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ABSTRACT

HYSTERESIS AND TRANSITIONS BETWEEN MULTIPLE STEADY STATES

OF THE SCHLOGL MODEL

BY

J Kottalam

Several interesting phenomena are associated with

multiple steady states in reacting systems far from

equilibrium. To study these phenomena in simplest form,

Schlogl introduced a cubic reaction model for autocatalytic

isomerization. In the parameter space for this model there

is a region in which two stable steady states and an unstable

steady state are found. In this dissertation spontaneous

transitions between the stable nonequilibrium steady states

of the Schlogl model and hysteresis in induced transitions

are analyzed.

The stochastic dynamics are described by a birth-and-

death master equation. The time-dependent solutions of the

master equation can be constructed using the eigenvalues

and the eigenvectors of the transition matrix in the master

equation. If the system parameters lie in the interior of

the multiple steady-state region, then the system undergoes

Kramers relaxation. The Kramers rule is valid for the Schlogl

model only if both the ratio of the two eigenvalues closest

to zero is substantially different from unity and the shapes

of the two peaks in the slowest decaying mode match the corres-

ponding peaks of the stationary mode. The region where the



Kramers rule breaks down is determined. The eigenvectors and

the time-dependent solutions are displayed for points close

to the boundary separating the single and multiple steady-

state regions and for points well in the interior.

If the system is prepared at a single steady state and

an externally controllable concentration parameter is increased

at a fixed rate and then decreased at the same rate, the

response of the system generates a hysteresis loop. This

effect has been simulated both deterministically and

stochastically. The deterministic results indicate a static

contribution to hysteresis in the multiple steady-state

region, while this contribution disappears when fluctuations

are taken into account. In the single steady-state region

both deterministic and stochastic results indicate that

hysteresis is purely dynamic.

Noyes has proposed a criterion for relative stability

of stable steady states in multistable systems. This criterion

is based on coupling two reacting systems by material exchange

and determining the final state of the coupled system. It is

shown in this dissertation that such a coupled system exhibits

more steady states than do the individual systems, and that

the mixing experiments are not suitable for a study of

relative stability. It is also shown that variation in the

rate of material exchange shifts the steady states of the

coupled system; these shifts are analyzed for cubic and

quartic models.



TO MY MOTHER

who showed me the pleasure of learning

AND FATHER

who showed me the value of education

ii



ACKNOWLEDGMENTS

I am grateful to all who assisted me during this

endeavour. The contributions of only a few are mentioned here.

Needless to say that this work and much of what I have

learnt would be impossible without the excellent guidance of

Dr. Katharine Hunt. She is a perfect example for the definition

of a guide: "Let not the wise disturb the minds of the

ignorant; let him, working with devotion, show them the joy

of good work." (Gita 3:26).

Sunil taught me computer programming. He was always there

to pick me up whenever the computer and other facets of life

trampled me down. The few friends I did have during my stay

at MSU served the purpose of having millions of friends.

Of all contributions from my wife, the only thing I find

words to express is that she typed the manuscript.

My interest in mathematics was created by my mother in my

childhood. My education is a manifestation of my parents'

intelligence and wisdom. Therefore, my achievements, if any,

are really theirs.

iii



LIST OF

CHAPTER

CHAPTER

2.3

CHAPTER

3.6

CHAPTER

TABLE OF CONTENTS

FIGURES

I INTRODUCTION

II MODERN METHODS FOR MACROSCOPIC CHEMICAL

KINETICS

The Schlogl model and the deterministic

analysis

The stochastic formulation

Methods of solution

III A REVIEW OF STUDIES ON THE SCHLOGL

MODEL

Further properties of the steady states

Coexistence of two phases

Approximate solution of master equation

Relative stability

Mean field theory and multivariate master

equation approaches to include local

fluctuations

Critical phenomena

IV A STUDY OF ASYMPTOTIC RELAXATION IN THE

SCHLOGL MODEL USING EIGENVECTORS OF

THE TRANSITION MATRIX

The Schlégl model and its stochastic

formulation

iv

vii

11

20

32

32

36

44

47

59

73

83

84



4.2 Transition between the two stable steady

states 87

4.3 The validity of Kramers relaxation 98

CHAPTER V HYSTERESIS IN TRANSITIONS BETWEEN MULTIPLE

NONEQUILIBRIUM STEADY STATES OF THE

SCHLOGL MODEL 127

5.1 Schlbgl model and its steady states 127

5.2 Deterministic simulation of hysteresis 129

5.3 Stochastic simulation 134

CHAPTER VI DETERMINISTIC STUDY OF MULTIPLE STEADY

STATES IN COUPLED FLOW TANK REACTORS 141

6.1 Multiple steady states in a single

continuously stirred flow-tank reactor 142

6.2 Coupled flow-tank reactors 146

6.3 Comparision with the Noyes analysis 168

CHAPTER VII FUTURE WORK AND DEVELOPMENT 173

APPENDIX A Proof that the transitions generating

hysteresis cannot occur before a marginal

stability point is reached according to the

deterministic rate equation 175

APPENDIX B Method and program to find the eigen-

values of the transition matrix 178

APPENDIX C Programs to construct the eigenvectors

of the transition matrix 183

APPENDIX D Deterministic simulation of hysteresis 204

APPENDIX E Stochastic simulation of hysteresis 208

V



APPENDIX F Special features of the cubic mechanism

in a flow tank reactor 213

REFERENCES 2 1 7

vi



LIST OF FIGURES

Figure 2.1 The steady states of the Schlbgl model

Figure 4.1 Eigenvectors of the transition matrix A

for the Schldgl model, when the parameters

correspond to a point in the interior of the

multiple steady-state region

Figure 4.2 Time evolution of probability distri-

bution when the parameters correspond to a point

in the interior of the multiple steady-state

region. Initial distribution is 6(x-500).

Figure 4.3 Time evolution of probability

distribution. Initial distribution is 6(x-50).

Figure 4.4 Time evolution of probability

distribution. Initial distribution is 5(x-253),

peaked at the unstable steady-state X-value

Figure 4.5 Time evolution of probability

distribution. Initial distribution is 6(x-230)

Figure 4.6 The first three nonzero eigenvalues of

the transition matrix A. c4 = 3.33333.

Figure 4.7 The first three nonzero eigenvalues of

the transition matrix A. c4 = 1.7

Figure 4.8 The first three nonzero eigenvalues of

the transition matrix A. c = 1.3 (no multiple
4

steady states)

vii

88

94

95

96

97

104

105

106



Figure 4.9 Regions of the parameter space where the

conditions on the eigenvalues (equation (4.31))

is satisfied.

Figure 4.10 Eigenvectors of the transition matrix Q

near a marginal stability point

Figure 4.11 Time evolution of the probability

distribution near a marginal stability point

Figure 4.12 Eigenvectors of the transition matrix

near the critical point

Figure 4.13 Time evolution of probability

distribution near the critical point. Initial

distributions are a) 6(x—120), b) 6(x-300), and

c) 6(x-182)

Figure 4.14 Time evolution of probability

distribution near the critical point and near

a marginal stability point. Initial distribu-

tions are a) 6(x-300), b) 6(x-100), and

c) 6(x-190).

Figure 5.1 Results from deterministic (curves with

arrows) and stochastic (noisy curves) simulations

of hysteresis in the multistable region (c4 = 1.7L

The S-shaped curve is the set of steady states

Figure 5.2 Results from deterministic (curves with

arrows) and stochastic (noisy curves) simulation

of hysteresis in the Single steady-state region.

(c4 = 1.3).

viii

108

110

115

116

120

123

131

132



Figure 5.3 Area inside the hysteresis loop versus

the rate of change of B. (Deterministic results) 133

Figure 5.4 Comparision of deterministic (upper line)

A and stochastic simulation (lower line) results.

(24 = 1.7. 139

Figure 5.5 Comparision of deterministic (upper line)

and stochastic simulation (lower line) results.

8 = 50. 140

Figure 6.1 Steady states for the cubic model in a

single flow tank reactor. 147

Figure 6.2 Steady states of coupled reactors

system for Noyes cubic model. k0 = 1.5><10_ss-1 150

Figure 6.3 Steady states of coupled reactor

system for the cubic model. k0 = 2.7><1o"5s‘1 152

Figure 6.4 Steady states of coupled reactor

system for the cubic model. k0 = 2.516963x10'5s‘1 153

Figure 6.5 The potential function m for the cubic

model with k0 = 2.517><lo"5s,‘1 and kx = o. 156

Figure 6.6 The potential function ¢ for the cubic

model with k0 = 2.517x10"5s'1 and kx = 4.0x10'5

s"1 157

Figure 6.7 The potential function m for the cubic

model . k0 = 2.517x1o‘55'1 and kx = 9.061x1o’5

3-1. 158

Figure 6.8 The potential m for the cubic model.

k0 = 1.5xlo'5s'1 and kx = 3.9x1o'ss'1 159

ix



Figure 6.9 The potential m for the quartic model.

k0 = 3.374x1o'5 s'1 and kx = 1.28x1o’5 3'1. 160

Figure 6.10 The potential m for the cubic model.

k0 = 3.5x1o"5 s"1 and kx = 1.1><1o'4 s'l. 161

Figure 6.11 Comparision of steady state patterns of

the single and coupled flow reactors. 172



CHAPTER I

INTRODUCTION

All efforts to understand natural phenomena involve

observation, deduction, induction, and investigation, which

are characteristic of human intellect. One of the methods is

mathematical modeling, in which a physical system is first

observed, mathematical relations are deduced, these relations

are applied inductively (or generalized) to other similar

systems, and these systems are investigated to verify the

relations. Since models are deduced from limited observations,

they need not be complete, and we should incorporate

modifications as the scope of the models widens to include

new fields of investigation.

A Chemist's ambition is to completely understand all

aspects of chemical reactions. One such aspect is the

variation in the concentrations of different species during

a reaction. These variations can be investigated at several

levels of precision. One extreme is to view matter as

continuous bulk material with the amounts of each substance

varying smoothly in time, governed by the law of mass action.

In this case the equations of motion for chemical concentra-

tions are ordinary differential equations. On the other hand,

the exact (classical) treatment would involve the study of

encounters between various molecules using the equations of

motion for the position and velocity vectors of each atom in
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each molecule. Although such "molecular dynamics" calculations

are being carried out, a typical laboratory situation involves

0(1023) molecules each having 0(101) atoms or more. Moreover,

the number of observations actually made on a system in the

laboratory is very small compared to the number of independent

data elements that would be available from an exact theoreti-

cal treatment. Hence in statistical mechanics the encounters

between molecules are viewed as frequently occurring random

events and the attempt is made to derive the expected values

of the few observable quantities and the expected deviations

from those values. Thus we are often satisfied with the

macroscopic description. When the deviations are large the

system may exhibit phenomena which cannot be treated by

deterministic methods. Then we need to incorporate stochastic

character into the theory.

Let us consider a spatially homogeneous mixture of n

reacting chemical species whose particle numbers X(1), X(2),

, x‘n) are components of X. In macroscopic chemical

kinetics the time evolution of X is given by a first-order

ordinary differential equation:

—— = Egg). (1.1)

This equation is nonlinear except in special cases and is

usually autonomous (i.e., {(X) is usually independent of t).



The steady states of the system are those points XS in

state-space at which the numbers of all chemical species are

stationary with respect to time.

.__ = 5(E.) = o, (1.2)

If the system is closed, we call the steady state an

equilibrium state. For systems operating at or near equilib-

rium conditions, the steady state is unique, and it is globally

and asymptotically stable. Asymptotic and global stability

mean that the system will eventually arrive at the steady state

starting from an arbitrary initial condition. This is a

consequence of the minimum entropy production principlel.

However, an open system forced away from the linear

regime near equilibrium by a matter flux across its boundaries

can exhibit exotic phenomena such as the presence of several

steady states and periodic oscillation. If one of these

structures (steady-states or oscillatory solutions of equation

(1.1)) is unstable, then the solutions of the deterministic

differential equations do not describe the system adequately.

If a one-variable system has more than one steady states, not

all can be stable. Suppose there are two stable steady states

X1 and X3 for the Single-variable system; then in the neighbor-

hood of X1 the system moves towards X1 and therefore away

from x3 (and similarly for X3). This implies the
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existence of another point between X1 and X3 from whose

neighborhood the system can only move away; this is an unstable

steady state. By the same argument,2 two stable steady

states:h1a two-variable system must be accompanied by an

unstable steady state, a saddle point,or an unstable limit

cycle.+ In these situations we need to study the system in

more detail.

In the stochastic description, sometimes called the

mesoscopic description, the system can occupy any possible

state with a finite probability at a given time. Thus we use

a probability distribution over the species-number space in

place of the species number to specify the state of the system

at a given time. We again use the law of mass action, but we

use it to calculate the probability of transition from one

state to another and not to calculate the rate of the reaction

directly. Using the transition probability we arrive at a

partial differential equation - called the master equation —

governing the evolution of the probability distribution in

time.

For example, when the parameters take certain values,

the Schlégl model3 has three steady states.one of which is

 

I Near a saddle point the motion is towards the point in one

direction and away from it in a perpendicular direction. A

limit cycle is a periodic solution of a set of differential

equations in two dependent variables.



unstable.4 According to the deterministic rate equations only

one of the stable steady states can be reached from a parti-

cular initial point, but according to the master equations

both stable steady states and their neighborhoods can be

reached with significant probability independent of the

initial distribution. Moreover, when an external parameter is

varied beyond a threshold value, the system undergoes a transi-

tion from one stable steady state to another. When we reverse

this variation, the threshold for the reverse transition is

different. The extent of this hysteresis effect is markedly

different in the deterministic and stochastic descriptions.

In the next chapter the stability analysis of determinis-

tic steady states and the stochastic formulation are illustra-

ted using the Schlfigl model as an example. Methods for solving

the stochastic equations are also explained. Chapter III

provides a review of the literature on topics related to

multiple steady-state systems; coexistence of two phases,

relative stability of steady states, critical phenomena, and

alternate formulations of stochastic kinetics are discussed.

In chapter IV results for the time evolution of the probabi-

lity distribution as described by the master equation are

presented. In chapter V deterministic and stochastic simula-

tions of hysteresis in the SchlBgl model are presented. These

studies are based on a master equation which takes into account

uniform fluctuations in the particle number, but excludes

spatial fluctuations. For a more realistic description,



particularly in the vicinity of the critical point, both

kinds of fluctuations should be considered. In chapter VI

the effects of coupling two Open reacting systems are

studied. Chapter VII contains suggestions for future work

on these problems.



CHAPTER II

MODERN METHODS FOR MACROSCOPIC CHEMICAL KINETICS

2.1 THE SCHLOGL MODEL AND THE DETERMINISTIC ANALYSIS

A system is said to be within the linear regime around

an equilibrium state if the thermodynamic fluxes (e.g., rate

of reaction) are linear combinations of the forces (e.g.,

chemical affinity). In this region, it is well known that

there can be only one stable steady state.1 Several models

have been proposed to study chemical kinetics far away from

equilibrium. One model exhibiting multiple steady states is

Schlagl's termolecular model.3 It consists of the reactions

2 X + A 3 X

B X. (2.1)

Here the numbers of molecules of A and B are kept at

predetermined constant values by contact with external

reservoirs or by appropriate feeding into or removal from

the reactor. We assume the reactor to be efficiently

stirred so that the system is always homogeneous and diffusion

effects need not be considered. The constants k1, k2, k3, and

k4 are specific rate constants independent of the size of the



system. While the rate constants are characteristic of a

reaction mechanism, the concentrations of A and B can be

controlled externally. For convenience we will also set the

numbers of A and B molecules equal and denote the number by

B. Then the deterministic rate equation is

QX = k bxz - k2x3 + k b - k4x. (2-2)

where X = X/V and b = B/V are the concentrations of X and B

(and A) respectively, and V is the volume of the system.

The steady states of the system are the real solutions

of the algebraic equation

BX- X+kB-kX=0. (2.3)

$7 {:7

The steady states are displayed in Figure 2.1 for various

values of the parameters. It can be shown5 that for

k1k4

k2R3

< 9, there is only one steady state for all values n:

of B, while for n > 9 there is a range of B values in which

there are three steady states (see Figure 2.1).

1, X2, and X3 be the roots of this cubic equation.

The stability of each steady state can be deduced by a linear

Let X

stability analysis. The rate equation can be written as
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Figure 2.1 The steady states of the Schldgl model.

The number of X molecules at steady state as a function of

the number of B molecules for various values of the

rate constants.
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k
dX _ _._2 _ _ _
5E - v2(X X1)(X X2)(X X3). (2.4)

Let us consider an arbitrarily small deviation 0Xi from Xi

(i=l,2,3). Substituting éxi = X - Xi in equation (2.4) gives

ddxi k2

_;:_ = - 57 (5xi+xi-xl)(6xi+xi-x2)(6xi+xi-x3)

= KiOXi (2.5)

to first order in 6X1, where

k2

K1 ’ ' 52(X1'X2’(X1'X3)

k2

K2 = ' ;7(x2-x1)(x2-x3)

k2
and K3 = - ;§(X3-Xl)(X3-X2). (2.6)

These linear differential equations have the solutions

axi = axi e 1 . (2.7)

The steady state Xi is stable, marginally stable,or



11

unstable according to whether an arbitrarily small deviation

dxi decays, remains stationary,or grows, and this in turn

depends upon the sign of Re(Ki). From the definition of Ki

one concludes the following: If all roots are real, with

X < X2 < X3, then X and X are stable and X is unstable.
1 3 2

1 or X3 (or both) it is

marginally stable. If there is a complex pair of roots, then

1

Whenever X2 coincides with either X

the real root is always stable.

2.2 THE STOCHASTIC FORMULATION

In order to study transitions between two stable steady

states where the average value of X reaches and passes through

the unstable steady state value, the deterministic analysis

is not adequate. For a better description, we consider the

number of molecules of X in a fixed volume at a given time

as a discrete random variable. Accordingly we focus on the.

probability P(x,t) that the random variable X has value x at

time t. The evolution of this distribution is determined by

the occurrence of chemical reactions at random as explained

below.

A stochastic process is completely determined by

specifying an initial distribution and a hierarchy of

conditional distributions; i.e.,

P(xn+1,tn+1lxo,t0;xl,tl;...;xn,tn) denotes the conditional

probability that the system has Xn+1 molecules of X at time

tn+1 given that it had x at time tO 0' x at time t and so on,
1 1’
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where x0, x1, ..., xn are d-dimensional vectors for a process

with d variables. If it happens that

P(xn+1'tn+1IXO’tO;X1’t1;'"7Xn'tn) = P(xn+1'tn+llxn'tn)

(2.8)

for all n, then the process described by this conditional

probability is called a Markov process. In other words, of

all conditions specified in the past, only the most recent is

relevant in determining the future evolution of a Markov

process. This does not imply that the future is independent of

the past, but this dependence is entirely contained in the

present. If the Markov process satisfies the additional

condition

P( It) = P(X

I

Xn+1'tn+1lxn n n+l'tn+1+Tlxn’tn+T)' (2'9)

then the process is said to be a stationary (or time-homo-

geneous) Markov process. The Markovian character of stochastic

processes corresponds to the first order nature of differential

equations whereas the stationary property corresponds to the

autonomous behavior of deterministic differential equations.

Just as an n-th order deterministic differential equation can

be transformed to a set of n coupled first order equations?

a non-Markov stochastic process requiring the specification

of n conditions for its complete description can be

transformed to a Markov process is nd variables?
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A Markov process is completely determined by specifying

an initial distribution and a transition probability

P(x,t(y,s). Using elementary theorems of probability theory

it can be shown that

P(x,t+s) = X P(x,t+s|y,t) P(y,t). (2.10)

y

This equation is called Kolmogorov's equation. Using first

principles of differentiation, we obtain the master equation8

3 _
§EP(x,t) — E Axy P(y,t). (2.11)

where

lim P(x,t-l-s Iy,t) - 0

s—+0 3

xy (2.12)

is the probability of transition per unit time from state y

to state x. AXy is called the transition probability rate or

infinitesimal transition probability when x # y. Using the

normalization condition on P(y,t+s|x,t) namely,

P(x,t+s|x,t) = 1 - 1 P(y,t+s|x,t), (2.13)

va‘x

we get
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A = - 2 A . (2.14)

The postulates of stochastic chemical kinetics are

1) Chemical reactions are Markov random processes.

2) Given that the system has x molecules at time t, the

probability that a reaction step will occur in the interval

(t,t+6t) is

.1—

am(x,t)6t + o(6t), (2.15)

where am(x,t) is proportional to the number of reactant

combinations leading to the m-th step at time t. For example,

if the second step in a list of all elementary reactions is

3X ——> 2X + A, then a2(x,t) = c2x(x—1)(x-2)/3!

The second postulate gives the transition probability as

Axy(t) = ; am(y,t), (2.16)

where m ranges over all reaction steps which result in a net

change of y->x in the species number. The Markov property

is implied in the deterministic formulation also. The second

postulate is the analog of the law of mass action. Thus the

random variation of X is the only addition to the theory.

 

f The meaning of 0(6t): If 6a = 0(6t), then by definition

'1im 5a _ . _ 6‘
0t-901—E - 0, or equ1valently, o(5t) — 0(5t ), e > 1,
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For example, the (infinitesimal) transition probability

 

for the Schldgl model is given bys’9

( a+(y) for y = x-l

a_(y) for y = x+1

Ax=1

y - a+(y) - a_(y) for y = x

L 0 ' for Ix-y|> 1, (2.17)

where

a+(x) = cle(x-l)/2! + c3B, (2.18)

a_(x) = c2x(x-l)(x—2)/3! + c4x, (2.19)

x and y range over nonnegative integers,and the ci are the

proportionality constants which are related to the rate

constants ki. The relation is made by taking the deterministic

limit in the master equation.10 We find

k. = v1 c./n.1 (2.20)

where n1 is the molecularity of the i-th step in X and mi is

the total molecularity of the i-th step (e.g., n1 = 2, m1 = 3).

