ABSTRACT

QUANTUM MECHANICAL ANALYSIS OF HIGH-RESOLUTION NUCLEAR
MAGNETIC RESONANCE SPECTRA

by Yuh Kang Pan

The quantum mechanical and algebraic procedures involved in the
analysis of high-resolution nuclear magnetic resonance spectra were
investigated. The formulation of the quantum mechanical problem for
analysis of high-resolution nuclear magnetic resonance spectra was
first discussed. Particular attention has been given to developing
a convenient computer program for calculating matrix elements of the
high-resolution nuclear magnetic resonance spin-coupling Hamiltonian.

The derivations of general equations for the chemical shifts
and spin coupling constants of a number of system$of nuclei with spin
1/2 in terms of the values of the experimental energy levels have been
developed and presented. A computer technique for assigning the
observed spectral lines to transitions within the energy-level
diagram in a manner consistent with equal-spacing and intensity-sum
rules has been described. It has been shown that the analysis of
many complex NMR spectra can be reduced to the problem of assigning
observed spectral lines to the appropriate transitions within schematic
energy level diagrams, followed by direct calculation of the desired
spin parameters. This computer assignment technique was then applied
to examples of two, three, four and five-spin systems to illustrate

the procedure.
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I. PRINCIPLES OF HIGH-RESOLUTION NMR SPECTROSCOPY

I. A. Introduction

The introduction of the moiecnlar beam resonance method (1),
wvhich permits a direct measurement of nuclear gyromagngtic ratios,
was the first successful apgli;ation of the nuclear magnetic resonance
' technique, but it was pointed oyt ;t~an'early stage that it should
be possible to observe résonance'absorption in other forms of matter
(2). The phenomenon of nuclear resonance was first discovered in the
condensed phase in 1945 by Purcell, Torrey and Pound (3) at Harvard*ﬂ
University and by Bloch, Hansen and Packard (k) at Stanford University.
The growth and scope- of this new field has been enormous, its uses now
extend into many fundamental -research branches of physics and chemistry
including' the structure of solids, study of large local magnetic figlds
in single crystals, the internal structure of molecules in the liquid
and gaseous states, the intermolecuiar structure of liquids and asso-
ciated electric and magnetic field effects, chemical kinetics and
still*qthers, and its use as an analytical tool has been extensive.
This research will investigate  the quantum mechanical and algebraic
procedures involved 1n.the-analysi;'of highe-resolution NMR spectra.
The compute; assignment- technique and the direct calculation ﬁethod
for analysis of NMR spectra will be discussed.

In this chapter an attempt is made to give a very brief dis-

cussion of the terminology and principles of nuclear magnetic reso=-



nance spectroscopy which will be important in following chapters.
.For further details on any point, a number of excellent references
are available which have covered general theoretical and experimental

advances in detail (5-26).

I. B. KNuclear Magnetic Moments
In order to explain the hyperfine structure of some optical

spectra, Pauli (27) suggested in 1924 that some nuclei possess an
intrinsic angular momentum and magnetic moment. It has been found

that only the atomic nuclei with odd atomic number or odd mass number
“or with both odd atomic number and odd mass number have a nuclear

spin and these have integral or odd half-integral spin quantum number.
Nuclei with even mass number and even atomic number such as 12C or 160
do not have a nuclear spin-go the spin quantum number I=0. The spin
angular momentum P of an atomic nucleus may be characterized by a

spin quan;um number ‘I, such that the angular momentum is T in units K.
The spin of the positively charged nucleus confers on it a magnetic
‘moment ;', which is proportionai (28) to 1, and the proportionality
constant.is v, the nucléar gyromagnetic ratio-(or'nucléar magnetogyric

ratio):

->
y syin=y3 (1. 1)
For a simple particle"of-mass“M‘and’charge e, the value of vy

is 8’_.—-—

2Mc
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e -+
-’
and U B ge == * KT (1. 2)
2Mc

where g is called the nuclear g factor.

From the theory oflquantum mechanics (28) we know that I has
the magnitude [ I (I+1)]3'but that the only measurable values of this
vector are given by the magnetic quantum number m, which may take on
any of the (2I+1) values: I, =(Iel), =(I=2),eccces*(I=1)yee0e, +I.

The maximum observable value of ¥ is , therefore:?
efi

2Mc
wvhere BN = eli/2Mc, and is known as the nuclear magneton. It has the

80

«I=u =g8I (1. 3)
value 5,050 x 10_2“ergs/gauss. The maximum observable value of I
(the above equation) is called "the magnetic moment" of the nucleus

and is denoted by the letter yu .

I. C. The:Nucleus in a Magnetic Field
In the absence of a magnetic field, all orientations of a nuclear
magnet possess the same energy. But when a strong magnetic field, Ho'
is supplied, this degeneracy is remo#ed. The -energy of a nucleus of
magnetid momént 3, in the magnetic:field Ho is
Ep = ;ﬁ * ﬁo o

- -Ho x conmponent of v along H,

- -H, + mgg, (I. 4)
There are (2I+1).energy'1evels. corresponding to the (2I+1) values of
m. These eﬁergy levels are illustrated in Fig. 1 for ﬁhe cases of
I= é,md I= 1.

The selection rule for transitions among these nuclear energy

levels is m=g 1, so that a quantum of radiation could induce a tran-



ul g

sition if Em*l’m =hy = Em+l - Em =gH BN = (I1.5)

I

or using the definition of the magnetogyric ratio of equetion (I.1l),

hve=y BH, or vo=¥fo (1.6)
2"
H, 1\ ‘Hol\
‘- - S
A Ho M Ho
o S

--=-=-4

- - -

Fig. 1. Energy levels for nuclei with Isjﬁ and I=1 in the magnetic field.

When transitions are induced between energy levels of this kind,
the phenomenon is known as nuclear resonance. If more nuélei are
excited from the lower level toﬁthe upper than the reverse, then
a net amount of energy is absorbed and an NMR spectrum may be observed..
From equation (I.6) we note that the frequency is proportional-to the
applied field. For H, = 10" gauss, typical values of v, are given in
Table I. The frequencies lie in the radiofrequency region of the spectrum;
the experimental procedure is discussed in section (I.E).

The theory of transition probabilities shows that the Einstein
transition probability coefficient for the absorption of energy is

equal to the probability coefficient for stimulated emission (29). For

“this reason, any detectable net absorption of energy in a bulk sample



Table I. Typical Values of Vo for H, = 10“ gauss

L2p——
vo Mc/sec.

Nucleus 1. u when H,=10" gauss

1y é_ 2.79270 2,577

2 1 0.85738 6.536

12c 0 0,00000 ———-

13, .% 0,70216 10.705

th 1 0.40357 3.076

160 0 0.00000 e

17, -; -1.8930 5,772

19¢ _;. 2.6273 40.055

requires the existence of a population difference between adjacent
energy levels. If there is weak coupling among a group of identical
nuclei, and between the nuclei and the remainder of the system, the
"latticc",‘thermal equilib;ium may exist, and the energy levels will
be populated according to the Boltzmann factor. That is, the ratio of
the population of a lower energy level to that of the next higher level

Yﬁﬂo/kTs

will be the factor e where T is the temperature of the spin

system, As a typical example, we consider the proton, the ratio of

1
the population of a low energy level m = 7 to that of the next

. 1
higher level m = - 7 at temperature 27°C and Ho = 10,000 gauss is
N 1

m=+3 2uH,/kTg
— = ¢ = 20 Ho 41 = 1,000007. So, under typical.
Nm’-!‘ . kT = ’ !

conditions the fractional excess in the lower energy state will be



only about 10-5, but it is this *small excess which gives rise to an
observable net absorption of energy.

As a transition-inducing electromagnetic radiation is applied
to a system of nuclear magnetic moments at thermal equilibrium, net
absorption will occur, and the excess population in the lower energy
levels will rapidly diminish. The net absorption will then disappear,
unless some mechanism exists by which nuclei "relax" from the higher
to the lower energy levels, thus maintaining thermal equilibrium and

the Boltzmann distribution of populations.

I. D. Relaxation
If there is to be a net absorption of energy in the nuclear

magnetic resonance experiment, then some mechanisms must exist to

- promote thermal equilibrium between the populations of the energy
levels and the surrounding matter (the lattice) which may be liquid,
solid or gas. There exist various possibilities for radiationless
transitions by means of which the nuclei can exchange energy with
their environment and it can be shown (6) that such transitions are
more likely to occur from an upper to & lower state than in the
reverse direction, We therefore have the situation in which the
applied radiofrequency field is trying to equalize the spin-state
equilibrium while radiationless transitions are counteracting this
process. In the type of systems of interest to us a steady state

.18 usually reached such that the original Boltzmann excess of nuclei
in the lower states is somewhat decreased but not to zero so that a

net absorption can still be registered. The various types of radia-



tionless transitions, by means of which nuclei in an upper spin state
return to a lower state, are called relaxation processes. We may divide
relaxation processes into two categories, namely,spin-lattice relaxation
and spin-spin relaxation,

