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ABSTRACT

COMPUTING TENSOR EIGENPAIRS USING HOMOTOPY METHODS

By

Liangmin Zhou

Tensor eigenvalue problems have found important applications in automatic control, sta-

tistical data analysis, diffusion tensor imaging, image authenticity verification, spectral hy-

pergraph theory and quantum entanglement, etc. The concept of mode-k generalized eigen-

values and eigenvectors of a tensor is introduced and some properties of such eigenpairs are

proved. In particular, an upper bound for the number of equivalence classes of generalized

tensor eigenpairs using mixed volume is derived. Based on this bound and the structures

of tensor eigenvalue problems, two homotopy continuation type algorithms to solve tensor

eigenproblems are proposed. With proper implementation, these methods can find all equiv-

alence classes of isolated generalized eigenpairs and some generalized eigenpairs contained

in the positive dimensional components (if there are any). An algorithm that combines a

straightforward approach and a Newton homotopy method is introduced to extract real gen-

eralized eigenpairs from the available complex generalized eigenpairs. A MATLAB software

package TenEig 1.1 has been developed to implement these methods. Numerical results are

presented to illustrate the effectiveness and efficiency of TenEig 1.1 for computing complex

or real generalized eigenpairs.
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Chapter 1

Introduction

Eigenvalues of tensors were first introduced by Qi [35] and Lim [29] in 2005. Since then, tensor

eigenvalues have found applications in automatic control, statistical data analysis, diffusion

tensor imaging, image authenticity verification, spectral hypergraph theory, and quantum

entanglement, etc., see for example, [7, 10, 21, 35, 36, 38, 39, 40] and the references therein.

The tensor eigenvalue problem has become an important subject of numerical multilinear

algebra.

Various definitions of eigenvalues for tensors have been proposed in the literature, includ-

ing E-eigenvalues and eigenvalues in the complex field, and Z-eigenvalues, H-eigenvalues, and

D-eigenvalues in the real field [29, 35, 38]. In [6], Chang, Pearson, and Zhang introduced a

notion of general eigenvalues for tensors that unifies several types of eigenvalues. Recently

this definition has been further generalized by Cui, Dai, and Nie [12].

Unlike the matrix eigenvalue problem, computing eigenvalues of the third or higher order

tensors is still in its infancy [18]. Several algorithms which aim at computing one or some

eigenvalues of a tensor have been developed recently. These algorithms are designed for

tensors of certain type, such as entry-wise nonnegative or symmetric tensors.

For nonnegative tensors, Ng, Qi, and Zhou [33] proposed a power-type method for com-

puting the largest H-eigenvalue of a nonnegative tensor. Modified versions of the Ni-Qi-Zhou

method have been proposed in [31, 48, 49].

For real symmetric tensors, Hu, Huang, and Qi [20] proposed a sequential semidefinite

1



programming method for computing extreme Z-eigenvalues. Kolda and Mayo [23] proposed

a shifted power method (SSHOPM) for computing one Z-eigenvalue. They have improved

SSHOPM in [24] by updating the shift parameter adaptively. The resulting method can be

used to compute a real general eigenvalue. Han [17] proposed an unconstrained optimization

method for computing a real general eigenvalue for even order real symmetric tensors. The

methods in [17, 23, 24] can find more eigenvalues of a symmetric tensor if they are executed

multiple times using different starting points. Recently, Cui, Dai, and Nie [12] proposed a

method for computing all real generalized eigenvalues.

In this article, we focus on computing all eigenpairs of a general real or complex tensor.

As indicated in the next chapter, finding eigenpairs of a tensor actually amounts to solving

a system of polynomials. Naturally one would tempt to use methods in algebraic geometry

such as the Gröebner basis method and resultant method [9] for this purpose. These methods

can obtain symbolic solutions of a polynomial system, which are accurate. However, they

are expensive in terms of computational cost and storage requirement. Moreover, they

are difficult to be parallelized. A class of numerical methods, the homotopy continuation

methods, can release these shortcomings. During the past few decades, remarkable progresses

have been made on homotopy continuation methods for solving polynomial systems, see for

example, [3, 26, 27, 32, 41].

In this thesis we will compute complex eigenpairs of general tensors by using homotopy

continuation methods to solve their corresponding polynomial systems. An attracting feature

of the homotopy continuation methods is their capability of finding all isolated solutions of

polynomial systems and some solutions in the positive dimensional solution components. We

propose two homotopy type algorithms for computing complex eigenpairs of a tensor. These

algorithms allow us to find all equivalence classes of isolated eigenpairs of a general tensor
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and some eigenpairs in positive dimensional eigenspaces (if there are any). We also present a

homotopy method and a straightforward approach to compute real eigenpairs based on the

available complex eigenpairs. Numerical results exhibited the effectiveness and efficiency of

our methods.

This dissertation is organized as follows. In Chapter 2, we define mode-k generalized

eigenvalues and eigenvectors which extend the matrix right eigenpairs and left eigenpairs to

higher order tensors. Some properties of such eigenpairs are proved. In Chapter 3, an upper

bound for the number of equivalence classes of generalized tensor eigenpairs using mixed

volume is derived. In Chapter 4, based on the bounds derived in Chapter 3 two homotopy

methods are presented to compute mode-k generalized complex eigenpairs. In Chapter 5,

a homotopy method and a straightforward approach to compute real mode-k generalized

eigenpairs are proposed. Finally, numerical results are presented in Chapter 6.
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Chapter 2

Tensor eigenvalues and eigenvectors

2.1 Definition of generalized mode-k tensor eigenvalue

and eigenvectors

Let F = C or R be the complex field or the real field. Let m ≥ 2, m′ ≥ 2, and n be positive

integers. Denote the set of all mth-order, n-dimensional tensors on the field F by F[m,n]. A

tensor in F[m,n] is indexed as

A = (Ai1i2···im),

where Ai1i2···im ∈ F, for 1 ≤ i1, i2, · · · , im ≤ n.

For x ∈ Cn, the tensor A defines a scalar function

Axm :=
n∑

i1,··· ,im=1

Ai1i2···imxi1xi2 · · ·xim . (2.1)

For 1 ≤ k ≤ m, A(k)xm−1 is an n-vector whose jth entry is defined as

(A(k)xm−1)j =
n∑

i1,··· ,ik−1,ik+1,··· ,im=1

Ai1···ik−1jik+1···imxi1 · · ·xik−1
xik+1

· · · xim . (2.2)

When k = 1, the notation for the vector A(1)xm−1 is simplified as Axm−1.

A real tensor A ∈ R[m,n] is positive definite if the scalar function Axm is positive for all
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x ∈ Rn\{0}. A tensor A ∈ F[m,n] is symmetric if its entries Ai1i2···im are invariant under

any permutations of their indices i1, i2, · · · , im. A tensor A ∈ F[m,n] is called the mth-order

unit tensor if

Ai1,...,im =


1, when i1 = · · · = im

0, otherwise.

We now introduce the following mode-k generalized eigenvalue definition for a general

tensor A.

DEFINITION 2.1.1 Let A ∈ F[m,n] and B ∈ F[m′,n]. Assume that Bxm′ is not identically

zero. For 1 ≤ k ≤ m, if there exist a scalar λ ∈ C and a vector x ∈ Cn\{0} such that

• when m 6= m′,

A(k)xm−1 = λBxm
′−1, Bxm

′
= 1; (2.3)

• when m = m′,

A(k)xm−1 = λBxm−1, (2.4)

then we call λ a mode-k B-eigenvalue of A and x a mode-k B-eigenvector associated with λ.

Together (λ, x) is called a mode-k B-eigenpair of A.

If λ ∈ R, x ∈ Rn, then λ is called a mode-k BR-eigenvalue of A and x a mode-k BR-

eigenvector associated with λ, and (λ, x) a mode-k BR-eigenpair of A.

Denote the set of all mode-k B eigenvalues of A by σB(A(k)).

REMARK 2.1.1 Let (λ, x) be a mode-k B-eigenpair of A. By (2.3) or (2.4), (λ, x) is a

solution of A(k)xm−1 = λBxm′−1, so is (λ′, x′) with λ′ = tm−m
′
λ and x′ = tx for t ∈ C\{0}.

Hence the solution space of A(k)xm−1 = λBxm′−1 consists of different equivalence classes.
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We denote such an equivalence class by

[(λ, x)] := {(λ′, x′) |λ′ = tm−m
′
λ, x′ = tx, t ∈ C\{0}}.

When m 6= m′, taking arbitrary (λ′, x′) ∈ [(λ, x)] and substituting x′ = tx into Bxm′ = 1

in (2.3) yields tm
′

= 1, which gives m′ different values for t. Hence the normalization

Bxm′ = 1 in (2.3) restricts the choices of m′ representative solutions from each equivalence

class.

In later discussions, we often choose one representative from each equivalence class.

REMARK 2.1.2 If only one representative is needed from each equivalence class of eigen-

pairs, we can solve A(k)xm−1 = λBxm′−1 augmented with an additional linear equation

a1x1 + a2x2 + · · ·+ anxn + b = 0, (2.5)

with generic complex numbers a1, . . . , an, b. Then normalize the resulting solutions to satisfy

Bxm′ = 1 in the case m 6= m′.

The eigenvalues/eigenvectors defined in [6, 12, 35, 38] are mode-1 eigenvalues/eigenvectors.

The tensors considered in those papers are primarily real symmetric tensors. For symmet-

ric tensors, the sets of mode-k B-eigenpairs and mode-1 B-eigenpairs are the same for any

k. Therefore, mode-1 eigenvalues serve the purpose of those articles. Nonetheless, non-

symmetric tensors also appear in applications and theoretical studies, see, for example,

[4, 5, 14, 33, 45, 46]. In [29], Lim defined mode-k eigenvalues/eigenvectors for nonsymmetric

real tensors A when B is the m′th order unit tensor for some m′ ≥ 2. Definition 2.1.1

contains more general A and B.

6



As in [6, 12], Definition 2.1.1 adapts a unified approach to define tensor eigenvalues. It

covers various types of tensor eigenvalues in the literature, including

• IfA ∈ R[m,n], m′ = 2, and B is the identity matrix In ∈ Rn×n, the mode-1 B-eigenpairs

are the E-eigenpairs and the mode-1 BR-eigenpairs are the Z-eigenpairs defined in [35],

which satisfy

Axm−1 = λx, xTx = 1. (2.6)

• If A ∈ R[m,n], m′ = 2 and B = D, where D ∈ Rn×n is a symmetric positive definite

matrix, the BR-eigenpairs are the D-eigenpairs defined in [38], which satisfy

Axm−1 = λDx, xTDx = 1. (2.7)

• If A ∈ R[m,n], m = m′ and B = I is the unit tensor, then mode-1 B-eigenpairs defined

in [35] satisfying

Axm−1 = λx[m−1], (2.8)

where x[m−1] = [xm−1
1 , xm−1

2 , · · · , xm−1
n ]T , is called a Qi-eigenpair.

• If A ∈ R[m,n], m = m′ and B = I is the unit tensor, then mode-1 BR-eigenvalues are

the H-eigenvalues defined in [35].

7



2.2 Properties of generalized mode-k tensor eigenval-

ues

When m = m′ = 2 and B = In (the n × n identity matrix), then mode-1 eigenvectors are

right eigenvectors of A and mode-2 eigenvectors are left eigenvectors of A, and the mode-1

and mode-2 eigenvalues are the eigenvalues of matrix A, i.e., σB(A(1)) = σB(A(2)). However,

when m ≥ 3, σB(A(k)) and σB(A(l)) are not equal in general when k 6= l, unless A has a

certain type of symmetry. The following example illustrates this difference.

EXAMPLE 2.2.1 Let the tensor A ∈ R[3,2] be

A111 = 1, A121 = 2, A211 = 3, A221 = 4,

A112 = 5, A122 = 6, A212 = 7, A222 = 0.

Choose m′ = 2 and B = I2 (the 2×2 identity matrix). In this case, if (λ, x) is an B-eigenpair

of A, so is (−λ,−x). We follow [4], taking (λ, x) and (−λ,−x) as the same eigenpair. Then

σB(A(1)) = {0.4105, 4.3820, 9.8995},

σB(A(2)) = {0.2851, 4.3536, 9.5652},

σB(A(3)) = {0.2936, 4.3007, 9.4025}.

Clearly, σB(A(k)) 6= σB(A(l)) when k 6= l.

PROPOSITION 2.2.1 Let A ∈ F[m,n] and B ∈ F[m′,n]. If (λ, x) is a mode-k B-eigenpair

and (µ, x) is a mode-l B-eigenpair of A such that Bxm′ 6= 0, then λ = µ.
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Proof: Since (λ, x) is a mode-k B-eigenpair of A,

A(k)xm−1 = λBxm
′−1. (2.9)

Recall that A(k)xm−1 is defined by

A(k)xm−1 =



(A(k)xm−1)1

...

(A(k)xm−1)j

...

(A(k)xm−1)n



with (A(k)xm−1)j given by (2.2). Similarly,

Bxm
′−1 =



(Bxm′−1)1

...

(Bxm′−1)j

...

(Bxm′−1)n


,

where

(Bxm
′−1)j =

n∑
i2,...,im’=1

Bji2...im’
xi2 . . . xim’

.

Then multiplying both sides of (2.9) by xT from the left yields

xTA(k)xm−1 = λxTBxm
′−1.
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By definition xTA(k)xm−1 = Axm and xTBxm′−1 = Bxm′ . So

Axm = λBxm
′
.

