it.

6. Call CURRENT to determine if diskpage is in core. If so, skip
to 10.

7. Call ALIOCATE to get a core page. If successful, skip to 10.

8. Set NEED-NEXT flag in USAGE table, set CCl = 1, and return.

9. Set USED-LAST flag in USAGE table. Call CURRENT to determine
if page is in core. Go to 8. if not.

10, Here if page is in core. Look up Access Protect Limit (ACL)
specified in USAGE table. If ACL = 3, error.

11, Call GETAC to discover the ACcess (AC) the page is operating

109
under. If AC = ACL, set CC3 = 1 (situation normal) and return.

12, Test and clear EXUFLAG. If not set, skip to 16.

13. Set ACcess to Set (ACS) = 1.

14, If ACS less than ACL, error. If ACS less than AC, call SETAC
to set AC = ACS., Set CC2 = 1 (situation improved) and return.

15. Otherwise set CC3 = 1 and return.

16. Reduce MODCOUNT by 1 and test. If negative (page will not be
modified), set ACS = 2 and go to 14.

The main routine:

1. Save trap conditions and registers. If the trap conditions
do not include memory protect violation, error.

2. Set EXUFLAG to indicate instruction address reference, MOD-
COUNT to no memory being modified.

3. Get EWA of trapping location, and call SCANPAGE.

4, . If CCl is set, skip to 20--if CC2, return. If CC = 0, re-
load the registers,

5. Get the instruction and save it. If it is indirectly addressed,
call SCANPAGE using the indirect address as an EWA. On return, skip to
20., if CCl is set.

6. Restore the registers. ANalyZe the instruction, saving con-
ditions. Initialize various registers, and get the N-th entry from
table OPCODE, using it to set MODCOUNT. OPCODE is a table, in instruc-
tion sequence, of the maximum number of pages any one instruction n&y
modify. (It is to be noted that, while 108 instructions of a possible
128 are defined, only 23 of these modify one or more pages of core.

Only one of these can modify &s many as 3 pages with one instruction.)

Regtore the ANalyZe conditions and fan-out to various special handling

110
(nos. 7.-11.) on the basis of the instruction type.

7. If byte addressing, determine if decimal. If not, make word
address and skip to 18. Otherwise determine upper limit of memory ad-
dreased. Make both upper 1limit and lower limits word addresses, then
skip to 17.

8. If halfword, make word address and skip to 18.

9. If byte immediate, determine destination and source pages.

If not translate, go to 17.; otherwise, call SCANPAGE to test destina~
tion, save condition codes, then compute upper limit of source and skip
to 17.

10, If doubleword, make word address. Determine if gstacking in-
struction. If not, skip to 17.; otherwise call SCANPAGE to test Stack
Pointer Doubleword. If CCl = 1, skip to 20., otherwise determine upper
and lower limits of core referenced, going to 18. if one word referenced,
17. if more than one.

11, If word addressing, test for special cases and fan out to:

12, if EXU, 13. if BAL, 14. if ANLZ, 15. if Multiple, and 16. if convert.
If none of thege, go to 18.

12, Here if EXU. Call SCANPAGE to test EWA. Go to 20. if CCl = 1,
return if CC2 = 1, If CC3 = 1, EXU can proceed, but the target instruc-
tion (which may be another EXU) cannot. (This case is one of the design
faults of the Sigma 7, which of all instructions allows infinite levels
of referencing only to the EXU instruction. This capability is not only
unnecessary, but is indeed a handicap to use in demand paging, where
accessible address space may be larger than the actual machine, to the
end that a slave mode program could hang up the entire machine with a

large ring of EXU'a.) As a result, it becomes necessary to "shave" a

111
chain of EXU's, as follows. A special pair of locations are provided.
The target instruction is copied into the first of these locetions. If
the address of the source EXU is not the special location, the second
location of the pair is formed into an unconditional transfer to the
instruction following the EXU. The trapping Program Status Doubleword
is modified to point at the special location, rather than at the source
EXU, and we return. This process, although slow, is safe in all cases
but one, namely BAL.

13. Here if BAL. Determine if the instruction was at the special
EXU 1oéation, and if not, skip to 18. If, however, the BAL was the tar-
get of a trapping EXU, call SCANPAGE to evaluate the EWA, and if CCl =1
is returned, askip to 20. Otherwise, look up the link register specified,
and force a link (using the second special location), and branch, plug-
ging the EWA into the PSD. Then return. This sequence, while not fool-
proof, does guarantee that one level of executing BAL will work correct-
ly, with respect to FORTRAN-1like parameter lists.

14, Here if ANLZ. Call SCANPAGE to locate EWA. ‘Skip to 20, if
CCl = 1. Otherwige determine if instruction being ANLZ'ed is indirect-
ly addressed, skipping to 18. if so, else to 19.

15. Here is IM or STM. Compute top address of sequence, and to
to 17. if more than 1 word referenced, otherwise to 18.

16. Here if CVA or CVS. Compute top address, as EWA+32.

17. Here to check out two addresses. If the second is in the
registers, skip to 18. If the first is in the regigsters, reduce MOD-
COUNT by 1 (if one or more peges may be modified, the first reference
will be of this class), and skip to 18. If both are in the same page,

skip to 18. Otherwise call SCANPAGE to evaluate the address, and save

112
the conditions.

18. Here to evaluate a single address. Call SCANPAGE to do so,
merging conditions returned with previous conditions.

19. 1If all pages referenced are in core, return.

20, Otherwise effect Jobchange, and upon return, go to 2.

At this point it would be well to point out several anomalous
cases. These are the cases where a sequence of instructions mey work
differently in a demand-paging environment than in a normal environment.
In as much as these are primarily hardware limitations, they must be
condidered as definite degign errors in the Sigma 7. (It must be re-
marked, however, that in general the Sigma 7 is a well-engineered ma-
chine, designed for the convenience of the programmer, rather than the
engineer. These design errors are due to a lack of foresight, since the
Sigma 7 was not planned with a demand paging capability; this device is
so powerful that it is frequently used, however.)

One of these cases i@ the previously mentioned infinite chain of
EXU's. A second is that of BAL, which the hardware treats as a link-
and-branch. That is, the link register is set while the effective ad-
dress is being computed and tested. If BAL traps because of an access
protect violation, the link register will have been modified from its
previous value. As a result, one cannot safely use the link register
to hold either an index or indirect address for BAL, as there will be
no recovery possible if a demand paging trap occurs.

A second nuisance is that of conditional branches (BCS, BCR)., The
hardware assumes that a branch will normally go, and thus in anticipa-
tion will access the effective address. If the branch doesn't go, the

hardware must recyéle and get the next instruction. (This is why a

A 113
branch that doesn't go takes 50 percent longer to not branch.) Each
of these references will trap, however. As a result, more pages may
be referenced than will be used, especially since the No-OPeration (NOP)
instruction, a favorite for parameter lists, is normally an unconditional
no-branch.

Yet another source of annoyance is that the access protection
necessarily used to implement demand paging does not apply to mapped
master-mode code. This has two results. First, all storage commonly
referenced by master-mode must be virtually dedicated or ABS to insure
that it will be in core at all times when it may be referenced. Second,
there is no guarantee that any non-virtually dedicated area will be in
core at any given time. On the execution of a CAL instruction (a
gspecific set of instructions which allow the slave-mode to make up to
64 unique requests to master-mode by trapping) the only pieces of non-
dedicated area guaranteed accessable are the instruction itself, any in-
direct address, a possible chain of EXU's leading to the CAL, and the
registers. Specific address references are guaranteed accessible only
until the first time Jobchange can occur. (The alternative is to use
& SCANPAGE-like routine to check each possible reference.) Hence, all
parameters must be transmitted through the registers.