Spin-lattice relaxation (30) is sometimes called longitudinal
relaxation (31). This process is responsible for the establishment and
maintenance of the absorption condition. The magnetic nuclei are
usually part of an assembly of molecules which constitute a sample
under investigation and the entire molecular system is referred to as
the lattice irrespective of the physical state of the sample, For the
moment we will confine our attention to liquids and gases in which
the atoms and molecules constituting the lattice will be undergoing
random translational and rotational motion. Since some or all of
these atoms and molecules contain the magnetic nuclei such motions
will be associated with fluctuating magnetic fields. Now, any given
magnetic nucleus will be precessing about the direction of the applied
field Hy and at the same time it will experience the fluctuating
magnetic fields associated with nearby lattice components. The fluctua-
ting lattice fields can be regarded as being built up of a number of
oscillating components so that there will be a component which will
Just match the precessional frequency of the magnetic nuclei. In other
‘words, the lattice motions, by virtue of the magnetic nuclei contained
in the lattice, can from time to time generate in the neighborhood of
a nucleus in an excited spin state, a field, which like the applied
radiofrequency field Hl' is correctly oriented and phased to induce

spin-state transitions. In these circumstances a nucleus in an upper



8pin state can relax to the lower state gnd the energy lost is given
to the lattice as extra translational or rotatipnalleqergy. The sam?
process is responsible for producing the Boltzmannléxcegg of nuclei
in lowver states.when the sample is first placed in the magnetic field.
Since the exchange of energy between nuclei and lattice leaves the
total energy of the sample unchanged,it follows that the process must
always operate so as to establish the most probable distribution‘of
energy or, in other words, so as to establish the Boltzmann excess
of nuclei in lower states. The so called spin-lattice relaxation
time Tl is a measure of the rate at which the spin system comes into
thermal equilibrium with the other degree of freedom. It, in effect,
is the half=life required for a perturbed system of nuclei to reach
an equilibrium condition. The value of Tl will depend on the magneto=-
gyric ratio (or ratios) of nuclei in the lattice and on the nature
and rapidity of the molecular motions which produce the fluctuating
fields. Because of the great restriction of molecular motions in the
crystal lattice, most highly purified solids exhibit very long spin-
lattice relaxation times, often of the order of hours. For liquids
the value of T, usually lies between 10"‘2 and 102 sec., although in
the presence of paramagnetic ions it may be as low as 10'3 second.,
Spin=spin relaxation or transverse relaxation (3), is a process
in which a nucleus in its upper state transfers its energy to a neighe
bouring nucleus of the same isotope by a mutual exchange of spin. This
relaxation process therefore does nothing to offset the equalizing of
the spin state populations caused by radiofrequency absorption and is

not directly responsible for maintaining the absorption condition.



This relaxation process occurs with a characteristic time T, called
the spin-spin relaxation time or transverse relaxation time. Both spine
lattice relaxation and spin-spin relaxation processes may control the
natural line width of a spectral line.

We have seen that adequate spin-lattice relaxation is a necessary
condition for the continued observation of radiofrequency absorption.
In practice this condition is not always fulfilled and in such circums-
tances the observed absorption signal diminishes with time and may, in
extreme cases vanish. For example, if the relaxation process is a slow
one, or if the perturbing radiofrequency field is strong, the observed:
absorption signal may vanish. This behaviour is called saturation.

This occurs when the populations of all the energy levels are nearly

equal, in which case no net absorption of energy occurs.

I. E. The Nuclear Mgggetic Resonance Exggriment

The apparatus for observing nuclear magnetic resonance absorption
of energy consists essentially of four parts:
(1) A magnet capable of producing a very strong homogeneous field.
(2) A means of continuously varying the magnetic field over a very

small range.

(3) A radiofrequency oscillator .
(4) A radiofrequency receiver. ,
The magnet is necessary to produce the condition for the absorption of
radiofrequency radiation. The remaining components thea have analogues
in otﬂcr m&thod of absorption spectroscopy. Thus the radiofrequency

oscillator is the source of radiant energy. The device for varying the
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magnetic field over a small range corresponds to a prism or grating
in as much as it permits us to scan the spectrum and determine the
positions of absorption lines in terms of frequency or field strength.
The radiofrequency receiver is the device which tell us when energy .
from the source is being absorbed by the sample.

A sample containing nuclei which possess magnetic moments is
placed -between the poles of a magnet of magnetic field strength Ho.
The magnetic moments of the nuclei in the sample tend to oriemnt in
the direction of the field, giving rise to a resultant maéroscopic
magnetic moment. The effect of the magnetic field is to cause a
precession of the macroscopic moment about thé direction of the field
with an angular rrequency-y Ho’ If now a small coil, connected to an
rf signal gegerator, is wound around the sample so that the axis of
the coil is at right angles to the direction of the applied field,
there is introduced a smal% alternating m?gnetic field of strength H,
which‘rotates about the Hg direction with the particular radio free
quency used. The field Hlytenq§ to tilt4the direction of the macros-
copic moment away from tﬁe H; direction as the radiofrequency
approaches the precession frequency; at the resonaant fr;quency,

- transitions are induced between the nuclear Zeeman levels. These
“transitions correspond to some of the.nuclear magnets .changing their
orientation in the field. The energy absorbed in this process produces
a drop in rr voltaée inltﬁe tuned ciiéuit’containiné ﬁhe transmitter
coil; the'voltagevdrop.may be;detected, amplifigd, and fed into the
vertical deflection pl;teq of an oscilloscope. In prﬁctice, the radio

frequency of the signal generator is usually fixed and the applied
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field Ho is varied near the value at which resonance occurs. This is
accomplished by mountiné, on the pole faces of the magnet, coils which
can be used to sweep the field with an amplitude of a few gauss at
some low frequency (about 50 cps). The same sweep signal can be fed

into the horizontal deflection plates an oscilloscope, and the recur-

ring absorption signal is displayed on the screen.

I. F, Chemical Shift

The nuclear resonance frequency of a particular nucleus occurs .,
at different values of a given applied magnetic field, according to the
nature of the chemical compound containing the nucleus, These frequency -
differences have therefore been called "chemical shifts". In equation (I.5),
H, refers to the magnetic field actually expérienced by thé nucleus and
this is not equal to the applied magnetic field, H, vhen the nucleus is
present in a chemical compound. The reason is that when any
chemical substance is placed in a magnetic field, weak currents are induced
in the electron clouds surrounding the nuclei. These induced ?ufrents flow ,
aceording to Lenz's law in such a way as to set up é magnetic moment which
opposes the applied fields, and it is this effect which is responsible‘for
the bulk diamagnetism of all matter. These weak induced diamagnetic moments
reduce the field experienced by the nucleus to a value smaller than the
- applied field, and it is usual to express this effect as

Hy=H(1l-0) (1.7)

where ¢ represents the factor by which H is modified by the induced

diamagnetism. Equation (I.5) is then written g

hv, = "IH (1-0) (1.8)
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and the parameter o is known as the "chemical shift" or magnetic
shielding constant. The chemical shift is dependent upon the externally

applied field, becoming larger with increasing field strength.

I. G, Spin-Spin Interactions
In NMR spectra the absorption lines are usually affected by inter-

actions between the nuclei and between the nuclei and their environment.-
These interactions can be classified as dipole-dipole interactions,
electric quadrupole coupling, and electron coupled spinespin interactions.
Dipole=dipole interactions between neighboring nuclear magnetic
moments are dependent upon separation and relative orientations of the
nuclear moments. Thus, instead of all nuclei experiencing the,same uniform
magnetic field Hg, different nuclei in a specimen will experience various
fields spread over a range of frequencies and the spectral line will be
broadened. These considerations are effective, however, only if the nuclei
maintain the same orientation relative to one another and to the external
field, as in solids. In liquids and gases, where the molecules are rota=:
ting and tumbling about rapidly, the magnetic field at any one nucleu;
due to the others effectively averages out to zero. The cause of the
magnetic dipole broadening (dipole-dipole interaction) is removed by -
this averaging and the resonance signals become much sharper. In solids,
since nuclei for which I -'% have no electric quadrupole moment, the
dipole-dipole coupling is usually the dominant mechanism for iine broa-
dening. In a solid containing nuclei (I -'% ) grouped in relatively

isolated pairs, each nucleus experiences a magnetic field whose direction

is taken as the z-axis H, I Hlocal s where H), .o is the local magnetic
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field set up by one nuclear magnet in the region of the other. For
dipoles of moment y at a distance r apart and with the internuclear

vector making an angle® with Hj, (which is parallel to the z-axis)

Hiocal ® ‘i-3(3 cos2 - 1) (1.9)
= 2¢ .
8o that H = H t_uT (3 cos“e = 1). (1.10)
r

The nuclear resonance spectrum would therefore be expected to be
a pair of lines at frequencies separated by

2V (3 cos20 - 1), I.11
_?_( os ) ( )

In fact, however, there is an additional quantum mechanical interaction

which in this case leads to a pair of lines separated by

-;14; (3 cos?6 = 1), for pairs of identical nuclei. (1.12)
r

The detailed shape of this pair of lines has been obtained by Pake (32)
by a simple quantum mechanical perturbation calculation using the
- dipole=dipole interaction Hamiltonian:

M= =28 E, - 32 (e B (F,0D)), (I.13)
where r is the internuclear distance and ¥ is the unit vector. For
two protons at a distance of 1K , the doublet separation is of the
order of 10 gauss or 42 kc/sec at 10,000 gauss field. If the pair of

nuclei are not identical..the line separation is then

2 u 2 .

— ( 3 cos®g - 1) (I.14)
In a single crystal containing pairs of nuclei with the internuclear
vectors all pointing in the same direction, the doublet separation

-varies from 3 * when9 is T to _6V¥ when 6 = 0, From the

3 z 23
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variation of the doublet separation with the orientation of the crystal
in the magnetic field, the directions of the H-H vectors in the crystal
can be found, and from the spacing of the doublet r can be deduced. When
the nuclei are grouped in a crystal in more complicated arrangements
than those described above, the absorption line is often a broad and
shapeless hump. Van Vleck (33) showed that useful information can still
be derived., Rigorous expressions were obtained for the second and fourth
moments of the absorption line in terms of the internuclear distances
in the crystals.

