I: THE MECHAMISM OF 'fHE REARRANGEMENT AME} AMYLATION OF AROMATIC AMlNES. H: MTHER STUDEES ON THE STEREOCHEMISTRY OF THE REARRANGEMENT AND CLEAVAGE OF ARYL alpthEfiETfi‘i‘L-ETHMS. Thai: ‘39? tho 909m of M1. D. Mi‘CHiGAN STATE UNWESETY éahn Richarei Kasai: I957 THLtSIS .‘Q " 13' ,~ .1 6” LIBRAP. \N ’ ‘q M r. ‘ .. L..:v'cr.'-.-!.; --- Al‘?‘.‘.’ .. :‘L ' ’ P I. . Mdzvvn. . .9- .5 L»? MICHIGAN STATE Uz‘fi‘v’FTTSET 0F ACHitL'Jf‘HJii .Aui“ ‘ _. DEPAM 17“."; ! OF (Ly-{:‘Jaflid TRY EAST LANSING, IvllLLHibAN ‘l 1“: ‘\‘\ j~Ll—L 1 .‘y. I 1,- ' E I: THE III SC".« .‘I. (.3? ’1‘4' ?! «M‘Aug .LIJT MID ALRYLAIIJ?» OE‘ 18:53..“ t13,1110 h: I; 30 a II: FURTHI ‘ TUFI s 07 THE 0‘4.-0(I Iciny 0F Tug R .JHHIL “\P r. TIT In .'JJ' CL'UH IA.G AHYL o(-FH;' i. . ;T}'YL ETHLHS. By 3 John Richard Kosak A THESIS Submitted to the College of Advanced Graduate Studies of fiichigan State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Chemistry 1957 1‘ "I \ L‘ _ I 2,.\'+. 1’ .fl 1“ ' I v 3 f d} a 3 . ’4‘. . ACKNOWLEDGMEN The author gratefully acknowledges the valued assistance and personal encouragement extended by Dr. Harold Hart during this period of study. Appreciation is also extended to the Research Corporation whose Fellowship Prosram provided personal financial assistance during the academic year 1956-1957. 1; :3 2;: :1: 41.2%; :3: if: :f: 2!; It: 1;: 11 tlvh are I: THE NSCHANISM OF THE Haassiucemaxr AND ALVYLATION OF Aaomirlc AHINES. II: FURTFER STUPIES CH TUE STTFEOCQBfiISTRY CF THE REARWAKCEKENT AND CLEAVAGfi CF ARYL -YYENETFYL ETHERS. By John Richard Kosak AN ABSTRACT" Submitted to the College of Advanced Graduate Studies of Michipan State University of Agriculture and Applied Science in partial fulfillment of the reguiremante for the agree of DOCTOR CF PHILQSCPHY Department of Chemistry Year 1957 ‘ f Approved _ i . 4' .o ; . ti 7 \ n a e o .90 . __ 1 » v I I -l : ; . . . o A A g t w KJr-r-‘FJ 4—...“ ———-...'-.._.-v-“-— --.‘_ ABéTRnCT Hofmann and hartius found that aniline hydrochloride could be alxylated in the ring by alcohols at temperatures of 200-3000. Similar results were obtained when the H- alkylaniline hydrohalides were heated at zoo-300°. Hickinhottom and heilly found that nuclear alkylation could also be affected by heating h-alkylanilines with zinc, cobalt or cadmium halides. The mechanism of the Hofmenn - Kartius and hickinbottom - Reilly rearransements was investigated using I'é- q-phen- ethylnniline. The latter was prepared in 67-82? yield from c(-phenethyl chloride and aniline in aaueous cotassium carbonate. Thcurh optically active chloride gave raceeic aaine, optically active amine was prepared by resolution of the race ic material. Pure o- and p-cK-phenethylanilincs were synthesized by unambiguous routes. K-"-7H(""I‘I;4C3.; .......I. ‘O‘ '01- .\:¢L- 0... O... a... O vCOOO. 6 C 0 O I f v I. O Q L .00. . O . 0 O '1 . 1 a, l rfu I. .u ' D . a f'l ‘— LIST OF TA‘LJS - Contir ued 20-21 22-26 27. 28. 29. 30. 31-32. 33’3“. 35-390 Rate Data for the Cleavage of p—Tolyl tx-p'nenethyl Ether by Anhydrous Hydrogen CthFidGoooeeooooooooeooococooooeoooooooooo. Rate Data for the Cleavage of peChlorophenyl °<—phenethy1 Ether by Anhydrous Hydrogen ChloridGOOOOO0.0.0.0000...OOIOOOOOOOOOOOOOQQ Rate Data for the Cleavage of p-Methoxy- phenyl x-phenethyl Ether by Anhydrous Hydrogen Cthrideoooooo00.000000000000000... Percent Retention of Confieuration in the Cleavaee of Optically Active p-Tolyl N-phenethyl Ether by Anhydrous Hydrogen Chloride.0.000000000000000...OOOOOOOOOOOOOOO Percent Retention of Confiruration in the Cleavage of Optically Active p-ChlorOphenyl CK-phenethyl Ether by Anhydrous Hydrogen Page 122-123 12L-125 125-130 133 Chlori-dGO‘OOCOCOCOOOOOOQOOOOOOOOOOOOOOOOOOIOOO 13h Stereochemistry of the 0- and C- OG-Phen- ethylation of Para oubstituted Phenols....... Percent Retention of Optical Activity in the Thermal Rearrangement of Para Substituted PhBHYl x-PhenethYI EthBPSeo 0000000000 co. 000 The Rate of Cleavage of p-Tolyl X-phen- ethyl Ether by Anhydrous Hydrogen Chloride.. The Rate of Cleavage of p-ChlorOphenyl N-phenethyl Ether by Anhydrous Hydrogen Chlorideeoeoeoooeooeoooocoo-00.00.000.00... The Rate of Cleavage of p-Methoxyphenyl d-phenethyl hither by Anhydrous Hydrogen Chloride............o............o......... xi 136 138 le-lhh lhi-lh6 1&7-151 .6. .goooaao. 0......Ogu COO... . O O I 4 C ...C..IIJUw--. 0....O‘A- $0.... 9.00-0on pl. 1 L1. ‘ .‘.......I-. ososooaoo OCOOOOOIQUJ' ., .. .y....vato .00.. 30.01: One. . - . . . A '\ 00.3.. 7 l r . . “.3 7 i V .. n . .- $.00... 3.0.43. O03§OIQI V 1 Q L. L I-u09000-90 - v "V 1 V. ' A - \r J Jrlbvnsalbo . a we r A n ‘ - ‘gO . \f) — .- - .4 no a e 1 .~,v\ \ " 7 ‘ \‘ . . ,. y ._.-r\ , _ ‘3 . ,K .09O‘OIIO“. - 1..- ' a=\ . . -i V -fus Od- IQOOOOOOAOO I.’ . A ‘7- _ i ' t“ v i’ I . , ‘ f ‘f .-I\_ 3,) .L ‘f _ t‘ F 'I' _ .JI‘\‘-}.. _ . I!‘ ‘1- r,‘ \ . I P - l‘ e.‘.‘\\ ' \ -(s l ’14 . « W' {I IOUOOCOOOCO"J»-'>._ .a . .. 3 _: . n .“ ~.\ . 3‘», 0"“. ,r = Ono-0...... -L LIST OF TABLES - Continued TABLE L0. L1. The Rate Constants for the Hydrogen Chloride Cleavve of Para Substituted Phenyl cit-phen- filthy}. Ethereao0000000006ooooooooooooooooooooooo Percent Retention of Configuration in the Cleavage of Optically Active Para Substituted Phenyl x-phenethyl Ether by Hydrogen Chloride. xii Page 15k 156 uIOOIOIIOOoIIeDO. FIGURE 1. 2. 3. L. LIST OF FIGURES Infrared spectrum of ii- d-Phenethylaniline. . . ." Infrared spectrum of l- (o-Aminonhenyl)- l-phe.r yl- ethylene.......o.ccc...o¢.¢................... Infrared spectrum of o- ot-Phenethylaniline. . . . Infrared spectrum of l-(pLaninophenyl)-l-phenyl- ~ ethYIQHGooeooeoooroo009.00.06.00cocoa.sosadde- 5. 6. Infrared spectrum of p- X-Phenethylaniline. . . . __________ Infrared Spectrum of o- and p- X-I‘heret‘wyl- « Bhlline fiixtUFESOOIOOOOOOOOOOOCOCOOOOOOO0.0... 7. 10. 11. 12. 13. 1h. 15. Concentration vs. Optical Pensity for the Para Isomer at 8.h3 Kicronsooococoooooeoooooecooooo Concentration vs. Optical Density for the Ortho Isomer at 8.73 Eicrons........................ Concentration vs. Optical Density for the Para 15037181“ 81’; 8.88 MicronSoooeo00.000000000000000. Concentration vs. optical Density for the Ortho Isomer at 10077 HieronS..............o........ Infrared spectrum of a Synthetic Mixture: 403 ortho- 60;?31‘3- d-PhCHGthYlanilineoe coo... coo Infrared Spectrum of p-Tolyl d-phenethyl Ether Infrared spectrum of o- d-phenethyl-p-cresolu Infrared spectrum of p-ChlorOphenyl O(-phen- 9thy1 Catherooooococo-00000000000000.0000000000 Infrared spectrum of o- d—Phenethyl-p-Chloro- thflOloococo-0000000000000000000000.0000...no. xiii Page 16 18 21 39 kl b3 L7 L9 93 91+ 96 97 e o v 5-. I ‘ 5 o p o a ; o O o a o d O o O o o a x t A 0 C a O O > I o s I O I I o a __ taco-Iotcoso \- 0 O O O o - , . . I l I i O 0 C C I O p 4' .. )‘j OIOOOOBOOo- 00...... \ on x: 9w OOOOIH O O J '00.... I O O O O . . . .0 i .‘. a - 1 ~‘ r-rr' . a f.." o ‘ 7 \. i a) . ,3 4 Q a a . l ‘ .' . v ' ( . . 1‘ . . . ~ 0 . r U . F" U I . g 1 2w. . .’ f 6 O I: . L s, l . . 3 12. vs F1 “‘1 7 LIST OF FIGURES - Continued FIGURE 16. 17. 18. -19. 20. 21. Infrared Spectrum of p-Kethoxyphenyl c{¥ phenethyl Bther......o.....o...............oo Infrared spectrum of o- d—Phenethyl-p—meth- oxyphencloeoooooooo0000000000cocoon...cocoon. Infrared spectrum of p-t-Butylphenyl 0(- phenethyl SthGrooooo.oeoeoeooeocooooooooeoooo Concentration vs. Absorbance for p-Cresol.... Concentration vs. Absorbance for p-Chloro— §bangloeeooooeoooecoo-0000000900000...coco... Concentration vs. Absorbance for pafiethoxy- phBflOloeooooo0000000000000.cocoons-0000000000 xiv 100 102 111 113 115 .0 00“. . n O I I ' a O — a O o C o I O 9 . t u l O O a I , r O a u 9 0 O l v o oQva '\ .A 3'. ,-‘- r- '356‘ 0.... a 0.0.4. . «0-0. vs... .00. a . Q.- '09 5.! .- I J I . .'.. k. .. O . Q I... . Q ' 1’" INTRODUCTION PART I: THE MECHANISM OF THE REARRANGEHENT OF ALKYLATION OF AROMATIC AMINE HISTORICAL 9311:" on.” "’Tflfif In 1 .‘LxJLJu C i .LUd Inasmuch as this thesis contains two parts it should be noted that the entire thesis deals with the L1 insular problem of cleavane and rearranrement in alkyl aryl systems of nitrogen and oxveen. Howevar, for the sake of clarity each part will be treated as a separate entity. The parts are: FART I: The Eechanism of the hearrangement and alkylation of aromatic amines. PaRT II: Further Studies on the Stereochemistry of the Rearrangement and Cleavage of Aryl X-phenethyl Eth ers. HIsroaiCAL Aromatic amines generally undergo N-alkylation under mild conditions. At temperatures of ZOO-300°, however, nuclear alkylation will occur with the alkyl group occupying the ortho or para position or both. C-alkylation can be obtained by heating either an alkyl halide with an aromatic amine or an alcohol with an aromatic amine hydrohalide in a sealed tube at 200-3000. a-x + NHz , ‘ R ’7' - I . ;> sz R is ortho, para or both. Furthermore, similar results are obtained when N-alkyleryl- amines are eubjected to the same reaction conditions in the pretence of hydrogen halides (Hofmann-Martius rearrangement) or Lewis-type acids (Hickinbottom-Reilly rearrangement). IHR '. l- : ~ nag ‘ . H-X or ' . - . —T ' .--— a Lewis Acids R is ortho, para or both. -In -i . {J 3.... U M,—.—.-o—“y.—a , A "A”..- “‘4 ““m .t-.. - J It.“ m;— \: 1‘ Lu- - -uv- gap. 4-. ”cu-Cr-— ‘1 I .f 6‘ 'Hofmann and Martins (1) found that when aniline hydro- chloride and methyl alcohol were heated in an autoclave at 250-280°.a mixture of N,N-dimethylaniline, ytoluidines and oxylidines was obtained.‘ Hermann later reported (2) that similar results were obtained when trinethylphenylammonium chloride was subjected to the same conditions. Hickinbottom (9b) showed that N-methylaniline hydrobromide yields mainly p—toluidine end a little o—toluidine. Extensive investi- gations by Hickinbottou (3-11) showed that when H-alkyl— arylamine hydrohalides are heated between 200.3oo° re-- arrangement occurs predominantly to the para poeitioaand: to a slight extent to the ortho positiese' Alkyl halides, and, for ethyl and higher alkyl groups, olefins were also produced during the course of the rearrangement. Further- acre, the alkyl halides were produced with no change in the structure of the alkyl group, but the olefin and the alkyl group in the alkylated arylamine were isoserised. Thus, when N-isoamylaniline hydrobromide was rearranged (6) the products were isoamyl bromide, trimethylethylene and p-t- anylaniline. CH .. e I 3 g. e CHB". : CH-CH3 CH3 I . + caromcnrmrer I n -J be- '.u .a. ... QVQ ...e u r . p“ V... r .l is: r .. L .., s... _ r . , A e. . x o .ln . fir . A x e .1 us. . . .I .J . . .a . . v t. e" a ,_ . O A,\ A ~ q. u . . a a s. .. A» ,4 .l .‘r L IN '“4 41V ~' '1?" i . p. r . . . 1.. r J . y. s 'e‘. I .. . 3. _ _ a. .. ,. .J . . . , . . . . 4. . ’ . . V I x. o- emu. 41! ; x .v . . W1. H..., ‘1 a x, ‘57 y (u. e . f1... rs... v. . . In! ‘ F x '.\e x O Q . i at). o A . . v/u “r a ‘ a Q '11 h. . v r _ . e! a, a a re. . . 1.‘ . e . .I r l-‘ I wmw‘w a . R. i . I C ‘ I . ‘l”? 0 e' V .. Rm. ..‘ .f j n . ix /... l. . J v. / \ n I .4 ./ ...e0l. «. . - . -.. .‘. n I . _ In} L p ' A P, . J.‘ . M— A '44 r, Mr F . o‘«.. ‘9- ” v all! \ ‘ I ,. Pica. * _ I. N p. _ x .‘J N-n-Butylaniline appears to be an exception since re- arrangement of its hydrobromide was reported to give n-butyl bromide, 2-butene and p-n-butylaniline (6). Fichinbottom also observed that when the fi-n—butylaniline hydrobrcmide was prepared free of any excess hydrocen bromide, re- arrangement occurred with no formation of alkyl halide. (L). When the rearranrement was catalyzed by a metal halide (anz, 00x2, CdX23‘ X a Cl, Br) no alkyl halide:was formed but olefin was obtained and the alkyl group of the re- ‘ arranged product was not isomerised. 'Thus, when N-iso— amylaniline was rearranged using cobaltous chloride as the catalyst, the product was p—isoamylaniline (7a). : CH3 l vH-N-CH -CH -CH-CH NH 2 2 3 COC12 2 $53 Hickinbottom also showed that aromatic amines can be alkylated by olefins in the presence of a hydrogen halide or metal halide under the same conditions that are used to bring about the rearrangement. Thus, aniline and trimethylelhylene with either hydrogen chloride or cobaltous chloride gave p-t-amylaniline (7a). y. . a n.. . . .l c . _‘ l a v.7 . _ u e w r. . e . . a . \ x. y ‘w _ . r .‘, . b l a 1 . . l .f. I r . . .. r a . V. . r. f . . . A . . V e. . . u d . r t v . w . . I. , .e v e . a . I . . r r), , n. .a». rail. .i. . ..|. ._ r. l 5.x .. . 7‘. v.10 , . u. .3, .. . .IL J. . vi. . ... , e; .V. /J . - .e r... w e a xv . . Ir J. a . . w . . O r . a .... c . _ , v 5 . . . y i , , \4 . : V... A . . . , . A . . {I ‘ a . ‘ e y ‘o‘ I . . K .. . . . .) . - ., _ n 9 ,-__._.__...____.- L .. J p . .. . i , , ‘ ~ . p .. . .. ,, a fi ,‘ - ‘. . ‘ . e , A . .. a e («x h . A fl. . '4le . I 2.. r _ see. . o» I s . . .. e . /v _ u 0 IN . {.A. 1-.. . . . » a m . fl 5- i . .— PN ‘ ‘ .(sale‘ . r... |.Vcl ). . fl , . .t o . . ‘ . .. , A. 1. O a \ . I . 2. . u .. . . X .. i ‘ . . , ‘ . . 3 . A J n u .. . 3 ¢ _ e ‘1 . ~ — ’ r V". o.. NHZ NHZ . - - CH3 ' ~ _I ,HCl or e cs3-c : cs-CH > . 3 COC12 ' CH3-(I3-VUB No studies have been reported on the rearrangement of optically active alkylsrylamines or on the alkylation of arylamines by Optically active compounds. Due to the con- flicting results with regard to rearrangement or lack of rearrangement of the alkyl group in migration, a study of the stereochemistry of the rearrangement appeared to be worthwhile. With this purpose in mind N- i , . . . I - . -1. e . D .‘ ,v , \ . . v - l i . . A ‘ c \ y ) . - e ‘ 1..)- L,V - a ‘s I. I ' : \ ‘4 v- , \ kl _ : O -.., .‘. LA v . EXPERIMJNTAL A. Syntheses N- -p ene h l-2 -dinitroaniline H | IQ ozn u- According to the procedure 0! Cram and Hawthorne, (12) 60 g. (0.3 mole) of 2,h-dinitrochlorobensene and 72 g. (0.6 mole) of 0(ophenethylamine were heated in a sealed tube at 106° for four hours. Work-up of the reaction mixture gave 58 g. (67.5%) of (N-cKLphenethyl-Z, h-dinitro- aniline), m.p. llh-llh.5° . ‘snghenethyl'Chloride c1 H Following the procedure of Eleuterio (13), to 1&9 g. (1.25 mole) of thionyl chloride 122 g. (1.0 mole) of £K-phenethyl alcohol was added dropwise with stirring at ‘\ ‘, l ’ P" v . I ‘ H ' ~ A . ' . ‘ <~ -.n . ' \ .- 1 D . ) . l.‘ . I .‘ ”f3 - ‘ tea-«, .4, '., 4 I .. . r‘ '.' . 0' yr r t r e . yr - w‘ v I)": Lf‘ e O ‘ O 1‘ e- ? uA- O O - . ‘. ‘—- J 3 p e o ‘ e a r *{N . r‘r fc.w-\'1_¥_ ’ s' ‘H-“fl‘ ‘ M—Ia- " “—- O -_ ”-1 Q \ In." \ \a l \ \h-.e --1 a ‘ r - ' ‘ ’ I ‘ 1' ‘s 1 ea 3 room temperature. After addition was complete the reaction mixture was stirred for 30 minutes, then distilled ig‘zgggg to yield 127.3 g. (914:) of o(-phenethyl chloride, b.p. 67-69°/ 8 mm. N- g-Phenethzlaniline To a mixture of 93 g. (1.0 mole) of aniline, 29.h g. (0.35 mole) of sodium bicarbonate, and 50 ml. of water was- added 35 g. (0.25“ mole)“ of 0(-phenethyl chloride; ‘ m. mixture was maintained at 95998° with vigorous stirring for four hours. After cooling to room temperature the, mixture was filtered and the layers were separated. The organic layer was washed with three SO-ml. portions of saturnted’salt solution and dried over anhydrous sodium sulfate. Distillation gave fraction 1, 65 g., b.p. 50-55°/ l um., and fraction 2, 3b.? g., b.p. 132-13L°/ 1 mm. (Literature value 183°/ 20 mm.) (1L). Fraction 1 was un- reacted aniline, and fraction, 2, was the desired N- 0(- phenethylaniline ( see Figure l for the infrared spectrum); \e, r-u r, . ~ - ' ‘p r . .1 'Y 1 C ‘ (- V \ " . e ' ‘ ['w \ . - s {*9 \ O J. 1 ~ -< ' l~ ' r.- > ! v s _.-- w~_. ' - - mos-s- . w r i 4‘- P " b: I" ~ a. a. ' O -r;/~-r1: Pf'ffls'} hzgfiq I f‘ 9 .r- ' so . . "7.”. -§.’ 7 row a. A r.’ ° s 2' \. ¢'- a . .. - r z. .. .. . '7‘." (‘f I" , ', .N‘a’ . . .' _ I’ ‘ " ,- . 0 , .(f'? 99"! ‘ c_ H. 7 '~ ~. A . _ u- .” . . 1 . 4-. I- O ,r .- . A ‘_i "— a e. .. . . ' 8 b i l." ‘ O‘ .1. . ,... 9 .fi d :. Y \ f J .1:- _' I- - A - .1‘ ,‘ I I ' I ‘ "g . 1 - ‘7 I _ ‘_ ‘ ‘ 7 V .ACOfipsfiom daoov ocaflwcmamnpoconmnxonz no Esuuoonm coamumcH Ancopowev gpmcoae>m3 .H ousmfim S S d S o m K. Le m .a m w _ _ a _ fl _ \i a _ _ 18 7 : _ x (3% .7 Icon ow 10 hydrochloride, m.p. 160-161.5o (Literature value 184-1850) (lb); hydrosulfate, m.p. lbO-lhlo (Literature value 1A2- 1h3°) (11); N,N:diphenyl-N-((xpphenethyl) urea (prepared according to the method of Cheronis and Entrikin) (15b), m.p. 91-91.5° (Literature value 9h-95°) (14). The yield of Mn q-phenethylaniline, based on x-phenethyl chloride, was 71%. When the above preparation was conducted at room temperature for six hours the yield of N- d—phenethyl- aniline was 81.h%. Sodium carbonate can be used in place of sodium bicarbonate with no change in yield. When o(-phenethyl chloride ( 0(12370 ~3h.6°, l. a 1 dm.) was used in the above preparation, inactive N-cK-phenethyl- aniline was obtained. 0n standing in the refrigerator for two days, a twice- distilled sample of the amine solidified, m.p. 2h-25° (Literature value 26.k°) (16). (g) and j-l-N- fibeneth lanilinium- -cam hor-lO-sulfonate CH3 H (3' '0 C -—-N I I H H (+) and (-) (+) According to the procedure of Descamps (16) 85 g. .0 r]. I, I . . . v I, _ . . . ( \ es . .\e If . h a). c Wu . .s.t.. . d u or I I J .1." O h v . a I “I U 1 f . N J C. r . . . . . s. ._ . V6. 4 o (I P - .,_ .. r .J . L . . 1 a 0 .4 o (a t . A a . . A 1: L x. _ a). u . . ‘ I p, I . _ .fi 0 111 a i‘ x f V . . y ., . , 1 . . a ~4 1 9‘ t .1 .. n J a (.1 .. . .v 0. \D . 1L ‘ t a h 1 , l W-mr-w. , 57‘ - as I'flv‘v‘dwn ‘v". . 1 . -_ . x. v Q .7 . C . . .1. .1 V . _. .. p q . a ’ V I1! H z, u u, k. v. .. . _ M ~ v ’ w. .. .m a .. . ‘l I a '. A ‘4‘"-.. k... .- up 4“ e‘~ 4 I f‘. (1‘ f 11 (0.h3 mole) of (:)-N-(erhenethylaniline was added to a refluxing solution of 98 g. (+)-camphor-10-su1fonic acid f' in 150 g. of benzene. 1he mixture was refluxed for one hour. ‘After cooling to room temperature 600 g. of ether was added and the solution was further cooled in an ice bath to cause crystallization. The crude (-)-N-¢x- phenethylanilinium-(e)-camphor-10-sulfonate was re- crystallized from benzene until 80.5 a. (88%) was obtained ( [¢<] 35 e 79.9°, 1 : 1 dm., c a 10, absolute alcohol). The crude (e)-N—((-phenethylanilinium-(+)- camphor-lO-sulfonate in the benzene filtrate was isolated by removal of the solvent and was not further purified. (g) and (-1 N- g-Phenethxlaniline H CH 0' 'I _ N-—-? H (+) and (-) According to the procedure of Descamps (16) 80.5 g. of (-)-N-tx-phenethylanilinium-(a)-camphor-10-sulfonate was added to 3h.2 g. of barium hydroxide in 500 m1. of water. The free (-) amine was extracted with three loo-ml. portions of ether, dried over anhydrous potassium carbonate . . , . ‘D- O ) . e 1 l . n » l 1 7 a - 4.. ., 1 ._, . . . . v ‘ ‘ v u ‘ ) -Al \, em - —u 1 _ ( i 1, . - - ~ .. ‘ 7A ' n ' t - i- e o ’. 4 r - . . a" . w a ' 1 ) v 1 ‘ . 1 .. . 1. 1- . _ . ‘ ‘ ’ . r P v .“ '1‘. I r. - ‘e C , .— 1 v ‘ I . , _ s r , r‘ _ ‘ "‘ + ~ 'h 4 J 2 - ~ , - - . . .' - . i- ' . Q ' r P . .‘~ I .. __ ‘ f we ~ 1 a ' N .1, \ a :- a t . 1 ‘. .‘I l s . ..' L... ,. p -- ~ I . o ‘k I r. 0" 1. ,1 .I : ‘ .< . i 1 I , , ' A l I r _ 0' ‘_ ‘ 1 _' 1 ' .~ 0- ‘ was ’ r U . ‘ , . ' a .“ . , . .- - - . ' ' 1 ~ .' . c J. 3“ . nil. ' , , _ . . ‘ - ”I“, .. .3 ., ‘ ..-.....-........~v.......... _ld --...-__‘.. _....... “—4-... i . ..-- .1 '\ u- .-. H.-. \ I} \ k . .1 ’ \._‘ A" _. ‘. .,‘~ ’ ‘ . \~ —.¢.m I / + “I \ I .. .- 1 a. . . ~.. :- '2‘ ,. ~ . K» ' 3 . . s. - .. 1 . . ‘ . . , ., I I ! ”L?" 7-“) - .02 -0 _ . . ‘ - 1 ‘ ' . ‘ I " ‘ I‘ r. (“n 1 r ' I" t . (a ‘ » ~ 0 v‘ Q ~J'. ‘- \ -J I n I 7 ‘ t . .— | a“ ‘3‘" ' . 'i e \ s. - '. L -» O 6 p 0- a . , , r . ‘ s 7". Y ’ ‘\ 1‘ ‘ v," y . x. Q . . '4 ‘ . . -.. l . -. r - .4 ‘A \ 0.. . ~01 i .- a . rr . I'- I Q ' l ‘ 4 ‘ l v‘~( ~ - e s i , n O A. ' . O 0 \ J \ .1 ‘ ‘1 12 and distilled to yield 29 g. (68. 39a ) of (- )-N- d-phenethyl- aniline; b. p. 112-115°/ 1 mm.; [c(]§5 -17%86° ( 1 dm., c . 20, d . o. 8331, absolute alcohol). The amine solidified on standing, m.p. h6.5-h7.5° (Literature value h9.2°) (16). When the crude (+)-R- d—phenethylaniliniumJe)—camphor- lO-sulfonate was hydrolyzed in a like manner 36 g. (80%) of (+)-N- o(-phenethylaniline was obtained, [x] :5 16.6o ( 1 z 1 dm., c a 20, d a 0.8331, absolute ethanol). 0- g-Phenethylaniline I _ «‘ . .332 The reaction scheme used to obtain pure o-cx-phenethyl- aniline was the following: ”Hz NHTOB a.” ' Tog-Cl ‘ COOH e % COOH NHTos Nfizo 1.8001; 2. Benzene,AlC§ H COOH - 3. Hydrolysis .II' Q ' . f- 1 + \. I \‘.’( : v I -- i u L . O K e -—z' A . - A ‘ -1 , . _ _ -333 .. . f u-.\\ Ir‘ -\ f2:.".'\ I ' )n a. ‘. 1‘ 3f 1 . I” a . w- .v-‘ 2 3‘ 5‘ ‘l ,. . O - r. e \ .. ,. t \ . i 9 v I O .. ‘ \t . - , a : - : ‘ 1 l f \ '_ S‘. ‘- 'Hq-u . ., —- \‘ \ r \_1 . l ‘ .. a , n ‘- L ‘ b ' . ‘ . 4 . . I s I . \,.~—~ “c ' - -- a. “mt-”4.... .mm . - -u-un-r.n -~~---. V . p . f f} .- :f« ( ... 9 A - ‘) a 1' ‘ ’ 1‘ ~v " ~‘ I o s . a It (1 fl 0 as I 9..., w (”‘- K .- . (-1 s f o .' v I " I ' l I - '1‘ l 7 _- \." . " * ,'_ 'v. _f _. . nlu-I — ~ - '9“..- u. u .. now-.- a-. \ f) I 1' e ..-, ‘ ;_ ., a -‘ I ‘V a.‘ ~~ a1 ‘1‘ ~. '7 e -- .. o. v o a s o - h o r ’x‘ 0 O ’ Q 1‘ " r" c. r'r~~‘ l ‘r . - J a ' I "C‘s // hr. ’ V J ‘ ..2. I"). 9 . s J. 13 0 on b. C , , , sea» 2.Hydrolysis , l ._ , CH3 NH ' ‘2?H ’ 35% H 30 Ce if© 2 "i 9 - 0H,, NH . . m). - . a- as 2’ ~ 9 0 @ ll .2 Ethanol , . g) , CHZ , ‘CHB , * Tos:CH$—.-— a. -A n be so henone H w ~ .'i I“ Hy .( :l‘ " ‘ a. ‘ a. . _-. r. . (f a; "' 'i" “'“ 4 '1 I if) er -9”2~ .1! Ckrorwc) This compound was prepared according to the procedure of Scheifele and DeTar (17). Starting with 137 g. (1.0 mole) of anthranilic acid, 102.5 g. (52$) of o-aainobensOphenone was obtained. «n: NJ J I. I ‘\ I. ‘t . L . . (ll 3'! . a III! .S n . _ \ u . \\n...! -- a -- J L- \. I a _l s .‘ h- . u- m D‘w ' -I-u— 41- ~-'-.- .1!“ w .- a 4?. $......... .-.-_ .- \e\s.a‘ to .\ 1: \ . a. .