

This is to certify that the

$$
\begin{aligned}
& \text { thesis entitled } \\
& \text { Hystizeis and transitions betiveen } \\
& \text { multiple steady state, of the Sehligh } \\
& \text { model } \\
& \text { presented by } \\
& J . K_{i} \text { thalam }
\end{aligned}
$$

has been accepted towards fulfillment of the requirements for
Ph.D_degree in Physical Cherristug

Major professor

Date $3 / 9 / 84$

RETURNING MATERIALS:
Place in book drop to remove this checkout from your record. FINES will be charged if book is returned after the date stamped below.

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY

Department of Chemistry

ABSTRACT
 HYSTERESIS AND TRANSITIONS BETWEEN MULTIPLE STEADY STATES OF THE SCHLÖGL MODEL

By

J Kottalam

Several interesting phenomena are associated with multiple steady states in reacting systems far from equilibrium. To study these phenomena in simplest form, Schlögl introduced a cubic reaction model for autocatalytic isomerization. In the parameter space for this model there is a region in which two stable steady states and an unstable steady state are found. In this dissertation spontaneous transitions between the stable nonequilibrium steady states of the Schlögl model and hysteresis in induced transitions are analyzed.

The stochastic dynamics are described by a birth-anddeath master equation. The time-dependent solutions of the master equation can be constructed using the eigenvalues and the eigenvectors of the transition matrix in the master equation. If the system parameters lie in the interior of the multiple steady-state region, then the system undergoes Kramers relaxation. The Kramers rule is valid for the Schlögl model only if both the ratio of the two eigenvalues closest to zero is substantially different from unity and the shapes of the two peaks in the slowest decaying mode match the corresponding peaks of the stationary mode. The region where the

Kramers rule breaks down is determined. The eigenvectors and the time-dependent solutions are displayed for points close to the boundary separating the single and multiple steadystate regions and for points well in the interior.

If the system is prepared at a single steady state and an externally controllable concentration parameter is increased at a fixed rate and then decreased at the same rate, the response of the system generates a hysteresis loop. This effect has been simulated both deterministically and stochastically. The deterministic results indicate a static contribution to hysteresis in the multiple steady-state region, while this contribution disappears when fluctuations are taken into account. In the single steady-state region both deterministic and stochastic results indicate that hysteresis is purely dynamic.

Noyes has proposed a criterion for relative stability of stable steady states in multistable systems. This criterion is based on coupling two reacting systems by material exchange and determining the final state of the coupled system. It is shown in this dissertation that such a coupled system exhibits more steady states than do the individual systems, and that the mixing experiments are not suitable for a study of relative stability. It is also shown that variation in the rate of material exchange shifts the steady states of the coupled system; these shifts are analyzed for cubic and quartic models.
who showed me the pleasure of learning

AND FATHER

who showed me the value of education

I am grateful to all who assisted me during this endeavour. The contributions of only a few are mentioned here.

Needless to say that this work and much of what I have learnt would be impossible without the excellent guidance of Dr. Katharine Hunt. She is a perfect example for the definition of a guide: "Let not the wise disturb the minds of the ignorant; let him, working with devotion, show them the joy of good work." (Gita 3:26).

Sunil taught me computer programming. He was always there to pick me up whenever the computer and other facets of life trampled me down. The few friends I did have during my stay at MSU served the purpose of having millions of friends. Of all contributions from my wife, the only thing I find words to express is that she typed the manuscript.

My interest in mathematics was created by my mother in my childhood. My education is a manifestation of my parents' intelligence and wisdom. Therefore, my achievements, if any, are really theirs.

TABLE OF CONTENTS

LIST OF FIGURES vii
CHAPTER I INTRODUCTION 1
CHAPTER II MODERN METHODS FOR MACROSCOPIC CHEMICAL KINETICS 7
2.1 The Schlögl model and the deterministic analysis 7
2.2 The stochastic formulation 11
2.3 Methods of solution 20
CHAPTER III A REVIEW OF STUDIES ON THE SCHLÖGLMODEL32
3.1 Further properties of the steady states 32
3.2 Coexistence of two phases 36
3.3 Approximate solution of master equation 44
3.4 Relative stability 47
3.5 Mean field theory and multivariate master equation approaches to include local fluctuations 59
3.6 Critical phenomena 73
CHAPTER IV A STUDY OF ASYMPTOTIC RELAXATION IN THE SCHLÖGL MODEL USING EIGENVECTORS OF THE TRANSITION MATRIX 83
4.1 The Schlögl model and its stochastic formulation 84
4.2 Transition between the two stable steady states 87
4.3 The validity of Kramers relaxation 98
CHAPTER V HYSTERESIS IN TRANSITIONS BETWEEN MULTIPLE NONEQUILIBRIUM STEADY STATES OF THE SCHLÖGL MODEL 127
5.1 Schlögl model and its steady states 127
5.2 Deterministic simulation of hysteresis 129
5.3 Stochastic simulation 134
CHAPTER VI DETERMINISTIC STUDY OF MULTIPLE STEADY STATES IN COUPLED FLOW TANK REACTORS 141
6.1 Multiple steady states in a single continuously stirred flow-tank reactor 142
6.2 Coupled flow-tank reactors 146
6.3 Comparision with the Noyes analysis 168
CHAPTER VII FUTURE WORK AND DEVELOPMENT 173
APPENDIX A Proof that the transitions generating hysteresis cannot occur before a marginal
stability point is reached according to the deterministic rate equation 175
APPENDIX B Method and program to find the eigen- values of the transition matrix 178
APPENDIX C Programs to construct the eigenvectors of the transition matrix 183
APPENDIX D Deterministic simulation of hysteresis 204
APPENDIX E Stochastic simulation of hysteresis 208APPENDIX F Special features of the cubic mechanismin a flow tank reactor213
REFERENCES 217

LIST OF FIGURES

Figure 2.1 The steady states of the Schlögl model 9
Figure 4.1 Eigenvectors of the transition matrix $\underline{\underline{A}}$ for the Schlögl model, when the parameters correspond to a point in the interior of the multiple steady-state region 88
Figure 4.2 Time evolution of probability distri- bution when the parameters correspond to a point in the interior of the multiple steady-state region. Initial distribution is $\delta(x-500)$. 94
Figure 4.3 Time evolution of probability distribution. Initial distribution is $\delta(x-50)$. 95
Figure 4.4 Time evolution of probability distribution. Initial distribution is $\delta(x-253)$, peaked at the unstable steady-state X-value 96
Figure 4.5 Time evolution of probability distribution. Initial distribution is $\delta(x-230)$ 97
Figure 4.6 The first three nonzero eigenvalues of the transition matrix $\underset{\underline{A}}{ } . C_{4}=3.33333$. 104
Figure 4.7 The first three nonzero eigenvalues of the transition matrix $\underline{\underline{A}} \cdot c_{4}=1.7$ 105
Figure 4.8 The first three nonzero eigenvalues of the transition matrix $\underset{\underline{A}}{ } . C_{4}=1.3$ (no multiple steady states) 106

Figure 4.9 Regions of the parameter space where the conditions on the eigenvalues (equation (4.31)) is satisfied. 108

Figure 4.10 Eigenvectors of the transition matrix A near a marginal stability point

Figure 4.11 Time evolution of the probability distribution near a marginal stability point

Figure 4.12 Eigenvectors of the transition matrix near the critical point

Figure 4.13 Time evolution of probability distribution near the critical point. Initial distributions are a) $\delta(x-120)$, b) $\delta(x-300)$, and C) $\delta(x-182)$ 120

Figure 4.14 Time evolution of probability distribution near the critical point and near a marginal stability point. Initial distributions are a) $\delta(x-300)$, b) $\delta(x-100)$, and c) $\delta(x-190)$.123

Figure 5.1 Results from deterministic (curves with arrows) and stochastic (noisy curves) simulations of hysteresis in the multistable region ($c_{4}=1.7$). The S-shaped curve is the set of steady states 131

Figure 5.2 Results from deterministic (curves with arrows) and stochastic (noisy curves) simulation of hysteresis in the single steady-state region.

$$
\left(c_{4}=1.3\right)
$$

Figure 5.3 Area inside the hysteresis loop versus the rate of change of B. (Deterministic results) 133

Figure 5.4 Comparision of deterministic (upper line) and stochastic simulation (lower line) results. $c_{4}=1.7$.

Figure 5.5 Comparision of deterministic (upper line) and stochastic simulation (lower line) results. $\beta=50$.140

Figure 6.1 Steady states for the cubic model in a single flow tank reactor.147

Figure 6.2 Steady states of coupled reactors system for Noyes cubic model. $k_{0}=1.5 \times 10^{-5} \mathrm{~s}^{-1}$150

Figure 6.3 Steady states of coupled reactor system for the cubic model. $\mathrm{k}_{0}=2.7 \times 10^{-5} \mathrm{~s}^{-1}$152

Figure 6.4 Steady states of coupled reactor
system for the cubic model. $\mathrm{k}_{0}=2.516963 \times 10^{-5} \mathrm{~s}^{-1} 153$
Figure 6.5 The potential function ϕ for the cubic model with $k_{0}=2.517 \times 10^{-5} s^{-1}$ and $k_{x}=0$.
Figure 6.6 The potential function ϕ for the cubic model with $k_{0}=2.517 \times 10^{-5} s^{-1}$ and $k_{x}=4.0 \times 10^{-5}$ s^{-1}

Figure 6.7 The potential function ϕ for the cubic model $\cdot \mathrm{k}_{0}=2.517 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=9.061 \times 10^{-5}$ s^{-1}.

Figure 6.8 The potential ϕ for the cubic model.

$$
\mathrm{k}_{0}=1.5 \times 10^{-5} \mathrm{~s}^{-1} \text { and } \mathrm{k}_{\mathrm{x}}=3.9 \times 10^{-5} \mathrm{~s}^{-1}
$$159

Figure 6.9 The potential ϕ for the quartic model.
$k_{0}=3.374 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=1.28 \times 10^{-5} \mathrm{~s}^{-1}$. 160
Figure 6.10 The potential ϕ for the cubic model.
$k_{0}=3.5 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=1.1 \times 10^{-4} \mathrm{~s}^{-1}$. 161
Figure 6.11 Comparision of steady state patterns of
the single and coupled flow reactors. 172

CHAPTER I

INTRODUCTION

All efforts to understand natural phenomena involve observation, deduction, induction, and investigation, which are characteristic of human intellect. One of the methods is mathematical modeling, in which a physical system is first observed, mathematical relations are deduced, these relations are applied inductively (or generalized) to other similar systems, and these systems are investigated to verify the relations. Since models are deduced from limited observations, they need not be complete, and we should incorporate modifications as the scope of the models widens to include new fields of investigation.

A chemist's ambition is to completely understand all aspects of chemical reactions. One such aspect is the variation in the concentrations of different species during a reaction. These variations can be investigated at several levels of precision. One extreme is to view matter as continuous bulk material with the amounts of each substance varying smoothly in time, governed by the law of mass action. In this case the equations of motion for chemical concentrations are ordinary differential equations. On the other hand, the exact (classical) treatment would involve the study of encounters between various molecules using the equations of motion for the position and velocity vectors of each atom in
each molecule. Although such "molecular dynamics" calculations are being carried out, a typical laboratory situation involves $O\left(10^{23}\right)$ molecules each having $O\left(10^{1}\right)$ atoms or more. Moreover, the number of observations actually made on a system in the laboratory is very small compared to the number of independent data elements that would be available from an exact theoretical treatment. Hence in statistical mechanics the encounters between molecules are viewed as frequently occurring random events and the attempt is made to derive the expected values of the few observable quantities and the expected deviations from those values. Thus we are often satisfied with the macroscopic description. When the deviations are large the system may exhibit phenomena which cannot be treated by deterministic methods. Then we need to incorporate stochastic character into the theory.

Let us consider a spatially homogeneous mixture of n reacting chemical species whose particle numbers $\mathrm{X}^{(1)}, \mathrm{X}^{(2)}$, ..., $X^{(n)}$ are components of \underline{X}. In macroscopic chemical kinetics the time evolution of \underline{X} is given by a first-order ordinary differential equation:

$$
\begin{equation*}
\frac{d \underline{X}}{d t}=\underline{F}(\underline{X}) . \tag{1.1}
\end{equation*}
$$

This equation is nonlinear except in special cases and is usually autonomous (i.e., $\underset{(\underline{X})}{ }$ is usually independent of t).

The steady states of the system are those points \underline{X}_{s} in state-space at which the numbers of all chemical species are stationary with respect to time.

$$
\begin{equation*}
\left.\frac{d \underline{x}}{d t}\right|_{\underline{X}=\underline{x}_{S}}=\underline{F}\left(\underline{X}_{s}\right)=0 \tag{1.2}
\end{equation*}
$$

If the system is closed, we call the steady state an equilibrium state. For systems operating at or near equilibrium conditions, the steady state is unique, and it is globally and asymptotically stable. Asymptotic and global stability mean that the system will eventually arrive at the steady state starting from an arbitrary initial condition. This is a consequence of the minimum entropy production principle ${ }^{1}$.

However, an open system forced away from the linear regime near equilibrium by a matter flux across its boundaries can exhibit exotic phenomena such as the presence of several steady states and periodic oscillation. If one of these structures (steady-states or oscillatory solutions of equation (1.1)) is unstable, then the solutions of the deterministic differential equations do not describe the system adequately. If a one-variable system has more than one steady states, not all can be stable. Suppose there are two stable steady states X_{1} and X_{3} for the single-variable system; then in the neighborhood of X_{1} the system moves towards X_{1} and therefore away from X_{3} (and similarly for X_{3}). This implies the
existence of another point between X_{1} and X_{3} from whose neighborhood the system can only move away; this is an unstable steady state. By the same argument, ${ }^{2}$ two stable steady states in a two-variable system must be accompanied by an unstable steady state, a saddle point, or an unstable linit cycle. ${ }^{\dagger}$ In these situations we need to study the system in more detail.

In the stochastic description, sometimes called the mesoscopic description, the system can occupy any possible state with a finite probability at a given time. Thus we use a probability distribution over the species-number space in place of the species number to specify the state of the system at a given time. We again use the law of mass action, but we use it to calculate the probability of transition from one state to another and not to calculate the rate of the reaction directly. Using the transition probability we arrive at a partial differential equation - called the master equation governing the evolution of the probability distribution in time.

For example, when the parameters take certain values, the Schlögl model ${ }^{3}$ has three steady states, one of which is

[^0]unstable. ${ }^{4}$ According to the deterministic rate equations only one of the stable steady states can be reached from a particular initial point, but according to the master equation ${ }^{5}$ both stable steady states and their neighborhoods can be reached with significant probability independent of the initial distribution. Moreover, when an external parameter is varied beyond a threshold value, the system undergoes a transition from one stable steady state to another. When we reverse this variation, the threshold for the reverse transition is different. The extent of this hysteresis effect is markedly different in the deterministic and stochastic descriptions.

In the next chapter the stability analysis of deterministic steady states and the stochastic formulation are illustrated using the Schlögl model as an example. Methods for solving the stochastic equations are also explained. Chapter III provides a review of the literature on topics related to multiple steady-state systems; coexistence of two phases, relative stability of steady states, critical phenomena, and alternate formulations of stochastic kinetics are discussed. In chapter IV results for the time evolution of the probability distribution as described by the master equation are presented. In chapter V deterministic and stochastic simulations of hysteresis in the Schlögl model are presented. These studies are based on a master equation which takes into account uniform fluctuations in the particle number, but excludes spatial fluctuations. For a more realistic description,
particularly in the vicinity of the critical point, both kinds of fluctuations should be considered. In chapter VI the effects of coupling two open reacting systems are studied. Chapter VII contains suggestions for future work on these problems.

MODERN METHODS FOR MACROSCOPIC CHEMICAL KINETICS

2.1 THE SCHLÖGL MODEL AND THE DETERMINISTIC ANALYSIS

A system is said to be within the linear regime around an equilibrium state if the thermodynamic fluxes (e.g., rate of reaction) are linear combinations of the forces (e.g., chemical affinity). In this region, it is well known that there can be only one stable steady state. ${ }^{1}$ Several models have been proposed to study chemical kinetics far away from equilibrium. One model exhibiting multiple steady states is Schlögl's termolecular model. ${ }^{3}$ It consists of the reactions

$$
\begin{align*}
2 \mathrm{x}+\mathrm{A} & \stackrel{\mathrm{k}_{1}}{\stackrel{\mathrm{k}_{2}}{\rightleftarrows}} 3 \mathrm{x} \\
\mathrm{~B} & \underset{\mathrm{k}_{4}}{\stackrel{k_{3}}{\rightleftarrows}} \tag{2.1}
\end{align*}
$$

Here the numbers of molecules of A and B are kept at predetermined constant values by contact with external reservoirs or by appropriate feeding into or removal from the reactor. We assume the reactor to be efficiently stirred so that the system is always homogeneous and diffusion effects need not be considered. The constants k_{1}, k_{2}, k_{3}, and k_{4} are specific rate constants independent of the size of the
system. While the rate constants are characteristic of a reaction mechanism, the concentrations of A and B can be controlled externally. For convenience we will also set the numbers of A and B molecules equal and denote the number by B. Then the deterministic rate equation is

$$
\begin{equation*}
\frac{d x}{d t}=k_{1} b x^{2}-k_{2} x^{3}+k_{3} b-k_{4} x \tag{2.2}
\end{equation*}
$$

where $X=X / V$ and $b=B / V$ are the concentrations of X and B (and A) respectively, and V is the volume of the system. The steady states of the system are the real solutions of the algebraic equation

$$
\begin{equation*}
\frac{k_{1}}{v^{2}} B x^{2}-\frac{k_{2}}{v^{2}} x^{3}+k_{3} B-k_{4} x=0 \tag{2.3}
\end{equation*}
$$

The steady states are displayed in Figure 2.1 for various values of the parameters. It can be shown ${ }^{5}$ that for $\eta=\frac{k_{1} k_{4}}{k_{2} k_{3}}<9$, there is only one steady state for all values of B, while for $\eta>9$ there is a range of B values in which there are three steady states (see Figure 2.1).

Let X_{1}, X_{2}, and X_{3} be the roots of this cubic equation. The stability of each steady state can be deduced by a linear stability analysis. The rate equation can be written as

Figure 2.1 The steady states of the Schlögl model. Wine number of X molecules at steady state as a function of the number of B molecules for various values of the rate constants.

$$
\begin{equation*}
\frac{d x}{d t}=-\frac{k_{2}}{v^{2}}\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right) \tag{2.4}
\end{equation*}
$$

Let us consider an arbitrarily small deviation δX_{i} from X_{i} ($i=1,2,3$). Substituting $\delta X_{i}=x-x_{i}$ in equation (2.4) gives

$$
\begin{align*}
\frac{d \delta x_{i}}{d t} & =-\frac{k_{2}}{v^{2}}\left(\delta x_{i}+x_{i}-x_{1}\right)\left(\delta x_{i}+x_{i}-x_{2}\right)\left(\delta x_{i}+x_{i}-x_{3}\right) \\
& =k_{i} \delta X_{i} \tag{2.5}
\end{align*}
$$

to first order in δX_{i}, where

$$
\begin{align*}
k_{1} & =-\frac{k_{2}}{v^{2}}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \\
k_{2} & =-\frac{k_{2}}{v^{2}}\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right) \\
\text { and } k_{3} & =-\frac{k_{2}}{v^{2}}\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right) . \tag{2.6}
\end{align*}
$$

These linear differential equations have the solutions

$$
\begin{equation*}
\delta \mathrm{X}_{\mathrm{i}}=\delta \mathrm{X}_{i}^{0} \mathrm{e}^{\mathrm{K}_{\mathrm{i}} \mathrm{t}} \tag{2.7}
\end{equation*}
$$

The steady state X_{i} is stable, marginally stable, or
unstable according to whether an arbitrarily small deviation δX_{i} decays, remains stationary, or grows, and this in turn depends upon the sign of $\operatorname{Re}\left(\kappa_{i}\right)$. From the definition of k_{i} one concludes the following: If all roots are real, with $X_{1}<X_{2}<X_{3}$, then X_{1} and X_{3} are stable and X_{2} is unstable. Whenever X_{2} coincides with either X_{1} or X_{3} (or both) it is marginally stable. If there is a complex pair of roots, then the real root is always stable.

2.2 THE STOCHASTIC FORMULATION

In order to study transitions between two stable steady states where the average value of X reaches and passes through the unstable steady state value, the deterministic analysis is not adequate. For a better description, we consider the number of molecules of X in a fixed volume at a given time as a discrete random variable. Accordingly we focus on the. probability $P(x, t)$ that the random variable X has value x at time t. The evolution of this distribution is determined by the occurrence of chemical reactions at random as explained below.

A stochastic process is completely determined by specifying an initial distribution and a hierarchy of conditional distributions; i.e.,
$P\left(x_{n+1}, t_{n+1} \mid x_{0}, t_{0} ; x_{1}, t_{1} ; \ldots ; x_{n}, t_{n}\right)$ denotes the conditional probability that the system has x_{n+1} molecules of x at time t_{n+1} given that it had x_{0} at time t_{0}, x_{1} at time t_{1}, and so on,
where $x_{0}, x_{1}, \ldots, x_{n}$ are d-dimensional vectors for a process with d variables. If it happens that

$$
\begin{equation*}
P\left(x_{n+1}, t_{n+1} \mid x_{0}, t_{0} ; x_{1}, t_{1} ; \ldots ; x_{n}, t_{n}\right)=P\left(x_{n+1}, t_{n+1} \mid x_{n}, t_{n}\right) \tag{2.8}
\end{equation*}
$$

for all n, then the process described by this conditional probability is called a Markov process. In other words, of all conditions specified in the past, only the most recent is relevant in determining the future evolution of a Markov process. This does not imply that the future is independent of the past, but this dependence is entirely contained in the present. If the Markov process satisfies the additional condition

$$
\begin{equation*}
P\left(x_{n+1}, t_{n+1} \mid x_{n}, t_{n}\right)=P\left(x_{n+1}, t_{n+1}+\tau \mid x_{n}, t_{n}+\tau\right), \tag{2.9}
\end{equation*}
$$

then the process is said to be a stationary (or time-homogeneous) Markov process. The Markovian character of stochastic processes corresponds to the first order nature of differential equations whereas the stationary property corresponds to the autonomous behavior of deterministic differential equations. Just as an n-th order deterministic differential equation can be transformed to a set of n coupled first order equations, ${ }^{6}$ a non-Markov stochastic process requiring the specification of n conditions for its complete description can be transformed to a Markov process is nd variables?

A Markov process is completely determined by specifying an initial distribution and a transition probability $P(x, t \mid y, s)$. Using elementary theorems of probability theory it can be shown that

$$
\begin{equation*}
P(x, t+s)=\sum_{y} P(x, t+s \mid y, t) P(y, t) . \tag{2.10}
\end{equation*}
$$

This equation is called Kolmogorov's equation. Using first principles of differentiation, we obtain the master equation ${ }^{8}$

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=\sum_{y} A_{x y} P(y, t) \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{x y}=\lim _{s \rightarrow 0^{+}} \frac{P(x, t+s \mid y, t)-\delta_{x y}}{s} \tag{2.12}
\end{equation*}
$$

is the probability of transition per unit time from state Y to state x. $A_{x y}$ is called the transition probability rate or infinitesimal transition probability when $x \neq y$. Using the normalization condition on $P(y, t+s \mid x, t)$ namely,

$$
\begin{equation*}
P(x, t+s \mid x, t)=1-\sum_{y \neq x} P(y, t+s \mid x, t) \tag{2.13}
\end{equation*}
$$

we get

$$
\begin{equation*}
A_{x x}=-\sum_{y \neq x} A_{y x} \tag{2.14}
\end{equation*}
$$

The postulates of stochastic chemical kinetics are

1) Chemical reactions are Markov random processes.
2) Given that the system has x molecules at time t, the probability that a reaction step will occur in the interval $(t, t+\delta t)$ is

$$
\begin{equation*}
a_{m}(x, t) \delta t+o(\delta t) \tag{2.15}
\end{equation*}
$$

where $a_{m}(x, t)$ is proportional to the number of reactant combinations leading to the m-th step at time t. For example, if the second step in a list of all elementary reactions is $3 x \rightarrow 2 x+A$, then $a_{2}(x, t)=c_{2} x(x-1)(x-2) / 3!$

The second postulate gives the transition probability as

$$
\begin{equation*}
A_{x y}(t)=\sum_{m} a_{m}(y, t) \tag{2.16}
\end{equation*}
$$

where m ranges over all reaction steps which result in a net change of $y \rightarrow x$ in the species number. The Markov property is implied in the deterministic formulation also. The second postulate is the analog of the law of mass action. Thus the random variation of X is the only addition to the theory.

[^1]For example, the (infinitesimal) transition probability for the Schlögl model is given by 5,9

$$
A_{x y}= \begin{cases}a_{+}(y) & \text { for } y=x-1 \tag{2.17}\\ a_{-}(y) & \text { for } y=x+1 \\ -a_{+}(y)-a_{-}(y) & \text { for } y=x \\ 0 & \text { for }|x-y|>1\end{cases}
$$

where

$$
\begin{align*}
& a_{+}(x)=c_{1} B x(x-1) / 2!+c_{3} B \tag{2.18}\\
& a_{-}(x)=c_{2} x(x-1)(x-2) / 3!+c_{4} x \tag{2.19}
\end{align*}
$$

x and y range over nonnegative integers, and the c_{i} are the proportionality constants which are related to the rate constants k_{i}. The relation is made by taking the deterministic limit in the master equation. ${ }^{10}$ We find

$$
\begin{equation*}
k_{i}=v^{m_{i}^{-1}} c_{i} / n_{i}! \tag{2.20}
\end{equation*}
$$

where n_{i} is the molecularity of the $i-t h$ step in x and m_{i} is the total molecularity of the i-th step (e.g., $n_{1}=2, m_{1}=3$). The master equation for the Schlögl model is

$$
\begin{gather*}
\frac{\partial}{\partial t} P(x, t)=a_{+}(x-1) P(x-1, t)+a_{-}(x+1) P(x+1, t) \\
-\left[a_{+}(x)+a_{-}(x)\right] P(x, t) . \tag{2.21}
\end{gather*}
$$

The stationary distribution $P_{s}(x)$ is the solution of

$$
\begin{align*}
& \frac{\partial}{\partial t} P(x, t)=0 \\
& \text { i.e., } a_{+}(x-1) P_{s}(x-1)+a_{-}(x+1) P_{s}(x+1) \\
& \tag{2.22}\\
& =\left[a_{+}(x)+a_{-}(x)\right] P_{s}(x) .
\end{align*}
$$

From this the detailed balance relation

$$
\begin{equation*}
a_{+}(x-1) P_{s}(x-1)=a_{-}(x) P_{s}(x) \tag{2.23}
\end{equation*}
$$

follows by induction. The detailed balance relation gives the expression for the normalized $P_{S}(x)$ as

$$
\begin{equation*}
P_{s}(x)=\frac{\prod_{y=1}^{x} a_{+}(y-1) / a_{-}(y)}{\sum_{z} \prod_{y=1}^{z} a_{+}(y-1) / a_{-}(y)} \tag{2.24}
\end{equation*}
$$

This can be written as ${ }^{5}$

$$
\begin{equation*}
P_{s}(x)=P_{s}(0) e^{-\phi(x)} \tag{2.25}
\end{equation*}
$$

in standard form, where the "stochastic potential" $\phi(x)$ is given by

$$
\begin{equation*}
\phi(x)=\sum_{y=1}^{x} \ln \frac{a_{-}(y)}{a_{+}(y-1)} \tag{2.26}
\end{equation*}
$$

Although the master equation should be regarded as the fundamental equation in this treatment, it is often convenient to work with other approximate equations such as the Fokker-Planck equation and the Langevin equation which may be solved by standard mathematical techniques. The master equation can also be written as

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=\sum_{Y} A_{x y} P(y, t)=\sum_{z} A(x-z, z) P(x-z, t), \tag{2.27}
\end{equation*}
$$

where $A(x-z, z)$ is the infinitesimal transition probability for a change $z \neq 0$ in the number of molecules in a system containing $x-z$ molecules, and $A(x, 0)$ is fixed by
$\sum A(x-z, z)=0$. Expanding each term on the right hand side as a Taylor series about $z=0$ in the first argument of $A(x-z, z)$ and in $P(x-z)$ yields

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=\sum_{z} \sum_{m} \frac{1}{m!} \frac{\partial^{m}}{\partial x^{m}}[A(x, z) P(x, t)](-z)^{m} \tag{2.28}
\end{equation*}
$$

This is the Kramers-Moyal expansion. ${ }^{11}$ The Fokker-Planck equation ${ }^{12}$ is obtained by neglecting terms corresponding to m > 2. Thus it reads

$$
\begin{align*}
\frac{\partial}{\partial t} P(x, t)=-\sum_{z} z & \frac{\partial}{\partial x}[A(x, z) P(x, t)] \\
& +\frac{1}{2} \sum_{z} z^{2} \frac{\partial^{2}}{\partial x^{2}}[A(x, z) P(x, t)] . \tag{2.29}
\end{align*}
$$

For the Schlögl model, from equation (2.17)

$$
A(x, z)= \begin{cases}a_{+}(x) & \text { for } z=1 \tag{2.30}\\ -a_{+}(x)-a_{-}(x) & \text { for } z=0 \\ a_{-}(x) & \text { for } z=-1 \\ 0 & \text { for }|z|>1\end{cases}
$$

Hence the Fokker-Planck equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial t} P(x, t)=-\frac{\partial}{\partial x}[r(x) P(x, t)]+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}[a(x) P(x, t)] \tag{2.31}
\end{equation*}
$$

where

$$
\begin{equation*}
r(x)=a_{+}(x)-a_{-}(x) \tag{2.32}
\end{equation*}
$$

and $a(x)=a_{+}(x)+a_{-}(x)$.

In general neglecting terms with m > 2 cannot be justified. Van Kampen ${ }^{13}$ and Kubo et al ${ }^{14}$ have developed systematic expansion procedures in power series of a small parameter (usually the inverse system size). Gillespie ${ }^{15}$ has shown that if $A(x, z)=0$ for $z>1$, then the Fokker-Planck equation when discretized with unit step size ${ }^{+}$

[^2]reproduces the master equation exactly, whereas the conditions $A(x, \pm 2) \neq 0$ and $A(x, z)=0$ for $|z|>2$ require four terms to be kept in the Kramers-Moyal expansion. Matsuo et al ${ }^{16}$ have discussed methods of constructing Fokker-Planck equations from the deterministic equations describing physical processes. Obtaining the coefficients $r(x)$ and $a(x)$ in the Fokker-Planck equation from the Kramers-Moyal expansion is one of the methods. Another method is to adjust the coefficients in such a way that the resulting stationary distribution coincides with the stationary distribution given by the master equation (2.24). The two term Fokker-Planck equation is useful because it describes the process specified by the stochastic differential equation ${ }^{17}$
\[

$$
\begin{equation*}
\text { (I) } d X_{t}=r\left(X_{t}\right) d t+\sqrt{a\left(X_{t}\right)} d w_{t} \tag{2.34}
\end{equation*}
$$

\]

or, equivalently,

$$
\begin{equation*}
\text { (s) } d X_{t}=\left[r\left(X_{t}\right)-\frac{1}{4} a_{x}\left(X_{t}\right)\right] d t+\sqrt{a\left(X_{t}\right)} d w_{t^{\prime}} \tag{2.35}
\end{equation*}
$$

where (I) and (S) indicate Itô and Stratonovich calculi respectively, W_{t} is the normal Wiener process and a_{x} is the derivative of a. Such processes are relatively well understood mathematically. When $a(x)$ is a constant independent of x, the resulting stochastic equation

$$
\begin{equation*}
d x_{t}=r\left(x_{t}\right) d t+\sqrt{a} d w_{t} \tag{2.36}
\end{equation*}
$$

is the Langevin equation, which has played an important role in the theory of Brownian motion. ${ }^{18}$

2.3 METHODS OF SOLUTION

Since the master equation is a linear differential equation in $P(x, t)$, its solution can be written formally in terms of the eigenvalues and eigenvectors of the transiton matrix A, when A is independent of time.

