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ABSTRACT

A.VISCOUS DIFFUSION MODEL FOR

VOIIEIPIN-CELL CALCULATIONS

By

(no Pen

A.Vorter-In-Cell technique hee been need to etudy verioue vortex

ring evolutione in two dineneione. The noleculer diffusion prooeee ie

nodeled by uein; e eonbineticn of e nodified vorticity gredient

epprorinetion with e nine-gridrpoint. coneervetive redietribution

filter. To exenine the eocurecy end reliebility of the elgorithn. both

one end two-dineneionel teet ceeee were investigeted. Reeulte ere

conpered with theoreticel eolutione. Furthernore. the cepehility to

einulete the vortex ring/loving well interectione with thie technique ie

evelueted by conperin; the celeuleted outconee with erperinentel reeulte

vie etebility nepe quentitetively end flow vieueliretione quelitetively.

A diecueeion of the no-elip boundery condition ie eleo included.
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CHAPTER 1

INTRODUCTION

Nowedeys the conplexity of neny flows of technologicel interest

Iekes treditionel nunericel lethods such es finite difference/finite

elenent lore difficult to treet problens then ever. One of the reesons

for this is the constreints set by the conputer: the nenory end CPU

tine needed to resolve the flow feetures is excessive due to the

existence of e wide renge of length end tine sceles. This hes led to

the develop-ent of new conputetionel techniques such es discrete vortex

nethods.

A problen.which illustretes this point is the topic of this thesis

-- the evolution of e vortex linepeir when it cones into proxinity to e

loving well. This is e very con-on phencnenon. A well-known exenple is

the treiling vortices produced by e julbo eircreft deperting from the

runwey. A nunber of experinents heve been perforned by Hervey end Perry

[1971]. Berker end Crow [1977] end neny others to investigete the

behevior of vortex peirs in the presence of the ground. A theoreticel

epproxinetion for the epproeoh of e vortex peir et right engles to e

plene snrfeoe in the ebsence of viscous effects wes cerried out by

Seffhen [1979]. Although the reeson for the observed rebounding wee not

clerified. Peece end Riley [1983] pointed out thet the rebounding of e

vortex peir from s plene boundery is essentielly e viscous phenonenon.

This is e strong ergunent in fever of incorporeting viscous effects into

e discrete vortex nethod when e vortex ring/well interections is to be

correctly sinuleted. Ie will return to this point below.
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The motivetion for studying vortex rings comes from Felco [1977]

who hes postuleted thet the turbulence production_nechenisn neer e well

is releted to interections between vortex-ring-like eddies end the

viscous subleyer. A. series of experimentel investigetions were eleo

performed to study this point of view [Feloo. 1978-1982].

In the present work. the study of the vortex ring/loving well

interections will be modeled in two dimensions using e vortex linepeir

end e nunericel elgorithm‘beeed upon e discrete vortex nethod. The

sinuletion will incorporete e viscous diffusion model. This effort will

eleo illustrete the oepebility of the technique end will ellow for the

deteiled exploretion of the physics for the flow field.

A review of the discrete vortex nethod would heve to stert with the

hend celculetions nede by Roeenheed [1931] to study e two-dineneionel

vortex sheet. In the celculetione. he wee eble to use only e few

vortices. However. this wee the first ettempt to eilulete e flow by e

discrete vortex nethod. With the evolution of digitel conputere over

the decedee. further refinenent of vortex techniques heve nede possible

computetions which follows hundreds or even thousends of vortices.

Accurete tine integretion. schemes heve eleo been used to reduce

computetionel errors.

There ere two different weys to eveluete the velocity field induced

by the vorticity distribution. One is e grid-free nethod which is besed

upon the use of Green's function to compute the velocity by directly

summing the velocity field of the individuel discrete vortex elements.

The other method celculetes the streem function defined on en Eulerien

grid by solving the Poisson's equetion efter the vorticity hes been

spreed onto the nesh nodes. The desired velocity is hence obteined by
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interpoletion: this is termed the Vortex-In-Cell or VIC method.

Applicetione which illustrete the use of the Green's function were

cerried out by loore end Seffmen [1971]. However. meny of these eerly

ccmputetions feiled to represent the physicel phenomene of the flows

beceuse point vortices ere too singuler to yield reelietic vorticity

distributions. Chorin [1973] first introduced the concept of e finite

core to evoid the singulerity of e point vortex end hence overceme this

problem. Chorin [1978] eleo used the segments of vortex sheets neer

bounderiee insteed of point vortices es the computetionel elements in

studying e pietonrcylinder flow. The primery dieedventege of the

Green's function formuletion is thet the computetionel effort increesee

es the number of point vortices squered.

To overcome this dieedventege. the VIC technique wee developed by

Christieneen [1973; which he celled ”Cloud-In-Cell"] end wee epplied to

the investigetion of the motion for e continuous hydrodynemic fluid.

This grid-dependent method wee eleo implemented by Beker [1979]. Neng

end Thomson [1978] end meny others in eimnleting flows. An excellent

review of these methods end their epplioetions wee done by Leonerd

[1980] who else provided edditionel comments contresting the ebility of

the two epproechee to setisfy oonservetion principles.

Since both vortex models heve the ebility to numericelly

investigete verious flows. the selection of suiteble technique is

understood to be extremely importent to evoid eny inefficiency end/or

ineccurecy. The edventeges end disedventeges of eech method should be

cerefully considered when discrete vortex methods ere ebout to be used.

Teke for exemple the Green's function scheme which is better suited for

high Reynolds number (turbulent) internel flows where the totel number
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of vortices cen be meinteined et e smell number. The Vortex-In-Cell

technique is preferred to treet e problem if e very lerge number of

vortex elements ere used (such es externel flows).

As mentioned eerlier. viscosity pleye e key role in the rebounding

‘mechenine for the ring/well interections. The viscous effects must be

eccounted for in the present celculetions. of course. Two steps ere

required to simulete the viscous effects in the computetions since the

vorticity diffusion term eppeers in vorticity trensport equetion. The

two steps ere es follows. For ell time steps.

1. Simulete the vorticity dispersion in the flow field.

2. Stmulete vorticity generetion et the boundery to meintein the

no-slip condition et the well.