\\ I a a 14.1.1.” a. uJ v M . , w“ . . a a. M a a. «lulu. . \ a. II.r / («\“V II I, \ taste it! 9. \ . d. a a . .p ’0!) I'll, . ((5.. (2|. . _ _ o I ”(It ..\I/ I \, Iv (W o I K. fee. o... [la— . . 1 H . .. . m w u w . s. n I e \ I. \\ \ z, \ .\ ./ .. x. »-_r~.-‘“ -1 .4 -. -..._...1 .. -\=‘mu~._- 14 b. Methy emi o hen hen l Carbino NH 20}! is. C83 To ice cold methylmagnesium iodide prepared from 28 g. of magnesium, 160 g. of methyl iodide and 300 ml. of ether a slurry of 63 g. (0.33 mole) of o-aminobenzophenone in 150 ml. of dry ether was added. After vigorous reflux ceased the reaction mixture was maintained at reflux for three hours. After cooling to room temperature, the reaction mixture was poured onto a mixture containing 80 g. of ammonium chloride and 300 g. of ice.' The mixture was filtered and both residue and aqueous layer were extracted with several ZOO-ml. portions of ether. After removal of solvent, 25 3. (6h%) of crude carbinol, m.p. 80-83o, (Literature value 8h-85°) (18) was isolated. This was used as such without further_purification. , x L \‘ I I . r v “ ‘ oo- , r. . . o r , .. . . - \9 ’ . I ‘ O , 4 e i ' ' ' . . . ( . - » . '- e . u- v . ‘ C I. O r v - , f 0 . J - - 9 ,‘ A r . L ‘. O D - Q'i" ‘ —- ’- o.. . ’ \ r '1’ 1" . I n ‘ I t O l- e e a F 4, - 4 \ .' \— .‘ O , \ y D (V . 7’ ‘ ,p . - _ . .. - m—~¢‘ / " x Q ‘ \ \ ‘ ‘\ ’ I / .‘\ /, hoa§—_—/ I' . , I I n Q ~ 0 ‘ .I ‘ l . I .. ~ - . a fl ‘ - .fl 5 . A ~ . ‘ . .- I‘ - v .a _, . .— .——. - _...— O i. I re s l ,. .. ~ p ._ .. . .. f o _ .n . b u". - L . ~. .I .5. 8 ‘J ‘. 1 -, v-s nus. H) C ‘ a - . .. I ' I" ,. - ¢ ¢ " ’ ' r- v ’ .. t 0". e! -) ' ‘e .. .4 . .‘- , a ,. r .. ,r . I l v I ' .' e e . . .r - 3- .' n . L ’ a. e , V, A, , . .1— J e \,’ y. ' O ,- . ’7. , y‘ l ‘ ‘ ) - a A .4 ‘ I h ’1') e V, D H’ O we. e ~d ’ , ‘r'~'—---§ v-.---fl "~“.~ 15 Crude methyl-(o-aminophenyl)phenyl carbinol (LS g. ; 0.21 mole) was taken up in 200 ml. of 351 sulfuric acid and refluxed for fifteen hours. The solution was allowed to come to room temperature, then was poured onto 200 g. of ice and was neutralized with dilute (1:1) ammonium hydroxide. The mixture was filtered and the solid was recrystallized twice from petroleum ether (boiling range 30-600) to give 21 g. (51%) of l-(o-aminophenyl)-l-phenyl- ethylene, (see Figure 2 for the infrared spectrum), m.p. 8l.5-82° (Literature value 76-77.5°) (18). The solid in carbon tetrachloride took up bromine rapidly with no apparent evolution of hydrogen bromide. Diazotization and coupling with an alkaline solution of /9-naphthol (according to the method of Cheronis and Entrikin) (lSa) produced a brick red precipitate. d . o- d-Phenethylaniline NHZ To 5.85 g. (0.03 mole) of l-(o-aminophenyl)-l-phenyl- ethylene in 100 ml. of absolute ethanol was added app- roximately 2 g. of Raney nickel catalyst. The hydrogenation . .. t L , Z . § r)... . O P r ‘ . I. . ’ v I I). y.\. V * I .~ . . \r . . . . . . J c c r e . r. u p . a (a . f . A . _ e 5\ . . . .. . V. I Q \t! t c . o. \ i ( a: » .. . f .i . _ ., a.-. . . - . 1 .1 e. b a . . . V . , ( . . . , . . . _ . I . r. . . _ V . . u , .r‘- . u !\ r .J u . ‘ .. .. . . . A. u w . p . I I . . w e . e ‘1 . w I ' ‘ e .. . i . , .v . i r... _ . . u . x} In, .\\ ix, . . ’le/ . . . , n q u a . '. 0.\.V o I . ~ /., .\ .1. .. .l.‘ . i . t‘ .\x .a . .. a .\ . 1‘ \. 16 ma .ACOquHom daoov mama>npmamcmnmnalAa>cmgaocwem3 NH HH OH w h o Eduuomam umhmumcH .N mhsmam _ _ a _ _ _ _ m a _ a o: oo ow uotsstmsusqg % 17 was conducted in a Parr reduction apparatus at room temperature and at an initial pressure of #5 pounds. After one hour no further uptake of hydrogen was observed. The solution was filtered and the solvent was removed. Rs- crystallisation of the residue from aqueous ethanol gave 3.5 g. (60%) of o; d-phenethylaniline, m.p. 58.5-59", (Literature value 58-59°) (9a); hydrochloride, m.p. I55-157°. ‘“ The infrared spectrum (see Figure 3) indicated the presence of a terminal methyl group (7.28 microns); this band was not present in the spectrum of the olefin precursor (see Figure-2). 2- g-Phenethzlaniligg l a?" {Sii’>l-<<::3> 083 Pure pcgaphenethylaniline was obtained according to the following reaction scheme: 0H . 0 3 H 1.0 H -M Br (xs) .. M} —w » was OK, ) '0 I . I , a | 8 ~._-~-e---.a‘ ' 1 “A f—----- ‘ / \\ 1' k ' ‘ ‘ I. n ‘. /. ‘ \\ u . x , 1 . . - 4...: ‘- W -' ‘ I I I x, . - .. . ~ I . L ‘_ ".’, m --*--‘,., mumvt‘M _. L e . \ - ,_._ e . '5 - v ‘A’ J O A 1 a e- — ~ - ‘ -r 1‘ ._ : ._ I .. i . - J a - \ .- (e a — I e x s 7‘ O C '7 K . ‘ '_ ‘. y ) V . . ~ a _.l g . " f . ' f e .. " J. .. 1 f. , p t . a .‘ ’- . a .3 ‘ ’J _ ‘ ' . ’. ' r J . 1 \ 4 . ‘ I- ‘. . « ' “ a- h e . . no: n-77 - 0..” '- - o n - -.. . e- l ‘; I, . 4 ‘ r I! n f - . \ . J. . ‘. 1 H, (1' ) . ‘ 9' Y -( . x - - a ' o I 1‘ -1 ' e‘ l8 ..A:ofipsflom :Hoov meadwcmdhzumcmzmuyvno mo anhpoemm commuth Am:0hoflav nummeao>m3 HH‘ OH‘ 0 m p o 2m seam; m _ _ _ _ _ . _ q _ ON 00 ow uotssymsusag % l9 OH I dil.HCl b. HaN C >-HdN C ‘ 1 Heat "‘ Ch3 Chz H H2,Pt I c. H2N C >H2N C ‘ " Acetic I CH2 Acid CH ethanol 3 Q. Meth l- ~amino en 1 hen l Carbinol 0H WQCQ l CH 3 The Grignard reagent from 2h 3. of magnesium, lhO g. of bromobenzene and 300 ml. of ether was cooled in an ice bath and 36 g. (0.25 mole) of solid p-aminoacetophenone was introduced by means of a powder funnel (50 ml. of dry ether was used to rinse the remaining p-aminoacetOphenons into the reaction flask). After vigorous reflux ceased the ice bath was removed and the reaction mixture was maintained at reflux for one hour. The mixture was cooled to room temperature and then was poured onto a mixture containing 80 g. of ammonium chloride and 300 g. of ice. The organic layer was separated and the aqueous layer was extracted with s v / r o' 1 \ ~ a - I I '~‘— J u ,y ( . C r ,. i J .— ‘\.. ‘0‘ l’ "I ‘. ‘- f \. - _ _ I r - ~ x‘ ‘ 'k )l x, I ‘0. I ‘5 ' u —— 1.: i, I” ‘.\‘.. ’4‘ ' a. -\ I / \a - - - - .4 ( ‘~ : e o r. .. r - ‘fl - ‘- I .- 7. - \ ‘ '3 ’ .. -. , x . \ {f . b — . .- \ y. .)._,- \\ I V ,. 'I' . \ /l/ i I 3' \ ‘ I ‘ , \‘ ‘--~'- a! i \-. _ 4/ r - I A ’ I O _ f. " R . v 1" - xx - . ‘ '\ ‘ r' - O ‘ ' t x. ' 'r .. { . . ' (V r ” _ ‘ “’1 . i s - .v ._ - . . 9 . 7 “\‘ A 4 l “ ¢ 1 .5 ~ ‘ w J s ‘ ‘ a? ’ ‘ ‘ O ‘ - I‘D O I? t... ' .~ . — V- .. ,, 1 ‘7 _ .‘ § ' I .. a w a ,:, s A . - .l ‘ . e‘y ‘ ., 4 t 3 . 9. V _. . r". t .- - , . 3 . '1‘, _ , f‘ . Q L Vs 20 several lOO-ml. portions of benzene. Removal of the solvent yielded 33 g. of a red oil which crystallized on standing. Recrystallization from petroleum ether (boiling range 30-600) gave the carbinol, m.p. 103.5-105°, (Literature value 101°) (19). h b. - -Amino hen l -l- hen leth lene WQ—EQ CH2 Method 1. Methyl(p-aminophenyl)phenyl carbinol (33 g. ) was taken up in 100 ml. of dilute (lae)-hydrochloric acid and refluxed for one hour. The solution was cooled to room temperature .and then was poured with stirring into 200 ml. of ice cold 5% sodium hydroxide. The brown solid was separated by ffiltration and was recrystallized from petroleum ether (boiling range 3o-60°) to give 16 g. of 1-(p-amin0phenyl)- l-phenylethylene (see Figure A for the infrared spectrum), m.p. 79.5-800. The overall yield (based on p-aminoaceto- phenone) was 30%. Anal: Calculated for CthlBN: C, 86.15; H, 6.67 Found: c, 86.13; a, 6.82 .ACOHuSHom afioov mcmfiznomH5cm2QIHIAHzcmnmocflem3 21 ma NH Ha OH 0 m N. e.m a n .N _ _ _ _ _ a ow ow (101 88 11118116.”; 22 Method 2. Crude methyl(p-aminopheny1)phenyl carbinol (35 g.) was mixed with lOO-ml. of 35% sulfuric acid and the solution was refluxed for two hours. The reaction mixture was allowed to cool to room temperature, then was poured onto 200 g. of ice, and was neutralized with dilute (1:1) ammonium hydroxide. The mixture was filtered and the tan solid was dissolved in dilute hydrochloric acid, boiled with Norite, filtered and reprecipitated with ammonium hydroxide. The light tan solid was filtered and, when dry, melted at 217-218°.. The yield was 10.2 g. The solid was insoluble in ethanol, water, benzene, chloroform, carbon tetrachloride, ethyl cellosolve, ligroin and 10% sodium hydroxide. A Nujol mull gave an infrared Spectrum indicative of a secondary amine. The Hinsberg test was also positive for a secondary amine. Elementary analysis showed the presence of both nitrogen and sulfur. The product was not further characterized. c a p- o(- Phenethylanil ine H I HZN ? CH l 0‘. no , 4v. . . . \. u e o : OF.L er; .1 o a run; '1: ~. I . a . r. I . . I .e (c - O a. 0' § .. 2. . . . vb: _... r. I. 1 I. .r .. r . I. o _ a a ..._ r1 . k s v 4 l . , r N Vi _ . D 0 r .9 . A A, O.- .i :1 . . _... 011. tfls . a. fi. r .. e (A .. v n I F k I t . a. . .3 . . .0 \J . Ix O .uw vi. J. r..— G . a a (tie at: U ‘. "I. . 1. . p 4 I _ . V e.: . t .. u l . . . s . . u u . C . er} . . O i. ‘ \ t v. _ s.- F a ,. .u .4 . an .t l. O t 1.. I u I V a \ a; . «. erl. .l ... u . . 0! a! . a). Iii H. .r... ... . v. \(v I. , u c a I: x u n v s , a ; A v . , it 0 O . . r t s F g cl _ . 0 . ~~om 'fi Q::‘ C - 23 To 5.85 g. (0.03 mole) of l-(p-aminophenyl)-l~phenyl- ethylene in lOO-ml. of absolute ethanol was added a ml. of glacial acetic acid (addition of more glacial acetic acid resulted in the formation of acet-(p—cx-phenethy1)anilide, m.p. 108-1090) and 0.2 a. of platinum oxide catalyst. The hydrogenation was conducted in a Parr hydrogenation apparatus at room temperature and at an initial pressure of #5 pounds. The pressure remained constant after three hours. The solution was filtered, then poured into 100 ml. of cold 5% sodium hydroxide and_the mixture was extracted with two 50-ml. portions of benzene. The combined benzene textracts were washed once with 50 ml. of water and dried over anhydrous potassium carbonate. After removal of -solvent, distillation gave a single fraction, 3.8 g., b.p. l65-8°/3 mm. (Literature value 176-1780/20 mm.) -(9a). "This was p-cx-phenethylaniline (see Figure 5 for the infra- ‘red spectrum). Theyield was 65%; acet-(p-K-phenethyl) lanilide, m.p. 103-1090 from aqueous ethanol (Literature (value 11241136) (9a). N-ggyPhenethylqg:toluidine M} 2—21”: 0.4!... Q I. .a. I I - a v r .- . v \ - . \ s A | O . O -s e mt.- vl“ l ~ \' -J ( \J I r '. t“ t. .1 ~ t ‘. O A .D \ I .A-‘ , -‘v 0 Y _‘ \a ._ .A a s'{ ’ r O“ -(' K ‘ I 6.. i ran a,- ."O' Q - I . -: ‘ ‘ l a a ( . I. y . . - I \ \- .a «l ff 2h ma NH HH .Acowpsaom :Hoov onwaficmamsuecmnmxxeia mo Edmaomum nepmuucH Amzonoflsv newsmam>m3 m 0H m b o m 4 .m eczema a _ a fi _ _ _ _ ON 04 00 cm qoxsstwsuaag % 25 To 107 g. (1.0 mole) of p-toluidine, 29.h 9. (0.35 mole) of sodium bicarbonate and 59 ml. of water was added 35 a. (0.25 mole) of o(-:henethy1 chloride, and.the reaction mixture was maintained at 95-980 with stirring for six hours. The reaction mixture was cooled to room temperature, 250 m1. of ether was added and the reaction mixture was filtered. The two layers were separated, the organic layer was washed with several lOQ-ml. portions of saturated salt solution and was dried over anhydrous sodium sulfate. Distillation gave fraction 1, 6h g., b.p. 89-900/10 mm. and fraction 2, 33 5., b.p. 1700/3 mm. Fraction 1 was p-toluidine. Fraction 2 solidified on standing and after recrystallization from ethanol melted at 68368.5o (Literature value 69—700) (9a). V 5331: Calculated for C15H17N: C, 85.3; H, 8.06 Found: C, 85.0; H, 7.83 N-(cK-phenethyl)-N-(p—tolvl)-N'-phenylurea was pre- pared accordinx to the method of Cheronis and Entrikin (15b), m.p. 89-90°. Anal: Calculated for C22H22N20: C, 80.0; H, 6.67 Found: C, 79.7; H, 6.57. f~_r;- ”0’ .‘A I~ 26 8. Reactions Rearrangement of N- gLPhenethylaniline a. Thermal N-<¥}Phenethylaniline'(19.7 g., 0.1 mole) was heated in a Claieen flask at BOO-315° for two hours, during which time 1 e. of distillate was collected. The distillate formed a hydrochloride (m.p. and mixed m.p. with aniline hydrochloride, 196-1970). The residue on distillation, gave.fraction l, 12 3., b.p. 152-1550/3 mm. and fraction 2, 3 5., b.p. 160-210°/2 mm. Fraction 1 was starting material (60; recovery) and fraction 2 was probably polystyrene. When the heating time was increased much less starting material was recovered and a glass-like semi-solid was produced which resisted attempts at distillation. b. Hydrogen Chloride Catalysis N-cxyPhenethylaniline hydrochloride (23.3 g., 0.1 mole), prepared by precipitation from an ether solution of the amine by means of dry hydrogen chloride, was heated in a sealed pyrex glass tube at ZOO-230° for six hours. After cooling to room temperature the contents of the tube were extracted with dilute (1:1) hydrochloric acid and ether. Q”... r - » . r - T O a. 4 . ‘. . u -- ,r . - , . \ . ‘. O O . - - . o ' . . . O O f O t .. . . . . e V J V w ' ‘ I ' V‘ ,- . , A ‘ " ‘ ‘ . ‘ > I e p ‘ I I u \ - ‘ .- ‘ . ‘ - e , z‘ o r' , v‘ . u - . a. < V ‘- Q a ,- u ,- .r : _.- .o. -~r- 7.; --,_.,___. A a I \ ; . '- . u x . 7‘ ...‘§y , .— ' r i r ‘1 l .. I, ‘. i - e . ,. r , . - .9 o . a D :5 I. . ..,-_."3 ‘> I A v‘ t 'D . o t . r \e -~ . , I 1 ) 1, v.1 . ‘ A r . '~c u l " “ l . J . . . \ I . O O t O ‘x‘ ‘ ~ .\ _ . . , 4 , - l -_. 0 ' v . _‘ . .A “s- | .. .V . o - a 1“ \4' ‘0 ( A. \4 1 . . x ., .. j ; ' ‘- f e_ .- ; .- i“‘~ ? " H - - - A a . L . . . ‘ e-‘ re‘ '\ 1 0" fix” '1 A. ‘ \r - a - . o i , n . ‘- I _ u . J L ‘ . , “)1? - J n "" ‘0 ' f ‘ R ’t ' .F- ' ~ -\v~' v a . . I . - ‘J p » ~_ .. 1 [I .5” R 'l i .' . v . .- ‘ ', ’_ 'o’ V w .‘ ___ '\ v A 1 4 . i . - a .. ' r .. .. O " \ u . ' f {,1} 1 a r . .' " 27 The other layer was extracted with two 50-ml. portions of dilute hydrochloric acid. The acid extracts were combined and washed once with 50-ml. of other. The ether extracts, which contained the acid-insoluble portion, were combined and dried over anhydrous potassium carbonate. The combined acid extracts were neutralized with 5% sodium hydroxide and were extracted with three lOO-ml. portions of benzene. The benzene solution, which now contained the acid-soluble products, was dried over anhydrous potassium carbonate. (Henceforth, this work-up procedure will be referred to as Procedure A.) After the benzene was removed, distillation gave fraction 1, 2.3 g., b.p. 61-65°/3 mm., fraction 2, 5.7 3., b.p. 165-17OO/3 mm. and 2 g. of a high boiling residue.‘ Fraction 1 was aniline, and fraction 2 was a mixture of ortho- and para- M-phenethylanilines which consisted of 25-32% ortho and 60-70% para (see analytical method). No indication of starting material could be detected. The yield of C-monoalkylated aniline was 2h%. The acid—insoluble portion, after removal of solvent, gave 3 g. of a class-like semi-solid. When N- N-phenethvlaniline hydrochloride was heated in an Open tube at reflux for one hour, aniline hydro~ chloride (m.p. and mixed m.p. 196~197°> sublimed from the reaction mixture and was obtained in 27% yield. ‘ . ‘ . , - . , A ' - l . . v . ‘ ’ ‘ ' e . ~ . . a» l e ’ I . I V ' . d l l I . . v . . 4 d a t , .- ’ ‘ v c > . ‘ ‘ . . ‘ - , ‘ , _. v . ‘ ‘ - . I t ‘ \ . t . I, _ . J C l . v ’ t ‘ I . 1 ‘ r I '-\ . . I . . ‘ . o : . ‘ i ‘ _ 3 . ‘ : ‘ . ‘ - r‘ ( - ' ‘ . . = . .b ' 'Q l . _ _ r ‘ ( w O ‘ - - . I ' . ‘ A r, o I . 71) t A l ‘ - . ,. . . I - C J , “ ‘ l. u t ' r — -'; a t -- y ~ 0 . . M" '> u i 9 . . . r ' r v . ' O ; 5 A" ‘ - ‘- ' 0 a . I -. . A . _ I w v . .. . .. . ‘ ‘ H‘ ‘V V r. ‘ i . ' _ 4 I . .- , _ 4 .- n . v .3 ‘ . .- ' ‘ -' - - - ‘ e - . A '. e ‘ a " o ! . [ r .. C ‘ 7 ~ A“ A v ‘ ~ ‘ a-A - r. r. I“ I t , - . i . I . ‘1 . .- , . - - V ' o a ., - a ‘ 0 e . ' y n - _ ( ’ . '\ .— ‘ v a i ‘ - v .v. ;- n‘ " \I -§ 13.. . . ’3 ..' e . I y > I t - _ (‘1, _ ‘f . i ‘- i - ; " I ‘ W ‘ J I " Q I. . t \v ‘— . I . A LA ‘ ' . . ' I l . ' r. I. ’ . ‘ ‘ r... ‘ .‘ . I ‘ v‘ A a . \ ‘ r | ‘ v ‘. f I - A ' . . . . I ’ 7 ~. ~ . . . ”A. w.‘.. vu-n '..a N c". . . 9 u . -‘ . g I I ‘ . . ‘ ‘ n. I A_ . A: .‘ . I“ ” . '3 f ' "‘ l T “_ . u' A , .L . - ‘ A . ’- _ r r f .—. -.. . . .5. ‘1' ,I I?) '1 e . r y. ‘ “‘ . ' ¢ ' ‘ z \ . 1 J , l ‘ I h - . M. ' . . -_ , .. 1 r. A . , I - x g- . ' J —‘ \‘ “ \ . $ ’ .- ‘ t O . a . ‘ iv 0 , I v 3 . J I ‘ . _ . i a - .. ‘ ‘ 4‘. V f l f ‘ ‘7 ' H l 8 ‘ ‘ _' J, i V. .- ‘ I r .7 ,i . ‘7 .. l ' h. ‘V L k I .. . . . s - r ‘ ‘ h . ' i .‘ m 4” ‘ ' .' .. .H e , z r r‘ ‘ ' F? . . . ‘ ‘ ‘ s . ' ‘ l _ . . w 'v s‘ l ," - ‘ I" _,‘ 1 t r a ‘, ‘ " ' r . ' r ‘ a I . I ‘ 3 I I \ , - - 4 r, _. .. ‘ ..‘ x . , . . ‘ ‘ ‘ 28 then No d-phenethylaniline, [4] 12350 16.60 (1 g 1 dm., c 3 20, d a 0.8331, absolute ethanol) was used, the C-mono- .alkylated aniline obtained had the rotation [NJ gs !- 0.20, (c g 20, benzene). Zinc Chloride Catalysis N-cx-Phenethylaniline (19.7 3., 0.1 mole) and anhydrous zinc chloride (13.6 g., 0.1 mole) were heated in a scaled tube at 220-2300 for six hours. {de reaction mixture was.. cooled.to room temperature and the contents of the tube. were digested on a steam bath with loo-ml. of 10% sodium hydroxide, The mixture was extracted with a total of 300 ml.-of ether, and the other layer was extracted with tour 100.ci. portions of dilute (1:1) hydrochloric acid.* The acid extracts were combined and washed once with 50 ml. of ether. "The ether extracts, which contained the acid- insoluble portion, were combined and dried over anhydrous potassium carbonate. The combined acid extracts were neutralized with 5% sodium hydroxide and the aqueous solution was extracted with a total of 200 ml. of benzene. The benzene solution, which contained the acid-soluble products, wet dried over potassium carbonate. *(Henceforth, this work-up procedure will be referred to as Procedure g.) After the benzene was removed, distillation gave fraction 1, 3.6 g., b.p. 61-65°/3 mm. fraction 2, 6.8 g., b.p. 169- ‘ ‘ .\ ~ m). ‘ er. 4- o . r .. .. .p . V ‘ a V. {1 . t al . a at IL .. ,3 o A.» +. .e! a . ,.. Jr. .. . 9. . .. 9 A a . .. . u . lei- ; . f a . . v . .1 . an i t. o; A a . iv . . VA . f . O .1 .. i . . 1 . .1 I. _ , . r. . .. . 5 . . , . _ _ A w v . (t . . r . 3 n .. t .. _ e 3. 0L . K 29 1720/2 mm., and fraction 3, 2.0 3., b.p. 185-2370/3 mm. Fraction 1 was aniline; fraction 2 was a mixture of ortho and para- M-phenethylanilines which consisted of 3-133 ortho and 75-903 para; and fraction 3 was not identified. The yield of 0—tX-phenethylated aniline was his. After removal of the solvent, the acid-insoluble portion yielded 2 g. of a dark glass-like semi-solid. ‘a’hen N- N—phenethylaniline, [“1 3’5 -17.9°, (l g 1 dm., c 3.20, d a 0.8331, absolute ethanol) was used, the C- do’ phenethylated aniline obtained was inactive. When the reaction was conducted in a Claisen flask at 330-3506,_styrene (identified at its dibromide, m.p. 72-73°) distilled from the flask and was isolated in 67.5% yield. Work-up of the residue according to Procedure 8 gave an acid-soluble product which was aniline (57.63) and an acid-insoluble product which was a glass-like semi- 3011d (15e7:)e Reaction onAniline with Styrene Styrene (10.8 5., 0.1 mole) and aniline (40 g., O.h3 mole) were heated in a sealed tube at 200-2300 for six hours. Work-up of the reaction mixture according to Procedure A gave 22.5 g. of aniline from the acid-soluble portion and « I n - , ‘ - . I“ * ‘ . - e - A '. _ A. r. . ' 1 r ' . . , ' - .‘ ' ‘ - >. _ . - _ , l \ l .1 . I .. \ ‘ . n r, . - . , ‘ e ‘. _ i _ a i “I .4 e O .. i. o .' k4 . a , d- 1. C e i l . a f - . I , e . ‘ V , r ‘ , ‘ - .- - _ A “I c. .J .a _ l - 1 _ .l a - - _ l i K ' ‘ ‘ ~,, . , K , V 4 ' .e r, ‘ ’ ’"y l . .1 t. e . _ . . , .. s. 1 ' e . ‘ ~ . -r .. v. . . ,. - V re s— ‘w -, | , W I , , .,, . . . .. ‘. a ' - a v r ~ J‘_ .a " l v' .-- s._ ‘n " - -. . .‘. . ’ _ . , .e . . - ~— . . r . n . A. . -- no- 'v- - -- .7- ‘ .- ‘. , '« .. ,, _-... ~~’..-'-- ,‘-,.-w-.-.,’_‘ ‘ a o '- - a. ‘ I . , ' . v n .9 l . ' \ ‘ ’ ’ I ‘ ‘ ' I ~ I . I. ‘. _ t W l. , ' .‘ \I e , .0 . | ‘ s - ~ - - - . 3 a _, .- ‘ I ' ‘4 ' 4 ‘ r r} H 1 r A - .V‘P -‘ , . . b. I ‘ . ‘ A , - $ . .. e .1 ‘4‘ l' . e~ , - v I _- A - , . , c ,, i - * o- -e ‘ e v , .7 V 30 20 g. of a dark glass-like'semi-solid from the acid-insoluble portion. Reac i n o Ani ine St r n an 2 c Ch or d Aniline (LO 3., O.h3 mole), anhydrous zinc chloride (5h.h g., 0.h0 mole) and styrene (kl 3., 0.h0 mole) were heated in a sealed tube at 220-230° for six hours. Work- up of the reaction mixture according to Procedure 8 yielded 31 g. of aniline from the acid-soluble portion and 36 g. of brittle polymeric material from the acid-insoluble portion. Reaction of Aniline, Aniline Hydrochloride, and Styrene . Aniline (L0 g., 0.L3 mole), styrene (10.8 3., 0.1 mole) and.aniline hydrochloride (8 g., 0.06 mole) were heated in a sealed tube at 220-230° for six hours. Work-up of the reaction mixture according to Procedure a_yie1ded, from the acidfsoluble portion, 25.7 g. of aniline and 16.2 g. of C-monoalkylated aniline which analyzed as Sfl para- and 90-95%” ortho- x-phenethylaniline. The yield 8 of C-monoalkylated aniline (based on styrene) was 82$. The acid-insoluble portion gave 7 g. of a glass-like semi- solid._ In one_experiment the reaction time was reduced to one hour. Infrared analysis of the resulting ortho- _ para mixture also indicated the presence of N-(Krphenethyl- aniline. e U . ' - V 4. up. 0 . ‘- C . I , 1 -I,.-\ - i .< . .- ’v i . - e . n n t 4.-—-_-- v- A o.- . .. -.. -u... , . 1 . ‘ I 1 . . . ,. o - ' ‘ A‘- a 7 ; “I I " ‘4 ‘1. ~ I 2 b o a . ( e D - 3. . ' ' , ‘. ‘ V . ‘ i .., . - - .. ‘ l 1 : v - ' e a, _ ' o.‘ ’ I a g Y . . 1 ~. .. . - - a. . _. ‘_ -Q- ' ‘ 'vv . .5 .. .J . .- v‘ ' . o - . . ' " K, _ \ . ... s. r . J . . ‘ .. J , .. , . . , I I‘ n. A ' O 0 .. 4 ~. .. ..‘ 1 .u - .— - P i J ‘ I » . ¢ V .. i .1. 4‘.. s. .2 -. a. .'\ 1. I‘ : i . Q-.. W 1%? o a .. O x O - ‘1 vi .u ‘w" '0 31 Reactibh of Aniline with o(-Phenethyl Chloride a. Room Temperature (Aniline (10 g., 0.1 mole) and X-phenethyl chloride (1h g., 0.1 mole) were allowed to react in a beaker at room temperature for one day. (Solid formed after one hour). The solid produced was removed by filtration and washed with 5 ml. of benzene, to give 6 g. of aniline hydrochloride.