
.
1
4
,

.
A
r
c
r
.
c
-
v
n
.
a
w
a
u
u
u
n
m
u
l
l
u
w
a
.
.
,
r

t
a

.
.

I
.

.
fl
d
fl
u
o
l
u

g
.

I
Q
H
V
§
'
\
?
j
§
‘
,
l
p

“
(
I
'
fl
5
7
u
f
‘
h
h
‘

(
0
)
4
"
!

‘
2
’

”
‘
4
‘

u
l
l

.
.

{
.
1
0
.

I
I
I

n
V

4
.
4

'II‘ .-

* vi“:

0 .

. "7]

D

. t

‘3” ‘u n ,.

H

9

3.

4
*

f

t

I
.
.
¢

i

-i‘;-. "1112‘ ‘4 ‘-

m

l

:{4’

: 4'

f ,2, g}: ‘4'

,I ‘ I"

.;‘[3
h

t

~2-

.

‘ c‘. I

L!

k

f

i.
‘1

' ""3335:

4'

Aj-;";

I

. 3"I;7;i ‘ ’ [I

l

P,

r

' :1.?Ejfli,:."f: “ ." ‘

l ‘

f'

f

1

-. N
I gll 2!. é?‘('Lll:

.I

:43
W4“

‘ 3'14; 3: ‘ " ",3 "4 . fl;

4 347%! .14 ’5 ‘ . " ’ I

:7". " .{HIt‘y‘t ' a

.1}

~ ..‘.-Io"
4' ‘ I .a’ ' I

‘ '1 v . | u ‘ ' |

| : 4 ‘4 "|' 'n a. 7 ¥ b .. ‘.< . . l - .

I ' "4. H‘ ‘ ('I .‘b' ’5‘: hail ‘ I, ':"‘ l' “v r “.2 r :: > ,

I. '# ' -,’ '- o: :4 y, ’M. ,' n a; 3U l '
. .

- l . ,. . I cvi 's '~n- u r I1 I v ,.i . yo I 4 . ‘ I

)

o

?.
).

4

4
.

I

0‘10.

4

4

4?
4;

if'i‘i“ " ‘f";‘ 3;:

IIE-U j't" t“¥l -‘~.{'!

't I}? 4F.'u:;fiz‘ i! . ”I . ‘ '.

' 43’? 145,»; 131g? 3' M I

33"" 5 .'9

1' T" *1, '9

s H‘
'4

L" ELM 4.3-:- 5:', ' .

‘1

. T

I. ,_
I | '~ "

I

4

5

J

3
'
1
.

I
n
"

o
i
l
7

x
:

C

"
‘

u
‘
r
I
O
J
a
a
i
l

n
p
l
n
u
4
1
1
.
.
9
a

4
.
1

.
”
n
u
-
x
:

h
u
h
fl
u
n
u
n
n
l
i
p
l
q
l
v
c
l
i
u
u
n
u
v
l

.
O
l

L
l
.

-
I
!

.
'

l
.

l
a
.
.
.

[
’
0

i
&

‘
I
l
é
l
l
fl
l
I
t
“
,

‘
9
!

.
I

1
.
1
-

n
’

1
.
.
.

w
'
9
’
,

I
‘
l
’
k
’
b

V
v
o
o
d
.

|
1
.
.

.
9

|
u

I
D
.

I
n
.

.

e
s

{
m
u
n
}
?

-
.

t
I
!

.
,

r
I

x
\

4
‘

l
4
\

l
\

t

.
.
I

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

IMPROVING THE EFFICIENCY OF DATA COLLECTION

FOR MASS SPECTROMETRY/MASS SPECTROMETRY

presented by

Michael Joseph Kristo

has been accepted towards fulfillment

ofthe requirements for

Ph.D. demm Chemistry

KIM% Z4;
Major professor

Date September 9, 1987

MSU i: an Affirmative Action/Equal Opportunity Institution 0-12771

MSU
LIBRARIES

n

RETURNING MATERIALS:

Place in book drop to

remove this checkout from

your record. FINES will

be charged if book is

returned after the date

stamped below.

IMPROVING THE EFFICIENCY OF DATA COLLECTION

FOR MASS SPECTROMETRY/MASS SPECTROMETRY

By

Michael Joseph Kristo

A DISSERTATION

Submitted to

Michigan State University

in partial fulfill-ant of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Depart-eat of Cheniatry

1987

Copyright by

MICHAEL JOSEPH IRISTO

1987

ABSTRACT

IMPROVING THE EFFICIENCY OF DATA COLLECTION

FOR MASS SPECTROMETRY/MASS SPECTROMETRY

By

Michael Joseph Kristo

The development of triple quadrupole mass spectrometry

(TOMS) has led to the widespread acceptance of mass

spectrometry/mass spectrometry (MS/MS) as a useful

analytical technidue. This dissertation explores

improvements to the TOMS instrument and new types of TOMS

experiments which improve the efficiency of data collection.

These improvements in TOMS fall into four categories:

improving the speed of computer control, improving the

accuracy and speed of data reduction, improving the accuracy

and dynamic range of ion current measurements, and improving

the detection of collisionally assisted reaction (CAR)

products.

The speed of computer control has been improved with

the development of two control systems, a multi-

microprocessor control system and a system based on a high-

speed FORTH processor. Both systems achieved faster scan

speeds and greater amounts of signal averaging than

conventional control systems.

The task of reducing sequential intensity data to

position/intensity pairs for each peak in the mass spectrum

(peak-finding) is especially difficult in MS/MS, because of

the increased dynamic range, the variable resolution, and

Michael Joseph Kristo

the varied peak shapes. However, several key features were

found to increase the reliability of peak-finding algorithms

for MS/MS. The speed of peak-finding was increased

substantially with the design and implementation of a

programmable electronic peak-finder.

Simultaneous acquisition of analog and ion-counting

data with a dual output continuous dynode ion multiplier was

implemented. This dual mode control system achieves the

full dynamic range available in MS/MS (10°) and provides

absolute ion intensities. This system corrects errors in

ion-counting due to pulse overlap and eliminates the effect

of variations in multiplier gain with ionic species.

A method of trapping ions and varying their average

residence time in the central quadrupole of a TOMS

instrument has been developed and characterized.

Lengthening the residence time in the collision chamber

increases the yield of stable CAR products and allows the

observation of many products not seen in conventional CAR.

ACKNOWLEDGMENTS

I would like to thank Professor Chris Enke for his

guidance on this project, as well as the freedom and support

needed to bring it to fruition. I would also like to thank

Professor Victoria McGuffin for the outstanding job that she

did for me as second reader. I further acknowledge the

challenging members of my committee- Professors David

Fisher, Jack Watson, and William Reusch.

Here also, I would like to acknowledge the help and

guidance of my fathers in faith, Drs. Bruce Newcome and Carl

Myerholtz. Their moral support and technical expertise

helped me during the darkest days. Bruce was especially key

to the finishing of the multiprocessor, the design of the

hardware peak-finder, and the initial design of many of the

instrument interfaces for the Novix control system.

I would not have made it this far, though, without the

help of my other friends and cohorts- Keiji Asano (the Ace-

Man), Pete Palmer (Beware the Dwarvesl), Dan Sheffield (who

is responsible for several drawings in this dissertation),

Mike Nawrocki, and Chris Marsh, and the few women in my

life, especially Karen Reeves who helped me make it through

the past several months intact mentally (relatively). The

good times that we shared helped make the bad times a little

iii

more bearable. I would especially like to thank my parents

for their help and support.

I also acknowledge the initial guidance of Dr. Frank

Swicker of Christian Brothers High School, Memphis; the

Chemistry electronics and machine shops; Marty Rabb, the

departmental electrical engineer; El Azteco Restaurants,

purveyors of fine food at reasonable prices; Charles Moore,

for his genius in inventing the FORTH language; the

proprietors of Paul Revere’s Tavern, home of the Big Mick;

the Pepsi and Coca Cola bottlers of America, Coke Adds Life

It’s the Real Thing; the makers of fine alcoholic beverages

the world over; Domino’s Pizza ; and the many others behind

the scenes who must remain nameless.

Thank our Gracious Lord That’s Over. (Also for rain,

sea, and much summer thunder.)

iv

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

CHAPTER 1. A MULTIMICROPROCESSOR CONTROL SYSTEM

FOR A TRIPLE OUADRUPOLE MASS SPECTROMETER

1. Background

The Triple Quadrupole Mass Spectrometer

Scan Modes

Prototype TOMS Instrument

Computer Control of the TOMS Instrument

The Advantages of Multiprocessing

TOMS Multiprocessor Controller

2. Completion of the Multimicroprocessor

Control System

Making the Multiprocessor System Work

Improvement in Scanning Speed

Troubleshooting a Multiprocessor System

New Features

3. Conclusion

CHAPTER 2. CONTROL OF A TRIPLE OUADRUPOLE MASS

SPECTROMETER WITH A NOVIX FORTH PROCESSOR

1. Introduction

2. The Novix Approach

History of Computer Architectures

NC4000 Architecture

3. System Description

Hardware

Software

4. Results

CHAPTER 3. A FAST, RELIABLE SOFTWARE

PEAK-FINDING ROUTINE FOR MS/MS

l. Peak-finding

2. Instrumentation and Software

3. The Algorithm

Looking for a New Peak

Updating the Maximum

Peak Termination

Further Notes on the Algorithm

Comparison With Other Real-Time Algorithms

Algorithm Testing

Algorithm Performance

Algorithm Speed

. Conclusion<
1
t
h

viii

ix

38

38

41

41

43

46

46

62

64

83

83

91

92

93

95

96

98

100

103

105

114

114

CHAPTER 4. HARDWARE PEAK-FINDING FOR

RELIABILITY AND INCREASED SCAN RATES

1. Introduction

2. The Hardware Peak-Finder

Concept

Hardware Design

3. The Microcode Compiler

Design Goals

The Software

4. Results

Processing Speed

Improvements in Scan Speed

and Signal Averaging

5. Conclusion

CHAPTER 5. DUAL-MODE DETECTION FOR

HIGH PERFORMANCE ION CURRENT MEASUREMENT

AND EXTENDED DYNAMIC RANGE IN MS/MS

1. Introduction

2. System Description

Analog Processing

Ion Counting

Protection Grid Logic

Data Handling

Dual-mode Scanning

Dual-mode Software

3. Pulse Overlap Correction and

Analog Calibration

4. Results

5. Conclusion

CHAPTER 6. A TRAP-AND-PULSE ALGORITHM FOR

DETECTION OF COLLISIONALLY ASSISTED REACTION PRODUCTS

1. Introduction

2. Experimental

Instrumentation

Computer System

Chemicals Used

Ion/Molecule Reactions

Instrumental Conditions for Ion Trapping

The Trap-and-Pulse Experiment

Investigation of the Trap-and-Pulse Process

The Trap and Pulse Algorithm and

Software Considerations

6. Results

0
0
-
5
0
)

CHAPTER 7. SUGGESTION FOR FUTURE WORK

APPENDIX A. FORTH CODE FOR LINKED SCANS

APPENDIX B. FORTH CODE FOR REAL-TIME GRAPHICS

APPENDIX C. PAL SPECIFICATIONS FOR NOVIX INTERFACE

vi

117

117

118

118

121

130

130

133

137

137

139

141

143

143

147

147

149

152

154

155

155

156

159

170

173

173

175

175

175

176

176

178

178

184

203

207

214

218

224

226

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

FORTH

FORTH

FORTH

FORTH

FORTH

FORTH

CODE

CODE

CODE

CODE

CODE

CODE

FOR

FOR

FOR

FOR

FOR

FOR

PEAR-FINDING ALGORITHM

ALGORITHM TESTING

MICROCODE COMPILER

AMD9513 COUNTER

DUAL-MODE SCANNING

REACTION SCANS

vii

227

230

231

240

242

247

LIST OF TABLES

TABLE PAGE

1.1 TOMS devices and their mnemonic names 3

1.2 Advantages of Distributed Processing Systems 14

1.3 Multimicroprocessor Scanning Functions 29

1.4 Multibus-I Scanning Functions 29

2.1 Benefits of a Fast MS/MS Control System 41

2.2 Multibus-I Scanning Functions 65

2.3 Multimicroprocessor Scanning Functions 65

2.4 Novix Control System Scanning Functions 66

3.1 Variables for Kristo Algorithm and MSSIN 105

3.2 COMPARISON OF TWO REAL-TIME PEAK-FINDING

ALGORITHMS- Starting from Threshold 107

3.3 COMPARISON OF TWO REAL-TIME PEAK-FINDING

ALGORITHMS- Coming Off a Large Peak 109

3.4 -COMPARISON OF TWO REAL-TIME PEAK-FINDING

ALGORITHMS- After a Large Intensity Spike 111

3.5 COMPARISON OF TWO REAL-TIME PEAK-FINDING

ALGORITHMS- After a Small Intensity Spike 113

3.6 Timing Information 114

4.1 Novix Control System Scanning Functions

Without Peak-Finder 140

4.2 Novix Control System Scanning Functions

With Hardware Peak-Finder 140

6.1 Typical conditions for Ion-Trapping in

the Center Quadrupole of the TOMS 178

6.2 Ion/Molecule Products of the Reaction

Between the Methyl Cation and Acetone 182

6.3 Dependence of Ion Loss on Collision

Gas Pressure . 191

viii

u...

F

l

l

1

H
e
n
-
h
o
o
t
e
r
-

1

1

2

2 N

N
M

N

(
D
D
Q

O
)

c
a
n

N
N
N

O
s

n
—
u
-
I

y
—
l

LIST OF FIGURES

IGURE

The TOMS Instrument

TOMS MS/MS Scan Modes

Multiprocessor Topologies

Timing Relationships for a SWEEP

Timing Relationships for a NSCAN

Relative price and performance characteristics

of several computing systems.

Block diagram of the NC4000 showing the separate

data paths to main memory, its data stack, and

its return stack.

Block diagram of the NC4000 which shows the

direct control that the latched instruction

exercises over the ALU and registers.

Schematic of the L-Bus Interface.

Schematic of the interface to the intelligent

data acquisition circuit.

Schematic of the interface to the hardware

peak-finder circuit described in Chapter 4.

Schematic of the rate synchronization circuit.

Schematic of the softknobs interface.

Schematic of the parallel port for uploading data

to a host minicomputer.

Schematic of the pulse-counting circuit.

Schematic of the interface between the NC4000

and the rest of the mass spectrometer

control circuits.

Unaveraged mass sweeps of m/z 28 (N2’) and

m/z 69, 131, and 331 from PFR taken at

2000 AMU/S with the multiamp circuit.

Unaveraged mass sweeps of m/z 28 (Nz*) and

m/z 69, 131, and 331 from PFK taken at

1000 AMU/S with the multiamp circuit.

Unaveraged mass sweeps of m/z 28 (N2‘) and

m/z 69, 131, and 331 from PFH taken at

500 AMU/S with the multiamp circuit.

Unaveraged mass sweeps of m/z 28 (N2‘) and

m/z 69, 131, and 331 from PFH taken at

250 AMU/S with the multiamp circuit.

Plot of the resolution of each peak versus

scan speed for m/z 28 (N2’) and m/z 69, 131,

and 331 from PFK.

Plot of the intensity of each peak versus

scan speed for m/z 28 (Na’) and m/z 69, 131,

and 331 from PFH.

Unaveraged mass sweeps of m/z 28 (N2’) and

m/z 69, 131, and 331 from PFH taken at

2000 AMU/S with a high bandwidth (100 MHz)

preamplifier system.

ix

2.41.93.
2

5

15

21

22

39

45

47

49

50

52

53

54

56

57

59

68

69

70

71

74

76

77

u
h

h
u
b
-
F

0
0

0
9

N
0
0

I
'
d

N

0
|

I
“

(
I
O
N

c
h

“
N
I
-
t

4.6

U
I
O
I
O
I
O
I

0
|

0
1
0
1
-
5
0
)

N

5.9

0 p
m

.19 Timing relationships for an NSCAN for

the Novix TOMS control system.

Three mass sweeps showing the variable

resolution between peaks in TOMS.

Common peak profiles found in TOMS.

Common peak profiles and an example of

noise spikes found in TOMS.

The flow of decision processes in

the current peak-finding algorithm.

The flow of the software implementing

the current peak-finding algorithm.

Block diagram of hardware peak-finder.

Schematic of address-decoding circuitry.

Schematic of chip-select generation for

random-access memory.

Schematic of the autoloading feature for

generation of addresses when reading from

or writing to the random-access memory.

Schematic of the next-address generation

circuitry when executing the

peak-finding algorithm.

Schematic of one byte of random access

memory with circuitry for access from

the host computer and latching control

signals for each clock cycle.

Schematic of the intensity bus.

A comparison of the dynamic ranges afforded

by various systems versus the dynamic range

available in MS/MS: the basic analog

amplifier/ADC available on most systems,

the multirange analog amplifier/ADC available

from the multiamp circuit, ion counting circuits,

and the dual-mode control system.

Schematic diagram of the Galileo Dual Output

Channeltron control system.

Multiamp analog measurement scheme.

Configuration of the AMD9513 pulse counter.

Schematic of the protection grid logic.

Raw ion current versus the corresponding

analog intensity from the multiamp circuit

(for air) and the theoretical curve (+) expected

from the Poisson resolution window (120 nS)

calculated from the experimental curve.

A mass sweep of the peak representing the

nitrogen molecular ion (m/z=28), showing the

resulting analog intensity and the measured

ion flux. '

Plot of ion flux versus analog intensity

for the mass sweep of the nitrogen molecular

ion in Figure 5.7.

A mass sweep of the peak representing CF:+

(m/z=69) from PFK, showing the resulting analog

intensity and measured ion flux.

80

85

86

87

94

99

119

123

124

125

127

128

129

144

146

148

151

153

160

163

165

166

5.10

6.1~

6.3

6.10

Plot of ion flux versus analog intensity

for the mass sweep of CF3+ in Figure 5.9.

Plots of ion abundance versus time and

L5 potential versus time, showing one

full trap-and-pulse cycle.

Plots of ion abundance versus time, and

L3 and L5 potentials versus time, showing

one full inject,trap, and pulse cycle.

Plot of ion pulse intensity versus storage

time for the proton-bound dimer of acetone

and the curve obtained by fitting the data

to Equation 2.

Plots of ion pulse intensity versus storage

time for the benzene molecular ion

(no collision gas) for several parent

ion energies.

Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several

pressures of acetone collision gas

(parent ion kinetic energy of 1 eV).

Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several

pressures of acetone collision gas

(parent ion kinetic energy of 10 eV).

Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several

parent ion kinetic energies (pressure of acetone

collision gas of 2x10" torr.

Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several

parent ion kinetic energies (pressure of acetone

collision gas of 2x10‘5 torr.

Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several

parent ion kinetic energies (pressure of acetone

collision gas of 6x10'7 torr.

Three mass sweeps of O3 over the isotope

peaks of the proton-bound dimer of acetone (A)

by conventional data collection (250 emu/S),

(B) by conventional data collection with

. real-time signal averaging (5 emu/S),

6.11

(C) by trap-and-pulse data collection (5 amu/S).

Two product ion scans of the ion/molecule

reaction between protonated glycerol and

acetic acid (parent ion is (M+H)+ of glycerol

at m/z 93) by (A) conventional data collection

and by (B) trap-and-pulse data collection.

xi

168

180

183

186

190

193

195

198

200

202

208

209

CHAPTER ONE

A MULTIMICROPROCESSOR CONTROL SYSTEM

FOR A TRIPLE OUADRUPOLE MASS SPECTROMETER

1. Background

The Triple Quadrupole Mass Spectrometer

The development of triple quadrupole mass spectrometry

(TOMS) by Yost and Enke (1-3) has enhanced the widespread

acceptance of tandem mass spectrometry as a useful and

practical method of analysis. Greater concern over

instrument control, intelligent data collection, and

meaningful treatment of collected data has been an

additional consequence, which arises from the nature of TOMS

itself. The TOMS instrument, shown in Figure 1.1, has 5

distinct scan modes, 22 physical devices and 4 software

attributes (Table 1.1) which must be controlled during

scanning. Furthermore, the TOMS instrument can generate

large amounts of data very quickly. All of these qualities

.make TOMS a model problem in instrument control and data

treatment (storage, retrieval, and analysis).

a
c
c
c
c
c
a
n
o
n

a
l
o
e

o
n
e

H
.
~

s
h
a
m
a
n

C

I

O

O

O

O

O

O

O

O

I

I

Q

0

O

I

C

O

I

O

O

I

O

C

O

C

I

O

O

O

I

O

O

O

I

3

Table 1.1

TOMS devices and their mnemonic names

NAME DEVICE NAME DEVICE

EV Electron energy 02 Quad 2 DC offset

REP Repeller Q3 Quad 3 DC offset

HIV 31 ion volume MHV . Multiplier voltage

CIV CI ion volume M1 Mass for quad l

EXT Extraction Lens DMl Quad 1 delta mass

L1 Ion source lens 1 R81 Quad 1 resolution

L2 Ion source lens 2 M2 Mass for quad 2

L3 Ion source lens 3 M3 Mass for quad 3

L4 Interquad lens 1-2 DM3 Quad 3 delta mass

L5 Interquad lens 2-3 RS3 Quad 3 resolution

01 _ Quad 1 DC offset P2 Quad 2 pressure

TQMS Software Attributes

NAME ATTRIBUTE

THR Threshold

RTE Scan Rate

PWD Minimum Peak Width

MWD Maximum Peak Width

A TOMS instrument basically consists of an ion source,

three quadrupole mass filters, and an ion detector, usually

an ion multiplier. The TQMS instrument may also have

several lenses to focus the ion beam. The first and third

quadrupole mass filters can be operated in either the

integral (RF) mode, which passes ions of all mass-to-charge

ratios, or the normal (DC) mode, which passes ions of a

specific mass-to-charge ratio (mass filtering). The

transmission characteristics in the normal mode are further

controlled by the resolution and delta mass controls of the

quadrupole controllers. The central quadrupole, also called

the collision cell, always operates in the integral mode in

TOMS and is used for changing the mass of the ions

4

transmitted by the first quadrupole. This mass change can

occur through various methods, including collision of the

incident ions with an inert collision gas (CAD-

collisionally-activated dissociation) (1), reaction of the

incident ions with a reactive collision gas (CAR-

collisionally-assisted reaction) (4,5), and absorption of

light (LD- laser dissociation) (6,7).

Scan Modes

The option of operating quadrupoles one and three in

either RF or DC mode during a scan yields the five different

scan modes. Scanning either the first or third quadrupole

in the DC mode, while holding the other quadrupole in the RF

mode, generates a primary mass spectrum, similar to a

conventional mass spectrum. Scanning quadrupole one in this

manner (commonly called a ISCAN) yields identical

information to scanning quadrupole three (3SCAN).

If both quadrupoles one and three are held in the DC

mode, then three mass spectrometry/mass spectrometry (MS/MS)

scan modes are possible (Figure 1.2). In two of the MS/MS

modes, one quadrupole passes only ions of a specific mass-

to-charge ratio, while the other is scanned. If quadrupole

one is held fixed, a daughter scan (DSCAN) is generated,

which identifies the mass-to-charge ratio of all ionic

species produced from the modification of the ions selected

by quadrupole one. If quadrupole three is held fixed, a

parent scan (PSCAN) is generated, which identifies the mass-

S
O
U
R
C
E

D
U
A
D

I

(
S
C
A
N
N
I
N
C
)

(
S
C
A
N
N
I
N
C
)

C
O
L
L
I
S
I
O
N

C
E
L
L

B
I

t
E

L
_
_
_
_
_
_
,

.

f

Q
U
A
D

3

D
A
U
C
N
T
E
R

S
C
A
N

I I

o
.

E
.

5
.

(
S
C
A
N
N
I
N
G
)

P
A
R
E
N
T

S
C
A
N

R
E
S
U
L
T

B

A
-
—
—
-
9

A
-
1
4

B
-
l
l

c
"
"
"
’

0
-
1
8

I

N
E
U
T
R
A
L

L
O
S
S

S
C
A
N

F
i
g
u
r
e

1
.
2

3
-
1
3

C
-
l
l

(
S
C
A
N
N
I
N
G
)

T
O
M
S

M
S
/
M
S

S
c
a
n

M
o
d
e
s

to-charge ratio of all ions which produce ionic species of

the mass-to-charge ratio selected by quadrupole three upon

modification. In the third mode, quadrupoles one and three

are scanned simultaneously, usually with a fixed mass offset

producing a neutral loss scan (NSCAN). An NSCAN identifies

all parent ions which undergo modification, producing

products which have either gained or lost a specific mass

fragment.

Since one can generate a daughter spectrum for each

selected parent ion, the triple quadrupole mass spectrometer

provides three dimensions of intensity data (parent ion

mass, daughter ion mass, and intensity). This three

dimensional field can be scanned in various 2-dimensiona1

slices, yielding the MS/MS scan modes described above. In

addition, the values of the various physical entities in the

ion path (source voltages and collision gas pressure, for

instance) can change the spectra. This yields a potential

multidimensional data field.

The TOMS instrument provides useful chemical

information in two ways (2). First, the TOMS instrument can

elucidate the structure of unknown compounds, since the

additional fragmentation step can help to identify fragment

ions in the primary mass spectrum, possibly establishing the

existence of certain substructures in the molecule. Second,

the TOMS is useful in direct mixture analysis. If a method

of ionization is chosen which produces predominately ions

characteristic of the intact molecule (the molecular ion or

7

the protonated molecule), then the first quadrupole can

separate the components of the mixture. Fragmentation and

mass analysis in the third quadrupole can produce

identifying structural information on this component.

Prototype TOMS Instrument

All of the developments in multimicroprocessor control

of a triple quadrupole mass spectrometer described in the

rest of this chapter were conducted on the prototype

instrument in our laboratory. This TOMS instrument consists

of: l) a dual EI/CI Simulscan ion source with an

accompanying Ion Controller/Ion Optics module (8), 2) a

three-element Einzel lens (L1,L2,EXT), 3) three Extrel 3/8-'

inch quadrupoles with l50-QC quadrupole controllers (8), 4)

single-element lenses between quadrupoles one and two (L3)

and between quadrupoles two and three (L4), and 5) a Galileo

Channeltron (9) ion multiplier. The three quadrupoles, the

interquad lenses, and the ion multiplier are arranged in a

removable ”stack” configuration. The TOMS vacuum chamber

has three regions, which are differentially-pumped by

turbomolecular pumps. Before completion of the

multimicroprocessor project, this prototype instrument was

refurbished by replacing homebuilt parts (ion source

controller and central quadrupole) with commercially

available ones and upgrading older parts with newer ones

more amenable to computer control (ion source and quadrupole

controllers).

Comparison studies for a single microprocessor control

system were conducted on an Extrel (8) 400/3 TQMS system.

This system is identical in configuration to the prototype

instrument, except that the vacuum chamber has only two

differentially-pumped regions: the ion source region is

pumped by a turbomolecular pump and the analyzer region is

pumped by a diffusion pump.

Computer Control of the TQMS Instrument

It was obvious from the start of the TOMS project that

only a computer could maintain tight control over all of the

values for the physical devices during the wide range of

possible experiments. Several benefits accrue from a

computer control system. First, the control system can be

easily programmable by the users of the instrument to meet

changing experimental needs. Second, the control system

offers flexibility in the methods of user control. For

instance, the user can change the voltage on a lens by

entering the new value of the voltage into a tabular menu,

using a computer-controlled knob, or issuing a direct

command. Third, the control system can be helpful in

optimizing and keeping track of instrument parameters. For

instance, in real-time, the computer can display information

on the effect of a particular parameter on the ion current

or display peaks widely separated in mass for more accurate

tuning of the instrument. Fourth, the computer can can

control the instrument and generate data very quickly. This

9

speed further allows a large degree of intelligent real-time

control over instrument parameters or experiment selection.

The first computer control system for our TQMS

instrument was based on the SDI-85 microcomputer (10), but

was subsequently replace by an 8085-based microcomputer of

the Newcome-Enke design (11). The Newcome-Enke microcomputer

was the initial development in a long-term design project to

create a modular microcomputer system for scientific

instrumentation (12). The 8085 microcomputer was eventually

replaced with a more powerful 8088 module for the same bus

and, finally, with a distributed processing system

consisting of four 8088 Newcome-Enke type microcomputers,

one master and three slaves (12,13).

The microcomputers themselves were capable of running

many different operating systems or language environments.

Thus, programs written in a conventional high-level language

like BASIC or FORTRAN could have controlled the instrument,

but they have several shortcomings which limit their

usefulness as languages for instrument control. First, an

ideal instrument control language should be fast,

approaching the speed of assembled code, maybe even

incorporating an assembler for time—critical operations.

Both compiled BASIC and FORTRAN are generally considered

slow, because of the inefficient code created by

compilation. Interpretive BASIC is even slower, since the

text for the BASIC programs are interpreted at the time of

program execution. Second, an ideal instrument control

10

language should have an interpretive nature, so that code

can-be easily modified for ease in debugging and trouble

shooting. BASIC can be interpretive, but FORTRAN, being

compiled, is difficult to modify. Third, an ideal

instrument control language should allow the creation of an

application-specific syntax, providing the commands with a

highly mnemonic content specific for the instrument

operations being controlled and appropriate to a user

unfamiliar with programming. Fourth, the ideal control

language should be extensible, that is, the user should have

the ability to create new programs by merely concatenating

predefined commands, allowing him to create sequences and

methods for frequent use. Neither FORTRAN or BASIC is

inherently extensible and the best that can be done for an

application-specific syntax is to give the programs a

mnemonic name.

Instrument control languages can, of course, be

fashioned from assembly-level routines. However, the

assembly-level programming needed to create such an

instrument control language is laborious and time-consuming.

Using a language which has the low-level control features of

an assembler (direct control over registers and memory

locations) with the input/output routines of a higher-level

language allows the programmer to create the instrument

control language much more efficiently. Two common

languages for creating instrument control software are C and

FORTH. C has the advantages of widespread popular support

11

and the abilities inherent in a compiled language, e. g.,

floating~point support. However, C, being a compiled

language, is not easily modified nor is it inherently

extensible. FORTH meets all of the above criteria for the

ideal instrument control language, but it has several

features uncommon in conventional languages. For instance,

all FORTH operations require postfix notation, that is,

mathematical operators follow their arguments, e. g., 2 3 +

would add two and three. Also, FORTH inherently uses a

push-down stack, an area of memory in which numbers are

stored and removed in a last in-first out (LIFO) basis.

Both of these initial microcomputers ran an instrument

control language written by Hugh Gregg called SLOPS

(Symbolic Language Operating System) (14), which was cross-

assembled from a PDP-ll minicomputer (l5). SLOPS was a

minimum system which had a kernel of basic subroutines and

relied heavily on the network with the PDP-ll. SLOPS was an

attempt to create a FORTH-like environment without the

unusual FORTH features mentioned above.

A decision was eventually made to abandon SLOPS in an

attempt to increase the vitality of the system and the ease

with which the system could be maintained and repaired. The

new software control system was based entirely on the

programming language FORTH (16). The choice of FORTH

created a robust environment with interactive extensibility

for quick and easy modification, inherent modularity, a

compiled nature for creating compact code, and an

12

interactive assembler for maximum speed in vital

applications. A flexible software control system for TOMS

was developed for a single microprocessor control system as

the Master’s research of Carl Myerholtz (l7). Myerholtz

further modified the basic FORTH kernel to accommodate the

new multimicroprocessor system as part of his Ph. D.

dissertation (13). This author and Adam Schubert adapted

the single microprocessor TQMS software control system to

the existing multimicroprocessor environment.

The Advantages of Multiprocessing

The TQMS instrument is a textbook example of the trend

towards more and more complex instrumentation. These more

complex instruments place greater demands on their control

systems. This demand, in turn, has fueled a search for

greater computing power in the laboratory at reasonable

costs. However, increasing computer power by purchasing a

single, more powerful processor can be prohibitively

expensive. In general, linear increases in computation

speed increase the cost of the processor more than linearly.

Even with the competition present in the electronics

industry today, the fastest microprocessors can cost tens of

thousands of dollars (l8) and the fastest computers can cost

several million dollars (19). The data system can easily

become the most expensive part of a computer-controlled

instrument. Besides the cost, the larger and more powerful

computers were designed primarily for multiuser,

13

computationally intensive environments and not for real-time

instrument control. Using these types of computers for

instrument control necessitates the design of awkward and

complex interfaces to the instrument itself, further

increasing the cost and possibly lowering the overall

performance of the system.

An alternative approach is to use several less—powerful

computers working together in a distributed processing

environment. This type of environment allows separation and

distribution of tasks among the different processors. If

the overall goal of the multiple processor system has

inherent parallelism, that is, subtasks which can be

performed concurrently, then several advantages result

(Table 1.2). These advantages can be generally classified

as faster execution, independent task execution, and

modularity in both hardware and software. These advantages

occur because separate processors are assigned tasks which

can be executed concurrently and are designed with the

appropriate hardware and software to accomplish the task.

In a distributed processing system, as long as additional

parallelism is exploited, computing power increases linearly

with the addition of processors of the same computing power.

Cost also increases linearly with the addition of extra

processors, at least after the purchase of initial

interprocessor hardware, resulting in a linear increase in

cost with increasing computing power. Again, this only

occurs if additional parallelism is exploited.

14

Table 1.2

Advantages of Distributed Processing Systems

Faster Executigp

Parallel Execution

Less time spent in ”overhead”

Simpler Addition of hardware controllers and

processors

Independent Task Execution

Non-interference of tasks

Elimination of task interleaving programs

Elimination of priority assignment programs

Simpler task program modification

Modularity of Hardware and Software

Consolidation of related tasks

Simpler extension of instrument capability

Simpler debugging and trouble shooting

There are a variety of possible multiple processor

systems. Some systems contain like processors; other

systems contain processors of various types. Some systems

have dynamic load-sharing, which assigns tasks during

program execution; other systems have static load-sharing

with the assignment of tasks occurring in the design of the

system. Multiple processor systems can also be classified by

the manner in which they link their tasks: tightly coupled

if the tasks communicate on the microsecond time scale or

loosely coupled if the tasks communicate on the millisecond

time scale or longer.

Multiple processor systems can also be classified by

their interconnection topology (20). Several system

topologies are shown in Figure 1.3. The fairly simple ring

topology requires only two physical connections for each

processor. Communications can be fairly slow, however,

15

PROCESSING

(’— ELEMENT

COMMUNICATIONS ‘

SWITCH

RING
STAR

%W
INTERPROCESSOR BUS

“MEMORY MASTER SLAVE SLAVE SLAVE

SHARED GLOBAL

MEMORY BUS

Figure 1.3 Multiprocessor Topologies

16

since messages between two processors must pass through all

intervening processors on the ring. The star configuration

uses a switch (either another computer or dedicated

hardware) to connect all of the processors in the system.

Communications for the star configuration can be moderate to

fast, depending on the speed of the switch. Shared memory

is a common interconnection technique in which processors

communicate by placing messages and data in memory that all

processors can access. This is generally a very fast method

of communication and synchronization. In the global bus

configuration, all processors share a common communications

pathway. The global bus is moderately fast; the speed of

communications is limited by the bandwidth of the bus

(21,22).

TOMS Multiprocessor Controller

The multiple processor system designed to control the

TOMS instrument can be classified as a distributed

processing system with equal processors and static load-

sharing. The triple quadrupole multimicroprocessor system

is tightly coupled since much of the synchronization during

scanning occurs through the flipflops and first-in first-out

buffers of a linking and synchronization circuit on the

microsecond time scale. The multimicroprocessor control

system employs the global bus topology, where the four

microcomputers share a common interprocessor bus for

communication. The multimicroprocessor system further

17

specifies one of the processors as the master and the other

three as slave processors. The master has the job of

coordinating the activities of all of the slave processors

and of communicating with the user and various intelligent

peripherals, such as printers and disks.

Three methods of interprocessor communications, beyond

the linking and synchronization circuit, are provided in

hardware. Bulk data or program transfer can be performed by

direct memory transfer (DMT). In DMT, the master places the

appropriate slave on hold and directly writes to or reads

from the slave’s memory. Slave memory actually resides in

the upper half of the master’s address space.

Command transfer (CT), the transfer of commands and

data from the master to the slave, occurs through a series

of first-in first-out (FIFO) buffers. The master places the

command or datum into the appropriate slave’s FIFO buffer

and the slave sequentially reads and executes each command

(specified as a program execution address) or reads and

places each datum on its last-in first-out (LIFO) stack.

The FIFO value consists of 24 hits, the high byte of which

specifies the lower two bytes as data or a command.