The former cen be included into either the Green's function or VIC

method by edding e rendom welk component or e diffusion induced velocity

to the convection velocity of individuel vortex element. Chorin [1973]

first published the rendom-welk epproeoh for discrete vortex

celculetions to reproduce the noleculer diffusion process in e

stochestic sense. A test of this idee hed been performed by lilinexro

end Seffimen [1977]. who found thet the number of vortex elements nuet be

lerge compered with the Reynolds number if the diffusion ceused by

viscosity is to be imiteted correctly. (There hed been. some questions

reised by Iilinerro end Seffimen concerning the rete of convergence:

they speculeted the rete to be such thet the number of vortex blobs N

wee proportionel to the Reynolds number. Roberts [1985] hes shown thet

in ectuelly. cereful initielieetion of the initiel distribution reduces

this estimete to N"/’Re'1l'.) For the seke of simplicity. Riye et el.

[1982] hed every discrete vortex endowed with e pro-chosen constent



trensverse velocity without regerding to its locetion when the

seperetion bubble over e two-dimensiouel blunt flet plete wee simuleted.

This epproximetion yields e bodily displecement of the sheer leyer

towerds the trensverse direction. 'e believe thet this model might not

be necesserily e bed epproximetion to reproduce the viscous effect in

some speciel types of flow. but obviously this will not be well-suited

in generel. Ashurst [1977] used en elternetive scheme to epproximete

the vorticity diffusion by edding e smell. but growing. length to the

interection distence r (core sire) et eech time step. The

time-dependent core sire represented the decey of the strength due to

viscous "spreeding" of eech individuel point vortex. which he referred

to es "eging". The results of the eging celculetions for e

two-dimensionel mixing leyer ere in good egreement with experimentel

dete. However. the scheme is restricted since it cen not be

incorporeted into the VIC technique. This is beceuse the Vortex-In-Cell

technique uses e spreeding function to redistribute the vorticity from

the Legrengien merkers to the grid for the Poisson solver. This

redistribution function cen be interpreted es en "effective sire" of the

vortex merker. end is set to e pro-determined constent multiple of the

grid length. It hes elso been shown thet "eging" does not necesserily

converge for long time simuletion [Greengerd. 1985].

A deterministic diffusion nodel designed for the VIC computetions

is introduced in the present study. The elgorithm for this model is

besed upon using e combinetion of e modified vorticity gredient

epproximetion.with e nine-grid-point. coneervetive redistribution filter

to silulete the viscous spreeding of vorticity in the flow field. The

computetions hes been done on e microcomputer in the Turbulence



Structure Leboretory of the Depertment of lechenicel Engineering et

Nichigen Stete University. The solution technique for solving the

Poisson's equetion wes chosen eccording to the cepecity of the

microcomputer. In Chepter two the elgorithms of inviscid end viscous

models ere formuleted. In Chepter three. two prelininery test ceses ere

exemined to check the eccurecy end reliebility of the diffusion model.

The celculeted results of vortex linepeir/moving well interections ere

ocmpered with the experimentel results of Lieng [1984] in Chepter four

through the use of stebility meps end vector plots. A discussion of the

no-slip boundery condition will eleo be included in Chepter five.



CHAPTER 2

THE THEORY

In the present enslysis. s Vortex-In-Cell technique is used to

model the ring-well interections. The msin reeson for choosing s VIC

method is e mstter of economy. The cost of computer time end memory

required to updste the informstion for N point vortices would become

prohibitive if s Green's function epproeoh were used. This is beceuse

the computetionel work increeses es N3 for the Green's function

epproeoh. but linesrly for VIC. There ere spproximetely 1.300 vortex

merkers needed to numericelly simulete the growing boundery leyer of the

moving belt for the problem to be studied here. By edspting the VIC

model. we ney ensure the ccmputstion of the motion of such e lerge

number of vortices will be et reesonsble cost. In this thesis we will

be concerned primerily with idesl fluids which ere purely

two-dimensionsl end incompressible (uniform density). The besic

principle of the VIC scheme is eimilsr to thet of the "Cloud-In-Cell"

method: the detsils ere explsined in this chspter.

2.1 Governing Formuletion for Inviscid Fluids

The Vortex-In-Cell epprosch implemented here is s mixed

Eulerien-Legrengien description of fluid flow in which the governing

formulstion of motion is obteined from the vector curl of the

Nevier-Stokes equetion. For s two-dimensionel incompressible fluid the

vorticity trensport equetion becomes



DQIDt - (u/p)A§ . (1)

where D/Dt denotes e totel derivstive. g is the vorticity. u is the

dynsmic viscosity. 9 is the fluid density end A is the Lsplsce

operstion. Note thet in two dimensions the term representing the

stretching end rotstion of vorticity. which is e three-dimensionsl

process. is identicslly zero. Consider first the flow of en inviscid

fluid (i.e. n - 0). Equstion (1) reduces to Euler's equetion

nelnt - o . (2)

Before equetion (2) is epplied. the vorticity must be discretised by

pertitioning the vorticity into N point vortices. Then

1: 2" c (3)I '
C

1-1 1

N

G a G , (3b)
E131 i

where G. the totel circuletion of vorticity. setisfies the definition :

c-j gal-j 5-6. (4)
A C

where V'is the velocity vector end C represents e curve enclosing the

sres A.

From equetion (2). one finds thet the vorticity is totslly

conserved in s two-dimensionsl flow field from the Legrengien point of

view. This will simplify the updsting of vortex merkers in the



Legrengien coordinste by simply moving these merkers without chsnging

their strength. Furthermore. one mey express the velocity in terms of s

streem function ‘P. which setisfies s Poisson's equetion with the

vorticity es the source function. If u. v represent the convection

velocity components in x. y directions respectively. the formuletions

tske the forms

Aw- -: , (5)

u - aW/ay . (6.)

v - 4m. , (6b)

Note thet the boundery conditions of streem function must be initislieed

before the interior streem function cen be solved by equetion (5). So

fer. the epprosch will epproximete the inviscid motion of equetion (1).

Nevertheless. we must never forget thet the genersl subject of fluid

motion encompssses both s viscous diffusion process end bulk fluid

motion. The letter .which results from en inviscid convection process.

wee described by equetions (2). (5)snd (6). The former. the viscous

pert of motion. will be explored end modeled in next section.