The only real criterion for using master-mode is to perform op-
erations which are to be denied to the slave-mode directly. Let us
congider these operations bdbriefly. They can be divided into two cate-
gories; the execution of privileged instructions, and the referencing
of storage in a way not allowed to the slave-mode. We can eliminate
many of the problems described by the extension of master-slave opere-

tion to include two more classes. Let us call these meta-master and

114
meta-slave operations. Master and slave would still have their present
form of operation. Meta-slave, however, would permit the execution of
privileged instructions, while applying all the addressing restrictions
of the access protection. Meta-master would also be restricted by the
access protection, except that write protection would not apply. With
this change, the only pages which need be virtually dedicated under
JANUS would be those containing the TCP and the X'40' routine. The
X'40' routine would be the only one which need run in mester-mode;
all other monitor functions other than unmapped interrupt routines (to
which demand paging cannot apply anyway) could run successfully in
meta-modes.

In addition to meta-modes of operation, there are s everal other
features, which, if implemented via hardware, would be a boon to demand
paging and timesharing in general. These would be in addition to read-
and writeable map access protection registers, single level executes,
and recoverable instructions, as discussed above.

One of these is & change register; containing one bit for each
mapped page of memory, the bit corresponding to a page would be uncon-
ditionally set each time that page was written into. The change re-
gister could be cleared before each timeslice, and at the end of the
timeslice all modified pages could be located, looked up, and flagged
as having to be written back.

A second would be a reference register; like the change register,
& bit would be set whenever a page was referenced.

The access trap should be divoreced from the non-allowed operation
trap, permitting independent operation.

The most powerful tool would be the introduction of a privileged,

115
execution-analize instruction. One would initialige the registers,
specify the pseudo-mode to operate under, and execute this instruction.
It would interpretively execute the instruction at the effective address,
undef the identical conditions under which the trap occurred, stopping
short of actually modifying core or registers. When a point is reached
within the target instruction where a trap would have occurred, execu-
tion would be aborted, &and the instruction would cause a register to
contain three pieces of information--the offending address which would
cause the trap, the protection currently set for the offending page,
and the maximum ACcess Required (ACR) which would avoid the trap. Com—
puting the page, one could compare ACR with ACL in the TCP; if less, an
error condition wquld hold. If AC was not 3, one could immediately go
set AC = ACL. Writeback and USED-LAST would be automatically controlled
by the change and reference registers respectively, and would not have

to be manipulated by software on each trapping reference.

B. 4 Program Optimization

While almost any program will run under a demand paging scheme, it
is possidble to write programs which are completely pathological, execu-
ting almost no instructions per second. Conversely, it is also possible
to write programs which take advantage of timesharing and demand paging.
Fortunately, programs written in this fashion are not penalized when op-
erating in a normal environment. For example, because of demand paging,
it becomes feasidle to use multirecord I/O buffers resident in core for
each device; manipulated by a task during a timeslice, and by an interrupt
routine asynchronously. Then only very slow devices, or interactive

devices where buffering is infeagible, will be 2 limit on the speed of

116
the program. The program will no longer be primarily 1/0 1limited, as it
would be when only a single record buffer was used, requiring waits.

The primary methods of optomization are those of limiting modifi-
cations and references. Limiting modifications means that one does not
rewrite areas within the address space indiscriminantly, but instead
causes all variables to be located in contiguous pages or blocks of
pages, such that a minimum number of pages will have to be rewritten on
the disk. A major item to avoid is rewriting sequences of code. The
degigners of the Sigma obviously had this concept in mind when they
very carefully excluded all instructions which would allow one to
easily build instructions in core. Any time it is necessary to build
an instruction in line of code, the Sigma designers made it easier to use
indirect addresses, indices, or, if absolutely necessary, to build the
ingtruction in a register and execute it there. This holds true also
for the insertion of in-line parameter ligts. Further, to avoid variab-
les imbedded in code, it is desirable to use common storage areas as
much as possible.

The second main facet of optimization is organization. If N
routines which are always referenced together are in the same page, the
program will execute more than N times faster than if each routine was
igolated in its own page, surrounded by little used routines. Remember
that demand paging is only a scheme of sutomated overlsys, which cause
recently unused areas of core memory to be replaced with demanded pages;
if in each instruction it is necessary to fetch another page, efficienq}
ig decreased, since we are now executing useful (as opposed to overhead)
instructions at a rate of one every 40-50 milliseconds, the delay being

necessitated by waiting for a slow device, the RAD.

117
B. 5 Signals and the MESSAGE CENTER

One capability required of any system involving asynchronous op-
erations is that of synchronization. Synchronization is effected by
the occurrence in time of an event of unspecified form and meaning de-
fined by common convention between the synchronizing and synchronized
parts. This idea can essentially be reduced to one bit of information—-
the event has occurred. It is not normally necessary or desirable to
be able to specify that the event has Jjust occurred, since this neces-
sitates defining Just.

In a timesharing system, especially one with as much flexibility
for asynchronous operations as JANUS has, this synchronizing capability
is especially lmportant. Synchronization is necessary between tasks,
as when a subtask must inform its parent that it is done, and between
interrupt routines and their controlling task, to inform the task of
the occurrence of a condition. A task may be unable to proceed until
the occurrence of a specific event, and may have put itself on wait
status. The occurrence of the event should be capable of pulling the
task out of walt status.

In JANUS, synchronization of this form is provided by means of
Signals, of form:

00XXYYYY,
where XX is a unique Signal number (0-255), and YYYY is the name of the
task it is directed to. The Signal number is eventually used 28 an index
to set a bit in the TCP: if greater than 255, the bit will still be
set, but not in the normal signal region. Two Signals have standard
definitions; Signal O is a wake-up Signal, Signal 1 is a standard

abort Signal to the task.

118

Signels may be sent from any level of JANUS--from the highest
level active interrupt routine to the lowest level of a task. Signals
are gent to the MESSAGE CENTER via the sequence:

BAL,R11 MESSCENT

R6 = Signal.
The MESSAGE CENTER will always accept & Signal, under all conditions of
interrupts. The operation performed is to push the Signal onto a stack.
In the event that the stack is full, the Troubleghooter is invoked to
handle the condition, and upon return, the attempt is made again. The
volume of the stack is checked, and if it is getting significantly full,
the Housekeeper task is flagged to HURRY and process the stack; if very
full, the Housekeeper is flagged RUSH priority, and Jobchange is ef-
fected. Thus only in extreme cases should the Troubleshooter be called
upon to handle Signal difficulties. If called in, the Housekeeper will
even out the resident stack, moving excess Signals to its own swappable
stack, or returning them if the resident stack becomes empty. Thus it
is posaible that a time delay of up to geconds can occur between sending
and receiving a Signal, under heavy Signal usage..

Great pains have been taken to ingure that Signals are neithef
lost nor duplicated. This is done b; the use of reentrant routines
and multiple stacks, all to‘avoid the necessity of having an accessible
copy of & Signal in more than one place. Thus the stack of Signals is
not scanned for a Signal for a specific task in order to remove that
Signal--it is instead unstacked, saved in a second stack, and at a
later point, Signals are individually removed from the second stack,
and if not desired, returned to the first stack via the MESSAGE CENTER.