The master equation for the Schldgl model is

§%P(x,t) = a+(X-1)P(X‘1rt) + a_(x+1)P(X+l’t)

- [a+(x) + a_(x)]P(x,t). (2.21)



16

The stationary distribution Ps(x) is the solution of

iLP(x t) = 0at I I

i.e., a+(x-1)PS(x-l) + a_(x+1)Ps(x+l)

= [a+(x) + a_(x)]PS(x). (2.22)

From this the detailed balance relation

a+(x-1)Ps(x-1) = a_(x)PS(x) (2.23)

follows by induction. The detailed balance relation gives the

expression for the normalized Ps(x) as

X

W a+(y-1)/a_(y)

 

._ y=1
’Ps(x) - z . (2.24)

E a+(y-1)/a_(y)

zy=1

This can be written as5

Ps(x) = ps(0)e‘¢(x’ (2.25)

in standard form, where the "stochastic potential" ¢(x) is

given by

x a (y)

_ - . (2.26)

¢(X) _ ygllna+(Y'1)
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Although the master equation should be regarded as

the fundamental equation in this treatment, it is often

convenient to work with other approximate equations such as

the Fokker-Planck equation and the Langevin equation which

may be solved by standard mathematical techniques. The master

equation can also be written as

§EP(X,,t) = g AxyP(y,t) = E A(x—z,z)P(x-z,t),

(2.27)

where A(x-z,z) is the infinitesimal transition probability

for a change z ¢ 0 in the number of molecules in a system

containing x-z molecules, and A(x,0) is fixed by

2 A(x-z,z) = 0. Expanding each term on the right hand side

z

as a Taylor series about 2 = 0 in the first argument of

A(x-z,z) and in P(x-z) yields

5%P(x,t) = XXL-L1,“): z)P(x, t)](- 2:)m (2.28)

z m me

This is the Kramers-Moyal expansion.11 The Fokker-Planck

equation12 is obtained by neglecting terms corresponding to

m > 2. Thus it reads

 

Z+

N
I
H

N
t
v
:

2[A(X,2)P(X.t)]. (2.29)
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For the Schlogl model, from equation (2.17)

 

( =a+(x) for z 1

- a+(x) - a_(x) for z = 0

A(x,z) = (

a_(x) for z = -1

(0 for |z| > 1. (2.30)

Hence the Fokker-Planck equation becomes

2

in t) - -—3—[ ( )p( t)) +l-a—ta(x)1>(x tn
at x' ‘ ax r X X' 2 ax2 ' ,

(2.31)

where

r(x) = a+(x) - a_(x), (2.32)

and a(x) = a+(x) + a_(x). ' (2.33)

In general neglecting terms with m > 2 cannot be justified.

Van Kampen13 and Kubo £5 3114 have developed systematic

expansion procedures in power series of a small parameter

(usually the inverse system Size). Gillespie15 has shown

that if A(x,z) = 0 for z > 1, then the Fokker-Planck

+

equation when discretized with unit step Size"

 

1-Discretizing with unit step size means approximating BP/ax

by AP/Ax with Ax = 1; then AP = P(x,t) - P(x-1,t).
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reproduces the master equation exactly, whereas the conditions

A(x,12) # 0 and A(x,z) = 0 for |z| > 2 require four terms to

be kept in the Kramers-Moyal expansion. Matsuo et a116 have

discussed methods of constructing Fokker-Planck equations

from the deterministic equations describing physical processes.

Obtaining the coefficients r(x) and a(x) in the Fokker-Planck

equation from the Kramers-Moyal expansion is one of the methods.

Another method is to adjust the coefficients in such a way that

the resulting stationary distribution coincides with the

stationary distribution given by the master equation (2.24).

The two term Fokker-Planck equation is useful because it

describes the process specified by the stochastic differential

equationl.7

(I) dXt = r(Xt)dt + /a(Xt)th (2.34)

or, equivalently,

(S) dXt = [r(Xt) - % ax(Xt)]dt + Va(Xt)tha (2.35)

where (I) and (8) indicate ItO and Stratonovich calculi

respectively, W is the normal Wiener process and aX is the
t

derivative of a. Such processes are relatively well understood

mathematically. When a(x) is a constant independent of x,

the resulting stochastic equation

dX = r(Xt)dt + /Edw
t t, (2.36)
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is the Langevin equation,which has played an important role

in the theory of Brownian motion.18

2.3 METHODS OF SOLUTION

Since the master equation is a linear differential

equation in P(x,th its solution can be written formally in

terms of the eigenvalues and eigenvectors of the transiton

matrix A, when A is independent of time.

Relation (2.14), namely

2 A = o for all x, (2.37)

y' yx

means that the rows of g are linearly dependent and this

implies det g = 0. Thus the equation

EAX Ps(y) = 0 (2.38)

Y
Y

has a nontrivial solution under the constraint

2 P (x) = 1.
x s

This guarantees the existence of a normalized stationary

distribution. This distribution is unique if and only if all

states of the process communicate with each other; i.e., if

and only if any arbitrary state can be reached from any other

state in finite time. If this condition is not satisfied the



21

process degenerates into several disjoint processes.19 For the

SchlBgl model the requirement for uniqueness is satisfied,

since a+(x) > O for all x and a_(x) > 0 for all x > 0.

Since the stationary distribution is an eigenvector

corresponding to zero eigenvalue (see equation (2.38)), zero

is always an eigenvalue of A. Though detailed balance implies

the existence of a stationary distribution, the converse is

not true. However, detailed balance implies additional

properties of the eigenvalues.

In addition to (2.37) and AXy > 0 for all y # x, if

detailed balance also holds

( i.e., if Ax Ps(y) = AnyS(x) ), (2.39)
Y

then the nonzero eigenvalues of A are real and negative.8

Proof:

Consider the matrices

(2.40)

g = g I_\._____W. (2.41)

S is obviously real and it has the same eigenvalues

as A. Further

%
Ps(x) Axy Ps(y)

%

(
I
)

ll

XY

%- -%
PS(X) AYXPS(X)PS(y)
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5 8
A XPS(x)= Ps(y) y

YX ; (2.42)

i.e., g is also symmetric. Hence the eigenvalues are

real. Let 9-j be an eigenvector of g corresponding to

an eigenvalue lj # 0.

H
m

M
) u 2 Q .S Q .

x,y X3 XY Y]

Q 2 + E Q. Q

x3 x,y#x

2 S .s .

x XX X] xy y:

- - i A Q .2 + 2 QS .Q -

x,y#x YX X3 x,y#x XY X3 Y]

2 2
_ - 1 A 0 . — Z A Q -

le>x YX X3 X,Y<X YX X]

+ E Snyijyj + Z Snyij
x.y>x x.y<x Y]

 

 



  

 

Z Ps(y) L5 2
= - A Q - Q -

XIY>X xy yj PS(X) x3

5 0 since AXy > 0 for y ¢ x. (2.43)

By choice of Q-j'

Q S .
A = ——03 = Q.)

J 2 7

Q .
—.3

so (2.43) implies

A. g 0, (2.44)

3

which was to be proved.

Since A is not symmetric the eigenvectors of g and AT

are not the same, but a relation between them can be deduced

by use of g. Let the columns of Q be the normalized

eigenvectors of g in a particular order and A be the diagonal

matrix containing the eigenvalues. Then

(2.45)

k
)

H
m

M
) u

H
> m B a

K
)

)
o u

"
H

P m

M
)

"
2

u
»

"
2

K
) II

H
>

or g A (2.46)

"
w II

> s
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where

g = E‘lg (2.47)

and .3 = .W Q (2.48)

Thus L j and R . are the j-th eigenvectors of §.and QT

respectively. Moreover,

f3 = .0de Q = 1

Eliminating Q between (2.47) and (2.48), we have

-2
g, = g: g . (2.49)

The solution of 8—851: = A}: can now be written (when A__ is

time-independent) as

ljt

P(x,t) = 20)]. ije , (2.50)

3

where

R..P(i,0)

= 13 . 2. 1Otj l Ps(l) ( 5 )

and P(i,0) is the initial distribution. The eigenvalue

isequation for the k-th eigenvector R-k

A.. . = ,, , ' =
z lJRJk AkRik l 0,1,...
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Summing over i, it becomes

ZZA..R. =AER..
l J 13 jk k i lk

Since 2 Aij = 0, it follows+ that

i.

g Rik = 0 If 1k ¢ 0. (2.52)

This means that )P(i,t) = 1 provided {Ps(i) = 1.

i i

Thus we need to diagonalize the matrix A in order to

solve this problem completely. g is infinite dimensional, but

for a nonexplosive chemical reaction we can always find a large

region of the state space outside which there is no significant

probability to find the system. Since reaction steps of high

molecularity are not common, A is always a narrow band matrix.

For the Schlbgl model it is tridiagonal.

The matrix diagonalization method is valid only if the

transition probabilities are time-independent,i.e., if the

system is autonomous. Gillespie has devised a numerical

algorithm for stochastically Simulating any chemically

reacting system10 and he has extended it to include

 

.1-

assuming that ZAin. converges uniformly in i so that we
jk

can interchange the order of the two infinite summations.
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nonautonomous systemszo. This simulation should exactly

reproduce the solution of the master equation, since it is

also based on the same postulates from which the latter has

been derived.

To derive the master equation we used the postulates to

arrive at the transition probability Axy(t)0t + 0(0t) that an

event occurs in (t,t+6t) resulting in a transition from y to

x. Instead we now focus on the probability P(T,m;x,t)dr that

the next event occurs in (t+1,t+1+d1) and that it is the m-th

reaction step, given that the system has x molecules of X

at time t;

P(I,m;x,t)d1 = PO(T;X,t) am(X,t+T)dT, (2.53)

where P0(T;X,t) is the probability that no reaction occurred

in (t,t+T) given that the system is at x at time t.

Decomposing the interval (t,t+s+ds) into (t,t+s) and

(t+s,t+s+és) we find that the probability that the m-th step

does not occur in (t,t+s+6s) is given by

P0m(s+és;x,t) = [l - am(x,t+s)és - o(6s)] P0m(s;x,t),

(2.54)

Therefore,

8 _ _ .
Epom(s,x,t) - am(X,t+S) POm(SIXIt)° (2°55)
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Solving this first order differential equation with the

initial condition P0m(0;x,t) = 1, we obtain

t+T

P0m(T;X,t) = exp - am(x,s)ds . (2.56)

t

Thus the probability PO(T;X,t) that none of the steps occurs

in (t,t+T) is

t+T

P0(T;X,t) = I; P0m(I;x,t) = exp - [ a(x,s)ds ,

t

(2.57)

where

a(x,t) = Z am(x,t), (2.58)

m

and finally from (2.53)

t+T 1

P(T,m;x,t) = am(x,t+T) exp - I a(x,s)ds ). (2.59)

. J

For a given x and t, this is the density function of a joint

distribution in T and m. In order to simulate the process

determined by this density, we first obtain the probability

P1(T;x,t)d1 that the next reaction occurs in (t+T,t+T+dT)
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irrespective of which step it is.

P1(I;x,t) = Z P(I,m;x,t)

m

t+T

= a(x,t+T) exp - J a(x,s)ds . (2.60)

t

Then the probability P2(m|1;x,t) that the next reaction is

the m-th step given that the next reaction occurs in

(t+T,t+T+dT) is

P(I,m;X.t) = am‘x'tm
PlTr;x,t) a(x,t+I)

  

P2(m|1;x,t) = (2.61)

The simulation algorithm consists of selecting a random

number I distributed according to Pl(1;x,t) and another

random number m distributed according to P2(m|r;x,t) when

the system is at x at t. The distribution functions

corresponding to P1(T;X,t) and P2(mII;x,t) are respectively

T

Fl(1;x,t) = J P1(s;x,t)ds (2.62)

0

P (v)1;x,t) (2.63)and F2(m|1;x,t) = 1 2

"
>
4
3

V

The range of the function F is [0,1] and the range of F
1 2

is a subset of the above interval. The probability that

T lies between T and T is given by
1 2
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I2

I P1(s;x,t)ds = F1(T2;X,t) - F1(Il;x,t).

T1

Thus the distribution of I in [0,w] according to P1(T;X,t)

corresponds to the uniform distribution of F1 in [0,1]. Hence

to implement the selection of I, we choose a uniform random

number r1 in [0,1] and set

1 = F-1(r1;x,t) ; (2.64)

similarly we select another random number r2 and choose m

such that

F2(m-1|I;x,t) < r2 6 F2(m|I;x,t) . (2.65)

Having selected I and m, we advance time by I and carry out

the m-th step in the reaction scheme. The whole procedure is

then repeated for the new state. This iteration produces

a random path in time of the system. To get the mean path we

take a large number of these trajectories and average.

The state of a system close to equilibrium is given by

a Gaussian distribution for which the mean is the most

probable value;21 in systems far from equilibrium the mean

trajectory need not be the most probable one. The above

algorithm is suitable for finding mean quantities. An approach

that focuses attention on the most probable quantities and

deviations from them is the path integral approach.22 Let us
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consider the stochastic differential equation

(I) dXt = - r(Xt)dt + dWt (2.66)

or, equivalently,

(S) dXt = - r(Xt)dt + th- (2.67)

The Green's function P(xf,tflx0,t0) (i.e., the parobability

that the system reaches xf at tf given that it is x0 at to)

is given by the integral of a functional over the class of

continuous functions x(t) subject to the end point conditions

x(tf) = xf and x(to) = x0,namely

tf

P(xf,tflxo,t0) = exp - J L(x,x.I)dI U[x(t)],

t0

(2.68

where

L(x,x,t) = 31mm + r(x(t)))2 -% -dd—x(r(x)). (2.69)

In other words, each path connecting (x0,t0) and (xf,tf) is

( tf
assigned a probability density exp ( - J L(x,x,I)dI and the

to J

total probability is obtained by summing the contributions

of individual paths. The most heavily weighted path is obtained
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by minimizing the functional fL(x,x,I)dI subject to the end

conditions. Thus the path withomaximum probability density

is given by the solution of

dzx dzr

.7 = r(x)—+7
dt dx

Similar path integral expressions have been developed23

(2.70)

in

special cases for the most probable path of a process satisfying

(I) dXt = r(Xt)dt + ¢a(Xt)th. (2.71)



CHAPTER III

A REVIEW OF STUDIES ON THE SCHLOGL MODEL

Chemical reactions as a rule are nonlinear processes

from the thermodynamic point of view; i.e., the rate of

reaction is nonlinear in chemical affinity. Hence chemical

reaction models are convinient for studying phenomena that

are impossible in the linear regime. With this aim, Schldgl

introduced in 1971 two reaction models and showed the

3'4 He also showed thepresence of multiple steady states.

possibility of phase transitions and critical phenomena.

Since then these phenomena have been extensively studied by

various authors using both models, especially the termolecular

model. A summary of the important studies on the termolecular

model is given in this chapter.

3.1 FURTHER PROPERTIES OF THE STEADY STATES

The rate equation for the Schldgl model is

ix = - 3 7- -dt kZX + k1[A]X k4X + k3[B]. . (3.1)

In terms of the scaled variables

3k2

n = mx, (3.2)

k12[A]2

= _______ 3.and t8 9k t, ( 3)

32
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it becomes

 

dn _ _ 3 2 _
EE- — n + 3n Bln + 82

s

= F'(n),

where

B = 9k2k4

1 k12[A]2

2

27k k [B]
B = 2 3

2 k13[A]3

The critical point is given by

(3.4)

(3.5)

(3.6)

1, (3.7)

Consider an arbitrary 82 > O. For this 82 there is a set of

concentration values nS

such that a system described by n =

is at steady state; i.e., F'(nS,Bl)

we get a relation between Bl and ns.

equation can be written as

F'(nS’Bl(nS)) = 0-

and corresponding 81 values 81(ns)

ns. 81 = 81(ns) and 8
"2

= 0. By solving this

Then the steady state

(3.8)
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Differentiating this, we obtain

'dF' BF' aE' d5

dns ans 881 dnS

 

From the results following equation (2.7) we have

O
?

F

W70
S

at any marginal stability point, while

fl... = —n ¢ 0

881

in general. Therefore,

1811. = o (3.9)

dn
5

at any marginal stability point. Since the two marginal

stability points merge at the critical point, it is an

inflection point; i.e.,

dzBl
_—7 = O

(3.10)

dnS

at the critical point. From (3.8) we also obtain
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d2F' 82F' 32F' dB aE' dZB d8 8 dF'

+ 1 + ——— 1 + 1 -

2 2 a as d as d d as d 0
dns ans ns 1 ns 1 ns ns 1 ns

   
 2 _

(3.11)

The second , third, and fourth terms contain factors of

del dZB

-—— and

dnS dnS

 

% which vanish at the critical point. Thus equation

(3.11) leads to

j = 0
(3.12)

at the critical point. These relations can be generalized

to multicomponent systems.24

The above properties are possessed by the Schlogl

model when the concentrations of A and B are kept constant.

Escher and Ross25 have recently considered the Schldgl model

with constant flux of A, B, and X, and have studied the number

and stability of steady states. Let the input be a mixture of

these chemicals (of fixed composition) entering the reactor

at rate J and let the output have the same rate J. The

reactor is assumed to be well stirred so that the output

stream has the same composition as the material in the reactor.

If the input stream contains no A, then the system does not

exhibit instability. If the input stream contains only A,

then interesting steady state structures are obtained. For

example, there exists a particular concentration of A
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in the input stream such that the following situation is

observed: For small values of J the system has two stable

steady states and one unstable steady state. As J increases

two of them disappear leaving a single stable steady state.

At a still higher value of J two more steady states appear,

but both are unstable. With further increase in J one of the

unstable states becomes stable, and eventually a single stable

steady state remains. Escher and Ross also studied a general

case where all species are in the input mixture. In this case

there are two disjoint regions of J where there are unstable

steady states. The instability in the higher J value range is

accompanied by two stable steady states, whereas the lower

range has a limit cycle oscillation in the concentration space.

3.2 COEXISTENCE OF TWO PHASES

Let the Schlégl reactions occur in a reactor which is

not being stirred and let the concentrations of A and B be

kept constant. If A and B diffuse very rapidly but X diffuses

slowly, then the rate equation becomes

Sat-x(E't) = Dvr2x(3:_.t) + F[x(_r_,t)1, (3.13)

where

F(x) = - k2x3 + k1[A]X2 - k4x + k3[B] (3.14)
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and D is the diffusion coefficient for X. First we seek steady

states4 which are uniform along two spatial dimensions and

vary only along one coordinate r These steady states are

 

 

3.

solutions of

azn 3 2 dU

;;—5 = n - 3n + Bln - 82 = - dn , (3.15)

3

where

k1[A)

xi = ri i = 1,2,3. (3.16)

3/Dk2

For the analysis below, it is useful to note that this is the

equation of motion of a classical unit mass moving in the

potential

4 2
0(n)=-%—+n-B e

N
I
S

+1 n (3.17)

if x3 is identified with the time coordinate and n with

position. To determine the steady-state coexistence criterion

for this case we further impose the boundary conditions

n (x3=—00) ll :
3

and n(x =+w) (3.18)ll

:
3

3

so that the concentration of X takes on two different
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homogeneous steady state values (n1 and n3) at the extremes

of the r3 coordinate. Equation (3.15) and boundary conditions

(3.18) together describe the motion of a classical body from

one maximum of the potential U(nl) where it was at rest at

t = -w to the second maximum U(n3) where it comes to rest

at t = +m. This motion is possible only if the potential

maxima are equal; i.e.,

U(n1) = U(n3). (3.19)

This condition is satisfied when the three steady states are

related by

n = (n2 + n3) / 2 . (3.20)
1

Equation (3.20) is Schlogl's coexistence condition. The

homogeneous steady states become

= .. 1..
n1 1 7- 81

h2 = 1

n3 = 1 + ”3'81 (3.21)

and 81 = 82 + 2 at the coexistence point.

Next we seek steady states with Spherical symmetry

varying along the radial coordinate r = (E) and satisfying
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the boundary conditions

n(r=0) I) :
3

and n(r=w) (3.22)ll :
3

Such states can be considered as droplets of the condensed

phase with composition n3 in a medium of composition n1.

The steady state equation becomes

 

'.a_._n—...2l)'.a_r_1_—diji

D 8r2 — 17 Sr dn (3°23)

9kZD

where D' = 2 2 . This corresponds to the motion of a

k A
1

mass in the potential U with dissipation of energy due to

friction. A solution exists if the energy lost is equal to the

potential difference; i.e., if

an) 2- . J; __
U(n2) - U(n1) - 2D I r' [ r) dr . (3.24)

o

If we assume that the radius r of the droplet is substantially
0

larger than the thickness of the boundary layer over which

the concentration change is significant, then equation (3.24)

leads to the condition for the existence of droplets:

) B1_ _ ii )IiI - __8 — 61 2 + r0 20 1 1 3 }. (3.25)
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Similarly, the boundary conditions

ll :
3

n(r=0)

and n(r=m) ll

:
3

(3.26)

correspond to a steady bubble of composition n in a medium

1

The condition for a bubble of radius r isof composition n3. 0

(3.27)

Using a linear analysis, Schlbgl 33 3126 have recently

studied the effects of small fluctuations in systems with

coexisting steady states varying only along the r3 coordinate.

When Schlagl's coexistence condition is satisfied, we have

by the transformation y = n - l

2 2 2
£91 = VX y - y(y -y0 ). (3.28)

S

where y0 = 73-81 and t5 and xi are defined by equations (3.3)

and (3.16) respectively. The coexistence solution of this

equation is

i-

y = yo tanh (y0x3//2) . (3.29)

After the change of variable
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g = tanh (y0x3//2) ,

the linearized equation in terms of the deviation

*

W = (y-y )/y0

becomes

y 2

d _ 0 _ 2 2

d?- - -§— (1 C )DZW + AW)

  

where

32 32
A .. +

a 2 a 2
x1 x2

and

v“ = -3—(1-'2) 1+ 9.()L+l) -—“—2 .
i a; 9 a: 1-C2

Introducing the separation of variables

w(xllX21CIts) = Q(xllxz) “(C) r(ts),

we get

A _
DZU - 0,

2

(A+k )Q = 0,

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)
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and P(ts) , (3.37)II (
D

with

v = k + (4-02) -——-- (3.38)

The mode with smallest v is given by the associated Legendre

function,

0
)
)

I
‘
d

 

3C
yo 3x (3.39)P§(c) = 3(1-C2) =

3

with v = k = 0, and therefore the solution including the small

deviation is

*

"
< I

37200 d _,,( )

dx Y X3

*

y (x ) +

3 Y0 3

 

" *
O

{ l + 6x3 3x3 } y (x3)

*

Y (X3+0X3L (3.40)

where 6x = 3/200 / y Thus this lowest mode called a
3 0'

"Goldstone mode" 27 results in a slight shift along x The3.

shifted solution is also stationary.

All time-dependent modes that vanish at infinity include
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the factor

i
: I)

3’

P;(c) = - 3C(1-C2)2

3 sinh (y0x3//2)

= - 2 . (3.41)

[cosh (y0x3//2)]

 

This determines the long-time decay of perturbations along

the x3 coordinate. There is also a continuous spectrum of

solutions P2(;) that oscillate at infinity.

When the coexistence condition is not satisfied, there

is no stationary solution to equation (3.13). However, there

are solutions which move along the x coordinate with constant

3

velocity, c. The solutions are given by

y(t) = y0 tanh [(X3-.CtS)YO/2]’ (3.42)

where

c = /2 [n2 - (n1+n3)/2]. (3.43)

Here again there is a nondecaying Goldstone mode moving with

the same velocity, c. For

1 3 1

2 2 < 3 Y0 ,
(3.44) 
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the long-time regression is controlled by another discrete

mode. When the inequality (3.44) is not satisfied, the

long-time regression is controlled by the lowest of the

continuous Spectrum of modes.