2.2 Viscous Diffusion Iodel

Rsther then using the stochestic rendom-wslk epproeoh [Chorin.

1973]. e deterministic epproximetion will be introduced to model the

moleculsr diffusion process. The idee of the diffusion model comes from

Fick's first lew of diffusion. which ststes thet the mess diffusion rete



10

of e component is proportionel to the concentretion grediente. The lew

cen.be formuleted in the form

Fx - ~DOCIax . (7s)

where F denotes the mess flux per unit sres. D is the diffusivity end C

is the mess concentretion of the component. A eimilsr expression could

else be written for the diffusion in y direction. Two other lews which

ere enslogous to equetion (7e) ere the viscous-sheer equetion end the

Fourier lew of hest conduction. i.e.

‘U . [tall/3y p (7b)

qx - ~k3T/8x . (7c)

Notice thet the physics of equetions (7) ere slso eimilsr. Equstion

(7b) represents the trensport of momentum scross fluid leyers csused by

the velocity gredient. equetion (7c) describes the trensport of hest by

tempersture gredients end equetion (7s) governs the mess trensport by

mess concentretion gredients.

The three lews illustreted ebove. especislly Fick's first lew. give

us e heuristic ides thet the vorticity trensport must occur es s result

of diffusion when s vorticity gredient is present. Ue will now modify

end edspt this idee to s diffusion model suiteble for vortex

celculetions. Consider e simple one-dimensionel vorticity distribution

shown in Figure 2.1. The concentretion of vorticity is greeter on the

right side of this curve then on the left side. A higher concentretion
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cen be interpreted es more. discretixed vortex merkers (in unit strength)

per unit length. Thus more merkers will move from right to left scross

the imsginsry plene (shown by the dsshed line in Figure 2.1) beceuse of

moleculer processes scting upon the unbelsnced concentretion. This

results in s net vorticity trensport from, the region of high

concentretion to the region of low concentretion. In short. the

hypothesis of the vorticity diffusion illustretes thet the rete of

vorticity dispersion from s region of concentreted vorticity to en outer

non-vorticsl region is proportionel to the locel concentretion/vorticity

gredient.

For the cese of pure diffusion. e "diffusion-induced velocity” for

e point vortex.might be formuleted es

s - -(u/P§.)(a§lax) . (8e)

7 - -(u/P§e)(3§/ay) . (8b)

The coefficient of proportionelity between the vorticity gredient

end the fictitious diffusion velocity is now dependent on s messure of

the locel vorticity §.. In the flows of interest in this discussion.

the only possibility thet the locel vorticity cen be zero is if there

ere no vortex merkers present. However. in the celculetions. there is

no need to semple the vorticity field st thet locetion if there ere no

vortex merkers present. Thus. it mey sppesr there is e singulerity in

this fonmuletion. operstionslly. this is not the cese. (The

singulerity. which will blow up the epproximetion. msy sppesr physicelly

in the centrel line. where the vorticity gredient is not zero end the
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vorticity itself is zero. of some enti-symmetricsl vorticity structure.

Nevertheless. this cen be technicelly elimineted from the computetions.)

Accordingly. the locel vorticity §.. which is by no meene s zero vslue

in the celculetions. will be repleced by the notetion c for our studies

here.

By using the diffusion theory of vorticity it is essy to

numericelly predict the dispersion retes of point vortices by simply

evelueting the vorticity gredients on eech mesh node. Equstions (8)

hence will epproximete the viscous pert of the equetions of motion (1).

The method of frectionsl steps then stetes thet the totel velocity

moving the merkers is the sum of the convected velocity . which is

described by equetions (6). end the fictitious diffusion-induced

velocity. which is governed by equetions (8). Thus

U - u + 3 . (9e)

<
1

V - v + (9b)

where the U. V denote the "reel" velocity components. in x. y directions

respectively. of e vortex msrker. Now the epproximetion will setisfy

the solution of equetion (1) st ell times in the interior of the

computetionel domein.

It is interesting to note thet these results could heve been

derived using the Nevier-Stokee equetion. From the oonservetion of mess

for the incompressible two-dimensionel flow. we heve

an/ax + av/ay - 0 or v-V - o . (10)
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where ‘7 denotes the gredient operetor. The vorticity trensport

equetion mey be written in en elternetive form es

am: +V°(§V) - (n/pm . (11)

if the continuity. equetion (10). hes been edded to equetion (1).

Similsrly the Euler's equetion mey be written in the form :

atlat + v-tfi'i) - o . (12)

After resrrsnging the eppropriete terms in equetion (11). we obtsin

aglat + V-[u‘v’ - (gr/puma] - o . (13)

This result proves. by being compered with equetion (12). thet the

viscous diffusion terms cen be interpreted es s contribution to the

velocity components of the vortex merkers in x end y directions. which

we celled "diffusion-induced velocities" end is defined in equetions

(8).

In order to displsce these discrete point vortices st eech time

step. e Predictor-Corrector epproximetion is used which is e

second-order eccuretc time integretion scheme. The elgorithm for the

Predictor-Corrector is of the form

x(t+At) . x(t) + 0.5At[U(t)+U(t+At)] , (14s)

y(t+At) - y(t) + 0.5At[V(t)+V(t+At)] . (14b)
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where At is e unit time step length.

A nine-grid-point filter which wee preposed by Bertholomew. Iy

msjor Professor. is eleo introduced in the celculetions es the spreeding

mechenism. This improved technique distributes vorticity to the nine

nesrest neighbor mesh nodes rether then using sres weighting to the

surrounding four (es used by Christiensen [1973]). This effort will

minimise the eliesing conditions thet normslly sppesr on the mesh cells

[Beker. 1979]. Figure 2.2 provides the geometry end notetion of the

Quesi-Geussien redistribution scheme. which is given by

Mme) - (Aa'+sa‘+c¢.‘+ca'+n) -(Ap‘+np‘+ca‘+cp‘+n)

for o s («Hal .4 1.5 . (15)

O(c.8) - 0 otherwise .

where the constents A.B....E ere tebuleted in Thble 1. end a. B ere the

nonrdimensionel ~dietences from vortex msrker to the grid points. The

meximum error occurs st u-B-0.4 end is on the order of 10" with double

precision. This scheme conserves the totel vorticity both locslly end

globelly. end hence setisfies en importent feeture of oonservetion

principles. Note thet the interpolsted velocities eleo use the ssme

nine-weighting fsctors. The testing of viscous diffusion model used in

conjunction with this redistribution scheme will be illustreted in

Chepter three.

