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ABSTRACT

VIBRATIONS 0F DISORDEREIS BINARY CHAINS

BY

Ronald D. Painter

We have examined the vibrations of harmonic

   

  

  

   

   

   

  

  

  

  

  

  

,linear disordered atomic chains which include an

parbitrary concentration of defects differing only in

mass from the host atoms. This study included computer

experiments on long chains and configuration average

.theories for infinite chains.
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Using the theory of ergodic Markov chains,we

.a

V

generated disordered binary linear chains with short-

' range-order among the constituents. Nearest-neighbors

'and second-nearest-neighbor correlations were explicitly

t_1ntroduced. For comparative purposes we also generated

{jfirrandom chains. The relationship between the Markov

: correlation and the Warren-Cowley short-range order

:‘parameters was explored. Although a simple analytic

' relation exists for the first-order Markov chain,

:correlations generated by the second-order Markov chain

Athese chains, in the harmonic approximation with all
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force censtants equal. The spectra of chains of as many

as 100,000 atoms were computed and the effect of short-_

range order on the spectra was determined. We explicitly

computed the eigenvalues and eigenvectors for 1000 atom

chains. The localization of normal modes (A) was studied

as a function of energy by calculating Z Ug(l), where Uz

is the normalized displacement on site i, and also by

calculating an exponential decay parameter. We were,

therefore, able to describe the region of appreciable

amplitude of the eigenvectors as well as the decay rate

; away from this region. We have studied the vibrational

a. _ ' density of states theoretically. .Clusters of up to six

‘5. atoms were firstly embedded in a uniform chain of host

,; 30 atoms, and, secondly, periodically extended to form a

periodic chain. In each case the spectra of these chains,

    

    

  

  

    

    

 

averaged over all configurations with short-range order

yincluded, were compared to those found experimentally.

For defect concentration :.5 the embedded cluster gave

good agreement with experiment in the impurity band

especially in random systems, though it did not give

} information about the spectrum in the host band. The

periodically extended cluster gave qualitative agreement

' with experiment for the whole spectrum for all concentra-

tions of defects and all conditions of short-range order.

idfnghe periodic cluster theory, however, introduced many

’gpurious singularities in the density of states. Finally

”éggmpdified self consistent cluster theory (cluster CPA)

  



   Ronald D. Painter

Voyed to calculate the density of states. For the
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CHAPTER I

INTRODUCTION‘

Historical Review

The modern theory of lattice dynamics began in

   

    

   

   

  

  

    

  

1912 with the work of Debyel and Born and von Karman,2

although Newton in Principia (C. 1686) began the study

:AI‘ of lattices by using a chain of masses connected by

L3;i{ harmonic springs to calculate the velocity of sound in

155‘“Zair. The first qualitative properties of lattices

‘0‘

_;;:}appeared around 1840 in response to the work of Cauchy

‘ 3a .1

r‘t-

‘ -Jfi~,

.,_ a

‘On the theory of optical dispersion. Baden-Powell

aziandHamilton4 showed that there is a maximum frequency,
-41,W_ . .

 

7:- jgignificance of Hamiltods mathematical results. He, also,

y 7“: I} '

n§;;howed that the diatomic lattice has a forbidden gap in

Eng 2:;frequency spectrum.

7“ Lord Rayleigh7 in the Theory of Sound derived

FheOrems for a single defect in a monatomic lattice

A‘have a direct relation to defect modes in crystal

 



1. "If in a dynamical system composed of an array

of masses coupled to each other by Hookeian

Springs, a single mass is reduced (increased)

by AM, all frequencies are unchanged or .

increased (decreased), but not more than the

distance to the next unperturbed frequency."

2. Modes at the band edge may split off and

enter the forbidden frequency regions.

  
   

    

 

  

   

_ These theorems are clearly demonstrated in Appendix I.

Although these results were obtained in the 1880's, it

“Vwas not until 1957 that Bjork8 gave analytic expressions

‘for the location of the frequency of the mode in the

L‘nforbidden.gap-as a function of mass defect and force

'; constant defect for monatomic and diatomic chains. For

'9; detailed history and two and three dimensional applica-

ftions see Reference (9).

‘--~.¢

Classical Lattice Dynamics

Classical lattice dynamics formulated by Born and

anarman employed a Hamiltonian with a kinetic energy

Endancentral pair potential. For the one dimensional

2
P (£,t)

l (t)

gla2ma(£) 2 {’2’ 2,2 2,2

 



 

l’g'a = Rz-Rzl = (£‘2: )a

U(2.)'—U(9.‘)

_where a is the lattice constant and t is time.

     

 

Thigh atomic positions. Pa(2,t) is the momentum of the

th
thm of mass, m , at the ath atom in the 2 unit Cell.

Cl.

' . = ' 2 av ,

wry/”2,93? V(R9.,2’)+s WIIR’L VUBU“ )

+7 uEBUa”)a{INTI}; BU’)+...

‘first term_is an arbitrary constant and the second term

:9 for a lattice in equilibrium. To first approximation

I -§;TIT- +7 22’ Ua(lut)¢aB(E,l')UB(£’,t) (1.3)

 



  

 

  

 

   

  

  

  

  

  

  

2
a 3 V

4” ”'2 ’ “‘TTfiTIGB Bu“ 2 QUB 2 R2,2’

VTHamilton's equations of motion we get

. = Z ’ ’.

mh(2)Uq(2,t) ETB ¢uB(£,2 )UB(2,t) A. (1.4)

diet transforming Equation (1.4), we have

2 -__ .-, .
ma(2)w Ua(2) - £§B ¢a8(2,2 )UB(£ ) (1.5)

' U (z)= Hf:Ua(z, t)eimtdt

Hayes.

(k) ik-R

Ha“) == 2 -j———-ojug) e 9' (1.6)
k.) «fimma

1
l

I

I

i

I

1

‘=“there the oj(k)h are the normal coordinates of

it the lattice and the oaj(k)'s are the expansion

. .coefficients, j is the branch index.

ng Equation (1.6) into Equation (1.5), we have

  



1k°RL' . .-' 2 ‘ Z Z 0 (k)oB (k) ik~R£.
a; E.'Q-(k)oa.(k)e =~- ¢a8(2,z’) .—i—————i———e
'. - J 3 £78 k.j Vfim

1‘13 B

- -k‘-R

‘1ying by e and summing over 2 where

7 ik'R

e £=N6(k)

    

    

 

; than the LHS over k, we have

¢ (21%,) ‘ i(kR a-k’R )

fizz —1§-———-Qj(k)osj(k) e 2 2
, Mm N

e.jk B

- ' ' ¢ (21,24‘) ik.(R J-R )

iwge (k) = i.—J¥i-———-e z 2 (1.7)
. . a B

.2.2 ‘ _ _

w j Qj(k)0aj(k) -

2 z . = _ 1 2.
i(k-k’)R2

j °j(kk%d(k) N z’BDaB(k)Qj(k)ojB(k)e

jk

‘Tquver 2 and k and rearranging we get

fl.,,‘ -2 =
H~»_§oj(k)[mj(k)ouj(k)+§ DaB(k)ij(k)] o

f: a2' ' =_ a '1{“1,uj(k)oaj(k) g Da8(k)08j(k) (1.31

£1§Gj(k)08j(k) 3 6GB (109‘)‘

 



    

    

   

  

*

‘2 caj(k) qaj’(k) = ij, _ (1.9b)

£,monatomic linear chain, we have only one atom per

3§911 and one branch; therefore

:‘

'- ..

—} a ‘L‘

.' _ .xy

.r 04' 053(k) = -D(k)

D(k) = i m

:11'¢(2,2’) g igfiézil’

. 2,2

. D(k) = 1%(eika+e-ika-2) = - :TY- sin2(’§—a-)

(n: (k) = “is. s11;2 (’59-) fork = gin n=0,l,2, N-l (1.10)

(‘sity.Of states is

m, = 291; :2. 1
n w n ?;Z:;7;§

2» eta—2r; °if°=- “n? . . - 3'

I 0 w>m

 



no» ) = %-Re(———-—) w>o (1.11m

   

  

  

   

 

   

     

   

' Re(...) is the real part of (...). For the diatomic

11;;of masses ma and mb with all force constants equal

 
 

Hi7 + 1—)-w2

D(w2) = l. ( a mb \ (1.12)
"1” Re 2 I

’w - Iii—Y (0)2- 2_Y. /w2-2Y(11T— +l‘._)l

a mb a mb

where we define /:T = +i

7- vibe diatomic spectrum clearly has a gap between ferY" and 21.

,;F 4 , a

34" . The frequency spectrum of the monatomic chain was

t.£§£ given by Born and von Karman.2 Unfortunately, their

7'tgiémi8tic approach to lattice dynamics was neglected for

groximately thirty years because calculations in three

..IE;;nsions are difficult. Two approximations were used.

‘ 1907 Einsteinlo proposed treating the lattice as N

pupled harmonic oscillators of frequency wE. The density

tates normalized to one is

63(w) = 6(w-wE) (1.13)

:fved approximation was proposed by Debye,1 where

 



_ 3 2 _
vD(w) - ;§-— w 6(wmax w) (1-14)

max

   

  

  

   

  

   

  

   

   

 

   

   

2. where 6. is the unit step function. The l-dimensional

analogy of this density of states is

'1 6(w 'm) (1.15)
vD(w) _ ”max max

Both of these approximations allow simple calculation of

thermodynamic properties but the models are too simplified

for accurate calculatiOns, even for thermodynamic calcula-

itions..

The spectra of disordered chains were not considered

until the 1950's. The first significant work on disordered

11
lattices was by Lifshitz and, independently, by Montroll

12 Their work involved the use of classicaland-Potts.

‘Green's functions to compute the properties of isolated

defects in crystal lattices. Dysonl3 in 1953 had already

’;-presented a detailed theoretical approach to finding the

: density of states of a one-dimensional linear chain with

equal nearest neighbor force constants. Unfortunately,

I Dyson's analytic expressions have not been numerically

1
' solved. In 1957, Schmidt 4 derived a functional equation

{fdr the-random, linear chain which was solved numerically

 



   

    

  

    

   

  

  

  

      

: that the expansion of the density of states in terms

its moments involved only even moments. For the perfect
 

«:
_fi' atomic or diatomic chain 14 moments gave reasonable

.flhflmlts except near the spectra singularities. The moments

.1;Z

J N

.k w§n(k) = Tr(DN) = {wznv(w)aw (1.16)

where tr is the trace

D is the dynamical matrix defined in Equation (1.7)

v(m) is the density of states

7 reasoned that the disordered system should

fi::%&3519°§sesg the high frequency singularities and that the

"Z Egfifient-trace method would be better for the disordered case

;Awit was for the ordered chain. ‘Their resulting spectra

‘fculated from 20 momenta were relatively smooth with some

ters of light (impurity) atoms. However, the arguments

 



CHAPTER II

NUMERICAL CALCULATIONS FOR RANDOM

BINARY CHAINS

Numerical Methods

   

  

  

   

   

To calculate the spectrum of a disordered chain

I requires some numerical effort. In one-dimension a single

:" defect (or disordered atom) destroys the translational

‘ ZSymmetry of the lattice. Plane waves will no longer

. g diagonalize the eigenvalue Equation-(1.5) and the solution

L;tanquation (1.5)‘must be found directly. ~

A Three types of boundary conditions are applicable

£§~a chain of length, N. These are:

V 1. Fixed boundary conditions where Uo=UN+l=°

2. Cyclic (Born and von Karman) boundary

conditions wherenU1=UN+1

3. Free boundary conditons

Equation (1.5) can be rewritten as

“ 2

“‘1‘” U1 ‘ 'Yi,i+1‘Ui+1‘Ui"Yi,i-1‘U1-1 U) (2'1)

'for equal force constants reduces to

10

 



11

2 _ - —

   

    

     

 

Qfiubject to the boundary conditions listed above. In

..:1.matrix form Equation (2. 2) become.s

A g =‘w2u (2.3)

when boundary conditions areapplied,A is specifically

2*:given by

-m = 21 — L
.7 ‘ 7 1c Ai’j m. 6i’j m. 6iil’j (2.4)

- 1 1

for fixed boundary conditions.

. =_l _l_ ._l_ , ,
2. ‘A1,j i 611,j mi 6i%1 3 mi 6N,361'1

_ IL . . .

mN 6N,161,j‘ (2 5)

for cyclic boundary conditions.

for free boundary conditions.

‘9 matrix A.is tridiagonal for free and fixed boundary

.‘itions. The only difference in the matrix for the two

9; ary conditions. Clearly, one could easily mix the

bd fixed boundary conditions. For cyclic boundary
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:gFCdnditions A is identical to the matrix for fixed boundary

1 hf Conditions except for the addition of non-zero (l,N) and

p _

9., ‘(N,l) elements. The question of which boundary condition

’3’. to impose on the problem is moot when one considers the

following theorem proved by Ledermann:22

If the elements of r rows and their corresponding

columns of a Hermitian matrix are modified in any

TWay whatever, as long as the matrix remains

Hermitian, the number of eigenvalues in any interval

' cannot increase or decrease by more than 2r.

The three types of boundary conditions differ by

only two elements from each other, and, therefore, no

,- frequency interval may contain more than four additional

3 A eigenvalues or four fewer eigenvalues. As long as a

-'%77 frequency interval contains many eigenvalues compared to

itfié-gjfour, the frequency spectrum will be independent of

: {' lboundary conditions. The eigenvectors, however, are

another matter which we will discuss later. Therefore,

fer ease of numerical computation, we use fixed boundary

_g‘conditions. The matrix A in Equation (2.4) can be made

A‘symmetric by the transformation

xi =71}? Ui . . (2.6)

when A’ 5 = (12 x (2.7)

2 = 2_Y _ ____vwhere Ai'j mi (8in m m 1 5111,3‘ (2.8)

' i ii

,eigenvalues of A and A’ are identical although the

pending eigenvectors are different.* A’ is now a
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,

_ 3 tridiagonal symmetric matrix. The Given's method for
6‘ 1

finding eigenvalues of a tridiagonal symmetric matrix

- can be employed.42 Appendix A gives a description of the

method and application to this problem. P. Dean18 in

1959 first applied this technique to a disordered linear

chain. Besides Dean and his coworkers,19 Payton and

0
Visscher2 have performed similar numerical calculations

for the spectra of disordered systems, including small

two and three dimensional lattices. Also, Dean has

performed these calculations on glass—like chains where

the force constants vary in a probabilistic fashion.

An excellent review article is Reference (21).

Numerical Spectra

‘2 The spectra of disordered chains presented in
4

8

.-’f, this section serve asaniintroduction to spectra with

short range order. These spectra have been recalculated

" ‘ from Dean's work to conform to the rest of the spectra

presented in the thesis. The spectra for the random

‘1

tzhains are for a mass ratio of heavy to light mass of 2.

s
‘

fu-

‘;_ The concentration of light mass will be called, Cd' To

{fkrfgenerate a chain of length, N, with a concentration

i Ca of light masses, we employ a random number generator

(which generates random numbers from zero to one. For

’“écn atom, the generator is sampled and if the number is

 



l4

   

  
  
  

  

  

   

   

  

   

   

   

   

 

  

    

  

other wise, it is a heavy mass (host). A statistical

analysis shows that 32% of the 100 unit chains generated

for Cd =.5 will have Cd<.45 or >.55. By contrast, for

N=1000, about 5% of the chains will have C <.49 or >.Sl.

d

One of the problems with random chains is a determination

of the length of chain necessary to insure a reasonably

accurate spectrum. To examine this variability, we look

at chains of 1000, 10000, 50000, and 100000 atoms.

Whereas a spectrum for a 10000 unit chain requires less

than thirty seconds on the UNIVAC 1108, the 100000 unit

'
4
'

y
.
.
.

i N
t

(
'
-

chain requires over five minutes of CPU. Figures (2.1)

‘
I
a

I

and (2.2) show Spectra of two 1000 unit chains with con-

.
“

L
—

’
7

centrations of .43 and .48 light masses respectively. In

2

.
4

L
o

.
w
g
l

2
"

the region 25w :4, the two graphs are nearly identical

,
q
u

$
~
g

W
U

with the only serious descrepancy occuring near w2=4. The

region .3 to 2, however, shows a large degree of variability.

Figure (2.3) shows the fifty percent random 10000 unit

chain with an actual concentration of Cd=.4956. The m2

region 2 to 4 is much the same as in the 1000 unit chains;

however, there is a definite refinement in the spectrum

,in this region especially in the magnitudes of the maximums

<3 and minimums. The wz region from .3 to 2 is markedly

'Sgfiggther around D(w2)=.25 than the 1000 unit spectra.

igure (2.4) for the 50000 unit chain with C =.50093,

d

er smoothing in the .3 to 2 m2 region. Figure (2.5)
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shows the 100000 unit spectrum with Cd=.49809. There

are only minute differences between this spectrum and

the 50000 unit spectrum. The w2 region .3 to 2 does

possess some structure even for a chain of this length.

Dean21 recently published a 250,000 unit chain confirming

this structure. It is clear from looking at the figures 
that a 10000 unit chain provides the significant spectral

structure seen in longer Chains and is much quicker to

evaluate; therefore with few exceptions as noted the spectra

presented in the rest of this thesis will be for 10000 unit

chains.

Dean previously found, and we clearly demonstrate

in the Defect Cluster theoretical section, that the peaks

in the disordered spectra from 2. to 4. can be associated

with clusters of defect atoms.

The next set of figures will show the variation

in random spectra as a function of defect concentration.

Figure (2.6) shows the spectrum of a monatomic heavy chain

corresponding to Equation (1.11). The first and last

bars extend to D(m2) = 2.2575 but have to be truncated to

give a more readable scale. Figure (2.7) is the spectrum

for one percent defect concentration. Using a 100000 unit

chain, the concentration obtained was .00975. The error

analysis at the end of Appendix B shows the Cd=.5 random

chain gives the most accurate calculations for any fixed

length chain. The mode at 2.66 corresponds to an isolated

 A
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defectwhereas the mode at 3.22 corresponds to a nearest-

neighbor defect pair. There was only one such pair in the

chain. The bar at w2=l.98 was reduced from D(wz) = 2.26

I to 2.12 with the rest of the bar heights remaining nearly

the same. Figure (2.8) for Cd = .2(.2019) clearly shows

the three—defect cluster at “2 = 3.54 and the four-defect

cluster at w2 = .366 as well as the pair and single-defect.

The other peaks are more subtle and are discussed later.

As Cd is increased to 0.2 the heavy mass band becomes severely

depleted at the high frequency end with a small but

Significant decrease everywhere in the region w2<2. Where-

as D(2.66) = 1.45 in Figure (2.8),Figure (2.5) shows this

local modeseverehrdepleted, corresponding to the reduction 
in the probability of having only one defect surrounded

by host masses. Figure (2.9) shows in contrast to

Figure (2.5), the perfect diatomic chain corresponding to

  

  

  

  

  

  

Equation (1.12). The interesting thing to note is that 
the random chain spectra resembles defects in-a heavy

chain instead of a somewhat disordered diatomic chain.

5" Figure (2.10) gives the spectrum for Cd = .8(.8025). The

7 structure in the w2 region 2. to 4. is clearly disappearing

as the spectrum begins to resemble the perfect light chain.
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CHAPTER III

SHORT-RANGE ORDERED CHAINS AND

THEIR FREQUENCY SPECTRA

Short Range Order in Scattering Theory

   

  

  
  

   

  

  

   

    

The first suggestion that alloys may possess at

least some degree of order instead of being random was

made by Tammann.23 He observed that the copper in copper-

gold alloys dissolved in nitric acid only when the copper

. concentration exceeded 50 percent suggesting that CuAu is

ordered. The most conclusive evidence of order in alloys

is_presented by the superlattice lines on x-ray diffraction

patterns. Owing to the order in CuAu alloys first observed

by Johansson and Linde,24 early work on ordered alloys

.defined parameters in terms of sublattices, i.e. a copper

lattice superimposed on a gold lattice. A long range

'- order parameter S was introduced by Bragg and Williams25

hand a short-range order parameter a was introduced by Bethe.26

The Bragg-Williams order parameter is given by

ra-FA r -FB

S = W: "F (3.1)

A B

. where r“(8) is the fraction of atoms on sublattice

“1:7, «(5) that are supposed to be on the sublattioe

'7; a(B). .

‘.f FA(B) is the concentration of constituent

:'~'__“_-. I. A (B) o C

‘ '34. 27
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For a perfectly ordered system, ra = rB = l and 8:1, and

for a disordered system (i.e. a system with no long range

order) ra = FA and r8 = FE and 8:0. The Bethe short-range

order parameter is concerned only with the configuration

of nearest neighbors.

o = (q-qr)/(qm-qr) . (3.2)

where q is the fraction of unlike pairs among

nearest neighbors q is the fraction of

unlike nearest neighbors for an ordered

system (usually one) and q is the fraction

of unlike nearest neighborg for a completely

random system.

Therefore o=l represents a perfectly ordered system and

0:0 a random system. Only in the limit o=l does the

short-range order parameter imply long-range order;

generally, a system can have short-range order without

long-range order. These order parameters represent the

two extremes of the definition of order. The Bragg-Williams

deals with the order present in the whole system whereas

the Bethe parameter is concerned with only nearest neighbors.

The concept of short range order must be generalized to

understand the results of x-ray scattering experiments.

27
Warren, Cowley and M05528 introduced short-range order

parameters in terms of conditional pair correlation functions

for binary alleys as pi’dl , pg’h£ , pg’dg and pg’hg and

1' 2 1' 2 l' 2 1' 2

d,d _ _

0,1’22 — Cd + (1 Cd)a£ 2 (3.3)

l' 2
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d . . . . .

where 03' 2 15 the conditional pair correlation

l' 2

function between defects at sites 21 and

£2, and GR ’2 is the short-range order

parameter.

pi'dz
l’ 2

a defect at site £1, then there is a defect at site £2.

Specifically, is the probability that if there is

From this definition we can deduce the following

og’dg + og'hg = l (3.4)

1' 2 ”1' 2

pz'hz + pg'dfi = 1 (3.5)

1, 2 1' 2

since given that site 21 is occupied by a certain atom,

£2 must be a host or defect for a binary system. For an

isotroph25ystem, the probability that site £1 is a host

and 12 is defect must be equal to the probability that

site 21 is a defect and site 22 is a host, i.e.

dph h,d

d 02
C = Cho2 (3.6)

2

1' 2 21' 2

From Equation (3.3), we see a can assume any

21,12

value between +1 and -l with a, q = 6 . being the random

ly‘z 11'“2

limit. For any case Q2 2 is necessarily one.

1’ 1

Using these short-range order parameters, we show

in Appendix C that for waves incident on a short-range

ordered system the scattering intensity in the Born

approximation is
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m 'k
Ia 2 el na

nzdoo

[(fh(l-Cd)+fdcd) 2+Cd (l—Cdn)a (f— (3.7)d fh) 2]

where a is the lattice constant,

fh is the structure factor for the host atom

fd is the structure factor for the defect atom

k is the incident wave vector

Therefore, for structure factors independent of k,

2
Id N 26(ka-2nm)[fh (l-Cdd)+fCd]2+Cd (l-Cd)0L(k)(fd-fh) (3.8)

where d(k) = §_ eikana (3.9)

The first term of (3.8) gives the Bragg reflection

from an average host-defect chain where all sites are

randomly occupied by host or defects in proportion to their

respective concentrations. The second term is a diffuse

scattering.

There are several limiting cases in which the

short-range order becomes long-range order.'

Case 1: cl = (-l§

In this case, the lattice is an ordered diatomic

chain and

a(k) = %[6[ka-(2m+l)n]] (3.10)

The unit cell in real space is now twice as long as that

for the monatomic case and Bragg peaks occur at both

even and odd multiples of w/a.
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Case 2: d2

In this case, it is impossible to have any mixed

chain, a possible interpretation of this case is to super-

impose two perfect chains. The Bragg peaks occur at the

superlattice reflection points with strength

IdN%(C f2+(l-Cd d f:)6(ka-2nm) (3.11)d)

and there is no diffuse scattering.

The experimentalist measures d(k) using various

energy x-rays and neutrons and inverts the results to find

29
C1n In generating chains with short range order (SRO) we

can find an and can consequently explore the implications

of the order in terms of diffuse scattering.

Short Range Order Work

Using the long-range order parameters of Bragg and

Williams with the Warren-Cowley short range order para-

meters, numerous contributions have been made to the theory

of order-disorder transitions in alloys. A good summary

of the work is given in Reference (30). The first attempt

at introducing general short-range order into the theory

of thermodynamic properties and frequency spectra was made

in 1968 by Hartmann.31 Using Green's function techniques,

he was able to calculate a variety of physical properties

in the low concentration of defects limit for three
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dimensional crystals. These calculations were for

arbitrary short-range order describable by pair correla-

tions. Subsequently Taylor32 was able to introduce the

short-range parameters into his self consistent Green's

function formalism (coherent potential approximation).

Taylors work will be discussed in more detail in the theory

section (V). Taylor's formalism with short-range order

was valid, however, only near the random limits.

The short-range order discussed above is in

terms of pair correlation functions, which are in fact

adequate for scattering theory in the Born approximation.

However, for generating a binary chain and for exact

calculations of physical quantities which can depend on

scattering to higher order than the second in the defect

perturbation, we need all orders of correlation functions.

Also, the extension of pair correlation function formalism

to n(>2) constituent chains is not readily apparent. There-

fore, we consider the Markov process.

Markov Chain
 

To examine the eigenvalues and eigenvectors of a

linear chain by numerical methods, a linear chain must be

constructed. An ordered chain can be simply generated by

placing unit cell clusters one after another. A random

chain with n constitutents can be numerically generated

as discussed in Chapter II. To generate a chain with
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short—range order with the proper concentration of each

constituent and the correct stochastic relationships

between atoms, the theory of Markov processes is employed.35’36

Stochastic processes where the probability that a

physical system will be in a given state at time t2 may be

deduced from a knowledge of its state at an earlier time t1,

aind does not depend on the history of the system before time

tl are called Markov processes. More formally, a discrete

parameter stochastic process EX(t), t=0,1,2 ....J or a

continuous parameter stochastic process [X(t,), tZOJ is

said to be a Markov process if for any set of n time points

tl<t2<t3<....<tn in the index set of the process, the

conditional distribution of X(tn), for given values of

X(t1),X(t2),....,X(tn_l) depends only on X(tn_1) the most

recent value; more precisely, for any real numbers xl,x2

§[X(tn):xnlx(tl)=xl,...

§[X(tn):xan(t )=x (3.12)
n-1 n-11

This equation should be read as follows, the probability

that the variable X at tn is greater than or equal to

the state xn subject to the conditions that the variable X

at tl,has the value x1, the variable X at t2 has the value

x2, and so on up to the condition that X at tn-l has the

value xn_1 is equal to the probability that the variable
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X at tn is greater than or equal to the state xn subject

only to the condition that the variable X at tn—l has

the value xn_1. The order among the states can be included

in any self consistent arbitrary way.

Markov processes are classified according to the

nature of the index set of the process (parameter) and the

nature of the state space of the process. The index set

of the process can be continuous or discrete. The index

set is a special type of ordered set. When the parameter

is time, an intuitive interpretation of a Markov process is

a process where the future depends only on the present and

not on the past. For the linear chain, the parameter is

distance down the chain. This distance, however, must be

directional in the sense of proceeding down the chain in

only one direction. For a position along the chain 2.,

the position RO—Ql,£l>0 must be considered as a previously

occurring state and 20+£2,£2>0 as a future state. For

atoms on lattice sites the index set is discrete. The

state space of the linear chain is the set of the types of

atoms in the chain. The state space is called discrete

if it contains a finite or countable infinite number of

states as does the linear chain. A state space which is

not discrete is continuous. If the state space is discrete

the Markov process is called a Markov chain.

Table 3.1 shows the four basic types of Markov

processes. The one used to generate the linear atomic chain
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is theidiscrete parameter Markov chain. Theoretical work

is still very limited for the continuous state space

Markov processes. A little more is known about continuous

parameter Markov chains with the discrete parameter

Markov chain being the best understood and most widely

applied.

TABLE 3.l.--The classification of Markov processes.

 

State Space

 

 

 

Discrete Continuous

Discrete Discrete

Discrete Parameter Parameter

Markov Markov

Chain Process

Parameter

Continuous Continuous

Space . Parameter Parameter
Continuous

Markov Markov

Chain Process

 

The remainder of our discussion will be concerned

only with discrete parameter Markov chains.

Equation 3.12 can be rewritten for the discrete

parameter Markov chain with lattice sites as the parameter

as follows: .

Definition:. Let X£ be a random variable where the value

of X1 represents the atom at position (lattice site) 2.

The sequence [X2] is the linear chain. The sequence [X1]

is a Markov chain, if the set of possible X2 is discrete
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and if for any integer m>2 and any set of m points

£1<£2<....<£m, the conditional distribution of X2 for

m

given values of xi ,...,X2 depends only on X2 , the

1 m-l m-l

closest atom; i.e. for any real numbers x1,x2,...,xm,

=x (3.13)PEX2m=Xm|X£ =xl,...,X2 =x 1] = PEXQ =x IX m-lJ

l m-l m- m m z

A Markov chain is described by a transition

probability function, Pmk(£0,21), which represents the

conditional probability that the state of the system Willlxg

at point 11 in the state k, given that at point

£0(<21) the system is in state j. The Markov process is

said to be homogeneous in space or to have stationary

transition probabilities, if Pj'k(£0,£1) depends on 21

and 20 only through the difference (ll-£0). The transition

probability function is also called the conditional

probability mass function and_is

>10 (3.14)Pj’k(£o,ll)=P[X£1=k|X£0=j] for £1

In order to specify the probability law of a

discrete parameter Markov chain, the probability mass

function (not conditional)

Pj(£) = PEX£=jJ (3.15)
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must also be specified. The linear atomic chain should

have homogeneous or stationary transition probabilities.

For such a homogeneous chain it is physically realistic

to expect the same stochastic relationships between atoms

in different regions in the chain. For the homogeneous

discrete parameter Markov chain, Equation (3.14) can be

rewritten as

Pj’k(n)=P[X2+n=k|X2=j] for any integer £10 (3.16)

Equation (3.16) is called the n step transition probability

function. In words, Pj k(n) is the conditional probability

I

of making a transition to state k, n steps after being

in state j. P. (l) is usually rewritten as P. .

Jrk Jrk

The transition probability function of a Markov

chain [Xn] satisfies the Chapman-Kolmogorov equation:

for any lattice sites 23>£2>£lzp and states j and k

P j,k(£l'£3) = in’i(ll,22)Pi'k(22,l3) (3.17)

This is a necessary but not sufficient condition for a

Markov chain.

The transition probabilities are best exhibited in

the form of a matrix called the transition probability

matrix
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P(11,22) = [{Pi j £1,22)}] with rows and

columns i and j. (3.18)

The matrix elements also satisfy the following conditions

Pi’j(£l,22):0 for all 1,] (3.19)

and

E Pj,k(£l'£2) = l for all 3 (3.20)

The Chapman-Kolmogorov equation can be rewritten in matrix

form as

P(£1,23) = P(21,£2 )P(£2,£3) (3.21)

From the Chapman-Kolmogorov equation some funda-

mental recursive relations can be derived for the discrete

parameter Markov chain. For the homogeneous chain the

.transition probability matrix P(Rl,£2) depends only on the

difference n=(£2-£l) and can be rewritten as P(n). Equation

(3.21) can be rewritten as

P(n) = P(m)P(n-m) where m<n (3.22)

P(l) is usually rewritten as P. Using Equation (3.22)

O

recursively, we see

n

P(n) = P(n-l)P=P(n-2)PP= ... =P (3.23)
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Next, from the probability mass function defined

in Equation (3.15), we can define the unconditional

probability vector as the row vector

p(n) = [{pj(n)}] with columns j (3.24)

Given an initial unconditional probability vector p(O),

it follows that

p(n) % p<0)9(n>=p(0)P“ (3.25)

As a consequence, the probability law of a homogeneous

Markov chain [xn] is completely determined once one knows

the one step probability transition matrix P and the

unconditional probability vector p(O).

A Markov chain [Xn] is said to be a finite Markov

chain with k states if the number of possible values of

the random variables [Xn] is finite and equal to k. The

transition probabilities pj,k are non—zero for only a

finite number of values of j and k and the transition

probability matrix P is then a k x k matrix.

An example of a discrete parameter finite homo-

geneous Markov chain would be a linear atomic chain 1

consisting of two states a host state (atom) h and a

defect state (atom) d. The unconditional probability

vector would be
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p(O) = [ph’pd]
(3.26)

and the transition probability matrix is

ph,h ph,d

p = (3.27)

pd,h pd,d

Although we have not examined how we determine

P as yet, it does have some interesting properties.