A final method of communication is the status bus (SB).

Each microcomputer has a hardware status byte and a software

status byte. Each bit in the status bytes is either defined

in hardware or can be defined in software. The

microcomputer can then write into its own status bytes,

informing all other processors of its status. All

18

processors can read all status bytes. Thus certain bits in

the status byte can be used as communication flags, such as

the signal for the end of a scan. The SB is updated every 4

microseconds in hardware, so there is a certain latency in

using the SB as a flag.

The key to the performance of the multimicroprocessor

control system for the TOMS instrument is the separation of

tasks into separate processors to exploit the parallelism

inherent in scanning a mass spectrometer for data

acquisition. The data transform concepts proposed by

Yourdon and Constantine (23) formed the criteria for

assigning tasks to the various processors. They divided

functions into afferent, efferent, and central. Afferent

functions convert data input streams into an internally

usable format. Efferent functions prepare internal data for

output transmission. Central functions perform internal

operations on the data. In scanning a triple quadrupole

mass spectrometer, controlling all of the device values in

the ion path is an efferent function; acquiring and

formatting ion current data is an afferent function; and

data reduction and interpretation is a central function.

Slave 1, also known as the Ion Path Slave, performs the

afferent function of controlling all physical devices. It

plays a central role in optimizing the conditions of an

experiment- ”tuning” and in scan generation. Slave 1 is,

therefore, provided with eight 12-bit DAC outputs as well as

digital control lines to the ion source controller. The ion

19

source controller maintains the voltages on all of the

regions and lenses of the source. Slave 1 also has access

to remote DAC outputs through a differential transceiver

circuit. The remote DAC outputs control the voltages on the

interquad lenses, as well as all signals to the quad

controllers’ mass command, resolution control, delta mass

control, and quadrupole offset voltage. Slave 1 has 32

Hbytes of memory, enough to permit extensive look-up tables

for tracking devices other than the primary device being

scanned (linked-device scans). In this way, performance of

the instrument can be optimized in software for different

mass regions during the scan itself.

Slave 2, the Reduction Slave, controls the central

function of data reduction and display. It receives device

values for the scanned device from Slave 1 and ion intensity

values from Slave 3, reduces them with a peak-finding

algorithm (24) into peak position/peak intensity pairs, and

stores them in a data buffer. The master can then retrieve

the data with a DMT. Slave 2 can also perform real-time or

offline graphics display. The user can then see the data

that he or she is collecting as it is accumulating, as well

as check up on the peak-finding algorithm by matching

actually acquired data with peak data on the real-time

display. Slave 2 is equipped with a NEC 7220 graphics

controller (25), an Intel 8087 numeric coprocessor (10) for

complex numerical calculations, and 48 Hbytes of memory to

support a large data buffer.

20

Slave 3, the Detection Slave, performs the afferent

functions of data acquisition and formatting. It controls

an intelligent data acquisition circuit designed by Dr.

Bruce Newcome (26). This data acquisition circuit converts

a selected analog voltage (the preamplified ion current) to

a 20-bit integer intensity value. The data acquisition

circuit also performs a user-selectable number of

conversions and returns the 20-bit average. Slave 3 has 16

Ebytes of memory, an interface for the data acquisition

circuit, an 8087 numeric coprocessor, and a versatile

counter/timer circuit used in ion counting. Slave 3

performs the vital role in dual mode acquisition which will

be described in Chapter 5.

Figures 1.4 and 1.5 show the timing of the sequence of

functions for two types of scanning and data acquisition in

the multimicroprocessor system: sweeps (Figure 1.4), which

acquire raw intensity data, and scans (Figure 1.5), which

reduce the raw intensity data to mass spectral peak

positions/peak intensities (peak-finding). In a sweep,

almost all functions have a predecessor-successor

relationship and there is little inherent parallelism.

Slave 1 sets the new value for the scanned device, notifies

Slave 3 that it has done so, writes the new value to Slave

2, and waits for a signal from Slave 3 to proceed. When

Slave 3 receives notice that the scanned device has been

stepped, it acquires a new intensity value, notifies Slave 1

that the acquisition is done, writes the new value to Slave

d
m
m
z
m

a
L
o
w

n
e
w
n
m
c
o
«
u
s
~
m
m

u
n
w
a
fi
e

i
f
?

”
l
a
c
e
i
w
l
s
o
e
l
w
l
s
o
e
i

3
0
m
m
m
U
O
¢
m

3
0
2
3

2
0
9
—
0
:
0
3
.

_
2
0
.
5
3
5
0

:
—
(
m
2
0
.

I
O
N
P
A
T
H

D
E
T
E
C
T
I
O
N

R
E
D
U
C
T
I
O
N

S
I
N
G
L
E

P
R
O
C
E
S
S
O
R

r
a
m
s
m

'
9
5
a
m

1

P
—
u
u
—
«
l

F
i
g
u
r
e

1
.
5

T
i
m
i
n
g

R
e
l
a
t
i
o
n
s
h
i
p
s

f
o
r

a
N
S
C
A
N

22

23

2, waits for the signal that Slave 2 has received and

processed the new intensity value, and then waits for

notification that there is a new device value. Slave 2

receives device values from Slave 1 and intensities from

Slave 3 and stores them in a data buffer. The progression

for a sweep is: update the scanned device, acquire an

intensity value, and store both in a data buffer. This is

highly linear, so no speed advantage will be gained from a

multiple processor environment (27).

In a scan, data reduction or ”peak-finding” is a time-

consuming task, but it can be performed in parallel with the

setting of ion path values or ADC conversion. The only

limitation to its being a wholly parallel function is the

necessity of not overflowing the input buffers of the

linking and synchronization circuit, thus losing data in the

process. Thus, Slave 3 must wait for Slave 2 to acknowledge

receipt of the intensity datum, in order to keep all

processors ”in step.” The activities of Slave 1 and Slave

are the same during a scan as during a sweep, but Slave 2

performs peak-finding and only stores peak data in the data

buffer. Data reduction is still the main limitation to

greater scan speeds, even in a multiple processor system.

Since much data reduction can be performed in parallel,

there is a distinct increase in scanning speeds for the

multimicroprocessor control system over the single

microprocessor control system (27).

24

2. Completion of the Multimicroprocessor Control System .

' The project for this thesis was, in theory, simple: to

take the existing interprocessor software and hardware, as

well as the first-approximation multiple processor triple

quadrupole control system of Adam Schubert, and make them

work. A second goal was to infuse a degree of reliability

into a system made unreliable by its complexity and

thousands of handmade solder connections. Also, with the

increased computing power of the multimicro control system,

several new features were made practical, such as complex

linked-device scanning and real-time graphics.

Making the Multiprocessor System Work

At the start of the project, the theory of the TOMS

multiprocessor system had been worked out by Newcome and

Myerholtz. The interprocessor computer, including many of

the instrument interfaces, was complete, although many of

the modules had fallen into disrepair. The interprocessor

software was also complete. Very little application

software for the multiprocessor system had been written,

although the methods of user control developed for the

single processor control system were merely duplicated in

the multiprocessor environment. Furthermore, much of the

original equipment on the prototype instrument had been

replaced, but not tested. Basically, no module (software,

computer electronics, or instrument hardware) could be

assumed to be working at the start of this project.

25

Completion of the multiprocessor system required careful

testing of select modules and then using those modules to

discover and eliminate malfunctions in other parts of the

control system in a repetitive operation.

Several new modules were added to the multiprocessor

computer to complete the control system. A 12-bit DAC

circuit was added to the Ion Path Slave to control a Model

216 Granville-Phillips Pressure Controller (28)'for

admitting collision gas into the central quadrupole. An

interface for the intelligent data acquisition circuit

mentioned earlier was designed and replaced the older 12-bit

ADC and formatter circuits on the Detection Slave. This

circuit further improved the scanning speed of the

multiprocessor system. Also, a pulse-counting circuit was

designed to allow the Detection Slave to handle the ion

counting necessary for dual-mode acquisition (Chapter 5).

The linking and synchronization circuitry on the

Detection Slave had to be modified from the original plans

in order to allow addition of an 8087 numeric coprocessor.

The original circuit latched the synchronizing strobes from

the.Ion Path and Reduction Slaves and fed them to the

microprocessor’s TEST line. The microprocessor could then

execute a WAIT instruction, halting the processor until the

TEST line went high, indicating that the strobe had been

received. This was the fastest way of waiting for the

strobes, but the 8087 uses the TEST line to synchronize the

two processors. In order to accommodate the 8087, the

26

latched strobes are now fed into a parallel input/output

port, which can be read by the processor until the

appropriate bit is high.

Another problem that remained to be resolved was the

protocol for ending a scan (or sweep). The three slave

processors are intricately linked during the scan, but only

the Ion Path Slave has a definite limit to the number of

steps in its scanning loop. The other slaves wait in an

indefinite loop, testing for the end-of-scan signal after

each step in the scan. At first, it was thought that the

Ion Path slave would give a general end-of-scan signal to

all slaves through the status bus after the last step in the

scan. In practice, the Reduction Slave would finish one

step too soon, the last point would be missed, and the

Detection Slave would be left waiting for confirmation of

receipt of the last intensity value. The solution was to

have the Ion Path Slave signal the Detection Slave through

its software status byte and, then, have the Detection Slave

signal the Reduction Slave through its software status byte.

After processing the last datum, the Reduction slave

notifies the Master processor that the scan is finished

through its software status byte.

Another problem which had to be solved was mass

calibration. In mass calibration, the control system

determines the DAC value (for the mass command input to the

quadrupole controller) which corresponds the maximum

intensity of a given mass spectral peak. Up to 15 such

27

peaks are selected by the user (usually the major peaks

present in the spectrum of a mass calibrant). The resulting

mass calibration table consists of the calibration masses

and their corresponding DAC values. The final DAC value

determined for each mass is the average value obtained from

10 sweeps over the mass spectral peak. Thus, mass

calibration consists of up to 15 sequences of 10 sweeps.

After the calibration sweeps for each peak, the user has the

option of repeating the sequence, accepting the determined

value, or entering a desired value manually. Each mass

sweep is synchronized by the linking and synchronization

circuitry and the end-of-scan sequence discussed above.

Each processor is also in a loop to execute the mass sweep

10 times. Within the loop, each slave is coordinated by the

detection slave which writes the index of the loop (the

number of the current mass sweep, 1-10). Each slave reads

the Detection Slave’s status byte, in order to avoid

starting the next sweep before the other slaves are ready.

After the ten sweeps are finished the Reduction Slave

notifies the Master processor through its software status

byte. The Master then reads the 10 DAC values which

correspond to the point of maximum intensity for the 10

sweeps from the memory of the Reduction Slave, completing

the calibration for one peak.

The final step in the completion of the project was the

determination of the maximum utilization of each slave in

the scanning sequence. First, the number of averages that

28

could be performed for a given scan rate were empirically

determined and are shown in Table 1.3. Furthermore, upon

analysis, the Ion Path Slave was found to have extra time in

the scan sequence, allowing the development of the linked-

device sweeps described later.

Improvement in Scanning Speed

The multimicroprocessor control system, together with

the prototype triple quadrupole mass spectrometer,

affectionately known as the U. S. S. Enke, now form a viable

and powerful TOMS system. Only subsequent users will

determine its place in the Enke research program, but the

increase in scanning speed and flexibility in adding new

features is clear. Tables 1.3 and 1.4 show the resulting

increase in scan speed over the existing Extrel 400/3 (8)

Multibus-I control system at equivalent signal acquisition

times (number of averages), as well as the increased

averaging over the Extrel control system for equivalent scan

speeds. For further comparison, Finnigan Corporation’s new

state-of—the-art triple quadrupole mass spectrometer, the

TSQ-70 (29) advertises a scan rate of 4000 AMU/second for 10

digital samples per AMU. Tables 1.3 and 1.4 show that the

multimicroprocessor system can scan 4 times as fast as the

single processor Extrel system and yet provide sixteen times

the averaging (an increase in signal-to-noise ratio of

four). For equivalent amounts of averaging, the

multimicroprocessor system scans 10 (128 or 256 averages) to

29

25 (1024 averages) times as fast as the Extrel control

system.

Table 1.3

Multimicroprocessor Scanning Functions

Rate Pts/S Amu/S Time/Pt # Averages/Pt

0 10000 1000 100 us 16

l 5000 500 200 32

2 2500 250 400 64

3 1000 100 1 mS 128

4 500 50 2 256

5 250 25 4 1024

6 100 10 10 2048

7 50 5 20 4096

8 25 2.5 40 4096

9 10 l 100 4096

10 5 0.5 200 4096

11 2.5 0.25 400 4096

12 l 0.10 1 S 4096

Table 1.4

Multibus-I Scanning Functions

Rate Pts/S Amu/S Time/Pt # Averages/Pt

2 2500 250 400 uS 1

3 1000 . 100 1 mS 4

4 500 50 2 16

5 250 25 4 32

6 100 10 10 128

7 50 5 20 256

8 25 2.5 40 512

9 10 l 100 1024

10 5 0.5 200 2048

11 2.5 0.25 400 4096

12 l 0.10 l S 4096

13 0.5 0.05 2 4096

14 0.25 0.025 4 4096

Direct comparison of the multimicroprocessor control

system to the Extrel system can be misleading. Several

improvements have been added to the multiprocessor system

that are not present on the Extrel single processor system,

namely the intelligent data acquisition circuit. The

Multibus I-based Extrel data system must address its

30

instrument interface through the slow L-Bus (the peripheral

bus for Extrel control systems). Also, some high-level

FORTH routines were rewritten in FORTH 8086/8088 assembler,

in order to regain some of the speed lost in interprocessor

communication. On the other hand, the 5 MHz 8086 Matrox

processor on the Extrel system is faster than the 5 MHz 8088

microcomputers used for the master and reduction processors

and about as fast as the 8 MHz 8088 microcomputers used for

the Ion Path and Detection processors, because it has a 16-

bit external data bus as opposed to the 8-bit external data

bus of the 8088. Thus, communications outside the

microprocessor take place twice as fast with the 8086 as

with the 8088 at equivalent clock speeds. The data in

Tables 1.3 and 1.4 represent scanning speeds imposed by a

rate synchronization circuit- the AMU timer.

Troubleshooting a Multiprocessor System

Liebowitz and Carson (30) define reliability as ”the

probability that a system will operate for a specified time

interval. . . . This reliability is determined by its

hardware design, software design, and ease of operation.”

Our experience has also added construction to this list.

Once the software is verified as working, it remains working

and does not add to the unreliability of the system. In

point of fact, though, once the aged hardware was brought up

to speed, the initial cause of unreliability was software

bugs. Once these bugs were fixed, hardware malfunctions

31

again became the primary contributor to system

unreliability. There are elements needed in a multiple

processor system to improve recovery in the event of

hardware failure: detection, isolation, and correction.

First, a problem must be detected. Unfortunately, for

a scientific control system, the operator must be the

detector for many kinds of instrument and computer failure.

For instance, if the data acquisition circuit continually

returns null intensity values, this could be a legitimate

scan with all zero data or a malfunctioning circuit.

Without further information, the computer cannot determine

the legitimacy of the null intensity values, so the operator

must. Most multiple processor systems are run in continual-

operation, which makes self diagnosis more important than in

the case of the scan-and-stop operation of the

multimicroprocessor control system. The master does monitor

the status of all slaves through a variable which the slave

updates with a unique value upon reset. If the slave is not

operating, the value will not be updated. If the slave is

operating, but incorrectly, or if it malfunctions later on,

it will usually overwrite the correct value in the variable

with an incorrect one. Once all slaves are ostensibly

working, the most common mode of failure is the ”hanging” of

the system, in which the system does not respond to input

from the keyboard. This could be caused by the occurrence

of an unusual event, such as noise on the bus, that threw

one of the processors out of synchronization. If so,

32

resetting the slaves or the entire system should restore

everything to normal. Otherwise, a chronic problem could

exist which must be diagnosed.

Second, the problem should be isolated. A number of

programs have been written to help isolate the problem. In

addition, a manual has been written to help present and

future users to cope with the complexities of detecting and

repairing malfunctions in the multimicroprocessor system.

This process should isolate the cause of the problem to a

specific processor and a specific circuit.

Third, the problem must be corrected. The debugging

manual provides hints for this process. Most multiple

processor systems use the correction schemes of redundancy,-

where spare processors assume the duties of the failed

processor, or replacement, where a huge stock of identical

circuits is kept to replace failed ones. These approaches

have the advantage of being fast, but the disadvantage of

being too costly for an academic laboratory. Replacing

malfunctioning parts with parts from other Newcome-Enke Bus

computers is a viable method of isolation, but keeping a lot

of spare parts is not practical for our laboratory.

New Features

Two new features are now possible with the

multimicroprocessor control system. The Ion Path Slave

computer was not fully utilized in the usual scanning cycle

and spent a lot of time waiting for the signal from the

33

detection slave to proceed. This extra time allows more

complex scanning procedures to be used, such as updating

more than one or two devices, that is, linked-device

scanning. Now, new scan modes allow up to eight devices to

be linked in a scan procedure. Unfortunately, real-time

calculations of these values is not possible. However, all

of the values can be calculated beforehand and stored in a

RAM buffer. The processor then updates the devices by

sequentially accessing the values in the buffer.

The FORTH code for these new scans can be found in

Appendix A. The user controls the algorithm for scanning

selected devices through an offline interface. The user

first selects the number of devices to be linked, then he

specifies the actual devices. Finally, for each device, he

can specify a number of mass-device value pairs, that is,

the value of that device at a particular value of the mass

filter being scanned. The interface then fits these points

to a spline curve and calculates the value of the device at

integral mass-to-charge ratio values (every 64 DAC units).

Specifying the scanning function in this way allows the user

to determine experimentally the optimum value for a

particular device at a particular mass-to-charge ratio value

and use this value to create a complex scanning function

without having to create a complex analytical function for

the experimental phenomenon. This allows the user to

optimize the tune of the instrument for different mass

ranges, rather than compromising between conditions

34

favorable for high-mass sensitivity and conditions favorable

for‘low-mass sensitivity. These tables of calculated device

values are stored on disk and written into the Ion Path

slave’s memory with a DMT. When the user specifies a

linked-device scan or sweep (LSWEEP, LISCAN, L3SCAN, etc.)

The scanning routines automatically update the selected

device along with the mass filter being scanned.

The second feature is real-time scanning graphics (the

FORTH code for these routines can be found in Appendix B).

During a real-time graphics sweep or scan, all intensity

data are displayed on the graphics monitor as they are

received by the reduction slave. This allows the user to

check on the peak-finding algorithm as well as receive real“

time information on the scan. Real-time sweeps also display

their data in real-time. Unfortunately, displaying this

increased real-time visual information takes extra time and

limits scan rates. The real-time scans and sweeps add the

real-time graphics task to the other tasks that the

Reduction Processor must handle during a scan, namely,

receiving device value and intensity data and reducing or

storing that data. Furthermore, graphics display in itself

is a very time-consuming task, even with a graphics

controller.

3. Conclusion

A multimicroprocessor control system has been fully

implemented. It provides a maximum scan speed 1.9 times

35

faster than the Extrel 400-3 control system. The

multimicroprocessor has been made reliable and recovery

possible with the implementation of processor self-checking,

debugging routines, and the writing of a debugging manual.

This multiprocessor system has made possible complex linked-

device scanning and real-time scanning graphics, useful

tools for the mass spectrometrist.

This work demonstrates the possibilities inherent in

multimicroprocessor scientific control by exploiting

inherent parallelism in scanning an instrument.

Multimicroprocessor control provides a relatively

inexpensive way of increasing scientific computing power

and, after the initial idea of Newcome, Myerholtz, and Enke,

many commercial instruments, such as the TSQ-70 now feature

multimicroprocessor control systems. The drawback to

multimicroprocessor computers are their inherent complexity

and increased unreliability compared to single processor

systems. Nevertheless, multiprocessing is an attractive

solution to the need for faster and more complex control of

scientific instruments. This need will only increase as

scientists devise more complex experiments requiring

computer control, develop instruments capable of providing

data at greater bandwidths, and pursue applications

requiring maximum utilization of the ion signal available.

36

REFERENCES

l. R. A. Yost, C. G. Enke, D. C. McGilvery, D. Smith, and

J. D. Morrison, Int. J. Mass Spectrom. Ion Phys., 30 (1979)

127.

2. R. A. Yost and C. G. Enke, Anal. Chem., 51 (1979) 1251A.

3. R. A. Yost and C. G. Enke, Org. Mass Spectrom., 16

(1981) 171.

4. J. D. Morrison, K. Stanney, and J. M. Tedder, J. Chem.

Soc Perkin Trans. II, 1981, 838-841.

5. J. D. Morrison, K. Stanney, and J. M. Tedder, J. Chem.

Soc. Perkin Trans. II, 1981, 967-969.

6. D. C. McGilvery and J. D. Morrison, Int. J. Mass

Spectrom. Ion.Phys., 1978, 28, 81-92.

7. M. L. Vestal and J. H. Futrell, Chem. Phys. Lett., 1974.

28, 559-560.

8. Extrel Corp., Pittsburgh, PA.

9. Galileo Corp., Sturbridge, MA.

10. Intel Corp., Santa Clara, CA.

11. B. H. Newcome and C. G. Enke, Rev. Sci. Instrum., 55

(1984) 2017.

12. B. H. Newcome, Ph. D. Dissertation, Michigan State

University, 1983. .

13. C. A. Myerholtz, Ph. D. Dissertation, Michigan State

University, 1983.

14. H. R. Gregg, Ph.D. Dissertation, Michigan State

University, 1986.

15. Digital Equipment Corporation, Marlboro, MA.

16. Forth, Inc., Hermosa Beach, CA.

17. C. A. Myerholtz, M. S. Thesis, Michigan State

University, 1982.

18. N. Mokhoff, Computer Design, 26(4) (1987) 63.

19. N. Mokhoff, Computer Design, 26(6) (1987) 53.

20. G. A. Anderson and E. D. Jenson, Computing Surveys,

7(4) (1975) 197.

37

21. R. E. Dessy, Anal. Chem., 54(11) (1982) 1167A.

22. R. E. Dessy, Anal. Chem., 54(12) (1982) 1295A.

24. M. Kristo, in preparation.

25. NEC Electronics, San Mateo, CA.

26. B. H. Newcome, private communication.

27. A. J. Schubert, Ph.D. Dissertation, Michigan State

University, in preparation.

28. Granville-Phillips Corp., Boulder, CO.

29. Finnigan Corp., San Jose, CA.

30. B. H. Liebowitz and J. R. Carson, Multiple Processor

Systems for Real-Time Applications (Englewood Cliffs, N. J.:

Prentice-Hall, Inc., 1985).

CHAPTER TWO

CONTROL OF A TRIPLE QUADRUPOLE MASS SPECTROMETER

WITH A NOVIX FORTH PROCESSOR

1. Introduction

The choice of FORTH as the language in which to write

the software control system for TOMS provided an unexpected

opportunity for further gains in scanning speed by using the

Novix NC4000 Forth processor (1,2). The NC4000 is a l6-bit

microprocessor that is optimized for the direct execution of

FORTH. The version of the NC4000 used in the creation of

this control system operates at a clock speed of 6 MHz, but

executes one instruction per clock cycle for an overall

processor speed of 6 million hardware instructions per

second (MIPS). Since, in many instances, several basic

FORTH instructions can be combined into one hardware

instruction, the processor speed is specified as 8 million

FORTH instructions per second.

The Novix Beta board development system for the NC4000

can be purchased for less than 83600. Figure 2.1 shows the

price and performance of other well-known, high-powered

computer systems. If it were shown in Figure 2.1, the

NC4000 would be classified as a general-purpose, multi-

application, uniprocessor minisupercomputer (based on its 6

MIPS performance). The expected price for such performance,

based on the data in Figure 2.1, would be $50,000 to

$500,000. The remarkable price/performance ratio for the

Novix NC4000 allows one to create a fast, flexible

38

N
N
U
M
M
W
U
U
U
M
M
T
W
H
W
B
W
H
H
’

I
W
M
w
E
M
T
U
U
U
W
M
R
H
F
fl
M
M
N
fl
E

m
u
m
s

T
Y
P
E
S

1

W
W
W

1
m
m

m
m

T
B
N
T
L
Y
-
W
P
L
E
O

i

i

s
m
n
m
a
u
u
u
n
m

N
O
J
a
a
n
m
s

>
fl
D
M
W
I

I
N
N
-
S
M
M

 F
M

M
W
M
W
P
H
M
U
M
H
M
E
H
.

fi
b
fl
fl
l
fl
m
s

'
w
-
m
u
m
h

S
J
M
A
M
M

<
fl
m
fl
q
m

1
#
M
I
H
M

.

s
a
w
-
s
u
n
:

 <
5
N
M
M
I

1
-
2
M
W
S

S
a
l
-
“
H
I

--—‘------

 m
m

A

F
i
g
u
r
e

2
.
1

1
’

R
e
l
a
t
i
v
e

p
r
i
c
e

a
n
d

p
e
r
f
o
r
m
a
n
c
e

c
h
a
r
a
c
t
e
r
i
s
t
i
c
s

o
f

s
e
v
e
r
a
l

c
o
m
p
u
t
i
n
g

s
y
s
t
e
m
s
.

(
E
l
e
c
t
r
o
n
i
c

N
e
w
s
,

O
c
t
.

1
3
,

1
9
8
6
)

39

40

laboratory control system for a moderate price.

Furthermore, most of the systems mentioned in Figure 2.1

were not designed for instrument control, but for intensive

calculations. Often their input/output functions, which

comprise a large part of the task of a control processor,

are quite slow.

Some applications cannot effectively use higher

performance control systems; no new capabilities would be

added with such systems. However, MS/MS control systems can

use as fast a control system as possible for several

reasons. First, the system can then have the ability to

perform new experiments not presently possible because of a

need for a high degree of computer control in a short span

of time. For instance, real-time experimental optimization

and selection is now possible with the NC4000; known

experimental facts and rules together with the MS/MS

information currently being acquired can be used to change

conditions dynamically or select future experiments to

elucidate the structure of an unknown compound in real-time.

Second, a faster MS/MS control system can better

characterize samples that do not last long in the ion

source, such as chromatographic eluents or flash pyrolysis

products. Thirdly, the less time spent making calculations,

performing peak-finding and other housekeeping details, the

more time is available to acquire data, given the same scan

rate. Obviously, the greater fraction of time the control

system spends on data acquisition, the better quality data

41

the mass spectrometrist will receive and the more

effectively the sample will be used. The experimental

benefits of control system speed are summarized in Table

2.1.

Table 2.1

Benefits of a Fast MS/MS Control System

Better characterization of transient samples

(GC/MS/MS, Py/MS/MS, etc.)

More efficient utilization of the ion current

Real-time experimental optimization and selection

(also depends on software)

More efficient use of an operator’s time

(also depends on software)

Less operator fatigue

(also depends on software)

2. The Novix Approach

History of Computer Architectures

In general, large increases in processor performance

also mean large increases in processor price. The

development of high-level computer languages has

traditionally followed the development of the sets of

machine-level instructions for the particular

microprocessors (or processors) on which they were to run.

These sets of machine-level instructions tended towards

larger sets with more complex instructions, in order to

reduce program development time (each machine-level

instruction accomplishes more of the overall task) and

42

conserve program memory. This progress forced compilers

(programs to translate high-level languages, such as

FORTRAN, into machine-executable code) to become ”smarter,"

that is, more aware of the variety of machine-level

instructions available and how to use them to create the

most efficient code. However, compilers often tended to be

simpler than the task required and produced unoptimized

code, i. e., code which accomplished a task more slowly than

necessary, by having unneeded machine-level instructions or

by using awkward programming constructions. Recently,

however, multipass compilers'have become more efficient for

certain processors and control systems (languages for the

IBM PC (3), for instance).

Lately, the R180 (Reduced Instruction Set Computer)

approach has come into vogue, especially for supercomputers.

In RISC, the computer uses a smaller set of instructions

which accomplish basic tasks, such as arithmetic

instructions, register—to-register movement, register-to-

memory movement, etc. The RISC computer is optimized for

speedy execution of these instructions, since some studies

have shown that a large portion of the computer’s time is

spent on such basic instructions. So, even though the R180

computer may accomplish the complex and infrequent

instructions more slowly than the CISC computer (Complex

Instruction Set Computer), it more than compensates for the

loss in time by executing the simple, but frequent,

instructions very quickly. Furthermore, RISC allows the

43

compilers themselves to become simpler and more efficient,

since they only have to handle a small number of

instructions. Nevertheless, hardware development preceded

software development for the RISC computers as well (4,5).

There are, of course, other approaches to faster

computers. Design of bit-slice computers (6) for special

applications is one approach. In fact, Metaforth Computers

of Great Britain (7) have designed a FORTH processor based

upon bit-slice technology. Bit-slice has the advantage of

tailoremaking the processor to a given task, giving it great

speed. However, designing a bit-slice computer for a

specific task will obviously take longer than buying a given

microprocessor off the shelf and, eventually, any bit-slice'

processor will be limited by the speed of discrete

transistor-transistor logic (TTL) (or whatever the chosen

technology) components. Processors with large scale

integration (LSI), on the other hand, tend to execute

functions more quickly than the same function emulated in

discrete integrated circuits.

NC4000 Architecture

The Novix NC4000 embodies the architecture of an

already existing high-level language, FORTH, in an

integrated circuit. In other words, the NC4000 runs FORTH,

rather than a typical assembly language, as its native code.

The NC4000 has been called ”a stack machine,” since FORTH

itself is a stack-oriented language. A stack is an area of

44

memory used for temporary storage of various values. The

data on the stack are normally placed and removed in a last*

in first-out (LIFO) manner. The NC4000 is also optimized

for subroutine calls (one every clock cycle) and subroutine-

threaded code is its normal mode of operation. This means

that new programs for the NC4000 are compiled as a series of

addresses for the execution of its component programs.

FORTH words (programs) consist of concatenated words which

have been previously defined or are part of the basic kernel

of instructions. To execute FORTH on other processors, the

subroutine-threaded code is not inherent and must be created

in the software by the FORTH compiler and interpreter.

The NC4000 has simultaneous access to both its data and

return stacks through separate 16-bit data buses and 8-bit

address buses, apart from the l6-bit address and data bus

for main memory (Figure 2.2). Most FORTH instructions

implicitly operate on items on the data stack, while the

return stack is used to direct the return from subroutine

calls. Thus, optimization of the access to these two

stacks, which normally exist in main memory on the typical

microprocessor, is essential to the NC4000’s performance.

Furthermore, the top two data stack elements are actually

registers on the NC4000, making operations on those two

elements especially fast.

Finally, the bit patterns within each instruction

provide the actual control signals to the various components

of the microprocessor, e. g., the arithmetic logical unit

45

Bus port

5 l 16

NC4000A

Return 16 16 Data

stack stack

m:-

Oata stack

(top two

elenmnts)

16

Main

may

Figure 2.2 Block diagram of the NC4000 showing the

separate data paths to main memory, its data stack, and its

return stack (2).

46

(ALU) or the address multiplexer (Figure 2.3). The

elimination of internal microcode, which is standard on

conventional microprocessors, further increases the speed of

the NC4000.

3. System Description

Hardware

The Novix BetaBoard Forth computer is an evaluation

board, which includes the NC4000 microprocessor, 32 Hwords

(l word = 16 bits) of fast memory (35 nS), data and return

stack memory (256 words each), two RS-232 serial ports, a

SCSI (Small Computer Systems Interface) port, and a

timer/counter for performance measurements. The system

further provides two sets of connectors for stackable

interface modules which allow access to vital processor

signals (address and data lines, system clock, etc.). Thus,

the Beta board only needs a moderately complex interface

board in order to control the EL 400/3 triple quadrupole

mass spectrometer.

The Novix Beta board comes equipped in an IBM PC (3)

support configuration, in which a serial link to the PC

allows the PC to serve as a terminal and file server. The

first step in preparing the Beta board to control a triple

quadrupole mass spectrometer was to create a development

system by generating the appropriate code by target

compilation and programming a set of ROMs with this code in

47

LI

I.._&_\,_J

 I"

; 1 8.10717. ISLISHmlaid!

[.[.].[.L A.

Ammmbmmmmi L——smum)5353”

——mms

azwum

Susana

—Retumtrommibromtne.EXIT

“um —-CopyTlntoN

or
grmpv __) rummage»:

3 —4 'JL' 1?".2"4 + . f 8

5 TXORY 01 Nwloihczrymu

6 Y-T 10 Minuet-divisorreglster

7 Y 11 WW

Figure 2.3 Block diagram of the NC4000 which shows the

direct control that the latched instruction exercises over

the ALU and registers (2).

48

order to create the stand-alone configuration. Then,

equipped with a DTC 520 DB (8) disk controller, a hard disk

drive, and a floppy disk drive, all controlled through the

SCSI port, the Beta board was ready for hardware and

software development.

Several functions had to be provided on the Novix-

triple quadrupole mass spectrometer interface board in order

to mimic the existing Extrel 400/3 control system. First,

an interface was needed to the Extrel L-Bus, a peripheral

bus which contains all of the digitaléto-analog converters

(12 and l6-bit), an analog-to-digital converter with 8

channel multiplexer, and several parallel ports. The NC4000

can now control all of the triple quadrupole mass

spectrometer’s physical devices through the analog and

digital outputs on the L-Bus by using the L-Bus interface on

the Novix TOMS Control Board. The schematic for the L-Bus

interface is shown in Figure 2.4.

The mass spectrometer interface board needed an

interface to the intelligent data acquisition circuit

designed by Dr. Bruce Newcome (9) in order to acquire

intensity data efficiently. The data acquisition circuit

allows parallel operation with the control computer through

use of a status byte and/or an "acquisition-done” interrupt.

The data acquisition interface, whose schematic is shown in

Figure 2.5, now allows the NC4000 to control this data

acquisition circuit.

49

F d

Figure 2.4 Schematic of the L-Bus Interface.

50

see A A0 , so

I”: m Al “let
up M I u

93% 4
AS __JLpg

as? n. “ J! g:

Dt%#* ._JL A6 "

I”: JL
M in

IAO

UM

em

II“

t.

$1
4m

I-1..D

Figure 2.5 Schematic of the interface to the intelligent

data acquisition circuit.

51

The NC4000 is provided with an interface, shown in

Figure 2.6, to the hardware peak-finding circuit, which is

more fully described in Chapter 4. Basically, this circuit

allows rapid, parallel processing of intensity data to

determine peak positions and peak heights. This circuit can

operate in parallel with NC4000, like the data acquisition

circuit, through its status byte and interrupt feature.

This parallelism allows the NC4000 to calculate the next ion

path value while the peak-finding circuit is processing the

current datum.

The NC4000 has access to an AMU-timer circuit in the

Mass Spectrometer Interface. This AMU-timer allows the

computer to synchronize each point in the scan with the

user-selected scan rate. The computer cannot acquire the

next point until the AMU-timer interrupt has been set. This

feature is important not only for keeping the scan rate

constant throughout a scan, but also to correlate scan

number with time in a sequence of scans. The schematic for

the AMU-timer.is shown in Figure 2.7.

The NC4000 triple quadrupole mass spectrometer

interface board has an interface for ”softknobs,” optical

rotary encoders which can be configured in software to

control any digitally controlled device with variable

resolution. Softknobs are used for manual variation of

digitally controlled devices, as would normally be performed

to tune the instrument. The schematic for the softknobs

interface is shown in Figure 2.8.

52

J1
Figure 2.6 Schematic of the interface to the hardware

peak-finder circuit described in Chapter 4.

F
i
g
u
r
e

2
.
7

c
i
r
c
u
i
t
.

S
c
h
e
m
a
t
i
c

o
f

t
h
e

r
a
t
e

s
y
n
c
h
r
o
n
i
z
a
t
i
o
n

53

..
U
2
2

‘33
.

FIRM E "in"!

J
5

1
,
3
,

.
.

.
1
9
'
G
N
D

2
4
.
2
6
.
2
0
.
3
0
-
+
5
v
o
u
s
.

A
.
.
.
W

F
i
g
u
r
e

2
.
8

S
c
h
e
m
a
t
i
c

o
f

t
h
e

s
o
f
t
k
n
o
b
s

i
n
t
e
r
f
a
c
e
.

54

55

The mass spectrometer interface has a parallel port,

whose schematic is shown in Figure 2.9, dedicated to

transferring data to the host PDP 11-23 (10) minicomputer

for further processing and eventual archival storage. A

MM52167 real-time clock (11) is provided, which has a

battery back-up. This allows the correct time to be stored

with all experimental data without resetting the clock after

every power-up. Finally, the AMD 9513 (12) pulse-counter

circuit, whose schematic is shown in Figure 2.10, is

provided for ion counting. Thus, the NC4000 control system

has the capability for dual-mode detection, which is fully

described in Chapter 5. The 9513 counter/timer further

provides the capability for higher resolution timing than

the AMU-timer provides.