Relation (2.14), namely

$$
\begin{equation*}
\sum_{Y} A_{Y x}=0 \quad \text { for all } x \tag{2.37}
\end{equation*}
$$

means that the rows of $\underline{\underline{A}}$ are linearly dependent and this implies det $\underline{\underline{A}}=0$. Thus the equation

$$
\begin{equation*}
\sum_{y} A_{X Y} P_{s}(y)=0 \tag{2.38}
\end{equation*}
$$

has a nontrivial solution under the constraint

$$
\sum_{x} P_{s}(x)=1
$$

This guarantees the existence of a normalized stationary distribution. This distribution is unique if and only if all states of the process communicate with each other; i.e., if and only if any arbitrary state can be reached from any other state in finite time. If this condition is not satisfied the
process degenerates into several disjoint processes. ${ }^{19}$ For the Schlögl model the requirement for uniqueness is satisfied, since $a_{+}(x)>0$ for all x and $a_{-}(x)>0$ for all $x>0$. Since the stationary distribution is an eigenvector corresponding to zero eigenvalue (see equation (2.38)), zero is always an eigenvalue of . Though detailed balance implies the existence of a stationary distribution, the converse is not true. However, detailed balance implies additional properties of the eigenvalues. In addition to (2.37) and $A_{x y}>0$ for all $y \neq x$, if detailed balance also holds

$$
\begin{equation*}
\text { (i.e., if } A_{x y} P_{s}(y)=A_{y x} P_{s}(x) \text {), } \tag{2.39}
\end{equation*}
$$

then the nonzero eigenvalues of $\underset{A}{A}$ are real and negative. ${ }^{8}$ Proof:

Consider the matrices

$$
\begin{align*}
& W_{x y}=\delta_{x y} P_{s}(x)^{\frac{1}{2}}, \tag{2.40}\\
& \underline{\underline{S}}=\underline{W}^{-1} \underline{\underline{A W}}, \tag{2.41}
\end{align*}
$$

S is obviously real and it has the same eigenvalues
as A. Further

$$
\begin{aligned}
S_{x y} & =P_{s}(x)^{-\frac{1}{2}} A_{x y} P_{s}(y)^{\frac{1}{2}} \\
& =P_{s}(x)^{-\frac{1}{2}} A_{y x} P_{s}(x) P_{s}(y)^{-\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& 22 \\
& =P_{s}(y)^{-\frac{1}{2}} A_{Y x} P_{s}(x)^{\frac{1}{2}} \\
& =S_{Y X} \text {; } \tag{2.42}\\
& \text { i.e., } \underline{\underline{S}} \text { is also symmetric. Hence the eigenvalues are } \\
& \text { real. Let } \underline{Q}_{. j} \text { be an eigenvector of } \underline{\underline{S}} \text { corresponding to } \\
& \text { an eigenvalue } \lambda_{j} \neq 0 \text {. } \\
& \underline{Q} \cdot j=\underline{\underline{S}} \cdot j=\sum_{x, y} Q_{x j} S_{x y} Q_{y j} \\
& =\sum_{x} S_{x x} Q_{x j}{ }^{2}+\sum_{x, y \neq x} Q_{x j} S_{x y} Q_{y j} \\
& =-\sum_{x, y \neq x} A_{y x} Q_{x j}^{2}+\sum_{x, y \neq x} S_{x y}{ }^{Q} x j^{Q} y j \\
& =-\sum_{x, y>x} A_{y x^{Q} x j}^{2}-\sum_{x, y<x} A_{Y x^{Q} x j}{ }^{2} \\
& +\sum_{x, y>x} S_{x y} Q_{x j} Q_{y j}+\sum_{x, y<x} S_{x y} Q_{x j} Q_{y j} \\
& =-\sum_{x, y>x} A_{y x^{Q} x j}^{2}-\sum_{x, y>x} A_{x y^{Q} y j}{ }^{2} \\
& +\sum_{x, y>x} S_{x y} Q_{x j} Q_{y j}+\sum_{x, y>x} S_{y x} Q_{x j} Q_{y j} \\
& =-\sum_{x, y>x} A_{x y}\left\{\frac{P_{s}(Y)}{P_{s}(x)} Q_{x j}{ }^{2}+Q_{y j}{ }^{2}\right. \\
& \left.-2\left(\frac{P_{s}(y)}{P_{s}(x)}\right)^{\frac{1}{2}} Q_{x j} Q_{Y j}\right\}
\end{align*}
$$

$$
\begin{align*}
& =-\sum_{x, Y^{>} \times} A_{x y}^{23}\left\{Q_{y j}-\left(\frac{P_{s}(y)}{P_{s}(x)}\right)^{\frac{3}{2}} Q_{x j}\right\}^{2} \\
& \leqslant 0 \text { since } A_{x y}>0 \text { for } y \neq x \tag{2.43}
\end{align*}
$$

$$
\begin{aligned}
& \text { By choice of } \underline{Q} \cdot j^{\prime} \\
& \lambda_{j}=\frac{\underline{Q}_{\cdot j} \underline{\underline{S}} \underline{Q}_{\cdot j}}{\underline{Q}_{\cdot j}^{2}}
\end{aligned}
$$

so (2.43) implies

$$
\begin{equation*}
\lambda_{j} \leqslant 0 \tag{2.44}
\end{equation*}
$$

which was to be proved.

Since $\underset{\underline{A}}{ }$ is not symmetric the eigenvectors of $\underline{\underline{A}}$ and $\underline{\underline{A}}^{T}$ are not the same, but a relation between them can be deduced by use of S . Let the columns of $\underline{\underline{0}}$ be the normalized eigenvectors of $\underline{\underline{S}}$ in a particular order and $\underline{\underline{\Lambda}}$ be the diagonal matrix containing the eigenvalues. Then

$$
\begin{align*}
& \underline{\underline{Q}}^{T} \underline{\underline{S}} \underline{\underline{Q}}=\underline{\underline{\Lambda}} \text { and } \underline{\underline{Q}}^{T} \underline{\underline{Q}}=\underline{\underline{1}} ; \tag{2.45}\\
& \text { i.e., } \underline{\underline{Q}}^{T} \underline{\underline{W}}^{-1} \underline{\underline{A}} \underline{\underline{W}} \underline{\underline{Q}}=\underline{\underline{Q}}, \\
& \text { or } \underline{\underline{L}}^{T} \underline{\underline{A}}^{\underline{R}}=\underline{\underline{R}}, \tag{2.46}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{\underline{L}}=\underline{W}^{-1} \underline{\underline{Q}} \tag{2.47}
\end{equation*}
$$

and $\underset{=}{\underline{W}} \underline{=}$

Thus L.j and $\frac{R}{-}$. j are the $j-t h$ eigenvectors of $\underset{A}{A}$ and \underline{A}^{T} respectively. Moreover,

$$
\underline{L}^{\mathrm{T}} \underset{=}{\underline{Q^{T}} W^{-1} \mathrm{~W} Q}=\underline{=}=
$$

Eliminating Q between (2.47) and (2.48), we have

$$
\begin{equation*}
\underline{\underline{L}}=\underline{\underline{T}}^{-2} \underline{\underline{R}} \tag{2.49}
\end{equation*}
$$

The solution of $\frac{\partial}{\partial t} \underline{P}=\underline{A} \underline{P}$ can now be written (when A is time-independent) as

$$
\begin{equation*}
P(x, t)=\sum_{j} a_{j} R_{x j} e^{\lambda_{j} t} \tag{2.50}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{j}=\sum_{i} \frac{R_{i j} P(i, 0)}{P_{s}(i)} \tag{2.51}
\end{equation*}
$$

and $P(i, 0)$ is the initial distribution. The eigenvalue equation for the k-th eigenvector $\underline{R} \cdot k$ is

$$
\sum A_{i j} R_{j k}=\lambda_{k}^{R_{i k}} \quad i=0,1, \ldots
$$

Summing over i, it becomes

$$
\sum_{i} \sum_{j} A_{i j} R_{j k}=\lambda_{k} \sum_{i} R_{i k}
$$

Since $\sum_{i} A_{i j}=0$, it follows ${ }^{\dagger}$ that

$$
\begin{equation*}
\sum_{i} R_{i k}=0 \quad \text { if } \lambda_{k} \neq 0 \tag{2.52}
\end{equation*}
$$

This means that $\sum_{i} P(i, t)=1$ provided $\sum_{i} P_{s}(i)=1$.

Thus we need to diagonalize the matrix $\underline{\underline{A}}$ in order to solve this problem completely. A is infinite dimensional, but for a nonexplosive chemical reaction we can always find a large region of the state space outside which there is no significant probability to find the system. Since reaction steps of high molecularity are not common, $\underset{\underline{A}}{ }$ is always a narrow band matrix. For the Schlögl model it is tridiagonal.

The matrix diagonalization method is valid only if the transition probabilities are time-independent,i.e., if the system is autonomous. Gillespie has devised a numerical algorithm for stochastically simulating any chemically reacting system ${ }^{10}$ and he has extended it to include

[^3]nonautonomous systems ${ }^{20}$. This simulation should exactly reproduce the solution of the master equation, since it is also based on the same postulates from which the latter has been derived.

To derive the master equation we used the postulates to arrive at the transition probability $A_{x y}(t) \delta t+o(\delta t)$ that an event occurs in ($t, t+\delta t$) resulting in a transition from y to x. Instead we now focus on the probability $P(\tau, m ; x, t) d \tau$ that the next event occurs in $(t+\tau, t+\tau+d \tau)$ and that it is the m-th reaction step, given that the system has x molecules of x at time $t ;$

$$
\begin{equation*}
P(\tau, m ; x, t) d \tau=P_{0}(\tau ; x, t) a_{m}(x, t+\tau) d \tau, \tag{2.53}
\end{equation*}
$$

where $P_{0}(\tau ; x, t)$ is the probability that no reaction occurred in $(t, t+\tau)$ given that the system is at x at time t.

Decomposing the interval ($t, t+s+\delta s)$ into ($t, t+s$) and ($t+s, t+s+\delta s$) we find that the probability that the m-th step does not occur in ($t, t+s+\delta s$) is given by

$$
\begin{equation*}
P_{0 m}(s+\delta s ; x, t)=\left[1-a_{m}(x, t+s) \delta s-o(\delta s)\right] P_{0 m}(s ; x, t) \tag{2.54}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial}{\partial s} P_{0 m}(s ; x, t)=-a_{m}(x, t+s) P_{0 m}(s ; x, t) \tag{2.55}
\end{equation*}
$$

Solving this first order differential equation with the initial condition $P_{0 m}(0 ; x, t)=1$, we obtain

$$
\begin{equation*}
P_{0 m}(\tau ; x, t)=\exp \left\{-\int_{t}^{t+\tau} a_{m}(x, s) d s\right\} \tag{2.56}
\end{equation*}
$$

Thus the probability $P_{0}(\tau ; x, t)$ that none of the steps occurs in $(t, t+\tau)$ is

$$
P_{0}(\tau ; x, t)=\prod_{m} P_{0 m}(\tau ; x, t)=\exp \left\{-\int_{t}^{t+\tau} a(x, s) d s\right\}
$$

where

$$
\begin{equation*}
a(x, t)=\sum_{m} a_{m}(x, t) \tag{2.58}
\end{equation*}
$$

and finally from (2.53)

$$
\begin{equation*}
P(\tau, m ; x, t)=a_{m}(x, t+\tau) \exp \left\{-\int_{t}^{t+\tau} a(x, s) d s\right\} \tag{2.59}
\end{equation*}
$$

For a given x and t, this is the density function of a joint distribution in τ and m. In order to simulate the process determined by this density, we first obtain the probability $P_{1}(\tau ; x, t) d \tau$ that the next reaction occurs in $(t+\tau, t+\tau+d \tau)$
irrespective of which step it is.

$$
\begin{align*}
P_{1}(\tau ; x, t) & =\sum_{m} P(\tau, m ; x, t) \\
& =a(x, t+\tau) \exp \left\{-\int_{t}^{t+\tau} a(x, s) d s\right\} \tag{2.60}
\end{align*}
$$

Then the probability $P_{2}(m \mid \tau ; x, t)$ that the next reaction is the m-th step given that the next reaction occurs in $(t+\tau, t+\tau+d \tau)$ is

$$
\begin{equation*}
P_{2}(m \mid \tau ; x, t)=\frac{P(\tau, m ; x, t)}{P_{1}(\tau ; x, t)}=\frac{a_{m}(x, t+\tau)}{a(x, t+\tau)} \tag{2.61}
\end{equation*}
$$

The simulation algorithm consists of selecting a random number τ distributed according to $P_{1}(\tau ; x, t)$ and another random number m distributed according to $P_{2}(m \mid \tau ; x, t)$ when the system is at x at t . The distribution functions corresponding to $P_{1}(\tau ; x, t)$ and $P_{2}(m \mid \tau ; x, t)$ are respectively

$$
\begin{equation*}
F_{1}(\tau ; x, t)=\int_{0}^{\tau} P_{1}(s ; x, t) d s \tag{2.62}
\end{equation*}
$$

and $F_{2}(m \mid \tau ; x, t)=\sum_{v=1}^{m} P_{2}(v \mid \tau ; x, t)$

The range of the function F_{1} is $[0,1]$ and the range of F_{2} is a subset of the above interval. The probability that τ lies between τ_{1} and τ_{2} is given by

$$
\int_{\tau_{1}}^{\tau_{2}} P_{1}(s ; x, t) d s=F_{1}\left(\tau_{2} ; x, t\right)-F_{1}\left(\tau_{1} ; x, t\right)
$$

Thus the distribution of τ in $[0, \infty]$ according to $P_{1}(\tau ; x, t)$ corresponds to the uniform distribution of F_{1} in $[0,1]$. Hence to implement the selection of τ, we choose a uniform random number r_{1} in $[0,1]$ and set

$$
\begin{equation*}
\tau=F^{-1}\left(r_{1} ; x, t\right) ; \tag{2.64}
\end{equation*}
$$

similarly we select another random number r_{2} and choose m such that

$$
\begin{equation*}
F_{2}(m-1 \mid \tau ; x, t)<r_{2} \leqslant F_{2}(m \mid \tau ; x, t) \tag{2.65}
\end{equation*}
$$

Having selected τ and m, we advance time by τ and carry out the m-th step in the reaction scheme. The whole procedure is then repeated for the new state. This iteration produces a random path in time of the system. To get the mean path we take a large number of these trajectories and average. The state of a system close to equilibrium is given by a Gaussian distribution for which the mean is the most probable value; ${ }^{21}$ in systems far from equilibrium the mean trajectory need not be the most probable one. The above algorithm is suitable for finding mean quantities. An approach that focuses attention on the most probable quantities and deviations from them is the path integral approach. ${ }^{22}$ Let us
consider the stochastic differential equation

$$
\begin{equation*}
\text { (I) } d x_{t}=-r\left(X_{t}\right) d t+d w_{t} \tag{2.66}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\text { (s) } d x_{t}=-r\left(X_{t}\right) d t+d W_{t} \tag{2.67}
\end{equation*}
$$

The Green's function $P\left(x_{f}, t_{f} \mid x_{0}, t_{0}\right)$ (i.e., the parobability that the system reaches x_{f} at t_{f} given that it is x_{0} at t_{0}) is given by the integral of a functional over the class of continuous functions $x(t)$ subject to the end point conditions $x\left(t_{f}\right)=x_{f}$ and $x\left(t_{0}\right)=x_{0}$, namely

$$
P\left(x_{f}, t_{f} \mid x_{0}, t_{0}\right)=\int \exp \left\{-\int_{t_{0}}^{t_{f}} L(\dot{x}, x, \tau) d \tau\right\} D[x(t)]
$$

where

$$
\begin{equation*}
L(\dot{x}, x, t)=\frac{1}{2}[\dot{x}(t)+r(x(t))]^{2}-\frac{1}{2} \frac{d}{d x}(r(x)) \tag{2.69}
\end{equation*}
$$

In other words, each path connecting $\left(x_{0}, t_{0}\right)$ and $\left(x_{f}, t_{f}\right)$ is assigned a probability density $\exp \left\{-\int_{t_{0}}^{t_{f}} L(\dot{x}, x, \tau) d \tau\right\}$ and the total probability is obtained by summing the contributions of individual paths. The most heavily weighted path is obtained
by minimizing the functional $\int_{f}^{t_{f}} L(\dot{x}, x, \tau) d \tau$ subject to the end conditions. Thus the path with ${ }^{t^{\prime}}{ }^{\text {maximum }}$ probability density is given by the solution of

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=r(x) \frac{d r}{d x}-\frac{1}{2} \frac{d^{2} r}{d x^{2}} \tag{2.70}
\end{equation*}
$$

Similar path integral expressions have been developed ${ }^{23}$ in special cases for the most probable path of a process satisfying

$$
\begin{equation*}
\text { (I) } d x_{t}=r\left(X_{t}\right) d t+\sqrt{a\left(X_{t}\right)} d w_{t} \text {. } \tag{2.71}
\end{equation*}
$$

A REVIEW OF STUDIES ON THE SCHLÖGL MODEL

Chemical reactions as a rule are nonlinear processes from the thermodynamic point of view; i.e., the rate of reaction is nonlinear in chemical affinity. Hence chemical reaction models are convinient for studying phenomena that are impossible in the linear regime. With this aim, Schlögl introduced in 1971 two reaction models and showed the presence of multiple steady states. ${ }^{3,4}$ He also showed the possibility of phase transitions and critical phenomena. Since then these phenomena have been extensively studied by various authors using both models, especially the termolecular model. A summary of the important studies on the termolecular model is given in this chapter.
3.1 FURTHER PROPERTIES OF THE STEADY STATES The rate equation for the Schlögl model is

$$
\begin{equation*}
\frac{d x}{d t}=-k_{2} x^{3}+k_{1}[A] x^{2}-k_{4} x+k_{3}[B] \tag{3.1}
\end{equation*}
$$

In terms of the scaled variables

$$
\begin{align*}
n & =\frac{3 k_{2}}{k_{1}[A]} x \tag{3.2}\\
\text { and } t_{s} & =\frac{k_{1}^{2}[A]^{2}}{9 k_{2}} t_{1} \tag{3.3}
\end{align*}
$$

it becomes

$$
\begin{align*}
\frac{d n}{d t} & =-n^{3}+3 n^{2}-\beta_{1} n+\beta_{2} \\
& =F^{\prime}(n), \tag{3,4}
\end{align*}
$$

where

$$
\begin{align*}
& \beta_{1}=\frac{9 k_{2} k_{4}}{k_{1}^{2}[A]^{2}} \tag{3.5}\\
& \beta_{2}=\frac{27 k_{2}^{2} k_{3}[B]}{k_{1}^{3}[A]^{3}} \tag{3.6}
\end{align*}
$$

The critical point is given by

$$
\begin{equation*}
\beta_{1}^{c}=3, \quad \beta_{2}^{c}=1, \quad n^{c}=1 \tag{3.7}
\end{equation*}
$$

Consider an arbitrary $\beta_{2}>0$. For this β_{2} there is a set of concentration values n_{s} and corresponding β_{1} values $\beta_{1}\left(n_{s}\right)$ such that a system described by $n=n_{s}, \beta_{1}=\beta_{1}\left(n_{s}\right)$ and β_{2} is at steady state; i.e., $\mathrm{F}^{\prime}\left(\mathrm{n}_{\mathrm{s}}, \beta_{1}\right)=0$. By solving this we get a relation between β_{1} and n_{s}. Then the steady state equation can be written as

$$
\begin{equation*}
F^{\prime}\left(n_{s}, \beta_{1}\left(n_{s}\right)\right)=0 \tag{3.8}
\end{equation*}
$$

Differentiating this, we obtain

$$
\frac{d F^{\prime}}{d n_{s}}=\frac{\partial F^{\prime}}{\partial n_{s}}+\frac{\partial F^{\prime}}{\partial \beta_{1}} \frac{d \beta_{1}}{d n_{s}}=0 .
$$

From the results following equation (2.7) we have

$$
\frac{\partial F^{\prime}}{\partial n_{s}}=0
$$

at any marginal stability point, while

$$
\frac{\partial F^{\prime}}{\partial \beta_{1}}=-n \neq 0
$$

in general. Therefore,

$$
\begin{equation*}
\frac{\mathrm{d} \beta_{1}}{\mathrm{dn}}=0 \tag{3.9}
\end{equation*}
$$

at any marginal stability point. Since the two marginal stability points merge at the critical point, it is an inflection point; i.e.,

$$
\begin{equation*}
\frac{d^{2} \beta_{1}}{d_{s}^{2}}=0 \tag{3.10}
\end{equation*}
$$

at the critical point. From (3.8) we also obtain

$$
\begin{equation*}
\frac{d^{2} F^{\prime}}{d n_{s}^{2}}=\frac{\partial^{2} F^{\prime}}{\partial n_{s}^{2}}+\frac{\partial^{2} F^{\prime}}{\partial n_{s} \partial \beta_{1}} \frac{d \beta_{1}}{d n_{s}}+\frac{\partial F^{\prime}}{\partial \beta_{1}} \frac{d^{2} \xi_{1}}{d n_{s}^{2}}+\frac{d \beta_{1}}{d n_{s}} \frac{\beta}{\partial \beta_{1}}\left(\frac{d F^{\prime}}{d n_{s}}\right)=0 \tag{3.11}
\end{equation*}
$$

The second , third, and fourth terms contain factors of $\frac{d \beta_{1}}{d n_{s}}$ and $\frac{d^{2} \beta_{1}}{d n_{s}{ }^{2}}$ which vanish at the critical point. Thus equation (3.11) leads to

$$
\begin{equation*}
\frac{\partial^{2} F^{\prime}}{\partial n_{s}^{2}}=0 \tag{3.12}
\end{equation*}
$$

at the critical point. These relations can be generalized to multicomponent systems. 24

The above properties are possessed by the Schlögl model when the concentrations of A and B are kept constant. Escher and Ross ${ }^{25}$ have recently considered the Schlögl model with constant flux of A, B, and X, and have studied the number and stability of steady states. Let the input be a mixture of these chemicals (of fixed composition) entering the reactor at rate J and let the output have the same rate J. The reactor is assumed to be well stirred so that the output stream has the same composition as the material in the reactor. If the input stream contains no A, then the system does not exhibit instability. If the inputstream contains only A, then interesting steady state structures are cbtained. For example, there exists a particular concentration of A
in the input stream such that the following situation is observed: For small values of J the system has two stable steady states and one unstable steady state. As J increases two of them disappear leaving a single stable steady state. At a still higher value of J two more steady states appear, but both are unstable. With further increase in J one of the unstable states becomes stable, and eventually a single stable steady state remains. Escher and Ross also studied a general case where all species are in the input mixture. In this case there are two disjoint regions of J where there are unstable steady states. The instability in the higher J value range is accompanied by two stable steady states, whereas the lower range has a limit cycle oscillation in the concentration space.

3.2 COEXISTENCE OF TWO PHASES

Let the Schlögl reactions occur in a reactor which is not being stirred and let the concentrations of A and B be kept constant. If A and B diffuse very rapidly but X diffuses slowly, then the rate equation becomes

$$
\begin{equation*}
\frac{\partial}{\partial t} \chi(\underline{r}, t)=D \nabla_{r}^{2} \chi(\underline{r}, t)+F[\chi(\underline{r}, t)] \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
F(X)=-k_{2} \chi^{3}+k_{1}[A] \chi^{2}-k_{4} x+k_{3}[B] \tag{3.14}
\end{equation*}
$$

and D is the diffusion coefficient for X. First we seek steady states ${ }^{4}$ which are uniform along two spatial dimensions and vary only along one coordinate r_{3}. These steady states are solutions of

$$
\begin{equation*}
\frac{\partial^{2} n}{\partial x_{3}^{2}}=n^{3}-3 n^{2}+\beta_{1} n-\beta_{2}=-\frac{d U}{d n} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{i}=\frac{k_{1}[A]}{3 \sqrt{D k_{2}}} r_{i} \quad i=1,2,3 \tag{3.16}
\end{equation*}
$$

For the analysis below, it is useful to note that this is the equation of motion of a classical unit mass moving in the potential

$$
\begin{equation*}
U(n)=-\frac{n^{4}}{4}+n^{2}-\beta_{1} \frac{n}{2}+\varepsilon_{2} n, \tag{3.17}
\end{equation*}
$$

if x_{3} is identified with the time coordinate and n with position. To determine the steady-state coexistence criterion for this case we further impose the boundary conditions

$$
n\left(x_{3}=-\infty\right)=n_{1}
$$

and

$$
\begin{equation*}
n\left(x_{3}=+\infty\right)=n_{3}, \tag{3.18}
\end{equation*}
$$

so that the concentration of X takes on two different
homogeneous steady state values $\left(n_{1}\right.$ and $\left.n_{3}\right)$ at the extremes of the r_{3} coordinate. Equation (3.15) and boundary conditions (3.18) together describe the motion of a classical body from one maximum of the potential $U\left(n_{1}\right)$ where it was at rest at $t=-\infty$ to the second maximum $U\left(n_{3}\right)$ where it comes to rest at $t=+\infty$. This motion is possible only if the potential maxima are equal; i.e.,

$$
\begin{equation*}
U\left(n_{1}\right)=U\left(n_{3}\right) \tag{3.19}
\end{equation*}
$$

This condition is satisfied when the three steady states are related by

$$
\begin{equation*}
n_{2}=\left(n_{1}+n_{3}\right) / 2 \tag{3.20}
\end{equation*}
$$

Equation (3.20) is Schlögl's coexistence condition. The homogeneous steady states become

$$
\begin{align*}
& n_{1}=1-\sqrt{3-\beta_{1}} \\
& n_{2}=1 \\
& n_{3}=1+\sqrt{3-\beta_{1}} \tag{3.21}
\end{align*}
$$

and $\beta_{1}=\beta_{2}+2$ at the coexistence point.
Next we seek steady states with spherical symmetry varying along the radial coordinate $r=|\underline{r}|$ and satisfying
the boundary conditions

$$
n(r=0)=n_{3}
$$

and $n(r=\infty)=n_{1}$.

Such states can be considered as droplets of the condensed phase with composition n_{3} in a medium of composition n_{1}. The steady state equation becomes

$$
\begin{equation*}
D^{\prime} \frac{\partial^{2} n}{\partial r^{2}}=-\frac{2 D^{\prime}}{r} \frac{\partial n}{\partial r}-\frac{d U}{d n} \tag{3.23}
\end{equation*}
$$

where $D^{\prime}=\frac{9 k_{2} D}{k_{1}{ }^{2} A^{2}}$. This corresponds to the motion of a
mass in the potential U with dissipation of energy due to friction. A solution exists if the energy lost is equal to the potential difference; i.e., if

$$
\begin{equation*}
U\left(n_{2}\right)-U\left(n_{1}\right)=2 D^{\prime} \int_{0}^{\infty} \frac{1}{r}\left(\frac{\partial n}{\partial r}\right)^{2} d r . \tag{3.24}
\end{equation*}
$$

If we assume that the radius r_{0} of the droplet is substantially larger than the thickness of the boundary layer over which the concentration change is significant, then equation (3.24) leads to the condition for the existence of droplets:

$$
\begin{equation*}
\beta_{2}=\beta_{1}-2+\frac{2}{r_{0}} \sqrt{2 D^{\prime}}\left\{1-\frac{\beta_{1}}{3}\right\} . \tag{3.25}
\end{equation*}
$$

Similarly, the boundary conditions

$$
\mathrm{n}(\mathrm{r}=0)=\mathrm{n}_{1}
$$

and $n(r=\infty)=n_{3}$
correspond to a steady bubble of composition n_{1} in a medium of composition n_{3}. The condition for a bubble of radius r_{0} is

$$
\begin{equation*}
\beta_{2}=\beta_{1}-2-\frac{2}{r_{0}} \sqrt{2 D^{\prime}}\left\{1-\frac{\beta_{1}}{3}\right\} . \tag{3.27}
\end{equation*}
$$

Using a linear analysis, Schlögl et al ${ }^{26}$ have recently studied the effects of small fluctuations in systems with coexisting steady states varying only along the r_{3} coordinate. When Schlögl's coexistence condition is satisfied, we have by the transformation $y=n-1$

$$
\begin{equation*}
\frac{d y}{d t_{s}}=\nabla_{x}^{2} y-y\left(y^{2}-y_{0}^{2}\right) \tag{3.28}
\end{equation*}
$$

where $y_{0}=\sqrt{3-\beta_{1}}$ and t_{s} and x_{i} are defined by equations (3.3) and (3.16) respectively. The coexistence solution of this equation is

$$
\begin{equation*}
y^{*}=y_{0} \tanh \left(y_{0} x_{3} / \sqrt{2}\right) \tag{3.29}
\end{equation*}
$$

After the change of variable

$$
\begin{equation*}
\zeta=\tanh \left(y_{0} x_{3} / \sqrt{2}\right) \tag{3.30}
\end{equation*}
$$

the linearized equation in terms of the deviation

$$
\begin{equation*}
\psi=\left(y-y^{*}\right) / y_{0} \tag{3.31}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}} \psi=\frac{\mathrm{y}_{0}^{2}}{2}\left(1-\zeta^{2}\right) D_{2}^{2} \psi+\Delta \psi \tag{3.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta=\frac{\partial^{2}}{\partial x_{1}{ }^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}} \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\ell}^{\mu}=\frac{\partial}{\partial \zeta}\left(1-\zeta^{2}\right) \frac{\partial}{\partial \zeta}+\ell(\ell+1)-\frac{\mu^{2}}{1-\zeta^{2}} . \tag{3.34}
\end{equation*}
$$

Introducing the separation of variables

$$
\psi\left(x_{1}, x_{2}, \zeta, t_{s}\right)=\Omega\left(x_{1}, x_{2}\right) u(\zeta) \Gamma\left(t_{s}\right)
$$

we get

$$
\begin{align*}
& D_{2}^{\mu} u=0, \tag{3.35}\\
& \left(\Delta+k^{2}\right) \Omega=0, \tag{3.36}
\end{align*}
$$

and $\Gamma\left(t_{s}\right)=e^{-v t_{s}}$,
with

$$
\begin{equation*}
v=k^{2}+\left(4-\mu^{2}\right) \frac{y_{0}^{2}}{2} \tag{3.38}
\end{equation*}
$$

The mode with smallest v is given by the associated Legendre function,

$$
\begin{equation*}
P_{2}^{2}(\zeta)=3\left(1-\zeta^{2}\right)=\frac{3 \sqrt{2}}{Y_{0}} \frac{\partial \zeta}{\partial x_{3}} \tag{3.39}
\end{equation*}
$$

with $\nu=k=0$, and therefore the solution including the small deviation is

$$
\begin{align*}
\mathrm{y} & =\mathrm{y}^{*}\left(\mathrm{x}_{3}\right)+\mathrm{y}_{0} \psi\left(\mathrm{x}_{3}\right) \\
& =\mathrm{y}^{\star}\left(\mathrm{x}_{3}\right)+\frac{3 \sqrt{2} \Omega_{0}}{\mathrm{y}_{\theta}} \frac{\mathrm{d}}{\mathrm{dx}} \mathrm{y}^{*}\left(\mathrm{x}_{3}\right) \\
& =\left\{1+\delta \mathrm{x}_{3} \frac{\partial}{\partial \mathrm{x}_{3}}\right\} \mathrm{y}^{*}\left(\mathrm{x}_{3}\right) \\
& =\mathrm{y}^{*}\left(\mathrm{x}_{3}+\delta \mathrm{x}_{3}\right) \tag{3.40}
\end{align*}
$$

where $\delta \mathrm{x}_{3}=3 \sqrt{2} \Omega_{0} / \mathrm{y}_{0}$. Thus this lowest mode called a "Goldstone mode" 27 results in a slight shift along x_{3}. The shifted solution is also stationary.

All time-dependent modes that vanish at infinity include
the factor

$$
\begin{align*}
u_{L} & =P_{2}^{1}(\zeta)=-3 \zeta\left(1-\zeta^{2}\right)^{\frac{1}{2}} \\
& =-\frac{3 \sinh \left(y_{0} x_{3} / \sqrt{2}\right)}{\left[\cosh \left(y_{0} x_{3} / \sqrt{2}\right)\right]^{2}} \tag{3.41}
\end{align*}
$$

This determines the long-time decay of perturbations along the x_{3} coordinate. There is also a continuous spectrum of solutions $P_{2}(\zeta)$ that oscillate at infinity.

When the coexistence condition is not satisfied, there is no stationary solution to equation (3.13). However, there are solutions which move along the x_{3} coordinate with constant velocity, c. The solutions are given by

$$
\begin{equation*}
y(t)=y_{0} \tanh \left[\left(x_{3}-c t_{s}\right) y_{0} / 2\right] \tag{3.42}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\sqrt{2}\left[n_{2}-\left(n_{1}+n_{3}\right) / 2\right] \tag{3.43}
\end{equation*}
$$

Here again there is a nondecaying Goldstone mode moving with the same velocity, c. For

$$
\begin{equation*}
\left|n_{2}-\frac{n_{1}+n_{3}}{2}\right|<\frac{1}{3} y_{0} \tag{3.44}
\end{equation*}
$$

the long-time regression is controlled by another discrete mode. When the inequality (3.44) is not satisfied, the long-time regression is controlled by the lowest of the continuous spectrum of modes.

3.3. APPROXIMATE SOLUTION OF MASTER EQUATION

Matsuo ${ }^{28}$ has developed WKB-type solution to the master equation in the limit of large system size. As already seen (equation (2.41)), the master equation can be transformed to a form with symmetric matrix:

$$
\begin{equation*}
\frac{\partial}{\partial t} Q(x, t)=\sum_{y} S_{x y} Q(y, t) \tag{3.45}
\end{equation*}
$$

Its solution is

$$
\begin{equation*}
Q(x, t)=Q_{0}(x)+\sum_{j=1}^{\infty} p_{j} e^{\lambda}{ }^{t} Q_{j}(x) \tag{3.46}
\end{equation*}
$$

where $\underline{\underline{S}}_{\underline{Q}}^{j}{ }^{2}=\lambda_{j} \underline{Q}_{j}$. Let us denote the diagonal elements of $\underline{\underline{S}}$ by $S_{0}(x)$ and the off-diagonal elements by $-S_{+}(x)$. Then the eigenvalue equation is

$$
\begin{equation*}
\left[S_{0}(x)-\lambda_{j}\right] Q_{j}(x)=S_{+}(x-1) Q_{j}(x-1)+S_{+}(x) Q_{j}(x+1) \tag{3.47}
\end{equation*}
$$

We look for solutions of the WKB type, namely

$$
\begin{equation*}
Q(x)=\operatorname{Re}\left\{C(x) \exp \int^{x} w(y) d y\right\} \tag{3.48}
\end{equation*}
$$

where C and w are assumed to be slowly varying functions of x. Substituting this in the equation and its derivative and neglecting small quantities such as $C(x+1)-C(x)$, we get expressions for $C(x)$ and $w(x)$. The functional form of the solution depends on which of the following three situations obtains:
a) $-2 S_{+}(x)<S_{0}(x)-\lambda<2 S_{+}(x)$
b) $S_{0}(x)-\lambda>2 S_{+}(x)$
c) $\quad S_{0}(x)-\lambda<-2 S_{+}(x)$.