2+ (+)
ph,h ph,dpd,h ph,d ph,h pd,d

2

ph,d(pd,d+ph,h) pd,d+ph,dpd,h

(3.28)

and for lpd,d+ph,h-l |<1, the n - step transition probability

matrix is

l‘pd,d 1‘Ph,h

P(n) = l/(Z-ph,h-pd,d) 1- l-

Pa,a ph,h

(3.29)

n

(Ph,h+pa,a 1) 1 ph,h ‘(1’9h,h)
+

Ti'ph,h'pd,d) —(1

 

-pd,d) l-pd’d

The proof of Equation (3.29) is given in Appendix B. The

asymptotic expressions for the n - step transition

probabilities are
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l-p
' — = d,d

l~p
' ° h h

1 =
I

To determine the transition probabilities, the

evolution in parameter space (time or distance) of a

discrete parameter homogeneous Markov chain [Xn] must be

studied. First, the states of a chain can be classified

according to whether it is possible to go from a given

state to another state.

Definition: A state k is said to be accessible from a

state j (j+k) if, for some integer nil, pj'k(n)>0. Two

states j and k are said to communicate fitvk) if j is

accessible from k and k is accessible from j.

For a fixed concentration linear chain all states

must communicate; otherwise, some pj'k(n) = 0 for all n

implies that once the state j is entered state k can

never be reentered modifying the concentration of the

- state k.

Given a state j of a Markov chain, its communica-

ting class C(j) is defined to be the set of all k states

in the chain which communicate with j, i.e.,

k e C(j) if and only if k++j
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For the linear atomic chain, we require all states of the

chain to communicate with each other. Since the communica-

ting class C contains all the states of the system, there

are no states outside the set and C is defined as a

closed set. More formally,

Definition: A non-empty set C of states is said to be

 

closed if no state outside the set is accessible from any

state inside the set.

Next, we can define the occupation number Nk(n)

of the state k in the first n transitions. More precisely,

Nk(n) is equal to the number of integers v satisfying

lgyin and Xv=k. The total occupation time of k is

(3.31)

(3.32)

Nkm = 53,59 Nkm)

The occupation times can be represented as the sum of

random variables. Define for any state k and n=1,2,....

Zk(n) = 1 if Xn=k

= 0 1f ank

Then, we can write

n

.Nk(n) = Z Zk(m) (3.33)

=1

and

Nk(°°) = 2 2km) (3.34)

=1
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With these relationships we can define the following

probabilities

fj,k = PENk(m)>0[xO=j] (3.35)

and

gj,k = PENk(w)=w|xO=j] ‘ (3.36)

In words, fj,k is the conditional probability of ever

visiting the state k given that the chain is initially in state

j, and gj,k is the conditional probability of an infinite

number of visits to the state k given the chain is at

some initial time in state j. For the linear chain with

fixed concentration of constituents, the requirement that

every state communicates implies

fj k = l (3.37)

and in an infinite chain every state occurs an infinite

number of times to maintain fixed concentrations implying

gj'k = l (3.38)

Definition; A state is said to be recurrent if f l

 
k,k:

or a state k is recurrent if the probability is one that

the Markov chain will return to state k.

Definition; A recurrent Markov chain is said to be

 

irreducible if all pairs of states of the chain communicate

(f.3 k>0 for all j,k).
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Therefore, the linear atomic chain has a closed

recurrent irreducible set of states. The chain must also

have a fixed concentration of constituents as the length

of the chain approaches infinity.

Definition: A Markov chain with state space C possesses
 

a long run distribution if there exists a probability

distribution {Wk’ keC}, having the property that for every

j and k in C

fig Pj,k(n) = wk (3.39)

summing over k

i; lpg pj'k(n) = lig i_pjlk(n)=l=ifik (3.40)

which gives a useful relationship between the concentrations

flk' The interchange of the summation and limit in Equation

(3.40) is not rigorous but Appendix B has a rigorous

proof- No matter what the initial unconditional probability

distribution {pk(0), ksC}, the unconditional probability

pk(n) tends to “k as n tends to infinity

r133; pkm) gig ;pj(0)pj,k(n>
J

gpjm) gig! pj,k(n)

gpjmmkmk (3.41)
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Definition: A Markov chain with a state space C is said
 

to have a stationary distribution if there exists a

probability distribution ({"k' keC} having the property

that for every k in C

(3.42)

In order to state conditions under which the

irreducible Markov chain possesses a long run distribution,

we need to introduce the concept of the period of the state.

Definition:' The period d(k) of a return state k of
 

a Markov chain is defined to be the greatest common divisor

of the set of integers n for which pk’k(n)>0. A state is

aperiodic if it has a period of 1.

For an irreducible Markov chain, if pk,k>0 for any

k in c, then the state is aperiodic. Also, if an integer

n can be found such that pj’k(n)>0 for all j and k in C,

the chain is aperiodic. In fact, for the linear chain

only ordered (periodic) chains are not aperiodic.

If a chain is irreducible, aperiodic, and recurrent

it is called an ergodic chain. For our purposes we want

a homogeneous chain, for which the stochastic relationships

.are the same throughout the entire length of the chain.

Therefore werequire a Markov chain which is ergodic. Such

a chain has a unique long-run distribution.
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Theorem 1: An ergodic Markov chain has a unique

long-run distribution, {nk,k€C} with 0<wk<w. The long-run

distribution of an ergodic Markov chain is the unique

solution of the system of Equation (3.42) satisfying

Equation (3.40).

Theorem 1 is proved in Appendix B.

The converse of Theorem 1 is also true.

Converse of Theorem 1: If a Markov chain has a

unique long run distribution in keC} with 0<Wk<m ,k'

then the chain is ergodic.

Proof: The converse is most easily proved by

showing that any Markov chain which is not ergodic does

not possess a unique long run distribution with 0<nk<w.

A Markov chain is not ergodic if it is periodic and/or

reducible and/or non-recurrent. The definition of

periodic is the contrapositive of the definition of

 

aperiodic.

Definition: If a chain is periodic, then an integer n

cannot be found such that P. (n)>0 for all j and k in C.

31k

The definition implies some P.j k(n)=0 for any n and

therefore %;g Pj k(n) does not exist in the ordinary sense
I

or is equal to zero. Therefore ”k is not unique or is

equal to zero in violation of the conjecture.
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A reducible Markov chain is defined by the contra-

positive of the definition of an irreducible Markov chain.

Definition: If. a chain is a reducible Markov chain, then
 

not all pairs of states communicate. That is to say some

fj,k=0° This implies Pj,k(n) = 0 and therefore lig Pj,k(n)=

0=nk again in violation of the inequality 0<n<m.

Finally, the contrapositive of,a recurrent Markov

chain, gives the definition of the non-recurrent Markov

chain.

Definition: If a Markov chain state is non-recurrent,
 

then the probability that the Markov chain will return to

state k from a state k is not one (fk k7‘1). This implies

I

fk k<l' In Appendix B, we show the f <1 implies

I
k,k

=0 and 2 Pk’k(n)<w. Therefore; éi§ Pk’k(n)=0='nk

gk’k n=0

in violation of the inequality 0<nk<w. This completes the

proof of the converse. Therefore, the solution to

Equations (3.42) satisfying Equation (3.40) will give a

ergodic chain for all wk#0.

{For the two component linear chain with concentra-

tions ch and 0d Equation (3.42) gives

c (3.43)
h = Chph,h+cdpd,h

cd = Chph,d+cdpd,d (3.44)

Equation (3.40) gives
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ch+cd = l (3.45)

and Equation (3.20) gives

ph,h+ph,d = l (3.46)

pd,d+Pd,h = l (3.47)

From this set of equations, it is obvious the combining of

Equations (3.44), (3.45), (3.46), and (3.47) gives

Equation (3.43) which is a redundant equation. Given cd

and pd d’ the rest of the variables can be specified.

I

ch = l-Cd (3.48)

pd,h = l—pd,d ‘ (3.49)

ph’d = Cd(1_pd,d)/(l-cd)
(3.50)

ph,h = l‘Ph’d (3.51)

The first atom in the chain is selected as in the

random case. A uniformily distributed (0+1) random number

is picked and compared with the concentration of defects

c If the number is less than Cd, the atom is a defect;d'

otherwise, it is a host. After the first atom has been

selected, a random number is picked and compared with either

ph d or pd d depending on whether the previous atom was a

I I .

host or a defect respectively. If the random number is less

than this value the atom is defect, and otherwise it is a

host. This procedure generates the correct Markov chain
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with the proper concentration in the limit of long chains.

A statistical analysis of these chains is included in

Appendix B.

Another example is a three (state) constituent

linear chain with concentrations Cl, C and c for atoms
2 3

of types 1, 2 and 3. Equation (3.42) gives

C1 = c1P1,i+°292,1+°3p3,1 (3°52)

C2 = c1Pi,2+czpz,2+°3p3,2 . (3'53)

03 = c1P1,3+°292,3+°3p3,3 (3'54)

Equation (3.40) becomes

cl+c2+c3 = 1 (3.55)

and Equation (3.20) gives

p1'1+p1'2+pl,3 = l (3.56)

p2,1+p2,2+p2,3 = 1 (3.57)

p3.1+P3,2+Pz,3 = 1 ' (3°53)

It is easily shown that one equation is redundant;

therefore, eliminating Equation (3.54), six variables must

be specified to construct an ergodic Markov chain. Picking

cl,c2,pl'1,pl’2,p2’l, and p2,2 as spec1fied, Equations (3.52) -

(3.58) can be solved.
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p1,3 = l"P1,2’pi,i

p2,3 = 1‘p2,i‘pz,2

c3 = l-cl-c2

P3’l [C1(l-pl,l)-C2p2

p3,2 [C2(l'pz,2)‘cipi

p3,3 = 1"‘-:’3,i’p3,2

For the two and three state linea

constraints which limit the range

tions or the input probabilities

between zero and one.

specifying arbitrary concentration for the defect c

transition probability is constra

0<ph,d<l

Os[cd(l-pd’d)1/(l-ca)<l

0<l-pd’d<(1-cd)/cd

(2_l/cd)<pd,d<l

For the three constituent chain,

complicated.

(3.59)

(3.60)

(3.61)

Ill/(l-cl-cz) (3.62)

’23/(l-cl-c2) (3.63)

(3.64)

r chains, there are

of the input concentra-

to a range less than that

'For the two constituent chain when

d' the

ined for cd<.5.

(3.65)

the constraints are more
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' The restriction from the concentration of constituents is

0<c3<l

which leads to

0<(cl+c2)<l (3.66)

The restrictions from the probabilities are: first,

0<p1’3<l'

which implies

0<(p1,1+p1,2)<1 (3.67)

Next,

0<p2’3<l

which implies

O<(p2'l+p2’2)<l (3.68)

The third restriction is

O<p1,3<1

' which gives'

0<[cl(l-p1,1)~c2p2’lJ/(l-cl-c2)<1

P2,1<Cl(l-pl'l)/C2<[p2’l+(l-cl-c2)/c2] (3.69)
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The final restriction is

0<p2,3<l

which gives

0<[C2(l_p2’2)-Clpl,2]/(l-Cl-C2)<1

Pl,2<[C2(1‘P2’2)/Cl]<[Pl’2+(l‘Cl—C2)/Cl] (3.70)

So far we have discussed strictly Markov chains.

In constructing such a chain the choice for the state

(occupancy) at site 2 is affected only by the state at site

2-1. 'We can generalize our method by bending somewhat the

definition of the Markov chain. In the two state system

for example an obvious extension would be to relate the'

atom at 2 to the atoms at 2-1 and 2-2 instead of just the

atom at 2-1. In fact it is desireous to relate the atom at

2 to the atoms at 2-1, 2—2, l-3,....,2-n; By analogy to

the ergodic Markov chain we will define the following:

Def: the sequence [Xg] is an nth order Markov

chain if each X2 is discrete and for any integer m>n+l and

any set of m points 2162 <...<2m, the conditional distri-
2

bution of X2 for given values of X2 , X2 ,...,X£ ,

m l 2 m-l

depends only on X2 ,...,X2 , the n closest atoms. For

m-n ~ m-l

any real numbers x11x2,...,xm
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P[X£m=xmlx£l=xl,xlz=x2,...,X£m_l=xm_1

(3.71)

Ptxg =Xmlx2 =x ,xg- +xm_n+l,...,x£ =Xm-1]

m m—n m-n+l m-l

The one step probability transition function would be

pi'j'-°-,s;t=P[x2=tl
X2-n=l'X2-n+1=3v--~X

i_l=S] (3.72)

These transition probabilities satisfy the Chapman-

th
Kolomogorov equation, but for n>l, the n order Markov

chain as defined is not a Markov process. A transformation,38

however, can be made to make it a Markov process. For an

ergodic Markov chain with m constituents, an nth order

n

Markov chain will have mg states with an mn by m transition

probability matrix with mp(mn-m) identically zero transition

matrix elements. The one step probability transition

function is redefined as

. . =P. . . =

pl,J,...,S;t l'J’oooIS;J,oooS,t

PEXQI=tIX =S,..,X i,X (3.73)

2-1 2-n+1=3lX2-n= 2-n+1=3""X2-1=s]

. For the two state linear chain, the second order

Markov chain would consist of 22=4 states; namely,

hh

hd (3.74)

dh

dd
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with the transition matrix being 4 x 4 with 4(4-2) = 8

zero transition matrix elements.

phh,dh = phh,dd = 0

phd,hd = phd,hh = 0

(3.75)

pdh,dh = pdh,dd = O

pdd,hd = pdd,hh = 0

and 8 non-zero matrix elements

pdd,d = pdd,dd

pdd,h = pdd,dh

Pdh,d = Pdh,hd

pdh,h = pdh,hh

Phd’d = phd,dd (3°76)

phd,h = phd,dh

phh,d = phh,hd

phh,h = phh,hh

Equation (3.40) then gives

chh+chd+cdh+cdd = l (3.77)

which we need to relate to ch and Cd' The relation is

ch = chh+(cdh+chd)/2 (3.78)
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c +(C

d = Cdd thCha)/2

so that

+c = l
C hd

Equation (3.20) gives

phh,hd+phh,hh+phh,dh+phh,dd =

phd,hh+phd,hd+phd,dh+phd,dd =

pdh,hh+pdh,hd+pdh,dh+pdh,dd =

pdd,hh+pdd,hd+pdd,dh+pdd,dd =

which because of the zero elements reduce to

phh,d+phh,h

phd,d+phd,h = 1 (phd,dd+phd,dh =

pdh,d+pdh,h = 1 (pdh,hd+pdh,hh

pdd,d+pdd,h = 1 (pdd,dd+pdd,dh =

Equation (3.42) gives

Chh = Chhphh,hh+chdphd,hh+cdhpdh,hh+cddpdd,hh

cdh = chhphh,dh+chdphd,dh+cdhpdh,dh+cddpdd,dh

l (phh,hd+phh,hh =
1)

l)

-l)

l)

hd = Chhphh,hd+chdphd,hd+cdhpdh,hd+Cddpdd,hd

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.81')

(3.82')

(3.83')

(3.84')

(3.85)

(3.86)

(3.87)
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Cad = Chhphh,dd+chdphd,dd+cdhpdh,dd+cddpdd,dd (3°88)

These equations can also be simplified to

Chh = Chhphh,h+cdhpdh,h (3'85')

Chd = Chhphh,d+cdhpdh,d (3'86')

th = Chdphd,h+cddpdd,h (3'87')

Cdd = Chdphd,d+cddpdd,d (3°88')

Using Equations (3.75) - (3.88), one equation is

redundant. We can arbitrarily eliminate Equation (3.85').

From theremaining equations, we have ten equations with

fourteen unknowns requiring us to specify four variables.

. If we take these four speCifications to be Cd’pdd,d’pdh,d

and phd d' the equations can be solved in terms of these

I

variables.

Ch = 1‘Ca
(3.89)

pdd,h = 1'Paa,a ' . . (3.90)

pdh,h = l‘Pdh,d
(3.91)

phd,h = 1‘Phd,d ' (3.92)

from Equation (3.88') we have

Chd = Cdd(l-pdd,d)/phd,d (3°93)
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from Equation (3.87') using Equations (3.93), (3.92), and

(3.90)

th = Cdd(l-pdd,d)(l-phd,d)/phd,d+cdd(l_pdd,d)

= Cda(l’pad,d)/phd,a

th = Chd

Using Equation (3.80) with (3.94), we get

Substituting Equation (3.95) into (3.93) gives

C-C

d dd = Cdd(1-pdd,d)/phd,d

Cdd = cdphd,d/(l+phd,d-pdd,d)

Using Equation (3.96) in (3.95), gives

c
dh = Chd = cd(l_pdd,d)/(l+phd,d-pdd,d)

Equation (3.81) gives

l-c

Chh aa‘zcah

Chh = l-CdEPhd,d+2(l-pdd,d)J/(l+phd,d-pdd,d)

and from Equation (3.86'), we get

phh,d = Chd(1'Pdh,d)/Chh

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)
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Cd(l-pdd ’d) (l-pdh’d)

l+phd,d-pdd,d-Cd[phd,d+2(l-pdd,d)J

(3.99)
 

phh,d

Finally,

phh,h = l—phh,d (3.100)

The procedure for generating the chain is identical

to that for the first order Markov chain except the states

are two atoms long. The first state is hh, hd, dh or dd

depending on where the random number falls in the unit

interval. The unit interval is divided into Chh' Chd’

cdh and cdd respectively. From there on the probability

the next atom will be a host or a defect depends on the

preceding two atoms.

As in the case of the first order chain, the pro-

babilities are constrained to the unit interval.

' . ‘ = O O <

—' 1:) IJk( p13 Ik)—1

Unlike the first order chain where pi j = l or 0 for a two

I

state system gives an ordered chain, some pij k may equal

I

zero or one and not produce an ordered chain. However,

for a given c are not always
d’ pdd,d’ pdh,d and phd,d

allowed any value from zero to one. Since nghh ail, we

have

Oicd(1-pdh’d)/[l—2cd+(l-cd)phd’d/(l-pdd,d)Jfil (3.102)
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One question we can easily answer is at what concentration

if any does Equation (3.102) constrain the probabilities.

Examining Equation (3.102) carefully for different values

of cd reveals the :1 is always the more constraining limit.

Therefore, setting phh,d equal to one we get

1 = Cd(l-pdh,d)/[l-2Cd+(l-Cd)phd,d/(l-pdd,d)J (3.103)

phd’d = (l_pdd,d)Cd[3'l/Cd'pdh,d]/(l"cd) (3.104)

since phd,d:0

Gail/3 (3.105)

For Gail/3 all pdd,d' phd,d and pdh,d from zero to one are

allowed. Figures 3.1 to 3.7 show the allowable values for

pdd,d’ phd,d and pdh,d for cd=.3,.4,.5,.6,.7,.8 and .9.

Only the volume in front and above the surface is allowed

for a ergodic chain. Though our choice of independent

parameters is a convenient one it is arbitrary and there-

fore these figures, for the three parameters which we have

chosen,may be somewhat misleading. One should not infer

that the parameter space of the second order chain is more

restricted for higher concentration. In fact the replace-

ment of cd by l-chch and of all d subscripts by h subscripts

leaves the figures still true.

A two state third order Markov chain and three

state second order Markov chain are considered in Appendix

B.
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One of the major problems when generating a finite

. length linear atomic chain via the ergodic Markov chain

theory is to generate a chain with the desired stochastic

relationships between atoms. As the number of atoms in

the chain becomes infinite the ergodic Markov chain theory

guarantees the correct relationships, but when one looks

at a 100 or 1000 unit chain the relationships can be

quite different from those desired. The question we need

to answer is: For a given length chain N and a given

confidence level C what magnitude of error between the

obtained and desired stochastic relationships can we

tolerate before we discard the chain? A 99% confidence

level says that 99% of the chains of length N, generated

by a given transition probability matrix will fall within

certain error limits. 'Since the actual value of pd'd(n)

in the first order two constituent Markov chain is a

binomial statistic; it has a mean number of Occurrences

= N .
u pd'dm) _ (3 106)

with a standard deviation of

02 = N Pa,a(n)[1‘Pa,d(n“3 (3.107)
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For the binary random chain with cd=.5, pd’d(n)=.5

independent of n. First, for the 100 unit chain, the

mean number of defects is u =100(.5)=50 with a standard

deviation of o=[lOO(.5)(l-.5)]5=Scmr68% of the time the

number of defects will range from 45 to 55 and 95% of

the time the defects will be between 40 and 60 out of

100. In other words to a 95% confidence limit a random

chain of length 100 could have 40 to 60 defect atoms and

still be representative of a random chain. For the 100

unit chain Table 3.1 gives pd’d(n) for two computer

generated chains.

TABLE 3.l.--Characteristics of two 100 unit Markov chains.

 

 

cd=.43 cd=.49

n pd,d(n) pd,d(n)

1 .357 .510

2 .452 .388

3 .463 .490

4 .450 .479

5 .385 .468

6 .385 .511

7 .461 .362

8 .333 .522

9 .513 .578

10 .289 .432
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By a similar analysis, for N=l0,000, the 68%

confidence limits are 4950 to 5050 defect atoms out of

10,000 atoms. The concentration of defect atoms varies

from .495 to .505 versus .45 to .55 for the 100 unit

chain. Therefore, any calculations involving 100 unit

chains should be averaged over many chains.

In Appendix C, we have related the Markov

chain to the short-range order parameters. For the first

order Markov chain, the pair correlation function is

related to the conditional transition probability by

i,j
pQ = P. .(82 -£1 28) (3.108)

1112 1:]

The reason for the absolute value 88 -2 is that the
12“

Markov chain has direction; one can examine a chain in

only one direction at a time. Since the Markov chain we

generate is isotopic, it does not matter which direction

we consider. This directionality is important if one

considers the relationship of Markov probabilities to

triplet correlation functions.

The short-range order parameter for the first order

Markov chains is

. _ n .. _ _an — (a1) where al_(pdd,d cd)/(l cd)

The Fourier transform of an can be computed in closed

form



0

_ n
—l+2n;l alcos(nka)

(l-alcos ka)

 =1+2[ - 1] (1.353.3)39

l-Zalcos ka+af

l—ai

2

l-2a1cos ka+al

 

a(k)= (3.109)

a(k) is characterized by a single broad peak centered

at k=0 or k=§ depending on whether a1>0 or al<0 respectively.

The relationship of the second order Markov conditional

transition probabilities to the pair correlation function

is not as simple as that for the first order chain; it is

examined in Appendix C.

Frequency Spectra of Linear Chains

With Short—Range Order

 

Before examining the spectra of chains with short-

range order, we will mention other work using nearest

neighbor short-range order. Payton33 calculated a limited

number of spectra using Dean's technique with short-range

order for Cd=.5. Payton used nearest-neighbor pair

correlation functions to generate his short-range order

which for Cd=.5 are particularly simple, i.e.

(3.110)
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In general it is conceptually incorrect to generate a

chain using pair correlation functions. However, for

Payton's particular case of nearest neighbor correlations

only,the logical fallacy does not result in an incorrect

chain because the first order Markov transition proba-

bilities are numerically identical to the nearest neighbor

pair correlation functions. More recently, Papatriantafillou,34

has introduced short-range order into the one dimensional

electron problem. His order, although not stated in the

paper, is a first order Markov chain. He does not generate

.frequency spectra, however. Neither, Payton or Papatriantafillou

justified their method of generating short—range order or

studied its implications in terms of correlation functions.

We, on the other hand, have mathematically justified our

method of generating short-range order and have examined

the pair correlation functions for this order.

Matsuda and Teramoto41 used first order Markov

chain theory to calculate a formula for the integrated

density of states of the harmonic mass defect linear chain

to certain special frequencies. One point to note here

is their use of Markov chain theory was in a much differ-

ent context than presented in this thesis and was not

easily reformulated into generation of linear chains. The

special frequencies correspond to zeros in the density

40
of states of random chain and are given by



72

2 _ 2 2 ns
w (s,t) — wmax cos (2t (3.111)

where wiax is the maximum allowable frequency of a

perfect chain of light atoms (in our case

wiax=4.) and s and t are integers prime to each

other.

5 and t are determined by the condition

m

52‘: l+cot(n/2t)tan(sn/2t) (3.112)

L

mh
for a mass ratio of ——=2, 5 must be equal to 1. In this

case the Matsuda and Teramoto formula for integrated

density of states is

N<w2<s,t>)=x-[cd<1-pd,d)p§j§/<1-pg,d>1 (3.113)

where N is the integrated density of statesand pd d is the

Markov transition probability. '

The justification for introduction of short-range

order into the this formula is not clear. It seems to

depend on the assumption that the Special frequencies do

not change with introduction of short-range order.

Unfortunately numerical studies cannot adequately examine

the special frequencies since we can use only finite length

chains.

Table 3.3 gives some of the values of t,w2(s,t)

and N(w2(s,t)) for the 50 percent random chain.
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TABLE 3.3.--Comparison of numerical spectra and Equation

 

 

(3.113) for c=.5,pd’d=.5.

2 Eq. (3.113) Approximate

t w (s,t) N[w2(s,t)] Numerical

2 2. .66667 .667

3 3. I 8 .85714 .858

4 3.414 .93333 .934

5 3.618 .96774 .968

6 3.732 .98413 .984

7 3.802 .99213 .992

 

Looking at Figure (2.5) the first five zeros are visible.

The agreement is excellent in this case.

First Order Markov

Chain Spectra

 

 

First we will examine, the effect of short-range

order generated by a first order Markov chain. Figures

=.2 and P(3.8), (3.9),(3.10) and (3.11) are for c =0.0,
d d,d

0.4, 0.6, 0.8 respectively. These can be compared to

'Figure (2.8) for the random case. For Pd,d=0' no defect

atoms can be next to each other, therefore, we get an

increase of the isolated defect peak to D(wi)=l.62 vs 1.45

for the random case. The rest of the structure above

w2=2. is due to defect pairs, triples which are not

nearest neighbors. The host mass spectrum is consider-

ably more depleted at the high energy end of the spectrum

than in the random case. For Pdd=‘4' .6, .8, the opposite

is true, with the w2=2.66 peak decreasing in magnitude.
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For Pd,d='8 the impurity band spectrum is approximately

evenly Spread over the whole band. For this case the

probability of long defect subchains and long host

subchains is high. Figure (3.12) gives d(k) for these

four chains. Table (3.4) compares the numerical integrated

density of states to Equation (3.113).

TABLE 3.4.--Comparison of Equation (3.113) to numerical

spectra for cd=.2.

 

 

Pd,d t N(t) Numerical

0.0 2 .8' .7966

3 1.0 1.0

0.2 2 .8333 .8288

(random) 3 .9677 .9706

4 .9936 .9936

0.4 2 .8571 ‘ .8538

3 .9487 , .9467

4 .9803 .9792

5 .9927 ‘ .9922

0.6 2 .8750 .8704

3 .9388 .9371

4 .9669 .9654

5 .9813 .9796

6 .9891 .9880

7 .9936 .9929

0.8 2 .8889 .8963

3 .9344 .9401

4 .9566 .9601 ’

5 .9695 .9720

6 .9778 .9785

7 .9834 .9849

 

The agreement between the numerical results

and Equation (3.113) is remarkably good-considering that
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the concentration for Pd,d=0'8 came out to be .1852

instead of 0.2. Also, Equation (3.113) is exact only

for infinite chains. The results in Table (3.4) tend

to confirm the correctness of Equation (3.113) when

short-range order is included.

Figures (3.13), (3.14), (3.15) and (3.16) are

for cd=.5 with Pd,d='l' .25, .75 and .9 respectively.

Figure (3.13) shows a slight deviation from the binary

ordered chain in Figure (2.9) which would be obtained

at cd=.5, Pdd=0' The peaks between w2=1 and 2 come from

2 heavy mass clusters (w2=1.5) and 3 heavy mass clusters

at w2=l.22. The peaks above w2=3 come from the light

atom clusters. The band edge singularities at w2=l,

and 2 disappear. For P .25, Figure (3.14) shows that
d,d-

much of the ordered diatomic structure has been lost with

the spectrum filling in the gap from w2=l to 2. .This

can be compared to the cd=.5 random case (Figure 2.5)

where the spectrum looks like a depleted heavy mass

spectrum with many modes in the forbidden region.

Figures (3.15) and (3.16) show progressive clustering of

light atoms which also gives clusters of heavy atoms.

Clusters of heavy atoms produce the peak at the upper

edge of the host hand. For P 75, the host band
d,d='

structure is reappearing and the impurity modes

although highly structured are equally distributed between

m2=2 and 4. For Pd d=.9, the structure in the impurity

I
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band is diminishing as the spectrum approaches

the superposition of a light chain spectrum and a heavy

chain spectrum with the integrated spectrum normalized

to 1.0. Figure (3.17) shows the a(k)'s for Figures (3.13)-

(3.16). For cd=.5, the a(k) corresponding to pd,d=u is

a mirror image of the d(k) corresponding to pd d=l.-u.

The case pd,d=0'l approaches Case 1 and the case

pd,d=0‘9 approaches Case 2 of Section II on x-ray

scattering. Table (3.5) compares Equation (3.113)

to the numerical integrated density of states at the

special frequencies.

Second Order Markov Chains
 

Although numerous spectra were generated by

second order Markov chain theory, we present only a few

of the most interesting spectra.herein, Figure (3.18)

shows the only cd=.2 spectra generated by second order

Markov theory to be presented. Figure (3.18) is for

pdd,d=0' pdh,d=‘4 and phd,d='8° Or, in words, the chain

will not contain any defect clusters greater than two

long (pdd,d=o)' In general, the defects will come in

pairs (phd,d=’8) or separated by one host (pdh,d=°4)

with few isolated defects. The spectrum shows a large

nearest-neighbor defect pair peak, w=3.26 with only a

small single defect peak w=2.66. Figure (3.19) shows
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TABLE 3.S.--Comparison of Equation (3.113) to numerical

spectra for c =.5.

 

 

 

d

Pd,d t N(t) Numerical

0.1 2 .5455 .5466

3 .9550 .9539

4 .9955 .9960

0.25 2 .6000 .5970

3 .9048 .9014

4 .9765 . .9767

. 5 .9941 .9938

0.75 2 .7143 .7225

3 .8378 .8433

4 .8971 .9013

5 .9309 _ .9330

6 .9519 .9544

7 .9658 .9670

0.9 2 .7368 .7363

3 .8340 .8345

4 .8822 .8818

5 .9110 .9098

6 .9300 .9298

7 .9434 .9441

a(k) for this chain. It is quite different from that

of the first order chain showing a local maximum between

k=0 and n.

dd,d=Phd,d;Pdh,d= 1-cd -Phh,d 1“

second order Markov space is equivalent to the first

)

The line P dd 

order Markov process. Figure (3.3) shows that for C =.5,
d

this line is one of the diagonals in the unit cube. Two

other diagonals for Cd=0.5 result in simple forms for a(k).

These diagonals in Figure (3.3) are for Cd=.5:
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Pdd,d=Pdh,d7Phd,d=Phh,d=1-Pdd,d “3'114“

and

Pdd,d=Phh,d;Pdh,d=Phd,d=l_Pdd,d (3°115“

Appendix B has a derivation of the short-range order

parameters for each case.

l-ai

a(k) = 2 (3.116)

l—2a cos(2ka)+a
2 2

where 02 = (Pdd,d-Cd)/(l-Cd)=2Pdd,d-l

corresponds to Equation (3.114) and

1-ag _

a(k) = 27 (3.117)

l-2d cos(3ka)+a
3 3

(C ) P -C

_ d dd,d d 2_ _ 2
where a3-1-Cd ( l-Cd ) _(zpdd,d l) (3.117a)

corresponds to Equation (3.115).

The period of Equation (3.116) is one-half the period of the

short-range order function, a(k), for the first order

Markov process; whereas the period of Equation (3.117) is

only l/3 of that for the first order Markov process. In

addition from Equation (3.117a) we note that Pdd,d can have

two values for any 03, therefore the identical short-range-

order function can result from two different P This

dd,d'

ambiguity illustrates an important point which will be even

more dramatically made at the end of this section. Whereas

there is a one to one correspondance between chains which
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can be generated by a first order Markov process and a

set of short-range order parameters, namely the very

simple set given by Equation (3.108), there is no such

correspondance for the second-order Markov chain. In fact,

quite different second order Markov chains may produce

the same set of pair correlation functions. Therefore

in order to study the statistical properties of a Second-

order Markov chain one needs triple (and perhaps higher)

order correlation functions.