“ warming the filtrate on a steam bath for a day, filtering and washing with benzene gave an additional h.5 g. of aniline hydrochloride. The yield was 81%.. The filtrate was extracted with two 25-m1. portions of dilute (1:1) hydrochloric acid, then dried over anhydrous potassium carbonate. After the solvent was removed, the residue was dissolved in carbon tetrachloride and a carbon tetrachloride solution of bromine was added until a slight bromine color remained. The solvent was removed and the solid (18.8 g.} was recrystallized from petroleum ether (boiling range 30-60°), m.p. and mixed m.p. with styrene dibromide 72-730. The yield of styrene (based on styrene dibromide)hwash7l.2%.l b. 'High Temperature. Aniline (1.0 2., 0.1.3 mole) and x-phenethyl chloride (lh'£., 0.1 mole) Were heated in a sealed tube at 220-2300 for six hours. Work-up of the reaction mixture according to Procedure A yielded, from the acid-soluble portion, 19.5 g. .5 ..‘ '0 I‘ Q. ‘1. .- 1 4'... u I y . rt] . i P). n 4.1, rv r.... I". i . i . i 32 of aniline and 13.2 g. of C-monoalkylated anilines which analyzed as 15-20% para- and 70-80% ortho- d-phenethyl- aniline. The yield of C-monoalkylated aniline was 67$. The acid-insoluble portion gave 6.3 g. of a glass-like semi-solid. Action of Heat on a Mixture of o- N-Phenethylaniline and its Hydrochloride o- d-Phenethylaniline hydrochloride (0.8 g.) and o-¢x¥phenethylaniline (3.3 g.) were heated in a sealed tube at 220-2300 for six hours. The mixture was worked up according to Procedure A. The acid-soluble portion yielded a single fraction of 1.2 g., b.p. lLO-ISSO/l mm. Infrared analysis indicated the fraction to be o- 0(- phenethyleniline and some other unidentified substance, but no N- or p- x-phenethylaniline was detected. The acid-insoluble portion yielded 1.5 g. of a glass- like semi-solid. Reaction of o-«X:Phenethylaniline with Zinc Chloride o- °(-Phenethylaniline (9.9 32., 0.05 mole) and anhydrous zinc chloride (6.8 g., 0.0L mole) were heated in a sealed tube at 220-230° for four hours. The reaction mixture was worked up according to Procedure B. The acid-soluble o p a - ’o .- O - "\“— can—w . a Ia . _ L. . e . . , . i v} . . .. . . . . A. i . . . e . ,_ . a i I I . w. 1 § . . . C . v o .x . . .. A . . (‘0. .71. k --.-.-o.. . ""-- .m -0 .l-.- .‘ ‘. 33 portion yielded one fraction, h.0 p., and a hirh boiling residue, 1.6 2.. Infrared analysis showed the fraction to be p-d-phenethylaniline. The yield was 1.0%. The acid-insoluble portion yielded a polymeric tar, 2.2 g. Rearrangement of N- cx-Fhenethylog-toluidine a. Thermal N- XnPhenethyl-p-toluidine (10.5 g., 0.05 mole) was heated in a Claisen flask at 320-3260 for two hours. Distillation of the mixture gave fraction 1, 8.9 g., b.p. 181-186°/6 mm. and fraction 2., 0.15 g.. b.p. 210-212°/2 mm. Fraction 1 was starting material (8h.7% recovery). Fraction 2 was not identified. b. Zinc Chloride Catalysis N-CKQPhenethyl-p-toluidine (15.8 g., 0.075 mole) and anhydrous zinc chloride (9.8 5., 0.075 mole) were heated in a sealed tube at 210-220° for six hours. The reaction mixture was worked up according to Procedure 8. The acid- soluble portion yielded p-tol‘iidine, 2.9 g., and 2- 6(- phenethyl-h-methylaniline, 3.3 g., b.p. 192-2000/8 mm. (Literature value 173-17ho/18 mm.) (98). The yield was 24%. , _ - ‘1 ‘ , N L e, . a . (- ,- AI \ ‘ 0 e 0 e I - . \- x ‘ ‘7 a . - ,- .. y. ., . .4—-.- _. --.—.«.,.-. 7-. _..- .-- 7 -. . - —.‘ ._,, .. w-.———_l _—7<-u‘-..-— —--~—.-r.._'“ . "| . _ I _ e f . f '3' - -l . .- c ' a - \ ." 7. - n. . . . . . ; ~ .» _ s4 . . - V . _e ’ v . - - e I g _ - - , . . . . , 7 . 0 ft , - 1 | , .e I ' ‘ D l . ‘ ', ~ 0 ' en. v \ ' , - 4 m . . F 'I -. l . _ w . — e . r. r .1 1, e. 4,1. ‘- 'l' o - ~ 0 , .. ~ - L c. . .; - . . > . .- $ . - i , r. .r x r‘-‘\I","‘~.“" . - ' I ~ ‘ . . e v ' - e f -y- a -- o ' ’t. ‘v .I' . , f~ 0‘ " Q A . ‘ .1. _ 1. Q J ‘ _ , ‘ y ' r ‘ ', . . . ~ > . - I . \- "' -_. 4 - —.l . . - e . . - ~ 7- 1"-‘ a _. .. ‘ :._ ‘- .1: ‘1 e" .' l . g . r - ‘ ' _ . . _ 7 - - a . , i , A e , [e e- 4 :7 - e- ,0 . r . , A ‘ ‘ -~ , . up ‘ .' . ‘- C. I v - ‘ i ‘ , p I 0 ( - . .7 o . - , .. e , ‘ ... , -e . u \ - . A I at e e ' v' . ‘ ‘ ' . ‘ .- q— ' “ 1' 3h The acid-insoluble portion contained 6 g. of a glass- like semi-solid. N-lihenyl-n' -2-( X-phenethyl)-h-methy1phenyl) urea, prepared according to the method of Cheronis and Entrikin (15b), had a melting point of 19h—l950 (from aqueous ethanol). Anal: Calculated for 822H22N20: C, 80.0; H, 6.67 Found: C, 79.9; P, 6.82 c. Hydrogen Chloride Catalysis H-(KLPhenethyl-p-toluidine hydrochloride (3h.6 g., 0.1 mole) was heated in a scaled tube at 220-2300 for six hours. The reaction mixture was worked up according to Procedure a. The acid-soluble portion yielded p-toluidine, 3.0 g., and 2-( x-phenethyl)~h-methylaniline, l...1 g. The yield of rearranged product was 19.5;. The acid-insoluble portion yielded a glass-like semi— BOlid, 1100 g. . i I “ . , __ . “—3.0 I .. : i I O . a I - Y I O ' - - a -. - . i. - I ‘ . f - ~ . t f I ‘ . . O O ' z . ' ‘ C ' D ' A . . I f' O . i '. -— . r t . ~ ' I . , A - e . ‘ .- - - U h -.‘ . ‘ l . J a r ‘ I ’ ’ ‘ " - ' a . € . - . y E . . ‘ ‘ * - ' A o J \- A. ‘ ‘ I. in ' . . o —L 0 e. ‘ - ~ . . S J l I V ‘ I‘ -‘ . Q I . ’ .4 x‘ . 'r . 'V i, . ‘ “ - ‘ ‘ ‘ - '- s ‘ . V \ l' - . . w; a. u ’w a g .- I I f 35 C. Analytical hethod The isomeric mixtures of 9.233.? and .ara- e(-phen- ethylanilines were analyzed spectrophotometrically by means of a Perkin-31mer_hodel 21 double-beam infrared spectrophotometer using Sodium chloride solution cells of 0.5 mm. width. Standardization Samples for standardization were prepared by weighing 0.986L a. (0.005 mole) of each pure isomer into separate tared 10 ml. volumetric flasks and diluting to volume with dry carbon tetrachloride (Mallinckrodt reagent grade) to give 0.5 molar solutions. All standard samples were pre- pared from these stock solutions by mixing the proper! ’aliquots of each solution (e.g., a mixture containing 25p gggh_- isomer and 75$,ggfig— isomer requires 0.25 ml. of 0.5 M QEEEQf isomer and 0.75 ml. of 0.5 M‘pgg_- isomer). The following standard samples were prepared: No. % ortho % para 1 O ‘ 100 2 10 9O 3 25 75 h 50 50 5 75 25 6 9O 10 7 100 0 e ‘ ‘ - , . , ,; l s . - ...._»,. . . - , . . r. . .. x . r . - g - . f < ) y , .7 4 ‘_ ' . ‘ . a a - A I a - . ‘ ~ V - . , ,7 .- e . . . a .. i ,3 . , ,- . -i a . l . . r n. a . . ‘ I i ‘ ‘ i , \ . ' .' . . . . I n . v _. . O - l \ . .. e , 4 ._ - 4 . - . _ , d *.:¢.-~n-i-. - u -. -_ < p. - -O —-—.o “m. . . ,- ".' . ’ \ 7 | ¢ . ‘ ‘ . ~ ‘. . r ‘ a .‘ , - . , i , i . - O O Q . . . 7' - . e a. J . l i . A . ' 3 , ' , r - a , > ,‘ - . . . . , A . n - . . ‘. . ‘ . — , - . r . ., - ,- l A ‘ U A A s ‘ . L L . e I A . . . l: . 7 ' - V ‘ ' - . ‘ ., , ‘ ‘ a 4' .0 J n . .A I l I. n ( e e . . | . l , ~ _~ . -i f ' \ m 'V‘ "' "—.A -> “"t‘i , . L , q . . i _ .H , ‘, . , -,.. . . m.----..... . - . ,. - - ” '. .‘ it. ,-. ‘ , Q I , . I ' 4 ; k . . ----..._ w..- . e ,e {I o‘ -)w . . r -‘ "- '- ~ . -- .- . a . v r. ‘ ‘ g , .‘ 5. ~ _ ._ - -' . i n O '. \ ~ * o 9 ‘ V e I \ . - 36 At 2 microns, with both cells filled with solvent and in place, the instrument was adjusted to the following specifications: slit width 927 % transmission ‘ 9S resolution h response 1 gain 5 suppression h speed a Absorption was determined in the region of 2 to 12 microns. Initially, both the solvent and the solution cells were filled with solvent, the instrument was adjusted to the proper settines and the spectrum was obtained for solvent versus solvent. By replacing the solvent in the solution cell with each of the standard solutions and repeating the procedure a sequence of standard spectra was obtained (see Figure 6). The orthgf isomer showed characteristic absorption at 8.73 and 10.77 microns, and the ara- isomer showed characteristic absorption at 8.h8 and 8.88 microns. From the standard spectra the percent transmittance of each of the samples, (IZIr), and the percent transmittance of the solvent, (IO/Ir)! was obtained at each of the four ‘ .. \ I i , , t 4 C 1 . y I t . x . ,- ‘ . ‘ - . . I ' ’ ' . W A. . . - , v . . . ' I A. - . , . . , Q - . .4. ‘ .. e . :5 ' . a . , A . .l _ A . , . a . p .— V . ‘ n V- u- .. e , o \. ‘ . . . t - ‘ I, . I A e n . " . 1 I“ ~ d A ’ I l I ‘ .. v ‘ c‘ _ ' , d \ ‘ ‘ -' , -l I - '1 -, . ; ‘ " - I > t ‘- . f- t r. , t .L ‘ . « . a I .4 - 3 . .- 4 l e r . . f , I . 1,. _ .5 . . . ,Pi . a r , _ ' ' 1 f. t. y l . .- e ' . ' ‘ ; v 1 ‘ , . w I e I - “ x ,l -" "f ' - -« r ‘ .' Q t ’ ‘ . . . Q v (__. I... h' 3 . . , . . .~ .' 1 . -. , ,. . . . Q 4 k. ' l ' . , fi v r ' f‘ x P, -. ' ‘ 1 '5 ..-. - t . . . _ . y o 'y\ r‘ "f "n .’ ~— . A _ J A u‘ l . r‘ O * r ‘A . f t. .- . . .‘J L . L ‘ . 7 I‘ C, ‘Q, I _‘ f ,_ . . 1 . :— -; J ‘I’ e . e' . .v I . ‘1 - ' 'P I. ' i “A 1‘. on. ,- x - ~: r 7 . O ' I ’ .a' i ‘ '* r. ., 4: - - ' . -_0 1U - \1 ‘ ’ 1 f‘ 9 51 .\ ’ t 1 J k _ I ‘ ' ~-’ " ‘ .1‘ ~ -:~ 3 ' l v ‘ - . . v 1 d, i , ’ v I I "I. f;) G I ,- r ‘ ' - ‘ F . ". - . ‘. n .. ‘1 O“ . r' l -, . . I ‘-—.' "i 37 wavelengths. The ratio of percent transmittance of the solvent to percent transmittance of the sample, (Io/I), was determined and the logarithm of this ratio gave the optical density (D). (see Tables 1-h). Linear relation- ships were obtained when the Optical density values were plotted against molar concentration (see Figures 7-10). Unknowns The samples were prepared by weighing 0.h932 g. of the unknown mixture into a tared 5 ml. volumetric flask and diluting to volume with dry carbon tetrachloride. The spectrum was then obtained according to the same procedure as was used with the standard samples. Example A synthetic mixture containing k0% of the ggggg- isomer and 60% of the ara- isomerwwill serve as an illustrative example. From the spectrum (see Figure 11) the following data was obtained at 8.h8 microns; percent transmittance of the solvent (Io/Ir) -98.3, and percent transmittance of the sample (I/Ir) - 15. The ratio of percent transmittance of solvent to percent transmittance of sample is 98.3/15 or 6.553. The logarithm of 6.533 is 0.816 and this is the value for the optica1 density. This Optical density value intersects the graph (see Figure 7) 3 L Oz: ‘J .ul . i. c. .1. . e . . ' T) e -o..- -L...“- .m—‘rb- -hw—,rc —-~._..‘ 38 at—a molar concentration value of 0.291 for the para isomer. This corresponds to 58.2% para. I o 8 98e3; : 15 Ir Ir 1°11, IO = . 98.3/15 = 6.553 1/1r 1 . 108 6e553 3 0.816. D Molar Concentration (para) 3 0.291 (from graph) -% Para": 9.291 x'2 x 100 g 58.2%. The-values at all four wave lengths are shown in Table 5. H I . 1 " A V . .. , .' A ‘. ‘ ' . _ . ,, l - - v ‘ ' r C ‘7 ~ 7‘. .l - a. l . A 0"; -.‘e \ .. u A an- . O .- *fl-M‘ -1. _...- i... .- ., 'I . , v “ v ,- r: .- .- - nap-en *-v--— v— “~— M'--""'*""-“ ”-2.... L a -. , . - f - Ch I H, . > . ‘, . O .1 '. .1- _ e .,_ - " ‘ F. . re 1 ‘ .. " . ,~ . e I Z ‘ ‘ ' ‘ 'L . \l - ! ' ‘ O. 3 f . g - ‘ '~.' " r' ‘ 'f‘ :3—1‘r‘y a“ ‘ . . - .4. ~. .1 _ -J - . . .a % Transmission 39 100 80 l D 8‘ \xssgfis . A‘:__4¢=ii§é§> .._______.q x}; a "‘y LO 7-9. 20_ L ' 8073' 8.88 __,' l 8.h8 10.77 0 L 8 ll 9 l Wavelength (microns) Figure 6a infrared Spectra of o- and p-qfiPhenethylaniline .1' v4-nno- Inn! k0 mmo.H m4.HH a H.m Om.o OCH .5 moo.H oa.oa : «.0H m4.o 0o .0 smo.o oom.m z H.~H mbm.o mu .m mmb.o H¢b.m : H.m~ 0mm.o Om .4 Hmm.o mam.m c m.Hm mNH.o mm .m 04m.o wHN.N : w.©4 no.0 OH .N mm~.o mam.a m.moH ~.hm 0.0 o .H o a o n .aonoo when .02 o H\ H H\ H H\H nmfloz paoonem eHQsmm mzomoHE md.m P4 mmEomH i cofipmnpcmocoo .b mnzafim . . LmEomH meme mo Apopwa\mmaozv cowumnuceocoo m o :.o m.o m.o H.o o _ _ _ d a \ -N.o Il.m.o 10.0 -IJb.o w.o 0.0 o ooa HOH Katsueq IPOIQdO #2 040.0 Nom.¢ : w.n~ 0m.o 00H .5 Nam.o moa.n . s.e~ _ as.a so .0 smm.o Nam.“ . H.Hm mam.o “a .m mwe.o ous.~ . when om~.o on .4 nmn.o ¢HH.~ : «.04 mNH.o mm .m nm~.o has.” .. a.mm «0.0 on .~ an~.o ans.” o.soa 0.00 0.0 o .H o L o h .conoo onuho .oz a H\ H H\ H HxH tame: equates .HQEsm mzomOHE mh.m 84 .mmOMH tomemo KO 494m A cowpmnpceocoo $903 0590 no mnmpwqmoaoé 3303:9200 .o N.0 H.O _ _ «.0 ¢.0 .m onzuflm moo, 0.0 Aqtsueq {eagedo bk «40.0 mmn.4 : b.mm 0m.0 00H .5 000.0 000.m = «.0N m4.0 00 .0 0mm.0 Nm4.m s n.0n mun.0 mu .m mm¢.0 mon.~ c 4.0m 0mm.0 0m .4 nHm.0 n00.~ : 4.0m mNH.0 mm .m om~.0 nmh.a s 00 m0.0 0H .N 50H.0 05m.a 40H 00 0.0 0 .H o h o u .cocoo mama .oz a H\ H H\ H H\H neHox essence oHeeem mzomon 00.0 94 mmEOmH I cowpmnucoocoo .0 onzmHm noeomH mama mo Anopwa\mmaozv coHumsucmozoo .0 4.0 m.0 N.0 H.0 0 _ _ . _ _ H nu N.0 m.0 .1 O O m e O 0.0 0.0 \ xqrsueq Isotado £6 «04.0 ow.~ : b.mn 0m.0 00H .5 0N4.0 u0.~ c b.0n 04.0 00 .0 n0m.0 mm4.~ : 0.H4 mun.0 mm .m 4~n.0 HH.~ : 0.04 0m~.0 0m .4 00~.0 N4m.d : H.0m mmu.0 mm .m 0-.0 Hm0.d s n.H0 no.0 0H .N m0~.0 m00.a n.m0a n.40 0.0 0 .H o a o u .nonoo cause .02 0 H\ H H\ H H\H Leaox unease» eaassm mmomoHE 50.0H 94 mmiomH nomemo zo 0Hmcm0 Hmowpao .m> coHumnuceocoo mcopoww .OH manuwm nmsomH ocpno no ApmpHH\onozv :oHpmnucmocoo m.0 4.0 m.0 moo Hoo 0 fl _ _ _ H . as o Ijmm.o O I. m6 0 Ilmm.o 0 III 400 0 IIme.o no Aarsueg Ieorado L8 mo.~ “ 0.~4 n canto m mm.~ u 0.00 n mama R 0.04 oom.o H0m.0 woo.H n.0o m.04 onuso 55.0H 0.m0 4am.0 004.0 m00.m n.00 H.Nm mama 00.0 N.m4 0-.0 004.0 00m.~ n.00 4.0m onuno mu.0 «.mm Ho~.o 0H0.o mnm.0 n.0o nH seem 04.0 eweoneOLem .nosoo venusheueo econoHs sH hesomH hmaoz 0 H\0H LH\0H . nH\H hoeonH nvmnoq e>m3 mmdm $00 Iompmo $04 "mmDHHHE onmumzwm 4 mo mHmMA<2¢ .m capeh A e‘I.I-lf.e. It 'I'..I“I!‘lili s..." line. ! .Il.L.-.’ ‘1‘-.. '1 II. -lwllltn. I, ’l. a ‘l '.I .8 .4.- ‘lIIIi1 / ,0 I. .0 .7}- I!" I lvi‘ll“: H . 7 ife‘.‘eeslu .I‘l‘l.l )1 ee‘l AO‘V l‘.i|‘.ll | it"! '7. .e'ffl-‘EI 0.:til‘Inill-u .‘l II . :21 ‘II‘ a I-IO.‘-IIIO 0"; t .I‘ I .I % Transmission #9 100 80 O\ O l. 20 8 9 10 11 Wavelength (microns) Figure 11. Infrared_3pectrum of a Synthetic Mixture: h0% Ortho— 50 RESULTS :In order to examine the rearrangement of N-«X-phenethyl- aniline more carefully it was necessary to find a satisfactory method of synthesizing the starting material and each of the rearranged isomers.- Two methods are listed in the literature for the syn- thesis of N-cx-phenethyleniline. .0ne involves the addition of a methyl Grignard reagent to benzalaniline (lb) and in the other C(ophenethyl alcohol is condensed with aniline in the presence of p-toluenesulfonic acid (16). Inasmuch as neither of these methods would lend itself to the direct preparation of a stereospecific product other preparative means were investigated. Direct condensation of 2,h-dinitrochlorobenzene with ,d-phenethylamine proceeded smoothly according to the procedure of Cram and Hawthorne(13). C -_ (H3 W2“ .“3 Cl e figs—('3 -—> 0.2m O N-(IJQ H H e HCl but removal of the nitro groups by reduction and subsequent diazotization was not successful. According to the procedure of hillson and Wheeler (20), N-benzylaniline can be synthesized in 85-87fi yield by the v ' i' ‘ f ' ‘ ' - ‘F'll. I I " a w. n - ‘ ‘ ~ I . I. - L _ . » 0 , -.- , \ ' - : r - 47 A , \I ’ .. ~ 3 . t. 3‘ D . C . C‘ ' . - , e . Q A - 2. r‘ . ' 7 ‘u a ‘ u i _ l i - ‘ .1 ‘ ‘./' I- L' -\- —. _. ,l . . v' ,3 . . .e . - r . s . J a ‘ ‘ . . r.- ~ . ‘ ‘ ’ ' u -\ I ‘r\ - (- 1 . 1 U ' . * 7 ' Q fl I; r - . . . _ \ . .| o - - 1"; - e 0 ~ . o 3 - I . . ' " , . e . .. ' w- ’ . . . ‘_ ' . a , a ‘ I . a ~ - . .a . . \a . — , . ‘ - . v\ v . 0. 0 x r " c , I , f A u . - . A . ) —)2 .. -. :4 . . . nr '( 7 I ‘ . f } a, o- .- , -- ...->.‘..i, , J 2.. . r e ' r v r , .' . n - r ‘ n *f X ‘f’ . ‘ 'nn '3 " ‘ 1‘ - ‘ - - s. 4. 1 t\ ’ , _ ~ !< . 1 r. v < L‘ v ‘ «A ' w "'trl Ir 3 ~ own-g»- r -..,.., F 1‘! . , " d. .. I s ' ' I ' l I u ‘ . O“ s. on an. 4": ‘ t I Q - K e 0' f .l i . . -V. A‘“ - 1.... ,J. . b - . , - . - e - - .. ‘ .u . . r .~ ’- ‘ k s I) J 9“. a” ~ I In . ; s ' 3 I \ 'I ¢ \ I .’ -. 1 f 4 \ ,I’ .‘ - I on v- , ' .. ' '»“’ e ..1".-‘-‘! .' V . - o} ‘ , ~ 4 '_' - A 4 I a ' v . L f ‘. 1...! o J .IA' ~ J . , , . a ‘ ‘, 1 ' g " fl " ‘-" ",‘ "I A .. . ' ., - s.) As '- s . .- 0' - a r P I r __ . ‘ " ‘¢ ‘ ‘ , 3"", , ‘34-... . . .- .a I . .. . a . ~J ’ 51 reaction of aniline with benzyl chloride in the presence of aqueous eodinm bicarbonate. Similar reeulte might be hoped for iith cx-phenethyl chloride and were in fact realized. (see Table 6). The reaction went well at room temperature and in good yield but did not prove to be etereoepeeific with Optically active chloride. In experimenteE were optically active N- x-phenethylaniline 'wae renuired, dl-paterial nae prepared as indicated and reeelved neing (e§~eanpher310¢eulfonic acid. Since the produeta fro- the rearrangement of 5- do phenethylaeiline Lure to be analyzed by an infrared epectro- “photometric procedure it via essential that the pure ortho- End pafl- og-fienethylanilinea be prepared by unambiguous “we. } I g o- cL-Phenethylaniline was synthesized according to the following reaction ache-e: 2. Hydrolysis NHZfi I "“2 I H , Ni O c0 4 CM? 1.? ' Ethanol ' H _ we ' CH2 . ; u. 4. . .. ,— I .- l-.- r .’ 0 ‘r. u. e a“ 1.1.9- .._..... (“a-.— . .1 u. ; he“- .3\ I J H \ K I x ‘ s 0 ~. ‘. .J \ ‘wx-I—l’ . . J h I . ~ . b O ' .1 \ 4. ‘ . f‘ ‘ - S ‘ 5w . . Vi a . p . a . I“ v o .‘ . ‘ . o ' O . .y .1. l ! v e I I O ‘ O ; ' '0 .- . - 4 I ”v l J ‘ O I 9‘ e “ , A l \ , a . e - . ' p t _ e ’ | c _ J ' ‘ 1 e I . e - . I‘ 4 ‘l ’ l. " r _ g a . _ e , " I . q M .. I I... . .. v I . » . - _ , -r ,v ._ . - .o. . \ ‘ C . N I .- § . . . ' ’ ' ‘0 ‘- - ~ ‘ l - O . . . - l _- - . V —- 5v _ e- . I ' \ . n‘ » - I . —« VA . ~ .- -..,, -,. "i H.) ‘ «a an. ‘\ \I. b,” ‘. I“\ '9" . - . 1. l V .5 . r — .NI, . \. v e e o. . l ' a . I...‘ ~\--. e a. r 1" ‘ J § ‘\ —. J k .5." .. 52 .ebwuomnw we: poacohn one can pen: on) .om4.mnr a U .ocfihoaso thuoconmuyc .n . mm Aconcaguaowp Iswcon no eoaHn aw pen: on: oueconhao flanuom .a m x. Tu % J. 0.05 --- moumm .H.H . 0.4 _ o.H .o ¢.Hm 0.0 .aaoe scam “ma.o a. m.o W nmmfl.o .m o.mo .o.~fl .aeus noom a«~a.o n.o h mmfl.o .4 e.wm o.~ oo-mn amud.o 7 m.o M m~H.o .n o.so --- mo-mo ‘ om.o A . me.H .l H4.o , .N o.ae o.e mm-mo wm.o ,. _ o.H m~.o _ [H ‘ ,.mk= .oo Macao: noaoz _ nofloz .oz cave» w oafia casuacoesoa ooze: ocuflfic< ovatoaaoahneoconm-yo .dxm mzHAHzxdwzhmzmmmnvonz ho onB HZN c . 2. Hydrolysis I CH3 dil. HCl Reflux *3 MCQ— «z—z—H ~—Q Q I Acetic acid, CH3 Ethanol The phenyl Grignard reagent was prepared in three-fold excess due to the presence of the amino hydrogens. Addition of the Grignard reazent was conducted according to the procedure of Porter and Hirst (19). No information , ‘ . , , . "'"""'1.’“’:'.r -..r., ,9. l. .,\,‘. .~.L v ' -- ‘ , r as f‘ s I ‘ C , .- u . f I I - . ,, ,I '. ‘ i .L \ .‘ .. .«o_ l .. . I" / 23~-”17~’\\ \ . ., .. ‘ .,J ._ 40 Q“-~p‘.l Cue-v; Lu—u. .. *-O"O_.¢—§O~I I- —-A(\ V [—s- . ,3 I . _ ' ‘.i C .. . can"- . - a, . “re ”m4 .‘n-or- . 0" \\ I‘? 1 “-1. \I 'I ,‘ t ' . , . . _ ‘ \\ /, i \ // -. . _ . . g ‘ \.....- .- I I ’ C ! l . I . . ) ‘ _ ’ _ f _ ‘ _ 771‘ ' . - . . .. , “I 7“! s . re. 9- . . . . . . 3 , , J. ,. .- J, . .'. 2‘ . 1 :3 - . ‘. .I , , \ -:I .- ‘ e I? 3 I" ’1' ‘ . ,- -.. —~ . v - “I .. . . ' ' I, e I e 1 1 I ' ‘ . ‘ - 'v - . - ' v " ' .\ '3‘ ', ‘ 9 . ‘ . ' ‘ -~ a a .J a i. 3' ‘ .5 , ' '7 . .A, - 7 . A . . . ‘ .I I I. " f‘ ' « ‘ - ~ .0- ’V 7 )vv II-v c, A, * 5b was available on the dehydration of phenyl-(p-amino- phenyl)methy1carbinol. Several attempts to dehydrate the carbinol with 35% sulfuric acid led to the formation of an unidentified hieh melting (217-2180) product. Dehydration was finally realized by refluxing a dilute hydrochloric acid solution of the carbinol. A carbon tetrachloride solution of the dehydration product took up bromine rapidly with no apparent evolution of hydrogen bromide thereby indicating the presence of aliphatic unsaturation. D;a- sotisation and coupling with/G-naphthol according to the procedure of Cheronis and Entrikin (léa) gave a brick-red precipitate which is indicative of a primary aromatic amine. Finally, elementary analysis was in close agreement with that required for the desired l-(p-aminophenyl)-l- phenylethylene.I Several attempts to reduce the olefin by the same procedure that was used for l+(o-aminOphenyl)-l-phenyl- ethylene were not successful. Reduction was finally achieved by using ethanol acidified with glacial acetic acid as the solvent. - The products obtained from these unambiguous syntheses and derivatives prepared from them had prOperties which agreed well with those reported previously in the literature. The observation of Hickinbottom that the ortho-isomer is a solid and the para- isomer a liquid was substantiated.(9a) n... .1 . of; F T! V: A a . .e v . . ev . l o . ‘, I . . r . . v :.‘t'{ u 1 f i . 1 eyes . l ‘1 e. . n I a . I 'u u . a} a . . I o .. _ . .T .. , x A. ~ . -4. w. .1 . A. . . . -, . . . . - n. . . I . r . . . . o. . . r . e er! ~ .. e vw .. O e... (I . n x I I v we. ’- 3 r n 1 e r . l u _ A .. v . I C ‘I. v r x - A . .‘A . .. l 0 v .. .v e\ u 4 . 1i .0 e . ‘ . .l- . . a ,, .. v e e 1t .x‘- ‘ no . . . N . y I It . v w a P . 7» .4" f ‘ . lit -~.’ \. _ .. . , e . . n . _ h... ‘0 .. i . . . l . A. _ O I. . _ . u. . . . o b . . . . h‘ . . v E e 1’ II a . . . .l #i‘ 55 The only discrepancy was an observed melting point of use-161° for the hydrochloride of N- d-phenethylaniline; the literature value-(1A) was 18h-185o. .The reason for this discrepancy is not: apparent. ' A variety of experimental conditions l‘as‘ investigated for the rearrangement of N- d—phenethylaniline to its C-alkylatedIieolers. Nq1K-Phenethy1aniline is relatively stable to heat.I After refluxing (300»3l50) for twc and a half hours, 65% of the starting material was recovered and no C-alkylated aniline was observed. Rearrangement of the N- d—phenethylaniline did occur when the hydrochloride or zinc chloride complex was heated at temperatures of ZOO-350° for three hours or more(see Table 7). w . ~H C ‘ , 0* 1,, ’0 °“ °' : l I) 1 Lewis Acid 9 O In every instance h sixture of ortho- and para- -phedethyl- aniline, aniline and a viscous material(probably polystyrene) was obtained. With N-cx-phenethylaniline hydrochloride the yield of C-«X-pbenbthylanilines was 20-35%, whereas with.the N- x-phenethyleniline-sinc chloride complex the yield was somewhat higher IUD-1.15). The .N- x-phenethylaniline hydro- chloride on rearrangement gave an isomer distribution ratio of 25-32% ortho and 60-70% para. The N-¢K-phenethylaniline- ’ y .' ' ‘1 .