3.3. APPROXIMATE SOLUTION OF MASTER EQUATION

Matsuo28 has developed WKB-type solution to the master

equation in the limit of large system size. As already seen

(equation (2.41)), the master equation can be transformed to

a form with symmetric matrix:

a _
330(x.t) - E sxy Q(y.t). (3.45)

Its solution is

A.00 t

0(x.t) = 00(x) + 2 pj e 3 0j(x) (3.46)

i=1

where g Qj = ngj. Let us denote the diagonal elements of g

by So(x) and the off-diagonal elements by -S+(x). Then the

eigenvalue equation is

[80(X) - )j] Qj(X) = S+(x-l)Qj(x-l) + S+(X)Qj(X+l).

(3.47)

We look for solutions of the WKB type, namely
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x

Q(x) = Re C(x) exp J w(y)dy , (3.48)

where C and w are assumed to be slowly varying functions of

x. Substituting this in the equation and its derivative and

neglecting small quantities such as C(x+l) - C(x), we get

expressions for C(x) and w(x). The functional form of the

solution depends on which of the following three situations

obtains:

a) - 28+(x) < So(x) - A < 28+(x)

b) So(x) - l > 25+(x)

c) So(x) - A < - 23+(X). (3.49)

We obtain quantum conditions on the eigenvalues by matching

the solutions in adjacent regions. For the Schlogl model the

state space can be divided into five regions separated by

x1, x2, x3 and x4, in which conditions a, b, a, b, a are

satisfied in order. If the middle region is macroscopic in

size, then the two a-regions can be considered independent

and the connection conditions are simplified. In this

approximation the eigenvalue 1 must satisfy one of the

following conditions:
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x4

%Jq(x)dx = 9.2 + 35 ’ (3.50)

X3

where 21 and 22 are nonnegative integers and

_ So(x) - A

q(x) = cos . (3.51)

23+(x)

g.
..

)

 

From this condition we can obtain the density of eigenstates

d1 d2

_ ___1_ __7;.

It is found that in the limit 81 = V-1 —9 0, the density of

eigenstates near A = 0 diverges at the marginal stability

points and the critical point. This divergence is given by

lim -1/4 . . . .

€1,A-+0 0(A) % A (marginal stability pOints)

-1/3 . . .
m A (critical pOint). (3.53)

Since the eigenvalues accumulate near A = O, the decay to the

stationary distribution becomes infinitely slow. This is called

"critical slowing down".

When there are three distinct steady states, it can be

shown that the first decay mode has one node and the second

has the largest of its three peaks in the vicinity of the

unstable steady state. Thus we can find the relaxation times
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from the unstable steady states to be

1

A = [ k (XZ-Xl) (X3'X2) ] (3.54)
2

where k2 is the rate constant of the second step; similarly,

an expression can be obtained for the relaxation time from

the metastable state to the stable one.

3.4 RELATIVE STABILITY

We have already seen Schlogl's coexistence condition.

When this condition is not satisfied, it is clear from equation

(3.42) that the system will eventually become homogeneous.

If n is closer to n than to n then the final state will

2 1 3'

1; otherwise, it will be n3. This can be regarded as a

criterion for relative stability of the two stable steady

be n

states. Other proposed criteria are discuSsed below.

Noyes29 has considered a general reaction scheme with a

single reactant R producing a single product P,

R P ,
-—>

‘—

occurring in a continuous flow reactor. The Schldgl scheme with

constant flow boundary conditions is included in this class

of models. The rate equation is

dR_ __ ..
HE — kO(R0 R) v(R), (3.55)
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where v(R) is the net rate of reaction, k0 is the rate of

flow of matter through the reactor and R0 is the concentration

of R in the input stream. It is assumed that the reactor is

efficiently stirred at all times; then the composition of

the output stream is the same as the composition in the

reactor itself. Functions for v(R) can be selected so that

there are two stable steady states Rd and R for a range of

8

k0 values. Let us prepare two adjacent flow reactors with

identical external conditions including the flux rate kORO,

but at different stable steady states. In order to determine

the relative stability of the two states, Noyes has proposed

making small holes in the wall between these reactors thereby

allowing hydrodynamic mixing with a rate constant kx. For

small kx the concentration of R in the two tahks*WillFbe

perturbed to the new values Ra' and R '.

8

Noyes has given a criterion, namely

0
)

V

k0 + [—E (3.56)

g
.
.
_
_
J

w

)l

O

\

at which a slight increase of kx is claimed to cause the RG'

state to disappear and the combined system to settle with

both reactors in the RB state indicating that R8 is more

stable. If

k0 + [33] = o (3.57)
R '
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happens first as a consequence of mixing with steadily increa-

sing kx, then the higher stability is assigned to R0‘ As will

be seen in chapter VI, this criterion and the proposed mixing

experiment are unsuitable for determining relative stability.

Another criterion for relative stability is obtained by

taking the thermodynamic limit in the stationary distribution

30-32 To do this, we should firstof the master equation.

extract the system size dependence from all parameters and

take the limit as V —> m, X —9 w while X/V remains fixed.

The rate constants have the volume dependence

c. = k. n.! V , (2.20)

where ni is the molecularity of the i-th step in X and mi is

the total molecularity of the i-th step. The master equation

for the concentration x = X/V becomes

a — - -

fiP(X,t) - 3+(X €1)P(X Ellt) + a_(X+€l)P(X+€1rt)

- [a+(x) + a_(x)) P(x,t). (3.58)

Its stationary solution is given recursively by

a (x—E )

_ + .1- _
Ps(x) - Ps(x 81). (3.59)

a_(x)

where
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81 = l/V’

b = B/v,

k1
a+(x) = Tbe (x-El) + k3bV 1

k2
and a_(x) = 7?VX(X‘€1)(X-2€l) + k4V. (3.60)

Ps(x) has local maxima at x1 and x3 and a local minimum at x3,

where x1 < x2 < x3 are the steady state concentrations. First

we evaluate

lim PS(X)

V—>°°_——— f0r0<x<xl;

Ps(x1)

in terms of the function

a (z+el)

0(2) = —2—————— . (3.61)
a+(2)

Ps(x)

ln —_T_—— = ln G + 1n G + ... + In G _
PS X1) X x+€1 X1 81

X1

= V Jln G(z)dz (3.62)

X

for large V. The integral representation is verified by writing
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the integral as a Riemann sum with A2 = 81. Since Ps(z) is

increasing in 0 < z < x1, G(z) < l in this range and the

integral is negative. The required ratio thus goes to zero

in the thermodynamic limit. Following the same procedure

it can also be shown that

. P (x)
lim 5 =

v——>w P (x1) 0 for X1 < X < X2
5

. P (x)
lim 5 = mand V m PS(X3) 6XX3 for x2 < x < . (3.63)

Thus the stationary distribution becomes sharply peaked at

either or both of the stable steady states as the volume of

the system increases without bound. Finally the relative

stability is determined by

X3

lim 3513;: = lim ex V ln G(z)dz (3 64)

V_—’m Ps(X3) V-—>w p '

X1

which is zero, one or infinity depending on whether the

integral is negative, zero or positive. Thus the equistability

condition is given by

X3

I 1n G(z)dz = O. (3.65)

X1

33
Procaccia and Ross have studied relative stability
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based on the nonequilibrium thermodynamics developed by

Levine.34’35 Let us consider an open system whose microscopic

states X are numerous compared to the macroscopic information

available in terms of X. Then the distribution over the

microscopic states must satisfy

ixiP(X,t) = xi(t) for i 0,1,...,M (3.66)

X

where x0 = l imposes normalization. These equations are

insufficient to determine P(X,t). Of all the distributions

satisfying (3.66) the one with minimum information content

is postulated to describe the system, in the absence of any

other information. This distribution also maximizes the

entropy function

SIP] = - X P(X,t) 1n [P(x,t)/q(x)] , (3.67)

X

where g(X) is the degeneracy of state X. When X specifies the

number of molecules of each type, the degeneracy is

L
G )
4 ll

—
—
"
‘
“
\

"
>
4
3

11)

M

x.)1/|—|'x.1 (3.68)

\i j=1 J

The distribution thus obtained is
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t
h
z

P(x,t) = q(x) exp - ur(t)xr . (3.69)

3 0

where ur(t) is the Lagrangian multiplier corresponding to

the r-th constraint (3.66). The function

u

e 0 = 1 9(2) exp - _Z ui(t)xi (3.70)
X

is called the partition function. From the conservation of

total probability,

800 M Sui _

___ = _ Z Xi(t)-__" (3.71)

at i=1 at

In the following analysis the equilibrium state is used as a

reference state. (This state is attained in the SchlBgl model

only when the flux constraints are removed.) Denoting

equilibrium quantities with a superscript e, the entropy

deficiency is defined as

P(x,t)

K[P(t),Pe] = 2 P(X,t) in 'E'—'— ° (3.72)

X P (X)

Substituting (3.69) into (3.72) we find

M

x(t) = - 400(t) - .21-1Aui(t) Xi(t) (3.73)

where Aui(t) = ui(t) - pie. In analogy with classical mechanical
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equations, We look for a function L({Xi},{Xi}) such that

 

 

  

 

d BL

86% [axi X k . (3°74)
j#i' k

This equation is satisfied if L is defined as

M dXi

L = EAUi —d—‘-t_ . (3.75)

To prove this, we first note that

SE - - dAuO - g x dAui - g A“ dXi

at dt i=1 1 dt i=1 1 dt

M dX.

= - {Mi—J. = -L (3.76)

i=1 dt

using (3.71). Now

31- _ - 3. __3K 1. .1

(3Xi]x i - dt[8xi]x i th“i (3°77)

j#i' k j#i' k

from (3.73).

The assumption of maximum entrOpy at all times has led

to the equation of evolution (3.77). This evolution equation

is now used to study the relative stability in the Schldgl
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model. First since g(X) is a multinomial coefficient, we may

write the partition function as

 

‘11. N

e l] , (3.78)

2
}
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BY

-——— = - X . (3.79)

Differentiating (3.78) and comparing with (3.71),

du. dX.

—-1- = -3(--—- (3.80)

dt i dt

The evolution equation for the Schldgl model becomes

3.3-33

th 8x

SAuA dA BADX dX BAuB dB

   = — + — + —- ’ (3°81)

8X dt 3X dt BX dt

dA dB .
where 5? and HE are changes due to the reactions alone.

Suppose we start the system at the stable state X at t = -w.
1

If the other steady state is more stable, it is expected that
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the system will evolve to X given enough time. This transition

3

will occur only if the evolution equation is satisfied.

Multiplying by 3% and integrating from t = -w to t = w gives

00 2 00 X3

1 dX _ 3L dX _ 3X
.. (§[_d—t] dt -— {-5-}? aft- dt - I 3x dX (3.82)

-00 —00 X1

under the hypothesis that a transition occurs, i.e., X(t=m)=X3.

Since the left hand side is negative semidefinite, X3 is more

stable than X1 only if the integral on the right hand side

is negative. If it is positive, then the reverse transition

can occur. Thus the equistability condition is

8L _
I 3? dx — 0. (3.83)

x

Relative stability can also be studied using first passage

times based on the master equation.36 We consider the mean

time Iu of first arrival at X3 if the system starts from X

at time zero and we restrict attention to single variable

1

systems such as the Schlégl model. Let vi(x) be the average

number of x-exil transitions executed and tu(x) be the average

 

time spent in state x during the passage from X1 to X3. Then

from equation (2.60), we have

t (x)

u = -—l——-- (3.84)
VAX) + \)_(X) a(x)

for the mean residence time at state x and from (2.61)
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vt(x) '_ ai(X)

_
(3.85)

0+(x) + v_(x) a(x)

Solving these equations for tu(x), we get

vim)

tu(X) = m. (3.86)

1

Since every trajectory under consideration has exactly one

X3-1 -9 X transition,

3

0+(X3-1) = 1. (3.87)

Every trajectory starting from XI must also satisfy certain

conditions in order to reach X3. At a state x < X1 it must

execute an equal number of x-éx+1 and x+1-9x transitions and

at any state between X1 and X3 it must execute one more

x-+x+l transition than the reverse. Since all trajectories

satisfy these conditions, so does the average.

v+(x-l) = v_(x) + h(x-Xl) for x < X3 (3.88)

where h(x) is the Heaviside step function. Thus we have a

recursion relation for tu(x):

a_(x) h(x-Xl)

tu(X-1) = m tu(X) +m , X < Xz‘l

(3.89)

with

1

t (X -1) -—-——.

u 3 a+(X3-1)
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The mean first passage time is given by summing the mean times

spent in all accessible intermediate states.

X3-1

I = Z t (x), (3.90)

x=0 u

Similarly we can derive for the downward transition

1 = X t (x) (3.91)

d x=X +1 d '

1

where

t (X +1) 1 D

d 1 a_(X1+1)

and in general

a+(x) h(X3-x)

td(x+l) m td(X) + m° (3.92)

Then we can define relative stability based on the difference

Iu - Id. If this is negative, the upper steady state X3 is

more stable and conversely. Thus the equistability criterion

is

I = Td' (3.93)

A more rigorous and direct derivation of the same expression
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for the first passage time from the master equation is

available in reference 37.

We have several coexistence conditions based on

different criteria for relative stability. Schlogl's criterion

includes the effects of diffusion but neglects fluctuations,

whereas the two thermodynamic criteria (equations (3.65) and

(3.83)) and the kinetic criterion (3.93) are based on

descriptions neglecting spatial fluctuations. These two kinds

of criteria need not agree. In an intermediate situation it

is possible38 that a local fluctuation large enough for a

phase transition arises due to the chemical reactions in the

system but it diffuses away rather than causing a transition.

On the other hand, when a slowly moving boundary is predicted

by Schlbgl's criterion, one may expect several dynamic patches

of the two phases due to local fluctuations. Thus the actual

coexistence point should lie between the points predicted by

Schldgl's criterion and the thermodynamic criteria. Local

fluctuations in nonequilibrium system can be investigated

using the multivariate master equation described in the next

section.

3.5 MEAN FIELD THEORY AND MULTIVARIATE MASTER EQUATION

APPROACHES TO INCLUDE LOCAL FLUCTUATIONS.

The master equation based on uniform concentrations of

the species in the reacting mixture is called the birth and

39
death equation. Malek-Mansour and Nicolis have advanced
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several criticisms of this method. They have stated that

the prescription for calculating transition probabilities

treats the reactive encounters of molecules as equally

likely irrespective of the position of these molecules in

the reaction vessel. This statement is simply not true. What

appears in the master equation is the probability that a

reactive collision will occur somewhere in the reactor, which

is different from the probability that a given set of molecules

will undergo a reactive collision. This point has been amply

40
clarified by Gillespie. Another criticism is based on a

study of the apparently pathological reaction scheme

k

C+Y—i>2Y

k6
ZY -__—'> Do

The deterministic analysis gives an unstable steady state

Y = 0 and a stable steady state,

Y = k5C/k6' (3.94)

but the stationary distribution of the birth and death

master equation is

P (Y=y) = 8 . (3.95)

According to equation (3.95) the system settles into the
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state predicted to be unstable by the deterministic analysis.

From this result Malek-Mansour and Nicolis concluded that the

transition probability calculated using the birth-and-death

model is wrong; this conclusion is based on the expectation

that the deterministic analysis always gives the correct

stability. A careful consideration of the reaction scheme

reveals that the result obtained from the master equation

represents a genuine phenomenon consistent with the assumed

mechanism.41 In the vicinity of the null state, the first

reaction is much more likely to occur than the second due to

the presence of C. Nonetheless it is possible that the few

remaining Y molecules will react, eliminating Y from the

system. Once the system has reached the null state, Y

molecules can no longer be produced. This means that the null

state will be eventually reached due to fluctuations and it

is the only asymptotically stable state. Thus the model system

is expected to behave as predicted by the birth-and—death

master equation. It is the deterministic equation that gives

wrong results due to the neglect of fluctuations.

However the master equation does have limitations, as

correctly pointed out by the authors mentioned above.39 They

have developed a mean field theory to remove the limitations

arising from neglect of spatially inhomogeneous fluctuations.

Although the birth-and-death master equation includes

fluctuations in particle number, it assumes the concentration

of the chemical species to be uniform throughout
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the reactor. This need not be the case when stirring and

diffusion are not efficient. Hence a realistic system can

have properties such as a finite correlation length which

is a measure of the effective wavelength of local fluctuations.

The mean field approach starts by considering a subvolume

AV which is comparable in size to the cube of the correlation

length. The birth-and-death description is assumed to be valid

within this subvolume. Then the probability distribution for

the entire system P(xi,xo,t) evolves according to

_3_
8tP(Xi'XO't) = Rch(AV) + Rch(V-AV) + T(AV,V-AV),

(3.96)

where xi is the number of molecules in AV and x0 is the number

of molecules outside AV. Rch(AV) is the reaction probability

term arising from birth and death processes in AV and T arises

from the transport of matter across the boundary of AV.

Assuming that the transport of heat is very fast (so that the

system remains isothermal), T may be calculated using the

position and velocity distributions from the kinetic theory

of gases. Next the mean field assumption is introduced and the

evolution equation is summed over the external variables, xQ

and V-AV. The system is required to be homogeneous on the

average, i.e.,

< xO/(V-AV)> = < xi/AV > . (3.97)
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Moreover, the particle distributions in AV and in V-AV are

assumed to be uncorrelated, so that

P(xi.xo,t) = PAV(xi,t)PV_AV(xO,t), (3.98)

Using these relations, a closed equation is derived for the

evolution of the probability distribution in V:

a _ -
3E PAV(Xi't) - Rch(AV) + D<X>[PAV(X1+1't) PAV(Xi't)]

+ D[(Xi+1)PAV(Xi+1't)—xiPAV(Xi't)1'

(3.99)

In equation (3.99) D is the effective frequency of diffusion

passage of particles across the boundary of AV and is related

to the diffusion coefficient D and mean free path by

_ D

D - mean free path x coherence length of fluctuations

(3.100)

If the characteristic time scale of macroscopic changes

due to chemical reaction is much longer than that of diffusion,

then there is an expansion parameter.42 For example, in the

Schlogl model if

c k

2 2
s = - = ——————- (3.101)
2 6D (AV)20

is small, then the "nonlinear" master equation becomes
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a ' _ '1 _ y _ I5ETp(X,t ) - Rch + 82 {<X>[P(X 1,t ) P(th )]

+ (x+l)P(X+1,t') - XP(x,t')} , (3.102)

c k

 where t' = —-2-t = 2 2t and

6 (AV)

RCh = ii { a+(x-1)P(x-l,t') + a_(x+1)P(x+1,t')

- [a+(x) + a_(x)] P(x,t') }. (3.103)

We can seek a solution of the form

P(x,t') = P0(x,t') + E (x,t') + ... . (3.104)

2P1

Since P(x,t') must be normalized independent of e , we have

2

X Po(x,t') = 1 and 2 Pn(x,t') = 0 for n>1 . (3.105)

X X

The solution is obtained by use of a probability generating

function defined by

F(s,t') = sXP(x,t'). (3.106)

"
M
B

x O

F(s,t') can also be expanded as a series in 82

F(s,t') = Fo(s,t') + s Fl(s,t') + ... ,
2
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subject to the conditions

F0(s,t') = l and Fn(s,t') = O for n>l .

s=1

 

(3.107)

Then the evolution equation becomes

8

as

 

———F(s,t') = R + €2-1(S-1){<X>F(S,t') - F(s,t')} ,

(3.108)

sXRC . By expanding <x> in powers of 62

<x> = <x> + e <x> + ... (3.109)

and then equating the coefficients of powers of 82 in equation

(3.108), a set of evolution equations for Fn(s,t') are

obtained; these can be solved successively.

As an example, let us determine the stationary distribution

for the Schlagl model, which is expected to be different from

that obtained from birth and death master equation. For the

Schlbgl model R is

3 2
2 d F 2 d F dF

R = (l-s) 5 ——§ - bls ‘-—Z + b3 —— - b2F (3.110)

ds ds ds

where
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k1 3c1

bl = 'k— bAV - — bAV,

2 2

k 6c

b2 = k2 (AV)2 = C ;

2 2

k 6c

b = —3- b(AV)3 = ——3 bAV.
3 k2 c2

At steady state, then

2 d3F 2 d2F dF dF

E s ——— - b 5 ——5 + b —— - b F + —— - <x>F = 0.

2 ds3 1 ds 3 ds 2 ds

(3.111)

Equating the coefficients of 820 gives

dFO

———-- <x>0F0 = 0. (3.112)

ds

Solving equation (3.112) subject to the condition F0(s=1) = l,

we get

F0 = e . (3.113)

Equating the coefficients of €21 gives
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2 d3FO 2 szo dF dF

s - b 5 1——1r + b ——— - b F + ——— - (X) F

ds3 1 ds 3 ds 2 0 ds 0 1

.. < =
x>1F0 0 . (3.114)

Setting s=1 and using (3.106), we obtain a moment equation

<x(x-1)(x-2)>o - b1<x(x-1)>O + b3<x>0 - b2 = 0.

(3.115)

Since F0 generates a Poisson distribution, <xn> = <x>n and

therefore <x>O is the solution of the macroscopic rate equation.

<x> 3 - b <x> 2 + b <x> — b s 0 (3 116)
0 l 0 3 0 2 ' °

Thus for the Schlogl model three steady states may exist

when e -90. To find F1(s), we substitute

2

F1(s) = F0(s)wl(s) (3.117)

in equation (3.114) to obtain

(3.118)

with 01(1) = 0. Solving (3.118) yields
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_ _ _ l 3 3_ l 2 3_
01(5) - <x>1(s 1) 3<x>0 (S l) + 3b1<x>0 (s 1)

- b3<x>0(s-l) + b2(s-l) . (3.119)

To find <x> we equate the coefficients of 622:
1)

 
 

 

2 d3F1 2 d2El dPl sz

S 3"b1s 2+b3—"b2F1+_'<X>0F2
ds ds ds ds

-<x>1F1 - <x>2F0 = 0. (3.120)

dF2

Setting s=1 and noticing that-——— = <x>2, we find

ds s=1

d3P1 d2)?1 dFl

- b -_7T + b ——— - b F = 0. (3.121)

ds3 1ds 3ds 2 1 s=1

Substituting the expressions (3.117) and (3.119) for F1 and (1

we finally obtain

2
<x> = - 6b3<x>0 + <x>0[6b2 + 2b1b3 2b3] 2b2(b1 1).

1 2

3<x>O - 2b1<x>O + b3

(3.122)

This procedure clearly breaks down at the marginal stability

points where the denominator in (3.122) vanishes.
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A more satisfactory, but more difficult treatment is the

multivariate master equation approach.43 In this approach too,

the entire system volume is divided into a number of cells

of equal volume AV. A birth and death process is assumed to

occur in each cell, in addition to migration between adjacent

cells. In contrast with the mean field approach, the equation

of motion for the detailed distribution P(§,t) is considered,

where the j-th component of § is the number of g molecules

in the j-th cell. P(§,t) is a n-dimensional joint distribution

when there are n cells and only one chemical component is

allowed to vary. The multivariate master equation for the

Schlogl model is

5%P(§.t) E a+(xr-1)P(§-§r,t) + a-(xr+1)P(§+§r't)

- [a+(xr) + a_(xr)] P(§.t)

+ D g [(xr+1)p(§+§_Q-_§r,t) - er(§,t)]

(3.123)

for all g in Zn where Z = { 0,1,... }, fir is a row vector

with r-th component unity and all other components zero,

1 runs over all nearest neighbours of the r-th cell,and.D is

the diffusion coefficient of x. The generating function

for the joint distribution is

X

F(Ert) = X W Sr r P(gg.t) (3.124)

X r
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Since the variables in the Schlogl model can be scaled leaving

only two parameters we may define the parameters w and w' by

k 6c

w = -i-- 3 = -———3—3 - 3, (3.125)

k2 c2(AV)

k3b 6c3b

w' = -——— - 1 = - 1, (3.126)

k2 c2(AV)2

and we may select [A] such that

kllA]

 = 3 (3.127)

k2

without loss of generality. Then w=w'=0 is the critical point.