2.3 Procedure for Simuletion of VIC

The elgorithms governing the simuletion heve been formuleted in

previous sections. Equetion (5) will be eesily solved by using e
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Ccmpect Non-iteretive Poisson Solver [Bunemen. 1969]. Although the

technique tekes more CPU time. we chose it es the Poisson Solver due to

the limitetion of memory cepecity of the microcomputer. In this section

the procedure for the VIC celculetions will be described es follows.

The celculetions will follow the thirteen steps in order :

1.

2.

4.

Determine the computetionel domein end grid size.

Determine boundery conditions -- initiete streem function on

boundery nodes of the computetionel domein.

Psrtition vorticity field -- decide on the strength of vortex

merkers end discretise the continuous vorticity field into

point vortices.

Spreed vorticity -- redistribute the msrker's vorticity onto

its nesrest nine mesh points by using equetion (15).

Eveluste viscous effects -- oelculste end normeliee vorticity

gredients (ll§)(3¢/ax). (1/§)(8§/8y) on grid points by using e

centered difference scheme. Then eveluete equetions (8).

Solve Poisson's equetion.-- use Dunemen's Poisson Solver to

eveluete the streem function distribution on interior grid

points.

Eveluste inviscid motion -- obtein the velocity field st grid

points by solving equetions (6) using centered difference.

Obtein the "reel” velocity field -- sum up the

diffusionrinduced velocity end inviscid convection motion on

eech node es defined by equetions (9).

Celculete the velocities of vortex merkers -- interpolete

velocities beck to vortex merkers else using the seme weighting

filter.
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10. Displece vortex merkers -- use equetions (14). the

Predictor-Corrector integretion scheme. es the time merching

elgorithm to move point vortices.

11. Bounce vortices beck into flow field (if necessery) -- if e

vortex merker crosses the well st the end of s time step. it

will be bounced beck into the fluid: i.e. this merker will be

returned from (‘i"7i) to (x1.yi) . where the well is essumed

to be st y-O.

12. If desired. one cen generete new vorticity (if necessery) --

creste new vortex merkers nesr the well to meintein the no-elip

boundery condition if the tengentiel velocity does not vsnish

st the solid well. This perticulsr step wee not implemented in

the discussion which follows.

13. Repeet steps 4 through 12 for eech time step.

The procedure shown ebove mey be repested es long es needed.

Stetieticel infonmetion such es Reynolds stress. fluctusticn quentities.

... cen be obteined by putting numericel probes in the computetionel

flow field.



CHAPTER 3

BENCH EARRING NDDELS AND NUNERICAL PARAIETERS

In the chepter we will present two preliminery test ceses in order

to obtein e quentitstive eveluetion of the effects of the epproximetions

nede in equetions (8). Both testing models employed here ere simple end

heve known enslyticslly solutions. Stoke's leyer. the first problem.

describing the trensport of sheer leyer csused by viscosity towerds the

trensverse direction. which is en one-dimensionel diffusion process.

The second testing model is s two-dineneionel free vortex peir. The

growth rete of redius of gyretion of the vortex peir provides the

informstion of viscous diffusion rete in two dimensions. To numericelly

investigete the viscous effects of these testing flows. the viscous

diffusion model is incorporeted into the Vortex-In-Cell celculetions.

The eccurecy end reliebility of the slgorithm.of the diffusion model

will be evelueted by compering the results of test runs with the

theoreticel expressions. The terget epplicstion. the sinulstione of

two-dimensionel vortex ring/moving well interections. which ere governed

by some numericel perencters will eleo be illustreted in the end of this

chepter.

3.1 Ome-Dinensionel Testing Nodel -- Stoke's Leyer

Now we consider en initielly ststionsry fluid which is bounded by s

loving flet well with e constent speed U'. This is s very common flow

phenomenon thet hes e tine-dependent boundery leyer which is formed on

the well by the effect of fluid viscosity. The governing formuletion of

17
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motion is described by Stoke's exect solution of the Nevier-Stokes

equetion. which tekes the form

an“ 1”,, - 1),,[1 - erf(n)] . (16)

where erf(n) denotes the error function of e similerity verisble

n-y/(4pt/p)'°‘.

Hy meene of equetion (16) end the definition of vorticity. we will

be eble to numericelly simulete the Stoke's leyer. Assume the well is

st y-O end impulsively sterted to move with e constent speed st t-O. A

(I x H) on3 computetionel domein is chosen end defined by (I x I) grids.

where I is the width of the rectenguler domein in x-coordinetc. H is the

height in y direction end I. J ere integers such thet I-IVAx. J-HIAy.

Note thet. for simplicity. we slweys use squeres to refine the domein

(i.e. Ax-Ay).

Now we mey determine the totel circuletion in the Stoke's leyer per

unit length Ax of the well. It is given by

G Iinterior V d- U (17)

- - s - x .
t0tR1 '.1 1 'A

It is cleer thet one hes to plece e number of vortex elements. ssy N.

neer the well per unit length such thet eech of the elements hes

strength D‘Ax/N. The wey to distribute these discrete vortices is slso

besed upon the definition of circuletion. A schemstic representetion

for the exemple of N-3 for this concept is shown in Figure 3.1 end the

trensverse locetions of these vortices cen be presented in equetion form
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7.(t.N) - 0.55.:1“[1 - (2m-1)/2N] . m - 1....N (18)

where the inverse error function erf-1[erf(u)]-n end 6 is the boundery

leyer thickness st time t. which is defined by u3/U‘pllZOO; i.e.

8-4(utlp)"'. Note thet eech grid box in the well leyer hes st leest

one merker per cell. end thet the number of merkers st e given spetisl

locetion is proportionel to the locel vorticity; i.e. the merkers

overlsp. The vorticity field of the computetionel domein cen be

obteined efter the N-I vortex merkers heve been distributed.