‘e _ ‘ ~ . - .v r e9 x . . . f r . ' - _J .5 ._ __ . 1 U - § - _ . . v. \' -.' } r - e 0 — I , I Q - . ‘ as v- n— n n '4 rs :- O . < . A ‘ I A . "V C ~. ,- -—. ~ _ . ' ‘ _ . , ) " f - ‘I' 3‘ ‘ V -. v \ FI- - -~ e + . x K L . . .. - i 9 . e - \ ' ‘ ' ' ' 't N“ : N . '4 -. A". g- ‘ e P ‘ " - ' f‘ . . .4 1 .a l s ., » o 4 .. J u I l ‘ . - _ .I l. T . r .' - 4 ,. w. l . ' l . ' A . O ‘ . ' x. ' J a - -.t , — . - - r- - s ‘ ‘ I - . u' f a e I ," O ' - ' ‘ ‘ . d . y 1 ‘ — f. _ . r V —‘ r o O ‘ ‘s -‘ ‘ ‘A e en- .4 l U y '5 . _ , . L ‘I . ‘ .l’ " . 4 5 ’ 1 .' . . . .‘ ,V . . . ’ “ _ 2 \ a I « . t ) " A .Q .' A - ’1 f -. r —. " O , - A . . ' e - I .a .~~ -h -‘D\ . "*A - I ' . -_.nn “1 o/ -. '\ \ i I \ - \ \ \ , ‘ H i 4 v ‘_ .rwu' \ I -'_ -A " I .é-..--—-.—.~e.-. L.‘~l-'” “‘m'" M-‘ ‘ \ f, ‘ A“ j I ‘ e ~e e \ l‘ v‘ .. . ' '5 l ‘ \\ 1 I a \M-J n . r - . ~ I a; -. ., r r a. - v w . __ . e I. , _ .4 J _~ 5 -..--- 1;. $~4V -' e1 ‘r ‘ e a e r e ‘ 0 I t.- ' ‘ _v. . p . - - J . . - 0 \ -f' . . - a 3 I u ' 4L L ' l I- \ ‘ , o . r 4 I . 5 - 0 . a | ‘ ' ‘ ‘ - I d‘ «- O — . . .L . . J ' . .- . , l _ r ‘- . :‘l I )r J O 0 ‘ C d I e I 'i r- ‘1' ’| 0 56 am am H.H~ comm-own 0.0 A~.ovaum cm.o .NH -- --- m----- omHm-oOm o.~ Amo.ovaom No.0 .Hfi 00 mm o.- oomw-oum 0.0 AH.o.Hom H.o .OH on mm o.oa acmm-oam 0.0 Aa.o.aom H.o .0 m4 Q4 o.4~ oOmN-mmm o.m AH.o.Hum oa.o .m -- --- p.»aa ouauu cemm-omm 0.0 AH.o.mHo=N ca.o .5 ¢m a 4.0m ooam-OOM o.w Afl.o.~HusN ~.o .m «n ma 0.4m canm-ONN 0.0 Ama.o.~Hu=N mm~.o .m co m u.o¢ oONN-OHN 0.0 Am~.ov~flocw m~.o .4 no H >.m~ cemu-OHN o.afi “mo.o.maocm H.o .m -- --- ----- coca-0mm m.H, ---p-- ”.0 .N -- --- ----- omamroom - «.mp.w ----- no.0 .fi damn onuuo ouwahxawlo .oo ..nhm. Ammaox Ammaozv .oz numEOuH no cauww m opsuapoqamh mafia. «fix no mm onaea .uxm 23233555? -: mo Sm...aofim§mm .5 aapae . I I. .I I'/ r {I III AIII I I; c I a i . ~ ‘ I .U A a [4— . .on .s - I P o r - \ . I 4.. a . ‘.. A . p... _ . . -,. . o r ..s D 10 '1‘. illi‘ I‘ .IIIII’ulLIIIIlIQI- ...]- ...-' l"10 -l-‘-u‘ "I’CJO‘ | -‘E "-.'.I ‘ a 1 7. ‘.ol-' --I-‘ f n _ 5|. I‘l».1-' (II"JI‘..I . \\ . 0/ o. w; t - \ I .I x N . . . 0 . ' -. I - I. V t Lb. I liar-III. - . . ..w .4 -. ..n. - 3 J . .-. I . — ... A. . ‘ . s ‘ . . . I. J. . . w . . . . a . p K o - ..\ u .; I [Iii-I‘ll. ll .... 1 H- II 1 . u I. .... - ‘ , 0 . '-"l--'--l! \ ... .. s n . . - -‘! 1' ’I ‘- .l' «I \ . i O. \ , . \ I: r ‘ _ \ . . l . I - n; 1‘ . J N - n o - -I . . a ..IQ . v. . I ... . I —r V. V — . - . .- I I t - . - ., . a .5 l x ‘ b A 4 r .- Q .l- . .3 F L - \ , I- - v . a \ . . 1 h ' . ‘ . A V '1 .fi . * .. . 7. 7 r .\ ‘ . . n. V 1' v .. ’_ ~- A , p . C r t . I, P . w I- . g . O i .- L- 57 .oHuH» Vbu :« uouaaoau am) can opquHE nowpowwp osa scum voawansn ovHuonzuouvhg cauuaa< .... .. k .... . 7- h . - .oarucop . . .3 u o :3. H .... H ...ON 0 4 «ma n—VOU— .6535 annuoaofinvo to at.» 30:25. .Hmmmd - o ow - 0:5 .H - .o.o 0H 4 mm TL 4 QHanaHEuouofi-X -z .33 soda 5. m: vouoacio our H3309: on." 4&0.an 03.33 gm. Afiméwv «Wuhan-#0: 32.3.3 53- .5. ,. .onwaucaahsorcuW-Y $.13an ovum 30:33. .HHHm. o- -.. 8. u o :3 H- .o.8 S- a Cop . 3:332:85? -2 L ..tth... . H.. ... . . . y 4-. 1..) 0”; .e. it ‘I .. .s oHpaa can-no: . r:- .u .n .6 " ‘ r'. n , O O s u I l \g , 3.2-4 , Q Q . - ,_ ’ f' "‘7 ‘ 5x," 1......) i. v I "Y. -1 ._, -_.. 8 . , a l \ r 6 l .-_4‘ 58 zinc chloride complex gaVe less ortho (3-13%) and more para (75-90%). Thus, in both instances p-c(-phenethy1- aniline is the predominant isomer. The rearrangement of optically active N-o(-phenothylaniline ( [°<] :5 4 16.6, 1 . 1 dm., c g 20, d 3 0.8331, ethanol) as its hydro- chloride gave C-alkyleted aniline with slight activity ( [ed 35 +0.20, 1 s 1 dm., c 8 ho, benzene). when N- «— phonethylaniline [d] 3‘0-17.86°, 1 . 1 am, e 3 20, d a 0.8331, ethanol) was rearranged ae the zinc chloride complex an inactive C-elkylate resulted. When heated in an Open tube at BSD-350° for six hours the N- d-phenethyl- aniline - zinc chloride complex gave a 67.5% yield of etyrene (identified as ite dibronide, m.p. and mixed m.p. 72-730) and the acid-soluble portion contained pre- dominantly aniline and a trace of C- X—phenethylaniline. 6211012 qfl H—N—CH on , CH2 I open tube .I' CH3 -——————————1§> ; 0 330-350 '. CPIC. amount 41v 1 O \I I’. Y . ‘- .fi 4- ] . m... . . ; .. H _ ‘ I. I .I.. — — I r7. _ _ ... I. \ . 4 .. 7 4‘r . 5 ' a t I... W. n: v ... o. . I _ 2 . v 4 z . I - _ - ..- at I I .- ~ - h e U .. a t ' Z - -. . 9 «I‘— . . .l , ‘4 O .‘O c t a H ,- ...--.-..Huqmmfih—u n-. -..-h.- Q a 1 . I f’ e. .2 4. u ‘ I . I Ox. 4 ./ ..m .. , , ...J. v b J: . - i.- t\ ..r; * Du . e 'O‘ H, \\ . . \. . . Ir 6 .l _ .. c , . x _ f as H \\e ‘- I \\ 59 When N- X-phenethylaniline hydrochloride was heated in an open tube, aniline hydrochloride (m.p. and mixed m.p. 196-197°) eublimed from the reaction mixture and was isolated in 27% yield. 01.61. 1. . -_ -.-. -. , p y. . open tube , v 0 gnz-CH-O 0 Ar Own-3 c1e | 300-315 CH 3 27% Furthermore, a mixture of o- d—phenethylnniline and its hydrochloride was heated at 220-80" for six hours and gave a 30% recovery of starting material along with some other unidentified eubetance, but no para- ieoner was detected. 0:: the other hand, the o- X-phemthylaniline- zinc chloride complex under the same conditions gave a , , 1.0% yield of p- X—phenethylaniline and none of the starting amine was recovered. 0 . NH : ZnCl ' ‘ NH 2 2 220-23o° 2 CH ‘ - > I six hours . CHJ’ £01 When the para position was blocked, ea in N- c(-phen- ethyl-p—toluidine, rearrangement of the hydrochloride or , . I no. _ ~ - u . .. .. x "' ‘ 1’ | b.— _ ----_~'-e , ‘ A a ‘- _ . . ‘ Ix ‘ _. - , - - ) ‘V I '1 - . A i l h . A e r ‘I | — , .. 4 Q , r .r .A ( . .‘ - ‘. ~ ‘ ( , - I ; .... .\ \ . , ' - .. , _._ _ _ .1, -r , I { . , 4 . . :- - L‘. 4. ‘ y I. H ~ ' l . ,- e . \ - ._ h , l . . c ' . I.L\ / \\s\ e l’ \ !~ (.‘4‘ .r—onh-— ..o~—r~-—-‘H.ou--—*—4M H = ' ov- ‘ 1' I I ' . I .- -\ . / '. \ ‘1' / ~ r . ‘_ l' e. o (\a 4 F' -- ‘ ‘ 1 l w ...x‘ /, he j 5‘... $ \-‘ ~ 1 - ' . v ..- ’ ~ 3 .1 c- 1 ' - 1 4 I- f 2 " r“ i n \l 9.. ['1’) H up‘ a" I 41‘ 60 zinc chloride complex yielded o-c(-phenethyl-p~toluidine. CH3 I HCl or 3 C ZnC12 | CH 3 CH3 ‘ . y “3 . W In connection with the rearrangement studies, it also seemed worthwhile to reinvestigate the alkylation of aniline with styrene. Aniline was alkyleted in good yield by o(-phenethyl chloride and by styrene in the presence of aniline hydrochloride (See Table 8). At room temperature aniline dehydrohalogenated o(-phenethyl chloride to give styrene (identified as its dibromide,'msp. and mixed m.p. 72-73°) and aniline hydrochloride (m.p. and mixed m.p. 196-197°). When ooqmenethyl chloride was allowed to react with aniline in a sealed tube at 220-2300 for six hours e 52-67% yield of C-txyphenethylaniline was obtained.) The isomer distribution ratio was 70-80% ortho- and 15- 20% para- x-phenethylaniline. 033 -CH-Cl room temp. excellent yield 5" Na. R-» Q I ..o‘ -..- ...hv‘ ...-...“ 61 cm on o.~o a 0.0 -----.u- Afl.o. 0mm ms.o .0” 5H mu m.mn .oo«~-owm one wwcwuwnu .Amm.ovnu=m no.0 .o n mm 0.40 o0n~-o- g .oo.ov 01¢ AH.o. m m4.o .m ---- ----- o cem~-o- 0.0 a4.oc N ; “4.0v m, ms.o .5 a--- u.... .uam some» omeanoma m.a am.ov cw _A~Lov m H~.o .o ---- ----- o canH-oeH o.~ .oo.o. uz< AH.o.. m no.0 .m u--- nu--- 0.0m ; o.” Aoo.o. 0x4 AH.oV m me.o .4 ..m: om. ..mimm :.c a g “00.0.; ems Aa.o. m . .ms.o cm ..ow uuuuu o.mo oom~-o- 0.0 «00.0. ooze Afi.o. _ m «4.0 Wm 44”. ....c ocuaruuu oommnowm 0.0, wwmwuyww “away -mm memo 4H, «Ema ondho eueahxa< ; . _ ..s-.:-s ...eeamz 1.. . ; .eif;ehosonH 2-. .:::vnmwwum ..nwwm Awmwmv 5-0nhadomu; .wnwwmwmwww-:hnmwwm« :pmmw mZHgHz< mo onesgwmpmzmmmwvt , .m odnmy i {I .0 [II I, 1 u .‘ .I o u. I . . . ..w .. I ... .-...wl. ... 4...... .... n‘vn . Y a . A I t . I I O exls . . . L '. 4. ”u .u . , 4 r .. .t . .. . §. V . x s u . e ‘ e.’.», A ‘ eel . .u 0 a O u ‘ m ,. r b. e a. . _ r . . fl . H s \1 re; _ .. . .r u b . J I. t ...!e . e ‘u . 1 e eli‘ ’t.‘ lie . ..w... l( Is...-.¢.‘ (I Q-.- I" .F'n“|‘t’ c"t!‘.‘1..i, . l]. . 1".‘e." .‘5.I’ii.ee,"s.‘ ‘J'-I-O;i‘.e<‘ve- ; ..ee‘ll I- r.‘ e .I 5 I C a V . ’ "" e' *".e’|"- . "|te ...-LI ' 'IU‘.‘ ‘ I ( t) . {\O. .1 'r w . O . r d v I -‘ ' --- U I: .III tel / C l l . ‘ x . 1 . . U \ _ _ t s . . v , 4 e . . e m . e . - .. n n ‘l . n. ‘ e ‘. _ "'ll '4'“: . . r r ., _ s s ) O . r. 1 m J _ 1 J \ . is." 'I’-" _ t I v 1.. a C . > O ‘ I I . § ‘ ‘ _ n I ~ . . . el . . I I- . , , _ 'I"l‘ '3'! "l U I . v . e s 0 ~ . ~ _ . . . i . , III! -l'!‘ ‘ ’ p 1 . O f .. . O . w 0 \ a . _ r 2 v . ~ .' . , e o x . e . x o . . , ‘ u!’ ... "’I.Ilel's'llv 62 ....W W .Amm.fiuv eceuhpe new Awnmv ocuuoanuouchn eoflaane eyes euonvoun :. .eu oak .H W , .euson 4m you AJenfireeue e no can» was none: 4N you ensueueoao» noon on coax ea: ensuxwlrgewuemvu esp .e _ _ .emuoamaluwsu . N .e aeauoanooue»; casawu< u om< .o cessoano Hungwaemunx «can .9 ....Eg . m .q a .. . wiiittz;;%déti%i hm ..--.. “1...“--- e .. 10.3 ......i... :é 2a do .2 Inns units eoehh _ e . : nosuauuu thwwov oxm H.o .NH ma on c.5o canuwo- " o.a -------- _3W.~.ow one m4.o .HH euen macho epeahxaq _ r a Al + codex . :5. 3%". .st an. ”Quinn fig an L " Ilr ‘7 AA A neaswueoo W m snack ’fi '3‘ . .; m, ' tl .. t \A 7‘ fl e‘ A. ‘1 e l‘ 0 all e \‘ w n u ‘ . I ' t e’ I W.- 0' I I a. a I w H .1: l I. . w v s‘ to rev .. ......uu WV . F- ix. m I M. a t O H a... s. I: e F a w . .s . I I \ _ u . . IF n.» . I L O . . ~ ‘ J L. .i . f 4 . .o a ‘ V. J . $4 _ .1 x. a} n ‘3 ' ~ 3 O (s .. 0 . t a I r i. I we l-V .... k . . v 4 .i... ..4 w, . 0.....q... J I . ... . of. n .. U (S . uh . \ lr e .... . .u. We.» 0 e 'I.l'lllii.l Il‘ql. .. in. II» I. the" [J \ I‘ I A 1 fi l ‘ V‘fi J V ., e I-e 3"! .. r\ be I» C r.- ‘ i . I,“ {..IIK [F.sy’plsl .I ....... 'II""IIII r .l ’ :17 u . 4- e. \ .‘u ci a. .. v .3. 9. ‘4 fl ...-.-.!- II'O‘.‘1‘ ‘ . 'II.‘I\“!|- . _ ‘ o r O O P n _J .I J _ ‘ I . ' ..IJIII. llle'-’ ? I ‘-l'lll"el . .0 Q . . v’l‘t . .II. l sit '1 .-.. .A i; T'A‘rwb i l-n o Lat): ..llli'.) all t’lvi ‘I ‘ I-.I|..’. 'zi'ale.5 30.t-1ut|‘0¢"e I..lle‘ 1.1-1, .1: 13‘s! u.l..evll3le[ll"-“l U... i ll Q’W Ar .1 .l . r q . - F .‘ u . o . . o a r. . . I! :c A . u . r! C v A s . 1 . s . v I r L x . I r O . J i , 7. . . . f L . . a n o, 4 . . 4 t It . r r . .1 . u . O O A _ , 1 e e . . A s c m . 1 l e e v a . . . . o _ 4 . e... v. 1 g a p 63 ”H2 CH3-CH-Cl w_;¢.:. ,‘ a» (70-80% ortho; 15-20% para) Aniline could not be alkylated by styrene alone but was alkylated in good yield (65-82%) when some aniline hydrochloride was added, and the reaction mixture was heated in a sealed tube at 220-230° for six hours. The isomer distribution ratio was 90-95% ortho— aha 5% para-C(- phenothylaniline. 220-23o° *E> No Reaction 6 hours ' NHZ CH 3 CH2 6 @NH3’ 016 NH; 220-230° 5> CH 6 hours I CH3 65-82% (90-95% ortho; 5% para) P. .W t. ‘1 xx --9.u—_..< —--.- _.—._»o'- u. \"uv run- v --.-‘4 ‘ ...-ls l‘, i ), .J I ‘ \ .. m d u . 1A. . .z t. / u ' ..- t n' I \ '4. fl . x m. A: L. \\ . a. \ I . . I . . _ . W W __ l . _. .k 6h When the reaction time was reduced to one hour, 85- o(-phen- ethylaniline was detected in the infrared spectrum of the C-cK-phenethylaniline. Several attempts to alkylate aniline with styrene in the presence of zinc chloride were un- successful. DISCUSSION 65 DISCUSSICN In studying the rearrangement of alkylarylamines, Hickinbottom found that most of the simple alkyl systems will undergo the rearrangement when catalyzed by a hydrogen halide or Lewis-type acid. The extent of his investigation is evident from Tables gland 10. In the rearrangement of N-alhylaniline hydrohalides a number of products were generally obtained; p-alkylated aniline, o-alkylated aniline, aniline, alkyl halide and olefin. The alkyl halides were observed when the reaction was conducted in an open tube, and no change was ever observed in the skeletal structure of the alkyl group in those instances where isomerization could lead to a more stable structure (isoamyl bromide was isolated from the rearranvement of N-isoamylaniline hydrobromide, Table 9. experiment l2). In those instances when the cases were characterized, they were found to be the olefins corresponding to the N-alkyl group with one difference - the more stable isomer was always obtained whenever more than one isomer was possible (trimethylethylene, rather than 3-methy1butene-l, was obtained from rearrangement of N-isoamylaniline hydrobromide, Table 9, experiment 12). n ’f .. I a... . v - A... \. — L . s. 1"» I w 7”. cl. ‘4 V. (I. O u i ‘1‘ . . _. 4 V ~ w... E, .v. ..- ~ 7 e I. a. r, . rat a. er .. .- N.. e ....U .7). A. as . A ~. a .Is \ _ . . . . A 1. . v I | » .. TL . o . F A . v .YL . . .1 o r .. . . _ ... I . e ,4 e ( :L . OI ,. . r. c r; . -1 .2. . . , . n . a - 1k are)“ R . c 1 V F n a x I w u _ a a» a\ .. ..i. .t. I . q) 1.. .1 ..i A 1., o. a . .v A. a . u v .- 4. I. a . . 18 ...u ... .. .. o . \l .i k . A s e v . a. .1 . . . .. u . u ‘ o I r. . 4 n . take 4 e . . v o .. { av 4 . . .1 t . ... . .. . a w A _ i _ l. . ... o q . e a a . . \ t v s Va . A n l a 1 . a. a. ...:a Q P . a I . .1! t A . N I‘ 0 la b. a . L a \ .. a . p Q r\ F. (4‘ :‘b. 66 new am: pm emaeascmoacs manascmaspsm-p-d m commuomm to tax Hangman“ .5 oneusmlw .; - o oeaeotn Haasmuc wcaaacmaapsm-c-a a omen emu Haosm-c .o .ocfiawc4 .ecwsm .aapa soaaascoeacp «ceases m.au«uouaa.mcappwum . -Hmpam-n-o use -a ma omnmuomm paum Hapsm-u .m oceahaoum o enflsoun Hadosmuc mafiawcmaxaosdomHua A owon hm: Humoumon .4 eaeahnpm 0 seasons Hanna onaaaauaansmua a o~0m um: _ . Hanna .n .nenwsm.uueu one .oom a ..aaha so annexes a “a aowwvoom no: , Assam ..~ no Hnmofluo gamma oaaeaaaoauo use .a sud ooHn-mom H: to tan Hanson .H evostHm poscoum ~.namv .oo ovfiasm nacho ”oz .uomu . cacao aoaoaassaa can» .aeoe qoaotusm Hexa< .cxm Ll! _ mmqummommwz mmHAHzuoo-c-a «.mfl oNHN Naooo H>uoo-c .NN onwaficm -H>uam;-=-«mua.z N . nHH .mcfifificmflhuuom-a.a ma oNHm Hooo Hhupmmna .HN mafiafiCmH5xo: ‘ toaomMIo.m:w «cw - pHH -H xwgofio o-a “.mm onam «H000 H>xwgoflomu .om «smog pm mafiaficmahxmm-oua m. omam go «Hooo Hhxmmno .mH onwaaca camxon-:-fia-auz m . DH“ oafiflwamahxo=-:.g m.nfl omam Huoo mea=-a .ma «Hone no Numoo an .mcfifificmflhamomH-a b . : comm-oqm no «Hoou ahamoma ..na 1 ousnohm A.nva a .00 muaamm usage ,.oz .umm soapmfihxfi< .maae .aemeg. .5 Hauwa i Hhxa¢ .nxm ... A nmzcwpcoo v .OH magma llill" -h Qu!i!-i‘:i I I - C I. .‘h K . I I ‘- . v ti '- O [to O - | . I. ll . Q n r I O. O 1 .I) O | 0 O ‘I' . «J . 6 H- P I . I O i .0, d . X ‘ .I H O H. « . r .\ ..._. ! O u 0 ,_: . . . D l _ . ' . ‘u 0 o .. ... a . . 71 _.ocgflwmaauapo-Nua+.Naamsumnz a“ Nuauooua acapuaum .p 6. uwunmuOEum comOLuuz .m m.¢H_ .mooaN-oNN ...m. v , + «Hoop naugum .NN .ocdawauahucv.wann .a.o=«NNcaH neon . mNam:.m.o:NNNnu . _ _ _ , 9N“ -Nhuaomuo can .a N.nNA A oNNN «Hooo ..NN-aom, .oN ocawucdahpooannn. , 27 y A . pd _ «3.351qu m .8 oSN «.88 . H36 .m N ,. . aofluoum A.aumv 7 .oo ovfiaox aaouo .oz ..Nom uofiuauhxfi< o-Ne , N.aaoe Hana: anxa< .num A nounfiusoo a .OH ounab. \ . n I, 1 s ... .. . I; x , . . .....%_)H.-...U , N... _ I r i I I. . I. . I A o .r .. . I ~1.Ooia‘ 10“! all I. 5'. I I ‘14.... I! It! ’1... I. ’ illicit It" I‘LII .l.‘.nll"c ‘r'I. I. II '1 ..ti-‘l. i‘IIQOIQ.‘ [0| ‘0'" . 1|... lo’u‘"0lll.liV Ic‘.lIlI . 101‘! c . I 6 ‘ Q .t \v o .r 4 q H o .fi Jil I .. .I. 0.. II ‘ . . % w . . . T - . . . . I n . 6 v I. I . I h . . . I . . r ...; u u . . ..H ~ .. . .I. .. ... .1 . . .N \) Ikrt .... w r . F1 . . ‘ . V or . ..ob 0. o o I. . .5 l . a. b ’i’ull' Al III ‘1‘...III 0‘..- -.-I’ £13...." ‘0'..." Q .1...“! l- ‘I.’ I a . x o — 1. Nu . . H . w . . J . ‘0— 4 a . o O I s I . o.u '»~ I . f I. I .9. .. .I A LI .1 A. t. O . Iv ‘ . . . . g 1 a . u I «1.. . I .w ‘ . a. . .x _ I. , ..I II. | C . O. V ‘ I .I‘ ..- Cf I I o O O ‘ u C l U - AV 1 — . A O I , lo . L. o Ix . I .1. 1 IV II a -.s. .I III I I} .I ’It..! I III II ‘I ¢I It": I I :I‘ I6! .... I- 'ul..l.lr I. .t 't.\' .I ‘l. ‘b‘. .‘l I'll" I! I! u w A < It... I . .I I I - I I . I « \V I) II q 72 The alkylated aniline was predominantly the para isomer with a little or thexrtho isomer being found in some instances. Dewar has commented on the mechanistic aspects of the reaction (21). He claims that the rearrangement proceeds - via an intremolecular path, wherein the mobile alkyl group travels freely about the aromatic‘TT'shell attached by a "II - bond", before it settles at an ortho- or para- position. This explanation however does not account for the numerous instancesrin which the alkyl group isomerized in proceeding from nitrogen to the ortho- or para- positions. Michael (22) on the other hand has favored an inter- molecular interpretation. He is of the opinion that the amine hydrohalide first decomposes to aniline and alkyl halide which then attacks a nuclear position. Hickinbottom also favors breahdown of the amine hydrohalide as the initial step but he has considered that the alkyl group departs as a carbonium ion which could then do either of three things: combine with halide ion to give alkyl halide; lose a proton to giro an olefin; or combine with aniline at a nuclear position with expulsion of a proton to give rearranged product. Hughes has supvcsted a mechanism (23) which is e combination of the views of both Michael and Hickinbottom. Since the nucleOphilic character of halide ‘fl t A? .«I ryv. new . . hi T. ‘eli Y. . . I ..u a I (I . .a f (. 7. (to r . .o . «II ‘ \.. I . .I It. .I. .... . . . . a I. .L . \ e . . . .t} al , r I . . . , . . e . . . . i I I O .. . . . .. ePL 0 I ' Q . i r. l . e. s '1 . Q. . . I 0.1L “I. ’v .... I; eJ.\. F . ... L . (.. . ... I. . . PI. CL IL vi. . . 5. tie . w. m . ' Q i. .l +0» 1 \Id. 9. . . . .I ‘ r l l- .... . . a . . 5‘ J . l1 . \g e: u .\ .... . p n. f I p». ‘1 . In I. a . 4.. r 4 n a. 5 _ r . a J ‘ . n . Iri I . Ia . I§ . . I . I O _ w . . .r. \I. 1'3 2! I . r; 1. of... « J r . I ’ . en) v I . w On I A. _ ‘. u r... r. Y. .iJ .I I ... r I e _ ' ~ I —O _ ‘ 4 . . D e a c I . e , 1 . s. . 1 I . t . r . - 73 ion is greater towards carbon than towards hydrogen, Hurhes considers the initial step to be an Sn2 type displacement of the alkyl group from the anilinium ion by halide ion. The alkyl halide in the presence of the anilinium salt is in a highly ionic solution and would tend to polarize into ions. The carbonium ion could then either expel a proton to form an olefin or combine with aniline at a nuclear position to give the rearranged product. ° 6 hHZR & X Sn2 5> NH2 e R-X R-x-——>R° . X6 10 ' {D a . NH2 ———>Olefin . M13 .0 . ©N112__..R.©_mz . H0 This mechanism would account for retention of the skeletal structure of the alkyl group in the halide and its iso- merization in the rearranged product. This mechanism is not, however, in accord with the experiments on the rearrangement of N-n-butylaniline hydrohalide. No alkyl halide was obtained when the amine hydrobromide was carefully purified and dried (h). Furthermore, the rearranged product ‘3) ,. \- a --. 3", k»--.-.‘—..- .-...- ...... -4..¢.-.‘— -a ‘Q I. e p o . ‘2' e A . l ‘e e t e i . 4 noun-K , “A. r.- I . ...er " t .‘ K .‘ ‘ -- a ‘- p”. ,i ...—u. .- ‘ l e ’V ‘ 4L - v .... V, , .. ‘ I V " \ ‘ I I ‘ 1 I O ( -r‘~.‘ ;: f r a 5 - , '0 s- ' — + _' 1 - i- $ ‘ .r- ‘ - ’1 If ... . . ‘ . f . r i 3‘ r‘ .j 7’ «r . r - t ,' 2: -: A - ' - - _. :~ '. - -a .1. .. a; . I‘ U a ,. J ‘ ' .- l y! .1- -\ " -’ ‘r. 'y.’| ? . — w’ .0 ~ . e I“ . ' ‘ " -: ‘ V , \J . - A ‘1 _ . . F:..."‘“:.'\ \ . \ O \ I ~\ l/ ‘ / I I 3. “ml (i) \ '1’" - ”11".; . o- .o --' '. 6. A \ L' ‘ i A ’ ‘ 1 .. .1 .J is ._ ‘a r\ :9- 6 e- "r: ~- "1 -- ~ ' . ‘4‘. _. 't.‘ j;'.'_‘MI.-» 1 Q ... ~ ‘1 u‘ . t e I ”q ’ ‘ "L -_r,- "I " .K e"? . . . . . . _ V e r 4 V .3 __ It - ‘: h" )‘/.._,..I-.: l n n e . - 'P- ,-_ f c ,r .~~ l1 . .. V 3. . - 7b was the same, p-n-butylaniline, even when an excess of hydrogen bromide was present, whereas p-sec-butyIaniline would be the expected product if elhylation proceeds via a carbonium ion.» Hickinbottom believed that his claim - that the re- arranyement of ii-alkylsniline hydrohalides proceeded by way of dissociation into alkyl ions and aniline followed by alkylation at the para position of’the aniline - was substantiated by showing that olefins and aniline in the presence 0} an aniline hydrohalide or a metal halide pave the same products as did the correhponding rearrangement '(see Tablefll). “ Any mechanistic interpretation of the rearrangement of N-(X-ph‘nethylsniline hydrochloride must account for the following facts: 1. N-cipPhenethylaniline itself does not rearrange up to 315°. 2. a.- Rearrangenent of the hydrochloride occurs in 20.25% yield. b.’ The isomer*distribution ratio is 25-32% ortho . and 60~70% para.:' 3. The optically active amine rearranges with but slicht retention of optical activity. p I 4.. . I I . .4e . . I r! 7‘ _ . . I . _ l ‘ I . . ... . “ a I . VII r‘ «(I "i ”...; a. .. . If. We .. _ a. I . e. I -| I. I \ r . . . I.— .h. r. . . r; I ’A\ . . . .L Q. fl I I . _ _ I I I .e j \ Iii 1“. 75 mafia a stHOHsuufiahcmpsm mcwau co -Nv-z new -a 4 ooomuo¢m Ho: -musmum.a mafiafic< .o mamamnunmwQOknhz wcmam smppwpu¢.m.m.a snamcoun an -Aamconaocfla<-av-m “.4 coon mpmoo no Ho: -mgfim-4.a ocaafic< .m GGHU uwsaousauH>an acmxw; mean nu -oao%o-z new .0 o comm-oum Hum -oflohu -Hsaoa-a .4 mcHchmH>an mum nu -oaoxouz van-o-a o comm-omm Ho: -meOHo»o mcflaflct .m .mcwaficm Nowcmucmm OH -Hzxmmuz cam um do: napppmz- mcfififlq« .N maooo ho ocmahnuo an mafiaficmass¢-u.a a-“ o0m~-oma Npmoo no Hum -Hunumefiue ocwflfic< .H . nonnoum A.mhmv .oo . .oz .umm cofipmfimxfi¢ mafia .aeme «xx no km cwuoflo ocwsd .axm mszmAO Mm m2 .HH memH HAHBd mo 20HHpm ->N-4 m .HH mcflmflaaoa Iauafi>xomnmzw ‘ mcwc mo .gov-u cum .0 m.m ooom Hum osmp>pm ufisaoa-a .OH ocfiawcmahxuocmsm mo uvouo new -a o ooamnoom mauve acmu>pm mcwafic< .o mmcfiawcm 42835-3 mm .2 new -a .