The steady-state equation for the generating function becomes

3 2

 

 

 

2(1-sr)sr2 1: 8 E; - ii-jij;

r (AV) 38 AV as
r r

3F

+ 2 (1-3 )[(3+w) - (1-w')AV F]

r r 3s

r

8F

+ D X 2(sg-sr)fi = o. (3.128)

r 2 as

r
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Nicolis 23 31 have assumed that the steady state distribution

is of the form

F = 2 exp AV E (Sr-1) , (3.129)

r

and that the volume of the cells is sufficiently large that

the solution can be obtained as a perturbation expansion in

a = (AV)’l << 1 . (3.130)

Considering the approach to the critical point along the line

w=w', we scale the quantities w and D near the critical point.

Since the generating function and its derivatives are needed

only at gel, we also put

sr = 6 gr + ... 0 < e < 1 (3.131)

along with

w = ijl + ... (3.132)

and D = efDl + .. . (3.133)

Substituting equations (3.129)-(3.133) into equation (3.128)

shows that the steady state equation has the leading terms
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3
3 Z

{gr 2(18) 3+Z4€22612+2_€€laarz

ear r r 5r

+ZiarfleD[—3€——§8€—r]+...=o. (3.134)

r

The applicability of different kinds of theories near the

critical point is determined by the relative importance of

these four terms. Thus, for

f > max {j,2(e—1),2e-1}

and j = 2(l-e) = 2e-l, (3.135)

the birth and death description neglecting spatial fluctuations

is valid. On the other hand, for

j < min {j,2(1’€),2€-1} , (3.136)

diffusion dominates and chemical reaction effects appear as

perturbations. All terms have equal importance if

e = 3/4 and j = f = 1/2 . (3.137)

The resulting third-order equation in this case has the

solution
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oo oo

Z({€r}) = [... J {der} [eXp( Eirer)] R({er}),

—oo -(X>

where

2 4 D
8 9

r 1 2

+ 4 + 7? §(62 er) '

_£_

1 2
R({6r}) exp -%2 w

r

(3.138)

The functional in the exponential is the Ginzburg-Landau

potential. If

e < 3/4 and 2e—1 = j = f, (3.139)

the third order term can be dropped and consequently the 6r4

term is missing in the solution. This corresponds to the

Gaussian approximation.

3.6 CRITICAL PHENOMENA

The steady state structure of the Schlogl model is similar

to that of a van der Waals gas or a ferromagnetic material.

A close analogy exists between the parameters of these

systems. The transition between multiple steady states of

the Schlogl model is similar to the gas-liquid transition.

For the Schlogl model the pump parameter B plays the role
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Of pressure and a change in the ratio of rate constants affects

the shape of the X versus B curve as a change in temperature

affects pV curves. The order parameters are the concentration

of X and the density respectively. A less complete analogy

can be drawn with the magnetization of a ferromagnetic material

where the pump parameter and the rate-constant ratio correspond

to external field strength and temperature respectively.

Because of this similarity, the observed critical phenomena

in the case of gas-liquid and magnetic systems44 are expected

to be manifest in the Schlogl model also.

Inhomogeneous spatial fluctuations are very important

in critical phenomena. So, the birth-and-death description is

not sufficient for this study. Including the diffusion process

the deterministic rate equation can be written as4s'46

 

 

3gT-xqflt) = - x3 + 3Ax2 - (3+6)A2X + (1+6')A3 + szx,

(3.140)

where A, 6 and 6' are defined by

_ le _ clB

A - 3"— - -C__ ’

3 2

9k k BZV2 6c 0 B2

3 + 2 4 _ 2 4
5 _ ... )

k 2 C 2

1 1

27k22k3V2 6c22c3

1 + 6' = = -————-) (3.141)
3 2 3

k1 B c1
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and t' = -— = —2t. X(£,t') is related to its Fourier

V 6

components Xq(t') by

X(£,t') L_d/2 2 x (t') eifl°£
g ..

L/2 L/2 -i .r

v _ 'd/2 o
and X (t ) L dr1 drd X(£,t )e ,

-L/2 —L/2

where L is the side of the d-dimensional cubic reaction vessel.

In terms of the Fourier components, the rate equation is

3 . _ 2 2 -d/2
SETXg(t ) - [(3+6)A + q DIXq + L BA g XS‘EXE

_ -d d/2 , 3
L 2 Z. xkxk,xq_k_k, + L (1+5 )A éq'o

13 ————— --

(3.142)

using

L/Z iklr1

e dr1 = L. (3.143)

-L/2

It is difficult to study the corresponding stochastic equations

in completely general form. The first improvement on the
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deterministic equation is the Langevin equation obtained by

simply adding uncorrelated uniformly fluctuating ("white")

noise terms na to the deterministic equations; the averaged

mg and correlations satisfy

‘

< t > = O
nq( )

and < (t n (t > = 2F 6 6 t -t ) 3.144n31 1) 32 2) 31 32 ( 1 2 . ( )

Making the change of variable to o

o X /A - 6 (3.145)

s a 3:9,

and adding the noise terms transforms equation (3.142) into

a _ _ 2 . d/2 ,_
at"°q [6+q D ]oa + L (6 5)Cg,9

+ L“d 2 2 ok ok, 0 _k_k. + n (t"), (3.146)

EE- - 51-— 3

u 2 2
where t = A t' and D' = D/A .

The corresponding Fokker-Planck equation giving the time

evolution of the probability distribution for {o } is a

second-order partial differential equation. Its stationary

solution is

PS({OE}) = N exp[-F({Gk})], . (3.147)
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where N is a normalization constant and

F({ok}) = r’1 2 [6/2 + D'k2/2]|Ok|2
_ k _

+ % L-d X Z Z c o g ok k' k" .12 £0 .12" _l<-_£l_-]SII

+ L d/2(6-6')o . (3.148)

This has the form of the Ginzburg-Landau Hamiltonian in the

Ising model of a ferromagnet.

Many physical properties diverge as the critical point

is approached. The strength of this divergence is characterized

by critical exponents. For example, when the critical point

6 = 6' = 0 is approached along the line 6 = 6'

<0 > m (-6) for 6 = 6' < 0 (3.149)

where Y1 is a critical exponent. Similarly other exponents

are defined by4s’46

1/Y2

<oo> N (6') for 6 = O, (3.150)

2 'Y3 _ ,
<00 > N 6 for 6 - 6 , (3.151)

‘Y '2Y

and <0 0 > m 6 3 D(q26 4). (3.152)
q “q

These exponents can be calculated using renormalization
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group techniques.

Renormalization is a coarse graining transformation

followed by a change of scale.47 Suppose we have a joint

probability distribution over the microstates of the system.

From this we construct another distribution whose spatial

(and time) resolution is lower. To do this we have combined

several microstates together losing details within a single

collection. Let us parametrize the extent of this coarse

graining and scale change by s. Then the set {Rs:s>1} of

all such transformations is called the renormalization group

(even though it does not satisfy all the axioms of group

algebra). The basic hypothesis of renormalization group theory

is that at the critical point all length scales are equivalent;

that is, the system behaves identically at all levels

intermediate between microscopic and macroscopic scales

except close to the microscopic scale. This principle is an

observed fact in magnetization and condensation processes.

Accordingly the probability distribution corresponding to the

critical point becomes invariant asymptotically under a

renormalization transformation; i.e.,

lim

S_,m RSP = P* (3.153)

where P* is a fixed point of Rs for all s. Asymptotically the

distribution corresponding to a point in the neighborhood of

the critical point (but not on the critical surface) moves
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away from P*. The functional dependence of this movement

on the parameters of the system can be related to the rate of

divergence of physical properties. Thus the critical exponents

can be calculated.

When we apply a renormalization to equation (3.148), we

find that the result has the same form with the coefficient

sq"-d appearing in front of the quartic term. Since we are

interested in large 3 behaviour, we can neglect the quartic

term in the potential when 4-d < 0 and obtain a Gaussian

distribution. The fixed point of the class of Gaussian

distributions and the class of Ginzburg-Landau distributions

are identical only at d = 4. The Gaussian distribution is

valid for d > 4. When d decreases from 4, this approximation

becomes increasingly inaccurate. Thus dC = 4 is a critical

dimension. This suggests a perturbation expansion in a parameter

with exponent 4-d. If the quartic term in the potential is

treated as a perturbation, then an expansion is obtained in

powers of 683 where 83 = 4-d. Thus even when d < 4, there is

a region (designated "the critical region") around the critical

point outside which the Gaussian approximation is valid. As d

increases the critical region shrinks and finally disappears

when d reaches 4. The Ginzburg criterion qualitatively governs

the size of the critical region.

From the perturbation expansion we obtain the following

critical exponents:
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Y1 = l - 23 +62%; f 0(533), (3.154)

Y2 = 3 + .3 + @2532 + 0(533), (3.155)

Y3 = 1 + €53 + 3%632 + 0(833), (3.156)

and Y4 = % + f%€3 + 142 832 + 0(833). (3.157)

In equilibrium critical phenomena the heat capacity

diverges at the critical point. A property analogous to the

heat capacity exists in nonequilibrium systems. The entropy

(S) and entropy deficiency (K) functions defined by (see

equation (3.72))

S({Pi}) = - E pi 1n 8. (3.158)

e _ e

K({Pi},{Pi }) - E Pi ln (pi/pi ) (3.159)

(in appropriate units) can be viewed as the averages of the

random variables

b. = - ln Pi (3.160)

= — = er b. bi ln (Pi/Pi )/ (3.161)

called the bit number and relative bit number respectively.
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Roughly speaking, bi is prOportional to the number of binary

digits neccessary to represent Pi' In information theory,

-S is called the Shannon information measure and K is called

the Kullback measure of information gain. In equilibrium

statistical thermodynamics, the probability distributions are

of the form (cf. equation (3.69))

Pi = exp — Z Aurxir ]. (3.162)

r

The heat capacity of a system is related to the variance of

energy in the canonical distribution. Since the bit number

corresponds to the energy of the microstates, (e.g.,

b. = - ln Pi = -——- (3.163)

for a canonical ensemble), a generalized heat capacity can be

defined in terms of the bit number variance, as

_ 2 2

Cr - (<b > - <b> ) / Aur . (3.164)

The divergence of bit number variance of the Schlbgl model

has been studied by Schlégl.48 When diffusion is effective and

6 = 6', the stationary distribution for the homogeneous mode

has the form

2
P(x) m exp [ - V (x +0)2 ] (3.165)
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where o is a derived constant. When the bit number variance

is calculated from this distribution and plotted, it is found

that it dramatically changes at the critical point and that

this change approaches a divergence as V -+ w.



CHAPTER IV

A STUDY OF ASYMPTOTIC RELAXATION IN THE SCHLOGL MODEL USING

EIGENVECTORS OF THE TRANSITION MATRIX.

It is well known that deterministic methods of chemical

kinetics are not adequate for treating reacting systems

exhibiting chemical instability.8'49_52 In particular

stochastic methods are needed to analyze transitions between

multiple steady states in such systems. The Sch15gl model

has been widely used for studying phenomena associated with

multiple steady states. SchlESgl4 analyzed the model

deterministically and showed that for certain sets of parameter

values the model has two stable steady states and an unstable

steady state (section 2.1). Matheson 33 215 compared the

stationary distribution from a stochastic treatment with the

deterministic steady state results (section 2.2). Procaccia

and Ross33 have discussed the question of relative stability

of the two Stable steady states (section 3.4). Gillespie9

studied the time-dependent features of this model using first

passage times (section 3.4). Here the time-dependent probability

distributions are displayed for long times at which transitions

from one stable steady state to another are expected to occur.

The stochastic time evolution of the system is described

by a birth-and-death master equation (section 2.2). Since it

is a first-order linear equation, its solution is in principle

known in terms of the eigenvalues and the eigenvectors of the

83
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transition matrix8 (section 2.3). A criterion for the validity

of the Kramers rule is given and results for the Schlégl model

are presented in this chapter.

Creel and R03353 have reported experimental observations

of transitions between multiple steady states of an NOZ/NZO
4

mixture illuminated with an argonéion laser.

4.1 THE SCHLOGL MODEL AND ITS STOCHASTIC FORMULATION

In the Schlagl model the chemical reactions

occur in a homogeneous Open system. The particle numbers of

species A and B (denoted by A and B) are assumed to be kept

constant by contact with external reservoirs or by appropriate

feeding into or removal from the reactor. Thus X is the only

variable, while A and B are external parameters. For

convenience we will also assume the numbers of A and B to be

equal. When the reaction parameter n defined by

n = k—E_ (4.1)

exceeds a critical value “c = 9, there is a range of B values
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for which the system has three possible steady states,

X1 < X2 < X3, of which X1 and X3 are stable and X2 is unstable.

Outside this range of B and below the critical point, there is

only one stable steady state. The boundary separating these

two regions consists of the marginal stability points.

In the stochastic formulation X(t) is viewed as a random

variable taking integer values in {x:0<x<w} The state of the

system at a specified time t is then given by a probability

vector 2(t) whose x-th component is the probability that

X(t) = x. The dynamics of the system are described by the time

evolution of P(x,t) [ P(x,t) E Px(t) ] according to the

master equation,

a -- — —fipm't) - a+(x 1)P(X 1,t) + a_(X+1)P(x+1,t)

- a(x)P(x,t), x > 0, (4.2)

where

C1
a+(x) = 7TBx(x-1) + c3B, (4.3)

C2
a_(x) = 7?x(x-1)(x-2) + c4x, (4.4)

and a(x) = a+(x) + a_(x). (4.5)

The parameters ci are related to the rate constants ki by
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(4.6)

where ni is the molecularity of the i-th step in X, mi is

the total molecularity of the i-th step (e.g., n1 = 2, = 3),
m1

and V is the volume of the system. The stationary distribution

Ps(x) is obtained by setting the right-hand side of the master

equation equal to zero. Ps(x) has local maxima corresponding

to stable steady states and a minimum at the X-value for the

unstable steady state.

The master equation in matrix form is

EB = Q 2! (4.7)

where

Axy = a+(y)6x_1’y + a_(y)6x+1,y + a(y)6xy. (4.8)

Its solution is (section 2.3)

w A.t

P(x,t) = P (x) + 2 d.P.(x)e j , (4.9)
5 .=1 3 j

3

where

P.(x)P(x,0)

6. = 2 3 , (4.10)

x Ps(x)
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and Aj and Ej are the nonzero eigenvalues and the correspon-

ding right eigenvectors of A respectively. In particular, if

P(x,0) = 6Xy, then

on. = Pj(Y) / PS(Y)o (4.11)

4.2. TRANSITION BETWEEN THE TWO STABLE STEADY STATES

For numerical studies the following values of the rate

constants used by Gillespie36 are selected:

c1 = 3 x 10'7 (1mo1ecu16‘3 time-1),

c2 = l X 10.4 (molecule -3 time-1),

and c3 = 1.5 X 10.3 (moleculen1 time-1);

then c4 = 1.5 (molecule-ltime-l) corresponds to the critical

point. To illustrate the transition between the two stable

5
steady states, consider c = 3.33333 and B = 1.01 x 10 as

4

an example. Figure 4.1 shows the stationary distribution

and the eigenvectors corresponding to the three eigenvalues

closest to zero. As seen in section 2.3, A0 = 0 and all other

eigenvalues are negative. Let the eigenvalues and eigenvectors

be arranged such that A0 > l1 > 12 ... . In the example

illustrated in Figure 4.1 the first two nonzero eigenvalues
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88

Eigenvectors of the transition matrix A

for the Schlégl model, when the parameters

correspond to a point in the interior of

the multiple steady-state region.

(c = 3.33333 and B = 1.OIXI05).
4

The eigenvalues are:

a) 10 = 0,

b) )1 = -3.8404x10'8'

c) )2 = —1.0537,

d) A = -l.5619.
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1 = .3,84o4x10—8 and A2 = -1.0537) differ by several

orders of magnitude. This means that the eigenmode g

(A

1

persists for a long time after all other modes have decayed.

Therefore, after a sufficiently long time, P(x,t) has

significant contributions only from as and 2 Moreover,1.

21 has a positive peak corresponding to one of the peaks in

the stationary distribution £8 and a negative peak correspon-

ding to the other (see Figures 4.1.a and 4.1.b). As 21

decays, P(x,t) decreases in one steady-state region and

grows in the other. Let 31 be called the transition mode.

Figures 4.2 - 4.5 show the time evolution of the

probability distribution for various initial values of x.

A quasi-stationary distribution is established on a short

time scale. Then this distribution slowly relaxes to the

stationary distribution in accordance with the Kramers rule

(explained in section 4.3). In general the quasi-steady

distribution is determined by the initial distribution.

If the initial distribution is a delta function peaked at

an x-value close to one of the stable steady states, then

the quasi-stationary distribution is peaked almost

exclusively at that steady state. This behavior was noted

by Oppenheim 33 3131. When the initial x-value is close

to the unstable steady state, however, the quasi-steady distri-

bution has contributions from both stable regions. (Figure 4.4)

The direction in which the transition occurs depends

on the sign of a in equation (4.9), which in turn depends
1
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Time evolution of probability distribution

when the parameters correspond to a point

in the interior of the multiple steady-state

region. c4 = 3.333333 and B = 1.01Xl05 (same

as in Figure 4.1). Initial distribution is

6(x-500).
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Time evolution of probability distribution.

c4 = 3.33333 and B = 1.01x105.

Initial distribution is 6(x-253), peaked at

the unstable steady-state X-value.
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on the sign of P1(x0) if the initial distribution is a delta

function at x0. Further, the two regions between which the

transition occurs are separated by the zero of £1 and not

by the minimum of 23' These points differ significantly

in some cases as will be seen below.

4.3. THE VALIDITY OF KRAMERS RELAXATION

A bistable system is said to undergo Kramers relaxation54

if the probability distribution equilibrates within each

region rapidly and then diffuses slowly from one region to

another thereby effecting a pure transition. Gardiner55 has

reformulated the Kramers rule based on a one—dimensional

Fokker-Planck equation. Similar results can be derived from

a birth-and-death master equation describing a bistable

system. For this purpose, let us define

X

M1x,t) = 2 P(y.t), (4.13)

y=0

N1(t) = M(X2-l,t), (4.14)

N2(t) = P(X2,t), (4.15)

N3(t) - E P(x,t), (4-16)

x=X +1
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2

n1 = E Ps(x), (4.17)

x=0

n2 = PS(X2), (4.18)

and n3 = Z Ps(x). (4.19)

x=X2+1

From the master equation (4.2) and from the detailed balance

relation (2.23) satisfied by Ps(x), it follows that

a _ P(x+l,t) _ P(x t)
at M(x,t) - a+(x)PS(x) [ 527;:TT— 527:7- ]. (4.20)

Dividing by a+(x)PS(x) and summing over x from X1 to Xz-l,

we obtain

X -1

é [a (>01> (xn’l —3 M(x t) -
_ + s at ' -

P(szt) - P(let)

(4.21)
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If Kramers relaxation is followed, then we can set

P(x,t)

P(x,t)

With these,

To calculate

M(x,t)

I
l
l

equation (4.21)

1a+(x)Ps(x)1‘

N1(t) x

 

N1(t)

 

Ps(x) n

 

becomes

1 3

the left-hand side:

X Ps(y) =

n y=0
1

N1(t) [1 - ¢(X)]

 

<for x X2,

  

for x > X2. (4.22)

= N2(t) - N1(t)

n2 n1

(4.23)

N1(t) Xz'l

n1 - Z Ps(y)

n y=x+1
1

for X < X , (4.24)
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where

r -1 x§-1

n P (y) for x < X

1 y=x+l S 2'

@(x) = 1

-1 X

n3 -2 Ps(y) for x > X2. (4.25)

[ y—X2+1

Substituting (4.24) in (4.23), we get

N2(t) N1(t)

  

 

d - -K 3EN1(t) — n n , (4.26)

2 1

where

X2-1

l - 4(x)
K = Z . (4.27)

x=X1 a+(x)Ps(x)

Similarly by summing equation (4.20) from X2+1 to X3, we can

obtain

N2(t) N3(t)
d

u EENz (4.28)(t)
  

n2 n3

where
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X

3 1 - 4(x)

“ = .3. +1 auxwxr
 

(4.29)

Equations (4.26) and (4.28) permit a three-state interpretation

similar to Eyring's transition state theory.

 

  

(Kn1)'1 (un21’1
. 4} 1*“) .

Xl-region , X2 , X3-region.

‘ —1 ‘ -1

The probability distribution for the Schlégl model

satisfies equation (4.22) if the following conditions are met:

1) The eigenvalue corresponding to the transition mode must be

sufficiently smaller in magnitude than all other nonzero

eigenvalues. A quantitative criterion is given below.

2) The zero of the transition mode must match the minimum of

the stationary mode. Moreover, Ps(x) and P1(x) should be

In otherproportional in 0 < x < X and similarly for x > X
2’ 2'

words, the shapescfifthe transition mode and the stationary

mode should match in each region separately.

A transition between stable steady states is well defined

if there exists a time T when a considerable fraction of the

transition mode remains after all faster modes have decayed

almost completely. It is possible to find a relation

between A and A such that the coefficient of g has
1 2 l

decayed to a fraction f1 of its initial value and the
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coefficient of £2 to a fraction f2 of its initial value ,

i.e., e = fl,

and e = f . (4.30)

The required relation is

_2 > log f / log f (4.31)1.

Thus the coefficient of the transition mode will remain at 90%

(50%) of its initial value after the coefficient for the

faster mode has decayed to 1% of its initial value, if the

ratio of the eigenvalues exceeds 43 (6.6 respectively).

This condition differs from that given by Oppenheim g; 218 in

terms of the difference [A -1 Their criterion allows the2 1|-
possibility that the transition mode itself is negligible

compared to the stationary mode by the time the next faster

mode has decayed substantially.

The first three nonzero eigenvalues have been plotted

versus B in various regions of the parameter space (Figures

4.6 - 4.8). Decay of the transition mode is very slow well

inside the multiple steady-state region, but it becomes

faster as either the critical point or a marginal stability

point is approached. Figure 4.9 shows the region in which
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The first three nonzero eigenvalues of the

transition matrix A. c4 = 3.33333.

The dashed lines enclose the B-range in which

there are three steady states.
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Figure 4.7 The first three nonzero eigenvalues of the

transition matrix Q. c4 = 1.7 .