In order to solve the Poisson's equetion (5) by Dunemen's solver.

the initiel conditions of streem function on the bounderiee ere eleo

required. This cen be geined by integreting the exect solution (16)

with respect to y. Hence the exect etreen.function field of Stoke's

leyer st time t mey be steted es

¢%.11 leyer ' I 1‘well leyer‘ty

s

‘ w[Y-erfc(u) + 2(ut/np)°"(l-cxp'n )] . (19)

where erfc(u)-1-erf(n) is the complimentery error function. He will

epply Abrenowitx end Stegun's retionel epproximetion [1964] to eveluete

this function. The error is on the order of 10". Now we mey

initielixe the celculetions by using the vorticity distribution in the

interior end the exect boundery condition of streem function from

equetion (19).

Before further investigetion. we ere going to eveluete the

reliebility of the epproeoh illustreted ebove. Let Ax-Ay-O.5cm.

1-41-123. 10-10. U'-10cm/sec. u/p-10-'cm'/sec. t-64sec (1... Ax/6-1/6.4)
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end the numericel probes pleced et x-16cn.

Figure 3.2 shows the comperison of exect end celculeted velocity

profiles. Figure 3.3 shows the comperison of vorticity profiles st the

sene condition. Obviously. the outcomes of celculetions ere in good

sgreement with the theoreticel curves except very user the well. This

is beceuse the redistribution filter smooths shsrp peeks such es the

peek in the vorticity distribution of the exect solution. There ere

spproximetely sn.-11I error which occurs st y-O in the celculeted

velocity profile end -10§ error in the vorticity profile. In feet.

these reletive errors ere strongly dependent on the retio Ax/b. which is

shown in Figure 3.4. Fortunetely. this error could be pertislly

reduced. when the retio Axle is eppropristely smell. by forcing the

x-component velocity st eech well node to be U;. This correction will

be used in ell of the well leyer sinuletions sfterwerds.

To further investigete the effect of nolsculer viscosity which is

supposed to diffuse. or spreed out. concentretions of vorticity user the

well. different lengths of time step heve been studied st the sene

rotstionel time psremeter T55./U&-1l23 where 6. is the well leyer

thickness st time t.. Simulsticns ere sterting from t. end ending st t.

For eech time step length. celculetions heve been.mede for three ceses:

6/5,-(6s/e4)'-‘. 2'-‘ end 2.

Figure 3.5 shows the dependence between reletive error end temporsl

resolution st the sene spetisl resolution Ar/8,-1l6.4. The reletive

error defined here tekes the form

N
scum. Error - llN 2P1 [(y- (20)— 1 '

celc./yiexec.) ]
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where y‘exec. is evelueted using equetion (18). As expected. the error

increeses se At increeses. However. there is no noticeeble chenge when

the retio At/T is smeller then 1. Figure 3.6 slso shows the seme

feeture st constent Axlb,-ll3.2. The optinu time step length hence cen

be determined eccording to these two figures end other fsctore such es

the expense of CPU time.

Figure 3.7 shows the reletive errors with different spetisl

resolutions st fixed nondimensionel time step length At/ThO.2875. The

ultimete resolution thet could be exemined wee Axlb,-l/12.8 due to the

memory constreint of the microcomputer. It shows thet the higher

spetisl resolution yields the higher sccurecy es predicted. In other

words. the growing well leyer cen.be successfully sinulsted by epplying

our viscous diffusion.model es long es the resolution perencters At/T

end Ax/b. ere chosen moderetely smell. The celculeted results ere quite

good especislly for the cese of short time simuletion 8/8.-(68/64)"‘

which corresponds to 4 seconds of reel time. This will setisfy the

needs of our finel epplicstion since the interecting time for vortex

ring end moving well is elweys shorter then 5 seconds of reel time.

3.2 Tbo-Dimensicnsl Testing Iodel -- Free Vortex Peir

The decey of e two-dimensionel vortex peir in the ebsence of e

solid well hes slso been studied using our viscous diffusion model to

investigete the sccurecy of the epproeoh. Consider e single line vortex

heving position (x..y.) end strength Gpv' In poler coordinstes. the

velocity component v9 is given es

Y9(r.t) - (Gpvl2rr)[l - .rp(-pr‘/4ut)] . (21)
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The circle of redius r. ” which oonteins 995 of the vorticity cen be

shown. using equetion (4). to be

e.s

r..., - 2[(ut/p)ln[Grvl(va-0.99Ghv)]] . (22)

N

Now we use N vortex merkers with strength G1 so thet 697.21-161 to

represent the single line vortex of initiel effective redius r -R..

O.ss

I.

8
Thu. t.-pR. [4“.1nIGrVI(Grv 0.99G’v)]]- is the elepsed time to spreed

out vorticity to this effective size. From equetion (22). we cen infer

thet the redius rt of s circle which possesses some vortex merkers with

totel strength fG'pv cen be formuleted es

rf - 2[(ut./p)ln[G’vl(G’v-fGrv)]]..‘

.5

- e.[-o.21715-1r(1-r)]' . (23)

where f is s frection. This formuletion will be used to distribute

vortex merkers in the effective circle. Since it wes derived from en

exect representetion (21) of e line vortex. the reelietic vorticity

field ought to be conserved efter being discretised. A schemstic

disgrsm.illustrsting the errengement for N-12 is shown in Figure 3.8.

Consider the N vortex merkers. the i-th merker is pleced st

(‘i'yi)- The squere of the redius of gyretion S is defined by

s - -21./G , (24)

N

where I‘- -O.5§i 161[(xi-x.)7+(y1-y.)z] is the enguler impulse with

IOSPOOt t0 (I..y.). In e viscous unbounded fluid. 8 grows linesrly with



23

time. The exect solution tekes the form

3 I S. + 4pt/p , (25)

where S. is the initiel squere of redius of gyretion st time t.. By

meene of this exect solution. we will be eble to eveluete the outcomes

of simuletions leter on.

The streem function field induced by the single line vortex in en

unbounded fluid cen be obteined by the formuls

‘Pr"y. - -(cp,/4r)1r[(r-r.)’ + (y-y.)‘] . (25)

The evolutions of e vortex peir which encompssses two line vortices

with equel megnitude of strength Gpv but opposite sign could be

numericelly studied by plscing N vortex merkers et eech lobe using

equetion (23). If ”r the distence between the two centers of lobes.

and “r the speed of the vortex peir. ere known. we mey eveluete the

strength for eech lobe.