-o o oo:~.oom Hum oamp%um ocfiaficm .m mcfivflsaoe Ianfiamcmpsm mcmwv onwv om -mvuz new .0 4 commuoam Ho: -mpum-m.H -fisfloe-q .n aosuopm “.mum. .oo N .oz .mmm aoflpmahxa< oefia .asma Hz go a: cfiuoao acfis< .axm A cwszwocoo v .AH mapwe L.) \I I- ‘3')... .I.! [Ii In I... \ 9 W a .0 \ ‘ . ‘ n . «I . . r . v r _ . ; .L H ‘ o L In r I..""tl.!'i’ ‘ ‘Illll‘ ‘Jl' 11"- ".-I. .i‘l‘! "i n r ‘ I : . .I.. V. I . . . . o - \ . u .I.. h m. u . .p _ .c. ..b I. ... O \u. r. .‘ s! t I ‘- l I- | u -. ‘ ' s . I. 4.. .n ) 1 A .. .I . , . II A Iv . _ _ .N— .5 . \». . . ‘ a in o n 1’; J r I . o . I l. .vu .. r. ‘ - . . v I! .A_ t _ . .I.. f u a I‘ I x . , , Ni; t! II C ‘, o r I! .- 2A , A L t VG . t. nlll.£. x I)! [I IszI 441] O .I. I I‘Ylliiilt .I.: ,‘luLl'u. .gl‘l“llnlll.l| .v.t11.\....3.. .. .I.- ’0... [III’ .,‘I’.A ,‘E .‘A !.ll«.'|‘. Yb 0 77 a. Aniline hydrochloride is generated in the course of the rearrangement. 5. o- o(-Fhenethylaniline does not isomerize to the para isomer under the conditions of the re- arrangement. 6. Aniline dehydrohalovenates cx-phonethyl chloride at room temperature. 7. a. Under the conditions of the rearranrement aniline reacts with ¢(-phenethyl chloride to give C- d-phenethylianiline in 52-67323 yield. ‘ b. The isomer distribution ratio is 70-80%. ortho and 15-20% para. 8. a. Aniline is not alkylated by styrene under the conditions of the rearrangement, but alkylation proceeds smoothly when aniline hydrochloride is present.‘ The yield is 65-82%. b. AThe isomer distribution ratio is 90-95% ortho and 5% para. From the above observations it is evident that hydrogen chloride is essential to the reerraneement. The first step of the rearranrement cannot be dissociation of N-idkphen- ethylaniline hydrochloride into either aniline and °(-phen- ethyl chloride, as proposed by both Michael and Hughes, or into aniline hydrochloride and styrene. If either of these -.A g ,‘t .w 7f '1 o (N K ' ~ )9 '1 -9 ll n... yr.“ .... its ..a . f‘ vtf‘ ' .‘T 2 r . . J. o . . .I\ r A r x . . o —‘ d e... . ‘ .... .. t 0 r L fl .. c . a. u . a . .... . .. a . ,.\ .. I t t 0 . \ . . . I . t ‘ . (I. I I . c . A l V V .. . . . . I o .L... . \ . . _ I, C L T .r . . 1 Ir r . O 78 were the case than the vield of C-CX-phenethylaniline From the rearranrement would he much hiyher, since rearranrenent proceeds in only 2 -25% yield whereas C-alkylwtion by . CX-phcnethyl doloride proceeds in 52-67% yield and by styrene and aniline hydrochloride proceeds in 65-82% yield. Further- more the predominant isomer produced from the rearranrement of the hydrochloride was the para, whereas direct alsylation by (K-phenethyl chloride or by styrene and aniline hydro- chloride gave mainly the ortho isomer. Finally, aniline dehydrohalogenates c(-phenethyl chloride, even at room temperature. Nevertheless rearrangement of N-<&-phenethylaniline hydrochloride must involve an initial dissociation of some sort, since the optically active N-iK-phenethylaniline retained very little of its activity on rearranvemcnt. Also, o-¢X$phenethylaniline did not isomerise to the para isomer under the conditions of the rearranyement. Inasmuch as the rearranresent occurs at temperatures above 200° and since the reaction medium is a highly polar one due to the salt-like character of the amine hydrochloride the first step is probably dissociation of the N—IXEphen- ethylanilinium ion into aniline and c(-phenethyl carbonium 10H. . V F. V ‘ J I I - I V V ‘ t ‘. l y - . I I c . (‘7 l _ r ‘\ . if) l . . . \'1 .' i “ , 9"» I A “ . ' I ‘ . . ~ . . ’ A . v ‘ 1 w v I ‘ '- I s . . I I l . . ,1 i a . I r 0 _‘ I l < v s L . a 1 ‘ I ’ v .. ‘ . . ‘ r r V ‘ l v . a. ._ .1 § ”I I ‘ ‘ I q I ' . a l“ v . v 'Q .. ‘ V I J.- v. . ‘ Q- . . r . . , I I I ‘ v . . . . . . - 7 OI I ‘ I c ' . 1" \ J " O I .\ 'l I ' .. I ’ - I . - f . . ., F . I“ ' “ -1 . _- A . ' v A ‘ . -" ‘ 2, 7 - . ’ . '- ' ‘ . . . . - y.“ '1" ‘ . I a . j _ \ I 6 . . '- I ‘ ' A t . -- " .7 . .“' — ‘ ...e.) ‘ v ’\ -_ .1 t . J o“ ‘ 1 2’7. ‘ ‘ + 0 - ‘ l . , ‘\ . - p ‘F‘ I ' - A . . . I. s f . V ‘ ."t ._ , i'.« k .. ‘ . . _ ... A. - .1 -. .- ' I . I . b C A. .2 - 6 1"? .3 a ‘ . . H ‘ .i ‘ i c a r h ' - ‘ .l ' a '. ~ 1 I . r | - I —|9'\ IN, ‘ I f Ito new, ‘ I'm-r l ' i - ix -- A: I. 79 However, intfeuoleouléroreerrenganent‘cen only be.of slight consequence, because not much apticel eciivity vee‘retetned in the product. the o(-phenethyl carboniuh inn Gen undergo reaction in several ieye: recombination with chloride ion to give etcphenethyl chloride; eliminetion of e proton to yield etyrene,.uhioh could polymerize to polyetyrene; or nucleer ellyletion‘ot eniliee to yield c- (ephenethyl- CH3 4+0 0; -a l - O ('3 O __‘_L__, CH : Cflz—e Polystyrene NH CH3 2 I NH C @- 2>©I‘-© H .311 in. e ~ ' --- " \‘i e! .\.\ at...) I‘. .I In . III a . . .. o .v I 1 ma. . I A . U. I . , u) . o ' De ...k ‘9 .. e1! 9... .x ‘ L ‘ \n. r.. \/ "-~Je~ '4.“ ..-- w #:fiiil'li LII-ill *h‘ u‘ell' ls‘e'..."l . a 3:) M ”m m m e, .1 ~§ ’0 o . — .' "\ ‘ I ~ 1, 05-; ‘ .f' Q‘.~_v ‘- .... ‘t...’ \\n/ . .. .\ V I 1-. m.\ y \. [J 2 . .4 w . * ,_.. u u . w. m , . .n“ ylo \ k ... . \\ ill .\\ ..x .... m n . . \h. .HD. e“ . 0.5,... 1...! ... 1!, x. .\ d a ..z x s. 80 Recombination with chloride ion to form (xpphenethyl chloride would not occur to any significant extent. Since it was observed that aniline dehydrohalogenates 0(-phenethyl chloride very readily, abstractionfloixa proton from the c(-phenethyl ion by aniline would be the 'favored step.u The polymerization of the styrene in the highly ionic solution is to be expected. The nuclear alkylation of aniline, then, could occur by attack of the o(-phenethyl ion at the electronically favored positions in the nucleus (para and ortho). Meta- alkylation of the anilinium ion by the °(-phenethy1‘car- bonium ion would not be expected to occur since both species are positively charged. Perhaps some of the ortho isomer is formed by the action of styrene on anilinium ion, since aniline in the presence of aniline hydrochloride is alkylated by styrene almost exclusively in the ortho position. But this can only be e minor reaction path in this instance. The major reaction sequence then would involve dissociatiOn of the N-o(- phonethylaniliniun ion followed by recombination of the aniline and C(ephenethyl ion to give C—alkylated aniline. _ P .-- f» \ I saP§ r. . A s A .’ L... . e e ( n. r .. e .‘ .. tr r.‘ r r L f 1.. f. e. I . aw: . , v r a . . . A. .w r A Q. o . . P t ,. ...... r. ..L 81 Intrsmolecular NH 2cu %.\?H3 ’,r”,/r””””a' A . - I l H H . , Vehi‘ Dissociation (major) . ‘. I ' NH3 e CH2 3 CH ’ A siniler interpretation would be valid for the re- arrangement of-l-0(opbenethyl-p-toluidine.hydrochlorids. There reusins then to sccount for the Isrked specificity ebeervedrwhen.sniline wee slkylsted under the same conditions “by °(-phenethyl chloride and by styrene in the presence of enilino hydrochloride. In either instance the C-tX-phen- »ethyleniline was slnest exclusively the ortho isomer. Since sniline dehydrobslogenstod (X-phenethyl chloride st ’- .4‘ t," r h . \ ., 2:" .. \ ,7 ,. I i. f._ ‘1. i '4' .‘ ‘V. \‘A ‘1' Mr- - .--- ' ‘F-‘L . a' . 1 " \‘ 0’! | ' e I -" " I I \‘ .../‘1', x- -1,- I 1.,» ...... I «- -... . , \ ‘ ’ I, ‘ -1 I. , > \‘I. f ‘ ‘\ \ // “ \d e -.J I x. l ‘ x.” \ ”K- . ‘\ I \ l I . ! ‘. . I I ‘~.'/ ( I:__' .’ -.- K. 2'! ‘1 I ssh..- ' 1 f I ,I \\ Jo" \ ,' .*’ ~ \n. I. ‘II ‘1. - 1' I l v .3 .‘ . . ' - 4 A. ‘ s ? I l ' I. a. L. ‘ 4 i t ‘ Q .e ‘ t .' \I x V \ “- i \\ / / ,1 ,/ . I/ 1 I 1’4 I// — /> 0’ I I I t e \\‘ \‘s- ‘~ \ \‘3‘ ~&& ' .- 9 j. \ f/ ‘7‘“ i ' “I I I ' i .! J’o’ x. a” v \ 7 ‘ . I ,m . i m M- 1‘ \_ n O 1‘ u b y -' .4' — I ' - . I ,A r N \ _ O o F “ ‘ n - r v ‘ffi 'I . ' ,I. ‘ . . .v N r . \ I '1. ‘1 iv fl'.‘ .. ¢ v (‘v ‘- ,4: .' aw r.‘ r .. h.‘.‘ .l“ ‘ can 5' _f‘\ ‘V E {‘7 57377175 . fl! 1 - I t “ ‘v' "I ' .‘ (L‘- r 7 r) ,- _ - ._ ' ’ v r } 1" "e e- . . I" -' I —‘ ' J‘ . ‘o' I ! ... I l . O r "" 0" “I P‘ : ‘f ‘ - _’-_ 82 room temperature to give aniline hydrochloride and styrene it is apparent that nuclear elkylation of aniline by either set of the elkyletine conditions proceeds by one and the snme mechanisn. It is to be noted tint the elkyletion of aniline bv styrene and aniline hvdrochloride is a reinvestiretion of an earlier work reported by Hickinbottom (93). From LO 3. of aniline, 10.8 r. o” styrene and 8 g. of aniline hydrochloride, after six hours at 200-2LO°,'Hickinbottom isolated o-, p- and N-(X;phenethylanilines in 1.55, 3.70 and 0.63 gran yields respectively. his total yield of alkyletion products nae only 3o.2§ (7.9 o-, 18.8 p- and 3.5. N-). Following what were intended to be identical conditions, 16.2 g. (32fl) of alkylation product was obtained; infrared analysis showed that it was 90-95% the ortho isomer. The crys- talline ortho isomer was isolatetle from the mixture in excellent yield. 30 explanation is offered for the discrepancy between these findings and those of Fickinhottom, but the present results were obtained consistently. Since Styrene would not alkylate aniline except in the presence of aniline hydrochloride, an-~ initial protonation of the styrene must occur. This, however, is not sufficient to explain the marked ortho specificity, since the formation of a free (X-phenethyl ion would be expected to lead to alkylation of the aniline at its most favored position and this would give more of the para isomer. If the geometry of the protonetion of styrene by anilinium ion is examined it can be seen that the styrene molecule can be so oriented in the process of abstracting a r \ o I (v 1 .- . \ . a- ‘ l . ‘P - ' r K .- L o r a. ,— p a f . I ' i, "Y , - -.. . 7 g , . .0 > - o . _ -l . r . c ‘D ' O o 1 . - , l | ‘I .i i , V 4 — — . ‘ . . .. . . r .. . . _ - A ‘ A. _ ~ 0 . c A " \ e o . ._ . I 0 o f. , .. : ‘ | ,., 1,,“ ., 1.1, .. . . ’ l -. - "V‘ .t‘o \fl . t . .- l '. ‘ C I _ a ,r I .1 ‘ L i . v v‘ 0 V o' . O o ‘L J . -. . 83 proton from the anilinium ion that the cxrcarbon which is positively char;;¢ will be in close proximity to the ortho position. Thus a concerted mechanism involving a six membered ring can be written for the alkylation process involving protonation of the styrene and displacement at the ortho position. H9 “\fl \I9 H I .1 n H H I a \‘N” R N./’ 5‘; \xN,/CH .-.c e. . "i" I 3 .I ——-> —;-, H . u H *— a“ The small quantity of para isomer produced under the conditions of the direct alkvletion is not taken into account by the eXplanation for the formation of‘the ortho isomer, especially, since it was observed that o-<(Lphenethylaniline does not isomerize to the para isomer under the conditions of the re- arrangement. However, it was also observed that when_the alkylation of aniline by styrene and aniline hydrochloride was stopped after one hour (the usual reaction time .as six hours) a small amount of "- chphenethylaniline was detected among the alkylation products. Thus the formation of the cars is me: might result from the rearrangement of the h-cnephenethyl- aniline as its hydrochloride, since that reaction is hnown to give predominantly the para isomer. . Recently, Scke, Napolitano, Filbey and Kolka (2h) reported that aniline, in the form of its aluminum salt, can he ortho- alkvlated in rood yield by olefins. A cyclic mechanism was proposed. fir ....- i '\ 4‘ ' .0. ‘- ‘- n. < I}. ... , ..- . .Dllll'. .I ‘-I Uni'k'n ‘Q'Ivlv‘llm A 0‘ f. I 8h Ai"' ngj’ ". NH K3382 .... CH2-CH2-A1 “-ca -—-e> \\ 2 H NH CH -CH CH -CH 2 36—— 0 2 3 + 06H5NH-Al/ _ . H ‘\ The rearrangement of the N-CK-phenethylaniline-zinc chloride complex exhibited certain differences from that of the hydrochloride. 1. The_yield wastomewhat higher (30-hl% as con- trasted with 20-25%). 2. The para isomer was more predominantly the major product (75-90% as contrasted with 60-70%). 3. -Thers was no retention of Optical activity. A. Styrene was isolatsdiin good yield when the reaction has run in an Open vessel. 5. _brtho-«*pphenethylanilins did rearrange to the ' _para isomer in the presence of zinc chloride. 6. Styreneédid not slkylate aniline in the presence of zinc chloride. ‘ . . I- m . . K1,, .. l . I. . V ..DII . . . . I... ... A .. .3 . M at w 3|- ... $2..) . .llw .4 I II o I I. .‘s ...f \ / I .... I . 5! .. 1| ... . \ ... vy..lI.-nl."l I . soy II 2.1.. i\... z . _ ... \. . ..r ., , \ Q . \e I. .Iilx ..l. H- .I!\ - . If m 4 I n m . cos y “‘0 1 . IP‘ 85 Ths~rssrrsnssnsnt of N-ci~phsnsthylanilins as its zinc chloride couples, ss with-tho rssrrsngonsnt of its hydro- chloride, appears to undergo initial dissociation. In this osss, breakdoun of tho complex would rssult in the for-antics of d-phmthyl ion and “aniline-zinc chlorids. H—NG: glaze-l," .. HmLzeumz 33-0.3 <3 Tho dissociation stop is substsngistsd~soesohs sstsnt by tho fact that no optically active product was qttaiiid. The d-phsnsthyl ion could then react in one or tfié ways: elimination of s proton to give styrsns which can undergo subsequent polymerisation, or nuclear slkylstion of the aniline-zinc chloride. . . -n ' O .__ , ‘fll H-g’ZnCIZ Q NHZenCI 2 Ggg© I n. s ...h i. .... W. .. . v. P. ‘ \ p - u 50‘ .. w . . I \hk 3 HI}; IF- -.....J o ...”! ; --d< ‘F .53.“-.iwfi. .\.... .o‘ , \ f.- .. ...—l r ‘- - sa-J—a-u --t.\v¢....-o - /T ‘. an D‘Di‘l'lrd . .. ... .. . r .— wflx \ 09 n 86 The nuclear alkylation might be eXpected to occur with about the same isomer distribution ratio as in the case of the rearrangement of the N-cX—phenethylaniline hydro- chloride. But since the ortho isomer rearranges to the pars under the conditions of the rearrangement, more para would be expected (and was observed). Thus, the o- o(- phsnethylanilins-sinc chloride complex also undergoes dissociation, ‘ , .' 5 ‘ I “ 3-x- “ ~ 4 ”f »\ ’%rr‘ .' g '* l': a _ t3 .4 n,- ‘ u- I. .z ‘. . ' f I ' l O _ ( ~A. ."\ \ ’ w ('\~ .‘ r - I. _ ‘ . ,. L. r ,. ~ -->o ..-. x ' l .' t -. r.- 1.‘ 1‘ e 3. C '. K . ou ‘ '-T V 'Q. ’r‘ V. e ?_fir ' ' 6 e . I . I \ .' ' 9. ’ >t’} - I" J .1- - ..c. r - c ‘ ‘ a 0) ~ . .. .- L \ . P .... - o . 4 - ()0 .5 i— J 93 .flccflusfiom qaoov smzum amguecomaaye Hmaoenm mo.ssmommm cesmmmcH .mfi mummHm Amcomofiav npmmmam>m3 2 NH 2 on o m a e m a a N _ e _ s _ _ _ _ . a _ 1 ON . / j M Ilsa L i 18 c Is LOH w3u21¢ % uoxss: .Acowugfiom nauov HomeaouqvahzueCmnmnxsto mo esmpomnm cosmLMCH .mH shaman Amcosofiav nuwmmam>m3 9L ma Ha OH 0 w b m m _ _ _ ON 04 00 om twsuexm % uogss 95 g-ChlorophenyL d-phenethyl Ether CH3 c1049 H According to the procedure of Hart (29) 33.8 g. (0.26 mole) of p-chlorophenol, Lh.0 g. (0.32 mole) of anhydrous potassium carbonate, 100 ml. of dry acetone and 33.0 g. (0.2h mole) of c(-phenethy1 chloride were mixed together and refluxed with stirring for six hours. Work-up of the reaction mixture according to Procedure A. gave, from the alkali-insoluble portion, 13.5 g. of (X-phenethyl chloride (hlfi recovery) and 18.5 g. of p-chlorophenyl-cx-phenethyl ether, b.p. th-lSlO/l mm. (see Figure 1h. for the infrared spectrum). The yield, based on chloride consumed, was 57.3%. The alkali-soluble portion gave 19.0 s. of p-chloro- phenol and 1.5 V. (b.6i) of o-cK-phenethyl-p-chlorOphenol, b.p. 150-1550/1 mm. (see Figure 15 for the infrared spectrum). 'Khen C(ophenethyl chloride, 0(360 e L5.90°, was used, there was obtained: c(-phenethyl chloride.(recovered), (X 35% 37.500 ; p-chlorophenyl . O(-phenethyl ether, [o( 35°, 1.600 (l 3 1 dm., c : LO, benzene); and o-m3 :a ma NH HH 0H m m s . b m a m a _ _ _ _ _ _ _ . l . _ ._ Ii ON 0: oo om uorssxmsueaL % 97 ea ma NH .AQOwQSHow «mow Homemmosoanoamsamnumcmnmar.to mo Edspoeam cesmmmcH Ha OH Amcomofifiv numcefim>m3 m w b 0 one eczema _ _ ll g 4 A — a A os 00 om Imsueam % uorss 98 -Metho hen l— - heneth E her CH3 I C“B°@-°-$Q H To 39.6 g. (0.32 mole) of p-methoxyphenel, 52.0 g. (0.38 mole) of anhydrous potassium carbonate, and 80 ml. of dry acetone, was added 50.0 g. (0.36 mole) of cxpphenethyl chloride. The mixture was refluxed with stirring for eight hours. Work-up of the reaction mixture according to Procedure A. gave, from the alkali-insoluble portion, 21.A r. of (‘9 phenethylchloride (L2.8% recovery) and 30.0 r. of p-meth- oxyphenyl-cK-phenethyl ether, b.p. 138-lhlo/l mm., m.p. 21-21.59 (see Figure 16 for the infrared spectrum). The yield, based on chloride consumed, was 60.2%. final. Calculated for 61531602: C,78.9; H, 7.11 Found: C,78.68;; H, 7.0 When e(;phenethy1 chloride, CK§7° e 65.23° , was used, there was obtained;* o(-phenethyl chloride (recovered), 0(123501- 52.50°; pumethoxyp‘nenyl d-phenethyl ether, 0( [2360 e 9.77°; and o- N-phenethyl-p-methoxyphenol, [5x] B6° e lb.lO° (l g 1 dm., c 3 LO, benzene). .0 I _.,,.{...K‘ e ‘ ,. I . .. O -. n . K.‘ ., 3' F e’ "‘ , . -... -l .... l‘ . \ ' e f" 99 ma .Acowusfiom afioov macaw Hmspmcmnn:vo Hzmecazxozuez|a mo Esmuoemm cemmmmcH .oa emswfim NH _ Ha fl 0A _ o Ancoaowev npmceae>m3 m n N _ A _ s _ ON cs 00 ow uorsstwsueaL % lOO .Acofiusaom qfioov Homema>xozpeEaanH>29ezmanureno mo Edsuoeam vommmmmH Ammomowev :uwcmae>m3 .NH emswwm 2 NH 3 2 o m a. o m .2 m N _ _ _ _ a . _ _ fl _ 1 ON I 3 II 00 ) om m uorsszwsuexl 101 p-t-Bgtylphenzl~ggephenethyl Ether CH CH 0*: 083 H Following the procedure of Hart (30) 60.0 g. (0.40 mole) of p-t-butyphenol, 60.0 g. (0.h3 mole) of anhydrous potassium carbonate, 100 ml. of dry acetone, and 75.0 g. (0.53 mole) of CXLphenethyl chloride were mixed together and refluxed with stirring for eight hours. Work-up of the reaction mixture according.to Procedure A gave, from the alkali-insoluble portion, 20.0 g. of oé-phenethyl chloride (36.h% recovery) and 57.0 g. of p-t-butylphenyl cK-phenethyl ether, b.p. 133~lal°/2 mm. (see Figure 18 for the infrared spectrum). The yield, based on chloride consumed, was 57.2%. Anal. Calculated for C183220 3 C,8h.99; H,8.72. round: c,8L.62; H,8.hh The‘alkali—soluble portion yielded 22.0 g. of recovered p-t-butylphenol. 0. ~ . — ‘ ‘ A_ ‘_ ‘1‘ r ‘7. u. ‘ i . a i \ u l\ I‘. ~'. , . «' ~" I e ’. .un"- -.. ‘3' .. «1 .A‘ \ ..- 1 ,1 ....- I . ‘ - V‘ l 1"“ q n A . 9 sob ; es .P .fl‘) '4: ‘ a ' ' ,~ ’ 3‘ q .’ (I V D .-.‘( u‘ ‘ I; 1 ’ .. q' ' ’ r ‘ ‘ . ‘ i “ f“ e ' . I‘ . A I . i ‘ :> w .. \ i ' .. .‘ l .' ‘ I ‘ I ‘4 I‘ c "" ' A In I r . . _ C ‘- 'e I. . \ V ' .q " (1‘ : . .. U i - -r ‘ >“ ‘I . ..- - '. ‘ ‘ ‘l .r’ .Acowpsaom saucy henum Hhxumcecalx. Hhcmsafihusmnuua mo Esnpomam pmnmnmcH .mH mnsmflm Ammonowsv mumcmae>mn 102 ma NH HH OH 0 m N. m 4 _ _ _ _ _ 04 ow 110‘; SSIHISUBJJ, 1, 103 B. Thermal Rearrangement Solvents The commercially available solvents were purified by distillation,ig,ggggg. fi-Nethylnaphthalene, b.p. 88-910/5 mm. Phenyl ether, b.p. 103-105°/4 mm. 2,2'90xydiethanol, b.p. 92-950/h mm. General Krogedure '26 0.05 mole of ether there was added 50 g. of solvent and the solution was refluxed for five hours. After cooling to room temperature 100 ml. of benzene was added. The subsequent alkaline extractions and work-up was that given in Procedure A. In the case of the water-soluble 2,2'-oxydi- ethanol the reaction products were isolated by adding 100 ml. of water to the reaction mixture and extracting with two 1007ml. portions of benzene. The benzene solution was then worhed up according to Procedure A. In each instance the structure of the o-alkylate was confirmed by comparison of its infrared spectrum with that of an authentic sample. Rearrangement of p-Tolyl~c(—phenethyl Ether a. In fs-methylnaphthalene O V . I s. . O . e C .-< . "lv . I C - \ . '3. ' 9. . I"'6 v. I '( . f . \ , r v ' - - 1. O ’ . I 4-. . ,- I . ' e - l . V ‘ .. . t A . u A ‘ ‘ I | ‘ '1 I' I ‘ .‘_ . r 0 J - c t . _ . _ Q J -. . ‘ . ,- .5 ' ‘ 4 Ie '{ A .. b ,\ I r v 1 ' . ' r.." n L - e ‘ I Y ' " I z "z ' - . C - -~ . .e ‘- ‘ .4. ‘ 1‘ . 1 . - . 1 ._ l V '3 v . c I. ' i '. o o - ‘es 0.. ‘v‘ A - A _-‘ N 3‘. ' 1 I . . f .. o ‘ V . r V a“ :J t i ‘ v .- § ‘ ‘7 4'. I ' 0 9“ . . I - ’u. F‘ .‘4 3 e i S: r 1‘- ‘ we r a C". *' na- ‘- F.- r,. )1 ' "' 4 - . ‘ - ' r r o ' * 3. . '-‘ - 5 o“ T i. A . ' J L - . ' - - I :- . E} f'* rt} .~\ .-.- . f ’. V "\ i". ,. I . . .l , - . V--... —--—-—.-I m---~.-v—-~.--~ ~ \ r ': ‘ ’e l . .I. I L L . - .‘ o x. () J. ‘ f' f ' - 7c r ' ' C; ‘. A: H ‘V . ..l' -- x .L. a a \ .L -L e . l .v .— t e r' ... ,‘ o. l ’ I 47: I; _ e_. ‘/ ‘ , .- 2'1“ 4: st.-. . «.« ‘.. e a ..A; a, . -' . . a e I ‘ . c - a ' -" In or -I .. . tn ’-l 1, ' x. s/ .- ., ‘._ + f .. , w‘rT \ J L. I l ‘ \- I ' " § , N t “ . " '.I q ' ‘e r .j 1 ’ :‘e A . r . . as o ‘ . _ , . A r ‘+rT ' . - ‘0' I 10h 2h p-Tolyl x-phenethvl ether, [«]D 0 2.520 (1 u 1 dm., c 3 AD, benzene) gave 2.0 g. of p-cresol and 1.1 g. (10.1%) of o- d-phenethyl-p-creeol, [o( 12)“ a» 5.65° ((1 3 1 dm., c 3'20, benzene) from the alkali-soluble portion. The alkali- insoluble portion yielded L8 g. of solnent and 2.5 g. of viscous material, b.p. 175-2150/h mm. (probably polystyrene). b. In phenyl ether p-Tolyl-x-phenethyl ether, [X3123h o 2.520 (1 3 1 dm., c 3 #0, benzene) gaie 1.5 g. of p-cresol and 1.3 g. (12.3%) of o- IN-pbenethyhp-creeol, [IX]gh 4|- 5.h5° (1 3 1 dm., c g 20, benzene) from the alkali-Soluble portion.' The alkali-insoluble‘pOrtion gave as g. of 301vent and 3.0 e. of Viscous material. c. In 2,2'-oxydictbano1 ~ ; 25 o p-Tolyl- q-phenethyl other, [o(] D e 2.52 (l g 1 dm., c : LO, benzene) gave 2.0 g. of p-cresol and 1.8 g. (17.0») of o- d-phenethyl-p-creeol, [ex] D e 1.02 (1 -.-, 1 dm., c: 20, benzene) ffom the a1kali-solnble portion. The alkali- insoluble poition gave 0.6 g. of viscous material. Rearrangement o£_p-Mebhq;ypheny1 o(-phenethy1 Ether ‘4- ‘a. (In phenyl ether ~— 0. - c v . v r . h .06... . ~ 0 . q c at . pi . _ .‘ u p . . . . . .. ' n . f . . . r Q ~--- I.» H 1.4 r u *v v y .1 r. F o N _. .. p ‘ m n w I. c. . .1 _ _ 1 'l _ r . — 1. . . . ~ 105 p-Methoxynhenyl X—phenethyl ether, 0( 12360 e 9.770 (1 g 1 dm, neat) rave 3.0 a. of p-methoxyphenol, 1.7 3. (11.315) of o- o(—phenethyl-p-methoxyphenol, [0035 e 6.900 (1 . 