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ABSTRACT
VIBRATIONS OF DISORDERED BINARY CHAINS
By

Ronald D. Painter

We have examined the vibrations of harmonic
linear disordered atomic chains which include an
arbitrary concentration of defects differing only in
mass from the host atoms. This study included computer
experiments on long chains and configuration average
theories for infinite chains.

Using the theory of ergodic Markov chains,we
generated disordered binary linear chains with short-
range order among the constituents. Nearest-neighbors
and second-nearest-neighbor correlations were explicitly
intfoduced. For comparative purposes we also generated
random chains. The relationship between the Markov
correlation and the Warren-Cowley short-range order
parameters was explored. Although a simple analytic
relation exists for the first-order Markov chain,
correlations generated by the second-order Markov chain
cannot be described only by pair correlation functions.
We computed the density of vibrational states for various

of these chains, in the harmonic approximation with all
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force constants equal. The spectra of chains of as many
as 100,000 atoms were computed and the effect of short-
range order on the spectra was determined. We explicitly
computed the eigenvalues and eigenvectors for 1000 atom
chains. The localization of normal modes (A) was studied
as a function of energy by calculating I Ug(k), where UL
is the normalized displacement on site Q, and also by
calculating an exponential decay parameter. We were,
therefore, able to describe the region of appreciable
amplitude of the eigenvectors as well as the decay rate
away from this region. We have studied the vibrational
density of states theoretically. Clusters of up to six
atoms were firstly embedded in a uniform chain of host
atoms, and, secondly, periodically extended to form a
periodic chain. 1In each case the spectra of these chains,
averaged over all configurations with short-range order
included, were compared to those found experimentally.
For defect concentration <.5 the embedded cluster gave
good agreement with experiment in the impurity band
especially in random systems, though it did not give
information about the spectrum in the host band. The
periodically extended cluster gave qualitative agreement
with experiment for the whole spectrum for all concentra-
tions of defects and all conditions of short-range order.
The periodic cluster theory, however, introduced many
spurious singularities in the density of states. Finally

a modified self consistent cluster theory (cluster CPA)

N
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loyed to calculate the density of states. For the
ite cluster, the agreement with experimental

was remarkably good. We found noticeable
pancie; between theory and experiment only where

 degrees of short-range order were introduced.
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CHAPTER I
INTRODUCTION
Historical Review

The modern theory of lattice dynamics began in
1912 with the work of Debye1 and Born and von Karman,2
although Newton in Principia (C. 1686) began the study
of lattices by using a chain of masses connected by
harmonic springs to calculate the velocity of sound in
air. The first qualitative properties of lattices
appeared around 1840 in response to the work of Cauchy
on the theory of optical dispersion. Baden-Powell3
and Hamilton4 showed that there is a maximum frequency,
below which waves can be transmitted through lattices
unattenuated and above which, the wave is attenuated.

.Lord Kelvins’6

gave the best discussion of the physical
significance of Hamilton's mathematical results. He, also,
showed that the diatomic lattice has a forbidden gap in
the frequency spectrum.

Lord Rayleigh7 in the Theory of Sound derived
two theorems for a single defect in a monatomic lattice

that have a direct relation to defect modes in crystal

lattices.




1. "If in a dynamical system composed of an array
of masses coupled to each other by Hookeian
Springs, a single mass is reduced (increased)
by AM, all frequencies are unchanged or
increased (decreased), but not more than the
distance to the next unperturbed frequency."

2. Modes at the band edge may split off and

enter the forbidden frequency regions.

These theorems are clearly demonstrated in Appendix I.
Although these results were obtained in the 1880's, it
was not until 1957 that Bjork8 gave analytic expressions
for the location of the frequency of the mode in the
forbidden gap as a function of mass defect and force
constant defect for monatomic and diatomic chains. For
a detailed history and two and three dimensional applica-

tions see Reference (9).

Classical Lattice Dynamics

Classical lattice dynamics formulated by Born and
von Karman employed a Hamiltonian with a kinetic energy
and a central pair potential. For the one dimensional
case

p2(1,t)

3 (t)
= s+ 3> ] VIR, ,.+U; ¢.) (1.1)
oL q2my (2 2y (95 i e




RE,L' = RE_RE’ = (&-27)a

Ug p- = U(2)-U(L7)

cell positions and U represents displacements from the
- mean atomic positions. Pu(l,t) is the momentum of the

i i3 unit cell.

atom of mass, m at the a atom in the &
2ﬁ;a the pair potential. Expanding the pair potential in
:lylor series about the displacements from equilibrium,

get

3 y 3V o
U ) - V‘Rz,z"*g 30, (2T TN L

2
) 3%V 3
7 a,8% M oM,y IRz'l,uB(z £35S

first term is an arbitrary constant and the second term
zero for a lattice in equilibrium. To first approximation
the harmonic term remains. The Hamiltonian can be

tten in the harmonic approximation as

a2

P (L,8) 3

—rn—"'i 28 “a(llt)wuﬁ(ﬂ'll‘)us(L‘lt) (1.3)
ol
aB




2
b -V
b,p(L,27) = |
1) auaZQSauslz ) Rl,l‘

ng Hamilton's equations of motion we get
R, - -
mu(l)Ua(l,t) - ¢as(l,£ )UB(E,t)
278
urier transforming Equation (1.4), we have

2 ) s T
B (21070, (1) = - L 0gg (2,470 (1)

U (2) = %-f!mua(z,t)ei“’td:

m (2) = m independent of &, the eigenvalue Equation
$)vcan be diagonalized by expanding the displacements

waves.

0. (K) ik-R
T ) e N s
a b ﬁﬁ; aj

~ where the Qj(k)% are the normal coordinates of
the lattice and the aaj(k)'s are the expansion
coefficients, j is the branch index.

1ting Equation (1.6) into Equation (1.5), we have

(1.4)

(1.5)

in

(1.6)




5

! ik*R Q
2 1 oggmo me = oDy g

) k.3 %78 k,J

" -k“Rl

plying by e and summing over £ where
ik Ry

% e =N¢ (k)

then the LHS over k, we have

7 %ag(227)

2738 /@
8,3k

T 4
‘h w j Qj (k) Uaj (k)

5z ¢t‘!8 (2,27) eik' (RIL ‘-RE)

e
MyMg

tDg (k) =

i
jk

ng over & and k and rearranging we get

. 2 by
- ‘ng(k)[mj(k)ouj(ng Dy (K)ogs (k)] = 0

_.Oj (k)#0, we have

*
§ "qj“‘)"gj(k) = éaB

2 B )
W °j (k)"aj (k) 5 z,BD“B (k)Qj (k)"js(k)e

(k)clB . (k) eik'Rl‘

v

i(kRy -~k ’Rl)

Qj (k)aﬁj (k) e

(1.7)

i(k=k") Ry

(1.8)

(1.9;)




uj(k) 9y .‘(k) = 5jj‘ (1.9b)
G

cell and one branch; therefore
“"g (k) = -D(k)
is real

D = 5 42D ika(t™-D)
B

(
s (oo,
0(2,27) = %:276 ¢

(k) = LetkareTikay) o AY g;,2 Ka

2 k2 i.2 cka 2 =
mj(k) e Sin (T) for k o 051,25 N1l S1a)

sity of states is

2
D(w) = L _7_2_’5 0<ws w 3 (1.11a)
: (wp=w®) b

G gives similar derivations for bases of 2,3,4 and
r 2 constituent chains. For convenience

1.11a) is rewritten




) w0 (1.11b)

Re(...) is the real part of (...). For the diatomic

g ﬂﬂm of masses my and my with all force constants equal

y(x]';— + 1_)-u2
B L Lk aRdilo y (1.12)
}mz- m_?y lmZ_ 2y /mZ_zy (l%l— +1_)1
a by a ™

where we define V-1 = +i
iBc.'n:h of these spectra have square root singularities in u)z.

The diatomic spectrum clearlyhas a gap between IZH_Y and 2—7-.
a
The frequency spectrum of the monatomic chain was

I#rst given by Born and von Kaxrman.2 Unfortunately, their
ttémistic approach to lattice dynamics was neglected for
gg?‘:l:oximately thirty years because calculations in three
nsions are difficult. Two approximations were used.
ilgg 1907 Binsteinm proposed treating the lattice as N

upled harmonic oscillators of frequency wg e The density

Vglw) = 8 (w-up) (113)

oved approximation was proposed by Dehye,1 where

s of the elastic continuum. Debye's 3-dimensional




8
3 2
vD(Lu) =y w e(mmax-m) (1.14)
“max

where 6 is the unit step function. The l-dimensional
analogy of this density of states is

vplw) = e -w) (1:15)

e “max “max” ¥ pe

Both of these approximations allow simple calculation of
thermodynamic properties but the models are too simplified
for accurate calculations, even for thermodynamic calcula-
tions.