(upper) _ . 2
GpV (10"!) (t) ZEUrDr ( 7)

The initiel velues of streem function on bounderiee cen be

celculeted using equetion (26) by superposition

Wvortex peir " ‘I’xu,yu "’ 59,1,“ . (28)

'11." (luau) end (x1.y1) ere the centers of upper lobe end lower lobe
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respectively.

Figure 3.9 shows the vorticity distributions through upper lobe for

vortex rings sinulsted using N-l end N-6 st Dr-3R,-5.3Ax. Ccmpered with

en exponentisl distribution typified by eech’r [Nsxworthy. 1977].

Apperently. better sgreement for lerger N.

To exemine the velidetion of the viscous diffusion model. two

ceses. (i) pure diffusion end (ii) hydrodynemics plus diffusion. heve

been investigeted with the sene initiel condition. we set Dr-3R,.

I-2Ji64. Ax-Ay-O.25cm end choose the velues of Dr' Ur such thet

Ax/Rg-1/4 end Reynolds number Re-pUiDr/n-lOOO.

A The initiel rotstionel time for eech lobe is T;-(2xR.)'IG’v. It

wee found thet the results did not heve eny noticeeble chenge when the

unit time step lengths At were chosen to be less then Tr/60.

Ccmputstions heve been done with this vslue of At for N-6. N-60 end

N-SOO. The totel simuletion time is 3T1"

Figure 3.10 shows the normslired squere of the redius of gyretion

8/3. es s function of tITr for both ceses (i) end (ii) with Nh6. 8 used

here is the eversge vslue of upper end lower lobes. The exect solution

(25) is slso shown for comperison. The reletive error is ebout -25$

efter three rotetions.

Figure 3.11 end Figure 3.12 show the results for N-6O end N-500

respectively. The size of the reletive error is ebout -8§ for N-60 end

-4§ for N-5OO et integretion time 3T} in cese(i). Apperently the number

of vortex merkers N must be lerge enough. ssy the order of 10' in this

problem. to yield the reelietic vortex structure end hence reproduce the

viscous diffusion. However. the repid improvement in sccurecy from N-6

to N-6O should eleo be noted. In order to seve CPU time end memory



25

specs. the secrifice of e little sccurecy is slweys being considered.

As enexemple. N-60 is eccuretc enough to be used insteed of N-500 to

resolve the vortex structure. It cen be concluded thet the

spproximetions of vorticity diffusion in two dimensions by using our

viscous model ere in good sgreement with the theoreticel results. but

the resolution of the vortex structure must be in noderstely high order.

3.3 Numericel Peremeters of Vortex Ring/loving Uell Interections

The two-dimensionel vortex ring/moving well interections ere

essentielly the interections between line-vortex peirs end e moving

well. Figure 3.13 shows the gecmetricel errengement of this flow field

for VIC simuletions. Some numericel perencters which governs this

problem ere introduced es follows.

7 : the initiel engle of epproeoh.

Ur/U' : the retio of ring speed to well speed.

5./Dr : the retio of well leyer thickness to ring diemeter.

Since the vortex ring/moving well interections cen heve evolutions

which sre‘ either steble or unsteble. the governing perencters

illustreted ebove could be releted es the representetion

6 I , .( .ID1.2,1.“1“l Function( 7 UiIU§ ) (29)

Io define e steble interection es one in which the vortex ring turns

ewey from. the well without ingesting well leyer fluid. An unsteble

interection ingests well leyer fluid before/es the ring turning ewey
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from the well. These definitions were developed by Lieng [1984]. The

criticsl lines which distinguish the stebility end instebility of

evolutions cen be scquired by systemeticelly verying these releted

perencters.

The elgorithms for simuleting Stoke's well leyer end line-vortex

peir by discrete vortices heve been fully described in Sections 3.1 end

3.2 respectively. The streem functions on bounderiee of computetionel

domein ere the only velues thet heve to be determined to initielise the

celculetions. However. we know thet the streem function field induced

by e line vortex in the presence of solid well cen be obteined by

modifying equetion (26) to give

(w)

VI (30)
xe'Ye . wke'Ye - W30-35 °

Consequently. the streem function of this problem cen be obteined from

equetions (19) end (30) by superposition. Then

’ (31)
. (w) (w

‘Pring/moving well W xu'yu + ‘i’ x1,y1 + stll leyer '

This epproech for the boundery conditions hes been discussed in deteil

by Beker [1979] .

The computetions heve been done for 7-15. with one merker per lobe

for the line-vortex peir end 10 merkers per unit length of well for

Stoke's leyer. We set I-4J-128. Ax-Ay-0.5cm. At-1/80sec. Ur-64.4cnlsec.

Dr-2.65cm end the initiel height of linepeir is st y-6.23cm. Tho

perencters, 6./Dr end Ur/U‘. renge from 0.9 to 2 end 0.4 to 0.8

respectively.
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Simulsticns with/without viscous diffusion model heve been cerried

out st the seme initiel conditions. No new vorticity hes been genereted

during celculetions. This meene thet the no-elip condition st well

mdght not to be setisfied ell the time. The inportence of viscous

diffusion model will be evelueted by competing the celculeted outcomes

with experimentel results vie stebility meps end flow visuelixetions in

next chepter.



RESULTS

An L81 11/23 microcomputer hes been cherged with ell the efforts of

computetions. The outputs will be presented. quentitetively by meene of

stebility meps end quelitetively vie computer genereted vector plots. in

the following sections.

4.1 Stebility Reps

Figure 4.1 shows the stebility mnp ccmpsrisons for 7-15'. which

uses deley time t. es the unit of y coordinste. The meps of numericel

simuletions with/without viscous diffusion model ere computed to within

$2.5 second error bers. It is found thet the celculetions ere in better

sgreement for higher deley times then for lower deley times when

compered with the experimentel stebility mep.

4.2 Voctor Plots

Figures 4.2 to 4.6 show the computer genereted vector plots of

vortex linepeir/moving well interections with different initiel

conditions. These plots indicete the evolutions of linepeirs when they

come closer to the well. Both the linepeirs end well ere moving from

left to right. Only those vortex merkers which lie inside the grephics

displey domein (indiceted in Figure 3.13) ere shown. The vectors

represent the instenteneous velocities of vortex merkers. The outline

eround the linepeir stends for the concentreted vorticity region of ring

lobes. which is for reference only.