This degree of complexity is necessary because the stack of Signals

119

may be simultaneously referenced from many levels. For example, while
referencing the Signal stack, a task may be interrupted to effect Job-
change, the Jobchanger interrupted by an interrupt routine while fetch-
ing a Signal, interrupt routines interrupting each other, and finally
when the stack is full, the Troubleshooter interrupts the current ac-
tive routine and locks out all usage while it unscrambles the difficulty.

However, there are limits beyond which nothing cen save a Signal.
These usually occur in the case of uncontrolled sending of Signals.
Thege can be avoided by reasonable operation. Tasks should permit Job-
change to function between sending Signals. Interrupt routines should
take care to send a Signal only once, even if the condition is recog-
nigzed repeatedly, until the interrupt routine knows that the task has
recognized and acted upon the Signal. A simple way to do this is to
use the preformed Signal as a flag. The Signal is placed in the re-
quired location by the task when necessary. The interrupt routine
would exchange a null entry for the Signal when necessary, and if the
Signal fetched was null, would ignore it. Thus & Signal would be sent
only once. There are other methods to accomplish the same ends. Null
Signals should not be sent to the MESSAGE CENTER indiscriminantly, as

a gignificant amount of time is required to delete them, for the dure-

tion of which valuable stack space is lost.

B. 6 Timekeeping
It is often desirable to perform tempofal synchronization, either
at the end of a2 specific delay, or at a specific time. As the computer
normally keeps track of time by clock interrupts, which are limited in
number, and as this function should be provided to all users in a time-

sharing system, a resident routine is called for. In JANUS, the lowest

120
level priority clock interrupt is the Jobchanger; the next higher is the
TIMBKEEPER. Time requests are performed by the calling sequence:

BIG_BEN

R6 XXXXXXXX Delay requested (milliseconds)

R? SSSSSSSS Signal (Form 1)

R7 g:‘ﬁxxxx Unmapped address (form 2)

The time request is compared with the time delay remaining until
the next iitorrupt--if less, it is set as a new delay. The entry is
then pushed into a stack. At each interrupt, each entry is pulled and
updated. If the specified time has elapsed, and the entry is of form
1, the Signal is sent on to the MESSAGE CENTER; otherwise the entry is
saved on a second stack, while the first is emptied. Then the entries
are removed from the second stack, one by ome, and if the time is not
up, sead back to BIG _BEN. Otherwise the entry is of form 2, and the
interrupt routine performs a BAL, Rll to that unmapped address. The
routine there can perform required operations before returning, and can
assume R6-R1l1 are volitile. This provides a capability of clocked in-
terrupt routines, such as might be used to generate an unbuffered
graphic display.

In using form 2, there are certain constraints which muat apply to
thg external routine. First, the routine may not mamipulate the clock
inhibit bit in its PSD. Second, there is no automatic deletioa of such
a request upoa task exit--it is necessary for a task to wait until‘the
time actually rums out, and control is transferred to the external rou-
time. While the external routine would normally request another delay
of the TIMEKEEPER, when exiting it must stop itself. Third, the ex-

ternal routine must always be in core when such a request is pending.

Pourth, any time delay requeated by an external routine should be greater

121
than the time normally required from request to return, otherwise the
computer will hang, spending all of its time in the interrupt rputines.
Fifth, external routines should refrain from making more than one re-
quest at a time.

Form 1 requests allow the task to be signaled at the end of a given
time. Enough information is available to any task to allow it to com-
pute a time delay required to be signaled at a given time. Thus it is
possible for a task to be started, and thereafter perform some process
every hour on the hour, if so desired. Likewise a task performing a
low priority calculation could be brought awake only between midnight
and 6AM, or at some other time when the computer is light loaded.

Since a centralized routine is called for by the nature of things,
only a small increase in the code required enables the TIMEKEEPER to
perform time of day calculations. The current values are available to
any task which desires to reference them. These quantities are:

BCDTIME HHMM L bytes of hours and minutes on word boundary.

BCDDATE DDMMMYY 7 bytes of day, month, and year on a double-

word boundary.

BCDDAY DDDD 4 bytes of day of week on a word boundary.

TRUETIME XXXXXXXX 1 word of half-milliseconds elapsed to last

interrupt.

LASTTOCK XXXXXXXX 1 word of half-milligseconds to elapse between

interrupts.

TICK XXXXXXXX 1 word of half-milliseconds required until

next interrupt.

The TIMEKEEPER deals in actual time, independent of usage. As a

result, the times are quite accurate. ZEach night at midnight the

122

Housekeeper task is call in to update BCD -TIME, ~DAY, and -DATE. The
calendar is‘good to 10,000,000 years, and includes leap year calculationmns.

The time stack is another of those stacks and lists which extend
onto the disk via the Housekeeper. Whenever the stack threatens to
overflow, the Housskeeper is called in to tidy up. All entries are un-
stacked, converted to an absolute time, and saved in t he Housekeeper
stack. The Housekeeper then reorders t his stack, and returns enough of
the imminent time requests to half fill the resident stack. As the re-
sident stack is emptied, the same pracens takes place. Thus, long de-
lays will drift onto the disk until they become imminent. Short delays
on t he disk drift back to being resident. The delay is thus a guaran-
teed minimum delay--it may actually be longer in duration than requested.
If the resident stack does overflow while a request is being made, the
Troubleshooter is invoked to unscramble things, just as it is for the

MESSAGE CENTER.

B. 7 Unique Resources

There are a number of umique resources available to the computer
which cannot be shared simultaneously, but must be sequentially allocated
to one task at a time from the system pool. Unique resources are charac-
terized by an almost universal association with interrupt routines, and
thus with I/O operations.

There are four routines used to allocate and free unique resources.
Each gearches through the resident list of unique codes, returning fail-
ure if the device is not located (monexistant). A "downed" device is

nonexiastant.

123

IOASK*

R6 #**¥XXXX Unique device code

R7 FEEXXXXX Name of requesting task
If the device is owned, the routine returns failure, otherwise it assigns
the device to the requesting task.

IOWAIT*

R6 *®*2XXXX Unique device code

R?7 S8SS8SSSS Signal for requesting task
If the device is available, the routine operates exactly as does IOASK.
In this case the signal will never be sent--instead the task name from
the Signal will be used to assign the device. If the device is in use,
the requeat is added to a stack, and the Housekeeper is signaled, in
order to add the request to the non-resident queue for later assignment.
In this case, CC3 = 1 is returned. When the task's turn for the device
comes up, the device is assigned to the task, and the Signal is sent to
inform the task that it now has the device.

IODOWN*

R6 *E*RXXXX Unique device code

R?7 #***XXXX Name of requesting task

If the task discovers that the specific device is not operational
(usually by means of an operator key-in), this routine may be called.
The device is found, and checked to belong to the requesting task. If
so, the request is passed to the Housekesper, to allow flagging the de-
vice down. A downed device cannot be allocated, and 21l requests, both
pending and future, will wait until the device is brought up.

IOFREE*

R6 *XHEYXXX Unique device code

R7 ***4XXXX Name of requesting task

This routine operates exactly as does IODOWN, except that the re-
quest sent to the Housekeeper will not cause the device to be flagged

down, but instead passed either to the next register, or back to the

124
system pool. The device will be available as soon as the Housekeeper
has processed the request.

In the Sigma 7, umique regources are of two forms, treated dif-
férontly by the hardware, and thus by prograns.