The most important part of the Novix TOMS Control

Board, though, is the actual interface between the Novix

NC4000 and all of the separate interfaces described above.

The essential problem is to enable the fast timing of the

NC4000 to operate compatibly with the slower timing of the

peripheral devices. For instance, the NC4000 is provided

with fast (35 nS) memory, because the NC4000 places a memory

address on the bus during the high portion of the clock

cycle and expects to read or write the corresponding datum

on the next rising edge. Most of the peripheral devices on

the interface board cannot meet this timing requirement.

The Novix-mass spectrometer interface (Figure 2.11) seeks to

minimize the generation of control signals through software

56

” .

- II ' "-

I I—

_

m- -_

~'—.'.ss=m

‘r—v'"

L__._m ’l_"""

AL s ,, jar—"n
'-

' M

at 8255A -_,
., _-

P's—1"
”‘r—a"

'“r'_""'
_m

~_.

m .

0.

J3

Figure 2.9 Schematic of the parallel port for uploading

data to a host minicomputer.

A
M
D

9
5
1
3

a.
..

«Na

5

5;

T

U
I

'-—
-==

57

E E I! E

in: iii! ii m 25 is 3: is 3:

F
i
g
u
r
e

2
.
1
0

S
c
h
e
m
a
t
i
c

o
f

t
h
e

p
u
l
s
e
—
c
o
u
n
t
i
n
g

c
i
r
c
u
i
t
.

Figure 2.11 Schematic of the interface between the NC4000

and the rest of the mass spectrometer control circuits.

 t EHHHHHIM

iiiiiiii E

¢

¢

1‘

1')

'7‘

59

,<

9' g§

- C

83335 "“8

 iijflfij g _

60

Ianipulation. For instance, the counter and serial ports

provided with the Novix BetaBoard are addressed through a

series of latches, in which you write to an address to send

a control signal high, wait an aaount of tine appropriate to

the tiaing require-ents of the peripheral device, and then

write to the sale address to send the control signal low.

The Novix-mass spectroneter interface utilizes JCSlS, a

chip select generated on the Novix BetaBoard and available

on the peripheral bus, which selects addresses 0000-07998.

This aeaory selection is further divided into three

categories: 1) writing to the interface bus (0000-03993), 2)

reading frou the interface bus (0600-07998), and 3) reading

the interface’s status byte (0400-05993). The interface’s

status byte contains the status bit or interrupt bit fro-

all of the appropriate interfaces. One error in the

prototype of the NC4000 is that interrupt functions can only

be enabled at tiles when the processor is not engaged in

several tasks (lultitasking) In hany instances,

licroprocessors can respond lore quickly by reading a status

byte than by servicing an interrupt due to the extra tile

needed to respond properly to an interrupt. Therefore, to

aonitor the conpletion of a certain activity, the NC4000

reads the status byte and lasks off all other bits with a

logical AND function.

In order to write to a peripheral device, the NC4000

accesses an address in the range of 0000-03993, causing the

corresponding data bits 0-15 and address bits 0-10 to be

4
.
-
.
,
.
_
_
_
-
.
.

‘
.
4

61

latched on the Novix TOMS Control Board. In this way, the

appropriate data and address are temporarily stored for the

peripheral devices to process at their own rate. Selection

signals (chip selects) for the various interfaces are

decoded by a PALZOLIO (13), the specifications for which are

shown in Appendix C. The chip selects and the write signal

(/WR) itself are only valid for a period of time specified

by enable signals. These enable signals (active low) are

selected by a jumper from any one of eight pulse widths from

a 74L8164 shift register. The length of the pulse width

determines the time for which the chip selects or the write

strobe are valid. The falling edge of the enable pulse

starts one clock cycle after writing to the mass

spectroneter interface and lasts from 100-800 as (typically

500 n8 for a chip select; 400 n8 for /WR). The enable

signal for /WR should be selected as at least 100 as less

than the enable for the chip selects, since Iany chips latch

the data on the rising edge of the write strobe. Obviously,

the NC4000 cannot write to the interface within 600 nS of

the last write or conflicting signals will be generated. So

far, this has not been a problem.

The NC4000 reads from the lass spectroneter interface

board in two steps. First, it writes the selected address

on the interface board, except that bit 8 (RD-lWR) is high.

This translates to the original write address plus lOOH.

Since bit 8 is high, the PAL recognizes that a read

Operation is in progress and holds the given chip select low

62

indefinitely. Inverting the value of bit 8 provides a read

signal (/RD). The selected peripheral device responds to

its chip select and /RD and places the appropriate datun on

the interface data bus. Second, the NC4000 reads from

address 06003, which transfers the contents of the interface

data bus onto the Novix’s data bus.

The Novix-mass spectrometer interface circuit keeps the

Novix convention of word addresses. The NC4000 can write

bytes to a peripheral’s address with no problem, because the

upper byte will simply be ignored. However, when reading a

byte from a peripheral address, the upper byte must be set

to zero to read the correct value.

£912.23:

The software for the Novix control system is

essentially that which Dr. Carl Myerholtz (14,15) wrote for

the Extrel 400/3 control systems except for the following

four essential categories of modifications. .

First, all of the existing control system software

which was originally written in 8086/8088 assembly language

had to be rewritten in high—level FORTH. This was fairly

easy, certainly much more easy than writing high-level FORTH

software in assembly language.

Second, the original control system software had been

written in polyFORTH I, whereas the NC4000 FORTH kernel was

consistent with polyFORTH II. Thus, all inconsistencies

between polyFORTH I and II had to be resolved. Some

63

differences were only in nomenclature; for instance, the

word 3ND was renamed UNTIL to comply more fully with FORTH-

79 standards. Other changes were more subtle. Software

which took advantage of certain known structures in

polyFORTB I (16) had to be rewritten when those structures

were changed in polyFORTH II (16).

Third, the NC4000 is a full 16-bit microprocessor, with

no provisions for byte addressing in hardware. Therefore,

byte operations take place in software at a considerable

time disadvantage. Byte operations take about twice as long

as word operations on the NC4000. Furthermore, only the

first 32 [bytes of memory can be addressed as bytes. Bach

word of memory has two addresses: a word address and two

byte addresses (twice the word address and twice the word

address plus one). The words CELL and BYTE convert from one

address form to the other. Therefore, all byte operations

which could easily be word operations were rewritten as

such, costing the user one unused pseudo-byte of memory.

Other operations, such as string operations, had to be

rewritten to convert word addresses to byte addresses and

use existing character operations on the NC4000.

Fourth, new routines were written for the data

acquisition circuit and the hardware peak-finder, which did

not exist on the Extrel 400/3 control system. Routines were

also written to control the AMD 9513 pulse-counting circuit.

64

All of the revised code described above resides on the

Novix control system hard disk, as well as on floppy disk

back-up copies and hardcopy output.

4. Results

The Novix NC4000 Forth computer is now capable of fully

controlling a triple quadrupole mass spectrometer. Tables

2.2, 2.3, and 2.4 show the scanning speed and the amount of

averaging available for each speed with the old Multibus I

control system (Table 2.2), the multimicroprocessor system

described in Chapter 1 (Table 2.3), and the new Novix

control system (Table 2.4) without the hardware peak-finder.

The Novix control system not only operates at faster scan

speeds than the Multibus control system but also provides 64

times the averaging for equivalent scan speeds. The new

data acquisition circuit is responsible for some of this

increase over the Multibus system. This data acquisition

circuit allows the user to select a number of averages which

are factors of two (1, 2, 4, 8, etc.). Although this leads

to a significant increase in the amount of averaging for the

Novix system over the Hultibus system, it is comparable to

the multimicroprocessor system for most scan speeds. The

Novix control system would require twice as much time for

data acquisition as the multimicroprocessor system in order

to perform more averaging. This condition was met only for

the 50 and 100 amu/S scan rates.

65

Table 2.2

Multibus-I Scanning Functions

late Pts/S Amu/S Time/Pt O Averages/Pt

2 2500 250 400 us 1

3 1000 100 1 mS 4

4 500 50 2 16

5 250 25 4 32

6 100 10 10 128

7 50 5 20 256

8 25 2.5 40 512

9 10 l 100 1024

10 5 0.5 200 2048

11 2.5 0.25 400 4096

12 l 0.10 l S 4096

13 0.5 0.05 2 4096

14 0.25 0.025 4 4096

Table 2.3

Multimicroprocessor Scanning Functions

Bate Pts/S Amu/S Time/Pt O Averages/Pt

0 10000 1000 100 uS 16

1 5000 500 200 32

2 2500 250 400 64

3 1000 100 1 m8 128

4 500 50 2 256

5 250 25 4 1024

6 100 10 10 2048

7 50 5 20 4096

8 25 2.5 40 4096

9 10 l 100 4096

10 5 0.5 200 4096

11 2.5 0.25 400 4096

12 l 0.10 1 S 4096

66

Table 2.4

Novix Control System Scanning Functions

Rate Pts/S Amu/S Time/Pt # Averages/Pt

2 20000 2000 50 us 1

3 10000 1000 100 16

4 5000 500 200 32

5 2500 250 400 64

6 1000 100 1 ms 256

7 500 50 2 512

8 250 25 4 1024

9 100 10 10 2048

10 50 5 20 4096

ll 25 2.5 40 4096

12 10 l 100 4096

13 5 0.5 200 4096

14 2.5 0.25 400 4096

The ability of the control system to scan the triple

quadrupole mass spectrometer as fast as the rates listed in

Table 2.4 does not suggest the quality of the data at those.

scan rates. Several problems can occur at fast scan rates.

First, the quadrupole controllers may not be able to change

the voltages on the quadrupole rods as quickly as the

control system changes the mass command input. Second, the

transit time of the ions through the quadrupole fields will

limit scan speeds. At lower velocities (low kinetic

energies) the ions will more slowly traverse a given

quadrupole, during which time the electric fields will be

changing. This may possibly lead to reduced transmission

and/or degradation of peak shape. Of course, at higher ion

velocities, the velocity effects will be reduced but each

ion will spend less time in the quadrupole fields. The mass

spectral resolution in a quadrupole increases with the

square of the number of RF frequency cycles that the ions

67

experience in the quadrupole. Thus, higher velocities will

lead to decreased resolution of the peaks in the mass

spectrum. Third, the bandpass of the amplifiers in the

system (the preamplifier and the voltage amplifiers of the

multiamp circuit) may limit scan speeds if it is

insufficient to avoid reducing peak intensity and degrading

peak profiles. This effect can be corrected by using higher

bandpass amplifiers; however, they generally provide lower

gains and pass noise of higher frequencies than lower

bandpass amplifiers. Therefore, after determination of the

scan rates possible with the Novix control system, it was

important to verify the characteristics of the spectra

obtained with each scan rate.

Figures 2.12 through 2.15 show the peak profiles and

intensities available with the present multiamp system for

scan rates 2 through 5 respectively. Each figure shows the

peak profiles for ions of different mass-to-charge ratios

(m/z 28 from nitrogen (N2’) and m/z 69, 131, and 331 from

perfluorokerosene (PFK)) with ion energies of 5 eV in the

scanning quadrupole (quad 1). Ion energies of 5-15 eV are

common for the first quadrupole in a triple quadrupole mass

spectrometer operating at 20 eV collision energy. The data

for each scan are unaveraged, thus, any change in the peak

profiles are due to scan speed, not increased averaging at

the lower scan rates. Several features are clearly evident.

First, the peak profiles taken at faster scan rates show

lower resolution (increased peak widths) conpared to mass

68

3592 90240

'—

5 '2
:3

O

o 8

O

o 8
< <

o l A O l J_|__ 1

20 30 4O 60 70 a)

hill ' WI

45254 '401

U) A U)

l- +-
2: :Z

:1 :3

O O

C) C)

L) (J

Cl C:

< <

o J , ol 4 . ,

1 2O 1 3O 1 40 320 330 340

M/Z M/2

Figure 2.12 Unaveraged mass sweeps of m/z 28 (N2‘) and

m/z 69, 131, and 331 from PFK taken at 2000 AMU/S with the

multiamp circuit.

69

use 1 24864

J 1 l
:2 :2
Z Z

:3 :3

O O

O 0

0 0

C3

9: <

E j 1 _ l 1 #J iL _.

020 so 4o 060 70 so

MIZ 3 W2

61504 ' 814

(D h (D

'2' '2

8 8
U 0

U 0

C)

9: <

°1L"'2o A 130 L 140 0330 ' fir ‘ 3'70

W2 - W2

Figure 2.13 Unaveraged mass sweeps of m/z 28 (N2*) and

m/z 69, 131, and 331 from PFK taken at 1000 AMU/S with the

multiamp circuit.

70

«24
140864

4
’

A
D
C
C
O
U
N
T
S

m h

p.

2:

:3

O

U

U
a .

<

330 5 WZ

Figure 2.14 Unaveraged mass sweeps of m/z 28 (N2’) and

m/z 69, 131, and 331 from PFK taken at 500 AMU/S with the

multiamp circuit.

71

‘TSOII 1841M54

F U)
p.

:Z

i; :3

C)

(J (J

gs C)

C)

<

t . J1. ._ _.
o 30 4o °60_ 70 so

“nu: ma

IE5!!! 1927

d 03
p.

:Z

2)

(D

l 0

2: (J

C)

‘ < Ma. A. J L . (,wa . .
1 20 1 30 1 40 320 330 3.40

M/Z' M/Z

Figure 2.15 Unaveraged mass sweeps'of m/z 28 (N2+) and

I/z 69. 131, and 331 from PFK taken t 250 , .

multia-p Circuit. 8 AMU,S "lth the

72

profiles taken at slower scan rates. Figure 2.16 shows the

relationship between resolution and scan speed for each ion.

Second, peak profiles taken at faster scan rates show

slightly decreased ion intensities than those taken at

slower scan rates. Figure 2.17 shows the relationship

between ion intensity versus scan rate for each ion. Third,

the peak maxima appear at progressively greater mass-to-

charge ratios as the scan speed is increased. Fourth, the

data for m/z 331, which is a lower intensity peak, clearly

show that faster scan rates better reject low frequency

synchronous noise than slower scan rates.

The decreased resolution and intensity of the mass

spectral peaks, as well as the peak-shift described above,

could be caused by either insufficient amplifier bandpass or

by the effects of ion transit times. However, reducing the

ion transit time by increasing the ion energy did not cure

the peak-shift, but merely decreased the resolution further,

as expected from the decreased number of RF cycles

experienced by the ions. Increasing the bandwidth of the

amplifier, first by eliminating the multiamp circuit

(bandwidth 1 kHz) and then by replacing the present

preamplifier (bandwidth approximately 3 kHz) with a wideband

preamplifier (nominal bandwidth 100 MHz), established that

limited bandwidth causes both the decreased resolution and

much of the shifting of peak positions.

Figure 2.18 shows data obtained with the wideband

amplification system at scan rate 2 (2000 amu/S), which can

73

Figure 2.16 Plot of the resolution of each peak versus

scan speed for m/z 28 (Net) and m/z 69, 131, and 331 from

PFK.

NOIUTIOSEH

4
0
0
7

3
0
0
4

2
0
0
J

1
0
0
J

F
i
g
u
r
e

2
.
1
6

XIII

M
/
Z

3
3
1

M
/
Z

1
3
1

M
/
Z

6
9

M
/
Z

2
8

”L—

‘
8
6
0
‘

1
1
2
b
0
r

I
'
1
6
0
0
'

S
C
A
N

S
P
E
E
D

(
A
M
U
/
S
)

I
r

T

2
0
0
0

1

74

75

Figure 2.17 Plot of the intensity of each peak versus

scan speed for m/z 28 (N2*) and m/z 69, 131, and 331 from

PFK.

MISNElNI NOI

m
_

F
i
g
u
r
e

2
.
1
7

1
.
O
E
+
0
5
—
J

‘
~

"
“
“
F

L
O
E
+
O
4
4

76

1
0
0
0
-
0
4
.
»
—
i
t

m
/
z

2
8

m
/
z

6
9

m
/
z

1
3
1

m
/
z

3
3
1

T
r

.
r

r
e

.
r

.
.

r
1

.

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

S
C
A
N

S
P
E
E
D

(
A
M
U
/
S
)

IIIE

1
o
o
.
o
¢
.

.
e
r

.
f

I
fi

77

I

g 1 I g 1 f ‘ .

mv-e ’ . I? . L 0.00000 I'd i N ' ~ 1““
120 120 130 130 320 325 350 as

“Ass—m RATIO m—m—m RATIO

Figure 2.18 Unaveraged mass sweeps of m/z 28 (N2‘) and.

m/z 69, 131, and 331 from PFK taken at 2000 AMU/S with a

high bandwidth (100 MHz) preamplifier system.

78

be compared with Figure 2.15. This amplification system

consists of a 100 MHz noninverting preamplifier with a

transresistance of 100 kV/A in tandem with a 5 MHz inverting

amplifier with a gain of 30. Figure 2.18 also shows that

higher frequency noise increases greatly with the increased

bandwidth. The intensity of the peaks in Figure 2.18 are

comparable to those in Figures 2.12-2.15, since the

intensity values lack multiamp amplification (256x). This

data also demonstrates a slight mass-dependent peak shift,

caused by the finite time required for the ions to reach the

ion multiplier from the scanning quadrupole. At the faster

scan speeds, the control system will be sampling the ion

current of previous mass values delayed by the transit time'

through quadrupoles 2 and 3. This flight time is a function

of mass, ion energy, and path length (whether quadrupole l

or 3 is being scanned) and ranges between 40 to 150 uS at 10

eV for ions from mass 28 to 331 (1 to 3 mass steps). If

desired, the control system can calculate corrections for

this peak shift or can recalibrate at fast scan speeds.

These experiments show that the TOMS instrument can provide

usable data even at the fastest scan rates of the Novix

control system.

The only instance where the speed of the quadrupole

controllers appears to be a problem is in rapid switching of

mass values. For example, if the current mass value of a

quadrupole is much different from the starting value of a

scan, then the software allows a settling time of 10 mS for

79

that first value. Otherwise, ghost peaks appear as the

quadrupole controller tries to change the voltages to the

starting value throughout the early part of the scan.

Figure 2.19 shows the timing relationship for a neutral

loss scan (NSCAN) on the Novix control system. The

unusually large amount of time (18 uS)spent acquiring an

unaveraged datum (expected time is 4 uS) from the byte

input/output of the data acquisition board. The Novix

computer must acquire the 3 bytes of the 20-bit datum as

three 16-bit words, mask off the high byte, and combine the

lower two bytes into one sixteen bit word. The data

acquisition and peak-finding together consume 70 X of the

scan cycle. Chapter 4 will describe how the hardware peak

finder cuts this time drastically.

5. Conclusion

The Novix NC4000 FORTH computer has been used as the

basis for an extremely fast and efficient TOMS control

system. The control system allows scan rates heretofore

unobtainable on the EL 400/3 triple quadrupole mass

spectrometer. Furthermore, at slower scan rates, the

increased speed of the control system allows greater amounts

of signal averaging, or, alternatively, the implementation

of intelligent data collection algorithms. This control

system was relatively inexpensive to build, yet provides

superior speed (and, thus, flexibility for new experiments)

5
0

u
s

A
C
Q
U
I
R
E

o
,

7
P
E
A
K

é
—
—
-
—

1
8
1
1
8

-
—
—
-
—
>

/K

F
i
g
u
r
e

2
.
1
9

N
o
v
i
x

T
O
M
S

c
o
n
t
r
o
l

s
y
s
t
e
m
.

T
i
m
i
n
g

r
e
l
a
t
i
o
n
s
h
i
p
s

f
o
r

a
n

N
S
C
A
N

f
o
r

t
h
e

80

81

and inherent ease of repair to multiprocessor systems like

the one described in Chapter 1.

82

REFERENCES

l. Novix Inc., Cupertino, CA.

2. J. H. Golden, C. H. Moore, and L. Brodie, Electronic

Design, March 21, 1985.

3. International Business Machines Inc., Boca Raton, FLA.

4. P. Wallich, IEEE Spectrum, 22 (1985) 38.

5. E. Basart, Computer Design, July 1985.

6. J. Mick and J. Brick, Bit-S]ice.M3croprocessor Design

(St. Louis: McGraw-Hill Book Co., 1980).

7. MetaForth Computers Ltd., Hull, England.

8. Data Technology Corporation, Santa Clara, CA.‘

9. B. H. Newcome, personal communication.

10. Digital Equipment Corporation, Marlboro, MA.

11. National Semiconductor Corp., Santa Clara, CA.

12. Advanced Micro Devices, Sunnyvale, CA.

13. Monolithic Memories Inc., Sunnyvale, CA.

14. C. A. Myerholtz, M. S. Thesis, Michigan State

University, 1984.

15. C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C.

G. Enke, Instruments and Computers, 3 (1985) 11.

16. Forth Inc., Hermosa Beach, CA.

CHAPTER THREE

A FAST, RELIABLE SOFTWARE

PEAK-FINDING ROUTINE

FOR MS/MS

l. Peak-Finding

A typical scientific experiment, called a ”scan,”

consists of sequentially changing the value of one variable

in a system, while recording the intensity of another,

dependent variable. Under computer control, the experiment

consists of repetitively setting the value of the

independent variable, usually a physical device controlled

by a digital-to-analog converter, and recording the value of

the intensity of the dependent variable. The dependent

variable is usually a physical phenomenon, which is first

converted into the analog domain (a voltage or current) by a

transducer and then into the digital domain by an analog-to-

digital converter (ADC). These repetitive measurements

continue until the computer has scanned the device over a

range specified by the user. The information contained in a

scan normally consists of the increases and decreases (peaks

.and valleys) in the intensity versus the independent

variable. Chromatograms from liquid or gas chromatography,

absorption and emission spectra in optical spectroscopy or

mass spectra in mass spectrometry typify data obtained from

scans.

Many times, however, what the scientist really uses is

not the full array of device-value/intensity pairs (the full

83

84

peak profiles), but rather the maximum intensity of the

peaks in the scan and the device values at which they

occurred. Thus, he would rather see the raw sequential data

reduced to a more convenient and manageable form. This gives

rise to the necessity of formulating algorithms for the

computer to perform ”peak-finding.” Besides merely

extracting the most useful information in the raw data for

the user, the peak-finding algorithm greatly reduces the

amount of data that must be stored. This can be used to both

increase storage speed and decrease storage space.

Peak-finding is, by no means, a trivial task. There

are several conditions which can cause even experts in an

instrumental technique to disagree on the existence or

nonexistence of a peak in a given scan. First, lack of

intensity can cause peaks to fade into background. Second,

resolution between adjacent peaks often can be very poor,

that is, one has extremely small valleys for given peak

heights. The variable resolution in quadrupole mass

spectrometry is shown by the two mass sweeps in Figure 3.1.

Third, electronic noise can create misleading signals.

Fourth, instrumental conditions can create bizarre peak

shapes, which can, for example, suggest the presence of

multiple peaks where really only one exists.

Figures 3.2 and 3.3 give commonly-found peak shapes on

our instrument, a triple quadrupole mass spectrometer (1).

Such peak-shapes are usually indicative of bad ”tuning" of

the instrument, but finding the perfect tune can be elusive.

SHWKXDOOV

2
6
4
2
8
.
j
- A_

'w

d
b
5
4
5
3
;
5
7

S
M
N
L
r
P
B
W
I
R
E
fi
l
M
H
J

1
7
8
4
2
.
1

SUMOO€KN

S
M
M
L
I
W
fl
K
-
M
H
K
M
W
B

 L

*
4

0
.
0
0
0
0
0
4

5
0

5
4

l
j

L
L

1
I

5
8

U
N
E
F
J
O
-
G
W
W
Q
E
F
M
M
O

F
i
g
u
r
e

3
.
1

r
e
s
o
l
u
t
i
o
n

b
e
t
w
e
e
n

p
e
a
k
s

i
n

T
O
M
S
.

.,§

[3

2
0
0
7
6
.
-

7

SHNOOO€KN

4
D

O
D
M
E
O

5
4
5
5
5
4
5
7
5
5

S
M
M
L
I
W
fl
K
-
M
E
K
E
D

l
l

i
I

M
N
N
F
J
O
~
G
W
W
B
E
F
M
M
O

T
h
r
e
e

m
a
s
s

s
w
e
e
p
s

s
h
o
w
i
n
g

t
h
e

v
a
r
i
a
b
l
e

85

sumoo:xw SUMOOOGV

2
2
6
5
6
.

M
E
D

S
H
H
F
K
P

M
I

E 1

0
.
0
0
0
0
0

6
5

0
0

H
M
S
—
K
F
G
H
N
K
E
I
W
U
W

F
i
g
u
r
e

3
.
2

5
6

5
'
7

5
'
5

5
'
9

5
5

5
7

5
'
8

M
A
S
S
—
T
O
—
C
H
A
R
G
E
R
A
n
o

M
E
S
-
T
O
-
G
V
R
G
E
I
U
M
O

S
K
E
W

R
I
G
H
T

S
K
E
W

L
E
F
T

sumoooov

6
7

I
.

0
.

C
o
m
m
o
n

p
e
a
k

p
r
o
f
i
l
e
s

f
o
u
n
d

i
n

T
O
M
S
.

j 5
9

86

W
D
E

N
N
G
D
W

5
3
8
2
.
0

SUMOOCMN

SDW001KN

0
.
0
0
0
0
0
r

t
t

i
1

0
.
0
0
0
0
0

.
J
:

1

6
5

0
0

6
7

6
0

6
8

5
3

5
4

5
5

u
A
s
s
-
T
o
-
C
H
A
R
G
E
m
n
o

M
A
S
S
—
T
O
—
C
H
A
R
G
E

R
A
T
I
O

H
O
R
N
S

N
O
I
S
E

S
P
l
K
E
S

87

1
4
5
3
9
.

2
7
9
.
0
0

sawmozxw

SDWMO€XN

a
s

2
'
7

i
s

a
s

a
n

3
0

3
1

'3
'2

3
3

3
4
-

F
i
g
u
r
e

3
.
3

C
o
m
m
o
n

p
e
a
k

p
r
o
f
i
l
e
s

a
n
d

a
n

e
x
a
m
p
l
e

o
f

n
o
i
s
e

s
p
i
k
e
s

f
o
u
n
d

i
n

T
O
M
S
.

Further experiments, in which usually static parameters such

as the resolution control are varied, can help clarify the

existence of peaks. However, before undertaking further

experiments, it is necessary to know that a problem does

indeed exist. In other words, access to the raw data which

is being reduced is also needed. However, the algorithm

operates as a black box to the user, into which raw data

disappears and from which only the processed results appear.

There are very few clues in the reduced data on which to

base an opinion of whether extraneous or missing peaks are

real or an artifact of the algorithm. Users can be quite

demanding in their expectations of the peak-finding

algorithm which causes the algorithm to become an easy

scapegoat. A practical definition of a good peak-finding

algorithm is: a sequence of mathematical or logical steps

which processes raw data and indicates a peak in every

instance that the user would, if he were to examine the raw

data, and in no other.

The programmer must first decide whether the peak

height or the peak area is a more appropriate measure of the

peak intensity. This is, of course, dependent on the

application. For many applications, the peak height is the

appropriate measure of signal intensity. Even in

applications such as chromatography where peak area is more

characteristic of intensity, peak height can often give more

reproducible results, depending on the method of area

calculation (2). Peak height is one appropriate measure for

89

mass spectrometric intensity and so my algorithm searches

for the peak maximum, rather than calculate the peak area,

although it could be easily modified to do so. Finding the

peak height is also faster and easier to program. A related

problem is whether to calculate the peak position as the

device value at which the maximum intensity occurs or

whether to make a centroidal calculation. The essential

issue here is which measurement of peak position gives the

more repeatable value scan to scan, since the mass scale is

calibrated on a frequent basis. No conclusive proof has

been offered, so the programmer generally chooses the method

of calculating peak position which complements his method of

finding peak intensity. For peak heights, the device value'

at the peak height is the logical way to calculate peak

position.

The programmer of a peak-finding algorithm has further

to choose between real-time processing or post facto

processing. Post facto processing involves gathering all of

the raw data in a scan and then performing peak-finding.

This has the advantages of random access to every piece of

data, allowing more sophisticated algorithms such as

correlation functions (3,4) to be employed, and relief from

overly critical timing requirements. My experiments show

that correlation functions have limited utility in triple

quadrupole mass spectrometry, since correlation functions

measure the correspondence of the current peak profile to a

reference peak profile yet triple quadrupole peaks can vary

90

widely in shape. In addition, correlation functions do not

deal readily with signal offsets without some sort of high-

pass digital filter.

The time that it takes to perform peak-finding in post

facto processing will not influence the rate of scanning,

but it will influence the cycle time from scan to scan. The

disadvantage of post facto peak-finding is that large data

buffers must be used to store all data points in a scan. As

an example, our data system requires 8 bytes of memory to

store one datum point: 2 bytes for device value, 2 bytes for

peak width and flags, and 4 bytes for intensity. For

storing a full peak profile with equally spaced device

steps, only 4 bytes would be really needed, but would

require calculation of the device value for each intensity

value before listing or displaying the data. There are

typically 10 points per mass unit and a mass range of 1000.

Thus, at least 40,000 bytes of memory would be needed to

store the raw data for a single scan. Since we use Intel

hardware (5), this buffer would be in extended memory and so

wouldbe awkward and slow to address.

Real-time peak-finding has complementary advantages and

disadvantages. It reduces greatly the need for large memory

buffers. For instance, one would expect, at most, 1000 peaks

in the typical mass spectrum. Thus one requires 8000 bytes

for storage of a processed spectrum instead of at least

40,000 bytes for storage of a spectrum prior to processing.

Main memory can usually support a buffer this large,

91

depending on the size of the application code. Since one

has access only to the current piece of data and, depending

on the algorithm, certain selected pieces of previous data,

less sophisticated algorithms must be used. The magnitude

of the noise cannot be easily calculated, for instance.

Background levels rarely change greatly on a day-to-day

basis for a given scan type, however, so the user can enter

a threshold value before the scan, below which peaks will

not be found.

The time spent in performing peak-finding will

obviously affect the fastest scan rate possible, since peak-

finding is performed after the acquisition of each datum.v

Thus, one desires the peak-finding algorithm to execute as

fast as possible. However, one would expect faster scan-to-

scan cycle times for real-time algorithms, since they merely

move the peak data to permanent storage after the scan.

Post facto algorithms must perform all peakéfinding after

the scan and then move the data to permanent storage.

2. Instrumentation and Software

The algorithm described in this Chapter was written for

application in the control systems of the two triple

quadrupole mass spectrometry (TOMS) instruments in our

laboratory. One control system, controlling an Extrel 400/3

triple quadrupole mass spectrometer (6), has a Matrox 8086

CPU card in a Multibus I bus system. The other control

system is the multimicroprocessor system described in

92

Chapter 1 with one master and three slave 8088

microprocessors in a homebuilt system of Newcome-Enke design

(7). The algorithm resides in the Reduction Slave whose

task is to perform real-time peak-finding and to display

graphics. Both systems run the 8086/8088 polyFORTH I

kernel. The multimicroprocessor runs a distributed-

processing FORTH, modified from polyFORTH (8), and both

systems run a FORTH-based software control system for the

TOMS instrument (9). The algorithm was written in high-

level polyFORTH I, but syntax appropriate to the FORTH-79

and FORTH-83 standards, with double-length extensions, was

used.

Recently, the algorithm was also installed on a control

system featuring the Novix NC4000 (10) running polyFORTH II

(11) by merely resolving the differences between the byte-

addressing of the 8086/88 FORTH and the word-addressing of

the NC4000 FORTH. This control system was described fully

in Chapter 2.

3. The Algorithm

Some applications use post facto peak-finding and

several such algorithms are available (3,4,12,13). I chose

to use real-time peak-finding in the control of our triple

quadrupole mass spectrometer, but there are fewer reports in

the literature about algorithms of this kind (14,15,16).

The three most important decisions in writing a peak-finding

algorithm are: l) the conditions that must be met before the

93

algorithm starts looking for a new peak, 2) the conditions

that must be met in order to update the maximum intensity

for the current peak and 3) the conditions that must be met

in order to indicate that a peak is present (peak

termination criteria). These three aspects should be

implemented with as little dependence as possible on peak

shape or day-to—day variations in peak widths or heights.

Also, some immunity to noise spikes should be included. The

functions in my real-time peak-finding algorithm which

address these needs are summarized in the flow chart of

Figure 3.4 and are discussed below.

Looking for a New Peak

Most algorithms start looking for the maximum intensity

of a new peak immediately after finding the old one. When

looking for a new peak, however, the previous peak must be

allowed to reach threshold or the valley between the two

peaks. If the previous peak has not terminated before the

peak-finding algorithm starts looking for a new one, the

tail of a wide peak may be incorrectly interpreted as

another peak. This leads to the phenomenon known as peak-

splitting.

My algorithm does not monitor the absolute intensity

alone, but also the difference between the current and

previous intensities (the increases and decreases in

intensity). Thus, the algorithm first compares the current

and previous intensities to determine whether the intensity

94

INTENSITY

INC?

LAST

some P1 "°

UP INC?

NO WIDE

NOUG

7

"0 ABOVE

THLD?

s I 1

UPDATE STORE

MAX PEAK

CONTINUE J

SCAN

Figure 3.4 The flow of decision processes in the current

peak-finding algorithm.

95

is increasing or not (labeled ”IS INTENSITY INC?” in Figure

3.4). At least two increases in intensity (not consecutive)

must occur before the algorithm starts to search for the new

maximum, i.e., a minimum of 3 consecutive or 4

nonconsecutive points with an upward trend. After a peak is

found, therefore, the intensity will necessarily reach

threshold or its minimum intensity before a new peak search

begins. Again, this is especially important when a large

peak is followed by a much smaller one, since it avoids

splitting the large peak’s tail, possibly overwhelming the

signal of a smaller peak in the same region. The

algorithm’s requirement for two increases (labeled ”UP

ENOUGH?" in Figure 3.4) instead of just one, attempts to

avoid false triggering by noise fluctuations on the downside

of the previous peak. Technically, this is accomplished by

requiring that the variable UPFLAG, which measures the

number of intensity increases for the current peak, be

greater than one in order to update the maximum again.

Updating the Maximum

Generally, a peak-finding algorithm will test each

point to find the point of maximum intensity in a peak. The

exception to this in my algorithm, as mentioned previously,

is allowing the intensity to reach threshold or the valley

between two peaks before starting to test for the new

maximum, since the intensity of the tail of the previous

peak may be more intense than the maximum of the following

96

peak. If the intensity of the peak is currently decreasing,

but was increasing on the previous datum (the variable +LAST

was set), then the previous point was a local maximum, by

definition. If such a local maximum has a value greater

than the current value for the maximum intensity of the peak

(stored in the variable MAX-PEAK), then the value of the

previous point becomes the new value for the maximum

intensity. Therefore, if a peak is currently being

monitored (UPFLAG greater than 1) and the previous point was

a local maximum with an intensity greater than the current

value of MAX-PEAK (labeled ”GREATER THAN MAX?” in Figure

3.4), then my algorithm updates the maximum (labeled "UPDATE

MAX” in Figure 3.4). (MAX-PEAK then becomes the intensity

of the previous point and XMAX, the associated device value,

becomes the device value for the previous point.)

Peak Termination

when terminating a peak, the peak-finding algorithm

should be sure of three things. First, the algorithm should

ascertain that the maximum intensity of the current peak has

been reached. This could be accomplished by comparing the

current intensity to some fraction of the maximum intensity

or to a user-set threshold, although the algorithm may

become more sensitive to negative noise spikes.

Alternatively, the algorithm could verify that the basic

trend of the peak is downward, that is, that the intensity

has been decreasing over the last few points. Second, the

97

algorithm should determine that the peak is wide enough to

constitute a real peak and not a noise spike. ”Hide enough”

is a relative term which will vary from application to

application and may vary from experiment to experiment.

Third, the algorithm should make sure that the intensity is

significant enough. For a real—time algorithm, the peak

intensity should be compared to a user-set threshold. This

threshold should approximate the background offset plus the

background noise in the system, or should be large enough to

reject small peaks in which the user is not interested.