Similarly, (µ, x) is a mode-l B-eigenpair of A will imply that Axm = µBxm′ . Therefore,

λBxm′ = µBxm′ . Hence if Bxm′ 6= 0, then λ = µ. 2

Let A ∈ F[m,n]. For 1 ≤ k < l ≤ m, tensor G ∈ F[m,n] is said to be the 〈k, l〉 transpose

of A if

Gi1···ik−1ilik+1···il−1ikil+1···im = Ai1···ik−1ikik+1···il−1ilil+1···im ,

for all 1 ≤ i1, · · · , im ≤ m. Denote the 〈k, l〉 transpose of A by A〈k,l〉. We say tensor A is

〈k, l〉 partially symmetric if

A〈k,l〉 = A.

It is clear that the following proposition holds.

PROPOSITION 2.2.2 Let A ∈ F[m,n] and B ∈ F[m′,n]. Assume Bxm′ is not identically

zero. Let k, l be integers such that 1 ≤ k < l ≤ m. Then

• (λ, x) is a mode-k B-eigenpair of A if and only if it is a mode-l B-eigenpair of A〈k,l〉.

• The sets of mode-k B-eigenpairs and mode-l B-eigenpairs are the same if A is 〈k, l〉

partially symmetric.

For a symmetric tensor, the following proposition was shown in [23].
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PROPOSITION 2.2.3 Let A ∈ F[m,n] be a symmetric tensor. Then the gradient of Axm

is given by

∇(Axm) = mAxm−1.

REMARK 2.2.1 Theoretical properties of mode-1 eigenvalues of tensors such as the Perron-

Frobenius theory ([5, 14, 45, 46]) for nonnegative tensors can be parallelly developed for

mode-k eigenvalues. However, as Horn and Johnson announced in [19]: ”One should not dis-

miss left eigenvectors as merely a parallel theoretical alternative to right eigenvectors. Each

type of eigenvector can convey different information about a matrix,” we believe mode-1

through mode-m eigenpairs can convey different information about a general tensor of order

m ≥ 3.
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Chapter 3

The upper bound of the number of

equivalence classes of tensor

eigenpairs

In this chapter, we present the derivation of an upper bound for the number of equivalence

classes of mode-k eigenpairs.

3.1 Introduction

The number of equivalence classes of tensor eigenpairs has been discussed in many papers.

For Qi-eigenvalue problems in (2.8), if (λ, x) is a Qi-eigenpair, so is (λ, tx) for any t ∈ C\{0}.

Qi [35] first showed that the Qi-eigenvalues are roots of a univariate polynomial and proved

the following theorem.

THEOREM 3.1.1 Let A ∈ R[m,n] be a symmetric tensor and m be an even integer. Then

A has exactly n(m− 1)n−1 Qi-eigenvalues.

For E-eigenvalue problems as defined in (2.6), the following theorem was proved in [4]

using techniques from toric variety [11, 15].
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THEOREM 3.1.2 If a tensor A ∈ C[m,n] has finitely many equivalence classes of E-

eigenpairs over C then their number, counting multiplicities, is equal to

(m− 1)n − 1

m− 2
.

If the entries of A are sufficiently generic, then all multiplicities are equal to 1, so there are

exactly ((m− 1)n − 1)/(m− 2) equivalence classes of eigenpairs.

As in Definition 2.1.1, Remark 2.1.1 and Remark 2.1.2, the number of equivalence classes

of mode-k generalized B-eigenpairs for general tensors A ∈ C[m,n] and B ∈ C[m′,n] is equal

to the number of isolated solutions of the following system of polynomials

T (λ, x) =



(A(k)xm−1)1 − λ(Bxm′−1)1

...

(A(k)xm−1)n − λ(Bxm′−1)n

a1x1 + a2x2 + · · ·+ anxn + b


= 0, (3.1)

where λ and x := (x1, · · · , xn)T are the unknowns, a1, . . . , an, b are random complex num-

bers. We may therefore use the classic results on the number of solutions of a polynomial

system to study the number of equivalence classes of tensor eigenpairs.

3.2 Preliminaries

In the first place, we introduce some commonly used notations and definitions. Let P (x) :=

(p1(x), . . . , pn(x))T be a polynomial system with x := (x1, . . . , xn)T . For α := (α1, . . . , αn) ∈
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(Zn≥0)T , write xα := x
α1
1 · · ·x

αn
n and |α| = α1 + · · ·+ αn. Consider the polynomial system

P (x) :=


p1(x) :=

∑
α∈S1

c1,αx
α

...

pn(x) :=
∑

α∈Sn
cn,αx

α


, (3.2)

where S1, . . . , Sn are given finite subsets of (Zn≥0)T and ci,α ∈ C∗ := C\{0}. For each

i = 1, . . . , n, Si is called the support of pi(x) and its convex hull Ri := conv(Si) in Rn

is called the Newton polytope of pi(x). The n-tuple (S1, . . . , Sn) is called the support of

P (x). For positive variables λ1, . . . , λn, let λ1R1 + · · · + λnRn be the Minkowski sum of

λ1R1, . . . , λnRn, i.e.,

λ1R1 + · · ·+ λnRn := {λ1r1 + · · ·+ λnrn | ri ∈ Ri, i = 1, . . . , n}.

It was shown in [8] that the n-dimensional volume of λ1R1 + · · · + λnRn, denoted by

Voln(λ1R1 + · · · + λnRn), is a homogeneous polynomial of degree n in λ1, . . . , λn. The

coefficient of the monomial λ1λ2 · · ·λn in this polynomial is called the mixed volume of

R1, . . . , Rn, denoted by MVn(R1, . . . , Rn). Sometimes we call it mixed volume of the sup-

ports S1, . . . , Sn, denoted by MVn(S1, . . . , Sn), or the mixed volume of P (x) if no ambiguities

exist. The following theorem relates the number of isolated solutions in (C∗)n of a polynomial

system to its mixed volume.

THEOREM 3.2.1 (Bernstein’s Theorem) [2] The number of isolated zeros in (C∗)n,

counting multiplicities, of a polynomial system P (x) = (p1(x), . . . , pn(x))T with supports

S1, . . . , Sn is bounded above by the mixed volume MVn(S1, . . . , Sn). Moreover, for generic
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choices of the coefficients in pi, the number of isolated zeros in (C∗)n is exactly equal to

MVn(S1, . . . , Sn).

A limitation of Theorem 3.2.1 is that it only counts the isolated zeros of a polynomial

system in (C∗)n rather than Cn. To deal with this issue, Li and Wang gave the following

theorem.

THEOREM 3.2.2 [30] The number of isolated zeros in Cn, counting multiplicities, of a

polynomial system P (x) = (p1(x), . . . , pn(x))T with supports S1, . . . , Sn is bounded above by

the mixed volume MVn(S1 ∪ {0}, . . . , Sn ∪ {0}).

The following lemma was given as an exercise in [8].

LEMMA 3.2.1 For a polynomial system P (x) = (p1(x), . . . , pn(x))T with supports S1 =

S2 = · · · = Sn = S,

MVn(S, . . . , S) = n!Voln(conv(S)).

Recall that an n-simplex is the convex hull of n + 1 points z1, . . . , zn+1 such that z2 −

z1, . . . , zn+1 − z1 are linearly independent in (Rn)T , and by a simple computation

Voln(conv(z1, z2, . . . , zn+1)) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣
det


z2 − z1

...

zn+1 − z1



∣∣∣∣∣∣∣∣∣∣∣
.

3.3 Main Theorem based on Bernstéin’s Theorem

An upper bound for the number of equivalence classes of mode-k eigenpairs which generalizes

results in [4, 35] is given in the following theorem.
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THEOREM 3.3.1 Let A ∈ C[m,n] and B ∈ C[m′,n]. Assume Bxm′ is not identically zero

and k is an integer satisfying 1 ≤ k ≤ m. Assume A has finitely many equivalence classes

of mode-k B-eigenpairs over C.

(a) If m = m′, then the number of equivalence classes of mode-k B-eigenpairs, counting

multiplicities, is bounded by

n(m− 1)n−1.

If A and B are generic tensors, then A has exactly n(m− 1)n−1 equivalence classes of

mode-k B-eigenpairs, counting multiplicities.

(b) If m 6= m′, then the number of equivalence classes of mode-k B-eigenpairs, counting

multiplicities, is bounded by

(m− 1)n − (m′ − 1)n

m−m′
.

If A and B are generic tensors, then A has exactly ((m− 1)n − (m′ − 1)n)/(m−m′)

equivalence classes of mode-k B-eigenpairs, counting multiplicities.

Proof: As mentioned before, the number of equivalence classes of mode-k B-eigenpairs ofA is

equal to the number of solutions of (3.1). For the random hyperplane a1x1+· · ·+anxn+b = 0

in (3.1), we suppose without loss, an 6= 0. Then

xn = c1x1 + · · ·+ cn−1xn−1 + d, (3.3)

where ci = −ai/an for i = 1, . . . , n−1 and d = −b/an, and the number of solutions of (3.1) in

Cn+1 is the same as the number of solutions in Cn of the resulting system T ∗(λ, x1, . . . , xn−1)
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by substituting (3.3) into the first n equations of (3.1). Let z := (λ, x1, . . . , xn−1) and let

the supports of T ∗ be S1, . . . , Sn. We claim that

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) =


n(m− 1)n−1, m = m′

(m− 1)n − (m′ − 1)n

m−m′
, m 6= m′.

(3.4)

As a consequence, when N is the number of equivalence classes of mode-k B-eigenpairs of A

over C, then

N ≤ n(m− 1)n−1

for m = m′ and

N ≤ (m− 1)n − (m′ − 1)n

m−m′

for m 6= m′. When A and B are generic, the above equality holds by Theorem 3.2.1 and

Theorem 3.2.2.

To prove (3.4), let Ā ∈ C[m,n] and B̄ ∈ C[m′,n] be generic tensors. Similar to (3.1) the

polynomial system corresponding to the eigenproblem Ā(k)xm−1 = λB̄xm′−1 is

T̄ (λ, x) =



(Ā(k)xm−1)1 − λ(B̄xm′−1)1

...

(Ā(k)xm−1)n − λ(B̄xm′−1)n

a1x1 + a2x2 + · · ·+ anxn + b


= 0. (3.5)

Since Ā and B̄ are generic, without loss of generality one may assume all monomials

{xα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m− 1}

17



and

{λxα1
1 x

α2
2 . . . xαnn

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn = m′ − 1}

will appear in each of the first n equations in (3.5). Therefore, after substituting (3.3) into

the first n equations of (3.5), each equation of the new system T̄ ∗(z) := T̄ ∗(λ, x1, . . . , xn−1)

contains all monomials

{xα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m− 1}

and

{λxα1
1 x

α2
2 . . . x

αn−1
n−1

∣∣∣αi ∈ Z≥0, α1 + α2 + · · ·+ αn−1 ≤ m′ − 1}

So the supports S̄1, . . . , S̄n of T̄ ∗ are all equal to

S̄ := {(0, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m− 1} ∪ {(1, α)
∣∣α ∈ (Zn−1

≥0 )T , |α| ≤ m′ − 1}.

Let Q̄ be the convex hull of S̄. Then vertices of Q̄ are given by the following points in (Zn)T :

z0 = (0, 0, . . . , 0),

z1 = (0, 0, . . . , 0,m− 1),

z2 = (0, 0, . . . , 0,m− 1, 0),

...

zn−1 = (0,m− 1, 0, . . . , 0),
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zn = (1, 0, . . . , 0),

zn+1 = (1, 0, . . . , 0,m′ − 1),

zn+2 = (1, 0, . . . , 0,m′ − 1, 0),

...

z2n−1 = (1,m′ − 1, 0, . . . , 0).

Denote the i-th unit vector in (Rn)T by ei for i = 1, . . . , n. Then

zi =



0, i = 0

(m− 1)en+1−i, 1 ≤ i ≤ n− 1

e1, i = n

e1 + (m′ − 1)e2n+1−i, n+ 1 ≤ i ≤ 2n− 1

To compute the volume of Q̄, we divide it into following n simplices

Q̄1 := conv(z0, z1, . . . , zn),

Q̄2 := conv(z1, z2, . . . , zn+1),

...

Q̄i := conv(zi−1, zi, . . . , zn+i−1),

...

Q̄n := conv(zn−1, zn, . . . , z2n−1).
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It follows that

Voln(Q̄1) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



z1 − z0

z2 − z0

...

zn − z0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



(m− 1)en

(m− 1)en−1

...

(m− 1)e2

e1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



en

en−1

...

e2

e1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−1

n!

∣∣∣∣∣∣∣∣∣∣∣
det


e1

...

en



∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−1

n!
. (3.6)

Obviously that zn is contained in each Q̄i for i = 2, . . . , n, so

Voln(Q̄i) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



zi−1 − zn

zi − zn
...

zn−1 − zn

zn+1 − zn
...

zn+i−1 − zn



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



(m− 1)en+2−i − e1

(m− 1)en+1−i − e1

...

(m− 1)e2 − e1

(m′ − 1)en

(m′ − 1)en−1

...

(m′ − 1)en+2−i



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Further computation gives

Voln(Q̄i) =
1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



−e1

(m− 1)en+1−i

...

(m− 1)e2

(m′ − 1)en

(m′ − 1)en−1

...

(m′ − 1)en+2−i



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−i(m′ − 1)i−1

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det



−e1

en+1−i

...

e2

en

en−1

...

en+2−i



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(m− 1)n−i(m′ − 1)i−1

n!

∣∣∣∣∣∣∣∣∣∣∣
det


e1

...

en



∣∣∣∣∣∣∣∣∣∣∣
=

(m− 1)n−i(m′ − 1)i−1

n!
. (3.7)

Comparing (3.6) with (3.7), (3.7) actually also holds for i = 1. Thus

Voln(Q̄) =
n∑
i=1

Voln(Q̄i) =
n∑
i=1

(m− 1)n−i(m′ − 1)i−1

n!
.

Therefore, by Lemma 3.2.1

MVn(S̄1, . . . , S̄n) = n!Voln(Q̄) =
n∑
i=1

(m− 1)n−i(m′ − 1)i−1.

