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ABSTRACT

A VISCOUS DIFFUSION MODEL FOR
VORTEX-IN-CELL CALCULATIONS

By

Kue Pan

A Vortex—InCell technique has been used to study various vortex
ring evolutions in two dimensions. The molecular diffusion process is
modeled by using a ocombination of a modified vorticity gradieat
approximation with a anine—grid-point, conservative redistribution
filter. To examine the accuracy and reliability of the algorithm, both
one and two-dimensional test cases vwere investigated. Results are
compared with theoretical solutions. Furthermore, the capability to
simulate the vortex ring/moving wall interactions with this technique is
evaluated by comparing the calculated outcomes with experimental results
via stability maps quantitatively and flow visualizations qualitatively.

A discussion of the no—slip boundary condition is also included.
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NOMENCLATURE

Ring diameter, the distance betweean two centers of vortex lobes
Fraction, 0 ( £ < 1

Cizrculation

Number of cells in x,y direction

Angular impulse

Number of vortex markers used in computer calculation

Distance from vortex ceater

The distance, r, of which contains 100f % vortiocity

Reynolds nwmber, pU.D./n

Effective radius of vortex lobe, r..”
Square of the radius of gyrationm

Initial 8 at time t,

Time

Elapsed time to spread out vorticity to distance R,

Delay time or duration of wall movement

Discrete time step length in computer calculation
Rotational time parameter for wall layer, §,/U,
Rotational time parameter for vortex lobe, (2nR,)>/G
Convection velocity compoment in x,y direction
Diffusion—induced velocity component in x,y direction
Real velocity compoment in x,y direction —) U=u+l, V=v+y
Velocity vector

Ring speed

Wall speed

Longitudinal direction
ix



Ax,Ay Cell size in x,y direction
y Direction normal to x
Vorticity
R Dynamic viscosity
P Fluid density
8 Vall layer thickness defined by uy/U,=1/200 at time t, 4(ut/p)*-’
8, Initial wall layer thickness, 8§ at time t,
L 4 Initial angle of approach
n Similarity variable, y/ (4ut/p)°®**
Stream fuaction

[ ] Quasi-Gaussian redistributioa function



CHAPTER 1

INTRODUCTION

Nowadays the complexity of many flows of techmological interest
makes traditional numerical methods such as finite difference/finite
element more difficult to treat problems than ever. One of the reasons
for this is the constraints set by the computer: the memory and CPU
time needed to resolve the flow features is excessive due to the
existence of a wide range of length and time scales. This has led to
the development of new computational techniques such as discrete vortex
methods.

A problem which illustrates this point is the topic of this thesis
——— the evolution of a vortex linepair when it comes into proximity to a
moving wall. This is a very common phenomenon. A well-known example is
the trailing vortices produced by a jumbo aircraft departing from the
runwvay. A nummber of experiments have been performed by Harvey and Perry
(1971), Barker and Crow [1977] and many others to investigate the
behavior of vortex pairs in the presence of the ground. A theoretiocal
approximation for the approach of a vortex pair at right angles to a
plane surface in the absence of viscous effects was ocarried out by
Saffman [1979]. Although the reason for the observed rebounding was not
clarified, Peace and Riley [1983] pointed out that the rebounding of s
vortex pair from a plane boundary is essentially a viscous phenomenon.
This is a strong argument in favor of incorporating viscous effects iato
8 disorete vortex method when a vortex ring/wall interactioms is to be

correctly simulated. We will return to this point below.
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The motivation for studying vortex rings comes from Falco [1977]
who has postulated that the turbulence production mechanism near a wall
is related to interactions between vortex—ring-like eddies and the
viscous sublayer. A series of experimental investigations were also
performed to study this point of view [Falco, 1978-1982].

In the present work, the study of the vortex ring/moving wall
interactions will be modeled in two dimensions using a vortex limepair
and s numerical algorithm based upon a discrete vortex method. The
simulation will incorporate a viscous diffusion model. This effort viil
also illustrate the capability of the technique and will allow for the
detailed exploration of the physics for the flow field.

A review of the discrete vortex method would have to start with the
hand ocaloculations made by Rosenhead [1931] to study a two-dimensional
vortex sheet. In the calculations, he was able to use oanly a few
vortices. However, this was the first attempt to simulate a flow by a
discrete vortex method. VWith the evolution of digital computers over
the decades, further refinement of vortex techaniques have made possible
computations which follows hundreds or even thousands of vortices.
Accurate time integration schemes have also been used to reduce
computational errors.