The spectra of disordered chains were not considered

until the 1950's. The first significant work on disordered

1L

lattices was by Lifshitz and, independently, by Montroll

and Potts.12 Their work involved the use of classical

Green's functions to compute the properties of isolated

defects in crystal lattices. Dysonl3 in 1953 had already

presented a detailed theoretical approach to finding the
density of states of a one-dimensional linear chain with

equal nearest neighbor force constants. Unfortunately,

Dyson's analytic expressions have not been numerically

14

solved. In 1957, Schmidt derived a functional equation

for the random, linear chain which was solved numerically

5

in 1964 by Agacy.l The first significant numerical

attempts at calculating the spectra of a disordered chain

16

were by the moment-trace method. Maradudin, et al. had




that the expansion of the density of states in terms
its moments involved only even moments. For the perfect
tomic or diatomic chain 14 moments gave reasonable
;hlnlta except near the spectra singularities. The moments

e L
On'" N §

xR = g = [0 (waw (1.16)

where tr is the trace A

D is the dynamical matrix defined in Equation (1.7)
v(w) is the density of states

Domb, et gl.l7 reasoned that the disordered system should

‘Qggbpossess the high frequency singularities and that the

§§§£Q‘%t was for the ordered chain. Their resulting spectra

quiculated from 20 momenta were relatively smooth with some

ters of light (impurity) atoms. However, the arguments
‘:esults of Domb, et al. are quite wrong. We show

iha next section the spectrum of a disordered chain

a3 great deal of structure, more, not less, than the

ect chain. This in effect requires many moments to
imate a spectrum with no assurance that the higher

are the smaller ones.




CHAPTER II

NUMERICAL CALCULATIONS FOR RANDOM

BINARY CHAINS
Numerical Methods

To calculate the spectrum of a disordered chain
requires some numerical effort. In one-dimension a single
defect (or disordered atom) destroys the translational
symmetry of the lattice. Plane waves will no longer
diagonalize the eigenvalue Equation (1.5) and the solution
to Equation (1.5) must be found directly.

Three types of boundary conditions are applicable

to a chain of length, N. These are:

1. Fixed boundary conditions where U°=UN+1=0
2. Cyclic (Born and von Karman) boundary
conditions wherqu1=UN+1
3. Free boundary conditons
Equation (1.5) can be rewritten as
mwlu, = -y (U; =0 =Y ;1 (U_;-0) (2.1)
i i 5 IR I e 1 P i,4i=12"d=1 3

which for equal force constants reduces to

10
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2 = - -
mw Uy = -y (U +U; 1-20,) (2.2)

subject to the boundary conditions listed above. 1In

matrix form Equation (2.2) becomes

3u=u (2.3)

when boundary conditions are applied, A is specifically

given by
o ‘%} 83,4 " niq B 5 (2.4)
for fixed boundary conditions.
s fzn—} i,j_xxrq 5izl,j':1_i 5,381
- n—;!; 8y,1%1,5 (2.5)
for cyclic boundary conditions.
0y T (xi_z = nTi(‘si,l"si,N’)Gi,j‘qu‘sizl,j

for free boundary conditions.
The matrix A is tridiagonal for free and fixed boundary
conditions. The only difference in the matrix for the two
is in the (1,1) and (N,N) diagonal elements given by
Zy/mi for fixed boundary conditions and by Y/n& for free
boundary conditions. Clearly, one could easily mix the

free and fixed boundary conditions. For cyclic boundary
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conditions A is identical to the matrix for fixed boundary

conditions except for the addition of non-zero (1,N) and

(N,1) elements. The question of which boundary condition

to impose on the problem is moot when one considers the

following theorem proved by Ledermann:22
If the elements of r rows and their corresponding
columns of a Hermitian matrix are modified in any
way whatever, as long as the matrix remains
Hermitian, the number of eigenvalues in any interval
cannot increase or decrease by more than 2r.

The three types of boundary conditions differ by
only two elements from each other, and, therefore, no
frequency interval may contain more than four additional
eigenvalues or four fewer eigenvalues. As long as a
frequency interval contains many eigenvalues compared to
four, the frequency spectrum will be independent of
boundary conditions. The eigenvectors, however, are
another matter which we will discuss later. Therefore,
for ease of numerical computation, we use fixed boundary

conditions. The matrix A in Equation (2.4) can be made

symmetric by the transformation

X, = vmg Uy (2.6)
Then atx= o x (2.7
=
- 2y Y
where A .= —§, . - ——— 8§, . 2.8
: S N T e e e

174+l

The eigenvalues of A and A" are identical although the

corresponding eigenvectors are different. A" is now a
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tridiagonal symmetric matrix. The Given's method for
finding eigenvalues of a tridiagonal symmetric matrix
can be employed.42 Appendix A gives a description of the
method and application to this problem. P. Dean18 in
1959 first applied this technique to a disordered linear
chain. Besides Dean and h}s coworkers,l9 Payton and
Visscher20 have performed similar numerical calculations
for the spectra of disordered systems, including small
two and three dimensional lattices. Also, Dean has
performed these calculations on glass-like chains where
the force constants vary in a probabilistic fashion.

An excellent review article is Reference (21).

Numerical Spectra

The spectra of disordered chains presented in
this section serve as an introduction to spectra with
short range order. These spectra have been recalculated
from Dean's work to conform to the rest of the spectra
presented in the thesis. The spectra for the random
chains are for a mass ratio of heavy to light mass of 2.
The concentration of light mass will be called, Cd‘ To
generate a chain of length, N, with a concentration
Cd of light masses, we employ a random number generator
which generates random numbers from zero to one. For
each atom, the generator is sampled and if the number is

less than Cd the atom is labeled a light mass (defect);
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other wise, it is a heavy mass (host). A statistical
analysis shows that 32% of the 100 unit chains generated
for Cd =.5 will have Cd<.45 or">255, By scentrast; for
N=1000, about 5% of the chains will have Cd:.49 or >.51.
One of the problems with random chains is a determination
of the length of chain necessary to insure a reasonably
accurate spectrum. To examine this variability, we look
at chains of 1000, 10000, 50000, and 100000 atoms.

Whereas a spectrum for a 10000 unit chain requires less
than thirty seconds on the UNIVAC 1108, the 100000 unit
chain requires over five minutes of CPU. Figures (2.1)
and (2.2) show spectra of two 1000 unit chains with con-
centrations of .43 and .48 light masses respectively. In
the region 2:&254, the two graphs are nearly identical
with the only serious descrepancy occuring near m2=4. The
region .3 to 2, however, shows a large degree of variability.
Figure (2.3) shows the fifty percent random 10000 unit
chain with an actual concentration of Cd=.4956. The wz
region 2 to 4 is much the same as in the 1000 unit chains;
however, there is a definite refinement in the spectrum

in this region especially in the magnitudes of the maximums
and minimums. The w2 region from .3 to 2 is markedly
smoother around D(m2)=.25 than the 1000 unit spectra.

Figure (2.4) for the 50000 unit chain with C_.=.50093,

d
is almost identical to the 10000 unit chain except for

further smoothing in the .3 to 2 mz region. Figure (2.5)
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shows the 100000 unit spectrum with Cd=.49809. There

are only minute differences between this spectrum and

the 50000 unit spectrum. The m2 region .3 to 2 does
possess some structure even for a chain of this length.
Dean21 recently published a 250,000 unit chain confirming
this structure. It is clear from looking at the figures
that a 10000 unit chain provides the significant spectral
structure seen in longer chains and is much quicker to
evaluate; therefore with few exceptions as noted the spectra
presented in the rest of this thesis will be for 10000 unit
chains.

Dean previously found, and we clearly demonstrate
in the Defect Cluster theoretical section, that the peaks
in the disordered spectra from 2. to 4. can be associated
with clusters of defect atoms.

The next set of figures will show the variation
in random spectra as a function of defect concentration.
Figure (2.6) shows the spectrum of a monatomic heavy chain
corresponding to Equation (1.11). The first and last
bars extend to D(wz) = 2.2575 but have to be truncated to
give a more readable scale. Figure (2.7) is the spectrum
for one percent defect concentration. Using a 100000 unit
chain, the concentration obtained was .00975. The error
analysis at the end of Appendix B shows the Cd=.5 random
chain gives the most accurate calculations for any fixed

length chain. The mode at 2.66 corresponds to an isolated
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defectwhereas the mode at 3.22 corresponds to a nearest-
neighbor defect pair. There was only one such pair in the
chain. The bar at m2=l.98 was reduced from D(mz) = 2.26

to 2.12 with the rest of the bar heights remaining nearly

the same. Figure (2.8) for Cd = .2(.2019) clearly shows
the three-defect cluster at wz = 3.54 and the four-defect
cluster at u2 = .366 as well as the pair and single-defect.

The other peaks are more subtle and are discussed later.