1 dm., c = 20, benzene) and 0.1 g. of unidentified higher boiling material from the alkali-soluble portion. The alkali-insoluble portion gave L8 g. of phenyl ether and 1.8 g. of viscous material. b.- In 2,2'-oxydietbanol p-Methoxyphenyl o(-phenethy1 ether, o( :60 e 9.770 (1 g 1 dm, neat) gave 0.5 g. of p-methoxyphenol, 2.1 g. (18.1.???) of o- oé-phenethyl-p-methoxyphenol, [00 $6 6 1.950 (1-. 1 dm.,?c . 20, benzene) and 0.3 g. of unidentified residue. The alkali-insoluble portion gave 2.2 g. of viscous material. Rearraneement of p-Chlorophenzl c(-phenethy1 Ether a. In phenyl ether p-Chlor0pheny1- d-phenethyl ether, [0G 36 e 1.1.80 (1 a 1 dm., c 3 L0, benzene) gave 3.9 g. of pochlorOphenol- and 1.9 g.;(16.27$) of o-d—phenethyl-p—chlorOphenol, [(x J g6 0 2.65° (1 ..1 dm., c g 20, benzene) from the alkali-soluble portion. The alkali-insoluble portion gave L7 g. of solvent and 3.2 g. of viscous material. I! r1 \I’ f1. ,1 ... Y; m. .... . ..a ._ l A .. . r \ . _ .. o J v-. 106 C. Acid Cleavage Kinetic Measurements 1. Reagents- a;_’Toluene Commercial toluene (1 liter) was shaken with two lOO-ml. portions of 20% potassium hydroxide; dried over anhydrous potassium carbonate; and distilled in 13322. The initial toluene fraction was discarded. b. Petroleum Ether (boilingrange 60-90°) Commercial petroleum ether (1 liter) was shaken twice with lOO-ml. portions of 20% potassium hydroxide; the layers were separated; and the ether was used as such. c. Hydrogen Chloride (anhydrous) Anhydrous hydrogen chloride was prepared by adding concentrated sulfuric acid drop-wise to a mixture of sodium chloride and concentrated hydrochloric acid. The generated hydrogen diloride was passed throuph a scrubbing tower which centained concentrated sulfuric acid to remove any moisture from the gas. 2. Experimental Procedure Solutions of the para-substituted phenyl 0(-phenethy1 ....1 I 7- 0 ’ i . . . -- - a. -o v V. ‘ . . . '1 > t , I a ' \‘ I 9 - , ;. C‘ l l ‘. . ... ‘ m--. ‘V ,1 ”Ha .. "' .- ) ' 0" '6 ,,I<_,-, . fl' -r '4- . . e ,- “m- “.— ...-o.«-........_-.-— -- ... I ‘0 . I ‘ i ' r, ' .. u. ~ ‘ o p a . 0 \ , H‘f’ " '2 -~ - _ s \ o .05} - - ., . ’ ' I ’ "\N':‘. “ ‘f‘ .' ‘ a» J 1 ~, n] .. . . 1 ’ -’ ' Ir - q :- > ..- r -1 . -J 7 - ‘ ‘4' .— l.-r J- - .r‘ .- 4 ;‘.~.‘ 4“ ,. I .- II . . m'd :.- 1.1a . 2 ~« - , ‘ o. a * .' . . .fi.‘ ...... . ' o o {- t .- .\ -¢ }\ 1 '-‘i_" .2 ‘. ‘ _ b__. .- _‘._- _ ‘ 3”qu ' ‘2 {.3 ‘wr. an a -.-. 4'- . I _' 1'. - '. - I... . i . s. ‘. . f. ' , ,' 1‘ , ~ W ‘ c. fer}. .r p e .‘ _. . A- l. .‘ I. ' A ‘ -0‘. 3V ‘ v‘l fa“ - I I. - . . _ w _ r 4 ~ .,- ' . r. N » W 5‘. ~ .1 :- ‘ u- L ._ r .. _ a v A . . ’ ~ " I ‘ ‘I P.‘ o ‘- . ' . r . . \ ”a A -. 0" "I \ . . VL ‘ _ .Iz‘xJ. .'- 3 ..x g 'r _ » 3 4 . r ' 4 a. ‘ i ‘J A ‘r' ‘ _’. £~I ‘1 pr... 107 ether were prepared by weighing out the appropriate quantity of ether in a 50-ml. volumetric flask and then adding pure, dry toluene which was thermostitted at L0. 00 - 0. 05° until the graduation work of the flask was reached. Another volumetric flask containing a toluene solution of hydrogen chloride was also thermostatted at h0.00°. The molar concentration of the hydrogen chloride in toluene was determined. (see 3a under Analytical Methods for the procedure). Then 25-ml. aliquots of both the other solution and the hydrogen chloride solution were transferred to a 50-ml. volumetric flask. The flask was steppered and shaken for approximately 10 seconds;' a 1 ml. aliquot was removed by means of a pipette and analyzed for the corresponding phenol (see 3b under Analytical Methods for the isolation and analytical procedures). At the point when the first aliquot was removed an electric timing device was started to record the reaction time. Thus, the first aliquot was considered to be taken at zero time. Subsequent l-ml. aliquots were removed at various time intervals and analysed for the corresponding phenol produced during the reaction.. 3. Analytical Methods a. Hydrogen Chloride The molarity of the toluene solution of hydrogen chloride was determined by titrating l-ml. aliquots or the a II. V.“ .44. t 1 ¢ ‘ n 1 a «VI a (J .1 u .v. . . s Q l . . o 4 h . 2.. . l Us _ ... _‘ v A a . . 9.. I. e c .3 ~.. .1. . . . I . . \a~ v a 0‘ a . 7‘ fl 0 a e . DZ F! .....a .fn fr .IA “.4 v c. . .I. . . . a v I a. . \ . r p n » ~ « .1 . . .... 6.4 r; . .~ .. . . \ I ._ n. A .1, . ; J . C a , \te. . q 0.. \. ~, ' ; . s ‘ . . . .s u ,.| n . x e . s 4‘ e A I. .x e . r t r i . . t ‘ I a. o . . O . A It I . . _ . ... . . , t. A . r . . O s - . _\ at . .. . any; ...i ‘\ A n ( N a. _ . ... e e. . om ..V (a up ._ .. J: .. ‘ v r. l ”.... vi. .‘ . ‘1 ‘- ., a. _. .. L. i ..4. \. m ‘i b .. . 0 a f . y _ t e . .— — HQ ‘0‘. «4-.- “or... ....h...—_.. e. —.--- Qfi— -. ios solution thermostatted at #00 with standard sodium hydroxide. A l-ml. volumetric pipette was used to obtain the aliquots and they were transferred to lZS-ml. Erlenmeyer flasks containing 25 m1. of distilled water and 2 drOps of phenol- phthalein. The sodium hydroxide was standardized in the usual way against potassium acid phthalate. Duplicate samples were taken each time. b. Phenols The various para-substituted phenols obtained in the cleavage reaction were analysed by means of their absorptibn in a Bookmann DU spectrophotometer using a hydrogen light ‘ source and quarts cells. 1. Standardization . . A stock solution was prepared by taking 0.100 g. of p-cresol and 10 m1. of 20% potassium hydroxide and diluting the solution with distilled water to 100 ml. in a volumetric flask. Standard samples were prepared from the stock solution by mixing the proper aliquots with 20 ml. of 20% potassium hydroxide and diluting to 100 ml. in a volumetric flask (e.g. a solution containing 1 mg. of p-cresol per 100 ml. of solution requires 1.0 ml. of the stock solution and 20 m1. of 20% potassium hydroxide diluted to 100 ml. with distilled water). The following standard samples of p-cresol were v-1I ‘, .4 b 4 .4 V, \ r < .- o O .‘ e 51. ~‘- . I'. J , . n '\ O ’ K e -. r: :r a p. 'd r"_‘ 4“ u ' ’ T . r S l“ ' ' ‘4" A r r I . .- n e V‘- I .1 )el 33 - we . .’ _ . | . . r ' "Yf l i a ’ J! _ 0 g _' l .- . '. p. _ ' we v' ‘I - fl " I O f. .| r‘ (I. \' ~ D > P _ x \ .8 ‘ 1 . ... , (' ' , ‘ 3 .r .. I ‘ 1 — at ‘-, 4F .. . . .. . {a ‘- :- r. , —Q‘ l. 7 ¢ . ' e I .- .e \ p .- , . . .;' '4 -...-ao—.c-- 1.0.44- -- .’ ‘1‘ “ .uf‘ 1 r. . d a \s ‘l ' . ._ .. u’.‘ -. .... {rm . I ‘ o. ‘-. 2. '7 . . . '- .. ' ,. l1 ’fll . I .. ‘J a' i x. i - V e t. \x ..5 1'..,\-... ,. v‘. -' ').-.i D e [a """ -r J- . 4 [1 1s _ . . 7‘ , L J .a’.‘/ s .. '-- '. .. . i.-.‘ .1 r 4 t’J ‘- _ r_ ..3 e A“ .‘1 p-A- - \ 4 - X a '0 0' c C" 0. -.. ,: A, _ .... ." ;' 'r L a ‘ r .1 'I Vv" \—a 109 prepared: No. mg./lOO m1. of solution 1. 1.0 2. 2.0 3- L.0 1.. 6.0 5. 8.0 6. ”10.0 --At a wave-length of 310 millilicrons and with a slit opening of 0.3 mm. the absorbsnce was determined for the blank solution ( e.i. a solution prepared according to that given for standard samples but not containing any p-cresol) _and for each of the standard solutions (see Table 12). ‘A 0 linear relationship was obtained when the absorbence values were_plotted against concentration of p-cresol_(mg./100 ml. of solution) (see Figure 19). The same procedure was used for the standardization of p-chlorOphenol (see Table 13, Figure 20) and p-methoxyphenol (see Table 1h, Figure 21) with one difference. The absorbence values for p-chlorOphenol were obtained at a wavelength of 310 millimicrons end the absorbsnce values for p-methoxy- phenol were obtained at 325 millimicrons. #5 a. e s - ..r. b a .. ..Iu. Re I ,a. .... i . . l a. . W . fl. . (v. ‘e \.‘I .I.e l a: . .. . _ A. u C . ea. . 4 . . . .4 , F a . . . . ._ 4 _ . P . . ..e . _ ‘ i . I. . a .- r! , . . . O . ,, , ,. I V l _ w . . . . . a I . I . . v . \ 'ul ; ‘5 7' vs t {-5 :s u .. .’ O ‘- l. .I- 0.. ..Il‘ . ‘01 Q... t. .. ~ .. , . L . a. I I w . . r. ‘3. 4 A re... 1 a. .5... . a , . r J .n I. t\ F n O I . _ — ... ..k (It. 7 1 e: ‘1'! . k .V. . . ..J i >V . . O 0 . an . .... o | "I e . ...ll i ( ._ o 1.- . V . n I , . .[J r 110 Table 12 CALIBRATION DATA FOR p-CRESOL Wavelength - 310 m/q ; Slit - 0.3 mm. No. p-Cresol Absorbance (mg./1OO m1.) ‘ 1. 1.0 0.088 2. 2.0 0.175 3. k.0 0.351 A. 6.0 0.520 5. 8.0 0.691 6. 10.0 x 0.866 ...ql. .-~-n. _ ~—.-~~.— H-.-“ ..— ».-—.poo.-. .- --.-<“- a. ...-m» .--—— 0... .- .- —..._; _ so mu~vu-"—~- ”oaflow - .4 ...... m"! <_-O‘— .....- 111 CH .I\E 0am um Hommmuna pom mocmnpomn< .m> cowumppcoocoo Hommpoaa mo “OHS 00H\.wsv noflpmpucmocoo m u o m a m fix .1 _ _ a )4 ‘CJ .OH seamed 0H.0 0N.0 emoo 04.0 0m.o 00.0 05.0 omoo 00.0 aoueqaosqy Table 13 CALIBRATION DATA FOR p-CHLCRCTHEKOL 112 Wavelength - 315 m/q ; Slit - 0.3 mm. No. -ggl7§88hgnol Absorbance 1. 1.0 0.059 2. 2.0 0.118 3. h.0 0.231 b. 6.0 0.3h7 5. 8.0 0.L5h ' 6. 10.0 0.572 . - \'-. .- -.., -.y ......—.—-v.--q- .-.. .. 4 e-v .’ i. O ': a - e- -._-._ ...- -.. ..-—_.__.a_—-- ,— -.»——..-..- ...m—nflo- O-‘~*ewm .. . . l , fl. .. 9c C~m —.—-mo -.---*Ofiu..-oh" -.. 113 .1): mam um Hononmopoanoua how moomnuomn< .m> coaumpucoocoo .ON casewm Hocuzmoaofinond Mo Aoflfi 00H\.usv cowpmppnmocoo 0H m m 5 o m d m N H 0 _ a _ _ _ _ _ — _ _ 0H.0 0N.0 04.0 0m.o 00.0 aoueqaosqv 11h Table 1L CALIBRATIOE DATA FOR p-METHOXYPHENOL Wavelength 325 m)“ ; Slit 0.3 mm. No. -Methoxyphenol Absorbance fmg./100 m1.) 1. 1.0 0.073 2. 2.0 0.1L5 3. h.0 0.281 b. 6.0 0.L14 5. 8.0 0.550 6. 10.0 0.676 5.. a..- I.-o.--W«.~ *m- .— ..".-’.".' -_... 3‘" .....- -*.—_”“.H'r- -.--m- m--- ... -.--v. “‘”M.—H--m 3 O m p--“--r~flq-"flu——~mm-M,‘ ......" 115 CH .:\E mmm um Hocm:QAXOnumzna pom oocmnpomn< .m> :owpmnpcmocoo .HN omswfim 0 _ w _ Hocmnahxoxuoz:m mo A.HE 00H 5 \q 0 _ m _ \.wav 50H» .2 .. a spasmocoo m. a N _ 0 0N.0 0m.0 04.0 0m.0 00.0 omoo eoueqaosqv 116 ii Isolation Procedure A standard solutions of p-cresol in toluene was prepared. 'An aliquot of the standard solution was transferred by means of a pipette to a lZS-ml. separatory funnel con- taining 10 m1. of 20% potassium hydroxide;..petroleum other (100 ml.) was added; and the mixture was shaken for 3 minutes (timed). The alkaline layer was drawn off into a 60-ml. separatory funnel; a second lO-ml. portion of 20% potassium hydroxide was added to the organic layer and the two'layers were again shaken for 3 minutes. The alkaline extracts were combined. The organic layer was shaken with 10 m1. of distilled water for 1 minute and the water layer was combined with the alkaline extracts. The combined alkaline extracts were shaken with 10 ml. of petroleum ether for 1 minute; the layers were separated; and the organic layer was shaken with 10 ml. of distilled water for approximately 15 seconds.H.The alkaline extracts and theaqueous water extract were cembined and diluted to 100 ml. in a volumetric flask using distilled water. The absorbence was determined according to the procedure used in the standardization. A list of the variables and concentrations used for p-cresol are listed in Table 15. a e I o 4 .I 1 C . I ‘ » i . u .I... ‘ , . e1, \ f . a 44.. . _\ 4 e! f — . A e. . Or a , . 1.. - . w . . a r1. .. r _ .). 1. 07" N t 1. «.I. .. . ”or x v. . . .. . I Y '0 i I i Q 9 ‘ . "l .. O .... -. Mr 7 v\ AN :3 . . . . no u {so ‘I ... r A. . . W. .I.... l L \l... «7| .4,- . e: II \II ... w . .uJ . 1 . to on. ... . . r . 1 _ o u). .. ..I n at a .0- r . W1 ~_ I A .. v t, 1 . . . . .. r.“ l . e r. F _ ~ . e x‘ f . a. Nu. 1; JI . . v , c .. e a . . . a. ... .. . .J . . e . 1 v .a an. ‘. are .1: e ' ' p' '4 a h : r . . 1. . N u r... . , at. .. fin .... .1. e ... {I o .. .a . “ .... a... u. r . . e . I e II c H .. a . . a. a. - ... t ., _ . . . z . n 1 N. . L 1 I 9 ..lo a .1 .f . , U a. . . .m In ..1 .. . n1 .\ 1 a! .I. . . . ~ _. . r’ . . 0 . , In . .11.. _ . O- _ e a . e ,. u _ . .ev. . 1 90k . . ...» . . . 0 . . Am . . . . , .... ..a . . 4 . . . . ..1 . 1 . 1 . 1 a . y C 7 . . .9 f . t.. . . e. a x . .. D . a , . 1'1 . .. . f l . _ . . . . . a I. . o . . O , p . 1 . ( C . a . . . 1’11 e. . . I a 1 . . p u i . . . . i . a . 1. . . a ., . . f L . .. O _ ‘ c . w u 1 r l . a . 1 ‘1 , . . . a . .4 ~ . 1 t n e. . . a 1 i 1. . w v ‘ r-. (a . I." I Y ANALYTICAL DATA ON THE ISOLATION PROCEDURE Table 15 FOR p-CRESOL 117 Wavelength: 310 m)“. ..Slit opening: No. Absorbance p-Cresol (mg./100 ml.) Actual Determined 1. 0.086 1.0 0.98 2. 0.L31 5.0 b.97 3. 0.860 10.0 9.90 a. 0.170 2.08 1.95 5. 0.168 2.08 1.93 6. 0.169 2.0b 1.93 7. 0.167 2.0° 1.92 a. 0.171 2.0d 1.96 a. p-Tolyl x-phenethyl ether and x-phenethyl chloride were added to the standard solution in amounts equivalent to that of the p-cresol. b. 18 m1. of 201 potassium hydroxide was used. c. 22 ml. of 20% potassium hydroxide was used. d. 2 g. of potassium chloride was added to the analyzed solution. ~m“ art -*-~ q-‘uw—r . u .< 'u'r-‘ ‘ .' ~ ~* ' *1 .'. . ., - ‘ U ' ’1 ‘ . ‘ F ‘. e .. '.' -. '\ U .5» I o e i ‘ e - . f '2' _ O 4;- ‘ ‘1 l' x o .5. --.. ....-. -..-a.-. 1 a ,1 . . o . p . w... v -. .“A —v~.—oq' ...-~— I V a . ‘ . A .n . ...-.~-’-.- - .. 1. .. .1. -. _~.... cu. C . ‘ x ..l .._--_- -v r- .. q una. -._.. .-. . . 'I . ......u 7- ...... - ...—... -_ V ‘ 1 ' . . . . .. . -. 1‘ H. 1- » 1;. (_ ., . . . V . l. ' ‘ u ‘ . . u o e x . 1 . e .4 . . s} 1. I. v. I- r p‘ l . . oe , ‘- a .. 6 v p. 4 . l' .5 afi . .1 - .1 - J .. ‘ ._ _,' a. ' u) C V 3 o - . ,'\ a . . . “ ( ‘ - ' . '1 t "‘ ‘ '1 ' .‘s .r A ’L r 3 . ' . I. ,L . - ' - 1 ‘ - O .5 - « -L O . ' I fl ‘ * r‘ . A h .1 _ 1.‘ ‘ 3, . 3’ .. ,. . 1.. - ‘. ._) . I. . \' . - y- s . 1 - r ‘ ' v .- , ' - K' r. .‘ -v \ r .’ - . - 7‘ " ‘ ' .\ " C F. -' 1 . . .L 1.4 . . n . . a . ,. . .. . Q 1 .J ' V O ‘ . \ v . . , v ‘- A . A u n 1 1 1 — < ..- -— ‘- w-«- h 1 . --"‘-I~“ov~..—-- Q ~-— g A 4.- .v-O" a" e .v. -fl.’-~*-O-.——‘--- - ' . . ' I ‘i . I‘ _ , _ ' _ b ) ‘ | . . - - ' ‘ ; ' .. I ' - . .‘. ‘1 a a _ e. ...-V'- .--v- 7-0 h“ , . . -. f .- - ..f -_ - . . e \ ' ' . -. ‘ ....-- . ~e-m;~- ...-...- 5‘ -Jrvm--.-v . ~ ~ -. o‘ m — .... w A —— i e . A , r x O O - 1‘ r ' re‘ (I\ .t \ .' . Q ' O . 0 . I“ 1 ’ ‘ f a. u o O \ ."‘Q ‘ f‘. I V I J l J. 0 3’ e 4‘ :- ~, 1 y to . . U . \ k - - 1 I 7‘ 9- .. O - O V '6 t ! “ j“ \ ’ I § 1 u ;. O \4 O ‘ ' e i- 1 ( a .‘ .. . J e . e . -~¢.-—..----- MI- -_.—e-.-e-I—- _- .... .- L- 118 The results of the extraction procedure for known quantities of p-chlorophenol and p-methoxyphenol are listed in Tables 16 and 17. 119 Table 16 ANALYTICAL DATA ON THE ISOLATION PROCEDURE FOR p-CHLCROVPENOL Wavelength: 315 my , Slit Opening: 0.3 m. use ’ No. Absorbance p-Chlorophenol (mg./100 m1.) actual 'Determined 1. 0.11033 2.0 1.90 2. 0.230 5.0 b.85 3. 0.h99 ‘ 9.0 8.70 a. 0.2753) 5.0 1.77 5: 0.276°‘ 5.0 0.80 ...—r. ... Iii-r . ...... -..- A. sac—awq... #:9— - a .. .... -.. o - .... - a -x=----—'~p— a. Equivalent quantities of p-Chloropheny1*0(-phenethy1* ether and 6(-phenethy1 chloride were present in the standard solution: 1 . ‘. . 9- -. , l 4‘7 I , . , 7 -‘ . ...—.--“... no.--“ .7. -'v‘ -. A - ~ -~. - v- o -. _,._. c o - - - ~------- .. -»~‘~—-—-o «...-.... om- -..-.— / . . - -\ I p o r . e . ' -- - - '. i- ’ g , fl . v‘. -" , r ‘ 0 . A . ' ' ' f K e ' o. 1 5 e ...pr ...—...... --.- , _17—-. .--- -- _ > __ ... _ ._V. -_ __ Y ...- -J . ”i .......£.... - A -.. ..-? . ‘ I ‘ '\ e .. ... ,— s . '_ I \ Q a- . O - x i . g ‘ r ' l . . .- ‘ ---‘-.flnww~-o‘g.z --~‘ —« 1h-u~-- 'h<--—--—.o—-.-o—-.n——- *- -.. , H'h b**~-W»-A “- ,. ,‘ , 7 . . —~- n-~.—.-_~ . .~. ~- .‘M w -«-W« - ‘afl-fl- - ~ ._ .4 h» ...o . u , . -- . w... -.gn—fi w'rQ-‘u-n—Q. _ .n D‘- .. , .4 ‘ \ V v ... -n .... o . F.-- »- ....- -. .7 . - ....- C * '4. —- b'49‘v .-—. ..-. +7 'v-,.,-. —«v—-~ 17“ .rw*-v-—-na~w-l~ “Aw-rm 4-.- H“‘A-”md—I-v - A v —9 u . . - ‘ . f' a [ m.‘_.&‘“-‘.H mm... ”w- .w M1- .... «‘u— an em o ---p—-” ~ 0"" .. Mam.- .... .9. .. ~. -4”-'mmrw“~.l-m ‘vwww-fi- '— r : . \J r n _ o 4 o ‘ _ ‘ r 9, ‘ ‘- -.- ~ . .. g . \ . '_ . . ,1 ‘ ~' .'-' 1. ~ I 3 . .- J . .» l. .- r -1 ‘1' . ‘. v' ' . o Qr ' v ‘“ , I ‘ ‘ ‘ 1 A " * I‘?’A‘ 1" O l I 121 iii. Rate Data The rate data for the cleavage of p-tolyl. p- chlorophenyl and p-methoxyphenyl‘¢{-phenethyl ether are given in Tables 18 to 26. . or; 0.; 4 ‘ll‘l' 122 Table 18 RATE DATA FOR THE CLEAVAGE OF p-TOLYL CKfPHBNETHYL ETHER BY ARHYDROUS HYDROGEN CHLORIDE tavelength:‘ 310 m/ew. Slittopening: 0.3 mm. Ether 3 0.1997 Moles/liter! HCl : 0.1381 Moles/liter iTime' - 1 H ’ Abeorhenoe H a”. u ‘p;0renol- _ 000. x 10-3‘ Obs. Corr.._ (mg./100 m1.) 0 ‘ “ééhooé 0 ' 0 ‘ l 2.5 0.027 0:019. 0.216 5.0 0.026 0.033. 0.430 10.0 0.083 0.075_ 0.850 20.0 0.1.8 o.i.0 1.61.. 30.0 0.290 0.ie6“ 2.13 00.0 0.230 0.222 2.57 2 57.0 0.323 0.320 3.70 98.3 0.39; 0.003 5.53 181.9 9.707 0.699. 8.10. =:—_v_ . ,. a . .. '-. _._ . .——-- ... -o. - .I--h . ..- -0- M.-. A v. . .a---_—r.q_—.- -‘ .... . ~I-a.» . -—‘.~.--o “o- a- v-Q--Mm-v.- H 0.- , . ‘ , . .‘ \ , ~ . . . 0- ~ ( . K \‘ 5‘ O O ‘ v _ ‘ » .. ( »\ . . v _ J ' . . ' -.‘ u x . 5‘“ , . , r ... f‘ . , . ‘. 4- .\ - ‘ P n L . ' ‘ . . I . f . ; I l | L , l . "O 1‘ - - u v . - . , ' i 3 O o ' ‘ ‘ - -. Q ' 0 .’ . ‘-- o-v...’ ~..---..-q~.-_4 .... .--_.._o—a- L. . :w-O— . -~w-m.-wm.~‘h ~~w-.~_—-‘.~.--—- q... .I.- A' v . '.~. - . . . . ‘ - . ... , ‘ . g . ... ‘- 1‘ t f ' . k. .1- . g ‘4 x. ’ ‘w’ 0 —‘ ‘I 1 _....- ~._.. 7 wo—W‘r—i ..4-..-..-...~ . ..~...-——o.m——- ..A-nn-“nsuw ~4v~m~v~m-fl.- ~r~Q-v-<-. o» u'-. .“--.‘n- .fi'. --- ..-—.u-‘ m“ o“ ...... Table 19 RATE 0111 208 THE CLEAVAGE or p-TOLYL d-PHE!~JETHYL ETHER BY ANHYDROUS HYDROGEN CHLORIDE 123 Wavelength: 3l0 u/u , Slit opening: Ether : 0.1997 Moles/liter; 0.1236 Moles/liter Time- Abacrbanco p-Cresol sec. x 10'3 ' Obs. Corr. "(ug./100 ml.) 0 'o.009 0 - 0 2.0 ’ 0.023 0.01h 0.16 1.0 0.010 0.031 0.35 8.0 0.068 0.059 0.67 12.0 0.077 0.069 0.79 20.05 0.139 0.130 1.19 30.0 . 0.181 0.176 ‘ 2.08 L0.0 0.222 0.213 2.16 80.0 0.121 0.112 1.75 120.0 0.527 0.518 .0 5.98 . ~ ‘ - . "l’ - .9 i _ v ~§ ; . . . . -‘ . ,L .s ”-I. m... .0-»aa-‘ h.__.,. k...“ ... -a~"'. «.-v‘ c_vfi—.-..-_- —- .- — . ..- ..a . _ . f . . _~ 0 r ' > 1 ‘ . ‘ .. 4 - Q 1 '- a. '. I I: ' . o . , , . ' . . a 1 ‘U .fl -- *_ o . 1 n . I o .' o . ... O - . —-v¢-—_-.---- _. Mr... . . » .,_H_1"—o¢- .. .-.~. _.~ ._...4.- .—. -... ....- .. v »—n--e--r--o —. --.-. “aw-MWQ- *‘fl . ..--“.....- , 4 _ I . - l . . o . ». O - . .. '7.- o . n - .. g \- _, . .\ 1 D' . f" v i . ‘ . J ' '- .1 \ \_ . - l- _ ' . ~ ' O 1.x ‘v . .. , . . ‘ .a .- .. . - . . 1 ' O . l . - 1 1 ~ -' O -/ 1 .‘ '-J O '4 R - I ~’ - ‘7 ' f' ~ ' ' f. V .1 ‘ \ I l . f ' ', " 1, l '1 1 ‘ mo... «.9 .---.. 1 . a‘-_ .o——_n.' -...r‘ 'u“-1--M -w -5- w- ..-... ea... u-.—- w —-— 124 Table 20 RATE DATA FOR THE CLEAVAGE OF p-CHLOROF'HEPJYIL O‘c-PHESEUS HYL ETHE-ZR BI ANHYERCUS HYDROGEN CHLORIDE Wavelength; 315 m,u,,’Slit opening: Ether :. 0.1543 Moles/liter, H01 : 0.1117 Moles/liter Time Abeorbance. p-Chlorophenol sec. x 10f3‘ Obs. Corr.. (mg./100 m1.) 0 0.009 0 0 1.0 0.017 0.008 0.13 3.0 0.030 0.021 0.35 5.0 01016 0.037 0.62 10.0 0.080 0.071 1.21 15.0 0.111 0.105 1.80 20.0 0.138_ 0.129 ' 2.21 30.0 0.193 0.181 3119 11.5 0.251 0.215 1.25 _ 60.0- 0.320 0.311 5.10 100.0 0.118 0.139 7.65 ‘ . c a ,. - “r . y . ’ " I . " K. g -1‘ ...-n fl...o.”-—- .a - «w». w- ...1 . -..---v«-. v» v. .-~ .-..- .. - . -. A. - .. .c- ...- .... ...... - -- .1, -..------.4mv-gm ‘— _ _—.. ., " g .. > . I I . - . .- ' - -" .- . ' . ‘ . . a ’ . . _‘ . o . J ' k\ ‘I ._ J ‘ . a . sL ‘ ‘ . ’2 ‘ . ‘ . a r .. . . . . . s . . . . r . . , ,. , 1 . 4 ‘ ‘ i . . ‘ I . ~¢ '.. - - - ' I 2 1 O b 4, . 2 ~ 0 w ." '. ‘ ' - ‘s . ‘ ..o'. . J O . -.- con-..- w h- . ... --.- e-eo ‘1'“. 1-7 ‘ m --\-——a .. .. .» --.... .-. .7 .— r ' . . 3 v v 1 .' ' ‘ _ 5 A '- O . ' ‘ [A _.' u 1 f ~ _ . - ‘ c \_ f- f v -- I -. ,1 . '- ~ ‘ :a ... I ‘ . X ' \ O 1 1 C I O 5 O ‘\ ‘ .. . . - ‘ - -.,_.. ..1‘ ... A n— .- -tcv--v‘0*-I-— h-.-——+v r.- 5V c .----- ‘r. -~ .-. , ‘uv- , - -¢_ .0 1... -.o ...-.»—g . -.‘ ...—un- ..--— .... ».—_...\—~—-a—-. 4-— Q..- ._-._—-_0'-' r. -. - -, . —.-_ .-.- .— .- -- -- ... .... ,_ “f... ‘,_,- ... .,.,._,. ... ~_. .- ...-Mw - ... m.. I - — 125 Table 21 RATE DATA FOR THE CLEAVAGE 0F p-CHLOROPHESNYL «1.911111071th EITHER BY Axuxnao's Hrnacoeu CHLORIDE __ havelength: 315 mfg J Slit Opening: 0.3 mm. Ether : 0.1513_Moles/liter, H01 : 0.1236 Moles/liter Time Abeorbance p.0hlorobhenol sec. x 10"3 Obs. Corr. 1 (mg./100 ml.) 0 ' id 0.010_’ 1 0 fl ' ‘ '50 ‘09:” 2.0 0.026 0.016 0.21 1.0 0.036 0.026 0.13 6.0 0.050 0.010 0.68 8.0 0.068 0.058 0.98 13.0 0.091 0.081 1.11 20.0 0.110 0.100 1.81 32.0 0.192 0.182 3.15 70.0 0.101 0.391 6.85 n¢’~.~.—W of ¢ .-- -7‘4— -71-“ .. ._, v- :. ro, ..-..- “...h-owvvyg__o-—p, ... ‘ . ., .. . . . A 1 ._, ._, .A ‘ ‘Js l- ‘ J . . -n' .' \. .‘. ' »- . . -. 1 .. . . .~ ,_ ,. .: l '. i "l ‘5 -_ 4. : t ._ .. L ... .. ~¢ -. 1L . J 7v..- .‘ 774 0.”... .. -~- 0, ‘ or I 0" W - , . 9 . f x * o \J ‘-. [ V -..-o E. — ., . 0.... -. ...-o 9.. on-u—o--n«-—.-m- we. 0 ' O -‘ .‘ ' ‘ . ‘ . ‘ o O - . O J r '- . ’A q r n‘ . ,- ~ I- ‘ ‘0 r u u 1 . . .. 6 x . .... . 4,) . I «...-.- ‘ww .. ......“ s- m- _‘ V‘ 0" ‘. b 126 Table 22 RATE DATA FOR THE CLSA‘aGE 0F p—BiSTHOXYP’HENYL q-Pammzn 1111.311 BY ANHYDROUS H 00001N CHLORIDE Wavelengthz: 325 m/ut,y811p opening: 0.3 mm., Ether :. 0.1528 Moles/liter, H01 : 0.1h01 Moles/liter Time Absorbance paMnthoxyphenol‘ sec. 3 10"3 Obs. Corr. (ng./100 m1.). O 0.008 r‘ 0 O 1.0 0.021 0.013 0.10 2.0 0.032 0.021 0.33 1.0 0.037 0.019 0.68 ;6.0 0.000 0.072 1.01 ”8.0 0.090 0.090 1.21 10.0 0.106 0.093 1.35 15.0 0.130 0.130 1.79 25.0 0.201 0.193 2.73 35.0 0.262 0.251 3.65 “"“17.5*'“ 0.330 ‘ 0.322 1.53 .‘I..v—- M19 t-a- *3: u..- .. ....— M- .‘4 ‘tq A .1. ”...--u.-‘.-—4-.-_-- fi- ... o , -.4r‘- ,'._\.._. — 1,. .- 1 t 1 ' ¢ 0 O I ~ 0 - . o u , < .— 9 1 . i r . a I . . n ‘ .- O 0 --fl- -. . .-.- .-.. -..-...- ..- .....h..-“ ...... .-. “...... w..— ...—-.., 'Aal ---..——~- ~ s-~-.-.u-c— own-...— - ‘Q.J—_*--_*- - -.,-- i._.._ ., . -v—v—‘r‘. - 1 u c- .. y.- i 5.2" < ) ‘— L. 'Qalv' ... .-.-....-“_~_ . C , -II .... u- 7.. -..—......"- - I.» . - .- ~.~.