The dashed lines enclose the B-range in which

there are three steady states.



106

«240

“300

'360

‘420

   
BxKT‘

Figure 4.8 The first three nonzero eigenvalues of the

transition matrix A. c4 = 1.3 (no multiple

steady states).
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Figure 4.9 Regions of the parameter space where the

conditions on the eigenvalues (equation

(4.31)) is satisfied. The solid lines

consist of the marginal stability points.

f2 = 0.01

f1 = 0.9 for the dotted line.

f = 0.5 for the dashed line.

1
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condition (4.31) on the eigenvalues is satisfied.

Figures 4.10 and 4.11 show the stationary distribution,

the first three eigenvectors with nonzero eigenvalues, and

the time-dependent distributions near a marginal stability

point. It is interesting to note that the stationary

distribution does not have a significant peak near the higher

steady state, but the transition mode does. Consequently,

the intermediate probability distributions are peaked at both

steady states. However, the relaxation to the lower steady

state is fast and there is no quasi-stationary distribution.

Figures 4.12 - 4.14 illustrate situations near the

critical point. In this region the zero of the transition

mode differs considerably from the unstable steady state

X-value. In Figure 4.14.b, for example, a transition occurs

between two regions of approximately equal size, eventhough

the stationary distribution is asymmetric.

Although the deterministic analysis sharply divides

the parameter space into single and multiple steady state

regions, the stochastic analysis reveals that in the multiple

steady state region close to the boundary, the behavior is

similar to that in the single steady state region, i.e.,

transition between multiple steady states and equilibration

in the vicinity of a single steady state are similar near

the boundary. Thus there is no abrupt change in the

qualitative behavior at the boundary separating the single

and multiple steady-state regions.
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Figure 4.10 Eigenvectors of the transition matrix A

near a marginal stability point.

(c4 = 3.33333 and B = 9.6 x 104).

The eigenvalues are:

a) 10 = 0,

b) 11 = -1.6732 x 10'2,

c) 12 = —7.3902 x 10’1,

d) A -1.4365
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Figure 4.11 Time evolution of the probability distribution

near a marginal stability point. c = 3.33333
4

B = 9.6x104. Initial distribution is 6(x-400).
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Figure 4.12.a

Eigenvectors of the transition matrix near

the critical point. c4 = 1.7 and B = 6.39X104.

The eigenvalues are a) 0, b) -4.9051X10-2,

c) -2.7271x10’1, and d) -5.3060x10'1.
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Figure 4.13.a

Time evolution of probability distribution

near the critical point. c4 = 1.7 and

B = 6.39X104. Initial distributions are

a) 6(x-120), b) 6(x-300), and c) 6(x—182).
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Figure 4.14.a

Figure 4.14 Time evolution of probability distribution near

the critical point and near a marginal stability

point. c4 = 1.7 and B = 6.45X104. Initial

distributions are a) 6(x-300), b) 6(x-100), and

c) 6(x-190).
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In summary, the asymptotic solutions of the master

equation for the Schlbgl model have been constructed from

the eigenvectors of the transition matrix. In the cases

studied, deviations from the Kramers rule are attributable

not only to the similarity of the decay times of various

modes, but also to distortions in the shape of the slowest

mode.



CHAPTER V

HYSTERESIS IN TRANSITIONS BETWEEN MULTIPLE NONEQUILIBRIUM

STEADY STATES OF THE SCHLOGL MODEL

Many models have been proposed and studied with the

aim of understanding regulatory phenomena such as chemical

oscillations and pattern formation in chemically reacting

open systems far from equilibrium.LEV-5'56"6O One interesting

phenomenon associated with the presence of multiple steady

states in reacting systems far from equilibrium is hysteresis

in transitions between the steady states. Hysteresis can be

viewed as a special kind of oscillation caused by an external

variation of a system paramter. I have simulated hysteresis

in the Schlbgl model system both deterministically and

stochastically. Hysteresis has been observed by Creel and

Ross53 in the dissociation of N204 when irradiated with an

argon-ion laser. The steady state patterns of the chemical

system are similar to those of the model system.

5.1 SCHLOGL MODEL AND ITS STEADY STATES

In the Schlbgl model the chemical reactions
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occur in a homogeneous open system; the numbers of molecules

of A and B (denoted by A and B) are assumed to be externally

controllable and they are constrained to be equal. Thus the

number of molecules of X (denoted by X) is the only system

variable. When the reaction parameter 0 defined by

exceeds a critical value me = 9, there is a range of B values

for which the system has three possible steady states,

X < X < X3, of which x and X are stable and X is unstable.
1 2 1 3 2

Outside this range of B and below the critical point there is

only one stable steady state. The boundary separating these

two regions consists of the marginal stability points.

In the stochastic formulation X(t) is viewed as a random

variable taking integer values in {x:0<x<w}. The state of the

system at a specified time t is then given by a probability

vector g(t) whose x-th component is the probability that

X(t) = x. The dynamics of the system are described by the

time evolution of P(x,t) [ P(x,t) - Px(t) ] according to the

master equation for the Schlagl models’9

5%p(x,t) = a+(x-l,t)P(x-1,t) + a_(x+1,t)P(X+1,t)

" a(xlt)P(XIt)l (Sol)
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where

c

a+(x,t) = J B(t)x(x-1) + c3B(t), (5.2)

2

c:2
a_(x,t) = —— x(x-1)(x-2) + c4x, (5.3)

6

and a(x,t) = a+(x,t) + a_(x,t). (5.4)

This equation allows for time dependence of B. The parameters

C1 are related to the rate constants ki by

c. = k. n.! V (5.5)

where 111 is the molecularity of the i-th step in X, mi is the

total molecularity of the i-th step (e.g., n = 2 and m = 3),
1 1

and V is the volume of the system.10

5.2 DETERMINISTIC SIMULATION OF HYSTERESIS

For numerical studies we select the following values of

the rate constants used by Gillespie:36

c1 = 3 x 10.7 (molecule —3 time-1),

c2 = 1 x 10-4 (molecule ‘3 time-l),

- -3 -1 . -1

c — 1.5 x 10 (molecule time ); (5.6)
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then c4 = 1.5 (molecule-n1 time-1) corresponds to the critical

point. For c4 values greater than this, the steady state

curve is S-shaped (see Figure 5.1). If we first prepare the

system at a single steady state in the lower branch and then

slowly increase B, X follows close to the steady state value

until near a marginal stability point and then it jumps to the

vicinity of the other steady state branch. If B is slowly

decreased, a downward jump occurs near the other marginal

stability point. This generates a hysteresis loop, shown as

the curves marked with arrows in Figure 5.1. The curves are

the solutions of the equations of evolution

C C

Q = J- B x (x-1) + c B - —2— X(X-l) (x-2) — c x
dt 3 4

2 6

9'2 = +
dt "B O (5.7)

Hysteresis occurs to some extent below the critical point

also, i.e., where there are no multiple steady states at all.

This is shown by the curves with arrows in Figure 5.2.

The area enclosed by the hysteresis loop is a measure

of the extent of hysteresis. In Figure 5.3, the area obtained

from the deterministic treatment (equations (5.7)) is plotted

versus the rate of change of B for various values of the

critical parameter, c4. Thfisincreases with an increase in 8

indicating the dynamic contribution to the hysteresis effect.
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In the figure, the points corresponding to B = 0 were obtained

by integrating the area enclosed between the two branches of

stable steady states. This is the area obtained when vertical

transitions (transitions with dX/dB -% 1m) occur exactly at the

marginal stability points. It is interesting to note that the

area of the hysteresis loop extrapolates to this finite value

as 8 tends to zero in the multiple steady state region, and

it extrapolates to zero in the single steady state region.

The finite limit indicates a static contribution to the

hysteresis effect from the multi-state region, but below the

critical point the hysteresis is purely dynamic.

5.3 STOCHASTIC SIMULATION

Gillespie has deviced an algorithm to simulate chemical

reaction systems stochastically10 and has extended it to

include time dependent transition rates20 (section 2.3).

This algorithm first randomly selects the time of the next

reaction and then draws another random number to determine

which of the various reaction steps should be carried out.

If a reaction step hasoccurred.at time t, bringing the system

to state x, then the probability P1(T;X,t)dT that the next

reaction step will occur in the time interval (t+r, t+r+dr)

is given by

t+T

P1(T;X,t) = a(x,t+1) exp — I a(x,s)ds . (5.8)

t
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The conditional probability that the next reaction is a

forward (or backward) step given that the next reaction occurs

after an interval T, is

a (x,t+r)

P2(tIT;x,t) = . (5.9)

a(x,t+T)

H
-

The simulation algorithm starts by selecting two random numbers

r1 and r2 with uniform probability from the unit interval.

The distribution function corresponding to P1(T;X,t) is

T

F1(T;X,t) = J P1(s;x,t)ds

0

T

= I a(x,t+s) exp [ A(t) - A(t+s) ] ds

0

(5.10)

where

t

A(t) = I a(x,s)ds (5.11)

After performing the integral we obtain

T

Fl(r;x,t) = 1 - exp - J a(x,t+s)ds . (5.12)

0
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We need to select 1 such that

i.e., { a(x,t+s)ds

0

- 1n (l-rl). (5.13)

In equation (5.13) we can replace l-r by r since both are
1 1

statistically equivalent. For the Schlégl model a_(x,t) is

independent of B and a+(x,t) depends linearly on B. When B

is varied linearly with time,

a+(x,t)

a(x,t+s) = a(x,t) + ——-———— 85. (5.14)

BIt)

Therefore,

a (x,t) 2

a(x,t)“: + —i——— 81—. (5.15)

B(t) 2

a(x,t+s)ds

O
B
—
fi
fl

Combining equations (5.13) and (5.15), we obtain a quadratic

equation for T:

a+(x,t)

B—-———-— T + a(x,t)r + 1n r1 = 0. (5.16)

2B(t)

Solving the quadraric equation and selectig the solution that
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is continuous in r and gives a nonnegative value for T, we
1

have the following relation between r1 and T:

 

 

I - a(x,t) + [ a(x,t)2 - B%%T a+(x,t) 1n r1 ];5

a+(x,t)8/ B(t)

if 8 > 0 or — 1n r1 < - Bét)[%a+(x,t)-a_(x,t)]

T =

1 B(t) _

a_ x,t (Te-Wk“ 1“ ‘1

L if B < 0 and - ln r1 > - EéEL[!5a+(x,t)-a_(xpt)] 
(5.17)

From equation (2.65) we also have a relation between r2 and m:

+ 1 if r < a+(x,t+1) / a(x,t+r)
2

- 1 if r 2 > a+(x,t+r) / a(x,t+T). (5.18)

The time variable is advanced by T and the particle number

for X is incremented or decremented by one depending on

whether m is positive or negative. This procedure is then

repeated for the new state. The iteration produces a random

path of the system in time. This approach yields results

equivalent to those obtained by the master equation. Two

hundred sample paths have been simulated and the averaged

paths are shown in Figures 5.1 and 5.2.

In the deterministic simulation, the transition cannot
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occur before the marginal stability point is reached (Appendix

A) ; but as seen in Figure 5.1 (noisy curves) , fluctuations

induce the transition within the multiple steady state region.

The areas obtained from the stochastic simulations As and

the correspoding deterministic areas Ad are plotted versus

B and c4 in Figures 5.4 and 5.5 respectively. The error bars

indicate expected deviations from the mean; they were

calculated from the standard deviations using the central

limit theorem}7 In general the area AS obtained from stochastic

simulation is less than that from the deterministic integration

(Ad), though the qualitative behaviour is the same in both

cases. Another important difference between the two kinds of

simulation is that as the rate of change of B tends to zero,

Ad tends to a finite value in the multiple: steady state

region, but AS tends to zero.

When B is changed at an infinitesimal rate, the

deterministic analysis predicts that the forward and backward

transitions occur at two different marginal stability points

whereas the stochastic analysis predicts a unique transition

point on the average in the multiple. steady state region.

This point was noticed and emphasized by Turner?1 However

this result should not be interpreted as a complete absence

of hysteresis effects in the stochastic simulation; rather,

our results show that hysteresis in the SchlBgl model is a

dynamic effect and that the static contribution predicted

by a deterministic analysis disappears when fluctuations

are taken into account.
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Figure 5.4 Comparison of deterministic (upper line) and

stochastic simulation (lower line) results.

c4 = 1.7
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stochastic simulation (lower line) results.

8 = 50.



CHAPTER VI

DETERMINISTIC STUDY OF MULTIPLE STEADY STATES IN COUPLED

FLOW TANK REACTORS

The question of relative stability of different steady

states arises when two or more of the steady states compatible

with fixed fluxes, fixed elemental composition of the system

and external conditions are asymptotically stable to small

concentration fluctuations. Resolutions have been proposed

on the basis of stochastic analysisBG, thermodynamic

30-32, and mixing experiments29 (section 3.4).analysis

The purpose of this chapter is to describe the new

steady states and dynamical behavior of coupled systems when

each exhibits multiple steady states. It is also shown how

the outcome of mixing experiments with exchange of material

between two continuously stirred flow tank reactors can be

predicted from a deterministic analysis; the results obtained

differ from those predicted by Noyeszg, except for simple

cubic reaction rate laws. It is shown that deterministic

studies of coupled tanks do not yield information about the

relative stabilities of single tank steady states, even when

the outcome of a mixing experiment is independent of the

mixing method, i.e., independent of the changes made in the

coupled rate constant as a function of time.

141
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6.1 MULTIPLE STEADY STATES IN A SINGLE CONTINUOUSLY STIRRED

FLOW-TANK REACTOR.

A model continuously stirred flow tank reactor (CSTR)

is characterized by two assumed operating conditions:

1. The volume of material in the tank reactor is fixed

and there is a negligible change in the density of material as

a consequence of reaction.

2. Mixing is assumed to be sufficiently rapid that the

material is uniform in composition throughout the tank.

The concentration of reactant i in the input is Rg,and

if product j is present in the input stream, its concentration

is P3. The reactant concentration in the output stream is

identical to that in the tank. The flow of material through

the tank is characterized by a flow rate constant k the
ol

inverse of the average residence time for material in the

tank; equivalently k is the ratio of the volume of material

0

entering the reactor per unit time to the total reactor volume.

In the following development we restrict attention to

the case where there is a single reactant R and a single

product P in the tank, as in the work by Noyeszg. With a single

and if the tank isreactant and product, if R = R + P
T 0 0'

flushed with material from the input stream so that the total

reaction plus product concentration is equal to R initially,
T

then deterministically R + P = RT at all times.

In the tank, reactant R is converted into product P

by reaction according to the rate law
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dP/dt = - dR/dt = V(R,P) = v(R,RT), (6.1)

where the last equality is valid because P can be replaced by

RT-R. With the addition of the rate of change of R due to flow

through the tank, the total rate of change of reactant

concentration is

dR/dt = kO(Ro-R) - v(R,RT). (6.2)

Three different polynomial forms for v(R,RT) and the

deterministic steady states associated with these models are

)used as explicit examples in this chapter. The forms for v(R,R
T

are

1. Noyes' cubic model. For this model

V(R,P) = a(R-P/K) (1 - bR + ch), (6.3)

and the variables have values a = 8.97 x 10"4 5.1, ab =

5.985 x 10'2M'ls’1, ac = 1.00 x 10’2M'2s'1, K = 106 and

R + P = RT = 0.1M

2. Noyes' quartic model. For this model,

V(R,P) = a' (R-P/K) (1 - b'R + c'R3), (6.4)

with a' = 10’35'1, b' = 50 M'l, c' = 1.87 x 104 M'3, K = 106

and R = R = 0.1 M.
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3. Two quintic forms Q1 and Q2, for which

v = (R-P/K) ( a + bP + cp2 + dP3 + ep4), (6.5)

K = 106 and RT = 0.2 M. The quintic expressions are aphysical

as reaction rates, but they are useful in illustrating the

difference between mathematical results valid without

restrictions on v(R,RT) and those steady-state and dynamical

results applicable when v(R,RT) is any cubic polynomial. For

models Qland Q2, the constant sets take the following values:

01:

a = 3.028222 x 10"9 ’1

b = 3.822292 x10"3 M'1 s‘1

c = 1.984543 x 10‘2 M'2 s’1

d = 6.649973 x 10'2 M'3 s"1

e = 0.999999 M'4 s'l,

Q2:

a = 2.966667 x 10"8 '1

b = 3.788482 x 10‘3 M'1 s'1

c = 1.969993 x 10"2 M'2 s-1

d = 6.499974 x 10'2 M'3 s'1

4 1
e = 0.999999 M-

Corresponding to a given value of RO (less than or equal to RT),
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there is a range of k0 values for which there are three real

positive solutions of dR/dt = 0 for Noyes' cubic model and

for the two quintics. The three steady state solutions are

designated Ra' RB' and Ry, with Ra < RY < R < R In Figure

B T'

6.1, the steady-state R concentrations are plotted as

functions of k0 for six different R0 values in the range from

0.03M to 0.1M, with RT = 0.1M for Noyes' cubic model (in Noyes'

work RT 5 R0). For the quintic models, attention is restricted

0’ k0 = 7.659631 x 10"4 s'1 for model 01

and k0 = 7.5924 x 10"4 s-1 for model 02' In general, for the

quartic model, there are four steady state solutions of the

to single values of k

deterministic kinetic equations, but the branch of solutions

with the smallest R values is unstable to small concentration

fluctuations; Noyes has plotted the remaining three solution

branches as functions of k0 in reference 29.

The stability of the steady-state solutions of equation

(6.2) may be determined by a linear stability analysis. If R

is a steady state solution of the deterministic kinetic

equation for reactant concentration, then the time-evolution

of a small concentration fluctuation 6R about R is governed by

I 6R, (6.6)
J

 

on the unidimensional subset of the full concentration space

defined by the condition R + P = R Therefore a single tankT0
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Figure 6.1 steady states for the cubic model in a single

flow tank reactor. The reactant concentration

(R) in the tank at steady state is plotted as

a function of the flow rate constant (k0) for

various values of reactant concentration (R0)

in the input stream.
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state is stable if k0 + (3v/8R)E > 0, marginally stable if

k0 + (av/3R)§ = 0, and unstable otherwise. For all of the

models (6.3 - 6.5), linear stability analysis shows that the

intermediate concentration y branch is unstable to small

concentration fluctuations, while the a and 8 branches are

stable. The points of coalescence of the y branch with the

a or B branch are marginal stability points (see Figure 6.1).

Our aim is to investigate what happens when two tanks,

one initially in the a state and the other in the 8 state,

are coupled by exchange of material. As part of this

investigation we find the possible steady states of the

coupled tank system and their dependence upon the coupling

rate constant kx. This analysis shows that the outcome of

mixing experiments is not an indicator of the relative

stability of the asymptotically stable steady states.

6.2 COUPLED FLOW-TANK REACTORS

Let us consider two tanks, operated with the same flow

0’ T’ and R0 = RT (i.e., each has

an input stream containing reactant only). Conversion of

rate constant k the same R

reactant to product is assumed to proceed according to the

same rate law in each tank. If the two tanks are coupled by a

machanical pumping of material from tank 1 to tank 2, while

at the same time, material is pumped from tank 2 into tank 1

with the same flow rate constant kx' then the rate of change

of reactant concentrations in the two tanks are
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)de/dt k0 (RO - R1) - V(R1,RO) + kx'(R2 - R1

kO (R0 - R2)and dRz/dt - V(R2,R0) + kx (R1 - R2).

(6.7)

Thus, independent of the values of kx' the points (R1,R2) =

(Ra'Ra)' (RB,RB),and (Ry’RY) are always steady-state solutions

of the coupled tank equations.

Because the condition R + P = RT reduces the single-tank

problem to a single—variable problem, there is a potential

that governs the deterministic time-evolution of the single-

tank system, and there is also a potential in the coupled-

tank case. If V(R) is defined by the condition

R

V(R) = I V(X,Ro)dx, (6.8)

and if 0 is defined by

2

R + V(Rl)¢(R1,R2;k0,kx) = - k R R + 1/2 k0 1
0 0 1

2
- koROR2 + 1/2 kOR2 + V(Rz)

2

+ 1/2 kX(R2-R1) , (6.9)

then 0 satisfies the conditions

deldt = - 30/8R1 (6.10)
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and

dRZ/dt = - 80/3R2. (6.11)

For fixed kO and kx' then

and d0/dt = 0 only at steady states.

Figure 6.2 shows the possible steady-state concentrations

in tank 1 as a function of kx for Noyes' cubic model with

k0 = 1.5 x 10-55-1. For kx = 0 and for small kx' there are

nine possible steady-state pairs (R1,R2). These are designated

0a, dY, dB, YB' yy, Yd' 80' BY and BB in order of increasing

reactant concentration in the tank. The subscript indicates

the corresponding steady-state branch in tank 2; i.e., if

both de/dt = 0 and dRZ/dt = 0, and if tank 1 is in state 08,

then tank 2 is necessarily in state 80' The steady-state R

concentration in tank 2 may be computed from the steady-state

concentration in tank 1 since

2 1 0 - R1) ] / kx' (6.13)
0

The number of steady-state solutions of the coupled-tank

equations obviously depends upon the value of kx' It decreases
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from nine to five and then to three as kx is increased.

Figures 6.3 and 6.4 show the possible steady-state concentra-

tions in tank 1 for Noyes model, as in Figure 6.2, but for

different values of the flow rate constant k0; k0 = 2.7 x 10"5

s"1 for Figure 6.3, and k0 = 2.516963 x 10.5 s.1 for Figure

6.4.

For the quintic case with the constant set Q1, the

behaviour of the stationary solutions of equations (6.7) is

qualitatively similar to that for Noyes cubic model. For small

kx’ nine steady states are found; with an increase in kx'

these coalesce pairwise to leave five states. With a further

increase in kx, only the three steady states for which R1 = R2

are found. With the constant set 02, in contrast, new steady

state solutions of equations (6.7) are found. Again, for small

kx' there are nine steady states; when kx is increased, new

steady state branches appear. In particular, over the kx

range from 3.688463 x 10'9 3’1 to 4.298794 x 10’9 5'1, there

are seventeen possible steady states for equations (6.7)

where v(R,Ro) has the quintic form Q2. With further increase

in kx' this number decreases to thirteen, then nine, five,

and finally three (all three with R1 = R2).

Linear stability analysis shows that the stability

properties of coupled tank differ from those for single

tanks. If (R1,R2) designates a steady state of the coupled

tank system, and if we consider a small concentration

fluctuation in each tank (6R1,6R2), subject to the
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153

 0.44IITITTITIIIII_FI

 

 

   

IDKKD' -

CM3ES- -

CX322- -

0.281- V -

KDF31 - _

024- -

ClZI)

CIKS- -

(IEB- -

(ICHBF- -

r-
-

(DCM4. _

0.00 1 I L 1 1 l 1 1 1 .
 