Figures (3.20) and (3.21) show vibrational spectra

for second order Markov chains satisfying Equation (3.114)

.25 and Pwith P .75, respectively.
dd,d: dd,d:

With Pdd d=.25, the spectrum is not radically

I

different from the random case with only a reduction in

the single defect mode (because Phd h=.25) and a

I

corresponding increaSe in the nearest neighbor pair

hd,d:

Pdd d=.75 is, however, quite different. The band edge

I

defect mode (because P .75). The spectrum for

at w2=2 is not visible. Since P =0.75 the chain

dh,d=Phd,h

has a structure rather like the binary ordered chain (with

Pdh,d=Phd,h=l°O) but because =0.75 this
Pdd,d=Phh,h

structure includes some long clusters of similar atoms.

The short—range order functions for these two chains differ

by 0/2 phase shift as shown in Figure (3.22) for Pdd,d='25

and .75 respectively.
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Figures (3.23) and (3.24) show spectra for chains

with shortrrange order satisfying Equation (3.115) with

Pdd,d='25 and Pdd,d='75 respectively. The single curve

in Figure (3.25) shows the short-range order function for

both cases. Though the pair correlation functions are all

identical, two spectra are never the less quite different!

The probability of having defect clusters of size n

surrounded by single host masses is given in Table 3.6.

TABLE 3.6.--Probability of cluster of light atoms of size

n for Equation (3.115).

 

 

 

Cluster size Probability of occurrance

h-nd-h Cd='5'Pdd,d=Phh,d=l-Pnd,d

n random Pdd,d='25 Pdd,d='75

1 .125 .0625 < .1875

2 .0625 .140625 > .015625

3 .03125 .035156 > .011719

4 .015625 .008789 E .008789

5 .007812 .002197 < .006592

 

Table 3.7 gives the probability of having n host-defect

clusters for these two chains.
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TABLE 3.7.--Probability of having n-host defect clusters

for Equation (3.115).

 

 

 

Cluster size Probability

n-(hd) Pdd,d='25 Pdd,d='75 random

.25 .25 .25

.046875 .046875 .0625

.008789 .008789 .015625

 

From these two tables it is clear that the major difference

between the two chains is that isolated defects are more

probable for ghid=0.75 and nearest neighbor defect pairs

I

are considerably more probable for P =0.25.

dd,d



CHAPTER IV

LOCALIZATION OF EIGENSTATES OF

DISORDERED CHAINS

There is considerable physical interest in

whether eigenstates of disordered systems are localized

or nonlocalized. In terms of thermodynamic quantities,

thermal conductivity for phonons and electronic

conductivity for electrons depend on the localization

of the eigenstates of a system. The degree of local-

ization of each eigenstate, also, gives information

on the basic quantum mechanical mechanisms working

in the system.

A precise general definition of a localized

mode versus a nonlocalized mode is not available.

However, an acceptable working definition is available.

An eigenstate is localized if the eigenfunction is

appreciable over some region of space and decays

exponentially away from this region. In infinite

systems, this is most likely as precise a definition

as one needs. However, in finite systems, this definition,

while catagorizing some of the eigenstates as localized,

is insufficient to adequately describe the character of

other modes.

100
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For one dimensional systems with nearest neighbor

interactions considerable localization work has been

done. Mott and Twose45 conjectured and Borland46 proved

that all one electron eigenstates of the disordered

chain are localized. This proof is valid for eigenstates

of arbitrarily large energy for an infinite chain with a

finite fraction of disorder, and therefore applies to the

exact solutions of a Schroedinger equation. Demonstration

of localization in the lattice dynamics problem does not

require such a dramatic result. The lattice dynamics

47 where theproblem is more akin to the Anderson model,

one-electron wave functions are expanded in functions which

are eigenstates of a single atomic energy level (Tight

binding model) or which correspond to a single band

(Wannier picture). Dean48 presented an analogous proof

to Borland's theorem for the phonons in a disordered chain.

Dean showed that all eigenfunctions of an infinite linear

chain are localized. More recently, Economou and Cohen49

presented a more general proof of the localization

character of eigenstates of the Anderson Hamiltonian

and of the lattice dynamics problem.

In the electron problem, the degree of randomness

corresponds to the difference in energy levels and

hopping terms between the two constituents in a binary

Chain. One might think that the mass ratio would be a

Similar measure of randomness in the phonon problem. It
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is but only one of two measures in the phonon case, the

other being the frequency of the eigenstate. As w+0

50 and coworkersthe modes must become delocalized. Hori

have argued that Borland's definition of localization

may be too loose for practical use, since according to

it any one dimensional system with disorder (finite

concentration of impurities) would have all eigenstates

localized and no conductivity could occur in contradiction

to physical intuition.

The problem with Borland and Dean's proofs

involves the definition of infinite systems. In con-

trast for infinite systems with boundary conditions,

P. Taylor51 has argued that no eigenstate is strictly

localized. ‘His argument is based on the fact that changing

the boundary conditions will change all eigenvalues and

eigenvectors and a localized state would not be subject

to "distant" boundary conditions. Hori has suggested

that this definition of localization may be too strict.

Two note worthy attempts have been made in the

one dimensional harmonic phonon problem to find eigen-

frequencies in random systems beyond which all states

are localized. Matsuda and Ishii52 give an expression

for the approximate number of vibrational modes in the

finite mass-disordered system that are not "well localized".

' Using the assumption that the localization of eigen-

functions in "large" finite systems is equivalent to
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the localization of eigenfunctions in infinite systems,

the number of non-localized modes is

 

n = % /fikm>/J:(m-<m>)2> (4.1)

where N is the chain length

and <m> =Cdmd+Chmh-is the average mass of the chain.

They admit that this formula is valid only to an order of

magnitude since "well localized" is not a precisely

defined quantity. Visscher,53 using Matsuda and Ishii's

ideas, performed some numerical Studies on thermal energy

transport in chains up to 1000 atoms. He arbitrarily

defined the eigenfrequency above which all states are

"localized" as the eigenfrequency above which the sum of

the remaining eigenfrequencies gives a total contribution

to the thermal conductivity of only 10%.. Visscher obtains

an emperical formula for the demarcation mode of

15 . ‘
nC = 5.5(N) (4.2)

for a two to one mass ratio random system. Both methods

suffer in that a few modes of high frequency in nonrandom

disordered systems could carry a significant amount of

the thermal transport energy and be quite nonlocalized.

These modes would not be of interest under Visscher's

criteria and for finite system could violate Matsuda and

Ishii's assumptions.
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From the preceding discussion, it is apparent

we need to catagorize the degree of localization as a

function of frequency, mass ratio, and short-range order.

Thouless54 has given a number of localization criteria

for the electron problem, some of which we can adopt to

the phonon problem. The eigenfunctions of the electron

exist continuously throughout space whereas the components

of the eigenvector in lattice vibrations are defined only

with respect to lattice points. Since Thouless considers

an infinite system his criteria are binary in nature,

either an electron is localized or it is delocalized. We

propose that some of his criteria may be applied to the

lattice dynamics of finite systems with the localization

parameter taking on a continuum of values bounded by the

localized and delocalized values for the infinite system.

Thouless feels the following criteria should

give equivalent indications of localization. Using

wx(r) as the electron wave function and U£(A) as the

displacement of the 2th atom for eigenfrequency A, we have

1. Non-zero value of f|¢x(r)l4d3r' which

corresponds to

a =§1U£ml4/2|U£<Ml2 = iluimll; (4.3)

2
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for a eigenvector normalized to one;a is an inverse

localization length. For the perfect crystal with

' . . 1 ikARa l

periodic boundary conditions U£(A)= — e and a = E

.where N is the number of atoms in the chains. A similar

derivation for_fixed boundary conditionsis given in

Appendix I. We can calculate the eigenvector of linear

chains as given in Appendix D and easily apply this

criteria.

2. Discrete (but dense) spectral density

i1¢A(r)125(E'A) which corresponds to-iIU£(A)|26(w2-wi)

=J£(w2). For finite chains, the spectral density is

necessarily discrete, therefore, the proper application

of this criteria is difficult. Although we have

looked at this criteria for finite chains, the interpre-

tation of the results is inconclusive.

3. Non-infinite value of f Ir-RAIZIwA(r)|2d3r

for some value of RA corresponding to Q=i(£-L)ZIU£(A)|2.

This criterion only applies to the infinite system

because it does not give a unique value of

localization because of the ambiguity of RA’

4. Vanishing of d.c.conductivity (for a static

lattice) and an A.C. conductivity of the order wz. This

essentially corresponds to the work of Visscher and

our comments on this work apply.
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5. A change of boundary condition shifts energy

A?
levels by an amount of order e- rather than order

N-l. This method holds some promise in the phonon problem

although we have not attempted to eXploit it. To properly

apply this criteria we would have to use cyclic

boundary conditions so that the boundaries themselves

do not influence the eigenvectors. Then, we could switch

from periodic to antiperiodic boundary conditions and

note the change in eigenvalues. Unfortunately, periodic

boundary conditions make the dynamical matrix non-tridiagonal

requiring more complicated methods than we have presented

for finding the eigenvalues and eigenvectors.

Therefore, when we lookanzspecific eigenstates

of finite chains, we will use the criteria (4.3). We can

55
interpret a, in terms of ideas developed by Bush and '

expanded by Papatriantafillou.34 They report that there

are two quantities of interest when we talk of localiza-

tion, especially in one dimension.

1. The length over which the eigenfunction is

appreciable, Le(A).

2. The eXponential decay rate of the eigenfunction

away from this region LE(A) where LE(A) is given by

R

"LEUS

Il£(k)a e (4.4)
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The quantity a =EIU£(X)14 is inversely proportional

to H3(A) since the sum over A of 1Ug(k)14 will pick out

only the U£(A)'s which are appreciable. Bush has given

a Monte Carlo technique for calculating LE(A) which we

have adopted to the phonon problem. The procedure is much

like that outlined in the first page of Appendix D for

eigenvectors. First we assume we have a semi-infinite

chain, i.e. a starting point but no end. Since Bush found,

as expected, the value of LE(A) is not subject to the

initial boundary conditions, we can find successive dis-

placements of atoms from equilibrium starting with fixed

boundary conditions

m.

_._}_Z _u _(2 Y m )Ui Ui-l (4.5)
i+l

where U0=O and Ul=l.

For the semi-infinite system as for infinite systems

all values of w2 are eigenvalues except for a very limited

number of values of w2 (special frequencies). Therefore,

we can sample Equation (4.5) for a uniform distribution

of wz. Given initial conditions for U0 and U1 we generate

a chain using the appropriate Markov transition probabili-

ties. As Dean proved the Ui's will always show an

'exponential increase as we proceed along the chain. We

start sampling the chain after some Ui satiSfies
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IUi(w2)I>e4. We then store the number of sites we must

proceed before another Uj satisfies |Uj(w2)|>e5. We

collect 30 data points for a given computer generated

chain, i.e., Ui's vary from e4 to e35. The number of

sites for an e increase in Ui is LE(A). We then find

the mean and probable error of LE(w2). We repeat this

Monte Carlo experiment for 20 chains for each w2 finding

20 means and probable errors. We finally combine the

results using a weighted mean and probable error. Roberts

and.‘Makinson56 have shown that even though the use of

Equation (4.5) often will not generate the correct

eigenvector given an accurate eigenvalue (see Appendix D),

the eXponential increase displayed in the successive Ui's

has the same slope as that of the true eigenvector

away from the region of where the eigenfunction is

appreciable. Therefore, the Monte Carlo procedure should

work and display small errors.

Papatriantafillou has in fact shown from

probabilistic arguments that for infinite systems LE(A)

is sharply distributed (zero deviation about the mean)

and Le(A) has a finite distribution. We find that the

probable error associated with an LE(A) is usually less

than 5% and the variability between chains is of the order

of 10%.
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We will first examine the exponential localization

length, LE(A) and , then, the length over which the

eigenvector is appreciable. a =[Le(A)]-l. Since the

computation of the eigenvalues and eigenvectors of a

single lOOO unit chain requires nearly 45 minutes CPU on

the UNIVAC 1103:and a complete sampling of the Monte

Carlo exponent decay run usually requires ~2-3 minutes,

we study LE(A) in much greater detail than we can a

which depends on the explicit eigenvectors. We will

present the data as generated with no attempts made

to smooth the data or to draw a smooth curve through it.

It is clear that there is some actual structure in the

data but we cannot at this time conclusively say whether

some of the smaller variations in the data are due to the

Monte Carlo technique or to actual structure. The circles

around the data points give an indication of the probable

error of LE(X).

Figures (4.1) and (4.2) show LE(w2) versus w2

for binary random chains with Cd='5 and mass ratios of

1.5, 2, 3, 4, and 8 respectively. In every case, the

maximum allowable frequency for these chains is normalized

such that l—’=l, or w2 = 4. Therefore the perfect
mL max

heavy chain spectrum would have a maximum allowable

2' 8 4 1
frequency of mm = 3, 2, 3' l and 2 for m = 1.5, 2, 3,

H

4, 8 respectively. A number of things are immediately

apparent: (l) in all cases localization length tends
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to infinity as w2+0; (2) the variability in the data.

is small from point to point following a definite

functional trend; (3) the data show an almost uniform

decrease in localization length with increasing frequency

and (4) increasing mass ratio decreases localization

length at a given wZ. A few other trends are not as

apparent: (l) the increase in mass ratio increases

localization even within the host band. This can be seen

by picking a point equivalent point in each host band,

i.e. the band edge; (2) near the host band edge a marked

drOp in localization length is observed (and increase in

the negative slope of the function LE(w2) and (3) the

localization length is not monotonically decreasing with

increasing wz. If we repeat the given Monte Carlo run

for any given value of the mass ratio, we see a definite

persistence of peaking in the function LE(w2). In

Mn
Figure (4.1) the ——-= 1.5 curve shows a definite peak

ML

2 mh
at w =2.94. The fi—-=2 curve shows a peak at w2=2.66

l

and possibly other peaks at w2=.98 and a number of places

above w2=3. The fi—=3 curve has a peak a m2=2.38 among

L m

others. In Figure (4.2) the -§=4 curve gives a peak

around w2=2.30 and the ——=8 curve gives a peak around

w2=2.06. A much finer grid and a much more detailed

analysis of the data would almost surely reveal other

structure. Even with the data we have presented, the
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localization length increases although only slightly

at the isolated light defect impurity frequency in

each case. Equation (F.6) gives the local mode frequencies

as w2=3, 2%, 2%, 2% and 2%g-for mass ratios of 1.5, 2, 3,

4, and 8, respectively. We would expect similar peaks

at all the local mode frequencies of isolated defect

clusters in host mass chains. Again, we must emphasize

that Figures (4.1) and (4.2) are for 50% random systems.

Figures (4.3), (4.4) and (4.5) are random chains

with defects of mass % mH in concentrations of 0.1, 0.3,

0.5, 0.7 and 0.9, respectively. Figure (4.4) for

Cd='5 is an independent Monte Carlo run compared to

the data in Figure (4.1) for 2§=2, and is included to‘

show the variability from run to run. One can see that

some structure in LE(w2) is present and some of variability

in the data is due to the Monte Carlo technique. .Figures

(4.3), (4.4) and (4.5) show some common.features: (1)

the localization length in the impurity band increases

with increasing impurity concentration although not in a

regular or uniform fashion; (2) there is a marked decrease

in the change in localization length at the hOSt band

edge (w2=2), varing from a change of an order of magnitude

at Cd=0.l to a change of less than 10% for C =0.9 and (3)
d

localization length in the host band is smallest for

Cd=.5 and increases as Cd+0 or Cd+l.



114

  

 

.:

p

6‘

S

_‘1

c

,0
J

p

C

o)

J

¢.
U

2:3
('1.

I01

'0

V;

J

_b

2"":-

3.1
1:
fi- 3

'3".

Li
D.\,.

, ‘0‘

FIGURE 4.3.--Exponential localization length, I¢(mz) for

mass ratio of 2 and Cd-.1 and .3 random.



A
G
5
3
7
0

o
n
:

-
r

.
.

.
l

.
.

.
4
1

'
2
'
.
.

'
1
2
:
.
“
L
C
G
A
R
I
T
N
‘
J
.

.

.
.
.

_
4

.
.
.
x

.
.
~

.
.
m
u
.

-.

FIGURE

 
2.

K1

4.4.--Exponentia1 localization length, LIL-(oz) for

mass ratio of 2 and Cd-.5 random.



t
.

I
.
“

.
\
.

A
f
u
v
‘
f
i
l

a
(
a
n
d
?

W
u
.

:
H
.

1'
V
-
‘
f

S
I
M
!
L
O
G
A
R
I
T
H
M
I
C

_
_

‘
.

1
-
.

.
M
.

5
"
“
.
1
.

4
6
5
3
7
0

L
a
n
g

L
i
v
“

L
o
c
fl
L
l
Q
fi
n
o
n

 
pd“

FIGURE 4.5.-—Exponential localization length, L;(u2) to!

mass ratio of 2 and Cd-J and .9 random.



117

As before Figures (4.3), (4.4) and (4.5) show a

general decrease in localization length with increasing

frequency. In all cases, the localization length is less than

100 atoms for wzil. In all cases the function LE(w2) has

definite structure, i.e., peaks.

Figures (4.6) and (4.7) are for C =.5,MH/ML=2,
d

and first order Markov chain transition probabilities

of Pd,d=0'1 and 0.3, and 0.7 and 0.9 respectively. Short-

range order radically modifies the structure of the

localization length as a function of frequency. These

figures can be compared with the Cd=.5 random case given

in Figures(4.l) and (4.4). We have previously presented

the frequency spectra for P =O.l, 0.25, .5, 0.75 and 0.9
d,d

which provide insights into localization. Figure (4.6)

with Pd d=0.l is close to the ordered binary chain P 0;
I d,d:

therefore, we expect as shown in Figure (3.13) a degraded

ordered binary frequency spectrum. The localization

2
length is "large" in the 01w :1 band, dropping sharply

at the band edge. Also, the length increases in the

optical band 2:w2:3, with a maximum occurring near the

middle of the band. A sharp peak in localization

length at the local mode frequency (w2=2.66) is observed.

In the region of the ordered binary chain band gaps

(1<w2<2 and w2>3), we see a marked decrease in LE(w2).

Figure (4.6) also shows a similar trend for P .3 but

d,d:

the band gap decrease and in band increasing in localiza-

tion length are not as pronounced. Figure (4.7) with
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Pd,d='9 can be compared with frequency spectrum Figure

(3.16). For Pd,d='9 we have large clusters of like

masses, and the structure of the host band is recovered

over the random case. The localization length in the host

band is greatly enhanced with a marked decrease outside

the host band. Comparing Figure (4.7) for Pd,d=°9 with

Figure (4.3) for Cd=°l we see that the short-range order

makes the localization length in the host band for

Cd=.5 greater than that of Cd=0.l random an. unexpected

result. Near w2=0, this however is not the case. For

=0.9 and Cd=.5 it looks as if LE(w2) approaches 600
Pd,d

atoms as w2 approaches zero and only the lowest wz point

'indicates that actually LE(w2)+w as oz goes to zero.

Figure (4.7) with Pd d=0.7, Shows behavior similar to

I

that for P 0.9, though the delocalization of the
d,d—

host band is less pronounced as expected.

1 We finish the analysis of the exponential

localization length with a single second order Markov

chain to show the effect which second nearest neighbor

correlations can have on the localization length. Figure

(4.8) is for Cd=0.5, MH/ML=2, and Pdd,d=Pdh,d='l and

Phd,d=Phh,d=0'9' This is one of the special Cases we

discussed before. Figure (4.8) shows three definite humps

in the localization length. This chain resembles an

ordered binary chain of the form (AA-BB-AA-BB)

(Pdd,d=Pdh,d=0 and Phd,d=Phh,d=1)' The peaks in localization
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FIGURE 4.8.--Exponential localization length, 1.30.?) for

mass ratio of 2, C -.5 and P -P -.l
a dd,d dh,d

and P -.9.
hd,d
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length occur in the four bands (0+.313, .5+l.22, 1.5+2

and 3.l9+3.28) (see Appendix G, Equation (G.12)), and

the decrease in localization length occurs in the band

gaps. There is a decrease in the maximum LE(w2) in each

successive band as w2 increases.

Next, we can study the length over which the

eigenfunction is appreciable. Comparing the following

results with the exponential localization length we will

be able to make some interesting statements about the

localization problem. ‘In the remaining figures in this

section we will be plotting, a=[Le(w2)]-l versus wz

instead of Le(w2), this makes direct comparison with

LE(w2) difficult although general trends are apparent.

Due to the large cost in generating eigenvectors

of large chains (N>50), we will restrict the discussion

to Cd=0°5’ mH/mL=2 chains introducing short-range order

via the first order Markov chain theory. Using fixed

boundary conditions, Figures (4.9) and (4.11) show

localization as a function of w2 for the perfect host

chain and perfect diatomic chain with (N=100).. (The

lower curve in each figure). a=.01485 for N=100 for the

perfect.host chain. The zone boundary values in Figure

(4.11) are (a=.01485, w2=0), (a=.0297 w2=l,2), and

(d=.0202, w2=3). These values are also found analytically

in Appendix I.
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Figures (4.9) and (4.10) shows the localization

plots for two different random Cd=0.5, N=100 chains.

Since the chains are generated using a random number

generator, one expects different stochastic relationships

between atoms in the two chains. In Table (2.2) we gave

a detailed analysis of these relationships with Cd=.43

corresponding to Figure (4.9). We can easily see that

a does not follow a definite functional relationship with

w?. The spread between individual points as well as

differences in the two figures might seem to make the

data inconclusive. This however is not the case. One

problem is that a 100 unit chain does not contain a

representative set of eigenmodes. The data are not there-

fore contradictory but complementary. We would need

to run many 100 unit runs to get a decent data set.

Looking at Figure (4.1) with mH/mL=2, we can expect that

this collection of data would be quite good for w231.0

where the exponential decay length is less than 30 atoms,

and nearly exact for w2>2 where LE(02)<5 atoms. The

data below w2=0.5 is almost certainly affected by the

chain length, which means that these data do not have

the generality which we ascribe to the other data.

The eigenvectors in this region are extended over the

whole one hundred unit chain. Near the local mode a shows

a great variability. Never the less one can distinguish
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lELe(w2)a peak in a[a(w2=2.666)=.633] or a dip in O—

(Le(w2=2.666)=1.58) at the local mode frequency. A

comparison between this plot and Figure 4.1 for LE(02)

shows that whereas the local mode extends over a smaller

number of atoms than do modes nearby it decays less

rapidly with distance away from the region of appreciable

strength, than do modes nearby. Therefore the two

measures of localization vary in opposite directions as

one approaches the local mode. However, as w2+0 -

Le(w2)+N and LE(w)+w, or the two parameters follow each

other. This comparison shows that although our two

measures of localization actually measure different

things the general trend of both parameters are the same.

In Figures (4.9) and (4.10) the region of appreciable

amplitude of the eigenfunction is less than 10 atoms for

w2>2 for the random system with an exponential decay

length of less than 5 atoms. TheSe modes are clearly

localized even in chains of length 100 atoms.

Figure (4.11) is for Cd='5 and_Pd’d=.1 and

N=100. Unfortunately for N=100 we get very few modes

in the ordered binary chain gaps. Comparing this figure

~ toFigure (4.6) we see that they follow the same general

trend, i.e. as LE(w2) increases Le(w2) generally increases.

For w2<0.9<ican be limited by the chain length since.

LE(w2)>50 atoms. Figure (4.11) shows that a is near

its minimum possible value for w2<.5. The general increase
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in Le(w2) in the 21w253 band over the random case is

clearly significant.

Figure (4.12) is for Cd=.5 N=lOO and Pd,d='9 or

the case of Clustering of atoms. Looking at LE(w2) in

Figure (4.7) we expect the results below w2=l.9 to be

severly chain-length limited and not truly representative

of the values of longer chains. With clustering of alike

atoms, N=100 gives especially poor statistical relation-

ships in the sense of seeing representative impurity

clusters. Looking at the chain composition we can easily

identify the modes in the Ziwzi4 region that occur in this

chain, all of which show rapid exponential decrease away

from the region of appreciable displacements (LE(w2)=0(l)).

The chain can be shown as follows:

‘- 11mL - 9mH - 6mL - 7mH - 21mL - 3mH - 3mL - 6mH -

8mL - 3mH - 1mL - 10mH - 10mL - lmH - 1mL -|

for a Cd=.61. The isolated impurity at site 78 gives

rise to the eigenfrequencies at w2=2.667 with a =.644.

The isolated defect cluster of 3 atoms gives a=.33 and

eigenfrequencies w2=3.52 and 2.414. The points for a=.20

comes from the 6 defect cluster; those at a=.16 arise

from the 8 defect mode; a=.l4 corresponds to the 10 defect

cluster; a=.12 corresponds to the 11 defect cluster, and

a=.066 corresponds to the 21 defect cluster.
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Figures (4.13) and (4.14) show a versus w2 for

a random 1000 unit chain plotted in two ways. Figure

(4.13) gives the reader a feeling of the variability of

a from point to point, although Figure (4.14) is the more

useful. For N=1000, the minimum a is .00145 for the

perfect monatomic chain. Figure (1.2) shows the frequency

spectrum of this chain. Figure (4.1) indicates that some

\ralues of a could be chain—length limited for w210.4

but other values may be valid. A negligibly small

number of higher frequencies can be chain-length limited

because they happen to have their appreciable displace-

ments near one end of the chain. The data in Figures

(4.9) and (4.10) for w2>l,Cd=J5random fall within the

'boundaries of the N=1000 unit chain spread supporting

the use of the exponential localization as a test for

the accuracy of a(w2) for a given chain length. To

get accurate values of a for the region .02102:.4

would require approximately N=l0,000. Since a dot in

Figure (4.14) represents an eigenfrequency, the zeros

in the frequency spectrum at w2=2,3,3.4l4, and 3.618

are clearly visible. The clustering of points around

defect cluster frequencies is also clearly seen. Also,

by arguments given for the a versus oz in Figure (4.12),

we can explain the tendency to get lines with a constant

in the impurity band. To give the reader a more funda-

mental understanding of the mechanisms involved we would
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need to look at each eigenvector. Although this is

obviously not possible herein we will look at a few of

the eigenvectors of the next chain to be discussed.

Figures (4.15) and (4.16) give localization for

Cd=.5 and Pd,d=0'l' Figure (4.17) gives the correspond-

ing frequency spectrum for this chain. From Figure (4.16)

the following can be said: (1) here, as in the random

case, Le(w2)=a-l has the same general structure as

LE(w2) but has a much greater spread about a mean; (2)

the data in the band 2<w2<3 show a marked increase in

Le(w2). In fact some modes are longer than 100 atoms

so that the N=100 chain, Figure (4.11» can never show

completely the localization in this region; and (3) the

values of a may be chain-length limited for w2<.5 because

of the long exponential decay given by Figure (4.6) below

this frequency.

Figure (4.18) gives the n=100, n=250, n=353, and

n=450 eigenvectors (n=l labels the eigenvector of lowest

energy) for the above chain, (N=1000, C
d d,d=

The figure shows that at w2=.06 (n=100) the eigenvector

=05'P 01).

is completely delocalized over the whole chain. Therefore

for this frequency we know Le(w2)>>1000. The mode n=250,

w2=.36 is clearly also nonlocalized although structure

is appearing in the eigenvector. The n=353 mode is one

of the lowest energy modes that does not have amplitude
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at one boundary or the' other, and it displays a clearly

local character although extending well over 600 atoms.

The n=450 mode is near the ordered binary chain band gap,

the localization is quite distinct extending over about

100 atoms. The modes in the gap 1<w2<2, usually extend

over 30 to 40 atoms. In the band 2<w2<3, the extent

of appreciable magnitude of the eigenvector can often

increase to over 100 atom as shown in Figure (4.19) for

n=700 and n=775. The variation in the localization can

be seen in Figures (4.19) and (4.20) for n=775 and

n=776 respectively. Figure (4.20) also shows for n=950

as we get near the band edge w2=3, the localization

increases; Le(w2) extends over ~20 atoms.
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CHAPTER V

THEORETICAL DEVELOPMENT

To explore the theory of vibrations of the

linear chain, we will develop, in review, the quantum

mechanics of the chain and the classical and quantum-

mechanical Green's functions necessary for the theory.

Given the classical Hamiltonian of the system (Equation

(1.3), we can rewrite it in terms of the displacement

and momentum operators (Ua(£,t) and Pa(£,t))

*

Pa(£,t)Pa(£,t)

 

*

a d ,
2,2 -

(5.1)

where the quantization condition is

[Pa(£,t); UB(£,t)] = -rfi6a36£,£ (5.2)

Ua(£,t) and PB(2,t) are Heisenberg operators; Heisenberg's

equation of motion for a general Operator X(t) is

int) = 1— [x<t> H(t)] ‘ (5 3)
. in ’ '
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The time derivative of the displacement operator is

, Pa<1,t>
Ua(£,t) =W , (5.4)

CI

and the second time derivative is

u 1 Pd(£'t)

Ua(l:t) = ffi [EETET——v H1

1 » - ,_ _ figTEY AB§£, ¢aB(£,£ )UB(£,t) (5.5)

This is identical in form to the classical equation of

motion (1.4). The Fourier transform of Equation (5.5)

gives Equation (1.5) in operator form.

For the perfect (periodic) chain ma(£) = ma,

and we can expand the displacement operator in terms of

a normal coordinate operator, Qj(k)

Q-(k)

00(2) = 2 —l———- 0a.(k) eik'RR -(5.6)

k,j VNma 3

where oaj(k) is an expansion coefficient.

The expansion coefficients obey Equations (1.9)

governing closure and completeness. Substituting

Equation (5.6) into the Fourier transform of Equation

(5.5) will again give Equation (1.8) for the eigenfrequencies..
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Green's Function

. . 11 1 12 .

LlfShltZ and Montroll and Potts independently

formulated the lattice dynamics problem in terms of the

classical Green's function, defined to be the solution

to the matrix equation.

I
L
Q II

"
H(w g—g) (5.7)

where M is the mass matrix

and 2 Is the potential matrix

In component form we have

2 0 M ’I I _

iz”[w ma(~)5a’Y a£,£.,¢ay(2,2 )ngB(2 ,2 )—5m8522. (5.8)

where ¢ is defined in Equation (1.3).

The formal solution to Equation (5.7) is

M-Q) (5.9)

In Appendices E, F and G, we make use of this solution

to solve for specific elements of g for some special systems.

' g is therefore the inverse of the matrix A in Equation

(1.5).

"
3
’

I
C
‘
.

ll 0 where §=(w2§-g) (5.10)
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First for the perfect periodic chain, Q can be

diagonalized by the normal coordinate transformation,

 

1.8.

++

(I 2’) 1 z 1 -k.R£ *(k)' (k k’)g I =— e 0' g“’ I
a8 N j,j’ /figfig' 31 J]

k,k’

iK’-§f.

e . Oj’8(k ) (5.11)

From Equation (1.7) and (1.8) it is clear that the matrix

transformation Ti: E og(k)elk.R£ diagonalizes the

periodic matrix (wZM-¢) in coordinate space (£,d)

-1 jk 2 _ 2a -12’B_ 2_ 2
M Tldw M (Mg,B T'j’k” (w wj(k»5k,k’6j,j"

the same matrices also diagonalize the inverse of (wZM-¢)

or

, l

g.0’(k’k ) = g. (k) = 5 £6.0’ (5.12)

33 3 LUZ-w? (k) kvk 3:3

 

Substituting back into Equation (5.11) we have

* ik(R ’-R )
oja(k) Oj8(k)e R 2

z (5.13)
. 2 2
j,k (w -wj(k))/mamB

 

E
l
l
-
-
|

ga8(£’£’) =

where N is number of unit cells in the crystal.

In Appendix E, we use this equation to solve for the

monatomic chain Green's function. The diagonal element

of Equation (5.13) is
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* (k) (k)C. O.

m g (1,2) = l 2 ~3“ 3“
a dd N . 2 2

j,k w -wj(k)

 

(5.14)

We can now find a relation between the Green's function

and the density of states

v(w) = % z 6(w-wj(k)) (5.15)

jk

where we normalized the density of states to one

()0

m

Io V(U.)) (10):]. (5.1.6)

Summing Equation (5.14) over a we have

_ 1 1
Z magaa(2,£) — fi 2

d2 . jk wZ-w§(k)

Z
I
H

which we can convert to an integral (w+w+ie)

 

w

I: ————2I ”Hm—"$5“
jk w -wj(k) ° w -w’

ins
+ 2w 5 (6(w-wj(k))+5(w+wj(k)))

3k

where

P is the principle part

and s is the number of atoms per unit basis

In terms of the density of states, this becomes



146

mm v(w’)dw’ nis
imagaa(2,£) = SPIO m + W(V(w)+v (“U”)

real + imaginary.