We obtain quantum conditions on the eigenvalues by matching the solutions in adjacent regions. For the Schlögl model the state space can be divided into five regions separated by x_{1}, x_{2}, x_{3} and x_{4}, in which conditions a, b, a, b, a are satisfied in order. If the middle region is macroscopic in size, then the two a-regions can be considered independent and the connection conditions are simplified. In this approximation the eigenvalue λ must satisfy one of the following conditions:

$$
\frac{1}{\pi} \int_{x_{1}}^{x_{2}} q(x) d x=\ell_{1}+\frac{1}{2}
$$

$$
\begin{equation*}
\frac{1}{\pi} \int_{x_{3}}^{x_{4}} q(x) d x=\ell_{2}+\frac{1}{2} \tag{3.50}
\end{equation*}
$$

where ℓ_{1} and ℓ_{2} are nonnegative integers and

$$
\begin{equation*}
q(x)=\cos ^{-1}\left\{\frac{s_{0}(x)-\lambda}{2 S_{+}(x)}\right\} \tag{3.51}
\end{equation*}
$$

From this condition we can obtain the density of eigenstates

$$
\begin{equation*}
\rho(\lambda)=\frac{\mathrm{d}_{1}}{\mathrm{~d} \lambda}+\frac{\mathrm{d} \ell_{2}}{\mathrm{~d} \lambda} \tag{3.52}
\end{equation*}
$$

It is found that in the limit $\varepsilon_{1}=V^{-1} \rightarrow 0$, the density of eigenstates near $\lambda=0$ diverges at the marginal stability points and the critical point. This divergence is given by

$$
\begin{align*}
\lim _{1}, \lambda \rightarrow 0 & \sim(\lambda) \\
& \sim \lambda^{-1 / 4} \quad \text { (marginal stability points) } \tag{3.53}\\
& \sim \lambda^{-1 / 3} \quad \text { (critical point). }
\end{align*}
$$

Since the eigenvalues accumulate near $\lambda=0$, the decay to the stationary distribution becomes infinitely slow. This is called "critical slowing down".

When there are three distinct steady states, it can be shown that the first decay mode has one node and the second has the largest of its three peaks in the vicinity of the unstable steady state. Thus we can find the relaxation times
from the unstable steady states to be

$$
\begin{equation*}
\lambda_{1}^{-1}=\left[k_{2}\left(x_{2}-x_{1}\right)\left(x_{3}-x_{2}\right)\right]^{-1} \tag{3.54}
\end{equation*}
$$

where k_{2} is the rate constant of the second step; similarly, an expression can be obtained for the relaxation time from the metastable state to the stable one.

3.4 RELATIVE STABILITY

We have already seen Schlögl's coexistence condition. When this condition is not satisfied, it is clear from equation (3.42) that the system will eventually become homogeneous. If n_{2} is closer to n_{1} than to n_{3}, then the final state will be n_{1}; otherwise, it will be n_{3}. This can be regarded as a criterion for relative stability of the two stable steady states. Other proposed criteria are discussed below.

Noyes ${ }^{29}$ has considered a general reaction scheme with a single reactant R producing a single product P,

$$
R \longleftrightarrow P
$$

occurring in a continuous flow reactor. The Schlögl scheme with constant flow boundary conditions is included in this class of models. The rate equation is

$$
\begin{equation*}
\frac{d R}{d t}=k_{0}\left(R_{0}-R\right)-v(R) \tag{3.55}
\end{equation*}
$$

where $v(R)$ is the net rate of reaction, k_{0} is the rate of flow of matter through the reactor and R_{0} is the concentration of R in the input stream. It is assumed that the reactor is efficiently stirred at all times; then the composition of the output stream is the same as the composition in the reactor itself. Functions for $v(R)$ can be selected so that there are two stable steady states R_{α} and R_{β} for a range of k_{0} values. Let us prepare two adjacent flow reactors with identical external conditions including the flux rate $k_{0} R_{0}$, but at different stable steady states. In order to determine the relative stability of the two states, Noyes has proposed making small holes in the wall between these reactors thereby allowing hydrodynamic mixing with a rate constant k_{x}. For small k_{x} the concentration of R in the two tanks will be perturbed to the new values R_{α} ' and R_{β}^{\prime}.

Noyes has given a criterion, namely

$$
\begin{equation*}
k_{0}+\left(\frac{\partial v}{\partial R}\right)_{R_{\alpha}^{\prime}}=0 \tag{3.56}
\end{equation*}
$$

at which a slight increase of k_{x} is claimed to cause the $R_{\alpha}{ }^{\prime}$ state to disappear and the combined system to settle with both reactors in the R_{β} state indicating that R_{β} is more stable. If

$$
\begin{equation*}
k_{0}+\left(\frac{\partial v}{\partial R}\right)_{R_{\beta}^{\prime}}=0 \tag{3.57}
\end{equation*}
$$

happens first as a consequence of mixing with steadily increasing k_{x}, then the higher stability is assigned to R_{α}. As will be seen in chapter VI, this criterion and the proposed mixing experiment are unsuitable for determining relative stability.

Another criterion for relative stability is obtained by taking the thermodynamic limit in the stationary distribution of the master equation. ${ }^{30-32}$ To do this, we should first extract the system size dependence from all parameters and take the limit as $V \rightarrow \infty, X \rightarrow \infty$ while X / V remains fixed. The rate constants have the volume dependence

$$
\begin{equation*}
c_{i}=k_{i} n_{i}!v^{1-m_{i}} \tag{2.20}
\end{equation*}
$$

where n_{i} is the molecularity of the $i-t h$ step in x and m_{i} is the total molecularity of the i-th step. The master equation for the concentration $X=X / V$ becomes

$$
\begin{gather*}
\frac{\partial}{\partial t} P(X, t)=a_{+}\left(X-\varepsilon_{1}\right) P\left(X-\varepsilon_{1}, t\right)+a_{-}\left(X+\varepsilon_{1}\right) P\left(X+\varepsilon_{1}, t\right) \\
-\left[a_{+}(X)+a_{-}(X)\right] P(X, t) . \tag{3.58}
\end{gather*}
$$

Its stationary solution is given recursively by

$$
\begin{equation*}
P_{s}(x)=\frac{a_{+}\left(x-\varepsilon_{1}\right)}{a_{-}(x)} P_{s}\left(x-\varepsilon_{1}\right) \tag{3.59}
\end{equation*}
$$

where

$$
\varepsilon_{1}=1 / \mathrm{V}
$$

$$
b=B / V
$$

$$
a_{+}(x)=\frac{k_{1}}{2} \mathrm{Vb}\left(x-\varepsilon_{1}\right)+k_{3} b V
$$

and $a_{-}(x)=\frac{k_{2}}{6} v \chi\left(x-\varepsilon_{1}\right)\left(x-2 \varepsilon_{1}\right)+k_{4} v$.
$P_{s}(x)$ has local maxima at X_{1} and x_{3} and a local minimum at x_{3}, where $X_{1}<x_{2}<X_{3}$ are the steady state concentrations. First we evaluate

$$
\lim _{V \rightarrow \infty} \frac{P_{s}(x)}{P_{s}\left(x_{1}\right)} \quad \text { for } 0<x<x_{1}
$$

in terms of the function

$$
\begin{align*}
& G(z)=\frac{a_{-}\left(z+\varepsilon_{1}\right)}{a_{+}(z)}, \tag{3.61}\\
& \begin{aligned}
\ln \frac{P_{S}(X)}{P_{S}\left(X_{1}\right)} & =\ln G_{X}+\ln G_{X+\varepsilon_{1}}+\ldots+\ln G_{X_{1}-\varepsilon_{1}} \\
& =V \int_{x}^{x_{1}} \ln G(z) d z
\end{aligned}
\end{align*}
$$

for large V. The integral representation is verified by writing
the integral as a Riemann sum with $\Delta z=\varepsilon_{1}$. Since $P_{s}(z)$ is increasing in $0<z<X_{1}, G(z)<1$ in this range and the integral is negative. The required ratio thus goes to zero in the thermodynamic limit. Following the same procedure it can also be shown that

$$
\lim _{v \longrightarrow \infty} \frac{P_{s}(x)}{P_{s}\left(x_{1}\right)}=0 \quad \text { for } x_{1}<x<x_{2}
$$

and $\lim _{\mathrm{l} \longrightarrow \infty} \frac{\mathrm{P}_{\mathrm{s}}(x)}{\mathrm{P}_{\mathrm{s}}\left(x_{3}\right)}=\delta_{x x_{3}} \quad$ for $x_{2}<x<\infty$.

Thus the stationary distribution becomes sharply peaked at either or both of the stable steady states as the volume of the system increases without bound. Finally the relative stability is determined by

$$
\begin{equation*}
\lim _{v \rightarrow \infty} \frac{P_{s}\left(x_{1}\right)}{P_{s}\left(x_{3}\right)}=\underset{v \longrightarrow \infty}{\lim _{x}} \exp \left\{v \int_{x_{1}}^{x_{3}} \ln G(z) d z\right\} \tag{3.64}
\end{equation*}
$$

which is zero, one or infinity depending on whether the integral is negative, zero or positive. Thus the equistability condition is given by

$$
\begin{equation*}
\int_{X_{1}}^{x_{3}} \ln G(z) d z=0 \tag{3.65}
\end{equation*}
$$

Procaccia and Ross ${ }^{33}$ have studied relative stability
based on the nonequilibrium thermodynamics developed by Levine. 34,35 Let us consider an open system whose microscopic states x are numerous compared to the macroscopic information available in terms of x. Then the distribution over the microscopic states must satisfy

$$
\begin{equation*}
\sum_{\underline{x}} x_{i} P(\underline{x}, t)=x_{i}(t) \quad \text { for } i=0,1, \ldots, M \tag{3.66}
\end{equation*}
$$

where $x_{0}=1$ imposes normalization. These equations are insufficient to determine $P(\underline{x}, t)$. Of all the distributions satisfying (3.66) the one with minimum information content is postulated to describe the system, in the absence of any other information. This distribution also maximizes the entropy function

$$
\begin{equation*}
S[P]=-\sum_{\underline{x}} P(\underline{x}, t) \ln [P(\underline{x}, t) / g(\underline{x})] \tag{3.67}
\end{equation*}
$$

where $g(\underline{x})$ is the degeneracy of state \underline{x}. When x specifies the number of molecules of each type, the degeneracy is

$$
\begin{equation*}
g(\underline{x})=\left(\sum_{i=1}^{M} x_{i}\right)!/ \prod_{j=1}^{M} x_{j}! \tag{3.68}
\end{equation*}
$$

The distribution thus obtained is

$$
\begin{equation*}
P(\underline{x}, t)=g(\underline{x}) \exp \left\{-\sum_{j=0}^{M} \mu_{r}(t) x_{r}\right\} \tag{3.69}
\end{equation*}
$$

where $\mu_{r}(t)$ is the Lagrangian multiplier corresponding to the r-th constraint (3.66). The function

$$
\begin{equation*}
e^{\mu_{0}}=\sum_{\underline{x}} g(\underline{x}) \exp \left\{-\sum_{i=1}^{M} \mu_{i}(t) x_{i}\right\} \tag{3.70}
\end{equation*}
$$

is called the partition function. From the conservation of total probability,

$$
\begin{equation*}
\frac{\partial \mu_{0}}{\partial t}=-\sum_{i=1}^{M} x_{i}(t) \frac{\partial \mu_{i}}{\partial t} \tag{3.71}
\end{equation*}
$$

In the following analysis the equilibrium state is used as a reference state. (This state is attained in the Schlögl model only when the flux constraints are removed.) Denoting equilibrium quantities with a superscript e, the entropy deficiency is defined as

$$
\begin{equation*}
K\left[P(t), P^{e}\right]=\sum_{\underline{x}} P(\underline{x}, t) \quad \ln \frac{P(\underline{x}, t)}{P^{e}(\underline{x})} . \tag{3.72}
\end{equation*}
$$

Substituting (3.69) into (3.72) we find

$$
\begin{equation*}
K(t)=-\Delta \mu_{0}(t)-\sum_{i=1}^{M} \Delta \mu_{i}(t) x_{i}(t) \tag{3.73}
\end{equation*}
$$

where $\Delta \mu_{i}(t)=\mu_{i}(t)-\mu_{i}$. In analogy with classical mechanical
equations, we look for a function $L\left(\left\{X_{i}\right\},\left\{\dot{X}_{i}\right\}\right)$ such that

$$
\begin{equation*}
\frac{d}{d t} \Delta \mu_{i}=\left(\frac{\partial L}{\partial x_{i}}\right)_{x_{j \neq i}, \dot{x}_{k}} \tag{3.74}
\end{equation*}
$$

This equation is satisfied if L is defined as

$$
\begin{equation*}
L=\sum_{i=1}^{M} \Delta \mu_{i} \frac{d x_{i}}{d t} \tag{3.75}
\end{equation*}
$$

To prove this, we first note that

$$
\begin{align*}
\frac{d K}{d t} & =-\frac{d \Delta \mu_{0}}{d t}-\sum_{i=1}^{M} x_{i} \frac{d \Delta \mu_{i}}{d t}-\sum_{i=1}^{M} \Delta \mu_{i} \frac{d x_{i}}{d t} \\
& =-\sum_{i=1}^{M} \Delta \mu_{i} \frac{d x_{i}}{d t}=-L \tag{3.76}
\end{align*}
$$

using (3.71). Now

$$
\begin{equation*}
\left(\frac{\partial L}{\partial x_{i}}\right)_{x_{j \neq i}}, \dot{x}_{k}=-\frac{d}{d t}\left(\frac{\partial K}{\partial x_{i}}\right)_{x_{j \neq i}, \dot{x}_{k}}=\frac{d}{d t} \Delta \mu_{i} \tag{3.77}
\end{equation*}
$$

from (3.73).
The assumption of maximum entropy at all times has led to the equation of evolution (3.77). This evolution equation is now used to study the relative stability in the Schlögl
model. First since $g(\underline{x})$ is a multinomial coefficient, we may write the partition function as

$$
\begin{equation*}
e^{\mu_{0}}=\left(\sum_{i=1}^{M} e^{-\mu_{i}}\right)^{N}, \tag{3.78}
\end{equation*}
$$

where $N=\sum_{i=1}^{M} x_{i}$ is assumed to remain constant in time. By differentiating (3.70) we find

$$
\begin{equation*}
\frac{\partial \mu_{0}}{\partial \mu_{i}}=-x_{i} . \tag{3.79}
\end{equation*}
$$

Differentiating (3.78) and comparing with (3.71),

$$
\begin{equation*}
\frac{d \mu_{i}}{d t}=-\frac{1}{x_{i}} \frac{d x_{i}}{d t} \tag{3.80}
\end{equation*}
$$

The evolution equation for the Schlögl model becomes

$$
\begin{align*}
\frac{1}{X} \frac{d x}{d t} & =\frac{\partial L}{\partial X} \\
& =\frac{\partial \Delta \mu_{A}}{\partial X} \frac{d A}{d t}+\frac{\partial \Delta \mu_{X}}{\partial X} \frac{d X}{d t}+\frac{\partial \Delta \mu_{B}}{\partial X} \frac{d B}{d t}, \tag{3.81}
\end{align*}
$$

where $\frac{d A}{d t}$ and $\frac{d B}{d t}$ are changes due to the reactions alone. Suppose we start the system at the stable state X_{1} at $t=-\infty$. If the other steady state is more stable, it is expected that
the system will evolve to X_{3} given enough time. This transition will occur only if the evolution equation is satisfied. Multiplying by $\frac{d x}{d t}$ and integrating from $t=-\infty$ to $t=\infty$ gives

$$
\begin{equation*}
-\int_{-\infty}^{\infty} \frac{1}{x}\left(\frac{d x}{d t}\right)^{2} d t=\int_{-\infty}^{\infty} \frac{\partial L}{\partial x} \frac{d x}{d t} d t=\int_{x_{1}}^{x_{3}} \frac{\partial L}{\partial x} d x \tag{3.82}
\end{equation*}
$$

under the hypothesis that a transition occurs, i.e., $X(t=\infty)=X_{3}$. Since the left hand side is negative semidefinite, X_{3} is more stable than X_{1} only if the integral on the right hand side is negative. If it is positive, then the reverse transition can occur. Thus the equistability condition is

$$
\begin{equation*}
\int_{x_{1}}^{x_{3}} \frac{\partial L}{\partial x} d x=0 \tag{3.83}
\end{equation*}
$$

Relative stability can also be studied using first passage times based on the master equation. ${ }^{36}$ We consider the mean time τ_{u} of first arrival at X_{3} if the system starts from X_{1} at time zero and we restrict attention to single variable systems such as the schlögl model. Let $\nu_{ \pm}(x)$ be the average number of $x \rightarrow x \pm 1$ transitions executed and $t_{u}(x)$ be the average time spent in state x during the passage from X_{1} to X_{3}. Then from equation (2.60), we have

$$
\begin{gather*}
\frac{t_{u}(x)}{v_{+}(x)+v_{-}(x)}=\frac{1}{a(x)} \tag{3.84}\\
\text { for the mean residence time at state } x \text { and from (2.61) }
\end{gather*}
$$

$$
\begin{equation*}
\frac{v_{ \pm}(x)}{v_{+}(x)+v_{-}(x)}=\frac{a_{ \pm}(x)}{a(x)} \tag{3.85}
\end{equation*}
$$

Solving these equations for $t_{u}(x)$, we get

$$
\begin{equation*}
t_{u}(x)=\frac{v_{ \pm}(x)}{a_{ \pm}(x)} \tag{3.86}
\end{equation*}
$$

Since every trajectory under consideration has exactly one $\mathrm{x}_{3}-1 \rightarrow \mathrm{x}_{3}$ transition,

$$
\begin{equation*}
v_{+}\left(x_{3}-1\right)=1 \tag{3.87}
\end{equation*}
$$

Every trajectory starting from X_{I} must also satisfy certain conditions in order to reach X_{3}. At a state $x<X_{1}$ it must execute an equal number of $x \rightarrow x+1$ and $x+1 \rightarrow x$ transitions and at any state between X_{1} and X_{3} it must execute one more $\mathbf{x} \rightarrow \mathrm{x}+1$ transition than the reverse. Since all trajectories satisfy these conditions, so does the average.

$$
\begin{equation*}
v_{+}(x-1)=v_{-}(x)+h\left(x-x_{1}\right) \text { for } x<x_{3} \tag{3.88}
\end{equation*}
$$

where $h(x)$ is the Heaviside step function. Thus we have a recursion relation for $t_{u}(x)$:

$$
\begin{equation*}
t_{u}(x-1)=\frac{a_{-}(x)}{a_{+}(x-1)} t_{u}(x)+\frac{h\left(x-x_{1}\right)}{a_{+}(x-1)}, \quad x<x_{2}-1 \tag{3.89}
\end{equation*}
$$

with

$$
t_{u}\left(x_{3}-1\right)=\frac{1}{a_{+}\left(x_{3}-1\right)}
$$

The mean first passage time is given by summing the mean times spent in all accessible intermediate states.

$$
\tau_{u}=\sum_{x=0}^{x_{3}-1} t_{u}(x)
$$

Similarly we can derive for the downward transition

$$
\begin{equation*}
\tau_{d}=\sum_{x=x_{1}+1}^{\infty} t_{d}(x) \tag{3.91}
\end{equation*}
$$

where

$$
t_{d}\left(x_{1}+1\right)=\frac{1}{a_{-}\left(x_{1}+1\right)}
$$

and in general

$$
\begin{equation*}
t_{d}(x+1)=\frac{a_{+}(x)}{a_{-}(x+1)} t_{d}(x)+\frac{h\left(x_{3}-x\right)}{a_{-}(x+1)} \tag{3.92}
\end{equation*}
$$

Then we can define relative stability based on the difference $\tau_{u}-\tau_{d}$. If this is neqative, the upper steady state X_{3} is more stable and conversely. Thus the equistability criterion is

$$
\tau_{\mathrm{u}}=\tau_{\mathrm{d}} .
$$

A more rigorous and direct derivation of the same expression
for the first passage time from the master equation is available in reference 37.

We have several coexistence conditions based on different criteria for relative stability. Schlögl's criterion includes the effects of diffusion but neglects fluctuations, whereas the two thermodynamic criteria (equations (3.65) and (3.83)) and the kinetic criterion (3.93) are based on descriptions neglecting spatial fluctuations. These two kinds of criteria need not agree. In an intermediate situation it is possible ${ }^{38}$ that a local fluctuation large enough for a phase transition arises due to the chemical reactions in the system but it diffuses away rather than causing a transition. On the other hand, when a slowly moving boundary is predicted by Schlögl's criterion, one may expect several dynamic patches of the two phases due to local fluctuations. Thus the actual coexistence point should lie between the points predicted by Schlögl's criterion and the thermodynamic criteria. Local fluctuations in nonequilibrium system can be investigated using the multivariate master equation described in the next section.

3.5 MEAN FIELD THEORY AND MULTIVARIATE MASTER EQUATION APPROACHES TO INCLUDE LOCAL FLUCTUATIONS.

The master equation based on uniform concentrations of the species in the reacting mixture is called the birth and death equation. Malek-Mansour and Nicolis ${ }^{39}$ have advanced
several criticisms of this method. They have stated that the prescription for calculating transition probabilities treats the reactive encounters of molecules as equally likely irrespective of the position of these molecules in the reaction vessel. This statement is simply not true. What appears in the master equation is the probability that a reactive collision will occur somewhere in the reactor, which is different from the probability that a given set of molecules will undergo a reactive collision. This point has been amply clarified by Gillespie. ${ }^{40}$ Another criticism is based on a study of the apparently pathological reaction scheme

The deterministic analysis gives an unstable steady state $Y=0$ and a stable steady state,

$$
\begin{equation*}
Y=k_{5} c / k_{6} \text {, } \tag{3.94}
\end{equation*}
$$

but the stationary distribution of the birth and death master equation is

$$
\begin{equation*}
P_{s}(Y=y)=\delta_{y 0} . \tag{3.95}
\end{equation*}
$$

According to equation (3.95) the system settles into the
state predicted to be unstable by the deterministic analysis. From this result Malek-Mansour and Nicolis concluded that the transition probability calculated using the birth-and-death model is wrong; this conclusion is based on the expectation that the deterministic analysis always gives the correct stability. A careful consideration of the reaction scheme reveals that the result obtained from the master equation represents a genuine phenomenon consistent with the assumed mechanism. 41 In the vicinity of the null state, the first reaction is much more likely to occur than the second due to the presence of C. Nonetheless it is possible that the few remaining Y molecules will react, eliminating Y from the system. Once the system has reached the null state, Y molecules can no longer be produced. This means that the null state will be eventually reached due to fluctuations and it is the only asymptotically stable state. Thus the model system is expected to behave as predicted by the birth-and-death master equation. It is the deterministic equation that gives wrong results due to the neglect of fluctuations.

However the master equation does have limitations, as correctly pointed out by the authors mentioned above. ${ }^{39}$ They have developed a mean field theory to remove the limitations arising from neglect of spatially inhomogeneous fluctuations. Although the birth-and-death master equation includes fluctuations in particle number, it assumes the concentration of the chemical species to be uniform throughout
the reactor. This need not be the case when stirring and diffusion are not efficient. Hence a realistic system can have properties such as a finite correlation length which is a measure of the effective wavelength of local fluctuations. The mean field approach starts by considering a subvolume ΔV which is comparable in size to the cube of the correlation length. The birth-and-death description is assumed to be valid within this subvolume. Then the probability distribution for the entire system $P\left(x_{i}, x_{0}, t\right)$ evolves according to

$$
\begin{equation*}
\frac{\partial}{\partial t} P\left(x_{i}, x_{0}, t\right)=R_{c h}(\Delta V)+R_{c h}(V-\Delta V)+T(\Delta V, V-\Delta V), \tag{3.96}
\end{equation*}
$$

where x_{i} is the number of molecules in ΔV and x_{0} is the number of molecules outside $\Delta V . R_{c h}(\Delta V)$ is the reaction probability term arising from birth and death processes in ΔV and T arises from the transport of matter across the boundary of ΔV. Assuming that the transport of heat is very fast (so that the system remains isothermal), T may be calculated using the position and velocity distributions from the kinetic theory of gases. Next the mean field assumption is introduced and the evolution equation is summed over the external variables, x_{o} and $V-\Delta V$. The system is required to be homogeneous on the average, i.e.,

$$
\begin{equation*}
\left\langle x_{0} /(V-\Delta V)\right\rangle=\left\langle x_{i} / \Delta V\right\rangle \tag{3.97}
\end{equation*}
$$

Moreover, the particle distributions in ΔV and in $V-\Delta V$ are assumed to be uncorrelated, so that

$$
\begin{equation*}
P\left(x_{i}, x_{0}, t\right)=P_{\Delta V}\left(x_{i}, t\right) P_{V-\Delta V}\left(x_{0}, t\right) \tag{3.98}
\end{equation*}
$$

Using these relations, a closed equation is derived for the evolution of the probability distribution in V :

$$
\begin{aligned}
\frac{\partial}{\partial t} P_{\Delta V}\left(x_{i}, t\right)=R_{c h}(\Delta V) & +D\langle x\rangle\left[P_{\Delta V}\left(x_{i}+1, t\right)-P_{\Delta V}\left(x_{i}, t\right)\right] \\
& +D\left[\left(x_{i}+1\right) P_{\Delta V}\left(x_{i}+1, t\right)-x_{i} P_{\Delta V}\left(x_{i}, t\right)\right]
\end{aligned}
$$

(3.99)

In equation (3.99) D is the effective frequency of diffusion passage of particles across the boundary of ΔV and is related to the diffusion coefficient D and mean free path by

$$
\begin{equation*}
D=\frac{D}{\text { mean free path } x \text { coherence length of fluctuations }} \tag{3.100}
\end{equation*}
$$

If the characteristic time scale of macroscopic changes due to chemical reaction is much longer than that of diffusion, then there is an expansion parameter. ${ }^{42}$ For example, in the Schlögl model if

$$
\begin{equation*}
\varepsilon_{2}=\frac{c_{2}}{6 D}=\frac{k_{2}}{(\Delta V)^{2} D} \tag{3.101}
\end{equation*}
$$

is small, then the "nonlinear" master equation becomes

$$
\begin{align*}
\frac{\partial}{\partial t^{\top}} P\left(x, t^{\prime}\right)= & R_{c h}+\varepsilon_{2}^{-1}\left\{\langle x\rangle\left[P\left(x-1, t^{\prime}\right)-P\left(x, t^{\prime}\right)\right]\right. \\
& \left.+(x+1) P\left(x+1, t^{\prime}\right)-x P\left(x, t^{\prime}\right)\right\}, \tag{3.102}
\end{align*}
$$

$$
\begin{align*}
& \text { where } t^{\prime}= \frac{c_{2}}{6} t= \\
& R_{c h}= \frac{k_{2}}{(\Delta V)^{2}} t \text { and } \\
& c_{2}\left\{a_{+}(x-1) P\left(x-1, t^{\prime}\right)+a_{-}(x+1) P\left(x+1, t^{\prime}\right)\right. \tag{3.103}\\
&\left.-\left[a_{+}(x)+a_{-}(x)\right] P\left(x, t^{\prime}\right)\right\}
\end{align*}
$$

We can seek a solution of the form

$$
\begin{equation*}
P\left(x, t^{\prime}\right)=P_{0}\left(x, t^{\prime}\right)+\varepsilon_{2} P_{1}\left(x, t^{\prime}\right)+\ldots \tag{3.104}
\end{equation*}
$$

Since $P\left(x, t^{\prime}\right)$ must be normalized independent of ε_{2}, we have

$$
\begin{equation*}
\sum_{x} P_{0}\left(x, t^{\prime}\right)=1 \text { and } \sum_{x} P_{n}\left(x, t^{\prime}\right)=0 \text { for } n>1 . \tag{3.105}
\end{equation*}
$$

The solution is obtained by use of a probability generating function defined by

$$
\begin{equation*}
F\left(s, t^{\prime}\right)=\sum_{x=0}^{\infty} s^{x^{\prime}}\left(x, t^{\prime}\right) \tag{3.106}
\end{equation*}
$$

$F\left(s, t^{\prime}\right)$ can also be expanded as a series in ε_{2}

$$
F\left(s, t^{\prime}\right)=F_{0}\left(s, t^{\prime}\right)+\varepsilon_{2} F_{1}\left(s, t^{\prime}\right)+\ldots,
$$

subject to the conditions

$$
\begin{equation*}
\left.F_{0}\left(s, t^{\prime}\right)\right|_{s=1}=1 \quad \text { and }\left.\quad F_{n}\left(s, t^{\prime}\right)\right|_{s=1}=0 \quad \text { for } n>1 . \tag{3.107}
\end{equation*}
$$

Then the evolution equation becomes

$$
\frac{\partial}{\partial t^{\prime}} F\left(s, t^{\prime}\right)=R+\varepsilon_{2}^{-1}(s-1)\left\{\langle x\rangle F\left(s, t^{\prime}\right)-\frac{\partial}{\partial s^{\prime}} F\left(s, t^{\prime}\right)\right\},
$$

with $R=\sum_{x=0}^{\infty} s^{x_{R}}{ }_{c h}$. By expanding $\langle x\rangle$ in powers of ε_{2}

$$
\langle x\rangle=\langle x\rangle_{0}+\varepsilon_{2}\langle x\rangle_{1}+\ldots
$$

and then equating the coefficients of powers of ε_{2} in equation (3.108), a set of evolution equations for $F_{n}\left(s, t^{\prime}\right)$ are obtained; these can be solved successively.

As an example, let us determine the stationary distribution for the Schlögl model, which is expected to be different from that obtained from birth and death master equation. For the Schlögl model R is

$$
\begin{equation*}
R=(1-s)\left\{s^{2} \frac{d^{3} F}{d s^{3}}-b_{1} s^{2} \frac{d^{2} F}{d s^{2}}+b_{3} \frac{d F}{d s}-b_{2} F\right\} \tag{3.110}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{1}=\frac{k_{1}}{k_{2}} b \Delta V=\frac{3 c_{1}}{c_{2}} b \Delta V, \\
& b_{2}=\frac{k_{4}}{k_{2}}(\Delta V)^{2}=\frac{6 c_{4}}{c_{2}}, \\
& b_{3}=\frac{k_{3}}{k_{2}} b(\Delta V)^{3}=\frac{6 c_{3}}{c_{2}} b \Delta V .
\end{aligned}
$$

At steady state, then

$$
\begin{equation*}
\varepsilon_{2}\left\{s^{2} \frac{d^{3} F}{d s^{3}}-b_{1} s^{2} \frac{d^{2} F}{d s^{2}}+b_{3} \frac{d F}{d s}-b_{2} F\right\}+\frac{d F}{d s}-\langle x>F=0 \tag{3.111}
\end{equation*}
$$

Equating the coefficients of $\varepsilon_{2}{ }^{0}$ gives

$$
\begin{equation*}
\frac{d F_{0}}{d s}-\langle x\rangle_{0} F_{0}=0 \tag{3.112}
\end{equation*}
$$

Solving equation (3.112) subject to the condition $\mathrm{F}_{0}(\mathrm{~s}=1)=1$, we get

$$
\begin{equation*}
F_{0}=e^{\langle x\rangle_{0}(s-1)} \tag{3.113}
\end{equation*}
$$

Equating the coefficients of ε_{2}^{1} gives

$$
\begin{gather*}
s^{2} \frac{d^{3} F_{0}}{d s^{3}}-b_{1} s^{2} \frac{d^{2} F_{0}}{d s^{2}}+b_{3} \frac{d F_{0}}{d s}-b_{2} F_{0}+\frac{d F_{1}}{d s}-\langle x\rangle_{0} F_{1} \\
-\langle x\rangle_{1} F_{0}=0 \tag{3.114}
\end{gather*}
$$

Setting $s=1$ and using (3.106), we obtain a moment equation

$$
\langle x(x-1)(x-2)\rangle_{0}-b_{1}\langle x(x-1)\rangle_{0}+b_{3}\langle x\rangle_{0}-b_{2}=0 .
$$

Since F_{0} generates a Poisson distribution, $\left\langle x^{n}\right\rangle=\langle x\rangle^{n}$ and therefore $\langle x\rangle_{0}$ is the solution of the macroscopic rate equation.

$$
\begin{equation*}
\langle x\rangle_{0}^{3}-b_{1}\langle x\rangle_{0}^{2}+b_{3}\langle x\rangle_{0}-b_{2} \cong 0 \tag{3.116}
\end{equation*}
$$

Thus for the Schlögl model three steady states may exist when $\varepsilon_{2} \rightarrow 0$. To find $F_{1}(s)$, we substitute

$$
\begin{equation*}
F_{1}(s)=F_{0}(s) \psi_{1}(s) \tag{3.117}
\end{equation*}
$$

in equation (3.114) to obtain

$$
\begin{equation*}
\frac{d \psi_{1}}{d s}=\langle x\rangle_{1}-s^{2}\langle x\rangle_{0}^{3}+b_{1} s^{2}\langle x\rangle_{0}^{2}-b_{3}\langle x\rangle_{0}+b_{2}, \tag{3.118}
\end{equation*}
$$

with $\psi_{1}(1)=0$. Solving (3.118) yields

$$
\begin{align*}
\psi_{1}(s)=\langle x\rangle_{1}(s-1) & -\frac{1}{3}\langle x\rangle_{0}^{3}\left(s^{3}-1\right)+\frac{1}{3} b_{1}\langle x\rangle_{0}^{2}\left(s^{3}-1\right) \\
& -b_{3}\langle x\rangle_{0}(s-1)+b_{2}(s-1) . \tag{3.119}
\end{align*}
$$

To find $\langle x\rangle{ }_{1}$, we equate the coefficients of $\varepsilon_{2}{ }^{2}$:

$$
\begin{align*}
s^{2} \frac{d^{3} F_{1}}{d s^{3}}-b_{1} s^{2} \frac{d^{2} F_{1}}{d s^{2}} & +b_{3} \frac{d F_{1}}{d s}-b_{2} F_{1}+\frac{d F_{2}}{d s}-\langle x\rangle_{0} F_{2} \\
& -\langle x\rangle_{1} F_{1}-\langle x\rangle_{2} F_{0}=0 \tag{3.120}
\end{align*}
$$

Setting $s=1$ and noticing that $\left.\frac{\mathrm{dF}_{2}}{\mathrm{ds}}\right|_{s=1}=\langle x\rangle_{2}$, we find

$$
\begin{equation*}
\left\{\frac{d^{3} F_{1}}{d s^{3}}-b_{1} \frac{d^{2} F_{1}}{d s^{2}}+b_{3} \frac{d F_{1}}{d s}-b_{2} F_{1}\right\} s=1=0 \tag{3.121}
\end{equation*}
$$

Substituting the expressions (3.117) and (3.119) for F_{1} and ψ_{1} we finally obtain

$$
\begin{equation*}
\langle x\rangle_{1}=\frac{-6 \mathrm{~b}_{3}\langle\mathrm{x}\rangle_{0}^{2}+\langle\mathrm{x}\rangle_{0}\left[6 \mathrm{~b}_{2}+2 \mathrm{~b}_{1} \mathrm{~b}_{3}-2 \mathrm{~b}_{3}\right]-2 \mathrm{~b}_{2}\left(\mathrm{~b}_{1}-1\right)}{3\langle\mathrm{x}\rangle_{0}^{2}-2 \mathrm{~b}_{1}\langle\mathrm{x}\rangle_{0}+\mathrm{b}_{3}} . \tag{3.122}
\end{equation*}
$$

This procedure clearly breaks down at the marginal stability points where the denominator in (3.122) vanishes.