Therefore, in my algorithm, the peak is terminated if

the following three conditions are satisfied: 1) there have

been at least two consecutive decreases (the peak is

currently decreasing and the variable +LAST is cleared-

labeled ”LAST PT INC?” in Figure 3.4), 2) the current width

of the peak (kept track of in the variable POINTS) exceeds

the user-set minimum contained in the variable PNIDTH

(labeled ”WIDE ENOUGH?” in Figure 3.4), and 3) the maximum

intensity (the variable MAX-PEAK) is above the threshold

(labeled ”ABOVE THLD?” in Figure 3.4). The minimum

practical value for PNIDTH is 4 device steps, since there

must be at least two increases to start looking for a peak

and at least two decreases to terminate the peak. Thus,

setting PNIDTH at 3 or less does not increase the

sensitivity of the algorithm to narrower peaks. If a peak

is found, the maximum intensity and its associated device

98

value, along with the peak width and any flags, are moved to

the data buffer and all peak-finding variables are zeroed.

Further Notes on the Algorithm

The flow of the software which implements the peak-

finding algorithm is shown in Figure 3.5. Besides the

implementation of the three important functions discussed

above, the software takes care of the details discussed in

the following paragraphs.

'Nhen the intensity is increasing, the algorithm merely

notes the fact by increasing UPFLAG, setting +LAST and

proceeding (labeled as ”GOING UP” in Figure 3.4 as well).

Thus, while intensity is increasing, very little time is

spent on peak—finding.

The first increase in intensity also starts the width

counter (the variable POINTS). Otherwise, when POINTS is

equal to zero, a peak has been found recently and the

criterion for looking for a new peak has not been satisfied,

so POINTS is not increased.

The algorithm concludes by updating YPREV, the previous

intensity value. Using THRESHOLD as a screen for new data

(data below THRESHOLD are not processed) would speed up the

algorithm quite a bit, but would interfere with the tracking

of the increases and decreases of intensity. This is

especially important when a peak starts below THRESHOLD and

ends above it.

99

e
n
t
i
n
g

t
h
e

i
m
p
l
e
m

s
o
f
t
w
a
r
e

o
w

o
f

t
h
e

t
h
m
.

T
h

f
1

r
r
e
n
t

p
e
a
k
-
f
i
n
d
i
n
g

a
l
g
o
r
i

3
.
5

100

The FORTH code which implements this algorithm can be

found in Appendix D. For increased speed, I have

implemented the algorithm in FORTH Assembler for our 8086

and 8088 microprocessors. For Intel enthusiasts and other

interested parties, this code is also given in Appendix D.

In some respects, the algorithm was developed for final

implementation in assembly language. Thus, instead of using

the stack, my peak-finding algorithm uses VARIABLEs for

storing values, making the code easier to understand. Using

variables makes the algorithm execute more slowly in high-

level FORTH, but not in FORTH Assembler. Assembly language

routines access the stack and other memory locations with

equal speed.

Comparison With Other Real-Time Algorithms

Few descriptions of real-time peak-finding algorithms

can be found in the literature. Most of the work in this

area has been done by scientific instrument manufacturers

who consider their algorithms proprietary. The actual code

for their algorithms can be hard to obtain, although the

user’s manual for the instrument itself can hint at some of

the features of the algorithm in its discussion of user-

controlled variables. The few algorithms that can be found

in the literature do not tend to be the major focus of the

paper, but merely a sidelight. Hopefully, the increasing

popularity of digital signal processing and chemometrics

101

will help to focus attention on this most important form of

signal processing and data reduction.

The algorithms described in the literature approach

real-time peak-finding in different ways. One common

approach to peak-finding updates the maximum if it exceeds

the current maximum and indicates a peak if the intensity

falls below either a user-set threshold or a certain

fraction of the maximum intensity (e. g., 1/2 or 3/4)

(14,15). The tests for a new peak usually begin

immediately, because single intensity values (rather than

the difference in successive intensities) provide no easy

means to determine the end of the previous peak.

In these algorithms, spurious, ”fragmented" peaks are

often falsely indicated on the shoulders of real peaks,

since the bottom of a peak is not sought. By post-

processing the peak data, one can guess which of the

indicated peaks are merely fragments, especially if one

knows how frequently a peak is expected (as in low-

resolution mass spectrometry, where they rarely occur closer

than 1 mass unit apart). In order to reduce this peak

fragmentation and reduce the susceptibility to large noise

spikes, a minimum width function is is often used. However,

the minimum width function reduces fragmentation only if the

fragment is indicated as a peak but is narrower than the

minimum width, in which case it is disregarded. Many times,

however, the algorithm cannot distinguish the fragment from

the following peak and, if the fragment is larger than the

102

following peak (as is often the case with isotope peaks),

the position and intensity of the fragment will be indicated

as the position and intensity of the following peak. In

this case, the width of the fragment plus the width of the

following peak is sufficiently large to exceed the minimum

width requirement. Furthermore, if the spectrum contains

both wide and narrow peaks, the high minimum width needed to

reject the indication of the shoulders of the wide peaks may

also reject the indication of the narrow peaks. This can be

a big problem in magnetic sector mass spectrometers in which

the peak width varies with mass.

Another approach to peak-finding specifies a maximum

width. If the intensity has not fallen below threshold and'

the peak width has reached this maximum, then the peak is

indicated. This approach leads to problems with clusters of

poorly resolved peaks. If the intensity does not fall below

threshold between the peaks, then a peak will be indicated

each time the maximum width is reached. If one specifies a

maximum width of 15 steps, for example, then two peaks will

be found every 3 mass units (10 steps per mass unit),

missing one peak.

In order to perform accurate peak-finding and eliminate

the problems described above, an algorithm must use all of

the criteria implemented in my algorithm: examining the

difference between successive intensities as well as the

magnitude of the current intensity, waiting for the

termination of the previous peak before searching for the

103

next peak, comparing the current width with a minimum width,

and comparing the peak intensity with a user-set threshold.

Ignoring any of these criteria in an algorithm can lead to

problems under appropriate circumstances. Thus, reliable

peak-finding is time-consuming and can easily limit scan

rates. Furthermore, the difficulties in peak-finding

described above become worse with increasing dynamic range.

Since mass spectrometry/mass spectrometry (MS/MS) provides a

dynamic range of 10°, peak-finding is especially difficult.

Therefore, for MS/MS, one must use the best algorithm

possible for reliable peak-finding, yet find ways to

implement the algorithm quickly enough to minimize the

limitation of scan rates.

4. Algorithm Testing

The acid test for any algorithm is how it behaves in

actual use. This algorithm and the MSSIN algorithm (15)

were applied to a series of 16 peak profiles to test their

performance. The profiles were chosen to represent a wide

range of peak-finding problems. The profiles were gathered

from real, raw data and were normalized to prevent any one

example from becoming harder or easier for the algorithm to

handle, based solely on its intensity. Since all of the

algorithms are basically software state machines, how they

handle a given peak depends not only on the peak profile

itself, but also on the the value of the algorithm’s state

variables (variables whose value influences the course of

104

action of the algorithm) and user-defined variables

(threshold, minimum width, etc.) upon encountering the

profile. The state variables provide the only influence

that the data in the preceding part of the spectrum have on

the processing of the current datum. Each algorithm was run

through the profiles with all mathematically possible

starting states. Obviously, some combinations of starting

states and peak profiles are either physically impossible or

highly unlikely. (Therefore, one must temper the success or

failure of the algorithm for a given state-profile

combination with an intuitive knowledge of the likelihood of

its occurrence.

Unfortunately, each algorithm has a different number of

state and user-defined variables (Table 3.1), so it is

difficult to compare algorithms quantitatively. It is also

difficult to quantitate the likelihood of the experimental

occurrence of a state-profile combination. Nevertheless,

this quantitation is necessary as an absolute measure of the

success of the algorithm. So, testing the algorithms for

all possible starting states provides, at best, only a

qualitative view of their strengths and weaknesses.

However, this scheme can provide information about

situations in which the algorithm’s performance may be

suspect, so that such situations can be avoided. Also, the

testing scheme immediately exposes most errors in an

algorithm. The testing code that I developed can be found in

Appendix E.

105

Table 3.1

Variables for Kristo Algorithm

and MSSIN

State Variables

Kristo MSSIN Algorithmic

Variable Variable Function

MAX-PEAK MI Maximum Intensity

POINTS NP Current Width

UPFLAG UF Intensity Increases

+LAST Last Pt Increasing?

YPREV Previous Intensity

User-Defined Variables

Kristo MSSIN Algorithmic

Variable Variable Function

THRESHOLD D3 Intensity Threshold

PWIDTH 'NP Minimum Width

5. Algorithm Performance

Table 3.2 compares the performance of the present

algorithm and that of another popular algorithm, MSSIN,

given in reference 15 for one set of starting conditions.

The values of each algorithm’s variables indicate that they

are not currently monitoring a peak (maximum intensity is

zero), that the previous point was decreasing (+LAST=0), but

that the next point will be increasing (previous

intensity=0). This means that any previous peak has been

indicated and has either reached threshold or the valley

between peaks. Both algorithms were run through the peak

profiles with values of the minimum width ranging from 3 to

6. For reference, depending on the value of the resolution

106

control, quadrupole mass spectrometric peaks can range from

4 to 15 points wide.

The results show that the MSSIN algorithm fragments

peaks at low values of the minimum width. It does not

fragment them at higher values, but then narrower peaks are

not found. My algorithm also does not find the narrower

peaks at high values of the minimum width, but does not have

problems with fragmenting at lower values. Also, note that

my algorithm found a peak for noise spike 2 at a minimum

width of three. This particular noise spike resembles a real

peak in that it has a typical profile with a width of four

points. Thus, it is not surprising that my algorithm

indicated a peak under those conditions. The user must

compromise between sensitivity and noise immunity. The lower

minimum width is sensitive to very narrow peaks, but also to

fairly wide noise spikes. Of course, in general, noise

spikes have a lower intensity than do peaks, so that they

may be rejected at an appropriate threshold value.

Unfortunately, this is not always the case.

107

TABLE 3.2

COMPARISON OF TWO REAL-TIME

PEAK-FINDING ALGORITHMS

Starting from Threshold

PEAK MSSIN (15) PRESENT WORK

PROFILE MIN. WIDTH VALUE MIN. WIDTH VALUE

3 4 5 6 3 4 5 6

Good F

Skew

Right F

Skew

Left F

Wide F F F

F

Narrow

Horns

Splits

Isotope- .

Coalesced FM FM FM FM M M -M M

Isotope-

Merges F F F F

Isotope-

Resolved

Small-

Coalesced FM M M M M M M M

Small

Merges FM M M M M M M M

Small-

Resolved F

Noise

No. l 0 0 0 0 0 O 0 0

Noise .

No. 2 0 0 0 0 l 0 0 0

MISSED A PEAK

FRAGMENTED A PEAK

IGNORED A SPIKE

CALLED SPIKE A PEAKH
O
”
)
:

I

108

1 The results shown in Table 3.3 show the performance of

the algorithms when they encounter the 16 test profiles

after the tail of a previous peak. In this case, the

intensity of the tail is larger than the maximum intensity

of the test profiles. Upon encountering the given profiles,

then, the maximum intensity for MSSIN is the intensity of

the tail, but is zero for my algorithm, since the maximum

intensity cannot be updated before two intensity increases.

The variables UPFLAG (UPCHECK) and +LAST are zero since the

intensity has not increased since finding the previous peak.

The results in Table 3.3 show that my algorithm avoids

increased fragmentation and sensitivity to noise spikes, by.

waiting for the previous peak to reach threshold or minimum

intensity. Fragmentation occurs with the MSSIN algorithm

because the tail is incorrectly identified as a peak. In

fact, this intensity can supersede the maximum of

neighboring peaks with low intensity.

109

TABLE 3.3

COMPARISON OF TWO REAL-TIME

PEAK-FINDING ALGORITHMS

Casing Off a Large Peak

PEAK MSSIN (15) PRESENT WORK

PROFILE MIN. WIDTH VALUE MIN. WIDTH VALUE

3 4 5 6 3 4 5 6

Good F2 F F F

Skew

Rijht F2 F F F2

Skew

Left F2 F F F _

Wide F Fz-zF2 F F F F

_Narrow F F F m

Horns. F2 F2 F F

Splits F F F

Isotope-

Coalesced FZM FZM F2M FzM FM FM FM FM

Isotope-

Merges F2 F2 F2 FZM

Isotope-

Resolved F F F F

Small-

Coalesced FZM FM FM FM M M M M

Small

Merges FZM FM FM FM M M M M

Small-

Resolved F2 F F FM

Noise

No. l 1 O 0 0 0 0 0 0

Noise

No. 2 1 1 0 0 l 0 0 0

KEY: M - MISSED A PEAK

F - FRAGMENTED A PEAK

F2 - FRAGMENTED A PEAK TWICE

0 - IONORED A SPIKE

1 - CALLED SPIKE A PEAK

110

The results shown in Table 3.4 show the performance of

the algorithms when they encounter the test profiles after

encountering a large intensity increase (or spike). The

intensity of the spike is larger than the intensity of the

maximum of the test profiles. Once again, the maximum

intensity is the intensity of the spike for MSSIN, but is

zero for my algorithm, since the maximum intensity cannot be

updated before two intensity increases. UPFLAG (UPCHECK)

and +LAST are both equal to one since the intensity has

increased once since finding the previous peak. The results

in Table 3.4 again show that my algorithm avoids increased

fragmentation after encountering a large intensity increase.

before a peak, because the maximum will not be updated

without a consistent upward trend. Sharp intensity spikes

do not by themselves constitute a consistent upward trend.

Although the spike itself is not wide enough to be called a

peak, it can cause fragmentation in the following peaks with

some algorithms.

111

TABLE 3.4

COMPARISON OF TWO REAL-TIME

PEAK-FINDING ALGORITHMS

.After a Large Intensity Spike

PEAK MSSIN (15) PRESENT WORK

PROFILE MIN. WIDTH VALUE MIN. WIDTH VALUE

3 4 5 6 3 4 5 6

Good F2 F F F

Skew

Right F2 F F F

Skew

Left F2 F F F _

Wide F2 F2 F2 F F F F

Narrow F F F FM M

Horns F2 F2 F F *

Splits F F F F F F F

Isotope-

Coalesced FZM FZM FZM FZM FM FM FM FM

Isotope-

Merges F2 F2 F2 F2M

Isotope-

Resolved F F F F

Small-

Coalesced F2M FM FM FM M M M M

Small

Merges FZM FM FM FM M M M M

Small-

Resolved F2 F F FM

Noise

No. l l l 0 0 - 0 0 0 0

Noise ‘

No. 2 l 1 1 0 ' l l 0 0

KEY: M - MISSED A PEAK

F - FRAGMENTED A PEAK

Fz- FRAGMENTED A PEAK TWICE

O - IGNORED A SPIKE

l - CALLED SPIKE A PEAK

112

The results shown in Table 3.5 show the performance of

the algorithms when they encounter the test profiles after

encountering a small intensity increase (or spike). In this

case, the intensity of the spike is smaller than the

intensity of the maximum of the test profiles. The

conditions upon encountering the profiles is the same for

Table 3.5 as in Table 3.4, except that the current value for

the maximum intensity is smaller. The results in Table 3.5

again show that my algorithm avoids fragmentation after

encountering a small intensity increase before a peak, again

by waiting for a consistent upward trend before updating the

maximum. However, even with MSSIN, there is reduced

fragmentation as compared with a large spike, because the

intensity is not enough to overwhelm the intensity of the

following peaks.

113

TABLE 3.5

COMPARISON OF TWO REAL-TIME

PEAK-FINDING ALGORITHMS

After a Small Intensity Spike

PEAK MSSIN (15) CURRENT WORK

PROFILE MIN. WIDTH VALUE MIN. WIDTH VALUE

3 4 5 6 3 4 5 6

Good F

Skew

Right F

Skew

Left F

Wide F

Narrow M

Horns F2 F2 F F

Splits F F F

Isotope- _

Coalesced FM FM FM FM FM FM FM FM

Isotope-

Merges F F F FM

Isotope-

Resolved

Small-

Coalesced FM M M M M M M M

Small

Merges FM M M M M M M M

Small-

Resolved F

Noise

No. l 0 0 0 0 0 0 0 0

Noise ' .

No. 2 0 0 0 0 l 1 0 0

KEY: M - MISSED A PEAK

F - FRAGMENTED A PEAK

Fz- FRAGMENTED A PEAK TWICE

0 - IGNORED A SPIKE

l - CALLED SPIKE A PEAK

114

6. Algorithm Speed

Table 3.6 shows the average execution time for the

peak-finding algorithm. The time for the algorithm to

process 13 points which defined a basic peak shape was

measured. The peak profile provides opportunity for the

algorithm to exercise all the decision processes, similar to

a true scan. The time required to process the profile was

then divided by 13 to give the average time spent per point.

The execution time also includes two FORTH literals, which

place the intensity value on the data stack. Fortunately,

the algorithm itself executes much more slowly than the

literals, so the timing reflects fairly accurately the true

execution time. Execution times are given for both the

algorithm written in high-level polyFORTH I on an 8088

processor, FORTH 8088 Assembler, and polyFORTH II on an

NC4000.

TABLE 3.6

Timing Information

Language Processor Speed

FORTH Assembler 5 MHz 8088 215 uS

High-level FORTH 5 MHz 8088 823 uS

High-level FORTH 6 MHz NC4000 16 uS

7. Conclusion

A real-time peak-finding routine has been developed

which executes quickly and performs reliably even under

115

adverse conditions. The algorithm has some flexibility-

through user-adjustment of the variables PWIDTH and

THRESHOLD. Background noise and small peaks can be

effectively filtered by THRESHOLD. Adjustment of PWIDTH

allows the user to compromise between sensitivity to narrow

peaks and immunity to noise spikes. The algorithm was

designed for mass spectrometric peak-finding, but should be

applicable to other fields such as atomic emission

spectroscopy with little or no modification.

My study of peak-finding and peak-finding algorithms

has shown that it is important to examine the upward or

downward trends in the intensity and not just the magnitude

of the current intensity value. This feature allows the

previous peak to reach threshold or its minimum intensity

and a consistent upward trend to be demonstrated before a

new search for the peak maximum begins, eliminating the

splitting of peaks. The examination of differences in

intensity also enables the establishment of a consistent

downward trend before indicating a peak, rather than

depending on the intensity to fall below a certain level.

It is also important for a peak-finding algorithm to have a

minimum width requirement to reduce sensitivity to noise

spikes, although inappropriate minimum width values can also

reduce the sensitivity to narrow peaks. Thresholds are also

a common and useful function in peak-finding algorithms,

because they eliminate problems with normal variation in

background intensity as well as small peaks.

116

References

l. R. A. Yost and C. G. Enke, Anal. Chem., 51, 1979, 1251A.

2. Aleksander Janik, J. Chrom. Sci., 13, 1975, p. 93.

3. N. W. Bell, ”Computer Detection of MS Peaks by Real Time

Cross Correlation,” Technique Paper No. MS-2, Hewlett

Packard: Palo Alto, CA.

4. W. F. Bryant, M. Trivedi, B. Hinchman, S. Sofranko, and

P. Mitacek, Anal. Chem., 52 (1980) 38.

5. Intel Corporation, Santa Clara, CA.

6. Extrel Corp., Pittsburgh, PA.

7. B. H. Newcome and C. G. Enke, Rev. Sci. Instrum., 55,

(1984) 2017.

8. C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C. G.

Enke, Journal of FORTH Applications and Research, Vol. 3,

No. 2, 1985, p. 189.

9. C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C. G.

Enke, Journal of FORTH Applications and Research, Vol. 3,

No. 2, 1985, p. 193.

10. Novix Inc., Cupertino, CA.

11. Forth, Inc., Hermosa Beach, CA.

12. J. W. Cooper, Minicomputers in the Laboratory, New

York: Wiley Interscience Publishers, 1983, pp. 251-7.

13. Laboratory Subroutines Programmer’s Reference Manual,

Digital Equipment Corporation, Marlboro, MA, 1982, Chapter

20

14. William H. Caskey, Journal of FORTH Application and

Research, 1, p. 11.

15. J. F. Holland, Computer Program ”MSSIN,” Michigan State

University, East Lansing, MI 48824.

16. INCOS Software User’s Manual, Finnigan MAT Corp., San

Jose CA.

CHAPTER FOUR

HARDWARE PEAK-FINDING FOR RELIABILITY

AND INCREASED SCAN RATES

1. Introduction

Reducing sequential intensity data to mass/intensity

pairs for all peaks in a mass spectrum occupies much of the

time during a mass scan. ”Peak-finding” can thus limit the

maximum mass scanning speeds to less than that possible for

the mass filter employed. Also, since the processor spends

so much time on this task, a substantial fraction of the ion

current goes unsampled, which leads to a less than maximum

signal-to-noise ratio for the data obtained. Therefore, it'

is desirable to reduce the amount of time necessary to

perform peak-finding reliably and to perform this task in

parallel with other functions.

I have developed an electronic peak-finding accelerator

(PFA) for quick reduction of raw intensity versus mass data

to mass-intensity pairs for all peaks in a mass spectrum.

The accelerator accepts sequential intensity data from the

host control system processor and returns peak positions and

intensities for storage. The peak-finder achieves the speed

of a dedicated hardware peripheral, yet retains

programmability through software sequencing of the hardware

functions.

The accelerator’s peak-finding program is written in

horizontal microcode (64-bits wide), which is tedious to

117

118

write by hand. Therefore, a microcode compiler, based

entirely on FORTH, has been written to facilitate

development of code for new peak-finding algorithms.

2. The Hardware Peak-Finder

Concept

A block diagram of the hardware peak-finder is found in

Figure 4.1. Letters in parentheses in the following

paragraphs refer to sections on the diagram. The heart of

the hardware peak-finder is a RAM—based state machine. The

desired peak-finding algorithm is written to the peak-

finder’s RAM (B) by the host processor. The algorithm is a.

control sequence program and directs the processing of

incoming data. The sequence of instructions in the program

is controlled by the next-address latch (C). A 16:1

multiplexer (D) provides the ability to branch in the

program on any one of 16 conditions. These conditions (E)

are generated by the status of the comparators and flags in

the peak-finder. Incomiag data are manipulated on a 32-bit

bus, which connects the input latches, the output latches,

latches for a threshold value, and two banks of comparators

with internal registers. Additional counters and flipflops

track the occurrence of certain events. Thus, many useful

hardware functions can be performed which parallel functions

used in software peak-finding algorithms. Furthermore, it

119

"
3
m

~
l
.
-

®
°
§
l
,
"
‘

@
0
6
1
3

F
i
g
u
r
e

4
.
1

B
l
o
c
k

d
i
a
g
r
a
m

o
f

h
a
r
d
w
a
r
e

p
e
a
k
-
f
i
n
d
e
r
.

120

is simple to add further arithmetic elements without

extensive redesign.

Acquired data are written into the input latches of the

accelerator (A) and peak data are read from the output

latches (G). The host processor can monitor the status of

the peak-finder (whether the current datum has been

processed and whether or not a peak was found) by reading

the user status byte (F). With this monitoring capability,

the peak-finder can process data simultaneously with the

host processor, thus freeing the processor to attend to

other tasks.

Interfaces have been designed for two host processors.

One host processor is the multimicroprocessor control system

described in Chapter One, consisting of four Intel 8088 (l)

microprocessors, one master and three slaves. The Detection

Slave handles the data acquisition and can also control the

peak-finding accelerator. The software for the

multimicroprocessor control system (2,3) and for its version

of the microcode compiler are written in polyFORTH I (4).

The other host processor is the Novix control system

described in Chapter Two, based on the NC4000 FORTH

processor (5). The software control system and the version

of the microcode compiler for the Novix control system are

written in polyFORTH II (4).

121

Hardware Design

The hardware peak-finder was divided into two separate

circuits for modularity and simplicity of design. The first

circuit, designated as PFA-1000A, contains all of the RAM

for the microcoded algorithm, counters for such quantities

as the peak width, and flipflops which serve as flags. The

second circuit, designated as PFA-lOOOB, contains the 32-bit

intensity (y-value) bus and the l6-bit mass (x-value) bus,

consisting of latches and registers for storing numbers and

comparators for determining the greater of two numbers.

Modifications can be made to either circuit without changing

the other. For instance, one can add more memory to PFA-

lOOOA without changing PFA—1000B. Extra memory would allow

longer control words (greater than 64-bits) and, thus, more

control signals. The extra signals could be used to control

a multiplier-accumulator (MAC) to allow real-time centroidal

calculations. The two circuits transmit and receive signals

to and from each other over a 50-pin ribbon cable.

Separating the peak-finder into two circuits also prevented

troubles with the computer-aided design (CAD) system on

which they were designed. The memory-management software on

the CAD computer has trouble handling extremely large

numbers of parts (greater than about 40 integrated

circuits).

The three processor address lines (PAO-2), the

processor chip select line (/CS), and the processor read

122

(/RD) and write (/WR) lines are decoded in PFA-10008 to

select the various chip which control the peak-finder (shown

in Figure 4.2). The lower six of the possible eight

addresses select the bytes for writing the input intensity

and x-value data and reading the peak intensity and mass

data. One of the upper two addresses allows reading/writing

to the random access memory, while the other address allows

either reading from the event counter or changing the mode

of the peak-finder to either the load mode (writing and

verifying the microcode for the peak-finding algorithm) or

run mode (processing incoming data). When changing the mode

of the PFA, the board can also be reset to initialize all

devices and set the currently selected address to zero.

Setting appropriate jumpers in PFA-1000A allows the PFA to

be addressed either as bytes or words. Thus, the peak-

finder can be optimized for processors with either 8-bit or

16-bit input/output.

Some of the general signals generated in PFA-10008 are

further combined with memory address selection circuitry

(shown in Figure 4.3) in PFA-1000A. The processor can then

read or write to each byte in the microcode RAM when the PFA

is in load mode. The selection of a particular byte in a

particular word in the memory occurs through an autoloading

feature (shown in Figure 4.4). Therefore, RAM addresses

must be sequentially accessed when either reading or

writing. When the PFA is in run mode, all eight bytes of

memory (64 bits wide) are accessed at once, making all

123

3
% 7:

OI

J4-J9 SELECT

0 OR I6-BIT MODE

as.

Figure 4.2 Schematic of addreSS*decoding circuitry.

124

Figure 4.3 Schematic of chip—select generation for

random-access memory.

125

r.

40

4'1 . TC

« m

m 9 a

‘ I." '3‘. m»
as 104 A

m nos 4'}

Imam All.

a 3% it
IL

._ TO

«rs , EMORY

"' u.

3. S 4.,
n no 4'»

a 104 4"

no 4"

IMME it

C. 3 J0)

Figure 4.4 Schematic of the autoloading feature for

generation of addresses when reading from or writing to the

random-access memory.

126

control signals (bits in the control word) available

simultaneously. The selection of the appropriate control

word occurs through the next-address bits of the current

control word in the microcode, as well as the current state

of the signal selected by the 16-input multiplexer. Since

the output of the multiplexer is always the least

significant address bit, whether a branch is desired or not,

memory must be allocated by pairs in software. If no branch

is desired, then the same control word occupies both

locations allowing for correct execution upon any value of

the multiplexer’s output. This next-address generation

scheme is shown in Figure 4.5.

The design of one byte in the microcode RAM is shown in

Figure 4.6. Each byte includes two 2148H random access

memory chips with 4 by 1024 bit storage, a 74L8245

bidirectional transceiver for reading and verifying the

bytes in each control word, a 74LS374 octal latch for

latching the current control signals for each clock cycle.

The 2148H was chosen for its speed (20 us access time) and

low cost. PFA-1000A contains eight such bytes, providing

the-64-bit control word. Each bit in the 64-bit microcode

is a direct control signal either for the next—address

generation, one of the integrated circuits on the intensity

or x-value buses, or one of the counters or flipflops.

The design of the intensity bus is shown in Figure 4.7.

Basically, incoming data are latched by a bank of six

74LS374s (4 for the 32-bit intensity and 2 for the 16-bit x-

7
4
1
8

4
5
0

F
i
g
u
r
e

4
.
5

Ital £11

‘____4

B

‘3
“A‘-

F.

I

, 15.551141

II-HIT‘I‘HE '

l

*

#3

Fm.

I

did-I 'I‘I

. talus

33388408

"

:‘Agls

(D

II:- gll A $

j] 11
I

l
S
c
h
e
m
a
t
i
c

o
f

t
h
e

n
e
x
t
-
a
d
d
r
e
s
s

g
e
n
e
r
a
t
i
o
n

c
i
r
c
u
i
t
r
y

w
h
e
n

e
x
e
c
u
t
i
n
g

t
h
e

p
e
a
k
-
f
i
n
d
i
n
g

a
l
g
o
r
i
t
h
m
.

127

m

C
O
N
T
!
“

S
I
G
N
A
L
S

T
O

F
R
O
M

”
C
R
O

A
l

A
l

A
3

A
l

A
l

A
.

A
!

2
I
4
8
I
-
I

”
3

F
i
g
u
r
e

4
.
6

S
c
h
e
m
a
t
i
c

o
f

o
n
e

b
y
t
e

o
f

r
a
n
d
o
m

a
c
c
e
s
s

m
e
m
o
r
y

w
i
t
h

c
i
r
c
u
i
t
r
y

f
o
r

a
c
c
e
s
s

f
r
o
m

t
h
e

h
o
s
t

c
o
m
p
u
t
e
r

a
n
d

l
a
t
c
h
i
n
g

c
o
n
t
r
o
l

s
i
g
n
a
l
s

f
o
r

e
a
c
h

c
l
o
c
k

c
y
c
l
e
.

128

130

value). There are also latches for a threshold value and

output (peak) data. Two banks of four 74F524 8-bit

registered comparators allow storage of the present maximum

intensity and the previous intensity, as well as comparing

these values with data on the intensity bus. Thus, the

previous intensity value can be compared with the present

intensity by driving the present intensity onto the bus from

its latches and monitoring the status lines from the

appropriate bank of registered comparators. In another

example, the maximum intensity can be compared against

threshold by transferring the threshold value onto the bus

from its latches and monitoring the status lines from the

74F524s which contain the maximum intensity in their

registers.

3. The Microcode Compiler

Design Goals

An algorithm microcode compiler was written to allow

inexperienced programmers to write and test new algorithms

for the peak-finding accelerator without extensive knowledge

of either the intricacies of the peak-finder’s electronics

or of writing horizontal microcode. With this goal in mind,

I sought to use the inherent extensibility and flexibility

of FORTH to create a syntax for the compiler that was as

close to FORTH itself as possible. In essence, the syntax

should create a microcode compilation that is analogous to

131

the familiar resident FORTH compilation, including the

typical control structures. Appendix F contains a full

listing of the FORTH code for the microcode compiler.

I wanted the compiler to be easily modified, so further

improvements to the hardware would not outdate the compiler.

This flexibility in the compiler also allows it to be

modified for completely different applications which require

horizontal microcode. In order to achieve this ease of

modification, the microcode compiler needed to be flexible

in several ways.

First, the compiler needed to be flexible with respect

to word length. The peak-finding accelerator described in

this chapter uses a 64-bit word, but this compiler attribute

could be modified for a completely different environment or

for the same environment after the addition or deletion of

hardware functions. This is accomplished by changing the

value of the constant WORDLENGTH in block 2 to the new word

length (in bits). The new value must be a multiple of 8,

but is otherwise limited only by the requirement that the

buffer in which the compiler constructs the microcode not

exceed the amount of memory available on the host system.

This restriction that WORDLENGTH be a multiple of 8 is

merely a function of the organization of memory on the host

processor. Most processors move data in multiples of 8 bits

(e. g., 8,16,32-bit processors). Unused bits at the end of

a control word need not actually exist in the hardware,

132

since nonexistent bits in the peak-finding RAM will not be

latched or used.

Secondly, the compiler needed to be flexible with

respect to grouping of the bits into control fields (groups

of signals that control related devices or accomplish

related tasks) and with respect to the definition of each

bit in the control field. The flexibility allows the

compiler to be easily modified after any hardware changes to

the peak-finder or for a completely new microcode

environment.

Thirdly, the compiler needed to be flexible with

respect to the depth of the program space. The RAM used in

the hardware peak-finder is 1024 words deep, but other

environments might require more extensive program space.

Again, the value for the depth of the program space is

limited only by the memory available for the microcode

buffer on the host system and can be changed by changing the

value of the constant RAM-DEPTH in block 1.

Fourthly, flexibility with respect to the control

structures would also be desired. For instance, additional

signal multiplexers could add the capability make a decision

(jump) based on two conditions simultaneously. One would

then like the compiler to take advantage of this capability.

Unfortunately, this would necessitate a departure from the

common IF . . . THEN syntax employed here. A syntax similar

to 0=IF, 1=IF, 2=IF, 3=IF, . . . THEN would be needed in

that case to respond to the four possible conditions. The

133

modifications to the present compiler to allow that feature

would not be too difficult, but, for now, I have chosen

familiarity rather than unnecessary flexibility.

The Software

The heart of the microcode compiler is the word ENCODE

found in block 5. ENCODE is a second-order defining word,

that is, a word which defines new defining words. ENCODE

defines words for each control field, such as MUX.SELECT and

1FLAG (also defining words), assigning to each control field

a length in bits and a location in each control word. These

words, in turn, define the various instructions for their

designated control field. MUX.SELECT, for instance, defines

instructions which will compile the appropriate bits for

controlling the input to the 16-channel multiplexer into the

control word currently being compiled. 1FLAG defines words

which will compile the appropriate bits for one of the peak-

finder’s flipflops into the control word currently being

compiled. Thus, 1FLAG can define lCLR, which will compile

the appropriate bits for clearing the first flipflop when

the control word is executed, lSET, which will compile the

bits for setting the flipflop upon execution, and lHLD,

which compiles the bits which leave the flipflop unchanged

upon execution. The activity initiated by these

instructions (lCLR, lSET, lHLD, etc.) is to compile the

appropriate bits into the microcode buffer in the designated

134

instruction field of the control word currently being

compiled.

These primary instructions can themselves be linked by

the typical FORTH colon (:) definitions into a data

movement, which can represent an entire control word or a

logically linked part of a control word. Furthermore,

sequences of control words can be linked by colon

definitions into macros. Movements and macros can be used

for programming convenience or to give an instructions and

control words new mnemonic content. In order to link

control words into useful macros, though, one also needs

control structures to direct the sequence of the compilation

of the control words.

Three variables, ”current,” ”node,” and ”available”

control the sequence of compilation of control words into

the microcode buffer. The variable ”current” holds the

number of the current control word being compiled and

directs compilation of instruction fields into the

appropriate location in the microcode buffer. The variable

”available" holds the number of the next unused location in

the buffer. Locations for control words are allocated two

at a time: one for the control word which will be the

subject of a branch on zero and one for the control word

which will be the subject of a branch on one. If no

branching is occurring, these two instructions are the same.

The variable ”node” comprises three bytes. The first two

bytes are the number of the most recently compiled control

135

word which contained a branch instruction, while the third

byte signals whether the control word currently being

compiled is the subject of a branch or not. If a branch

instruction occurs, the compiler first compiles the control

word which will be the subject of the branch if the result

is one (the selected multiplexed signal is high). The

compiler does this by placing the address of this control

word into the next-address field of the control word from

which the branch is occurring (the node) and onto the

parameter stack to provide the reference location for later

compilation of the corresponding branch-on-zero instruction.

If no branch instruction occurred in the control word

compiled last, the address of the current instruction should

be compiled into the next-address field of the previous

instructions.

The variables ”current,” ”available," and ”node" are

manipulated by the control structures ”if,” ”else,” ”then"

and ”next.” These control structures retain the same

meaning as in FORTH itself. They are preceded by a condition

test (a MUX.SELECT instruction field), which upon execution

will generate either a one or a zero, which is the value of

the least significant address bit. The word "if” signals

that the following control word will be the subject of a

branch upon a result of one; ”else” signals that it will be

the subject of a branch upon a result of zero. The word

”next” is the control structure for linear program flow (no

branching). Therefore, the control word following ”next” is

136

not the subject of a branch. The word "next” must be used

inside a colon definition; the corresponding word for

interpretive mode is "<next>.” All of the other control

structures can be used in either compile or interpretive

mode.

The word START precedes the control word that will

start the repetitive part of the algorithm. Thus, one can

have a set-up portion of microcode (to initialize devices)

and a run-time portion (to actually find peaks). HOME

forces a return to the address of START after execution of

the previous control word and should, therefore, follow the

last instruction in each branch of the algorithm. This

command restarts the algorithm for processing the next

datum. All of the other control structures can be used in

either mode. The word MICROCODE initializes the compiler

and should precede compilation of the algorithm.