Ome form is used through the I/0 processor (IOP). Characterized
by being sequential byte (character) oriented, the IOP is normally used
to transmit a bdbuffer in to or out of core memory, ard is connected to
I/0 devices, such as the cardreader. These devices have a unique ad-
dress, which specifies a device subcontroller. A subcontroller iny
have multiple devices attached (e.g., teletype with paper tape capa-
bility), but a task buys a subcontroller from JANUS. Interrupts gen-
srated by IOP devices all filter through a common port, necessitating
a common regident routinme.

Four routines are specifically associated with the IOP,

IOASSIGN

R6 *S*¥¥0XXX Device address

R7 *# XXX Unmapped external interrupt routine address

The parameters are merged and inserted into the resident stack of
active devices.

IORELEAS

RS **%#0XXX Device address

The resident stack of active devices is scarmed to find the entry
corresponding to the device specified. When found, the entry is re-
placed by the top entry in the stack, which is then deleted.

IOKICK

R6 XXXXXXXX Pseudo-AIO status

It is frequently desireable to be able to generate a device in-

terrupt without affecting the device. For example, the interrupt routine

125
must be able to determine the device status. It is easier to kick the
interrupt routine tham to have duplicate code outside the interrupt
routine. IOKICK makes this possible by pushing the pseudo-AIO status
into & "kick" stack (queue) and then triggering the I/O interrupt.
This, in effect, provides a signal path from the task to the interrupt
routine. The routine is reentrant, and may be called sparingly from any
interrupt 1level.

The interrupt routine is not directly callabdble.

On interrupt, the interrupt is acknowledged (this AIO should be
the only one ever executed in the machine) and the device address re-
tufned is then.used to scan for the device in the active device stack.
If not found, diagnostic information is saved and the Housekeeper is
signaled. If found, the calling sequence BAL,R11l is performed to the
address agsociated with the device, with R6 containing the AIO status.
Upon return, the AIO is again executed. This occurs until the AIO
indicates that no interrupt was recognized. At this point, a uaique
flag is added to the kick queue. The kick queue is not scanned, one
entry at a time. Each entry is treated exactly as an AIO status word,
and sent to the corresponding interrupt routine. When the flag pops
off the queue, the interrupt routine exits.

The second form of resource is that associated with the Direct
I/O (DIO) port. The DIO is characterized by word data tramsfers be-
tween the extérnal world and the registers, under program control. It
is used primarily in situations where a buffer cannot be used because
the data must be manipulated before use. These resources include in-
terrupts, register pages (used exclusively by some interrupt routines),

and external dovicéa (in the MSU configuration, thege external devices

126
are General Purpose Ianterface (GPI) half registers, and will henceforth
be feferred to as such).

All devices are gpocified by an 11-bit address; a 3~bit prefix
code is defined to distimguish between different devices with the same
address. This code has the values:

0--1I0P,

l--external interrupt,

2-~-register page, and

4~-GPI.

The DIO addresses are numbered sequentially, from the lowest to
the maximum number available. Thus, (MSU configuration) external in-
terrupts, 0-7; register pages, 1-3 (0 is common to eall users); GPI, 0-7.

The only resident routin;s geared specifically to the DIO are
those ¢ealing with the external interrupts.

DTCHINTR

R6 *e8x%3XXX Interrupt address

R7 will is loaded with the standard system interrupt location
plug and then control is transferred to:

ATCHEINTR

R6 #ARREXXX Imterrupt address

R?7 XXXXXXXX Imstruction to plug into interrupt location.

The operation is performed.

One point must be stregsed with respect to use of routine IOWAIT.
A task requesting a device through IOWAIT normally enters the wait
state if the device is not currently available. A situation can occur,
whereby two tasks, each using a unique device, can request the other's
device. They will then hang upon each other, both being out of service,

and keeping their device out of service until ore or the other is

explicitly told to let go. Any task which can get into this situation

127

should have & capability built in to provide for this occurramce. It
may be avoided by asking for the additiornal device through IOASK, by
using only one device at a time, freeing it before getting another,
or by the use of symbioats.

The allocatable resources do not include the console teletype or

RAD, as these are permanently assigmed to JANUS.

B. 8 Prefices and the Console Teletype

An operation common to almost all tasks is that of commumication
with the operator. As JANUS handles the RAD through the Swapper, so
also does it handle the console teletype. The teletype handler is
shared by all users. Ianput is character directed, in that a urique pre-
fix directs the imput to the correct task. Input may thus be scrambled,
not nrecessarily im the order of request. Output is strictly ordered,
such that each request is added to a queue, to be typed out in due time.
If input is ia progress when an output regquest is made, the input is
interrupted and a recovery procedure is set up, such that whea the out-
put is dome, the original input is echoed and imput is them continued
at the point the interruption occurred.

Each request is accompanied by a unique prefix. Certain prefixes
are defimed, such as & for JANUS, CR for the card reader, LP, CP, PL,
TY5, MTO for other devices. A task which requires a umique profix may
get it from JANUS in a manner analogous to diskpages. That is, there
are two routines which allow a task to get or return a prefix.

GETPREFX

R6 *RESREEE Not used CCCCCCCC Unique prefix allocated

PUTPREFX

R6 CCCCCCCC Umique prefix freed.

128

A prefix is a word of TEXTC format; that is, the first byte is a
count of the useful bytes which immediately trail the coumt. Extra
unused bytes are blanks packed onto the ernd of the word.

Again like diskpages, prefix hardling involves a small resident
stack, and a larger stack ian t he Housekeeper. The Housekeeper may be
called in te adjust the resident stack, amd if the stack over-or umder-
flews, the Troubleshooter is invoked to fix matters.

The teletype has a number of routines associated with it. I will
first list those which are callable from tasks, and then comsider the
intorruﬁt routine:

DISPLAY*

R6 XXYYYYYY Coumt of tytes; mapped address of record

R7 CCCCCCCC TEXTC profix

R8 OOXXXXXX Signal to send

This routire is used primarily for lew priority output, where it
is not desirable to dedicate a page containing a record. If the one-
record buffer is not free, failure is specified. Similarly, if the
output queue is full. Otherwise save the Signal, copy the record inmto
the display buffer, flagging it busy, thenm make up a new set of type
parameters to send a Signal to the Housekeeper on completion. (On re-
cqipt of this Sigmal, the Housekeeper freei the buffer, flags it mot

busy, and Semds the Sigral origimally specified.) Them proceed to routine:
TYPE*
R6 XXYYYYYY Count of bytes; unmapped address of record

R7 CCCCCCCC TEXTC Prefix
R8 00XXXXXX Signal to send

Reglisters are unchanged ard failure is specified if umable to
accept the request. Otherwise "kick" the interrupt routine, return

success.

' HE

129

ACCEPT* .
R6 XIXXXXXX Count of bytes 000XXXXX Byte address of RESEUF
:v4 CCCCCCCC TEXTC Prefix 000XXXXX Byte address of input

R8 OOXXXXXX Signal to send

Registers are unchanged and failure is specified if unable to
accept the request. Otherwise, compute the addresses to return, then
return success.

When a task has received a Signal that the input requested has
occurred and is in RESBUF, the input should immediately be processed,
either by copying RESBUF into the task's storage area or directly. As
soon as possible, the buffer should be freed tc allow other input to
proceed.

TTYFREE

This routine clears the flag that the input buffer is in use, and
"kicks" the interrupt routine.

Two routines are available to delete input requests. (This is a
job of the task on exit, and at certain other times.)

DELETETY

R6 AKX Name of task

DELTYSIG

R6 SSSSSSSS Specific Signal

In either case, the entry is flagged to indicate the type of
search, saved in a "delete" cell, and the interrupt routine is "kicked".

The interrupt routine has five modes of operation.