A more satisfactory, but more difficult treatment is the multivariate master equation approach. ${ }^{43}$ In this approach too, the entire system volume is divided into a number of cells of equal volume $\Delta \mathrm{V}$. A birth and death process is assumed to occur in each cell, in addition to migration between adjacent cells. In contrast with the mean field approach, the equation of motion for the detailed distribution $P(\underline{x}, t)$ is considered, where the j-th component of \underline{x} is the number of \underline{x} molecules in the j-th cell. $P(\underline{x}, t)$ is a n-dimensional joint distribution when there are n cells and only one chemical component is allowed to vary. The multivariate master equation for the Schlögl model is

$$
\begin{align*}
\frac{\partial}{\partial t} P(\underline{x}, t)= & \sum_{r}\left\{a_{+}\left(x_{r}-1\right) P\left(\underline{x}_{\underline{-}}^{\underline{\delta}}, t\right)+a_{-}\left(x_{r}+1\right) P\left(\underline{x}+\underline{\delta}_{r}, t\right)\right. \\
& -\left[a_{+}\left(x_{r}\right)+a_{-}\left(x_{r}\right)\right] P(\underline{x}, t) \\
& \left.+D \sum_{\ell}\left[\left(x_{r}+1\right) P\left(\underline{x}+\underline{\delta}_{\ell}-\underline{\delta}_{r}, t\right)-x_{r} P(\underline{x}, t)\right]\right\} \tag{3.123}
\end{align*}
$$

for all \underline{x} in z^{n} where $z=\{0,1, \ldots\}, \underline{\delta}_{r}$ is a row vector with r-th component unity and all other components zero, ℓ runs over all nearest neighbours of the r-th cell, and D is the diffusion coefficient of X . The generating function for the joint distribution is

$$
\begin{equation*}
F(\underline{s}, t)=\sum_{\underline{x}} \prod_{r} s_{r}^{x_{r}} P(\underline{x}, t) \tag{3.124}
\end{equation*}
$$

Since the variables in the Schlögl model can be scaled leaving only two parameters we may define the parameters ω and ω^{\prime} by

$$
\begin{align*}
& \omega=\frac{k_{4}}{k_{2}}-3=\frac{6 c_{4}}{c_{2}(\Delta V)^{2}}-3, \tag{3.125}\\
& \omega^{\prime}=\frac{k_{3} b}{k_{2}}-1=\frac{6 c_{3} b}{c_{2}(\Delta V)^{2}}-1, \tag{3.126}
\end{align*}
$$

and we may select [A] such that

$$
\begin{equation*}
\frac{k_{1}[A]}{k_{2}}=3 \tag{3.127}
\end{equation*}
$$

without loss of generality. Then $\omega=\omega^{\prime}=0$ is the critical point. The steady-state equation for the generating function becomes

$$
\begin{align*}
\sum_{r}\left(1-s_{r}\right) s_{r}^{2} & \left.\frac{1}{(\Delta V)^{2}} \frac{\partial^{3} F}{\partial s_{r}^{3}}-\frac{3}{\Delta V} \frac{\partial^{2} F}{\partial s_{r}^{2}}\right) \\
& +\sum_{r}\left(1-s_{r}\right)\left[(3+\omega) \frac{\partial F}{\partial s_{r}}-\left(1-\omega^{\prime}\right) \Delta V F\right] \\
& +D \sum_{r} \sum_{\ell}\left(s_{\ell}-s_{r}\right) \frac{\partial F}{\partial s_{r}}=0 \tag{3.128}
\end{align*}
$$

Nicolis et al have assumed that the steady state distribution is of the form

$$
\begin{equation*}
F=z \exp \left\{\Delta V \sum_{r}\left(s_{r}-1\right)\right\} \tag{3.129}
\end{equation*}
$$

and that the volume of the cells is sufficiently large that the solution can be obtained as a perturbation expansion in

$$
\begin{equation*}
\varepsilon=(\Delta V)^{-1} \ll 1 . \tag{3.130}
\end{equation*}
$$

Considering the approach to the critical point along the line $\omega=\omega^{\prime}$, we scale the quantities ω and D near the critical point. Since the generating function and its derivatives are needed only at $\underline{s}=\underline{1}$, we also put

$$
\begin{equation*}
\mathbf{s}_{r}=\varepsilon^{e} \xi_{r}+\ldots \quad 0<e<1 \tag{3.131}
\end{equation*}
$$

along with

$$
\begin{equation*}
\omega=\varepsilon^{j} \omega_{1}+\ldots \tag{3.132}
\end{equation*}
$$

and $D=\varepsilon^{f} D_{1}+\cdots$.

Substituting equations (3.129)-(3.133) into equation (3.128) shows that the steady state equation has the leading terms

$$
\begin{align*}
& \sum-\xi_{r} \varepsilon^{2(1-e)} \frac{\partial^{3} Z}{\partial \xi_{r}^{3}}+\sum_{r} 4 \xi_{r}^{2} \varepsilon^{2 e-1} Z+\sum_{r}-\xi_{r} \varepsilon^{j_{\omega_{1}}} \frac{\partial Z}{\partial \xi_{r}} \\
& \quad+\sum_{r} \sum_{\ell} \xi_{r} \varepsilon^{f} D_{1}\left(\frac{\partial Z}{\partial \xi_{l}}-\frac{\partial Z}{\partial \xi_{r}}\right)+\ldots=0 . \tag{3.134}
\end{align*}
$$

The applicability of different kinds of theories near the critical point is determined by the relative importance of these four terms. Thus, for

$$
f>\max \{j, 2(e-1), 2 e-1\}
$$

and $j=2(1-e)=2 e-1$,
the birth and death description neglecting spatial fluctuations is valid. On the other hand, for

$$
\begin{equation*}
j<\min \{j, 2(1-e), 2 e-1\} \tag{3.136}
\end{equation*}
$$

diffusion dominates and chemical reaction effects appear as perturbations. All terms have equal importance if

$$
\begin{equation*}
e=3 / 4 \text { and } j=f=1 / 2 \tag{3.137}
\end{equation*}
$$

The resulting third-order equation in this case has the solution

$$
Z\left(\left\{\xi_{r}\right\}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty}\left\{d \theta_{r}\right\}\left[\exp \left(\sum_{r} \xi_{r} \theta_{r}\right)\right] R\left(\left\{\theta_{r}\right\}\right),
$$

where

$$
R\left(\left\{\theta_{r}\right\}\right)=\exp \left\{-\frac{1}{4} \sum_{r}\left(w_{1} \frac{\theta_{r}^{2}}{2}+\frac{\theta_{r}^{4}}{4}+\frac{D_{1}}{4} \sum_{l}\left(\theta_{\ell}-\theta_{r}\right)^{2}\right)\right\} .
$$

The functional in the exponential is the Ginzburg-Landau potential. If

$$
\begin{equation*}
e<3 / 4 \text { and } 2 e-1=j=f, \tag{3.139}
\end{equation*}
$$

the third order term can be dropped and consequently the $\theta_{r}{ }^{4}$ term is missing in the solution. This corresponds to the Gaussian approximation.

3.6 CRITICAL PHENOMENA

The steady state structure of the Schlögl model is similar to that of a van der Waals gas or a ferromagnetic material.

A close analogy exists between the parameters of these systems. The transition between multiple steady states of the Schlögl model is similar to the gas-liquid transition. For the Schlögl model the pump parameter B plays the role
of pressure and a change in the ratio of rate constants affects the shape of the X versus B curve as a change in temperature affects pV curves. The order parameters are the concentration of X and the density respectively. A less complete analogy can be drawn with the magnetization of a ferromagnetic material where the pump parameter and the rate-constant ratio correspond to external field strength and temperature respectively. Because of this similarity, the observed critical phenomena in the case of gas-liquid and magnetic systems ${ }^{44}$ are expected to be manifest in the Schlögl model also.

Inhomogeneous spatial fluctuations are very important in critical phenomena. So, the birth-and-death description is not sufficient for this study. Including the diffusion process the deterministic rate equation can be written as 45,46

$$
\begin{equation*}
\frac{\partial}{\partial t^{\prime}} x(\underline{r}, t)=-x^{3}+3 A x^{2}-(3+\delta) A^{2} x+\left(1+\delta^{\prime}\right) A^{3}+D \nabla^{2} x \tag{3.140}
\end{equation*}
$$

where A, δ and δ^{\prime} are defined by

$$
\begin{align*}
& A=\frac{k_{1} B}{3 k_{3}}=\frac{c_{1} B}{c_{2}}, \\
& 3+\delta=\frac{9 k_{2} k_{4} B^{2} v^{2}}{k_{1}{ }^{2}}=\frac{6 c_{2} c_{4} B^{2}}{c_{1}{ }^{2}} \\
& 1+\delta^{\prime}=\frac{27 k_{2}{ }^{2} k_{3} v^{2}}{k_{1}{ }^{3} B^{2}}=\frac{6 c_{2}{ }^{2} c_{3}}{c_{1}^{3}} \tag{3.141}
\end{align*}
$$

and $t^{\prime}=\frac{k_{2}}{v^{2}}=\frac{c_{2}}{6} t . X\left(\underline{r}, t^{\prime}\right)$ is related to its Fourier
components $X_{q}\left(t^{\prime}\right)$ by

$$
x\left(\underline{r}, t^{\prime}\right)=L^{-d / 2} \sum_{\underline{q}} x_{\underline{q}}\left(t^{\prime}\right) e^{i \underline{q} \cdot \underline{r}}
$$

and $X_{q}\left(t^{\prime}\right)=L^{-d / 2} \int_{-L / 2}^{L / 2} d r_{1} \cdots \int_{-L / 2}^{L / 2} d r_{d} x\left(\underline{r}, t^{\prime}\right) e^{-i \underline{q} \cdot \underline{r}}$,
where L is the side of the d-dimensional cubic reaction vessel. In terms of the Fourier components, the rate equation is

$$
\begin{align*}
\frac{\partial}{\partial t^{\prime}} x_{\underline{q}}\left(t^{\prime}\right)= & {\left[(3+\delta) A^{2}+q^{2} D\right] x_{\underline{q}}+L^{-d / 2} 3 A \sum_{\underline{k}} x_{\underline{q}-\underline{k}} x_{\underline{k}} } \\
& -L^{-d} \sum_{\underline{k}} \sum_{\underline{k}^{\prime}} x_{\underline{k}} \underline{x}_{\underline{k}}, x_{\underline{q}-\underline{k}-\underline{k}}{ }^{\prime}+L^{d / 2}\left(1+\delta^{\prime}\right) A^{3} \delta_{\underline{q}, \underline{0}} \tag{3.142}
\end{align*}
$$

using

$$
\begin{equation*}
\int_{-L / 2}^{L / 2} e^{i k_{1} r_{1}} d r_{1}=L \tag{3.143}
\end{equation*}
$$

It is difficult to study the corresponding stochastic equations in completely general form. The first improvement on the
deterministic equation is the Langevin equation obtained by simply adding uncorrelated uniformly fluctuating ("white") noise terms η_{q} to the deterministic equations; the averaged $\eta_{\underline{q}}$ and correlations satisfy

$$
\left\langle\eta_{\underline{q}}(t)\right\rangle=0
$$

and

$$
\begin{equation*}
\left\langle\underline{q}_{1}\left(t_{1}\right) n_{\underline{q}_{2}}\left(t_{2}\right)\right\rangle=2 \Gamma \delta_{\underline{q}_{1}-\underline{q}_{2}} \delta\left(t_{1}-t_{2}\right) \tag{3.144}
\end{equation*}
$$

Making the change of variable to σ_{q}

$$
\begin{equation*}
\sigma_{\underline{q}}=x_{\underline{q}} / A-\delta_{\underline{q}, \underline{0}}, \tag{3.145}
\end{equation*}
$$

and adding the noise terms transforms equation (3.142) into

$$
\begin{align*}
\frac{\partial}{\partial t^{\prime \prime}} \sigma_{\underline{q}}= & -\left[\delta+q^{2} D^{\prime}\right] \sigma_{\underline{q}}+L^{d / 2}\left(\delta^{\prime}-\delta\right) \sigma_{\underline{q}, \underline{0}} \\
& +L^{-d} \sum_{\underline{k} \underline{k} \underline{k}^{\prime} \underline{k} \sigma_{\underline{k}} \sigma_{\underline{q}-\underline{k}-\underline{k}}+\eta_{\underline{q}}\left(t^{\prime \prime}\right),} \tag{3.146}
\end{align*}
$$

where $t^{\prime \prime}=A^{2} t^{\prime}$ and $D^{\prime}=D / A^{2}$.
The corresponding Fokker-Planck equation giving the time evolution of the probability distribution for $\left\{\sigma_{\underline{q}}\right\}$ is a second-order partial differential equation. Its stationary solution is

$$
\begin{equation*}
P_{\mathbf{s}}\left(\left\{\sigma_{\underline{k}}\right\}\right)=N \exp \left[-F\left(\left\{\sigma_{\underline{k}}\right\}\right)\right], \tag{3.147}
\end{equation*}
$$

where N is a normalization constant and

$$
\begin{align*}
F\left(\left\{\sigma_{\underline{k}}\right\}\right) & =\Gamma^{-1}\left\{\sum_{\underline{k}}\left[\delta / 2+D^{\prime} k^{2} / 2\right]\left|\sigma_{\underline{k}}\right|^{2}\right. \\
+ & \frac{1 / 4}{} L^{-d} \sum_{\underline{k}} \underline{k}^{\prime} \sum_{\underline{k}} \underline{\sigma}^{\sigma_{k}} \underline{\sigma}^{\prime} \underline{\sigma}^{\prime} \underline{\sigma}^{\prime \prime} \sigma_{-\underline{k}-\underline{k}^{\prime}-\underline{k}} \underline{n}^{\prime \prime} \\
& \left.+L^{d / 2}\left(\delta-\delta^{\prime}\right) \sigma_{\underline{0}}\right\} . \tag{3.148}
\end{align*}
$$

This has the form of the Ginzburg-Landau Hamiltonian in the Ising model of a ferromagnet.

Many physical properties diverge as the critical point is approached. The strength of this divergence is characterized by critical exponents. For example, when the critical point $\delta=\delta^{\prime}=0$ is approached along the line $\delta=\delta^{\prime}$

$$
\begin{equation*}
\left\langle\sigma_{0}\right\rangle \sim(-\delta)^{\gamma_{1}} \text { for } \delta=\delta^{\prime}<0 \tag{3.149}
\end{equation*}
$$

where γ_{1} is a critical exponent. Similarly other exponents are defined by 45,46

$$
\begin{array}{ll}
\left\langle\sigma_{0}\right\rangle \sim\left(\delta^{\prime}\right)^{1 / \gamma_{2}} & \text { for } \delta=0, \\
\left\langle\sigma_{0}^{2}\right\rangle \sim \delta^{-\gamma_{3}} & \text { for } \delta=\delta^{\prime}, \tag{3.151}
\end{array}
$$

and $\left\langle\underline{q}^{\sigma} \underline{q}^{-}>\delta^{-\gamma_{3}} \mathrm{D}\left(q^{2} \delta^{-2 \gamma_{4}}\right)\right.$.

These exponents can be calculated using renormalization
group techniques.
Renormalization is a coarse graining transformation followed by a change of scale. 47 Suppose we have a joint probability distribution over the microstates of the system. From this we construct another distribution whose spatial (and time) resolution is lower. To do this we have combined several microstates together losing details within a single collection. Let us parametrize the extent of this coarse graining and scale change by s. Then the set $\left\{R_{s}: s>1\right\}$ of all such transformations is called the renormalization group (even though it does not satisfy all the axioms of group algebra). The basic hypothesis of renormalization group theory is that at the critical point all length scales are equivalent; that is, the system behaves identically at all levels intermediate between microscopic and macroscopic scales except close to the microscopic scale. This principle is an observed fact in magnetization and condensation processes. Accordingly the probability distribution corresponding to the critical point becomes invariant asymptotically under a renormalization transformation; i.e.,

$$
\begin{equation*}
\lim _{s \longrightarrow \infty} R_{s} P=P * \tag{3.153}
\end{equation*}
$$

where P^{*} is a fixed point of R_{s} for all s. Asymptotically the distribution corresponding to a point in the neighborhood of the critical point (but not on the critical surface) moves
away from P^{*}. The functional dependence of this movement on the parameters of the system can be related to the rate of divergence of physical properties. Thus the critical exponents can be calculated.

When we apply a renormalization to equation (3.148), we find that the result has the same form with the coefficient s^{4-d} appearing in front of the quartic term. Since we are interested in large s behaviour, we can neglect the quartic term in the potential when $4-\mathrm{d}<0$ and obtain a Gaussian distribution. The fixed point of the class of Gaussian distributions and the class of Ginzburg-Landau distributions are identical only at $d=4$. The Gaussian distribution is valid for $d>4$. When d decreases from 4, this approximation becomes increasingly inaccurate. Thus $d_{c}=4$ is a critical dimension. This suggests a perturbation expansion in a parameter with exponent 4-d. If the quartic term in the potential is treated as a perturbation, then an expansion is obtained in powers of $\delta^{\varepsilon_{3}}$ where $\varepsilon_{3}=4-d$. Thus even when $d<4$, there is a region (designated "the critical region") around the critical point outside which the Gaussian approximation is valid. As d increases the critical region shrinks and finally disappears when d reaches 4. The Ginzburg criterion qualitatively governs the size of the critical region.

From the perturbation expansion we obtain the following critical exponents:

$$
\begin{align*}
\gamma_{1} & =\frac{1}{2}-\frac{\varepsilon_{3}}{6}+\frac{\varepsilon_{3}}{18}+O\left(\varepsilon_{3}{ }^{3}\right) \tag{3.154}\\
\gamma_{2} & =3+\varepsilon_{3}+\frac{25}{54} \varepsilon_{3}^{2}+O\left(\varepsilon_{3}^{3}\right), \tag{3.155}\\
\gamma_{3} & =1+\frac{1}{6} \varepsilon_{3}+\frac{25}{36} \varepsilon_{3}^{2}+0\left(\varepsilon_{3}^{3}\right) \tag{3.156}\\
\text { and } \gamma_{4} & =\frac{1}{2}+\frac{1}{12} \varepsilon_{3}+\frac{1}{142} \varepsilon_{3}^{2}+O\left(\varepsilon_{3}^{3}\right) . \tag{3.157}
\end{align*}
$$

In equilibrium critical phenomena the heat capacity diverges at the critical point. A property analogous to the heat capacity exists in nonequilibrium systems. The entropy (S) and entropy deficiency (K) functions defined by (see equation (3.72))

$$
\begin{align*}
& S\left(\left\{P_{i}\right\}\right)=-\sum_{i} P_{i} \ln P_{i} \tag{3.158}\\
& K\left(\left\{P_{i}\right\},\left\{P_{i} e^{\}}\right)=\sum_{i} P_{i} \ln \left(P_{i} / P_{i} e^{e}\right)\right. \tag{3.159}
\end{align*}
$$

(in appropriate units) can be viewed as the averages of the random variables

$$
\begin{align*}
& b_{i}=-\ln P_{i} \tag{3.160}\\
& r_{i}=b_{i}^{e}-b_{i}=\ln \left(P_{i} / P_{i}^{e}\right), \tag{3.161}
\end{align*}
$$

called the bit number and relative bit number respectively.

Roughly speaking, b_{i} is proportional to the number of binary digits neccessary to represent P_{i}. In information theory, -S is called the Shannon information measure and K is called the Kullback measure of information gain. In equilibrium statistical thermodynamics, the probability distributions are of the form (cf. equation (3.69))

$$
\begin{equation*}
P_{i}=\exp \left(-\sum_{r} \Delta \mu_{r} x_{i r}\right) \tag{3.162}
\end{equation*}
$$

The heat capacity of a system is related to the variance of energy in the canonical distribution. Since the bit number corresponds to the energy of the microstates, (e.g.,

$$
\begin{equation*}
b_{i}=-\ln P_{i}=\frac{E_{i}}{k_{B}^{T}} \tag{3.163}
\end{equation*}
$$

for a canonical ensemble), a generalized heat capacity can be defined in terms of the bit number variance, as

$$
\begin{equation*}
c_{r}=\left(\left\langle b^{2}\right\rangle-\langle b\rangle^{2}\right) / \Delta \mu_{r} \tag{3.164}
\end{equation*}
$$

The divergence of bit number variance of the Schlögl model has been studied by Schlögl. ${ }^{48}$ When diffusion is effective and $\delta=\delta^{\prime}$, the stationary distribution for the homogeneous mode has the form

$$
\begin{equation*}
P(x) \sim \exp \left[-V\left(x^{2}+\sigma\right)^{2}\right] \tag{3.165}
\end{equation*}
$$

where σ is a derived constant. When the bit number variance is calculated from this distribution and plotted, it is found that it dramatically changes at the critical point and that this change approaches a divergence as $V \rightarrow \infty$.

A STUDY OF ASYMPTOTIC RELAXATION IN THE SCHLÖGL MODEL USING EIGENVECTORS OF THE TRANSITION MATRIX.

Abstract

It is well known that deterministic methods of chemical kinetics are not adequate for treating reacting systems exhibiting chemical instability. 8,49-52 In particular stochastic methods are needed to analyze transitions between multiple steady states in such systems. The Schlögl model has been widely used for studying phenomena associated with multiple steady states. Schlögl ${ }^{4}$ analyzed the model deterministically and showed that for certain sets of parameter values the model has two stable steady states and an unstable steady state (section 2.1). Matheson et al ${ }^{5}$ compared the stationary distribution from a stochastic treatment with the deterministic steady state results (section 2.2). Procaccia and Ross ${ }^{33}$ have discussed the question of relative stability of the two stable steady states (section 3.4). Gillespie ${ }^{9}$ studied the time-dependent features of this model using first passage times (section 3.4). Here the time-dependent probability distributions are displayed for long times at which transitions from one stable steady state to another are expected to occur. The stochastic time evoiution of the system is described by a birth-and-death master equation (section 2.2). Since it is a first-order linear equation, its solution is in principle known in terms of the eigenvalues and the eigenvectors of the

transition matrix ${ }^{8}$ (section 2.3). A criterion for the validity of the Kramers rule is given and results for the Schlögl model are presented in this chapter.

Creel and Ross ${ }^{53}$ have reported experimental observations of transitions between multiple steady states of an $\mathrm{NO}_{2} / \mathrm{N}_{2} \mathrm{O}_{4}$ mixture illuminated with an argon-ion laser.
4.1 THE SCHLOGL MODEL AND ITS STOCHASTIC FORMULATION

In the Schlögl model the chemical reactions

$$
\begin{array}{rl}
\mathrm{A} \\
\mathrm{~B} & \mathrm{x} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftarrows}} 3 \mathrm{x} \\
\underset{\mathrm{k}_{4}}{\stackrel{\mathrm{k}_{3}}{\rightleftarrows}} \mathrm{x}
\end{array}
$$

occur in a homogeneous open system. The particle numbers of species A and B (denoted by A and B) are assumed to be kept constant by contact with external reservoirs or by appropriate feeding into or removal from the reactor. Thus X is the only variable, while A and B are external parameters. For convenience we will also assume the numbers of A and B to be equal. When the reaction parameter η defined by

$$
\begin{equation*}
n=\frac{k_{1} k_{4}}{k_{2} k_{3}} \tag{4.1}
\end{equation*}
$$

exceeds a critical value $\eta_{c}=9$, there is a range of B values
for which the system has three possible steady states, $\mathrm{X}_{1}<\mathrm{X}_{2}<\mathrm{X}_{3}$, of which X_{1} and X_{3} are stable and X_{2} is unstable. Outside this range of B and below the critical point, there is only one stable steady state. The boundary separating these two regions consists of the marginal stability points.

In the stochastic formulation $X(t)$ is viewed as a random variable taking integer values in $\{x: 0<x<\infty\}$ The state of the system at a specified time t is then given by a probability vector $P(t)$ whose x-th component is the probability that $X(t)=x$. The dynamics of the systemare described by the time evolution of $P(x, t)\left[P(x, t) \equiv P_{x}(t)\right]$ according to the master equation,

$$
\begin{align*}
\frac{\partial}{\partial t} P(x, t)= & a_{+}(x-1) P(x-1, t)+a_{-}(x+1) P(x+1, t) \\
& -a(x) P(x, t), \quad x>0, \tag{4.2}
\end{align*}
$$

where

$$
\begin{align*}
& a_{+}(x)=\frac{c_{1}}{2} B x(x-1)+c_{3} B \tag{4.3}\\
& a_{-}(x)=\frac{c_{2}}{6} x(x-1)(x-2)+c_{4} x
\end{align*}
$$

and $a(x)=a_{+}(x)+a_{-}(x)$.

The parameters c_{i} are related to the rate constants k_{i} by

$$
\begin{equation*}
c_{i}=k_{i} n_{i}!v^{1-m_{i}} \tag{4.6}
\end{equation*}
$$

where n_{i} is the molecularity of the i-th step in X, m_{i} is the total molecularity of the $i-t h$ step (e.g., $n_{1}=2, m_{1}=3$), and V is the volume of the system. The stationary distribution $P_{s}(x)$ is obtained by setting the right-hand side of the master equation equal to zero. $P_{s}(x)$ has local maxima corresponding to stable steady states and a minimum at the x-value for the unstable steady state.

The master equation in matrix form is

$$
\begin{equation*}
\frac{\partial}{\partial t} \underline{P}=\underline{A} \underline{\underline{P}}, \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{x y}=a_{+}(y) \delta_{x-1, y}+a_{-}(y) \delta_{x+1, y}+a(y) \delta_{x y} \tag{4.8}
\end{equation*}
$$

Its solution is (section 2.3)

$$
\begin{equation*}
P(x, t)=P_{s}(x)+\sum_{j=1}^{\infty} \alpha_{j} P_{j}(x) e^{\lambda_{j} t}, \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{j}=\sum_{x} \frac{P_{j}(x) P(x, 0)}{P_{s}(x)} \tag{4.10}
\end{equation*}
$$

and λ_{j} and \underline{P}_{j} are the nonzero eigenvalues and the corresponding right eigenvectors of $\underline{\underline{A}}$ respectively. In particular, if $P(x, 0)=\delta_{x y}$, then

$$
\begin{equation*}
\alpha_{j}=P_{j}(y) / P_{s}(y) \tag{4.11}
\end{equation*}
$$

4.2. TRANSITION BETWEEN THE TWO STABLE STEADY STATES

For numerical studies the following values of the rate constants used by Gillespie ${ }^{36}$ are selected:

$$
\begin{aligned}
& c_{1}=3 \times 10^{-7} \text { (molecule }{ }^{-3} \text { time }^{-1} \text {) } \\
& c_{2}=1 \times 10^{-4} \text { (molecule }{ }^{-3} \text { time }
\end{aligned}
$$

and $c_{3}=1.5 \times 10^{-3}$ (molecule ${ }^{-1}$ time $^{-1}$);
then $c_{4}=1.5$ (molecule ${ }^{-1}$ time ${ }^{-1}$) corresponds to the critical point. To illustrate the transition between the two stable steady states, consider $c_{4}=3.33333$ and $B=1.01 \times 10^{5}$ as an example. Figure 4.1 shows the stationary distribution and the eigenvectors corresponding to the three eigenvalues closest to zero. As seen in section $2.3, \lambda_{0}=0$ and all other eigenvalues are negative. Let the eigenvalues and eigenvectors be arranged such that $\lambda_{0}>\lambda_{1}>\lambda_{2} \ldots$. In the example illustrated in Figure 4.1 the first two nonzero eigenvalues
Figure 4.1 Eigenvectors of the transition matrix $\underset{=}{A}$for the Schlögl model, when the parameterscorrespond to a point in the interior ofthe multiple steady-state region.
$\left(C_{4}=3.33333\right.$ and $\left.B=1.01 \times 10^{5}\right)$.
The eigenvalues are:
a) $\lambda_{0}=0$,
b) $\lambda_{1}=-3.8404 \times 10^{-8}$,
c) $\lambda_{2}=-1.0537$,
d) $\lambda_{3}=-1.5619$.

Figure 4.1.a The stationary mode \underline{P}_{s}.

Figure 4.1. b The transition mode \underline{P}_{1}.

Figure 4.1.c The eigenvector \underline{P}_{2} corresponding to λ_{2}.

Figure 4.1.d The eigenvector \underline{P}_{3} corresponding to λ_{3}.
$\left(\lambda_{1}=-3.8404 \times 10^{-8}\right.$ and $\left.\lambda_{2}=-1.0537\right)$ differ by several orders of magnitude. This means that the eigenmode \underline{P}_{1} persists for a long time after all other modes have decayed. Therefore, after a sufficiently long time, $P(x, t)$ has significant contributions only from \underline{P}_{s} and \underline{P}_{1}. Moreover, \underline{P}_{1} has a positive peak corresponding to one of the peaks in the stationary distribution \underline{P}_{s} and a negative peak corresponding to the other (see Figures 4.1.a and 4.1.b). As \underline{P}_{1} decays, $P(x, t)$ decreases in one steady-state region and grows in the other. Let \underline{P}_{1} be called the transition mode.

Figures 4.2-4.5 show the time evolution of the probability distribution for various initial values of x. A quasi-stationary distribution is established on a short time scale. Then this distribution slowly relaxes to the stationary distribution in accordance with the Kramers rule (explained in section 4.3). In general the quasi-steady distribution is determined by the initial distribution. If the initial distribution is a delta function peaked at an x-value close to one of the stable steady states, then the quasi-stationary distribution is peaked almost exclusively at that steady state. This behavior was noted by Oppenheim et al 31. When the initial x-value is close to the unstable steady state, however, the quasi-steady distribution has contributions from both stable regions. (Figure 4.4)

The direction in which the transition occurs depends on the sign of α_{1} in equation (4.9), which in turn depends

Figure 4.2 Time evolution of probability distribution when the parameters correspond to a point in the interior of the multiple steady-state region. $c_{4}=3.333333$ and $B=1.01 \times 10^{5}$ (same as in Figure 4.1). Initial distribution is $\delta(x-500)$.

Figure 4.3 Time evolution of probability distribution. $c_{4}=3.33333$ and $B=1.01 \times 10^{5}$. Initial distribution is $\delta(x-50)$.

Figure 4.4 Time evolution of probability distribution. $c_{4}=3.33333$ and $B=1.01 \times 10^{5}$.
Initial distribution is $\delta(x-253)$, peaked at the unstable steady-state X-value.

Figure 4.5 Time evolution of probability distribution.
$c_{4}=3.33333$ and $B=1.01 \times 10^{5}$.
Initial distribution is $\delta(x-230)$.
on the sign of $P_{1}\left(x_{0}\right)$ if the initial distribution is a delta function at x_{0}. Further, the two regions between which the transition occurs are separated by the zero of \underline{P}_{1} and not by the minimum of \underline{P}_{s}. These points differ significantly in some cases as will be seen below.
4.3. THE VALIDITY OF KRAMERS RELAXATION

A bistable system is said to undergo Kramers relaxation ${ }^{54}$ if the probability distribution equilibrates within each region rapidly and then diffuses slowly from one region to another thereby effecting a pure transition. Gardiner ${ }^{55}$ has reformulated the Kramers rule based on a one-dimensional Fokker-Planck equation. Similar results can be derived from a birth-and-death master equation describing a bistable system. For this purpose, let us define

$$
\begin{equation*}
M(x, t)=\sum_{y=0}^{x} P(y, t) \tag{4.13}
\end{equation*}
$$

$$
\begin{equation*}
N_{1}(t)=M\left(x_{2}-1, t\right), \tag{4.14}
\end{equation*}
$$

$$
\begin{equation*}
N_{2}(t)=P\left(X_{2}, t\right) \tag{4.15}
\end{equation*}
$$

$$
\begin{equation*}
N_{3}(t)=\sum_{x=x_{2}+1}^{\infty} P(x, t) \tag{4.16}
\end{equation*}
$$

$$
\begin{equation*}
n_{1}=\sum_{x=0}^{x_{2}-1} P_{s}(x) \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
n_{2}=P_{s}\left(x_{2}\right), \tag{4.18}
\end{equation*}
$$

and $n_{3}=\sum_{x=x_{2}+1}^{\infty} P_{s}(x)$.