Error-checking routines make sure that only one

component is driving each bus in order to eliminate bus

conflicts. If any potential conflicts are found, error

messages are generated which indicate the suspect

instruction and bus. The assembly level code words ?BIT and

?2BITS return the value of a single bit or two contiguous

bits respectively, given a byte address and a bit number.

MCHECK uses these assembly level routines to perform this

error checking.

MCODE>DISK moves the entire code-buffer to a file on

disk for later use. The file starts at the block designated

137

in CODE-FILE, a constant whose value can, of course, be

changed. Block 25 in Appendix F contains some debugging and

listing aids. SHOW types out a given microinstruction.

CLEAR erases a given microinstruction. REV gives the

current state of all control structure variables. ”list"

types out the first n microinstructions.

Algorithms can be compiled interactively, as long as

”(next)" is used, or formulated inside a definition using

"next.” ALGO in block 26 in Appendix F is one such word,

which defines a sample peak-finding algorithm (6). ALGO

uses macros written in blocks 15-18. Executing UCODE will

execute the word ALGO, thus, compiling the algorithm into

the microcode buffer. If no errors are found, UCODE will

also write the resulting microcode to disk.

4. Results

Processing Speed

With the current peak-finding algorithm, the hardware

peak-finder is capable of processing an average of one datum

per microsecond. Theoretically, then, the peak-finder could

process 1 million points per second. However, the primary

limitation to the speed of peak-finding is actually

transferring the data from the data acquisition circuit to

the hardware peak-finder. Of course, the speed of the peak—

finder makes almost any operation seem slow, but there are

two reasons why the transferal of intensity data is slower

138

than might be expected. First, the intensity values are

only available as bytes. The peak-finder, on the other

hand, can accept values either as l6-bit words or as bytes.

Thus, writing data as bytes to the peak-finder is twice as

slow as would be possible writing words. Second, reading

data from the data acquisition circuit is the slowest

transaction on the Novix Mass Spectrometer Interface Board

(described in Chapter 2). On the other hand, when the peak-

finder is operated in byte mode, it is not necessary to mask

off the high byte when reading from the data acquisition

circuit and to combine the two low bytes into one 16-bit

word, since the high byte is simply not latched. This adds

to the speed advantage of hardware peak finding over

software peak-finding for the Novix Control System.

Peak-finding speed could be further enhanced by using

the flexibility designed into the hardware peak-finder to

create an autoloading feature which would control and accept

output from the data acquisition circuit. The autoloader

would generate the control signals and monitor the

”acquisition-done” interrupt from the data acquisition

board, reading the data at hardware speeds. The large

amount of time spent on software transferal of data between

these two circuits would be eliminated. The drawback to

this approach is that it eliminates the possibility of other

kinds of software processing between acquisition and peak-

processing like dual-mode acquisition, described in Chapter

5.

139

Improvements in Scan Speed and Signal Averaging

The addition of hardware peak-finding to the Novix TOMS

control system has made possible the scanning speeds and

concomitant amounts of averaging shown in Table 4.1. This

can be compared to the scan speeds and amounts of averaging

before adding hardware peak-finding in Table 4.2. A new

scan speed of 4000 amu/S is now possible. However, this

scan speed contains no rate synchronization step and may be

erratic from point to point. Furthermore, the problems with

the 2000 amu/S rate described in Chapter 2 will only be

exacerbated at 4000 amu/S. This scan rate has been included

for completeness, but its utility is questionable. Note

that the scan rates for hardware peak-finding produce only

reduced spectra, so that no peak profiles can be obtained.

The lower scan rates, in which software peak-finding

consumed as much as 368 of the time spent at each point, can

now include much more signal averaging with hardware peak-

finding. Rate 2 (2000 amu/S) has 8 times more averaging.

Rate 3 (1000 amu/S) has twice the amount of averaging. By

rate 6, the amounts of averaging are equal. As the scan

speed decreases, more and more of the time spent at each

point is spent signal averaging, whether peak-finding is

performed in software or hardware. The time saved by

performing peak-finding in hardware is not enough to allow

twice as much averaging at these lower rates (the number of

140

averages must be a factor of two, as described in Chapter

2). Of course, the improvement in the number of averages

performed at a given scan rate with hardware peak-finding

would be much more dramatic with slower processors.

Table 4.1

Novix Control System Scanning Functions

With Hardware Peak-Finder

Rate Pts/S Amu/S Time/Pt # Averages/Pt

1 40000 4000 25 uS 1

2 20000 2000 50 8

3 10000 1000 100 32

4 5000 500 200 64

5 2500 250 400 128

6 1000 100 1 ms 256

7 500 50 2 512

8 250 25 4 1024

9 100 10 10 2048

10 50 5 20 4096

ll 25 2.5 40 4096

12 10 1 100 4096

13 5 0.5 200 4096

14 2.5 0.25 400 4096

Table 4.2

Novix Control System Scanning Functions

Without Hardware Peak-Finder

Rate Pts/S Amu/S Time/Pt # Averages/Pt

2 20000 2000 50 us 1

3 10000 1000 100 16

4 5000 500 200 32

5 2500 250 400 64

6 1000 100 1 mS 256

7 500 50 2 512

8 250 25 4 1024

9 100 10 10 2048

10 50 5 20 4096

ll 25 2.5 40 4096

12 10 l 100 4096

13 5 0.5 200 4096

14 2.5 0.25 400 4096

141

5. Conclusion

The hardware peak-finder has made possible faster scan

rates and, more importantly, greater signal averaging at

fast scan rates. Because of the limitation that the number

of averages be a factor of two, hardware peak-finding is

only important at scan rates faster than 250 amu/S. The

hardware peak-finder accomplishes this speed in peak finding

and still allows flexibility in the choice of algorithms

through software sequencing.

The algorithm compiler has made the electrically

complex hardware peak-finding accelerator accessible to the

average scientist. We have used the extensibility and

interactive nature of FORTH to make the tedious chore of

creating 64-bit horizontal microcode into a familiar

programming environment with typical control structures and

inclusive error-checking.

The hardware peak-finder allows a function once run in

software at a typical speed of 100 uS/point to now be

executed in hardware at l microsecond/point. The limitation

in scanning speed is no longer reliable peak-finding, but in

data acquisition and transferal to the peak-finder.

REFERENCES

1. Intel Corp., Santa Clara, CA.

2. C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C. G.

Enke, Intelligent Instruments and Computers, 3, 1985, ll.

142

3. C. A. Myerholtz, A. J. Schubert, M. J. Kristo, and C. G.

Enke, Intelligent Instruments and Computers, 3, 1985, 13.

4. Forth, Inc., Hermosa Beach, CA.

5. J. H. Golden, C. H. Moore, and L. Brodie, Electronic

Design, March 21, 1985.

6. M. J. Kristo and C. G. Enke, in preparation.

CHAPTER FIVE

DUAL-MODE DETECTION

FOR HIGH PERFORMANCE ION CURRENT MEASUREMENT

AND EXTENDED DYNAMIC RANGE IN MS/MS

1. Introduction

Kondrat and Cooks (1) first reported the increase in

useful dynamic range obtained in tandem mass spectrometry

(MS/MS). This is due to the great decrease in chemical

noise in the system, resulting from the addition of the

fragmentation step and the second mass analyzer. However,

very little work has been done since that observation to

capitalize on that increased dynamic range or even to make

it available in a single scan. Figure 5.1 compares the

dynamic range afforded by various data acquisition systems

with the dynamic range potentally available in MS/MS

systems. The typical dynamic range for an MS/MS instrument

extends from the limits of chemical noise in the system

(usually less than 1 count per second) to the saturation

point of the multiplier (greater than 109 counts per

second). Of course, with analog measurements, the

multiplier voltage or preamplifier gain can be changed to

measure larger or smaller ion flux rates, but this does not

change the dynamic range of ion flux measurable at any given

setting.

In this work, a data acquisition system has been

implemented which takes advantage of the full dynamic range

of MS/MS by using the Galileo Dual Output Channeltron (2).

143

N
M

w
o
o
!

S
Y
N
“

E

[III

1
0
0

I
O
N

F
L
U
X
.

,
‘
4
—

O
G
W
I
T
O
D
O
T

0
.
0
0
M

o

—
_
L
—

_
_
.
J
L
_
_
_

F
i
g
u
r
e

5
.
1

A
c
o
m
p
a
r
i
s
o
n

o
f

t
h
e

d
y
n
a
m
i
c

r
a
n
g
e
s

a
f
f
o
r
d
e
d

b
y

v
a
r
i
o
u
s

s
y
s
t
e
m
s

v
e
r
s
u
s

t
h
e

d
y
n
a
m
i
c

r
a
n
g
e

a
v
a
i
l
a
b
l
e

i
n

M
S
/
M
S
:

t
h
e

b
a
s
i
c

a
n
a
l
o
g

a
m
p
l
i
f
i
e
r
/
A
D
C

a
v
a
i
l
a
b
l
e

o
n

m
o
s
t

s
y
s
t
e
m
s
,

t
h
e

m
u
l
t
i
r
a
n
g
e

a
n
a
l
o
g

a
m
p
l
i
f
i
e
r
/
A
D
C

a
v
a
i
l
a
b
l
e

f
r
o
m

t
h
e

m
u
l
t
i
a
m
p

c
i
r
c
u
i
t
,

i
o
n

c
o
u
n
t
i
n
g

c
i
r
c
u
i
t
s
,

a
n
d

t
h
e

d
u
a
l
—

m
o
d
e

c
o
n
t
r
o
l

s
y
s
t
e
m
.

144

145

Kurz and Roy first described the dual-mode detector, which

is capable supporting simultaneous analog measurements and

pulse-counting, to the mass spectrometric community in 1979

(3). Subsequent applications using the dual-mode detector

were described by Schoen (4) and Matthews (5). Basically,

the dual-mode detector (see Figure 5.2) consists of two

continuous dynode multipliers in series, separated by the

analog anode, ground isolation grid, and protection grid.

Ions incident upon the detector or its conversion dynode

release secondary electrons. These electrons undergo further

amplification in the low-gain section to a total gain of 104

(with the recommended -l400 V applied). The analog anode

then collects 90* of the electrons to provide the analog

signal. The remaining 103 of the electrons are free to

enter the high-gain section of the dual-mode detector if the

protection grid is held at common potential. This electron

flux will then undergo further amplification to a overall

gain of 108 (with +1900 V on the rear section and -1400 V on

the forward section). Pulse-counting can then be performed

with the signal at the anode of the high-gain section.

However, a voltage of -350 V can be applied to the

protection grid to prevent the electrons from entering the

high-gain section. This grid protects the high-gain section

under conditions of high input ion flux.

146

ANALOG OUTPUT

HIGH GAR.

SECTION

A.__i___.

XI ANALOG

PROOESSNO

CNS

WMSSOE

AND

SOFTWARE

H mne- VAL.

Figure 5.2 Schematic diagram of the Galileo Dual Output

Channeltron control system.

147

2. System Description

To take advantage of all the dual-mode detector’s

capabilities, the control system must include analog signal

processing, pulse-counting, logic for controlling the

protection grid, and normalization of the analog and pulse-

counting data into a single number proportional to the

absolute count rate. The interconnection of the various

subsystems involved in these operations is shown in Figure

5.2.

Analog Processing

For analog processing, I have chosen the multiamp

analog measurement scheme shown in Figure 5.3 (6). In this’

scheme, current from the analog anode is converted to a

voltage by a preamplifier with a transresistance of 107 V/A.

A multiamp circuit amplifies this signal at five different

levels of gain simultaneously. In the selection logic

circuit, the outputs of all of these amplifiers are

individually compared with the full-scale voltages of the

ADC. The largest signal which does not exceed the ADC range

is selected. The selection logic circuit also provides

three range bits which indicate the binary value of the log

to the base two of the gain for the selected signal. A data

acquisition circuit combines the range signal with the

output of the 12-bit analog-to-digital converter to form a

20-bit integer intensity value. The data acquisition

o
u
t

'

s
a
t
c
n
o
u

'
2
'
.
"
E

m
m

1
0
°
"
:

A
D
C

A
C
O

u
n
c
u
t

.

c
u
s
s
e
s

"
5

1!

I
N
P
U
T

m

1
-

J
;

O
M
N
M
T

T
O
P
R
O
T
E
C
T
I
O
N

G
R
I
D

C
I
R
C
U
I
T

AAA‘AA

F
i
g
u
r
e

5
.
3

M
u
l
t
i
a
m
p

a
n
a
l
o
g

m
e
a
s
u
r
e
m
e
n
t

s
c
h
e
m
e
.

T
O

M
O
S
T

“
C
R
O
-

P
R
O
C
E
S
S
O
R

148

149

circuit also sums a user-specified number of successive

conversions and sends a 20-bit average to the host

processor. The maximum data rate for the 20-bit average is

4 uS per conversion (e.g., for 16 conversions per datum, the

data acquisition board takes 64 uS.)

Ion Counting

Current pulses from the pulse-counting anode are

converted to TTL logic pulses by a pulse amplifier

discriminator (Princeton Applied Research Model 1182) (7).

The pulse amplifier discriminator (PAD) has user-adjustable

output pulse widths from 10 to 75 us (which affects the

maximum possible count rate) and threshold levels from 150

to 500 uV, which can optimize the PAD sensitivity and

immunity to noise for a given gain in the detector. The PAD

can operate in current input as well as voltage input mode.

The pulses from the PAD are then counted by a versatile

counter/timer circuit based on the American Micro Devices

9513 Counter/Timer Chip (8). The AMD 9513 chip contains

five 16-bit counters which can be concatenated and

individually configured. The pulse counter/timer circuit

can measure pulse rates in either constant time (constant

scan rate) or constant pulse count (constant precision)

mode. Although the counting rate specification for the

AMD9513 is only 7 MHz, experience in our laboratory has

shown most chips capable of counting uniform pulse rates

over 9 MHz with an external 10 MHz clock. The circuit also

150

senses when the pulse rate is insignificant (user-defined)

and interrupts the processor, so the scan can continue. This

is important for two reasons: 1) if the system is in

constant count mode, an input pulse rate of 0 counts per

second will force the system to wait indefinitely, and 2)

one study has shown that up to 708 of the time spent in data

acquisition is spent acquiring data at points which contain

only negative (”nothing there”) information (9). This

interrupt feature senses the absence of useful ion current

and notifies the processor to continue the scan. Thus, time

spent acquiring data can be more efficiently utilized.

Figure 5.4 shows how the AMD 9513 counters are

configured by the software. Counter 5 provides the counting

window for the counters l and 2 which are concatenated into

one 32-bit counter. If the counter is operating in constant

time mode, then counter 5 counts clock pulses. The clock

pulses are provided by any one of 5 internal frequencies,

derived by division of the external lO-MHz frequency. The

output of counter 5, which is only low during the count,

provides a time window (gate) for counters 1 and 2 to count

ion pulses. If the counter is operating in constant count

mode, then counter 5 counts the ion pulse train, which can

be appropriately divided when selecting a number of ion

counts for the counting window larger than 16 bits.

Counters 3 and 4 count down from user-set numbers, toggling

their output when the count reaches zero. Counter 3 counts

ion pulses and counter 4 counts clock pulses. The logical

C
O
I
I
I
I

4
}
O
f

a
M
a
d
e
-
C
o
m
!

D
O
T
O

l
o
o
-
l
o
w

j
D
—

a
n
a
:

R
o
t
s

 Fig

u
r
e

5
.
4

C
o
n
f
i
g
u
r
a
t
i
o
n

o
f

t
h
e

A
M
D
9
5
1
3

p
u
l
s
e

c
o
u
n
t
e
r
.

151

152

AND function of the two outputs provides a signal which goes

high if the time interval provided by counter 4 has elapsed

without counter 3 having counted the required number of

pulses. The software needed to configure the 9513 in this

way can be found in Appendix G.

Protection Grid Logig

Figure 5.5 shows the schematic of the protection grid

logic (10). This circuit provides two important functions.

First, if the 16X line of the multiamp board exceeds a user-

set voltage (currently +1.6 V, which corresponds to an ion

current of 10 nA at the analog anode or approximately 3

million ions per second), the protection grid is held at

-350 V. Otherwise, the protection grid is held at common

potential. Secondly, when the protection grid is on, it

holds the O output of the 74LS74 flipflop low. Thus, the

processor can set, and then read this flipflop to determine

whether or not the protection grid is enabled and thus,

whether to acquire analog or pulse-counting data. The

asynchronous nature of this part of the circuit ensures

that, if there is any doubt about the protection status,

analog data (which is continuously available) will be

acquired. It takes the protection grid circuitry about 2 uS

to turn on the grid and 30 uS to turn it off. During data

acquisition in most systems, no additional "dead time” for

settling of the protection grid voltage is needed since

additional processor tasks take at least 30 uS. For very

6
5
V

0
5
V

O
I
S
V

‘
-

7
4
0

V
I
N

-
+

n
o
w

m
u

m

2
N
3
4
3
9

153

~
S
S
O
V

C
0
1
.
"

N
V
A
L
D

F
L
A
G

7
4
7
4

,
1
;

L
J

L
E
D

c
o
m

F
i
g
u
r
e

5
.
5

S
c
h
e
m
a
t
i
c

o
f

t
h
e

p
r
o
t
e
c
t
i
o
n

g
r
i
d

l
o
g
i
c
.

154

high performance systems, however, such time considerations

may become significant.

Data Handling

Finally, the dual-mode control system normalizes the

pulse-counting and analog data into one 32-bit integer value

for further processing by the overall mass spectrometric

control system. Therefore, all pulse-counting data, whether

taken in constant time or constant count mode, is

transformed into a 32-bit integer flux rate (in counts per

second) by dividing the number of pulses counted by the

elapsed time. Although the 32 bits assigned to the flux

rate could accommodate a count rate as high as 4300 MHz (32

bits), the counting system only counts random pulse rates up

to 3 MHz as will be described later.

To achieve the desired normalization, analog data are

multiplied by a conversion factor (the number of counts per

ADC unit). This factor is determined for each peak in the

mass spectrum by calibration in the region where both ion-

counting is valid and analog measurements are significant.

High ion fluxes (greater than 3 MHz in our system) require

analog measurements, due to the pulse overlap errors

encountered at high pulse rates. The highest analog output

values correspond to count rates of 1-2 GHz, depending on

the analog gains in the system (analog multiplier gain and

preamplifier gain). Thus, ion-counting data require about

155

22 bits to be represented digitally, while representing the

data in integer form from both outputs requires 29-32 bits,

again depending on the analog gains. Simplicity of software

requires that values be stored in multiples of 8 bits, so a

32-bit integer intensity value is used.

Dual-mode Scanning

In our system, under actual operating conditions, the

instrument control computer can acquire ion intensity data

using the dual-mode control system hardware and software in

a dual-mode scan sequence. After the quadrupole mass filter

and lens voltages have been updated, the dual-mode control

system sets, and then checks the protection grid flipflop.

If the flipflop is cleared, it acquires and formats an

analog value. Otherwise, ion-counting data are acquired and

corrected for ion pulse overlap. If pulse-counting is valid

and the analog intensity is significant, then the analog

calibration factor (ion counts per ADC unit) is calculated

for the current peak in the mass spectrum. Then the

resulting 32-bit intensity can be stored or processed

further, for example to obtain peak heights, areas, or

positions. The next set of quadrupole and lens voltages can

be applied and the scan continues.

Dual-Mode Software

The user can invoke dual-mode acquisition at any time

with the command DUAL-MODE. This command brings up a menu

156

which steps the user through the various choices available

in dual-mode acquisition. First, the user chooses between

counting ions in constant time or constant count mode.

Then, the user can select the appropriate time or count

interval from a menu. The user is further prompted to enter

a time window (in microseconds) and a threshold for the

number of counts to occur in that window to be considered a

datum with ion count information significantly above the

background count rate. The software then transfers this

information to the Detection slave, where the counter/timer

circuit is configured and the dual-mode sequence becomes the

operative algorithm for data acquisition. The user can

switch back to pure analog acquisition at any time by typing

ANALOG. The dual-mode sequence software is found in

Appendix H.

3. Pulse Overlap Correction and Analog Calibration

.One would expect a straightforward correlation between

the equations which describe the numerical output from the

two sections of the dual-mode detector. If the counting

system is fast enough to keep up with the incident flux, i.

e., each count is a single ion event, the number obtained

from the pulse—counting section will be equal to the actual

incident ion flux (0.3)of those ions that convert into 1

electron or more. The current obtained from the analog

157

section is given by Equation 1, neglecting collection

efficiencies;

=eOJm(t,V)n(v,j) [l]

where e is the charge on an electron and m is the multiplier

gain of the first section, which depends on the high voltage

applied across the analog section of the multiplier and the

history of the multiplier, and n is the average number of

electrons emitted per incident ion, which depends on the ion

velocity and the particular species striking the multiplier.

The number obtained from the analog measurement, though, is

the analog-to-digital conversion of the analog voltage

output of the multiamp circuit. This voltage is a product

of the input current, the transresistance of the

preamplifier, and the gain of the selected voltage

amplifier. The analog output is accompanied by a digital

code for the amplifier gain. This leads to the generalized

equation for the analog intensity given by Equations 2 and

3:

ADC output=iC/e [2]

ADC output=COJm(t,V)n(v,j) [3]

where C is a constant that includes the preamplifier

transresistance and the amplifier voltage per least

significant bit, which are known.

As indicated in Equations 1 and 3, the gain of the

analog section of the dual-mode detector (m) is a function

158

of the species striking the detector. Many studies have

shown that the gain of an ion multiplier varies with the

mass and the velocity of the incident particle, the number

of constituent atoms in the incident particle, and the

chemical nature of the constituent atoms (ll-21). This is

due principally to a variation in the average number of

electrons produced when the ion collides with the first

surface in the detector system. The use of conversion

dynodes can reduce this species-dependence to some degree,

but variations still occur (22-24). In order to know the

absolute ion flux, then, frequent measurements would be

necessary to maintain an up-to-date value for Cm(t,V)n(v,j).

For each peak in the mass spectrum, at an ion flux in the

region where both ion current and ion count outputs are

active, the control system simultaneously measures the ion

current (in ADC units) and the ion count (in incident ions

per second). Since both values are obtained at the same

incident ion flux, they allow the determination of the ion

current produced by a given ion flux for the specific

incident ion beam. Normalization between the two outputs

(division of the ADC output by Cm(t,V)n(v,j)) takes place in

software, but relies extensively on an Intel 8087 Numeric

Coprocessor for timely calculations (25). All software was

written in the programming language FORTH (26).

159

4. Results

The outputs from both sections of the dual-mode

detector are plotted against each other for a wide range of

ion fluxes for air (predominately a mixture of nitrogen and

oxygen ions) in Figure 5.6. This curve represents a

convolution of the current output of the detector and the

counting characteristics of the pulse-counting system. Due

to the Poisson distribution of arrival times for the

incoming ions and the fixed resolution of the counting

system, an increasing percentage of the incident ions are

not counted as the ion flux increases. This is because

multiple ions are counted as one event at the higher rates

(27).

The percentage of pulses lost for a given, random input

flux is well known from Poisson statistics (PRoxp = PRact *

exp(-PRact*Res)), where PRexp is the experimentally measured

ion count rate, PRact is the actual ion count rate, and Res

is the resolution window for the counting system. The

resolution window can thus be shown to be 0.368/PRexp.ssx,

where PRexp.max is the maximum experimentally measured count

rate. The Poisson equation can be solved in reverse by

successive approximations; however a simplified form of the

equation, which is easier to solve in reverse, is given in

Equation 3.

X Pulses Lost: 100 1 Pulse Rate t Resolution [3]

D
U
A
L
-
M
O
D
E

C
A
L
I
B
R
A
T
I
O
N

160

(SdO) xnu NOI

l
l

I

1
*
‘
1

S
O
M
X
L

0
.
0
0
0
0
0
r

i
I

l
I

I
l

I

I
I

I
r

I

O
M
X
M
O
O

I
O
O
M
L

I
K
M
D
O
.

S
G
M
N
L

I
K
N
M
O
.

A
N
A
L
O
G

I
N
T
E
N
S
I
T
Y

(
A
D
C

U
N
I
T
S
)

F
i
g
u
r
e

5
.
6

R
a
w

i
o
n

c
u
r
r
e
n
t

v
e
r
s
u
s

t
h
e

c
o
r
r
e
s
p
o
n
d
i
n
g

a
n
a
l
o
g

i
n
t
e
n
s
i
t
y

f
r
o
m

t
h
e

m
u
l
t
i
a
m
p

c
i
r
c
u
i
t

(
f
o
r

a
i
r
)

a
n
d

t
h
e

t
h
e
o
r
e
t
i
c
a
l

c
u
r
v
e

(
+
)

e
x
p
e
c
t
e
d

f
r
o
m

t
h
e

P
o
i
s
s
o
n

r
e
s
o
l
u
t
i
o
n

w
i
n
d
o
w

(
1
2
0

n
S
)

c
a
l
c
u
l
a
t
e
d

f
r
o
m

t
h
e

e
x
p
e
r
i
m
e
n
t
a
l

c
u
r
v
e
.

161

This simplified equation deviates significantly from the

exponential equation at higher count rates, but is a good

approximation at low count rates. In terms of the actual

input pulse rate, the simplified equation deviates from the

exact Poisson expression by less than 13 up to 1.2 MHz and

by less than 10% up to 3.3 MHz. The value of 120 ms used as

the resolution window for the theoretical curve in Figure

5.6 was found from the maximum count rate as shown above and

was verified by successive approximations to create the best

fit. Obviously, from the calculated value for the

resolution window, the maximum count rate for the AMD9513

counter (9 MHz uniform pulse rate) is the main contributor

to pulse overlap.

After calculating the value for the resolution window,

the actual input count rate can be determined by solving in

reverse the exact exponential equation using successive

approximations. However, on the' half of the parabola in

Figure 5.6 representing low count rates, the actual input

count rate can also be found from the experimentally

determined count rate using Equation 4, which is derived

from Equation 3.

PRact=(1"-v1-4*Pflsxp*ae8)/2*Res [4]

The raw pulse-counting data, after having been reverse-fit

to obtain the actual input pulse rate, PRact, is linear with

162

respect to analog intensity to around 6 MHz (Pchp=2.9 MHz)

and provides a calibration factor of 210+/-4 ion counts per

second/least significant bit of the multiamp output for the

data curve (air) shown. Actually, only input ion count

rates less than 3 MHz (PRexp=2.1 MHz) are counted and

reverse-fit during the dual-mode scan sequence in order to

insure the precision of the reverse-fitting process. This

linearity provides a readily obtained correlation between

the analog and pulse-counting data obtained. Thus, in our

control system all pulse-counting data are reverse-fit to

obtain a corrected count. Analog data are then multiplied

by the ion count/ion current calibration factor, which is

equivalent to the slope of the calibration curve, to yield a

value which corresponds to the input ion flux that would

give such an analog reading (if such a measurement were

possible).

Figures 5.7 through 5.10 show that real-time ‘

calculation of the count-current calibration factor is

possible on a'peak-by-peak basis. Figure 5.7 shows the mass

spectral peak profiles for the nitrogen molecular ion

(m/z=28) obtained from both the analog intensity (5.7A) and

the corrected ion flux (5.7B). Plotting the corrected ion

fluxes versus the analog intensity acquired at the same

mass-to-charge ratio yields a straight line with a slope of

40 ions per ADC count (Figure 5.8). Figure 5.9 shows the

mass spectral peak profiles for CF3+ (m/z=69) in the

spectrum of perfluorokerosene (PFK). The plot of corrected

SHNOOO 00V

N
W
l
O
O

I
O
N
-
C
O
U
N
U
N
G

0
3
3
9
0
5
5
4
0
5

-

d

(sac) Xfl'L-l NOI

m
.
.
.

.
:
L
.

.
“
m

e
.

.
L
.

'
*
1

2
5

2
'
5

2
7

2
5

2
9

M
A
S
S
-
T
O
-
C
H
A
R
G
E

R
A
T
I
O

2
5

M
A
S
i
’
S
e
-
T
O
-
C
z
l
-
I
A
R
G
E
3
1
1
0

F
i
g
u
r
e

5
.
7

A
m
a
s
s

s
w
e
e
p

o
f

t
h
e

p
e
a
k

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

n
i
t
r
o
g
e
n

m
o
l
e
c
u
l
a
r

i
o
n

(
m
/
z
=
2
8
)
,

s
h
o
w
i
n
g

t
h
e

r
e
s
u
l
t
i
n
g

a
n
a
l
o
g

i
n
t
e
n
s
i
t
y

a
n
d

t
h
e

m
e
a
s
u
r
e
d

i
o
n

f
l
u
x
.

2
0

163

164

Figure 5.8 Plot of ion flux versus analog intensity for

the mass sweep of the nitrogen molecular ion in Figure 5.7.

4
E
+
0
6
fi

3
E
+
0
6
~

2
E
+
0
6
~

1
E
+
0
6
-

(GNOOES/SINDOO) xrm NOI

F
i
g
u
r
e

5
.
8

s
—
o
I
W
U
E
D

0
E
X
P
E
R
I
M
E
N
T
A
L

T
I

T
I

r

r
2
E
i
0
4
r

‘
4
E
i
O
4
‘

1
6
E
i
0
4

6
‘

T
8
E
4
0
4

A
N
A
L
O
G

I
N
T
E
N
S
I
T
Y

(
A
D
C
C
O
U
N
T
S
)

165

SlNflOO GOV

2
1
3
4
7
.

Q
O
W
X
M

A
N
A
L
O
G

I
O
N
-
C
O
U
N
T
I
N
G

0
.
5
9
7
1
7
E
-
I
-
0
6

- 1

T I
F

L—L

1
P

‘

4
P

‘

1 66

(sad) xrru NOI

'
i

'
*
1

0
.
0
0
0
0
0
-

5
7

6
8

5
8

7
O

5
7

M
A
S
S
-
T
O
-
C
H
A
R
G
E

R
A
T
I
O

M
A
S
S
-
T
O
-
C
H
A
R
G
E

R
A
T
I
O

F
i
g
u
r
e

5
.
9

A
m
a
s
s

s
w
e
e
p

o
f

t
h
e

p
e
a
k

r
e
p
r
e
s
e
n
t
i
n
g

C
F
3
‘

(
m
/
z
=
6
9
)

f
r
o
m

P
F
K
,

s
h
o
w
i
n
g

t
h
e

r
e
s
u
l
t
i
n
g

a
n
a
l
o
g

i
n
t
e
n
5
1
t
y

a
n
d

m
e
a
s
u
r
e
d

i
o
n

f
l
u
x
.

167

Figure 5.10 Plot of ion flux versus analog intensity for

the mass sweep of CF3+ in Figure 5.9.

8
E
+
0
5
"
l

F
i
g
u
r
e

5
.
1
0

6
E
+
0
5
—

(ONOOES/SINDOO) Xfl'L-I NOI

H
F
I
T
T
E
D

0
'

0
E
X
P
E
R
I
M
E
N
T
A
L

r
r

j

0
1
E
+
0
4

2
E
+
0
4

3
E
+
0
4

A
N
A
L
O
G

I
N
T
E
N
S
I
T
Y

(
A
D
C
C
O
U
N
T
S
)

168

169

ion flux versus analog intensity yields a straight line with

a slope of 32 ions per ADC count (Figure 5.10). The data

for 5.7 and 5.9 were taken at a higher analog gain (lower

anode voltage) than the data of Figure 5.6, yet the ion

intensities for the three experiments can be directly

compared since the output of the dual-mode system, after

reverse-fitting and count/current calibration, is the

absolute ion intensity in ion counts/second. Comparison of

the count/current calibration factors for N2+ and CFa+

indicates that CF3’ ejects more electrons at the first

surface of the detector on the average than does N2‘. Based

upon velocity alone, one would expect N2+ to eject more

electrons upon striking the detector than CFat, however the’

increased number of constituent atoms for CFat and the

decreased strength of the carbon-fluorine bond versus the

nitrogen-nitrogen bond provide the possibility of

fragmentation upon impact with each fragment ejecting

primary electrons.

Having dual outputs is advantageous for the reverse-

fitting process in three ways. First, the resolution window

for the counting system can be empirically determined either

from the maximum experimentally obtained count rate or by

successive approximation until the theoretical curve matches

the experimental curve. This measurement can be made as

often and as many times as needed. Second, the recognition

and control of the operative portion of the parabolic, raw

calibration curve can be achieved, merely by adjusting the

170

threshold voltage for the protection grid. Then the system

will switch to analog measurements when the reverse-fitting

is no longer useful or valid. Third, it is unnecessary to

adjust the multiplier voltage to obtain the full dynamic

range. Changing the multiplier voltage would result in a

change in the analog calibration and, thus, the digital

correction.

5. Conclusion

In conclusion, the overlap region where analog and

pulse-counting outputs are both valid provides points for

absolute calibration of the analog output and thus achieves

the full dynamic range for MS/MS. The intensity value

obtained from the control system is the actual ion flux rate

in counts per second. Calibration of the factors used to

correct for pulse pile-up and to convert ADC units to count

rate can be automatic and frequent using data from normal

operation.

The dual-mode detection system also extends the useful

dynamic range available in tandem mass spectrdmetry. This

means that the least abundant daughter ion of the least

abundant parent ion can be detected as well as the most

abundant unfragmented parent ion without adjusting the

multiplier voltage. Furthermore, automatic over-current

protection for the pulse-counting section of the multiplier

makes pulse-counting information available whenever feasible

171

without damaging the multiplier in the event of an intense

peak, such as the parent peak.

REFERENCES

1. R. W. Kondrat and R. G. Cooks, Anal. Chem., 50, 81A-92A

(1978).

2. Galileo ElectroOptics Corporation, Sturbridge, MA 01518.

3. E. A. Kurz and R. L. Roy, 27th Annual Conference on Mass

Spectrometry and Allied Topics, 1979, p. 479.

4. A. E. Schoen, Ph. D. Dissertation, Purdue University,

1981.

5. R. S. Matthews, M. S. Thesis, Michigan State University,

1982.

6. B. H. Newcome, private communication.

7. EG&G Princeton Applied Research, Princeton, NJ 08540.

8. American Micro Devices, Sunnyvale, CA 94086.

9. E. J. Darland, G. E. Leroi, and C. G. Enke, Anal. Chem.,

52, 714 (1980).

10. G. Ratzlaff, N. Penix, M. Rabb, M. Kristo, private

communications.

11. 0. La Lau, Advances in Analytical Chemistry and

Instrulentation, Vol. 8, 93-120, A. L. Burlingame, ed.,

John Wiley, 1970.

12. Udo Fehn, Int. J. Mass Spectrom. Ion Phys., 15, 391

(1974).

13. R. C. Lao, R. Sander, and R. F. Pottie, Int. J. Mass

Spectrom. Ion Phys., 10, 309 (1972).

14. R. F. Pottie, D. L. Cocke, and K. A. Gingerich, Int. J.

Mass Spectrom. Ion Phys., 11, 41 (1973).

15. C. N. Burrous, A. J. Lieber, and V. T. Zaviantseff, Rev.

Sci. Instrum., 38, 1477 (1967).

16. W. E. Potter and K. Mauersberger, Rev. Sci. Instrum.,

43, 1327 (1972).

17. J. Dimeff, A. J. Lieber, and C. N. Burrous, Rev. Sci.

Instrum., 37, 1562 (1966).

172

18. B. L. Schram, A. J. H. Boerboom, W. Kleine, and J.

Kistemaker, Physics, 32, 749 (1966).

19. L. A. Dietz and J. C. Sheffield, J. Appl. Phys., 46,

4361 (1975).

20. R. J. Beuhler and L. Friedman, Int. J. Mass Spectrom.

Ion. Phys., 23, 81 (1977).

21. R. J. Beuhler and L. Friedman, J. Appl. Phys., 48, 3928

(1977).

22. J. L Holmes and J. E. Szulejko, Org. Mass Spectrom., 18,

273 (1983).

23. D. Hunt, W. C. Brumely, G. C. Stafford, and F. K. Botz,

Practical Spectroscopy, Vol. 3, 327-8, 373-5.

24. G. C. Stafford, J. R. Reeher, and R. S. Story, Practical

Spectroscopy, Vol. 3., 359-63, 373-5. .

25. Intel Corp., Santa Clara, CA 95052.

26. FORTH Inc., Hermosa Beach, CA 90254.

27. Malmstadt, H. V., Enke, C. G., and Crouch, S. R.,

Electronics and Instrumentation for Scientists, The

Benjamin/Cummings Publishing Co., Inc., 1981.