1. ZEntered vie "kick". Test if to delete input request. If so,
search and delete as necessary for ell occurrances of the condition, then
clear the "delete" flag and exit.

If not delete, test if any requests are in the output queue. Skip

130
if not, or if in override or type mode. Otherwise halt the current in-
put operation, initialize a recovery, and go start output.

If not type, check if buffer freed. If so, and not typing, start
new input--ptherwise initialize recovery.

2. Character mode. Used while inputting e prefix. If after 3
characters have been input, no match is found with any requests, a
question mark is output, and character mode is reinitialigzed. If the
prefix is recognized, copy the prefix into RESBUYF, then proceed to read
the asgociated record. (RESBUF is the standard buffer for console tele-
type messages, and is of TEXTC format, including the prefix.)

3. Input mode. Used while inputting a record. If terminated by
EOM character, discard the entire line and revert to character mode after
repositioning the carriage.

4, Type mode. While active, enable the override. When one record
is done, remove from queue. If the queue is empty, disable the over—
ride, clear the override flag, and proceed to recovery. If not empty,
and override is not flagged, start the next operation. If override is
flagged, proceed to override mode.

5. Override mode. For the duration of the type mode, the console
interrupt is active as an override. If pressed at this time, override
is flagged, and at the end of the current line instead of proceeding to
a new record override mode is entered for the duration of one input re-
quest. The input is recovered, and any interrupted input is continued.
This allows an input to be forced through a large number of successive
outputs. Override mode is recogniged by the console interrupt light

being 1lit while the mode is active.

131
B. 9 Diskfiles

In a paged enviromment where contiguous pages are not necessarily
available, there are two methods of combining a collection of pages into
8 file. One method is to provide an ordered list of the component pages
of the file, This scheme is illustrated by JANUS tasks, which are no-
thing more than executable files. In this case, the list is the USAGE
table on the TCP. This scheme allows random access of file pages, but
requires the allocation of a fixed size block to hold the list, thus
gsetting an upper limit to the size of the file,

The second method is that of "chained" files, where each page in-
cludes information as to the next and last pages in the chain. While
necessarily less flexible than the first method with respect to access,
the limitations on chained files are no stronger than would be imposed
by the use of addressable magnetic tape, where a single record in t he
middle of the file can be rewritten. The rest of this section will con-
cern itself with chained files exclusively.

JANUS has certain routines and tasks which deal with files. To
mgke use of these, the JANUS file conventions must be followed.

Each page of a file is a true page (512 words) of fixed format.
The format of each page is:

Word O 0000XXXX Pointer to last file page in chain,

Word 1 0000XXXX Pointer to next file page in chain,

Word 2-511 Available file page data area.

A null (0) pointer indicates the last page of the file in that
direction. The first page of a file is in the FILE NAME.

One resident routine is:

Unfile*

R6 ¥A*AXXXX FILE NAME,

132

The FILE MAME is pushed onto & resident stack. If successful, the
MORTICIAN task is signaled, and will eventually come in and chain for-
ward through the file, freeing the diskpages. In this case, only the
forward pointer on each page is examined. Note that if a page in the
middle of a file is presented, preceeding pages are not touched.

In order to avoid confusion which might arise, I wish to define
certain terms.

A file consists of one or more blocks. END-FILE corresponds to
the terminal condition of the last block, going forward.

A block consists of one or more records, terminated by a MARK or
END-FILE. A MARK is completely equivalent to a tape mark, which how-
ever is sometimes referred to as an endfile. This usage is not fol-
lowed here. Similarly, a block is sometimes referred to as a file, but
this usage is again not followed.

A file is normally of constant format——RECORD or STREAM. A RECORD
FILE has as part of its specification, a fixed record size parameter.

In this case, all records are of identical sige. These records are nor-
mally packed into a file pege, with no spaces between them.

Conversely, a STREAM FILE does not have fixed sizes. Inatead, each
record has associated with it a record size discriptor (COUNT), normally
the first item in the STREAM RECORD. To locate the next record, it is
necegsary to combine the record pointer with the COUNT to develop a new
record pointer. STREAM RECORDS have the advantage of improved packing
densgity. However, it is occasionally desirable to locate a previous re-
cord. In order to locate the beginning of a record, knowing the end,
we must have the size. Hence we define a REVERSABLE STREAM FILE, char-

acterized by SUPER-RECORDS, which consist of STREAM RECORDS bounded

IHE

133
at each end by a SUPERCOUNT.

COUNTS and SUPERCOUNTS are normally of the same resolution as
the elements of the record: in all future discussion I will be refer-
ring to a record of bytes, COUNTS and SUPERCOUNTS which fit into a byte,
and which specify the number of bytes.

Given & racord of N bytes, a STREAM RECORD would consist of N+l
bytes, the first of which (COUNT) would contain the value N. (This is
also referred to as TEXTC format, from the usage in ‘the assembler.) A
SUPER-RECORD would consist of N+3 bytes, where the first and last
(SUPERCOUNT) would have the value N+2, and the N+1 bytes between would
be a normal STREAM RECORD.,

In addition to the records, it is desirable for the file to con-
tain control information. Immediately apparent examples are END-FILE,
ENDPAGE, and MARK. CONTROLS should be readily distinguished from normal
records--8s no normal record has a COUNT of zero, this is our identifier.
A CONTROL is a one-byte record with a COUNT of zero, except in one gpecial
case. Thus there are 256 possible CONTROLS. A REVERSIBLE CONTROL has no
COUNT~-the control byte follows the initial zero SUPERCOUNT directly.
Except in the case of the ENDPAGE condition, each REVERSIBLE CONTROL is
three bytes of form 00-XX-02. In the special case of the ENDPAGE con-
dition, the rest of the page is the ENDPAGE RECORD, and the last half-
word on the page is the SUFPERCOUNT, which however is still a byte count.
This is necessary, as a single byte is too small to be able to specify
a large ENDPAGE RECORD.

It is important that these conventions for reversible files be
known, es one system task (SYSGEN) is capable of generating reversible

library files.

134

Unique controls defined are as follows:

00 ENDPAGE. This is also the END-FIIE condition, when there is
no forward chain specified for the page.

01 PAUSE. Normally causes the receiver of the file to halt until
some condition is satisfied.

02 MESSAGE follows. The record following is not a normal data
record, but instead contains special information to the reader.

09 File is switching to BINARY, or to UNFORMATTED mode.

0D File is switching to BCD, or to FORMATTED mode.

10 MARK. Used to identify the end of a block of records.

FF. Null. This control is just filling space, and is to be ig-
nored. It may be used, for example, to clear a PAUSE condition on a
driven file. (A driven file is being read as it is being written, thus

the necessity of halting the receiver if it catches up to the driver.)

B..10 Symbionts

A symbiont is a task which performs a limited set of self-defined
operations on a file, usually transcribing it to another file. This
discussion will be limited to I/O symbionts only, where exactly two files
are involved, one of which is associated with a physical device.

Consider first the range of applicability of such a symbiont task.
Since it must be capable of transmitting a stream of records from suc-
cessive files, it cannot be used for an interactive (bi-directional) de-
vice, such as a keyboard or graphic display. TFurthermore, since it deals
with STREAM FILES, positioning operations eare not readily implemented,
or are meaningless if included.

In this context, we see that the range of applicability covers only

135
those physical devices which are mono~directional. These would include
card read;rs. line printers, card punches, plotters, and under certain
circumstances, magnetic tapes, Specific idiosyncrasies of particular
devices require specific conventions, which in generel conflict with
those of other devices.