As Cd is increased to 0.2 the heavy mass band becomes severely
depleted at the high frequency end with a small but
significant decrease everywhere in the region w2<2. Where-
as D(2.66) = 1.45 in Figure (2.8), Figure (2.5) shows this
local mode severely depleted, corresponding to the reduction
in the probability of having only one defect surrounded

by host masses. Figure (2.9) shows in contrast to

Figure (2.5), the perfect diatomic chain corresponding to
Equation (1.12). The interesting thing to note is that

the random chain spectra resembles defects in ‘a heavy

chain instead of a somewhat disordered diatomic chain.
Figure (2.10) gives the spectrum for Cd = .8(.8025). The
structure in the uz region 2. to 4. is clearly disappearing

as the spectrum begins to resemble the perfect light chain.
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CHAPTER III

SHORT-RANGE ORDERED CHAINS AND

THEIR FREQUENCY SPECTRA

Short Range Order in Scattering Theory

The first suggestion that alloys may possess at
least some degree of order instead of being random was
made by Tammann.23 He observed that the copper in copper-
gold alloys dissolved in nitric acid only when the copper
concentration exceeded 50 percent suggesting that CuAu is
ordered. The most conclusive evidence of order in alloys
is presented by the superlattice lines on x-ray diffraction
patterns. Owing to the order in CuAu alloys first observed
by Johansson and Linde,24 early work on ordered alloys
defined parameters in terms of sublattices, i.e. a copper
lattice superimposed on a gold lattice. A long range
order parameter S was introduced by Bragg and William525
and a short-range order parameter ¢ was introduced by Bethe.26

The Bragg-Williams order parameter is given by

3 =F e =
EoE Nl (.1
A B

where ra(g) is the fraction of atoms on sublattice
a(g) that are supposed to be on the sublattice
a(g).
FA(B) is the concentration of constituent

B).
B 27
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For a perfectly ordered system, r, = Iz = 1 and S=1, and
for a disordered system (i.e. a system with no long range

order) r, = FA and r, = FB and S=0. The Bethe short-range

B

order parameter is concerned only with the configuration

of nearest neighbors.
o= (gq-q.)/(q -q.) (3.2)

where g is the fraction of unlike pairs among
nearest neighbors gq_ is the fraction of
unlike nearest nei@hbors for an ordered
system (usually one) and g_ is the fraction
of unlike nearest neighbor§ for a completely
random system.
Therefore o=1 represents a perfectly ordered system and
0=0 a random system. Only in the limit o0=1 does the
short-range order parameter imply léng—range order;
generally, a system can have short-range order without
long-range order. These order parameters represent the
two extremes of the definition of order. The Bragg-Williams
deals with the order present in the whole system whereas
the Bethe parameter is concerned with only nearest neighbors.
The concept of short range order must be generalized to
understand the results of x-ray scattering experiments.
Warren, Cowley27 and M05528 introduced short-range order
parameters in terms of conditional pair correlation functions
d’d d’h h’d hlh

r P , P and p and
ll,lz 21,22 21,22 21,22

for binary alloys as p

d,d

Po 2

' = Cq + (1-Cglay (3.3)

2 1772
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d . L . .
where og' ¢ 1is the conditional pair correlation
1’72
function between defects at sites ll and
£,, and « is the short-range order
2 2 ,22
parameter.
Specifically, p?’dl is the probability that 1f there 1is
172

a defect at site Ql’ ther there is a defect at site iz.

From this definition we can deduce the following

"%, + ol =1 (3.4)
Rk, T PRyan,

ol pRd oy (3.5)
1,2 1’72

since given that site §. is occupied by a certain atom,

1
22 must be a host or defect for a binary system. For an

isotropic system, the probability that site %, is a host

1
and 22 is defect must be equal to the probability that

site 21 is a defect and site 22 is a host, i.e.

d,h

Ca Py

2 2 (3.6)

1’72

From Equatipn (3.3), we see « can assume any

ll’iz
value between +1 and -1 with a 4, = 61 ., being the random
12 1'%2
limit. For any case % 1s necessarily one.

1’71
Using these short-range order parameters, we show

in Appendix C that for waves incident on a short-range
ordered system the scattering intensity in the Born

approximation is
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fa % elkna[(f (1-Cg) +£,Cy) +c (1-Cg) a_(£4-F,) 2 (3.7)

n==o

where a is'the lattice constant,
fh is the structure factor for the host atom
fd is the structure factor for the defect atom

k is the incident wave vector

Therefore, for structure factors independent of k,

Io N Zé(ka 2ﬂm)[f (1-C )+f ] +Cy (1-C )a(k)(fd h) (3.8)
where a(k) = E_ eikana (3.9)
n=—o n

The first term of (3.8) gives the Bragg reflection
from an average host-defect chain where all sites are
randomly occupied by host or defects in proportion to their
respective concentrations. The second term is a diffuse
scattering.

There are several limiting cases in which the
short -range order becomes long-range order.‘

Case 1: a, = (—l§

In this case, the lattice is an ordered diatomic

chain and

a(k) = %[6[ka-(2m+l)n]] (3.10)

The unit cell in real space is now twice as long as that
for the monatomic case and Bragg peaks occur at both

even and odd multiples of 7/a.
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Case 2: OL)l =1

In this case, it is impossible to have any mixed
chain, a possible interpretation of this case is to super-
impose two perfect chains. The Bragg peaks occur at the

superlattice reflection points with strength

2 2
IuN%(Cdfd+(l—Cd)fh)d(ka—Zﬂm) (3.11)

and there is no diffuse scattering.

The experimentalist measures o(k) using various
energy x-rays and neutrons and inverts the results to find
29

a

n In generating chains with short range order (SRO) we

can find oy and can consequently explore the implications

of the order in terms of diffuse scattering.

Short Range Order Work

Using the long-range order parameters of Bragg and
Williams with the Warren-Cowley short range order para-
meters, numerous contributions have been made to the theory
of order-disorder transitions in alloys. A good summary
of the work is given in Reference (30). The first attempt
at introducing general short-range order into the theory
of thermodynamic properties and frequency spectra was made
in 1968 by Hartmann.3l Using Green's function techniques,
he was able to calculate a variety of physical properties

in the low concentration of defects limit for three
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dimensional crystals. These calculations were for
arbitrary short-range order describable by pair correla-

32 was able to introduce the

tions. Subsequently Taylor
short-range parameters into his self consistent Green's
function formalism (coherent potential approximation).
Taylor's work will be discussed in more detail in the theory
section (V). Taylor's formalism with short-range order
was valid, however, only near the random limits.

The short-range order discussed above 1is in
terms of pair correlation functions, which are in fact
adequate for scattering theory in the Born approximation.
However, for generating a binary chain and for exact
calculations of physical quantities which can depend on
scattering to higher order than the second in the defect
perturbation, we need all orders of correlation functions.
Also, the extension of pair correlation function formalism
to n(>2) constituent chains is not readily apparent. There-

fore, we consider the Markov process.

Markov Chain

To examine the eigenvalues and eigenvectors of a
linear chain by numerical methods, a linear chain must be
constructed. An ordered chain can be simply generated by
placing unit cell clusters one after another. A random
chain with n constitutents can be numerically generated

as discussed in Chapter II. To generate a chain with
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short-range order with the proper concentration of each
constituent and the correct stochastic relationships
between atoms, the theory of Markov processes is employed.35'36
Stochastic processes where the probability that a
physical system will be in a given state at time t2 may be
deduced from a knowledge of its state at an earlier time tl’
and does not depend on the history of the system before time
tl are called Markov processes. More formally, a discrete
parameter stochastic process [X(t), t=0,1,2 ....] or a
continuous parameter stochastic process [X(t,), tiO] is
said to be a Markov process if for any set of n time points

t1<t2<t3<....<tn in the index set of the process, the

conditional distribution of X(tn)’ for given values of

X(ty)),X(ty),s....,X(t _;) depends only on X(t _y) the most
recent value; more precisely, for any real numbers X 1%,
7 e .Xn
PLX(t )>x [X(ty)=xy, .0, X(t _)=x ;] =
P[X(tn)ixnlx(tn—1)=xn—1] (3.12)

This equation should be read as follows, the probability
that the variable X at tn is greater than or equal to

the state X, subject to the conditions that the variable X '
at tl,has the value Xq
X,, and so on up to the condition that X at t _, has the

the variable X at t, has the value

value X _1 is equal to the probability that the variable
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X at tn is greater than or equal to the state X, subject
only to the condition that the variable X at t _, has

the value X1 The order among the states can be included
in any self consistent arbitrary way.

Markov processes are classified according to the
nature of the index set of the process (parameter) and the
nature of the state space of the process. The index set
of the process can be continuous or discrete. The index
set is a special type of ordered set. When the parameter
is time, an intuitive interpretation of a Markov process is
a process whefe the future depends only on the present and
not on the past. For the linear chain, the parameter is
distance down the chain. This distance, however, must be
directional in the sense of proceeding down the chain in
only one direction. For a position along the chain 20,
the position 10—21,£l>0 must be considered as a previously
occurring state and 20+22,£2>0 as a future state. For
atoms on lattice sites the index set is discrete. The
state space of the linear chain is the set of the types of
atoms in the chain. The state space is called discrete
if it contains a finite or countable infinite number of
states as does the linear chain. A state space which is
not discrete is continuous. If the state space is discrete
the Markov process is called a Markov chain.

Table 3.1 shows the four basic types of Markov

processes. The one used to generate the linear atomic chain
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is the discrete parameter Markov chain. Theoretical work
is still very limited for the continuous state space
Markov processes. A little more is known about continuous
parameter Markov chains with the discrete parameter
Markov chain being the best understood and most widely

applied.