CHAPTER SIX

A TRAP-AND-PULSE ALGORITHM

FOR DETECTION OF

COLLISIONALLY ASSISTED REACTION PRODUCTS

1. Introduction

Programmable control systems for MS/MS allow the

creation of new types of experiments by adding new software

routines. One example of the power and flexibility of such

a control system is the ”trap-and-pulse” algorithm for

enhancing the detection of ionic products from collisionally

assisted reactions (CAR).

Most often, collisionally activated dissociation (CAD)

is the method used for modifying the parent ion introduced

into the central quadrupole of a TOMS (1). However, other

methods of modification or reaction are possible. In fact,

the TOMS was originally developed to study laser

photodissociation reactions (2,3). Moreover, there is a

growing interest in using CAR where the method of A

modification is a reaction between the parent ion and the

collision gas to form an adduct, to study ion/molecule

reactions in the central quadrupole (4-12). CAR can provide

different, and sometimes more selective, information about

analyte ions (7).

CAR has two main drawbacks. First, the yield of CAR

products is generally very poor. Optimum conditions for

forming CAR complexes, namely high collision gas pressures

and low axial energies for the parent ion, are poor

conditions for detection of the product ions. Because the

173

174

CAR adducts are formed at high pressures and low kinetic

energies for the parent ions, the product ions also have

little kinetic energy and, therefore, little tendency to

exit the collision region towards the detector. Often the

interquad lens between the second and third quadrupoles is

used as a ”drawout” lens to extract ions near the exit of

the central quadrupole by placing a large attractive

potential on the lens (negative potential for positive ions

and positive potential for negative ions). The second

drawback to CAR is that primarily only the CAR adducts are

formed with few, if any, fragment ions. Thus, CAR provides

little or no structural information about the adduct or

analyte ion. Sometimes such structural information would be

useful.

The trap—and-pulse technique (13) described in this

chapter allows the mass spectrometrist to vary the average

residence time of ions inside the central quadrupole,

increasing the reaction yield for stable product ions. This

technique improves the signal-to-background noise ratio

(S/BN) for stable CAR product peaks more than averaging the

ion current at the detector for equivalent scan rates.

Also, trap-and—pulse produces many product ions which have

been previously unseen in conventional CAR. These new ions

are primarily fragments of the initial adduct and their

presence provides additional structural information about

the adduct. Furthermore, the trap-and-pulse algorithm can

175

be applied to any TOMS with interquad lenses and modifiable

or extensible software without any instrumental changes.

2. Experimental

Instrumentation

All experiments were conducted on an Extrel 400/3

triple quadrupole mass spectrometer. The instrument has a

dual EI/CI source, which was modified to allow fast atom

bombardment (FAB) ionization (14). The FAB gun is a

capillaritron probe gun from Phrasor Scientific. All

samples were introduced either through a volatile liquids

inlet or a direct probe. Collision gases were admitted

through a stainless-steel vacuum line. The pressure of gas

in the collision region was regulated by a model 216

pressure/flow controller from Granville/Phillips, Inc. The

FAB experiments and trap-and-pulse ion lifetime experiments

were conducted by Greg Dolnikowski (14); all other

experiments were conducted by myself.

Computer System

An 8086-based microcomputer controls the TOMS and

acquires data using a software control system based upon the

programming language FORTH. The control system, based upon

the work of Dr. Carl Myerholtz (13) provided the modular

software and flexibility needed to create new types of

experiments.

176

Chemicals Used

Glacial acetic acid was obtained from Mallinckrodt as

an analytical reagent. Acetone and benzene were obtained

from Fischer Scientific. All of the above were used without

further purification. The glycerol used in this project was

vacuum-distilled. Xenon was obtained from Matheson

Scientific and was 99.993 pure.

Ion/Molecule Reactions

The reaction of the methyl cation with acetone was

carried out in the TOMS by introducing 5x10'° torr acetone

into the ion source and 5x10" torr acetone into the central

quadrupole region. The acetone in the ion source region was

ionized by 70 eV El which produced the methyl cation in

addition to many other fragment ions. The methyl cation was

mass selected using the first quadrupole and reacted with

the neutral acetone in the central quadrupole (Reaction 1).

CH3‘ + (CH30H2)2CO -> 06111301' (1)

The reaction of the protonated acetone molecule with

acetone was carried out in a similar manner, except that the

pressure in the ion source region was 5x10‘4 torr. This

created conditions suitable for chemical ionization and

protonated acetone was formed in abundance. The protonated

acetone molecule was mass selected using the first

177

quadrupole and reacted with the neutral acetone in the

second quadrupole (Reaction 2).

(CH3CH2)2CO+ + (CH30H2)2CO -> 010112002+ (2)

The reaction of protonated glycerol with acetic acid

was implemented by protonating the glycerol during FAB in

the ion source of the TOMS and by regulating the partial

pressure of acetic acid in the center quadrupole region.

The ion source and central quadrupole regions are

differentially pumped so that there is little mixing of the

neutral glycerol and acetic acid. The protonated glycerol

was mass selected by the first quadrupole and reacted with

the acetic acid in the second quadrupole to form the proton-

bound adduct ion (Reaction 3).

C4H11(0H)2* + CH30H2COOH -> 07H1904* (3)

Experiments were also performed with the benzene

molecular ion, using acetone as a nonreactive collision gas

in the central quadrupole. Repeated scans under various

conditions showed that no reaction between the two reagents

occurs. Thus, the benzene/acetone system makes an effective

probe for the physical characteristics of ion trapping,

since it maintains similar conditions to the protonated

acetone/acetone CAR reaction without interference from

chemical reactions (ion stability).

178

Instrumental Conditions for Ion Trapping

Typical TOMS instrument parameters for El, CI, and FAB

are shown in Table 6.1.

Table 6.1

Typical Conditions for Ion-Trapping

in the Center Quadrupole of the TOMS

Parameters El :91 :01 FAQ

Filament 70 eV 300 eV 300 eV ----

Repeller 14.3 V 33.0 V -46.6 V 0.0 V

CIV 2.7 V 32.2 V -37.6 V 0.0 V

EIV 14.9 V -185.8 V -l.5 V -106.3 V

EXT - 23.7 V -3.7 V 75.9 V -26.4 V

Ll -30.0 V -13.0 V -23.3 V 18.9 V

L3 10.0 V -191.3 V 110.4 V -72.2 V

O1 - 0.5 V 20.0 V -33.0 V —9.4 V

L4 5.9 V 4.0 V 66.9 V 5.0 V

02 14.0 V 32.2 V -26.6 V -l.8 V

L5 var var var var

O3 4.0 V 20.0 V -32.7 V -l3.2 V

Multiplier —l.7 kV -1.7 kV -2.0 kV -1.7 kV

Conversion

Dynode -3.0 kV -3.0 kV -3.0 kV .-3.0 kV

FAB Gun ----------------------- 10.0 kV

3. The Trap-and-Pulse Experiment

The trap-and-pulse experiment is based upon an

experimental observation by Greg Dolnikowski (13,14) that

CAR product ion currents would increase dramatically after

first raising and then abruptly lowering the voltage on lens

5 (the interquad lens between the second and third

quadrupole). To implement this concept, the voltage on lens

5 is raised to prevent all positive ions from exiting the

collision region then, after waiting a specific length of

time, the potential is lowered to release the trapped ions.

179

Repetitive acquisition of intensity data after pulsing out

the trapped ions will define the trap—and-pulse profile.

The sequence of lens voltages and the resulting trap-and-

pulse ion intensity profile are shown in Figure 6.1. In

order to perform trap-and-pulse experiments on negative

ions, the trapping potential would be negative and the

potential for pulsing the ions out of the collision region

would be positive. The maximum instantaneous ion current

obtained in a trap-and-pulse experiment is many times larger

than that obtained under steady-state conditions for stable

CAR products.

Typically, one uses a trapping potential of +100 V for

positive ions and -100 V for negative ions. The pulsing

potential is then -100 V for positive ions and +100 V for

negative ions. Smaller voltages can be used and still trap

the ions, but the most reproducible data were obtained with

these values. Part of the reason for this phenomenon is

shown in Figure 6.1. The maximum for the trap-and-pulse

profile occurs after the voltage on L5 has reached a

significantly negative value. The potential for lens 5

decreases exponentially after the control system updates the

new value to the digital-to-analog converter due to the RC

time constant of the L5 power supply. The data system

requires a finite time (approximately 2 uS) to start

acquiring intensity values after dropping the potential on

lens 5. Thus, the maximum of the peak will be missed if the

potential on lens 5 decays below zero before the system can

BONVONI'IBV BALLV'IBt-I 3OV1'IOA 9'1

<

T
R
A
P

:
<

P
U
L
S
E
—
—
>

I
C
O
N

1

O
%
<

180

>
0
.
0
.
1

4
0
0
.
0

'
f
L

o
7

I
1
6
5
0

H
S

I
S
O

T
I
M
E

F
i
g
u
r
e

6
.
1

P
l
o
t
s

o
f

i
o
n

a
b
u
n
d
a
n
c
e

v
e
r
s
u
s

t
i
m
e

a
n
d

L
5

p
o
t
e
n
t
i
a
l

v
e
r
s
u
s

t
i
m
e
,

s
h
o
w
i
n
g

o
n
e

f
u
l
l

t
r
a
p
-
a
n
d
—
p
u
l
s
e

c
y
c
l
e
.

181

acquire the first datum. The decay from +100 to -100 V

ensures that this does not happen and that the trap-and-

pulse profile is accurately characterized and the maximum

ascertained. The large negative value for the pulse voltage

also serves to purge the exit of the collision region before

the next trap-and-pulse experiment.

The mass spectrometrist also has control over the

trapping time. The maximum intensity of the trap-and-pulse

profile increases with increasing trapping time, as one

would expect, but then levels off. This effect will be more

fully discussed in a later section. Although one could

theoretically improve the ion intensity value indefinitely,

90 X of the final intensity normally has been reached within

100 mS. Thus, generally, the mass spectrometrist will

select a trapping time less than 100 mS, by compromising

between sensitivity and the length of the experiment (the

quality of the data versus scan rate).

_In the trap-and-pulse experiment, ions continuously

enter the central quadrupole from the source through the

first quadrupole. In a related technique, the "inject-trap-

and—pulse” experiment, only a discrete packet of ions is

allowed into the central quadrupole in order to characterize

ion lifetimes in the collision region. In inject-trap-and-

pulse, lens 3 (the interquad lens between the first and

second quadrupole) serves as an ion gate for the central

quadrupole. If the potential on lens 3 is low enough, ions

can pass into the central quadrupole; if the potential on

182

lens 3 is too high, they cannot. In inject-trap-and-pulse,

lens 3 allows ions into the central quadrupole only for a

fixed period of time while lens 5 holds the collision region

in the trapping mode. Again, after a specific period of

time, the remaining ions from the incident packet are pulsed

out of the central quadrupole. Figure 6.2 shows the

sequence of voltages on L3 and L5, as well as the resulting

inject-trap-and-pulse ion intensity profile. A plot of the

integral intensity of the resulting inject-trap-and-pulse

profile versus trapping time reveals ion lifetime statistics

for the trap-and-pulse method, namely the half-life for that

ionic species in the collision region. In order to study

the length of time of that ions could be trapped inside the'

central quadrupole, the methyl cation/acetone reaction

(Reaction 1) was chosen. This reaction forms the products

listed in Table 6.2.

Table 6.2

Ion/Molecule Products of the Reaction

Between the Methyl Cation and Acetone

Eli Formula

15.0 CH3’

29.0
Csz*

31.0 0330+

41.0
(3335+

43.0 CH3CO*

44.0 CHaOCHz+

57.0 CsHsO’

58.0 C3HsO+

59.0 CaH70*

117.0 CsH1302+

Figure 6.2

and pulse cycle.

and L5 potentials versus time,

r
u

(
Q
C
—
S
a
m

r
u
(
9
.
4
2
.
3

m
m
g
d
<
m

b
m
c
z
g
z
n
m

l0“ 1

0%

23.0-

mol

100.0

>’

~00

JI

JJ

1.!

rs

JI"

as

T“

m

I
I
I
I
I
I
I
I
I
I
I
I
l
I
l
u
l
l
l
j
l
n
i
l
l
I
I
I
I
I
I
I
I
I
I
I

183

showing one full inject,trap,

Plots of ion abundance versus time, and L3

4—INJECT ——>¢——— TRAP—->4-— PULSE ——-*

184

It is possible to trap stable products such as those at

m/z 59 (acetone+H)+ and 117 (acetone dimer+H)+ in the

central quadrupole for up to 20 S. The number of trapped

ions decays exponentially with increasing trapping time.

The time constant for the ion at m/z 117 at 5x10" torr

acetone was 2.8 S or, in other terms, the rate constant for

ion losses was 0.358 S‘l. Other product ions could only be

detected in the inject-trap-and-pulse experiment at lower

pressures around 7x10‘5 torr acetone. The less stable ions

fall prey to other competitive reactions at higher pressures

leading to more stable products. At the lower pressures,

these less stable ions, like the ion of mass 43, could be

trapped for short periods of time. The ion of mass 43 could

be trapped for about 100 mS in the collision region before

its signal faded into background.

4. Investigation of the Trap-and-Pulse Process

An investigation into the nature of the trap-and-pulse

method was undertaken. There are three possibile means for

ion loss or gain in the trap-and-pulse method. First, ions

which enter the exit region of the central quadrupole will

be lost if they are not trapped with 1008 efficiency. If

one assumes that all losses in the central quadrupole are

ion concentration dependent, then the rate of change of the

number of ions in this quadrupole trap will be equal to the

incident ion flux minus the fraction of ions being lost (the

185

inverse of the trapping efficiency) per unit time multiplied

by the ion concentration (Equation 1).

dI/dt = P - fl [1]

(where I is the number of ions in the trap, P is the

incident ion flux, and f is the ion loss rate constant)

The solution to this differential equation, given the

starting condition Io=0, is given in Equation 2.

I = P/f*(l-exp(-ft)) [2]

Thus, deviations from linearity in a plot of the integral

ion intensity versus trapping time will reveal any ion

concentration-dependent losses. Such a plot is shown in

Figure 6.3 for the protonated acetone/acetone reaction

(5x10‘1 torr collision gas pressure) (reaction 2). By

fitting the resulting data to Equation 2, a rate constant

of 12 +/- 2 S"1 was calculated. On the millisecond time

scale, which is the time scale for the experiment, this

corresponds to a trapping efficiency of about_99%.

Although, this may seem like an almost perfect ion trap,

experiments indicate and Equation 2 shows that there is a

maximum ion capacity, less than the theoretical space charge

limit, which will be determined by the trapping efficiency

(f) and the input ion flux rate (P). For stable,

nonreactive parent ions, like the benzene molecular ion,

this mass transfer equilibrium determines the maximum

trapping capacity of the central quadrupole.

(SIN-003 30V) AIISNEIINI ESWHd NOI

T

Ln

C)

+

h]
n

1

in

O

.+

Lu

N

I ‘
H

F
I
T
f
E
D

0
E
X
P
E
R
I
M
E
N
T
A
L

'
I

r
m

1
0
0

1
2
0

U
T

T

o
2
0

4
T
O

6
0

g
o

S
T
O
R
A
G
E

T
I
M
E
(
m
S
)

F
i
g
u
r
e

6
.
3

P
l
o
t

o
f

i
o
n

p
u
l
s
e

i
n
t
e
n
s
i
t
y

v
e
r
s
u
s

s
t
o
r
a
g
e

t
i
m
e

f
o
r

t
h
e

p
r
o
t
o
n
-
b
o
u
n
d

d
i
m
e
r

o
f

a
c
e
t
o
n
e

a
n
d

t
h
e

c
u
r
v
e

o
b
t
a
i
n
e
d

b
y

f
i
t
t
i
n
g

t
h
e

d
a
t
a

t
o

E
q
u
a
t
i
o
n

2
.

186

187

The second means of ion loss or gain in the trap-and-

pulse experiment is inefficient extraction of trapped ions

from the central quadrupole. The fraction of ions which can

be extracted can be calculated from the number of ions

represented in the trap-and-pulse profile divided by the

number of ions which expected based upon 1008 trapping and

extraction efficiencies (the steady state product ion

current times the trapping time). Experiments with the

benzene molecular ion and acetone indicate an extraction

efficiency on the order of 198. For stable product ions

like the protOn—bound dimer of acetone formed from the

reaction of protonated acetone with acetone, the extraction

efficiency as calculated above yields values above 100%.

Apparent extraction efficiencies above 1002 indicate that an

ion is being produced faster than it is being lost, usually

at the expense of less stable species in the reaction

chamber.

Thus, the third method of ion loss or gain is formation

or degradation of product ions in the central quadrupole

during the trapping period. For a stable, nonreactive ion,

like the benzene molecular ion, the net ion gain due to

reaction should be 0. For a stable product ion like the

proton-bound dimer of acetone, the net ion gain will be

positive and, in fact, overcome losses due to imperfect

trapping and extraction. For an unstable product ion like

CH300+ from reaction 1, the net ion gain will be negative

188

and may prevent detection of the ion at high pressures

and/or long trapping times.

For stable product ions with reactions yields that

overcome losses due to imperfect trapping, the trap-and-

pulse ion intensity limit reflects a limit to the

accumulation of ions in the collision chamber due to space-

charge. This effect is also seen in other techniques (14).

When monitoring a parent ion with a significant abundance,

such as protonated glycerol generated by FAB, a high rate of

parent ion influx occurs into the central quadrupole and the

space-charge limit will be reached quickly (within 100 m8).

Lower abundance parent ions will, of course, reach the

space-charge limit more slowly.

By raising the voltage on L4 (the interquad lens

between quadrupoles one and two) after a certain length of

time after raising the voltage on L5 to begin trapping, all

losses due to diffusion back through the entrance to the

quadrupole are eliminated. This technique makes a nice

probe for the causes of imperfect ion trapping and the

effects of ion energy and collision gas pressure. Figure

6.4 shows a plot of integral ion intensity versus trapping

time for the benzene molecular ion with a wide variety of

ion energies with no collision gas present (5x10‘7 torr).

This plot serves to show that the oscillations in ion pulse

intensity are real, since the oscillations from different

experiments reflect the same pattern. Apparently, there is

significant transverse ion movement in this experiment,

189

Figure 6.4 Plots of ion pulse intensity versus storage

time for the benzene molecular ion (no collision gas) for

several parent ion energies.

(SINHOO 30V) AIISNELLNI EIS-Ifld NOI

5
E
+
O
4
—

4
E
+
0
4
4

3
E
+
0
4

2
E
+
0
4
~

F
i
g
u
r
e

6
.
4
_

[
l
a
w

.
M
‘
é
‘
‘
v
r
"

1
E
+
0
4

 11111:

T
T

T
T

r
T

f
r

I
I

r
r

l
I

r

4
0

8
0

1
2
0

1
6
0

.
2
1
3
0

S
T
O
R
A
G
E

T
I
M
E

(
m
s
)

191

causing the extracted ion intensity to increase when the

ions are moving towards L5 upon extraction. The low

frequency of the oscillations shows that the ion motion is

not due to the initial kinetic energy of the ion (at 1 eV

the ion is moving at 1.57x10s cm/S and the quadrupole is 20

cm long, yielding frequencies in the kilohertz range). This

movement is caused by repulsion of ions due either to the

raising of L5 or, more likely, the raising of L4. All of

the following studies involve thermalizing the benzene

molecular ion with acetone collision gas.

Figures 6.5 and 6.6 show the effect of collision gas

pressure for two different kinetic energies of the benzene

parent ion. Both figures show that the trapping of ions

where they can be extracted (either the exit region or, for

this experiment, the entrance region where L4 can push the

ions toward the exit) is enhanced by higher collision gas

pressures. It is also clear that the ion lifetimes are very

much dependent on pressure. Analysis of the data from

Figure 6.5 (1 eV) shows the dependence of ion loss on

collision gas pressure (Table 6.3).

Table 6.3

Dependence of Ion Loss

on Collision Gas Pressure

25333235 Loss Rate Constant

2x10“ torr 7 +/- 1 8‘1

2x10'5 torr 5 +/- 1 8‘1

2x10"6 torr 2 +/- l 8‘1

6x10‘7 torr 0.9 +/- 0.5 8‘1

(6x10'7 torr not shown on graph)

192

Figure 6.5 Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several pressures of

acetone collision gas (parent ion kinetic energy of 1 eV).

193

 8
8
0
.
1
9
"
3
0
1
H

8
8
0
.
]
.
9
—
3
0
1

9
—
0

8
8
0
1
v
—
B
O
I
H

(
S
w
)
3
m

B
O
V
H
O
I
S

(
J
Z
Z
I

C
¥
3

l
J

9
'
9

G
J
D
B
T
E

~
9
0
+
3
1

I
‘
9
0
‘
1
'
3
3

”
9
0
4
-
3
9
3

 L
-
G
O
+
:
-
H
v

(SanOO 00v) AIISNSINI BS‘Ifld NOI

194

Figure 6.6 Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several pressures of

acetone collision gas (parent ion kinetic energy of 10 eV).

195 0
0
2

0
9

I

(
S
w
)
3
m

B
O
V
H
O
I
S

‘
V
r
"
l
\
4
l
\
,
4
.
,
,
l
p
,

\
g
‘
v

8
2
:
1
0
.
1
9
—
3
0
1
H

8
8
0
1
9
*
3
0
1

9
-
0

8
3
0
1

‘
1
7
-
3
0
1
H

9
-
9

.
.
n
s
,
,

E
9
0
+
3
0
°
Z

 "
9
0
+
B
O
'
1
7

I-r
9
0
+
3
0
'
9

I
-

E
9
0
+
3
0
°
8

L L
'
9
0
‘
1
‘
3
0
'
1

(SanOO 30v) ALISNHINI 3810:! NO!

196

Therefore, as collision gas pressure increases, ion loss

also increases. This loss could either be caused by

increased ion scattering or a quenching of the ions due to

the higher pressure. Also note the decreased rate constant

for 10" torr with this experiment (7 8'1) as opposed to

that calculated from the data of Figure 6.3 (12 8‘1). Thus,

ion loss is decreased when the potential is raised to

prevent ions from leaving the central quadrupole, as in the

dhta of Table 6.3, over the normal trap-and-pulse experiment

of Figure 6.3. This indicates that a certain fraction of

the trapped ions diffuse back through the entrance to the

collision chamber past L4.

Figures 6.7-6.9 show the effect of ion energy for

different collision gas pressures. At high collision gas

pressures (Figure 6.7 and 6.8), higher ion energies produce

increased ion yield. This is most likely due to the

increased ability for ions of higher energy to penetrate the

central quadrupole to reach the exit of the quadrupole,

where they can be extracted by L5. This phenomenon must be

balanced against the need for low ion energies for increased

reaction yields in exothermic CAR when determining the

proper ion energy for analysis. At low collision gas

pressures (Figure 6.9), e. g., vacuum, lower ion energies

produce increased ion yield. This probably occurs, because

more of the ions probably reflect back out of the collision

cell at higher than at lower ion energies.

197

Figure 6.7 Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several parent ion

kinetic energies (pressure of acetone collision gas of

2x10‘4 torr.

(SINHOO 00V) AIISNELLNI BS'IFId NOI

1
.
0
E
+
0
6
-
«

1
.
.
.
.
.
.

6
-
7

H
1
0

e
V

o
—
e
S
e
V

H
I
e
V

8
.
0
E
+
0
5
-
4

6
.
O
E
+
0
5
-
J

\

4
.
0
E
+
0
5
-

‘
\

J
‘
0
5

,
A
‘

2
.
0
E
+
0
5
-

198

.
1

0
0
0

I
I

T
T

f
T

T
I

I
I
f

l
'

T
j
—

r
l

'
_
_

r

0
4
O

8
0

1
2
0

1
6
0

r
2
0
0

S
T
O
R
A
G
E

T
I
M
E
(
m
S
)

199

Figure 6.8 Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several parent ion

kinetic energies «pressure of acetone collision gas of

2x10‘5 torr.

(SiNflOO 30V) MISNELLNI BS-IHd NOI

6
E
+
0
5
W

5
E
+
0
5
-

4
E
+
0
5

3
E
+
0
5
4

fl

2
E
+
0
5
fi

j

1
E
+
0
5

M
A

F
i
g
u
r
e

6
.
8

*
—
x

H
J
e
V

e
—
Q
E
S
e
V

o
—
O
‘
1
e
V

O
F
T

o

r
1
*

r

4
0

T

T
‘
1
'
—
T
i
T

I
r

‘
l

V
r

T

8
0

1
2
0

S
T
O
R
A
G
E

T
I
M
E

(
m
s
)

j
i
‘
l
'
i

T

1
6
0

f
I

2
0
.
0

200

201

Figure 6.9 Plots of ion pulse intensity versus storage

time for the benzene molecular ion for several parent ion

kinetic energies :pressure of acetone collision gas of

6x10’7 torr.

(SanOO 30v) MISNBLNI 381m NOI

1
.
0
E
+
0
4
-
—

8
0
0
0
.
0

.
4

6
0
0
0
.
0
4

4

4
0
0
0
.
0
-
*

2
0
0
0
.
0

F
i
g
u
r
e

6
.
9

H
1
0
e
V

o
—
e
S
e
V

H
1
e
V

0
.
0

r

T
T

I
r

I

r
T

'
r

8
0

1
2
0

1
6
0

,
T

1

2
0
0

S
T
O
R
A
G
E

T
I
M
E

(
m
3
)

202

203

Analyses of the trap-and-pulse and the inject-trap-and-

pulse profiles also provides some insight into the trap-and-

pulse experiment. The inject-trap-and-pulse profile quickly

reaches a maximum and then decays exponentially with a time

constant of 4 mS, which is also the time constant of the L5

power supply. The trap-and-pulse profile is not cleanly

exponential, however. The first part of the temporal decay

is exponential, but the last part has a square root

dependency, indicating diffusional control. Furthermore,

the width of the trap-and-pulse profile is wider at higher

than at lower collision gas pressures. This further

indicates that the trap-and-pulse profile is at least partly

controlled by diffusional effects.

5. The Trap and Pulse Algorithm and Software Considerations

The trap-and-pulse experiment has been incorporated

into the full range of MS/MS scans and device sweeps. Thus,

if the mass spectrometrist wishes to employ the trap-and-

pulse aethod of data collection for a set of experiments he

invokes the reaction scans. RDSCAN, the reaction daughter

scan or reaction product scan, identifies the mass-to-charge

ratio of the products resulting from the reaction of the

selected parent ion with the reactive collision gas.

RNSCAN, the reaction neutral loss scan, identifies the mass-

to-charge ratio of parent ions which undergo a given mass

change when reacting with the collision gas. RPSCAN, the

204

reaction parent scan, identifies the mass-to-charge ratio of

parent ions which produce a given product upon reaction with

the collision gas. RSWEEP, the reaction device sweep,

generates the full ion current profile upon varying the

value of a physical device. RSWEEP is especially useful in

finding the optimum values for parameters, such as the RF

voltage value in the central quadrupole (M2) and the voltage

offset for quadrupole three, which will be held constant

during a reaction scan.

These reaction scans perform exactly like their

conventional counterparts, except that they perform a trap-

and-pulse experiment after every step of the device being

scanned. For a scan in which the device is either

quadrupole l or 3 or both, the mass value is typically

incremented in steps of 0.1 AMU. In that case, a trap-and-

pulse experiment would be performed every 0.1 AMU. The

maximum intensity of the trap-and-pulse profile is then used

as the ion intensity for that mass-to-charge ratio. These

intensity values versus the mass-to-charge ratio at which

they were acquired define the mass spectral peak shape,

which, in turn, can be further processed to find peak

locations and peak intensities.

The software for the BSCANS and RSWEEPS can be found in

Appendix I. The essential difference in the software

between the reaction scans and conventional scans is the use

of the routine RACQUIRE (reaction acquire) instead of

ACOUIBE. Both routines return a 32-bit intensity value to

205

the stack. ACQUIRE returns a 32-bit averaged intensity‘

value, which is proportional to the steady state ion current

at the detector. RACOUIRB, on the other hand, returns 32-

bit value to the stack which is proportional to the maximum

ion current generated by the trap-and-pulse experiment.

In order to obtain this value, RACQUIRE first sets the

voltage on L5 to the value specified in the variable VTRAP.

This places the central quadrupole in the trapping mode.

Second, RACQUIRE waits the number of milliseconds specified

in variable TSTORR. This determines the accumulation of

ions and the average ion residence time in the trap. Third,

RACQUIRE changes the voltage on L5 to the value specified in

the variable VPULSE. This pulses the ions out of the trap I

towards the detector and purges the trap for the next

experiment. Fourth, RACQUIRE begins acquiring ion intensity

values, using the routine ACQUIRE. Each value could have a

user-specified amount of averaging, but generally unaveraged

intensity values are used, since they can be obtained more

frequently, in order to be certain of determining the exact

peak maximum. RACQUIRE obtains a finite number of ion

intensity values, specified by the variable #ACQS. The user

selects #ACQS so as to be sure to catch the entire trap-and-

pulse profile. While acquiring these intensity values,

RACQUIRE finds the maximum ion intensity value. This

maximum then becomes the intensity value for the current

mass-to-charge ratio, which will be further used to define

the mass spectral peak profile. All of the variables

206

mentioned above are set by the user in a menu called RXSET.

In RXSET, the user can choose the values appropriate to his

analysis or accept the default values.

An alternative set of reaction scans uses the

integrated intensity of the trap-and—pulse profile as the

intensity for that device value. These scans and sweeps are

designated +RDSCAN (integrating reaction daughter, or

product, scan), +RPSCAN (integrating reaction parent scan),

etc. The software for these scans is identical to the

normal (maximum value) reaction scans, except that the

integrating reaction scans use the routine +RACOUIRR, which

sums the resulting intensities for the trap-and-pulse

profile, rather than finding the maximum. However, we havel

found that these scans give poorer signal~t0sbackground

noise ratios than the equivalent reaction scan which just

uses the trap-and-pulse maxima. This is probably due to the

poor definition of the baseline for these peak shapes, due

to the asymmetry of the peak, thus yielding poorly

reproducible peak areas for the intensity. More

sophisticated peak-defining and integration algorithms might

have improved the reproducibility of the peak areas, but

would have slowed the reaction scans even further.

Reaction scans are much slower than conventional scans,

because of the time spent trapping at each step of the scan.

Typical durations for a reaction scan from 50-500 AMU are 1

to 2 minutes depending on the trapping time selected. Thus,

reaction scans are unsuitable for transient samples such as

20?

gas chromatographic peaks. However, the trap-and-pulse

algorithm has also been implemented for single reaction

monitoring (SRM) and multiple reaction monitoring (MRM). In

SRM, ions of a specific mass are selected in quadrupoles l

and 3 and intensity values are acquired repetitively. Thus,

SRM monitors the time-dependent intensity of a particular

parent—daughter ion pair. MRM repetitively monitors a

number of these pairs, obtaining the time-dependent

intensity on a less frequent basis. Obviously these modes

are used for targeted analysis of transient samples. They

not only achieve better characterization of the.time

profiles of such transient samples, but also better single-

to-noise ratios for the peak profiles, (e. g.,

chromatographic peak area), since more time is spent

collecting data at the reaction pairs of interest than is

possible in a full scan. Thus, the trap-and-pulse technique

can be used to characterize transient samples as well using

R-MRM.' The FORTH code for R-MRM also appears in Appendix I.

6. Results

Figures 6.10 and 6.11 demonstrate the two advantages of

the trap-and-pulse technique over conventional CAR scans.

Figure 6.10 shows the increase in the ratio of signal to

noise for the trap-and-pulse technique over conventional CAR

for equivalent amounts of averaging. Each of sweeps A

through C are of the acetone dimer pseudomolecular ion

formed from Reaction 3. Sweep A is a conventional CAR

SLNDOO 30V

l
5
3
-
' A

=
O
R
U
N
A
R
Y
M
A
S
S
S
W
E
E
P

B
‘
S
I
G
N
A
L
N
E
M
D

C
‘
T
R
A
P
A
N
D

P
U
L
S
E

S
I
G
N
.
0
7
6

S
I
N
-
H

SLNOOO 30V

31.91000 00'

F
i
g
u
r
e

6
.
1
0

T
h
r
e
e

m
a
s
s

s
w
e
e
p
s

o
f

0
3

o
v
e
r

t
h
e

i
s
o
t
o
p
e

p
e
a
k
s

o
f

t
h
e

p
r
o
t
o
n
-
b
o
u
n
d

d
i
m
e
r

o
f

a
c
e
t
o
n
e

(
A
)

b
y

c
o
n
v
e
n
t
i
o
n
a
l

d
a
t
a

c
o
l
l
e
c
t
i
o
n

(
2
5
0

a
m
u
/
S
)
,

(
B
)

b
y

c
o
n
v
e
n
t
i
o
n
a
l

d
a
t
a

c
o
l
l
e
c
t
i
o
n

w
i
t
h

r
e
a
l
-
t
i
m
e

s
i
g
n
a
l

a
v
e
r
a
g
i
n
g

(
5

e
m
u
/
S
)
,

(
C
)

b
y

t
r
a
p
-
a
n
d
-
p
u
l
s
e

d
a
t
a

c
o
l
l
e
c
t
i
o
n

(
5

a
m
u
/
S
>
.

208

209

I 00 °/o = l7000

93 CONVENTIONAL

su‘

2 3!

(GH- H20” .

75/
(new?

' \ss

0% r . . .

80 I00 |20 I40

M/Z

R
e
l
a
t
i
v
e

A
b
u
n
d
a
n
c
e

. l00°/o = 68000

TRAP AND PULSE '53

(“st

|00%

(A4 on -2nzo)*

G". I I7

4» 93 .. ’

’1/ 1 \3-0'“ V3”
:21

as l . . . I - J . I

so I00 I20 I40

wz

ACETIC ACID

R
e
l
a
t
i
v
e

A
b
u
n
d
a
n
c
e

V 1

A

G GLYCEROL

Figure 6.11 Two product ion scans of the ion/molecule

reaction between protonated glycerol and acetic acid (parent

ion is (M+R)* of glycerol at m/z 93) by (A) conventional

data collection and by (B) trap-and-pulse data collection.

210

daughter scan with no signal averaging. Sweep B is a

conventional CAR daughter scan with 256 averages per datum

(20 mS of averaging). Sweep C is a reaction scan with 20 m8

of trapping time. The resulting signal-to-background noise

ratios were calculated as the peak signal intensity divided

by the standard deviation of the background. The S/BN ratio

for the trap-and-pulse peaks is four times larger than for

the signal averaged peak. It is clear that, for CAR product

ions, averaging the ion current in the central quadrupole is

superior to averaging at the detector for equivalent scan

rates. This occurs not from a decrease in the amount of

noise, as in signal averaging, but rather from increasing

the signal more than the noise. Furthermore, the reaction

scans can help discriminate against certain noise sources,

such as FAB neutral noise and synchronous noise in the

detection electronics, since these noise sources are only

present in one analog-to-digital conversion of the maximum

trap-and-pulse intensity, while the ion current is summed

for the whole trapping time. Figure 6.10 also shows that

the mass spectral peak profile or resolution is not degraded

through the trap-and-pulse technique.

Figure 6.11 shows the increase in the number and

abundance of products obtained from the trap-and-pulse

technique over a conventional CAR scan. Figure 6.11A shows

a conventional daughter scan of the products formed from the

reaction of protonated glycerol and acetic acid in the

central quadrupole (Reaction 3). Figure 6.llB shows the

211

trap-and-pulse scan for the same reaction. The appearance

of the spectrum is obviously greatly different. First, the

ratio of product ion intensities to the parent ion intensity

is greatly increased in the trap-and-pulse spectrum. This

should be expected since parent ions are being converted to

product ions continuously during the trapping period. The

intensity of some product ions are enhanced more than

others, since unstable product ions can decompose or react

further with the collision gas given long trapping times.

Figure 6.11 also shows that at 7x10‘5 torr acetic acid in

the collision chamber, ionic products are observed that are

not seen in a conventional scan. The peaks at m/z 110, 117,

119, 121, and 135 are not present even at low intensity in

the conventional spectrum unless the pressure of acetic acid

is increased by at least an order of magnitude. These

products are observed during the chemical ionization of

glycerol and acetic acid; similar products have been

observed in a reaction of protonated alcohols and acetic

acid in ion cyclotron resonance (15). The peaks at m/z 119

and 121 are due to proton transfer to the acetic acid dimer;

the peaks at m/z 110, 117 , and 135 represent new ions that

are the result of characteristic neutral losses from the

proton-bound adduct of glycerol and acetic acid. These

extra peaks could provide more information about the adduct

ion or even the analyte ion.