Nuclei for which I>l. uséally have an electric quadrupole'moment

2 from spherical symmetry

(7). This is a measure of the deviation of the electric charge dis-
tribution within the nucleus, If the positive charge is spread over a
prolate spheroid,the quadrupole moment is said to be positive; if the
charge is spread over an oblate spheroid,the quadrupole moment is
taken to be negative. Nuclei with I -'%'have no electric quadrupole
moment, therefore NMR experiments on these nuclei are not complicated
by direct interactions of the nuclear spin with the electrical environ-
ment. |

When a number of liquids were examined by NMR spectroscopy, it
‘was found that certain substances showed more lines than could be
explained by means of the chemical shift alone. For example, Gutowsky,
McCall and Slichter (31‘) found that the fluorine resonance spectrum of
POC1; F consists of two lines of equal intensity, although there is
only one fluorine atom in the molecule. Other molecules gave symme=
trical multiplet signals. These multiplicities were attributed by

‘Gutowsky, McCall and Slichter (34), and by Hahn and Maxwell (35), to
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an interaction between the nuclear spins which is proportional to the
scalar product fiefJ where Ii and TJ are the nuclear spin vectors.,
‘Unlike the direct interaction of magnetic dipoles (dipole-=dipole
interaction) an energy of this sort does not average to zero when
the molecules are in rapid random motion, so its effect is still
obs;rvable in the spectra of liquids and solutions. Furthermore,
the splitting of the lines which results from this interaction is
independent of the applied magnetic field, in contrast to the sepa=-
ration of chemically shifted lines which is proportional to it. The
'1nterpretation of these interactions was first given by Raqsey and
Purcell (36) and by Ramsey (37). They showed that they arise from
an indirect coupling mechanism via the electrons in the molecule.
Thus a nuclear spin tends to orient thé spins of the‘ electrons
and consequently spins of other nuclei. The magnitudes of the spin-
interaction energies are usually expressed in cycles per second (cps).
Observed interaction energies vary from about 1,000 cps t6 small
values at the limit of experimental detection ( <1 cps ).

The way in which the spin-spin coupling affects the NMR spectrum
can be seen easily for the simple case of a pair ot unlike nuclei A
and B, coupled together. From equations (I.1l) and (I.l4) the energy of
interaction of the nucleus with the strong field H,,taken to be along
the z-axis, is «fic Y. .mHy(1l= O) (1.15)
For a system of two particles with no spin coupling, the Hamiltonian
for interaction with a static field Hy in the z-direction is therefore

é{- “A(YHo(1- 0,) I, + vpH (1= 0p) S (1.16)

If we take v, as the mean of the two resonance frequencies, and § as
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the chemical shift between them, this can be re-written:

1
H = k((v, - T8 It v+ 31- §) I,5]. (1.17)
The energy levels are therefore,
E’“A"'B = <h{(v, - 15) m, + ( v, * %c ) mg) . (1.18)

The energy levels are shown in Fig. 2 (a), and if the allowed transitions
are AmA a 1 and Amp = 1, we obtain two lines in the spectrum, sepa~-

rated by the chemical shift § , each of the two lines being doubly

degenerate.
" %
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Fig. 2.

If the two nuclei are coupled together, the Hamiltonian now becomes:
1 1
M= hllvo-38) I, + (v +58) I,.] 45115 (1.19)
where J is the coupling constant in ‘cps. If J is very much smaller tham § ,
the last term in equation (I.19) can be treated as a small perturbation
on)e, 8o that my and mg remain good quantum numbers, and we can write
1 1
E=-h[(v, = 56) m + (“o + =% ) mg + Jmym] (1.20)

The energy levels are now as in Fig. 2 (b) and transitions of nuclei A and
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B give energy changes of AE,= h(vo - %6 + JmB) and AEB-b(vo + %6 +J§A),
respectively. The perturbation has lifted the degeneracy of the two
lines which are split by J cps. Note that the resonance due to the A
nuclei is split according to the valges mp of the B nuclei and vice-
versa.

If the two nuclei A and B are entirely equivalent (§ = 0), then
no splitting of the lines can be observed and only a single resonance
occurs. This is because the now indistinguishable nuclei must be descrided
by writing wave functions which are either symmetric or antisymmetric in
the spin, as in describing the ortho and para states of hydrogen. The
singlet state with I= O has .no magnetic sublevels and the triplet state
has m = +1, O and -1, However, all the sublevels of the triplet have
on TB = 4+ %-, 8o that the interaction shifts them all equally and pro=-
duces no observable aplitting.

In the case of the proton resonance spectrum of acetaldehyde (CH3CH0),
there are two sets of equivalent nuclei, one in the CHO group (A) and
the other in the CH; group (B). Since the protons of the CHy group are
indistinguishable we must treat them as a group with MB' sz. The energy
changes are then found to be:

] . -1 . . l
(HO group: AEA = h (vo -+ JMB), CH, group: AEB-h(vo + 7 +Jmh).
Now mAcan take on the values t.% » 80 that the CH; resonance is a
doublet, and since the two values of mjare equally probable, the two
components of the doublet are of equal intensity. Mg can take on the
values ;. ’
1.1 1
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The CHO resonance is therefore a quartet, and since the values +1
2

and -%. of MB can be achieved in three times as many ways as the values
3

+3 and - £, the intensities of the quartet lines are in the ratio 1:3:3:1.
In the general case for a set of Nj equivalent nuclei of type A inter~
acting with Nx equivalént nuclei of type X, the A signal has 2Nx1x +1
components and the X signal has 2NAIA + 1 components. The relative
intensities of each group of signals are in the ratio of the corres=-
ponding binomial coefficients. The A and X nuclei may belong to different
species, or they may be of the same species if the chemical shift between
their resonance signals is large. When the value of J is not small come
pared with § , then it can no longer be considered as a simple pertur-
bation and an exact calculation must be made. The methods for the analysis

of complex spectra will be discussed in Chapters III and IV,

I. H, Classification of Nuclear Groups
It is convenient to introduce a notation for typical groups of

nuclei which may appear in molecules and which will possess character=
istic NMR spectra. First of all we should distinguish between iso=-
chronous nuclei and equivalent nuclei (38). Isochronous' nuclei are

- those which have exactly the same chemical shift; while equivalent
 nuclei not only have the same chemical shift but are also identically -
coupled to all other nuclei in the system. A pair of nuclei can be
equivalent only if they are isochronous. There is a well known theorem
stating that scalar couplings between equivalent nuclei are unobservable
in an NMR experiment (18, 23). The proof of this theorem does not depend

on symmetry in any way. The importance of the distinction between iso=-
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chronous and equivalent nuclei lies in the fact that the total spin
angular momentum of a group of equivalent nuclei is a good quantum
number. As & consequence, the NMR spectrum of a molecule containing
a group of equivalent nuclei consists of a superposition of spectra
arising from'the various "spin particles" formed by the equivalent
nuclei. This observation makes direct analysis of spectra of this
type much simpler, once assignment of spectral lines to the corres-
ponding transitions within the appropriate eﬁergy-level diagrams

is accomplished. We shall use the symbols A, B, ... for nonequi-
valent nuclei of the same species whose relative chemical shifts

are of the same order of magnitudes as the spin couplings between
them. X, Y, ... will be used for another such set whose signals

are not close to those of the set A, B, ... The nuclei in the set
X, Y, *** may or may not be of the same species as those in the set
A, B, **+, the only feature that is important in the theory is that
the chemical shift between the groups A, B, ... and X, Y, -« 18
large compared with any of the spin coupli{ngs. Equivalent nuclei
will be described by the same symbol. Thus, 1,1,1-trifluoroethane
(CH3CF3) is an example of an A3X3 system since the carbon nuclei
have no magnetic moment and may be ignored. The protons in l-bromoethane
(CH3CHzBr) form two groups of equivalent protons and are described as
an A B, system, for the chemical shift between the three protons in

372

CHa-group and the two protons in CH2

small. o-Dichlorobenzene protons, on the other hand, constitute a

-group is observed to be relatively

system of two groups of isochronous protons and would be represented
as AA'BB', Here we notice that the primes on A and B are used to

describe nuclei that are isochronous but not equivalent.



II. FORMULATION OF THE QUANTUM-MECHANICAL PROBLEM

The fundamental procedure involved in the analysis.of NMR spectra: -
consists of finding the energies and transition intensities corresponding
to the stationary states of the nuclear spin system. The basic quantume-
mechanical method of finding expressions for the nuclear energy levels
of the system of interest, together with expressions for the relative
transition probabilities between these levels, is quite similar to the
methods that have been extensively employed in other field of spectros-
copy (e.g., infrared, ultraviolet etc.). This requires deriving or hypo-
thesizing a satisfactory Hamiltonian for the system of nuclear magnetic:
moments in magnetic field and solving the SchrBdinger equation for the-
eigenvalues of this Hamiltonian, which are the desired levels of the
system., Usually, the exact Hamiltonian for the energy of a molecule is -
simplified in some way so as to give an approximate Hamiltonian; the
approximate Hamiltonian is chosen to be as accurate as possible and, at
- the same time, to be such that the Schr8dinger eqpation can be solved
exactly and conveniently. The zero=order energies and wavefunctions thus
obtained are then used as a starting point for a more accur;to calculation
of energies and wave functions using, in so far as possible, a complete
exact Hamiltonian. This latter calculation is, in many cases, greatly
simplified by selecting the zero-order wave functions to be eigen=-
functions of all those molecular properties that commute with the complete
Hamiltonian., Molecular symmetry and spin or rotational angular momenta
are typical of such molecular properties. The exact wave functions and
energies are also commonly classified according to such molecular pro-
perties inasmuch as the spectroscopic selection rules are generally

conveniently formulated in terms of such classifications. Also the

20
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classification of energy states according to these molecular properties
often enables one to predict how transition energies and intensities will

behave under specified perturbations.

II. A, Hamiltonian

~ It has been well established that high—reaolutién NMR spectra
(omitting relaxation effects) are fully accounted for by the following
spin Hamiltonian (18, 34, 36, 37):

}Q-;fé“ +a.€_( 1). (11.1)
é}éf ) s the external-field Hamiltonian, corresponds to the interaction
of the nuclear moments wifh the external field. If the direction of the
strong magnetic field H is the "negative" z-direction, the energy of a
nucleus in this field will be yHAHI,, measured in ergs if H is measured
in gauss. The more convenient unit for measurement will be cps. With
- this unit, the interaction becomes yHIz/Zn . For a set of nuclei with:
‘magnetogyric ratios y; and acted on by field Hi' the external-field
Hamiltonian will be

Y3 °) a2 o) v (d) - (11.2)
Where yj; will depend only on the species of nucleus and Iz(*\ is the
£ h
. 2n

nuclei of spin% » I,(i) can take values + = or = 1 . The sign
2 2

convention is such that the external field is in the negative z-~direction

angular momentum component in the z-direction (in units o ). For

s0 that nuclei with positive spins have high energies. The magnetic field
Hy will differ from the external field H, because of electronic screening.
Thus, ve write H; = Hj (1= 03), where g4 is the appropriate screening

-constant, Because the theoretical presentation is simpler, we shall
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discuss the set of energy levels when the external field H, is held
conltu;t although,as we have already mentioned, the experiment is
usually performed by varying H, to get the resonance at a fixed
froquoﬁcy.