There are two different ways to evaluate the velocity field induced
by the vorticity distribution. One is a grid-free method which is based
upon the use of Green’s function to compute the velocity by directly
summing the velocity field of the individual discrete vortex elements.
The other method calculates the stream function defined on an Eulerian
gsrid by solving the Poisson’s equation after the vorticity has been

spread onto the mesh nodes. The desired velocity is hence obtained by
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interpolation: this is termed the Vortex—In-Cell or VIC method.
Applications which illustrate the use of the Green's function were
carried out by Moore and Saffman [1971]. However, many of these early
computations failed to represent the physical phenomens of the flows
because point vortices are too singular to yield realistic vorticity
distributions. Chorin [1973] first introduced the concept of a finite
core to avoid the singularity of a point vortex and hence overcame this
problem. Chorin [1978] also used the segments of vortex sheets mnear
boundaries instead of point vortices as the computational elements in
studying a piston-oylinder flow. The primary disadvantage of the
Greon’'s function formulation is that the computational effort increases
as the number of point vortices squared.

To overcome this disadvantage, the VIC technique was developed by
Christiansen [1973; which he called "Cloud-In-Cel1”] and was applied to
the investigation of the motion for a continuous hydrodynamic fluid.
This grid—-dependent method was also implemented by Baker [1979], Meng
and Thomson [1978] and many others in simulating flows. An excellent
review of these methods and their applications was done by Leonard
[1980] who also provided additional comments contrasting the ability of
the two approaches to satisfy comservation primciples.

Since both vortex models have the ability to numerically
investigate various flows, the selection of suitable technique is
understood to be extremely i-portant to avoid any inefficiency and/or
inaccuraocy. The advantages and disadvantages of each method should be
carefully considered when discrete vortex methods are about to be used.
Take for example the Green’'s function scheme which is better suited for

high Reynolds number (turbulent) internal flows where the total nummber
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of vortices can be maintained at a small number. The Vortex—In-Cell
technique is preferred to treat a problem if a very 1large number of
vortex elements are used (such as extermal flows).

As mentioned earlier, viscosity plays a key role in the rebounding
mochanism for the ring/wall interactions. The viscous effects must be
accounted for in the present calculations, of course. Two steps are
required to simulate the viscous effects in the computations since the
vorticity diffusion term appears in vorticity transport equation. The
two steps are as follows. For all time steps,

1. Simulate the vorticity dispersion in the flow field.

2. Simulate vorticity generation at the boundary to maintain the

no-slip condition at the wall.
The former can be included into either the Green’s functiom or VIC
method by adding a random walk component or a diffusion lndicod velocity
to the convection velocity of individual vortex element. Chorin [1973]
first published the random—walk approach for discrete vortex
calculations to reproduce the molecular diffusion process in a
stochastic sense. A test of this idea had been performed by Milimazzo
and Saffman [1977], who found that the number of vortex elements must be
large compared with the Reynolds number if the diffusion caused by
viscosity is to be imitated correctly. (There had been some questions
raised by MNilinazzo and Saffman concerning the rate of comvergence:
they speculated the rate to be such that the number of vortex blobs N
was proportional to the Reynolds number. Roberts [1985] has shown that
in actually, careful initialization of the initial distribution reduces
this estimate to N"/’Ro-‘/’.) For the sake of simplicity, Kiya et al.

[1982] had every discrete vortex endowed with a pre—chosen constant



transverse velocity without regarding to its location when the
separation bubble over a two—dimensional blunt flat plate was simulated.
This approximation yields a bodily displacement of the shear layer
towards the transverse direction. VWe believe that this model might not
be necessarily a bad approximation to reproduce the viscous ef fect in
some special types of flow, but obviously this will not be well-suited
in general. Ashurst [1977] used an alternative scheme to approximate
the vorticity diffusion by adding s small, but growing, length to the
interaction distance r (core size) at each time step. The
time—dependent core size represented the decay of the strenmgth due to
viscous "spreading” of each individual point vortex, which he referred
to as "aging”. The results of the aging calculations for a
two—dimensional =mixing 1layer are in good agreement with experimental
data. However, the scheme is restricted since it cam =not be
incorporated into the VIC technique. This is because the Vortex—In—Cell
technique uses s spreading function to redistribute the vorticity from
the Lagrangian markers to the grid for the Poisson solver. This
redistribution function can be interpreted as an "effective size” of the
vortex marker, and is set to a pre—determined constant multiple of the
grid length. It has also been shown that "aging” does not necessarily
converge for long time simulation [Greengard, 1985].