From the master equation (4.2) and from the detailed balance relation (2.23) satisfied by $P_{S}(x)$, it follows that

$$
\begin{equation*}
\frac{\partial}{\partial t} M(x, t)=a_{+}(x) P_{s}(x) \quad\left(\frac{P(x+1, t)}{P_{s}(x+1)}-\frac{P(x, t)}{P_{s}(x)}\right) \tag{4.20}
\end{equation*}
$$

Dividing by $a_{+}(x) P_{s}(x)$ and summing over x from X_{1} to $x_{2}-1$, we obtain

$$
\begin{equation*}
\sum_{x=x_{1}}^{x_{2}-1}\left[a_{+}(x) P_{s}(x)\right]^{-1} \frac{\partial}{\partial t} M(x, t)=\frac{P\left(X_{2}, t\right)}{P_{s}\left(x_{2}\right)}-\frac{P\left(x_{1}, t\right)}{P_{s}\left(x_{1}\right)} \tag{4.21}
\end{equation*}
$$

If Kramers relaxation is followed, then we can set

$$
\begin{array}{ll}
P(x, t) \cong P_{s}(x) \frac{N_{1}(t)}{n_{1}} & \text { for } x<x_{2}, \\
P(x, t) \cong P_{s}(x) \frac{N_{3}(t)}{n_{3}} & \text { for } x>x_{2} .
\end{array}
$$

With these, equation (4.21) becomes

$$
\begin{equation*}
\sum_{x=x_{1}}^{x_{2}-1}\left[a_{+}(x) P_{s}(x)\right]^{-1} \frac{\partial}{\partial t} M(x, t)=\frac{N_{2}(t)}{n_{2}}-\frac{N_{1}(t)}{n_{1}} \tag{4.23}
\end{equation*}
$$

To calculate the left-hand side:

$$
\begin{align*}
M(x, t) & =\frac{N_{1}(t)}{n_{1}} \sum_{Y=0}^{x} P_{S}(y)=\frac{N_{1}(t)}{n_{1}}\left(n_{1}-\sum_{y=x+1}^{x_{2}-1} P_{s}(y)\right) \\
& =N_{1}(t)[1-\Phi(x)] \quad \text { for } x<x_{2}, \tag{4.24}
\end{align*}
$$

where

$$
\Phi(x)= \begin{cases}n_{1}^{-1} \sum_{y=x+1}^{x_{2}-1} P_{s}(y) & \text { for } x<x_{2}, \tag{4.25}\\ n_{3}^{-1} & \sum_{y=x_{2}+1}^{x} P_{s}(y) \\ \text { for } x>x_{2} .\end{cases}
$$

Substituting (4.24) in (4.23), we get

$$
\begin{equation*}
k \frac{d}{d t} N_{1}(t)=\frac{N_{2}(t)}{n_{2}}-\frac{N_{1}(t)}{n_{1}} \tag{4.26}
\end{equation*}
$$

where

$$
\begin{equation*}
k=\sum_{x=x_{1}}^{x_{2}^{-1}} \frac{1-\Phi(x)}{a_{+}(x) P_{s}(x)} \tag{4.27}
\end{equation*}
$$

Similarly by summing equation (4.20) from $X_{2}+1$ to X_{3}, we can obtain

$$
\begin{equation*}
\mu \frac{d}{d t} N_{2}(t)=\frac{N_{2}(t)}{n_{2}}-\frac{N_{3}(t)}{n_{3}} \tag{4.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu=\sum_{x=x_{2}+1}^{x_{3}} \frac{1-\Phi(x)}{a_{+}(x) P_{s}(x)} \tag{4.29}
\end{equation*}
$$

Equations (4.26) and (4.28) permit a three-state interpretation similar to Eyring's transition state theory.

$$
x_{1} \text {-region } \underset{\left(k n_{2}\right)^{-1}}{\stackrel{\left(k n_{1}\right)^{-1}}{\longleftrightarrow}} x_{2} \xrightarrow[\left(\mu n_{3}\right)^{-1}]{\stackrel{\left(\mu n_{2}\right)^{-1}}{\longleftrightarrow}} x_{3} \text {-region }
$$

The probability distribution for the Schlögl model satisfies equation (4.22) if the following conditions are met: 1) The eigenvalue corresponding to the transition mode must be sufficiently smaller in magnitude than all other nonzero eigenvalues. A quantitative criterion is given below. 2) The zero of the transition mode must match the minimum of the stationary mode. Moreover, $P_{S}(x)$ and $P_{1}(x)$ should be proportional in $0<x<X_{2}$; and similarly for $x>X_{2}$. In other words, the shapes of the transition mode and the stationary mode should match in each region separately.

A transition between stable steady states is well defined if there exists a time τ when a considerable fraction of the transition mode remains after all faster modes have decayed almost completely. It is possible to find a relation between λ_{1} and λ_{2} such that the coefficient of \underline{P}_{1} has decayed to a fraction f_{1} of its initial value and the
coefficient of \underline{P}_{2} to a fraction f_{2} of its initial value,

$$
\begin{align*}
\text { i.e., } e^{\lambda_{1}} & =f_{1}, \\
\text { and } & e^{\lambda_{2}} \tag{4.30}
\end{align*}=f_{2} .
$$

The required relation is

$$
\begin{equation*}
\frac{\lambda_{2}}{\lambda_{1}}>\log f_{2} / \log f_{1} \tag{4.31}
\end{equation*}
$$

Thus the coefficient of the transition mode will remain at 90% (50\%) of its initial value after the coefficient for the faster mode has decayed to 1% of its initial value, if the ratio of the eigenvalues exceeds 43 (6.6 respectively). This condition differs from that given by Oppenheim et al ${ }^{8}$ in terms of the difference $\left|\lambda_{2}-\lambda_{1}\right|$. Their criterion allows the possibility that the transition mode itself is negligible compared to the stationary mode by the time the next faster mode has decayed substantially.

The first three nonzero eigenvalues have been plotted versus B in various regions of the parameter space (Figures 4.6-4.8). Decay of the transition mode is very slow well inside the multiple steady-state region, but it becomes faster as either the critical point or a marginal stability point is approached. Figure 4.9 shows the region in which

Figure 4.6 The first three nonzero eigenvalues of the transition matrix A. $\mathrm{C}_{4}=3.33333$.

The dashed lines enclose the B-range in which there are three steady states.

Figure 4.7 The first three nonzero eigenvalues of the transition matrix $\underset{\underline{A}}{ } . \quad C_{4}=1.7$.
The dashed lines enclose the B-range in which there are three steady states.

Figure 4.8 The first three nonzero eigenvalues of the transition matrix $\underset{\underline{A}}{ } \quad C_{4}=1.3$ (no multiple steady states).

Figure 4.9 Regions of the parameter space where the conditions on the eigenvalues (equation (4.31)) is satisfied. The solid lines consist of the marginal stability points. $f_{2}=0.01$ $f_{1}=0.9$ for the dotted line.
 $f_{1}=0.5$ for the dashed line.

condition (4.31) on the eigenvalues is satisfied.
Figures 4.10 and 4.11 show the stationary distribution, the first three eigenvectors with nonzero eigenvalues, and the time-dependent distributions near a marginal stability point. It is interesting to note that the stationary distribution does not have a significant peak near the higher steady state, but the transition mode does. Consequently, the intermediate probability distributions are peaked at both steady states. However, the relaxation to the lower steady state is fast and there is no quasi-stationary distribution.

Figures 4.12-4.14 illustrate situations near the critical point. In this region the zero of the transition mode differs considerably from the unstable steady state X-value. In Figure 4.14.b, for example, a transition occurs between two regions of approximately equal size, eventhough the stationary distribution is asymmetric.

Although the deterministic analysis sharply divides the parameter space into single and multiple steady state regions, the stochastic analysis reveals that in the multiple steady state region close to the boundary, the behavior is similar to that in the single steady state region, i.e., transition between multiple steady states and equilibration in the vicinity of a single steady state are similar near the boundary. Thus there is no abrupt change in the qualitative behavior at the boundary separating the single and multiple steady-state regions.

Figure 4.10 Eigenvectors of the transition matrix A near a marginal stability point.
$\left(c_{4}=3.33333\right.$ and $\left.B=9.6 \times 10^{4}\right)$.
The eigenvalues are:
a) $\lambda_{0}=0$,
b) $\lambda_{1}=-1.6732 \times 10^{-2}$,
c) $\lambda_{2}=-7.3902 \times 10^{-1}$,
d) $\lambda_{3}=-1.4365$.

Figure 4.10.a The stationary mode \underline{P}_{S}.

Figure 4.10.b The transition mode ${\underset{P}{1}}_{1}$.

Figure 4.10.c The eigenvector \underline{P}_{2} corresponding to λ_{2}.

Figure 4.10.d The eigenvector \underline{P}_{3} corresponding to λ_{3}.

Figure 4.11 Time evolution of the probability distribution near a marginal stability point. $c_{4}=3.33333$ $B=9.6 \times 10^{4}$. Initial distribution is $\delta(x-400)$.

Figure 4.12.a

Figure 4.12 Eigenvectors of the transition matrix near the critical point. $C_{4}=1.7$ and $B=6.39 \times 10^{4}$. The eigenvalues are a) 0 , b) -4.9051×10^{-2}, c) -2.7271×10^{-1}, and d) -5.3060×10^{-1}.

Figure 4.12.b

Figure 4.12.c

Figure 4.12.d

Figure 4.13.a

Figure 4.13 Time evolution of probability distribution near the critical point. $c_{4}=1.7$ and $B=6.39 \times 10^{4}$. Initial distributions are
a) $\delta(x-120)$, b) $\delta(x-300)$, and c) $\delta(x-182)$.

Figure 4.13.b

Figure 4.13.c

Figure 4.14.a

Figure 4.14 Time evolution of probability distribution near the critical point and near a marginal stability point. $C_{4}=1.7$ and $B=6.45 \times 10^{4}$. Initial distributions are a) $\delta(x-300)$, b) $\delta(x-100)$, and c) $\delta(x-190)$.

Figure 4.14.b

Figure 4.14.C

In summary, the asymptotic solutions of the master equation for the Schlögl model have been constructed from the eigenvectors of the transition matrix. In the cases studied, deviations from the Kramers rule are attributable not only to the similarity of the decay times of various modes, but also to distortions in the shape of the slowest mode.

HYSTERESIS IN TRANSITIONS BETWEEN MULTIPLE NONEQUILIBRIUM Steady states of the schlögl model

Many models have been proposed and studied with the aim of understanding regulatory phenomena such as chemical oscillations and pattern formation in chemically reacting open systems far from equilibrium. ${ }^{1,3-5,56-60}$ one interesting phenomenon associated with the presence of multiple steady states in reacting systems far from equilibrium is hysteresis in transitions between the steady states. Hysteresis can be viewed as a special kind of oscillation caused by an external variation of a system paramter. I have simulated hysteresis in the Schlögl model system both deterministically and stochastically. Hysteresis has been observed by Creel and Ross ${ }^{53}$ in the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ when irradiated with an argon-ion laser. The steady state patterns of the chemical system are similar to those of the model system.

5.1 SCHLÖGL MODEL AND ITS STEADY STATES

In the Schlögl model the chemical reactions

occur in a homogeneous open system; the numbers of molecules of A and B (denoted by A and B) are assumed to be externally controllable and they are constrained to be equal. Thus the number of molecules of X (denoted by X) is the only system variable. When the reaction parameter n defined by

$$
\eta=\frac{k_{1} k_{4}}{k_{2} k_{3}}
$$

exceeds a critical value $\eta_{c}=9$, there is a range of B values for which the system has three possible steady states, $X_{1}<X_{2}<X_{3}$, of which X_{1} and X_{3} are stable and X_{2} is unstable. Outside this range of B and below the critical point there is only one stable steady state. The boundary separating these two regions consists of the marginal stability points.

In the stochastic formulation $X(t)$ is viewed as a random variable taking integer values in $\{x: 0<x<\infty\}$. The state of the system at a specified time t is then given by a probability vector $\underline{P}(t)$ whose $x-t h$ component is the probability that $X(t)=x$. The dynamics of the system are described by the time evolution of $P(x, t)\left[P(x, t) \equiv P_{x}(t)\right]$ according to the master equation for the Schlögl model 5,9

$$
\begin{align*}
\frac{\partial}{\partial t} P(x, t)=a_{+} & (x-1, t) P(x-1, t)+a_{-}(x+1, t) P(x+1, t) \\
& -a(x, t) P(x, t), \tag{5.1}
\end{align*}
$$

where

$$
\begin{align*}
& a_{+}(x, t)=\frac{c_{1}}{2} B(t) x(x-1)+c_{3} B(t), \tag{5.2}\\
& a_{-}(x, t)=\frac{c_{2}}{6} x(x-1)(x-2)+c_{4} x, \tag{5.3}
\end{align*}
$$

and $a(x, t)=a_{+}(x, t)+a_{-}(x, t)$.

This equation allows for time dependence of B. The parameters c_{i} are related to the rate constants k_{i} by

$$
\begin{equation*}
c_{i}=k_{i} n_{i}!v^{1-m_{i}} \tag{5.5}
\end{equation*}
$$

where n_{i} is the molecularity of the $i-t h$ step in X, m_{i} is the total molecularity of the i-th step (e.g., $n_{1}=2$ and $m_{1}=3$). and v is the volume of the system. 10
5.2 DETERMINISTIC SIMULATION OF HYSTERESIS

For numerical studies we select the following values of the rate constants used by Gillespie: ${ }^{36}$

$$
\begin{align*}
& c_{1}=3 \times 10^{-7} \text { (molecule }{ }^{-3} \text { time }^{-1} \text {) } \\
& c_{2}=1 \times 10^{-4} \text { (molecule }{ }^{-3} \text { time }^{-1} \text {) } \\
& c_{3}=1.5 \times 10^{-3} \text { (molecule } \tag{5.6}\\
& \text { time }
\end{align*}
$$

then $c_{4}=1.5$ (molecule ${ }^{-1}$ time ${ }^{-1}$) corresponds to the critical point. For c_{4} values greater than this, the steady state curve is S-shaped (see Figure 5.1). If we first prepare the system at a single steady state in the lower branch and then slowly increase B, X follows close to the steady state value until near a marginal stability point and then it jumps to the vicinity of the other steady state branch. If B is slowly decreased, a downward jump occurs near the other marginal stability point. This generates a hysteresis loop, shown as the curves marked with arrows in Figure 5.1. The curves are the solutions of the equations of evolution

$$
\begin{align*}
& \frac{d x}{d t}=\frac{c_{1}}{2} B x(x-1)+c_{3} B-\frac{c_{2}}{6} x(x-1)(x-2)-c_{4} x \\
& \frac{d B}{d t}= \pm \beta . \tag{5.7}
\end{align*}
$$

Hysteresis occurs to some extent below the critical point also, i.e., where there are no multiple steady states at all. This is shown by the curves with arrows in Figure 5.2.

The area enclosed by the hysteresis loop is a measure of the extent of hysteresis. In Figure 5.3, the area obtained from the deterministic treatment (equations (5.7)) is plotted versus the rate of change of B for various values of the critical parameter, C_{4}. This increases with an increase in β indicating the dynamic contribution to the hysteresis effect.

Figure 5.1 Results from deterministic (curves with arrows) and stochastic (noisy curves) simulations of hysteresis in the multistable region ($c_{4}=1.7$). The S-shaped curve is the set of steady states. $\beta=50$.

Figure 5.2 Results from deterministic (curves with arrows) and stochastic (noisy curves) simulations of hysteresis in the single steady-state region $\left(c_{4}=1.3\right) . \beta=50$.

Figure 5.3 Area inside the hysteresis loop versus the rate of change of B. (Deterministic results)

In the figure, the points corresponding to $\beta=0$ were obtained by integrating the area enclosed between the two branches of stable steady states. This is the area obtained when vertical transitions (transitions with $d x / d B \rightarrow \pm \infty$) occur exactly at the marginal stability points. It is interesting to note that the area of the hysteresis loop extrapolates to this finite value as β tends to zero in the multiple steady state region, and it extrapolates to zero in the single steady state region. The finite limit indicates a static contribution to the hysteresis effect from the multi-state region, but below the critical point the hysteresis is purely dynamic.

5.3 STOCHASTIC SIMULATION

Gillespie has deviced an algorithm to simulate chemical reaction systems stochastically ${ }^{10}$ and has extended it to include time dependent transition rates ${ }^{20}$ (section 2.3). This algorithm first randomly selects the time of the next reaction and then draws another random number to determine which of the various reaction steps should be carried out. If a reaction step has occurred at time t, bringing the system to state x, then the probability $P_{1}(\tau ; x, t) d \tau$ that the next reaction step will occur in the time interval ($t+\tau, t+\tau+d \tau)$ is given by

$$
\begin{equation*}
P_{1}(\tau ; x, t)=a(x, t+\tau) \exp \left\{-\int_{t}^{t+\tau} a(x, s) d s\right\} . \tag{5.8}
\end{equation*}
$$

The conditional probability that the next reaction is a forward (or backward) step given that the next reaction occurs after an interval τ, is

$$
\begin{equation*}
P_{2}(\pm \mid \tau ; x, t)=\frac{a_{ \pm}(x, t+\tau)}{a(x, t+\tau)} \tag{5.9}
\end{equation*}
$$

The simulation algorithm starts by selecting two random numbers r_{1} and r_{2} with uniform probability from the unit interval. The distribution function corresponding to $P_{1}(\tau ; x, t)$ is

$$
\begin{aligned}
F_{1}(\tau ; x, t) & =\int_{0}^{\tau} P_{1}(s ; x, t) d s \\
& =\int_{0}^{\tau} a(x, t+s) \exp [A(t)-A(t+s)] d s
\end{aligned}
$$

where

$$
\begin{equation*}
A(t)=\int^{t} a(x, s) d s \tag{5.11}
\end{equation*}
$$

After performing the integral we obtain

$$
\begin{equation*}
F_{1}(\tau ; x, t)=1-\exp \left\{-\int_{0}^{\tau} a(x, t+s) d s\right\} . \tag{5.12}
\end{equation*}
$$

We need to select τ such that

$$
\begin{gather*}
r_{1}=F_{1}(\tau) \\
\text { i.e., } \int_{0}^{\tau} a(x, t+s) d s=-\ln \left(1-r_{1}\right) \tag{5.13}
\end{gather*}
$$

In equation (5.13) we can replace $1-r_{1}$ by r_{1} since both are statistically equivalent. For the Schlögl model $a_{-}(x, t)$ is independent of B and $a_{+}(x, t)$ depends linearly on B. When B is varied linearly with time,

$$
\begin{equation*}
a(x, t+s)=a(x, t)+\frac{a_{+}(x, t)}{B(t)} \beta s \tag{5.14}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{0}^{\tau} a(x, t+s) d s=a(x, t) \tau+\frac{a_{+}(x, t)}{B(t)} \beta \frac{\tau^{2}}{2} . \tag{5.15}
\end{equation*}
$$

Combining equations (5.13) and (5.15), we obtain a quadratic equation for τ :

$$
\begin{equation*}
\beta \frac{a_{+}(x, t)}{2 B(t)} \tau^{2}+a(x, t) \tau+\ln r_{1}=0 \tag{5.16}
\end{equation*}
$$

Solving the quadraric equation and selectig the solution that
is continuous in r_{1} and gives a nonnegative value for τ, we have the following relation between r_{1} and τ :

$$
\tau=\left\{\begin{array}{l}
\frac{-a(x, t)+\left[a(x, t)^{2}-\frac{2 B}{B(t)} a_{+}(x, t) \ln r_{1}\right]^{\frac{1}{2}}}{a_{+}(x, t) B / B(t)} \tag{5.17}\\
\text { if } \beta>0 \text { or }-\ln r_{1}<-\frac{B(t)}{\beta}\left[\frac{1}{2} a_{+}(x, t)-a_{-}(x, t)\right] \\
\frac{1}{a_{-}(x, t)}\left(\frac{B(t)}{2 \beta} a_{+}(x, t)-\ln r_{1}\right) \\
\text { if } \beta<0 \text { and }-\ln r_{1}>-\frac{B(t)}{\beta}\left[\frac{1}{2} a_{+}(x, t)-a_{-}(x, t)\right]
\end{array}\right.
$$

From equation (2.65) we also have a relation between r_{2} and m :

$$
m= \begin{cases}+1 & \text { if } r_{2}<a_{+}(x, t+\tau) / a(x, t+\tau) \tag{5.18}\\ -1 & \text { if } r_{2}>a_{+}(x, t+\tau) / a(x, t+\tau)\end{cases}
$$

The time variable is advanced by τ and the particle number for X is incremented or decremented by one depending on whether m is positive or negative. This procedure is then repeated for the new state. The iteration produces a random path of the system in time. This approach yields results equivalent to those obtained by the master equation. Two hundred sample paths have been simulated and the averaged paths are shown in Figures 5.1 and 5.2.

In the deterministic simulation, the transition cannot
occur before the marginal stability point is reached (Appendix A); but as seen in Figure 5.1 (noisy curves), fluctuations induce the transition within the multiple steady state region. The areas obtained from the stochastic simulations A_{s} and the correspoding deterministic areas A_{d} are plotted versus B and c_{4} in Figures 5.4 and 5.5 respectively. The error bars indicate expected deviations from the mean; they were calculated from the standard deviations using the central limit theorem. ${ }^{17}$ In general the area A_{s} obtained from stochastic simulation is less than that from the deterministic integration (A_{d}), though the qualitative behaviour is the same in both cases. Another important difference between the two kinds of simulation is that as the rate of change of B tends to zero, A_{d} tends to a finite value in the multiple: steady state region, but A_{s} tends to zero. When B is changed at an infinitesimal rate, the deterministic analysis predicts that the forward and backward transitions occur at two different marginal stability points whereas the stochastic analysis predicts a unique transition point on the average in the multiple steady state region. This point was noticed and emphasized by Turner. ${ }^{61}$ However this result should not be interpreted as a complete absence of hysteresis effects in the stochastic simulation; rather, our results show that hysteresis in the Schlögl model is a dynamic effect and that the static contribution predicted by a deterministic analysis disappears when fluctuations are taken into account.

Figure 5.4 Comparison of deterministic (upper line) and stochastic simulation (lower line) results. $c_{4}=1.7$

Figure 5.5 Comparision of deterministic (upper line) and stochastic simulation (lower line) results. $B=50$.

CHAPTER VI

DETERMINISTIC STUDY OF MULTIPLE STEADY STATES IN COUPLED FLOW TANK REACTORS

The question of relative stability of different steady states arises when two or more of the steady states compatible with fixed fluxes, fixed elemental composition of the system and external conditions are asymptotically stable to small concentration fluctuations. Resolutions have been proposed on the basis of stochastic analysis ${ }^{36}$, thermodynamic analysis ${ }^{30-32}$, and mixing experiments ${ }^{29}$ (section 3.4).

The purpose of this chapter is to describe the new steady states and dynamical behavior of coupled systems when each exhibits multiple steady states. It is also shown how the outcome of mixing experiments with exchange of material between two continuously stirred flow tank reactors can be predicted from a deterministic analysis; the results obtained differ from those predicted by Noyes ${ }^{29}$, except for simple cubic reaction rate laws. It is shown that deterministic studies of coupled tanks do not yield information about the relative stabilities of single tank steady states, even when the outcome of a mixing experiment is independent of the mixing method, i.e., independent of the changes made in the coupled rate constant as a function of time.
6.1 MULTIPLE STEADY STATES IN A SINGLE CONTINUOUSLY STIRRED FLOW-TANK REACTOR.

A model continuously stirred flow tank reactor (CSTR) is characterized by two assumed operating conditions:

1. The volume of material in the tank reactor is fixed and there is a negligible change in the density of material as a consequence of reaction.
2. Mixing is assumed to be sufficiently rapid that the material is uniform in composition throughout the tank.

The concentration of reactant i in the input is R_{0}^{i}, and if product j is present in the input stream, its concentration is P_{0}^{j}. The reactant concentration in the output stream is identical to that in the tank. The flow of material through the tank is characterized by a flow rate constant k_{0}, the inverse of the average residence time for material in the tank; equivalently k_{0} is the ratio of the volume of material entering the reactor per unit time to the total reactor volume.

In the following development we restrict attention to the case where there is a single reactant R and a single product P in the tank, as in the work by Noyes ${ }^{29}$. With a single reactant and product, if $R_{T}=R_{0}+P_{0}$, and if the tank is flushed with material from the input stream so that the total reaction plus product concentration is equal to R_{T} initially, then deterministically $R+P=R_{T}$ at all times.

In the tank, reactant R is converted into product P by reaction according to the rate law

$$
\begin{equation*}
d P / d t=-d R / d t=v(R, P)=v\left(R, R_{T}\right) \tag{6.1}
\end{equation*}
$$

where the last equality is valid because P can be replaced by $R_{T}-R$. With the addition of the rate of change of R due to flow through the tank, the total rate of change of reactant concentration is

$$
\begin{equation*}
d R / d t=k_{0}\left(R_{0}-R\right)-v\left(R, R_{T}\right) \tag{6.2}
\end{equation*}
$$

Three different polynomial forms for $v\left(R, R_{T}\right)$ and the deterministic steady states associated with these models are used as explicit examples in this chapter. The forms for $v\left(R, R_{T}\right)$ are

1. Noyes' cubic model. For this model

$$
\begin{equation*}
v(R, P)=a(R-P / K)\left(1-b R+c R^{2}\right) \tag{6.3}
\end{equation*}
$$

and the variables have values $a=8.97 \times 10^{-4} \mathrm{~s}^{-1}, \mathrm{ab}=$ $5.985 \times 10^{-2} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \mathrm{ac}=1.00 \times 10^{-2} \mathrm{M}^{-2} \mathrm{~s}^{-1}, \mathrm{~K}=10^{6}$ and $R+P=R_{T}=0.1 M$
2. Noyes' quartic model. For this model,

$$
\begin{equation*}
v(R, P)=a^{\prime}(R-P / K)\left(1-b^{\prime} R+c^{\prime} R^{3}\right) \tag{6.4}
\end{equation*}
$$

with $a^{\prime}=10^{-3} s^{-1}, b^{\prime}=50 \mathrm{~m}^{-1}, c^{\prime}=1.87 \times 10^{4} \mathrm{~m}^{-3}, \mathrm{~K}=10^{6}$ and $R_{0}=R_{T}=0.1 \mathrm{M}$.
3. Two quintic forms Q_{1} and Q_{2}, for which

$$
\begin{equation*}
v=(R-P / K)\left(a+b P+c P^{2}+d P^{3}+e P^{4}\right) \tag{6.5}
\end{equation*}
$$

$\mathrm{K}=10^{6}$ and $\mathrm{R}_{\mathrm{T}}=0.2 \mathrm{M}$. The quintic expressions are aphysical as reaction rates, but they are useful in illustrating the difference between mathematical results valid without restrictions on $v\left(R, R_{T}\right)$ and those steady-state and dynamical results applicable when $v\left(R, R_{T}\right)$ is any cubic polynomial. For models Q_{1} and Q_{2}, the constant sets take the following values:
$Q_{1}:$

$$
\begin{aligned}
& \mathrm{a}=3.028222 \times 10^{-9} \mathrm{~s}^{-1} \\
& \mathrm{~b}=3.822292 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{c}=1.984543 \times 10^{-2} \mathrm{M}^{-2} \mathrm{~s}^{-1} \\
& \mathrm{~d}=6.649973 \times 10^{-2} \mathrm{M}^{-3} \mathrm{~s}^{-1} \\
& \mathrm{e}=0.999999 \mathrm{M}^{-4} \mathrm{~s}^{-1},
\end{aligned}
$$

Q_{2} :

$$
\begin{aligned}
& \mathrm{a}=2.966667 \times 10^{-8} \mathrm{~s}^{-1} \\
& \mathrm{~b}=3.788482 \times 10^{-3} \mathrm{M}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{c}=1.969993 \times 10^{-2} \mathrm{M}^{-2} \mathrm{~s}^{-1} \\
& \mathrm{~d}=6.499974 \times 10^{-2} \mathrm{M}^{-3} \mathrm{~s}^{-1} \\
& \mathrm{e}=0.999999 \mathrm{M}^{-4} \mathrm{~s}^{-1} .
\end{aligned}
$$

Corresponding to a given value of R_{0} (less than or equal to R_{T}),
there is a range of k_{0} values for which there are three real positive solutions of $d R / d t=0$ for Noyes' cubic model and for the two quintics. The three steady state solutions are designated $R_{\alpha}, R_{\beta^{\prime}}$, and R_{γ}, with $R_{\alpha}<R_{\gamma}<R_{\beta}<R_{T}$. In Figure 6.1, the steady-state R concentrations are plotted as functions of k_{0} for six different R_{0} values in the range from 0.03 M to 0.1 M , with $\mathrm{R}_{\mathrm{T}}=0.1 \mathrm{M}$ for Noyes' cubic model (in Noyes' work $R_{T} \equiv R_{0}$). For the quintic models, attention is restricted to single values of $k_{0}, k_{0}=7.659631 \times 10^{-4} \mathrm{~s}^{-1}$ for model Q_{1} and $k_{0}=7.5924 \times 10^{-4} \mathrm{~s}^{-1}$ for model Q_{2}. In general, for the quartic model, there are four steady state solutions of the deterministic kinetic equations, but the branch of solutions with the smallest R values is unstable to small concentration fluctuations; Noyes has plotted the remaining three solution branches as functions of k_{0} in reference 29.

The stability of the steady-state solutions of equation (6.2) may be determined by a linear stability analysis. If \bar{R} is a steady state solution of the deterministic kinetic equation for reactant concentration, then the time-evolution of a small concentration fluctuation δR about \bar{R} is governed by

$$
\begin{equation*}
\frac{d}{d t} \delta R=-\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\bar{R}}\right) \delta R \tag{6.6}
\end{equation*}
$$

on the unidimensional subset of the full concentration space defined by the condition $R+P=R_{T}$. Therefore a single tank

Figure 6.1 Steady states for the cubic model in a single flow tank reactor. The reactant concentration (R) in the tank at steady state is plotted as a function of the flow rate constant $\left(k_{0}\right)$ for various values of reactant concentration (R_{0}) in the input stream.
state is stable if $k_{0}+(\partial v / \partial R)_{\bar{R}}>0$, marginally stable if $k_{0}+(\partial v / \partial R)_{\bar{R}}=0$, and unstable otherwise. For all of the models (6.3-6.5), linear stability analysis shows that the intermediate concentration γ branch is unstable to small concentration fluctuations, while the α and β branches are stable. The points of coalescence of the γ branch with the α or β branch are marginal stability points (see Figure 6.1). Our aim is to investigate what happens when two tanks, one initially in the α state and the other in the β state, are coupled by exchange of material. As part of this investigation we find the possible steady states of the coupled tank system and their dependence upon the coupling rate constant k_{x}. This analysis shows that the outcome of mixing experiments is not an indicator of the relative stability of the asymptotically stable steady states.

6.2 COUPLED FLOW-TANK REACTORS

Let us consider two tanks, operated with the same flow rate constant k_{0}, the same R_{T}, and $R_{0}=R_{T}$ (i.e., each has an input stream containing reactant only). Conversion of reactant to product is assumed to proceed according to the same rate law in each tank. If the two tanks are coupled by a machanical pumping of material from tank 1 to tank 2, while at the same time, material is pumped from tank 2 into tank 1 with the same flow rate constant k_{x}, then the rate of change of reactant concentrations in the two tanks are

$$
d R_{1} / d t=k_{0}\left(R_{0}-R_{1}\right)-v\left(R_{1}, R_{0}\right)+k_{x}\left(R_{2}-R_{1}\right)
$$

and

$$
\begin{equation*}
d R_{2} / d t=k_{0}\left(R_{0}-R_{2}\right)-v\left(R_{2}, R_{0}\right)+k_{x}\left(R_{1}-R_{2}\right) \tag{6.7}
\end{equation*}
$$

Thus, independent of the values of k_{x}, the points $\left(R_{1}, R_{2}\right)=$ $\left(R_{\alpha}, R_{\alpha}\right),\left(R_{\beta}, R_{\beta}\right)$, and $\left(R_{\gamma}, R_{\gamma}\right)$ are always steady-state solutions of the coupled tank equations.

Because the condition $R+P=R_{T}$ reduces the single-tank problem to a single-variable problem, there is a potential that governs the deterministic time-evolution of the singletank system, and there is also a potential in the coupledtank case. If $V(R)$ is defined by the condition

$$
\begin{equation*}
V(R)=\int^{R} v\left(x, R_{0}\right) d x, \tag{6.8}
\end{equation*}
$$

and if ϕ is defined by

$$
\begin{align*}
\phi\left(R_{1}, R_{2} ; k_{0}, k_{x}\right)= & -k_{0} R_{0} R_{1}+1 / 2 k_{0} R_{1}^{2}+v\left(R_{1}\right) \\
& -k_{0} R_{0} R_{2}+1 / 2 k_{0} R_{2}^{2}+V\left(R_{2}\right) \\
& +1 / 2 k_{x}\left(R_{2}-R_{1}\right)^{2}, \tag{6.9}
\end{align*}
$$

then ϕ satisfies the conditions

$$
\begin{equation*}
d \mathrm{R}_{1} / \mathrm{dt}=-\partial \phi / \partial \mathrm{R}_{1} \tag{6.10}
\end{equation*}
$$

and

$$
\begin{equation*}
d R_{2} / d t=-\partial \phi / \partial R_{2} . \tag{6.11}
\end{equation*}
$$

For fixed k_{0} and k_{x}, then

$$
\begin{equation*}
\frac{d \phi}{d t}=\frac{\partial \phi}{\partial R_{1}} \frac{d R_{1}}{d t}+\frac{\partial \phi}{\partial R_{2}} \frac{d R_{2}}{d t} \leqslant 0 \tag{6.12}
\end{equation*}
$$

and $d \phi / d t=0$ only at steady states.
Figure 6.2 shows the possible steady-state concentrations in tank 1 as a function of k_{x} for Noyes' cubic model with $k_{0}=1.5 \times 10^{-5} s^{-1}$. For $k_{x}=0$ and for small k_{x}, there are nine possible steady-state pairs $\left(R_{1}, R_{2}\right)$. These are designated $\alpha_{\alpha}, \alpha_{\gamma}, \alpha_{\beta}, \gamma_{\beta}, \gamma_{\gamma}, \gamma_{\alpha}, \beta_{\alpha}, \beta_{\gamma}$ and β_{β} in order of increasing reactant concentration in the tank. The subscript indicates the corresponding steady-state branch in tank 2; i.e., if both $d R_{1} / d t=0$ and $d R_{2} / d t=0$, and if tank 1 is in state α_{B}, then tank 2 is necessarily in state β_{α}. The steady-state R concentration in tank 2 may be computed from the steady-state concentration in tank 1 since

$$
\begin{equation*}
\bar{R}_{2}=\left[v\left(R_{1}, R_{0}\right)+k_{x} R_{1}-k_{0}\left(R_{0}-R_{1}\right)\right] / k_{x} \tag{6.13}
\end{equation*}
$$

The number of steady-state solutions of the coupled-tank equations obviously depends upon the value of k_{x}. It decreases

Figure 6.2 Steady states of coupled reactors system for Noyes cubic model. The reactant concentration in one of the tanks $\left(R_{1}\right)$ is plotted versus the mixing rate constant (k_{x}) for $\mathrm{k}_{0}=1.5 \times 10^{-5} \mathrm{~s}^{-1}$.
from nine to five and then to three as k_{x} is increased. Figures 6.3 and 6.4 show the possible steady-state concentrations in tank 1 for Noyes model, as in Figure 6.2, but for different values of the flow rate constant $k_{0} ; k_{0}=2.7 \times 10^{-5}$ s^{-1} for Figure 6.3, and $k_{0}=2.516963 \times 10^{-5} \mathrm{~s}^{-1}$ for Figure 6.4.