00 2.0 4.0 6.0 8.0 10.0 12.0 (40'

105k,

Figure 6.4 Steady states of coupled reactor system for

the cubic model. k0 = 2.516963x10'5 s’l.
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conditions R1 + P1 = RT and R2 + P2 = RT,

evolution of the fluctuation may be approximated by the

then the time-

linear equations

   

  

6R 6R

6%? 1 = “1.4. I]
(6.14)

6R2 6R2

where

r 3v ‘

k0 + 8R - + kx - kx
R

1

g = (6.15)

3v

kx k0 + 8R - + kx

I R2 .

The stability of the steady state (R1,R2) to small fluctuations

depends upon the eigenvalues of the matrix Q, A and A If

1 2'

both A and 12 are positive, the state (R1,R2) is stable.
1

Marginal stability occures when det g = 0. At this point,

at least one of the eigenvalues of g vanishes, and in the

linear regime, a fluctuation of the character of the associated

eigenvector is neither damped nor amplified in time. The

condition for marginal stability of the (a '80) state is

B
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Equivalently,

8v

(k0 + “R

 

 

(6.17)

If kx is less than the kX value at marginal stability, then the

inhomogeneous steady state (aB'Ba) is stable to small concent-

ration fluctuations.

Each steady state of the coupled-tank system is an

extremum point of 0. At a stable steady state (R1,R2) 0 has a

local minimum; for a state unstable to any fluctuation, 0 has

a local maximum, and for a state stable to certain perturbations

(6R1,6R2) but not to others, 0 has a saddle point. Contour

plots for the potential 0 for Noyes cubic and quartic models

are shown in Figures 6.5 - 6.10. In Figure 6.5 - 6.7, 0(R1,R2)

is plotted for Noyes cubic model with k0 = 2.517 X 10'5 s’l;

the change in potential with change in kx is illustrated by

the sequence of Figure 6.5 with kX = 0 (no coupling between

the tanks), Figure 6.6 with kx = 4.0 X 10.5 3.1, and Figure

6.7 with kx = 9.061 X 10-5 5.1. The kx value for Figure 6.7

is the point of marginal stability for the coupled-tank state

(08,8a). Figure 6.8 also shows results for the cubic model,

but in this case, k0 = 1.5 x 10’5 s"1 and kx = 3.9 x 10'5 s'l,

the marginal stability point of the inhomogeneous coupled—

tank steady state for this k0 value. Figures 6.9 and 6.10

show results for the quartic model obviously lacking the
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Figure 6.6 The potential function 0 for the cubic model with

k0 = 2,517x10—Ss-1 and kX = 4.0X10-5s-1.
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Figure 6.7 The potential 0 for the cubic model.

k0 = 2.517x10"5 s"1 and kx = 9.06lx10'5 s’l.
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Figure 6.10 The potential ¢ for the cubic model.

0.0



162

symmetry present for the cubic model. Figure 6.9 shows the

5 -1 4 -1

potential for k = 3.374 x 10' s and kx = 1.28 x 10’ s ,
0

again the marginal stability point of the inhomogeneous

coupled-tank state; Figure 6.10 shows results for k0 =

3.5 x 10"5 s'1 and kx = 1.1 x 10'4 5'1.

Next the effect of changes in the coupling constant kX

are considered. First we consider gradual increases in the

coupling constant, beginning with the tanks uncoupled (kx=0)

and in different steady states. If kX is increased

sufficiently slowly, the coupled tanks will always be found

at time t in the inhomogeneous steady state appropriate for

kx(t)' until the marginal stability point is reached. The

equation of motion for the system point in the (R1,R2) plane

is derived as follows: Let (§1{R2) be a steady state solution

of the coupled-tank equations

0 = R (R0 - RO - V(R1,RO) + kX (R - R )
1’ 2 1

0 = k (RO - RO - v(R2,R0) + kx (R1 — R2). (6.18)2)

and consider the changes in R1 and R2 produced by an

infinitesimal change in kx to kX + ka. The new steady state

(R1+6R1, R2+6R2) satisfies

0 = k0 (R0 - R1 - 6R1) - v(R1 + 6R1, R0) + (kX + 6kx)

X (R2 + 5R2 - Rl - 6R1)
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0 = k (R0 - R0 - 6R2) - V(R2+6R2, R0)

2

+ (kx + kaHR1 + 6R1 - R2 - 6R2).

(6.19)

Away from marginal stability points of the coupled-tank

system, the changes in steady-state concentrations in the

tanks can be expanded as series in powers of 6kx. To first

order in ékx, 5R1 and 6R2 satisfy

_ _ - 22 _ - _ —
o - kOGRl 3R!R 5R1 + kx(6R2 6R1) + kx(R2 R1)

1

o - — k 6R - fl! 6R + k (6R - 6R ) + k (E — fi )-
' o 2 an E 2 x 1 2 x 1 2 '

2

(6.20)

i.e.,

(SR {R 51$

- g 1 = 1 _2 akx, (6.21)

6R2 Rz-Rl

    

where the same matrix g determines the damping of concentra-

tion fluctuations. The equation has a solution for 6R1 and

SR2 linear in 5kx, provided that det g ¢ 0.

If kX is increased sufficiently slowly that the coupled-

tank system initially in the state (R2,‘Rg) satisfies the

steady-state conditions for coupled tanks with coupling

constant kx(t) at all times t, then the values of'fi1 and R2
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satisfy the differential equation

(6.22)

  

If kX = 0 at t = 0, the initial conditions are R? = Ra’ R8'

0
orliyand R = Ra’ R or Ry. The matrix 5 depends upon k2 k

B' 0' x,

R1, and R2 and it is singular when the state (R1, R2) is

marginally stable.

In addition to the case of adiabatic mixing treated

above, it is also interesting to consider the limit of

instantaneous mixing, with kx approaching infinity. In this

limit, only solutions with R1 = R2 can be found for the

coupled-tank steady-state equations. When the single—tanks

exhibit three steady states Ra < RY < R with Ru and R

8' B

stable to small concentration fluctuations and RY unstable,

tanks with reactant concentrations R1 and R2 prior to coupling

lie in the domain of attraction of the (Ra’Ra) state if

R1 + R2 8,

state if R1 + R2 > 2 Ry. This result applies to all systems

with a single reactant and a single product independent of

< 2 Ry, and in the domain of attraction of (R R8)

the form of V(R,P), provided that the system shows the steady-

state pattern specified above.

Next, we consider the position of separatrices between

the domains of attraction of different stable steady states,

and show how these move as the value of kX is changed. When

kX = 0, there are four stable steady states for the coupled
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tanks, (Ra’Ra)’ (Ra'RB)' (RB,Ra),and (RB,RB). The domains of

attraction of these steady states are separated by the

perpendicular lines R1 = RY and R2 = RY. As kX is increased,

these separatices shift. If no new inhomogeneous steady states

appear with increasing kx' these separatrices coalesce when

the (aB'Ba) state reaches marginal stability; the state (a8,8a)

lies on the degenerate separatrix at that point. In the limit

as kx goes to infinity, there is a single separatrix for the

domains of attraction of the (Ra'Ra) and (RB'RB) states, and

as discussed above, it has the equation R1 + R2 = 2 Ry.

The cubic case shows several special features. If

v(R,RT) is a cubic with multiple steady states in a single

flow tank, then for some flow rate constant k the three
0!

- R = R - R . For this value of

B Y Y a

the potential ¢(R1 R k

I

steady states satisfy R

k kx) is symmetric with respect
2; o'

= 2 RY for any value of kx (see Appendix

0!

to the line R1 + R2

F). If R+ and R_ denote the solutions of the quadratic

equation

k + £2 = 0
(6.23)

0 8R R ' .

t

then R+ + R_ = 2 Ry, (R+,R_) is a possible inhomogeneous

steady state solution of the coupled tank equations (see

Appendix F). If c is defined by the relation

k0(Ro-R) - v(R,RO) = C (R - Ra)(R - Ry)(R - RB)

(6.24)
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for this selected ko value, then there is a single separatrix

between the domains of attraction of the steady states (Ra’Ra)

and (RB'RB) when

- R ) . (6.25)

Because of the symmetry of the potential, in this particular

case, the separatrix remains fixed as kx is increased. Hence

the point (R+,R_) lies on the separatrix for every value of

kX greater than or equal to - %(RB-RY)2’

For the cubic mechanism with any other choice of k0,

the marginal stability point of the inhomogeneous state lies

on the separatrix when kx takes on the marginal stability

value, but with an increase in kx' the separatrix sweeps

past this point.

To illustrate the contrast between the cubic case and

M8
the general case, let kx denote the kx value at which the

inhomogeneous (G18) state is marginally stable, and designate

the R concentrations at marginal stability by‘E and E. The

values of E and E obviously depend upon k . For a particular
0

* __

k0 value, denoted k0, (a,8) lies on the separatrix of the

domains of attraction of the (Ra’Rd) and (RB'RB) states, and

it remains on the separatrix when the coupling constant is

MS
increased to kx + dkx. For anotherk. denoted kg.(3.§) lies0!

on the separatrix of the domains of attraction of the (RQ,Ra)

and (RB'RB) states in the limit as kX goes to infinity.
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* .

In the cubic case k0 = kg,

not hold. For the quartic model and the first quintic form,

but in general this equality does

it is possible to find marginal stability points (3.6) that

lie in the domain of attraction of the (Ra’Ra) state if kx

S
is increased suddenly to k2 + Akx, but that lie in the

8
domain of attraction of (R RB) if kx is increased to k: +

at

2Akx. Further, if new inhomogeneous steady states appear

with an increase in kx' as for the second quintic form, the

state (a8’8a) still lies on a degenerate separatrix at its

marginal stability point, but this is a separatrix between a

, ’b

homogeneous state and a new inhomogeneous (a 6d) state,
BI

rather than the (Ra'Ra) - (RB’RB) separatrix.

The analysis above essentially explains the outcome

of all possible mixing experiments conducted by changing

the value of kx in time. For example, equation (6.22)

describes the behaviour of coupled systems that are mixed

"adiabatically" , so that the system moves along a path of

steady-state points in the R R2 plane. When kx reaches kgs,ll

*

the matrix Q is singular. Then unless k0 = k0,

mal increase in kx leaves the system in the domain of

an infinitesi-

attraction of a new steady state, which may be homogeneous

or inhomogeneous.

In the limit as kx approaches infinity, the results of

instantaneous mixing experiments are obtained. Any difference

in outcomes of mixing experiments with different functions

kx(t) obviously result from the kX dependence of the potential

(see Figures 6.5 - 6.10). The cubic case is unusual, because
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the outcome of instantaneous mixing experiments and gradual

mixing experiments is necessarily the same.

6.3. COMPARISION WITH THE NOYES ANALYSIS

In this section, the above results for coupled-tank

experiments are compared with the results of Noyes. These

results are also contrasted with the proposed relative

stability criterion. Noyes has proposed that dynamic equi-

stability at constant R0 can be determined experimentally

by mixing experiments, beginning with one tank in the Ra

state and the other (initially uncoupled) tank in the R
8

state. Then the reactors will go to the (a',B') state.

Initially k0 + %% > 0 for both the a' and 8' states. As kX

increases it decreases for a' and B'. If k0 + %% = 0 for a

a!

given kx value while k0 + %% ¢ 0, then according to Noyes

BI

a further increase in kX will drive the combined system to

settle in the 8 state and therefore the 8 state is more stable

than the a state. If k + 3v reaches zero first then the

o 372'
8'

a state is said to be more stable. As shown above and as noted

by Noyes, the actual condition for marginal stability of the

coupled tanks is given in equation (6.17). Therefore, if

k + £2 = 0, but k + 23 > 0, the coupled tank state

is stable. This raises the possibility of finding counter-

examples to Noyes prediction of the outcomes of mixing

experiments. Two mathematical counterexamples are considered

below. The first is provided by the quintic form Ql where
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k0 + 3% = 0 when kX = 9.373 X 10-10 s-1 but an increase in

GI

kx by a factor of N40 is required to reach the marginal

stability point and when kx is increased slightly beyond kgs,

the system initially in the (a,B) state settles into the

(Ra'Ra) state, contrary to Noyes prediction. In the second

counterexample provided by Q2, a small increase in kx beyond

. . 8v
the pOint at which k0 + 5R a.

inhomogeneous tank state to the marginal stability point;

= 0 does suffice to drive the

but it does not settle into a homogeneous steady state.

Instead, it is driven to a new inhomogeneous state. When with

further increase in kx the new inhomogeneous state goes

unstable, the system again settles into the (Ra'Ra) state.

It is important to recognize that coupling between the

tanks alters the nature of the steady states in the single

tanks to the extent that information about the relative

stabilities of single-tank steady states is not available

from mixing experiments, even if all mixing experiments have

the same outcome. This point can be illustrated in several

ways. For example, the equation for the change in R concent-

ration in tank 1 when coupled to tank 2 can be written in

 

the form

dR k R + k R

-—1 = (k0 + kX) 0 O X 2 - R1 " V(RIIRT).

dt k0 + kX

(6.26)
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This is identical to a single-tank equation with k0 replaced

by k0 (see equation (6.28)), R replaced by R0, and RT left

unchanged. Similarly

dR2 _ _.

g—— = k0(R0 - R2) - v(R2,RT), (6.27)

t

with

k0 = k0 + kX

RO - (kORo + kaZ) / (k0 + kx)

and R0 = (koRo + kXRl) / (k0 + kx). (6.28)

- - o n o o - _'

R0 and R0 satisfy the identities R0 < R0 and R0 < R0. At the

steady state (R1,R2) of the coupled tank system, the concent-

ration R in tank 1 satisfies the equation

R ) = O. (6.29)

Hence a single-tank system with parameters k R0, and RT has

In this

0'

a steady state with the same R concentration R1.

sense, the coupled tank steady states may be mapped onto

single-tank steady states. However, the single-tank parameter

R0 differs for the two coupled tanks, and both ED and R0

differ from the values for the original single-tank
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experiments. Additionally, the stability properties for the

coupled tank states differ from those for single-tank states,

even when the adjustment for the change in effective flow

rates and input-stream reactant concentrations is made. This

is apparent from a plot of the coupled tank steady states on

single-tank plots, as in Figure 6.11; the coupled-tank marginal

stability points do not coincide with the single-tank marginal

stability points.

Finally, it is significant to notice that the eigen-

vector of the matrix g with eigenvalue zero has nonvanishing

components in both R and R except for the case when one
1 2'

tank is at marginal stability prior to coupling. Thus, in the

general case, the stability of the c0upled tanks cannot be

localized in a single tank.

The analysis above has shown several new features for

coupled multiple steady state systems. First, an effective

potential and the shifts in location of the steady states

have been derived for model coupled folw tank reactors.

Second, it has been shown that the stability properties of

the coupled tank systems differ in general from single tank

stability properties; coupling stabilizes the tanks to small

concentration fluctuations and makes it possible to operate

coupled tanks in a region of the concentration space where

stable operation of single tanks is impossible.
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Figure 6.11 Comparision of steady state patterns of the

single and coupled flow reactors.



CHAPTER VII

FUTURE WORK AND DEVELOPMENT

Transitions between multiple steady states and.hysteresis

were studied using the birth-and-death master equation. This

does not include local fluctuations. A complete mesoscopic

description is provided by the multivariate master equation.

It is possible that the multivariate master equation leads to

slightly different results for these problems from those

presented here. Schlogl's coexistence condition4 is obtained

by including the effect of diffusion but neglecting

fluctuations in the particle number, whereas the Nicolis

condition30 is obtained by including number fluctuations and

neglecting spatial inhomogeneities. Grassberger38 has recently

argued that there is no sharp coexistence point when both

kinds of fluctuations are taken into account. If this is the

case, a study using the multivariate master equation may

indicate a static contribution to hysteresis. Hence such a

study seems worthwhile.

Since the eigenvector method and the simulation method

involve extensive computations, it is desirable to have a set

of evolution equations for the first few moments from the

birth-and-death master equation. By multiplying the master

equation by xn and summing, we get
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n
d r1 _. n n—r _ r
E<X > _ Z [If] <x [a+(x) + ( l) a_(x)]> .

r=1

Since a+(x) and a_(x) are cubic in x, the equation for <xn>

. n+2

involves <x >. A systematic approximation might be

developed by a truncation scheme.

Finally, it would be interesting to study the stochastic

and time-dependent behaviour of the coupled tank reactor

system.
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APPENDIX A

Proof that the transitions generating hysteresis cannot

occur before a marginal stability point is reached according

to the deterministic rate equation:

Eliminating t from equation (5.7), we obtain

——' = i F(XIB)/Bl
(A°1)

where

C C

F(X,B) = —l 3x2 - —3 x3 + c3B - c4X.

2 6

The initial condition is specified by (XS,B) where XS is the

X-value at a stable steady state corresponding to B. Since

F(X,B) has a bounded derivative in a finite interval

(Lifshitz condition), the solution is unique. i.e., single-

valued (and continuous). Since 8 > O, (A.l) gives

dX

dfi 0 at any steady state. (A.2)

The set of steady states are described by

F(XS(B)'B) = 0.
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Considering the derivative of F along the steady state curve,

we find

a_F‘ +321) d__xs = o

33 x=x a x=x dB
S S

Therefore,

SEE = - 3: / i: (A 4)

dB BB x=xs 3X x=xs

Also

3F] _ 2
aBix=x - klxs + k3 > 0.

To find the sign ofoa-E8 , we expand F at a steady state:

'x=x

(x-xs) + ... (A.5)

when E is time-independent. Thus

8F . .
3X < 0 if XS is stable, (A.6)

and hence from (A.4)
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dX

—E > o (A.7)

dB

at all stable steady states.

Suppose there exists a solution which crosses the middle

(unstable) branch of the steady state curve. In order to

satisfy the initial condition the solution has to pass through

a stable steady state. This is possible only if its slope

exceeds that of the steady state curve at the point of

intersection. Since the slope of the stable branch is always

positive according to equation (A.7), this contradicts

equation (A.2). Thus the supposed solution does not exist.



APPENDIX B

Method and program to find the eigenvalues of the transition

matrix

The infinite state-space of the stochastic process is

made finite by setting a+(N) = O for a large N. Then the

characteristic polynomial of the tridiagonal matrix A is

given by fN(x) where

fk(x) = - [a(k) + x]fk_1(x) - a+(k-1)a_(k)fk_2(x)

for k = 1,2,...,N;

f_1(x) = 1 and f0(x) = — [a(O) + x].

Let Fk(x) = fk(x) / g(k) where g(k) is chosen for numerical

convenience (i.e., to avoid overflow) as

-k

g(k) = 2 a(k)a(k-l)...a(1)a(0).

Then

Fk(x) = - 2 [1 + x/a(k)]Fk_l(x)

a+(k-1) a_(k)

- 4 Fk_2(x).

a(k-l) a(k)

 

It is known that there are n roots of fk(x) = 0 in the
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interval (-w,a) if fk(a) # O and the sequence f_l(a), f0(d),

..., fk(a) changes sign n times.62 Since g(k) > 0 for all k,

fk(a) can be replaced by Fk(a) in the above statement. This

lets one bracket the desired root suitably for solving the

above equation using any root-finding routine.



0
0
0
0
0
0

0
0
0
0
0
0

180'

PROGRAM EIGENVL

Subroutine ZEROIN should be supplied for loading

LOGICAL L(997:1001)

DIMENSION P(997:1001), R(998:1001)

EXTERNAL CHARPOL

COMMON /CB/ C(4), B, K

DATA C /0.3E-6, 0.1E-3, 0.15E-2, 1.7/

OPEN (60, FILE

OPEN (61, FILE

'INPUT', STATUS = 'OLD')

'OUTPUT', STATUS = 'UNKNOWN')

998 READ (60,*,END=999) C(4), BLOW, BHIGH, BSTEP

Do this until input records are exhausted

DO 40 B = BLOW, BHIGH, BSTEP

L(997) = .FALSE.

L(998) = .FALSE.

L(999) = .FALSE.

L(lOOO) = .FALSE.

L(1001) = .FALSE.

Hope that an eigenvalue will bite in the range between

-500 and -10. This need not be one of the few we need.

Since we will also know its position in the spectrum,

it can be used as a bait to catch the ones we want.

XA = - 500.0

X = - 10.0

XB = 0.0

First we find four ranges of x enclosed by P(i) and P(i-l)

such that each interval contains exactly one eigenvalue.

Note that K is common with CHARPOL and that Y is ignored

since we are only interested in X and K.

10 CONTINUE

Y = CHARPOL(X)

IF (K .GT. 1001) THEN

PRINT*, 'SIGN CHANGE OCCURRED ', K,

$ ' TIMES. B = ', B, ' X = ', X

STOP 'BAD'

ELSE IF (K .GE. 997) THEN

L(K) = .TRUE.

P(K) = X

END IF

IF ( .NOT. L(997) ) THEN

IF (K .LT. 997) XA = X

IF (K .GT. 997) X3 = X

X = (XA+XB) / 2.0

GO TO 10
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ELSE IF ( .NOT. L(998) ) THEN

X = P(997) / 2.0

IF ( L(lOOO) ) X = P(997) + (P(1000)-P(997))/3.0

IF ( L( 999) ) X = P(997) + (P( 999)-P(997))/2.0

GO TO 10

ELSE IF ( .NOT. L(999) ) THEN

X = P(998) / 2.0

IF ( L(1000) ) X = P(998) + (P1000)-P(998))/2.0

GO TO 10

ELSE IF ( .NOT. L(lOOO) ) THEN

X = P(999) / 2.0

GO T010

ELSE IF ( .NOT. L(1001) ) THEN

X = 1.0

GO TO 10

END IF

Now the eigenvalues can be calculated to desired accuracy

using any root finding routine.

00 30 I = 998, 1001

01 = P(I-l)

02 = P(I)

ABSERR = 1.0E-15

RELERR = 1.03-15

CALL ZEROIN ( CHARPOL, 01, 02, ABSERR, RELERR,

$ IFLAG)

IF (IFLAG .GT. 3) THEN

PRINT*, 'ERROR FROM ZEROIN. IFLAG = ',

$ IFLAG, ' B = ', B, ' G1 = ', G1,

$ ' 62 = ', G2

STOP 'BAD'

END IF

R(I) = G1

30 CONTINUE

Write results

WRITE (61,4) C(4), B, R

4 FORMAT ( '0', 4X, F7.5, 4X, 1PE10.4, 3(4X,E20.13),

$ 4X, E10.3)

40 CONTINUE

GO TO 998

Go back to see if there is another input record

999 CONTINUE

END

FNCTION CHARPOL (X)

This function routine evaluates the characteristic

polynomial of the transition matrix and counts the

number of sign changes during the evaluation

COMMON /CB/ C(4), B, KOUNT



C3B = C(3) * B

ClBBY2 = C(l) * B / 2 O

CZBY6 = C(Z) / 6 0

FKM1 = 1.0

KOUNT = 0

AK = C3B

FK = - 1.0 - X/AK

IF ( FK . LT. 0.0 ) KOUNT = 1

APK = C3B

DO 10 K = 1, 1000

FKMZ = FKM1

FKM1 = FK

APKMl = APK

AKMl = AK

APK = ClBBY2 * K * (K-1) + C3B

AMK = CZBYG * K * (K-l) * (K-Z) + C(4) * K

IF ( K .EQ. 1000 ) APK = 0.0

AK = APK + AMK

FK = - 2.0 * ( 1.0 + X/AK ) * FKM1

$ - 4.0 * APKMl/AKMl * AMK/AK * FKM2

IF ( SIGN(1.0,FK) .NE. SIGN(1.0,FKM1) ) KOUNT = KOUNT+1

10 CONTINUE

CHARPOL = FK

IF ( CHARPOL .EQ. 0.0 ) KOUNT = 995

RETURN

END
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Programs to construct the eigenvectors of the transition

matrix

The eigenvectors are constructed interactively because

optimum values are to be selected for several parameters at

intermediate stages.