Note that for i = 1, . . . , n, Si ∪ {0} ⊂ S̄i. Hence

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤ MVn(S̄1, . . . , S̄n) =
n∑
i=1

(m− 1)n−i(m′ − 1)i−1.
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Consequently,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤
n∑
i=1

(m− 1)n−1 = n(m− 1)n−1 (3.8)

for m = m′ and

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≤
(m− 1)n

m′ − 1

n∑
i=1

(
m′ − 1

m− 1

)i

=
(m− 1)n

m′ − 1

m′−1
m−1

(
1−

(
m′−1
m−1

)n)
1− m′−1

m−1

= (m− 1)n
1−

(
m′−1
m−1

)n
m−m′

=
(m− 1)n − (m′ − 1)n

m−m′
(3.9)

for m 6= m′.

On the other hand, for m = m′, let the diagonal tensors A ∈ C[m,n] and B ∈ C[m,n] be

such that Aii...i = i, Bii...i = 1 and all other entries zero. Then the number of equivalence

classes of mode-k B-eigenpairs of A is equal to the number of solutions to the following

system of polynomials 

xm−1
1 − λxm−1

1

2xm−1
2 − λxm−1

2

...

nxm−1
n − λxm−1

n

x1 + x2 + · · ·+ xn − 1


= 0.
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The zeros of this system are (λ, x1, . . . , xn) = (1, 1, 0, . . . , 0), (2, 0, 1, 0, . . . , 0), . . . , (n, 0, . . . , 0, 1)

and each zero has multiplicity (m− 1)n−1. By Theorem 3.2.2,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≥ n(m− 1)n−1.

Combining with (3.8), we have

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) = n(m− 1)n−1.

For m 6= m′, consider the diagonal tensors A ∈ C[m,n] and B ∈ C[m′,n] such that

Aii...i = 1, Bii...i = 1 and all other entries are zero. Assume m > m′. Then the number of

equivalence classes of mode-k B-eigenpairs of A is equal to the number of solutions to the

following system of polynomials



xm−1
1 − λxm

′−1
1

...

xm−1
n − λxm′−1

n

a1x1 + a2x2 + · · ·+ anxn + b


=



xm
′−1

1 (xm−m
′

1 − λ)

...

xm
′−1

n (xm−m
′

n − λ)

a1x1 + a2x2 + · · ·+ anxn + b


= 0, (3.10)

where a1, . . . , an, b are random complex numbers. Obviously x = 0 cannot be a solution

since it fails to satisfy the augmented random hyperplane. As discussed in Remark 2.1.1,

the hyperplane is added to ensure that only one representative from each equivalence class

can be selected. So we need to find the number of equivalence classes of eigenpairs (λ, x)

from the first n equations of (3.10). For each fixed λ, there are m − 1 choices for each xi

and among those choices, m′ − 1 of them are zeros. Excluding those combinations which
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make x = 0, there are (m − 1)n − (m′ − 1)n choices for x1, . . . , xn in total. Furthermore,

for each eigenvalue λ, let x be the corresponding solution of the first n equations of (3.10).

Then tx with tm−m
′

= 1 is also a solution associated with λ. Thus for each eigenvalue λ,

solving the first n equations of (3.10) results in m − m′ corresponding solutions of x. By

Remark 2.1.1, these m − m′ solutions are actually equivalent. Therefore, there should be

((m − 1)n − (m′ − 1)n)/(m − m′) equivalence classes of eigenpairs, i.e., (3.10) must have

((m− 1)n − (m′ − 1)n)/(m−m′) isolated zeros in Cn+1 in total. By Theorem 3.2.2,

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) ≥ ((m− 1)n − (m′ − 1)n)/(m−m′).

Combining the above inequality with (3.9) gives

MVn(S1 ∪ {0}, . . . , Sn ∪ {0}) = ((m− 1)n − (m′ − 1)n)/(m−m′).

2

REMARK 3.3.1

(a) For Qi-eigenpairs, we have m′ = m. Using (a) in Theorem 3.3.1 the upper bound of

the number of equivalence classes of Qi-eigenpairs is n(m−1)n−1. This result includes

Theorem 3.1.1 proved in [35], in which this bound of the number of Qi-eigenvalues is

restricted to a symmetric tensor when m is even.

(b) For E-eigenpairs, m′ = 2. Using (b) in Theorem 3.3.1 the upper bound of the number

of equivalence classes of E-eigenpairs is ((m − 1)n − 1)/(m − 2), which agrees with

Theorem 3.1.2 proved in [4].
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(c) The upper bounds provided in Theorem 3.3.1 is very useful in designing effective ho-

motopy methods for computing mode-k generalized eigenpairs. In fact, the homotopy

method described in Algorithm 4.3.1 for the case m = m′ in the next chapter relies on

the bound n(m− 1)n−1.
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Chapter 4

Computing complex tensor eigenpairs

by homotopy methods

Let A ∈ C[m,n] and B ∈ C[m′,n]. As discussed in Chapter 2, the problem of computing mode-

k B-eigenpairs of A in (2.3) is equivalent to solving (3.1), and when m 6= m′, we normalize

(λ, x) to satisfy Bxm′ = 1. For polynomial system (3.1), the homotopy continuation method

is commonly used to find its numerical solutions.

4.1 Using homotopy continuation methods to solve poly-

nomial systems

The basic idea of using homotopy continuation method to solve a general polynomial system

P (x) = (p1(x), . . . , pn(x))T = 0 as defined in (3.2) is to deform P (x) to another polynomial

system Q(x) with known solutions in the first place. Then under certain conditions, a smooth

curve that emanates from a solution of Q(x) = 0 will lead to a solution of P (x) = 0.

For the classical linear homotopy [1]:

H(x, t) = (1− t)γQ(x) + tP (x) = 0, t ∈ [0, 1], (4.1)

where γ is a generic nonzero complex number, if Q(x) is chosen properly, the following
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properties hold:

• Property 0(Triviality) The solutions of Q(x) = 0 are known or easy to solve.

• Property 1 (Smoothness) The solution set of H(x, t) = 0 for 0 < t < 1 consists of a

finite number of smooth paths, each can be parameterized by t in [0, 1).

• Property 2 (Accessibility) Every isolated solution of H(x, 1) = P (x) = 0 can be

reached by some path emanating from a solution of H(x, 0) = Q(x) = 0.

Let d1, . . . , dn be the degrees of polynomials p1(x), . . . , pn(x) respectively. Then d1 ×

d2 × · · · × dn is commonly known as the total degree or the Bézout number of the system

P (x). A typical choice of a starting system Q(x) in (4.1) satisfying Properties 0-2 is

Q(x) :=


a1x

d1
1 − b1

...

anx
dn
n − bn

 ,

where a1, . . . , an, b1, . . . , bn are random complex numbers. The corresponding linear homo-

topy is known as the total degree homotopy, see [27, 32, 43]. Here all the d1 × d2 × · · · × dn

solutions of Q(x) = 0 can be easily solved. By tracking d1×d2×· · ·×dn number of solution

paths of (4.1) we can find all the isolated solutions of P (x) = 0. However, most of the

polynomial systems in applications usually have far fewer than d1 × d2 × · · · × dn isolated

solutions. In this case, many of the d1× d2× · · · × dn paths will diverge to infinity as t→ 1

resulting in huge wasteful computations.

The polyhedral homotopy continuation method [22] based on Bernstein’s Theorem [2]

makes a major advance in this regard. For this homotopy, the number of paths that need to

be traced is the mixed volume of the polynomial system, which generally provides a much
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tighter bound than Bézout’s number for the number of isolated zeros of the polynomial

system. In most occasions the new method substantially reduces the amount of extraneous

paths. The method of using polyhedral homotopy continuation method to solve P (x) =

(p1(x), . . . , pn(x))T in (3.2) with supports S1, . . . , Sn contains the following two major stages

(See [26, 27]):

Stage 1. Mixed Cell Computation. For each support Si, let S′i := Si∪{0} for i = 1, . . . , n.

Recall that the number of isolated zeros of (3.2) in Cn is bounded above by MVn(S′1, . . . , S
′
n)

by Theorem 3.2.2. For i = 1, . . . , n, let wi : S′i → R be a real-valued function of randomly

chosen images and write Ŝ′i := {α̂ := (α,wj(α)) |α ∈ S′i}. For β̂ := (β, 1) ∈ Rn+1 with

β = (β1, . . . , βn)T ∈ Rn, let 〈α̂, β̂〉 be the Euclidean inner product of α̂ and β̂. A collection

of pairs ({α11, α12}, . . . , {αn1, αn2}) with {αi1, αi2} ⊆ S′i for j = 1, . . . , n is called a mixed

cell of S′1, . . . , S
′
n if there exists β̂ := (β, 1) ∈ Rn+1 with β ∈ Rn such that

〈α̂i1, β̂〉 = 〈α̂i2, β̂〉 < 〈α̂, β̂〉, for α ∈ S′i\{αi1, αi2}, (4.2)

where β is called the inner normal of this mixed cell.

All the mixed cells with their inner normals in Stage 1 can be found by solving various

linear programming problems [25].

Stage 2. Construction of a polyhedral homotopy and path tracking. For each mixed cell

({α11, α12}, . . . , {αn1, αn2}) with inner normal β satisfying (4.2) found in Stage 1, let

di := min
α∈S′i
〈α̂, β̂〉, i = 1, . . . , n.
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Construct the following polyhedral homotopy

H(x, t) =



h1(x, t) :=
∑
α∈S′1

((1− t)c̄1,α + tc1,α)xαt〈α̂,β̂〉−d1

...

hi(x, t) :=
∑
α∈S′i

((1− t)c̄i,α + tci,α)xαt〈α̂,β̂〉−di

...

hn(x, t) :=
∑

α∈S′n
((1− t)c̄n,α + tcn,α)xαt〈α̂,β̂〉−dn



= 0, t ∈ [0, 1], (4.3)

where each c̄i,α is a randomly chosen nonzero complex number for each i = 1, . . . , n and

α ∈ S′i. Obviously when t = 1, H(x, 1) = P (x). When t = 0, since

hi(x, t) =
∑
α∈S′i

((1− t)c̄i,α + tci,α)xαt〈α̂,β̂〉−di

=
∑
α∈S′i
〈α̂,β̂〉=di

((1− t)c̄i,α + tci,α)xαt〈α̂,β̂〉−di +
∑
α∈S′i
〈α̂,β̂〉>di

((1− t)c̄i,α + tci,α)xαt〈α̂,β̂〉−di

= ((1− t)c̄i,αi1 + tci,αi1)xαi1 + ((1− t)c̄i,αi2 + tci,αi2)xαi2

+
∑
α∈S′i
〈α̂,β̂〉>di

((1− t)c̄i,α + tci,α)xαt〈α̂,β̂〉−di ,

we have

hi(x, 0) = c̄i,αi1x
αi1 + c̄i,αi2x

αi2
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for each i = 1, . . . , n. Hence

H(x, 0) =



c̄1,α11
xα11 + c̄1,α12

xα12

...

c̄i,αi1x
αi1 + c̄i,αi2x

αi2

...

c̄n,αn1x
αn1 + c̄n,αn2x

αn2


= 0.

This is a binomial system having

kβ := det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



α11 − α12

...

αi1 − αi2
...

αn1 − αn2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
nonsingular solutions in (C∗)n. A very efficient and stable numerical method exists for

finding all those solutions [27]. Starting from these solutions to track solution paths of (4.3),

we will reach some solutions of P (x) = 0. Different mixed cells with their corresponding

inner normals β will devote different polyhedral homotopies H(x, t) as defined in (4.3). These

different homotopies will reach different isolated zeros of P (x) = 0 as proved in [27]. And
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the total number of paths needed to be tracked here is

∑
β

kβ =
∑
β

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



α11 − α12

...

αi1 − αi2
...

αn1 − αn2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which agrees with the mixed volume MVn(S′1, . . . , S
′
n).

Although the polyhedral homotopy continuation method usually follows fewer paths than

the classical linear homotopy method, the mixed cell computation involved may become

very expensive especially for large polynomial systems. Thus if a linear homotopy can be

constructed so that only mixed volume number of paths need to be traced, the system should

be solved by using a linear homotopy instead of the polyhedral homotopy.

4.2 Construction of a linear homotopy to solve tensor

eigenpairs

To solve (3.1), one can certainly use the polyhedral homotopy continuation method imple-

mented in HOM4PS [26], PHCpack [42], PHoM [16], PSOLVE [47] (which is a MATLAB

implementation of HOM4PS), or the total degree homotopy continuation method imple-

mented in Bertini [3]. However, using these methods to solve (3.1) directly does not take

advantage of the special structures of a tensor eigenproblem. We will introduce two homo-

topy type algorithms here that utilize such structures.
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Theorem 3.3.1 asserts that the mixed volume of (3.1) is n(m − 1)n−1 for m = m′ and

((m − 1)n − (m′ − 1)n)/(m −m′) for m 6= m′, which is far less than the Bézout’s number,

mn for m = m′, and max{(m− 1)n, (m′)n} for m 6= m′. From this standpoint, we construct

a linear homotopy with which only mixed volume number of paths need to be traced.

For this linear homotopy, the knowledge of multihomogeneous Bézout’s number [41]

is required. For a polynomial system P (x) = (p1(x), . . . , pn(x))T in (3.2), where x =

(x1, . . . , xn), we partition the variables x1, . . . , xn into k groups y1 = (x
(1)
1 , . . . , x

(1)
l1

), y2 =

(x
(2)
1 , . . . , x

(2)
l2

), . . . , yk = (x
(k)
1 , . . . , x

(k)
lk

) with l1 + · · · + lk = n. Let dij be the degree of pi

with respect to yj for i = 1, . . . , n and j = 1, . . . , k. Then the multihomogeneous Bézout’s

number of P (x) with respect to (y1, . . . , yk) is the coefficient of α
l1
1 α

l2
2 . . . α

lk
k in the product

n∏
i=1

(di1α1 + · · ·+ dikαk).