—--o~— WWW-.- ’4‘ I b 0. '1 Q . x ‘ . 6 Jan. \\ - ~ - .r . ‘ ‘ - a .0 ' " d O \J 0 --.~... .. momru ” l - o. I“ ’ p t .' ‘ 1 ‘1 O . - b‘ . on D.“ “ ’f r V n V a I I ' .... - —r-.-¢—’-o-- I” '6‘ ~ .\I ,4- ..o"- . ‘v I J- V . J C Q I . ‘ "- r" f‘. '- ‘ \l-i . '-' a.) g 5 05“ . '. ‘ x. o -' a; . ;.. f‘. p .‘q \ ’ . _J .= . i'l . 14‘ 0", 1" 1 O ‘J’ v . ' " " ." T . Q s. . - L I . a- \ -. Q‘ r '5 . I ; h‘ . ‘\_ J \ ", '1' I; - O u u l ‘ 1A [‘1 ’1‘ a r 1. . .— o .3 v . \ A \ n r- ‘ 1 0 V \ o s 1' 127 Table 23 RATE DATA FOR THE CLEnVJGE CF p-lilfi’l‘fiOKYHiLfiiJYL o(-Pli;1:\=c.'1‘xxYL 111710.11 BY AHHYDRCUS HYDROGEN CHLORIDE Wavolengthz 325 n/u , 8110 opening: 0.3 mm. Ether : 0.1528 Moles/1100:, 001 x 0.1559 M61../110.r Time Abeorbanca p.Mchoxyphenol 000. x 10"3 Obs. Corr. (mg./100 ml.) 0 0.018 0 0 2.0 0.088 0.070 0.97 h.0 0.129 0.111 1.59 8.0 0.181 0.163 2.33 12.0 0.20h 0.186 2.67 16.0 0.250 0.232 3.311 20.0 0.289 0.271 3.90 2h.0 0.329 0.311 h.50 38.0 0.L51 0.L33 6.28 72.0 ' ' ‘ 0.619 0.631 9.19 ' 1- 5 ----u - ..— - .-.....---.‘. O O i ° I ff ‘ .9— v-'v>t .-v,-—_-- Au— 7 h-»— . - .u - .... .- . ‘ Q .. O 0 o- ._ o . . - o - .40-" \. . -.v«'<fi-v.-‘—--*~h-r~ r- ‘ \ o ' i t s a l ‘ J . J . _ . l ‘ O \ . o .. . i ' all: 0 \ '- . ., I I .. .. w... - ...- a v ”1..---- 7--.“- ... --. h...- ..w- .-« . mac-w- -- A ... --fl"- -I - ‘o— . a c ..r. ...w.. *1' ,-,,w, »-...- . .'.\ - ,. I P k 0 Q‘- . r _ .___- “an -.-- "a K .. ‘ , ‘l " I m) 2. . . Q _ . H 4 n . , A . . . ~ v . . h . - . ...-... “cod-— .. I ’ t I 0 . .' :' . 0“ ~ ~_ . _‘ .1 .. ‘. 1 \ I r \ ’ , . § _. . . o . " .f w ' , - . . - J. . ..' Q - I w , .w-~~ >¢fl~cW-~u-M_onm“---”- ”...- . v ., , 7 ‘fi . \. 1 ..-'_u _ ,. -. $ - \ I ' _ ‘r . I k. if -, . - . , .I . ~ 1 -- - <—~‘-w ”.0- "~..—. n..‘.--— r5 ! ‘. r‘ 'c‘ . 1. = | ; . '- _ .q .. K J ‘,-. o ‘ ‘0‘ -L ' a ‘ .‘ v“: ‘ r. 1"" 128 Table 21 0113 0111 101 TBS CLanAGd OF p-METHOXYF‘HMJYL X-FHL‘NL‘THYL 1:111qu BY 1131:3003 HYDROGEN CHLORIDE uavelength: 325 njk', 8110 Opening: 0.3 mm. Ether : 0.1199 MOIGS/liter, 001 : "0.1102 Moles/liter Time Abs0rbance p-Methoxyphenol sec. 3 10'? f0bs.» Corr. (mg./100 m1.) 0 0.008 0 0 2.0 0.016 0.003 0.13 1.0 0.025 0.017 0.25 7.0 0.010 0.032 0.11 10.0 0.013 0.035 0.59 16.0 0.065 0.057 0.97 21.0 0.105 0.097 1.33 15.0 0.179 0.171 2.15 w ”fl-- .vrw-‘aw-mD-"_ ——.—-¢- -1‘ ..- — - - .- - -- . , a n -. 1...... —-’~~.‘-O-M ..-*Ha‘.7H-m“ ——— flan-1*“-- /- 3 - _ . . o I 4 g . n . . O . . ' v _ 1 . L. . ‘ . ' . . . , \ \ . ~ . _. \ . # ‘ ' . r . x r - . r . .. , . ’ . . I . - . . I ~ . I . ' - ’ 1 ° ‘ C . . 1 . a . p ‘ - “...: 1 \ -_ . v . -.. .. .rraa .- - . g-"—~ awn--.‘hv pan—‘- --.--.-—< ... . ..7 V—a -~--. ....~ ... .... .--1~-._.__‘_.___ *‘ w— n. n I 0'2 . 2 . - - . r .- _ - - . - . - 3 J. a. t . \ r 3 .- r K -- (' 1 \ , ‘ \ f' f - _- . n ' x \ O I g . - j . . a.-. ‘_,‘, ...-..— o-o. -—-— ~- -v‘*—--—. - ..,_,-7._ v, m- A 9. - — . . _- *4 --. .-.-«’9‘.“ ~¢‘Mw--— A n O k C '1 O ,J‘ \ :~—- 9 1 (..-. P' ‘1‘ 1' , .t. o J- a- n,..¢-»._ .: . .--..< .- -—‘—-.—~~,H71¢7H~- fl- . ‘ _.,*.r......, _ . -7 ,_ “H.‘"‘.‘_‘—_ rau— .129 Table 25 RATES [UTA FOR THE CLz-JA‘JAGE. OF p-I-‘I'LgTEIOXYPHEE'EYL d-FHEE‘iE-‘JTHYL EITHER BY AISHYDROUS HYDROGEN CHLORIDE Wavelength: 325 “/5 9 Slit opening; 0.3 mm. Ether ; 0.1h99 Moles/liter, 501 ; 0.1007 Moles/liter Time Absorbance p-Methoxyphenol seq. x 10'"3 Obsg Corr. (mg./100 m1.)j 0 "0.010 0.0 0 2.0 0.03k 0.020 0.33 L.O 0.058 0.0h8 0.65 6.0 0.073 0.063 0.86 10.0 0.094 0.080 1.15 2L.O 0.186 0.176 2.53 53.0 0.338 0.328 4.75 58.0 0.355 0.345 5.00 .\7s.o.0, --0.aaou. - 0.830 -3 ---6.25»~h _, _ , _« 3 . . a ... 7. .o .f — < ‘7 7 .— -. v 3—. - .... -h—<_A- , - .- - _.... . .. - _.-~_..._.A,- -—-— -.. —w-au--—_-n—~w-—--.n—-h—-ow , . . , f .. _ r \ . O i " .‘ ‘ 1.. ‘\- (I . . . x 3-. - - L s . . - \ ," ’_ t _ - - _ , IV‘ . . . . — g I l - ‘ 9 q f. .1 -‘ ‘ . . . - y. - . O \J o - . ~ ,. 7 -_ , - a. - . . - w—c .. ...—-.. —-7- .- q..-'-“— . —, « . . . - w---4—-»~v v. o..—-.—-. ....” -~ A ‘ C. ' .' _ I ‘ Q ~ ,. ‘ - 1 . ‘ . . ‘ : . g 0 r qy ‘\ ,‘ '3 . 9 g ' o g ' LA 4 . . . ,_-——-.r--‘«<_. H . n . -e~- ‘ .n— - a- 3-..... _-...— ~ 7 , 4.3 » .-. __-..—A- - .,, -r ”nu-‘0. an H-“ . u I'\_ x ' 1 V) O - . \d - h “ ‘ , - ‘. (A . . a . h , ' . . A , . ' fl " f} I o . " I ‘ I l \- v - . 4‘ <’ A ‘-._ 3 ; I .. c . ' 0 _ 0 ', t . ’ r’ - u ‘1 ". ~ ' ‘ . , . O ‘ ' . a b . H' .3 a I. “ ‘l g -‘ L x. , o a u - L; a w A . ' . «V f .1 x ‘ 0 ~ ' ' ' H. . ’ k ' K \ . .0. cl- ‘ _ ._ \ n ”1 O - I ‘. . ‘-' ‘x.’ Q .‘ ' ' I ' . , . _ ) p 1 n C - J 0 1' - I“ O - \v' o \_ ‘ .. . .-v—.- J... -_-..;—-~-u -.---..v-/ u-.-— -- gar- — .— .- - -_.~.-7-——~ 1‘ , -...-.n,»-V._—..—-—- .... 130 Table 26 RATE DfiTA FCR TEE CLEAVAGE CF p-Z-«ZETEICL‘LYY‘HJJYL O(-I‘HCI;.ST};1'L EITHER BY Ail-{YDILCUS HYBRCGLE‘J CHLQRIDE 1.; wavelength: 325 m/u., Slit opening: 0.3 mm. Ether‘: 0.1526 Moles/liter, H01 x 0.1790 Moles/liter T100 Abéorbance. p-Meihoxyphenol sec. x 10"3 Obs. Corr. (mg./100 m1.) 0; 0.027, 0. - O 2.0 0.107 0.120 1.70 0.0 0.301. 0.277 . 0.02 6.0 0.329 0.302 0.38 8.0 0.385 0.358 5.19 10.0 0.029 0.002 5.85 12.0 0.080 0.057 6.65 16.0 0.593 0.566 8.20 u - - a . I . . G I b \ -7 . _ - , - -7 7 -7 7 _ _ ._ _ .-.-.u— 7.. - — . 7 _ no- , .- -.._- o s I I O O 4 . ..‘. ...... -— ‘ . .;- - —7- -.. - c.—-~-h-— m——.-_.—~_-- um “.-.... .--Jm—a—‘wvo- -. -—.o~o- -~——~o- .- . ¢ 0 0 - ’.-'-- ...-KQUun II-_<-~r— .- tI---O_H-- ‘p . . ‘ '. r . I k. . ... 3 “ ' v 6 _ \ I fl . ..v .. . ' I - I 0 - _ ....- ..- ~*.H-p-—- ‘O-“_ fl-m.-n-n— —-v--‘o-- . q ,. 5 H .0 131 iv. Product analysis In the case of the p-methoxyphenyl~00-phenethyl ether it was necessary to determine whether or not cleavage was also occurring at the methoxyl function. In one run the cleavage reaction was allowed to proceed for 200,000 seconds, after which the entire reaction mixture was worked up according to the isolation procedurd (see 3b ii under Analytical Methode). The alkaline solution wee neutralized with dilute (1:2) sulfuric acid and extracted nith-two lOO-nl. portions of heneene.* The combined benzene extracts were dried over anhydrous sodium eulfate end the benzene was removed in 13333: ~The residue was recryetellieed fro. petroleum ether (boiling range 30-60°) and had a nelting point 0: 06-070.- The infrared spectrum use in very good agreement~iith that of pure p-methoxyphenol.*i 'v . ... 7 v1..- , \ 7 1 } p, . ,l: . x 1.. v. .‘. ‘\ .. .0 r. . K . I . A \ . . x “6.4 . r. .. ... l J . n... . 4 I O t. A .v r“ ,. J , A F . . 3. x I, y . \‘f .. H r ,( . v . 7 nos. 4 . a. l L.’ O A ('0 .1 . ’It\,\“ 1'“. C '_ m: -. 9. we- ‘--1- ‘0 r ‘ . I. 132 Stereochemistri Toluene solutions were prepared in a ZSO-ul. volumetric flask which were 0.2 Iolar in ether (the ethera were optically active) end approximately 0.25 molar in hydrogen chloride (the toluene used was previdusly theraoetattgd to .00. 00°). The solutions were kept at 00. 00 - 0. 05° for: twenty-six hours. At that tile the redction was quenched by pouring the solution into a SOOanl. eepdratory funnel containing 50 ml. of cold 20% potassium hydroxide. The layers were shaken together. InparatedIand the ofifianic layer was shaken with another 50 ml. of 20% potassium hydroxide and {inally‘with 50 ul. of ice water. The organic layer was dried over anhydrous petassium carbonate. Distillation i3‘13222 gave the Naphenethyl chloride. Duplicate runs were obtained for the p-tolyl and p-cthrophenyl x-phenethyl others. The data are riven in Tdhlta 27 ... 28. ' ,.‘ 1.. u ,- . . . m . - 1 L '3’ a ‘1 ..I ~ 4" s I. e l n J . ( a .1 , \ I § H. I 'e. f. O '1 I ;. | Q n 3 'H 3. .g' a x .l O ..Q'A. - '- .Q '_" 3 w v \-‘ O l 7 ,. e l ’ , .5 C)" . I ’f e .- .1 , 1 ._x_ r I . " .o ‘. .3 “‘ 1" ; I | a. -. I z" n} , a” _ ‘ e:.\ 0" v—-“ was.-. r " ‘ L ~I r" "a i ‘ ' \ I ll . . 7 " 'P I . " ~ ‘ e . . - s I- l a ”‘a a; . .0 . r s — I O .s.‘. x e I! _’.‘ f i' ' I o J L 7 ‘v:.‘x 3. e‘v A . 7" we >. ,..{.., a:‘{‘)13' ‘-b ..J P'Fx, 1‘ ‘JJ .hon0o Hhs0ocmnmavo HhHo0am pow Aoooucop .04" “c.0335. 25.». he»? ” wmwo 30.0200 0:0 0.50th o0 vein: . .mN: 0% aealj'eelll {lent-u .4 NN.o u_em.me ..Nm. «Nam an configumpmm .e ..e H e . u an H- H”. 04N Haw—”VON“ .0 .mewhoano Hmnpmcmnd-yu no eofiumuom .n .mnHuOHgo. Hmn0ocenmuwa mo :o00m.0om vs I .a'... all I II!!! I'll-I ..w>u- .... , coH0so0om R NH.«N om.mn 0N.Nn Nm N . oeN.OH- ooN.eN . .N Mononu-, .on.mm .. ...-o~.mn on. N . :gommtoa- :eONweNew ;»H Aoo0oouuoo% Av. on Apv any coH0co0om R Hoax no 0000mnweooem a c000ce0omw mnoum uo cofi0e0om Hoam um co«0e0om .oz .-- . .1 . 0... i --.- 2. z a ...... -a e .:.;.;.u::. -- . e. .. .a.; 00:00 @N .0809 .0000H\»0H05 mm. o u Hum .ocoaHoe. "0nohHom..ooa "00000000509 mQHmOAmo. 4.808% 39823 E mu 5m imam “Minx. 032.0 M>Hao< MquoHHmo mo m04>o om.mm 0H.Nm _ om4.a ¢ ovo.maa cam.~4 ¢ .H humpoohgoov .uv .ov any ... cowucopom R Houm mo cowumNHEuoam m cowucmucm a mnoum no acapwpom Hoax mo coupmpom .02 g u * «use; om “mafia .ump«H\ano£ 4N.o “ Ho: .ocosaoa "acm>aom .004 ."musuathEwa mQHmoqzo zmcommwm maommwznm Mm mmmhm qwmkm.mmm¢xv qwzmzuomoqmoia M>HBQ< qumloao mo m04>¢mgo mza RH 20H9P-OH e Cl-CH-CHB 2 3; h<::::>-O-CH Reflux JR: x . CH3, c1, cu3o, (CH3)3 c Compounds where 1.5 nethoxyl or t-bntyl are net; whereas the others were previously described (28). Table 29 contains the results obtained uheé‘optidelly active Cx;pfiine$hy1 chloride was used. -I-‘n-u. ‘_._,_‘ - u; _-‘n -- W J --_,.-___.. 371‘ f t. .3 ‘(a 1' ~ 5" .'q 136 .uoeo ..Eo H u H .oom we nowum00h.uo>hmmno .u .3233 .ON .I. o .56 H u H . .oflvog .2833?“ 033on .o .econzon .0: u 0 ..av H u H .nuflyuw .ocoHowuou oHuHooAW .n .040: ..EU H u H .emm om.e:oHpovou nobhomno .u w.o ooH.4H . ~.oo a onu.m e on~.mo o ommo .m 0.4 000.4 + n.5n 004.H e , . om.~4 + H0 .N O O . . O I n O m m 0mm 0 e m 0w own N e ow mm 4 . to H E 3. A3 uHon m oumHth:. 1 '11.- .Per I: i9 it old, . i‘l'ulfultselslia ‘31.. u‘ilt..0I.\ ti.'lelia all x .- .. I C b .y/ C P . .. + I . -* I . .., fl .1 . a e e . e 5* e L r I x J. a 0 . . A. e * O O + D . I. A O ..t I II I! .' . I7. I III ‘ f 14- ea... ’qtillll. ‘ I. t (I let ‘1'! e’ 9f F. ’ lull ’ulil'e !‘ all I A .11.: 1 .I 9 . :1! III t! ’9‘I. 1.x ...... .e . v .. .v .0 . A I x U .- s H A 4 z . e 1 J O _ a. v _ A a Ola . a . D » r} n O H . N n \. \. .. A O F _ (L fl -" ... . ... . . Y) n i a. , a el - h r ..L e . I r I I O h l ”I! n t I . r I 137 The optically active ethers were rearranged by heating 0.05 mole of the ether in 50 s. of solvent at reflux for five hours. The reflux temperatures of the solvents were 2&0-2600. The yields, Optical activity and percent retention are listed in Tatle 30. The calculations for the minimum percent retention were based on the assumption that ether- fication and o-alkylation of tne para-substituted phenol by , Optically active o(-phenethyl chloride accurred with almost complete retention of optical purity ( A minimum of 94.59 retention was determined (23)). The percent retention for experiment number 1 of Table 30 was calculated from the data in the following way: d-Phenethyl Chloride {- p-Cresol—y Ether e o-Alkylate 21. o 25 ° 2 ° 0(1) 0 27.2 MD a. 2.52 [oaDh + 6.25 1 = 1 dme 1 = l dme c : h0,berzone c g 20,benzene If the thermal rearrangement of the ether in Ib-methyl- naphthalene were to occur with complete retention of optical activity and configuration, a minimum rotation of [c{] :5 e 6.250 (l = 1 dm., c 3 20, benzene) should be observed. However, a rotation of [0031‘ e 5.650 was actually observed. Therefore the percent retention would be the observed rotation of the rearrangement product divided by the rotation of the v Of: 1' ‘ 9 ,‘ c ’. . . l A . _ .' \ O ‘ ' . . - - n u ' . j l i V n .3 .' . ; » -4 - A. e i , .0 .\‘ a. \ ,. . ~ A I I . 4 v ‘ 0 . 7 ‘ e c ) O ' I , . . I . ‘ . 4 ~ . r 1‘“ A w‘ a ‘: , _ f’. -.. A f . '_ [A ,r.‘ g '3' if '1 v " f' I - 1 , ‘_ . ‘— I“ Q av I _ . '. A .a A. 4 .r 9‘ 1 . “f q ( 5‘ t 1 - . r- '1 , x e v ‘3 ‘ ‘\ . ‘~ 1 I \l ‘ . - ‘ < ' - ‘ K A s I .e ‘ ... ‘ I 'M I l -. J J . ' - 'O O. . l _ ~ ’ A , .1. n r .. - . \_ ~ . -.I I ~ p ‘ ‘ us’ ‘ s ‘ ‘ -' ' J L A L I . ‘ I. O . ~d ‘ . v .1... e L a '1 “ .L ..-"|‘ ~ ewe“; -~_;..t ,- ' ~ ' V ._ 'e r ' v— ‘1 " -‘ I ..‘ 4- .) 'f z ‘3 ‘ - Jr .1-’ ‘ wrla‘ - .-F r yva ‘ a .. . I m ’4 " r 3' ‘_ ‘9 1‘: I 1‘; er . . ‘x .. . ,I . . (H, an n x‘ «’- 4~ ‘ ...4 Q ,. . I 1.4 . 7' § , 7 7 i o ‘ ‘ ’ .0 f ‘ ' M m O Q . - .5 r""1 v + " ’3 b A l "x T ' ‘ \ r 1 : " . 2 ff; 1 1"). 1:!" ‘°. :2. 1 sq - - ' ... 4 ~ \ s . ‘ e o.- v ‘N . -¢ '3' J J .- ul‘v A L; 138 Aocwucmn .oa u 0 ..En H n Hg Lug—”vow .coHumpou "5.30QO .0 Hocmnemaeexo-.m.m u o .u segue Hammad u m .n oconspzamcHhtuozlm\ u a .w 0.4m ~.0H omo.m + 000.4 + om4.H e 0 Ho .0 0 e O O O m 4 O m mH a mH 0mm H e 00H 4H+ : owe o + o 0 mu m o.me 0.4H oom.o a 00H.4H+ 055.0 + m came .e e e e e e m e m 0H 0 NH 0N0 H e 0mm 0 e omm N + no :0 m ~.em m.NH one.“ + omm.o + omm.m e pm mmo .N e O O O O m 0 a 00 4 0H one m a 0mm 0 e omm N e we no H «we loo Am. Rev acmseaumnsn :oHpcooom a oHon & eumHszxso gonna oco>Hoo atom .03 mmnzsm mehumnmmuxv AMnmma QHH.HHBann «aha m0 Hmmumwx4mwtmm «Emmze Hwy 2 MBHbHHQ4 Amloio m0 nathmez Pmmomma cm espme II 1. )‘J I I) IFII... . III II . l V x}: I. \ f I . a . . I I . I . , , I I . r I . . . .I. o . e I I e I) I I I. . ._ ' k .. o l 0 er. it‘ll I‘d- .‘ ‘. 'I I .‘ I -I I '1‘- ‘ ’e U- - . I ‘I Q ‘ e I . . _ I4 . I . I q o I o r J a n x J I ri . . I p n .5 ;r m1!“ -. .I. I. .\ aw ...».I ( }~‘ L ’ eh m .m o I . p o . _ \ . .. e » .. . , , _ 4 i . . I . ~ s r ’ tl \ < r In ‘ fl 0 I 'I luv), -..Ivl I I Lin). If .t '1 . I l ’ Ill. . I'Iul I‘ll-5' till! i.llluei.iillpl Clio ill ale... 'ell!’3.f." ; x .. \r z .. w. . u x I— ... . I I I“ I I fl - . . . . , . e . a . . + r . . _, . r x . \I \ n I .)c . I. . e I O L O I + O + o O I o I. I. J I I .I , . e . a W I C I e e e r , C I O ( . . 1 .1! I ‘ 0 . . + I ~” 0 + I e \ O o I . . + . . a - + O . . O I 0 O I . p O O n a , _ e . + _ O I: d I O + i O . . 0 e I C It! A I) I. I‘D II I e 1 I K 1 Iv b .I...." ) 4 I. l ...I I ... I 1‘ .I. . 1 e71». «I .I. 2 . I!.;. IV .Ili... .I U. .f .I.. d .l k I: 5. .I.! I ,. .l l. I 1.1))- I o...e.)l!\ell.. , I..III 1' f .H. . .. {w in I .l 1 e . . -. H... I. . . i n . H .. H .. ..m......_L. . . - .... ..-. .... .... 139 3mg .56 a u a . om V0.“ . nowumoa nmbhgno .umnum.wc«ucoamchuoo_ .mnu no ucmawmcmupmmu mp vwcwmuno mumfihxawno Mo vamfih on» ma [any . .pceemmqwuumou HwEthp A; cocwmupo uczcoLL no .Amcmncmp .ON u 0 ..9c H w H . «WWVAH v.20wumuou ofiufiovam .cowumahxfim pomuwv ha vvcfiwppo uOSwOLL mo “mummcmn .oq u 0 ..En H u H . QmYUH .cowpmuc& ofiafiomam “cascfiucouv cm ofipmy on mmpoz .,n I A H 0‘ In \¢ 0 l r ‘1 1| O 1 \ . . v\. . . , V 4 ‘ v t- . x O c \.u n ‘ n 4.: I: I. I . fl. 9 u 0 I C . . a. 3 . s. a. -- 4 . .. \ . . . . v ,1 . O t l . . . .4 ., .,. . . . I. I . A . A 3’ 1 .4 i... ..J s \ r- ‘ ‘ ‘ a- . I . _ . . D . l J 1&0 alkvlation product times 100. [can Rearrangement prod: ct % Retention : x 100 ICKID Alkylation product 5.65 31—— 1 100 6.25 3 9001‘ Acid Cleavage ‘Elia (Bl) followed the hydrogen chloride cleavage of phenvl<§-phenethyl ether by nitrosation of the phenol pro- duced, and colorimetric analysis. This procedure was cumbersome and another method was developed. The analytical method was based on the separation of the phenolic material by extraction with 201 potassium hydroxide, dilution of the alkaline extracts to 100 ml. with distilled water, and determination of the intensity of the absorption of the correSponding para-substituted phenoxido ion. The method was capsule of detecting at least 955 of fine phenol present. The acid cleavage was conducted in toluene as the solvent and at a temperature of £0.00 :"0.05°. The data obtained were tested for second order kinetics using the integrated form or the second order rate expression. ~ 0 \. . . 4 a O- - u \ c ‘K v ' o . . . O . o. 4 ' 6 5 " _. v ...-u- *— . O .‘. ‘ I A. g. f . 9.. I . a .' , I Q. I ‘. ve ‘. ‘. I c . .. ‘ vF r‘w ‘ c h ..l o q. -i . . .. f . -4 a l“ ‘J z ' t ‘1.) «1‘ . _ ‘ .’ 7 .. - . ~.. f. 'r t v » . V Y. . 6 ‘ ‘- a " ‘ -.--ncoom -..- m u 4- ~’ Ff ~. 'l‘. s. 4 . , L _\ .‘ . 1.. - -/ .v D ' . .- P. 4 . ’1. .‘ ' l ' r ,v. 1‘ ~ 'I ‘A ‘\ '1 at l . ‘ n a ‘ ' . V 1 -‘ --y 4‘; h . o- - i - x , O I . 4 v. y . - , . i ._u ‘5 A gg’ . -.‘?'l i -b I . t A ‘ ' -5 . , ' - 7 1L1 2.303 b (a-x) k 3 ...—.... log ‘_ .Ht(a-bl- a (b-x) where, a = Initial ether concentration in moles per liter. b 3 Initial hydrogen chloride concentration in moles per liter. x : Para-substituted phenol concentration in moles per liter. (a-x) ; Ether concentration in moles per liter at time t. (b-x) 3 Hydrogen chloride concentration in moles per liter at time t. t : time in seconds. A sample calculation using the initial values from Table 31 follows: a a 0.1997 b = 0.1281 x 3 0.0020 a-x 3 0.1977 b-x 3 0.1271 a-b = 0.0716 t = 2500 . _ .n .s r. , . , .; .. .. , . . r . .... 0v. .. . ... 0. PI 0.. I T» p v: . .I.. .1 H o l‘ u b X .. I J. a. "Y u 'v \ l ‘--.- 5 . A d b e o O .- .- a I O ‘4 n 1 -fi 0» ..— k‘.-- . 112 2.303 > ' 0.1231 (0.1977) R a log —————__- 2500 (0.00716) 0.1997 (0.1271) -5 -1 -1 k z 3017 X 16 10 “1°13 sec. Rate constants calcuiated in this way are listed in Tables 31539. ' . .. _ Though smne generalizations were observed in the rate date for the oleayepe of p-methoxyphenyl gX-phenethyl ether the data could not be consistently fitted to a second- '-'” or third order rate expressioh. :The teét for third order kinetics was carried out using the integrated third order rate expression. I d I 1 fl. ‘.. x . 2.303 . a (b-x). 1 k g -—————— -———————- .-—————-—, log ‘ t(a-b) b (b-x) (a-b} B (3-1) where the symbols have the same meaning as previously. 1‘ . -g l Mu‘“-v;~-‘~*-~ A ‘ r u ' . . ' J \ A. 9 . I Q. ' ‘ I f V . l .I .. A i ' ' I { ' ' .0 - - r ’ “— --m~... \ ." .. I u \ . .o-- a-u. ...... n A U r. ‘ n:- .L I“ f s \ ”fl.“ [ . '- *0 ,. - . p - "l “ . .' h..— .- (l n .- . I‘ '. . . . y . , . t ) 0 - ”I ..~ ,~- " ' r .4 ‘ - \4 4.- ‘» b ‘ . \ - . ‘ . 1 ‘5 1 . 'V f\ r' r I. \ n - U . r,...,., ,.. - -',_ ~‘ ' . 1. I x A ' I' 1 r, A". A a v V ‘ ' J 'I ' v , . o ‘ -. A ' . - ‘ J 1 j 4 '3 ,, . .1 -' , - , i A h o - V ‘ O n. ‘— '1 I . u ,"1 ’ . ' - .‘ L.) 1. | . . " ) . .‘ .‘v Q , J. , f .a f l ‘\ 0-1-P; f '- 1'“ .2 \l . . e u" .4 ~ 0 THE mm 02‘ CLEAVAGE 01? 15-10111. «-E‘HEMTHYL 2'2an BY ' Table 31 ANHYDROUS HYDROGEN CHLORIDE 1&3 A Temperature: L00, Solvent: Ether : 0.1997 Moles/liter, HCl :' 0.1281 Moles/liter Toluene Time x a-i b-x h x'lo -5 sec. x 10 -3 (M/l.) (M/l.) (M/l.) 1.molo -1 sec. T1 0 ~ 0 0.1997 0.1281 2.5 0.0020 0.1977 0.1261 3.17 5.0 0.0010 0.1957 0.léh1 3.21 10.0 0.0079 0.1918 0.1202 3.26 20.0 0.0159 0.1818 0.1132 3.22 30.0 0.0197 0.1800 0.108h 2.96 80.0 - 0.0238 0.1759 0.10u3 2.75 57.0 0.03h2 0.1655 0.0939 3.01 98.5 0.0516 0.1L81 0.0765 3.07 181.0 """”“0.07h9"' "”‘“'0‘.‘121.8 ““ 0.0532“ 3.15 k avg. 3.08 x 10 ’5 f 0.13 l.mole ' é - -1 58C. ' 3 "‘ /~,a‘ "‘ . .. . H .4 V . L L . L, 1 ..,_ .—— .f—q-‘M, “-00... ‘-.. . ... .- .. _ .. ‘« ..- . * -¢—-—-.— «1 a- . — ..-.~-—b — w- .’ . r' ‘ " t . ~ 1; a . I - v ‘ L O 2 ~ . -‘. o l - ‘ ’ : h - . ' r ‘ r ' w,- ~ .- -\ . . , — . r- ‘. . . \ . 3 hr 1 I ' . I Q 1. t . ~ I L ‘ v ' 4. 'sa ) \ - . L O ' Q .‘ ““ ~l ... ...... --\‘O~ .v-u' ~00 v — ~~ -— —— -~--a-—~...u L‘ n w. u—o—n-n. . 4 — ....w‘... w ..., w -- 7 3 . ,- .. _. . - . .‘I, _ by r.) ' J‘. ‘ .L " , . _ r I ’ h \ ’ '0‘ , I x ' I ' l l ' ‘V' ‘ ‘9‘. j I , - . o . \. o . K o v A g I .- . 7.. -w-, —_ u- .- ka H-._- 4—- --_-— w-q-v- ..-..2‘. ... .- . - a-.- - .. I“-‘WO"-‘< . .‘ 2 us- , .m'..-o~ -. w v r " t'. r x. I. ~ 0 , a k) I. v I 7‘ " . " ' "O'I ’ 2 '~ I- ,a‘ A . a , K . ‘ ’ ‘ . . q a - ,. o - O .2 .a a O . . . n - rs ' g ‘. ‘0 » ‘- f . 1 ' ' . r * ‘ - 1 C' " ... < O ‘ .— l. 0 w L. . ~ .1 2. . .{ I‘ ' n ‘E I n». f. 2 ’ r r .. - c 0. 0 s“ ' - o » c ... J o‘ 0' o - 6 _ _ \ lr '- _ :" :1 ' r o“ a 0 1“ (,'In C ‘ 'h' r - C ‘ ‘ ' - \_ 'p—“J no 0 L, \f’ . 4‘ _‘ o . 4- . A P F . \J f‘: (‘1 v - ...5 s - .9 .1 ...x. ‘1 .‘.' -Q'J‘ ( -- ‘. -‘ ,- ,‘ ( f A .‘ I... 3 r\' I ‘5 ‘1 . " (\ f. ‘ .v . ‘ ‘s ‘\ ‘1 IL . \f' ‘Vr'. §. a N’- . U . is)"; .' ' ' at . - r '2. .I i ‘ ‘ .I. . ‘ O t, Y ,.' - ... ~. 0.. \ -. ...". 0" xx“. 0 \\ . - ‘ . ,. A. 7' ' \ .__ . q, 4 ‘ . . V ‘ I ‘ '- 1 ' ) r ‘r ‘ 0J {) '3 ‘1 —) 9‘ \‘ .0. .8. 1L... \..-.- .. \Q‘a‘.‘ ,-. ." <. ‘ " '1‘ ,f' 7" (‘1') , (“J (1 '3: r kuox ,“ o J ...-.u ‘..".\’o~ .... ..L *- -_ —— * ...-“.I. — I .- - - 4 k ,2 — . 2 . . z ‘ ' f; . J J. ' ‘d Q 5‘ - ‘- n. )‘ -— . .. b, lhh Table 32 THE RATE OF CLEAVAGE CF p-TCLYL CX-PHEKZTFYL ETHZR BY ANHYDRCUS HYDROGEN CHLORIDE Temperature: #00, Solvent: Toluene Ether : 0.1997 Moles/liter, H01 : 0.1236 Moles/liter Time ‘ hnx ( U a;x - ‘ b-i khx 10 -5 sec. 2 10 :3 (n/1.) (n/i.) (M/1.l: 1.0010 '1 sec. ‘1 2.0 0‘00.0015 0.1982"' 0.1221. 3.06 1.0 0.0032 0.1965 0.1201 3.31 8.0 0.0062 0.1935 0.1171 3.27 12.0 0.0078 0.1919 0.1158 3.03 20.0 0.0138 0.1859 0.1098 3.08 30.0 0.0192 0.1805 0.1000 2.97 10.0 0.0228 0.1760 0.1008 2.72 80.0 0.0139 0.1558 0.0797 3.13 120.0 0.0553 .0.1020 0.0683 2.83 k avg. 3.00 x 10 '5 1 0.1L Ll.mole '1 sec. - , . , , d —-. , . . -2 - 1.; . -..; -o -..-....-. “-I.—- A“... ‘-'.~-H~ I-- f. ..---W‘wh—H . r . 0 ‘ I .0 f - \ -‘ \ . . I a \ . V g ._ 1 - ‘ r l \ C - l . n '1‘ - ' . n . , ‘ ' ' O 5" . ' o ' - . 9 ‘ .J O ‘J‘ o H 9 C — ‘ 1 . _ . - — V - .. --. «V ~ 0. 1r- .-- » .1—1; .. -. - .¢.. 1”...» ~<—.'-- ...—..-...vzc-m—u” -o-t ~w~~->"~-o.wm¢r~-* r r 0 ‘7‘ . r. a..- I . a. ..., ‘ ._ ‘ . ' ‘ a . I .. - . . . .- , ,, .. . . a ..-. ‘ -..-.... “Wm-*mwh c-u—u-cs-oowuu- up“--. ...-.... . . - - - .. , ' I ' '1‘ r I I ' - I . , . 0 ~ . o - \ J -.. . o \J 1' g a ' - - ‘ o - - A x . . , . . , .’ . l 4 . a ‘ ‘ . 0 ¢ .~ v’ o ..4 '. 0 i' 1 t ‘1 I‘ ‘ P ’ . ‘ . N *1 l« ‘ «I. — O ' a . ‘I .0 . ' . 0 . a r .‘r ; . . \_ - J. u , -‘ l o a \‘5‘ x‘ ox: \.,’o./_. . .‘-‘ ~ I r " u’. ['4 ‘. ‘. 2A 3' . . '. , 1. « ..- . ‘2 \L‘m ~.'..J V.“'.-O ; ..n_. c..n*¢~¢.-d-—¢.-uc >— “v- .‘-~v—o ‘ M—fi- 5. a-.~-..--m ".....- . _ . .. r . a r 1 0 ‘5’ 1 ) s .4 . . .- 1. . 5 \ _l . \ .. 