An arbitrary value of Pj(0) is selected, values of Pj(x)

are calculated recursively for x > O, and finally gj is norma-

zed. The value for Pj(0) must be large enough not to cause

underflow of Pj(x) for some x and small enough not to cause

overflow of the normalization constant. The normalization

constant is obtained by summing Pj(x)2/Ps(x). This ratio as

calculated is not at all accurate for large values of x for

which both Pj(x) and Ps(x) are almost zero. Hence every

individual case has a specific cut-off value of x.

Every step involved in the computation of an eigen-

vector is performed by invoking an apprOpriate command; after

each step the results may be viewed, and if the results are

not satisfactory the step can be repeated with different

values for the parameters. The commands are:

INIT for initialization

DATA for changing the following values:

J — index of the current eigenvector

being computed. J = l, 2, or 3.

IMAX - index of component beyond which

terms need not appear in sum while
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P0

PJ

TERM

SHOW

SUM

NORM

SAVE

PLOT

TIME

STOP

HELP

184

calculating the normalization constant.

IMIN - index of component before which terms

need not appear in sum (often IMIN = O)

IMID - optional starting point for computing

Es (For x < IMID, 25(x) will be

calculated by backward iteration.)

for calculating unnormalized £5

for calculating unnormalized Bj

for calculating Pj(x)2/Ps(x) for all x (If the

result will cause overflow it is replaced by

- 1.0)

for a display of various vectors (EDIT with no

output) and the current values of the

parameters

for calculating the normalization constant for Ej

for normalizing gj orgs

for saving an eigenvector for plotting

for plotting all four eigenvectors

for plotting time-dependent asymptotic solutions

Since many components of the normalized Es are almost

zero, it is recommended that as be normalized after all other

eigenvectors have been normalized. However the normalizing

program performs correctly irrespective of whether the

normalized or unnormalized P8 is used for normalizing gj.
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In a typical run the commands may be issued in the

following order:

INIT (prompts for c and E values)
4

P0 (prompts for Ps(0))

For j = l, 2, 3

DATA (set J = j)

PJ

TERM

SHOW

DATA (set IMAX)

DATA (set IMIN = 0)

SUM

NORM (J)

SAVE (J)

‘NORM (0)

SAVE (0)

PLOT

TIME

STOP
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A procedure to compute the eigenvectors and time-

dependent asymptotic distributions interactively.

On-line instructuions are expected to be self-explanatory.

ON ERROR THEN GOTO CMD

ON CONTROL_Y THEN GOTO CMD

ASSIGN SYS$COMMAND SYS$INPUT

ASSIGN SYS$OUTPUT OUTPUT

INQ = "INQUIRE/NOPUNCTUATION"

WJ = "WRITE JOB"

WS = "WRITE SYS$OUTPUT"

l

l

!

CMD:

INQ COM "COMMAND ?"

IF COM.EQS."STOP" THEN EXIT

IF COM.EQS."HELP" THEN GOTO HEL

IF COM.EQS."TIME" THEN GOTO TIM

There is a file EIGx.EXE for every valid response x,

except when x = STOP, HELP, or TIME

RUN EIG'COM'

IF COM.EQS."SHOW" THEN EDIT/READONLY EIGOUT.DAT

IF COM.EQS.”PLOT" THEN PRINT/NOFEED/DELETE VECPLOT.DAT

GOTO CMD

IM:

A command procedure is prepared and submitted to a batch

queue.

.
-

.
-

0
-

0
-
a

C
-

O
-

.
-

DELETE EIGTIME.COM;*

OPEN/WRITE JOB EIGTIME.COM

WJ "$ASSIGN SYS$INPUT INPUT"

WJ "SASSIGN SYS$OUTPUT OUTPUT"

WJ "$LINK/EXE=PGPLOT EIGFUN+[Z]PGPLOT+VPLOT+MACPLOT"

WJ "$RUN PGPLOT"

WJ "SDECK"

I

! Conversation with user

I

WS '0 "

INQ NP "HOW MANY PLOTS ? ( 1 ) "

INQ Y "ALL IN ONE PAGE ?"

INQ T1 "TIME FOR FIRST PLOT "

INQ T2 "TIME FOR LAST PLOT
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INQ

IF DEL
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XMAX "MAXIMUM X = "

PMAX "MAXIMUM P(x,t) EXPECTED = "

DELTA "IS INITIAL DISTRIBUTION A DELTA FUNCTION ? "

TA THEN INQ INPOS "PEAKED AT "

IF DELTA THEN GOTO SKIP

INP

W5

W8

W8

W8

W3

W8

W5

W8

INQ

INQ

INQ

KIP:

Prep

func

it i

o
—
o
—
o
—
o
—
o
—
U
)

IF Y T

R = NP

08 = - 1

II n

"Then other acceptable initial distributions are"

"restricted to the span of the first four eigenvectors"

II II

"Enter components of the initial distribution along“

"these eigenvectors"

" A(l) = 1.0"

A2 "A(Z) = "

A3 "A(3) = "

A4 "A(4) = "

are a data deck compatible with program PGPLOT and

tion PLFUN. The function reads data the first time

5 used in a job.

HEN WJ "l"

+ 1

IF .NOT.Y THEN WJ R

IF Y THEN NN = NP +

IF .NO

I

IP = 0

L1

IF

IF

IF

IF

WJ

IF

L2:

IP

X

IF IP.

WJ II s

WJ It s

WJ I! s

CLOSE

WS " ll

W5 "A

P
J
H

T.Y THEN NN

x = "YES"

IP.EQ.NP THEN N 100

IP.NE.NP THEN N IP

X THEN WJ " ' ', 1, 'X', 1, 'P(X)', 4, "

X THEN WJ NN,", 0.0, ", XMAX, ", 0.0", ", ", PMAX

n oTRUE- I"! N! "IIIIIIIII"

IP.NE.0 THEN GOTO L2

WJ I! ",le "I"! T2, ll'll' INPOS, "'n’ NP, It,"

IF .NOT.DELTA THEN WJ " ",A2,",",A3,",",A4,","

= IP + 1

= .NOT.Y

LE.NP THEN GOTO L1

EOD"

PRINT/NOFEED/DELETE PLOT.DAT"

DELETE PGPLOT.*;*"

JOB

batch job is ready to be submitted. Say NO if you"

WS "have made a mistake."
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IF OK THEN SUBMIT/QUEUE=FASTQ/NOPRINT EIGTIME.COM

"Valid responses are:"

WS II II

INQ OK

GOTO CMD

HEL:

WS II II

WS

WS II II

WS " INIT

WS " DATA

WS "

WS II

WS "

WS N

WS II

wS II

W8 ll

W8 II

WS " P0

WS " PJ

WS " TERM

WS " SHOW

WS " SUM

WS " NORM

WS " SAVE

WS " PLOT

WS " TIME

WS " STOP"

WS " HELP"

WS II II

GOTO CMD

for initialization"

for changing the following values"

J - index of the current eigenvector"

being computed. J = 1,2,3."

IMAX - index of component beyond which"

terms need not appear in sum"

IMIN - index of component before which"

terms need not appear in sum"

IMID - optional starting point when"

computing P0"

for calculating unnormalized P0"

for calculating unnormalized PJ"

for calculating PJ**2/P0 for each component"

for a display of various vectors"

for calculating the normalization constant"

for normalizing PJ"

for saving current vector for plotting"

for plotting the normalized eigenvectors"

for plotting time dependent solutions"
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PROGRAM EIGINIT

PARAMETER (NX=1SOO, NE=3)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION APLUS(0:NX), AMINUS(0:NX), EV(0:NE), C(4),

$ P0(0:NX), PJ(0:NX), TERM(0:NX)

REAL SAVE(0:NX,O:NE)

DATA SAVE /6004*-1.0/, C /BD-7,1D-4, 1.5D-3, 1.7/

$ P0 /1501*-1D0/, PJ /1501*-1DO/, TERM /1501*-1D0/

WRITE (*,*) ' INIT'

WRITE (*,1) ' C4 = '

1 FORMAT (/'$', A6)

READ (*,*) CIN

WRITE (*,1) ' B = '

READ (*,*) BIN

Search through the eigenvalue listing

EV(O) = 0.0

OPEN (15, FILE='EIGVALS', FORM='FORMATTED',

$ STATUS = 'OLD')

WRITE (*,*) 'Searching for eigenvalues'

00 WHILE (C(4).NE.CIN .OR. B.NE.BIN)

READ (15,2,END=20) C(4), B, EV(3), EV(Z), EV(l)

2 FORMAT ( 5X, E7.0, 4X, E10.0, 3(4X,E20.0))

END DO

CLOSE (15)

J = 0

IMIN = -1

IMAX = -1

IMID = -1

Compute aplus and aminus and store in a file.

ClBBY2 = C(1) * B * 0.500

CZBY6 = 0(2) / 6D0

C38 = C(3) * B

DO 10 I = o, NX

x = DBLE(I)

APLUS(I) = ClBBY2 * X * (x-lDO) + C33

AMINUS(I) = CZBY6 * x * (x-100) * (X-ZDO) + C(4)*X

10 CONTINUE

OPEN (10,FILE='EIGDATA', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (10) c, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID

Erase numbers from previous work in the following files

OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

SUMO = -1D0
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WRITE (20) P0,SUMO

CLOSE (20)

OPEN (3o, FILE='EIGPJ', STATUS='UNKNOWN',

s FORM='UNFORMATTED')

SUMJ = -100

PNORMJ = -100

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE(30)

OPEN (4o, FILE='EIGTERM', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (40) TERM

CLOSE (40)

OPEN (60, FILE='EIGSAVE', STATUS='UNKNOWN',

s FORM='UNFORMATTED')

WRITE (60) C(4), B, EV, SAVE

CLOSE (60)

STOP ' '

Normal termination at this point

20 CLOSE (15)

STOP 'Eigenvalues not available'

END
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PROGRAM EIGDATA

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION C(4), EV(O:NE), APLUS(0:NX), AMINUS(0:NX),

$ PJ(0:NX), TERM(0:NX)

CHARACTER VAR*4

DATA PJ / 1501*-1D0 /, SUMJ / -1DO /,

$ TERM / 1501*-1D0 /

WRITE (*,*) '

OPEN (10, FILE='EIGDATA', STATUS='OLD'

$ FORM='UNFORMATTED')

READ (10) C, B, EV, APLUS, AMINUS, J,

CLOSE (10)

WRITE(*,1) ' VARIABLE ? '

FORMAT ('S', A11)

READ (*,2) VAR

FORMAT (A10)

WRITE (*,*) ' '

WRITE (*,3) VAR, ' = '

FORMAT ('S', A4, A3)

READ (*,*) IVAR

IF (VAR.EQ.'J' .OR. VAR.EQ.'j') THEN

J = IVAR

IMIN = —1

IMAX = -1

IMID = -1

OPEN (30, FILE='EIGPJ' , STATUS='

s , FORM='UNFORMATTED')

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE (30)

OPEN (40, FILE='EIGTERM', STATUS='

$ FORM='UNFORMATTED')

WRITE (40) TERM

CLOSE (40)

END IF

IF (VAR.EQ.'IMIN' .OR. VAR.EQ.'imin')

IF (VAR.EQ.'IMAX' .OR. VAR.EQ.'imaX')

IF (VAR.EQ.'IMID' .OR. VAR.EQ.'imid')

PNORMJ / -1DO /

DATA'

I

IMIN! IMAX,

UNKNOWN',

UNKNOWN',

IVAR

IVAR

IVAR

IMIN

IMAX

IMID

OPEN (10, FILE='EIGDATA', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (10) C, B, EV, APLUS, AMINUS, J,

CLOSE (10)

END

IMIN, IMAX,

IMID

IMID
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PROGRAM EIGPO

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION P0(0:NX), APLUS(0:NX), AMINUS(0:NX), EV(0:NE),

$ C(4)

CHARACTER RES

WRITE( *,*) ' P0.

OPEN (10, FILE='EIGDATA', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID

CLOSE (10)

WRITE (*,1) ' STARTING FROM x = O ?'

1 FORMAT ('$', A21)

READ (*,2) RES

2 FORMAT (A1)

WRITE (*,1) 'STARTING CONSTANT = '

READ (*,*) CONST

IF ( RES.EQ.'Y' .OR. RES.EQ.'y' ) THEN

P0(O) = CONST

SUMO = P0(0)

DO 10 I = 1, NX

P0(I) = APLUS(I-l) / AMINUS(I) * P0(I-1)

SUMO = SUMO + P0(I)

10 CONTINUE

ELSE

IF (IMID.EQ.-1) STOP 'IMID not initialized'

P0(IMID) = CONST

SUMO = P0(IMID)

DO 20 I = IMID-1, O, -1

P0(I) = AMINUS(I+1) / APLUS(I) * P0(I+1)

SUMO = SUMO + P0(I)

20 CONTINUE

DO 30 I = IMID+1, NX

P0(I) = APLUS(I-l) / AMINUS(I) * P0(I-1)

SUMO = SUMO + P0(I)

30 CONTINUE

END IF

OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (20) PO, SUMO

CLOSE (20)

END
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PROGRAM EIGPJ

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION PJ(0:NX), APLUS(O:NX), AMINUS(0:NX), EV(O:NE),

$ C(4)

WRITE(*,*) ' PJ'

OPEN (10, FILE='EIGDATA', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (10)C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID

CLOSE (10)

OPEN (30, FILE='EIGPJ', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (30) PJ, SUMJ, PNORMJ

CLOSE (30)

WRITE (*,1) 'PJ(0) = '

1 FORMAT ('$', A21)

READ (*,*) PJ(O)

PJ(l) = ( APLUS(O) + AMINUS(O) + EV(J) ) * PJ(0)/AMINUS(1)

DO 10 I = 2, NX

PJ(I) = ( ( APLUS(I-l) + AMINUS(I-1)) * PJ(I-l)

$ - APLUS(I-Z) * PJ(I-Z) + EV(J) * PJ(I-l) )

$ / AMINUS(I)

10 CONTINUE

OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE (30)

END
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PROGRAM EIGTERM

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION P0(0:NX), PJ(0:NX), TERM(0:NX)

WRITE(*,*) ' TERM'

OPEN (20, FILE='EIGPO', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (20) PO, SUMO

CLOSE (20)

OPEN (30, FILE='EIGPJ', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (30) PJ, SUMJ, PNORMJ

CLOSE (30)

DO 10 I = 0, NX

IF ( DABS(PJ(I)) .GT. lDl9*DSQRT(P0(I)) ) THEN

TERM(I) = -1D0

ELSE

TERM(I) = PJ(I) / P0(I) * PJ(I)

END IF

10 CONTINUE

PNORMJ = DSQRT (SUMO)

OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE (30)

OPEN (40, FILE='EIGTERM', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (40) TERM

CLOSE (40)

END
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PROGRAM‘EIGSHOW

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION C(4), EV(0:NE), APLUS(O:NX), AMINUS(0:NX),

P0(0:NX), PJ(0:NX), TERM(0:NX)

WRITE (*,*) ' SHOW'

WRITE (*,*) ' 1 : Data'

WRITE (*,*) ' 2 : PO'

WRITE (*,*) ' 3 : PO, Pj'

WRITE (*,*) ' 4 : P0, Pj, Term'

WRITE (*,1) 'SELE T A NUMBER : '

FORMAT (/ '5', A18)

READ (*,*) MODE

OPEN (10, FILE='EIGDATA', STATUS='OLD',

FORM='UNFORMATTED')

OPEN (20, FILE='EIGPO', STATUS='OLD',

FORM='UNFORMATTED')

OPEN (30, FILE='EIGPJ', STATUS='OLD',

FORM='UNFORMATTED')

OPEN (40, FILE='EIGTERM', STATUS='OLD',

FORM='UNFORMATTED')

READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX,

READ (20) PO, SUMO

READ (30) PJ, SUMJ, PNORMJ

READ (40) TERM

CLOSE (10)

CLOSE (20)

CLOSE (30)

CLOSE (40)

OPEN (50, FILE='EIGOUT', STATUS='UNKNOWN',

FORM='UNFORMATTED')

IF (MODE.EQ.1) THEN

WRITE (*,2) C(4), B, EV, J, IMIN, IMAX, IMID

FORMAT (5X, 'C4 = ', F5.3 /

5X, 'B = ', 1PE11.4 /

5X, 'EV(0)= ', 0PF5.3 /

5X, 'EV(1)= ', 1PE11.4 /

5X, 'EV(2)= ', E11.4 /

5X, 'EV(3)= ', E11.4 /

5X, 'J = ', Il /

5X, 'IMIN = ', I4 /

5X, 'IMAX = ', I4 /

5X, 'IMID = ', I4 /

15X, 'The next line is irrelevant. ',

'Please type QUIT'l)

ELSE

IF (MODE.EQ.2) THEN

WRITE ( 50,3) (I, P0(I), I=O,NX )
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FORMAT ( 5x, I4, 5x, 1PE11.4 /)

ELSE IF (MODE.EQ.3) THEN

WRITE (50,4) ( I, P0(I), PJ(I), I=O,NX)

FORMAT ( 5x, I4, 5x, 1PE11.4, 5x, E11.4 / )

ELSE IF (MODE.EQ.4) THEN

WRITE (50,5) (I, P0(I), PJ(I), TERM(I), I=O,NX)

FORMAT ( 5x, I4, 5x, 1PE11.4, 5x, E11.4, 5x,

END IF

WRITE (*,*)

WRITE (*,*)

WRITE (*,*)

WRITE (*,*)

IF

E11.4 / )

I I

' Type C for viewing. '

' Type Control-Y (or Control-Z follow',

'ed by QUIT) to terminate SHOW'

I I
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PROGRAM EIGSUM

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION C(4), EV(O:NE), APLUS(O:NX), AMINUS(0:NX),

TERM(0:NX), PJ(0:NX)

WRITE (*,*) ' SUM'

OPEN (10, FILE='EIGDATA', STATUS='OLD',

FORM='UNFORMATTED')

READ (10) C, B, EV, APLUS, AMINUS, J, IMIN, IMAX, IMID

CLOSE (10)

OPEN (40, FILE='EIGTERM', STATUS='OLD',

FORM='UNFORMATTED')

READ (40) TERM

CLOSE (40)

OPEN (30, FILE='EIGPJ', STATUS='OLD',

FORM='UNFORMATTED')

READ (30) PJ, SUMJ, PNORMJ

CLOSE (30)

IF (IMIN.EQ.-1) STOP 'IMIN is not initialized'

IF (IMAX.EQ.-l) STOP 'IMAX is not initialized'

SUMJ = ODO

DO 10 I = IMIN, IMAX

IF (TERM(I).EQ.-1)STOP 'term negative'

SUMJ = SUMJ + TERM(I)

CONTINUE

WRITE (*,1) SUMJ

IF (IMIN.NE.O) WRITE (*,2) TERM(IMIN-l)

IF (IMAX.NE.NX) WRITE (*,3) TERM(IMAX+1)

FORMAT ( '0', 5X, 'sum = ', 1PE11.4 )

FORMAT ( '0', 5X, 'previous term = ', 1PE11.4 )

FORMAT ( '0', 5X, 'next term = ', 1PE11.4 )

OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',

FORM='UNFORMATTED' )

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE (30)

END
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PROGRAM EIGNORM

PARAMETER (NX=1500, NE=3)

IMPLICIT REAL*8 (A-H, O-Z)

CHARACTER JA

DIMENSION P0(0:NX), PJ(0:NX)

WRITE (*,*) ' NORM'

CONTINUE

WRITE (*,1) ' 0 OR J ?'

FORMAT ('$', A10)

READ (5,2) JA

FORMAT (A1)

IF (JA.EQ.'0') THEN

OPEN (20, FILE='EIGPO', STATUS='OLD',

FORM='FORMATTED')

READ (20) PO, SUMO

CLOSE (20)

IF (SUMO.EQ.-1DO) STOP

' Normalization constant not available'

DO 20 I = O, Nx

P0(I) = P0(I) / SUMO

CONTINUE

SUMO = lDO

OPEN (20, FILE='EIGPO', STATUS='UNKNOWN',

FORM='UNFORMATTED')

WRITE (20) P0, SUMO

CLOSE (20)

ELSE IF (JA.EQ.'J' .OR. JA.EQ.'j') THEN

OPEN (30, FILE='EIGPJ', STATUS='OLD',

FORM='UNFORMATTED')

READ (30) PJ, SUMJ, PNORMJ

CLOSE (30)

IF (PNORMJ.EQ.-1DO) STOP

'Normalization constant not available'

PNORMJ = PNORMJ * DSQRT (SUMJ)

DO 30 I = O, NX

PJ(I) = PJ(I) / PNORMJ

CONTINUE

PNORMJ = 1DO

SUMJ = 1DO

OPEN (30, FILE='EIGPJ', STATUS='UNKNOWN',

FORM='UNFORMATTED')

WRITE (30) PJ, SUMJ, PNORMJ

CLOSE (30)

ELSE

GO TO 10

END IF

END
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PROGRAM EIGSAVE

PARAMETER (NX=1500,NE=3)

REAL*8 P(O:NX), SUM, PNORM, C(4), C4, B, EV(O:NE),

$ APLUS(O:NX), AMINUS(0:NX)

REAL SAVE(O:NX,0:NE)

CHARACTER JA

WRITE (*,*) ' SAVE'

OPEN (60, FILE='EIGSAVE', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (60) C4, B, EV, SAVE

CLOSE (60)

WRITE (*,1) '0 OR J 2'

1 FORMAT ('$', A10)

READ (*,2) JA

2 FORMAT (A1)

IF (JA.EQ.'0') THEN

OPEN (20, FILE='EIGPO', STATUS='OLD',

s FORM='UNFORMATTED')

READ (20) P, SUM

IF (SUM.NE.1D0) STOP 'Not normalized'

DO 10 I = 0, NX

SAVE(I,O) = SNGL (P(I))

10 CONTINUE

ELSE IF (JA.EQ.'J' .OR. JA.EQ.'j') THEN

OPEN (10, FILE='EIGDATA', STATUS='OLD',

$ FORM='UNFORMATTED')

READ (10) C, B, Ev, APLUS, AMINUS, J, IMIN, IMAX,

$ IMID

CLOSE (10)

OPEN (30, FILE='EIGPJ', STATUS='OLD',

s FORM='UNFORMATTED')

READ (30) P, SUM, PNORM

CLOSE (30)

IF (PNORM.NE.1DO) STOP 'Not normalized'

DO 20 I = 0, NX

SAVE(I,J) = SNGL (P(I))

20 CONTINUE

END IF

OPEN (60, FILE='EIGSAVE', STATUS='UNKNOWN',

$ FORM='UNFORMATTED')

WRITE (60) C4, B, EV, SAVE

CLOSE (60)

END
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PROGRAM EIGPLOT

Files [Z]VPLOT.OBJ and [Z]MACPLOT.OBJ should be provided

for LINKing.