The following theorem will play a very important role in constructing our linear homotopy.

THEOREM 4.2.1 [41] Let Q(x) be a system of polynomials having the same multihomoge-

neous structure as P (x) with respect to certain partition of the variables (x1, . . . , xn). Assume

Q(x) = 0 has exactly the multihomogeneous Bézout’s number of nonsingular solutions with

respect to this partition, and let

H(x, t) = (1− t)γQ(x) + tP (x) = 0,

where t ∈ [0, 1] and γ ∈ C∗. For γ = reiθ, Properties 1 and 2 hold for all but finitely many

θ.
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For (3.1), when m = m′ the following polynomial system

G(λ, x) =



(A(k)xm−1)1 − λ(Bxm−1)1

...

(A(k)xm−1)n − λ(Bxm−1)n

a1x1 + a2x2 + · · ·+ anxn + b


= 0 (4.4)

needs to be solved, where λ and x := (x1, · · · , xn)T are the unknowns, a1, . . . , an, b are

randomly chosen complex numbers. Consider the system

Q(λ, x) =



(λ− µ1)(xm−1
1 − β1)

(λ− µ2)(xm−1
2 − β2)

...

(λ− µn)(xm−1
n − βn)

c1x1 + . . . cnxn + d


= 0, (4.5)

where d as well as µi, βi, ci for i = 1, . . . , n are generic nonzero complex numbers.

THEOREM 4.2.2 For G(λ, x) and Q(λ, x) given above, all isolated zeros (λ, x) of G(λ, x)

in Cn+1 can be found by the homotopy

H(λ, x, t) = (1− t)γQ(λ, x) + tG(λ, x) = 0, t ∈ [0, 1] (4.6)

for almost all γ ∈ C∗.

Proof: Evidently, with respect to the partition (λ) and (x1, x2, . . . , xn) of the variables

(λ, x1, x2, . . . , xn), both systems (4.4) and (4.5) have degree 1 in (λ) and degree m − 1 in
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(x1, x2, . . . , xn) for the first n equations, and degree 0 in (λ) and degree 1 in (x1, x2, . . . , xn)

for the last equation. Hence (4.4) and (4.5) have the same multihomogeneous Bézout’s

number, that is the coefficient of α1α
n
2 in the product

[1 · α1 + (m− 1)α2]n(0 · α1 + 1 · α2),

which is n
1

 (m− 1)n−1 = n(m− 1)n−1.

We now show Q(λ, x) in (4.5) has exactly n(m − 1)n−1 zeros. In the first place, if λ is

equal to none of µ1, . . . , µn, then (4.5) becomes a system of n+1 equations and n unknowns,

which is overdetermined with generic coefficients. It therefore has no solutions. Thus λ must

be equal to one of µ1, . . . , µn. Assume λ = µ1, then x1, . . . , xn can be determined by

xm−1
2 − β2 = 0

...

xm−1
n − βn = 0

c1x1 + . . . cnxn + d = 0

Obviously, each xi for i = 2, . . . , n can be chosen as one of the (m − 1)-th root of βi and

x1 can be solved by substituting the chosen x2, . . . , xn into the last equation. So there are

(m− 1)n−1 solutions corresponding to λ = µ1. This argument holds for λ being any of the

µi’s. Therefore, there are n(m− 1)n−1 solutions in total.

It remains to prove that each solution of Q(λ, x) = 0 in (4.5) is nonsingular. As discussed
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above, any solution (λ∗, x∗) of (4.5) satisfies

λ∗ = µi

(x∗1)m−1 − β1 = 0

...

(x∗i−1)m−1 − βi−1 = 0 (4.7)

(x∗i+1)m−1 − βi+1 = 0

...

(x∗n)m−1 − βn = 0

c1x
∗
1 + · · ·+ cnx

∗
n + d = 0

Let DQ(λ, x) be the Jacobian of Q(λ, x) at (λ, x). For nonsingularity of DQ(λ∗, x∗) , let

Aj(λ, x) := xm−1
j − βj , Bj(λ, x) := (λ− µj)(m− 1)xm−2

j
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for j = 1, . . . , n. Then

DQ(λ, x) =



A1 B1

...
. . .

Ai−1 Bi−1

Ai Bi

Ai+1 Bi+1

...
. . .

An Bn

0 c1 . . . ci−1 ci ci+1 . . . cn



.

With

Aj(λ
∗, x∗) = (x∗j )

m−1 − βj = 0, j 6= i

and

Bi(λ
∗, x∗) = (λ∗ − µi)(m− 1)(x∗i )

m−2 = (µi − µi)(m− 1)(x∗i )
m−2 = 0,
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we have, by (4.7),

DQ(λ∗, x∗) =



0 B∗1
...

. . .

0 B∗i−1

A∗i 0

0 B∗i+1

...
. . .

0 B∗n

0 c1 . . . ci−1 ci ci+1 . . . cn



,

where A∗j := Aj(λ
∗, x∗) and B∗j := Bj(λ

∗, x∗). It follows that

det(DQ(λ∗, x∗)) = (−1)i+1A∗i (−1)n+ici
∏
j 6=i

B∗j 6= 0

by (4.7). 2

4.3 Numerical algorithms of using homotopy continu-

ation methods to solve tensor eigenpairs

Theorem 4.2.2 suggests that (4.6) can be used to solve (3.1) when m = m′. Write u := (λ, x),

then (4.6) becomes

H(u, t) = (1− t)γQ(u) + tG(u) = 0, t ∈ [0, 1] (4.8)
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where Q and G are defined in (4.5) and (4.4) respectively.

We now present our algorithm for computing mode-k generalized eigenpairs when m =

m′, i.e., solving (4.4).

ALGORITHM 4.3.1 (Compute complex mode-k B-eigenpairs of A, where A,B ∈ C[m,n],

i.e., solving (4.4).)

Step 1. Compute all solutions of Q(u) as defined in (4.5).

Step 2. Path following: Follow the paths from t = 0 to t = 1 using the prediction-

correction strategy. Let (uk, tk) := (u(tk), tk). For finding the next point (uk+1, tk+1) on the

solution path of

H(u, t) = (1− t)γQ(u) + tG(u) = 0, t ∈ [0, 1]

as defined in (4.8), the following steps are employed:

• Prediction Step: Compute the tangent vector
du

dt
to H(u, t) = 0 at tk by solving the

linear system

Hu(uk, tk)
du

dt
= −Ht(uk, tk)

for
du

dt
. Then compute the approximation ũ to uk+1 by

ũ = uk + ∆t
du

dt
, tk+1 = tk + ∆t,

where ∆t is the stepsize. Here u0 is chosen to be one solution of Q(u) = 0.

• Correction Step: Use Newton’s iterations, i.e., for i = 0, 1, 2, . . . , compute

vi+1 = vi − [Hu(vi, tk+1)]−1H(vi, tk+1) with v0 = ũ
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until ‖H(vJ , tJ )‖ is very small. Then let uk+1 = vJ .

Step 3. End game. When tN is very close to 1, the corresponding uN should be very

close to a zero u∗ of G(u) = G(λ, x). So Newton’s iterations

u(k+1) = u(k) − [DG(u(k))]−1G(u(k)), k = 0, 1, . . .

will be used again to refine our final approximation ũ to u∗. If DG(u∗) is nonsingular, then

ũ will be a very good approximation of u∗ with multiplicity 1. If DG(u∗) is singular, ũ is

either an isolated singular zero of G(u) with multiplicity l > 1 or in a positive dimensional

solution component of G(u) = 0. We use a strategy provided in Chapter VIII of [27] (see

also [41]) to determine whether ũ is an isolated zero with multiplicity l > 1 or in a positive

dimensional solution component of G(u) = 0.

Step 4. For each solution u = (λ, x) obtained in Step 3, normalize x with i0 :=

arg max1≤i≤n |xi|:

y =
x

xi0
(4.9)

a new eigenpair (λ, y) is obtained, since as mentioned in (2.4) and Remark 2.1.1, if (λ, x) is

an eigenpair, (λ, tx) for t 6= 0 is also an eigenpair.

REMARK 4.3.1 Notice that if x is a real eigenvector associated with a real eigenvalue λ,

tx for any t ∈ C\{0} will be a complex eigenvector associated with the same eigenvalue λ. If

at any stage a complex eigenvector like tx is obtained in Step 3 of Algorithm 4.3.1, applying

(4.9) to tx will give a new real eigenvector. In this regard, Step 4 is very helpful for detecting

real eigenpairs.

To compute mode-k generalized tensor eigenpairs when m 6= m′, we use the equivalence
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class structure of the eigenproblem as described in Remark 2.1.1. We first solve (3.1) by

PSOLVE [47] to find a representative (λ, x) from each equivalence class and then find all m′

eigenpairs from each equivalence class by simply using λ′ = tm−m
′
λ, x′ = tx, where t is a

root of tm
′

= 1.

One may solve (2.3) directly for m′ eigenpairs from each equivalence class. However,

this alternative must follow m′ times more paths than the above approach costing more

computations.

We now present our algorithm for computing mode-k generalized eigenpairs when m 6=

m′, i.e., solving (2.3).

ALGORITHM 4.3.2 (Compute complex mode-k B-eigenpairs ofA, whereA ∈ C[m,n],B ∈

C[m′,n] with m 6= m′, i.e., solving (2.3).)

Step 1. Using PSOLVE to get all solutions (λ, x) of (3.1).

Step 2. For each (λ, x) obtained in Step 1, if Bxm′ 6= 0, normalize it to get an eigenpair

(λ∗, x∗) by

λ∗ =
λ

(Bxm′)(m−m′)/m′
, x∗ =

x

(Bxm′)1/m′

to satisfy (2.3).

Step 3. Compute m′ equivalent eigenpairs (λ′, x′) of (λ∗, x∗) by λ′ = tm−m
′
λ∗ and

x′ = tx∗ with t being a root of tm
′

= 1.
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Chapter 5

Computing real tensor eigenpairs by

homotopy methods

In some applications, tensor A is real and only real eigenpairs (or real eigenvalues) of A

are of interest ([12, 35]). In this situation, only real zeros of the polynomial system (2.3) or

(4.4) are needed. Currently there is no effective method to find all real zeros of a polynomial

system directly.

5.1 Using Newton homotopy method to find real ten-

sor eigenpairs

For a real tensor A, a real eigenvalue may have complex eigenvectors. To identify real

eigenvalues, we may first compute complex zeros (λ, x) of (4.4) by Algorithm 4.3.1 or (2.3)

by Algorithm 4.3.2, then classify the real eigenvalues by checking the size of their imaginary

parts. Specifically, let (λ∗, x∗) be a computed eigenpair. If

| Im(λ∗)| < δ0,

with threshold δ0 > 0, then Re(λ∗) will be taken as a real eigenvalue.

For a specific occasion, when m 6= m′, if m′
m−m′ is a nonzero integer multiple of 4 (for
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example, m = 5,m′ = 4 or m = 10,m′ = 8,) and A has an eigenpair (λ∗, x∗) with a purely

imaginary eigenvalue λ∗ = bi, where b ∈ R, then one can easily show that (b, (−i)1/(m−m′)x∗)

and (−b, i1/(m−m′)x∗) are eigenpairs with real eigenvalues. Therefore, when m′
m−m′ is a

nonzero integer multiple of 4, if (λ∗, x∗) is an eigenpair found by Algorithm 4.3.2 such that

|Re(λ∗)| < δ0,

then we take Im(λ∗) and − Im(λ∗) as real eigenvalues, with corresponding eigenvectors

(−i)1/(m−m′)x∗ and i1/(m−m
′)x∗.

When look for real tensor eigenpairs (i.e., both eigenvalues and eigenvectors are real),

the situation becomes more complicated. We propose a two-step procedure. First, compute

complex zeros (λ, x) of (4.4) by Algorithm 4.3.1 or (2.3) by Algorithm 4.3.2. Then extract

all real eigenpairs (λ, x) from the zeros just calculated.

For vector a = (a1, . . . , an)T ∈ Cn, let

Im(a) = (Im(a1), . . . , Im(an))T , Re(a) = (Re(a1), . . . ,Re(an))T .

Suppose (λ∗, x∗) is an eigenpair found in the first step. There are possibly two cases: (i)

(λ∗, x∗) is an isolated eigenpair; (ii) (λ∗, x∗) is an eigenpair contained in a positive dimen-

sional solution component of system (4.4) or (2.3).

When (λ∗, x∗) is an isolated eigenpair, take (Re(λ∗),Re(x∗)) as a real eigenpair if

‖ Im(λ∗, x∗)‖2 < δ0.

If (λ∗, x∗) is an eigenpair in a positive dimensional solution component of system (4.4)
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or (2.3), in general real eigenvectors induced by which are not warranted even if the corre-

sponding eigenvalue λ∗ is real. In this case, we use the following Newton homotopy [1]

H(λ, x, t) := P (λ, x)− (1− t)P (λ∗,Re(x∗)), t ∈ [0, 1] (5.1)

to follow homotopy curves of H(λ, x, t) = 0 in (λ, x) ∈ Rn+1 for a real eigenpair. Notice

that when following curves in the complex space it is proved in [27] that the solution curves

of (5.1) can be parameterized by t, but the solution curves of (5.1) may not be a function

of t when restricted in the real space. So a different method to follow curves is needed. In

this case parameterizing the solution curves by the arc length s is suggested in [27]. For

simplicity, write y(s) := (λ(s), x(s), t(s)), then (5.1) becomes H(y(s)) = 0.

We now summarize our algorithm for computing a real eigenpair from a complex eigenpair

(λ∗, x∗) with real λ∗, which is in a positive dimensional solution component of (4.4) or (2.3).