Since v(-m) = O for w>0 we have

v(w) = - 39- Im z m g (2 2) (5 17)
SN a a dc ' ‘

where Im( ) is the imaginary part of ( )-

Also

v(w) = - £2—-Im 2 m g (l 1)

an R a ad ’

I

v(w) = — 2&- Im tr (M9) (5 18)
an =— '

where tr( ) is the trace of the matrix ( )

and since D(wz) = v(w)/2w

D( 2 _ l
w ) — - NSn Im tr (gg) (5.19) 

for a chain with N lattice points and s atoms per basis

and w2+(w2+ie).

Although we have derived the density of states

for the perfect lattice, Equation (5.19) is valid for

the imperfect lattice where Ns=N the total number of
T

atoms. To show this, we look at the solution to the

eigenvalue equation for the disordered system. For the

imperfect crystal, we must start with Equation (1.4). We

define A¢aB(£,£f) as the difference between the force
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constant matrix of the disordered system and that of the

perfect system (¢’-&3) (=0 for the mass defect problem)

and mg as the mass of site, a, of the perfect chain. We

can define two quantities

‘ma-ma(£)

m (5.20)ea(£) =

_ a

and

2
CaB(£,£’) = A¢a8(£,£’)+€a(£)maw 6&86£,l’ (5.21)

Then, we can rewrite Equation (1.4) in terms of the

perfect lattice where

_ w2¥3+2,

I
I
O

-w2gp+§o+

We can expand the displacements in terms of the normal

coordinates of the imperfect lattice

Ua(£) = éixa(f,£)Q(f) (5.22)

where Q(f) are the normal coordinates and

xa(f,£) are the eXpansion coefficients

and we get

_ 2 O ’ ’ ’ :-_-22’[ w (f)ma(£)6qfi6£fi, + ¢a8(x,2 ) +ca8(2,2 )Jx8(f,2 ) o

(5.23)
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for the eigenvalue equations. The Green's function for

the system is formally

G = ( OwZ-go-g‘l (5.24)

Clearly, it is also diagonalized by the normal coordinate

transformation of Equation (5.22). If we normalize the

eigenvectors such that

2-
3g ma(£)|Xa(f,£)| — 1 (5.25)

we again can derive Equation (5.19). For a chain of

length, N, we would in practice have to solve an Nx

N matrix for the eigenvalues and eigenvectors.

We can also write the Green's function of the

disordered lattice, G, in terms of the Green's function

for the periodic lattice, gig. From Equation (5.24)

which gives

I
I
C
)

ll

“
'
0

+

"
'
1
1

H
O

I
I
O

(5.26a)

I
I
O ll

I
I
'
U

+

H
O

H
O

I
I
'
U

(5.26b)
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These two equations are often called the Dyson equations.

The classical Green's function is a generating

function which allows us to solve complicated interaction

problems by solving much simplier force free equations.

However, the classical Green's function has no quantum

mechanical foundation. Following the work of Elliott and

Taylor,57 we restructure the problem in terms of the

Zubarev58 double-time single-particle Green's functions.

These functions are generalizations of correlation

functions and, therefore, have a definite physical inter-

pretation. We use the retarded and advanced Green's

functions

Gr(t,t’) = - 24,12 e(t-t’)<[A(t),B (t’)]> ((5.27a)

Ga(t,t’) = %%i e(t’-t)<[A(t),B(t’)]> ‘ (5.27b)

where A(t) and B(t) are two operators in the

Heisenberg representation

th/fiA e-th/fi
A(t) = e (5.28)

B(t—t’) is the unit step function

_ l t>0
B(t) — 0 t<0 (5.29)

The commutator is defined as

[A(t) ,B(t’)] = A(t)B(t’)-n' B(t’)A(t) (5.30)
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where n = 1 for bosons

- -l for fermions

The phonon problem is a boson problem, therefore, n = 1.

'Also, the average is

tr(p...)

<....> = ' 5.31
W ( )

where p = e-H/T. (TEkT)

H is the Grand canonical Hamiltonian and is related to the

canonical Hamiltonian by

H = H—uN (5.32)

where u is the chemical potential and

N is the number of particles

Using tr(AB) = tr(BA), and Equation (5.28) we

can Show

G(t,t’) = G(t-t’) (5.33)

Next, we define the correlation functions

FAB(t,t’) <A(t) B(t’)> (5.34a)

~FBA(t,t’) <B(t’)A(t)> (5.34b)

The correlation functions also depend on the time variables

through their differences, and one related by

ifi _
FBA(t + ?—) — EAB(t) , (5.35)
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The relation between the Green's function and correlation

function can be shown to be

 

. . iwt

FBA(t) = 15 lim f (G(w+i§&'G(w'l€))e dw (5.36)

€++O E—'

e - n

The correlation functions of interest in the phonon

problem include those of the operators Ua(£,t),

Pa(£,t), a;(k), aj(k). We will look at the displacement-

displacement correlation function

FAB(t) = <Ua(£,0) UB(£ ,t)> (5.37)

For a=B, 2:1’ and t=0, E gives the mean square displace-

ment used to calculate the Debye-Waller factor in

scattering theory and in the Mossbauer effect, and to

calculate the frequency spectrum. The mean squared

momentum correlation function is used for calculating

the doppler energy shift in the Mossbauer effect which

is velocity dependentwhereas the probability of emission

is dependent on the mean squared displacement. The creation-

destruction operator correlation functions are used in

phonon scattering calculations of lifetimes of modes

and transport processes. The displacement operator

Green's function is

r ’ 2 _ _ZTTi _ ’ ; ’

Ga8(£,£ ,t,t ) — -:fi—-6(t t )<[Ua(£,t).UB(£ .t )]>

(5.38)
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First, we want to find the equations of motion of this

quantity. Taking the first time derivative with reSpect

to t, we have

 

 

O

°r .0 ’ _ “'ZTTi _ I »

GaB(£,£ ,t,t ) — (h 6(t t )<[Ua(£ ).UB(1.t)]>

-2Tri ’ . 2 ’

‘h 6(t_t )<[Ua(£1t)rUB(£lt )1)

where fia(£,t) = Pa(£,t)/ma(£). Taking the second time

derivative, we have

-2ni 6(t-t’)(

'h ma(£) \

 

..r ’ ’_ ’

Ga8(£’£ ,t,t ) — [Pa(2,t),UB(z,t)J>

.4:ng)9(t‘t'>
<[5a(%,t).UB(2

:t’)]>

0.

Using Equations (5.2) and (5.5), we have

..r

I ’ _ -2“ _ ’

GQB(£,£ ,t,t ) — EETET 6(t t )6m861,1’

+
 

Zni 6(t-t’)
” ” ’ ’

h. ma(g) £244¢aY (1,2 )<[Uy(£,t)Ud£,t )]>

G:B(£,£’,t,t’) 537E) 6(t-t’)

l ’I r ’I I I

Wyi”¢ay (119' )GYBUZ' IQ' Itlt)

Taking‘UnaFourier transform we have

2 I) r ” I .-

ig”(w ma(£)6wyéfi,£” ¢ay(£,£ ))GYB(£ ,£,w)—6q86g£, (5.39)
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.This is identical to Equation (5.8) showing that the

Zubarev double-time Green's function and the classical

Green's function satisfy the same equations with the

corresponding quantum operators replacing the classical

variables.

With the theoretical background we can now look

at various theoretical approaches to the density

of states.

Defect Clusters
 

Our first model for the density of states for

the phonon spectra of disordered chains will concern

itself only with the light impurity-band modes. Dean18

associated the structure in the impurity band

(2<w2<4 for TE): 2 and L— = l) with isolated clusters

, mL 1%
for random chains. We will attempt to reconstruct the

impurity band density of states by configuration averag-

ing all the impurity modes in an n site defect cluster

embedded in a host chain. For example, for a 6 site

cluster one possible configuration would be one defect

and 5 hosts (h-h-h-d-h-h), etc.). For the random system,

the probability of occurrance of their configuration is

5. This configuration gives rise to only oned)

impurity mode as we shortly show. For this mode we

5
have weight 6 Cd(1-Cd) . Using the monatomic chain Green's

function derived in Appendix E, we use the Green's
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function techniques to enumerate all the impurity modes

arising in defect cluster to size 3 in Appendix F. We,

also, have generated the impurity mode frequencies for

defect clusters up to size 6, by embedding the clusters

in a 1000 unit host chain, then finding the eigenvalues

and eigenvectors for w2>2 by the methods previously

described. Table 5.1 lists the eigenfrequencies in the

impurity band of all possible clusters of size less than

or equal to 6, where the defect mass is half the host

atom mass.

Once we have the relative weights of each eigen-

frequency, we can form a bar graph like those in Sections

II and III. To get the correct density of states in

the impurity band we can normalize this bar graph to

correspond to the Matsuda-Teramoto formula, Equation

(3.113). First, for sake of comparison with the

.numerical plots we normalize the bar graph instead so that

the peak at w2=2.66 is equal to that of the corresponding

numerical calculation. This normalization gives a cumula-

tive density of state well under that given by Equation

(3.113). .Figures (5.1), (5.2) and 5.3) are the density

of states plots in the region 2<w2<4 for 4, 5, and 6 site

embedded cluster approximations for Cd='5 random systems.

The corresponding numerical density of states is super-

imposed. The four site cluster displayes 6 of the peaks

of the numerical density of states structure. The 5 site
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TABLE 5.1.--Impurity mode frequencies of defect clusters

embedded in a host chain, mh/md=2.

 

 

 

Cluster eigenmodes in

size type region 2iw214

l d 2.6667

2' 3 dd 3.23607

3 ddd 2.4142,3.5214

dhd 2.4142,2.8393

4 dddd 3.675,2.839

dhdd 2.623,3.258

dhhd 2.592,2.727

5 ddddd 2.306,3.l32,3.7659

ddhdd 3.132,3.332

dhddd 2.293,2.707,3.528

dhhdd 2.6618,3.237

dhdhd 2.274,2.643,2.906

dhhhd 2.643,2.6876

6 , dddddd 2.636,3.332,3.8236

ddhddd 2.3929,3.224,3.536

ddddhd 2.573,2.8995,3.678

ddhhdd 3.212,3.259l

dddhhd 2.3928,2.6724,3.5217

dhddhd - 2.552,2.6876,3.278

dhdhdd 2.3921,2.815,3.25995

ddhhhd 2.666l,3.236l4

dhdhhd 2.3920,2.6622,2.847

dhhhhd 2.659,2.6738
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cluster displays 10 of these peaks. The 6 site cluster

gives no major new information as to the defect cluster

modes responsible for the peaks. The 6 site cluster

does, however, weight the peaks much more realistically

than does either the 4 or 5 site cluster.- It also

gives a clue to the reason for the non-zero density of

states between the 1, 2 and 3 site cluster modes. This

peak broadening is due to an effective cluster-cluster

energy splitting (dd-h-h-dd). A ten site cluster would

give even a better frequency spectrum. As one might

expect, as we go to lower concentrations of defects

this approach works even better since the defect clusters

will be more isolated from each other by host masses and

the probability of many defect strings is greatly

diminished. Figure (5.4) gives the 6 site embedded

cluster spectrum for Cd='2 random along with the

corresponding numerical plot. The agreement is remark-

ably good. In each case presented above, we will look

at the integrated density of states of the 6 site cluster

"properly" normalized compared to the numerical results.

Figure (5.5) is for Cd='5 and Figure (5.6) is for C =.2.
d

The numerical results for Cd=.2 random are for a 10,000

unit chain and give an integrated density of states in

t the impurity band of .1712 versus .1667 theoretically. If

we adjust for this error, we can see that except for a
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162

 

[Jr—(0' Ewe, CLUSTET‘

/— Numem’cfiu '

 

 

1

2 3

FIGURE 5.6.--Integrated density of states for C =.2 random
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region 2.66<w2<2.80 the fit is almost perfect. The Cd='5

plot shows serious discrepancies throughout the region.

This is one indication of larger clusters than we con-

sidered being important. Any short—range order only

makes this problem more serious. The correlation between

the correctness of this model and the localization

length is apparent. If the localization lengths Le(w2)

and LE(w2) are short (~1—5 atoms) in the impurity region,

the model works well.

Not only does this model fail at high defect

concentrations, it also gives no information on the

density of states in the host band (Dim212) and on how

it is depleted to form the impurity band. Therefore,

we look at another simple model.

n Site Periodically Extended Model
 

Butler and Kohn59 first suggested reconstructing

the electronic denSity of states by taking clusters

as we did in the last section and periodically continuing

a given cluster throughout the system. Then they

configuration averaged the density of states over all

possible clusters. We, in a similar manner, take the

possible spectra resulting from a periodic chain with

an n site basis, and obtain an "average" spectrum by

properly weighting each individual n site periodic

spectrum. The weighted average is based on the probability
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of obtaining the given sequence of atoms that make up

the basis. Essentially, the average is performed as if

the basis were in fact a cluster in the medium. This

procedure has sOme definite advantages over the embedded

cluster approach. These are: (l) we obtain the total

frequency spectrum not just the impurity band; (2) the

errors are not as concentration and short-range order

dependent as in the embedded cluster; (3) the frequency

spectrum is normalized to one as constructed without

the introduction of some ad—hoc renormalization criteria.

It however also has some bad features. These are: (l)

the averaged n site periodic system does not display the

theoretical zeros in the density of states often tending

to infinity instead of zero at the theoretical zeros;

mH mL
(2) the host band (0<w2<2 for 5; =2; 7+ = 1) has many

infinite singularities in it. This is a very undesirable

feature since theoretically most of the singularities

should not occur and numerically most of them do not

show up.

In Appendix G, we derived the theoretical density

of states of these n site periodic systems for the '

binary chain with n=1,2,3,4 and 6. In Table 5.2 »we

list a complete set of bases which give all the unique

frequency spectra for 4 and 6 site periodic systems.

We note some of the 4 and 6 site bases are not primitive

bases but are composed of multiple 1,2, and 3 site periodic

bases.
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TABLE 5.2.--The bases for all possible 4 and 6 site

periodic chains.

 

 

Basis Size Complete Basis Set

4 (l) hhhh

(l) dddd

(2) hdhd

(4) hhdd

(4) dddh

(4) hhhd

6 ' (1) _ hhhhhh

(l) , dddddd

(2) hdhdhd

(3) hhdhhd

(3) ddhddh

(6) hhhhdd

(6) ddddhh

(6) V hdhhhd

(6) dhdddh

(6) dddhhh

(6) hdhhdd‘

(6) dddddh

(6) hhhhhd
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The four site periodic system has only 6 unique

bases out of 24=16 and the six site periodic system has

only 13 unique basis out of 26=64 possibilities.

By using the analytic expressions for density of

states given in Appendix G we can generate the average

density of states to any desired accuracy. We have,

however, found difficulties in getting a reasonable

integrated density of states with the numerous singulari-

ties in each spectrum (about 12 singularities per 6 site

configuration). We have in fact 104 unique singularities

in an average 6 site density of states spectrum. There-

fore, we average the numerical spectra generated by

l0,000 atom chains with an n site basis, instead of the

analytical expressions to avoid the infinite singularity

difficulties in the analytic expressions. Figure (5.7)

shows the Cd='5 random spectrum produced by an averaged

4 site cluster. Comparing with the superimposed numerical

results we conclude that the 4 site periodic system gives

a quite poor reproduction of the frequency Spectrum.

Figure (5.8) for Cd=.5 random produced by an averaged 6

site periodic system looks much more like the experiment.

The structure in the region 0<w2<2, however, does not

appear in the numerical results. The density of states

is in good agreement with numerical results in the region

2<w2<4. The density of states in the impurity band is
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in fact overall in much better agreement with experiment

than is the embedded cluster density of states. We see

very good agreement in the structure of the density of

states except at w2=3.l4 and 3.34 where the 6 site periodic

system does not reproduce the expected peaks which the

embedded cluster approach did. Figure (5.9) is the six

site periodic averaged spectrum for Cd=.2 random. The

host band structure is much more vivid than in the Cd='5

random case. This is just opposite to the experimental

behavior where the in-band structure for Cd='2 is less

than that in the Cd=.5 random spectrum. The calculational

reason for the increased structure in the periodic

cluster calculation is clear. Of the possible 6 site

periodic clusters, the clusters containing 0 or 1 defects

are given much more weight than the bases containing)

5 or 6 defects. For Cd=.5, all clusters have equal

weight. In the impurity band, the embedded clusters

spectrum is of equal accuracy if not superior to the

averaged periodic structure.

Figure (5.10) for Cd=.5, Pd,d=0‘l was generated

by the 6 site periodic system. Comparing this figure

with the superimposed numerical results we see that the

6 site periodic system gives the general overall structure

quite reasonably. However, the actual detail is quite

2 2
poor. The in-band structure (0<w <1, 2<w <3) is, for

'the most part, not present in the numerical results and
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the peaks in the rest of the density of states do not

carry the prOper weights.-

Figures (5.11), (5.12) and (5.13) show the

integrated density of states for Cd=.2 random, Cd=.5

random and Cd=.5, Pd,d='l' respectively. The 6 site

periodic system even with the spurious structure in the

host band region does a remarkable job of recreating

the integrated density of states. The errors are less

for the random systems but the relative error is in no_

case over 5%. We would expect a 10 site periodic cluster

to do even better.

Using the basic concepts develOped in these two

simple theories for the density of states, we can now

look at a more complicated theory which will eliminate

the deficiencies of these theories.

Self—Consistent Cluster Theory

With clusters imbedded in a.host chain we found

that the basic impurity modes could be described, but we

had no handle on the host band structure. From the

periodically extended cluster model, we were able to

reasonably reconstruct the whole density of states.

The periodicity introduced in this model had the effect

ofproducing regions of finite spectral density versus

isolated peaks in the embedded cluster approach. The

difficulty with the periodically extended cluster method

is that in each configuration a given cluster only
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interacts with identical clusters, clearly an unphysical

~assumption. An ideal cluster approach would allow a

given cluster to interact with all other possible clusters

throughout the entire chain. In practice however, such

a calculation is impossible and therefore we now consider

a theory in which the cluster interacts with an effective

medium of identical average clusters. By including, in

an average way, the interactions among different types

of clusters we remove the unphysical singularities of the

periodically extended cluster method, while retaining the

short-range correlations among atomic vibrations, which

is the virtue of the above cluster methods. Clearly there

must be some optimum way to chose the effective medium;

in the work which follows we shall show how the effective

medium can be chosen in a self-consistent way. First we

shall review some of the history of self-consistent

effective medium approaches to scattering theory. Then

we shall introduce the so called single-site Coherent

Potential Approximation (CPA) and finally we shall consider

the cluster CPA and apply it to our problem.

Lax60 examined the many body problem in terms

of multiple scattering theory. Lax used the method of

self consistent fields. This method assumes that a wave

is emitted by each scatterer of an amount and directionality

determined by the field incident on the scatterer. The
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incident field is the effective field which includes the

effects of all other scatterers. In other words, the

effective field is composed of the waves emitted by all

other scatterers. Although a self consistent solution is

often difficult to obtain, the solution will contain all

orders of scattering. Ten years later in 1961, Langer,61

recognizing that a phonon in a disordered system can be

treated asra wave scattered at lattice sites, attempted

to calculate the density of states of a one-dimensional

harmonic random chain With no force constant changes.

In the scattering wave formalism, the Green's function

has the interpretation of the phonon propagator. Langer

reasoned that in a random system any site is as likely

to be occupied by a host or defect as any other site

and that for the density of states or other quantities

directly calculable from the prOpagator a configuration

averaged phonon propagator is needed instead of the

propagator for one possible configuration of atoms. The

averaged crystal will possess the same symmetry as the

monatomic chain where we have placed a self consistent

mass on each lattice site. Langer reiterated the Dyson

equation (5.40a) in a k space representation where the

.perfect-chain Green's function is site diagonal. He,

then, took the configuration average of each term of

the series. By diagramatic arguments he extracted from

each term all single particle scattering. He was able to



178

solve the self consistent problem where only single

particle or two particle multiple scattering occurred.

In each case, the singularity at the top of the host

band was reduced from a square root singularity to a

fourth root singularity. The density of states was

[not an analytically continuous function as one would

eXpect.

Davies and Langer61 were able to write a self

consistent equation to all orders in scattering, simply

by replacing certain unperturbed propagators in their

expansion for the self energy with the final propagator

for which they were solving. The physical reasoning

for this replacement however was unclear. Davies and

Langer were not able to solve their equation for all

concentrations of defects. They, however, found a solution

for small Cd. The solution had the bad feature that r

as concentrationcd increased, one can obtain a finite

density of states in regions forbidden even to the light

mass chain, a completely unphysical result.

‘Taylor63 and Soven64 , on a suggestion from Lax,

reformulated the self-consistent scattering problem

for the phonon and electron problems, respectively. We

will present the basic theoretical structure of the

theory in text with the specific details of Taylor's

single site self-consistent method left to Appendix H.

First, we define a number of different Green's

functions.’
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(l) g = (gw2-2)-l, the Green's function of the

perfect monatomic chain.

(2) g = (ng—g-g)-l, the Green's function for a

specific configuration of a disordered chain.

(3) <§?E§ = (ng-g—g)-l, the configuration

averaged Green's function for the disordered

'lattice. (We use both a bar and <> to

indicate configuration averages.) a has the

symmetry of the perfect lattice. X is often

(called the self energy although for the

phonon problem it is really a self consistent

mass.

(4) g = (ng-g-g)-l a reference Green's function

displaying the periodicity of the perfect

chain.

We define the scattering matrix, 2 by

g =1; + 225 <5-4o>

Using the definitions of G and R we have

5‘1 + g = 5w2-2=g'1+g

(5.41)

M g=§+yeyg

Substituting Equation (5.40) in (5.41), we get .

-1

fl
?

H
o u

"
a

($213 I
I
I
-
3

) (5.42)
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For the mass defect problem g is site diagonal and so is

g by definition. We expand T and $1; in terms of a site

representation

(5.43)

I
I
I
-
3

ll

2
0
M

“
#
3

g
o

(5.44)

I
I
O

"<
3

I
l
l

N
o
n

l
l
<
‘
.

It is important to understand Equations (5.43) and

(5.44). Where as g and and (g-g) are diagonal matrices

with all diagonal elements non-zero, the matrices 22

and 22 are zero except at diagonal site ‘2. For example,

I
l
r
-
B

II o (5.45) 

   

whereas

£+l (5.46)
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Substituting Equations (5.43) and (5.44) into (5.42)

we get

Equating terms in R, we get

(5.47)

"
a u

H
<

3
0 W
3
+

u
m

2
0
M

Removing the term £’=£ from the summation and solving

for T1 , we get

§)-l¥g(l+§ Z 21’) (5.48)

2 #2

"
*
3

= (4:21 2

We now define the single site scattering matrix

(5.49)

l
l
r
f

II

(;‘¥

Even though g has all elements possibly non zero, g2

has only one matrix element, that at (2,2). Substituting

(5.49) into (5.48) we get

(1+5 2 I 4) (5.50)

Finally, taking the configuration average we get

<T>=<

I
l
fl
'

g(;+§ Z T ’)> (5.51)

£¢2’=

The theory is exact to this point. The configuration

average of the RHS of Equation (5.51) requires the

solution of the full NxN matrix for a chain of length, N.
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The single site approximation decouples the

configuration average into

><1+5 2 <2
<

2 £,#£"
a

> = (2 ,>) (5.52)

R R

where we have in effect made an error of

<§2§£,§£(gg"<Tg’>)>' (5.53)

The first Equation (5.52) describes the average

effective wave seen by the 1th ion while the second

Equation (5.53) describes fluctuations in the effective

wave.65 Neglecting the terms in (5.53) means that we

neglect all correlations between scattering on different

sites and consequently cannot see the effects of short

range order between sites.

If we add the £’=£ term back into the RHS of

Equation (5.52) we get

<2£> = ($1) (;+§<g>)-<E£>§<gl>

<22) = (;+<EQ>§)-1<Eg>(;+§<T>) ' (5.54)_

Since from Equation (5.43),

(g) = X (22'),
(5.55)

R

A

"
*
6 V II

p
5
4

l
l
!
”
-
l

+ A

l
l
r
f

£>§) .<E£>(;+§<g>) (5.56)
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Using the definitions of the reference Green's function

and the configuration averaged Green's function, we have

n
o
:

u

u
m +

u
m

fi
g

"
d

(
E
:

or

<g> = g = R + <I>

"
w

Substituting Equation (5.58) into (5.57) yields

(é-g) = <2><4+5<2>>’1

Using Equation (5.56), this reduces to

z - g = Z (1+<:->B)’1 <: >
— - —£ — —2

k

In site representation, we have

2 = o + (1+<t >R)-l<; >
:2, :2] :2, = _2

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

The single site approximation has resulted in a scattering

expression in terms of the single site t matrices t It

includes in an approximate way all scatterings apart from

that at site 2. Self-consistency is achieved by asserting

that on the average the remaining scattering, by t2, be

zero. Therefore t£=0.
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For this case, we see by Equation (5.56) that

<3>=0 and g = g and g = g. This approximation is also

called the coherent potential approximation (CPA). Setting

the configuration average Green's function equal to the

reference Green's function requires a self consistent

solution to the configuration average of Equation (5.49),

l-g)-1. We show this calculation in Appendixwhere §=(g_

H. For this single site CPA we can also obtain CPA self-

consistency by reiteration. The procedure is as follows.

(1) initially take g = 0

(2) calculate g = (g

(3) calculate <; > using Equation (5.49)
4

(4) calculate ; from Equation (5.61)

(5) set g = g and start over at step (2).

We reiterate until <§z>becomes as small

as desired.

The only real complication in the procedure is

finding §,which is non-trivial because g-1 is finite

over the entire matrix. We use the method of matrix

inversion described in Appendix E. The explicit calcula-

tion is done in Appendix H.

In the corresponding electron problem the configur-

ation averaged density of states is-simply given by the

fimaginary part of the trace of the configuration averaged

Green's function. In the phonon case, the configuration

averaged density of states is given by
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_ 2 _ 1 .__

D(w ) - m Im Tr (gg) (5062)

where we used Equation (5.19 ).

Therefore we will have to get an expression for the

configuration average of fig. First we have, in site

representation,

5
z (5.63)

I
I
O

5

2I
I
Z
I

I
I
O

I
I
Z

(mg) = = 2 ){(S

— 5,2

where x6 's the oncentration of constituent 5,

of mass M and G is the conditionally configura-

tion averaged Green's function when we require

that there be an atom of type 5 on site .

The Green's function for the disordered system satisfies

the Dyson equation

H
O

N
C
)

:24-

"
"
0

g

which we configuration average to yield

is = Egg—g? = 2+1; 2 x5922: (5.64)
5,2

5 5 2
where £2 = (M-g )w

Therefore

, we can solve for fig in Equation (5.63)

getting



2 X5M595 = MG - (P_1G+I)w 2
-2-) == = — =

52

.since 5 = <E’l-§>’lv g'lé-g = 4E

and

—- 2

5G = (fi'é/w )§ (5.65)

where g is the mass matrix of the perfect chain and

;=g. For the single site self consistent theory, the

site representation of most of these quantities are

scalars.‘ The reason we have kept the full matrix notation

will become apparent in the next few pages. From Equation ‘

(5.65) we see in the phonon case, the parameter 2/w2=o/w2

plays the part of a frequency dependent complex effective

mass i.e.

2
~where = (g-g/w )(5

|

ll

"
3

2

I
I
Q
I

H
z

2

By using the single site approximation we are

neglecting all correlations between scatterings on

different sites no matter how close together those differ-

ent sites may be. All scatterings are either multiple

scattering from a single site or else they are scatterings

from an effective medium. Such an approximation might be

alright if all modes were so localized that there was no

overlap between them, but as we have seen from the plots

of localization of the eigenstates, there is appreciable

overlap of the modes even at rather high frequencies. The
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advantage of a cluster calculation is that local correla-

tions between scatterings from different but close sites

can be exactly included.

An obvious generalization of the single site

approximation is to consider each site in the above

formalism as a cluster. ‘The site representation becomes

a cluster representation. Again we neglect correlations

in multiple scattering between clusters. We can however~

introduce short-range order in the cluster and treat all

scattering in the cluster correctly. In most general

form, the self consistent parameter Q becomes block

diagonal with each block the size of‘a cluster.

 

    

II
 

   

II
 

  OIV , (5.66) 

 I
D H

 

   

Cl 02 03

c2 = O4 C'5 CI6 ‘ (5.67)

or7 08 O9
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for a three site cluster.

=0 _0

8 2‘ 6

there are only 5 independent parameters instead

Butler67 has noted that by symmetry 01:09, 04:0

and 03:07;

of 9. The reference Green's function R has the same

periodicity as the self energy a. A characteristic block

2 of R can be found by using the methods of Appendix E

for the inversion of an infinite tridiagonal matrix.

Introducing the symbol

8 = mwz-ZY (5.68)

we have

_ -l -l B-A-ol y-oz -03 -1

R2 :(P ‘0) 2 = l""2 5‘05 Y’Oz (5.69)

-U

3 Y-OZ B‘43-‘51

where A and B are the boundary diagonal elements of

matrices as follows

 

-1

2 Y"0'2 ’03 .

A/Y = 8-05 y-cz (5.70)

-l

2 8-01 y-oz -o .

B/Y = Y-02 8-05 -02 . (5'71)

-03 Y_02 B-Ul-B 1'1

from which we see A=B.
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Now generally Equation (5.69) may be rewritten

5'1 = g‘1 -X QR. (5.72)

As before, g1 takes on the interpretation of a matrix

as big as the entire system but with all elements, apart

from those in the cluster i, equal to zero whenever g1

appears as a term in an equation for matrices with the

dimension of the whole system. The Green's function

describing a system with a cluster of configuration 5

embedded in an average medium with the periodicity of

the cluster has the following form within the space of

that cluster, 2.

(Gi)-l = (RQ)-l-(Ci-O£) (5.73)

Performing the same algebra as above for inversion we

V find

8 -A Y 0

(G6)-1 = l B (5 74)2’ ‘Y 2 Y O O

O y B3-A

_ 2 _ 2
where Bi: miw -2y:m(1—ei)w -27 .(5.75)

The coherent potential self-consistency now takes the form

II
C
)
!

II

II
t
o

(5.76)

or, because the set of configurations over which we average

gives G the translational periodicity of R,
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(3:

£
(5.77)

u
m

5 5

25X SR 8'H
Q

We can show that this equation for the self consistency

can be obtained by setting the average cluster t matrix

to zero.

PrOOf‘. 0 = <22) = 25 X6£i"§i‘22)§2]-1(§2’gz' (5'78)

0 = is x5{;-£8;1-<83>"1384}’1E8;1-<85>'11

(5.79)

or, multiplying by 52 on right and left

Xaxéfgi-ggl (5.80)

or, since g x‘3 = l, (5.81)

5Q = $2 Q.E.D.

which is the same as Equation (5.77).

A possible self-consistent procedure now becomes clear.

'One must numerically set the configuration average of

the inverse of the matrix in Equation (5.74) equal to

the matrix for RR in Equation (5.69).

We have attempted to use the reiterative solution

of the CPA given above for the three site cluster. How-

ever, we have never achieved convergence beyond w2=l.52.

AS long as the off-diagonal elements of g remain small,

Convergence is rapid; however as the values of c and 02
3

and 0 , the number of steps tobecome as large as 01
5
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convergence increases. In fact as we approach w2=l.50

rapid changes begin to occur in the off diagonal elements

of 0.

Because this method of solution failed we use the

ideas recently developed by Butler68 for a cluster treat-

ment of the electron problem. In fact, Equations (5.69)

through (5.74) are in.Butler's form and make the following

argument perspicuous.

Because matrix A is a function only of the

external medium it is independent of configuration.

Therefore once we have determined A we have essentially

determined G or R. The statement 6L:RL is, of course,

the statement that corresponding matrix elements are

equal. Therefore if we can find an equation including A

for one of the elements of this matrix equality and if

we can solve that equation for A then we have found the.

desired configuration averaged Green's function. We have

such an equation in the equality of the boundary elements,

say the (1,1) elements.

From Equation (5.69) we find

R£(ll,w2) = [8-6 ~gyg
T ‘1

l 1 (5.82)

where, for the 3-site cluster

9 = (Y-OZ, -c3); UT is the transpose of U (5.83)

and



B-G y-o
_ 5 2

2 ‘ Y-o 8-0 —A (5.84)

Similarly from Equation (5.70)

2 . -

A = Y [8-01-92gT] l (5.85)

Inserting Equation (5.85) into Equation (5.82) we find

an equation for R(l,l) involving A only.