The other part of the Hamiltonian corresponds to the indirect
spin coupling and can be written:

é;{Zfl) = 123 Iy 1(1)°1(3) (I1.3)

vhere "I’(i) is the spin angular momentum vector (in units ;.:3_ ) and
Ji 3 is the coupling constant between nuclei i and J and will have
the dimensions of energy(cfa).

In the presence of a perturbing rf field, Hx = 2!1l cos yt,
along the x-axis, it is nece;sm tq include a third term in the

Hamiltonian:
n
3 - . (I1.4)
2™ I I(i) ¥
. _ ) /X
However, to avoid saturation H, is kept very small in practice and
this term may be neglected in the complete spin Hamiltonian. So the
complete spin Hamiltonian is:
0 1
e =3’ et
-l -+ ->
= (20)" gy, HI (1) + I JiJI(i)°I(J) (I1.5)

g 14z >

II. B, Sgin Functions, Basic Product Functions and Basic State
Wavefunctions

We write a for the spin function of the nuclei with spin quantum

2
contains N nuclei (all with spin% ), there will be a total of 2N

o n\mbot% and 8 for nuclei with spin quantum number = 1., If the system
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possible spin states. The simplest set of functions describing this

many-spin system would be the 2N,basic product functions such as

¥p = a(1) B(2)a(3) ccccoess B(N). This product will usually be shor=

t

tened t0 aBa cccc0ese0 B, it being implied that the r h symbol applies-

to the B

nucleus., If the nuclei were actually independent, the basic -
product functions would themselves be stationary-state wavefunctions

(or basic state wavefunctions) in the presence of the external mﬂgnetic'"'
field. The only constant of the motion in this case is Iz,.the total -
z-component of spin. However, the spin-coupling Hamiltonia.n‘aél) may

cause mixing between different product functions. Since the various

basic product functions y, are all orthogonal to one'anothg?, the

correct basic state wavefunctions are the linear combinations of the -
basic product functions which diagonalize the matrix of the complete

spin Hamiltonian. The coefficients in the linear combinations of the
basic product functions may be obtained from the secular equations--

by substituting the roots and normalizing. It often happens that in

‘a molecule there are several equivalent nuclei as far as equation (I.S)
is concerned. These are treated as groups of equivalent nuclei x, A, ...
‘having resultant angular momenta K= Efi.(x ) etc., and having the -

- coupling constants J between groups and the couplings Jld(t )

KAoooo

between nuclei in the same group. We can then write
-1 ° L . T c-’
0@ = (2x) Dy (1047 K(k)-L(a)+ & J“I(i) (3)+ = J41(1)°1(3)  (11.6)
K
Now it can be shown (18) that a selection rule on the refddtant spins
of the group prevents any effects of the intra-group couplings from
being manifested in the spectrum. Therefore all these couplings may

" be set equal to zero for simplicity. The remainder ofaflin equation(II.6)
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is then seen to be identical to equation (II.5) if we treat E and E

in the same way as the spins of individual nuclei. We can then take
advantage of the spin groups in evaluation of matrix elements and
obtain a significantly better factorization ofithe secular ;quation
if we use basic functions which are eigenfunctions of Kz, K, cosesey
Just as the spin functions g snd B are eigenfunctions of Iz(i),-Iz(i)
for individual nuclei. The basic product functions are eigenfunctions
of Kz but not Kz; Linear combinations of‘them which satisfy this addi-
tional roquirement can be constructed using the projection operators

proposed by Lbwdin (39, 40, 41):

-k ‘
@'m.(zxu)(ﬁﬂ)_'_ k“‘”;: (1)" ME=EHY  ykemev (1II.7)
(k-m)! V=Q vl (2k+v +1)! ’

where k and m are quantum numbers which go with K2 and K,,» and kp . is
the maximum value of k consistent with group of spin x.The raising

and lowering operators M, and M- may be symmetrically expanded in terms
! ‘ ’

of the individual I,;, whose matrix elements: are known, by the multi-

i

nomial theorem. The»oper;toragi.m operating on a product funciion.pt
known m turns it into a simultaneous eigenfunction of Kz. For example,

if k,m operate on aaaf , k

nax .é.g.%+_;_+11,_- 2, k=1, m = 1.. thus:

2-1, W ’
0“' 3-21 !21 (=1) ML M = 30(dm ¢ M= M+ )
ve0 vi(v+3)! 31 11 4t
U“aaus= 31[@eaaB 4+ (=1)M-M¢ o] = Zt[ a0aB M. (acaB)]
31 by 08 31 LT
= 31[ @aaB %;J Baaa *ufaa * aaBat aaaB)]
31 4!

=—-1 ( %xaaB=- Baoa= aBaa- aala )
When degeneracics arise, the degenerate functions may be orthogonalized
by standard methods (40, 41). When the number of spins in a éroup is

large it may become awkward to handle the basic functions described
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above, It very often happens that several nuclei in a molecule have
the same chemical shift but each nucleus does not identically couple
to all other nuclei in the system (i.e., isochronous nuclei, see sec-
tion I. H. ). For example, in CH2 = CF2 both protons mu;t have the
same chemical shift, but each is in a different relation to the F19
nuclei individually. Under such circumstances the H-H spin coupling
cannot be ignored and the above simplification is not valid. In this
case nothing is necessarily gained by using the basic spin wavefunce
tions which are eigenfunctions of the squared-group angular momenta.
- It is profitable, however, to make them eigenfunctions of the symmetry
operations of the molecular point group; that is, use is made of sets
of basic spin wavefunctions that belong to the irreducible representa=-
tions of the symmetry group. Methods for setting up the desired basic
functions are discussed by McConnell et al. (42), by Pople et al. (18)
and in detail, by Wilson(43). As an example, the three hydrogean atoms
(numbered 1, 2, 3) in sym-trifluorobenzene can interact through the terms
o )= 3 1)@ + 12)13) + 13)- 1), (11.8)
Consider the three product functions for these H nuclei, for the case .H-
% s i.e, Baa aBa ,aaB, These can be combined to farm one A) combination and
one pair in E [A)is one-dimensional group representation; while E is two-

dimensional group representation (46)]. To construct the actual linear

combinations (symmetry basic spin wavefunctions) it is convenient to use

the formula (L4k): *(y) - n% xP(Y)P o1 - (I1.9)
in which *(Y) is a symmetry combination of species rY s n is a normalizing
fnctor,"xP(Y) is the character for the permutation P and species PY[avai-

lable in tables (44)], ¢ is one of the product functions (here Baa

“for the H nuclei), and P ¢)is the function formed from ¢, by applying
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the permutation P. The sum is over the whole group. In the present

case there results for the three hydrogen nuclei:

(A1) 1,7
v i = (;J (Blazqa *a)8,a, *010283 )

] ;Ea)’ (%j} (2 B1aza3=a1B,a; “ajayB, ) = hy . (11.10)
It is often not necessary to construct the other member of the
degenerate E pair (abbreviated notation hb)’ but in case it is, it
can be done by applying the some formula but using ¢, (= @820 )
instead of ¢,(= 8,020, ), then forming the linear combination of
the resulting function with w(E

H
(Ea), The result is
H

a) in the foregoing so as to obtain

a function orthogonal to y

(Eb) (-)2 ( ay8,03" aya,8;) = By - (11.11)

II, C. Matrix Elements

The calculation of matrix elements of the NMR spin Hamiltonian
(equation II.5) between basic state wavefunctions (or basic symmetry
state wavefunctions) is one of the preliminary steps for the detailed
analysis of high resolution NMR spectra. Since each basic product
function is itself an eigenfunction of each term in the external-
field Hamiltonian, the diagonal matrix elements of this faft are simply
obtained by replacing Iz(i) in this part by t.% according to whether the corres-
pondigg spin function is a or 8; and there are no off-diagonal matrix
elements of external-field Hamiltonian betwesm the basic product funce
tions., There will, however, be both diagonal and off-diagonal matrix
elements of the spin coupling Hamiltonian between the basic product
fanctions. McConnell et al. (42) have shown some relatively simple rules

that can be used in the evaluation of non-zero matrix elements involving
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spin-spin interactions, i.e., the matrix elements of the spin coupling
Hamiltonian between basic (symmetry) wavefunctions. In the evaluation
of a matrix element of the type
0 I -+ hd o]

< om |i<J Ji31(1)-1(3)] o >

there occur many terms of the type
L > k-
vhere the y P and oq are single products of spin functions such as
aBad ......(basic product functions). These integrals are easily eva-
luated‘by the equations
* 1 I
< ¥y |, J343(1)-1(3)] v " J,,T (1I1.12)

y i<y 174

vhere TiJ. +1 if spins iand j are parallel, and T, ,= =1 if spinsi

iJ
and J are antiparallel, and

<w, |4, Jidf(i)ofuu v > --;- UJy (I1.13)
wvhere U = 1 if wp only differs from *q in the permutation of spins:
i and j, and U = 0 in all other cases. If the basic set consists of
some linear combinations of products, corresponding matrix elements
are easily evaluated by expansion. The evaluation of these matrix
elements of the spin-coupling Hamiltonian is a relatively simple pro-
blem with but three or four nuclei; with five or more spins, however
there is considerable labor and tedious work involved. Corio (U45) has
proposed a method to simplify the calculations, but the calculation
still must be done manually. A new method which employs a digital com=

puter to evaluate the matrix elements of the spin-coupling Hamiltonian

is proposed in the following sectionms.
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II. C-a. Glossary of Definition and Notations

J: The number of basic state wavefunctions, e.g.,the two spin
system has four states (22 =4), 80 the maximum value of
J is 4, v, = aa, J = 1; ¥, '/% (aB +Ba ), J = 2;,..etc.