ALGORITHM 5.1.1 (Trace solution paths of (5.1) in the real space to get a real eigen-

pair.)

Step 1. Let yk := y(sk) and let y0 = (λ∗,Re(x∗)), to find the next point on the solution

path of H(y) = 0, we use the following strategy:

• Prediction Step: Compute the tangent vector
dy

ds
to H(y) = 0 at yk by solving the

system

DH(yk)
dy

ds
= 0∥∥∥∥dyds

∥∥∥∥
2

= 1

for
dy

ds
. Here DH(yk) is the Jacobian of H with respect to y evaluated at yk. Then
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compute the approximation ỹ to yk+1 by

ỹ = yk + ∆s
dy

ds
, sk+1 = sk + ∆s,

where ∆s is a stepsize.

• Correction Step: Use Newton’s iterations to solve ξ from

F (ξ) :=

 H(ξ)

(ξ − ỹ) · dy
ds

 = 0

with the initial point ξ0 = ỹ, i.e., for i = 0, 1, 2, . . . , compute

ξi+1 = ξi − [DF (ξi)]
−1F (ξi)

until ‖F (ξJ )‖ is less than a threshold for some J . Then let yk+1 = ξJ .

Step 2. End game. During Step 1 if after sufficiently many Prediction-Correction Steps

t does not approach 1, then the scheme cannot provide a real eigenpair, stop. Otherwise

when t(sN ) is very close to 1 for some N , the corresponding (λ(sN ), x(sN )) is very close to

a real zero uR := (λR, xR) of P (u) := P (λ, x). So Newton’s iterations

u(k+1) = u(k) − [DP (u(k))]−1P (u(k)), k = 0, 1, . . .

with u(0) = (λ(sN ), x(sN )) will be employed to refine our final approximation ũ to uR. Take

ũ as a real eigenpair.
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5.2 A straightforward approach to find real tensor eigen-

pairs

An interesting phenomenon is that in some special cases, the real eigenpairs can be obtained

in a more straightforward manner from the complex eigenpairs found by Algorithm 4.3.1 or

Algorithm 4.3.2, as illustrated in the following example.

EXAMPLE 5.2.1 Let the tensor A ∈ R[3,5] (Example 4.11 in [12], see also [34]) be given

by

Ai,j,k =
(−1)i

i
+

(−1)j

j
+

(−1)k

k
, i, j, k = 1, . . . , 5.

We want the Z-eigenpairs of A. The corresponding polynomial system to solve is

−3x2
1 − 3x1x2 −

25

6
x1x3 −

7

2
x1x4 −

22

5
x1x5 −

7

6
x2x3 −

1

2
x2x4 −

7

5
x2x5

−7

6
x2

3 −
13

6
x3x4 −

181

60
x3x5 −

1

2
x2

4 −
19

10
x4x5 −

7

5
x2

5 − λx1 = 0

−3

2
x2

1 −
7

6
x1x3 −

1

2
x1x4 −

7

5
x1x5 +

3

2
x2

2 +
4

3
x2x3 +

5

2
x2x4

+
8

5
x2x5 −

1

6
x2

3 +
5

6
x3x4 −

1

15
x3x5 + x2

4 +
11

10
x4x5 +

1

10
x2

5 − λx2 = 0

−7

3
x2

1 −
5

3
x1x2 −

10

3
x1x3 −

13

6
x1x4 −

46

15
x1x5 +

2

3
x2

2 −
1

3
x2x3 +

5

6
x2x4

− 1

15
x2x5 − x2

3 −
5

6
x3x4 −

26

15
x3x5 +

1

6
x2

4 −
17

30
x4x5 −

11

15
x2

5 − λx3 = 0

−7

4
x2

1 −
1

2
x1x2 −

13

6
x1x3 − x1x4 −

19

10
x1x5 +

5

4
x2

2 +
5

6
x2x3 + 2x2x4

+x2x5 −
5

12
x2

3 +
1

3
x3x4 −

17

30
x3x5 +

3

4
x2

4 +
3

5
x4x5 −

3

20
x2

5 − λx4 = 0

−11

5
x2

1 −
7

5
x1x2 −

46

15
x1x3 −

19

10
x1x4 −

14

5
x1x5 +

4

5
x2

2 −
1

15
x2x3 +

11

10
x2x4

+
1

5
x2x5 −

13

15
x2

3 −
17

30
x3x4 −

22

15
x3x5 +

3

10
x2

4 −
3

10
x4x5 −

3

5
x2

5 − λx5 = 0

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 1 = 0
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Write the above polynomial system as P (λ, x) = 0. Using Algorithm 4.3.2, 62 solutions

of this system are found. Among them, 4 are isolated solutions with ‖(Im(λ), Im(x)‖ as small

as the machine epsilon. Therefore, these isolated zeros can be classified as the Z-eigenpairs.

Note that in this example if (λ, x) is an eigenpair, then so is (−λ,−x). Table 5.1 lists two

of these four Z-eigenpairs with positive λ.

λ 4.2876 9.9779
x1 −0.1859 −0.7313
x2 0.7158 −0.1375
x3 0.2149 −0.4674
x4 0.5655 −0.2365
x5 0.2950 −0.4146

Table 5.1: Isolated Z-eigenpairs of the tensor in Example 5.2.1

For the remaining 58 solutions of P (λ, x) = 0, each of them has λ = 0 and is contained

in a positive dimensional solution component of P (λ, x) = 0. For each of these zeros, it

can be verified that (λ,Re(x)/‖Re(x)‖2) and (λ, Im(x)/‖ Im(x)‖2) are both solutions of

P (λ, x) = 0. For example, one of these 58 zeros is



λ

x1

x2

x3

x4

x5



=



0

−0.7136− 0.4086i

−0.1425− 0.0266i

0.9941− 0.2291i

−0.0180 + 0.1180i

−0.1200 + 0.5464i



.
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Taking the real and imaginary parts of the above x and let

ξ = (−0.7136,−0.1425, 0.9941,−0.0180,−0.1200)T ,

η = (−0.4086,−0.0266,−0.2291, 0.1180, 0.5464)T .

Normalizing ξ and η respectively gives

v = (−0.5764,−0.1151, 0.8030,−0.0146,−0.0969)T ,

w = (−0.5599,−0.0365,−0.3139, 0.1617, 0.7487)T .

Simple computation shows ‖P (0, v)‖2 ≈ 5.8687 × 10−14 and ‖P (0, w)‖2 ≈ 5.4921 × 10−14.

Therefore, (0, v) and (0, w) are both Z-eigenpairs. Accordingly (λ,Re(x)/‖Re(x)‖2) and

(λ, Im(x)/‖ Im(x)‖2) are two Z-eigenpairs.

The above example suggests that if (λ∗, x∗) is in a positive dimensional solution compo-

nent of (2.3) and λ∗ ∈ R, then (λ∗,Re(x∗)/‖Re(x∗)‖2) and (λ∗, Im(x∗)/‖ Im(x∗)‖2) may be

mode-k BR eigenpairs of A. This provides a straightforward approach to find real eigenpairs

from eigenpairs belong to positive dimensional components. Actually, this approach has

been quite successful for all the examples (e.g., Example 4.8, 4.11, 4.13, 4.14) in [12] when

a real Z-eigenvalue has infinitely many real Z-eigenvectors.

This leads to the question: what is the structure of the eigenspace {x ∈ Cn | Axm−1 =

λ∗Bxm′−1, Bxm′ = 1} associated with a real eigenvalue λ∗? Looking into the eigenspace

of λ∗ = 0 in Example 5.2.1, i.e., {x ∈ C5 |P (0, x) = 0}, all the 58 eigenvectors obtained

from Algorithm 4.3.2 lay on the hyperplane x1 + x2 + x3 + x4 + x5 = 0. This observation

stimulates the following proposition.
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PROPOSITION 5.2.1 Let A ∈ R[m,n] and B ∈ R[m′,n]. Let k be an integer with 1 ≤ k ≤

m, and λ ∈ R be a real mode-k B eigenvalue of A. If V := {x ∈ Cn | A(k)xm−1 = λBxm′−1}

is a complex linear subspace of Cn, then for any x = ξ + iη ∈ V such that ξ, η ∈ Rn and

ξ 6= 0, η 6= 0,

• When m = m′, ξ and η are both real mode-k B eigenvectors of A associated with λ.

• When m 6= m′, Bξm′ 6= 0 and Bηm′ 6= 0, the normalized vectors

v :=
ξ

(Bξm
′
)1/m′

, w :=
η

(Bηm
′
)1/m′

are real mode-k B eigenvectors of A associated with λ.

Proof: Let x ∈ V . Then

A(k)xm−1 = λBxm
′−1.

Taking the conjugate of the above equation yields

Ā(k)x̄m−1 = λ̄B̄x̄m
′−1.

Since λ, A and B are all real,

A(k)x̄m−1 = λBx̄m
′−1.

It follows that x̄ ∈ V . Since V is a linear subspace, ξ = (x+ x̄)/2 and η = (x− x̄)/(2i) are

also in V . Thus, when m = m′, ξ and η are both real mode-k B eigenvectors of A associated
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with λ. If m 6= m′, we have

Bvm
′

=
n∑

i1,··· ,im′=1

Bi1i2···im′
vi1vi2 · · · vim′

=
n∑

i1,··· ,im′=1

Bi1i2···im′
ξi1

(Bξm
′
)1/m′

ξi2

(Bξm
′
)1/m′

· · ·
ξim′

(Bξm
′
)1/m′

=

∑n
i1,··· ,im′=1Bi1i2···im′

ξi1ξi2 · · · ξim′
Bξm

′

=
Bξm

′

Bξm
′ = 1.

So v is a real mode-k B eigenvector of A associated with λ. Similarly, Bwm
′

= 1 and w is

also a real mode-k B eigenvector of A associated with λ. 2

Consequently, when Z-eigenpairs of A ∈ R[m,n] are in concern, let λ ∈ R be a real E-

eigenvalue of A. If U := {x ∈ Cn | Axm−1 = λx} contains a complex linear subspace V ,

then for any x = ξ+ iη ∈ V with nonzero ξ, η ∈ Rn and x̄ ∈ V , ξ/‖ξ‖2 and η/‖η‖2 are both

Z-eigenvectors of A associated with λ.

A natural question is when the eigenspace U defined in Proposition 5.2.1 will contain a

linear subspace V . The following propositions suggest some possibilities.

PROPOSITION 5.2.2 Let A be a third-order and n-dimensional rank-one tensor, i.e., A

can be written as the outer product of 3 vectors a, b, c ∈ Cn:

A := a ◦ b ◦ c with Aijk := (aibjck), i, j, k = 1, . . . , n.

Let W := span(a, b, c) and V := W⊥. Then U := {x ∈ Cn | Ax2 = 0} ⊇ V , i.e., the
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eigenspace of A corresponding to the eigenvalue 0 contains V.

Proof: It suffices to show for any x ∈ V , Ax2 = 0. Actually, by definition,

Ax2 =



n∑
j,k=1

a1bjckxjxk

n∑
j,k=1

a2bjckxjxk

...

n∑
j,k=1

anbjckxjxk


.

Simple computation gives

Ax2 =



a1

n∑
j,k=1

bjckxjxk

a2

n∑
j,k=1

bjckxjxk

...

an
n∑

j,k=1
bjckxjxk


=



a1

(
n∑
j=1

bjxj

)(
n∑
k=1

ckxk

)

a2

(
n∑
j=1

bjxj

)(
n∑
k=1

ckxk

)
...

an

(
n∑
j=1

bjxj

)(
n∑
k=1

ckxk

)



=



a1(bTx)(cTx)

a2(bTx)(cTx)

...

an(bTx)(cTx)


=



0

0

...

0


,

where the last equality holds since x ∈ span(a, b, c)⊥. 2

PROPOSITION 5.2.3 Let A be a third-order and n-dimensional tensor which can be
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decomposed as

A =
r∑
l=1

a(l) ◦ a(l) ◦ a(l),

where r < n, a(l) ∈ Cn, l = 1, 2, · · · , r. Let W = span(a(1), a(2), · · · , a(r)) and let V = W⊥.

Then U := {x ∈ Cn | Ax2 = 0} ⊇ V , i.e., the eigenspace of A corresponding to the eigenvalue

0 contains V.

Proof: It is sufficient to show Ax2 = 0 for any x ∈ V . By definition,

Aijk =
r∑
l=1

(
a(l) ◦ a(l) ◦ a(l)

)
ijk

=
r∑
l=1

a
(l)
i a

(l)
j a

(l)
k , i, j, k = 1, . . . , n.