Rg(1,1,w2) = A(Yz-A2]-l (5.86)

Next we can write the (1,1) element of GE as

a continued fraction, and finally set

. 2 2
. ’2 . . u" = u.) .

818283

where the probability P of various configurations may

include short-range order within the cluster, and Bi

may take on two values.

2
{mdw -2Y=m(l-€)w2-2Y

(5.88)

 

8i : mhw2-2y=mw2-2y=8

we obtain

2A 2 = Z 8(818283){81-A-y2[82-y2(83—A)’l]’1)'1 (5.89)

Y —A B.
l

for our final self-consistent equation. The result may

be easily extended to clusters larger than the 3x3 which

(we have used here for illustrating; on the right hand side
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of Equation (5.89) one simply extends the continued

fraction to as many sites as desired.

Before discussing the numerical solution of

Equation (5.89) we will make one more point. The cluster

CPA which we have solved above is akin to the periodically

extended cluster method discussed previously. The

difference, of course, is that in the cluster CPA a given

cluster can interact, though in an average way, with all

other possible clusters, whereas the periodically extended

model includes only configurations in which a given cluster

can interact with other identical clusters. This point

raises the question of whether there is a CPA analogy to

the embedded cluster method. Indeed such an analogy

motivated Butler's recent work on the cluster problem.

We show below the CPA analogy to the embedded cluster

method and then, following Butler, we show that if one

Inakes the so-called Self-Consistent Boundary Site (SCBS)

approximation one obtains the same result for G: as

we obtained above in the cluster CPA, namely Equation

(5.89). i

For this analogy we embed a n(=3)xn cluster with

a particular configuration 5, with probability

P(Ble...Bn), in an average chain. The average chain

has the periodicity 2f the host lattice With atoms of
 

average self-consistent complex mass m(l-E). Using the

symbol
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- _ - 2

B : m(l-e)w -2Y (5.90)

and as before in Equation (5.75)

I 2-

B. _ miw 2Y

The inverse Green's function for a 3-site system is

 

   

 

Y

5 —1 _

(G ) — B Y (5.91)

Y Bl Y

Y 82 Y

0 Y 83 _

Y Y

Y E Y

Within the cluster 2 then

Bl-A’ Y 0 -1

<3 _

G2 ‘ Y 82 Y (5.92)

I 2 - I -l

where A /Y = (B-A ) (5.93)

We determine the self consistent mass E as Butler did

by requiring the configuration averaged boundary element

of the Green's function (here 11) to be equal to the
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diagonal element of the reference Green's function, which

is

' -o)‘ = (EL-2145‘l (5.94)

where the constant A’ on taking the inverse is the same

as in Equation (5.93). From Equations (5.92) and (5.94)

we have

2 -l

R = A’(y2-A’ ) . (5.95)
11

Writing Gil in continued fractions the self consistency

condition is

-——§———-= 2 P(B 8 B ){B -A’-Y2[B -Y2(8 -A’)'1]’l}‘l
2 ,2 l 2 3 l 2 3

(Y -A ) 818283

(5.96)

The important point is that because G for the
11

embedded cluster analogy is the same function of its.

argument (A’) as is G for the cluster CPA, the self
11

consistency equations for A’ and for A in the two methods

(5.89) and (5.96) are the same. Therefore the two methods

are identical! 1

We now return to a solution of the cluster CPA.

We can reiterate Equation (5.87) or the n site equivalent

to the correct solution. We have found in practice that

we always get convergence to the correct solution by

'initially picking A to be the value of the perfect
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monatomic heavy chain plus a small imaginary part.

A = B-(B:-4Y2
(5.97)

We used the Newton-Raphson method69 to speed the convergence

of the reiteration to A. The procedure takes 3 to 6

reiterations in general to give A to .01% error. For

the 3-site cluster, for example, we have the error F

on any reiteration

P(A) = A/(YZ-AZ)*XX6{Bl-A-Y2[BZ-Y2(83-A)-l]-l}-l (5.98)

5

and F’(A) = dF/dA

= -—53113— —X x6{B -A-Y2[B -Y2(B -A)-1]_l}"2
(YZ'A2)2 5 l 2 3

X{1+Y4[BZ‘Y2(83-A)-l]-2[B3-AJ-2} (5.99)

Therefore the value of A chosen for the (J+l)-th

iteration is

AJ+1 = AJ-F(AJ)/F’(AJ) (5.100)

There is one difficulty to overcome in calculating

the density of states for the phonon problem which does

not arise in the electron problem where the density is

the trace of the configuration averaged Green's function.

For the phonon problem

_ _ 1. -———— (5.101)

tr Im MG ‘ nn Im tr “(G2 ’I
H

‘ 0(02) = -

Z

”(T
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where the last eXpression is that for an n site cluster.

In fact we calculated several candidates for the density

of states. In order of increasing agreement with experi-

mental spectra we tried

1. 0(02) = - % Im tr m(1-E)R (5.102)
11

an expression involving only the effective medium in

_the embedded cluster analogy. We solved for E by using

Equation (5.93) in the form

- 2 2

(l-e)mw = A+2y+Y /A (5.103)

The result for D(wz) was a series of broad flat peaks

rather similar to the results of the single site CPA as

one might have expected.

2. 0(02) = - — Im Exam G (5.104)

a configuration average of the boundary site expression.

Because the configuration average of the boundary site Green's

function is Rll this result for the density of states

closely resembles the result (1).

3. We calculated the full cluster trace indicated

by Equation (5.101)

Im tr) x‘SM‘SG‘SD(wz) '%fi-

0
'
)

1 2
EH.1m2 Z? .(w ) (5.105)

i 5
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This spectrum showed some of the peaks of the

' experimental spectrum but the peaks are rather broad and

do not have their centers at the right frequencies.

Actually our test of this expression was only for the

3-site cluster. This method has the advantage that

as the number of sites in the cluster gets larger the

method is guaranteed to improve, a statement which cannot.

be made for our final and best expression for D._

4. D(wz) = - -1- 1m) xdma (:5 (5.106)
"(T 5 CC CC

where cc indicates central site. For the 3-site cluster,

for example

-1

0(02) = - % Im2x5m(1-ez){82—Y2[81-AJ'1-YZEB3-AJ’1} (5.107)
5

We now show computations of the density of states

using the central site expression (5.106).

Figure (5.14) shows the density of states for

Cd=.l random for the l, 3 and 7 site self-consistent

clusters. All three cluster sizes reproduce the host

band structure reasonably well. The seven site cluster

is able to display some of the fine structure in this

region. In the impurity band, the improvement with

increasing cluster size is remarkable. The seven site

cluster reproduces the total density of states with great‘

precision. The superimposed 10,000 unit numerical chain

probably shows some small spurious structure in the host

band due to its short length.
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Figure (5.15) shows the density of states for

Cd=.5 random for the 1, 3 and 7 site self-consistent

clusters. The single site CPA completely fails to

reproduce any structure. With the three site cluster,

we pick up some of the major structure. The seven site

cluster again does a remarkable job recreating both

host and impurity band structure.

Figure (5.16) shows the single and 7 site self-

d

numerical plot is for 10,000 atoms which probably includes

consistent cluster for C =.9. The superimposed

some small spurious structure. The seven site cluster

. . . . 2

progress1vely shows more structure With increa51ng w .

.1Figures (5.17) and (5.18) are for C =.5,

d Pd,d=

and .9 respectively. For these two cases with very high

degrees of order, the seven site self-consistent cluster

does not give as good a frequency spectrum as in the

random cases. Both figures however, display all the

correct peaks in the frequency spectrum. They also seem

to display structure apparently absent from the experi-

mental spectra. We say apparently because the experi-

mental grid is A=.O4 whereas the cluster grid is .01333.

-The spectra show that a cluster size of seven is not

large enough to adequately reproduce the respective spectra

with high degrees of short-range order.

As a final comparison of the 7 site self consistent

cluster with experimental results we compare the
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integrated density of states for C =.5, random and

d

Pd,d='l' Figure (5.19) gives the comparison between

the experimental and analytic cluster results for Cd=.5

random. From this figure we see that at each sharp peak

in the spectrum we lose some contribution to the density

of state for the seven-site self-consistent cluster.

The total integrated density of states is .975 instead

of one.‘ When we compensate for this, the curves of the

numerical and 7 site cluster integrated density of states

coincidence until w2>1.9, whereupon the deviations between

the two are about 1% at most. Figure (5.20) shows the

comparitiveintegrated density of states for Cd=‘5

Pd,d=°l' Although significant deviations between the

,two curves are evident, the maximum relative errors'

are of the order of 5-6%.
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CHAPTER VI

CONCLUSIONS

In the preceding chapters, we have examined the

vibrations of disordered binary chains in the harmonic

approximation with all force constants equal. First,

we numerically examined the phonon density of states

of binary chains with short-range order generated by

ergodic Markov theory. The theory was used to introduce

nearesteneighbor and next-nearest-neighbor correlations.

When these spectra were compared to the spectra of random

binary chains with the same concentrations of constituents,

we found marked differences between them.

For the first order Markov chain we found that

the pair correlation functions were particularly simple

and that all higher order correlation functions can be

expressed in terms of the pair correlation functions.

The second order Markov chain theory does not give as

simple pair correlation functions and higher order

correlation functions cannot be expressed in terms of the

pair correlation functions. With the second order Markov

czhain, we demonstrated that a pair of quite different

frequency spectra can be obtained from chains with identical

pair correlation functions.
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In addition to numerically examining the frequency

spectra (eigenvalues) we also numerically examined the

eigenvectors of the chains. We were able to characterize

both the extent of appreciable amplitude of the eigen-

vectors and the exponential decay rate away from this

region of appreciable amplitude. We found that both

localization parameters displayed the same general functional

relationship versus wz; however, they were found to have

quite different functional trends at certain points. Short-

range order was found to radically change localization

values and their functional relationship to wz.

Theoretically, we constructed the phonon frequency

spectrum in three ways. First, we embedded impurity

clusters of size n in‘a host chain. We found the impurity

modes arising from each possible cluster configuration.

We were then able to reconstruct the impurityband spectrum

by properly weighting all possible n-site configurations.

This reconstruction conclusively demonstrated the origins

of the peaks and peak broadening in the impurity band.

It did not give any information on the host band region

of the frequency spectrum. The embedded cluster theory

was found to be highly dependent on defect concentration,

working much more satisfactorily below C =O.5 than above

d

this value.
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The second approach for reconstructing the phonon

density of states involved periodically extending the

n-site cluster throughout the chain. We then obtained both

analytically and numerically the spectrum of each possible

periodic chain with an n-site basis. The density of states

was reconstructed by averaging over all possible spectra.

Unlike the embedded cluster calculation, this method

reconstructed the whole frequency spectrum. For a six-

. site periodic system, the impurity band was reasonably

accurate independent of concentration and short-range

order. The host band region, although generally correctly

reproduced, possessed many discontinuities which are not

physically realistic.

The third method for reconstructing the frequency

spectrum was a self-consistent Green's function method.

An n—site cluster was embedded in a self-consistent host

)medium. The self-COHSistenCY was determined by requiring

the phonon scattering from the configuration average of

all clusters to be zero. We were able to simplify

greatly the problem by using the self-consistent boundary

site theory developed by Butler for the one-dimenSional

electron problem. We were able to prove that Butler's

approach gives zero scattering from the configuration

averaged cluster. For the seven-site self-consistent

cluster we obtained excellent agreement with the numerically

generated density of states for all concentrations in



211

random systems. When high degrees of short-range order

were introduced,general agreement was obtained. By

correlating the cluster size, localization lengths, and

goodness of frequency spectrum, we were able to predict

the approximate size of the cluster required to give

agreement with numerical results.
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To calculate the density of states (spectrum) of

a linear chain of length N, we need to be able to cal-

culate the eigenvalues of the eigenvalue Equation (2.3)

in text. Rewriting Equation (2.3) as

2

(g-Iw )5 = 0 (A.1)

where

i.= r261 5i.
3 i I]

:1————5..

%E_IE_—— l'Jtl
i iil

g is clearly a symmetric tridiagonal matrix. Now, we

denote the principal minor of order r of (§_;w2) by

Pr(w2). Letting P0(w2)=1, we can write a recursion

relationship between these principal minors.

2 — _
Pl(w ) — H— w (A.2)

1

2

2 _ 2Y _ 2 2 _ Y 2
Pin» ) — (fin-.- 0 ’Pi-i‘“ ) (m—_.m.“”14“” ) (4.3)

i 1 1-1

ZiiiN

The zeros of Pr(w2) are the eigenvalues of the leading

principal submatrix of order r of Q. We denote this

submatrix by gr. Since g and 2r are Hermitian their

eigenvalues are all real. Now, we will show that eigen—

values of gr are separated in the strict sense from the

220
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eigenvalues of B—r+1' The proof is by contradiction.

Assume u as a zero of Pr(u) and Pr_l(u); then, using

Equation (A.3), we have u is also a zero of Pr_2(u) since

(wZ/mimi_l)#0. Continuing this argument, we have u is

a zero of P0(u) which is a contradiction of the definition

of P0(u).

Because of the strict separation of zeros of the

Br's, Given's was able to devise one of the most effective

ways of determining the eigenvalues of a symmetric tri-

diagonal N by N matrix. The chain with periodic boundary

conditions is not tridiagonal requiring a transformation

to reduce it to tridiagonal form, whereas the chain with

fixed boundary conditions is already tridiagonal.

Theorem: Let the quantities P0(w2), Pl(w2)....

PN(w2) be the principal minors of a symmetric

tridiagonal matrix, evaluated for some value of

wz; then S(w2), the number of agreements in sign

of consecutive members of this sequence, is the

number of eigenvalues of g which are strictly greater

than wz.

To apply this theorem we must find a way to deter-

mine a sign if Pr(w2) is exactly zero. If Pr(w2)=0,

then Pr(w2) is taken to have the opposite sign of

Pr_l(w2).
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The proof of the eigenvalue theorem is by induction.

Assume that the number of agreements in sign Sr(u), in

the sequence P0(u),Pl(u)...Pr(u) is the number of eigen-

values of gr which are greater than u. If we denote the

eigenvalues of gr by xl,x2...xr, then

xl>x2>x3>...>xs>u:xs+l>xs+2>...>xr (A.4)

Next, the eigenvalues of §r+l’ we denote by yr,y2...yr.

Since the eigenvalues of gr and gr 1 are separate in
+

the strict sense, we have

yl>xl>y2>x2>"'>y3>xs>ys+l>xs+l>'°'Yr>xr>yr+l'(A‘s)

B=r+l' therefore, has 5 or s+1 eigenvalues greater than u.

In terms of these eigenvalues the principle minors can

easily be evaluated.

r

Pr(u) = i21(xi-u) (A.6)

and

r+l

Pr+1(u) = i£l(yi-u) (A.7)

If no xj=u and no yj=u, there are two cases to

conSider. If ys+1>u, then Pr(u) and Pr+1(u) have the same

sign and S (u)=Sr(u)+1. If y u, then Pr(u) and<

5+1

Pr+l(u) have opp051te Signs and Sr(u)=Sr+1

definition of Sign of Pr(u) when xs=u and Pr+1(u) when

r+1

(u). Using the
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ys+l=u completes the proof.‘ A sequence of principal

minors, P0(w2), P1(w2)...PN(w2) satisfying the above theorem

is said to possess the Sturm sequence property.

For the linear chain, Rosenstock and McGill43

have shown that the atomic displacements from equilibrium,

U1,U2,U3...UN form a Sturm sequence with initial conditions

U0=0 and Ul=l where Equation(2.2) is rewritten as

mi 2
U1+l = (2 - '7— ’.L) )Ui-Ui’l (A.8)

Since the Sturm sequence generated by Equation (A.8)

requires either approximately one half the computer

storage or one half the computing time of Equation (A.3),

we have used Equation (A.8) for most of the spectra

presented.

To determine the range of permissible eigenvalues

of the matrix g in Equation (A.1), we use the fact that

the absolute value of all the eigenvalues of g must be

less than or equal to the infinite norm of 2,42 or

2

lw |:|lBl|m (8.9)

N

where IIBIIoo = Mix §=1lbij|

For the linear chain

IIBII..= (we—(min -,;Y— =37) (4.10)
L L L . L



224

where mL is the lightest mass in the chain. For

M

computational convenience we take 7£'=l; therefore,

Iw2|14 sets bounds on the frequency spectra. We, also,

know that physically w must be real or 0210. Therefore,

the spectra of all chains must be in the interval Oiwzi4.

If we divide the interval into 100 equal parts each .04

wide,a reasonable histogram frequency spectrum is produced.

To calculate the eigenvector of a chain given in

Appendix D, we will need to know individual eigenvalues

to a considerable degree of precision. Any eigenvalue can

be determined to any degree of precision by the method

of bisection. First, we know that all eigenvalues must

lie between 0.0 and 4.0. If we take a =0, and b =4.,

0 0

then for the 5 step in the bisection we have

CS = 8(as_l+bs_l) (A.11)

s-l’bs-l)'

. 2

Next, we compute the Sturm sequence Wlth w =Cs and

where Cs is the midpoint of the interval (a

determine S(CS). Suppose we are looking for mi, then

if S(Cs):K, then we take aS=CS and bs=b and if S(CS)<K,
s-l'

we take a =a and b =C . By this method we can locate
s s-1 5 s

an eigenvalue mi in p steps to be in an interval (ap,bp)

of width (bO—aO)/2p = 4/2p = 22‘9.

For implimentation of this procedure on a digital

computer, the precision to which the computation is carried

is important because of computer rounding errors. The
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error in the bisection described above is %(4/2p) or Zl-p.

In addition, Wilkinson42 has shown the computer error

is 18.08/2t where t is the binary precision to which the

computation is carried. One significant fact is that

the error is independent of the chain length. The total

error is, therefore,

ET = (18.08)2’t + 21'p (A.12)

where p is the number of steps in the reiteration

and t is the conputational binary precision.

For example, for computations on the UNIVAC 1108 single

precision computations (27 binary bits) give a minimum

error of 1.35x10-7 and double precision computations

-17
(60 binary bits) give a minimum error of 1.57x10 . To

obtain errors of less than 10-8, (~2-27) we must use

double precision computations requiring 2—27121-p or

p128.

For each computation of the Sturm sequence there

are of the order of 2N multiplications and subtractions.

For each eigenvalue there are 2Np computations. To find

all the eigenvalues requires 2N2p computations by the

method of bisection versus N3 for most other methods.

For N>2p, the method of bisection is favored.

The method of bisection must be carefully examined

for the case of eigenvalues near zero and close eigen-

values. For eigenvalues near zero, the accuracy of the

eigenvalue computed by bisection may be small. For example,
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'if mile—4, single precision computation with errors of

at least 1.35x10“7 will give less than three digit

accuracy for mi. In double precision with p=28, the

error is ~10.8 or w: is good to about four digit accuracy.

For close eigenvalues, more than one eigenvalue may lie

in the interval (ap,bp) of error. The eigenvector

computations give indications of this trouble and are

discussed in Appendix D.
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PROOF OF ERGODIC MARKOV CHAIN THEOREM

Theorem 1: An irreducible aperiodic recurrent Markov chain

possesses a unique long run distribution. The long run

distribution {ny, keC} of an irreducible aperiodic recur-

rent Markov chain is the unique solution of

1T1: = g 7Tj P37}: (8.1)

satisfying

2 mk = 1. (B.2)

k

Recall that Pj}:(n) is the n step transition probability

to go fnmnstate j to k and P. ,=P. (l).

‘ JI}‘ JIk

To prove this theorem, a number of new quantities

and additional theorems will have to be introduced. By

analogy to Equation 3.35 for the conditional probability,

fj P’ of even visiting the state k, given the chain was

’5

in state j, we define the conditional probability fj k(n)

I

of the first passage from j to_k occurring in exactly

n steps.

f = P[Vk(n)IXo=j] (B.3)

ank‘m

where for any state k and integer n=1,2,... we define

chain segment, or set, V

Vk(n) = [Xn=k,Xm#k for m=l,2,3...n-1]

227
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Theorem 2: For any states j and k,

(D

f. = X3,k r1 fj,k(n) (8.4)

1

Proof: Define

Vk = [Xn=k for some n>0], then

Vk is the union of the sequence odeisjoint sets

{Vk(n),n=l,2,...}

f.

J.k

I
I
M
S

PEVk(n)IXO=j] = : f.'k(n)t= PEV Ix =j] =

k 0 1 n 0 3n

Q.E.D.

The n-step transition probabilities Pj k(n) and the first

I

passage probabilities f. (n) can now be related.

J,k

Theorem 3: For any states j and k and integer n11,

n ‘ .

Pj,k(n) = mil fj,k(m)Pk,k(n'm) (B.5)

where we must logically have

P = 5 (the Kronnecker delta). O .

J,k( ) J,k

Proof:

n

z Ptxn=k,xm=k,xq¢k forP[x =k|x =j] =
n y o m=l

q=l,2,...m-llxo=j]

= z P[Xn=klxm=k]P[Xm=k,Xq#k for q=l,2,...m-1IXo=j]
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Pj,k(n) = mil Pk'k(n-m) fj,k(m) Q.E.D.

In the step before the last one we multiplied the conditional

probability that if m is in state k then n is state k by

(fine probability that m is the first passage to state k to

obtain the probability that both occur. Such a multipli-

cation of probabilities is correct only if the pro-

babilities are independent, which is not true for arbitrary

chains but is true for Markov chains. Next, we can relate

the conditional probability of ever visiting a state fj,k

to the conditional probability of visiting the state an

infinite number of times, gj k'

I

Theorem 4: INN: any states j and k

— ' n

gk'k — 11m (fk'k) (B.6)

n—mo

and

. = . B.7
gj,k f3.k gk,k ( )

Proof of B.7: From Equation 3.36

gj,k = PENk(m)=m|XO=J]

ll

"
M
8

PENk(w) - Nk(n)=w, Xn=k' Xq#k for

n l

q=l,2,.. .n-llxo=j]
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= X f n = X f. n
n=l gk,k j,k( ) gk,k n=1 j,k( )

by Theorem 2

v = I ‘ OEODO

937k gk,k f3.k Q

Proof of (B.6):

For n11 look at

PENk(m) : n|XO=kJ =

co

mil PENk(m)-Nk(m)in’lr
Xm=kr quk, for q=l,2,...m-l|x0=k]

mil P[Nk(w)-Nk(m):n-1|Xm=k] x

PEXm=k, Xq¢k for q=1,2,...m-11X0=k]

Z PENk(w):n-1|X0=k] fk,k(m)

II T
]

|'
—'
I

Zk(m)_>__n-1|XO=kJ fk,k

repeating this procedure n times

n

PENk(w):nIXO=kJ = fk,k n11

therefore

PENk(w)=w|xO=kJ=iim PENk(w):nIXO=k]

n+co

_ . n
_ :12 fk,k Q.E.D.
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From Theorem 4’since Oifkkil,

gk,k=l or 0

and

gk,k=l if and only if f = l

gk,k=l if and only if f < 1

TheorennS: For any state k,

fk kxl if and only if 2 P (n)<m

' =

and

"
M
B

fk,k=1 if and only if Pk’k (n)=oo

n 1

Proof: To prove theorem 5, we need to perform a

transformation on the transition probability and the

conditional probability of first passage

00 n m n

P. z ZZP. n=5.+ZZP. n

J:k( ) n=0 J:k( ) 3k n=l J,k( )

f. (2) = 2 2n f. (n)
31k - n=1 31k

for |Z|<1

(B.8)

(B.9)

(8.10)

(B.11)

(B.lZ)

(8.13)

(B.l4)

Next, take Equation 3.5, multiply by Zn and sum over n

from one to infinity; we get

00 n y -

i Z Pj,k(n) —

"
(
‘
4
8

N M

n 1 1 m=l ’

fj k(m) P
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interchanging the sumation on the RHS

m m w n-m
P. Z -5. = Z Z f. 2 Z P n-m

jlk( ) jlk 111:]. j,k(m) n=m k,k( )

Pj,k(Z)—6jk = fj,k(z) Pk,k(z) (B.15)

From this

Pk,k(Z)-l = fk,k(z) Pk,k(z)

or fk k(2) _ 1 - P 1 Z) (B.16)

’ k,k

Next Since fk,k = E fk,k(n) (B.l7)

n—1

and lim_ f (Z) = I f (n) (B.l8)

Zvl k’k n=l k'k

Lim_ P (Z) - 2 P (n) ’ (B.19)

Z+l k’k n=0 k’k ,

where 1- is approaching one from less than one we have

fk,k<l lff E fk,k(n)<l from Equation B.17

n—l

X f (n)<1 iff (lim_ fk k(Z)<1 from Equation B.18

n=l ‘Kk Z+1 ’

lim_ fk k(Z)<l iff lim; Pk k(Z)<0° from Equation B.16

Z+l ’ 2+1 ’

co

Lim P, (Z)<oo iff Z P (n)<0° from Equation 8.19

Z+l n-0

similiarly

f =1 iff 2 f (n)=l iff Lim_ f (Z)=1

iff iiT— Pk,k(z)= m 1ff n: Pk,k(n)= w Q.E.D.

0
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Next, we define the expected first passage length

m = i n fk,k(n)

Theorem 6: ILet k.be a state such that

. _ ~ . 1 m 1
fk,k-l and mk,k< , then le H X Pk,k(m) m

n+w m=1

and for any state j

. 1 m 1
le ~ 2 P. m = .

n+m n m=l 3,k( ) j,k m

 

Proof: Assume that

Lim_ ((l-Z) A(Z))=L exists where

Z—>l

a znA(Z) = 0 n

n I
I
M

8

Expand A(Z) in a Laurent series about Z=l

A(Z) II +

n
bn(Z-l)

= L( x Z ) +

m=0

:
3

I
I
M
8
l
l
M
8

o

:
1

O

(B.20)

(8.21)

(B.22)

(8.23)

(B.24)

interchanging summations in the second term on the RHS

A(Z) = L( z zm) + 2 2m 2 (“H-1)”m b

m=0 m=0 n=m m

= 2 2m (L+ z (n)(-1)“‘m b )
m n

m=0 n=m

Therefore, equating powers of Z to Equation 3,24

_ m n _ n-m

an — L+ 2 (m)( 1) bn

n=m
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Now, look at

1 N N=m w

lim — X am=L+lim

N+w m=0 N-*0° m=0 n=m

m n
. l n _ n-m _ n_

“12:: N W “n” 1’ - <m> so)

 

= L+lim —— = L

N+m N

1 n 1
Therefore to show lim H X Pkk(m) =

n+m m=l mk,k

we need to show that

 

 

. l
le_ ((l-Z) P (Z)) - ————

2+1 k'k mk,k

or equivalently

Lim 1 = m

2+1- (l_Z)TPk,k(Z)3 klk

using Equation B.16 , we get

l-f (Z)
. k k

le ’ = m

2+1' ( 1-z ) k'k

’ _ m n m _ n

fk,k(z) E fk,k(n) Z 3 fk,k(n)((z l)+l)

n-l n—l

- 2 f (n) z (“Hz-1f“

n=l k’k m=0 m

= X f, ,(n) +- 22 f (n) X ( )(Z-l)

n=l L'L n=l }"k m=l m

_ m n _ m
- fk,k + E fk,k(n) X (m)(Z l)

n—l =1
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Since fk,k=l is given

n

 

m n m-l

_ - 2 f (n) 2 ()(2-1)
1 Z n=l k,k m=l m

l—fkk(Z) w ( )

Therefore, lim_ (————:———) = X n f n = m

2+1 1 Z nzl k’k k,k

l n

Finally for Lim — Z P. (m) we can look at
n _ j,k

n+m m—l

L" 1-z p. 21m_ (( ) 3,1,} ))
Z+l

using Equation 8.15 we have

Lim_ [(l-Z) fj,k(z) Pk,k(z)]=

 

Z+l

. (1-2) 1
Lim_ f. (2) _ = f. —— Q.E.D.

2+1 3'k 1 fk,k(27 3'k mk,k

For an irreducible recurrent Markov chain

fj k=l for all j and k, implies

1 n 1 “
Lim K E P.,k(m) = le.H E Pk,k(m)

n+m m—l n+w m—l

1

mk,k

 (8.25)

The sum is independent of the starting state. This implies

the limit exists in the ordinary sense so that

. l .

Lim P (n) = = lim P. (n) = 1r

n+m k,k mk,k n+w 3,k

 k (B.26)

where Equation 3.39 is employed. This shows the ergodic

chain possesses a unique long run diStribution. Now,

we can complete the proof of Theorem 1.
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First, we define

n

clearly,

= ' *Wk lim P j,k(n)

n+oo

Summing over k, we get

X n = 2 lim P? (n) < lim Z P? (n) = l

k k k n 3'k “'n+w k 3'k

or Z "k <1 (B.28)

Next, using the Chapman-Kolmogorov equation, we have

Pj'k(n+1) = i Pj'i(n) Pi’k (3.29)

Then,

1 n+1

P§,k(n+l) = H3I mil Pj,k(m)

n+l n+1

(n+l)P§’k(n+l) = mil Pj,k(m) = Pj,k + :2 Pj,k(m)

n

= Pj,k + mil P.'k(m+l)

Substituting Equation 8.29 into the above

. * — . =
(n+l)Pj'k(n+l) Pj Z Z Pj i(m)Pi

m=l i ' 'k

' Dividing by n and interchanging the: summations of the RHS,

we get



l l l n
(1+n)Pj,](n+l) P. § ( X Pj,i(m))Pi,k

= *
Z Pj i(m)Pi

i I Ik

Taking the limit as nrm, we get

. l * 1 _ '_

Lim [(l+fi)P ,k(n+1) fi-P. J _ w _

mi. 3

Lim Z P*..(n)P. > (lim P*. . n P.

n+m . 31 .,k - E n+m 3:1‘ )’ 1k

= ; Tri Pi,k

i

or Wk 1 2 Ni Pi,k (B.30)

1

Now, we sum over k

E w > Z in P. = Z n. X P. , = Z n.
k k “'k i k i,k i i i i,k i 1

Therefore, the equality is proved and

“k = 2 Ni Pi,k (B.31)

i

and the inequality in Equation 8.28 is actually an

equality giving

2 ”k = 1 (8.32)

k Q.E.D.

Finally, the following definition is often employed

Definition: 1x recurrent state i is called positive

if mk k<oo or null if mk k=9. A recurrent

I I

state which is neither null nor periodic is

called ergodic.
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Third Order Two Constituent Markov Chain
 

For a two state, third order Markov chain, the

3
transition probability matrix is 23 by 2 or has 64 elements

3+1

of which only 2 =16 are nonzero. These elements are:

Pddd,d = Pddd,ddd

Pddd,h = Pddd,ddh

Pddh,d = Pddh,dhd

Pddh,h = Pddh,dhh

Pdhd,d = Pdhd,hdd

Pdhd,h = Pdhd,hdh (3'33)

Pdhh,d = Pdhh,hhd

Pdhh,h = Pdhh,hhh

Phdd,d = Phdd,ddd

Phdd,h = Phdd,ddh

Phdh,d = Phdh,dhd

Phdh,h = Phdh,dhh

Phhd,d = Phhd,hdd

Phhd,h = Phhd,hdh

Phhh,d = Phhh,hhd

Phhh,h = Phhh,hhh

Using the reduced notation and eliminating identically

zero elements, Equation 3.42 gives
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Cdddpddd,d + Chddphdd,d = Cddd (3'34)

Cdthddh,d + Chthhdh,d = thd (3.35)

Cdddpddd,h + Chddphdd,h =ACddh (3°36)

Chhdphhd,d + thdehd,d = Chdd (3'37)

thhpdhh,d + Chhhphhh,d = Chhd (3'38)

thdpdhd,h + Chhdphhd,h = Chdh (3°39)

Cdthddh,h + Chthhdh,h = thh (3'40)

Chhhphhh,h + cdhhpdhh,h = Chhh (3°41)

Equation 3.20 becomes

Pddd,d + Pddd,h = 1

Pddh,d + Pddh,h = 1

Pdhd,d +Ipdhd,h = 1

Phdd,d + Phdd,h = 1 (3°42)

Pdhh,d + Pdhh,h = 1

Phhd,d + Phhd,h = 1

Phdh,d + Phdh,h = 1

Phhh,d + Phhh,h = 1

Finally, Equation 3.40 gives

Cddd + thd + Cddh + thh + Chdh + Chhd + Chdd + Chhh = 1

(3.43)

One of the above equations is redundant. We can arbitrarily

eliminate Equation B.41. Also, we must relate the cluster
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concentrations to the host and defect concentrations.