A set of symbiont tasks has been constructed for several of the
commonly used I/0 devices. This set could be expanded, but currently
includes the cardreader, lineprinter, cardpunch, and plotter. These
symbiont tasks are system tasks, and special resident routines are pro-
vided to permit any task to communicate with the requested symbiont task.

The calling sequence is the same in all cases:

R6 XXXXYYYY,

R?7 SSSSSSSS Signal to send on completion,
where YYYY is the name of the first page of a standard non-rewindable
stream file, XXXX are attribute bits. Currently the only bit defined
is the first (8000), which signifies thet the file may not be discarded
after the symbiont is through with it. Unless that bit is set, output
symbionts will return each component file page to the system pool as the
information thereon is used.

The resident entry points are:

CRAO3SYM,

LPAO2SYM,

CPAOLSYM,

PLAO6SYM,

The operation in each case is identical.

On entry, R6-R7 are pushed onto a small resident stack unique to

the specific device. If not successful, CC4 = 0 is returned--otherwise

136
a Signal is sent to the task, which is always on the ring of tasks.

When the task cycles through, it empties out the stack, putting
each request into a2 queue internal to the task, in the order requests
were made. If the task is working on a file, it is busy.

A busy symbiont, on completion of a file, frees the I/O device,
and deletes that file entry from the queue. If the queue is empty, the
task goes into the wait state, and upon return, checks the queue again.
If the queue is not empty, it requests the device anew, and when the de-
vice is assigned, proceeds with the next file in sequence. This mode
of operation, freeing and reallocating the device after each file,
permits any other task to sneak in and acquire the device to perform
it's own I/0 operations.

Once a symbiont has been given a file, it is controlled from the
teletype, by means of the device prefix. Valid key-in controls are:

GO Continue with the current operation.

DOWN Flag the device down, save the file for further continuation

when the device goes up.

ABORT Discard the reat of the file.

In using input symbionts, (currently the cardreader only), a page
is given to the symbiont. The symbiont will allocate further pages as
necessary, and perform all necessary chaining operations. The speci-
fied signal is returned to the controlling task when the END-FILE con-

dition arises.

B. 11 Control Commands and the Amperscanner Task
All useful operating systems incorporate some means of communica-

tion with the outside world. Under JANUS, this function is provided'by

137
a system task, the Amperscanner (the neame is contrived from ampersand,
which is the teletype prefix used to direct input to JANUS, and scanner,
which function the task performs).

The Auperscanner always has a request pending for input on the con-
sole teletype, unless it is actively precessing a line of input. Input
is formally free field--that is, keywords may have no imbedded blanks,
and must be separated by one or more blanks or other delimiters.

The control commands are formed by a keyword, followed by pos~—
sible modifiers. Unused modifiers are ignored, unless they actively
garble the meaning of a command. In the case of a garbled or unknown
command, no action is taken, and a question mark is output on the tele-
type. Keywords fall into three main categories.

One keyword category is that where they keyword is the name of a
library task. In this case, the Amperscanner will locate the task in
the library, and will proceed to make a working copy of the task, per—
forming a copy operation on all those pages which will be modified, on
the basis of information kept in the master copy of the TCP. The copy
is then added to the ring of tasks, ond signaled to start. If unable
to start a task, either because of a lack of diskpages, or because
JANUS can accept no new tasks, an appropriate comment is produced and
the operation is aborted. The Amperscaner is the parent of all such
tasks, and will take care of destroying them after they exit.

A second category permits changing various system parameters, such
as time and date.

The third category permits one to query JANUS as to the status of

various features, such as resources. One keyword in the category (MANUAL)

causes a standard system file to be printed, providing 2 manual of

138
operation which lists all keywords implemented, and includes a brief

description of each one's significance.

B. 12 The Housekeeper Task
As mentioned previously, all possible effort has been made to
keep the JANUS resident as small as possible. To this end, all large

d sets and little used code which need not be resident are kept in

the Housekeeper task, and brought into core on demand on a timeshared
basis. Thus, infrequently used functions, such as the calendar and
date computations, are provided by the Housekeeper, without tying up
core meumory.

Since the Housekeeper is the major non-resident system task, it
has certain non-standard features. For example, the housekeeper TCP is
dedicated permanently in core, in the first page above JANUS. In this
sense, it is the Task Control Page of JANUS itself--thus JANUS can be
considered a task. In normal circumstances, the TCP of all other tasks
map over the JANUS TCP, end it is not seen by other tasks. To all other
tasks, there is just an additional page of memory which is inaccessible.
However, it is the TCP of unmapped JANUS, and thus any unmapped trap
which occurs funnels through the Housekeeper TCP. (Unmapped traps are
discouraged, and are normally a sign of either programming or machine
error.) In addition, this page contains a number of standard system
console teletype messages used by the Housekeeper and Amperscanner.
These are kept here so that valuable mapped task address space will not
be cluttered up by storage not relevant to the tasks.

The Housekeeper is invoked whenever an unusual circumstance occurs.

This includes the case where a resident stack is depleted or surfeited.

139
Whenever the Housekeeper is cxecuted a standard function is to cause
all resident stacks to be adjusted until exactly half full.

In certain freak cases (which experience has shown occur most
rarely), it is possible that a request from a task to JANUS, which af-
fects one of the resident stacks, cannot be fulfilled. In this sit-
uation, it is possible for resident routines at any level to call upon
the Troubleshooter, a special resident routine. This routine has the
power to override,the whole system, in 2 last-ditch effort to stay
sane. It can, if necessary, actually take the RAD sway from the
Swapper, checkpoint storage, and bring in encugh of the Housekeeper to
attempt to recover. If it was necessary to checkpoint core, that core
will be restored after the recovery attempt.

Because of the interruptable nature of tasks, and because of the
possibility that the Troubleshooter may be invoked by a high level in-
terrupt, it is necessary that the Housekeeper be reentrant. As a re-
sult, resources are normally kept track of in three different areas,
in such a way as to defeat the interruptable nature of the Sigma 7. TFor
example, stack manipulation instructions are not interruptable. As =
result, resources have a resident stack, an intermediate Housekeeper
stack, and the Housekeeper data set. Data are transferred via stack op-
erations between registers and stacks. The intermediate stacks are buf-
fer stacks; kept half full, data may be transmitted between them and
the resident stacks by both the Troubleshooter (which uses the inter-
mediate Housekeeper routines) and the Housekeeper. The Housekeeper
calls upon the intermediate routine to straighten out resident storage,
and then transfers data between the intermediate stacks and the main

data sets of the Housekeeper. While unwieldy, this process permits

140
JANUS to run without inhibiting external interrupts used for realtime
applications, and still guarantees that no datum will be lost or dup-
licated.

By adequate arranging of routines in the Housekeeper, such that
all reentrant storage is at the beginning, it is possible for the
Troubleshooter to need only a part of the Housekeeper. As JANUS now
stands, it is only necessary for the Troubleshooter to use one page
in addition to the Housekeeper TCP.

In addition to the above functions, the Housekeeper may be sig-
naled by the Amperscaner to perform certain operations, such as out-
putting standard messages to the console. It may be called upon by
JANUS for similar functions, as when 2 machine error (such as watchdog

times runout) occurs.

APPENDIX C.

The JANUS Basic/File Control Monitors

When JANUS was undertaken, it was realized that the execution of
FORTRAN progrems would be a major requirement. It was felt that, since
SDS had supplied with the computer a Basic Control Monitor (BCM) 14) and
various processors such as FORTRAN, SYMBOL assembler, LOADER, and DUMP-
ING LOADER--gome of which would be used in genersting JANUS--it would
be an excess waste of effort to generate our own version of the pro-
cessors, especially since SDS would maintein theirs. As a result, it
was decided to build a timesharing monitor which would interface the
SDS-provided processors to JANUS.