TABLE 3.1.--The classification of Markov processes.

State Space

Discrete Continuous
Discrete Discrete
. Parameter Parameter
Discrete
Markov Markov
Chain Process
Parameter
Continuous Continuous
Space Continuous Parameter Parameter
Markov Markov
Chain Process

The remainder of our discussion will be concerned
only with discrete parameter Markov chains.

Equation 3.12 can be rewritten for the discrete
parameter Markov chain with lattice sites as the parameter
as follows:

Definition: Let X, be a random variable where the value

L
of X, represents the atom at position (lattice site) 1&.

The sequence [ij is the linear chain. The sequence [XQJ

is a Markov chain, if the set of possible Xl is discrete
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and if for any integer m>2 and any set of m points
£l<22<....<2m, the conditional distribution of xl for
m

given values of X, ,...,X depends only on X , the
L L L
1 m-1 m-1

closest atom; i.e. for any real numbers XyrXogreses Xy

P[XR.m:xleQ. =xl,...,X2 =Xm_l] = P[Xl =xm|X9, =xm-l] (3'13)

1 m-1 m m-1

A Markov chain is described by a transition
probability function, ng(Zo,ll), which represents the
conditional probability that the state of the system will pe
at point 21 in the state k, given that at point
£O(<21) the system is in state j. The Markov process is
said to be homogeneous in space or to have stationary
transition probabilities, if Pj,k(lo,ll) depends on 21
and 20 only through the difference (21-20). The transition
probability function is also called the conditional

probability mass function and is
Pj,k(£0’21)=P[X21=k|x£o=J] for 2,>%, (3.14)
In order to specify the probability law of a

discrete parameter Markov chain, the probability mass

function (not conditional)

P,(2) = P[X;=j] (3.15)
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must also be specified. The linear atomic chain should
have homogeneous or stationary transition probabilities.
For such a homogeneous chain it is physically realistic
to expect the same stochastic relationships between atoms
in different regions in the chain. For the homogeneous
discrete parameter Markov chain, Equation (3.14) can be

rewritten as

Pj’k(n)=P[X2+n=k|Xi=3] for any integer 2>0 (3.16)

Equation (3.16) is called the n step transition probability
function. 1In words, Pj k(n) is the conditional probability
’
of making a transition to state k, n steps after being
in state j. P. ,(l) is usually rewritten as P. ..
.k j.k

The transition probability function of a Markov
chain [Xn] satisfies the Chapman-Kolmogorov equation:
for any lattice sites 23>22>£lip and states j and k

Pj’k(ll,23) = ipj,i(gl'QZ)Pi,k(QZ'QB) (3.17)

This is a necessary but not sufficient condition for a
Markov chain.

The transition probabilities are best exhibited in
the form of a matrix called the transition probability

matrix
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P(ll,lz) = [{Pi'j(ll,lz)}] with rows and

columns i and j. (3.18)
The matrix elements also satisfy the following conditions
Pi’j(ll,lz)io for all i,j (3.19)
and

z Pj'k(ll,lz) = 1 for all j (3.20)

The Chapman-Kolmogorov equation can be rewritten in matrix

form as
P(21,23) = P(Ql,zz)P(22,23) (3.21)

From the Chapman-Kolmogorov equation some funda-
mental recursive relations can be derived for the discrete
parameter Markov chain. For the homogeneous chain the
transition probability matrix.P(Ql,QZ) depends only on the
difference n=(22-21) and can be rewritten as P(n). Equation

(3.21) can be rewritten as
P(n) = P(m)P(n-m) where m<n (3.22)

P(l) is usually rewritten as P. Using Egquation (3.22)
e
recursively, we see

n

P(n) = P(n-1)P=P(n-2)PP= ... =P (3.23)
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Next, from the probability mass function defined
in Equation (3.15), we can define the unconditional

probability vector as the row vector

p(n) = [{pj(n)}] with columns j (3.24)

Given an initial unconditional probability vector p(0),

it follows that
p(n) = p(0)P(n)=p(0)P" (3.25)

As a consequence, the probability law of a homogeneous
Markov chain [Xn] is completely determined once one knows
the one step probability transition matrix P and the
unconditional probability vector p(0).

A Markov chain [Xn] is said to be a finite Markov
chain with k states if the number of possible values of
the random variables [xnj is finite and equal to k. The
transition probabilities pj,k are non-zero for only a
finite number of values of j and k and the transition
probability matrix P is then a k x k matrix.

An example of a discrete parameter finite homo-
geneous Markov chain would be a linear atomic chain
consisting of two states a host state (atom) h and a
defect state (atom) d. The unconditional probability

vector would be
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p(0) = [p,/py4] (3.26)

and the transition probability matrix is

Ph.h Ph,d
P = (3.27)
P4q,n P3,a

Although we have not examined how we determine

P as yet, it does have some interesting properties.

2 4 (Py. +P 1)
Ph,h*Pn,aPa,n  Pn,a‘Pn,n"Pqg,qd

2
Ph,aPq,a*Ph,n’ Pa,a*Ph,aPa,h

(3.28)

and for Ipd,d+ph,h-l |<1, the n - step transition probability

matrix is

1-P3,4a 17Ph,n
P(n) = l/(2-ph’h-pd’d) .
“Pg,a 17Pn,n
(3.29)
(P, n*Pa,a~ V)" /1Py —(lpp )
(2-Py 17Pg,d’ | -1

—pd,d) l-pd,d

The proof of Equation (3.29) is given in Appendix B. The
asymptotic expressions for the n - step transition

probabilities are
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1-p
i = 1 d’d
LB ph,h(n) = jip pd'h(n) = (2-pp, ;,-Pq dY (3.30a)

1-Ppy h

(z—ph ,h_pd,d)

Aim ph’d(n) = lim pd'd(n) (3.30b)
To determine the transition probabilities, the

evolution in parameter space (time or distance) of a

discrete parameter homogeneous Markov chain [xn] must be

studied. First, the states of a chain can be classified

according to whether it is possible to go from a given

state to another state.

Definition: A state k is said to be accessible from a

state j (j-k) if, for some integer n>1, pj'k(n)>0. Two
states j and k are said to communicate G«*k) if j is
accessible from k and k is accessible from j.

For a fixed concentration linear chain all states
must communicate; otherwise, some pj’k(n) = 0 for all n
implies that once the state j is entered state k can
never be reentered médifying the concentration of the
 state k.

Given a state j of a Markov chain, its communica-
ting class C(j) is defined to be the set of all k states

in the chain which communicate with j, i.é.,

k € C(j) if and only if k<+>j
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For the linear atomic chain, we require all states of the
chain to communicate with each other. Since the communica-
ting class C contains all the states of the system, there
are no states outside the set and C is defined as a

closed set. More formally,

Definition: A non-empty set C of states is said to be

closed if no state outside the set is accessible from any
state inside the set.

Next, we can define the occupation number Nk(n)
of the state k in the first n transitions. More precisely,
Nk(n) is equal to the number of integers Vv satisfying

1<v<n and X =k. The total occupation time of k is

_ . (3.31)
Nk(w) = &_l)m Nk (n)
The occupation times can be represented as the sum of
random variables. Define for any state k and n=1,2,....
Z,(n) =1 if X =k
k n (3.32)
= 0 if xnfk
Then, we can write
n
N.(n) = I 2,(m) (3.33)
k m=1 k
and
Nk(w) = I zk(m) (3.34)

m=1
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With these relationships we can define the following

probabilities

fj’k = P[Nk(m)>O[XO=j] (3.35)
and

945,k = PN, (=)==[X,=]] | (3.36)

In words, fj,k is the conditional probability of ever

visiting the state k given that the chain i1s initially in state
j, and gj,k is the conditional probability of an infinite
number of visits to the state k given the chain is at

some initial time in state j. For the linear chain with

fixed concentration of constituents, the requirement that

every state communicates implies

fj K = 1 (3.37)
’

and in an infinite chain every state occurs an infinite

number of times to maintain fixed concentrations implying
. =1 .
gj,k (3.38)

Definition: A sState is said to be recurrent if fk k=l
’

or a state k is recurrent if the probability is one that

the Markov chain will return to state k.

Definition: A recurrent Markov chain is said to be

irreducible if all pairs of states of the chain communicate

(f.

3 k>0 for all j, k).
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Therefore, the linear atomic chain has a closed
recurrent irreducible set of states. The chain must also
have a fixed concentration of constituents as the length
of the chain approaches infinity.

Definition: A Markov chain with state space C possesses

a long run distribution if there exists a probability
distribution {nk, keC}, having the property that for every

j and k in C
A3 Py (n) = m (3.39)
summing over k

pj’k(n)=l=2n (3.40)

which gives a useful relationship between the concentrations
T The interchange of the summation and limit in Equation
(3.40) is not rigorous but Appendix B has a rigorous

proof. No matter what the initial unconditional probability

distribution {pk(O), keC}, the unconditional probability

pk(n) tends to T, as n tends to infinity

%&E} pk(n) I‘Jikg E.pj(O)pj,k(n)

J

gpj(O) 1im Pj,k(“)

gpj(o)ﬂk=”k (3.41)
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Definition: A Markov chain with a state space C is said

to have a stationary distribution if there exists a
probability distribution '{nk, keC} having the property

that for every k in C

(3.42)

In order to state conditions under which the
irreducible Markov chain possesses a long run distribution,
we need to introduce the concept of the period of the state.