212

7. Conclusion

It is possible to trap stable ions with very low axial

kinetic energies, such as CAR products, with up to 1008

efficiency in the central quarupole and extract them with up

to 19% efficiency of a TOMS instrument with no physical

modifications. The ability to trap ions efficiently in the

central quadrupole increases the detectability (signal-to-

background noise ratio) of CAR products and the number of

products observed in the CAR spectrum. The trap-and-pulse

method can conceivably be used to enhance ion signals for

other reactions in the central quadrupole, including charge

transfer or photodissociation.

REFERENCES

l. R. A. Yost, C. G. Enke, D. C. McGilvery, and J. D.

Morrison, Int. J. Mass Spectrom. Ion Phys., 1979, 39, 127-

136.

2. D. C. McGilvery and J. D. Morrison, Int. J. Mass

Spectrom. Ion Phys., 1978, 28, 81-92.

3. M. L. Vestal and J. R. Futrell, Chem. Phys. Lett., 1974,

28, 559-560.

4. J. D. Morrison, K. Stanney, and J. M. Tedder, J. Chem.

Soc. Perkin Trans. II, 1981, 838-841.

5. J. D. Morrison, K. Stanney, and J. M. Tedder, J. Chem.

Soc. Perkin Trans. II, 1981, 967-969.

6. J. A. Chakel and C. G. Enke, Anal. Chem., in press.

7. D. D. Fetterolf, R. A. Yost, and J. R. Eyler, Org. Mass

Spectrom., 1984, 19, 104-5.

8. R. A. Yost and D. D. Fetterolf, Mass Spectrom. Rev.,

1983, 2, 1-45.

213

9. D. D. Fetterolf and R. A. Yost, Int. J. Mass Spectrom.

Ion Proc., 1984, 62, 33-49.

10. J. P. Schmit and P. R. Dawson, N. Beaulieu, Org. Mass

Spectrom., 1985, 20, 269-275.

11. J. Jalonen, J. Chem. Soc., Chem. Commun., 1985, 872-874.

12. J. P. Schmit, S. Beaudet, and A. Brisson, Org. Mass

Spectrom., 1986, 21, 493-498.

13. G. G. Dolnikowski, M. J. Kristo, C. G. Enke, and J. T.

Hatson, Int. J. Mass Spectrom. Ion Proc., in press.

14. G. G. Dolnikowski, Ph. D. Dissertation, Michigan State

University, 1987.

15. C. A. Myerholtz, Ph. D. Dissertation, Michigan State

University, 1983. .

16. R. T. McGiver, Jr. and R. L. Hunter, Int. J. Mass

Spectrom. Ion Proc., 1985, 64, 67-77.

17. P. W. Tiedeman and J. M. Riveros, J. Am. Chem. Soc.,

1974’ g, 185—9s

CHAPTER SEVEN

SUGGESTIONS FOR FUTURE WORK

The completion of the multimicroprocessor TOMS control

system has made the prototype TOMS instrument in our

laboratory (the U. S. S. Enke) a viable and useful

instrument. Preliminary studies have shown that the U. S.

S. Enke is more sensitive than our EL 400/3 TOMS instrument.

However, more research should be conducted on this

instrument in order to fully exploit its enhanced control

features- real-time graphics and linked device sweeps.

The creation of the Novix Control System has

demonstrated the exciting possibilities, as well as the

problems, of scanning quadrupole instruments very rapidly.

Since scanning faster requires amplifiers with greater

bandwidths and greater bandwidths pass higher frequencies of

noise without attenuation, synchronous noise must be reduced

in the instrument and detection system. My experience has

shown that very little attention is paid to reducing noise

in scientific instruments. For example, the mechanically

convenient stack configuration increases capacitive coupling

between the RF and the signal, since the RF high voltage

leads are in close proximity to the low-level current

signals. However, beyond totally redesigning the vacuum

chamber to eliminate the stack, many other improvements can

be made to the 400/3 instrument to reduce this noise. The

distance between the preamplifier and the analog anode of

214

215

the ion multiplier should be reduced, the various power-

supplies should be decoupled to eliminate transmission of

noise through the power lines, and the placement of voltage

references should be carefully designed. Upon reduction of

synchronous noise in the system, design of a high bandwidth

preamplifier and multiamp amplification scheme will allow

full exploitation of both the dynamic range of TOMS and the

scan speed of the Novix control system. These modifications

would allow the full power of high-speed data acquisition to

be realized on this instrument.

The extra speed of the Novix control system should also

be used to develop real-time experimental optimization and

control. I have started exploring this possibility by

writing a small MS/MS database manager and expert system.

This system can be found starting at Block 3000 on the hard

disk. Basically, this database contains TOMS experiments

appropriate to identification of various chemical compounds.

I have already entered a few organophosphorous pesticides

explored in the work of Mark Bauer (1,2) into the database,

but did not test the real-time identification; Eventually,

such a database/expert system could be linked with a

chromatography expert system in order to identify peaks as

they elute into the ion source.

My work with peak—finding algorithms will hopefully

open up more discussion in the literature about this very

important subject. Incorrect peak-finding can render

useless even the most carefully acquired data. The

216

development of the hardware peak-finder has shown that the

peak-finding function can be performed in hardware, yet

maintain the flexibility of exploring new algorithms through

downloadable software sequencing. Peak—finding in hardware

provides faster execution and allows the use of more

sophisticated, yet more time-consuming algorithms. In

retrospect, the design of the hardware peak-finder would

have been simplified by using the new Weitek 32-bit integer

processor (3), which came into production after the start of

the project. The Weitek chip can perform most arithmetic

and logical operations in a single lOO-nS clock cycle, as

well as perform quick multiplication of two 32-bit numbers.

This would provide a simpler and less expensive design,

since most of the needed functions would be provided in the

processor itself. However, the progress of electronics

practically outdates any design before its completion.

The dual-mode control system is an excellent tool for

mass spectrometrists. With the proper commercial

development and exploitation, the dual-mode detector will

become the detector of choice for mass spectrometry and

possibly other areas of analytical chemistry, such as

optical spectroscopy.

The trap-and-pulse experiment has shown that

collisionally assisted reactions can be analytically useful

(4). The primary limitations to the utility of CAR in the

past have been the poor yields for CAR products and the lack

of structural information about the adduct ions. The trap-

217

and-pulse experiment has greatly enhanced the yield of

product ions and new products have been detected that

increase the structural information about the adduct ions.

Nevertheless, this experiment points to an even better

solution to the problems of CAR. By redesigning the

collision chamber, one can create and control an electric

field gradient in the axial direction, allowing storage of

the ions in a potential well and then forcing all ions

towards the exit of the central quadrupole, generally

improving the creation and collection of ionic products from

CAR. .

Although much work has been done already, the

development of TOMS instrumentation is far from complete.

As shown by the recommendations above, the bulk of research

in this area should fall into four areas: improving the

speed of data collection, improving data reduction,

improving the accuracy and dynamic range in measuring the

ion current, and improving the collision cell design.

REFERENCES

1. M. R. Bauer, M. S. Thesis, Michigan State University,

1983.

2. M. R. Bauer, Ph. D. Thesis, Michigan State University,

1986.

3. WTL-1033, Weitek Corp., Santa Clara, CA 95054.

4. G. G. Dolnikowski, Ph. D. Dissertation, Michigan State

University, 1987.

APPENDIX A.

FORTH CODE FOR LINKED SCANS

218

SCROI

0 (Load Block for Linked Device Scans- HJK 11/16/86)

1 8 LOAD (Basic FORTH Stuff)

2 ’ (CREATE) ’CREATE !

3 540 LOAD (Math Load)

4 : COMMAND ;

5 612 625 THRU (Slave 1 Device Access)

6 : IGET 8070 BLOCK 0 0 ITABLE 123 (CHOVE ;

7 IGET

8 1250 1253 THRU (Spline Fitting)

9 1254 1256 THRU (User Interface)

10 ’ ?CREATE ’CREATE !

ll

12

l3

14

15

SCROZ

0 (Spline Fitting- HJK 11/16/87- adopted from Novix routines)

l 2 CONSTANT PTS PTS 2ARRAY raw 999 CONSTANT n

2 :)rau (v) n raw 2! l [’] n +! ;

3

4 : x ('-) raw 8 0 2>N ;

5 : y ('-) raw 2+ E O 2>N ;

6 : h (i’f) DUP)R 1+ x R) x F- ;

7 : V (") DUP)R l- h R) h F/ ;

8 : H (i‘f) DUP)R 1+ Y I Y F‘ R) h F/ ;

o

10 6 FINTEGER F6.

11 : ai (l'f) V ;

12 : bi (i-f) v 1.0 F+ 2.0 F* ;

13 : ci (i-f) DROP 1.0 ;

14 : d1 (i-f) DUP >R w I 1- w F- F6. Ft R) h F/ ;

15

SCRIS

0 (Spline Fitting - HJK 11/16/86)

1 PTS SARRAY beta PTS SARRAY gamma PTS SARRAY phi

2

3 : BETAS 1 bi FDUP 1 beta 5! n 1- 2 DO I ai I 1- ci Ft

4 FSHAP F/ I bi FSHAP F- FDUP I beta 3! LOOP FDROP ;

5

6 : GAHHAS 1 di 1 beta 53 F/ FDUP 1 gamma 5!

7 n l- 2 DO I ai F* I di FSHAP F-

8 I beta SQ F/ FDUP I gamma 5! LOOP FDROP ;

9

10 : PHIS 0 phi PTS 2* ERASE n 2- ganna se

11 FDUP n 2- phi s! l n 3 - DO I ci F* I beta 58 F/

12 I ganna Se FSNAP F- FDUP I phi s! -1 +LO0P FDROP ;

13

14 : MATRIX BETAS GAMMAS PHIS ;

15

21$)

SCROA

0 (Spline Fitting _ NJK 11/16/86)

1 PTS SARRAY aj PTS SARRAY bj PTS SARRAY cj PTS SARRAY dj

: SOLVE MATRIX n 1- 0 DO I h F6. F*

I phi se FOVER F/ I aj s!

I 1+ phi $9 FSNAP F/ I bj S! I h F6. F/

I 1+ y I h F/ FOVER I 1+ phi s@ F* F- I Ci 5!

I y I h F/ FSNAP I Phi 56 F* F- I dj 5! LOOP ;

‘
O
C
O
‘
Q
O
s
C
fl
b
O
J
M

: SUBDIVIDE (n-n i 1 -32k) DUP 0 raw 6 n 1* raw 6 1+

10 WITHIN IF 0 BEGIN 1+ 2DUP raw 8) NOT END 1‘

11 ELSE R) 2DROP 32768 THEN ;

12

13

14

15

SCRRS

0 (Spline Fitting- NJK 11/16/87)

: SPLINE (n-n) SUBDIVIDE)R)N I 1+ x FOVER F-

FDUP FDUP FDUP F* F* I aj 58 F* FSHAP I dj 58 F*

FSNAP I x F- FDUP FDUP FDUP F* F* I bj SE F*

FSHAP R) cj 58 F* F+ F+ N) ;(
.
1
1
4
7
w
a
.
—

6

7

8

9

10

11

12

13

14

15

SCRté

0 (User Interface for Linked Devices- HJK 11/16/36)

1 4 CONSTANT BLNAX

2 VARIABLE QLDEVICES

3 CREATE LDEVICES BLHAX 2* ALLOT

4

5 : ?LDEVICES CR ." Number of Devices to Link: ” #INPUT DUP

6 DUP ILMAX > ABORT” Too many devices to link"

7 ILDEVICES ! CR CR 0 D0

3 ." Linked Device t" I . .” : " RINPUT

9 LDEVICES I 2* + ! CR LOOP ;

10

ll

12

13

14

F+

220

SCRO?

0.(Input Values for Devices- MJK 11/16/86)

1 : ?LVALUES CR ." The Value for Mass 1000.0 will stop entries"

2 0 [’] n 1 CR CR 1024 0 DO REGULAR (usual ver. of NUMBER)

3 ." Mass t" I . ." : " CINPUT DUP CR

4 ." Value 8" I . .” : " QINPUT CR CR MATH

5 SNAP)raw 10000 2 IF LEAVE THEN LOOP ;

6

7 8073 CONSTANT LBLOCK

3 CREATE LBUFFER 2043 ALLOT

9

10 :)LBLOCK (n-) >R LBUFFER LBLOCK I 2* + BLOCK 1024 MOVE

11 UPDATE LBUFFER 1024 + LBLOCK R) 2* + 1+ BLOCK 1024 MOVE

12 UPDATE ;

13

14

15

SCROB

0 (Input Values for Devices- MJK 11/16/36)

1 8082 CONSTANT Dtable

2

3 : LINKS ALDEVICES G 0 D0 CR CR ." Device: ”

4 LDEVICES I 2* + G DUP ODEVICE ! U. CR ?LVALUES SOLVE

S 1024 0 DO #DEVICE G M1 I 64 *)UNITS SNAP {DEVICE !

6 SPLINE >DAC LBUFFER I 2* + ! LOOP

7 I)LBLOCK LOOPP FLUSH ;

8

9)Dtable tLDEVICES O 0 DO I 2* LDEVICES + e tDEVICE !

10 DEVICE-ADDRESS Dtable BLOCK I 2* + 2+ ! UPDATE LOOP

11 OLDEVICES O Dtable BLOCK ! UPDATE FLUSH ;

12 .

13 : LSCANS 7947 SCREEN CR ?LDEVICES LINKS)Dtable ;

14 -

15 '

SCRG9

0 Welcome to the Wonderful Norld of Linked Devices

1

2 You will first be prompted for the number of devices that you

3 wish to link (up to 4) and the number of those devices- check

4 the TOMS user’s manual or PED for the number of a given device.

5

6 You will next be prompted to enter the value for each device

7 at various masses. You can determine these values by experiment

8 or you can play around. To stop entering mass-device values

9 enter the values for mass 1000.0. You must have values for mass

10 1000.0 and 0.0. Enter values as integers to avoid confusing

11 the floating point processor which looks for fractions, e. g.,

12 enter 10.0 as 100. Between entered values, values for the

devices will be calculated at roughly 1 anu intervals using a

spline fitting routine translated from one for the Novix

polyFORTH environment by the good people at polyFORTH.

221

SCROl

0 (Device Tracking - MJK from CAM 11/13/36)

1 VARIABLE Dtable COMMAND 3 ALLOT

2 VARIABLE ldevices COMMAND

3 VARIABLE table COMMAND 3190 ALLOT

4

5 CODE TRACKING (n-) 0 POP R PUSH I PUSH 06 I 1 MOV

6 0 SAR V 0 N MOV table 8 N ADD Dtable # I MOV

7 tdevices 1 MOV 1N2 IF BEGIN H) 0 MOV R 0 XCHG

8 0 R) MOV 2048 A N ADD LOOP THEN I POP

9 R POP NEXT

10

11

12

13

14

15

SCR82

0 (Linked Scans- MJK 12/14/36) HEX

1 : lstart O FCCO C! FSTOP rate Q RATE 0 AMUF/F C! 3

2 DECIMAL

3

4 (LSNEEP) (tsteps, startdac-) DUP !DATA !SCRATCH

5 0 DO

6 ?YOK (detection done?)

7 +DEVICE (increment and out)

8 scratch 8 DUP (current value)

9 TRACKING (track all other devices)

10 XOK (go-ahead to detection)

11)PEAK (reduction)

12 LOOP ;

13

14 : LSNEEP (step end start dev-) DUP !DEVICE! SNEEPDEV !

15)DAC&STEP lstart (LSHEEP) SCANEND ; COMMAND

SCRI3 '

0 (Linked Scans - MJK 12/14/36)

1

2 : (LISCAN) (tsteps startdac~) OIINIT

3 0 DO

4 ?YOK (detection done?)

5 +Ol>3 (increment and out)

6 MISCRATCH C DUP (current values)

7 TRACKING (track all devices)

3 XOK (ion path done)

9)PEAK (to reduction)

10 LOOP ;

11

12 : LISCAN (step end start') DRR M1 3)DAC

13 OSTEPS lstart (LISCAN) SCANEND ; COMMAND

222

SCR84

0 (Linked Scans - MJK 12/14/36)

1

2 : (LSSCAN) (Osteps startdac-) OSINIT

3 0 D0

4 ?YOK (detection done?)

5 +03>1 (increment and out)

6 M3SCRATCH O DUP (current values)

7 TRACKING (track all devices)

8 XOK (ion path done)

9)PEAK (to reduction)

10 LOOP ;

11

12 : L3SCAN (step end start-) DRR M3 3>DAC

l3 ASTEPS lstart (L3SCAN) SCANEND ; COMMAND

SCROS

0 (Linked Scans - MJK 12/14/86)

1

2 . (LDSCAN) (#steps startdac-) Q3INIT

3 0 DO

4 ?YOK (detection done?)

5 +03 (increment and out)

6 MBSCRATCH @ DUP (current values)

7 TRACKING (track all devices)

3 XOK (ion path done)

9)PEAK (to reduction)

10 LOOP ;

11

12 : LDSCAN (step end start-) DRR M3 3)DAC

13 CSTEPS lstart (LDSCAN) SCANEND ; COMMAND

14

15

SCRKO

0 (Linked Scans - MJK 12/14/36)

1

2 (LPSCAN) (Ksteps startdac-) OIINIT

3 0 D0

4 ?YOK (detection done?)

5 +01 (increment and out)

6 MISCRATCH O DUP (current values)

7 TRACKING (track all devices)

3 XOK (ion path done)

9 >PEAK (to reduction)

10 LOOP ;

11

12 : LISCAN (step end start-) DRR M1 3>DAC

13 OSTEPS lstart (LPSCAN) SCANEND ; COMMAND

14

15

223

SCRO7

0 (Linked Scans - MJK 12/14/36)

1

2 (LNSCAN) (Ksteps startdac-) OSINIT OIINIT

3 0 DO

4 ?YOK (detection done?)

5 +013 (increment and out)

6 MISCRATCH G DUP (current values)

7 TRACKING (track all devices)

3 XOK (ion path done)

9 >PEAK (to reduction)

10 LOOP ;

11

12 : LNSCAN (step end start-) DRR NSET M1 3)DAC

l3 “STEPS lstart (LNSCAN) SCANEND ; COMMAND

14

15

SCROS

0 (Master Linked Scans- MJK 12/14/86)

1 : LSNEEP statCLR ODEVICE O DUP 2PUSH

2 @PARAMS lPUSH SL3 SHEEP SL1 SHEEP SL2 SHEEP

3 SHEEPEND ;

4

5 : LISCAN M1 SCANINIT SL1 LISCAN 0 SCANEND ;

6

7 : L3SCAN M3 SCANINIT SL1 L3SCAN 1 SCANEND ;

8

9 : LDSCAN M3 SCANINIT SL1 LDSCAN 2 SCANEND ;

10

11 : LPSCAN Ml SCANINIT SL1 LPSCAN 3 SCANEND ;

13 : LNSCAN M1 SCANINIT NSET SL1 LNSCAN 4 SCANEND ;

SCR89

0 (Linked Scans for Master- MJK 12/14/36)

1 4 CONSTANT “LDEVICES

2 8073 CONSTANT LBLOCK

3 8032 CONSTANT LDEVICES

4 ILABEL table table

5 1LABEL Qdevices Kdevices

6

7

3

q

: LTABLES KLDEVICES 2* I 1024 t + 0 1)SLAVE

LBLOCK I + BL SL1 NOTHING LOOP

. 1024 IPMOVE SL1 NOTHING LOOP 2+ Dtable

10 LDEVICES BLOCK DUP O tdevices I! 2+ Dtable

11 ILDEVICES 2* IPMOVE ;

13 LTABLES

APPENDIX B.

FORTH CODE FOR REAL-TIME GRAPHICS

224

SCRhl

0 (Real-Tine Graphics - MJK 12/16/86)

: RGINIT (start end max-inten) Max-Inten 2!

1 CSIZE RNAXES ; COMMAND

BEGIN)R

XGET DUP I !X)UNITS

YGET 2DUP I !Y NORMALIZE ?LOG

. SNAP PLOT

10 R) 1+ SSTAT 3 + CO 1 =

11 END OPOINTS 1

12 SCANEND ; COMMAND

1

2

3

4

5 : RGSNEEP SCANINIT LPYG LPXG (CUR) VECTOR O

6

7

3

q

SCR82

0 (Real-Time Graphics - MJK 12/16/86)

1 CODE ?RGPEAK 2 POP 0 POP I PUSH U PUSH ?PEAK CALL

2 U P0? 1 POP NEXT

3

4 : ?RGPEAK ?RGPEAK ?peak 6 0: NOT

5 IF XYLAST 29 I BY NORMALIZE ?LOG I BX HIST PLOT

6 0 ?peak ! XYLAST 2! THEN ;

7

B : RGSCAN SCANINIT LPY @ LPX O (CUR)

9 BEGIN

10 XGET DUP xvalue !)UNITS

11 YGET 2DUP ?RGPEAK

12 NORMALIZE ?LOG SNAP VECTOR PLOT

13 SSTAT 3 + CO 1 =

14 END

15 - SCANEND ; COMMAND

SCRK3

0 (Real-Time Sweeps for Master- MJK 12/16/36)

1

: RGINIT (d") ’START Q 2PUSH ’END 6 2PUSH SNAP

2PUSH 2PUSH SL2 RGINIT ;

2

3

4

5 : RGSNEEP (d“) statCLR SDEVICE O DUP 2PUSH @PARAMS

6 1PUSH RGINIT (put the maximum intensity on slave 2)

7 SL1 SNEEP SL2 RGSNEEP SL3 SNEEP SNEEPEND ;

9

10 : RGSCANINIT (d-) statCLR KDEVICE @ 2PUSH @PARAMS

11 RGINIT SL2 RGSCAN ACOSCAN ;

12

13

14

15

225

SCROA

0 (Real-Time Graphics for Master- MJK

1

2 : RGlSCAN M1 RGSCANINIT SL1 lSCAN

3

4 : RG3SCAN M3 RGSCANINIT SL1 3SCAN

5

6 : RGDSCAN M1 RGSCANINIT SL1 DSCAN

7

8 : RGPSCAN M3 RGSCANINIT SL1 PSCAN

9

10 : RGNSCAN M1 RGSCANINIT NSET SL1

11 ‘

12

13

14

15

12/16/86)

0 SCANEND ;

1 SCANEND ;

2 SCANEND ;

3 SCANEND ;

NSCAN 4 SCANEND
9

APPENDIX C.

PAL SPECIFICATIONS FOR NOVIX INTERFACE

PAL20L10

N1000A

NOVIX I/O CHIP-SELECT GENERATOR

EAST LANSING, MI

AA A9 A8 A7 A6 A5 /EN NC NC NC NC GND NC /INIT /DAO /PEAK

/P18EL /PZSEL /9513 /TIME /START /0LKSEL /LBUSEN V00

MSU CHEMISTRY DEPT.

226

PAL DESIGN SPECIFICATION

MICHAEL KRISTO 01/16/86

IF (V00) LBUSEN = /AA# A9* /A8* /A7* EN + ; 0200 NR

/AA* A9* A8! /A7 ; 0300 RD

IF (V00) CLKSEL = /AA¥ /A9* /A8* A7! A6¥ A5* EN + ;COEO NR

/AA* /A9* A8* A7! A6* A5 ; ClEO RD

IF (V00) START = /AA* /A9* /A8* A7* A6* /A5t EN + ; 0000

NR

/AA* /A9* A8* A7* A6* /A5 ; 0100 RD

IF (V00) TIME = /AA* /A9* /A8* A73 /A6* A51 EN + ; COAO

HR
.

/AA* /A9* A8* A7! /A6* A5 ; ClAO RD

IF (V00) 9513 = /AA* /A9* /A8* A7* /A6* /A5# EN + ; 0080

WR

/AA* /A9* A8* A7* /A6* /A5 ; 0180 RD

IF (V00) PZSEL = /AA* /A9* /A8* /A7* A6* A5* EN + ; 0060

NR '

/AA* /A9* A8* /A7* A6* A5 ; 0160 RD

IF (V00) P18EL = /AA* /A9* /A8* /A7* A6* /A5* EN + ; 0040

WR

/AA* /A9* A8* /A7* A6* /A5 ; 0140 RD

IF (V00) PEAK = /AA* /A9* /A8* /A7* /A6* A5* EN + ; 0020

WR

/AA* /A9* A8* /A7* /A6* A5 ; 0120 RD

IF (V00) DAO = /AA¥ /A9* /A8* /A7* /A6* /A5t EN + ;

0000 WR

/AA* /A9* A8* /A7* /A6* /A5 ; 0100 RD

IF (V00) INIT = /AA* A9* /A8* A7* EN ; 0280 NR

DESCRIPTION

THIS PAL GENERATES THE CHIP SELECT SIGNALS FOR THE NOVIX I/O

BOARD. /EN GOES LOW FOR A PERIOD OF TIME SELECTED BY THE 1-

TO-B JUMPER COMING FROM THE 74164 SHIFT REGISTER. THUS, THE

WRITE CHIP SELECT IS OF A DETERMINATE LENGTH. THE HEAD

STAYS ACTIVE UNTIL WRITTEN T0 AGAIN.

GENERATE THE READ STROBEIS TWO STEPS:

74HOT244’S IN ORDER TO READ THE DATA ON THE NOVIX I/O BUS.

ALL ADDRESSES ARE BASED ON

THE HEAD TRANSACTION

AND THEN ENABLE THE

A 0000 BASE ADDRESS.

APPENDIX D.

FORTH CODE FOR PEAK-FINDING ALGORITHM

227

SCRtl

0 (Peak-Finding Algorithm- MJK 5/9/87)

1

2 VARIABLE UPFLAG (Number of increases in peak)

3 VARIABLE +LAST (Last pt increasing -1- or not-0)

4 VARIABLE PNIDTH (Minimum acceptable width)

5 VARIABLE POINTS (Number of points in peak)

6 VARIABLE THRESHOLD 2 ALLOT (User-adjustable threshold)

7 VARIABLE MAX-PEAK 2 ALLOT (Current maximum intensity)

8 VARIABLE YPREV 2 ALLOT (Intensity of previous point)

9 VARIABLE XVALUE (Device value of current point)

10 VARIABLE STEP (Step for scanned device)

11 VARIABLE XMAX (Device value for MAX-PEAK)

12

13

14

15

SCRKZ

0 (Peak-Finding Algorithm- !PEAK - MJK 5/9/86)

1

2 VARIABLE KPOINTS (The number of peaks found so far)

3 VARIABLE DATABUFFER 3000 ALLOT (where the data goes)

4 VARIABLE B/P (Bytes per stored point)

5

6 8 B/P ! (For our system)

7

3 (!PEAK moves the parameters of the new peak to the DATABUFFER)

9

10 : !PEAK VPOINTS O B/P * DATABUFFER +)R

11 XMAX B I ! (bytes 1.2) POINTS 8 I 2+ C! (byte 3)

12 0 I 3 + C! (any flags go here- in byte 4)

13 MAX-PEAK 28 I 2+ 2+ 2! (bytes 5‘8)

14 KPOINTS 1+! (one more peak found)

15 - O. MAX-PEAK 2! ;

SCR83

0 (Peak-Finding Algorithm- MJK 5/9/36)

: ?PEAK (d‘) 2DUP YPREV 23 D(

2 IF (decr.) +LAST B 0:

3 IF (decr.) POINTS 8 PNIDTH G)

4 IF (width 0k) MAX‘PEAK 2O THRESHOLD 2G D< NOT

5 IF (above thld) !PEAK THEN

6

7

3

H

0 POINTS ! O UPFLAG !

ELSE POINTS 6 0: NOT IF POINTS 1+! THEN THEN

ELSE (at top) UPFLAG B 1)

9 IF (up twice) YPREV 28 MAX‘PEAK 2O D< NOT

10 IF (new max.) YPREV 20 MAX-PEAK 2!

11 XVALUE 8 STEP 8 ‘ XMAX ! THEN

12 THEN 0 +LAST ! (intensity was decr.) POINTS 1+! THEN

13 ELSE (incr.) +LAST 1+! UPFLAG 1+! POINTS 1+!

14 THEN YPREV 2! ;

15

228

SCRB4

O I Peak-Finding AlgorithM‘ 3086/3 !PEAK - MJK 5/10/36)

1 (!PEAK moves parameters of the new peak to the DATABUFFER)

2

3 ASSEMBLER

4

5 CREATE KPOINTS N MOV N SHL N SHL N SHL

6 DATABUFFER 8 N ADD XMAX 1 MOV N l) MOV POINTS LDA

7 O 2 N) MOV 0 8 3 NOV I flag again) MAX-PEAK 2+ 1 MOV

8 1 6 N) MOV MAX-PEAK 1 MOV 1 4 N) MOV #POINTS INC

9 O 0 SUB MAX'PEAK STA MAX-PEAK 2+ STA RET

10

11 FORTH

12

13

14

15

SCRKS

0 (Peak-Finding Algorithm in 8086/8 Code- MJK 5/10/86)

1 (Note: This algorithm uses previous variables) ASSEMBLER

2 CREATE PEAK-up UPFLAG INC +LAST INC POINTS INC RET

3 CREATE PEAK-down POINTS LDA PNIDTH 0 SUB 0(NOT

IF MAX-PEAK 2+ 1 MOV MAX-PEAK 2 MOV THRESHOLD l SUB

THRESHOLD 2+ 2 $88 0(NOT

IF !PEAK CALL THEN

0 O SUB POINTS STA UPFLAG STA

3 ELSE ‘1 APOINTS TEST 0: NOT IF POINTS INC THEN RET

CREATE PEAK-0 2 8 UPFLAG CMP CS NOT

10 IF YPREV 2+ 1 MOV YPREV 2 MOV MAX-PEAK 2+ 1 SUB

\
1

C
h
.
0
!
b

‘
O

11 MAX-PEAK 2 388 0(NOT

12 IF YPREV LDA MAX-PEAK STA

l3 YPREV 2+ LDA MAX-PEAK 2+ STA

14 XVALUE LDA STEP 0 SUB XMAX STA

15 THEN THEN POINTS INC 0 0 SUB +LAST STA RET

SCRI6 ’

0 (Peak-Finding Algorithm in 8086/8 Code- Cont. - MJK 10/31/86)

1

2 CODE ?PEAK

3 2 POP 1 POP U PUSH I PUSH 2 U MOV 1 I MOV

4 YPREV 2+ 1 SUB YPREV 2 $88 O<

5

6 IF -1 K +LAST TEST 0:

7 IF PEAK“down CALL

8 ELSE PEAK-0 CALL

9 THEN

10 ELSE PEAK-up CALL

ll THEN

12

13 I YPREV 2+ MOV U YPREV MOV I POP U POP

14 NEXT

229

Timer for Algorithms)

: TESTER 0 0 ?PEAK 1000 0 ?PEAK 2000 0 ?PEAK

3000 O ?PEAK 4000 0 ?PEAK 5000 0 ?PEAK 6000 0 ?PEAK

5000 0 ?PEAK 4000 0 ?PEAK 3000 0 ?PEAK 2000 0 ?PEAK

1000 0 ?PEAK 0 0 ?PEAK ;

13 POINTS)

: GO COUNTER TESTER TIMER ;

CODE- 215 OS on 5 MHZ 8083)

CODE- 323 uS on 5 MHZ 3033)

APPENDIX E.

FORTH CODE FOR ALGORITHM TESTING

230

SCRIl

0 (Testing Routines for Peak-Finding Algorithms- MJK 6/30/36)

1

17 25 MATRIX PDATA (creates a 17x25 matrix which can be

accessed as- rowt colt PDATA)

: RFILL (n elements, n, rows) 2DUP O PDATA ! (telements)

O PDATA ! (starting addr.) SNAP 1+ 1 DO DUP ROT SNAP

2

3

4

5 (RFILL fills a row in PDATA with n elements on the stack)

6

7

8 I 2* + (current addr. in matrix) ! LOOP DROP ;

q

10 (Sample Input to Matrix)

11 150 250 570 990 2140 4730 7760 10000 9690 8690 3890

12 770 310 280 (GOOD PEAK)

13 14 (telements) 1 (rowt) RFILL

14

15

SCRI2

0 (More Testing of Algorithms- MJK 6/30/86)

1

2 : RERRESH o KPOINTS ! ;

3

4 : ANALYZE (n-) DUP B (telements) 0 DO I XVALUE !

5 DUP 2+ 1 2* + B (new datum) O (n->d) ?PEAK

6 LOOP DROP ;

7

8 : REPORT CR #POINTS C DUP . ." PEAKS FOUND " CR 0 DO

9 ." POINT B " .DATABUFFER I B/P * + O .

10 ." INTENSITY = " DATABUFFER I B/P * + 4 + 20 D.

11 CR LOO ;

12

13 : ANALYZER REFRESH ANALYZE REPORT ;

14

15

SCR83

0 (More Testing of Algorithms- MJK 6/30/36)

1 (This version of PRESTATE initializes the algorithm to

2 a well-behaved starting state- other versions can vary the

3 starting conditions to really exercise the algorithm)

4 : PRESTATE 0 0 YPREV 2! 0 +LAST ! 0 UPFLAG !

5 0 0 MAX-PEAK 2! ;

6

7 .PRESTATE CR ." YPREV = " YPREV 26 D. CR

8 ." +LAST = " +LAST O U. CR

9 ." UPFLAG = ” UPFLAG B U. CR

10 ." PNIDTH = " PNIDTH O U. CR ;

11

12 : ALGORITHM 7 3 DO I PNIDTH ! (different min. widths)

13 17 0 DO (different peak-shapes = rows in matrix)

14 I 0 PDATA PRESTATE .PRESTATE ANALYZER LOOP LOOP ;

APPENDIX F.

FORTH CODE FOR MICROCODE COMPILER

231

SCRIl

0 (Microcode Compiler Load Block - MJK 4/23/87)

1

2 ’ (CREATE) ’CREATE !

3 2 5 THRU (Basic Compiler)

4 6 7 THRU (Instruction Types)

5 8 13 THRU (Instructions)

6 19 20 THRU (Control Structures)

7 14 18 THRU (Movements)

3 21 23 THRU (Error Checking)

9 26 LOAD (Algorithm)

10 24 LOAD ()Disk)

11 25 LOAD (Debugger)

12 CR CR .(Algorithm has been resident compiled) CR

13 .(To compile the actual microcode type UCODE)

14 ’ ?CREATE ’CREATE !

15

SCR82

(Microcode Compiler - MJK 4/28/87)

CR .(Loading Basic Compiler)

64 DUP CONSTANT NORDLENGTH (should be a multiple of 15)

16 / CONSTANT N/N

1024 CONSTANT RAM-DEPTH

CREATE CODE-BUFFER N/N RAM-DEPTH * ALLOT

CODE-BUFFER N/N RAM‘DEPTH * ERASE

‘
0
C
O
N
O
‘
~
M
4
>
U
J
N
H
O

(The following 2 VARIABLES should range from 0 to RAM-DEPTH)

10 VARIABLE current (microinst. currently being compiled)

11 VARIABLE node 1 ALLOT (inst. from which branch occurs)

12 (node 1+ is flag for branching)

13 VARIABLE available (next available virtual address)

14 VARIABLE start (start of repetitive part of algorithm)

15

SCRK3

O (Microcode Compiler - MJK 4/23/37) HEX

1

2 : here (-a) current 8 N/N * CODE-BUFFER + ;

3

4 : T2/ (t-t) OVER 1 AND)R D2/ ROT 2/ 7FFF AND R)

5 IF 8000 OR THEN ROT ROT ;

6

7 : BIT-TRANSLATE (d n - n1 n2 n3) 0 SNAP ZSNAP ROT

8 ?DUP 0: NOT IF 0 DO T2/ LOOP THEN SNAP ROT ;

9

10 : KMOVE (src, dest, cnt -) 0 DO 2DUP I + @ SNAP I + B

11 OR OVER I + ! LOOP 2DROP ;

12

13

14

y
.
.
.