This relationship is

12

ddd 3 (Chdd+cdhd+cddh) + §(Chhd+chdh+cdhh) (3'44)

and - c + c = 1. (8.45)

Therefore, we have 16 equations with 24 unknowns

, requiring the specification of 8 variables. If we specify

Cd'Pddd,d'Pddh,d'Pdhd,d’Phdd,d'Pdhh,d'Phhd,d and Phdh,d'

we'get

 
 

Chdd = Cddd(l-Pddd,d)/Phdd,d ' (3°46)

Cddh = Chdd (8.47)

c = C 1’Pddd,d Phhd,dphdh,d-Phdh,d-Pddh,dPhhd,d

dhd ddd Phdd,d Phhd,dphdh,d_Pdhd,dPhdh,d—Phhd,d

(3.48)

Chhd = (Cddh-thdpdhd,d)/Phhd,d (3°49)

Chdh = (thd-Cddhpddh,d1/Phdh,d (3°50)

chhd = cdhh (3.51)

Chhh = l-(Cddd+cdhd+zcdhh+2Cddh+chdh1 (3°52)

where
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C

 

 

d
C :

ddd. 1+ 1'Pddd,d 2Phhd,dphdh,d-2Pdhd,dphdh,d-Phhd,d(l+Pddh,d)+Pdhd,dedh,d1)

Phdd,d Phdh,d(Phhd,d-Pdhd,d)-Phhd,d

(3.53)

and

Phhh,d = Chhd(l_Pdhh,d)/Chhh

The specification of all eight inputs in a coherent

fashion is clearly difficult. The constraints on these

inputs are not clearly visible requiring trial and error

specification. The complications involved in the third

order Markov chain will inherently limit its application.

Second Order, Three Constituent Markov Chain
 

We will briefly examine the three constituent

second order Markov chain because it can be applied to

generating "salt" like chains. 'For'the 3 state, second

order chain the transition probability matrix has

32-32=81 elements of which 32+1=27 are nonzero.

Equation 3.20 in text when we eliminate the zero

matrix elements becomes



11,1 11,2+P11,3

P +P

12,1 12,21”P12,3

P13,1+P13,1+P13,3

P21,1+P21,2+P21,3 =

+P

P22,1+P22,2 22,3

P23,1+P23,2+P23,3

+P

P31,1+P31,2 31,3

P32,1+P32,2+P

P33,1+P33,2+P33,3

32,3

II

H
F
4

(
a
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+
4

)
=

H
H

where we have constituents l,

'
U

I
I

33,1

C11P11,1+C21P21,1+

C

C13P13,1+C23P23,1+

C11P11,2+C21P21,2+

C

C

c11P11,3+C21P21,3+C31P31,3

C12P12,3+022P22,3+C32P32,3

C13P13,3+C23P23,3+

12P12,1+

12P12,2

’ P33,31'

Equation 3.42 in text

C

C

C

C

+C P
22

13P13,2+C23P23,2+C33P33,2

C

31P31,1

22P22,1+C32P32,1

33P33,1

31P31,2

33P33,3

22,2+C32P32,2-

(B.55)

2, and 3 and, for example,

becomes

11

21

31

0
0

0
0

12

22

32

13

23

0
0
0
0
0

33

(3.56)

(B.57)

(B.58)

(3.59)

(8.60)

(3.61)

(3.62)

(3.63)

(3.64)
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Finally Equation 3.40 in text gives

C11+C12+C +c +C +C +C +C +C = l q (8.65)
13 21 22 23 31 32 33

These cluster concentrations can be related to the in-

dividual concentration of constituents by

_ 1
Cl — Cll + 2(Cl2+C21+C31+C13) (8.66)

c = c + 1(c +c +c +c ) (3 67)
2 22 . 2 12 21 32 23 '

and

C +C +c = 1 . (3.68)
1 2 3

Here once again one equation can be shown to be redundant

leaving 21 equations with 39 unknowns or 18 specifications

being required. In itself 18 specifications makes the use

of the three constituent second order Markov chain almost

impossible.

However, with the solution of the 2 state, first

and second order Markov chains, we can make the following

hypothesis:lk n constituent, tth order Markov chain will

require (n-l)(nt) specifications.

Next, we will look at the three state, second

order chain where adjacent alike constituents (11,22,33)

are disallowed. Therefore, we have

C = C := C = 0 (B069)



We now rewrite

P12,2 = P

C1+C2+C3 = l

C1=C12+C13

12,1

P

P23,1+P23,2

P31,2+P31,3=

+3 =1P

21,2

32,1

+P =1
21,3

1

32,3
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C12P12,1+C32P32,1=C21

C

C21P21,2+C31P31,2=

13P13,1+C23P23,1=
C

C

31

12

Equations B.55 - B.68 as

=0 (B.70)

(8.71)

(8.72)

(B.73)

(3.74)

(8.75)

(8.76)

(3.77)

(B.78)

(3.79)

(B.80)

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

This equation set includes 15 equations with

21 unknowns requiring only 6 specifications.

first four specifications as

C
l,

C
2' P12,1'

and P

32,1

We take the
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The solution of'C3,P12’3 and P32,3 are trival. In

addition, we get

C _2P12,1(C1+C2)-P

21 l-P

12,1+P32,1‘P32,1(2C1+C2)

32,1+P12,1

 (B.86)

Using B.86 we can easily solve for C C
23' C13' C12' 32'

and C31 in that order. Since all the concentrations

have been found with these four specifications Equations

B.84 and 8.85 give

Pl3,l a P23,l (B.87)

P23”2 a P31,2 (8.88)

Apriori, we would not have expected this dependence among

probabilities. -For the last two specifications we can.

take P13,l and P21,2 completely speCifying the problem.

For the special case of an 1 21-X 3X salt in which

the substitutions are made on only one sublattice of an

otherwise perfect chain we must have Cl=0.5 and

C11=C22=C33=C23=C32=0° We then have x=2c3 and,

c2+c3=o.5

P21,21P21,3=1

P31,2+P31,3=1

C2P21,2+C3P31,2=C2

four equations in six unknown leaving only two parameters

to be specified.
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Examination of Structure of Pn
 

The 2 transformation defined by Equation 8.24

gives us a powerful technique for finding the n step

transition probabilities Pj,k(n)' If we define, the

z transform of the transition probability matrix as the

z transform of each element and simiarly for the un-

conditional probability vector, we can take the transform

of the Equation

p(n+l) = p(n) P 1 (B.89)
— ’

where p(n) is defined by Equation 3.24 and P by Equation

3.18 P=P(l) has no n dependence and as such is

constant under a z transformation, p(n) goes to

p(z)l=- Z p(n)zn and p(n+l) goes to

n=O .

oo on n

2 p(n+l)zn = Z p(n)§_

n=0 n=1 2

1 _ °° 1
=35; Z p(n)z - p(Oil =—(p(2)-p(0))

_ z
_n-O

Therefore, Equation B.89 becomes

1 _
5(p(2)-g(0)) — 13(2) :1: (B.90)

This equation can be rearranged to give

or §(z)=g(0)(}__—z§)‘
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If we take the inverse z tranformation we get

p(n)=p(0h9[(£fz£)_l 1 (3.91)
-’

Comparing Equation B.9l with Equation.3,25 we see the

important result

1] (3.92)
—_.

En =~9[(£-z§)—

where the inverse z transform is performed on each

element of (l-ZE)_1. For_the 2 state first order Markov

chain we can now easily derive Equation 3.29 from

Equation 3 . 2 7 .

l—ZPh,h - ZPh,d l-zPh’h - z(l-P

(I—zP) = =

-2Pd,h - l-de’d -z(l-P

h,h)

d,d) 1'zpd,d

The determinant of (I-zP) is

2

' z Pd,hPh,d
det( ) = (l-ZPh,h)(l-zpd,d)

1—z(P ) + 22(3
h,h+Pd,d h,th,d_Pd,hPh,d)

2
l-z(ph,h+Pd,d) + (Pd,d+Ph,h-l)z

(l-Z)(l-(P -l)Z)
+

h,h Pd,d

The inverse of the matrix is

1 l-de’d ZPh,d

(I-zP)- = 2P 1

d,h l
) (1-z)[1-(Ph’h+Pd,d-l)z]

 

_ZPd,d



248

We can expand each element by partial fractions. For

example the (1,1) element is

l-zP

  

  

 
 

d,d ' =A + 3

(1-2111—(Ph,h+Pd,d—l)z1 l-z l-<Ph,h+Pd,d—l)z

giving A+B=l

=AP +P =1 +B

pd,d ( h,h d,d )

A = (l-Pd,d)/(2_Ph,h+Pd,d)

and 3 = l-A = (1-Ph’h)/(2-Ph,h-Pd’d)

Therefore, we have

(I_ZP)-1 = 1 1'Pd,d 1'Ph,h 1

‘ 2_Ph,h_Pd,d l-Pd,d l—Ph,h l-z

+ 1 1’Ph,h’(1‘Ph,h) 1

Z-Ph,h‘Pd,d -11-Pd,d)l-Pd,d 17(Ph’h+Pd'd-l)z

The inverse z transformation is now easily performed since

. _ n _ 1

if f(n) - a , then f(z) — l-az'
 

N _ 1
- (2 

-Ph,h-Pd,d) 1’Pd,d 1‘Ph,h

N
l) -(1-P

(1-P

(l-PhIh)

- (l—Pd,d)

h,h)

d,d)

(Ph,h+Pd,d—
+

(Z'Ph,h’Pd,d1

 

which is Equation 3.29 in text.
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Since we know from Equation.3.50 and 3.51

ph,h = l-Cd(l-Pd d)/(l-Cd)

I

 

 

1-P
d d

- ’ _ = C (3.93)
(1 Pd’d)+(1 Ph’h) d

1-P

2 P §éh = 1-cd (3.94)

d,d h,h

and

- P -C

_ d,d d

(Ph,h+Pd,d—1) l‘Cd , (8.95)

we obtain

1-C C P -C N C C

pN = < ‘1 d)+(_€14£1__§.> < d d) (B 96)

l-Cd Cd l—Cd -(1-Cd) (l—Cd)

1-C C

lim p” = (l-Cd Cd) (3.97)

N»w d a

For the two constituent second order Markov chain, the

matrix inversion becomes more difficult. For this case

\

phh,h phh,d 0 0

0 O P P

P = hd,h hd,d (8.98)

Pdh,h Pdh,d O O

O O P P

where p(n) = [Phh(n) Phd(n) Pdh(n) Pdd(n)]
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l_z(l-Phh,d) -ZPhh,d O 0

(I-zP) = 0 1 ”2(1’Phd,d) -ZPhd,d

—z(l-Pdh,d) -2Pdh,d 1 O

O O _z(l-Pdd,d) l-ded’d

Taking the determinant, after much simplification we get

D = det(I-zP) = l-z(P l)

dd,d—Phh,d-

+ z (Pdd,d—Pdh,d-Pdd,dPhh,d+Pdh,dPhd,d)

3
+ z ( 2

Pdh,d_Phh,d+Phh,dPhd,d+Pdd,deh,d- Pdh,dPhd,d)

4 , -

+ Z (Phd,dpdh,d+Phh,ded,d_Pdh,ded,d Phh,dPhd,d)

)+22(PU = (l-z)[1+z(
Phh,d—Pdd,d hh,d—Pdh,d-Pdd,dphh,d+Pdh,dPhd,d)

3

+ z (Phh,dphd,d+Pdd,deh,d—Pdd,dPhh,d—Pdh,dPhd,d)J (3'99)

. D must be factorable to use the expansion by partial

fraction. A simple factorization of D does not seem

pOSSlble. For speCific numerical values of Pdd,d’ Pdh,d’

Phd,d’ and Cd where

Cd(l-P )(l-P
P : dd,d dh,d)

hh,d 1 +2(1-p
+Phd,d_Pdd,d-Cd(Phd,d dd,d11

one can factor D.



251

12 13 14

22 24
(I—zp)‘ ll

C
l
)
"
’

32 34

42 a43 a44

where

_ _ _ 2 _ 3 _

a11‘1 zpdd,d z (1 Phd,d)Pdh,d+z (Pdd,deh,d Phd,deh,d)

2 3
a =z (l—Pdh’d)(l-Phd’d)+z

21 (Phd,d-Pdd,d+Pdh,d(Pdd,d_Phd,d)

_ 2

a3l-z(1 - z (1-P
-Pdh,d) dh,d)Pdd,d

=zz(l-P )(la

41 dh,d _Pdd,d)

=zP - 22

a12 hh,d Phh,ded,d

2

a22=l_z(Pdd,d—Phh,d+l) + z Pdd,d(l-Phh,d)

=zP‘ 2
a dh,d-z (Pdh,d-Phh,d+Pdh,ded,d)32

+ z3[P (
dd,d )]Pdh,d-Phh,d

_ 2 I 3 _ _

’2 Pdh,d(l 1+2 [Phh,d Pdh,d+Pdd,d(Pdh,d Phh,d)1a42 -Pdd,d

. _ 2 _ 3
a —z (1 P + z Phh,d

13 (Phd,d)Phh,d hd,d-Pdd,d)

=z(l-P d)-22(1-p 2
a23 hh,d+Pdd,d- Phd,d+Phd,dPhh,d)

3

+ z (1_Phh,d)(Pdd,d-Phd,d)
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2
=l-z(P 1 )+2 P d(l-P )

a33 dd,d+ -Phh,d dd, hh,d

= a22

2
a43=z(l-Pdd’d) - z (1"Pdd,d)(1'Phh,d)

2
a =z P

14 hh,dPhd,d

=zP -22P d(l-P

a24 hd,d hd, hh,d)

2 3

3 =2 Pdh,dphd,d + z Phd,d(Phh,d-Pdh,d)34

2
=l-z(1-P (1

a44 hh,d) ’ z -Phd,d)(Pdh,d)

3

+ z (l-Phd,d)(Pdh,d-Phh,d)

We want to examine this matrix for three cases.

I. First order Markov chain equivalent

Pdd,d=Phd,d; Phh,d=Pdh,d

and Phh,d=cd(l—Pdd,d)/(l-Cd)

11' Pdd,d=Pdh,d; Phh,d=Phd,d and

Phh,d=cd(1’Pdd,d)/(1'Cd)

III. for Cd='5' Pdd,d=Phh,d; Pdh,d=Phd:d

and Pdh,d=l-Pdd,d

Unlike cases I and II, the relationships in case III apply

for only a single value of the concentration.
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Case I:

D=(l-z)\l+z(Phh,d-Pdd,d)

=(1'Z)(1"Z(Pdd,d’Phh,d))

and

a =l-zP -22(1

11 dd,d —Pdd,d)Phh,d

=22(1-P )(l-P
a21 hh,d dd,d)

a =z(1-P 2(1
31 hh,d)-Z -Phh,d)Pdd,d

_2_ _ _

"141’2 (1 Phh,d)(l Pdd,d)‘azi

2

=ZP ’2 Phh,ded,da12 hh,d

2
=l-z(P +1) + 2 P (1

a22 dd,d-Phh,d dd,d -Phh,d)

2

a32=zphh,d‘z Phh,dpdd,d=a12

=22P d(l—P
a42 hh, dd,d)

2
a =2 (l

13 -Pdd,d)Phh,d=a42

2
a =z(l-P )-z (1

23 dd,d -Phh,d_Pdd,d+Pdd,dPhh,d)

2

a33=l-z(l-Phh,d+Pdd,d)+z Pdd,d(1’Phh,d1=a33

. _ - _ 2 _ _ -

a43‘2” Pdd,d z (1 Pdd,d)(l Phh,d1-a23
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_. _2 —

a24‘2Pdd,d z Pdd,d(l Phh,d)

a =22P P =a
34 hh,d dd,d 14

a =1-z(l-P1 )-22(l-P )P

44 hh,d dd,d hh,d

The expansion by partial fractions is tedious. For

all z Phh,d(1‘Pdd,d)+(1‘Pdd,d)(1'Phh,d) 1
 

 

 
 

example _ _ _

4 D Phh,d Pdd,d .1 Pdd,d+Phh,d 1 z

+ Phh,d(l-Phh,d) 1 1

(1_Pdd,d+Phh,d) 1’(Pdd,d'Phh,d1z (Pdd,d-Phh,d)

the inverse of this term is

(l (l-P )(l-P )

 

~9(a11) = Phh,d -Pdd,d) 6 + dd,d hh,d

D Phh,d—Pdd,d “'0 1’Pdd,d+Phh,d

Phh

1—3

,d(l-Phh,d) )n-l

dd,d+Phh,d

+
 

(Pdd,d-Phh,d

USing the relation between Phh,d and Pdd,d for case I

we have

(l_Pdd,d+Phh,d) = (1’Pdd,d)/(1‘Cd)

(l-Phh,d) = (1-2Cd+Cded,d)/(1-Cd)

(Pdd,d_Phh,d) = (Pad,d‘cd)/(1‘Cd)

therefore,

2

 

 

a11 Cd(1’Pdd,d) 1‘2Cd+Cded,d

‘91 D 1 P -c 5 o 1 +
dd,d d n'

n-l

+ Cd11"2Cd+Cded,d) (Pdd,d Cd)

1-cd 1-cd
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The inverse has prOperties

(a11) _ 1 n=0
‘5‘ _

= (1‘Phh,d)

as required, since for no transition (n=0) a state must

transition into itself (éii) and n=1 give 3 again. We

can now write, the total inverse in matrix form

~ Cd (1- Pddmf " Cd Pdd,dL1-Pddr3) Cd ( rad”)? Ca?oa,d(\‘fia,d)

('-P¢4,¢)(t-1Q+cd?.m) Pam 1‘2Cd +Q P446) 4142421)(Hum 214.4) {(1,40- QWQEJA)

 

‘1 0,0

P‘ PddA'Q ”'Pddfi (bicycfiw) ‘Cd Pad“) U‘Pdd,d) 813,3 (l-lCdi'QaJA) QPMAU'EM)

.
_ . - 4) 2

(l‘aé,d)(|-1CJ+CA 844,4) CHI-Pam)‘ ,(kgupo-zwcdf’dafl Q“ ““11

1‘2Cd+Cded,d Cd(1‘Pdd,d) Cd(1'Pdd,d) Cded,d

+ 1—2cd+cdpdd’d Cd(1'Pdd,d) Cd(1'Pdd,d) Cded,d

1’2Cd+CdPad,d Cd(l-Pdd,d) Cd(1‘Pdd,d) Cded,d

1-2cd+cdpcid’d Cd(1-Pdd’d) Cd(l-Pdd,d) Cded,d

Cd ( 14411432“) C} ( ram (I) - C401 Pdd d) ‘Cd 1344.4
W -——-—-——Kl_Cd I

 

(Paw-C1 (24.43%) «am—31)) (two-W) (main

+ A , ,

(‘gQ-lcd‘i‘cdpddtd) CiU’Pddmi —Cd(l~Pdd,¢|) 'Cd PAM
(“Q1

l-Cd

 
\ .. “-2ch Pam) 440196.43) u—cdxtfim) U‘Cd)Pdd,d

(3.100)
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Case II:

23

1+2 (Pdd,d-Phh,d)

— —
-

-
-2

-

D-(l z)(l z(Pdd’d Phh,d) z (Pdd,d Phh,d

=(1-z)(l-z(P ))(1—z2(P
dd,d-Phh,d dd,d—Phh,d)

  

=(l-z)(l-2(P ))(l+z/P ) x (1—z/P
dd,d—Phh,d dd,d-Phh,d dd,d-Phh,d)

and

=l—z(P )-z2(1-P +z3(P
a11 dd,d hh,d)Pdd,d dd,d)(Pdd,d-Phh,d)

=zZ(l-P 1)

3 .

d)+z (Pdd,d Phh,d)(Pdd,d-a21 dd,d)(1‘Phh,

_ _ 2 _-

a31‘2” Pdd,d)'z (1 Pdd,d)Pdd,d

=z2(l-Pa )2
41 dd,d

_ _ _ 2

a12—2(Phh,d) z (Phh,d)(Pdd,d)

=l-z(l+P ) + 22P
a22 dd,d-Phh,d dd,d(l-Phh,d)

=zP -22

3

a32 dd,d (Pdd,d Phh,d+Pdd,d)+z (Pdd,d)(Pdd,d Phh,d)

2 3
Pdd,d )+z (P

=2 (l—Pdd,d dd,d-Phh,d)(Pdd,d-l)

_2 -»3 _
5113‘2 (1 Phh,d>Phh,d+z (Phh,d)(Phh,d Pdd,d)

hh,d

22 3 '

1‘2 (l-3Phh,d+Phh,d+Pdd,d)+z (l-Phh,d)(Pdd,d-Phh,d1
3=z(1-P

a2

a33=a22
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2

1‘2 (1‘Pdd,d)(1“Phh,d)

l
Phh,d( _Phh,d)

_2 3 _
(Pdd,d)Phh,d+z Phh,d(Phh,d Pdd,d)

=l-z(1-P )-22(1-P +23(l-P
a44 hh,d hh,d)Pdd,d hh,d)(Pdd,d-Phh,d)

For the term

a.. = q+rz+szz+tz3

1]

the partial fraction expansion is

   

where d = P - P

(r+s+t+q)/(1-d)2

 

A =

B =(qd3+rd2+sd+t)/d(l—d)2

C = _(t+rd)+/d(s+dg)

2d(1-/21')2

3' = (/a'(s+dq)-(t+rd))/2d(1+/a‘)2

Therefore, for case II, the inverse transform gives
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. 2 2
(1—cd) cd(1-cd) cd(1—cd) Cd

2 2
p“ _ (1-cd) cd(1—cd) cd(1—cd) Cd

” 2. 2
(1—cd) cd(1-cd) cd(1—cd) cd

. 2 2
(1-cd) cd(1—cd) cd(1-cd) cd

2 2 2 2

Cd 'Cd “Cd Cd

n

+(Pdd,d-cd> -Cd(l—Cd) cd(1-cd) cd(1—cd) -cd(1-cd)

-c

  

  

  

 
 

d -cd(1-cd) cd(1-cd) cd(1-cd) -cd(1-cd)

2 2 2 2
(1-cd) -(1-cd) '(1'Ca) (1-cd)

_ n/2

+ 1 pdd,d Cd 1 + (-1)n x

2 1-cd (l_(3dd’d-Cd)%)2 (1+(Pdd'd-Cd)%)2

I‘Cd I-Ed

o Cd11-Pdd,d) Cd(1'Pdd,d) 0

I-cd 1-cd

l-P l-ZCdJ'Pdde —2(l-2Cd+Cded'd) -Cd(1-Pdd,d)

dd,d 1-cd 1-cd 1—cd

(1-3 ) _2P 1‘2Cd+Pdd,d Cd(1’Pdd,d)

dd,d dd,d l-C 1-c
d d

o 1-p -(1 o
-Pdd,d)
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n- _.

P .. -C .. 2, 2 . n1 dd d d '2‘" l (-l)
+ 2‘ T-CL__ P .‘-‘.C‘ 157 " ‘I P. w —c 15 Td (l—( dd d d) ) (1+( dd,d d 4

~ - T1———c - I-C ). 44. d d J

‘ . _ _ 2. _P )2
C (...? I): C-dedéU-Pd”) -L_d(‘ Pddfixl JQ'f'CdPQJ) -C-6 0 dd,d

dI-de I‘Cd l‘Cd 1 L1 “C411

. 1 1 2 3 - P )

-(I-P ,Xi-2WQP'42) _ QU‘PAA,A) -:~29+ch.4,4 4.1414; ext-Eu Mum a

z + Pad d'Cd> '2? 61' CdU‘Pcihcl) -C_d 844,4 (P173461

814,3 Ll-Pcw) , P443) l-Cd dd' (“Cd Pit-c.)

q? ( ? afcd_ (‘lCd‘r dd )‘ 4d

-.-...)2 .. p.33.» «1 woe-42... «—.:——.——~

(B.lOl)

For Case III, we have

3 = (1-z)(1-z3(1-2pdd d)2)
I

= (l—z)(l-a2/3z)(l¥a2/3ein/3z)(1+a2/39-ifl/3z)

where a = l-Zpdd,d

2 3
a11‘1'ZPdd,d‘z Pdd,d(1‘Pdd,d’+z (296d,d"1’(1‘Pdd,d1
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_ 2 3 _

azi‘z Pdd,d+z Pdd,d(l 2Pdd,d)

_ 2 2

a31‘zpdd,d z Pdd,d

a =22P (l-P )
41 dd,d dd,d

_ _ _ 2 2

a12‘a31‘zpdd,d z Pdd,d

a =l-z+22P (l-P )
22 dd,d dd,d

a =z(1-P )-22(l—P -P2 )+23P (1-2P )
.32 dd,d — dd,d dd,d dd,d dd,d

_ 2 _ 2 3 _ _

"142‘2 (1 Pdd,d) +2 (1.2Pdd,d)(Pdd,d 1)

_ 2 2 3 _ _

"113‘z Pdd,d+z (1 2Pdd,d)Pdd,d—a21

a -zP +22(1-3p +32 )+z3(1-p )(2p -1)
23 dd,d dd,d dd,d dd,d dd,d

a33=a22

_ _ _ 2 _ 2

a43‘2” Pdd,d) z (1 Pdd,d)

a =22P (l-P )=a
14 dd,d dd,d 41

_ 2 _ _ 2 _ 2_

5124“2 (1 Pdd,d) z (1 Pdd,d) ‘143

_ 2 2 3 _ _

5134‘z (1‘Pdd,d) z (1 Pdd,d)(l 2Pdd,d)

a =l-z(l-P )—22P (l—P )+z3P (l—2P )
44 dd,d dd,d dd,d dd,ddd,d

for the term aij=q+rz+szz+tz3 the partial fraction ex-

a.

pansion for the term -%;-is
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A+IB+ C +—D-
l-z l-dz l+d iw/B l+de_l"/jz

/3
h d = -w ere (l 2Pdd,d) and

A = q+r+s+t

4Pdd,d(I_Fdd,d1

B = t+ds+d2r+d3q

‘2
-3d (l-d)

c = [}t+d3q)((1-d)(d+2)-(1-d)(1+2d)e1“/3)+rd2(-(1-d)2+(1-d)

(d+2)e1“/3)

+ sdt-(i-d)2e11/3- (1-d)(2d+1)]/-3d2(Ld3)(e11/3-e‘11/3)

D = +C* (since d is real)

The inverse transform in rather symbolic form

is

1 1 1 1

n _ 1 1 1 1 1

P“:
1 1 1 1

1 1 1 1

+(1—2p )3§'(3 )+(—(1-23 )2/3e11/3) n (c )
dd,d ij dd, d ij

%/-i3/3) n
+(—(1-2pdd d) (c*j ) (3.102)
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where we note that the last two terms can be combined as

, 2n ‘ iwn —iwn

(—1)11(1-2pdd’d)—3— (CijeT + C313 e—r)

2n .

=(‘1)n(1‘21’dd,d’—§ 2Re (cije11m/3) (3.103)

Clearly, the long run distributions of constitutents,

C is completely random, C =(.5)(l-.5)=.25. Also Pn
gm £,m

is always real as we require since imaginary probabilities

are meaningless.

Statistical Analysis of Generated Markov Chains

In this section, we will statistically examine the

Markov chains we generate to insure the computational ac-

curacy of the computer programs which employ a random

number generator. For simplicity, we present the error

analysis only for first order Markov chains since Pn is

quite complicated for the second order Markov chain. In

addition, we will only examine Pd,d(n) since the other

probabilities give similar results. Using Equations 3.106

and 3.107in text, we will use a 99% confidence level C,

expressed as a certain number of standard deviations,

C = a0 (B.104)
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the maximum relative error we will tolerate is

(3+C)-u) C 0

u u (11)

From Equations 3.106 and 3.107

[(N P (n)<1—P (nm?5
E = a dd,d d,d
 

 

NPd,d(n1

_ 1'
or E — a/%(FE—ETHT - 1) _ (8.105)

The 99% confidence limit gives a =2.58. Tables 8.1, 8.2,

8.3, and 8.4 are for Pd,d=‘l' Cd=‘5' and N=1000, 10000,

100000, and 1000000 atom chains respectively. For each

case, the n=1 case provides a test of the statistical

accuracy of the random number generator.

Table B.1.--Statistic error analysiscmfa.chain With N=1000,

Cd=.5, Pd d=0.l compared to 99% confidence

I

limit error of Equation 8. 105

 

 

 

Pd,d(n) Relative Error

n

Calculated Experimental Acceptable Experimental

(Eq. 8.105)

1 0.1 0.09419 .245 .058

2 0.82 0.82129 .0382 .0016

3 0.244 0.24346 .144 .0022

4 0.7048 0.70423 .0528 .0008

5 0.33616 0.32661 .115 .0284

6 0.63107 0.63306 .0624 .00315

7 0.39514 0.40404 .101 .0225

8 0.58389 0.57374 .0689 .0173

9 0.43289 0.44332 .0934 .0241

10 2 0-55369 . 0.55061 .0732 .0056
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Table 8.2.--Statistic error analysis offia chain with N=100000,

Cd='5' Pd d=0'1 compared to the 99% confidence

I

limit error of Equation 82105

 

 

 

 

 

 

 

Pd,d(n) ‘ Relative Error

n

Calculated Experimental Acceptable Experimental

1 0.1 ' 0.10112 .0774 .0112

2 0.82 .81418 .0121 .0071

3 0.244 .24955 .0454 .0227

4 0.7048 .69678 .0167 .0114

5 0.33616 .34415 .0363 .0238

6 0.63107 .62159 .0197 .0150

7 0.39514 ‘ .40313 .0319 .0202

8 0.58389 .57836 .0218 .0095

9 0.43289 .43507 .0295 .0050

10 0.55369 .55322 .0232 .0008

Table 8.3.--Statistical error analysis of a chain with

N=100,000, Cd=.5, Pd d=0.1 compared to the

99% confidence limit error of Equation 3,105

Pd,d(n) Relative Error

n

Calculated Experimental Acceptable Experimental

1 0.1 0.09818 .0245 .0182

2 0.82 .82278 .00382 .00339

3 0.244 .24144 .0144 .0105

4 0.7048 .70787 .00528 .00436

5 0.33616 .3333? .0115 .0083

6 0.63107 .63433‘ .00624 .00517

7 0.39514 .39190 .0101 .0082

8- 0.58389 .58810 .00689 .00721

9 0.43289 .42916 .00934 .00862

10 0.55369 .55811 .00732 .00798
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Table 8.4.--Statistical error analysis of a chain with

N=l,000,000, Cd='5’ Pd d=0‘1 compared to the

I

99% confidence limit error of Equation FL105

 

 

 

Pd,d(n) Relative Error

n

Calculated Experimental Acceptable Experimental

1 0.1 0.09950 .00774 .005

2 0.82 0.81999 .00121 .00001

3 0.244 .24392 .00454 .00033

4 0.7048 .70457 .00167 .00033

5 0.33616 .33562 .00363 .00161

10 0.55369 .55481 .00232 .00202

 

The table show that the computer routines are clearly

generating first order Markov chains. The only two vio-

lations which occur at n=8,10 for N=100,000, are out of

acceptable error limit by less than .l%, which we do not

Consider significant. With confidence that the chain

generation is correct, we can rearrange Equation 8.105

to give another important statistic tool. We might like

to generate a chain with C =.5 and P -0.1; with a 99%
d d,d—

confidence that the relative errors will be no greater

than 1%. Solving Equation 8.105 for N we have

2
_ a l

E d,d

P =0.1 is the most severe constraint of any P (n) with

d,d d,d

=.01 and a=2.58, we have
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N 1 599,076 2 600,000 atoms

We must generate quite long chains to insure a high degree

of statistic accuracy in the chains.

From this analysis, we note that, for a given

length chain, the Cd='5’ random chain will contain the

smallest overall statistical errors of any binary chain.

In this case P2m1n1=°5 for all n, whereas any other con-

centration and short-range order will give some

P2,m(n)<.5 (£,m=h or d) and therefore insures higher

errors. Very low or high concentration of a given con-

stitutent as well as a high degree of correlation will

greatly increase overall statistical errors.

Although we have not presented a statistical

analysis for other Cd and Pd,d and for the second order

.Markov chain, computer studies have been performed to

verify the validity of these computer programs.

 



APPENDIX C

SHORT-RANGE ORDER PARAMETERS

267



X-ray and neutron scattering have provided solid

state experimentalists with a powerful technique for

examining the structure of solids. The differential

scattering cross-section per unit solid-angle %% in the

Born approximation is given by

Eff _ E— 311(81(k'k1°r V(;)drI2 ((2.1)

where k is the incident wave vector

+ ’ I

k is the reflected wave vector

u is the reduced mass in the center of mass

system

and V(f) is the interaction between the incident

wave and the scattering center.

The interaction V(;) is the electron density for x-ray

scattering, and V(;) is the nuclear density for neutron

scattering. In the case of elastic scattering, we have

k=k’. We recall that the Born approximation is valid only

when the scattering center is quite localized and has a

sufficiently small scattering strength.44

For the perfect crystal, the scattering potential

V(;) will be periodic or translationally invariant.