For the quintic case with the constant set Q_{1}, the behaviour of the stationary solutions of equations (6.7) is qualitatively similar to that for Noyes cubic model. For small k_{x}, nine steady states are found; with an increase in k_{x}, these coalesce pairwise to leave five states. With a further increase in k_{x}, only the three steady states for which $\bar{R}_{1}=\bar{R}_{2}$ are found. With the constant set Q_{2}, in contrast, new steady state solutions of equations (6.7) are found. Again, for small k_{x}, there are nine steady states; when k_{x} is increased, new steady state branches appear. In particular, over the k_{x} range from $3.688463 \times 10^{-9} \mathrm{~s}^{-1}$ to $4.298794 \times 10^{-9} \mathrm{~s}^{-1}$, there are seventeen possible steady states for equations (6.7) where $v\left(R, R_{0}\right)$ has the quintic form Q_{2}. With further increase in k_{x}, this number decreases to thirteen, then nine, five, and finally three (all three with $\bar{R}_{1}=\bar{R}_{2}$).

Linear stability analysis shows that the stability properties of coupled tank differ from those for single tanks. If $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ designates a steady state of the coupled tank system, and if we consider a small concentration fluctuation in each tank $\left(\delta R_{1}, \delta R_{2}\right)$, subject to the

Figure 6.3 Steady states of coupled reactor system for the cubic model. $\mathrm{k}_{0}=2.7 \times 10^{-5} \mathrm{~s}^{-1}$.

Figure 6.4 Steady states of coupled reactor system for the cubic model. $\mathrm{k}_{0}=2.516963 \times 10^{-5} \mathrm{~s}^{-1}$.
conditions $R_{1}+P_{1}=R_{T}$ and $R_{2}+P_{2}=R_{T}$, then the timeevolution of the fluctuation may be approximated by the linear equations

$$
\begin{equation*}
\frac{d}{d t}\binom{\delta R_{1}}{\delta R_{2}}=-\underline{\underline{M}}\binom{\delta R_{1}}{\delta R_{2}} \tag{6.14}
\end{equation*}
$$

where

$$
M=\left(\begin{array}{cc}
k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\bar{R}_{1}}+k_{x} & -k_{x} \tag{6.15}\\
-k_{x} & k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\bar{R}_{2}}+k_{x}
\end{array}\right)
$$

The stability of the steady state $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ to small fluctuations depends upon the eigenvalues of the matrix M, λ_{1} and λ_{2}. If both λ_{1} and λ_{2} are positive, the state $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ is stable. Marginal stability occures when $\operatorname{det} \underline{\underline{M}}=0$. At this point, at least one of the eigenvalues of $\underline{\underline{M}}$ vanishes, and in the linear regime, a fluctuation of the character of the associated eigenvector is neither damped nor amplified in time. The condition for marginal stability of the $\left(\alpha_{\beta}, \beta_{\alpha}\right)$ state is

$$
\begin{equation*}
\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha_{B}}+k_{x}\right)\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\beta_{\alpha}}+k_{x}\right)-k_{x}^{2}=0 \tag{6.16}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha_{\beta}}\right)\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\beta_{\alpha}}\right)+k_{x}\left(2 k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha_{\beta}}+\left.\frac{\partial v}{\partial R}\right|_{\beta_{\alpha}}\right)=0 \tag{6.17}
\end{equation*}
$$

If k_{x} is less than the k_{x} value at marginal stability, then the inhomogeneous steady state $\left(\alpha_{\beta}, \beta_{\alpha}\right)$ is stable to small concentration fluctuations.

Each steady state of the coupled-tank system is an extremum point of ϕ. At a stable steady state $\left(\bar{R}_{1}, \bar{R}_{2}\right) \phi$ has a local minimum; for a state unstable to any fluctuation, ϕ has a local maximum, and for a state stable to certain perturbations $\left(\delta R_{1}, \delta R_{2}\right)$ but not to others, ϕ has a saddle point. Contour plots for the potential ϕ for Noyes cubic and quartic models are shown in Figures 6.5-6.10. In Figure 6.5-6.7, $\phi\left(R_{1}, R_{2}\right)$ is plotted for Noyes cubic model with $k_{0}=2.517 \times 10^{-5} \mathrm{~s}^{-1}$; the change in potential with change in k_{x} is illustrated by the sequence of Figure 6.5 with $k_{x}=0$ (no coupling between the tanks), Figure 6.6 with $k_{x}=4.0 \times 10^{-5} \mathrm{~s}^{-1}$, and Figure 6.7 with $k_{x}=9.061 \times 10^{-5} \mathrm{~s}^{-1}$. The k_{x} value for Figure 6.7 is the point of marginal stability for the coupled-tank state $\left(\alpha_{\beta}, \beta_{\alpha}\right)$. Figure 6.8 also shows results for the cubic model, but in this case, $k_{0}=1.5 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=3.9 \times 10^{-5} \mathrm{~s}^{-1}$, the marginal stability point of the inhomogeneous coupledtank steady state for this k_{0} value. Figures 6.9 and 6.10 show results for the quartic model obviously lacking the

Figure 6.5 The potential function ϕ for the cubic model with $\mathrm{k}_{0}=2.517 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=0$. The extremum points of ϕ correspond to the steady states $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ of the coupled tank system.

Figure 6.6 The potential function ϕ for the cubic model with $k_{0}=2.517 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=4.0 \times 10^{-5} \mathrm{~s}^{-1}$.

Figure 6.7 The potential ϕ for the cubic model.

$$
k_{0}=2.517 \times 10^{-5} \mathrm{~s}^{-1} \text { and } \mathrm{k}_{\mathrm{x}}=9.061 \times 10^{-5} \mathrm{~s}^{-1}
$$

Figure 6.8 The potential ϕ for the cubic model.

$$
k_{0}=1.5 \times 10^{-5} \mathrm{~s}^{-1} \text { and } \mathrm{k}_{\mathrm{x}}=3.9 \times 10^{-5} \mathrm{~s}^{-1}
$$

Figure 6.9 The potential ϕ for the quartic model.

$$
\mathrm{k}_{0}=3.374 \times 10^{-5} \mathrm{~s}^{-1} \text { and } \mathrm{k}_{\mathrm{x}}=1.28 \times 10^{-5} \mathrm{~s}^{-1}
$$

Figure 6.10 The potential ϕ for the cubic model.

$$
\mathrm{k}_{0}=3.5 \times 10^{-5} \mathrm{~s}^{-1} \text { and } \mathrm{k}_{\mathrm{x}}=1.1 \times 10^{-4} \mathrm{~s}^{-1}
$$

symmetry present for the cubic model. Figure 6.9 shows the potential for $k_{0}=3.374 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=1.28 \times 10^{-4} \mathrm{~s}^{-1}$, again the marginal stability point of the inhomogeneous coupled-tank state; Figure 6.10 shows results for $k_{0}=$ $3.5 \times 10^{-5} \mathrm{~s}^{-1}$ and $\mathrm{k}_{\mathrm{x}}=1.1 \times 10^{-4} \mathrm{~s}^{-1}$.

Next the effect of changes in the coupling constant k_{x} are considered. First we consider gradual increases in the coupling constant, beginning with the tanks uncoupled ($\left.k_{x}=0\right)$ and in different steady states. If k_{x} is increased sufficiently slowly, the coupled tanks will always be found at time t in the inhomogeneous steady state appropriate for $k_{x}(t)$, until the marginal stability point is reached. The equation of motion for the system point in the $\left(R_{1}, R_{2}\right)$ plane is derived as follows: Let $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ be a steady state solution of the coupled-tank equations

$$
\begin{align*}
& 0=k_{0}\left(R_{0}-\bar{R}_{1}\right)-v\left(\bar{R}_{1}, R_{0}\right)+k_{x}\left(\bar{R}_{2}-\bar{R}_{1}\right) \\
& 0=k_{0}\left(R_{0}-\bar{R}_{2}\right)-v\left(\bar{R}_{2}, R_{0}\right)+k_{x}\left(\bar{R}_{1}-\bar{R}_{2}\right), \tag{6.18}
\end{align*}
$$

and consider the changes in \bar{R}_{1} and \bar{R}_{2} produced by an infinitesimal change in k_{x} to $k_{x}+\delta k_{x}$. The new steady state $\left(\bar{R}_{1}+\delta R_{1}, \bar{R}_{2}+\delta R_{2}\right)$ satisfies

$$
\begin{gathered}
0=k_{0}\left(R_{0}-\bar{R}_{1}-\delta R_{1}\right)-v\left(\bar{R}_{1}+\delta R_{1}, R_{0}\right)+\left(k_{x}+\delta k_{x}\right) \\
\times\left(\bar{R}_{2}+\delta R_{2}-\bar{R}_{1}-\delta R_{1}\right)
\end{gathered}
$$

$$
\begin{align*}
0=k_{0}\left(R_{0}-\right. & \left.\bar{R}_{2}-\delta \bar{R}_{2}\right)-v\left(\bar{R}_{2}+\delta R_{2}, R_{0}\right) \\
& +\left(k_{x}+\delta k_{x}\right)\left(\bar{R}_{1}+\delta R_{1}-\bar{R}_{2}-\delta R_{2}\right) \tag{6.19}
\end{align*}
$$

Away from marginal stability points of the coupled-tank system, the changes in steady-state concentrations in the tanks can be expanded as series in powers of δk_{x}. To first order in $\delta k_{x}, \delta R_{1}$ and δR_{2} satisfy

$$
\begin{align*}
& 0=-k_{0} \delta R_{1}-\left.\frac{\partial v}{\partial R}\right|_{\bar{R}_{1}} \delta R_{1}+k_{x}\left(\delta R_{2}-\delta R_{1}\right)+k_{x}\left(\bar{R}_{2}-\bar{R}_{1}\right) \\
& 0=-k_{0} \delta R_{2}-\left.\frac{\partial v}{\partial R}\right|_{\bar{R}_{2}} \delta R_{2}+k_{x}\left(\delta R_{1}-\delta R_{2}\right)+k_{x}\left(\bar{R}_{1}-\bar{R}_{2}\right) ; \tag{6.20}
\end{align*}
$$

i.e.,
$-\underline{\underline{M}}\binom{\delta R_{1}}{\delta R_{2}}=\binom{\bar{R}_{1}-\bar{R}_{2}}{\bar{R}_{2}-\bar{R}_{1}} \delta k_{x}$,
where the same matrix $\underline{\underline{M}}$ determines the damping of concentration fluctuations. The equation has a solution for δR_{1} and δR_{2} linear in δk_{x}, provided that det $M \neq 0$.

If k_{x} is increased sufficiently slowly that the coupledtank system initially in the state $\left(\bar{R}_{1}^{0}, \bar{R}_{2}^{0}\right)$ satisfies the steady-state conditions for coupled tanks with coupling constant $k_{x}(t)$ at all times t, then the values of \bar{R}_{1} and \bar{R}_{2}
satisfy the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \mathrm{k}_{\mathrm{x}}}\binom{\delta \overline{\mathrm{R}}_{1}}{\delta \bar{R}_{2}}=-\underline{\underline{M}}^{-1}\binom{\bar{R}_{1}-\overline{\mathrm{R}}_{2}}{\bar{R}_{2}-\bar{R}_{1}} \tag{6.22}
\end{equation*}
$$

If $k_{x}=0$ at $t=0$, the initial conditions are $\bar{R}_{1}^{0}=R_{\alpha}, R_{\beta^{\prime}}$, or R_{γ} and $\bar{R}_{2}^{0}=R_{\alpha}, R_{B}$, or R_{γ}. The matrix M depends upon k_{0}, k_{X}, $\overline{\mathrm{R}}_{1}$, and $\overline{\mathrm{R}}_{2}$ and it is singular when the state $\left(\overline{\mathrm{R}}_{1}, \overline{\mathrm{R}}_{2}\right)$ is marginally stable.

In addition to the case of adiabatic mixing treated above, it is also interesting to consider the limit of instantaneous mixing, with k_{x} approaching infinity. In this limit, only solutions with $\bar{R}_{1}=\bar{R}_{2}$ can be found for the coupled-tank steady-state equations. When the single-tanks exhibit three steady states $R_{\alpha}<R_{\gamma}<R_{\beta}$, with R_{α} and R_{β} stable to small concentration fluctuations and R_{γ} unstable, tanks with reactant concentrations R_{1} and R_{2} prior to coupling lie in the domain of attraction of the $\left(R_{\alpha}, R_{\alpha}\right)$ state if $R_{1}+R_{2}<2 R_{\gamma}$, and in the domain of attraction of $\left(R_{\beta}, R_{\beta}\right)$ state if $R_{1}+R_{2}>2 R_{\gamma}$. This result applies to all systems with a single reactant and a single product independent of the form of $v(R, P)$, provided that the system shows the steadystate pattern specified above.

Next, we consider the position of separatrices between the domains of attraction of different stable steady states, and show how these move as the value of k_{x} is changed. When $k_{x}=0$, there are four stable steady states for the coupled
tanks, $\left(R_{\alpha}, R_{\alpha}\right),\left(R_{\alpha}, R_{\beta}\right),\left(R_{\beta}, R_{\alpha}\right)$, and $\left(R_{\beta}, R_{\beta}\right)$. The domains of attraction of these steady states are separated by the perpendicular lines $R_{1}=R_{\gamma}$ and $R_{2}=R_{\gamma}$. As k_{x} is increased, these separatices shift. If no new inhomogeneous steady states appear with increasing k_{x}, these separatrices coalesce when the $\left(\alpha_{\beta}, \beta_{\alpha}\right)$ state reaches marginal stability; the state $\left(\alpha_{\beta}, \beta_{\alpha}\right)$ lies on the degenerate separatrix at that point. In the limit as k_{x} goes to infinity, there is a single separatrix for the domains of attraction of the $\left(R_{\alpha}, R_{\alpha}\right)$ and $\left(R_{\beta}, R_{\beta}\right)$ states, and as discussed above, it has the equation $R_{1}+R_{2}=2 R_{\gamma}$.

The cubic case shows several special features. If
$v\left(R, R_{T}\right)$ is a cubic with multiple steady states in a single flow tank, then for some flow rate constant k_{0}, the three steady states satisfy $R_{\beta}-R_{\gamma}=R_{\gamma}-R_{\alpha}$. For this value of k_{0}, the potential $\phi\left(R_{1}, R_{2} ; k_{0}, k_{x}\right)$ is symmetric with respect to the line $R_{1}+R_{2}=2 R_{\gamma}$ for any value of k_{x} (see Appendix F). If R_{+}and R_{-}denote the solutions of the quadratic equation

$$
\begin{equation*}
\mathrm{k}_{0}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{R}}\right|_{R_{ \pm}}=0 \tag{6.23}
\end{equation*}
$$

then $R_{+}+R_{-}=2 R_{\gamma},\left(R_{+} R_{-}\right)$is a possible inhomogeneous steady state solution of the coupled tank equations (see Appendix F). If c is defined by the relation

$$
\begin{equation*}
k_{0}\left(R_{0}-R\right)-v\left(R, R_{0}\right)=c\left(R-R_{\alpha}\right)\left(R-R_{\gamma}\right)\left(R-R_{B}\right) \tag{6.24}
\end{equation*}
$$

for this selected k_{0} value, then there is a single separatrix between the domains of attraction of the steady states $\left(R_{\alpha}, R_{\alpha}\right)$ and $\left(R_{B}, R_{B}\right)$ when

$$
\begin{equation*}
k_{x}>-\frac{c}{3}\left(R_{\beta}-R_{\gamma}\right)^{2} \tag{6.25}
\end{equation*}
$$

Because of the symmetry of the potential, in this particular case, the separatrix remains fixed as k_{x} is increased. Hence the point (R_{+}, R_{-}) lies on the separatrix for every value of k_{x} greater than or equal to $-\frac{c}{3}\left(R_{B}-R_{\gamma}\right)^{2}$.

For the cubic mechanism with any other choice of $k_{0}{ }^{\prime}$ the marginal stability point of the inhomogeneous state lies on the separatrix when k_{x} takes on the marginal stability value, but with an increase in k_{x}, the separatrix sweeps past this point.

To illustrate the contrast between the cubic case and the general case, let $k_{x}^{M S}$ denote the k_{x} value at which the inhomogeneous (α, β) state is marginally stable, and designate the R concentrations at marginal stability by $\bar{\alpha}$ and $\bar{\beta}$. The values of $\bar{\alpha}$ and $\bar{\beta}$ obviously depend upon k_{0}. For a particular k_{0} value, denoted $k_{0}^{*},(\bar{\alpha}, \bar{\beta})$ lies on the separatrix of the domains of attraction of the $\left(R_{\alpha}, R_{\alpha}\right)$ and $\left(R_{\beta}, R_{\beta}\right)$ states, and it remains on the separatrix when the coupling constant is increased to $k_{x}^{M S}+\delta k_{x}$. For another k_{0}, denoted $k_{0}^{\#},(\bar{\alpha}, \bar{B})$ lies on the separatrix of the domains of attraction of the $\left(R_{\alpha}, R_{\alpha}\right)$ and $\left(R_{B}, R_{\beta}\right)$ states in the limit as k_{x} goes to infinity.

In the cubic case $k_{0}^{*}=k_{0}^{\#}$, but in general this equality does not hold. For the quartic model and the first quintic form, it is possible to find marginal stability points $(\bar{\alpha}, \bar{\beta})$ that lie in the domain of attraction of the $\left(R_{\alpha}, R_{\alpha}\right)$ state if k_{x} is increased suddenly to $k_{x}^{M S}+\Delta k_{x}$, but that lie in the domain of attraction of $\left(R_{\beta}, R_{\beta}\right)$ if k_{x} is increased to $k_{x}^{M S}+$ $2 \Delta k_{x}$. Further, if new inhomogeneous steady states appear with an increase in k_{x}, as for the second quintic form, the state $\left(\alpha_{\beta}, \beta_{\alpha}\right)$ still lies on a degenerate separatrix at its marginal stability point, but this is a separatrix between a homogeneous state and a new inhomogeneous $\left(\tilde{\alpha}_{\beta}, \tilde{\beta}_{\alpha}\right)$ state, rather than the $\left(R_{\alpha}, R_{\alpha}\right)-\left(R_{\beta}, R_{\beta}\right)$ separatrix.

The analysis above essentially explains the outcome of all possible mixing experiments conducted by changing the value of k_{x} in time. For example, equation (6.22) describes the behaviour of coupled systems that are mixed "adiabatically" , so that the system moves along a path of steady-state points in the R_{1}, R_{2} plane. When k_{x} reaches $k_{x}^{M S}$, the matrix $\underline{\underline{M}}$ is singular. Then unless $k_{0}=k_{0}^{*}$, an infinitesimal increase in k_{x} leaves the system in the domain of attraction of a new steady state, which may be homogeneous or inhomogeneous.

In the limit as k_{x} approaches infinity, the results of instantaneous mixing experiments are obtained. Any difference in outcomes of mixing experiments with different functions $k_{x}(t)$ obviously result from the k_{x} dependence of the potential (see Figures 6.5-6.10). The cubic case is unusual, because
the outcome of instantaneous mixing experiments and gradual mixing experiments is necessarily the same.
6.3. COMPARISION WITH THE NOYES ANALYSIS

In this section, the above results for coupled-tank experiments are compared with the results of Noyes. These results are also contrasted with the proposed relative stability criterion. Noyes has proposed that dynamic equistability at constant R_{0} can be determined experimentally by mixing experiments, beginning with one tank in the R_{α} state and the other (initially uncoupled) tank in the R_{β} state. Then the reactors will go to the ($\alpha^{\prime}, \beta^{\prime}$) state. Initially $k_{0}+\frac{\partial V}{\partial R}>0$ for both the α^{\prime} and β^{\prime} states. As k_{x} increases it decreases for α^{\prime} and B^{\prime}. If $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha^{\prime}}=0$ for a given k_{x} value while $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\beta^{\prime}} \neq 0$, then according to Noyes a further increase in k_{x} will drive the combined system to settle in the β state and therefore the β state is more stable than the α state. If $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\beta}$, reaches zero first then the α state is said to be more stable. As shown above and as noted by Noyes, the actual condition for marginal stability of the coupled tanks is given in equation (6.17). Therefore, if $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha^{\prime}}=0$, but $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{B^{\prime}}>0$, the coupled tank state is stable. This raises the possibility of finding counterexamples to Noyes prediction of the outcomes of mixing experiments. Two mathematical counterexamples are considered below. The first is provided by the quintic form Q_{1} where
$\mathrm{k}_{0}+\left.\frac{\partial \mathrm{v}}{\partial \mathrm{R}}\right|_{\alpha^{\prime}}=0$ when $\mathrm{k}_{\mathrm{x}}=9.373 \times 10^{-10} \mathrm{~s}^{-1}$ but an increase in
k_{x} by a factor of ~ 40 is required to reach the marginal stability point and when k_{x} is increased slightly beyond $k_{x}^{M S}$, the system initially in the (α, β) state settles into the $\left(R_{\alpha}, R_{\alpha}\right)$ state, contrary to Noyes prediction. In the second counterexample provided by Q_{2}, a small increase in k_{x} beyond the point at which $k_{0}+\left.\frac{\partial v}{\partial R}\right|_{\alpha^{\prime}}=0$ does suffice to drive the inhomogeneous tank state to the marginal stability point; but it does not settle into a homogeneous steady state. Instead, it is driven to a new inhomogeneous state. When with further increase in k_{x} the new inhomogeneous state goes unstable, the system again settles into the $\left(R_{\alpha}, R_{\alpha}\right)$ state.

It is important to recognize that coupling between the tanks alters the nature of the steady states in the single tanks to the extent that information about the relative stabilities of single-tank steady states is not available from mixing experiments, even if all mixing experiments have the same outcome. This point can be illustrated in several ways. For example, the equation for the change in R concentration in tank 1 when coupled to tank 2 can be written in the form

$$
\begin{equation*}
\frac{d R_{1}}{d t}=\left(k_{0}+k_{x}\right)\left(\frac{k_{0} R_{0}+k_{x} R_{2}}{k_{0}+k_{x}}-R_{1}\right)-v\left(R_{1}, R_{T}\right) \tag{6.26}
\end{equation*}
$$

This is identical to a single-tank equation with k_{0} replaced by $\overline{\mathrm{k}}_{0}$ (see equation (6.28)), R replaced by $\overline{\mathrm{R}}_{0}$, and R_{T} left unchanged. Similarly

$$
\begin{equation*}
\frac{d R_{2}}{d t}=\overline{\mathrm{k}}_{0}\left(\bar{R}_{0}^{\prime}-R_{2}\right)-\mathrm{v}\left(\mathrm{R}_{2}, \mathrm{R}_{\mathrm{T}}\right) \tag{6.27}
\end{equation*}
$$

with

$$
\bar{k}_{0}=k_{0}+k_{x}
$$

$$
\bar{R}_{0}=\left(k_{0} R_{0}+k_{x} R_{2}\right) /\left(k_{0}+k_{x}\right)
$$

and $\bar{R}_{\dot{0}}^{\prime}=\left(k_{0} R_{0}+k_{x} R_{1}\right) /\left(k_{0}+k_{x}\right)$.
\bar{R}_{0} and \bar{R}_{0}^{\prime} satisfy the identities $\bar{R}_{0}<R_{0}$ and $\bar{R}_{0}^{\prime}<R_{0}$. At the steady state $\left(\bar{R}_{1}, \bar{R}_{2}\right)$ of the coupled tank system, the concentration \bar{R}_{1} in tank 1 satisfies the equation

$$
\begin{equation*}
\overline{\mathrm{k}}_{0}\left(\bar{R}_{0}-\bar{R}_{1}\right)-v\left(\bar{R}_{1}, R_{0}\right)=0 . \tag{6.29}
\end{equation*}
$$

Hence a single-tank system with parameters \bar{k}_{0}, \bar{R}_{0}, and R_{T} has a steady state with the same R concentration \bar{R}_{1}. In this sense, the coupled tank steady states may be mapped onto single-tank steady states. However, the single-tank parameter \bar{R}_{0} differs for the two coupled tanks, and both $\overline{\mathrm{k}}_{0}$ and $\overline{\mathrm{R}}_{0}$ differ from the values for the original single-tank
experiments. Additionally, the stability properties for the coupled tank states differ from those for single-tank states, even when the adjustment for the change in effective flow rates and input-stream reactant concentrations is made. This is apparent from a plot of the coupled tank steady states on single-tank plots, as in Figure 6.11; the coupled-tank marginal stability points do not coincide with the single-tank marginal stability points.

Finally, it is significant to notice that the eigenvector of the matrix $\underline{\underline{M}}$ with eigenvalue zero has nonvanishing components in both R_{1} and R_{2}, except for the case when one tank is at marginal stability prior to coupling. Thus, in the general case, the stability of the coupled tanks cannot be localized in a single tank.

The analysis above has shown several new features for coupled multiple steady state systems. First, an effective potential and the shifts in location of the steady states have been derived for model coupled folw tank reactors. Second, it has been shown that the stability properties of the coupled tank systems differ in general from single tank stability properties; coupling stabilizes the tanks to small concentration fluctuations and makes it possible to operate coupled tanks in a region of the concentration space where stable operation of single tanks is impossible.

Figure 6.11 Comparision of steady state patterns of the single and coupled flow reactors.

FUTURE WORK AND DEVELOPMENT

Transitions between multiple steady states and hysteresis were studied using the birth-and-death master equation. This does not include local fluctuations. A complete mesoscopic description is provided by the multivariate master equation. It is possible that the multivariate master equation leads to slightly different results for these problems from those presented here. Schlögl's coexistence condition ${ }^{4}$ is obtained by including the effect of diffusion but neglecting fluctuations in the particle number, whereas the Nicolis condition ${ }^{30}$ is obtained by including number fluctuations and neglecting spatial inhomogeneities. Grassberger ${ }^{38}$ has recently argued that there is no sharp coexistence point when both kinds of fluctuations are taken into account. If this is the case, a study using the multivariate master equation may indicate a static contribution to hysteresis. Hence such a study seems worthwhile.

Since the eigenvector method and the simulation method involve extensive computations, it is desirable to have a set of evolution equations for the first few moments from the birth-and-death master equation. By multiplying the master equation by x^{n} and summing, we get

$$
\frac{d}{d t}\left\langle x^{n}\right\rangle=\sum_{r=1}^{n}\binom{n}{r}\left\langle x^{n-r}\left[a_{+}(x)+(-1)^{r} a_{-}(x)\right]\right\rangle
$$

Since $a_{+}(x)$ and $a_{-}(x)$ are cubic in x, the equation for $\left\langle x^{n}\right\rangle$ involves $\left\langle x^{n+2}\right.$. A systematic approximation might be developed by a truncation scheme.

Finally, it would be interesting to study the stochastic and time-dependent behaviour of the coupled tank reactor system.

APPENDICES

Proof that the transitions generating hysteresis cannot occur before a marginal stability point is reached according to the deterministic rate equation:

$$
\begin{align*}
& \text { Eliminating } t \text { from equation (5.7), we obtain } \\
& \frac{\mathrm{dX}}{\mathrm{~dB}}= \pm F(X, B) / B, \tag{A.1}
\end{align*}
$$

where

$$
F(X, B)=\frac{c_{1}}{2} B X^{2}-\frac{c_{2}}{6} x^{3}+c_{3} B-c_{4} X
$$

The initial condition is specified by $\left(X_{s}, B\right)$ where X_{s} is the X-value at a stable steady state corresponding to B. Since $F(X, B)$ has a bounded derivative in a finite interval (Lifshitz condition), the solution is unique. i.e., singlevalued (and continuous). Since $\beta>0,(A .1)$ gives

$$
\begin{equation*}
\frac{d x}{d B}=0 \quad \text { at any steady state. } \tag{A.2}
\end{equation*}
$$

The set of steady states are described by

$$
F\left(X_{S}(B), B\right)=0
$$

Considering the derivative of F along the steady state curve, we find

$$
\left.\frac{\partial F}{\partial B}\right|_{X=x_{s}}+\left.\frac{\partial F}{\partial X}\right|_{X=x_{s}} \frac{d x_{s}}{d B}=0
$$

Therefore,

$$
\begin{equation*}
\frac{d x_{s}}{d B}=-\left.\frac{\partial F}{\partial B}\right|_{X=X_{s}} \quad /\left.\frac{\partial F}{\partial X}\right|_{X=X_{s}} \tag{A.4}
\end{equation*}
$$

Also

$$
\left.\frac{\partial F}{\partial B}\right|_{X=X_{s}}=k_{1} X_{s}^{2}+k_{3}>0
$$

To find the sign of $\left.\frac{\partial F}{\partial \mathrm{X}}\right|_{X=X_{S}}$, we expand F at a steady state:

$$
\begin{equation*}
\frac{d x}{d t}=\left.\frac{\partial F}{\partial X}\right|_{X=x_{s}}\left(X-X_{s}\right)+\ldots \tag{A.5}
\end{equation*}
$$

when B is time-independent. Thus

$$
\begin{equation*}
\left.\frac{\partial F}{\partial X}\right|_{X=X_{S}}<0 \quad \text { if } X_{S} \text { is stable, } \tag{A.6}
\end{equation*}
$$

and hence from (A.4)

$$
\begin{equation*}
\frac{d \mathbf{x}_{\mathbf{s}}}{d B}>0 \tag{A.7}
\end{equation*}
$$

at all stable steady states.
Suppose there exists a solution which crosses the middle (unstable) branch of the steady state curve. In order to satisfy the initial condition the sölution has to pass through a stable steady state. This is possible only if its slope exceeds that of the steady state curve at the point of intersection. Since the slope of the stable branch is always positive according to equation (A.7), this contradicts equation (A.2). Thus the supposed solution does not exist.