A deterministic diffusion model designed for the VIC computations
is introduced in the present study. The algorithm for this model is
based upon using a ocombination of a modified vorticity gradient
approximation with a nine-grid-point, conservative redistribution filter
to simulate the viscous spreading of vorticity in the flow field. The

computations has been dome on a microcomputer in the Turbulence



Structure Laboratory of the Department of MNechanical Engineering at
Michigan State University. The solution technique for solving the
Poisson’s equation was chosen according to the ocapacity of the
microcomputer. In Chapter two the algorithms of inviscid and viscous
models are formulated. In Chapter three, two preliminary test cases are
examined to check the accuracy and reliability of the diffusion model.
The calculated results of vortex linepair/moving wall interactions are
oompared with the experimental results of Liang [1984] im Chapter four
through the use of stability maps and vector plots. A discussion of the

no—-slip boundary condition will also be included in Chapter five.



CHAPTER 2

THE THEORY

In the present anmalysis, a Vortex—In-Cell technique is used to
model the ring-wall interactions. The main reasom for choosing a VIC
method is a matter of economy. The cost of computer time and memory
required to update the information for N point vortices would become
prohibitive if a Greem’'s function approach were used. This is because
the computationsl work increases as N* for the Green's function
approach, but limearly for VIC. There are approximately 1,300 vortex
markers needed to numerically simulate the growing boundary layer of the
moving belt for the problem to be studied here. By adapting the VIC
model, we may ensure the computation of the motion of such a large
nu-bo; of vortices will be at reasonable cost. In this thesis we will
be concerned primarily with ideal fluids which are purely
two—dimensional and incompressible (uniform density). The basic
principle of the VIC scheme is similar to that of the “Cloud-In—-Cell”

method: the details are explained in this chapter.

2.1 Governing Formulation for Iaviscid Fluids

The Vortex—In-Cell approach implemented here is a mixed
Eulerian—Lagrangian description of fluid flow in which the goveraning
formulation of motiomn is obtained from the vector curl of the
Navier—Stokes equation. For a two-dimensional incompressible fluid the

vorticity transport equation becomes



D/Dt = (u/p)AL , (1)

vhere D/Dt demotes a total derivative, & is the vorticity, p is the
dynamic viscosity, p 1is the (fluid density and A is the Laplace
opezation. Note that in two dimensions the term representing the
stretching and rotation of vorticity, which is a three-dimensional
process, is identically zero. Comsider first the flow of an inviscid

fluid (i.e. p = 0). Equation (1) reduces to Euler’s equation
DE/Dt = O . (2)

Before equation (2) is applied, the vorticity must be discretized by

partitioning the vorticity into N point vortices. Then
N
i = , (3a)
21.1 &
N
G = G, , (3b)
2:1-1 i
vhere G, the total circulation of vorticity, satisfies the defimition :
e-_[gu- V-ds , (4)
A
vhere V is the velocity vector and C represents a curve enclosing the
area A.
From equation (2), one finds that the vorticity is totally

conserved in a two-dimensional flow field from the Lagrangian point of

view. This will simplify the updating of vortex markers in the



Lagrangian coordinate by simply moving these markers without changing
their strength. Furthermore, one may express the velocity in terms of a
stream funotion ¥, which satisfies a Poisson’s equation with the
vorticity as the source function. If u, v represent the coanvection
velocity ocomponents in x, y directions respectively, the formulations

take the forms

AY= - , (s)
u = V¥ ay , (6a)
v=-3ox , (6b)

Note that the boundary conditions of stream function must be initialized
before the interior stream function can be solved by equation (5). So
far, the approach will approximate the inviscid motion of equation (1).
Nevertheless, we must never forget that the gemeral subject of fluid
motion encompasses both a viscous diffusion process and bulk fluid
motion. The latter ,which results from an inviscid convection process,
was described by equations (2), (5)and (6). The former, the viscous

part of motion, will be explored and modeled in next section.

2.2 Viscous Diffusion MNodel

Rather than using the stochastic random—walk approach [Chorinm,
1973], a deterministic approximation will be introduced to model the
molecular diffusion process. The idea of the diffusion model comes from

Fick’s first law of diffusion, which states that the mass diffusion rate
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of a compoment is proportiomal to the comcemtration gradients. The 1law

can be formulated in the form

F = -DaC/dx , (72)
vhere F denotes the mass flux per unit area, D is the diffusivity and C
is the mass concentration of the component. A similar expressiom could
also be written for the diffusion in y direction. Two other laws which
are amalogous to equation (7a) are the viscous—shear equation and the

Fourier law of heat conduction. 1i.e.