So

Ax2 =



n∑
j,k=1

A1jkxjxk

n∑
j,k=1

A2jkxjxk

...

n∑
j,k=1

Anjkxjxk


=



n∑
j,k=1

(
r∑
l=1

a
(l)
1 a

(l)
j a

(l)
k

)
xjxk

n∑
j,k=1

(
r∑
l=1

a
(l)
2 a

(l)
j a

(l)
k

)
xjxk

...

n∑
j,k=1

(
r∑
l=1

a
(l)
n a

(l)
j a

(l)
k

)
xjxk


.
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Then

Ax2 =



n∑
j,k=1

r∑
l=1

a
(l)
1 a

(l)
j a

(l)
k xjxk

n∑
j,k=1

r∑
l=1

a
(l)
2 a

(l)
j a

(l)
k xjxk

...

n∑
j,k=1

r∑
l=1

a
(l)
n a

(l)
j a

(l)
k xjxk


=



r∑
l=1

n∑
j,k=1

a
(l)
1 a

(l)
j a

(l)
k xjxk

r∑
l=1

n∑
j,k=1

a
(l)
2 a

(l)
j a

(l)
k xjxk

...

r∑
l=1

n∑
j,k=1

a
(l)
n a

(l)
j a

(l)
k xjxk



=



r∑
l=1

a
(l)
1

(
n∑

j,k=1
a

(l)
j a

(l)
k xjxk

)
r∑
l=1

a
(l)
2

(
n∑

j,k=1
a

(l)
j a

(l)
k xjxk

)
...

r∑
l=1

a
(l)
n

(
n∑

j,k=1
a

(l)
j a

(l)
k xjxk

)


=



r∑
l=1

a
(l)
1

(
n∑
j=1

a
(l)
j xj

)(
n∑
k=1

a
(l)
k xk

)
r∑
l=1

a
(l)
2

(
n∑
j=1

a
(l)
j xj

)(
n∑
k=1

a
(l)
k xk

)
...

r∑
l=1

a
(l)
n

(
n∑
j=1

a
(l)
j xj

)(
n∑
k=1

a
(l)
k xk

)



=



r∑
l=1

a
(l)
1

(
(a(l))Tx

)(
(a(l))Tx

)
r∑
l=1

a
(l)
2

(
(a(l))Tx

)(
(a(l))Tx

)
...

r∑
l=1

a
(l)
n

(
(a(l))Tx

)(
(a(l))Tx

)


=



0

0

...

0


,

where the last equality is valid because x ∈ span(a(1), . . . , a(r))⊥. 2
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5.3 A numerical algorithm of finding real tensor eigen-

pairs based on the Newton homotopy and the straight-

forward approach

In this section, we present the algorithm for computing real eigenpairs based on the straight-

forward approach in Section 5.2 and Algorithm 5.1.1.

ALGORITHM 5.3.1 (Compute real mode-k B-eigenpairs of A, where A ∈ R[m,n],B ∈

R[m′,n])

Step 1. Compute all complex eigenpairs using Algorithm 4.3.1 or Algorithm 4.3.2. Let

K be the set of resulting eigenpairs (λ, x) with | Im(λ)| < δ0 (chosen threshold).

Step 2. For each eigenpair (λ∗, x∗) ∈ K: if (λ∗, x∗) is in a positive dimensional solution

component of (4.4) or (2.3), go to Step 3. Otherwise, (λ∗, x∗) is an isolated eigenpair. If

‖ Im(x∗)‖2 < δ0, then take (Re(λ∗),Re(x∗)) as a real eigenpair and stop.

Step 3. Set λ = Re(λ∗). If m = m′, set v := Re(x∗) (if Re(x∗) 6= 0) and w := Im(x∗)

(if Im(x∗) 6= 0); otherwise, set

v :=
Re(x∗)

(BRe(x∗)m′)1/m′
(if BRe(x∗)m

′
6= 0),

and

w :=
Im(x∗)

(B Im(x∗)m′)1/m′
(if B Im(x∗)m

′
6= 0).

If (λ, v) or (λ,w) is a mode-k B-eigenpair of A, then we have obtained a real eigenpair and

stop. Otherwise, goto Step 4.

Step 4. Starting from (λ∗, x∗), use Algorithm 5.1.1 to find a real eigenpair.
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Chapter 6

Implementation and numerical results

Based on the algorithms introduced in Chapter 4 and Chapter 5, a MATLAB package TenEig

1.1 has been developed. The package TenEig 1.1 can be downloaded from

http://www.math.msu.edu/~chenlipi/TenEig.html

Consider the tensors A ∈ C[m,n] and B ∈ C[m′,n]. In TenEig 1.1, function teig com-

putes generalized mode-k B eigenvalues and eigenvectors of a tensor A for m = m′. The

input of this function is: tensor A or the polynomial form Axm if A is symmetric (for which

Axm−1 = ∇(Axm)/m from Proposition 2.2.3), B (the default is the unit tensor), mode k

(the default value is 1), and the output is: mode-k B eigenvalues and eigenvectors of A. In

general, teig computes generalized complex mode-k B eigenvalues and eigenvectors of A

when m = m′. But by default, teig finds Qi-eigenvalues and Qi-eigenvectors.

The function teneig computes generalized mode-k B eigenvalues and eigenvectors of a

tensor A for m 6= m′. The input of this function is: tensor A or the polynomial form (if A

is symmetric) Axm, tensor B, mode k (the default value is 1), and the output is: mode-k B

eigenvalues and eigenvectors of A. If B is chosen as the identify matrix, teneig computes

E-eigenvalues and E-eigenvectors of A as defined in Qi [35].

Since E-eigenpairs of a tensor are frequently in demand, our package includes a separate

function eeig, which only computes E-eigenpairs of a tensor.

The package also includes two functions heig and zeig to compute real eigenpairs of a

tensor: The first one computes H-eigenpairs and second one computes Z-eigenpairs.

54



In the next two sections, numerical results are reported to illustrate the effectiveness and

efficiency of our methods for computing tensor eigenpairs. All the numerical experiments

were performed on a Thinkpad T400 Laptop with an Intel(R) dual core CPU at 2.80GHz

and 2GB of RAM, running on a Windows 7 operating system. The package TenEig 1.1

uses MATLAB 2013a. In the examples, we used teig or teneig to compute generalized

tensor eigenpairs, teig to compute Qi-eigenpairs, eeig to compute E-eigenvalues, heig to

compute (real) H-eigenpairs, and zeig to compute (real) Z-eigenpairs, respectively.

6.1 Examples for computing complex eigenpairs

In this section, some numerical examples exhibiting the performance of TenEig 1.1 for

computing complex tensor eigenpairs are presented.

We will compare our package TenEig 1.1 with NSolve, a function in Mathematica (based

on the Gröebner basis) for solving systems of algebraic equations, in computing complex

tensor eigenpairs. Let

T (m,n) := n(m− 1)n−1,

E(m,n) := ((m− 1)n − 1)/(m− 2),

G(m,m′, n) := ((m− 1)n − (m′ − 1)n)/(m−m′).

Recall that Theorem 3.3.1 shows for tensors A ∈ C[m,n] and B ∈ C[m′,n], the number

of equivalence classes of isolated B-eigenpairs of A is bounded by T (m,n) for m = m′

and G(m,m′, n) for m 6= m′. In particular, as mentioned in Remark 3.3.1, the number

of equivalence classes of isolated Qi-eigenpairs is bounded by T (m,n) and the number of
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equivalence classes of isolated E-eigenpairs of A is bounded by E(m,n).

EXAMPLE 6.1.1 In this example, we compare the performance of our TenEig 1.1 with

NSolve and PSOLVE. More specifically, when computing Qi-eigenpairs of a generic tensor

A ∈ C[m,n],

(a) teig is based on Algorithm 4.3.1 using the linear homotopy given in Theorem 4.2.2.

(b) NSolve and PSOLVE solve the polynomial system Axm−1 = λx[m−1] augmented by a

random hyperplane defined in (4.4).

To compute E-eigenpairs,

(a) eeig is based on Algorithm 4.3.2 which solves the polynomial system Axm−1 = λx

augmented with a random hyperplane and then normalize the resulting solutions to satisfy

xTx = 1 afterwards.

(b) NSolve and PSOLVE solve the polynomial system Axm−1 = λx with xTx = 1 ap-

pended defined by (2.3).

The tensors A were generated using randn(n, · · · , n) + i ∗ randn(n, · · · , n) in MATLAB.

For instance, randn(2, 2, 2) + i ∗ randn(2, 2, 2) generates a third-order and two dimensional

complex tensor. The computing results are given in Table 6.1, in which, N denotes the

number of equivalence classes of Qi-eigenpairs or E-eigenpairs found by teig, eeig, PSOLVE

or NSolve, the CPU times are in seconds, ”-” means no results were returned after 12 hours.

From the table, our codes teig and eeig find all equivalence classes of Qi-eigenpairs or

E-eigenpairs in reasonable amount of time for all cases. NSolve fails to provide any results

in 12 hours for some cases (we terminated it after 12 hours). Although PSOLVE successfully

finds all equivalence classes in many cases, it does miss a few equivalence classes sometime.

Regarding the CPU time, PSOLVE is comparable to teig but takes more time than eeig.
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(m,n) T (m,n) Alg N time (s) E(m,n) Alg N time (s)

(4, 5) 405
teig 405 15.8

121
eeig 121 5.4

PSOLVE 404 14.0 PSOLVE 121 9.5
NSolve 405 3136.4 NSolve 121 486.6

(5, 5) 1280
teig 1280 73.8

341
eeig 341 22.3

PSOLVE 1280 65.5 PSOLVE 341 38.6
NSolve - - NSolve 341 9264.8

(5, 6) 6144
teig 6144 606.5

1365
eeig 1365 166.5

PSOLVE 6144 694.2 PSOLVE 1365 283.6
NSolve - - NSolve - -

(6, 6) 18750
teig 18750 3721.3

3906
eeig 3906 990.2

PSOLVE 18748 4636.0 PSOLVE 3905 1721.0
NSolve - - NSolve - -

Table 6.1: Comparison of teig and eeig with PSOLVE and NSolve

EXAMPLE 6.1.2 In this example we show the effectiveness and efficiency of teig for

finding all equivalence classes of isolated Qi-eigenpairs of a generic tensor A ∈ C[m,n]. Each

tensor was generated by randn(n, · · · , n) + i ∗ randn(n, · · · , n) in MATLAB. The results

are reported in Table 6.2, in which N is the number of equivalence classes of isolated Qi-

eigenpairs found by teig and T (m,n) represents the bound of the number of equivalence

classes of isolated Qi-eigenpairs (see Remark 3.3.1(a)).

(m,n) T (m,n) N time(s) (m,n) T (m,n) N time(s)
(3, 5) 80 80 2.4 (3, 6) 192 192 6.8
(3, 7) 448 448 18.3 (3, 8) 1024 1024 53.0
(3, 9) 2304 2304 145.9 (3, 10) 5120 5120 409.2
(4, 3) 27 27 0.7 (4, 4) 108 108 2.9
(4, 5) 405 405 15.8 (4, 6) 1458 1458 80.0
(4, 7) 5103 5103 385.9 (4, 8) 17496 17496 2115.5
(5, 3) 48 48 1.2 (5, 4) 256 256 8.8
(5, 5) 1280 1280 73.8 (5, 6) 6144 6144 606.5
(5, 7) 28672 28672 5394.2 (6, 3) 75 75 2.3
(6, 4) 500 500 21.0 (6, 5) 3125 3125 287.7
(6, 6) 18750 18750 3721.3 (7, 3) 108 108 3.6
(7, 4) 864 864 51.5 (7, 5) 6480 6480 981.3

Table 6.2: Performance of teig on computing Qi-eigenpairs of complex random tensors
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EXAMPLE 6.1.3 In this example we show the effectiveness and efficiency of eeig for

finding all equivalence classes of isolated E-eigenpairs of a generic tensor A ∈ C[m,n]. Each

generic tensor was generated by randn(n, · · · , n) + i ∗ randn(n, · · · , n) in MATLAB. The

results are reported in Table 6.3, in which N is the number of equivalence classes of E-

eigenpairs found by eeig and E(m,n) is the bound of the number of equivalence classes of

isolated E-eigenpairs (see Remark 3.3.1(b)).

(m,n) E(m,n) N time(s) (m,n) E(m,n) N time(s)
(3, 5) 31 31 1.4 (3, 6) 63 63 3.1
(3, 7) 127 127 7.5 (3, 8) 255 255 20.3
(3, 9) 511 511 48.5 (3, 10) 1023 1023 133.9
(4, 3) 13 13 0.4 (4, 4) 40 40 1.7
(4, 5) 121 121 5.4 (4, 6) 364 364 26.9
(4, 7) 1093 1093 119.5 (4, 8) 3280 3280 555.8
(5, 3) 21 21 0.7 (5, 4) 85 85 4.2
(5, 5) 341 341 22.3 (5, 6) 1365 1365 166.5
(5, 7) 5461 5461 1330.7 (6, 3) 31 31 1.2
(6, 4) 156 156 9.5 (6, 5) 781 781 100.4
(6, 6) 3906 3906 990.2 (7, 3) 43 43 1.9
(7, 4) 259 259 21.3 (7, 5) 1555 1555 245.0

Table 6.3: Performance of eeig on computing E-eigenpairs of complex random tensors

According to [35], [7], and [4], for a randomly generated tensor A ∈ C[m,n], it has T (m,n)

number of equivalence classes of Qi-eigenpairs and E(m,n) number of equivalence classes of

E-eigenpairs. Moreover, its Qi-eigenpairs and E-eigenpairs are isolated. From Tables 6.2 and

6.3, our code teig and eeig can find all equivalence classes of Qi-eigenpairs and E-eigenpairs

of such tensors in the examples we tested.

EXAMPLE 6.1.4 The example here exhibits the effectiveness and efficiency of teig and

teneig for finding all equivalence classes of isolated B-eigenpairs of a generic tensor A,

where A ∈ C[m,n],B ∈ C[m′,n] are generic tensors. Each generic tensor was generated by
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randn(n, · · · , n)+ i∗randn(n, · · · , n) in MATLAB. The results are reported in Table 6.4, in

which N denotes the number of equivalence classes of eigenpairs found by teig or teneig,

T (m,n) denotes the bound of the number of equivalence classes of isolated B-eigenpairs for

m = m′, and G(m,m′, n) denotes the bound of the number of equivalence classes of isolated

B-eigenpairs for m 6= m′ (see Theorem 3.3.1).

teig (m = m′) teneig (m 6= m′)
(m,n) T (m,n) N time(s) (m,m′, n) G(m,m′, n) N time(s)
(3, 7) 448 448 23.7 (3, 2, 7) 127 127 10.3
(3, 8) 1024 1024 68.3 (3, 4, 6) 665 665 68.1
(3, 9) 2304 2304 210.3 (3, 5, 5) 496 496 49.5
(4, 5) 405 405 20.8 (4, 2, 6) 364 364 28.9
(4, 6) 1458 1458 110.4 (4, 3, 5) 211 211 13.2
(4, 7) 5103 5103 737.5 (4, 5, 4) 175 175 9.5
(5, 5) 1280 1280 97.9 (5, 4, 5) 781 781 83.9
(5, 6) 6144 6144 1178 (5, 6, 3) 61 61 2.6
(6, 4) 500 500 29.9 (6, 5, 4) 369 369 30.7
(6, 5) 3125 3125 449.4 (6, 7, 3) 91 91 6.0
(7, 3) 108 108 4.4 (7, 6, 4) 671 671 77.1
(7, 4) 864 864 77.6 (7, 8, 3) 127 127 9.4

Table 6.4: Performance of teig and teneig on computing generalized eigenpairs of complex
random tensors

Evidently, Table 6.4 shows that our teig and teneig can find all equivalence classes of

isolated B-eigenpairs of A for generic tensors A and B in a reasonable amount of time.