PARAMETER (NX=1500, NE=3)

REAL*8 C4, B, EV(O:NE)

REAL P(O:NX,0:NE)

LOGICAL DONE(O:NE)

CHARACTER PLBL*10, ANS*3

WRITE (*,*) ' PLOT'

WRITE (*,1)

$ 'MAXIMUM VALUE OF x TO APPEAR ON PLOT AXIS = '

l FORMAT ('$', A45)

READ (*,*) LIMIT

OPEN (60, FILE='EIGSAVE', STATUS='OLD,

$ FORM='UNFORMATTED')

READ (60) C4, B, EV, P

CLOSE (60)

DO 10 J = 0, NE

DONE(J) = P(0,J).NE.-1.0

IF (.NOT.DONE(J)) THEN

WRITE (*,2) J

2 FORMAT (/1X, 'P(', I1, ') is not available')

WRITE (*,3) 'OK ?'

3 FORMAT ('$', A4)

READ (*,4) ANS

4 FORMAT (A3)

IF (ANS(:1).NE.'Y' .AND. ANS(:1).NE.'y') STOP

$ 'Ignore the following message:'

END IF

10 CONTINUE

OPEN (61, FILE='OUTPUT', STATUS='UNKNOWN',

$ FORM='FORMATTED')

OPEN (71, FILE='VECPLOT', STATUS='UNKNOWN')

Each eigenvector is drawn separately

DO 60 J = 0, NE

IF (DONE(J)) THEN

Y-axis limit is determined below

PMAX = 0.0

DO 20 I = 0, LIMIT

AP = ABS(P(I,J))

IF (AP.GT.PMAX) PMAX = AP

20 CONTINUE
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WRITE (71,5) C4, B, EV(J)

FORMAT ('1', 30X, 'C4 = ', F4.2, 5X, 'B = ',

1PE11.4, 5X, 'EIGENVALUE = ', E11.4 )

CALL PLOTS (9.5, 12.0, 71)

for the two axes are calculated below

XSCALE = FLOAT (LIMIT) /11.0

IF ( J.EQ.O ) THEN

YL = 0.0

YH = PMAX

ELSE

YL = - PMAX

YH = PMAX

END IF

YSCALE = (YH - YL) / 8.0

The axes are drawn

CALL PLOT (0.5, 1.0, -3)

CALL PLOT (8.0, 0.0, 2)

CALL PLOT (8.0, 12.0, 2)

The X-axis is marked

30

Y-axis

‘40

DEL LIMIT / 10

AX 0.0

DO 30 AN = 0.0, FLOAT(LIMIT), DEL

CALL PLOT ( 8.0, AX, 3)

CALL PLOT ( 8.1, AX, 2)

CALL NUMBER (8.2, AX-O.1, 0.1, AN, 90.0, -1)

AX = AX + DEL / XSCALE

CONTINUE

CALL SYMBOL ( 8.6, 5.45, 0.1, 'X', 90.0, 1)

is marked

IEXP = LOG10(YH)

DEL = FLOAT(INIT((YH-YL)/10.0**(IEXP-1)))*

10.0**(IEXP-2)

AY = 8.0

DO 40 AN = YL/10.0**IEXP, YH/10.0**IEXP,

DEL/10.0**IEXP

CALL PLOT (AY, 0.0, 3)

CALL PLOT (AY, -0.1, 2)

CALL NUMBER (AY, -0.7, 0.1, AN, 90.0, 3)

AY = AY - DEL/YSCALE

CONTINUE

IF (IEXP.LT.-9) THEN

PLBL = 'P(X)*10“' // CHAR (-IEXP/10+48) //

CHAR ( MOD(-IEXP,10) + 48 )

NLBL = 10
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ELSE

PLBL 'P(X)*10“' // CHAR (~IEXP+48)

NLBL = 9

END IF

Let the user know what is happening at the moment

6

$

WRITE (61,6) J

FORMAT ( // '0', 5X, 'INITIALIZATION FOR PLOT',

I1, 'COMPLETED' )

An eigenvector is now drawn

50

Inform

7

END

XIN 0.0

YIN 8.0 - (P(O,J)-YL) / YSCALE

CALL PLOT ( YIN, XIN, 3)

DO 50 I = 1, LIMIT

XIN = FLOAT (I) / XSCALE

YIN = 8.0 - (P(I,J)-YL) / YSCALE

CALL PLOT ( YIN, XIN, 2 )

CONTINUE

CALL PLOT (0.0, 0.0, 999)

the user

WRITE (61,7) J

FORMAT ( '0', 5X, 'PLOT ', Il, ' COMPLETED')

IF

60 CONTINUE

END
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FUNCTION PLFUN (IND, X)

PARAMETER (NX=1500, NE=3)

REAL*8 C4, B, EV

LOGICAL FIRST

DIMENSION A(O:NE), EV(O:NE), P(O:NX,0:NE)

SAVE P, FIRST T1, TSTEP

DATA FIRST /.TRUE./

IF (FIRST) THEN

FIRST = .FALSE.

READ (*,*) T1, T2, INPOS, N

TSTEP = (T2-T1) / (N—1)

OPEN (50, FILE='EIGSAVE', STATUS='OLD',

FORM='UNFORMATTED')

READ (50) C4, B, EV, P

CLOSE (50)

A(O) = 1.0

IF (INPOS.LT.0) THEN

READ (*.*) ( A(J). J=1.NE )

ELSE

DO 20 J = 1, NE

A(J) = P(INPOS,J) / P(INPOS,0)

CONTINUE

END IF

END IF

PLFUN = 0.0

T = T1 + IND * TSTEP

DO 30 J = 0, NE

I = INT (X)

PX = (I+1-X)*P(I,J) + (X-I)*P(I+1,J)

PLFUN = PLFUN + A(J)*PX * EXP (SNGL(EV(J)) * T )

CONTINUE

RETURN

END



APPENDIX D

Deterministic simulation of hysteresis
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PROGRAM DETERM

Files ZEROIN8.0BJ and [Z]ADAMSPC.OBJ should be provided

for LINKing

PARAMETER (N=1)

IMPLICIT REAL*8 (A-H, O-Z)

EXTERNAL AUX, F1

DIMENSION B(O:1000), XF(O:1000), XB(0:1000), C(4),

$ X(N,8), SAVE(N,11), YMAX(N), ERROR(N)

LOGICAL FORW

COMMON /Z/ 82

COMMON /BC/ BETA, C

DATA C /3.0D-7, 1.0D-4, 1.5D-3, 1.7D0 /

OPEN (60, FILE='INPUT', FORM='FORMATTED', STATUS='OLD')

OPEN (61, FILE='OUTPUT', FORM='FORMATTED',

$ STATUS='UNKNOWN')

READ (60,*) C(4), B1, B2, BETA

WRITE (61,*) C(4), B1, B2, BETA

1 FORMAT ('1', 10X, 'C(4) = ', F5.3 /

$ '0', 10X, 'B1 = ', 1PE11.4 /

$ '0', 10X, 'B2 = ', E11.4 /

$ '0', 10X, 'BETA = ',_E11.4 )

The B-interval is divided into 1000 subintervals and data

are collected at the dividing points.

BSTEP = (BZ - B1) / 1000.0

B(O) = Bl

DO 10 I = 1, 1000

B(I) = B(I-l) + BSTEP

10 CONTINUE

Two integrations are needed in the same interval. First in

the forward direction, (i.e., with B increasing; the loop

control variables are adjusted accordingly

BZ B(O)

ISTART = 1

IEND = 1000

IDIFF = 1

H = 1.0D-12

Set initial condition (B = BZ, X = X(1,1) ) depending on

204
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C whether forward or backward variation of B.

C

20 CONTINUE

G1 = 10.0

G2 = 1500.0

CALL ZEROIN8 (F1, G1, G2, 1.0E-8, 1.0E-8, IFLAG)

IF (IFLAG.GT.2) THEN

WRITE (61,2) IFLAG, BZ, G1, G2

2 FORMAT ( 'OERROR FROM ZEROIN'

$ '0', ' IFLAG = ', I1 /

$ '0', ' B = ', 1PE11.4 /

$ '0', ' G1 = ', E11.4 /

$ '0', ' G2 = ', E11.4 )

STOP 'ERROR'

END IF

C

IF (FORW) THEN

XF(O) = G1

ELSE

XB(1000) = G1

END IF

X(1,1) = G1

HMIN = 1.0E-18

EPS = 1.0E-8

JSTART = 0

C

DO 30 I = 1, N

YMAX(I) = 1.0

30 CONTINUE

C

C Integration loop

C

DO 40 I = ISTART, IEND, IDIFF

CALL ADAMS (AUX, N, BZ, X, SAVE, H, HMIN, B(I),

$ EPS, YMAX, ERROR, KFLAG, JSTART)

IF (KFLAG.LT.0) THEN

WRITE (61,3) KFLAG, FORW, BZ, B(I)

3 FORMAT ('0', 5x, 'ERROR FROM ADAMS' /

$ '0', 10X, 'KFLAG = ', I2 /

$ '0', 10X, 'FORW = ', L10 /

$ '0', 10X, '32 = ', E10.4 /

$ '0', 10X, 'B(I) = ', E10.4 )

STOP 'ERROR'

END IF

C

C Collect data after each step

C

IF (FORW) THEN

XF(I) = X(1,1)

ELSE

END IF

4O CONTINUE
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Integration is complete

IF (FORW) THEN

prepare for the backward sweep

FORW = .FALSE.

B2 = B(1000)

ISTART = 999

IEND = 0

IDIFF = -1

H = - H

BETA = - BETA

GO TO 20

END IF

Write data for plotting

OPEN (71, FILE='DETPLOT', STATUS='UNKNOWN',

$ FORM='FORMATTED')

WRITE (71,4) (B(I), XF(I), XB(I), I=0,1000)

4 FORMAT (1001(3(5X,E10.4)/))

Area inside the loop is computed by simplest (rectangular)

method

AREA = 0.0

DO 50 I = 0, 1000

AREA = AREA + BSTEP*(XB(I) - XF(I))

50 CONTINUE

WRITE (61,6) AREA

6 FORMAT ( '0', 10X, 'AREA = ', 1PE11.4)

END
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SUBROUTINE AUX (B, X, XD, N)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION X(N), XD(N), C(4)

COMMON /BC/ BETA, C

This routine computes dB/dX. It is used indirectly through

the library subroutine ADAMS

XD(1) = Fl (X(1)) / BETA

RETURN

END

REAL*8 FUNCTION F1(X)

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION C(4)

COMMON /Z/ B

COMMON /BC/ BETA, C

This function computes dX/dt. It is called by AUX and

indirectly used by program DETERM through ZEROIN8.

F1 = ( 0.5*C(1)*X*(X-1.0)+C(3) ) * B

$ -C(2)/6.0 *X*(X-1.0)*(X-2.0) - C(4)*X

RETURN

END



APPENDIX E

Stochastic simulation of hysteresis

PROGRAM GILSIMT

C File ZEROIN8.0BJ Should be supplied for LINKing.

DOUBLE PRECISION x, B, APLUS, AMINUS, AMBYAP, QRAN,

$ FACTOR, BETA, C1, C2, C3, C4, CZBY6,

$ C1BY2

EXTERNAL F1

PARAMETER (IDIM=2001)

DIMENSION XSUM(0:IDIM-1,2), BGRID(O:IDIM-1), A(4),

$ XNOW(O:IDIM-1), AR(2)

LOGICAL FORW, GET, PUT, PLOT

COMMON /AA/ Bz. C(4)

C

OPEN (60, FILE='INPUT', STATUS='OLD')

OPEN (61, FILE='OUTPUT', STATUS='UNKNOWN')

C

READ (60,*) B1, B2, C, BETA, NTIMES, ISEED, FORW, GET,

$ ' PUT, PLOT

C1 = C(1)

C2 = C(2)

C3 = C(3)

C4 = C(4)

WRITE (61,1) B1, BZ, C, BETA, NTIMES, ISEED, GET, PUT,

$ PLOT

1 FORMAT ( '1', 1P, 10X, 'B1 = ', E11.4 /

$ '0', 10X, '82 = ', E11.4 /

$ '0', 10X, 'C = ', 4(E11.4,3X) /

$ ‘0', 10X, 'BETA = ', E11.4 ///

$ '0', 10X, 'NTIMES = ', IlO /

$ '0', 10X, 'ISEED = ', IlO /

$ '0', 10X, 'GET = ', L10 /

$ '0', 10X, 'PUT = ', L10 /

s '0', 10x, 'PLOT - = ', L10 /// )

C

C The B-interval is divided into IDIM-l subintervals and

C data will be collected at the dividing points.

C

BGRID(O) = B1

BSTEP = (B2-Bl) / FLOAT(IDIM-l)

DO 10 I = 1, IDIM-l

BGRID(I) = BGRID(I-l) + BSTEP

10 CONTINUE

C

C This program can be run either to refine existing data

C statistically, or to acquire new data. In the former case
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C data should be read and in the latter case initial

C

C

0
0
0
0

conditi

IF (

20

ELSE

3O

Startin

steady

on should be set.

GET) THEN

OPEN (70, FILE='GRPREV', STATUS='OLD',

FORM='UNFORMATTED')

READ (70) NPREV, XSUM, ASUM, AZSUM

CLOSE (70)

DO 20 I = 1, IDIM-l

XSUM(I,1) = XSUM(I,1) * NPREV

XSUM(I-1,2) = XSUM(I-1,2) * NPREV

CONTINUE

DO 30 J = 1, 2

DO 30 I = O, IDIM-l

XSUM(I,J) = 0.0

CONTINUE

ASUM = 0.0

AZSUM = 0.0

NPREV = 0

g values of X are obtained by solving the cubic

state equation.

G1 = 1.0

G2 = 1500.0

BZ = BGRID(O)

ABSERR = 0.0

RELERR = 1.0E-5

Note that 82 appears in common block AA.

CALL ZEROIN (Fl, G1, G2, ABSERR, RELERR, IFLAG)

IF (IFLAG.GT.2) THEN

WRITE (61,2) G1, G2, IFLAG

FORMAT ('OERROR FROM ZEROIN. CI = ', F8.4,

' G2 = ', F8.4, ' IFLAG = ', I1)

STOP 'ERROR'

END IF

XSUM(0,1) = G1

G1 = 1.0

G2 = 1500.0

B2 = BGRID(IDIM-l)

Note that BZ appears in common block AA

CALL ZEROIN (F1, G1, G2, ABSERR, RELERR, IFLAG)

IF (IFLAG.GT.2) THEN

WRITE (61,2) G1, G2, IFLAG

STOP 'ERROR'

END IF

C1BY2 = C1 / 2.0

C2BY6 = C2 / 6.0
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The outermost loop begins *************************

DO 70 N = 1, NTIMES

The same B-interval is covered twice. J = 1 means B is

increasing. J = 2 means B is decreasing. Variables

controlling the innermost D0 are adjusted in accordance

with J.

DO 65 J = 1, 2

BETA = ABS (BETA)

IF (J.EQ.1) THEN

B = BGRID(O)

X = XSUM(O,1)

XNOW(O) = X

ISTART = O

IEND = IDIM - 1

IDIFF = 1

ELSE

BETA = - BETA

B = BGRID(IDIM-l)

X = XSUM(IDIM-1,2)

XSUM(IDIM-l) = X

ISTART = IDIM-1

IEND = O

IDIFF = -1

END IF

APLUS = ( C1BY2 * X * (X-1.0) + C(3) ) * B

AMINUS = ( C2BY6 * (X-1.0) * (X—2.0) + C(4) ) * X

These must have some values to begin with.

DO 60 I = ISTART+IDIFF, IEND, IDIFF

************************ The simulation section begins

50

m
m

CONTINUE

QRAN = 1D0 - 2D0 * BETA / APLUS / B *

ALOG (1.0-RAN(ISEED) )

AMBYAP = AMINUS / APLUS

IF ( ( J.EQ.1 .OR. QRAN .GT. -2DO*AMBYAP )

.AND. DABS(QRAN/AMBYAP+2DO) .GT.

AMBYAP*lD-5 ) THEN

FACTOR = - AMBYAP + DSQRT ( QRAN +

(2DO+AMBYAP) * AMBYAP )

ELSE

FACTOR = 1D0 + 0.5DO * QRAN / AMBYAP

END IF

B = B * FACTOR

APLUS = APLUS * FACTOR

IF (1.0/(1.0-RAN(ISEED)).GE.1.0+AMBYAP) THEN

APLUS = APLUS + C1*B*X

AMINUS = AMINUS + 3DO * CZBY6 * X * (X-1DO) + C4
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X = X + lDO

ELSE

X = X - 1DO

APLUS = APLUS - C1*B*X

AMINUS = AMINUS - 3D0*C2BY6*X*(X-1DO) - C4

END IF

IF (B.LT.BGRID(I) .EQV. J.EQ.1) GO TO 50

************************ simulation section ends.

Collect data after each step

XSUM(I,J) XSUM(I,J) + X

XNOW(I) =

60 CONTINUE

X

A one-way trajectory has been completed. Find area under

this trajectory and update sums involved in average and

standard deviation.

AR(J) = 0.0

DO 62 K = 1, IDIM-1

AR(J) = AR(J) + 0.5*(XNOW(K)+XNOW(K-1))*BSTEP

62 CONTINUE

65 CONTINUE

AREA AR(2) - AR(1)

ASUM ASUM + AREA

AZSUM = AZSUM + AREA*AREA

70 CONTINUE

The outermost loop ends ******************************

Sums are converted to averages.

NTOTAL = NPREV + NTIMES

DO 80 I = 1, IDIM-1

XSUM(I,1) = XSUM(I,1) / NTOTAL

XSUM(I-1,2) = XSUM(I-1,2) / NTOTAL

80 CONTINUE

Save results if desired.

IF (PUT) THEN

OPEN (71, FILE='GRNOW', STATUS='NEW',

$ FORM='UNFORMATTED')

WRITE (71) NTOTAL, XSUM, ASUM, AZSUM

END IF

Write a few lines on the output.

AVEG ASUM / NTOTAL

SDEV SQRT (AZSUM/(NTOTAL-l) - ASUM/NTOTAL*ASUM/

$ (NTOTAL-1))
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WRITE (61,3) AVEG, SDEV, SDEV/AVEG

3 FORMAT ( '0', 'AREA = ', 1PE11.4 //

z :3? :SDEV = 1' HRH-z (é, RATIO= PE .

$ '0', '********;**************I )

Write formatted output if desired. These can be later

read by a plotting program

IF (PLOT) THEN

OPEN (72, FILE='PLOTFL', STATUS='NEW',

$ FORM='FORMATTED')

WRITE (72,4) (BGRID(I), XSUM(I,1), XSUM(I,2),

S I = O, IDIM-1 )

4 FORMAT ( 5X, 1PE11.5, 5X, E11.5, 5X, E11.5 )

END IF

END

FUNCTION F1(X)

The cubic equation used for setting initial conditions.

Note that program GILSIMT uses this indirectly through

subroutine ZEROIN.

COMMON /AA/ B, C(4)

F1 = C(1) * B * X * (X-1.0) / 2.0 - C(2) * X * (X-1.0)

$ * (X-2.0) / 6.0 + C(3) * B - C(4) * X

RETURN

END



APPENDIX F

Special features of the cubic mechanism in a coupled flow

tank reactor

Let v(R1,RO) be a cubic rate law, supporting three

steady states in a flow tank. Let k0 be chosen so that

RB - RY = RY - Ra. Let R+ and R_ define the points satisfying

3v _

Then

i) 0(R1,R2;k0,kx) is symmetric with respect to the line

R1 + R2 = 2 Ry,

ii) R+ + R_ = 2 RY'

iii) (R+,R_) is a solution of the coupled tank equations

(6.7),

and iv) the state (R+,R_) is marginally stable.

Proof:

The potential for the coupled tank satisfies

80 de

- —— = -——-= k (R -R ) - V(R ,R ) + k (R -R )

3R1 dt 0 0 1 l 0 x 2 1

30 dR2

and - -—— = ——— = k0(RO-R2) - v(R2,R0) + kX(R1-R2). (F.2)

8R2 dt

Since Ra' R and RY are the single-tank steady states,
8!
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k0 (RO-R) - V(R,R0) = C (R-Ra) (R-RB) (R-RY)

=C[R3-(R+R+R)R2+(RR+RR+RR)R

a B Y a B a Y B Y

- RORBRY1' (F.3)

The point obtained by reflecting (R1,R2) on the line

R1 + R2 = 2 RY Is (2Ry-R2, 2Ry-R1). Let us compare 0(R1,R2)

and 2R -R 2R -R .

¢( Y Y 1)
2i

¢(R1,R2) - 0(2Ry-R2, ZRY-Rl) = f(Rl) + f(RZ), (F.4)

where

- - _ 1 4 _ _ 4 1 3 -
f(R) — c I 4 [R (2RY R) 1 + 3 (Ra+RB+Ry)[R

3 1 2 2
(2RY-R) ] - 5 (RaRB+RaRy+RBRY) [R - (2Ry-R) ]

+ RaRBRy[R - (2Ry-R)]} (F.5)

Expanding f(R), it is found that the coefficients of all

powers of R vanish when RB-RY = RY-Ra. Therefore,

¢(R1,R2) = ¢(2Ry-R2, 2Ry-R1). (F.6)

This proves (i).

From (F.1) and (F.2) it follows that R+ satisfy

2 -
3 R1 - 2 (Ra + R8 + Ry)Ri + (RGRB + RaRY + RBRy) — 0.

(F.7)
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Therefore,

_ 2
R + R - 3(R0 + R8

8

ii) is Proved.

Since R + R = 2R .

a Y

Solving (F.7), we obtain

1

= + — -Rt RY _ /3(RY RGRB) .

Let R - R = R ’ R = A.

B Y Y a

l
= + A

Then R:t RY - 5 L) .

(R+,R_) is a coupled steady state if

k0(R0-R+) - v(R+,R0) + kx(R_-R+)

and

ko(R0—R_) — v(R_,R0) + kX(R+-R_)

(F.12) can also be written as

c (R+-Ra)(R+-RB)(R+-Ry) + kX(R_-R+)

 

2

i.e., - -_—: CA - k

+ R ) = 2R

Y Y

(F.8)

(F.9)

(F.10)

(F.11)

(F.12)

(F.13)

(F.14)
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Therefore, (R+,R_) is a steady state when

= —E <
k 3 A . (c 0)

Thus (iii) is proven.

The condition for marginal stability is

(

3v] 3v

k0 + BRlR k0 + OR
a I  

 

 

 

(R+,R_) satisfies this condition by construction

(F.15)

(F.16)

(F.1).
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