Definition: The period d(k).of a return state k of

a Markov chain is defined to be the greatest common divisor
of the set of integers n for which pk’k(n)>0. A state is
aperiodic if it has a period of 1.

For an irreducible Markov chain, if pk,k>0 for any
k in C, then the state is aperiodic. Also, if an ihteger
n can be found such that pj,k(n)>0 for all j and k in C,
the chain is aperiodic. 1In fact, for the linear chain
only ordered (periodic) chains are not aperiodic.

If a chain is irreducible, aperiodic, and recurrent
it is called an ergodic chain. For our purposes we want
a homogeneous chain, for which the stochastic relationships
.are the same throughout the entire length of the chain.
Therefore we require a Markov chain which is ergodic. Such

a chain has a unique long-run distribution.
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Theorem 1: An ergodic Markov chain has a unique
long-run distribution, {nk,kec} with O<ﬂk<w. The long-run
distribution of an ergodic Markov chain is the unique
solution of the system of Equation (3.42) satisfying
Equation (3.40).

Theorem 1 is proved in Appendix B.

The converse of Theorem 1 is also true.

Converse of Theorem 1l: If a Markov chain has a

k,ksc} with o<v.k<oo '

unique long run distribution {=
then the chain 1is ergodic.
Proof: The converse is most easily proved by

showing that any Markov chain which is not ergodic does
not possess a unique long run distribution with O<nk<w.
A Markov chain 1s not ergodic if it is periodic and/or
reducible and/or non-recurrent. The definition of
periodic is the contrapositive of the definition of

aperiodic.

Definition: If a chain is periodic, then an integer n

cannot be found such that Pj k(n)>0 for all j and k in C.

’

The definition implies some P.

3 k(n)=0 for any n and

therefore lip Pj k(n) does not exist in the ordinary sense
4
or is equal to zero. Therefore Ty 1s not unique or is

equal to zero in violation of the conjecture.
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A reducible Markov chain is defined by the contra-
positive of the definition of an irreducible Markov chain.

Definition: If a chain is a reducible Markov chain, then

not all pairs of states communicate. That is to say some
fj,k=0' This implies Pj,k(n) = 0 and therefore linm Pj,k(n)=
0=nk again in violation of the inequality 0<m<ew,

Finally, the contrapositive of a recurrent Markov
chain, gives the definition of the non-recurrent Markov
chain.

Definition: If a Markov chain state is non-recurrent,

then the probability that the Markov chain will return to

state k from a state k is not one (fk k7‘1). This implies
’
fk,k<l' In Appendix B, we show the fk,k<l implies
o]
gk'k—O and §=0 Pk,k(n)<m' Therefore; %*@ Pk,k(n)=0=nk

in violation of the inequality 0<wk<m. This completes the
proof of the converse. Therefore, the solution to
Equations (3.42) satisfying Equation (3.40) will give a
ergodic chain for all ﬂk#o.

For the two component linear chain with concentra-

tions ch and a3 Equation (3.42) gives
cy = chph,h+cdpd,h (3.43)
Cq = chph,d+cdpd,d (3.44)

Equation (3.40) giVes
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ch+cd =1 (3.45)
and Equation (3.20) gives
ph,h+ph,d =1 (3.46)
pd,d+pd,h =1 (3.47)

From this set of equations, it is obvious the combining of
Equations (3.44), (3.45), (3.46), and (3.47) gives
Equation (3.43) which is a redundant equation. Given Cq

and P3. g’ the rest of the variables can be specified.
’

cp = l-cy4 (3.48)
Pa,n = 17Pq,q ' (3.49)
Ph,q = Cq(1Pq,q)/ (1-cq) (3.50)
Ph,h = 17Pn,q (3.51)

The first atom in the chain is selected as in the
random case. A uniformily distributed (0+1l) random number
is picked and compared with the concentration of defects
Cq- If the number is less than Cqr the atom is a defect;
otherwise, it is a host. After the first atom has been
selected, a random number is picked and compared with either
ph,d or pd,d depending on whether the previous atom was a
host or a defect respectively. If the random number is less
than this value the atom is defect, and otherwise it is a

host. This procedure generates the correct Markov chain
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with the proper concentration in the limit of long chains.
A statistical analysis of these chains is included in
Appendix B.

Another example is a three (state) constituent
linear chain with concentrations cyr C, and c, for atoms

3
of types 1, 2 and 3. Equation (3.42) gives

C) = Py 3%C,Py,17C3P3 3 (3.52)
€2 = ©1P1,2%C%P;,2%C3P3 2 ‘ (3.53)
c3 = clpl,3+c2p2'3+c3p3'3 (3.54)

Equation (3.40) becomes

Cl+c2+c3 =1 (3.55)

and Equation (3.20) gives

Py,1*P1,2*Py,3 7 1 (3.56)
pz’l+p2,2+p2'3 =1 (3.57)
P3,1%P3,2%Py,3 = 1 | (3.58)

It is easily shown that one equation is redundant;
therefore, eliminating Equation (3.54), six variables must
be specified to construct an ergodic Markov chain. Picking
cl'cz’pl,l’pl,Z’pZ,l’ and pz'2 as specified, Equations (3.52) -
(3.58) can be solved.
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Py,3 = 17P1,57P1,1 (3.59)
Py,3 = 1°Py ,17Py 2 (3.60)
¢3 = l-¢p-c, (3.61)
p3,l = [cl(l-pl,l)—CZPZ,l]/(l—cl_c2) (3.62)
Py, = [c2(l—p2'2)—clpl’zj/(l-cl—cz) (3.63)
P3,3 = 17P3,17P3 5 (3.64)

For the two and three state linear chains, there are
constraints which limit the range of the input concentra-
tions or the input probabilities to a range less than that
between zero and one. For the two constituent chain when

specifying arbitrary concentration for the defect c the

dl
transition probability is constrained for cd<.5.

0<ph,d<l
0<[Cd(l’Pd’d) ]/(l_cd) <1
0<l1l- < -

Pg,q¢ (174} /4

(2_l/cd)<pd,d<l (3.65)

For the three constituent chain, the constraints are more

complicated.
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" The restriction from the concentration of constituents is

0<c3<l

which leads to
0<(cl+c2)<l

The restrictions from the probabilities are:
O<pl'3<l

which implies
0<(py,1+Py, o) <1

Next,
0<p2’3<l

which implies
0<(p2'1+p2'2)<1

The third rest;iction is
0<pl’3<i

" which gives

0<[cl(l—p1,1)—c2p2,l]/(l_c1-c2)<l

first,

Py,1%¢) (1-py 1)/cy<lp, 1+ (1-cy-c,)/c, ]

(3.66)

(3.67)

(3.68)

(3.69)
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The final restriction is

0<p2'3<1
which gives
O<[cz (l_pz’z) _clpl’zj/(l_cl-cz) <1l
Pl,2<[02 (l'PZ'2)/Cl]<[Pl,2+(1'Cl‘C2)/Cl] (3.70)

So far we have discussed strictly Markov chains.
In constructing such a chain the choice for the state
(occupancy) at site & is affected only by the state at site
2-1. We can generalize our method by bending somewhat the
definition of the Markov chain. 1In the two state system
for example an obvious extension would be to relate the-
atom at & to the atoms at 2-1 and 2-2 instead of just the
atom at %-1. 1In fact it is desireous to relate the atom at
% to the atoms at 2-1, 2-2, 2-3,....,%-n. By analogy to
the ergodic Markov chain we will define the following:

th

Def: the sequence [XQJ is an n order Markov

chain if each X, is discrete and for any integer m>n+l and

any set of m points £l<22<...<2m, the conditional distri-

3 for given values of Xog v Xg reeerXy '

m 1 2 m-1

depends only on X, resar Xy + the n closest atoms. For
m-n m-1

any real numbers XyrXgreeo s Xy

bution of X



Plx, =x_|X, =x1,x22 Xore ,xlm_l-xm_l] =
(3.71)
P[x2m=xmlXgm—n=xm'“'xzﬁ-n+1+xm‘n+l"'.'le-1=xm'l]
The one step probability transition fupction would be
Pi,i,..., s B0Xg=tl Xy =i0%) =30 %) 1=s] (3.72)

These transition probabilities satisfy the Chapman-

Kolomogorov equation, but for n>1, the nth order Markov

chain as defined is not a Markov process. A transformation,38
however, can be made to make it a Markov process. For an
ergodic Markov chain with m constituents, an nth order
Markov chain will have m" states with an m" by m" transition
probability matrix with mp(mn—m) identically zero transition
matrix elements. The one step probability transition
function is redefined as
. =p, . . =
p1,3,...,s;t 1,)7¢0¢¢483])s...8,t
PLX,=t,X, _1=s,..,X,_1=3[X,_ =i,X;_ . 1=3,..,%X, _4=s] (3.73)
For the two state linear chain, the second order
Markov chain would consist of 22=4 states; namely,
hh
hd (3.74)
dh

dd



54

with the transition matrix being 4 x 4 with 4(4-2) = 8

zero transition matrix elements.