A brief examination of the BCM showed that it could not be read-
ily changed to our requirements, if for no other reason than that it
wes inadequately documented. (One of the requirements of acceptable

JANUS coding arose from this experience--all code wes to be adequately

d ted with in the source such that anyone familiar with
the computer could easily understand any part of any JANUS code.) As
a result, it was decided to start completely anew to write the JANUS
Basic Control Monitor (JBCM) which would perform the necessary inter-
facing functions.

With certain exceptions, the JBCM is used in exactly the same way

as the BCM. These exceptions are usually minor, and except for some

141

12
changes in certain control cards, a program which operates under the
BCM will also operate under the JBCM.

The difference in control cards are as follows:

1., The JOB card must have the users name on it. This is fre-
quently the only way to identify output from several tasks.

2. Assignment of files to TYAOl (the console teletype) are in-
valid and are sufficient reason to exit a Jjob.

3. The SDS-defined BIN, BCD, and ECD cards are replaced by the
standard JANUS BIN, BCD, and MARK cards, respectively.

4, In an effort to cut down the number of control cards used,
the loader was modified so that the data cerd is no longer needed, or
acceptable.

5. Many of the operator system keyins have been deleted, leaving
only X, E, and F (Fin, which will abort the task).

Further changes are that, since the I/O is buffered in the JBCM,
the check function is a null operation. Devices are also addressed
differently than under BCM.

In compensation, additional features have been implemented.

Thege are:

1. Additional system DCB's, nemely M:SI, M:GO, MiCI; M:CO® M:MAP,
and M:GR. Some of these are defined in t he SDS Batch Processing Mon—
itor (BPM), a higher level monitor than the BCM. The default device
assignments are CRAO3, DFAFO, CRAO3, CPAOL, DIAFO, and PLAO6 respectively.

2. Default gpecifications are assigned to the FORTRAN DCB'as, to
agree with the FORTRAN usage for READ, PRINT, and PUNCH.

3. M:BI and M:BO are assigned to DFAFO (as was M:GO).

4., M:G0 is rewound at the beginning of a job, and when a LOAD

143
card ig encountered. As a result of these default specifications, the
control cards required for a load-and-go FORTRAN job are:

JOB NAME

FORTRAN

(

(FORTRAN DIECKS

(

LOAD

RUN

(

(DATA DECKS

(

5. Certain monitor functions implemented in BPM but not in BCM
have been implemented in the JBCM. These may be found in the BPM manual
under the titles:

M:TIME,

M:KEYIN,

M:TPILE.

6. Reasonable English language error messages. (This was a
major complaint with the BCM since the error message ERR 65 02 01 00
covered more than fifteen different errors, from referencing nonexis-~
tant memory to the floating point calculation -AtA .)

7. The inclusion of extra control commands, such as UNLOAD.

By allowing multirecord I/O buffers, the timesharing capability is
greatly extended. As a result, there is one page of monitor alloted to
each I/O device, ugsed for buffer and interrupt routines. In addition, a

demand paging algorithm is included, as are certain other functions.

144

The JBCM is divided into two areas: slave and master. The
master-mode area is interfaced directly to JANUS. The slave-mode area
contains those functions which provide the personality of the BCM. All
control card, I/O. trap handling, end other functions specific for the
BCM operate in slave-mode, and are demand paged. The slave-mode moni-
tor area is five pages in extent. However, when a program is running,
using the JBCM only for I/O, only one of those pages need be in.
Furthermore, these pages are write protected and need never be written
back to the RAD, improving swap efficiency.

A recent rewrite of the JBCM introduced a new feature. By re-
arrenging the mastermode storage, and adding code which was assembled
on the basis of an assembly parameter, it became possible to reassemble
the JBCM in t he JFCM mode. The JFCi (JANUS File Control Monitor) dif-
fers from the JBCM mainly in the mastermode area. Whereas the JBCM is
device oriented, the JFCM is file oriented, and does all 1/0 operations
using the system symbionts. The JBCM permits one to provide a progrem
parameters in a conversational mode, since the JBCM is connected dir-
ectly to the devices. The JFCM conversely causes an entire cerd file
to be input before starting, and does not cause output until the job is
done. As a result, it "swallows" jobs, freeing all I/O until the end of
the job, and runs truly inthe background. Since it uses no I/0 devices
directly, multiple copies of the JFCM may run simultaneously. Further-
more, since over half of the JFCM is never modified, the original copy
of the page is used in each copy running, and is thus common to all the
JFCM tasks. As a result, there is a much higher probability that part
of the monitor is in core, necessitating no RAD operation, and making

swapping more efficient. The JFCM has the obvious capability of being

145
fed a long job, and then feeding short jobs to another JFCM or to the
JBCM, to be completed and output while the first job is still being
digested, thus shortening turn-around time for short jobs, without

significently affecting the time required for long jobs.

APPENDIX D.

Notes on Cyclotron Control Implementation

One of the design goals for the use of the Sigma 7 is the control
of the cyclotron by the computer on a timeshered basis. In the ultimate
form, this would be powerful enough for an experimenter to invoke the
task, type in a minimum set of parameters (such as particle, energy,
beam intensity, energy resolution, and experimental station), and then
wait the necessary time for the computer to inform him that the cyclo-
tron is operating under those conditions. The computer would then con-
trol the cyclotron, informing the experimenter when the beam was outside
the range specified, or if an sbnormal condition occurred. This would
continue until the experimenter signed off, at which point a diagnostic
listing would be printed out, giving information of use to the cyclo-
tron service personnel.

How much of this dream is possidle? Since the computer is re-
placing people to make adjustments and measurements, the access time re-
quired is of humen speed, on the order of seconds. It becomes perfectly
feasible to control the cyclotron from a demand paged slave-mode task.
This is good, since a program of the complexity described would have
to be written in a higher level language, such as FORTRAN, which is
notoriously untrustworthy for computer control operations. Such a pro-

gram can be written. Where then do the constraints lie?

146

147

The first constraint is obviously the matter of hardware suitable
for computer control. Since this is outside the range of this thesis,
I will not comment further, and continue under the assumption that it
is available.

The second constraint is the task monitor. This would be similar
to the JBCM or JFCM in many respects, but not identical. (For control,
a realtime capability is required, and if this were available in the
JFCM, any user could accidentally or maliciously send false control
signals.) On the other hand, many of the functions provided in the
JBCM/JFCH could be eliminated. Under the mild constraint that the FOR-
TRAN be compiled under the JBCM/JFCM, one can delete all processor and
control card hendling. Furthermore, the FORTRAN runtime and math 1lib-
rary actually reference the monitor in only three or four places, pri-
marily for I/O. By changing these routines to interface directly with
the mastermode monitor, then all of the JBCM/JFCM slave-mode storage
could be eliminated completely.

Again, I/O can be limited to files in addition to a teletype. As
a result, the obvious candidate for the monitor would be the JFCM. From
this, one could probsbly delete all I/O but plotter and lineprinter,
since & JANUS Cyclotron Control Monitor (JCCM) would not need to read
or punch.

Thus, the JCCM could be made fairly simply from the JFCM by adding
a small realtime handler (probably under 40 words), changing the FORTRAN
runtime, and deleting great pieces of JFCM code. When this action is
finally desired, it can be done in a relatively short time.