0
1

232

SCR84

0-(Masking of appropriate bits - MJK 4/23/87) HEX

1 (This word allow the initialization of code space to something

2 other than zeroes)

3

4 : MASK (a, bit offset, length) “1 DUP ROT

5 ?DUP 0: NOT IF 0 00 D2* SNAP FFFE AND SNAP LOOP THEN

6 ROT ?DUP 0: NOT IF 0 DO 02* SNAP 1 OR SNAP LOOP THEN

7 ROT)R 1 1+ O AND I 1+ ! I 8 AND R) ! ;

8

9

10

11

12

13

14

15

SCRCS

0 (Microcode Compiler - MJK 4/28/87)

1 : ENCODE (Startbit length-) CREATE , , DOES) (d')

2 2C CREATE DUP , (length) OVER 16 MOD + 16 /MOD

3 SNAP IF 1+ THEN DUP)R , (twords required)

4 (twrzlen + sb MOD 16 / 16)

5 16 /MOD , (sbyte offset)

6 (sbytezsbit/16) DUP , (mask offset)

7 16 SNAP ‘ (bit Offset for d in BIT-TRANSLATE

8 = 16 ‘ Sb 16 MOD)

9 BIT-TRANSLATE I

10 0 D0 , LOOP 3 R) - 0 D0 DROP LOOP (drop useless data)

11 DOES))R I 4 + (source)

12 here I 2 + O (sbyte offset) + (destination)

13 DUP (addr) I 3 + G (Sbit off) I O (length) MASK

14 R) 1+ B (count) tMOVE ;

SCR46

0 (Microcode Compiler - MJK 4/28/87)

1 CR .(Loading Basic Instruction Types)

2 (sb length)

3 0 8 ENCODE variables (d-)

4 8 10 ENCODE NEXT.ADDRESS

5 18 4 ENCODE MUX.SELECT

6 22 3 ENCODE ?PEAK

7 25 1 ENCODE CLKON/OFF

8 26 5 ENCODE THRESHOLD

9 31 1 ENCODE NEN.DATA

10 32 2 ENCODE MAX.PEAK (IDCMP)

11 34 2 ENCODE XMAX

12 35 2 ENCODE YPREV (2DCMP)

13 38 2 ENCODE XPREV

14 40 2 ENCODE 1FLAG

15 42 2 ENCODE 2FLAG

233

SCR87

0 (Microcode Compiler - MJK 4/28/87)

1 (Sb length)

2 44 4 ENCODE lCNTR (d“)

3 48 2 ENCODE lCCMP

4 50 4 ENCODE ZCNTR

5 54 2 ENCODE ZCCMP

6 56 1 ENCODE ONT)

7 57 l ENCODE VAR)

3 53 6 ENCODE EXPANSION

Q

10

11

12

13

14

15

SCRIS

0 (Microcode Compiler - MJK 4/28/87)

1 CR .(Loading Intructions)

2 0. variables NADA

3 1. variables TOBYTE 5. variables lCMP

4 2. variables TIBYTE 6. variables ZCMP

5 3. variables T2BYTE 7. variables lCNTRLD

6 4. variables T3BYTE 3. variables 2CNTRLD

7 (Condition Codes) '

8 0. MUX.SELECT ?NENPT 8. MUX.SELECT ?1F/F

9 1. MUX.SELECT ?YPMAX 9. MUX.SELECT 9MUX

10 2. MUX.SELECT ?MPMAX 10. MUX.SELECT 10MUX

11 3. MUX.SELECT ?2CMPMAX 11. MUX.SELECT 11MUX

12 4. MUX.SELECT ?QCMPEQ 12. MUX.SELECT 12MUX

13 5. MUX.SELECT ?1CMPMAX 13. MUX.SELECT 13MUX

l4 6. MUX.SELECT ?1CMPEQ 14. MUX.SELECT 14MUX

15 7. MUX.SELECT ?2F/F 15. MUX.SELECT lSMUX

SCR49

0 (Microcode Compiler - MJK 4/28/87)

1 0. MAX-PEAK XMAX-PEAK

2 3. MAX‘PEAK !MAX-PEAK

3 1. MAX'PEAK /MAX-PEAK

4 2. MAX-PEAK @MAX-PEAK

5

6 0. YPREV XYPREV

7 3. YPREV !YPREV

8 1. YPREV /YPREV

9 2. YPREV BYPREV

10

11 1. 1FLAG lCLR . 1FLAG lHLD

12 2. 1FLAG lSET

13 1. 2FLAG 2CLR 3. 2FLAG 2HLD

14 2. 2FLAG ZSET

g
.
.
.
-

(
1
"

234»

SCRIlO

‘
O
m
N
O
x
C
fl
w
a
D
—
O

(Microcode Compiler - MJK 4/28/87)

3. XMAX XMHLD

2. XMAX !XMAX

1. XMAX BXMAX

XPREV XPHLD

. XPREV !XPREV

. XPREV @XPREVP
M
“

0. ?PEAK !PEAK

. ?PEAK NO-PEAK

. ?PEAK XPEAK\
J
O
‘
~

O. NEXT-ADDRESS rst

O. VAR) @VAR

1. VAR) XVAR

SCRKll

O (Microcode Compiler - MJK 4/28/87)

0. CLKON/OFF NOCLK

1. CLKON/OFF ONCLK

HEX

1E. THRESHOLD !OTHRESH

lD. THRESHOLD !lTHRESH

lB. THRESHOLD !2THRESH

l7. THRESHOLD !3THRESH

0F. THRESHOLD @THRESH

1F. THRESHOLD XTHRESH

DECIMAL

0. NEN.DATA @NEN

l. NEN.DATA XNEN

SCRKIZ

(Microcode Compiler - MJK 4/23/87)

0. CNT) !CNT

1. CNT) XCNT

HEX

0A. lCNTR !ICNTR

09. lCNTR BlCNTR

OB. lCNTR UlCNTR

03. lCNTR DlCNTR

0F. lCNTR XlCNTR

DECIMAL

O. EXPANSION EOFF

235

SCR413

0 (Microcode Compiler - MJK 4/23/37)

HEX

0A. 2CNTR !ZCNTR

09. 2CNTR @2CNTR

OB. 2CNTR UZCNTR

03. 2CNTR D2CNTR

0F. ZCNTR X2CNTR

DECIMAL

O
U
J
W
O
N
U
I
J
B
M
N
H

(
A

10 O. lCCMP XlCMP lCCMP !lCMP

11 2. lCCMP /1CMP 1. lCCMP BlCMP

12

13

14

15

(
A

. 2CCMP X2CMP . 2CCMP !2CMP

. 2CCMP /20MP 1. 2CCMP OZCMPN
O

SCR414

0 (Microcode Compiler - MJK 4/23/37)

1 CR .(Loading Movements)

2

3 : NAIT NADA ?NENPT XMAX-PEAK XYPREV lHLD 2HLD XMHLD

4 XPHLD XPEAK NOCLK XTHRESH XNEN XCNT XlCNTR X2CNTR

5 XlCMP X2CMP rst XVAR EOFF ;

6 (0 O CO FD CC FF 3C 03 - SHON AFTER CLEAR)

7

8 : ALL-QUIET RAM-DEPTH 0 DO 1 current ! NAIT LOOP ;

9 CR 2 SPACES .(Initializing CODE Area)

10 ALL-QUIET

11

12

13

14

15

SCRKlS

0 (Microcode Compiler - MJK 4/29/87)

: ZERO NADA @VAR ;

: NADA NADA XVAR ;

: lCMP lCMP @VAR ;

: ZCMP 2CMP OVAR ;

: lCNTRLD lCNTRLD @VAR ;

: 2CNTRLD 2CNTRLD BVAR ;

‘
O
W
V
O
‘
-
M
b
O
~
I
N
F
-
'

: 0THRESHOLD TOBYTE @VAR !0THRESH ;

10 : 1THRESHOLD TIBYTE @VAR !lTHRESH ;

11 : 2THRESHOLD TZBYTE @VAR !2THRESH ;

12 : 3THRESHOLD TSBYTE OVAR !3THRESH ;

13 : THRESHOLD next 0THRESHOLD next 1THRESHOLD

14 next 2THRESHOLD next 3THRESHOLD ;

236

SCRBIB

0 (Microcode Compiler - MJK 4/29/87)

: !UPTST 2CMP !ZCMP ;

: CLR ZERO !lCNTR !2CNTR !2CMP !lCMP lCLR 2CLR -

: ZAPrBUS CTHRESH !MAX-PEAK !YPREV ;

: INITIALIZE next ZERO next !UPTST next 2CMP THRESHOLD

: INCREASING UlcNTR U2CNTR lSET NO-PEAK @NEN !YPREV

1

2

3

4

5 next ZAP-BUS next @THRESH ;

6

7

8 next @NEN ;

9

10 : @maxima @MAX-PEAK OXMAX ;

11 : PEAK Omaxima !PEAK next @maxima ;

12 : @minima @THRESH ZERO ;

13 : PKRST ZERO !ICNTR Ominima !MAX-PEAK next Bminima -

14 : PKSTORE PEAK next ZERO !ICNTR @minima !MAX-PEAK

15 @minima ;

SCRKI7

0 (Microcode Compiler - MJK 4/29/87)

. DONN lCLR U2CNTR NO PEAK BNEN !YPREV next @NEN';

: @previous @YPREV BXPREV ;

!MAX @previous !MAX-PEAK !XMAX next @previous ;

: NENMAX !MAX next lCLR U2CNTR NO-PEAK @NEN !YPREV

next BNEN ;

‘
0
0
.
?
‘
J
C
F
-
‘
U
'
i
b
O
J
M
H

lO : IGNORE lCLR NO-PEAK @NEN !YPREV next @NEN ;

14

15

SCR418

0 (Microcode Compiler - MJK 4/29/87)

1 (Aliases)

2 : OPOINTS @2CNTR ;

3 : @UPFLAG OlCNTR ;

4

5 : !POINTS !2CNTR ;

6 : !UPFLAG !2CNTR ;

7

8 : ?+LAST ?lF/F ;

9

10 : ?LESS-THAN-ONE ?2CMPMAX ;

11 : ?TOO-NARRON ?ICMPMAX ;

12

13

14

15

SCR419

237

0 (Microcode Compiler - MJK 4/29/87)

1 CR

SCR420

‘
O
C
O
V
O
‘
U
‘
k
M
N

.(Loading Control Structures)

!PREV.INST (n n ‘) N/N * CODE-BUFFER + BYTE)R

256 /MOD SNAP I 08 OR I C! I 2 + CO OR R) 2 + C! ;

: if (-current) available B node B !PREV.INST node 1+ 6

IF available 8 node 8 1+ !PREV.INST THEN available 3 DUP

1+ DUP current ! node ! 2 available +! 0 node 1+ ! ;

: else (current-) DUP current ! node ! 0 node 1+ ! ;

: then ;

(next) (a-) available 8 DUP DUP current ! ROT DUP

EXECUTE SNAP 1+ current ! EXECUTE 2 available +!

DUP node B !PREV.INST node 1+ O IF DUP node B ‘1+

!PREV.INST (last one was a next- so br needed for both)

THEN node ! 1 node 1+ ! ;

: next ’ \ LITERAL COMPILE (next) \ \\ ; IMMEDIATE

(next) ’ (next) ;

0 (Microcode Compiler - MJK 4/29/87)

SCR§21

(Error Checking Routines - MJK 4/29/37)

~
0
m
w
o
~
m
a
u
m
~
o

.
u
—
s
p
—
e

I
-
‘
O

12 :

13

14

15

: ?BIT (bit! add

: HOME start B current 8 !PREV.INST node 1+ 9

IF start 6 current 9 1- !PREV.INST THEN ;

: START current 8 DUP node ! 1- DUP DUP !PREV.INST

start ! 0 node 1+ ! ;

: microcode 0 DUP current ! node ! DUP EXECUTE

1 node 1+ ! 1 current +! EXECUTE 2 available ! ;

: MICROCODE ’ \ LITERAL COMPILE microcode \ \\ ; IMMEDIATE

.(Loading Error Checking Routines)

(bits- only one of which can be active at any time)

CREATE 081 3 . 51 t 45 . 57 ,

CREATE 082 2 . 54 . 48 ,

CREATE YBl 2 . 31 , 30 ,

CREATE YBZ 2 , 36 , 32 ,

CREATE X81 3 , 31 , 39 , 35 ,

f) O SNAP ?DUP 0: NOT IF

0 DO 2/ LOOP THEN 1 AND ;

?2BITS (Sbitt. a-n) G SNAP ?DUP 0: NOT IF

0 DO 2/ LOOP THEN 3 AND ;

SCR822

.238

0 (Error Checking- MJK 4/29/37)

1 VARIABLE ’.ERROR

2 : .ERROR ’.ERROR @EXECUTE ;

3 VARIABLE Errors 0 Errors !

4

5 : .DB CR ." Too Many Devices Driving the DB Bus in Instruction

6 " current B U. 1 Errors +! ;

7 : .YB CR .” Too Many Devices Driving the YB Bus in Instruction

8 I ' current 8 U. 1 Errors +!

9 : .XB CR ." Too Many Devices Driving the X8 Bus in Instruction

10 " current O U. 1 Errors +! ;

11

12

13

14

15

SCR423

0 (Error Checking - MJK 4/29/87)

‘
D
C
O
N
O
’
x
C
fl
b
O
-
I
M
H

10

11

12

13

lCHK O OVER 8 1+ 1 DO OVER 1 + O (bit of interes)

16 /M00 here + (word of interest) ?BIT 0: + LOOP

SNAP DROP \\ ;

: 2CHK (n-) OVER 8 1+ 1 DO OVER I + C (selected bits)

16 /MOD here + (word of interest) ?2BITS 2 = + LOOP

SNAP DROP \\ ;

: CHK (2’5 1’3 -) lCHK ZCHK 1) IF .ERROR THEN ;

: CHECK [’] .DB ’.ERROR ! DB2 DBl CHK

[’] .YB ’.ERROR ! YB2 YBl CHK

[’l .XB ’.ERROR ! XBl lCHK 1) IF .ERROR THEN ;

UCHECK RAM-DEPTH 0 DO I current ! CHECK LOOP ;14 :

15

SCRK24

0 (Disk Storage of Algorithm - MJK 4/29/87)

1 (In downloading we load byte 0’s first, then byte 1’s etc.

However, in memory we have word 1 -byte 0-7, word 2, byte 0-7,

etc. This word rearranges the bytes for later downloading.)

5360 CONSTANT CODE'FILE

: UCODE)DISK N/N 0 DO RAM-DEPTH 0 DO

CODE-BUFFER I N/N * + J + O 256 /MOD DROP

J 2* RAM-DEPTH * I + 1024 IMOD CODE-FILE + BLOCK BYTE +

C! LOOP UPDATE LOOP FLUSH N/N 0 DO RAM-DEPTH 0 DO

CODE-BUFFER I N/N * + J + O 256 [MOD SNAP DROP

J 2* 1+ RAM-DEPTH * I + 1024 IMOD CODE-FILE + BLOCK BYTE +

C! LOOP UPDATE LOOP FLUSH ;

: UCODE ALGO UCHECK Errors O 0: IF UCODE)DISK THEN ;

239

SCR825

O (DEBUGGERS)

: SHON (n-) N/N * CODE-BUFFER + N/N DUMP ;

: CLEAR (n') N/N * CODE-BUFFER + N/N ERASE ;

: EXPOSE (ch) 0 DO I SHON 2 +LOOP ;

D
L
J
V
C
'
n
U
I
D
-
(
A
N
O
-
n

10

11

12

l3

14

15

SCRK26

0 (Algorithm - MJK 7/31/87)

1 : ALGO MICROCODE CLR INITIALIZE next ?NENPT START

2 if @NEN ?YPMAX

3 if ?+LAST

4 if @UPFLAG ?LESS-THAN-ONE

5 if DONN HOME

6 else @YPREV ?MPMAX

7 if DONN HOME else NENMAX HOME then then

8 else @POINTS ?TOO-NARRON

9 if BPOINTS ?LESS-THAN-ONE

10 if IGNORE HOME else DONN HOME then

11 else OTHRESH ?MPMAX

12 if PKSTORE HOME else DONN HOME then

13 then then

14 else INCREASING HOME then

15 else HOME then ;

APPENDIX G.

FORTH CODE FOR AMD9513 COUNTER

240

SCROl

0.(Dual-Mode Control- Slave 3- MJK 2/15/85)

1

2 VARIABLE 3LD (Significant Count) COMMAND

3 VARIABLE 4LD (Significant Time) COMMAND

4 VARIABLE SLD (Nindow Count) COMMAND

5 VARIABLE CDIV (Count Divisor) COMMAND

6 VARIABLE FDIV (Frequency Divisor) COMMAND

7 VARIABLE CTMODE (Time or Count) COMMAND

8

9

10

11

12

13

14

15

SCR82

0 (9513 Counter Utilities) HEX

1 AMD9513 1+ CONSTANT COMMAND-REGISTER

2

3 : 95data (n-) AMD9513 C! ;

4 : 95com (n-) COMMAND-REGISTER C! ;

5

6 : NZERL (n-) 0 DO 00 9Sdata LOOP ;

7

CODE GRAB (n') O POP COMMAND‘REGISTER STA B

AMD9513 0 MOV B AMD9513 0 HI MOV B O PUSH NEXT‘
0
0
0

10

ll CODE N)9513 (n-) 0 POP 2 2 SUB O 2 MOV B

12 2 AMD9513 MOV B 0 HI 2 MOV B 2 AMD9513 MOV B NEXT

13

14 DECIMAL

15

SCRK3 '

0 (This is the 9513 Counting Scheme for Constant Count)

1 HEX

2 : CCLOAD 01 95com (counter autoload)

3 (1CTR) A8 95data AB 95data 4 NZERL

4 I 2CTR) 28 95data 00 95data 4 NZERL

5 (3CTR) O2 95data 02 9Sdata 3L0 O N)9513 2 NZERL

6 (4CTR) O2 95data OB 95data 4LD O N)9513 2 NZERL

7 (5CTR) O2 9Sdata 01 95data 5L0 B N)9513 2 NZERL

8 07 95com 4 NZERL (Alarm Register)

9 20 95data CDIV CB 95data (Master Mode) ;

10

11 : COUNT 5F 95com E5 95com E4 95com EB 95com 3F 95com ;

12

13 : DATUM 9F 95com 11 GRAB 12 GRAB ;

14 DECIMAL

p
.
.
-

0
1

241

4CTR) O2 95data OB 95data 4LD O N)9513 2 NZERL

5CTR) O2 95data FDIV CO 95data 5LD B N)9513 2 NZERL

8 07 95com 4 NZERL (Alarm Register)

9 20 95data 81 95data (Master Mode) ;

SCRB4

0 (This is the 9513 Counting Scheme for Constant Time)

1 HEX

2 : CTLOAD 01 9Scom (counter autoload)

3 (lCTR) A8 95data A1 95data 4 NZERL

4 (2CTR) 28 95data 00 95data 4 NZERL

5 (3CTR) O2 95data O2 95data 3L0 O N)9513 2 NZERL

(

(

10

11

12 : 95RESET FF 9Scom ;

13

14 DECIMAL

APPENDIX H .

FORTH cops Poe DUAL-MODE SCANNING

242

SCRII

(Dual-Mode Scanning- MJK 2/16/86)

: PULSES (-d) COUNT (Start counting in selected mode)

BEGIN P10 CB 4 AND 4 = END (Check for end of count)

DATUM (Acquire 32-bit count of pulses and time) ;

(Dual-Mode Interrupt)

HEX ASSEMBLER HERE

0 POP 0 POP 0 POP 0 P0P (clean up int args)

0 0 SUB 0 PUSH 0 PUSH (null data)

STI (enable interrupts) ’ EXIT JMP (next word = PMODIFY)

10 OD INTERRUPT

11 DECIMAL

12 CREATE DMINT (holds interrupt goodies)

13 . m . (value, value, addr)

14 : !DMINT DMINT 2+ 26 DMINT O 2! ;

15

‘
O
W
V
O
‘
K
U
‘
b
M
M
t
-
I
D

SCRI2

0 (Flux Calculations - MJK 6/18/86) HEX

1 3E7A D752 9ABC AF48 LCONSTANT 9513CLK

2 DECIMAL

3 : CFLUX I d-d) CDIV CO ?DUP 0: IF 16 THEN

4)N 5LD C)N F* (Bcounts) 9513CLK 2)N F*

5 (time) F/ (flux) 2N) ;

6

7 : TFLUX (d-d) 2)N (count) FDIV CB 11 2

8 IF 1 ELSE 1000 THEN)N 5LD B)N F*

9 9513CLK F* (time) F/ (flux) 2N) ;

10 '

11 : FLUX CTMODE 9 IF TFLUX ELSE CFLUX THEN ;

12

13

14

15

SCR83

0 (Normalization Routines for Dual-Mode- MJK 6/18/36)

LVARIABLE RES COMMAND

(+120.0E-09 RES 1! (calculated 6/86- MJK)

LVARIABLE DCAL

: RETROFIT (d-f) 2)N RES 19 4.0 F* Ft (4ac)

1.0 FSNAP F- (1-4ac) FSORT 1.0 FSNAP F-

2.0 RES 19 Ft F/ ;

g
.
‘

O
N
O
C
O
V
O
K
M
w
a
e
-

11 : PMODIFY (d-d) FLUX RETROFIT 2N) ;

12 : AMODIFY (d-d) 2)N DCAL 10 F* 2N) ;

13

14

15

243

SCR44

0 (Dual-Mode Calibration- MJK 6/18/86) HEX

: DMACOUIRE (d“d) COUNT TEST-ACOUIRE BEGIN PIO CO

4 AND 4 = END DATUM ;

(DSLOPE gives the slope of the pulses versus A-to-D curve)

: DSLOPE (d d s F) RETROFIT 2)N F/ ;

: DCALIBRATE 5 0 DO DMACOUIRE DSLOPE LOOP

F+ F+ F+ F+ 5)N F/ DCAL l! ; COMMAND

O
Q
N
O
—
M
b
M
M
h
-
o

I

10 F386 402D SCONSTANT ELD DECIMAL

11 VARIABLE pulses 2 ALLOT

12 : POISSON YOK BEGIN ?XOK PULSES ZDUP pulses 2O

13 D(NOT IF pulses 2! ELSE 2DROP THEN YOK

l4 SSTAT 1+ CO 1 AND 1 = END 1.0 ELD)N pulses 2O 2)N

15 F* F/ RES 1! ; COMMAND

SCRIS

0 (Dual-Mode Control Scheme- MJK 2/15/36)

1 CODE ANALOG ACOUIRE NEXT

2

3 : DUAL-ACQUIRE ‘1 PRORST C! (clr flag and then read)

4 PIO CB 2 AND IF ANALOG AMODIFY

5 ELSE PULSES PMODIFY

6 THEN

7)PEAK ;

8 : DUAL-SCAN CTMODE 9 IF CTLOAD ELSE CCLOAD THEN YOK

9 BEGIN

10 ?XOK (wait for Ion Path)

11 DUAL—ACQUIRE (data-point)

12 YOK (send ok to Ion Path)

13 SSTAT 1+ CB 1 AND 1 = END

14 1 STATOUT C! ; COMMAND

15 ».

SCRN6

0 (Master Debugging Additions)

1

HEX F880 CONSTANT AMD9513

F800 CONSTANT P10

2

3

4

5 : COMMAND ;

6

7

8

9

10

11

12

13

14

15

244

SCRK7

0 (Matrices for Control of Pulse Counting ModeS‘ MJK 2/4/86)

1

2 (CDIV, COUNT)

3 CREATE Count-Control (0) 0 C, 62500 , (1) 10 C, 50000 ,

4 (2) 10 C, 10000 , (3) l C, 40000 , (4) 1 C, 17800 ,

5 (5) 1 C, 10000 , (6) 1 C, 5000 , (7) 1 C, 1000 1

6 (8) 1 C, 400 , (9) 1 C, 178 , (10) 1 C, 100 ,

7

8 (FDIV, COUNT)

9 CREATE Time-Control (O) 11 C, 1000 , (1) 11 C, 2000 ,

10 (2) 11 C, 4000 , (3) 11 C, 10000 , (4) 11 C, 20000 9

11 (5) 11 C, 40000 , (6) 14 C, 100 , (7) 14 C, 200 1

12 (8) 14 C, 400 , (9) 14 C, 1000 , (10) 14 C, 2000 ,

, (13 (11) 14 C, 4000

14

15

12) 14 C, 10000 ,

SCRVS

0 (Dual-Mode Setting Routine for Master- MJK 2/4/86)

1

2 CVARIABLE CDIV

3 CVARIABLE FDIV

4 VARIABLE 5L0

5 VARIABLE 4L0

6 VARIABLE 3L0

7

e : ?PULSE-RATE (a-n c) CR CR ." Rate to Use: " KINPUT 3 A +

9 DUP 1+ 4 SNAP cc ;

10

11 : CCVARS Count-Control ?PULSE-RATE CDIV C! 5L0 ! ;

12 : CTVARS Time-Control ?PULSE'RATE FDIV C! 5L0 ! ;

13

14

15

SCRI9

0 (Dual-Mode Setting Scheme for Master- MJK 2/4/86)

1

2 10 CONSTANT 95MH2

3 VARIABLE CTMODE

4

5 : ?SCHEME PAGE 10 0 CURSOR ." DUAL MODE SETTING ROUTINE "

6 CR CR .” Do You Want Constant Time (T) “ CR

7 “ or Constant Precision (no. of counts) (C) ? “

8 KEY 84 = 0UP CTMODE ! IF 7923 SCREEN CTVARS

9 ELSE 7924 SCREEN CCVARS THEN ;

10

11 : ?NINDON 7922 SCREEN ." Time Nindow (usec): "

12 KINPUT 95MHZ * 4LD ! CR

13 .“ Counts to Occur in Nindow: " KINPUT 3LD ! ;

14

15

245

SCRIIO

0 (Dual-Mode Setting Scheme for Master- HJK 2/4/36)

1 3LABEL FDIV fdiv 3LABEL CDIV Cdiv‘

2 3LABEL 5LD 51d 3LABEL 4LD 41d

3 3LABEL 3LD 31d 3LABEL CTMODE ctmode

4

5 : DHPARAHS FDIV CG fdiv IC! CDIV CO cdiv IC! 5LD 0 51d I!

6 4LD 0 41d 1! 3LD @ 31d ! CTMODE @ ctmode I! ;

7

8

9

10

11

12

13

14

15

SCRUll

0 (Dual-Mode Resolution Determination- MJK 8/12/36)

1 3LABEL RES RES

2 LVARIABLE DHRES +120.0E-09 DHRES 1!

3

4 : IL@ (a3,a1-) 3 O)SLAVE 16 IPHOVE ;

5

6 : IL! (al,a3-) O 3)SLAVE 16'IPNOVE ;

7

8 : POISSON L2 ’CURRENT Q ’START 8 ’END 8 ’STEP 0

9 1 ’STEP ! 0 ’START ! 250 ’END ! statCLR CPARAHS

10 RDEVICE @ 1PUSH SL3 POISSON SL1 SNEEP

11 ’STEP ! ’END ! ’START ! ’CURRENT ! DMRES RES 1L8 ;

12

13 DHRES RES IL!

14

15

SCR912

0 (Dual- Mode Setting Schene- MJK 2/4/86)

: DUALSCAN SL3 DUAL SCAN ;

: ASCAN SL3 SCAN ;

1

2

3 .

4 : .ANALOG .status 12 .HNAHE ;

S : .DUAL .status 13 .HNAHE ;

6

7

8

q

: DHCALIBRATE RRR L2 ’CURRENT Q 130 SET SL3 DCALIBRATE

SET DRR ;

10 : DUAL‘HODE ?SCHEHE ?NINDON DHPARAHS

11 [’] DUAL~SCAN ’ACQSCAN ! .DUAL CR ;

12

13 : ANALOG [’] ASCAN ’ACQSCAN ! .ANALOG CR ;

14

.246

SCR413

‘
O
m
N
m
e
u
M
h
-
o

.Null Data Window Control

Studies (e. g. Darland, Enke, Leroi) have shown that about

two-thirds of the time spent in data acquisition is spent

acquiring null data (data with only negative information).

The Null Data window Control serves two puposes in Dual-Mode

Detection. First, it can drastically shorten the time spent in

collecting null data, sicne it is often evident very quickly

that no significant ion current exists at a given point. The

user can set the point to determine whether or not this looks

like a null data point. Secondly, it prevents the detection

scheme from "hanging up" in Constant Count Mode, when there are

no counts at all.

SCR414

0 Dual-Node Setting Routine - Constant Time

1 For Pulse Counting Only

2 Rate Time/Pt

3 0 100

4 1 200

5 2 400 usec

6 3 1 msec

7 4 2

8 5 4

9 6 10

10 7 20

ll 8 40

12 9 100

13 10 200

14 11 400 msec

15 12 1 sec

SCRRlS

0 Dual-Mode Setting Routine - For Constant Count - Precision

1

2

For Pulse Counting Only

Rate No. of Counts Precision

0 1 x 10E6 0.100

1 5 x 10E5 0.140

2 1 x 10E5 0.320

3 4 x 10E4 0.500

4 1.73 x 10E4 0.750

5 1 x 10E4 1.000

6 S x 10E3 1.400

7 l x 10E3 3.200

8 4 x 10E2 5.000

9 1.73 x 10E2 7.500

10 1 x 10E2 10.000

APPENDIX I.

FORTH CODE FOR REACTION SCANS

247

SCRUl

0 (Variables for Reaction Scanning- MJK 8/6/85)

1

2 VARIABLE VTRAP 20.0 VTRAP ! (Voltage on L5 to trap ions)

3 VARIABLE TSTORE 1000 TSTORE ! (Time to store ions in HS)

4 VARIABLE VPULSE -100.0 VPULSE ! (Pulsing voltage on L5)

5 VARIABLE #ACQS 100 #ACQS ! (Number of acqs in pulse)

SCR42

0 (Reaction Scanning Primitives- MJK 8/6/85)

: RACOUIRE IDEVICE 0

L5 ’CURRENT 0 VTRAP 0 SET TSTORE 0 NS VPULSS 0 SET

0. RACOS @ 0 DO ACOUIRE DMAX LOOP)R)R L4 SET

RDEVICE ! R) R) ;

(RPSCAN) OlINIT +01 10 HS

0 DO RACQUIRE ?PEAK +01 RSYNC 1 /LOOP :

‘
O
C
O
N
O
k
C
fl
-
D
O
J
M
r
—
e

10 : (RDSCAN) 03INIT +03 10 HS

11 0 DO RACQUIRE ?PEAK +03 RSYNC 1 /LOOP :

13 : (RNSCAN) DUP 011NIT 03INIT NSET +013 10 HS

14 0 DO RACQUIRE ?PEAK +013 RSYNC 1 /LOOP ;

0 (Reaction Scanning- MJK 8/6/85)

1 : RPSCAN N3 DATAOUT DRD SCANINIT H1 0PARAHS 3)DAC

BSTEPS (RPSCAN) 8 SCANEND ;2

3 .

4 : RDSCAN H1 DATAOUT DRD SCANINIT N3 @PARAMS 3)DAC

5 OSTEPS (RDSCAN) 9 SCANEND ;

6

7

8

: RNSCAN DRD SCANINIT H1 @PARAHS 3)DAC

RSTEPS (RNSCAN) 10 SCANEND ;

10 : (RSHEEP) (isteps, startdac-) !DATA DUP SPOINTS !

11 0 DO 0 VALUE 0 I ’X 2! RACOUIRE I ’Y 2!

12 +DEVICE RSYNC LOOP ;

14 : RSNEEP FSTOP STEP 0 !DEVICE 0 SNEEPDEV ! 0. NAX-INTEN 2!

15 0. TIC 2! @PARANS)DAC&STEP (RSNEEP) 5 SCANEND ;

SCR44

0 (

248

User Interface for the Reaction Scans- MJK 3/14/85)

1 4 8040 7 LABELS RXNNANE

2

3

4

S :

6

7

8

.RXNNANE (n-) RXNNANE)TYPE ;

NORNL 12 U.R ;

: VTGE 6 SPACES N.1 ;

:CASE RXNVAR VTRAP TSTORE VPULSE RACQS ;

9 :CASE .RVALUE VTGE NORNL VTGE NORNL ;

10

11 :

12

13

14 :

15

SCR85

~
0
m
w
o
=
m
a
>
u
m
-
0

n
o

0
0

A

.RXSET PAGE 8041 SCREEN 8040 LOAD

4 0 DO CR I .RXNNANE I RXNVAR Q I .RVALUE LOOP

20 SPACES ;

RXSET .RXSET 4 0 DO 20 I + 23 CURSOR 63 ENIT

8 ENIT #INPUT ?DUP IF DUP I RXNVAR ! THEN LOOP ;

Reaction Scanning Primitives- MJK 8/6/85)

: +RACOUIRE #DEVICE 0

L5 ’CURRENT 0 VTRAP 0 L5 SET TSTORE 0 NS VPULSE 0 SET

0. #ACOS 0 0 DO ACOUIRE D+ LOOP)R)R L5 SET

RDEVICE ! R) R) ;

(+PSCAN) OlINIT +01 10 NS

0 DO +RACOUIRE ?PEAK +01 RSYNC 1 /LO0P ;

(+DSCAN) 03INIT +03 10 NS

0 DO +RACOUIRE ?PEAK +013 RSYNC 1 /LOOP ;

(+NSCAN) DUP 011NIT 03INIT NSET +013 10 NS

0 DO +RACOUIRE ?PEAK +013 RSYNC 1 /LOOP ;

Reaction Scanning- MJK 8/6/35) '

: +RPSCAN N3 DATAOUT DRD SCANINIT N1 @PARANS 3)DAC

ISTEPS (+PSCAN) 8 SCANEND ;

: +RDSCAN N1 DATAOUT DRD SCANINIT N3 @PARANS 3)DAC

OSTEPS (+DSCAN) 9 SCANEND ;

: +RNSCAN DRD SCANINIT N1 @PARANS 3)DAC RSTEPS (+NSCAN)

10 SCANEND ;

(+SHEEP) (#steps startdac-) !DATA DUP !POINTS !

0 DO 0 VALUE 0 I ’X 2! +RACOUIRE I ’Y 2!

: +RSNEEP FSTOP STEP 0 RDEVICE @ SNEEPDEV ! 0. NAX-INTEN 2!

0. TIC 2! @PARANS)DAC&STEP (+SNEEP) 5 SCANEND ;

SCR07

249

0 (‘mm for Reaction Scans- HJK 3/23/86)

‘
O
O
O
V
C
F
-
U
i
t
h
H

O

10

11

12

13

14

15

SCRSB

I 5 (

NORNALIZE

DOT PLOT

NSSLOT

: RCOLLECT (cycle4-)

I DUP NASS- SET

IF 4DUP

THEN

!RXREC ;

5 NS

BRXNS 0 0

RACOUIRE

?LOG SNAP FIELDS !

ROT ’Y 2!

DO

SNAP

LOOP DROP

0 (HRH with the Reaction Scans- HJK 3/23/87)

(RATE) 0)R RXINIT

12

13

14

15

SCR89

‘
5
C
O
‘
M
O
N
M
h
M
M
h
-
O

v
—
u
—
v
—
o
—
t
—
u
—

m
u
m
m
h
a
o

: RNRN

: R-lSIN

: R-3SIN

DRD

RCOLLECT

.' elapsed"

R) RATE ;

DRR

RCOLLECT

" elapsed“

R) RATE ;

RRD

RCOLLECT

' elapsed”

R) RATE ;

?LEAVE

CR .'

(RATE) 0)R

?LEAVE RSYNC LOOP

HRH complete”CR ."

(RATE) 0 >R

?LEAVE RSYNC LOOP

HRH complete“CR .'

RXINI

RXINI

0 DO I

RSYNC LOOP TERNINAL

HRH complete“ RXEND

T 0 DO I

TERNINAL

RXEND

T 0 DO I

TERNINAL

RXEND

1000 N00

DUP ?RESET

2TINER

CR BELL

DUP ?RESET

2TINER

CR BELL

DUP ?RESET

2TINER

CR BELL

250

SCR81

0
l-

2

‘
O
O
Z
J
N
G
-
(
fi
b
w

CR CR { VARIABLE VALUE}

CR

EXIT

VTRAP TSTORE VPULSE #ACQS

SCR42

‘
O
C
O
V
U
-
(
fl
b
C
A
N
O
—
O REACTION SCAN EDITOR

This allows one to set the extra parameters available in the

reaction scans. In a reaction scan, LENS 5 is held positive for

a user-specified period of tine in order to store up + ions.

The lens is then pulsed negative, pulling the resulting ions

out of quadrupole 2. A user-specified number of acquisitions

are then scanned for the highest value (in RSCANS) or are

integrated (in +RSCANS). RSCANS seen to give the highest

signal-to-noise ratio. VTRAP is the voltage used to store up

the ions in the collision chamber. TSTORE is the alount of time

in milliseconds for which the ions are stored. VPULSE is the

voltage used to pulse the ions out. SACOS is the number of

acquisitions made for each pulse (each datum). Note: Each

acquisition is made up of a number of averages (set by RATE).

It is best to use 2 rate to catch the maximum.

SCR83

‘
O
C
O
V
O
S
U
I
-
b
M
N
i
-
‘
O