1. .l 1&5 Table 33 THE RATE 0? CLEAVAGE 0F p-CHLDRGPHENYL (X-PHENdTHYL ETHER BY AHHYDHOUS HYDROGEN CHLORIDE 00°, Solvent: Ether : 0.1503 Moles/liter, HCl : 0.1017 Moles/liter .‘.. Temperaturei Toluene Time x a-x b-x k x 10 -5 sec. x 10 -3 (M/l.) .‘(M/l.) (M/l.) l.mole - seen.-1 1.0 0.0010. - " 0.1533 0.1007 0.58 3.0 0.0027 ' 0.1516 0.1390 0.20 5.0 0.0008 0.1095 0.1369 0.53 10.0 0.0090 0.1009 0.1323 0.59 15.0 0.0100 0.1003 0.1277 0.72 20.0 0.0172 0.1371 0.1205 0.06 30.0 0.0208 0.1295 0.1169 0.50 01.5 . _0.0332_ 0.1211 0.1085 0.73 60.0 0.0020 0.1123 0.0997 0.07 100.0 0.0595 0.0908 0.0822 0.57 k 0.50 x 10 '5 f 0.10 av£.l.mole '1 50c. -1 . ' ‘. 7 n . . ._ I; ‘ ‘3 . ' ‘ . ' L ‘I I '1. o - . _ -...-. -. a -- . .. ....M__-_- ._ .0... 7. -, ...”.-- --.. -, ..-..- .. ‘. J..- 11.. .... _.~. -,.~.__...-_.—.... . ._ ...-...... I . . .‘ . ...- .. ‘ . - 1 ( _, -5 Q .. 1‘! .' .‘ ~ ' '- 7 n .. ' -' l . r r . , . _ - ,- l , o It - I t v . ~ v \ v _ ‘. . ~J I A- -» 0 7.. . ..1. .-. .-11-..._. _. -....—..-.,..0.--~... »»---.'¢-‘ ...—-.. _ ....._........__ ‘ _ | ' ' ' r\. \ -' f o O 0 O 0 ' \ O 1 ‘ . I . ,1 , - . , ,_ . .. . 7 V .— c - .0»— 0 - 0 -- ~47 _ .1 - — —.~-- -7 . ‘ in 1-. pv-—--.---e. —--0------.1..-..— —9'-. ’J v- N ‘1 ,1 P1 - -' —‘,u‘--- - .....m- .... ...-...v p. 25-54- _1..,~ ...- ...v-fiv—i» .-_~.--~ 0-: mos~ ... cf. '— “—9 106 Table 30 THE RATE OF CLEAVAGE 0F p-CHLOROPHENYL (X-PHENBTHYL Effigfl. BY ANHYDROUS HYDROGEN CHLORIDE 0.— qu —-— Temperature: 00°. Solvent: Toluene Ether 1 0.1503 Moles/liter, H01 : 0.1236 Moles/liter Time ‘x a-x b-x k x 10 -5 ~ - ~ - ~ -1 300. x 10 3 (M/l.) (M/l.) (M/l.) 1.Mole 1 sec. 2.0 0.0019 0.1520-~ 0.1217 5.03 0.0 0.0033 0.1510." 0.1203 0.03 6.0 0.0053 0.1090 0.1183 0.83 8.0 0.0076 0.1067 0.1160 5.27 13.0 0.0111: 0.1032 0.1125 0.87 20.0 0.0106 0.1397. 0.1090 0.75 35.0 0.0205. 0.1298.' 0.0991 0.06 70.0 0.0023 0.1120 ‘“‘ 0.0813 0.58 k 0 0.78 x 10 '5 ‘ 0.22 avg.. . 2 —~ ..-- -1 1.mole -1 sec. s » . l . A h . *. , )k I \ “‘.\l ‘ 1 V \ 2 a. . II ‘7 ~. F”, ... “ z . I ‘0’. - - .1 a O l 4 ‘ .0 L 1 ..)~—— —_--. —-..—.. r ,, r\ ‘-1» a- 1 7 . -A ........_.,._..._._. .. ...... -—mfl\ I“ ‘ ' ' ' t"! r 0 ‘ Nr . ‘. ‘ r ‘ H ‘I 6‘ V N. Y 1 I - . .— o .. ‘ g- u a *1 A -. - - . x . \ o v p I - . . . . R . . , A. . , . g 3 .x , ,1 ... I 6 "‘ 9. u t- . O O. ‘ t K - y - ' d - o \ v-‘ v, . .' Q ' it . -v. a- ..— — -. . —.- -. .. ~.r-.,_._. -~- --4 -,7.-_ ... - a- ”..-—...- -n—ao~v‘”9wmnr‘ cut—- -mfi'w,“ —« . ..- o o ' 0 n . ; v u 0 A. . x (~- 'I v .‘ .. ‘ . l J » y ) .....- -qu._... -..—--...- ...-.. .- .....- .........A -'e. n .. u. .-..--a......-. .» —~_..--.. - won.- n. .4. . .---ow a- _____ ...... . n o \_.n A] 1 (J ' “1 I- v: I ‘ o. ' P! I " a r h . r u“ t ~ 5) {‘3 ‘ , .r . . - '0 . - .-J-O‘l v\- o .. . . \ .- u—w--—n~.—-..a-._-r .-._- A W- ....o.- -r... --. .— 0‘ a... ... . --.) ’ V I ‘."I n ..3 I ,5 'n‘ 107 Table 35 THE. RATE Co? CLEAVAGL‘J OF p-MEZTHOXYZ‘H"EJ‘éYL X—PHEKETHYL ETEQR BY ni‘iiiYDiiDUS HYDEiCGLfiN‘ CHLORIDE Temperature: 00°. Solvent: Toluene Ether ; 0.1528 Moles/literl H01 : 0.1001 Moles/liter Time x a-x b~x k x 10 '5 sec. x 10 -3 (M/l.) (M/l.) (M/l.) 1.m010 -1 sec. -1 1.0 0.0010 0.1510 0.1387 6.71 2.0 0.0027 0.1501 0.1370 6.00 0.0 0.0055 0.1073 0.1306 6.66 6.0 0.0081 0.1007 0.1320 6.68 8.0 0.0100 0.1028 0.1301 6.28 10.0 0.0109 0.1019 0.1292 5.51 15.0 0.0100 0.1330 0.1257 0.98 25.0 0.0200. 0.1300 0.1177 0.95 35.0 0.0290 0.1230 0.1107 0.92 4H07.5~ '0.0377"‘* ”0.1151 m” 0.1020‘- M' 5.00 D ‘ u ‘ I v * s' 7 . . . . . ., .1 > - a - ' t \ . . .1 L ' 4— x' " I - - - .— 7 , - ' n - -7 > ~ ---. 7 -‘-* .- --—- --.¢--.oo—.”u~-— “......- --¢~ .<--—» H. 9.. -— _- _ \ . r . -. ’ D 4. \ " . I Q J 0 . v I ' 1 0 I 0‘- O 4 , a. . -. .. .— -4 - 0W.-— -‘-d‘*.~-.M'-o o-vam co. « -v -o O -— H~C~o~um ‘1'— l . o- ’ - , >0 3' w. . a Q-‘ " C' ‘ 1" I u . \ " .. . . | ' f . 1 f '0 . ‘6. .\ O - l O \ C O I ‘. . 7‘ . . ' ‘N‘ ' ' ‘ ~ -- - v ~- ~ A’uoqno..- *‘fi—o ...-no at. .-.. .- .I.. mung—«nh-bwag-oQ—Iu-uqn... .' j V ("3 J 0 1| as... f O u u ‘ - I" ‘- l | ' ‘ . , C . t 0- O J ‘. no 5 O a v o J 1 ' ‘ - ' r ,‘ ~ .- “ I" * v ' ‘ ’ x . L ,‘ I 0 I ,- 0 - . . o . . o - 1. ‘ . f! ‘~ x~r'ro"- r 1 -.-o p—. g-._._——. I- _ , _,-,r.__ - ..vyrr ‘ w-----r'-‘.~_-q -.-—-V v—fi0 - _ . .._ .,‘ . . “-..-v, ..." I -_- 108 Table 36 THE 3113 03 CLLAVAGJ CF p-hLTHLXYPhLSYL d-PHENETHYL 151311121 3'! ASHYERQUS 75121103031 CI-iLO‘RIEE 0 Temperature: 00 , Solvent: Toluene Ether : ~0.1528 fioles/liter, H 0.1559.Eoles/11ter. Time ,- . x a-x b-x k x 10 -5 7 000. x 10 '3.(x/1.) .(M/l.) .-.M/l.1- 1.31010:1 sec. -1 2.0 0.0073 0.1050 0.1081 17.1 0.0 0.0123 0.1000 0.1031 10.5 8.0 0.0133 0.1300 0.1371 11.2 12.0 0.0215 0.1313 0.1300 3.72 16.0 0.0269 0.1259 0.1293 2.09 20.0 0.0310 0.1210 0.1205 3.20 20.0 0.0362 0.1166 0.1197 -.23 35.0 0.0505 ..o.1023 . 0.1050 3.26 72.5 0.0700 0.0788 0.0819 8.22 f. k i . A 1 .. , 1 '~. _, . . . 1 j ‘ I . 1 - a ' A t 0. . o ' , .. . » 7 .-17 . - . .— 0 , - .. - - . .. .. _ . , .......1 ~ ... -4- -,‘_._ _ ,g-m-W“H-._wv—o‘-—w--—"A i.-.,.-.-.__---— .. . ..r . .. ..._¢-.. ,0 -, _. . --. ..- ..~.. ..4.‘ 7...».~. ..--- h.-- .... .u-a-‘o...».—.-.__..- n c . — _ I ' - 1 a 4-. . . i . P u. y 4 *-‘ - .1 .m , -_, . .. . _. ._'~~—- ,, - 74...... --. ---—.... ... - 0- . . - --.... Ha .. .. .. a ._.. “...-.0..- ~h‘*-”-'—-- .-.—-..--- . 0, . . r, —-‘. . ~ 0 “ ,. ‘...o .3 ...! 1"... ‘ § , , ‘.‘ , . , 1 '1 . . . ~ C . I - j C O . :, - s c \u v 0 v -‘ ‘ . f ‘ ‘ 7. x - . ._._.._,- . ., ~—.-..-._ --4-.—, -7.- .———.1 _ - ... .- _..W..-..u... . 1, -..‘..-.~_-._... ‘ - 109 Table 37 THE RATE OF CLEAVAGE OF p-METHOXYFHENYL c(-PHEEETHYL ETHBR BY ANHYDROUS HYDROGEN CHLORIDE ” Temperature: Ether : 0.1099 Moles/liter, “01 A A4 00°, Solventf ”Toluene 0.1102 Moles/liter A .A._. Time'“ x a-x b-x k x 10 #5" sec. x 10 :3 (M/l.) (M/l.) (M/l.) 1. mole ‘1 sec..- 2.0 ’ 0.0010 0.1089 0.1092 0.80 0.0 0.0020 0.1079 0.1082 0.85 7.0 0.0035 0.1060 0.1067 0.91 10.0 0.0008 0.1051 0.1050 0.87 16.0 0.0078 0.1021 0.1020 0.95 20.0 0.0107 0.1392 0.0995 0.65 -05.0 0.0197 0.1302 0.0905 0.90 100.0 0.0350 0.1105 0.0708 0.69 k 0.83 x 10 '5 t 0.10 avg. 1.mole -1 sec. - --—> ,_'._-._ ...— .)- 7.2.... 1'4“ “...—— u -9 --—‘o~- o» -* f .- o .s . o - v“. .-.-..‘r- n - s t .. ..-----o ,- 1 a C .-. .... _- , ‘ . \ . - K n n " _ a , , 8.. y 1 n . , . r - .. I ' , 0.3 « 1" b I — -.~'mv. --- - - u a - ~ ‘ . -v -7 ‘0' - h... - . . n" - - . -. ~ .- 0 .1. a! '- 4 o t t - - c - . t ( ' _' .‘ I ‘ \ ' - o ) — r ' ¢ . ‘1 0 fi ,; -¢ ‘1 I . t - . . 0o« Q ‘- o - .4 ,_ -c-‘A .. —V a "0" v ~-».7—n- --. fi -----—. mfifimmm-GO—I. r ' I A, 1 y r ' - . . f .. . : ‘ _ r \ .-\ r - - . v '0 cs -.\ ‘ O ‘ \ . .L - ’ .5. o- . - —-- n. ‘O ¢§ .I—C- .- — r —o- - - --~‘-m-- H ~ I h0-- -. ‘0 0 \ ’ -‘ \ I g f \ . 0 O . N 1 \ i . " r O . I ‘ - _. ,‘ 4 ‘ I o 1 Q .-' .. ' . O J '1 ' o .- . , f. . , a . , ' ' ) , o .’ 9 0 o \ \ __ ‘ I . x g . \ o ’ ‘ -.Au‘.’ . f. .‘ , x _. . . . (- v4 , ' -.. Q o- -r O J I . V‘ “ :- 3 . ' fi ‘ 3 ’ I“ ‘r‘, ' ‘ r ‘\ J ' d .‘o . I .r' ‘é- \ -\ . . 1 4 ‘9‘ . 1“ , - .- . . .' 1‘ f. ‘ ' L . _ . ._. g s- I -.- . 150 THE RATE OF CLBA‘IAGS 0F p-X‘diiTI—‘A'OXYFHJZIYL «-IWEI‘CETHYL ETHJI BY 3.2'5111'3112023 IIYDILOQLJN CHLORIDE -0. _‘" ..- Tenperatura: 00 . bolvcnt: Toluene 0 Ether : .1099 Moles/liter, HCl ; 0.1007 Roles/liter Timé x * a-2 bex k x 10"5 sec. x 19 ‘3 (3/1.1 00/1.) <0/1.) 1.881. '1 .... ’1-“ 2.0 0.0027 0.1072 0.1300 6.51 0.0 0.0052 0.1007 0.1355 6.38 6.0 0.0069 0.1030 0.1338 5.72 10.0 0.0093 0.1006 0.1310 0.71 20.0 0.0200 0.1295 0.1203 0.68 53.0 0.0383 0.116 0.1020 0.65 58.0 0.0003 0.1096 0.1000 0.56 ' 75.0 ' 0.050hrm” 0.0995"""0.0903”" 'h.88“ ---. -—- -.-- ‘0‘..—~.— -..." ....- — .- ’l-“H—7“I _ ,__.A. \. . . ‘4 '- l ‘ I O a —— fi—u— . -’ ~.-...—...~+ - ...-‘1 V..- H u C , . . . U 1' . D ‘. i .. .J . ...p 4 —~ ‘r'u-_-H —‘M-.—f r-uvcmn.-.- rub—...-.- 0 Z 5 I i ' ' '. "' ‘ , ., .. 1 . . . n l . -y- db . .- 0 l - u. - o " Y r‘. ‘\ . . a f‘ - I r‘ \ .\ a I 'r 1.? ‘ O s . I ‘.' . ~. Q ~~ . I saw-ct" '— 4“. M .. , . A.‘ ‘ _.\ ... ‘. O J , O r ‘ ‘ ‘. \ '. w _ \_ . .; w .. . ~ - '\ ‘. . 1 ' o 5 \ ., r ‘ . . 1 ‘ .' L‘ . . . \. \2 :. . I - . . . 2' ' I . \f . ‘ Q ‘ o \o‘ ‘I 0 O f ‘ ' - - 1 I H. 1: l . K) \' Ix ' .5 O “ “ -‘ '. " 1 C . I . x; .1 x r. " "‘ (x. .\ -~ v-w *5 . . Q ~' - I. “...- “w v—v— 151 "71" '\ 0010);.8 )9 ‘9 ’l "'1’” "‘ ‘7‘ ("T‘ 13","' 5‘ ." "" "‘"7'" A"? MW": T 111.5 .I.-1114 VA‘ CLuquUq v'L' p-0"...JL.'1UA;'11_JAIYU c*-PHEKBTEYL LTHLR BY nAHYLhQUd HIDLQCEN CHLORIDE 0 0, Temperature: 00 , solvent: Toluene Zther : 0.1526 Roles/liter, H01 : 0.1790 Roles/liter Time x a-x b-x k x 10 -5 sec. x 10 '3 (m/l.) (M/l.) (M/l.) 1. mole -1 sec. ‘1 2.0 0.0133 0.1393 0.1661 26.0 0.0 0.0320 0.1202 0.1070 36.8 6.0 0.0350 0.1173 0.1001 27.3 8.0 0.0018 0.1108 0.1376 25.6 10.0 ,0.0060 0.1066 0.1330 23.7 12.0 0.0535 0.0990 0.1258 30.2 16.0 0.0660 0.0862 0.1130 25.0 v 5 h ‘ _ . _ , A, ‘3 . . _ 7 _> ‘ 1’7 7_ _ , . > _ ‘ ‘ , , . . v _- ... __.._. -.. u f‘“ ‘-J*-.m‘---fi ...-.h- .. ' 1 O . » 0 v t ‘4 . - -7 -- , — — ~ 7 -. a..- . o. ..- -. . __ ~ -.-... 70. -... ---.-n_~d~—o.---x A a a - ~-—--..-...‘——n -m.‘ nan-h ~——-v- '.¢-- v.v-...L..-—‘-s-_‘.w. . 1 A_- .-.. -1, ' ... . \- ,- ts . . 5 ? - . Y . o J— o .. . o - \ _ .. - 0 - ‘ O ‘ t 7 ' ' ' I I ‘ . , ‘ , 0.4. ¢ 1 ‘ .. o ' 1 . O « u ‘ .. Q ‘1 . o . I. I .m-.. cow ——— 4 ...—m — ..- wm—ao » .. ._ .——-—.x.—u—ao- m. s. . .- -..mr-H. .. ......ws mflwH-G‘ , ‘— DISCUSSION 152 Thermal Reerranvepent If an ion-pair mechanism for the thermal rearrangement of f(—phenethyl aryl ethers to the correSponding phenols is correct, then one would eXpect that the degree of retention of optical purity in the migrating group would be a function of the extent of dissociation of the ion-pair. That this is indeed correct is supported by the results of this study. The percent retention of Optical activity and configuration was very hivh (905) when Optically active p-tolyl (XLphen- ethyl ether was thermally rearranged in a non-polar solvent (IS-methvlnaphthalene). The percent retention decreased slichtlv (to 97”) when the polarity was incr rease ed sliritly (phenyl ether) but a marked decrease (to only 16%) occurred in the most polar solvent (2,2'-oxvdieth0nol; see Table 30). Thus the percent racemization increase with increasing polarity of the solvent. similarly, the thermal rearrangement of or tically active p-methoxynhenyl cKLphenethyl etrer proceeded with areater retention of optical purity in phenyl ether (09”) than in 2 ,2'-oxydiethenol (only 103; see Table 30). The substituent in the para position of the phenyl group effects the extent to which Optical purity is retained. ,— t“ [""H a . -.- o v - I. ..0’ 4: v 3 .l ‘1 . Q ,. - ., _ - h .0 fl 1' Q 1 l 4 ‘1' 5 4 \‘. fl 1 .7 ‘ < . 1 v' I\‘ 3 I 1' 1 6 rv o a; a ' 0 f k’ _ .1. I... . I] l L ‘0 K! {A Q r l A I i. A- :— . I o - . - u "3 9' L- C .- ~D. . 7“ ‘1 i .- ' f ‘Iin r. ... “ “ I a, Q A. .0 \ i '(V i _ H 0 ‘. . .. i .- , . . 'A ~- { v ‘ , . i ‘l ‘. f", r . ‘ 5 r. 153 In the same solvent (phenyl ether) the percent retention in 093 where X 3 CH3, OCHB or Cl was 87, 09 and 50% respectively. The series investigated is not sufficiently extensive to make any substantial generalizations about the substituent effect. It would seem, however, that electron-withdrawing substituents, which Operate inductively to stabilize the incipient phenoxide ion do assist in ion-pair dissociation, leading to more extensive racemization. hethoxyl and chloro grOUps caused more racemization, in a single solvent, than the electron-releasing methyl group. Acid Cleavsfe The results of this investigation provide additional _examp1es of second order kinetics for the hydrogen chloride cleavaee of aryl (XEphenethyl ethers in toluene. The rates were slightly fhster for the p-tolyl and p-chlorophenyl Others than those previously Observed (31) for phenyl o(-pheneth_vl ether (see Table 00). p-F‘-:othoxyphenyl 0(-phen- ethyl ether exhibited a marked sensitivity to the hydroren chloride concentration; the rate data could not be fitted to either a second or third order equation. In those Cases where the molar concentration of hydrogen chloride was less I: D ' - a .I N V '- I' x- ‘. 1 .. - - o " n /;l.::\ — Q; ‘ - If \ "1' . . ‘ ~. . . .‘ ’ . ”We nu" . . V . e ' .' I w I t O - no ~ 0 Q . o _ v ." ‘- 1, \ . \ P I . ~ n "C d ' ', H I ’ ' w .- l t . u . . , . . .— . ‘ ‘ 4 a ' .. C 4 o . L -' I l ’ V .1 7 ' ‘ ' C . O < . u . _. . ‘ 7 r _, \ t 1 - g . J. ' ., . ) j .- ’*. l u ' D ' ' ‘ ‘ u' '1' Q ‘ ' .L r ... \ I - - 1 Q -~. ‘- r I. . .. a. _ .L~-.. -. - ....— 1 ’ ‘ - . .- ’ u ' ;' ; f ‘ '. I . IS _ I; N " ‘ . ' . I '~ - ' . ‘ ’ ‘ ’ T. I , , ‘ . . . , r , . . \‘ r r * . a") , ‘ k "1 .‘: ' f'x: : A I " ' , ' r o .1 ‘ ... _- ' ‘t I , f ‘ v r + ‘ I ' u, ; _ . . i . r , r‘ e v t ‘ Q - I‘ I ‘ v " A u , r r a . \ . 2 ., , f _ \ -“ fi , ‘ - 5. ) . . I 4 ' .. . ' - ,- 7 - 9 o. i I . . . . . y 4e __ n v 1 . » ' - « o‘ I " r " J A _‘ I . _ I , g ' P ', I ‘ V r ~O J A. _- ' . r . i _. ,7 § - - ' i .. t. . . ‘ r ‘. 15% Table LO THE RATE CCNSTANTS FOR THE HYDROGEN CHLCRIDs CLfiAVAGE CF PARA SUBSTITUTED PH SIJYL 0(- PHENETI'iYL dTh'LSI'iS Solvent: Toluene, Temperature: L0.00 : 0.05o Experiment Para . k x 10 -5 -1 -1 No. Substituent —l.mole - sec. 1. u 1.338 c 3- CH3 3.04:} a. 01 n.5ad ; V , . . , e 5. Cl 4.78 q a. This is an average value of five average values obtained by Elie (Bl). From Table 31._ .From TaleJZ. From Table 33. From Table 3h. u—r-Q“- -- .....— 0' l « l -- .A .I.—...“... ‘--, -n. -.- .«o‘. 1 f- o‘ 7 ~—...-—— -«t 7 ..Vi . O 0 ‘ - w»-~-v- -.. v .. t l ., . ‘1‘» o .- 7 n—n- - o rut-‘--'..-. -~ -- - < ~ -. ‘. ~90~ '- -- v- ~ -*~-n--mw.— “0.0-Mu...” ‘9 ‘- ._- -4 -~--—- mm“— .... ...— -O- o -m,_-_._. Q“ ----—~”.—-— rfi 155 than that of ether, the second order rate constants approached a constant value after about 7% reaction (see Tables 35-39). Product analysis showed the phenolic material to be p-methoxyphenol thereby eliminating the question as to which ether linkage was cleaved. 'The reason for the erratic behavior of p-methoxyphenyl 'q-phenethyl ether is not ~I~ apparent. _ It should be noted that a substituent in the aryl group might effect the cleavage in two ways. Electron- withdrawing"substituents'” *— 1 3 Ether {- HCl 2 Oxonium Ion-pair —->Cleavage Products 2 would favor 3 but retard 1, whereas the converse would be true for electron-releasing substituents. Indeed, a sub- stituent might change_the rate-controlling step from 3 to l. The ranye of substituents in the present investigation was not sufficiently broad to permit a definitive evaluation of theirteffects. The Optically active p-tolyl and p-chlorophenyl “-phenethyl ethers furnish two more examples of ether cleavage with retention of configuration. The Optical purity was not as great, however, as in the unsubstituted ether (see Table Ll). a} .I , ’ o ’ Q - o." . 7 A) , ' . H. \J . .' .V . Q y y . ' I . O ' ‘ O o . t V - . ‘ I - ' - ' ‘ _, l I“ 1.4 a . h' l . . l . ... _. . n .. O" _ 0‘ if» ’ i ‘J ... .. f - a ...4 -’ A ~ ‘ \ - ‘ . - ‘1' I: 9v .H o A. " H. o ’the 5 x . -J- a . :7 . 'v ‘ » v ‘t . ‘ '~ .’ 1. 9 V» .l K“ x . A 7 . ‘ pf a -..'. -v l A? s. ‘f' . a I 1 .- 1: ,' ., ,‘o O . ._. ?\ v ‘Q A.“ " .. O a. O )_ .‘4 r-n ‘ L 5'- ...l ‘E‘r' - .-_'.'. I '1 5"". a ,! ‘ 1 r .. ,. 1' ‘ k’ . .. ' o 44 ‘7 ‘7 v~ v C ‘ . f‘ n ' ,’ u‘vv ..A . “ f‘ p « ._~. u. «e v . n - “(rm 156 Table #1 PERCENT RETENTION OF couslcuaarlox IN Th3 CLEAVAGE OF OPTICALLY ACTIVE PARA SUBSTITUTaD FHEHYL «4oHe- *» 7 -.. ---u- u... ..- «—- ‘77- ...»- "--—r-.--" ...—9.9mm-.-“ *- . . . g I 2 .' :1 R - " . t -. , I - . . . r P . ,- L ‘ .. . . ~ . . a. 1" .x n - a Q. a 5.. 4 ~ , "‘ - ;. ~ ' .l u. s . Q 5‘ . .r’ SUE-I’m RY 157 Su.-.;-;..£nr 1. The mechanism of the Hofmann-Martius and Hickinbottom- Reilly rearrangements was investigated using xenqyphenethyl- aniline. The latter was prepared in 67-82% yield from qkpmenethyl chloride and aniline in aqueous potassium carbonate, thoueh optically active chloride gave racemic amine. Optically active amine was prepared by resolution of the raccmic material. Pure o- and p- d—phenethylanilines were synthesized by unambiguous routes. H-CX-phenethylamino rearranged at 2200 as the hydro-. chlorideror ainc*chloride complex. The para/ortho ratio of the products was different for each case, being smaller for the hydrochloride (60-70% para, 25-32% ortho) than for the zinc chloride (75-90% para, 3-13% ortho). It was shown, however, that o-CX-phenethylaniline was rearranged to the para isomer by zinc chloride, but not as the hydrochloride. Optically active N-cK-phenethylaniline, as the hydro- chloride, rearranged to product with but slight Optical activity; the zinc chloride complex gave racemic product. An intermolecular mechanism involving the (x-phenethyl carbonium ion can accomodate the results observed in both rearrancements. r 4 0?! “I o - 4 \ ... § 1. ~.. I. . . .. . .... A .' a. n. o no. . J 4.... n _ r... . . v. . r a .o , m. A W . 1 . .1. fl .9». a .n . n . " ‘1” w” .p . . . . ... . .. . . . F. . r _ .I . .. p . w o . .. . ‘ t a: .p . a ‘11 . t e . ,t .. ‘ ... .- .g .r. dc. a» t l; I .s ~ .1 . .. ... . - r. . _ .I H I I. ~ - 0 g o I | A, \ u . I u p l _ u(. . u \1 I O k u — ... ‘ul .\ .\.v - A A , . _ . . . I L .e C r 4 r, o. , . . :o . a a“ .1, A .—. U I 'é ') r.” 0'; O‘ r. ‘J ’- - ‘ ‘- A.‘_- . " 158 2. Aniline reacted with 10 :- n r: ALL. ,. - v A . 4 .A u" 1 a. ‘ .1 y g '. w ' ‘ V‘ s 9‘ ‘l O a .~ ~ r ‘- . e 'V f '- o v 0‘ I l-\ v t I l. I, ,1 to v. ,n ’ I .~ I \ , .‘ . .6 a 4- (u. . . . ‘ e .‘ -\ '. ‘4 "Y a ' «Q’Y‘V‘ ' . e e "N/- v" - . ‘yuv, - J. I a :- fr\' r.‘ . . .. t? P "-7 G ..‘ . 1‘ a. T l a ' 4 .l ‘ . n-Q >‘\e 7 ‘. 4 . ,_ c .‘3 0 1 . fl ’ V \I‘. ,‘ s .,- \ .. O x ‘ ‘ U '| j i ‘. ,1 o ' r e \ ‘ ‘ ’ (fl 1 . r - w - 7‘ o 7". .- VI g“ ‘ i O i‘ tiff) . _. \ . ~ :0 I 159 expression. The p-methoxyphenyl cX-phenethyl ether showed a marked sensitivity to the concentration of hydrogen chloride. The results were erratic, and did not show a discreet kinetic order. It was demonstrated that the methoxyl group was not cleaved during the reaction. Optically active p-tolyl and p-chlorOphenyl (Krphenethyl others were cleaved by hydrogen chloride with retention of configuration. The percent retention of optical purity was determined. ‘3 a. . ~ .. o. . . . ' ... w: . J u - 0.11 ., . h . v a at. . . . v... . . a ,2 , . .1. . . ‘ I. w . . . I. ‘ . . L . fix a w J . 0 II .1 o a. . . . . \ I i o. I D , . ‘ Oak .5 ~ . . n .4. , v r . t\ I. I it. 9 . I i e .w. W . r . . , . . J ~ ‘ p . .. I . .. . . 3 l .- . . “ . . w 4. .. . . t a . n. .. . . A e . ‘I u I a b . J. .— L I 1. 2. 3. h. 5. 10. 11, 12. 13. 11.. 15. 160 BIBLIOGRAPHY A.h. Hofmann and C.A. Martins, Berichte 5, 7&2 (1871). A.w. Hofmann, ibid., 2, 705..720 (1872). W.J. Hickinbottom and J. Reilly, J. Chem. Soc. 111, 103 (19201e A . . w.J. Hickinbottom, ibid., 6t (1927). W.J. Hickinbottom and (a) A.C. Kayne, ibid., 558 (1930) (b) G.H. Preston, ibid., 1556 (1930). W.J. Hickinbottom and S,E.A. Ryder, ibid., 1281 (1931). w.J, Hickinbottom, ibid., (a) 2396, (b) 2616 (1932). w.J.'Hickinbottom, (a) 9&6, (b) 25L5 (1932)- w.J; Hickinbottom, ibid., (a) 319, (b) 1700, (c) 1981 (193t). W.J. Hickinbottom, ibid., 1279 (1935). w,J, Hickinbottom, ibidr, (a) ton, (b) 1119 (1937). D.J. Cram and F. Hawthorne, J. Am. Chem. Soc..1&, 5859 (1952). -. . 8.3. Eleuterio, Ph.D. Thesis, Michigan State University (1953)’. -1 _ ~ g M. Busch, Berichte 37, 2691 (1904). N.D. Cheronis and J.B. Entrikin, "Semimicro Qualitative Or anic Analysis", T.Y. Crowell Co., New York, l9h7, (a p. 133, (b) p. 261. R. Descamps, Bull. Soc. Chem. Belg. 2} 269 (1924). "Oregnic Syntheses", John hiley and Sons, 1952, vol. 32. . R. Stoermer and H. Fincke, Berichte A; 3119 (1909). 'fl O .111 O '1. I _‘ TI 0 ... ~ ’1. I. 1 . “a I A O. b w 0.41. 5 . — ’ n O n . v. o O " r . f o! r. A. r J- r J. r J. r- .L rlL (I. O 9 O 0 e O Q . u . s) . I ‘1' o .J (.I. .110 .0. a . _ . I O 7....“ O ...u 0 O n. O a. ... D l. . . . . x . , . .\ v. Q .~ 1 . I . . . I . s\ . . A... a . r . ' a . 1 a \ '3'. l c g D o < .w [51‘ [I‘ .h It Cro— . as.” .. . .. e . . e n. ... 3 r . .. a . . . . y \ i «In o a [a u . ‘9 l ' ‘ ... m . t .. J ,1 eel O. s .. .- .3. . «.... . _ . . u ‘ V: H ~ NA 0’ r.L ow . x x . 1 . 1117 . .1. r II» » . . .... ., F a N. a . . I n .FL I... . . . . ”.... . I . w . v . .1 J . 9 . 1 a; In 0 O H a ._ e w J .v - . . A u a a . O . . t _ .. . . 4 . C t . O I ,a r a w x 'c . a on. I) . ... 4 e o a , I . . .. a. P \ V ' _ . . _ . _ 3 . . .. ,. . .2 at . .. I s r . . A, . A \ v ( 1 C L. . a . . L 4 ' 1 V D\ O n . 2 O o t I t I _ . 1 P _ U or o 0 . . f V . . . . It - v t . .. I r n u , s Q. V. y .\¢ & . . O t 0 19. 20. 22. 23. 2L. 25. 26. 27. 28. 29. 30. 31. 161 .3. Porter and C.T. Hirst, J. Am. Chem. Soc. A1, 1265 (1920). "Organic Syntheses", John Wiley and Sons, 19L6, Coll. V01. 1. p0 1020 M.J.S. Dewar, "The Electronic Theory of Organic Chemistry", Oxford University Press, New York, 19b9, p. 227. A. Michael, J. Am. Chem. Soc. 53, 787 (1920). C.K. Inrold, "Structure and hechanism in Organic Chemistry", Cornell University Press, Ithaca, N.Y., 1953, p. 615. G.G. Ecke, J.P. Napolitano, A.H. Filbey, and A.J. Kolko, J. Am. Chem. Soc. 33, 639 (1957). H. Mart and H.S. Sleuterio, J. Am. Chem. Soc. 22, 519 (1954). M.S. Newman, "Steric Effects in Organic Chemistry", John Kiley and Sons, New York, 1955, p. 299. H. Hart, w.L. Spliethoff, and 3.5. Eleuterio, J. am. Chem. soc. 6, 1517 (1951). H. Hart and H.5. sleuterio, J. am. Chem. Soc. IQ, 51o (195A). W.J. Chambers, W.R. Brasen and 0.3. Mauser, J. Am. Chem. Soc. 22, 879 (1957). H. Hart, private communication. R.J. Elia, Ph.D. Thesis, Michigan State University, 1957. g—uo . s . {I .I . 0 IV. a f, C r ’ ¢ . .. O O . o . w I: ... ... w... ..7. , I c o . o .o. 7 ¢ D\ a. o f« .1, . b DaiTeRYfi‘fiéfiRY Demco-293 MICHIGAN STATE UF‘HVERSITY or AGRii‘ULTURE Ar-so APE’L’JL‘ MMCE DEPAR'I'MEnT OF CHEMISTRY EAST LANSING, MICHIGAN M'CIWIGAWIIUI‘HHEH WEIRITIIITIWIRIAIITIB 3 1293 03142 5642