6.2 Computing singular tensor eigenpairs

It is known that the homotopy method uses Newton’s method in the endgame. While

Newton’s method converges rapidly at nonsingular solutions of a polynomial system with

high accuracy, it may just attain a few correct digits at singular solutions. Therefore, when

homotopy methods is used to solve the polynomial system (3.1) for the tensor eigenvalue
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problem, desired number of significant digits for a singular eigenpair (λ∗, x∗) may not be

achievable, as the following example shows.

EXAMPLE 6.2.1 Consider the symmetric tensor A ∈ R[6,3] (Example 4.10 in [12], see

also [4]) in the polynomial form

Ax6 = x4
1x

2
2 + x2

1x
4
2 + x6

3 − 3x2
1x

2
2x

2
3.

To compute its Qi-eigenpairs, by Proposition 2.2.3, the corresponding polynomial system is

1

6
(4x3

1x
2
2 + 2x1x

4
2 − 6x1x

2
2x

2
3)− λx5

1 = 0

1

6
(2x4

1x2 + 4x2
1x

3
2 − 6x2

1x2x
2
3)− λx5

2 = 0

1

6
(6x5

3 − 6x2
1x

2
2x3)− λx5

3 = 0

a1x1 + a2x2 + a3x3 + b = 0,

where a1, a2, a3, b are complex random numbers. Let the system be P (λ, x) = 0. According

to Qi [35], the tensor A should have 3(6− 1)3−1 = 75 eigenvalues. Table 6.5 lists all the 75

eigenvalues together with their corresponding eigenvectors. In the table, λ(l) means there are

l eigenvectors associated with λ counting multiplicities, the multiplicity of each eigenpair as

a solution of P (λ, x) = 0. For instance, λ(l) = −1.1445(8) indicates there are 8 eigenvectors

associated with −1.1445. The corresponding

xT = (1,±(0.4209− 0.9071i),±(0.4447 + 0.6965i))

with multiplicity 1 represents each of following four eigenvectors:
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(1,+(0.4209− 0.9071i),+(0.4447 + 0.6965i)),

(1,+(0.4209− 0.9071i),−(0.4447 + 0.6965i)),

(1,−(0.4209− 0.9071i),+(0.4447 + 0.6965i)),

(1,−(0.4209− 0.9071i),−(0.4447 + 0.6965i))

together with λ = −1.1445 has multiplicity 1 as a solution of P (λ, x) = 0. Of course,

eigenpairs with multiplicity 1 are nonsingular and all the others are singular.

λ(l) xT multiplicity

−1.1445(8) (1,±(0.4209− 0.9071i),±(0.4447 + 0.6965i)) 1
(1,±(0.4209 + 0.9071i),±(0.4447− 0.6965i)) 1

−1
3

(6) (1,−i, 0) 3
(1, i, 0) 3

0(14)

(0, 1, 0) 5
(1, 0, 0) 5

(−1, 1,−1) 1
(1, 1,−1) 1
(1, 1, 1) 1

(−1, 1, 1) 1

0.0555(8) (±0.4568, 1,±0.6856) 1
(1,±0.4568,±0.6856) 1

0.5445− 0.5350i(8) (±(0.7318 + 0.6111i),±(0.8490− 0.2286i), 1) 1
(±(0.8490− 0.2286i),±(0.7318 + 0.6111i), 1) 1

0.5445 + 0.5350i(8) (±(0.8490 + 0.2286i),±(0.7318− 0.6111i), 1) 1
(±(0.7318− 0.6111i),±(0.8490 + 0.2286i), 1) 1

1(15)
(0, 0, 1) 13

(1,−1, 0) 1
(1, 1, 0) 1

1.5− 0.8660i(4) (1,±1,±(0.5 + 0.8660i)) 1

1.5 + 0.8660i(4) (1,±1,±(0.5− 0.8660i)) 1

Table 6.5: Eigenpairs of the tensor in Example 6.2.1

By Algorithm 4.3.1, all 75 solutions of the system P (λ, x) = 0 can be found, and very ac-

curately for the 46 nonsingular solutions. For instance, the approximation to the nonsingular
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solution (λ∗, x∗) = (0, 1, 1,−1)T :



λ∗

x∗1

x∗2

x∗3


=



0.000000000000000 + 0.000000000000000i

1.000000000000000 + 0.000000000000000i

1.000000000000000 + 0.000000000000000i

−1.000000000000000− 0.000000000000000i


achieves accuracy up to the machine precision. However, the algorithm cannot achieve

so many significant digits for a singular solution. For example, the approximation to the

singular solution (λ∗, x∗) = (−1/3, 1, i, 0)T is



λ∗

x∗1

x∗2

x∗3


=



−0.333333333338482− 0.000000000005507i

1.000000000000000 + 0.000000000000000i

−0.000002043599517 + 0.999999061292030i

0.000000000000000 + 0.000000000000000i


.

To improve the accuracy of singular eigenpairs we further use the so-called deflation

method (see [13]).

Let (λ̂, x̂) be a singular zero of P (λ, x). The deflation method starts from the observation

that DP (λ̂, x̂) ∈ Cn+1,n+1 is singular. Assume DP (λ̂, x̂) ∈ Cn+1,n+1 is deficient of rank d.

Then for almost all d× (n+ 1) random matrix R, the matrix

DP (λ̂, x̂)

R


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is of full column rank. Let e1 := (1, 0, . . . , 0)T ∈ Rd. Then it is clear that the linear system

DP (λ̂, x̂)

R

 y =

 0

e1



has a unique solution y = ŷ in Cn+1. We now construct a new (2(n+1)+d)×(n+1) system

Q(λ, x, y) :=


P (λ, x)DP (λ, x)

R

 y −
 0

e1



 = 0.

If ẑ := (λ̂, x̂, ŷ) is a simple zero of Q(z) := Q(λ, x, y), DQ(ẑ) must be of full rank. Denote

(DQ(z))† := [(DQ(z))T (DQ(z))]−1(DQ(z))T .

Then the Gaussian-Newton iterations

z(j+1) = z(j) − (DQ(z(j)))†Q(z(j)) for j = 0, 1, . . .

with z(0) := (λ∗, x∗, ŷ) can be used, until the residue ‖Q(z(j+1))‖2 is within the desired

accuracy. This will lead to a much more accurate (λ̃∗, x̃∗).

If ẑ is a multiple zero of Q(z) := Q(λ, x, y), the deflation procedure can be repeated on

Q(z) until a satisfactory (λ̃∗, x̃∗) is achieved.
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Returning to Example 6.2.1, when the deflation method is used in conjunction with Algo-

rithm 4.3.1, the eigenpair (λ∗, x∗) = (−1/3, 1, i, 0)T can be computed remarkably accurate:



λ̃∗

x̃∗1

x̃∗2

x̃∗3


=



−0.333333333333333 + 0.000000000000000i

1.000000000000000 + 0.000000000000000i

0.000000000000000 + 1.000000000000000i

−0.000000000000000 + 0.000000000000000i


.

6.3 Examples for Computing Real Eigenpairs

In this section, numerical examples are presented to illustrate the effectiveness and efficiency

of zeig or heig for computing real Z-eigenpairs or H-eigenpairs of a tensor A ∈ R[m,n].

By Definition 2.1.1, (λ, x) is a Z-eigenpair if and only if ((−1)m−2λ,−x) is a Z-eigenpair,

and (λ, x) is an H-eigenpair if and only if (λ, tx) is an H-eigenpair for any nonzero t ∈ R.

Only one representative from each equivalence class of eigenpairs will be listed in our tables.

The notation λ(l) represents l eigenvectors are found for the eigenvalue λ. In the following

tables, the multiplicity of an eigenpair means the multiplicity of this eigenpair as a zero of

the corresponding polynomial system. For conciseness, the polynomial system that solves

the tensor eigenvalue problem will be omitted.

EXAMPLE 6.3.1 Consider the symmetric tensor A ∈ R[6,3] whose corresponding polyno-

mial form is the Motzkin polynomial:

Ax6 = x6
3 + x4

1x
2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3.

Stated in Example 5.9 of [4], this tensor has 25 equivalence classes of Z-eigenpairs as shown
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in Table 6.6. Exactly 25 equivalence classes of Z-eigenpairs are found by zeig, agreeing with

the results of [4]. It takes zeig about 0.9 seconds for the entire computation.

λ xT multiplicity

0(14)
(0.5774,±0.5774,±0.5774) 1

(1, 0, 0) 5
(0, 1, 0) 5

0.0156(8) (0.8253,±0.2623,±0.5000) 1
(0.2623,±0.8253,±0.5000) 1

0.2500(2) (0.7071,±0.7071, 0) 1
1 (0, 0, 1) 1

Table 6.6: Z-eigenpairs of the tensor in Example 6.3.1

As shown in Table 6.7 all the H-eigenpairs in Example 4.10 of [12] are also found by

heig. The entire computation time is 1.7 seconds.

λ xT multiplicity

0(14)
(±1, 1,±1) 1

(1, 0, 0) 5
(0, 1, 0) 5

0.0555(8) (±0.4568, 1,±0.6856) 1
(1,±0.4568,±0.6856) 1

1(15) (0, 0, 1) 13
(1,±1, 1) 1

Table 6.7: H-eigenpairs of the tensor in Example 6.3.1

For computing all real eigenvalues of a symmetric tensor the only available method at

this time is Algorithm 3.6 in [12]. In the next two examples, we compare the performance

of our methods with Algorithm 3.6 in [12].

EXAMPLE 6.3.2 In this example, our zeig is used to compute the Z-eigenvalues of 12

symmetric tensors from [12]. The test problems and numerical results are given in the Ap-

pendix. From the numerical results, our zeig finds all the Z-eigenvalues found by Algorithm

65



3.6 ([12]) on this set of problems. The CPU times1 (in seconds) used by zeig and by Al-

gorithm 3.6 ([12]) are shown in Table 6.8. (The CPU times by Algorithm 3.6 are from

[12]).

Problem zeig Algorithm 3.6 ([12])
time(s) time(s)

1 0.3 9
2 4 400
3 0.3–0.4 5–20
4 0.1 1
5 0.6 9
6 1.8 10870
7 15.7 280
8 6.1 320
9 0.3 1
10 6.3 370
11 27.3 170
12 4.5 420

Table 6.8: zeig vs Algorithm 3.6 ([12]): CPU time

EXAMPLE 6.3.3 Consider the symmetric tensor A ∈ R[4,n] (Example 4.16 in [12]) in the

polynomial form

Ax4 = (x1 − x2)4 + · · ·+ (x1 − xn)4 + (x2 − x3)4 + · · ·+ (x2 − xn)4

+ · · ·+ (xn−1 − xn)4.

Shown in Table 6.9, our zeig found all the Z-eigenvalues found by Algorithm 3.6 in [12]

for different n. Notice that when n = 8, 9, 10, our zeig can find all the Z-eigenvalues in a

reasonable amount of time, but [12] reports that Algorithm 3.6 can only find the first three

1The computer used in [12] is a Thinkpad W520 laptop with an Intel dual core CPU at 2.20GHz and
8 GB RAM. The computer used in this paper is a Thinkpad T400 laptop with an Intel dual core CPU at
2.80GHz and 2GB RAM. The reader should be cautious when comparing the CPU time of the methods since
different computers were used.
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largest Z-eigenvalues. The CPU times used by zeig and Algorithm 3.6 ([12]) are listed in

the table. (The CPU times by Algorithm 3.6 ([12]) are from [12]2.) The corresponding

Z-eigenvectors are not displayed.

n λ
time(s)

zeig Algorithm 3.6 ([12])
4 0.0000 4.0000 5.0000 5.3333 1.7 3.6
5 0.0000, 4.1667, 4.2500, 5.5000, 6.2500 5.4 274.5
6 0.0000, 4.0000, 4.5000, 6.0000, 7.2000 15.5 280.2

7
0.0000, 4.0833, 4.1667, 4.7500, 4.8846,

58.3 9565.6
4.9000, 6.5000, 8.1667

8
0.0000, 4.0000, 4.2667, 4.2727, 4.3333,

244.1 938.2∗
5.0000, 5.2609, 5.3333, 7.0000, 9.1429

9
0.0000, 4.0500, 4.1250, 4.5000, 5.2500,

788.0 4173.8∗
5.6250, 5.7857, 7.5000, 10.1250

10
0.0000, 4.0000, 4.1667, 4.1818, 4.2500,

2665.6 15310.5∗4.6667, 4.7500, 4.7593, 4.7619, 5.5000,
5.9808, 6.2500, 8.0000, 11.1111

Table 6.9: Z-eigenvalues of the tensor in Example 6.3.3 (* denotes that the CPU time used
by Algorithm 3.6 ([12]) when it finds the first three largest Z-eigenvalues)

2Again, we should be cautious when comparing the CPU times used by the two methods because of
different computers were used.