K: The number of basic product functions in a basic state
wavefunction due to degeneracy. K = 1, ...., M(J), e.g. in
V2= (984 83), (A8 has 5 =2, K =1; ()6a has

.J =2, K=2,

L: The number of spin functions, L = 1, ..., N in a basic
product function. e.g.,in y, = ;T ( a8 + Ba ) the spin
function a in the first term of the right side of the
equation has J = 2, K.- l1, L = 1,

I: The total number of states (or basic state wavefunctions),
e.g., two spin system Eas a total of four states (22 = })
(or four b;aic state wavefunctions); J = 1, 2, .veeey I.

N: . The total number. of spins; e.g., rér the two spin systenm,
N=2,

M(J): The total number of basic product functions in the state J;
e.é., for the two spin system in state J = 1, ¥, has only
one basic product function am, so M(J) = M(1) = .; wnile
in state J = 2, ¥, has two basic product functions, namely,
(ﬂl.’)as and (4 )8a , so M(7) = M(2) = 2, and (',;. Jag is
the first basic product function in state J = 2 for wvhich
K = 1 while (Jé )Ba - is the second basic product function

in state J = 2 for which K = 2; K & 1, 2, ...., M(J).
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JF:

JI:

KF:

KI:
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The coefficient for each of the basic product wavefunctions;
1

e.g., 02'/;- (a8 + Ba), CD(2, 1) = CD(2, 2) = 7
Coefficients for the coupling constants between nuclei K
and L.

The number of the last basic state wavefunction in the
system.

Label for final basic state wavefunction in the matrix
element of,}eil) connecting initial and final states as:

< final state|3{£l)| initial state >.

Label for initial basic state wavefunction in the matrix
element of 3.0_(1) under computation, e.g. ""lla'él” v > s
JF=1, 6 JI =3,

Final basic product fuanction.

Initial basic product function.

Comparing two basic product functions the first pair of
different spin is labeled LS.

The second pair of different spin.

Label for the LI'B spin under consideration.

The total number of pairs of different spins.

The definitions of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given

in Table III.

Other variables in the flow chart are dﬁmmv variables.

From the above definitions and notations, we can use a three-

dimension array ID(J, K, L) to denote spin functions, basic product

functions and basic state wavefunctions, e.g., in a two spin system,

ID(1, 1, 1) means the first spin function in the first product function

of the first state wavefunction. Thus, a, ID(2, 2, 1) means the first
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CD(J, K): The coefficient for each of the basic product wavefunctions;
1

V2
CF(K, L): Coefficients for the coupling constants between nuclei K

€.8:, Wz'j% (aB + Ba), CD(2, 1) = CD(2, 2) =

and L.

JL:. The number of the last basic state wavefunction in the
system,.

JF: Label for final basic state wavefunction in the matrix

(1)
element of 3¢° ' connecting initial and final states as:
< final state|3{£1)| initial state >.
JI: Label for initial basic state wavefunction in the matrix
() (1)
element of 3¢ ° under computationm, e.g. w<¥y a0l vy > o

JF=1,JI =3,

KF: Final basic product function.
KI: Initial basic product function.
LS: Comparing two basic product functions the first pair of

different spin is labeled IS,

LT: The second pair of different spin.
LI: Label for the LI'R spin under consideration.
Mp: .- The total number of pairs of different spins.

The definitians of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given
in Table III. Other variables in the flow chart are dummy variables.
From the above definitions and notations, we can use a three-
dimension array ID(J, K, L) to denote spin functions, basic product
functions and basic state wavefunctions, e.g., in & two spin system,
ID(1, 1, 1) means the first spin function in the first product function

of the first state wavefunction. Thus, a ., ID(2, 2, 1) means the first
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CD(J, K): The coefficient for each of the basic product wavefunctions;

e.8., *2'J% (a8 + Ba), CD(2, 1) = CD(2, 2) = j% .

CJ(K, L): Coefficients for the coupling constants between nuclei K

and L.

JL:. The number of the last basic state wavefunction in the
system,

JF: Label for final basic state wavefunction in the matrix

1
element of¢}€£ ) connecting initial and final states as:
< final state|3{£1)| initial state »>.
JI: Label for initial basic state wavefunction in the matrix
(1) (1)
element of 3f' ' under computation, e.g. w<¥y 00| V3 > o

JF=1,JI =3,

KF: Final basic product function.
KI: Initial basic product function.
LS: Comparing two basic product functions the first pair of

different spin is labeled LS.

LT: The second pair of different spin.
LI: Label for the LI'P spin under consideration.
MD: : The total number of pairs of different spins.

The definitions of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given
in Table III. Other variables in the flow chart are dﬁmmy variables.
From the above definitions and notations, we can use a three-
dimension array ID(J, K, L) to denote spin functions, basic product
functions and basic ‘state wavefunctions, e.g., in & two spin system,
ID(1, 1, 1) means the first spin function in the first product function

of the first state wavefunction. Thus, a, ID(2, 2, 1) means the first
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spin function in the second product function of the second state wave
function; i.e., 8 « So in the two spin system, ¢;= aa can be repre-
sented by y;= ID(1, 1, 1) ID(1, 1, 2); ¢,= (é;)(aB +Ba ) by
v," %E{ID(a’ 1, 1) 1p(2, 1, 2) + ID(2, 2, 1) ID(2, 2, 2)} ,...cetc.
The coefficients are introduced as CD(J, K).
II. C-b. Logical Argument of the Computer Program

From the last section and the simple rules for evaluating the matrix
elements (L42), we know that matrix elements of

Ts°ft = Lo lex * Igyeley + Igzo1t,

exist only when the two basic product functions ID(J, K, L),L ®= 1, ....,N;
.00, (ID5 ID k00000 o IDsey) and ID(J', K', L'), L' = 1,..00.,8; 1.0,

(1 ID yy150ec00IDrigrg)differ by no more than two of the ID's. For
1105k 2 J'K'N

DJ'K'
computer calculation,ve let these ID's have numerical values 1 or 2
according as ID's are a or B spins; e.g., if a basic product function
18 (IDyg ID;  IDsyaID 1) = aBaB , then it has the numerical value 1212,
If another basic product function is (IDJ'K'11DJ'K'21DJ'K'3IDJ'K'u) =
aaBa, then it has the numerical value 1121. These two wavefunctions
differ by three of the ID's (IDJK2 # IDjigi2 3 IDJK3 ¥ IDyik13 3

ID sy, ¥ ID;iyr)) 80 there are no matrix elements between these two
product functions. Also, if the two product functions differ by one

of the ID's only, there are still no matrix elements between them; e.g.,
(IDmIDJﬁIDJKJIDJKh) = gfaf = 1212, and (IDJ'K'].IDJ'K'2IDJ'K'3IDJ'K”0)
aBaa = 1211 differ by one ID only(IDy, # ID s
these two product {uhctions are the same , so there are no matrix

dL the.other ID's in

elements between them. Matrix elements exist between two wavefunctions

for even differences up to two (namely zero and two) of the spin func=-
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tions, e.g., (ID IDJKZIDJK3IDJKH) = afaB = 1212 and (ID ID

JK1 J'K'177J'K'2
IDJ'K'3IDJ'K'R) = gfaf = 1212 have zero difference, so matrix glenents
exist between them. (IDJKIIDszleK3IDJKh) = gBaf= 1212 and (IDJvKol
IDJ'K'2IDJ'K'3IDJ'K'h) = gBRa =1221 differ by two ID's (IDJK3 ¥ IDyig13
and IDJKh ¢ IDJ'K'h). 80 matrix elements also exist between these two
basic product functions.

From the above, we know that the typical term of the matrix
elements of the spin coupling Hamiltonian is Jidf(i)'f(J). in wvhich
only two nuclei are involved. So when we calculate the matrix elements,
ve need only consider two nuclei each time and Table II can be easily
obtained. Using the numerical characteristics of each two pairs of
spin functions, Table III can be constructed. Based on Table III, the
flow chart and the Fortran computer program MATREL have been written

for the Control Data 3600 computer (see Appendix I).

Table II.

R = ——
Coeff, for Coeff. for Coeff. for Total coeff, for

(ID;sIDyks) (IDgeirsIDgrkre) Jatlexlex *Tatlgylty *Tgtlssles = TotlseTy

I

aa aa 0 + 0 + 1/b = 1/h
aB aB 0 + 0 + (=1/4) = «1/h
B a 8 a -0 + 0 + (=1/4) = -1/4
88 B8 0 + 0 + 1/4 = 1/h
aa 8 8 1/h + (=1/4) + O = 0
] aa 1/b + (=1/4) + 0O = (]
aB B a U o+ 1/ o+ 0 = 1/2

B a a B 1/k + 1/b4 + 0 = 1/2
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tions, €.g., (IDJKl

'K'1

ID

J

'K'2

IDJ.K03IDJ.Knh) = gfaf = 1212 have zero difference, so matrix elements

exist between them. (IDJKlIDszanK3IDJKh)

= gfaf= 1212 and (IDJoxil

ID3v1oID 11310 0r),) = aBBa =1221 differ by two ID's (IDjk3 ¥ IDgige3

and IDyy), ¥ IDy'k'L), 80 matrix elements also exist between these two

basic product functions.

From the above, we know that the typical term of the matrix

elements of the spin coupling Hamiltonian is Jidf(i)'f(J), in which

only two nuclei are involved. So when we calculate the matrix elements,

ve need only consider two nuclei each time and Table II can be easily

obtained. Using the numerical characteristics of each two pairs of

spin functions, Table III can be constructed. Based on Table III, the

flow chart and the Fortran computer program MATREL have been written

for the Control Data 3600 computer (see Appendix I).

Table II.

I

Coeff.

—

for Coeff.
(IDJKSIDJKt) (IDJ'K'SIDJ'K't) JBtISXItx *JstIsyIty "JatIszItz = J'

for Coeff.

for Tota% coeff, for
tis

‘e

aa aa 0
a B a B 0
Ba B a 0
8 B ] 0
aa B 8 1/4
BB aa 1/4
a B B a 1/4
Ba a B 1/4

+

0

(=1/4)
(=1/4)
1/b
1/4

+

+

+

1/4
(=1/k)
(=1/4)
1/h

0

1/k

-1/h
a1/h

1/k

0

0

1/2

1/2
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Table III.