The third constraint, and probably the greatest, is the cyclotron

controling program written in FORTRAN. It will undoubtedly be based upon

148

or similar to the SETUP program, in order to compute the operating con-
ditions. There will then be additional subroutines to read the cyclo-
tron parameters, compute the correction required, and perform the neces-
sery control operations. At this point, the additional complexity in-
troduced, of recognizing components which are drifting excessively so
that maintenance may be performed, will quite likely %He a minor per-
turbation on the amount of work involved. The program will doubtless
be written piecemeal, with each new capability checked first under com-
puter simulation (which must also be written and debugged), and then in
real life. Furthermore, a new control capability may well contradict
an older capability, requiring reprograming and even redesign of hard-
ware.

Before any great asmount of work is done on cyclotron control, an
effort should be mede to define the problem for all concerned. Once a
definition is agreed upon and is available, it is time to specify hard-

ware, software, and scheduling configurations. A control program of

this complexity cannot work well if built of independent modul ach
function will interact with others, and must be thoroughly checked,
first for correctness of operation, then for interactions, and finally

for successful operation in a timesharing environment. As for any com-

plex realtime JANUS task, it is desireable to first develop an operational

stand-alone system, with the foreknowledge that it will eventually be
timeshared, and only when it is working rationally in a stend-alone con-
figuration should the timesharing features be added. This is simply
because for basic testing, timesharing is superfluous, serving only to
confuse results, and without eny reel gain, since any realtime program

could not be trusted in a timesharing environment with any other user

149
until completely debugged. Simulations can be performed under JBCM/JFCM,
but any actual control attempts should be completely debugged under the
BCM as a stand-alone system.)

What sort of problems might one encounter in & cyclotron control
program? There would, of course, be various codes for computing initial
parameters for & specific operating configurstion on the basis of theory.
Associated with these would be a capability to set the cyclotron con-
trols to the correct velue, in the correct sequence end with the proper
timing. This phase could be readily generated from programs which exist
todey, such as the SETUP code. There would also have to be procedures
available to make actual measurements, from quantities as simple as volt-
age, current, and pressure, to patterns as complex ss the cyclotron turn
pattern. These would introduce the need for pattern recognition codes
capable of anelyzing the current stete of the cyclotron, and determin-
ing how the machine should be returned for best operation. There might
be "learning" features, such that the program could vary parameters
used in calculation such that control operations would converge faster.
(Under JANUS, this could be readily implemented by keeping these para-—
meters in a set of pages in the task library, modifiable and of which
the original copy would alweys be used by the task. Learned parsmeters
would thereby be changed in the library source.) These features will
probably take a grest deal of time to develop.

Thus, cyclotron control programs contain three types of functions--
initislization, sequencing end stabilizetion, and tuning. The first two
have already been implemented to some extent without the use of an on-
line computer. They could be implemented fully without the computer

through standard feedback technicues at probably less cost than if the

150
computer were used. The real sdvantage of using an on-line computer
would come about by implementing the third--and hardest--category.
As & result, while I feel that this goal is possible and probably
feagible, &an actual computer controlled cyclotron of any significant
value is probably a minimum of two years away, and the system described

in the opening paragraph ig more likely five years awsy.

APPENDIX E.

Notes on Conventicnal Terminal Implementation Under JANUS

One of the most important uses of conventionel timesharing sys-
tems has been to allow simultaneous access to the computer from several
remote terminals. These terminals generally consist of low speed I/0
devices, such as teletype keyboards and paper tape. High speed devices,
while not technically impossible, are uncommon due to the cost of a
wide-bend data link, required for a high data rate. Let us consider
terminals consisting of teletypes only, possibly with low speed paper
tape facilities. How might multi-terminal operation be implemented
in a tesking environment such as JANUS?

Consider first the manner in which & large number of terminals
would be coupled to the computer. The easiest (and most expensive)
method would be for each terminal to be connected to the IOP separately.
Much more likely would be the use of a communications link. In a
communicetions link, a large number of terminals are connected together
as a single I/O device, which includes & computer controlled switch-
board. A mechanisgm is provided to scan all terminals for the presence
of an input signal, as are remote addressing mechenisms. If the link
were not busy, the presence of an input signal would cause en interrupt.
The interrupt routine would have to perform & scan to locate the

specific terminal requesting service, perform the necessary operations

151

152

to switch the date link to that terminel, and initiate a data transfer
(normally one character). After the data transfer was accomplished,
the character input would need to be examined to determine if it were a
specific "break" character, such as & carriage return, necessitating
specific esction. Once that action was initiated, the terminals would
be rescanned for more input requests. If present, the process would be
repeated. If not, any output pending would have to be precessed, again
by setting the data switchboerd to the specific terminal end initiating
& character transfer.

The use of a communications link implies the use of a centralized
I/0 handler. The question of terminal implementation can thus be re-
phrased in terms of the broader issue--that of implementing centralized
I/O in e highly decentralized task structure such as used in JANUS. To
put the following discussion on a firmer basis, I will specifically dis-
cuss the simulation of an existing timesharing system, the BASIC system
developed at Dartmouth College and expsnded by General Electric 15).

Assume that each active terminal requires a 100-byte input buffer,
a 100-byte output buffer, and approximately 50-bytes of status informa-
tion, such as a list of current break characters. Assume further that
the comuunications link controlled 64 terminals. A possible implemen-
tation might be as follows:

Under these conditions, it would be necessary to dedicate 4~k words
(64 terminals x 64 words/terminal) for terminal date blocks. This im—
mense I/0 package would be & pert of a LINK task. The LINK task would
have one main function--when a terminal signed on, the LINK would stert
a subtask, unique to that terminal, by msking a copy of a standard

TERMINAL tesk, and informing it, through the medium of the TCP, of the

153

location of the specific buffer block allocated to that terminal. The
LINK task would also have the job of destroying a TERMINAL task after
sign-off, and of communicating specific items of information (such as
reports of system chenges) to the terminals when they were inactive.

The TERMINAL task would have many functions, including user re-
cognition, accounting, and recognition of standard commands. For some
stendard commands and functions, such as OLD, it would have the capabil-
ity of locating the user's entry in the system file, locating his
specific file therefrom, end finding a specific program file therein.
For other functions, such as RUN, it might actuslly s tart a specific
subtask, providing it with the terminal block information and an input
file. The extent of using subtasks for various functions depends
greatly on their complexity. As only one function is in use at a time,
the decision as to whether to demand page functions within a task, or
to start subtasks, is somewhat academic, being limited primarily by the
fact that the maximum size of a task is bounded by address space limi-
tations. One mein function of the TERMINAL task, however, would be the
taking of appropriate action on each line of input (as signaled by the
interrupt routine in the link task), performing the necessary operations
if & command, and transferring the line to the appropriate file if not
(in a duplex system, the interrupt routine would be charged with the
echoing of input, end such operations as backspacing). By using large
buffers, the TPRMINAL task need not have a small access time, especially
as the BASIC system does not check syntax until execution time, and
therefore there is little problem with fast response with diagnostic
messages.

The implementation described is not the only possible or best

154
implementation--since terminal usage of this sort is not forseen at
our installation, little effort has been expended to work out all the
details required, other than the broad outline, to determine if JANUS
could be used in such an application. From the above discussion it
should be clear that it can, and may even be capable of handling as
many as seversl hundred terminals at once. How well JANUS would do
would depend on many other factors, including the actual implementa-
tion used and the efficiency of code developed (how much code could be
used in common to several terminals), and is therefore open to

interpretation.

T