V('£+E) = w?) (c.2)

—> -+ —> -+ .

where 2 = £1al+£2a2+23a3, 21,22,23 are integers,

and 31,32,33 are the basis vectors of the

primitive lattice cell.
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.+

Rewritting V(r) as

.+->

+ o

V(r) = 2 V+elG 1

E G

then

V(;+§) = V(f) =

or

+—>

6'2 = 23n, n=integer

(C.3)

(c.4)

6 is the reciprocal lattice vector of the crystal defined

by Equation (c.4).

Using Equation (C.3) in Equation (C.l), we get

(
L

O W_ ’ I1 2 1f i(E-E’+E)-§d+lz

47? Ge rO
.
-

.
‘
O

1"
I _B.2V

2“)’fi G

’ 3 -> +

E— |i%%l— 3% 2 V+0(k-k’+G)|2

.6 E G

or the cross section vanishes unless

, + ->

= k+G3
'
4

(C.5)

(C.6)

Equation (C.6) is the Bragg reflection law for the perfect

crystal.

For the disordered lattice, we must return to

Equation (C.l). The integral can be usefully broken into

three parts

1. a sum over the lattice sites I

o + i

2. a sum over the baSis r3.

2
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3. an integral over the rest of space f”

+ + + +

-i Ak ° r +rT+r”)( ) ( Q 3

fe1(k‘k 1'rV(E)dE = 2 fd}”e V(E”)

i,j

+,+

where 1k = k -k

-lgk‘;£ -iZk-§. -iZk-E”

= E e 2e fe V(r”)dr”

1 3

'3k 7-i °r

= Z f(Kk)e R (C°7)

2

where we define the structure factor by

+ -iXk-Ef -iXk-E” +

f(Ak) = Ze Jfdr”e V(r”)

j

The differential scattering cross section is therefore

proportional to

iZkoE

1|2 (c.8)Idlz f£(Zk)e

2

This is true for the perfect lattice as well as

the disordered one, the only difference is that all

f2(Ak) are equal for the perfect lattice and can be

different for the disordered lattice. For the binary

atomic system a lattice point can have a structure factor

fd(q) or fh(q) depending on whether the site is occupied

by a defect or a host mass. Rewritting Equation (c.8)

we have
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134} .-§ )

Id 2 f£(q)f£’(q)e 2 R

22’ + + +

iq-(r 2-r)
= 2 ffi(q)e 2 2

11’ 11-(} —E )

+ X [f (q)f (q)-f2(q)]eq 1’ 1
Q=d h d h

£’=h

+ + + ia(;Q’—EQ)

+ Z [fh(q)fd(q)-ffi(q)1a

i3. (E ’--E )

[f§(q)-fi(q)]e 2 2 (C.9)

R

+

N
"
h
a

d

2 d

We can further simplify this equation by the introduction

of some new quantities

Nd
C = ——- The concentration of defectswhere Nd is

d N

the number of defects in the system and N

is the total numbir of particles.

1 if atom at site is a defect

0 if atom at site I is a host
ed(l) =

h + 1 if atom at site 2 is a host

0 (2) = 0 if atom at site I is a defect

Lets examine the function

f
r
“

p1'j(i) = 201(I)8j(£+2) (c.10)

2i

in words, pl'1(i) is the number of times there is an atom

of kind i, separated from an atom of kind j by a distance

i in the whole crystal divided by the number of
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atoms of type i in the crystal. Clearly, pl'J(£) is

defined only for lattice points.

Since 0h(4) + 0d(i) =1 (C.ll)

we have the following relationships

ph'd(E) + oh'h(L) = 1 (0.12)

od'd(i) + od'h(L) = 1 (0.13)

Next we look at the following

03'1(E) = $7 2 ej(l)e1(i+l)
j l

= $3.; 61(E)ej(E-E) (0.14)

Comparing Equation (C.l4) with Equation (C.lO), we get

the important result

Nip1'3(i)=ijj'1(-i) .(0.15)

If we have an isotropic crystal, then

i,j _ j,i
Nip (L) — Njo (L)

which, if we divide each side N, gives for the binary

chain

Cdod’h(L) = 0 (L) (C.l6)

pl’J(L) is also called the conditional pair correlation

function between atoms i and j separated by a distance L.
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By using the 0 function we can eliminate the

restricted sums in Equation (C.9) and we get

h +,

16 ) [f§(q)+ed(l)e (2 )(fh(q)fd(q)—ffi(q))
n,

+eh(1)ed(i’)(fh(q)fd(q)-ffi(q))

+ + iq°(r ~r »)

+ed(2)ed(2’)(f§(q)-f§(q)le 1 1

_ + + + —+ ,

if we take r -r .=L the sum now goes over L and I .
2 2

I=(2’+E)pwe get

:6 Z [Z f§(q) + X ed(11£)eh(i’)(fh(q)£d(q)-ffi(q))
+ +, 2’
L R

+ 2 eh(E’+E)ed(E’)(fh(q)fd(q)—ffi(q))2,

..y

+ 2 eddwiwdd’)(f§(q)-ffi(q))le1q°L1’

or

:6 ){Nf§(q)+N oh'd(L)[fh(q)fd(q)-ffi(q)J
L h

d,
+Ndo h(L)(fh(q)fd(q)-ffi(q))

+

d,d 2 '+~
+Ndo (L)(f§(q)-fh(q))}elq 1

With

where Equation (C.lO) has been employed. Using Equation

(C.l6) with Equation (C.l3) and dividing by N, we get

10 zeiq'1(ffi(q)+zcd(l-od'd(R))(fh(q)fd(q)-ffi(q))

2

+Cd(f§(q)-ffi(q))od'd(£)) (C.l7)
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These pair correlations functions can be expressed in terms

of the Warren-Cowley short-range order parameters a as

d,d _ _
o (1) — Cd+(l Cd)a (0.18)

0,2

Equation (C.l7) becomes with rearrangement

.+.E A. 2
2

16 Ee1q [(fh(q)(l-Cd)+fd(q)Cd) +Cd(l-Cd)ao'£[fd(q)-fh(q)J

(C.l9)

Relationship of the Pair Correlation

Function to the Markov Probabilities

 

 

Examining Equation (C.lO) in the limit as Ni goes

to infinity with Ni/N held constant, pi’j(L) is the

conditional probability that starting at state i,L sites

away the site will be occupied by a state j. Specifically,

pd'd(n) is the conditional probability that starting at

a defect, n sites away the site will be occupied by a defect.

The relationship between the pair correlation functions

and the first order Markov chain probabilities can now

be simply expressed. First, to start at a defect, the

initial unconditional probability vector is

p(O) = [ph(0)=o. pd(0)=1] ' (0.20)

Then,

od'd(n) = pa(|n|) (0.21)
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where p(n) = p(0)Pn-

using Equation (8.96) for Pn, we get

l-C C

[ph(n>.pd(n)l = [0.11 ‘1 ‘1
1-0d 0d

' 0

+ [0,1] d

—(1-Cd)

and

pd(ln|) = od'd(n)=0d+(1-0d)( 1-0

or

d,d
o (n) = Pd,d(|nl)

Comparing this equation with Equation (C.

P -C

’ l-Cd 01

P -C

where d =( d’d d)
0,1

l-Cd

Pd,d'

"Cd (Pd,d’cd)n

(l-Cd) 1-0d

0 )

d )|“' (0.22)

d

(C.23)

18) we see

(0.24)

For the second order Markov chain, the pair correla-

tion functions are not as easily computed.

pd'd(n), the initial state must be taken

To calculate

as a linear

combination of the statesjphdandpdd normalized to unity

and is given as
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(0) = [phh=0’phd=chd/Cd’ pdh=0’pdd=cdd/Cd1 1C°251

[OI (l-P )/(1+P P
dd,d hd,d"Pdd,d)'°' hd,d/(1+Phd,d‘1’dd,d)J

where we employ Equations (3.96 ) and (3.97 ).

Then,

od’dm) = pdd(lnl)+pnd(lnl)

where again p(n) = p(0)Pn

Next, we will examine pd’d(n) for the three special cases

of the second order Markov chain described in Appendix 8.

Case 1: First order Markov chain equivalent

Pdd,d=Phd,d’ Phh,d=Pdh,d and

Phh,d=cd(1'Pdd,d)/1'Cd)

For this case, the initial unconditional probability

vector is

P(O) = [0, (1 0, (C.26)
”Pdd,d)' Pdd,d1

Using Equation (8.100) for Pn

pdd (n): -6n,0(1-Pdd,d) (Pdd,d(l-2Cd+cdpdd,d)

+6 (l—P 2
n,0(‘Pdd,d)‘Cd) dd,d)

+Cd(P )(l-P

dd,d dd,d+Pdd,d)

P -C
dd,d d)n-1

l-C
d

+( (1‘Cd) (Pdd,d)(l-Pdd,d+Pdd,d)
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Pdd1n) = -6n,0 (1‘Pdd,d)(1'cd)Pdd,d

+0d Pdd,d+(Pdi-S;Cd)n—l(l-Cd1Pdd,d (0.27)

Phd(n) = 0n'o(l-Pdd'd)(Pdd'd)(l—Cd)

+Cd(l-Pdd’d)+(39%f%ésg)n 1(-Cd)(l_Pdd,d) (C.28)

Therefore

od'dm) = pdddnl) + phddnl) = cd+(P—9‘1i};—§—;—CQJ“"1(PddId-cd)

od'd(n)==c:d+(l-03(43}5L—§-)|“| (0.29)

Cd

For the first-order-equivalent second order chain

the Markov transition probabilities P were chosen to

1j,k

be independent of the first atom i. They therefore

Simulate the first order chain; thus Pdd,d=Phd,d=Pd,d in

the notation of the first order chain. Using this fact we

note that the equivalence between this equation and

Equation (C.22) demonstrates that the calculational method

d d
of finding 0 ’ (n) for the second order Markov chain is

correct.

Case 2. Pdd d=Pdh d:Plh'd=Phd d and

Phh, d=cd11Pdd,dV“1Cd 1
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For this case the initial unconditional probability

vector is

 

 

 

p(O) = [0, l-Cd,0,cd] (C.30)

Using Equation (8.101)for P“, we can write

Pdd(n)=cd2‘cd(l—Pdd d)[8 2111/2 (—-—-12 + ————(‘11n2)
’ (l-/§) (l+/§)

a(n-1V2 _ (-1)n )1

2
(1-/§)2 (1+/E)

_ (Pdd’d-Cd)

where a — l-C

d

and

phd(n) = cd(1-cd)+(1-cd)(1+3dd d)[8a“/1( 1 2 +"11n 2)1
' (l-/§) (1+/E)

(n-D/Z 1 (-1)11
+(C -2P +C P )[%a ( - ]

d dd,d d dd,d (1_/§f2 (1+/3)2

Therefore, after some simplification

pd, |n|/2 1 (--l)1n1)
d(n) =Cd+(l- 2C )[ka ( + )]

d 1'1 (1-(3) (1+(3)1

a(|n|-1)/2 1 (-1)lnl
+(C -P E______._ ______l]

d dd, d1 (1_/§)2 (l+/3)2

pd, Pdd,dCd)|n|/2

Cd

d(n) =0d+(1-0d)( 411+(-1)|“11 (0.31)

Comparing this equation with (C.l8), we see



279

O‘o,22+1 = 0

do = (-—§§%——9)l£| (c.32)

The Fourier transform of Equation (C.32) is

eiqlaa‘ = E eiq22a(Pdd,dCd I2]

0,2 1——Cd
a(q)

£=~m

CD

1+2 E cos(2q£a)(a2)£

where a2 = (Pdd,d-Cd)/(l-Cd)

Therefore,

2
. l-a2

a(q) = " 7? (C.33)

l-2azcos(2qa)+a2

 

=l-P and C =.5

case 3‘ Pdd,d‘Phh,d’Phd,d=Pdh,d dd,d d

For this case, the initial uncondition probability

' vector is

9(0) = [OI l5: 0: 15] (C.34)

Since in Equation (3.102) we have not explicitly written

out Pn, we will solve explicitly for the elements we need.

Since p(n) = p (O) Pn and we require only pdd(n) and phd(n),

we need to solve for only four elements of the matrix

(2,2), (2,4), (4,2) and (4,4).

If for convenience we let an element of Pn be

given by Qi 3, then
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Pdd(n) = 8 (042+Q44)

The pair correlation function is

d,d _

D (n) — %(022+QZ4+Q42+Q44)

Now, instead of writing out each Qij needed, an

examination of the Bij and Cij coefficients in Equation

(B.lOZ) shows a running sum of the four Qij will greatly

simplify the results. In fact, we get

Z(Bij) = l/3

and

X(Cij) = 1/3 ei”“/3

Finally

od'd<n) = %+%[l/3(l-ZPdd,d)2n/3(l+2(-l)ncos(%£))J

We next examine three cases for Equation (C.35)

Case 1: od'd(3n—2)=s+a(1/3(1-2pdd'dfl6n"®/3

but

cos(nn-%1) cos(nn)cos(%1) since sin(nn)=0

<-1)“<-x)=k(-1)“*1

therefore

(1+2(-1)3n

(C.35)

)

2 fi(3n-2)

cos(-—§————
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2<-1)3“‘2;s(-1>n+1 = (—1>4“(-1>=-1

and

pd’d(3n-2) = 3 (C.36a)

Case 2: pd'd(3n-1)=g+g[1/3(1-2pdd’df6n’m/3(1+2(-1)3“‘lcos(313%:119

again

cos(nn— %) = cosnn cos-g = 35(-l)n

and

pd'd(3n-l) = % (C.36b)

Case 3: pd'd(3n) = %+%(l/3(l-2Pdd’d)2n(l+2(-l)3ncos(nn))

since (—l)3ncos(nn) = (-l)4n =1

pd'd(3n) = 5+3(l-2Pdd'd)2n (C.36c)

Comparing these equations with Equation (C.18) for Cd=%,

we see

O‘o,311-2 = 0

00,32-1 = 0 (C.37)

O‘o,352. = (l-ZPdd,d)2|£|

If we take the Fourier transformation, we have
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2lfil

CD . '9‘ CD 3. 2‘

a(q) Z elq adopfi = 12 e lq a(l-Pddpd)

2=-m =‘m

1+2 2 cos(3q2a)ag

2:1 3

l-ag

0t(q)=
(C.38)

2
l-2a3cos3qa+a3

 

where a = (l
2

3 ‘Pdd,d)



APPENDIX D

NUMERICAL COMPUTATION OF

EIGENVECTORS OF CHAINS
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Given an eigenvalue of a matrix one can cal-

culate the corresponding eigenvector. By the method of

bisection described in Appendix A, we can compute the

eigenvalue of the linear chain to any desired accuracy.

For a computed eigenvalue, A, the computation of the

corresponding eigenvector seems at first almost trival.

Using Equation A.l, we can write

_ 1

X. — [(A ai) Xi bixi ] (D.l)
1+1 bi+l

 

-l

where Xi = Vmi Ui (Ui is the displacement of the ith atom)

b'+l = -y/Vm.m.
1 1 1+1

and a. = 21

mi

Equation 0.1 requires initial conditions to be complete.

For fixed boundary conditions, Xo=0. Arbitrarily, we take

Xl=l, since X1=0 would give all Xi=0' Then, Equation D.1

allows us to compute all Xi's and correspondingly the Ui's.

In terms of the leading principle minors

_ _ r-l _
xr — ( 1) Pr_l(A)/b2b3...br (r—2,...,n) (0.2)

Unfortunately eigenvectors computed in this manner can be

completely wrong. The procedure will in fact work when

the exact eigenvalue is given and exact computations are

performed. However, although we compute on eigenvalue
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to 8 significant digits, it is not exact. In fact, the

computation of XN+1 will not usually give 0 as specified

by the fixed boundary condition but

bN+lXN+l = 5 = ‘bNXn—l + (A-aN)XN#O (D'3)

In the matrix form of Equation A.1, we have

(B-A_I_) 33: 6e (D.4)

th
where en is the n column of the identity matrix. For

simplicity, we can renormalize X to give

(2.-11:.) E = 2..

or

1

en (D.5)5 = (a-Ay’

Next for X1>A2>A3>>AN, the approximate eigenvalue is

almost Ak or (A-Ak) "small" and (A-Ai)(i#k) "not small".

Let 21' 22""’ZN be the exact set of eigenvectors of E

corresponding to Al, A2, ..., A We can expand the
N'

vector in in terms of these eigenvectors

N

En = .Z Yiyi (D.6)

1=l

N 2

where X y. = l.
. 1
l=l
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Rewriting Equation D.5, we have

N Yiyi YR! z A Ax = X r—J = x—J + Y.v./( .-) (11.7)

" i=1 1 k 151k 1’1 1

For g to be a good approximation to 2k we require

Yk Y1
>> ' k . ,fl}; Wi- (15¢ ) (D 3)

Often, Ak-A>>yk and Equation D.8 is not fulfilled.

Solving Equation D.6 for Yk we have

= V e (D.9)

Therefore, any time, the last (Nth) component of the

eigenvector is >>l,the eigenvector g calculated by this

procedure will usually be incorrect. The procedure would

work if we computed the eigenvalue and carried all com-

putations to greater accuracy by five or six digits than

the value of the Nth component of V

-20

. T

k' Given ykyk=l' and

(yk)N=lO , then computations to 26-30 digits would give

accurate results. In practice, this method fails on

disordered linear chains working to 18 digit accuracy for

chains of length N>30.

If we knew apriori that the rth component of 2k

was not small, we could take Xr=l instead of Xl=l, and

reiterate the Equation D.l to a correct solution.
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A more satisfactory method of computing eigen-

vectors is that of inverse reiteration. First, consider

the set of equations

(33:13) = g (D.10)

l
l
x

where C is an arbitrary vector normalized to one. We can,

as before, write 9 in terms of the exact eigenvectors y

of g,

N

E = Z y.V. (D.ll)

For A close to Ak' Equation D.7 shows that g is much richer

in the yk than is 2, namely by a factor Xéxf >> 1, since

Equation D.ll gives

= V C (D.lZ)

Next, we solve the equation

(E'X£)X.= g (D.13)

y can similarly be expanded in terms of the eigenvectors

of

I
l
w

y}: 2 diyi/(A-Ai) (v.14)

l

where

5 _ VT x - Yk _ (D 15)
k‘-k-‘x—-T];'r:r; -
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Therefore,

1 = (3:9) vk/(X-Apz + Xi¥k aiyi/(A-Ai) (D.l6)

This process can be reiterated to any desired ac-

8
curacy for V with_kO

12, the first reiteration gives Yk/(>\->\k)=10"4 or

If, for example, we take (X—Ak)=10-

Yk=1o’

E is very deficient in Vk but the second reiteration

gives Ok/(X-Xk)2=104 or y is quite a good approximation

to Yk' As long as g is not orthogonal to 2k the method

will always work given (X-Ak) "small" compared to

(K-Xi)(i#k).

Applying this approach requires the inversion of

the matrix (E—AI). Since this matrix is tridiagonal,

the method of tfiangularization, also called Gaussian

elimination with partial pivoting, is the most efficient.

We look at the elements in Equation D.lO as follows

C1

a -A b2 C

b a -A b O C

2 2 3 3 (11.17)

b3 a3-A b4 9
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We start by comparing the elments in the first

column,

1. if Ibzl > ai-A, we exchange the elements of

rows one and two; otherwise, we do nothing. Denoting

the nonzero elements in row one by U1, V1, wl, and d1

and those in row two by X2, y2, 22, and dé, we have

C
'
. I

1 ’ bz' V1 = O‘2"A' w1 = b3' d1 = C2

9
!

:
3

Q
.

X ll

2 al-A' y2 = b2' 22 = 0' d2 = C1

for Ibzl > (al-l), or

ll

0
‘

1 al-A, V

- = — = I =and X2 - b2, y2 (a A, 22 b3, d2 C2,

otherwise,

2. we compute

2 = Xz/Ul and replace X2 by zero.

3. compute

"
U II

2 Yz‘mzvl

q2 = zz’mzwl

I

C2 ‘ d2"“2d1
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then, replace

Y2 by P2:

22 by q2

I I

and d2 by C2

Matrix D.l7 looks like

 

/ U1 V1 w1 d1

m2 ‘ 0 .P2 q2 0 C5

b3 a3-1 b4 , C3 (B.18)

:

0 bn ag-A Cn

 
For the rth step, we proceed as follows

1. If lbr+ll>Pr’ we interchange the r and r+l

rows. If lbr+ll>Pr' we have Ur=br+l' Vr=ar+l-x'

wr=br+2' dr=Cr+l' and Xr+l=Pr' yr+l=qr' zr+l=0'

, _ I

dr+l-Cr

otherwise

= = = = 'Ur Pr' Ur qr, wr 0, dr C

_ -- ... = ' 2:

and r+1"br+l' yr+l~ar+l A' zr+l br+2' dr+1 Cr+l
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2. We compute mr+l=xr+1/Ur and replace Xr+1

by zero.

3. Compute

Pr+1 “ yr+1'mr+1vr

=2

qr+l r+l-mr+1wr

I I _

Cr+l dr+1 mr+ldr

and replace

by P

Yr+l r+l

zr+l by qr+l

l !

dr+l by Cr+l

th
The r principle minor of (gflg) is, (also given

by Equation A.3)

k.
1

Pin) = (-l) U U U ”'U.1 2 3 1-1Pi (D.19)

where ki is the total number of row interchanges occurring

to the end of (i-l) steps. Therefore, the process of tri-

angularization could also be used to determine eigenvalues.

We can now solve for the eigenvector g given by

Equation D.lO
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xN = Cfi/PN

xN—1 = (dN—l’XNVN-1)/UN-1 (0'20)

X1 = (di-Xi+lVi-Xi+2wi)/Ui

(13191-2)

If A is the exact eigenvalue PN would be zero. Usually,

it is not zero, however, if it is we need only to take

<<PN 1.

On the first reiteration, since C, is an arbitrary

initial vector, we can pick d saving a calculation of d

from C. We take all di=_£' This choice is not necessarily

the best for all cases but it works in every case we have

encountered. Once we have (EfAI) in triangular form, it

does not have to be recalculated on successive reiterations.

We therefore only have to compute d from the initial

vector E. From step 1 in the reiteration we notice that

wr=0 if no exchange took place in the rth step; otherwise,

wr¢0. Therefore, we have

1. If wr=0, we compute dr=xr and dr+l=xr+l-mr+ldr'

2. If wrfo, we interchange the elements Xr and

X then calculate d =X and
r r+lr+l'

-X -m d

dr+1_ r ‘r+l r’

Then, we can reapply Equation D.20.
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Once, we get the eigenvector of (EfAI), we must

finally return to the displacements

ui = xi/Jr‘rfi' (13.21)

and renormalize U to unity.

 



APPENDIX E

GREEN'S FUNCTION FOR THE MONATOMIC CHAIN
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We will examine the Green's function of a monatomic

linear chain in the harmonic approximation in two ways.

First, we will explicitly calculate the general Green's

function g(£,£’;w) from the k space transformation given

by Equation (5.12). Next, since diagonal elements or

near diagonal elements of g(£,2’,w2) are all that are

usually required in calculation of thermodynamic quantities,

we will examine a simple method of calculating these from

the inverse Green function. Since this method does not

require a k space transformation, it will be useful for

calculating the impurity mode frequencies of defect

clusters in a host medium and for calculating the density

of states of an n site periodic system. These applica—

tions will be described in the next two appendices.

Using Equation (1.10) for the monatomic lattice,

we can rewrite Equation (5.12) as

 

6 ,
,. _ k,k

g(klk ,(U) " 2 2 . 2 ka (E01)

w -w Sln (——)

m 2

where w2 = 31

m m

The transformation into real space gives

ikLa
, 2 _ l e

9““ .1. ’ mm 1% 2 2 Tka (3'2)
w -wmsin (§—)
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where L 2-2’ and

£111 (n), n=0,l,2.. ;N-l

For N , the sum over k can be converted to an

integral,

. Na 2% .

2* 7; / dk . (E.3)

k 0

Therefore,

 

  

 

2.1
'kLa

2 _ a a el dk

9‘L'M‘mf 7 .21.... “3"”
0 w -meln 7—

Let 2 = eilka for L(z)0 (E.5)

LI
2 2 2l dz

g(L;w ) =1 . ¢ +;- (E.6)

inm w222+(4w2-2w2)z+w2

.m m m

where the integral is around the unit circle

(clockwise (-), counterclock wise (+))

The only contributions to the integral will be from

poles of the integrand inside the unit circle. These

poles are

2+ = -2<§——)2+1:2,/(g—)2\/(%—)2-1 (13.7)

‘ m m m

= -2y+1:2/§ /§:I where y= (ELL)2
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For yil, we have

-12(1)

w . . _ _ t _ l l

and z( ) $g§ ( 2y 1 2y(l % §+0(;I))

0 (+)

z(m) = m (_) - (B.8)

Clearly only the + root is inside the contour and

  

 

:2 |L|

g(L;w2)=( ’ (hunky—(£77)

iwmw 2 2:2
m l

where

21 = -2y+1iz/§ /§Ti

2

.. /—-. ILI

9(L;w2) = 42 (lyflfl/iy 1’ (y21)
mwm 4/§ Vy-l

or

._ |L| - _ 21 l

g(L;w2)=( %) W17 1’1 1) (11:1) (E.8)

mwm J; Vy-l

For y<1

z = -2y+lti 2/37/“1-y

and [z|= (z-z*)$5 = l , (B.9)

Both poles are on the contour and the integral has no

. . +. 2
prec1se value. However, Since we need g(L,(w-1e) ), we

can calculate these directly. First w+wtie implies

y+yti5 as long as e<<l. Therefore,
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zi(ytid)=-2(yiié)+112 yiia /(yiiG)-1

=-2y+1¥215:2E/§ /§:Tti5(2y_l)]
/§ Vy-l

 

to first order in 6. For y<1, we must show the imaginary

parts explicitly, i.e. /§:I=i/T:§

2+(ytid)=-2y+1:(i) élZXlll+2i(1/§ /1-yld)
_ /§ /I:§ .

and

26(2y-l)2 +6
 

 

 

Iz+(yti5)I2=(4y2-4y+l+4y-4y2)t(;( /§ /1—y)

’ J; /I:§

Izi(ytid)|2=1:(126)(1/(/y «I:§)>

For w+ie, 2+ is inside the contour and

for w-ie, z_ is inside the contour.

_ /—:— ILI

g<L,(w+ie)2)= 42 ‘ 3Y+ 1+21§11_1>
mwm 4/§ Vy-l

_ (‘1)L (_6' vy-l)2|L| (B.lO)

mwi /§ Vy-l

or

_ L _._: 2|L|

g(L.(w+ie)2) = ( 1) (5 l 13) (y<1) (E'll)
 

mw; i/y Vl-y

showing the explicit imaginary part.

Similarly,
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(-1)L<(g§+1/1:§)2'L‘
2 (E.12)

mwm -i/§ Vl-y

 g(L,(w-ie)2)=

_ w 2

y—(—w) <1

m

In the band g(0,(wii€)2) is purely imaginary and

outside the band purely real. We can calculate the density

of states using Equation (5.18) with 5:1 and compare

the results with Equation (1.1lb).

D(wz) —l Im tr (mg(0,(w+i€)2)

 

 

1 1

Im

" d2 . r w 2 w 2
m 1 (5-) ‘fl-(E—)

m m

1

)

" f 2 J”2“2
U.) LU'U)

m

Inside the band we can rewrite the Green's function in an

(E.13) 

alternate form. First, define

_ . -l
6 — Sin /§ (B.l4)

Then cose = Vl-y

and (/§:i/l-y)2|L|= :i(i sinetcose)2|L|

(ii)2ILIe;2i(L)6=(_l)|L|e;2iILI

Therefore

2 e:Zi|L|6

g(L,(U):i€) )=2(_‘;i) ——2———-—' (E.15)

mm sin26
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Using this form the spectral density is

2 i(g(L.(w+ie)2)-9(L,(w—ie)2))

JL(w ) éfiw/T-l

= 4 cos(2|LJe)
(E.16)

mm: sin(2e)(éKw/T-1

and the pair displacement correlation function is

 

_ 45 iwt cos<21Lle) dw
F (t) — [e (B.l7)

L mu; sin(2e)(é““/T-1)

with the autocorrelation being

_ 25 I eiwt dw
 (B.18)

(éfiw/T-l)2 2
w w -w

m

Alternative Green's Function Derivation

From Equation (5.8) we can define an inverse

Green's function for the perfect monatomic crystal in

the harmonic approximation as

G (1 2'°w2) = (me-ZY)5 ,+y5 , (2.19)
’ ’ 2,2 2,2 :1

In matrix form, we have an infinite tridiagonal matrix, i.e.

(E.20)
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If we wish to know G(2,2;w2) for all 2,2; we have to

invert this infinite matrix, an impossible job. However,

we can find matrix elements of G(2,2;w2) for I2-2’l of

the order of unity relatively easily. In fact for

L=I2-2’l, we have to invert an (L+l)x(L+1) matrix. We

will first calculate g(0,w2).

as follows,

 

G(2,2:w2) = ;

 

 

G‘1(2.2: wz)

’(a) (b) (C)

'Y O O

2

_1 mm -2Y Y

2

o 7 mm -2y Y o

(d) (e) (f)

2

Y mw -2Y Y

o { 0 Y ‘
I

(g) (h) (i)

where G-1

E=G(O,w2). We can write the

2 2 + Q E 0 =>§= ‘

§§+2§ £§=1

2 g + 1 Q 0 i’H =

Therefore

(2 - ge‘le - 11’12>§

 

We partition the matrix

 
 

 

 

A B c

D E F = 1

G H I 

(3.21)

and G are similarly partitioned. Notice that

matrix equations

I
I
Q
J

l

I
I
P

I
I
U
‘

l
l
t
T
J

= 1 (B.22)
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If we denote the (m,m) element of a.1 as the last element

-1 -l _ 2 -l .-l _ 2 .-l

of g , then Q; g-Y (am,m)62,od2:o and g; Q — Y (11,1)

62,n62:n where 2,2 are the element descriptors e2,2’

and n,n the last element of g. For n=1 we have

(e-Y21agfm)-Y2(i;{l))3 = 1 (2.23)

Next, we look at 9-1, using

 

   

    

g 3-1 = A we have

(b)

(a) o

. o (W) (X)

Y - .

2 — o 1 0

Y mw -2Y Y 1

(C)o y me-zy (Y) (2’ ° 1
  

   
since g is semi-infinite the partitioning of a as shown

gives 3 as one of its submatrices and we have

_ _ _ -l

g g + 2 z - 0 — x ->-a Dz

ll

H+ (mwz-ZY)z

I
I
O

I
I
X

(-g g-lg + (mwz-ZY)Z = l

where g g-1 b = Y a-1

- - - m,m

Since 2 = a-1 we have



303

 
 

 

 

 

 

2 -l 2 -l _
(-Y am,m + (mm -2Y))am,m - l_

or

2 l 2 2 2

m,m 2

2Y

Next, if we similarly partition ; g-1 = l

we find

.-1 _ -1
ll; - am,m (E.25)

and from Equation (E.24) we have,

g(o,w2)=E= 1

me-Zy-(mwz-ZY- (mwz-ZY)2-4Y2)

2

9(Olw ) = (B.26)

1

4Y
where wi=fi— and we took the negative square root.

The only difficulty lies in the sign of the root of aéi

we take, As Equation (E.26) is definedJit is g(qxw+ie)2).

If we wanted g(l,w2) the matrix 3 in Equation (B.22) will

need to be a 2 by 2 and the matrix g is given by

m 2-2 - 2a.1 -1w Y Y mm

"
(
:
1
1

II

2 2.-l
Y mw -2Y-Y 1ll

(me-ZY)+ mw2(mw2-4Y) Y -1

2

= mwz-Zy+ mw2(mw2-4y)

Y 2

 



304

where we take the negative square root.

The determinant of g is

2
2 w

det(g) = {g—sz (wz-wi)£m+ (UP-313)]

2

 

2

0..)

m

I22_27 /2 2_2/2 2_2 2_“m
m w (w mm) 2m w (w mm) m (w wm+(w 5—9

 

 

-(.) 1

2

/22 /222°’m /222
meVw wm(w w -wm+w -f— m w (w -wm)

  

 

(E.27)

Clearly, E11 and E22 are g(o,w2) as before. First, using

Equation (E.8) with 2=l we have

w2 __

2 2 “NATE” “’2
9(1103 )z +—

mwz 2 2 2

m ‘/w Vw -w

m

if we rationalize E12, we have

2 ___

u)

2 -(w2-§m)+7w2(w2-wi)

2

mwm £2 (112-(1);)

 

(wz-wi)

 

 

E12 =
 

 

9(11032) Q.E.D.
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Comparing E12 with Equation (E.10), we see we again generate

g(l,(w+i€)2). For g(2,w2), we need to invert a 3x3.