==Coetf, ND(5)% WD(e)= NABS= “NOD NoO

o o S B, sy g o MY 0 g
I, /b aa aa l-1=0 1-1=0 0 0 0 0 same

I, -1/b e B a B 1-1=0 2-2=0 0 0 0 -1 same

I, -1/k 8 a 8 a 2-2=0 110 0 0 0 1 same

Ig 1/k B B BB 2-2=0 2-2=0 0 0 0 0 same

0pb O aa B B 1-2mel l-2m=l 2 0 -2 0 aire,
0, 0 - B B aa 2-1=1 2-1=1 2 0 2 0 aife,
II, 1/2 a8 8 a l-2mel 2-1=1 2 -2 0 -1 airr.
II, 1/2 B a a B 2-1=1 l-2ml 2 2 0 1 dirs.

II., C-c. Description of the Program

The program used forAcalculation of spin—coupling Hamiltonian matrix--
elements is quite straightforward. The basic state wavefunctions, the basic
product functions and the spin functions are numbered by J's, K's and L's -
respecg}vcly. The program steps syltematically through all of the basic -
wvavefunctions, attempting to calculate. the matrix element pgyween each -
different pair of the basic state ﬁhreﬁynctiqns.'First,it caiculutcs the
matrix element between V; and V) ,éthen v, a;xd ¥y, then ¥)and ¥3,4..0et0
*JL which is the last of the basic state wavefunctions; then it comes back
to calculate ¥,and ¥,, ¥, and ¥y, , and so forth. The computer picks up:
twvo basic state wavefun;tiégs ¥, and L) then.compa?es_the basic product
functions in the basic stati vavefunctions. {e.g., it compares the basic

product function of J -.1, K = ] with that of J = 1, K= 1; thenJ = ],

K= lwithJ=1,K=2; thenJ =1, K= 2withJ =1, K= 1; thenJ =1,
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K=2 with J = 1, K = 2), If these two basic product wavefunctions
have matrix elements between them, then the computer goes further to
pick up each different fair of spin functions and performs various
tests as listed in Table III, classifies it into one of the eight cases
. in Table III, and gives a value for the coefficient of the spin coup-
ling constant of these two nuclei. If these two basic product wave=
functions do not differ (i.e., have the same spin wavefunction) the
computer also assigns a value according to Table III for the coeffie
cients of the spin coupling constants of any two nuclei. If these two
basic products do not have matrix elements, then the computer picks
up another basic product function for comparison. These procedures
--go-on and on until it has calculated all the possible matrix elements.
‘The output will be all the coefficients of all the spin coupling conse
tants, e.g., in five-spin systems, the matrix element between y, and L2}
will be represented by coefficients of JiJ in J,, le J13 J,,. J N

14 715

Jz.l OOODOOOQQst’ Jal oouooooJas. J“l eoooooaJ‘.S’ JSl QooOQCQJss .

Here obviously, we know that Jll’ J 13 soceetc, are zero and that

22 o
Jyg=d, 09, =0, yeoocoetCo 80 from the output we can easily obtain
the matrix elements between any two basic state wavefunctions.

In order to handle larger spin systems, the input basic state
vavefunctions of a,system can be broken down into many subgroups, and
“each time we may £ake one subgroup as the input basic state wavefunc-
tions; e.g., in a fivg-spin system, there are a total of thirty=two
basic state wavefunctions,; each time we can take eight or sixteen basic

- state vavefunctions as input. The size of the subgroup (the total num-

ber of basic state wavefunctions of the subgroup) depends entirely on
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the size of the system (total number of nuclei) and the capacity of
the computer. One can also use the basic state functions with the same
projection of spin angular momentum Mg whichever is more convenient

for the computer.

II. D. The Secular Eu&tion

(]

i
, respectively, and let E, and Eﬁo) be the corresponding

We let ¢; and ¢, be the stationary state eigenfunctions of QQ

and 30¢%)

]
eigenenergies. Our quantum mechanical problem will then be to solve

the secular cquati_gn

| Iaem - E 8, =0 (II.1k)
for the’eneJrgies, where )emn = <0;|3QI ':’ (11.15)
anodp 5mn =] ifm= on and 6m = 0 if m ¥ n. The exact eigenfunctions of
the cénplote Hamiltonian are expressed in terms of the 0: by the equations
° (11.16)
where .thé 8y, are obtained from the solutions of the P simultaneous
equations ngl ’[aem -6 E ) & =0 a - (11.17)
The order of secular equation (II.1lh) is 2N, where N is the total number
of nuclei in the molecule with spin .;. . This 2Nx2l’l secular determinant
can only be useful for obtaining the energies E, for molecules with N3 5
vhen it is easily factored. It will be very important to obtain any
possible factorization of the secular determinant. The secular equation
(II.14) can be factorized into a number of equations of lower degree in
E if we classify the basic state wavefunctions by total spin and symmetry
i.e., wve make use of the following mixing rules:

(1) There is no mixing between states of different total spin Fu»
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where F,= ¢ I(4) (11.18)
i 2

(2) There is no mixing between states of different symmetry.

The factorization of the secular equation arises because there are no

off-diagonal matrix elements of the Hamiltonian between the basic pro-

duct functions corresponding to different values of F_, and there are

z
no matrix elements of the Hamiltonian between functions belonging to
different irreducible repreaentationi; This is because the operator Fz
commutes with the Hamiltonia.na‘e and the Hamiltonian is totally symme-
tric with respect to permutations of equivalent nuclei. As a result we
can divide the basic state wavefunctions into classes according to
their values of Fz and their symmetries, and then it is only necessary
to evaluate the submatrices of functions in one such class. In other
words, for these cases, the basic symmetry functions are themselves

L ( aB+ Ba),

V2
J%( aB- Ba), B8 , for example, all differ from one another either in

stationary-state functions. The set of functions aa,

spin or symmetry. There is no mixing and these are the correct stationary

state wvavefunctions for the symmetrical two=nuclear system A, .

II. E, Selection Rules and Intensities of Transitions
The probability P(m»>n)(in sec™!) that a nuclear system undergoes

the transition m*n (i.e., oy ¢pn) is given (46) by the equation:
3

P - Al .
(mn) W ()2 o, (II.20) -
vhere My = Ly I(1) (11:21)
i
and (M )gn = ( op| uyl o) ; (11.22)

My is the x~-component of the magnetic moment operator and L is the
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energy density per unit frequency range arising from the oscillatory
radicfrequency field in the x-direction and 6m and in are the stationary
state wavefunctions. McConnell et al. (42) derive the following two
selection rules:
(1) In any allowed transition, the change of total spin is

AF =21 : (11.23)
(2) All allowed transitions must be between two states of the same
symmetry.
So (Mx)mn’ the transition moment, in equation (II.22) is different
from zero only when these two selection rules are obeyed and the inten-
sity of the transition between two states m and n is proportional to

the square of the transition moment.



III. A SURVEY OF THE VARIOUS METHODS CURRENTLY USED

FOR ANALYSIS OF NMR SPECTRA

In analysis of simple higheresolution NMR spectra, in which the

- spin-spin couplings are much smaller than the difference between the
chemical shifts, the simple rules based on a simple-interaction Hami 1=
tonian and first-order perturbation theory can be generally used (34,

42, 47). The NMR spectra become complicated in substances where there

are nonequivalent nuclei of the same species whose relative chemical-
shifts are of the same order of magnitude as the splittings due to

spin coupling. If the chemical shifts are still moderately large, higher
order perturbation methods can be used with some success (48, 49), but
eventually . individual multiplets become merged in a general mixed group
of lines which may have few features of regularity. One is then faced:
with the problem of interpreting such a band system, assigning each line -
to a definite transition, and finally extracting numerical values for

the chemical shifts and spin-coupling constants. A spectrum is considered:
analyzed when the chemical shifts 61 and the spin coupling constants-J i J
of the system have been completely determined. Various methods have been:
proposed for the analysis of complex NMR spectra. These methods can be
roughly classified into three different approaches, namely, the iterative
approach (50-78), the subspectral analysis approach (79-102) and the dir-

ect calculation approach (103-113).

III, A, lterative Approach

Analysis of complex spectra has most often been performed using the

iterative approach. In‘iterative procedures, judicious estimates of chemi-

37
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cal shifts and spin coupling constants are inserted into the spin ilumil-
tonian and the eigenspectrum problem is solved to obtain transition encigies
and relative transition probabilities which can be used to plot a calcu-
lated line spectrum. This calculated spectrum is compared with the experi-
mental spectrum and any differences are used as a basis for readjustment
‘of the initial estimates of the chemical shifts and spin coupling cons=-
tants. The initial estimates of the chemical shifts and spin coupling

- constants can frequently be obtained from known values in similar cases

or sometimes by use of the moment method of Anderson and MeConnell or by
use of double resonance techniques. Swalen and Reilly's, Hoffman's, Arata,:
Shimizu and Fujivara's and Castellano and Bothner-By's methods are all
based on the iterative principle.

In Swalen and Reilly's method (50-54), the experimental energy
levels are derived from the observed spectrum by making use of the trace
invariance property §f‘the Haniitoniln matrix. They use derived levels
for iterative purposes. An approximate Hamiltonian)(f is chosen and is
brought into diagonal form by & similarity transformation S—J¢°S = Ao.
From the expcriﬁantal spectrum an energy level scheme is constructed,
and the reverse similarity tramsformation is then apﬁlied to the experi-
n.ntil energy level matrix to obtain an improved Hamiltonian SAéxbtls-l'
a(;np. Frqn)421mp new values of 8y and JiJ are deduced, and the process
repeated until a consistent set emerges. Two Fortran computer programs

" based on this method ﬁavo*been~writton.'Theae two programs are used in
* three stages-in the analysis of a given spectrum, Systems up to and
including eight nuclei of spin'% can be analyzed. Recently, Ferguson

and Marquardt use magnetic equivalence factoring as a means of removing
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cal shifts and spin coupling constants are inserted into the spin iHamil-
tonian and the eigenspectrum problem is solved to obtain transition encigies
and relative transition probabilities which can be used to plot a calcu-
lated line spectrum. This calculated spectrum is compared with the experi-
mental spectrum and any differences are used as a basis for readjustment
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or sometimes by use of the moment method of Anderson and McConnell or by
use of double resonance techniques. Swalen and Reilly's, Hoffman's, Arata,:
Shimizu and Fujivara's and Castellano and Bothner-By's methods are all
based on the iterative principle.