APPENDIX B

Method and program to find the eigenvalues of the transition matrix

The infinite state-space of the stochastic process is made finite by setting $a_{+}(N)=0$ for a large N. Then the characteristic polynomial of the tridiagonal matrix $\underline{\underline{A}}$ is given by $\mathrm{f}_{\mathrm{N}}(\mathrm{x})$ where

$$
\begin{gathered}
f_{k}(x)=-[a(k)+x] f_{k-1}(x)-a_{+}(k-1) a_{-}(k) f_{k-2}(x) \\
\text { for } k=1,2, \ldots, N ; \\
f_{-1}(x)=1 \text { and } f_{0}(x)=-[a(0)+x] .
\end{gathered}
$$

Let $F_{k}(x)=f_{k}(x) / g(k)$ where $g(k)$ is chosen for numerical convenience (i.e., to avoid overflow) as

$$
g(k)=2^{-k} a(k) a(k-1) \ldots a(1) a(0)
$$

Then

$$
\begin{aligned}
F_{k}(x)=-2[1 & +x / a(k)] F_{k-1}(x) \\
& -4 \frac{a_{+}(k-1)}{a(k-1)} \frac{a_{-}(k)}{a(k)} F_{k-2}(x)
\end{aligned}
$$

It is known that there are n roots of $f_{k}(x)=0$ in the
interval $(-\infty, \alpha)$ if $f_{k}(\alpha) \neq 0$ and the sequence $f_{-1}(\alpha), f_{0}(\alpha)$, $\ldots, f_{k}(\alpha)$ changes sign n times. ${ }^{62}$ Since $g(k)>0$ for all k, $f_{k}(\alpha)$ can be replaced by $F_{k}(\alpha)$ in the above statement. This lets one bracket the desired root suitably for solving the above equation using any root-finding routine.
PROGRAM EIGENVL

```CC Subroutine ZEROIN should be supplied for loading
        LOGICAL L(997:1001)
        DIMENSION P(997:1001), R(998:1001)
        EXTERNAL CHARPOL
        COMMON /CB/ C(4), B, K
        DATA C /0.3E-6, 0.1E-3, 0.15E-2, 1.7/
C
C
    998 READ (60,*,END=999) C(4), BLOW, BHIGH, BSTEP
        Do this until input records are exhausted
C
        OPEN (60, FILE = 'INPUT', STATUS = 'OLD')
        OPEN (61, FILE = 'OUTPUT', STATUS = 'UNKNOWN')
C
    DO 40 B = BLOW, BHIGH, BSTEP
        L(997) = .FALSE.
        L(998) =.FALSE.
        L(999) = .FALSE.
        L(1000) = .FALSE.
        L(1001) = .FALSE.
C Hope that an eigenvalue will bite in the range between
C -500 and -10. This need not be one of the few we need.
C Since we will also know its position in the spectrum,
C it can be used as a bait to catch the ones we want.
XA = - 500.0
X = - 10.0
XB =0.0
C First we find four ranges of X enclosed by P(i) and P(i-1)
C such that each interval contains exactly one eigenvalue.
C Note that K is common with CHARPOL and that Y is ignored
C since we are only interested in X and K.
C
    10 CONTINUE
        Y = CHARPOL(X)
        IF (K .GT. 1001) THEN
        PRINT*, 'SIGN CHANGE OCCURRED ', K,
        $
        STOP 'BAD'
        ELSE IF (K .GE. 997) THEN
        L (K) = .TRUE.
        P(K) = X
        END IF
C
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{5}{*}{IF} & N & NOT. & L (997) & THEN \\
\hline & IF & (K & .LT. 997) & \(X A=X\) \\
\hline & IF & (K & .GT. 997) & \(X B=x\) \\
\hline & X & = & (XA +XB ) / & 2.0 \\
\hline & GO & TO & 10 & \\
\hline
\end{tabular}
```

```
ELSE IF ( .NOT. L(998) ) THEN
    X = P(997) / 2.0
    IF ( L(1000) ) X = P(997) + (P(1000)-P(997))/3.0
    IF (L( 999) ) X = P(997) + (P( 999)-P(997))/2.0
    GO TO 10
ELSE IF ( .NOT. L(999) ) THEN
    X = P(998) / 2.0
    IF (L(1000) ) X = P(998) + (P1000)-P(998))/2.0
    GO TO 10
ELSE IF ( .NOT. L(1000) ) THEN
    X = P(999) / 2.0
    GO TO10
ELSE IF ( .NOT. L(1001) ) THEN
    x = 1.0
    GO TO 10
END IF
```

C Now the eigenvalues can be calculated to desired accuracy C using any root finding routine.

$$
\text { DO } 30 I=998,1001
$$

$$
\mathrm{G} 1=\mathrm{P}(\mathrm{I}-1)
$$

$$
G 2=P(I)
$$

$$
\text { ABSERR }=1.0 \mathrm{E}-15
$$

$$
\text { RELERR }=1.0 \mathrm{E}-15
$$

CALL ZEROIN (CHARPOL, G1, G2, ABSERR, RELERR, IFLAG)
IF (IFLAG . GT. 3) THEN
PRINT*, 'ERROR FROM ZEROIN. IFLAG = ', IFLAG, ' $\mathrm{B}=\mathrm{\prime}, \mathrm{~B}, \mathrm{G}=\mathrm{G}=\mathrm{G}$, ' $\mathrm{G} 2=1, \mathrm{G} 2$
STOP 'BAD'
END IF $R(I)=G 1$
30 CONTINUE
C
C Write results
WRITE $(61,4) \mathrm{C}(4), \mathrm{B}, \mathrm{R}$
4 FORMAT ('0', 4X, F7.5, 4X, 1PE10.4, 3(4X,E20.13), \$ 4X, E10.3)
40 CONTINUE
GO TO 998

C
999 CONTINUE
999 CON
FNCTION CHARPOL (X)
C This function routine evaluates the characteristic
C polynomial of the transition matrix and counts the
C number of sign changes during the evaluation
COMMON /CB/ C(4), B, KOUNT
Go back to see if there is another input record

C1BBY2 $=C(1) * B / 2.0$
C2BY6 $=C(2) / 6.0$
FKM1 $=1.0$
KOUNT $=0$
$\mathrm{AK}=\mathrm{C} 3 \mathrm{~B}$
$\mathrm{FK}=-1.0-\mathrm{X} / \mathrm{AK}$
IF (FK . LT. 0.0) KOUNT = 1
$\mathrm{APK}=\mathrm{C} 3 \mathrm{~B}$
DO $10 \mathrm{~K}=1$, 1000
FKM2 = FKM1
FKM1 $=\mathrm{FK}$
APKM1 $=$ APK
AKM1 $=A K$
APK $=$ C1BBY2 * K * $(K-1)+$ C3B
AMK = C2BY6 * K * (K-1) * (K-2) $+\mathrm{C}(4)$ * K
IF ($\mathrm{K} . \mathrm{EQ} .1000$) APK $=0.0$
AK $=$ APK + AMK
- 4.0 * APKM1/AKM1 * AMK/AK * FKM2
IF (SIGN(1.0,FK) .NE. SIGN(1.0,FKM1)) KOUNT = KOUNT+1
10 CONTINUE
CHARPOL $=\mathrm{FK}$
IF (CHARPOL .EQ. 0.0) KOUNT = 995
RETURN
END

APPENDIX C

Programs to construct the eigenvectors of the transition matrix

The eigenvectors are constructed interactively because optimum values are to be selected for several parameters at intermediate stages.

An arbitrary value of $P_{j}(0)$ is selected, values of $P_{j}(x)$ are calculated recursively for $x>0$, and finally P_{j} is normazed. The value for $P_{j}(0)$ must be large enough not to cause underflow of $P_{j}(x)$ for some x and small enough not to cause overflow of the normalization constant. The normalization constant is obtained by summing $P_{j}(x)^{2} / P_{s}(x)$. This ratio as calculated is not at all accurate for large values of x for which both $P_{j}(x)$ and $P_{s}(x)$ are almost zero. Hence every individual case has a specific cut-off value of x.

Every step involved in the computation of an eigenvector is performed by invoking an appropriate command; after each step the results may be viewed, and if the results are not satisfactory the step can be repeated with different values for the parameters. The commands are:

INIT for initialization
DATA for changing the following values:

$$
\begin{aligned}
J \quad- & \text { index of the current eigenvector } \\
& \text { being computed. } J=1,2, \text { or } 3 . \\
\text { IMAX - } & \text { index of component beyond which } \\
& \text { terms need not appear in sum while }
\end{aligned}
$$

calculating the normalization constant.
IMIN - index of component before which terms need not appear in sum (often IMIN $=0$)

IMID - optional starting point for computing \underline{P}_{s} (For $x<$ IMID, $\underline{P}_{S}(x)$ will be calculated by backward iteration.)

PO
PJ for calculating unnormalized ${\underset{p}{j}}^{j}$
TERM for calculating $P_{j}(x)^{2} / P_{s}(x)$ for all x (If the result will cause overflow it is replaced by - 1.0)

SHOW for a display of various vectors (EDIT with no output) and the current values of the parameters

SUM for calculating the normalization constant for \underline{P}_{j}
NORM for normalizing \underline{P}_{j} or \underline{P}_{s}
SAVE for saving an eigenvector for plotting
PLOT for plotting all four eigenvectors
TIME for plotting time-dependent asymptotic solutions STOP

HELP
Since many components of the normalized \underline{P}_{s} are almost zero, it is recommended that \underline{P}_{s} be normalized after all other eigenvectors have been normalized. However the normalizing program performs correctly irrespective of whether the normalized or unnormalized \underline{P}_{s} is used for normalizing P_{j}.
In a typical run the commands may be issued in the following order:
INIT (prompts for C_{4} and B values)
PO (prompts for $\mathrm{P}_{\mathrm{s}}(0)$)
For $\mathrm{j}=1,2,3$
DATA $\quad(\operatorname{set} J=j)$
PJ
TERM
SHOW
DATA (set IMAX)
DATA (set IMIN $=0$)
SUM
NORM (J)
SAVE (J)
NORM (0)
SAVE (0)
PLOT
TIME
STOP

```
$ !
$ ! A procedure to compute the eigenvectors and time-
$ ! dependent asymptotic distributions interactively.
$ ! On-line instructuions are expected to be self-explanatory.
$ !
$ ON ERROR THEN GOTO CMD
$ ON CONTROL Y THEN GOTO CMD
$ ASSIGN SYS$`COMMAND SYS$INPUT
$ ASSIGN SYS$OUTPUT OUTPUT
$ INQ = "INQUIRE/NOPUNCTUATION"
$ WJ = "WRITE JOB"
$ WS = "WRITE SYS$OUTPUT"
$ !
$ !
$ !
CMD:
INQ COM "COMMAND ?"
IF COM.EQS."STOP" THEN EXIT
IF COM.EQS."HELP" THEN GOTO HEL
IF COM.EQS."TIME" THEN GOTO TIM
!
! There is a file EIGx.EXE for every valid response x,
! except when x = STOP, HELP, or TIME
!
RUN EIG'COM'
IF COM.EQS."SHOW" THEN EDIT/READONLY EIGOUT.DAT
IF COM.EQS."PLOT" THEN PRINT/NOFEED/DELETE VECPLOT.DAT
GOTO CMD
!
!
!
TIM:
$ !
$ ! A command procedure is prepared and submitted to a batch
$ ! queue.
$ !
$ DELETE EIGTIME.COM;*
$ OPEN/WRITE JOB EIGTIME.COM
$ WJ "$ASSIGN SYS$INPUT INPUT"
$ WJ "$ASSIGN SYS$OUTPUT OUTPUT"
$ WJ "$LINK/EXE=PGPLOT EIGFUN+[Z]PGPLOT+VPLOT+MACPLOT"
$ WJ "$RUN PGPLOT"
$ WJ "$DECK"
$ !
$ ! Conversation with user
$ !
$ WS " "
$ INQ NP "HOW MANY PLOTS ? ( 1 ) "
$ INQ Y "ALL IN ONE PAGE ?"
$ INQ Tl "TIME FOR FIRST PLOT = "
$ INQ T2 "TIME FOR LAST PLOT = "
```

```
INQ XMAX "MAXIMUM X = "
```

INQ XMAX "MAXIMUM X = "
INQ PMAX "MAXIMUM P(x,t) EXPECTED = "
INQ PMAX "MAXIMUM P(x,t) EXPECTED = "
INQ DELTA "IS INITIAL DISTRIBUTION A DELTA FUNCTION ? "
INQ DELTA "IS INITIAL DISTRIBUTION A DELTA FUNCTION ? "
IF DELTA THEN INQ INPOS "PEAKED AT "
IF DELTA THEN INQ INPOS "PEAKED AT "
IF DELTA THEN GOTO SKIP
IF DELTA THEN GOTO SKIP
INPOS = - 1
INPOS = - 1
WS " "
WS " "
WS "Then other acceptable initial distributions are"
WS "Then other acceptable initial distributions are"
WS "restricted to the span of the first four eigenvectors"
WS "restricted to the span of the first four eigenvectors"
WS " "
WS " "
WS "Enter components of the initial distribution along"
WS "Enter components of the initial distribution along"
WS "these eigenvectors"
WS "these eigenvectors"
WS " "
WS " "
WS " A(1) = 1.0"
WS " A(1) = 1.0"
INQ A2 "A(2) = "
INQ A2 "A(2) = "
INQ A3 "A(3) = "
INQ A3 "A(3) = "
INQ A4 "A(4) = "
INQ A4 "A(4) = "
SKIP:
SKIP:
!
!
! Prepare a data deck compatible with program PGPLOT and
! Prepare a data deck compatible with program PGPLOT and
! function PLFUN. The function reads data the first time
! function PLFUN. The function reads data the first time
l it is used in a job.
l it is used in a job.
!
!
IF Y THEN WJ "1"
IF Y THEN WJ "1"
R=NP + 1
R=NP + 1
IF .NOT.Y THEN WJ R
IF .NOT.Y THEN WJ R
!
!
IF Y THEN NN = NP + 1
IF Y THEN NN = NP + 1
IF .NOT.Y THEN NN = 1
IF .NOT.Y THEN NN = 1
!
!
IP = 0
IP = 0
X = "YES"
X = "YES"
L1:
L1:
IF IP.EQ.NP THEN N = 100
IF IP.EQ.NP THEN N = 100
IF IP.NE.NP THEN N = IP
IF IP.NE.NP THEN N = IP
IF X THEN WJ " ' ', 1, 'X', 1, 'P(X)', 4, "
IF X THEN WJ " ' ', 1, 'X', 1, 'P(X)', 4, "
IF X THEN WJ NN,", 0.0, ", XMAX, ", 0.0", ", ", PMAX
IF X THEN WJ NN,", 0.0, ", XMAX, ", 0.0", ", ", PMAX
WJ " .TRUE. ,", N, ",,,,,,,,"
WJ " .TRUE. ,", N, ",,,,,,,,"
IF IP.NE.O THEN GOTO L2
IF IP.NE.O THEN GOTO L2
WJ " ",T1, ",", T2, ",", INPOS, ",", NP, ","
WJ " ",T1, ",", T2, ",", INPOS, ",", NP, ","
IF .NOT.DELTA THEN WJ " ",A2,",",A3,",",A4,","
IF .NOT.DELTA THEN WJ " ",A2,",",A3,",",A4,","
L2:
L2:
IP = IP + I
IP = IP + I
X = .NOT.Y
X = .NOT.Y
IF IP.LE.NP THEN GOTO L1
IF IP.LE.NP THEN GOTO L1
WJ "\$ EOD"
WJ "\$ EOD"
WJ "\$ PRINT/NOFEED/DELETE PLOT.DAT"
WJ "\$ PRINT/NOFEED/DELETE PLOT.DAT"
WJ "\$ DELETE PGPLOT.*;*"
WJ "\$ DELETE PGPLOT.*;*"
CLOSE JOB
CLOSE JOB
WS " "
WS " "
WS "A batch job is ready to be submitted. Say NO if you"
WS "A batch job is ready to be submitted. Say NO if you"
\$ WS "have made a mistake."

```
$ WS "have made a mistake."
```



```
    PROGRAM EIGINIT
    PARAMETER (NX=1500, NE=3)
    IMPLICIT REAL*8 (A-H,O-Z)
    DIMENSION APLUS (0:NX), AMINUS (0:NX), EV(0:NE), C(4),
    \$ PO(O:NX), PJ(0:NX), TERM(0:NX)
    REAL SAVE (0:NX, 0:NE)
    DATA SAVE /6004*-1.0/, C /3D-7,1D-4, 1.5D-3, 1.7/
    \$ PO /1501*-1D0/. PJ /1501*-1D0/, TERM /1501*-1D0/
C
    WRITE (*,*) ' INIT'
    WRITE (*,1) ' C4 = '
    1 FORMAT (/'\$', A6)
    READ (*,*) CIN
    WRITE (*,1) ' \(\mathrm{B}=\) '
    READ (*,*) BIN
C
C Search through the eigenvalue listing
C
    \(E V(0)=0.0\)
    OPEN (15, FILE='EIGVALS', FORM='FORMATTED',
    \$ STATUS = 'OLD')
    WRITE (*,*) 'Searching for eigenvalues'
    DO WHILE (C (4).NE.CIN .OR. B.NE.BIN)
                READ (15,2,END=20) C(4), B, EV (3), EV (2), EV (1)
                        FORMAT (5X, E7.0, 4X, E10.0, 3 (4X,E20.0))
        END DO
    CLOSE (15)
    \(J=0\)
    IMIN \(=-1\)
    IMAX \(=-1\)
    IMID \(=-1\)
C
C Compute aplus and aminus and store in a file.
    C1BBY2 \(=C(1) * B * 0.5 D 0\)
    C2BY6 \(=C(2) / 6 D 0\)
    C3B \(=C(3) * B\)
    DO \(10 \mathrm{I}=0\), NX
        \(X=\) DBLE (I)
        APLUS (I) \(=\) C1BBY2 * \(X *(X-1 D 0)+C 3 B\)
        AMINUS \((I)=\) C2BY6 * \(X *(X-1 D 0) *(X-2 D 0)+C(4) * X\)
10 CONTINUE
    OPEN (10,FILE='EIGDATA', STATUS='UNKNOWN',
    \$ FORM='UNFORMATTED')
    WRITE (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
C
C
Erase numbers from previous work in the following files
```

```
    OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',
```

 OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',
 $ FORM='UNFORMATTED')
 $ FORM='UNFORMATTED')
 SUMO = -1DO
    ```
    SUMO = -1DO
```

```
        WRITE (20) PO,SUMO
        CLOSE (20)
        OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',
        $ FORM='UNFORMATTED')
            SUMJ = -1D0
            PNORMJ = -1DO
            WRITE (30) PJ, SUMJ, PNORMJ
            CLOSE(30)
            OPEN (40, FILE='EIGTERM', STATUS='UNKNOWN',
                $ FORM='UNFORMATTED')
            WRITE (40) TERM
            CLOSE (40)
            OPEN (60, FILE='EIGSAVE', STATUS='UNKNOWN',
                $ FORM='UNFORMATTED')
            WRITE (60) C(4), B, EV, SAVE
            CLOSE (60)
            STOP ' '
C Normal termination at this point
C
20 CLOSE (15)
    STOP 'Eigenvalues not available'
    END
```


PROGRAM EIGDATA

PARAMETER ($\mathrm{NX}=1500$, $\mathrm{NE}=3$)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION C(4), EV(0:NE), APLUS (0:NX), AMINUS (0:NX),
\$ $\quad \mathrm{PJ}(0: \mathrm{NX}), \operatorname{TERM}(0: N X)$
CHARACTER VAR*4
DATA PJ / 1501*-1D0 /, SUMJ / -1D0 /, PNORMJ / -1D0 / \$ TERM / 1501*-1D0 /
OPEN (10, FILE='EIGDATA', STATUS='OLD',
\$ FORM='UNFORMATTED')
READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
CLOSE (10)
WRITE(*,1) ' VARIABLE ? '
1 FORMAT ('\$', A11)
$\operatorname{READ}(*, 2)$ VAR
2 FORMAT (A10)
WRITE (*,*) ' '
WRITE (*,3) VAR, ' = '
3 FORMAT ('\$', A4, A3)
READ (*,*) IVAR
IF (VAR.EQ.'J' .OR. VAR.EQ.'j') THEN
$J=$ IVAR
IMIN $=-1$
IMAX $=-1$
IMID $=-1$
OPEN (30, FILE='EIGPJ' , STATUS='UNKNOWN',
FORM='UNFORMATTED')
WRITE (30) PJ, SUMJ, PNORMJ
CLOSE (30)
OPEN (40, FILE='EIGTERM', STATUS='UNKNOWN',
FORM='UNFORMATTED')
WRITE (40) TERM
CLOSE (40)
END IF
IF (VAR.EQ.'IMIN' .OR. VAR.EQ.'imin') IMIN = IVAR
IF (VAR.EQ.'IMAX' .OR. VAR.EQ.'imax') IMAX = IVAR
IF (VAR.EQ.'IMID' .OR. VAR.EQ.'imid') IMID = IVAR
OPEN (10, FILE='EIGDATA', STATUS='UNKNOWN',
\$ FORM='UNFORMATTED')
WRITE (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
CLOSE (10)
END

```
    PROGRAM EIGPO
    PARAMETER (NX=1500, NE=3)
    IMPLICIT REAL*8 (A-H, O-Z)
    DIMENSION PO(0:NX), APLUS(0:NX), AMINUS (0:NX), EV (0:NE),
        $ C(4)
        CHARACTER RES
C
    WRITE( *,*) ' PO'
    OPEN (10, FILE='EIGDATA', STATUS='OLD',
    $ FORM='UNFORMATTED')
    READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
    CLOSE (10)
    WRITE (*,1) ' STARTING FROM x = 0 ?'
    1 FORMAT ('$', A21)
    READ (*,2) RES
    2 FORMAT (A1)
    WRITE (*,1) 'STARTING CONSTANT = '
    READ (*,*) CONST
    IF ( RES.EQ.'Y'.OR. RES.EQ.'Y' ) THEN
        PO(O) = CONST
        SUMO = PO(0)
        DO 10 I = 1, NX
                PO(I) = APLUS(I-1) / AMINUS(I) * PO(I-1)
                SUMO = SUMO + PO(I)
        CONTINUE
    ELSE
        IF (IMID.EQ.-1) STOP 'IMID not initialized'
        PO(IMID) = CONST
        SUMO = PO(IMID)
        DO 20I = IMID-1, 0, -1
                PO(I) = AMINUS(I+1) / APLUS(I) * PO(I+1)
                SUMO = SUMO + PO(I)
            CONTINUE
            DO 30 I = IMID+1, NX
                PO(I) = APLUS(I-1) / AMINUS(I) * PO(I-1)
                                SUMO = SUMO + PO(I)
    30 CONTINUE
    END IF
C
    OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',
    $ FORM='UNFORMATTED')
    WRITE (20) PO, SUMO
    CLOSE (20)
C
END
```

```
            PROGRAM EIGPJ
            PARAMETER (NX=1500, NE=3)
            IMPLICIT REAL*8 (A-H, O-Z)
            DIMENSION PJ(0:NX), APLUS(0:NX), AMINUS(0:NX), EV(0:NE),
            $ C(4)
C
    WRITE(*,*) ' PJ'
            OPEN (10, FILE='EIGDATA', STATUS='OLD',
            $ FORM='UNFORMATTED')
            READ (10)C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
            CLOSE (10)
            OPEN (30, FILE='EIGPJ', STATUS='OLD',
            $ FORM='UNFORMATTED')
            READ (30) PJ, SUMJ, PNORMJ
            CLOSE (30)
            WRITE (*,1) 'PJ(0) = '
        1 FORMAT ('$', A21)
            READ (*,*) PJ(0)
            PJ(1) = ( APLUS (0) + AMINUS(0) + EV(J) ) * PJ (0)/AMINUS(1)
            DO 10 I = 2, NX
                PJ(I) = ( ( APLUS(I-1) + AMINUS(I-1)) * PJ(I-1)
            $ - APLUS(I-2) * PJ(I-2) + EV(J) * PJ(I-1) )
            $ / AMINUS(I)
            10 CONTINUE
            OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',
            $ FORM='UNFORMATTED')
            WRITE (30) PJ, SUMJ, PNORMJ
            CLOSE (30)
C
END
```

```
        PROGRAM EIGTERM
        PARAMETER (NX=1500, NE=3)
        IMPLICIT REAL*8 (A-H, O-Z)
        DIMENSION PO(0:NX), PJ(O:NX), TERM(O:NX)
C
        WRITE(*,*) ' TERM'
        OPEN (20, FILE='EIGPO', STATUS='OLD',
        $ FORM='UNFORMATTED')
        READ (20) PO, SUMO
        CLOSE (20)
        OPEN (30, FILE='EIGPJ', STATUS='OLD',
        $ FORM='UNFORMATTED')
        READ (30) PJ, SUMJ, PNORMJ
        CLOSE (30)
C
    DO 10 I = O, NX
        IF ( DABS(PJ(I)) .GT. 1D19*DSQRT(PO(I)) ) THEN
            TERM(I) = -1D0
        ELSE
                        TERM(I) = PJ(I) / PO(I) * PJ(I)
        END IF
    10 CONTINUE
C
    PNORMJ = DSQRT (SUMO)
    OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',
$ FORM='UNFORMATTED')
    WRITE (30) PJ, SUMJ, PNORMJ
    CLOSE (30)
    OPEN (40, FILE='EIGTERM', STATUS='UNKNOWN',
$ FORM='UNFORMATTED')
    WRITE (40) TERM
    CLOSE (40)
    END
```

```
    PROGRAM EIGSHOW
    PARAMETER (NX=1500, NE=3)
    IMPLICIT REAL*8 (A-H, O-Z)
    DIMENSION C(4), EV(0:NE), APLUS (0:NX), AMINUS (0:NX),
    $
```

C
WRITE (*,*) ' SHOW'
WRITE (*,*) ' 1 : Data'
WRITE (*,*) ' 2 : PO'
WRITE (*,*) ' 3 : PO, Pj'
WRITE (*,*) ' 4 : PO, Pj, Term'
WRITE (*,1) 'SELECT A NUMBER : '
1 FORMAT (/ '\$', A18)
READ (*,*) MODE
OPEN (10, FILE='EIGDATA', STATUS='OLD',
\$ FORM='UNFORMATTED')
OPEN (20, FILE='EIGPO', STATUS='OLD',
\$ FORM='UNFORMATTED')
OPEN (30, FILE='EIGPJ', STATUS='OLD',
\$ FORM='UNFORMATTED')
OPEN (40, FILE='EIGTERM', STATUS='OLD',
\$
READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
READ (20) PO, SUMO
READ (30) PJ, SUMJ, PNORMJ
READ (40) TERM
C
CLOSE (10)
CLOSE (20)
CLOSE (30)
CLOSE (40)
C
OPEN (50, FILE='EIGOUT', STATUS='UNKNOWN',
\$ FORM='UNFORMATTED')
IF (MODE.EQ.1) THEN
WRITE (*,2) C(4), B, EV, J, IMIN, IMAX, IMID
2 FORMAT (5X, 'C4 $=$, F5.3/
$\$ \quad 5 \mathrm{X},{ }^{\prime} \mathrm{B}=1,1 \mathrm{PE} 11.4 /$
$\$ \quad 5 \mathrm{X}, \mathrm{CEV}(0)=1$, OPF5.3 /
$\$ \quad 5 \mathrm{X},{ }^{\prime} \mathrm{EV}(1)=1$, 1PE11.4/
$\$ \quad 5 \mathrm{X}, \mathrm{I} \operatorname{EV}(2)=1, \mathrm{E} 11.4 /$
\$ $5 \mathrm{X}, \mathrm{EV}(3)=1, \mathrm{E} 11.4 /$
$\$ \quad 5 \mathrm{X}, \mathrm{J}=1$, I1 /
$\$ \quad 5 \mathrm{X},{ }^{\prime}$ IMIN $=1$, I4 /
\$ $5 \mathrm{X},{ }^{\prime}$ IMAX $=1$, I4 /
\$ $\quad 5 \mathrm{X},{ }^{\prime}$ IMID $=1$, I4 /
\$ 15X, 'The next line is irrelevant. ',
\$ 'Please type QUIT'/)
ELSE
IF (MODE.EQ.2) THEN
WRITE $(50,3)(I, P O(I), I=0, N X)$

```
3 FORMAT ( 5X, I4, 5X, 1PE11.4 /)
    ELSE IF (MODE.EQ.3) THEN
        WRITE (50,4) ( I, PO(I), PJ(I), I=0,NX)
            FORMAT ( 5X, I4, 5X, 1PE11.4, 5X, E11.4 / )
        ELSE IF (MODE.EQ.4) THEN
            WRITE (50,5) (I, PO(I), PJ(I), TERM(I), I=0,NX)
            FORMAT ( 5X, I4, 5X, 1PE11.4, 5X, E11.4, 5X,
                                E11.4 / )
    END IF
    WRITE (*,*) ' '
    WRITE (*,*) ' Type C for viewing. '
    WRITE (*,*) ' Type Control-Y (or Control-Z follow',
$
                                'ed by QUIT) to terminate SHOW'
    WRITE (*,*)
END IF
END
```

PROGRAM EIGSUM

```
    PARAMETER (NX=1500, NE=3)
    IMPLICIT REAL*8 (A-H, O-Z)
    DIMENSION C(4), EV(0:NE), APLUS (0:NX), AMINUS (0:NX),
$ TERM(0:NX), PJ (0:NX)
C
    WRITE (*,*) ', SUM'
    OPEN (10, FILE='EIGDATA', STATUS='OLD',
$ FORM='UNFORMATTED')
    READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID
    CLOSE (10)
    OPEN (40, FILE='EIGTERM', STATUS='OLD',
    $ FORM='UNFORMATTED')
    READ (40) TERM
    CLOSE (40)
    OPEN (30, FILE='EIGPJ', STATUS='OLD',
$ FORM='UNFORMATTED')
    READ (30) PJ, SUMJ, PNORMJ
    CLOSE (30)
C
C
    SUMJ = ODO
    DO 10 I = IMIN, IMAX
        IF (TERM(I).EQ.-1)STOP 'term negative'
        SUMJ = SUMJ + TERM(I)
    10 CONTINUE
    WRITE (*,1) SUMJ
    IF (IMIN.NE.0) WRITE (*,2) TERM(IMIN-1)
    IF (IMAX.NE.NX) WRITE (*,3) TERM(IMAX+1)
    1 FORMAT ( '0', 5X, 'sum = ', 1PE11.4 )
    2 FORMAT ( '0', 5x, 'previous term = ', lPE11.4 )
    3 FORMAT ( '0', 5X, 'next term = ', 1PE11.4 )
C
    OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',
    $ FORM='UNFORMATTED' )
    WRITE (30) PJ, SUMJ, PNORMJ
    CLOSE (30)
    END
```

```
    PROGRAM EIGNORM
    PARAMETER (NX=1500, NE=3)
    IMPLICIT REAL*8 (A-H, O-Z)
    CHARACTER JA
    DIMENSION PO(O:NX), PJ(O:NX)
C
    WRITE (*,*) ' NORM'
10 CONTINUE
    WRITE (*,1) ' O OR J ?'
    1 FORMAT ('$', A10)
    READ (5,2) JA
    2 FORMAT (A1)
    IF (JA.EQ.'O') THEN
        OPEN (20, FILE='EIGPO', STATUS='OLD',
        FORM='FORMATTED')
        READ (20) PO, SUMO
        CLOSE (20)
        IF (SUMO.EQ.-1DO) STOP
        Normalization constant not available'
        DO 20 I = 0, NX
            PO(I) = PO(I) / SUMO
        CONTINUE
        SUMO = 1DO
        OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',
    $
        WRITE (20) PO, SUMO
        CLOSE (20)
    ELSE IF (JA.EQ.'J' .OR. JA.EQ.'j') THEN
        OPEN (30, FILE='EIGPJ', STATUS='OLD',
        FORM='UNFORMATTED')
        READ (30) PJ, SUMJ, PNORMJ
        CLOSE (30)
        IF (PNORMJ.EQ.-1DO) STOP
        PNORMJ = PNORMJ * DSQRT (SUMJ)
        DO 30 I = O, NX
        PJ(I) = PJ(I) / PNORMJ
    CONTINUE
    PNORMJ = 1DO
    SUMJ = 1D0
    OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',
        FORM='UNFORMATTED')
    WRITE (30) PJ, SUMJ, PNORMJ
    CLOSE (30)
    ELSE
    GO TO 10
    END IF
    END
```

```
    PROGRAM EIGSAVE
    PARAMETER (NX=1500,NE=3)
    REAL*8 P(0:NX), SUM, PNORM, C(4), C4, B, EV(0:NE),
$ APLUS(0:NX), AMINUS (0:NX)
    REAL SAVE(0:NX,0:NE)
    CHARACTER JA
```

C
WRITE (*,*) ' SAVE'
OPEN (60, FILE='EIGSAVE', STATUS='OLD',
\$ FORM='UNFORMATTED')
READ (60) C4, B, EV, SAVE
CLOSE (60)
WRITE (*,1) 'O OR J ?'
1 FORMAT ('\$', A10)
READ (*,2) JA
2 FORMAT (A1)
IF (JA.EQ.'O') THEN
OPEN (20, FILE='EIGPO', STATUS='OLD',
FORM='UNFORMATTED')
READ (20) P, SUM
IF (SUM.NE.1DO) STOP 'Not normalized'
DO $10 \mathrm{I}=0$, NX
SAVE (I,O) $=$ SNGL ($\mathrm{P}(\mathrm{I})$)
CONTINUE
ELSE IF (JA.EQ.'J' .OR. JA.EQ.'j') THEN
OPEN (10, FILE='EIGDATA', STATUS='OLD',
FORM='UNFORMATTED')
READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX,
IMID
CLOSE (10)
OPEN (30, FILE='EIGPJ', STATUS='OLD',
FORM='UNFORMATTED')
READ (30) P, SUM, PNORM
CLOSE (30)
IF (PNORM.NE.1DO) STOP 'Not normalized'
DO 20 I $=0$, NX
$\operatorname{SAVE}(I, J)=\operatorname{SNGL}(P(I))$
20 CONTINUE
END IF
OPEN (60, FILE='EIGSAVE', STATUS='UNKNOWN',
\$ FORM='UNFORMATTED')
WRITE (60) C4, B, EV, SAVE
CLOSE (60)
END

PROGRAM EIGPLOT
C
C Files [Z]VPLOT.OBJ and [Z]MACPLOT.OBJ should be provided
C for LINKing.
C
PARAMETER ($\mathrm{NX}=1500$, $\mathrm{NE}=3$)
REAL*8 C4, B, EV(0:NE)
REAL P(0:NX,0:NE)
LOGICAL DONE (0:NE)
CHARACTER PLBL*10, ANS*3
C
WRITE (*,*) ' PLOT'
WRITE (*,1)
\$ 'MAXIMUM VALUE OF X TO APPEAR ON PLOT AXIS = '
1 FORMAT ('\$', A45)
READ (*,*) LIMIT
OPEN (60, FILE='EIGSAVE', STATUS='OLD,
\$ FORM='UNFORMATTED')
READ (60) C4, B, EV, P
CLOSE (60)
C
DO $10 \mathrm{~J}=0$, NE DONE (J) $=P(0, J) \cdot N E .-1.0$ IF (.NOT.DONE (J)) THEN WRITE (*,2) J FORMAT (/1X, 'P(', I1, ') is not available') WRITE (*,3) 'OK ?' FORMAT ('\$', A4) READ (*,4) ANS FORMAT (A3) IF (ANS (: 1).NE.'Y' .AND. ANS (:1).NE.'Y') STOP
\$ 'Ignore the following message:' END IF
10 CONTINUE
C

```
    OPEN (61, FILE='OUTPUT', STATUS='UNKNOWN',
    $ FORM='FORMATTED')
    OPEN (71, FILE='VECPLOT', STATUS='UNKNOWN')
```

C
C Each eigenvector is drawn separately
DO $60 \mathrm{~J}=0$, NE
IF (DONE (J)) THEN
C
C Y-axis limit is determined below
PMAX $=0.0$
DO $20 \mathrm{I}=0$, LIMIT
$A P=\operatorname{ABS}(P(I, J))$
IF (AP.GT.PMAX) PMAX = AP
20
CONTINUE