T = ﬂau’ay » (7b)

q, = -k3T/dx . (7¢)
Notice that the physics of equations (7) are also similar. Equation
(7b) represents the transport of momentum across fluid layers caused by
the velocity gradient, equation (7c) describes the transport of heat by
temperature gradients and equation (7a) governs the mass tramsport by
mass concentration gradients.

The three laws illustrated above, especially Fick’'s first law, give
us a heuristic idea that the vorticity transport must occur as a result
of diffusion when a vorticity gradient is present. Ve will now modify
and adapt this idea to a diffusion model suitable for vortex
calculations. Consider a simple one—-dimensional vorticity distribution
shown in Figure 2.1. The conceatration of vorticity is greater on the

right side of this curve than on the left side. A higher concentration
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can be interpreted as more discretized vortex markers (in uait strength)
per unit length. Thus more markers will move from right to left across
the imaginary plane (shown by the dashed line in Figure 2.1) because of
molecular processes acting upon the unbalanced conceatration. This
results in & net vorticity transport from the region of high
concentration to the regiom of 1low concentration. In short, the
hypothesis of the vorticity diffusion illustrates that the rate of
vorticity dispersion from a region of comcentrated vorticity to am outer
non—-vortical region is proportiomal to the local concenmtration/vorticity
gradient.

For the case of pure diffusion, a "diffusion-induced velocity” for

s point vortex might be formulated as

LY

= —(n/pg,) (3%/3x) , (8a)

@

= —(n/p%,) (3%/3y) . (8b)

The coefficient of proportionality between the vortiocity gradieat
and the fictitious diffusion velocity is now dependent on a measure of
the local vorticity {,. In the flows of interest in this discussion,
the only possibility that the local vorticity can be zero is if there
are no vortex markers present. However, in the calculations, there |is
no need to sample the vorticity field at that location if there are no
vort;x markers present. Thus, it may appear there is a singularity in
this formulation, operationally, this is not the case. (The
singularity, which will blow up the approximation, may appear physically

in the central 1line, where the vorticity gradiemt is not zero and the
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vorticity itself is zero, of some anti-symmetrical vorticity structure.
Nevertheless, this can be technically eliminated from the computations.)
Accordingly, the local vorticity §,, which is by no means s zero value
in the calculations, will be replaced by the notation ¢ for our studies
here.

By using the diffusion theory of vorticity it is easy to
numerically predict the dispersion =rates of point vortices by simply
evaluating the vorticity gradients on each mesh node. Equations (8)
hence will approximate the viscous part of the equations of motion (1).
The method of fractional steps then states that the total velocity
moving the markers is the sum of the convected veloocity , which is
described by eoquations (6), and the fictitious diffusion—induced

velocity, which is governed by equations (8). Thus

U=u+1, (92)

Vev+v, (%)

wvhere the U, V denote the "real” velocity componeants, in x, y directions
rospectively, of a vortex marker. Now the approximation will satisfy
the solution of equation (1) at all times in the interior of the
computational domain.

It is interesting to mnote that these results could have been
derived using the Navier—Stokes equation. From the conservation of mass

for the incompressible two—dimensional flow, we have

du/dx + dv/dy = 0 or VV=0, (10)
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where {7 demotes the gradient operator. The vorticity transport

equation may be written in an alternative form as
at/at + V- (2V) = (p/p)AT . (11)

if the continuity, equation (10), has been added to equation (1),

Similarly the Euler’s equation may be writtem in the form :
3%/3t + Z-¢(V) =0 . (12)
After rearranging the appropriate terms in equation (11), we obtain

az/at + V-[81V - (w/pt)v1] = 0 . (13)

This result proves, by being compared with equation (12), that the
viscous diffusion terms can be interpreted as a contribution to the
velocity components of the vortex markers in x and y directions, which
we ocalled "diffusion—induced velocities” and is defined in equations
(8).

In order to displace these discrete point vortices at each time
step, a8 Predictor—Corrector approximation is used which is a
second-order accurate time integration scheme. The algorithm for the

Predictor—Corrector is of the form
x(t+At) = x(t) + 0.5At[U(t)+U(tht)] ’ (14a)

y(t+At) = y(t) + 0.5At[V(t)+V(t+At)] , (14b)
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where At is s unit time step length.