In Swalen and Reilly's method (50-5L4), the experimental energy
levels are derived from the observed spectrum by making use of the trace
invariance property §f'the Hamiitoniun matrix. They use derived levels
for iterative purposes. An approximate Hamiltoniana{f is chosen and is
brought into diagonal form by a similarity transformation S‘%{?S = Ao.
From the experiﬁantal spectrum an energy level scheme is constructed,

and the reverse similarity tramsformation is then apﬁlied to the experi-

... gq=lg
exptls

mental energy level matrix to obtain an improved Hamiltonian SA
ae:lnp. From)-e imp new values of § { and Ji J are deduced, and the process
repeated until a consistent set emerges. Two Fortran computer programs
based-on this method ﬁawe‘been'written.'Theae two programs are used in
three stages-in the analysis of a given spectrum, Systems up to and
including eight nuclei of spin %-can be analyzed. Recently, Ferguson

and Marquardt use magnetic equivalence factoring as a means of removing
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the eight spin limitation of Swalen and Reilly's method and have worked
out the case of ten nuclei of spin ‘/2. o

Arata, Shimizu and Fujiwara (59) use the observed frequencies and
relative intensities simultaneously for the iterative procedures. Both
frequencies and intensities are reduced to a dimensionless representa=
tion. The appropriate differentials are found by equating terms in the
pover series expansion of the correct parameters in terms of the dimen-
sionless trial constants with the corresponding terms in the perturba-
tion expansion of the Hamiltonian and Ix matrices.

In Hoffman's method (56, 57), first order perturbation theory is
used to determine the correction to an approximate set of parameters
fitted to the observed line positions. The line positions instead of
the derived experimental energy levels are used for iterative purposes.
An approximate Hamiltonian matrix is diagonalized. For selected experi-
mental transition frequencies, the approximation eigenvectors'(s'knfs)mn-
(s"J'8) mv' mvo = (

nn mn mn

mate eigenvectors S.a(Lj is an estimate of the correction to the appro-

vexptl)mn are evaluated, using the approxi-
ximate Hamiltonian. If it is expressed algebraically as an array of
linear functions of the fundamental parameters, the set of approxima-
tions is obtained in the form of a set of linear simultaneous equations
in the corrections to the parameters. These may be solved by various
methods to yield the corrections and the iteration may be repeated until
a consistent set is obtained. Castellano and Bothner-By's method (61, 62,
67, 68) is very closely related to that of Hoffman. This method is appli-
cable even if not all lines are assignable, is not affected by symmetry

in the Hamiltonian, yields an estimate of the ellipsoid of error, and
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converges relatively rapidly to a predetermined assignment. A Fortran
computer program based on this method has been written systems up to
and including seven nuclei of spin %-are acceptable,
The most serious disadvantage of the iterative procedures is that
they are unsystemmatic and tedious where there are more than one or two
-variables. In addition, these procedures still require identification
of the corresponding experimental and calculated spectral lines with one
another. For spectra containing many lines or with some eclosely«spaced
lines, such an assignment is particularly difficult. As a consequence -
ambiguity may exist in the derived values for the chemical shifts 61 and-
spin=-spin coupling constants JiJ and these procedures do not always give
unique results. If only the transition frequencies (or experimental
energy levels) are used as the criteria for satisfactory agreement between
calculated and experimental spectra ambiguities always exist since more
than one set of parameters give results consistent with the experimental
data (104).
The iterative approach is unsatisfactory for the reasons mentioned
above; but once an approximate set of the NMR parameters is given, this
method can then be applied to any general spin system up to eight nuclei

- of spin ;,

III. B, Sub-lggctral Ana;lsis'Aggroach-'

The composite "particle" method of Waugh-and Dobbs (80)-and Whitman,
Onsager, Saunders and Dubdb (79) is a special case of the subspectral ana-
lysis approach. This method has been applied to complex systems made up

of a number of groups of magnetically equivalent nuclei. The spectra of
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such complex systems have been attributed to the superposition of sime
pler spectra. The method considers each group of identical nuclei as a
composite "particle" with fixed total spin. When the symmetry of the
Hamiltonian (but not necessarily of the molecule) is very high, it is
often possible to handle the entire problem without any explicit refer=-
ence to the zero-order spin eigenfunctions, thereby greatly simplifying
the mechanical details of calculation. This method offers ne particular
advantages in dealing with cases of high molecular symmetry but low syme
metry of the Hamiltonian, several examples of which have been previously
discussed (5, 6).

A more recent and poverfhl method is the effective frequencies
method which also can be considered as a special‘case of sub-spectral
analysis. Alexander (60) first recognized that complicated spectra can
be considered as being composed of two or more simpler spectra when
one interacting group is greatly chemically shifted from the other nuclei
(or is of different nuclear species). This is the concept of "effective
frequencies". This concept has been first used by Narasimhan and Rogers
(81, 82) in the interpretation of the protomn portion (i.e., the ethyl
group portion) of the spectra of some organometallic compounds. The use
of effective frequencies was first put on firm theoretical ground and
applied to the calculations of ABR; X and ABzxq type spectra by Pople and
Schaefer (83) and Diehl and Pople (84). In Pople, Schaefer and Diehl's
"effective frequencies method, if a group of n magnetically equivalent
nuclei, xn, are greatly chemically shifted from any group of strongly
coupled nuclei, for example, ABC, then ABCX, spectrum can be considered

to be composed of n+l ABC type subspectra. They define Vas VBy Vg a8
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the chemical shifts that the A, B and C nuclei would have in the absence
of spin coupling to the X group and they define x = Fz(xn) as the z=
component of the total spin of the group X . Then the apparent "internal
chemical shifts" or "effective Larmor frequencies" for each ABC subspectrum,
va*(x), vB’(x) and vc'(i) are given by the equations:

vAf(x) vyt xJ,,

* +
vg (x) = vy x JBx

* = + xJ III.1
vc (x) vc X cx ( )
The statistical weights of the various subspectra are given by the binomial
coefficients of n.

Each ABC subspectrum must have the same value of J,n, J,, and JBC’
but will have different internal chemical shifts (if JAx ¥ JBx # ch).
Hence frequency and intensity sum rules are directly applicable to the
Job of dividing the ABC transitions into their appropriate subspectra.

ABC subspectra are then solved by previously developed methods, and equa=-

tion (III.1) gives directly the magnitudes of J J_. and ch, and their

AX* "BX
signs relative to each other, but not relative to the couplings within
the ABC group. This method has been limited to the analysis of spectra of
the type AA'....BB'....RP....Xq vhere the prime symbol denotes magnetic
non-equivalence. In those case it leads to an impressive simplification
of the analysis, and it has been possible to derive all the coupling conse
"tants and chemical shift data from the analysis of the subspectra of the
- system.
Diehl, et. al. and Bernstein 85, 87, 88) expanezthe effective fre-
quencies method and proposeja subespectral analysis which is- applicable

to all possible combinations of magnetically equivalent and non-equivalent,
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strongly and veakly coupled, groups of nuclei and includes the special

case of the composite particle model as well as the effective frequency

method. In this method, the number and type of sub-spectra can be obtained--
without knowledge of the Hamiltonian simply from group theory and good -
quantum numbers. In order to derive the relations between the parameters:
of the complex problem and the parameters of the simple sub=-spectra it

is necessary, however, to compare corresponding parts of the Hamiltonian

and to find transformations which leave transitions unchanged. As these

transitions may bde non-analytical in terms of the molecular NMR para-
meters the transformations have to be obtained by a study of invariants. -

Diehl et al. (87) have given the rules for the general breakdown of NMR

- spectra into simpler sub-spectral problems as follows:

(1) Construct the basic local symmetry wave functions for the chemically
equivalent groups.

(2) Determine the total molecular symmetry.

(3) Reclassify the basic local symmetry functions according to their
transformation properties under the covering operations of the total
molecular symmetry and rewrite them in the abbreviated notation.

(4) Construct the 28 (n is number of nuclei in the system. We consider
only systems of spin..zl.nuclei here) molecular basic symmetry product
wave functions. Use these to form the 2° possible basic group symmetry
funetions.

(5) Derive the symmetry species of the products of basic group symmetry
functions.

(6) Regroup the molecular wave functions into the molecular symmetry

species.
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(4) Construct the 2 (n is number of nuclei in the system. We consider
only systems of spin%nuclei here) molecular basic symmetry product
wave functions. Use these to form the 2° possible basic group symmetry
funetions.

(5) Derive the symmetry species of the products of basic group symmetry
functions.

(6) Regroup the molecular wave functions into the molecular symmetry

species.
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(7) Sort out the transitions of the contributing species (e.g., ABB'
transitions of ABB'XX' : AF,(XX') = 0; AF,(ABB') = 1 1),
(8) Isolate the sub-spectral patterns and analyze them.
(9) Using the sub=spectra of maximum Ile derive the parameters of
the strongly coupled parts.
(10) In those cases where the Hamiltonian matrix elements of the NMR
problem are given in the literature in detail, steps 1 to 5 can be
deleted and step 7 can be performed on the existing tables.

In general, sub-spectral transformations considerably simplify
the treatment of complex systems containing at least one pair of weakly
coupled nuclei and help the analysis. However, in sorting out of sube
spectra, one needs a lot of experience and possibly the help of double
resonance experiments or tickling techniques. If the structure of a
given system is not very well known, it is difficult to sort out sube
spectra. Sometimes, even if the sorting out of sub-spectra can be easily
achieved, the sub-spectra may be still very complicated. If we use the
conventional methods to analyze these sub-spectra, sometimes clear cut
solutions can not be obtained. So this method also has the disadvantages

of the conventional methods as mentioned previously.