28
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Figure 4.2 sequence showing the ingestion of well leyer fluid into

the lower lobe es the linepeir "creshes" right on the well. This is the

type of strong breekup where the linepeir did not turn ewey from the

well.

Figure 4.3 shows s linepeir breekup efter ingesting well leyer

fluid es it moves ewey from the well. This type of breekup is different

from thet in Figure 4.2.

Figure 4.4 indicetes the type of survivel of linepeir which lesves

the well without bresking up. Note thet the numericel simuletions from

Figure 4.2 to 4.4 were ell done with the viscous diffusion model.

Figures 4.5 end 4.6 show the evolutions of liftup of linepeirs for

celculetions were done without the diffusion model end done with

diffusion model respectively. All the initiel conditions of these two

figures were set identicslly. but the letter included the vorticity

diffusion process while the former did not. Apperently we cen find. by

observetion. thet the viscosity mekes the linepeir turn ewey from the

well eerlier end eleo smooths the concentreted well vorticity.

Discussion of the overell results will be in next chepter.



CHAPTER 5

DISCUSSION

The results presented in this work demonstrete thet it is possible

to simulete the experimentel vortex ring/moving well interections. when

the well leyer is thick. by e two-dimensionel linepeir cslculetion.

Although the deteiled compsrisons of stebility meps ere not in good

sgreement. end es expected the sgreement becomes poor es

three-dimensionel effects begin to doninste the interection. In view of

the feet thet the two-dimensionel simuletions heve shown the ebility. by

meene of vector plots. to reproduce the verious flow phenomene of the

steble/unsteble evolutions of the three-dimensionsl ring/well

interections. we cen infer thet the overell stebility/instebility of the

vortex ring/moving well interections is edequstely described by

two-dimensionel mechenisms. This interpretetion indicetes the

inportence of two-dimensiouel effects in this flow field. Novertheless.

the stretching of the vortex tube element end other three-dimensionel

effects ere importent in determining deteils of the flow such es the

mixing process user the well. Reynolds stress. fluctustions end etc.

which will be significently effected by stretching/reorientetion of the

vortex structure.

In the vortex ring/moving well interections. the three-dimensionel

effects become more importsnt when the rings come closer to the well.

This is beceuse the rings. when they neer the well. will be under the

influence of vortex stretching which mey csuse. for exemple. the

smplifying of well leyer fluid ingestion end hence breeking up fester.
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For the cese of thin well leyer thickness. the ring cen eesily epproech

the well so thet the subsequent evolution of the ring is domineted by

the effects of three-dimensionel nechenisms. This is the reeson.why the

two-dimensionel celculetions feiled to yield good results in the thin

well leyer thickness region which corresponds to the short deley time

region in Figure 4.1.

Since the vortex rings were roughly spproximeted by the line-vortex

peirs in the computetions. s question srose -- would the overell

outcomes be improved if more vortex merkers were employed. insteed of

one merker per lobe. to represent the structure of ring lobes?

Usrtholcmew clerifies this by using six vortex.nsrkers per ring lobe to

re-cslculste the ring/well interections in the ebsence of viscous

diffusion process. The efforts yield e slightly better result in the

stebility mep which is shown in Figure 5.1. but the sgreement in the

short deley time region is still poor. This result enhences our belief

thet the three-dimensionel effects in the short deley time region ere

the msjor effects responsible for the poor comperison of the numericel

simuletions in this region.

Unfortunetely the viscosity seems not very importent in the

two-dimensionel vortex peir/moving well interections since there is no

difference. within $2.5 seconds error here. between the stebility meps

for celculetions done with/without the viscous diffusion model.

However. one will find out thet the effects of viscosity in the flow

field mey not be so triviel when the computer genereted vector plots in

Figures 4.5 end 4.6 ere cerefully compered. These two figures indicete

thet the computetions with the viscous diffusion model heve successfully

crested two physicel phenomene which heve never been shown in the
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inviscid celculetions. One is the vorticity gredients heve been

smoothed vie the diffusion process of vortex merkers. 'which cen be

eesily seen by the growth of boundery leyer thickness for instence. The

other is the vortex ring. in s steble interection. turns ewey from the

well strongly through the influence of viscosity. This feeture proves

thet the viscosity does plsy e significent role in the rebounding

mechenism. es mentioned eerlier in Chepter one. of the ring/well

interections. In other words. we cen expect thet the criticsl line in

the stebility mep for computetions with the diffusion model will be

shown lower in some degree then thet in en inviscid celculetions if

finer numericel investigetions ere mede; i.e. reduce the sire of error

here to. for exemple. $0.5 seconds end see the differences in the

viscous/inviscid stebility meps. Nevertheless. e huge time is required

to do so under the current fscility which needs spproximetely 26 hours

of execution time to run for just one ring/well interection. Due to the

time limitetion. we do not refine the celculetions to echieve more

precise results.

The no-slip condition is elso en importent cherecteristic of

viscous effects st the well surfsce. Since our viscous diffusion model

is only designed for simuleting the moleculer diffusion process in the

flow interior. no perticulsr step wes employed to meintein the no-slip

boundery condition which might not be setisfied ell the time during the

celculetions. This. of course. introduced some error which mey not be

negligible in the overell results. To meintein the no-slip condition.

new vorticity should be genereted if the tengentiel velocity is found

not venish st the well during the simuletions. In feet. the elgorithm

described in Section 3.1 hed been celled to creste new point vortices in
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the vicinity of the surfece to setisfy the no-slip boundery condition.

This ettenpt. however. feiled to represent the reslity of the boundery

leyer since too meny week vortices hed been genereted very close to the

well. This gives us e lesson thet cere must be teken to evoid spurious

results if the new vorticity creetion process et the solid surfece end

the subsequent motions of these vortices ere ebout to be correctly

modeled. Although we decided not to include this step in the

celculetions. we believe thet the use of finite vortex sheets es the

newly crested elements could be e better wey to model the creetion

process st the well. but there is no herd evidence on this mstter end

the question is open.