A nine-grid-point filter which was proposed by Bartholomew, my
major Professor, is also introduced in the calculations as the spreading
mechanism. This improved technique distributes vorticity to the nine
nearest mneighbor mesh nodes rather than using area weighting to the
surrounding four (as used by Christiansemn [1973]). This effort will
minimize the aliasing conditions that normally appear on the mesh cells
[Baker, 1979]. Figure 2.2 provides the geometry and notation of the

Quasi—-Gaussian redistribution scheme, which is given by

#(a,p) = (Aa’+Ba’+Ca*+Da*+E)- (AB*+Bp*+C8*+Dp>+E)
for 0 < [a[,|B| < 1.5, (15)
9(a,p) = 0 otherwvise ,

where the constants A,B,...E are tabulated in Table 1, and a, B are the
non-dimensional distances from vortex marker to the grid points. The
maximum error occurs at a=f=0.4 and is on the order of 10™* with double
precision. This scheme conserves the total vorticity both locally and
globally, and hence satisfies an important feature of conservation
principles. Note that the interpolated velocities also use the same
nine-weighting factors. The testing of viscous diffusion model used in
conjunotion with this redistribution scheme will be illustrated in

Chapter three.

2.3 Procedure for Simulatiom of VIC
The algorithms governing the simulation have been formulated in

previous sections. [Equation (5) will be easily solved by using a
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Compact Non—iterative Poisson Solver [Buneman, 1969]. Although the

technique takes more CPU time, we chose it as the Poisson Solver due to

the limitation of memory capacity of the microcomputer. In this section

the procedure for the VIC calculations will be described as follows.

The caloulations will follow the thirteen steps im order :

1,

2.

3.

5.

6.

Determine the computational domain and grid size.

Determine boundary conditions —— initiate stream function on
boundary nodes of the computational domain.

Partition vortiocity field —— decide on the strength of vortex
markers and discretize the continuous vorticity field into
point vortioces.

Spread vorticity ——— redistribute the marker’s vorticity oato
its nearest nine mesh points by using equation (15).

Evaluate viscous effects —— calculate and normalize vorticity
gradients (1/%)(3%/9x), (1/%)(3%/3y) on grid points by using a
coentered difference scheme. Then evaluate equations (8).

Solve Poisson’s equation —— use Buneman’s Poisson Solver to
evaluate the stream function distribution on interior grid
points.

Evaluate inviscid motion —— obtain the velocity field at grid
points by solving equations (6) using centered difference.
Obtain the “real” velocity field — sum up the
diffusion—induced velocity and inviscid convection motion on
each node as defined by equations (9).

Calculate the velocities of vortex markers -— interpolate
velocities back to vortex markers also using the same weighting

filter.
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10. Displace vortex markers -— use equations (14), the
Predictor—-Corrector integration scheme, as the time marching
algorithm to move point vortices.

11. Bounce vortices back into flow field (if necessary) -— if a
vortex marker o¢rosses the wall at the end of a time step, it
will be bounced back into the fluid; i.e. this marker will be
roturned from (x,,-y;) to (x4,y;) . ;hote the wall is assumed
to be at y=0.

12, If desired, one can gemerate new vorticity (if necessary) -—
oreate new vortex markers near the wall to maintain the no-slip
boundary condition if the tangential velocity does not vanish
at the sélid wall. This partioular step was not implemented in
the discussion which follows.

13. Repeat steps 4 through 12 for each time step.

The procedure shown above may be repeated as 1long as needed.
Statistical information such as Reynolds stress, fluctuation quantities,
ees ©an be obtained by putting numerical probes in the computational

flow field.



CHAPTER 3

BENCH MARKING MODELS AND NUMERICAL PARAMETERS

In the chapter we will present two preliminary test cases in order
to obtain a quantitative evaluation of the effects of the approximations
made in equations (8). Both testing models employed here are simple and
have knowa analytically solutions. Stoke’'s layer, the first problem,
dnséribing the tramsport of shear layer caused by viscosity towards the
tr;nsvo:so direction, vwhich is an one-dimensional diffusion process.
The secomd testing model is a two-dimensional free vortex pair. The
gzowth rate of =radius of gyration of the vortex pair provides the
information of viscous diffusion rate in two dimemsions. To numerically
investigate the viscous effects of these testing flows, the viscous
diffusion model is incorporated into the Vortex—-In-Cell calculations.
The acourscy and reliability of the algorithm of the diffusion model
will be evaluated by comparing the results of test runs with the
theoretical expressions. The target application, the simulations of
two—dimensional vortex ring/moving wall interactions, which are governed
by some numerical parameters<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>