In this case

<3(0) 9(1) 9(2)

E= 9(1) 9(0) 9(1) :

9(2) 9(1) g(0)

  
This procedure can get quite messy for large L.



APPENDIX F

ISOLATED DEFECT CLUSTERS EMBEDDED

IN A HOST CHAIN
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If a light mass or cluster of light masses is

embedded in a heavy mass chain, vibrational modes often

appear in region forbidden to the pure host lattice.

In Appendix I, we will look in detail at the single defect 1

in a host chain. In this appendix, we will look at the

impurity modes. )

For the light defect mass, we define  
 e = m (F.1)

where m is the mass of host chain atoms

and m’ is the impurity mass.

For the single defect at the origin we can easily solve

the Dyson equation

G = P + PCG (F.2)

, _ 2
where C(2,2 ) - emw 62'06£;0

and P is the monatomic chain Green function. Upon

reiteration we have

2 .

6(221w2) = P(2,2fw2)+ 5“ ”P(“1)w)P(0r2'w) (F.3)

l-emw2P(0,0,w2)

We can find the local mode frequency from the pole of

G(00,w2).

G(o,gw2) = P(0,gw2)/(l-€mw2P(0,0,w2)) (F.4)
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An impurity mode occurs at frequencies satisfying

l-emw2P(0,0;w2) = 0 (F.5)

In Appendix E, we found

1

m/LZ‘Fz-.;

 P(O,0;(w+i€)2) =

and we have an impurity mode at

 

w2

(1)2 = m 2 (F.6)

l-e

for a mass ratio E, = 2, e=3 and

m!

2 _ 4 2 _ 2 2_ .

(.0 - 301m - 2 3' for (Um—2 (F.7)

Alternately, we could have found G(0,0,w2), by

the inversion of P-1(2,2,w2) with the element at the

origin replaced by mw2(l-e)-2yin this case,

 

2 _ 2 _ _ _ 2 -l_ 2.-l -l

g(0,w) - (mm (1 E) 2Y Y amm Y 111) (F-8)

by using Equation (E.21) and

111910.112) = [fiwz-wfi-wzej'l (9.9)

again, the impurity mode occurs at

w2(w2-wfi)- wze = 0

1
J
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The utility of the inversion method becomes evident for

the two defect cluster. zThe Dyson equation method becomes

cumbersome at best whereas we can write the diagonal

Green's functions for the cluster by matrix inversion

almost by inspection. For the 2 defect cluster we have

2 2 -l -1

mm (1-€)-2Y-Y amm Y

(F.10)

2 1
y mw2(l-€)-2Y -y ill

For convenience, since agi = iii for the host chain,

we will take

 

 

 

 

 

2 2 2

-1 2.-1 m“ ’ZY‘/Q;(mw ‘4Y) (F.11)
A — Y am,m-Y ll'l— 2

. 2 . 2

G(OIOI(U)+1€) ) = G(llll(w+1€) )

w2

2 w2-ifl-+ w (w -w.

-w E +
= 2 (F.12)

w2

2 -m 2 2 2 2

w —2+Jw<w comm w 2
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The denominator vanishes for

 

w2 = wi/[4e (l-€)] (F.13)

and for

2

w

2 m

w = 8(€)(1-€Y ((4e-l)+/1+8€) (F.14)

for €=% Equation (F.13) gives w2=w; and is not of much

interest since the perfect chain has a zero denominator

in the Green's function at w2=w;. However, for larger

mass ratios (€58), a second mode emerges into the

impurity band. Equation (F.14) gives for 6:8

2
(A)

— 55(1+/§) = 1+/§ for wi=2 (F.15)E I

3.236068

For a three defect cluster two possible cluster

Q

configurations are present namely, d-d-d and d-h-d. For

these cases

-1

2
m(l-€l)w -2y-A Y 0

_ 2
E _ y mw (l-€2)-2Y Y

2
0 y m(l-el)w -2y-A

(F.16)
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-wnere £1 = e and £2 = 0 or e

and the determinant of g gives the poles of the Green's

function.

0 = det(E) = (mw2(l-€)-2Y-A)((m(l-€)w2-2y-A)(mw2(l-€2)-2y)-2y2)

The poles are at

w2 = w; ‘%§%%:E)’ (F.17)

land

4w6(l-€l)28(€—l))+2w4wi(l-el)(3-(€1+25))€

4 2 6
w w w

+ :2 [(51+25)2-(1+8€)]+z§l= o (v.18) 

Equation (F.18) is cubic in oz and we will solve it only

for specific values of 5,61 and mi. First, Equation (F.14)

will introduce a mode into the impurity band for e>t or

“n
a mass ratio M— >4/3. For e=k and wiéz Equation (F.17)

L

gives

w2 = 1+/§ = 2.414214 (F.19)

independent of the values of 6 indicating that the middle

1

atom does not participate in this mode. For el=0(d-h-d),

2
€=%, wm=2, we get
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86-4w4+4wZ-2 = 0

or 82 = 2.8392868 (E.20)

for 8 =5 €=k and w2=2 we get
1 ' m '

w6-6w4+llw2-8 = o (E.21)

2
or w = 3.5213797

This method with some algebra can be extended to many

site defect clusters. For sake of brevity we will stop

at three site defect clusters since n site defect clusters

requires us to solve an 11th order polynomial for its roots.

 



APPENDIX G

DENSITY OF STATES OF PERIODIC LINEAR

CHAINS WITH ALL FORCE CONSTANTS EQUAL
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For a periodic linear chain, we.can calculate

the density of states using Equation (1.8) and

dk

a— (G.l)D(wz) = w.

w
r
a

e
l

:
I
m

For the monatomic chain, we get Equation (1.11) derived

in text. For a two—site periodic system only the h-d

binary chain is possible and Equation (1.8) gives

—£I_ _
1 - +ml 01 Zycos(ka)02//mlm2

(G.2)

_-_2_1 _
w 02 — m 02 2ycos(ka)ol//mlm2

2

The determinant of coefficients must vanish for a solution

to exist, or

 

 

  

(wz- $1 2y coska.

l Vm m

1 2

=0

ZY coska wZ-él

mlm2 2

or

42 2 1 1 2 4 A
nTYTn‘ sin ka=(2y(I-fi— +548 -w) (6.3)

1 2 . 1 2

2
'
d
4
_
fi
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Then

Y(m-l-**%1—) -w2

dw a Y m—m

(2y(}n-+%—)-wz)[1-—123w2(2y<;—+1—-)—wz)J
m

1 2 4y 1 2

upon simple factoring

(Y(1—+-1-—)-w2)
m

D(w2 )= —1Re( m1 2 1 1

fl Thad—+3?)21-w21fl2-fillfifu2-fi-z- i

For ml=m2, Equation (6.4) reduces to Equation (1.11).

-
.
M
!
‘

.
.
n
.
‘
N
?

I
.

(6.4) 

  

 

For ml=2m and 1— = 1,

m2

(1.5-w2)

/;§-(3-w2 /;2-1 JEZ-Z

D(w ) = — Re( (6.5) 

 

m
1

a
n
d

Figure 2digives the comparative numerical frequency

spectrum.

For a three-site periodic system, Equation (1.8)

 

 

gives

ika -ika

8281 = + 2.1 81 i.e.—.82 - Ye 83
ml /m m /m m

1 2 1 3

(6.6)

-1ka ika

“202 = gl’oz ' e ' O1 ' ye O3
2 /m m /m m

2 1 2 3

ika -ika

w 03 = $1 0 - ye 01 - lg———— 02

3 3 Vm1m3 szm3
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Again the determinant of coefficients must vanish for

a non-zero solution to exist.

 

    

 

w2_ £1 Yeika Ye-ika

m

1 lem2 ,/mlm3

e-ika w2_£l eika = 0 F1

r———' m

mlmZ 2 vm2m3
.

Yeika Ye-ika w2-£1 ,

m
lem3 szm3 3 i

or

1 1 l 2 2 l l
w-w2y(—+—+—)+w 3Y( gt + )

m1 m2 m3 mlmz m1’“3 m2m3

+ ——2-y—3— (-2)51n2(3ka) - 0

1m2m3 2

Therefore

 

 

 

1 1 2 1¥_y 1 y 1
W?) +3Y ( I l

3 m1““2 m1m3 m2m3

 

[Jw4-w22y(l—+

m1
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m m m

x (1-w2.1 § 3(w4-2vwz<%—+l—+§—>+3y2 (m mnm1—* 1 )1
4Y 1 2 3 ml 2 1m3 2 3

QE has zeros at

dw

 

N N .
<_ 111.44

w ‘3‘1+(fi‘+fi‘+fi‘11 -2*-2*
1 2 3 m1 m2

which we designate w ,w2

1
1
o

'7

and poles at

 

 

 

 

  
 

 

 

2 1 1 1 1 1 l 1
w =Y(——+——+——-i/——+ -( + ~+ )

“‘1 m2 m3 m2 n71? mimz m11113 I“2‘“3
1 2 3

. 2

which we deSignate w p+ andw p-

(wZ-w +><w -w:_>
l

D(w ) =— Re(

8 .1. 3

400sz -w2 JwZ-wz [rim m -3Y2w21m m +mlm 1m m
+ p- 1 2 3 2 1 3 2 3

2Yw4(%—+:’T-+%—)-w6 ((3.7)

1 2 3

For m1=m2=m3 we again get Equation (1.11) as a check to

our calculations. There are two other unique combination

both With ml=m3,

Case 1: m1 = 2m2 and Case 2: m2 = 2ml

For Case 1, l— =

m

1 and the density of states has zeros at

2
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 )= .60685, 2.05986

and poles at O, %, 2:8, 8(71/17)

= O, .5, .719224, 1.5, 2.5, 2.78078.

and

(w2-.60685)(w2-2.05986)

(82(82-1.5(wZ-2.5 «Ks-82 JwZ-.71922 J83-2.78078

 

  

D(w2)=%-Re(

 

 

(G.8)

Figure (G.l) gives a numerical spectrum for

Case 1 (h-d-h).

For Case 2; %— = 1 and we have zeros in D(wz) at

1

82 = %(5:/7) = .78475, 2.54858

and poles at

w2 = o, 1, 8 (5:1). (21/2)

= 0, 1, 2, 3, .585786, 3.41421

and

2 2
2 _ 1 (w -.7847S)(w -2.54858)

D(w ) - ; Re( f___ /_ 2__ )

(wzuw2-1(w2-2(w2-3 .585786-w21w2-3.41421

(C.9)

Figure (6.2) gives the corresponding numerical spectrum.
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Alternative Approach
 

A very useful alternative approach to the calcula-

tion of density of states for an n site periodic system

is available. By the method of matrix inversion as

described in Appendix B, we can generate the diagonal

Green's functions for the System. The density of

states is

n
2 — .

D(w )=E% Im g=lmagaa(0,0,(w2+1e)2 (6.9a)

where 8 refers to atoms in the basis of an

n site periodic system.

This approach is much simplier than at first it may

seem for several basic reasons. First, the diagonal

elements can be written in terms of continued fractions

of the inverSe matrix; also, the procedure is easily

adaptable to computer calculation.

An additional benefit is we calculate the Green's

function itself and can relatively easily calculate near

off diagonal elements. The inverse Green's function for

a two site periodic system is

2

‘ Y mlw -2Y Y

-1 ; 2 y 2-

Ga8(£,£,w L. Y mzw 2y Y (G.10)

m w2-2Y 1 Y Y

2

Y mzw ‘ZY Y

Y
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Partitioning G-lG=1 as we did in Equation (E.19) where

e is now a 2x2 matrix, we find

 

 

 

 

 

 

-1

2 2 -1
m w —2Y-Y a Y

1 mm (6.11)

E = 2 2.-1
Y mzw -2Y-Y 111

where, following the arguments in Appendix E,

m w -2 - Za-l -1-l 1 Y Y mm Y

amm = _ (6.12)

Y m2w2-2Y 2,2

and 2 -1

1w '2Y Y

-1 (C.l3)

i =

11 Y m2w2-2Y Yzill 1,1

I

Therefore: a.1 = l ‘——
mm 2

mzw -2Y-m w -2 - a-1
1 Y Y mm

1
.-1

and i = 2
1,1 2_ ‘1

m1“ ZY 2_2 21-1

2 ”2“ YY 11

m wZ-ZY

a-1 = —l7(mlw2-2Y- -l—7——-4w2)(mlm2w2-2Y(ml+m2))

mm 2Y mzw -2Y

2

“-1 =—l—(m 2 Mm-Zy(w)[(m Luz-2 (m+m)J
l1,1 2y2 2“ Y“;2:§;’ 11m“’2 Y 1 2

. -1 .-1
Notice am,m and 11,1 are no longer equal.
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2 1

G l(0,0 ,(w +ie) ) = _1 Y2

1“ ”ZY'Y amm ' mw2_2 2i-1

m2 YY 11

- £1
(w m2 )

-1.
m1

”V w2-2y(——+%—) Z-gl. 2-%1

1 2

1

(0 OI(U)+16) ) = -2 2 _1 12

m2“ YY i11mw2_2 _ 2a-1

ml Y Y mm

(m2&1)

= l_
m ‘:—f

2 (wZJFZ-2y($—+%—) (w2_%l w2_%l

1 2 1 2

The density of states from Equation (G.9a) is

(Y(-—+a—)‘w2 )

f_“J;_:_—_I—I—'27‘2__1/V2_21

which is identical to Equation (G.4).

D(wz)
 

 

s
l
y

We can set up the three site (or the n site)

periodic system Green's function by inspection! Being

more explicit than necessary we have

-1
2 2 -1

mlw -2Y-Y amm Y 0

E = Y mzw -2Y y

0 Y 3w ~2y-Y il 1

(G.14)

 

 

(G.15)

(C.l6)
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where

-l

2 .2 -l
mlw -2Y-Y amm Y 0

-1 _ Y 2_ Y
amm — mzw 2Y (6.17)

0 Y. m3w —2Y 3,3 r

and

-1

m w2-2Y Y 0 . -

l i 1

1-1 — Y m w -2Y Y (G 18)
1,1 2 °

2 2.-l
0 Y m3w -2Y-Yill 1,1

In continued fractions, we would write

1

. 2 _
611(0,0,(w+i€) )--In 2-2 - 2 -1 - Y2

1” Y Y amm 2’ 2
mzw -2Y- Y

m w2_2 _ 2.-1

3 Y Y l1,1

(6.19)

1

. 2 _
622(O,0,(w+ie) )— 2 y2 Y2

m w -2Y- -

2 m w -2 - 2a.1 m w2-2 - 2i-1
1 Y Y m 3 Y Y 1.1

(6.20)
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l

633(0,0,(w+i€)2)= if

2 2.-1 Y
m w -2Y-Y i - I2
3 11 2 Y

m w -2Y-

2 m w2-2 - 2a-1

1 Y Y m,m

(6.21)

where

2

2 -1 = Y

Y ,m 2 (6.22)

m w -2Y- Y
3

2 2

mzw -2Y- Y

2_2 _ -

mlw Y Y am!m

and

2
'2.-l _ Y

Y
mlw -2Y- 2

2 Y
mzw -2Y-

2 2.-l
m3w -2Y-Y 11,1

We can solve these equations relatively easily by hand

and almost trivally by numerical computer techniques.

For the three site periodic system, we have shown that

ml=m374m2 give all possible spectra that can result from a

three site periodic system except for the trival case,

m1=m2=m3, the monatomic lattice which is really a one site

periodic system. For ml=m3, Yzaifm = Yzi-J;1 (only true

for this special condition), and 611(O,O,w2)=633(0,0,w2).
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6 1(0,0,(w+i€)2) = G 3(O,0(w+i€)2)

3 2

(-(w4 -2Y(——+m2—)w2+m1m2—)

(6.24)

ml*1 wa “W12_ ;I.Z 2 f 2 2 l 2 2
w -w w -w w —w

r3 r4 r5

 

,
1
2
2
1

 

 

 

 
 

 
 

where

2 = 1.
r1 ml b

2 .. 2 1. l.__1__2
w r2 Y(m1 m2 iJle m2) )

r3

2 _ I 3 l2_ (9 4 _ 4

wr4 — 21ml m2i (;2+ 2 mlmz)

r5 1 2

_ 4 4 2 BY

(w "11 + 2)

. . l

G22(ODXw+l€)2)= 53’ 2 2 .1

Jw {w- w2 -w:M“ @JJifi w2 -w2r5

((3.25)

The density of states is

D(w2)=--}- Im(2m 6 (O 0 (w+ie)2)+m 6 (O 0 (w+ie)2))
3H 1 11 ’ ’ 2 22 ’ ’

_ 1 (wZ-w+)(w2-w2 )

fl.R

")(2Y[;1:;—J;2w2wr2 w2 -w:3Yw2 -wr4Vw2 -wr

(6.26)
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Where

 

2 I 4 2 4 _
u) = (-—-+—-— i: + — - ,

m m mg mlm2

312

|
+

é
:
:
:
:
]

This is identical with Equation (G.7) with m

l
=m3.

m
.

L
J
'
A
“
.
'

 



 

APPENDIX H

SELF-CONSISTENT SINGLE SITE APPROXIMATION
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D. Taylor in 1968 first derived, the results

we will now present. We present this derviation for

two reasons. First, it is necessary for the sake of

completeness of this thesis and, second, the published

papers all contain misprints. From Equation (5.49 )

in text, we can write the self consistent condition

_ _ d _ h

(.155) _ 0 - CdEs + (l c3d):'s (H'l)

where

5 _ _ 5_ -1 5_ '
gs — (1 (gs gs)B) (gs gs) (H.2)

The subscripts indicate a site representation where the

matrix gs is zero except at the site (5,5). For the single

site,

U
1
0
4

mw2(1Le) (H.3)

I
I
O

(
0
2
3
‘

= 0 . (H.4)

"
O

For convenience, we take

gs = mw2(l-E) (H.5)

For a single site, the matrices can be treated as scalars;

whereupon Equation (H.l) becomes

329
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c (e—E) (l-c )(-E)

o = d 2 _ .+ d?

(l-mw (e-€)R00)

 
 

ER)(1+mw 00

We can rearrange and solve for R00, getting

E—Cde

R00 = _ _ 2 (H.6)

(e-€)emw

 

Now, we must solve for R0 and substitute into Equation
0

(H.6). Since

= E -g (H.7)

where g is the perfect chain Green's function and g is

diagonal. We can take the k space transformation since

g possesses the symmetry of the monatomic crystal.

 

-1

R(k) = (P(k)-wZE)-l (B.8)

. _ 1

Since P(k) - —§-—2—— p

w -w.(k)

3

RM = 1 01.9)
w2(l—E)-w§(k)

The inverse transform is now obvious when we look at the

perfect monatomic chain Green's function derivation in

Appendix G.

’ 2 ’ 2 ' -

R(£,£ ,w ) = P(£,£ ,w (1-€)) (H.10)

and

l

_ _ 4- (H.11)
(w2<1-e)fnw2<1-e)-w§fi

 R(o.o,w+i<s)2> =,%
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Alternatively, we could have derived R(0,O(w+i6)2) by

the real space inversion of an Equation (H.7). Using

the methods of Appendix B, we have

R(0,0;(w+i5)2) = 1 (H.12)

mwz-Zy-o-ZyzA

 

where

A = 1 (H.13)

mwz-Zy-o-YZA

 

 fi

 

or A = —l§(mw2-2y-o- (me-Zy-o)2-4Y2) (H.14)

2Y

and R(0,0(w+i6)2)= 1

( mw2-0)15(mw2-o-4y) l5

. . _ 2- 4y _ 2 .

substituting o-mw e and 5"” mm, we get Equation (H.11).

Substituting R(0,0(w+i6)2) into Equation (E.6) and

squaring to remove the radical, we get

 

- 2 —2 2

(5‘5) 8 w = (l-E)(w2(l-E)-m2)

(E-C e)2 m
d

2 2

First dividing each side by mm and defining x = E: ,

w
m

we, then, collect terms in.powers of E.

E3[2x(l-e(l-Cd))-l]

+E2[x(ez(1-cd?) -(l+4eCd))+l+2€Cd]

+E[cde(ecd-2(1+Cd e)(l-x))]
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2
+cde2(1-x) = o ' (H.15)

This equation has three roots, all three will be real or

one will be real and the others complex conjugate numbers.

When all three roots are real, the Green's function will

always be real, i.e., the density of states will be zero.

The single real root, we can discard as unphysical. To

get R(w+i6)2 we have to take the complex root with the

negative imaginary part. Then, the density of states is

'D(w2) = - % Im R(O,0;w2) (B.16)

Finally, we wish to examine two special cases of

Equation (H.15). First, for Cd=0 or equivalently, 6:0,

we get E=O which gives §=gpthe perfect chain Green

function. Second, for Cd=l, we get E=€ which gives

1

(w2(l-€)fflw2(l-€)-wi)

w u

S
I
P

8 (H.17)

This is the Green's function of the chain with mass

m(1-e) where m;;= wi/(l-e). Therefore, the self-con-

sistent method presented in this thesis is exact in both

limits Cd+0(e+0) and C +1.
d

 



APPENDIX I

ISOLATED DEFECT IN A MONATOMIC HOST CHAIN
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In this appendix, we will briefly examine the

eigenvectors and localization parameter for a monatomic

chain and a diatomic ordered binary chain of length, N.

Next, we will explore, the effect a single defect, either

lighter or heavier than the host mass, has on the eigen-

frequencies and eigenvectors of a monatomic chain. For

the monatomic chain the equatiomsof motion are

_ m 2

Un+1 —(2—7w )Un Un_l (1.1)

In text, we showed that we could diagonalize this coupled

set of equations by expanding in running waves

Un = u eilkna (1.2)

This solution for the eigenvector is valid for an infinite

chain and for chains with periodic boundary conditions. For

fixed boundary conditions, we can expand in a linear combina-

tion of outgoing and incoming waves.

. *_.

Un = U elkna +U elkna (1.3)

where U E U(1)+ iU(2)

subject to the boundary condition Un = 0 and UN+1 = 0.

334
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— O we have'For U0 —

U = -U(2)

and

Un = U sin(kna) (1.4)

For UN+1 = O

U sin(k(N+l)a) = 0

or

(1.5)
TTI‘

k = W , r-integer

Substituting Equation (1.4) into Equation (1.1), we get

2 _ 2 . 2 ka

w - mm 51D (2 (1.6)

Where

(”2..-£1
m m

nd k= "r -1 2 N (I7)a M r— ' ..., .

Equation 1.6 is identical to the equation in text. The

eigenvector for a given value of r is

(1.8)
= . TTrn

Un U Sln (m)

The localization parameter a is
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1? 4

_ IUI
OL = n—l n

(1.9)

()I In |2>:2
n=1 n

First, since

N 2 N ' [(N+1) J ' (N ) (1 351 1)39Z sin (qx) ___ __ cos $.81n x . . n

_ 2 2 Sin(x) .
q-l )

we will want to evaluate

2 N 2 )
ngllUnl :n£1 Un (Since UN+1:0)

(N+2)rn .

_ N+l 2 2 nrn _ N+l. cos(——fi:T——)51n(nr) 2

- 2 U s (——)-(—- )U

n=1 N+l 2 zsin(1£—)
N+l

= 5%; 02 (1.10)

Since sin(nr) 0 for all r.

Next since

{3N+cos[2(N+l)x]sin(2Nx)cosec(2x)

(
D
I
P

Z sin4(qx)=

q=l

-4cos[(N+l)x]sin(Nx)cosec(X)}

we again add the N+l term to the sum

N+l N+l

4 _ 4 . 4 nrn _ 3(N+l) 4

n=1 n=1
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since sin(an) = sin(nr) = 0

_ 3 1
Therefore 0. - '2- m (1.12)

For N=lOO, a = .01485

and FOr N=1000, a =.0014985

For the ordered binary chain, the equations of

motion are

“‘1 2

(1.13)

“‘2 2

U2n+2 = (2'7“ ‘” )U2n+1‘U2n

where for a fixed boundary conditions n takes on the values

1 to N/Z. We take the eigenvectors to have the form

U2n = U Sin(ka2n) ‘ (1.14)

U = U sin(ka(2n+l)) (1.15)
2n+l

From the boundary conditions, we have

U0=O satisfied by Equation (1.15) with (n=0) and

UNI1=0 giv1ng

k - NT (r ' t r) (I 16)

as before. Using Equations (1.14) and (1.15) in Equations

(1.14), we have

 

 

 



2U cos(ka) = (2 -7—w )U

2U’ cos(hfl= (2 -V£w2)U

And from (G.3)

 

2--Y+Y+Y---(-I—24Y2 '2 117w - E_ —— - (m m ) - ( m )51n ka ( . )

1 2 1 2 m1 2

 

B

For each value of k, we get two eigenvalues and eigenvectors;

therefore, for

 

_ nr _ 11
k - m , r—1, 2, ..., 2 (I.18)

will give all eigenvalues.

' m

 

 

 

 

For our case _3_= 2, 1— = l, and l—-= l and

m m m 2

1 l 2

we have

m: = g 3/% - 251n2(;:1) (1.19)

(-1: W<——§>
Uzn = U 2 COS("r ) . Sln(-fi:-l-) ’ (1.20)

N+l

_ . nr(2n+l)
U2n+l U $1n( N+l ) (1.21)

We can find approximate localization values near the band

edges fairly easily. First, for r=l and N large, we take

. Tr ~

5111871371?) — 0

‘TT

and COSW - l
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The two eigenvalues are

m 20,3 (1.22)

For w2=0, the eigenvector is

. TT

U211 —U Sin(m2n)

_ - w
U2n+l — U Sin(N+l(2n+l))

_ . fin
or Un -' U Sln(NTl—) (1.23)

Near w2=0 the localization a is nearly the same value

as in the monatomic chain.

fl2n2 __ .

For 0) -3, U - 2U Sln(m)

2n

n(2n+1)
n+1 ) (1.24)

(U2n+1 = U Sln(

or the light masses are vibrating in opposite direction

of the heavy masses with twice the amplitude of the

heavy masses. Then we have

‘n 2n 2n+l

n=1 n=1 n=1

N/2
N/2

_ 2 2 n2n 2 . 2 n(2n+1)

n

C
‘
. N

A

m

:
4
2
V
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N

and Z 0:: £%'E;) U4

n=1

_ 51 l
and O. - -2-—5- fi' (1.25)

For N = 100, a=.0294

and for N=1000, 02.00204

Whether we should take N or N+1 in the above equation

is questionable but doesn't matter within the error of the

approximation.

For r=§, we take

. n N

Sln (E-fi:—)— l

and cos (— ( N ))~ 0
2 N+l

The eigenvalues are w2 = 1,2 (1.26)

For w2 = 1 u ~o
’ 2n -

_ - N
and U2n+1 — U 51n(n(2n+1)(fi:f) (1.27)

for w — 2, U2n+1 — 0

U = U’sin(n2n(—E—))' (I 28)
Zn ' N+l °

Within our approximation, these two eigenvectors will have

the same localization, a.
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~ 3
_ fi _ (1.29)

For N=lOO, a =.03

and for N=1000, a = .003.,

Before looking at the single defect, we will

examine the eigenvector of the monatomic chain in greater

detail. For small eigenvalues, r=l, 2 .. the eigenvector

is a sine wave with period 2(Egl). For large eigenvalues

(N+l)-p, p = 1,2,3...

 

_ - (N+l)-p fin _ _ . nn
Un —U 51n( N+l ) — cos(nn)51n(fi:§)

--n+1 - r22 _
Un — ( 1) Sln(N+1) p-l,2,3 ..

This is the product of a wave where all the atoms are

vibrating in opposite directions and an envelope function

212)

N+l '

Increasing p, increases the number of nodes in

sin(

the envelope function and therefore decreases the number

of nodes of the alternating chain giving lower frequency.

If N is odd, then N+l is even and atom at (N+1)/2 will

be at a node for all r or p odd. Other atoms in the chain

can also be at.nodes. If N is even, then N+l is odd.

First if N+l is a prime number, then no atom can ever be

at a node. If (N+1) is odd but not prime, then no atom

can be at a node at p or r = 23, j=0,l,2,...,1n(N)/ln(2).
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If we place a single heavy defect in a light chain,

Rayleigh's theorem says that all eigenfrequencies may)

decrease but not more than to the next lowest eigenvalue

of the perfect chain. For an almost infinite heavy mass

placed at or as close as possible to the center of the

chain, we can easily demonstrate this theorem. First, if

N is even the heavy defect is placed at N/2, dividing the

chain into one even chain of length N/2 and one odd chain

of length N/2-1. The heavy mass almost acts like a fixed

boundary. The eigenvalues of the short chain are

2~ 2 . 2 nr’
ws- wm Sin ( N ) (1.30)

r’ = 1,2 ...N/2-l

And the eigenvalues of the longer chain are

2 _ 2 . 2 nr”
(11L - (Um $111 (w) (1-31)

r” = l, 2, 3 ... N/2

compared to Equation (1.7) for the monatomic chain. First,

we see we lose the lowest frequency mode wzzo, r=l for the

infinite defect. For a very heavy defect, this mode will

be the only mode to propagate throughout the chain. The

r=even modes become the modes of the longer chain (r=2r”)

and the energy shift is
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I

2 _ 2 . 2 wr _ .
Awr -wm[51n (N+l ) Sin2(N+2—)] 

2N+3 l
 

 

 

— 2 I o I!

—wm Sin[(nr )(N+1Y?N+2)]Sln[(flr )(N+l)(N+2))]

(1.32)

r = l, 2, ..N/2

The r=odd.modes become the modes of the shorter chain

with frequency shift (r=2r’+l)

2 _ (2r+l)n _ . 2 nr’

Awr, - mm2[sin2 (m) 8.111 (__N)1

r’ = l, 2, 3, ...N/2-l

2 _ 2 . 4rN+N+2r
Aw ’—wm $1n(w 2NTN+1) )sin(n—§TN%TT) (1.33)

r

The long chain frequency shift increases with

increasing r” and the short chain frequency shift decreases

for increasing r’. Therefore, we expect the modes to

cluster in groups of 2 near w2=0 and a); and be well

separated from one another for wzzwfi/Z.

N+l

If N is odd, the heavy defect is placed at 2

dividing the chain into two equal chains of length

(N-1)/2 separated by the heavy defect. If the heavy defect

is infinite, we have two identical short chains with two

fold degenerate eigenvalues at

I 2 = 2 sin2 (—w wm N+1) ' (1.34)
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For this Case, the even modes of the perfect chain remain

unchanged with the odd modes shifting as far as Rayleigh's

theorem allowsithat is, the r odd modes have an energy

decrease of exactly the spacing between the eigenfrequencies

of the perfect chain. The non-shift in r even modes is

not surprizing when we recall that for N odd (N+l, even)

the atom at 5%; is stationary for the r even modes; there-

fore, the heavy defect cannot affect these modes giving

the same eigenvector as the perfect chain. For the r odd

modes, where the atom at le is at an antinode for the

perfect chain, the heavy atom chokes this displacement giving

a mode symmetric about (Egl) instead of the antisymmetric

r-even mode.

= ' £1.11Un U Sin (N+l)

for r-even modes

_ . r’nn , _ N+l

_ » . r’nn _ N+l
- U 51!) (WT) n— T, .. ., N

for distorted r-odd modes.

These modes can also be found by symmetry considerations

as the modes of two identical length chains placed side

by_side.

To consider the case of one light impurity in

a heavy chain, we look at an impurity of almost zero mass.
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The isolated frequency in the impurity band occurs near

w2=w. The almost zero light mass creates an unusual

boundary between the two light chains. We are therefore

restricted to a qualitative analysis versus a quantitative

approach. For N odd (N+l even) the light mass divides

the chain into two identical small chain of length (Egl).

The r even modes (eigenvalues and eigenvectors) of the

perfect heavy chain will remain unchanged since the atom

at Egl is at a node for r even. For r odd, the atom at

+ . .
.

E7; is at an antinode for the perfect chain. For r small,

we have

Uri-_lgufltf UN_+3;
2 2 2

and the light mass at UN+1 will not greatly effect this

mode. For r large (=N),:we have

for the perfect chain. The effect of the light mass

(=0) at U will be to make
N+l

2

N+3 ‘

causing a frequency shift to the next highest frequency

of the perfect lattice. For r large, the zero mass
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defect acts much like the infinite mass defect but for

r small, the zero mass defect hardly disturbs the perfect

system.
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