There ere eleo meny other error sources such es the truncetion

error. the sccumuleted round-off error. ... heve not been mentioned.

In generel. the error contributions by these sources ere reletively

smell end not well understood.

 



CHAPTER 6

CONCLUSIONS

Numericel simuletions of the vortex ring/moving well interections

heve been done with some success using the two-dimensionel

Vortex-Ianell technique. In these celculetions the effect of moleculer

viscosity diffusion wee spproximeted by edding e deterministic velocity

component for eech discrete vortex. This "diffusion-induced velocity"

wee defined in terms of e modified gredient epproximetion which wss

obteined from.e trensformetion of the vorticity trensport equetion. we

heve tested the viscous diffusion model on both one end two-dimensionsl

time-developing flows end echieved setisfectory results. The

computer-genereted vector plots eleo show thet the use of the diffusion

model chenged the locel deteils of the rebounding phenomenon in the

ring/well epplicstion. but did not sppesr in the overell stebility meps

within $2.5 second error bers. More computer time is needed to resolve

this peredox. From the precticsl point of view. we feel thet this model

is e simple end effective scheme to represent the vorticity diffusion

process in the flow interior.

The quelitetive feetures of the ring/well interections ere well

reproduced by this numericel method. but close quentitstive comperisons

with experiments indicete thet in the reel flow the three-dimensionel

deformetion of vortex filements becomes significent in the thin well

leyer zone of stebility mep. so thet the VIC technique in two dimensions

cen poorly simulete there. In order to further improve the celculeted

outcomes. the inclusion of three-dimensionel flow representetions
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eppeers to be required. With this. the viscous diffusion would be more

importent due to the thinner well leyers encountered by the ring.

However. we do not heve the meene to extend the computetions to three

dimensions under the current computing oepebility.

On the LSI 11/23 microcomputer it took 311.5 seconds to edvence the

positions of 1282 point vortices for eech time step. Approximstely 40!

of this time wes teken up by executing Bunemen's Double-Cycle-Reduction

routine. This compect Poisson solver is not quite efficient in speed.

but the big edventege is its memory requirement fits smell computers.

Future work will try to include follows in the celculetions when

the VA! 11I750 computer is svsileble :

(1) Flow mechsnisms in three dimensions.

(2) Fest-Fourier-Trensform routine es the Poisson solver.

(3) Suiteble model for treeting no-slip boundery condition.
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Coefficient Velue Tebulsted in Double Precision

A 1.7636684303351 X D—3

B -3.3950617283950 X D-2

C 2.5738536155203 X D-l

D -7.229662698413O X D-l

E 6.6517857142857 X D-1    

Teble 1 The Constsnt Coefficients of Quesi-Geussien Redistribution

Function
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Figure 2.1 Sketch of One - Dimensionel Vortioity concentretion

Profile on Illustreting Diffusion-Induced Velocity
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Figure 3.8 Discrete Vortices Arranged to Simulate Line Vortex.

(This is an Exemple of N312)
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Figure 3.10 Time-Dependent Radius of Gyration Calculated Using

N-6 per Lobe for Pure Diffusion and Hydrodynamic

Motion with Diffusion. The Straight Line is the

Theoretical Solution Given by Equation (25)
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Figure 3.11 Time-Dependent Radius of Gyration Calculated Using

N-60 per Lobe for Pure Diffusion and Hydrodynamic

lotion with Diffusion. The Straight Line is the

Theoretical Solution Given by Equation (25)
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Figure 3.12 Time-Dependent Radius of Gyration Calculated Using

NISOO per Lobe for Pure Diffusion and Hydrodynamic

Motion with Diffusion. The Straight Line is the

Theoretical Solution Given by Equation (25)
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0 i Experiment i =1marker per lobe lor calculations

(Liang) with/without diffusion model

Survival

\

I
\__,I

Ingestion of

wall layer fluid

leading to breakup

I I9-%

I : I I >
0.9 1.0

 
 

(£4 (£5 (is 117 lJl18

SPEED RATIO I —' l

Uw

Figure 4.1 Stability Maps of Computations with/without Diffusion

Model for 1-15. Compared with Experimental Result of

Liang[1984]. The Error Bars for Calculated Outcomes

are $2.5 sec.



Layer Fluid as it "Crashes” on the Wall

Unstable Interaction which the Line Pair Ingests Wall

Figure 4.2 Computer Generated Vorticity Motion Pictures for
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Layer Fluid as it Turns Away from the Wall

Unstable Interaction which the Line Pair Ingests Wall

Figure 4.3 Computer Generated Vorticity Motion Pictures for
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Figure 4.4 Computer Generated Vorticity Motion Pictures

Stable Interaction which the Line Pair Leaves the

'all without Breaking Up



Vere Set Identicelly to This Case

Stable

cess.

Number Figure

"Photos" Correspond

Interaction in the Absence of Diffusion Pro-

to The Same Time

4.6 Which The Initial Conditions

Step

Figure 4.5 Computer Generated Vorticity Motion Pictures for

 

. O

C

I.

-

‘

~

~

I"

.-

O

 
  

 

I
\
I
'
.

58

 

.
s ' - ‘

I.‘

‘

 

 

 



 

 

 

 

 
 

‘3 =- - . I I s ‘ ‘

... ~ — -.. .— " " f a ' .
‘ I

F..—.... .:£'—" ‘1'": :‘aifr - I j ’ ' ' ' . . . - ‘

f "--"-—- :; =c;nu»fi”':, " 2 I o, . 5 ~ - ~
... a: 4.. 9 f. _. F1..-’. - ‘ . . - e ‘s ‘ s u ...

3".“ 'wm’fi5i:- -- ‘1... - _. ..—- ‘ _ "‘
bah ,n W _ a; -. ‘

Figure 4.6 Computer Generated Vorticity lotion Pictures for a

Stable Interaction in the Presence of Diffusion Pro-

cess. ”Photos" Correspond to The Same Time Step

Number as Figure 4.5 Which The Initial Conditions

Were Set Identically to This Case
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o : Experiment i = 1 marker per lobe * =6markers per lobe
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Figure 5.1 Comparisons of Stability Maps for 7-15..

Calculations without Diffusion for 6 Markers per Lobe

were Carried Out by Bartholomew