```
    WRITE (71,5) C4, B, EV(J)
    5 FORMAT ('1', 30X, 'C4 = ', F4.2, 5X, 'B = ',
    1PE11.4, 5X, 'EIGENVALUE = ', E11.4 )
C
C
C
    XSCALE = FLOAT (LIMIT) /11.0
    IF ( J.EQ.O ) THEN
        YL = 0.0
        YH = PMAX
    ELSE
        YL = - PMAX
        YH = PMAX
    END IF
    YSCALE = (YH - YL) / 8.0
C
C The axes are drawn
    CALL PLOT (0.5, 1.0, -3)
    CALL PLOT (8.0, 0.0, 2)
    CALL PLOT (8.0, 12.0, 2)
C
C The X-axis is marked
    DEL = LIMIT / 10
    AX = 0.0
    DO 30 AN = 0.0, FLOAT (LIMIT), DEL
        CALL PLOT ( 8.0, AX, 3)
        CALL PLOT ( 8.1, AX, 2)
        CALL NUMBER (8.2, AX-0.1, 0.1, AN, 90.0, -1)
        AX = AX + DEL / XSCALE
    30 CONTINUE
    CALL SYMBOL ( 8.6, 5.45, 0.1, 'X', 90.0, 1)
C
C
    CALL PLOTS (9.5, 12.0, 71)
    Y-axis is marked
        IEXP = LOG10 (YH)
        DEL = FLOAT(INIT((YH-YL)/10.0**(IEXP-1)))*
    $ 10.0**(IEXP-2)
    AY = 8.0
    DO 40 AN = YL/10.0**IEXP, YH/10.0**IEXP,
                                    DEL/10.0**IEXP
        CALL PLOT (AY, 0.0, 3)
        CALL PLOT (AY, -0.1, 2)
        CALL NUMBER (AY, -0.7, 0.1, AN, 90.0, 3)
        AY = AY - DEL/YSCALE
    40 CONTINUE
    IF (IEXP.LT.-9) THEN
        PLBL = 'P(X)*10^' // CHAR (-IEXP/10+48) //
        NLBL = 10
```


ELSE

$P L B L=' P(X) * 10^{\wedge} \quad / / \operatorname{CHAR}(-I E X P+48)$
NLBL $=9$
END IF
CALL SYMBOL (4.45, -0.9, 0.1, PLBL, 180.0, NLBL)
C Let the user know what is happening at the moment C

WRITE $(61,6) \mathrm{J}$
6 FORMAT (// ' 0 ', 5X, 'INITIALIZATION FOR PLOT', \$ I1, 'COMPLETED')
C
C An eigenvector is now drawn
$X I N=0.0$
$Y I N=8.0-(P(0, J)-Y L) / Y S C A L E$ CALL PLOT (YIN, XIN, 3) DO $50 \mathrm{I}=1$, LIMIT

XIN $=$ FLOAT (I) / XSCALE
$Y I N=8.0-(P(I, J)-Y L) / Y S C A L E$
CALL PLOT (YIN, XIN, 2)
50
C
CALL PLOT (0.0, 0.0, 999)
C
C Inform the user
C

WRITE $(61,7) \mathrm{J}$
7 FORMAT ('O', 5X, 'PLOT ', I1, ' COMPLETED') END IF
60 CONTINUE END

```
    FUNCTION PLFUN (IND, X)
    PARAMETER (NX=1500, NE=3)
    REAL*8 C4, B, EV
    LOGICAL FIRST
    DIMENSION A(0:NE), EV(0:NE), P(0:NX,0:NE)
    SAVE P, FIRST T1, TSTEP
    DATA FIRST /.TRUE./
C
    IF (FIRST) THEN
        FIRST = .FALSE.
        READ (*,*) T1, T2, INPOS, N
        TSTEP = (T2-T1) / (N-1)
C
    $ FORM='UNFORMATTED')
    READ (50) C4, B, EV, P
    CLOSE (50)
C
    20
    A(0) = 1.0
    IF (INPOS.LT.0) THEN
        READ (*,*) ( A(J), J=1,NE )
        ELSE
        DO 20 J = 1, NE
                A(J) = P(INPOS,J) / P(INPOS,0)
        CONTINUE
            END IF
        END IF
C
        PLFUN = 0.0
        T = T1 + IND * TSTEP
        DO 30 J = O, NE
        I = INT (X)
        PX = (I+1-X)*P(I,J) + (X-I)*P(I+1,J)
        PLFUN = PLFUN + A(J)*PX * EXP (SNGL(EV(J)) * T )
    30 CONTINUE
C
    RETURN
    END
```


APPENDIX D

Deterministic simulation of hysteresis

PROGRAM DETERM
C
C Files ZEROIN8.OBJ and [Z]ADAMSPC.OBJ should be provided C for LINKing

PARAMETER ($\mathrm{N}=1$)
IMPLICIT REAL*8 ($\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$)
EXTERNAL AUX, F1
DIMENSION B(0:1000), XF(0:1000), XB(0:1000), C(4),
\$ $\quad X(N, 8), \operatorname{SAVE}(N, 11), \operatorname{YMAX}(N), ~ E R R O R(N)$
LOGICAL FORW
COMMON /Z/ BZ
COMMON /BC/ BETA, C
DATA C /3.0D-7, 1.0D-4, 1.5D-3, 1.7D0 /
C
OPEN (60, FILE='INPUT', FORM='FORMATTED', STATUS='OLD')
OPEN (61, FILE='OUTPUT', FORM='FORMATTED',
\$ STATUS='UNKNOWN')
C
READ $(60, *) \mathrm{C}(4), \mathrm{B} 1, \mathrm{~B} 2, \mathrm{BETA}$
WRITE $(61, *) \mathrm{C}(4), \mathrm{B} 1, \mathrm{~B} 2, \mathrm{BETA}$
1 FORMAT ('1', 10X, $\mathrm{C}(4)=1, \mathrm{~F} 5.3 /$
\$ $\quad 0^{\prime}, 10 \mathrm{X},{ }^{\prime} \mathrm{B} 1=1,1 \mathrm{PE} 11.4 /$
$\$ \quad 10 ', 10 x,{ }^{\prime}$ B2 $=1$, E11.4 /
\$ '0', 10X, 'BETA = ', E11.4)
C
C The B-interval is divided into 1000 subintervals and data C are collected at the dividing points.
$\mathrm{BSTEP}=(\mathrm{B} 2-\mathrm{B} 1) / 1000.0$
$B(0)=B 1$
DO $10 \mathrm{I}=1$, 1000
$B(I)=B(I-1)+B S T E P$
10 CONTINUE
C Two integrations are needed in the same interval. First in C the forward direction, (i.e., with B increasing; the loop C control variables are adjusted accordingly

```
    FORW = .TRUE.
    BZ = B(0)
    ISTART = 1
    IEND = 1000
    IDIFF = 1
    H = 1.0D-12
```

C whether forward or backward variation of B.
C
20 CONTINUE
$\mathrm{G} 1=10.0$
$\mathrm{G} 2=1500.0$
CALL ZEROIN8 (F1, G1, G2, 1.0E-8, 1.0E-8, IFLAG)
IF (IFLAG.GT.2) THEN
WRITE $(61,2)$ IFLAG, $B Z, G 1, G 2$
2 FORMAT ('OERROR FROM ZEROIN' /

END IF
C
IF (FORW) THEN
$\mathrm{XF}(0)=\mathrm{G} 1$
ELSE
$X B(1000)=G 1$
END IF
$\mathrm{X}(1,1)=\mathrm{G} 1$
HMIN $=1.0 \mathrm{E}-18$
$E P S=1.0 E-8$
JSTART $=0$
C
DO $30 \mathrm{I}=1$, N
$\operatorname{YMAX}(I)=1.0$
30 CONTINUE
C
C Integration loop
C
DO 40 I = ISTART, IEND, IDIFF
CALL ADAMS (AUX, N, BZ, X, SAVE, H, HMIN, B(I),
\$
EPS, YMAX, ERROR, KFLAG, JSTART)
IF (KFLAG.LT.0) THEN
WRITE $(61,3)$ KFLAG, FORW, BZ, B(I)
3 FORMAT ('0', 5X, 'ERROR FROM ADAMS' /

'0', 10x, 'FORW = ', L10 /
'0', 10X, 'BZ = ', E10.4 /
'0', 10X, 'B(I) = ', E10.4)
STOP 'ERROR'
END IF
C
C Collect data after each step
IF (FORW) THEN
$X F(I)=X(1,1)$
ELSE
$X B(I)=X(1,1)$
END IF
40 CONTINUE

```
C
C Integration is complete
C
    IF (FORW) THEN
C prepare for the backward sweep
        FORW = .FALSE.
        B2 = B(1000)
        ISTART = 999
        IEND = 0
        IDIFF = -1
        H}=-\textrm{H
        BETA = - BETA
        GO TO 20
        END IF
C
C Write data for plotting
        OPEN (71, FILE='DETPLOT', STATUS='UNKNOWN',
        $ FORM='FORMATTED')
        WRITE (71,4) (B(I), XF(I), XB(I), I=0,1000)
    4 FORMAT (1001(3(5X,E10.4)/))
C
C Area inside the loop is computed by simplest (rectangular)
C method
C
```

```
    AREA \(=0.0\)
```

 AREA \(=0.0\)
 DO 50 I = 0, 1000
 AREA = AREA + BSTEP*(XB(I) - XF(I))
 50 CONTINUE
 WRITE (61,6) AREA
 6 FORMAT ('0', 10X, 'AREA = ', 1PE11.4)
 END
    ```
```

SUBROUTINE AUX (B, X, XD, N)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION X(N), XD(N), C(4)
COMMON /BC/ BETA, C
C This routine computes $\mathrm{dB} / \mathrm{dX}$. It is used indirectly through
C the library subroutine ADAMS

```
```

 XD(1) = F1 (X(1)) / BETA
    ```
    XD(1) = F1 (X(1)) / BETA
    RETURN
    RETURN
    END
```

 END
    ```

C
    REAL*8 FUNCTION F1 (X)
    IMPLICIT REAL*8 (A-H, O-Z)
    DIMENSION C(4)
    COMMON /Z/ B
    COMMON /BC/ BETA, C
C This function computes \(d x / d t\). It is called by \(A U X\) and
C indirectly used by program DETERM through ZEROIN8.
```

 F1 = (0.5*C(1)*X* (X-1.0) +C(3)) * B
 $ -C(2)/6.0 *X*(X-1.0)*(X-2.0) - C(4)*X
 RETURN
 END
    ```

\section*{APPENDIX E}

Stochastic simulation of hysteresis

\section*{PROGRAM GILSIMT}

C
C File ZEROIN8.OBJ should be supplied for LINKing. C DOUBLE PRECISION X, B, APLUS, AMINUS, AMBYAP, QRAN,
\$ \$

FACTOR, BETA, C1, C2, C3, C4, C2BY6, C1BY2

EXTERNAL F1
PARAMETER (IDIM=2001)
DIMENSION XSUM (0:IDIM-1,2), BGRID(0:IDIM-1), A(4),
\(\$ \quad X N O W(0: I D I M-1), A R(2)\)
LOGICAL FORW, GET, PUT, PLOT
COMMON /AA/ BZ, C(4)
C
OPEN (60, FILE='INPUT', STATUS='OLD')
OPEN (61, FILE='OUTPUT', STATUS='UNKNOWN')
C
READ \((60, *) \mathrm{B} 1, \mathrm{~B} 2, \mathrm{C}, \mathrm{BETA}, \mathrm{NTIMES}\), ISEED, FORW, GET, \$ PUT, PLOT
\(C 1=C(1)\)
\(C 2=C(2)\)
\(C 3=C(3)\)
\(C 4=C(4)\)
WRITE \((61,1) \mathrm{B} 1, \mathrm{~B} 2, \mathrm{C}, \mathrm{BETA}, \mathrm{NTIMES}, \mathrm{ISEED}, \mathrm{GET}, \mathrm{PUT}\), \$ PLOT


C The B-interval is divided into IDIM-1 subintervals and \(C\) data will be collected at the dividing points.
\(\operatorname{BGRID}(0)=\mathrm{B} 1\)
\(B S T E P=(B 2-B 1) / F L O A T(I D I M-1)\)
DO \(10 \mathrm{I}=1\), IDIM-1
BGRID (I) \(=\) BGRID (I-1) + BSTEP
10 CONTINUE
C
C This program can be run either to refine existing data \(C\) statistically, or to acquire new data. In the former case
```

C data should be read and in the latter case initial
C condition should be set.
C
IF (GET) THEN
OPEN (70, FILE='GRPREV', STATUS='OLD',
FORM='UNFORMATTED')
READ (70) NPREV, XSUM, ASUM, A2SUM
CLOSE (70)
DO 20 I = 1, IDIM-1
XSUM(I,1) = XSUM(I,1) * NPREV
XSUM(I-1,2) = XSUM(I-1,2) * NPREV
CONTINUE
ELSE
DO 30 J = 1, 2
DO 30 I = 0, IDIM-1
XSUM(I,J) = 0.0
30 CONTINUE
ASUM = 0.0
A2SUM = 0.0
NPREV = 0
C
C Starting values of }X\mathrm{ are obtained by solving the cubic
C steady state equation.
G1 = 1.0
G2 = 1500.0
BZ = BGRID (0)
ABSERR = 0.0
RELERR = 1.0E-5
Note that BZ appears in common block AA.
CALL ZEROIN (F1, G1, G2, ABSERR, RELERR, IFLAG)
IF (IFLAG.GT.2) THEN
WRITE (61,2) G1, G2, IFLAG
FORMAT ('OERROR FROM ZEROIN. G1 = ', F8.4,
' G2 = ', F8.4, ' IFLAG = ', I1)
STOP 'ERROR'
END IF
XSUM(0,1) = G1
G1 = 1.0
G2 = 1500.0
BZ = BGRID(IDIM-1)
Note that BZ appears in common block AA
CALL ZEROIN (F1, G1, G2, ABSERR, RELERR, IFLAG)
IF (IFLAG.GT.2) THEN
WRITE (61,2) G1, G2, IFLAG
STOP 'ERROR'
END IF

```

```

 C1BY2 = C1 / 2.0
 C2BY6 = C2 / 6.0
    ```
C

DO \(70 \mathrm{~N}=1\), NTIMES

C
C
The same \(B\)-interval is covered twice. \(J=1\) means \(B\) is increasing. \(J=2\) means \(B\) is decreasing. Variables C controlling the innermost DO are adjusted in accordance

DO \(65 \mathrm{~J}=1,2\)
BETA = ABS (BETA)
IF (J.EQ.1) THEN
\(\mathrm{B}=\mathrm{BGRID}(0)\)
\(\mathrm{X}=\operatorname{XSUM}(0,1)\)
XNOW (0) \(=\mathrm{X}\)
ISTART \(=0\)
IEND = IDIM - 1
IDIFF \(=1\)
ELSE
BETA \(=-\mathrm{BETA}\)
\(B=B G R I D(I D I M-1)\)
\(\mathrm{X}=\mathrm{XSUM}(\) IDIM-1,2)
XSUM (IDIM-1) \(=X\)
ISTART = IDIM-1
IEND \(=0\)
IDIFF \(=-1\)
END IF
APLUS \(=(\mathrm{C} 1 \mathrm{BY} 2 * \mathrm{x} *(\mathrm{X}-1.0)+\mathrm{C}(3) \mathrm{f}\) * B AMINUS \(=(\mathrm{C} 2 \mathrm{BY} 6 *(X-1.0) *(X-2.0)+C(4)) * X\) These must have some values to begin with.

DO \(60 \mathrm{I}=\) ISTART+IDIFF, IEND, IDIFF The simulation section begins

50 CONTINUE
QRAN = 1DO - 2DO * BETA / APLUS / B *
\$ ALOG (1.0-RAN(ISEED) )
AMBYAP = AMINUS / APLUS
IF ( ( J.EQ.1 .OR. QRAN .GT. -2DO*AMBYAP )
\$ .AND. DABS (QRAN/AMBYAP+2DO) .GT.
\$
\$
AMBYAP*1D-5 ) THEN
FACTOR \(=-\operatorname{AMBYAP}+\) DSQRT \((\) QRAN +
(2DO+AMBYAP) * AMBYAP )

ELSE
FACTOR \(=1 D 0+0.5 D 0\) * QRAN \(/\) AMBYAP
END IF
\(\mathrm{B}=\mathrm{B}\) * FACTOR
APLUS = APLUS * FACTOR
IF (1.0/(1.0-RAN(ISEED)).GE.1.0+AMBYAP) THEN
APLUS \(=\) APLUS \(+C 1 * B * X\)
AMINUS \(=\) AMINUS \(+3 D 0\) * C2BY6 * \(\mathrm{X} *(\mathrm{X}-1 \mathrm{DO})+\mathrm{C} 4\)
```

 X = X + 1D0
 ELSE
 X = X - 1D0
 APLUS = APLUS - C1*B*X
 AMINUS = AMINUS - 3DO*C2BY6*X*(X-1DO) - C4
 END IF
 IF (B.LT.BGRID(I) .EQV. J.EQ.1) GO TO 50
 C ************************** Simulation section ends.
C Collect data after each step
XSUM(I,J) = XSUM(I,J) + X
XNOW(I) = X

```
C
    60 CONTINUE
C
C A one-way trajectory has been completed. Find area under
C this trajectory and update sums involved in average and
C standard deviation.
```

 AR(J) = 0.0
 DO 62 K = 1, IDIM-1
 AR(J) = AR(J) + 0.5*(XNOW(K) +XNOW(K-1))*BSTEP
    ```
62
                CONTINUE
65 CONTINUE
    AREA \(=\operatorname{AR}(2)-\operatorname{AR}(1)\)
    ASUM \(=\) ASUM + AREA
    A2SUM \(=\) A2SUM + AREA*AREA
70 CONTINUE
C Sums are converted to averages.
    NTOTAL = NPREV + NTIMES
    DO 80 I = 1, IDIM-1
        \(\operatorname{XSUM}(I, 1)=\operatorname{XSUM}(I, 1) / \operatorname{NTOTAL}\)
        XSUM (I-1,2) \(=\operatorname{XSUM}(I-1,2) /\) NTOTAL
    80 CONTINUE
C
C Save results if desired.
    IF (PUT) THEN
        OPEN (71, FILE='GRNOW', STATUS='NEW',
        FORM='UNFORMATTED')
        WRITE (71) NTOTAL, XSUM, ASUM, A2SUM
        END IF
C Write a few lines on the output.
    AVEG = ASUM / NTOTAL
    SDEV \(=\) SQRT (A2SUM/(NTOTAL-1) - ASUM/NTOTAL*ASUM/
    \$
                                (NTOTAL-1))
```

 WRITE (61,3) AVEG, SDEV, SDEV/AVEG
 3 FORMAT ('0', 'AREA = ', 1PE11.4 //
 $ '0', 'SDEV = ', 1PE11.4 //
 $ '0', 'RATIO= ', 1PE11.4 //
 $ '0', '***********************')
 C
C Write formatted output if desired. These can be later
C read by a plotting program
C
IF (PLOT) THEN
OPEN (72, FILE='PLOTFL', STATUS='NEW',
\$ FORM='FORMATTED')
WRITE (72,4) (BGRID(I), XSUM(I,1), XSUM(I,2),
\$ I = 0, IDIM-1)
4 FORMAT (5X, 1PE11.5, 5X, E11.5, 5X, E11.5)
END IF
C
END

```
    FUNCTION F1(X)
C The cubic equation used for setting initial conditions.
C Note that program GILSIMT uses this indirectly through
C subroutine ZEROIN.
```

COMMON /AA/ B, C(4)
$F 1=C(1) * B * X *(X-1.0) / 2.0-C(2) * X *(X-1.0)$
$\$ \quad *(X-2.0) / 6.0+C(3) * B-C(4) * X$
RETURN
END

```

\section*{APPENDIX F}

Special features of the cubic mechanism in a coupled flow tank reactor

Let \(v\left(R_{1}, R_{0}\right)\) be a cubic rate law, supporting three steady states in a flow tank. Let \(k_{0}\) be chosen so that \(R_{B}-R_{\gamma}=R_{\gamma}-R_{\alpha}\). Let \(R_{+}\)and \(R_{-}\)define the points satisfying
\[
\begin{equation*}
k_{0}+\left.\frac{\partial v}{\partial R}\right|_{R_{ \pm}}=0 \tag{F.1}
\end{equation*}
\]

Then

> i) \(\phi\left(R_{1}, R_{2} ; k_{0}, k_{x}\right)\) is symmetric with respect to the line \(R_{1}+R_{2}=2 R_{\gamma}\),
> ii) \(R_{+}+R_{-}=2 R_{\gamma}\),
iii) ( \(R_{+}, R_{-}\)) is a solution of the coupled tank equations (6.7),
and \(i v)\) the state \(\left(R_{+}, R_{-}\right)\)is marginally stable.

Proof:
The potential for the coupled tank satisfies
\[
\begin{align*}
&- \frac{\partial \phi}{\partial R_{1}}=\frac{d R_{1}}{d t}=k_{0}\left(R_{0}-R_{1}\right)-v\left(R_{1}, R_{0}\right)+k_{x}\left(R_{2}-R_{1}\right) \\
& \text { and }-\frac{\partial \phi}{\partial R_{2}}=\frac{d R_{2}}{d t}=k_{0}\left(R_{0}-R_{2}\right)-v\left(R_{2}, R_{0}\right)+k_{x}\left(R_{1}-R_{2}\right) . \tag{F.2}
\end{align*}
\]

Since \(R_{\alpha}, R_{\beta}\), and \(R_{\gamma}\) are the single-tank steady states,
\[
\begin{align*}
k_{0}\left(R_{0}-R\right) & -v\left(R_{1} R_{0}\right)=c\left(R-R_{\alpha}\right)\left(R-R_{\beta}\right)\left(R-R_{\gamma}\right) \\
=c & {\left[R^{3}-\left(R_{\alpha}+R_{\beta}+R_{\gamma}\right) R^{2}+\left(R_{\alpha} R_{\beta}+R_{\alpha} R_{\gamma}+R_{\beta} R_{\gamma}\right) R\right.} \\
& \left.-R_{\alpha} R_{\beta} R_{\gamma}\right] . \tag{F.3}
\end{align*}
\]

The point obtained by reflecting \(\left(R_{1}, R_{2}\right)\) on the line \(R_{1}+R_{2}=2 R_{\gamma}\) is \(\left(2 R_{\gamma}-R_{2}, 2 R_{\gamma}-R_{1}\right)\). Let us compare \(\phi\left(R_{1}, R_{2}\right)\) and \(\phi\left(2 R_{\gamma}-R_{2}, 2 R_{\gamma}-R_{1}\right)\).
\[
\begin{equation*}
\phi\left(R_{1}, R_{2}\right)-\phi\left(2 R_{\gamma}-R_{2}, 2 R_{\gamma}-R_{1}\right)=f\left(R_{1}\right)+f\left(R_{2}\right) \tag{F.4}
\end{equation*}
\]
where
\[
\begin{align*}
f(R)= & c\left\{-\frac{1}{4}\left[R^{4}-\left(2 R_{\gamma}-R\right)^{4}\right]+\frac{1}{3}\left(R_{\alpha}+R_{\beta}+R_{\gamma}\right)\left[R^{3}-\right.\right. \\
& \left.\left(2 R_{\gamma}-R\right)^{3}\right]-\frac{1}{2}\left(R_{\alpha} R_{\beta}+R_{\alpha} R_{\gamma}+R_{\beta} R_{\gamma}\right)\left[R^{2}-\left(2 R_{\gamma}-R\right)^{2}\right] \\
& \left.+R_{\alpha} R_{\beta} R_{\gamma}\left[R-\left(2 R_{\gamma}-R\right)\right]\right\} \tag{F.5}
\end{align*}
\]

Expanding \(f(R)\), it is found that the coefficients of all powers of \(R\) vanish when \(R_{B}-R_{\gamma}=R_{\gamma}-R_{\alpha}\). Therefore,
\[
\begin{equation*}
\phi\left(R_{1}, R_{2}\right)=\phi\left(2 R_{\gamma}-R_{2}, 2 R_{\gamma}-R_{1}\right) \tag{F.6}
\end{equation*}
\]

This proves (i).
\[
\begin{align*}
& \text { From (F.1) and (F.2) it follows that } R_{ \pm} \text {satisfy } \\
& 3 R_{ \pm}^{2}-2\left(R_{\alpha}+R_{\beta}+R_{\gamma}\right) R_{ \pm}+\left(R_{\alpha} R_{\beta}+R_{\alpha} R_{\gamma}+R_{\beta} R_{\gamma}\right)=0 . \tag{F.7}
\end{align*}
\]

Therefore,
\[
\begin{equation*}
R_{+}+R_{-}=\frac{2}{3}\left(R_{\alpha}+R_{\beta}+R_{\gamma}\right)=2 R_{\gamma} \tag{FF}
\end{equation*}
\]
since \(R_{\alpha}+R_{B}=2 R_{\gamma}\).
ii) is Proved.

Solving (F.7), we obtain
\[
\begin{equation*}
R_{ \pm}=R_{\gamma} \pm \frac{1}{\sqrt{3}}\left(R_{\gamma}^{2}-R_{\alpha} R_{\beta}\right)^{\frac{1}{2}} \tag{F.9}
\end{equation*}
\]

Let \(R_{\beta}-R_{\gamma}=R_{\gamma}-R_{\alpha}=\Delta\).
Then \(R_{ \pm}=R_{\gamma} \pm \frac{1}{\sqrt{3}} \Delta\).
\(\left(R_{+}, R_{-}\right)\)is a coupled steady state if
\[
\begin{equation*}
k_{0}\left(R_{0}-R_{+}\right)-v\left(R_{+}, R_{0}\right)+k_{x}\left(R_{-}-R_{+}\right)=0 \tag{F.12}
\end{equation*}
\]
and
\[
\begin{equation*}
k_{0}\left(R_{0}-R_{-}\right)-v\left(R_{-}, R_{0}\right)+k_{x}\left(R_{+}-R_{-}\right)=0 \tag{F.13}
\end{equation*}
\]
(F.12) can also be written as
\[
c\left(R_{+}-R_{\alpha}\right)\left(R_{+}-R_{\beta}\right)\left(R_{+}-R_{\gamma}\right)+k_{x}\left(R_{-}-R_{+}\right)=0
\]
\[
\begin{equation*}
\text { i.e., }-\frac{2}{3 \sqrt{3}} c \Delta^{3}-k_{x} \frac{2}{\sqrt{3}} \Delta=0 \tag{F.14}
\end{equation*}
\]

Therefore, ( \(\left.R_{+}, R_{-}\right)\)is a steady state when
\[
\begin{equation*}
k_{x}=-\frac{c}{3} \Delta^{3} . \quad(c<0) \tag{F.15}
\end{equation*}
\]

Thus (iii) is proven.
The condition for marginal stability is
\[
\begin{align*}
& \left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{R_{\alpha^{\prime}}}\right)\left(k_{0}+\left.\frac{\partial v}{\partial R}\right|_{R_{\beta^{\prime}}}\right) \\
& \quad+k_{x}\left(2 k_{0}+\left.\frac{\partial v}{\partial R}\right|_{R_{\alpha^{\prime}}}+\left.\frac{\partial v}{\partial R}\right|_{R_{\beta^{\prime}}}\right)=0 . \tag{F.16}
\end{align*}
\]
( \(R_{+}, R_{-}\)) satisfies this condition by construction (F.1).

REFERENCES

\section*{REFERENCES}
1. G. Nicolis and I. Prigogine, "Self-organization in Nonequilibrium Systems" (John-Wiley, New York, 1977).
2. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, "Theory of Oscillations" (Pergamon, Oxford, 1966).
3. F. Schlögl, Z. Phys. 248, 446 (1971).
4. F. Schlögl, Z. Phys. 253, 147 (1972).
5. I. Matheson, D. F. Walls, and C. W. Gardiner, J. Stat. Phys. 12, 21 (1975).
6. D. A. Sanchez, "Ordinary Differential Equation and Stability Theory: An Introduction" (Dover, New York, 1968).
7. J. L. Doob, "Stochastic Processes" (John-Wiley, New York, 1953).
8. I. Oppenheim, K. E. Shuler, and G. H. Weiss, Adv. Mol. Relax. Proc. 1, 13 (1968).
9. D. T. Gillespie, Physica 95A, 69 (1979).
10. D. T. Gillespie, J. Comp. Phys. 22, 403 (1976).
11. H. A. Kramers, Physica, 7, 284 (1940); J. E. Moyal, J. Roy. Stat. Soc. B2, 150 (1949).
12. A. D. Fokker, Ann. Phys. 43, 810 (1914); M. Planck, Sitzber. Preuss. Acad. Wissensch. 1917, p. 324.
13. N. G. van Kampen, Adv. Chem. Phys. 34, 245 (1976).
14. R. Kubo, K. Matsuo, and K. Kitahara, J. Stat. Phys. 9, 51 (1973).
15. D. T. Gillespie, J. Chem. Phys. 72, 5363 (1980).
16. K. Matsuo, K. Lindenberg, and K. E. Shuler, J. Stat. Phys. 19, 65 (1978).
17. L. Arnold, "Stochastic Differential Equations: Theory and Applications", (John-Wiley, New York, 1974).
18. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
19. P. G. Hoel, S. C. Port and C. J. Stone, "Introduction to Stochastic Processes" (Houghton-Mifflin, Boston, 1972).
20. D. T. Gillespie, J. Comp. Phys. 28, 395 (1978).
21. L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953);
S. Machlup and L. Onsager, Phys. Rev. 91, 1512 (1953).
22. K. L. C. Hunt and J. Ross, J. Chem. Phys. 75, 976
(1981) and references therein.
23. For example, U. Weiss, Z. Phys. B 30, 429 (1978); J. D. Bekenstein and L. Parker, Phys. Rev. D23, 2850 (1981); H. Hara, Z. Phys. B 45, 159 (1981).
24. A. Nitzan, Phys. Rev. A 17, 1513 (1978).
25. C. Escher and J. Ross, J. Chem. Phys. 79, 3773 (1983).
26. F. Schlögl, C. Escher, and R. S. Berry, Phys. Rev. A 27, 2698 (1983).
27. D. Förster, "Hydrodynamic fluctuations, Broken Symmetry and Correlation Functions" (W. A. Benjamin Inc. Reading, Mass., 1975) Ch.7.
28. K. Matsuo, J. Stat. Phys. 16, 169 (1977).
29. R. M. Noyes, J. Chem. Phys. 71, 5144 (1979).
30. G. Nicolis and J. W. Turner, Ann. N. Y. Acad. Sci. 316, 251 (1979).
31. I. Oppenheim, K. E. Shuler, and G. H. Weiss, Physica 88A, 191 (1977).
32. I. Procaccia and S. Mukamel, J. Stat. Phys. 18, 633 (1978).
33. I. Procaccia and J. Ross, J. Chem. Phys. 67, 5558 (1978).
34. R. D. Levine J. Chem. Phys. 65, 3302 (1976).
35. I. Procaccia and R. D. Levine, J. Chem. Phys., 65, 3357 (1976).
36. D. T. Gillespie, Physica 95A, 69 (1979).
37. V. Seshadri, B. J. West, and K. Lindenberg, J. Chem. Phys. 72,1146 (1980).
38. P. Grassberger, Z. Phys. B 47, 365 (1982).
39. M. Malek-Mansour and G. Nicolis, J. Stat. Phys. 13, 197 (1975).
40. D. T. Gillespie, J. Stat. Phys. 16, 311 (1977).
41. D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
42. W. Horsthemke, M. Malek-Mansour, and B. Hayez. J. Stat. Phys. 16, 201 (1977).
43. G. Nicolis and M. Malek-Mansour, J. Stat. Phys. 22, 495 (1980).
44. H. E. Stanley, "Introduction to Phase Transition and Critical Phenomena" (Oxford University Press, New York, 1971).
45. G. Dewel, D. Walgraef, and P. Borckmans, Z. Phys. B. 28, 235 (1977).
46. D. Walgraef, G. Dewel, and P. Borckmans, Adv. Chem. Phys. 49, 311 (1982).
47. S. K. Ma, "Modern Theory of Critical Phenomena" (W. A. Benjamin, Inc., Reading, Mass., 1976).
48. F. Schlögl, Z. Phys. B 22, 301 (1975).
49. H. K. Janssen, Z. Phys. 270, 67 (1974).
50. C. W. Gardiner, K. J. McNeil, D. F. Walls, and I. S. Matheson, J. Stat. Phys. 14, 309 (1976).
51. S. Grossmann and R. Schranner, Z. Phys. B 30, 325 (1978).
52. M. Mangel, J. Chem. Phys. 69, 3697 (1978).
53. C. L. Creel and J. Ross, J. Chem. Phys. 65,3779 (1976).
54. H. A. Kramers, Physica 7, 284 (1940).
55. C. W. Gardiner, J. Stat. Phys. 30, 157 (1983).
56. A. Lotka, Proc. Nat. Acad. Sci. USA. 6, 420 (1920).
57. I. Prigogine and R. Lefever, J. Chem. Phys. 48,1695 (1968).
58. J. Tyson, J. Chem. Phys. 58, 3919 (1073).
59. R. J. Field and R. M. Noyes; J. Chem. Phys. 60, 1877 (1974).
60. R. Field, J. Chem. Phys. 63, 2289 (1975).
61. J. S. Turner, Bull. Math. Biology, 36, 205 (1974); Adv. Chem. Phys. 29, 63 (1975).
62. S. J. Hammarling, " Latent Roots and Latent Vectors" (University of Toronto Press, Toronto, 1970). Ch. 5.```


[^0]:    $\dagger$ Near a saddle point the motion is towards the point in one direction and away from it in a perpendicular direction. A limit cycle is a periodic solution of a set of differential equations in two dependent variables.

[^1]:    $\dagger$ The meaning of $o(\delta t):$ If $\delta a=o(\delta t)$, then by definition $\lim _{\delta t \rightarrow 0} \frac{\delta a}{\delta t}=0$, or equivalently, $o(\delta t)=O\left(\delta t^{\varepsilon}\right), \quad \varepsilon>1$.

[^2]:    ${ }^{\dagger}$ Discretizing with unit step size means approximating $\partial P / \partial x$ by $\Delta P / \Delta x$ with $\Delta x=1$; then $\Delta P=P(x, t)-P(x-1, t)$.

[^3]:    †assuming that $\int_{j} A_{i j} R_{j k}$ converges uniformly in $i$ so that we can interchange the order of the two infinite summations.