Phh,dh = Phh,da = °
Phd,hd = Pha,hh = ©
(3.75)
Pah,dh = Pan,aa = °
Pgd,hd = Paa,hn = °
and 8 non-zero matrix elements
Paa,a ~ Paq,da
Pga,h ~ Padg,dn
Pan,a = Pan,ha
Pah,h = Pan,hh
Pra,a  Fhd,aa (3.76)
Pha,h = Phd,dn
Phh,d = Phh,hd
Phh,h = Phh,hh
Equation (3.40) then gives
chh+chd+cdh+cdd =1 (3.77)
which we need to relate to ch and Cq- The relation is
¢, = chh+(cdh+chd)/2 (3.78)
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c +(c

a = Caa*t(Can*Chql/?

so that
cd+ch = 1

Equation (3.20) gives

Phh,hd Phh,hhtPhh,antPhn,aa =
Phd,hh"Phd,hda*Phd,an*Pha,aa =
Pah,hh*Pan,ha*Pan,dan?Pan,daa =

Pad,hh*Paq,ha*Pag,an*Pag,qa =

Phh,a™Phh,h = 1 Phh,ha™Phh,hh =

Phda,a"Phd,h = 1 (Pha,ad*Pha,an
Pah,a*Pan,h = 1 (Pan,ha*Pan,hn

Paa,a*Paa,n = 1 (Paa,aa*Pad,dn

Equation (3.42) gives

°hh = ®hhPhh,hht®hdPhd,hht €anPan,hhtCdaPad, hh
°hd = °hhPhh,hd*haPhd,hda SanPan,hatCadPaa,hd

Cah = ®hhPhh,anthaPhd,antanPan,an* adPaa,dn

which because of the zero elements reduce to

1)

=1)

= 1)

=1)

(3.79)

(3.80)

(3.81)
(3.82)
(3.83)

(3.84)

(3.81")
(3.82")
(3.83")

(3.84")

(3.85)
(3.86)

(3.87)
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©4d = “hhPhh,dda*®haPha,datanPan,aataaPaq,aa (3.88)

These equations can also be simplified to

°hh = “hhPhh,h*CdnPah,h (3.85")

°hd = °hhPhh,a"CanPan,q ' (3.86%)

®dh = “hdPha,h*CadPad,n (3.87%)

©aa = “haPha,d*adPad,qd (3.88")
Using Equations (3.75) - (3.88), one equation is

redundant. We can arbitrarily eliminate Equation (3.85').
From the remaining equations, we have ten equations with

fourteen unknowns requiring us to specify four variables.

If we take these four specifications to be cd'pdd,d’pdh,d
and Pha.a’ the equations can be solved in terms of these
4

variables.
S l—cd (3.89)
Paa,h = 17Paq,q | - | (3.90)
Pah,h = 1™Pan,q (3.91)
Pha,h = 17Phq,a (3.92)

from Equation (3.88') we have

°ha = ©aa‘17Pag,q’/Pnd,qa (3.93)
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from Equation (3.87') using Equations (3.93), (3.92), and

(3.90)

©4a‘17Pag,a’/Pna,qa
€ah = “ha

Using Equation (3.80) with (3.94), we get

Substituting Equation (3.95) into (3.93) gives

c,~¢C

a"%aa = aal Paq,a’/Pna,a

C3a = ©aPha,a’ ‘1*Phg,a Paa,d’

Using Equation (3.96) in (3.95), gives
c

dh = Sha = %a‘17Paq,a’/ M*Png,q7Paq,d’

Equation (3.81) gives

l-c

®hh da~"%San

®hn = 17CqlPhg,q*2(17Paq,q) I/ (1*Ppg,q7Paq, d!

and from Equation (3.86'), we get

Phh,d = ha‘1"Pan,a’/hn

ah = ©aa‘17Pag,a’ 1 Ppg,a’/Pha,a*taa (1 Paa,q’

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)
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c4(1-Pgq q) (1-Pgn o)
1*Py3,d Paa,a CalPha,at2 (1 "Paq,q’ ]

Finally,

Phh,h = Y™Phn,qa (3.100)

The procedure for generating the chain is identical
to that for the first order Markov chain except the states
are two atoms long. The first state is hh, hd, dh or dd
depending on where the random number falls in the unit
interval. The unit interval is divided into Shh’ Sha’

C3n and Caq respectively. From there on the probability
the next atom will be a host or a defect depends on the
preceding two‘atoms.

As in the case of the first order chain, the pro-

babilities are constrained to the unit interval.
0 < L] * Al = . L] < [ ]
_le’Jk( plj,k)_l (3.101)

Uniike the first order chain where P; 3 = 1 or 0 for a two
’
state system gives an ordered chain, some pij x may equal
’
zero or one and not produce an ordered chain. However,
for a given Cqr pdd,d' pdh,d and phd,d are not always

allowed any value from zero to one. Since 0<pp gsl, we

have

Oicd(l-pdh’d)/[l-2cd+(l—cd)phd’d/(l—pdd'd)]5} (3.102)
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One question we can easily answer is at what concentration
if any does Equation (3.102) constrain the probabilities.
Examining Equation (3.102) carefully for different values
of 3 reveals the <1 is always the more constraining limit.

Therefore, setting Phh .4 equal to one we get
’

1l = cd(l_pdh,d)/[l_zcd+(l-cd)phd,d/(l-pdd,d)] (3.103)

Pna,a = (17Paqg,q)Cal3-1/47Pgp,q1/ (1-¢4) (3.104)

since Phg dio
’

cg<l/3 (3.105)

For cdil/3 all pdd,d' phd,d and pdh,d from zero to one are
allowed. Figures 3.1 to 3.7 show the allowable values for
pdd,d’ phd,d and pdh,d for cd=.3,.4,.5,.6,.7,.8 and .9.
Only the volume in front and above the surface is allowed
for a ergodic chain. Though our choice of independent
parameters is a convenient one it is arbitrary and there-
fore these figures, for the three parameters which we have
chosen, may be somewhat misleading. One should not infer
that the parameter space of the second order chain is more

restricted for higher concentration. In fact the replace-

ment of Cq by l—chch and of all 4 subscripts by h subscripts

leaves the figures still true.
A two state third order Markov chain and three

state second order Markov chain are considered in Appendix

B.
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FIGURE 3.1.--Allowed values of Pga,a'Pan,a and Pha,a for

Cd .3,
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One of the major problems when generating a finite
length linear atomic chain via the ergodic Markov chain
theory is to genefate a chain with the desired stochastic
relationships between atoms. As the number of atoms in
the chain becomes infinite the ergodic Markov chain theory
guaranteeS'the correct relationships, but when one looks
at a 100 or 1000 unit chain the relationships can be
quite different from those desired. The question we need
to answer is: For a given length chain N and a given
confidence level C what magnitude of error between the
obtained and desired stochastic relationships can we
tolerate before we discard the chain? A 99% confidence
level says that 99% of the chains of length N, generated
by a given transition probability matrix will fall within
certain error limits. Since the actual value of pd'd(n)
in the first order two constituent Markov chain is a

binomial statistic, it has a mean number of occurrences
u =N pd’d(n) (3.106)
with a standard deviation of

c” =N pd,d(n)“'?d,d(n)] (3.107)
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For the binary random chain with cd=.5, pd’d(n)=.5
independent of n. First, for the 100 unit chain, the
mean number of defects is u =100(.5)=50 with a standard
deviation of 0=[100(.5) (1-.5) J*=5 or 68% of the time the
number of defects will range from 45 to 55 and 95% of
the time the defects will be between 40 and 60 out of
100. In other words to a 95% confidence limit a random
chain of length 100 could have 40 to 60 defect atoms and
still be representative of a random chain. For the 100
unit chain Table 3.1 gives pd,d(n) for two computer

generated chains.

TABLE 3.1.—-Characteristics of two 100 unit Markov chains.

cd=.43 cd=.49

n Pg,q (™) Pg,q (™
1 .357 .510
2 .452 .388
3 .463 .490
4 .450 .479
5 .385 .468
6 .385 .511
7 .461 .362
8 .333 .522
9 .513 .578
10 .289 .432
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By a similar analysis, for N=10,000, the 68%
confidence limits are 4950 to 5050 defect aﬁoms out of
10,000 atoms. The concentration of defect atoms varies
from .495 to .505 versus .45 to .55 for the 100 unit
chain. Therefore, any calculations involving 100 unit
chains should be averaged over many chains.

In Appendix C, we have related the Markov
chain to the short-range order paraméters. For the first
order Markov chain, the pair correlation function is

related to the conditional transition probability by

= P, j(lsz -2 (3.108)

17421

The reason for the absolute value 121-2 is that the

2l
Markov chain has direction; one can examine a chain in
only one direction at a time. Since the Markov chain we
generate is isotopic, it does not matter which direction
we consider. This directionality is important if one
considers the relationship of Markov probabilities to
triplet correlation functions.