67



APPENDIX
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PROBLEM 1 Consider the symmetric tensor A ∈ R[4,3] (Example 4.1 in [12], see also

[35]) with the polynomial form

Ax4 = x4
1 + 2x4

2 + 3x4
3.

Our zeig obtains all the Z-eigenpairs found in [12] (see Table A.1), taking about 0.3 seconds

to carry out the entire computation, while Algorithm 3.6 ([12]) needs 9 seconds3 for the

computation.

λ xT multiplicity

0.5455(4) (0.7385,±0.5222,±0.4264) 1

0.6667(2) (0.8165,±0.5774, 0) 1

0.7500(2) (0.8660, 0,±0.5000) 1
1 (1, 0, 0) 1

1.2(2) (0, 0.7746,±0.6325) 1
2 (0, 1, 0) 1
3 (0, 0, 1) 1

Table A.1: Z-eigenpairs of the tensor in Problem 1

PROBLEM 2 For diagonal tensor D ∈ R[5,4] (Example 4.2 in [12]) where Dx5 = x5
1 +

2x5
2 − 3x5

3 − 4x5
4, consider the symmetric tensor A ∈ R[5,4] such that Ax5 = D(Qx)5 where

Q = (I − 2w1w
T
1 )(I − 2w2w

T
2 )(I − 2w3w

T
3 )

and w1, w2, w3 are randomly generated unit vectors. Our zeig takes about 4.0 seconds to

reach all the 30 Z-eigenpairs found in [12], in which Algorithm 3.6 spends 400 seconds to

3All the CPU times by Algorithm 3.6 ([12]) are from [12]. The computer used in [12] is a Thinkpad
W520 laptop with an Intel dual core CPU at 2.20GHz and 8 GB RAM. The computer used in this paper
is a Thinkpad T400 laptop with an Intel dual core CPU at 2.80GHz and 2GB RAM. The reader should be
cautious when comparing the CPU time of the methods since different computers were used.
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complete the computation. The 15 nonnegative Z-eigenvalues are

0.2518, 0.3261, 0.3466, 0.3887, 0.4805, 0.5402, 0.5550, 0.6057,

0.8543, 0.9611, 1.0000, 1.2163, 2.0000, 3.0000, 4.0000.

PROBLEM 3 Consider the symmetric tensor A ∈ R[4,3] (Example 4.3 in [12], see also

[35]) with the polynomial form

Ax4 = 2x4
1 + 3x4

2 + 5x4
3 + 4ax2

1x2x3,

where a is a parameter. For different values of a, our zeig found all Z-eigenvalues that

appeared in [12], as shown in Table A.2. The last column of the table is the CPU time used

a λ time(s)

0 0.9677(4), 1.2000(2), 1.4286(2), 1.8750(2), 2, 3, 5 0.4

0.25 0.8464(2), 1.0881(2), 1.2150(2), 1.4412(2), 1.8750(2), 2, 3, 5 0.4

0.5 0.7243(2), 1.2069(2), 1.2593(2), 1.4783(2), 1.8750(2), 2, 3, 5 0.4

1 0.4787(2), 1.6133(2), 1.8750(2), 2, 3, 5 0.3

3 −0.5126(2), 1.8750(2), 2, 2.2147(2), 3, 5 0.3

Table A.2: Z-eigenvalues of the tensor in Problem 3

by zeig for each a. As one can see zeig needs 0.3 to 0.4 seconds to find all eigenpairs for

different values of a, but this takes Algorithm 3.6 ([12]) 5 to 20 seconds.

PROBLEM 4 Consider the symmetric tensor A ∈ R[4,2] (Example 4.4 in [12], see also

[35]) in the polynomial form

Ax4 = 3x4
1 + x4

2 + 6ax2
1x

2
2,
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where a is a parameter. Table A.3 listed all Z-eigenvalues found by both [12] and zeig.

a λ time(s)

−1 −0.6000(2), 1, 3 0.1

0 0.7500(2), 1, 3 0.1

0.25 0.9750(2), 1, 3 0.1
0.5 1, 3 0.1

2 1, 3, 4.1250(2) 0.1

3 1, 3, 5.5714(2) 0.1

Table A.3: Z-eigenvalues of the tensor in Problem 4

For each a, it takes zeig 0.1 second, but Algorithm 3.6 ([12]) 1 second.

PROBLEM 5 Consider the symmetric tensor A ∈ R[4,3] (Example 4.5 in [12], see also [23]

or [34]) such that

A1111 = 0.2883, A1112 = −0.0031, A1113 = 0.1973, A1122 = −0.2485,

A1123 = −0.2939, A1133 = 0.3847, A1222 = 0.2972, A1223 = 0.1862,

A1233 = 0.0919, A1333 = −0.3619, A2222 = 0.1241, A2223 = −0.3420,

A2233 = 0.2127, A2333 = 0.2727, A3333 = −0.3054.

All the Z-eigenpairs found in [12] listed in Table A.4 can also be found by zeig. For the

entire computation, zeig takes about 0.6 seconds but Algorithm 3.6 ([12]) 9 seconds.

PROBLEM 6 Consider the symmetric tensor A ∈ R[3,6] (Example 4.6 in [12], see also

[37]) such that Aiii = i for i = 1, . . . , 6 and Ai,i,i+1 = 10 for i = 1, . . . , 5 and zero otherwise.

Again zeig did not miss any Z-eigenvalues found in [12]. The 19 nonnegative Z-eigenvalues
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λ xT multiplicity
-1.0954 (-0.5915, 0.7467, 0.3043) 1
-0.5629 (-0.1762, 0.1796, -0.9678) 1
-0.0451 (0.7797, 0.6135, 0.1250) 1
0.1735 (0.3357, 0.9073, 0.2531) 1
0.2433 (-0.9895, -0.0947, 0.1088) 1
0.2628 (-0.1318, 0.4425, 0.8870) 1
0.2682 (0.6099, 0.4362, 0.6616) 1
0.3633 (0.2676,0.6447, 0.7160) 1
0.5105 (-0.3598,0.7780,-0.5150) 1
0.8169 (-0.8412,0.2635,-0.4722) 1
0.8893 (-0.6672, -0.2471, 0.7027) 1

Table A.4: Z-eigenpairs of the tensor in Problem 5

are:

3.9992 4.0225 4.2464 4.3358 5.1402 5.4817 5.5218 5.5668

5.5674 6.0000 7.2165 8.1889 8.5979 8.6596 8.7347 10.9711

15.4298 15.4552 16.2345

It takes zeig about 1.8 seconds, while Algorithm 3.6 ([12]) as much as 10870 seconds, for

the entire computation.

PROBLEM 7 Consider the symmetric tensor A ∈ R[4,6] (Example 4.7 in [12], see also

[28]) with the polynomial form

−Ax4 = (x1 − x2)4 + (x1 − x3)4 + (x1 − x4)4 + (x1 − x5)4 + (x1 − x6)4

+(x2 − x3)4 + (x2 − x4)4 + (x2 − x5)4 + (x2 − x6)4

+(x3 − x4)4 + (x3 − x5)4 + (x3 − x6)4

+(x4 − x5)4 + (x4 − x6)4 + (x5 − x6)4.

All 5 Z-eigenvalues found in [12] listed in Table A.5 are also found by zeig. As mentioned
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λ xT multiplicity

−7.2000(6) (0.1826, 0.1826, 0.1826, 0.1826, 0.1826,−0.9129) 1

−6.0000(15) (0.7071, 0, 0, 0, 0,−0.7071) 1

−4.5000(?) (1.5703, 1.5703,−0.4923,−0.4923,−1.0780,−1.0780) -

−4.0000(10) (0.4082, 0.4082, 0.4082,−0.4082,−0.4082,−0.4082) 1

0(?) (0.4088, 0.4088, 0.4083, 0.4083, 0.4076, 0.4076) -

Table A.5: Z-eigenpairs of the tensor in Problem 7

in [12], every permutation of a Z-eigenvector is also a Z-eigenvector. We only listed the

Z-eigenvector with x1 ≥ x2 ≥ · · · ≥ x6 corresponding to one Z-eigenvalue. Actually the

Z-eigenpairs corresponding to Z-eigenvalues 0 and −4.5 form a positive dimensional solution

component of the corresponding polynomial system. Therefore, there are infinitely many

Z-eigenvectors associated with 0 and −4.5. zeig finds 484 Z-eigenvectors associated with 0

and 180 Z-eigenvectors associated with −4.5. Only one of these Z-eigenvectors for each case

is listed in Table A.6. zeig takes about 15.7 seconds to do the entire computation, while

Algorithm 3.6 ([12]) spends 280 seconds.

PROBLEM 8 Consider the symmetric tensor A ∈ R[4,5] (Example 4.8 in [12], see also

[44]) in the polynomial form

Ax4 = (x1 + x2 + x3 + x4)4 + (x2 + x3 + x4 + x5)4.

All the 3 Z-eigenvalues found in [12] are also found by zeig, which are shown in Table A.6.

λ xT multiplicity

0(?) (0.9736,−0.4533,−0.5063,−0.0131, 0.9712) -
0.5000 (0.7071, 0, 0, 0,−0.7071) 1
24.5000 (0.2673, 0.5345, 0.5345, 0.5345, 0.2673) 1

Table A.6: Z-eigenpairs of the tensor in Problem 8
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For this tensor, the Z-eigenpairs corresponding to Z-eigenvalue 0 form a positive dimen-

sional solution component of the corresponding polynomial system. Thus, there are infinitely

many Z-eigenvectors associated with Z-eigenvalue 0. zeig finds 234 of them. Only one of

them is listed in Table A.6. zeig uses about 6.1 seconds, while it takes Algorithm 3.6 ([12])

320 seconds, for the entire computation.

PROBLEM 9 For the symmetric tensor A ∈ R[3,3] (Example 4.9 in [12], see also [4]) in

the polynomial form

Ax3 = 2x3
1 + 3x1x

2
2 + 3x1x

2
3.

The Z-eigenpairs corresponding to Z-eigenvalue 2 form a positive dimensional solution com-

ponent of the corresponding polynomial system. Thus, there are infinitely many Z-eigenvectors

associated with Z-eigenvalue 0. zeig finds 7 of them. Only one of them is listed in Table A.7.

zeig uses about 0.3 seconds, while Algorithm 3.6 ([12]) spends 1 second, to do the entire

computation.

λ xT multiplicity
2 (1, 0, 0) -

Table A.7: Z-eigenpairs of the tensor in Problem 9

PROBLEM 10 Let the tensor A ∈ R[4,n] (Example 4.12 in [12], see also [34]) be

Ai1,...,i4 = sin(i1 + i2 + i3 + i4).

When n = 5, exhibited in Table A.8 are all the 5 Z-eigenvalues found by zeig, which agree

with those appeared in [12].
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λ xT multiplicity
-8.8463 (0.5809, 0.3563,−0.1959,−0.5680,−0.4179) 1
-3.9204 (−0.1785, 0.4847, 0.7023, 0.2742,−0.4060) 1

0(?) (−0.9914, 0.3771,−0.2946,−0.6360,−0.0534) -
4.6408 (0.5055,−0.1228,−0.6382,−0.5669, 0.0256) 1
7.2595 (0.2686, 0.6150, 0.3959,−0.1872,−0.5982) 1

Table A.8: Z-eigenpairs of the tensor in Problem 10

For this tensor, the Z-eigenpairs corresponding to Z-eigenvalue 0 form a positive dimen-

sional solution component of the corresponding polynomial system. Thus, there are infinitely

many Z-eigenvectors associated with 0. zeig finds 234 of them. Only one of them is listed

in Table A.8. zeig takes about 6.3 seconds with Algorithm 3.6 ([12]) using 370 seconds for

the entire computation.

PROBLEM 11 Consider the tensor A ∈ R[4,n] (Example 4.13 in [12]) such that

Ai1,...,i4 = tan(i1) + · · ·+ tan(i4).

When n = 6, zeig found all the 3 Z-eigenvalues found in [12], which are given in Table A.9.

λ xT multiplicity
-133.2871 (0.1936, 0.5222, 0.3429, 0.2287, 0.6272, 0.3559) 1

0(?) (−1.9950,−0.5791, 0.2737, 1.6411, 0.1326, 0.5277) -
45.5045 (0.6281, 0.0717, 0.3754, 0.5687,−0.1060, 0.3533) 1

Table A.9: Z-eigenpairs of the tensor in Problem 11

For this tensor, the Z-eigenpairs corresponding to Z-eigenvalue 0 form a positive dimen-

sional solution component of the corresponding polynomial system. Thus, there are infinitely

many Z-eigenvectors associated with 0. zeig finds 724 of them. Only one of them is listed
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in Table A.9. It takes zeig about 27.3 seconds, but Algorithm 3.6 ([12]) 170 seconds, to

carry out the entire computation.

PROBLEM 12 Consider the tensor A ∈ R[5,n] (Example 4.14 in [12]) such that

Ai1,...,i5 = ln(i1) + · · ·+ ln(i5).

For n = 4, all the 3 Z-eigenvalues found in [12] are also found by zeig, which are shown in

Table A.10.

λ xT multiplicity

0(?) (0.9914,−1.2262, 0.1847, 0.0523) -
0.7074 (−0.9054,−0.3082, 0.0411, 0.2890) 1

132.3070 (0.4040, 0.4844, 0.5319, 0.5657) 1

Table A.10: Z-eigenpairs of the tensor in Problem 12

For this problem, the Z-eigenpairs corresponding to Z-eigenvalue 0 form a positive dimen-

sional solution component of the corresponding polynomial system. Thus, there are infinitely

many Z-eigenvectors associated with 0. zeig finds 166 of them. Only one of them is listed

in Table A.9. The entire computation takes zeig about 4.5 seconds, while Algorithm 3.6

([12]) uses 420 seconds.
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