The short-range order parameter for the first order

Markov chains is

a = (al)n where al=(pdd’d—cd)/(l-cd)

The Fourier transform of %, can be computed in closed

form
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[}

_Z ikna_  _ ikna (n)
alk)= _ . e a =1 e (o)

n=-®

0
_ n
-1+2n§l alcos(nka)

(l-alcos ka)

=1+2[ - 1]  (1.353.3)3°

1-2a1cos ka+&¥
2

l—al

2
l-2a1cos ka+al

a(k)= (3.109)

a (k) is characterized by a single broad peak centered

at k=0 or k=§ depending on whether al>0 or a,<0 respectively.

1
The relationship of the second order Markov conditional
transition probabilities to the pair correlation function
is not as simple as that for the first order chain; it.is
examined in Appéndix C.

Frequency Spectra of Linear Chains
With Short-Range Order

Before examining the spectra of chains with short-
range order, we will mention otﬁer work using nearest
neighbor short-range order. Payton33 calculated a limited
number of spectra using Dean's technique with short-range
order for Cd=.5. Payton used nearest-neighbor pair
correlation ftnctions to generate his short-range order

which for Cd=.5 are particularly simple, i.e.

d,d _ h,h _
pO,l = po'1 = X (l+a (3.110)

1)
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In general it is conceptually incorrect to generate a
chain using pair correlation functions. However, for
Payton's particular case of nearest neighbor correlations
only,the logical fallacy does not result in an incorrect
chain because the first order Markov transition proba-
bilities are numerically identical to the nearest neighbor
pair correlation functions. More recently, Papatriantafillou,34
has introduced short-range order into the one dimensional
electron problem. His order, although not stated in the
paper, is a first order Markov chain. He does not generate
-frequency spectra, however. Neither, Payton or Papatriantafillou
justified their method of generating short-range order or
studied its implications in terms of correlation functions.
We, on the other hand, have mathematically justified our
method of generating short-range order and have examined
the pair correlation functions for this order.

Matsuda and Teramoto41 used first order Markov
chain theory to calculate a formula for the integrated
density of states of the harmonic mass defect linear chain
to certain special frequencies. One point to note here
is their use of Markov chain theory was in a much differ-
ent context than presented in this thesis and was not
easily reformulated into generation of linear chains. The
special frequencies correspond to zeros in the density

40

of states of random chain and are given by
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w(s,t) = wiax cosz(%% (3.111)

where w2 is the maximum allowable frequency of a

max

perfect chain of light atoms (in our case
wiax=4‘) and s and t are integers prime to each
other.

s and t are determined by the condition

> l+cot(m/2t)tan(sm/2t) (3.112)

i Ca

for a mass ratio of —=2, s must be equal to 1. In this
case the Matsuda and Teramoto formula for integrated

density of states is

N(w?(s,£))=1-[cy(1-py 4)Pg 4/ (1-P5 o) ] (3.113)

where N is the integrated density of states and Pq.a is the
Markov transition probability. !

The justification for introduction of short-range
order into the this formula is not clear. It seems to
depend on the assumption that the special frequencies do
not change with introduction of short-range order.
Unfortunately numerical studies cannot adequately examine
the spécial frequencies since we can use only finite length
chains.

Table 3.3 gives some of the values of t,wz(s,t)

and N(wz(s,t)) for the 50 percent random chain.
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TABLE 3.3.--Comparison of numerical spectra and Equation

3. f =.5 =.5.
(3.113) for c 'Pg,q
5 Eq. (3.113) Approximate
t w(s,t) N[wl(s,t)] Numerical
2 2. .66667 .667
3 3. .85714 .858
4 3.414 .93333 .934
5 3.618 .96774 .968
6 3.732 .98413 .984
7 3.802 .99213 .992

Looking at Figure (2.5) the first five zeros are visible.

The agreement is excellent in this case.

First Order Markov
Chain Spectra

First we will examine, the effect of short-range
order generated by a first order Markov chain. Figures
=,2 and P

(3.8), (3.9), (3.10) and (3.11) are for c =0.0,

d d,d
0.4, 0.6, 0.8 respectively. These can be compared to
Figure (2.8) for the random case. For Pd,d=0' no defect
atoms can be next to each other, therefore, we get an
increase of the isolated defect peak to D(w§)=l.62 vs 1.45
for the random case. The rest of the structure above
w2=2. is due to defect pairs, triples which are not
nearest neighbors. The host mass spectrum is consider-
ably more depleted at the high energy end of the spectrum
than in the random case. For P

dd='4' .6, .8, the opposite

is true, with the w2=2.66 peak decreasing in magnitude.
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For Pd,d='8 the impurity band spectrum is approximately
evenly spread over the whole band. For this case the
probability of long defect subchains and long host
subchains is high. Figure (3.12) gives a(k) for these

four chains. Table (3.4) compares the numerical integrated

density of states to Equation (3.113).

TABLE 3.4.--Comparison of Equation (3.113) to numerical

spectra for cd=.2.
Pd,d t N(t) Numerical
0.0 2 .8 ’ .7966
3 1.0 1.0
0.2 2 .8333 .8288
(random) 3 .9677 .9706
4 .9936 .9936
0.4 2 .8571 .8538
3 .9487 9467
4 .9803 .9792
5 .9927 .9922
0.6 2 .8750 .8704
3 .9388 .9371
4 .9669 .9654
5 .9813 .9796
6 .9891 .9880
7 .9936 .9929
0.8 2 .8889 .8963
3 .9344 .9401
4 .9566 .9601 s
5 .9695 .9720
6 .9778 .9785
7 .9834 .9849

The agreement between the numerical results

and Equation (3.113) is remarkably good. considering that
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the concentration for Pd,d=0‘8 came out to be .1852
instead of 0.2. Also, Equation (3.113) is exact only
for infinite chains. The results in Table (3.4) tend
to confirm the correctness of Equation (3.113) when
short-range order is included.

Figures (3.13), (3.14), (3.15) and (3.16) are
for cd=.5 with Pd,d=‘l' .25, .75 and .9 respectively.
Figure (3.13) shows a slight deviation from the binary
ordered chain in Figure (2.9) which would be obtained
at cd=.5, P

2 heavy mass clusters (w2=1.5) and 3 heavy mass clusters

dd=0' The peaks between w2=l and 2 come from

at w2=l.22. The peaks above w2=3 come from the light
atom clusters. The band edge singularities at w2=1,

and 2 disappear. For Pd,d='25' Figure (3.14) shows that
much of the ordered diatomic structure has been lost with
the spectrum filling in the gap from w2=l to 2. _This
can be compared to the cd=.5 random case (Figure 2.5)
where the spectrum looks like a depleted heavy mass
spectrum with many modes in the forbidden region.
Figures (3.15) and (3.16) show progressive clustering of
light atoms which also gives clusters of heavy atoms.
Clusters of heavy atoms produce the peak at the upper

edge of the host band. For P 75, the host band

a,d *
structure is reappearing and the impurity modes
although highly structured are equally distributed between

w2=2 and 4. For Pd d='9’ the structure in the impurity
’
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band is diminishing as the spectrum approaches

the superposition of a light chain spectrum and a heavy
chain spectrum with the integrated spectrum normalized

to 1.0. Figure (3.17) shows the a(k)'s for Figures (3.13)-
(3.16) . For cd=.5, the o (k) corresponding to pd'd=u is

a mirror image of the a(k) corresponding to pd'd=l.-u.

The case pd,d=0‘l approaches Case 1 and the case

pd,d=0‘9 approaches Case 2 of Section II on x-ray
scattering. Table (3.5) compares Equation (3.113)

to the numerical integrated density of states at the

special frequencies.

Second Order Markov Chains

Although numerous spectra were generated by
second order Markov chain theory, we present only a few
of the most interesting spectra herein. Figure (3.18)
shows the only cd=.2 spectra generated by second order
Markov theory to be presented. Figure (3.18) is for
pdd,d=0' pdh,d=‘4 and phd,d='8‘ Or, in words, the chain
will not contain any defect clusters greater than two
léng (pdd,d=0)' In general, the defects will come in
pairs (phd,d='8) or separated by one host (pdh,d=‘4)
with few isolated defects. The spectrum shows a large
nearest-neighbor defect péir peak, w=3.26 with only a

small single defect peak w=2.66. Figure (3.19) shows
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TABLE 3.5.--Comparison of Equation (3.113) to numerical

spectra for Cd='5'
Pd,d t N(t) Numerical
0.1 2 .5455 .5466
3 .9550 .9539
4 .9955 .9960
0.25 2 .6000 .5970
3 .9048 .9014
4 .9765 , .9767
. 5 .9941 .9938
0.75 2 .7143 .7225
3 .8378 .8433
4 .8971 .9013
5 .9309 .9330
6 .9519 .9544
7 .9658 .9670
0.9 2 .7368 .7363
3 .8340 .8345
4 .8822 .8818
5 .9110 .9098
6 .9300 .9298
7 .9434 .9441
o (k) for this chain. It is quite different from that

of the first order chain showing a local maximum between

k=0 and .
=P ;P =E§ii:igél=P in
dd,d "hd,d’ dh,d l—Cd hh,d

second order Markov space is equivalent to the first

The line P

order Markov process. Figure (3.3) shows that for C 5,

a -
this line is one of the diagonals in the unit cube. Two

other diagonals for Cd=0.5 result in simple forms for a(k).

These diagonals in Figure (3.3) are for C.,=.5:

d
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Psa,a"Pan,a’Fha,a Phh,a 7 Faq,q (3.114)
and
P3a,a Phn,a’Fan,a Phd,a 1 Faq,qa (3.115)
Appendix B has a derivation of the short-range order
parameters for each case.
l—ag
a(k) = > (3.116)
l—2azcos(2ka)+a2
where a, = (pdd,d_cd)/(l_cd)=2pdd,d—l
corresponds to Equation (3.114) and
l—ag
o(k) = x> (3.117)
1-2a,cos(3ka)+a
3 3
(c.,) P -C
_'~d dd,d” -d, 2_ .
where a3—1_cd ( 1_Cd ) _(2pdd,d 1) (3.117a)

corresponds to Equation (3.115).

The period of Equation (3.116) is one-half the period of the
short-range order function, a(k), for the first order

Markov process; whereas the period of Equation (3.117) is
only 1/3 of that for the first order Markov process. In

addition from Equation (3.117a) we note that P can have

dad,d
two values for any Ogs therefore the identical short-range -

order function can result from two different P This

daq,da’
ambiguity illustrates an important point which will be even
more dramatically made at the end of this section. Whereas

there is a one to one correspondance between chains which
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can be generated by a first order Markov process and a

set of short-range order parameters, namely the very
simple set given by Equation (3.108), there is no such
correspondance for the second-order Markov chain. 1In fact,
quite different second order Markov chains may produce

the same set of pair correlation functions. Therefore

in order to study the statistical properties of a second-
order Markov chain one needs triple (and perhaps higher)
order correlation functions.

Figures (3.20) and (3.21) show vibrational spectra
for second order Markov chains satisfying Equation (3.114)
with Pdd,d='25 and.Pdd’d=.75, respectively.

With Pdd,d=‘25’ the spectrum is not radically
different from the random case with only a reduction in
the single defect mode (because Phd,h='25) and a
corresponding increase in the nearest neighbor pair

defect mode (because P .75). The spectrum for

hd,d
Pdd d=.75 is, however, quite different. The band edge
14

at w2=2 is not visible. Since P =0.75 the chain

dh,d Thd,h
has a structure rather like the binary ordered chain (with

1.0) but because 0.75 this

Pan,a”Fha,h” Pad,d Phh,n”
structure includes some long clusters of similar atoms.

The short-range order functions for these two chains differ

=,25

by m/2 phase shift as shown in Figure (3.22) for Pdd g
’

and .75 respectively.
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Figures (3.23) and (3.24) show spectra for chains
with short-range order satisfying Equation (3.115) with
Pdd,d='25 and Pdd,d='75 respectively. The single curve
in Figure (3.25) shows the short-range order function for
both cases. Though the pair correlation functions are all
identical, two spectra are never the less quite different!
The probability -of having defect clusters of size n

surrounded by single host masses is given in Table 3.6.

TABLE 3.6.--Probability of clﬁster of light atoms of size
n for Equation (3.115).

Cluster size Probability of occurrance
h-nd-h Cd=’5’Pdd,d=Phh,d=l-Pnd,d
n random Pdd,d=‘25 Pdd,d='75
1 .125 .0625 < .1875
2 .0625 .140625 > .015625
3 .03125 .035156 > .011719
4 .015625 .008789 = .008789
5 .007812 .002197 < .006592

Table 3.7 gives the probability of having n host-defect

clusters for these two chains.
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TABLE 3.7.--Probability of having n-host defect clusters
for Equation (3.115).

Cluster size Probability
n-(hd) Pdd,d='25 Pdd,d='75 random
.25 .25 .25
.046875 .046875 .0625
.008789 .008789 .015625

From these two tables it is clear that the major difference

between the two chains is that isolated defects are more

probable for %mid=0.75 and nearest neighbor defect pairs
4
are considerably more probable for P =0.25.

dd’d



CHAPTER IV

LOCALIZATION OF EIGENSTATES OF

DISORDERED CHAINS

There is considerable physical interest in
whether eigenstates of disordered systems are localized
or nonlocalized. 1In terms of thermodynamic quantities,
thermal conductivity for phonons and electronic
conductivity for electrons depend on the localization
of the eigenstates of a system. The degree of local-
ization of each eigenstate, also, gives information
on the basic quantum mechanical mechanisms working
in the system.

A precise general definition of a localized
mode versus a nonlocalized mode is not available.
However, an acceptable working definition is available.
An eigenstate is localized if the eigenfunction is
appreciable over some region of space énd decays
exponentially away from this region. In infinite
systems, this is most likely as precise a definition
as one needs. However, in finite systems, this definition,
while catagorizing some of the eigenstates as localized,
is insufficient to adequately describe the character of

other modes.
100
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For one dimensional systems with nearest neighbor
interactions considerable localization work has been
done. Mott and Twose45 conjectured and Borland46 proved
that all one electron eigenstates of the disordered
chain are localized. This proof is valid for eigenstates
of arbitrarily large energy for an infinite chain with a
finite fraction of disorder, and therefore applies to the
exact solutions of a Schroedinger equation. Demonstration
of localization in the lattice dynamics problem does not
require such a dramatic result. The lattice dynamics
problem is more akin to the Anderson model,47 where the
one-electron wave functions are expanded in functions which
are eigenstates of a single atomic energy level (Tight
binding model) or which correspond to a single band
(Wannier picture). Dean48 presented an analogous proof
to Borland's theorem for the phonons in a disordered chain.
Dean showed that all eigenfunctions of an infinite linear
chain are localized. More recently, Economou and Cohen49
presented a more general proof of the localization
character of eigenstates of the Anderson ﬁamiltonian
and of the lattice dynamics problem.

In the electron problem, the degree of randomness
Corresponds to the difference in energy levels and
hopping terms between the two constituents in a binary
chain. One might think that the mass ratio would be a

Similar measure of randomness in the phonon problem. It
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is bgt only one of two measures in the phonon case, the
other being the frequency of the eigenstate. As w>0

the modes must become delocalized. Hori50 and coworkers
have argued that Borland's definition of localization

may be too loose for practical use, since according to

it any one dimensional system with disorder (finite
concentration of impurities) would have all eigenstates
localized and no conductivity could occur ih contradiction
to physical intuition.

The problem with Borland and Dean's proofs
involves the definition of infinite systems. 1In con-
trast for infinite systems with boundary conditions,

P. Taylor51 has argued that no eigenstate is strictly
localized. ‘His argument is based on the fact that changing
the boundary conditions will change all eigenvalues and
eigenvectors and a localized state would not be subject

to "distant" boundary conditions. Hori has suggested

that this definition of localization may be too strict.

Two note worthy attempts have been made in the
one dimensional harmonic phonon problem to find eigen-
frequencies in random systems beyond which all states
are localized. Matsuda and Ishii52 give an expression
for the approximate number of vibrational modes in the
finite mass-disordered system that are not "well localized".
~ Using the assumption that the localization of eigen-

functions in "large" finite systems is equivalent to
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the localization of eigenfunctions in infinite systems,

the number of non-localized modes 1is

n = % /ﬁ<m>/¢<(m-<m>)2> (4.1)

where N is the chain length
and <m> = Cdmd+chmh is the average mass of the chain.

They admit that this formula is valid only to an order of
magnitude since "well localized" is not a precisely
defined quantity. Visscher,53 using Matsuda and Ishii's
ideas, performed some numerical studies on thermal energy
transport in chains up to 1000 atoms. He arbitrarily
defined the eigenfrequency above which all states are
"localized" as the eigenfrequency above which the sum of
the remaining eigenfrequencies gives a total contribution
to the thermal conductivity of only 10%.. Visscher obtains

an emperical formula for the demarcation mode of

n, = 5.5(N) ? (4.2)

for a two to one mass ratio random system. Both methods
suffer in that a few modes of high frequency in nonrandom
disordered systems could carry a significant amount of
the thermal transport energy and be quite nonlocalized.
These modes would not be of interest under Visscher's
criteria and for finite system could violate Matsuda and

Ishii's assumptions.
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From the preceding discussion, it is apparent
we need to catagorize the degree of localization as a
function of frequency, mass ratio, and short-range order.
Thouless54 has given a number of localization criteria
for the electron problem, some of which we can adopt to
the phonon problem. The eigenfunctions of the electron
exist continuously throughout space whereas the components
of the eigenvector in lattice vibrations are defined only
with respect to lattice points. Since Thouless considers
an infinite system his criteria are binary in nature,
either an electron is localized or it is delocalized. We
propose that some of his cri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>