III. C. Direct Calculation Approach
The moment method was worked out by Anderson and McConmell (103)

on a basis laid down by Van Vlieck (115) and makes use of the experimen=-
tally determined moments of the spectrum. This method provides a tech=-
nique for direct calculation of chemical shifts-and spin coupling con=-

stants from the observed line positions and intensities of the experi-
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mental spectra in principle, but it is seriously handicapped in practice
by its sensitivity to the relatively large errors present in most inten-
sity measurements. Considering this point, Castellano and Waugh (10L)
have developed a new method for calculating the chemical shifts and spine
spin coupling constants d%rectly from the observed spectrum which does:
not suffer from this limitation. fheir method consists in asgigning each
experimental spectral line to one of the possible transitions between
spin energy levels, utiliziné the trace invariance property of the»éenil-
tonian matrix and its square in a manner similar to that of Swalen and
Reilly (54), of Alexander (60) and of Banwell and Sheppard (70). The use -
of experimental intensities is kept separate from that of experimental
frequencies, and the former may be omitted entirol& vhen experimental
values of sufficient accuracy are not available by using intensity rules-
for transitions. In this method, trial-and-error adjustment of the chemi-.
-cal shifts and spin-spin coupling constants is avoided entirely, and the-
values of these parameters obtained are exactly consistent with- the input
information. From the theoretical point of view this method is an ideal
one, In order to apply this method completely, however, one needs consi-
derable practice and one must be able to resolve and measure most of the
lines that are theoretically present. This presents practical difficulties
when the lines overlap each other or the line intensity is very weak. In
addition, the amount of manual labor involved is such as to make exhaus=-
tion of all possibilities impractical in many cases. In practice this
method can be applied only to an analysis of the nonequivalent-three spin
systen.

Whitman (107) has developed a similar technique for calculating NMR
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- speetra. He uses frequency sum rules and intensity sum rules to obtain
an assignment of spectral lines to an energy-level diagram for the system.
He instructs the computer to construct all possible energy-level diagrams
consistent with the sum rules and a set of estimated experimental errors.
When a satisfactory spectral line assignment has been found, it is used -
to calculate the experimental eigenvalues of the spin Hamiltonian. Whitman
(108) also has developed the general equations for chemical shifts and
spin coupling constants of a number of proton systems in terms of the ex-
perimental energy eigenvalues. In many cases formulas explicit in the NMR |
parameters are obtained while in other cases the equations are implicit
and must be solved numerically.So the chemical shifts and spin coupling
eonstants can then be derived from the observed experimental energy eigen-
values. This method has the advantage of eliminating any bias, but-reguires
considerable computer time trying the many poesibilities.AThe-assignnnntw
"technique is limited by the resolution of the experimental spectrum. If -
tvo real lines are unresolved in an experimental spectrum,then any assigne-.
‘'ment based on this pair considered as a single line is doomed to failure,
Unfortunately, the more complex the spectrum, the greater the probability
of unresolved pairs of lines. However, this shortcoming can be overcome
by examining high-resolution spectra at two different frequencies and by
choosing a relatively large validity limit on the intensity sum rules in
the assignment program. Hence, this method is a very promising onme.

- Primas and Banwell (109, 110) have developed another method for
direct calculation of NMR spectra which gives the resonance frequencies
and intensities directly as solutions of a new eigenvalue problem, invole

“ving the derivation superoperator of the Hamiltonian., From this direct
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method the more elegant and compact correlation function method is
developed, yielding the complete spectrum as a single entity. The two-
nucleus AB system has been worked out by this method. It seems very pro=-
mising. However, its applicability to larger spin systems is still une
known.

By starting from the energy diagram of the spectrum and without
guessing initial values, the perturbation method proposed by Granger
(114) yields an iterative procedure leading to § and J. The ABC system
is worked out as an example. However, this method can ﬁot handle large

spin systems.

III. D. Miscellaneous Approaches -
. » . There are many miscellaneous methods (116-158). Some of the methods have

- combined different approaches. Some methods are proposed for special sys«
"tems, However, there is still no general perfect method. All the-methods
- proposed for calculating NMR spectra have their advantages and disadvan-
tages. It is suggested that by combining differewt methods for special

systems, when appropriate, better results could be obtained.



IV, COMPUTER ASSIGNMENT TECHNIQUE FOR ANALYSIS OF NMR SPECTRA

The present method is based on that of Whitman for the direct ana=-
lysis of spectra. The aim of the present work is to utilize more fully
the computer and more general computer language in order to handle bigger
spin systems.

This investigation consists of two parts, namely, the derivations
of general equations for the chemical shifts and spin coupling constants,
and the computer assignment of experimental spectral lines to transi-'
tions between spin-energy levels. The first part gives the general equa~
tions for the chemical shifts and spin coupling constants of a number of
nuclei with lpin-zl- systems in terms of the values of the experimental energy
levels, From the second part we can obtain the unambiguous experimental

- eigenvalues. When the experimental eigenvalues are inserted into those
equations derived i; the first part, they can be solved numericslly for
the chemical shifts and the spin coupling constants. Thus, the calcule=. .
tion of these NMR parameters from the experimental spectrum is reduced

"in the most general case to tie solution of a system of nonlinear simule

taneous equations.

IV. A. General Equations for the Chemical Shifts and Spin Coupling

Constants
The method of derivation of equations for the calculation of chemi=
cal shifts and spin coupling constants of a molecule directly from the
?pin energy levels derived from its experimental nuclear magnetic reso-
nance spectrum (nuclei with é-spin) consists of several essential steps.

First of all, we have to write out the Hamiltonian for the system and

LW R
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obtain the basic state wavefunctions for the system, then evaluate dia=-
gonal and off-diagonal matrii elements of the Hamiltonian between the
basic state wavefunctions. We reduce the original forms of the matrix
elements into standardized forms by choosing the center of gravity of
the spectrum as the origin for measuring the transition energies and
choosing the energy of the state with the highest spin quantum number
as zero energy level. The secular determinant obtained with the Hamil=-
tonian, using basic product functions or basic state wavefunctions as

a basis set, factor into subdeterminants corresponding to the different
eigenvalues of I,. If the nuclear system is symmetric or if groups of
equivalent nuclei exist, additional factoring results. The factoring
of the analytical secular determinants necessarily corresponds with
the factoring of experimentally-observed energy eigenvalue diagrams.

Thus, the secular subdeterminants in analytical form must be isomor- -

phic with the experimentally=-observed subdeterminants in diagonal form. -

Exploitation of this equivalence permits derivation of equations for the

spin-—coupling constants and the chemical shifts in terms of observed

energy eigenvalues. The eigenvalue problem is essentially worked "backe

wards" by a method similar to the one proposed by Parker and Brown (159).

The five spin ABB'CC' system will be discussed in detail as an illustra-

tive example. The spin Hamiltonian of the ABB'CC' system is

X - 2vpIg,(1) + 2v 1.,(3) + v,I55(5) + JppeIp(1)145,(2) +

JoorIo(M)Ici(3) + 29, T, (5)15(1) + 29,01, (5)Ic(b) +

2Jpelg(1)I (k) + 20, I5(1) 1 (3) (1Iv.1)
After we obtain the basic state wavefunctions by the method des=~

cribed in section II. B, the diagonal and off-diagonal matrix elements
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of the Hamiltonian (equation IV. 1) between the basié state wavefunctions
can be evaluated easily by the proposed computer program MATREL (see sec~ -
tion II. C-a to II. C-d). In Table IV, the basic state wavefunctions, the-
diagonal matrix elements and their standardized forms (last column in the -
table) are given. In Table V, the off-diagonal matrix elements and their
standardized forms are shown. Following Pople, Schneider and Bernstein's
notations (18), we can use the following convenient variables: K=J, +J

Bc Bc' '

L= JBC -JBC" AB; N= JAC - JAB; P= JCC' + JBB" BB~ CC'

Reducing the diagonal and off-diagonal matrix elements into standar-

s M=J

AC +Jd

-QuJ
dized forms is a rather important step. It will be illustrated in the
following examples. As mentioned before, the transition enqrgiol can be

- measured relative to aqyédesired origin, but for the present purposes it
is most convenient to choose the center of gravity of the spectrum as the
origin. In the ABB'CC' system this corresponds to setting v +v + !”A =-Q--
in the analytical form of the matrix elements. A plane of symmetry exists -
in this system and consequently the basic state wavefunctions can-be- cho=.
sen to be either symmetric or antisymmetric. The symmetric functions lead -
‘to secular subdeterminants of orders 1, 3, 6, 6, 3 and 1 corresponding to
the values f;, t%.‘t%, ﬁ%, -%.and -;.for I,, respectively. The antisymme--
tric functions yield secular subdeterminants of orders 2, 4, 4 and 2 cor-

responding to I = +§w +1 -%-and -;, We identify experimental energy

eigenvalues by a subscript indicating twice the corresponding I, vaiue and
a superscript s or a indicating symmetric or antisymmetric. So, when we

reduce the matrix elements into standardized forms, besides setting vy +

1
Ve ti”A

from each of the diagonal elements of the symmetrlc state, making E‘-E' -

= 0, we also set Egso and E3e0; i.e.,_ K+..P+_M is substracted
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Table V. Off-diagonal matrix elements of the Hamiltonian for ABB'CC'

Hp 3 = %K E-(Jz:a*Jla)
Hz w = (/3 ) () (MeR) = 2 (355)
Hy,u = (/) (l) (4N) = L (3)5)

- = L =
Hs 7 =By 9% (2 )(.;.)(K-L) s (93

= 1 1 =
Hs g = (y )(2)(MeN) ',g- (3,,)
Hy g = Hy 1o =Hy o =0
Bo,y = 2P = J12

= = (1)(d =l
Hy g™ H; o (2)(2)(M-N) 2(Jm)

= = 1 -l

Be 10 = B 10 = C)LI(MN) = L(Jy5)
By 10 * Lx- .!.(J 3%y 3)
Hy )10 = ( '/—)(L)(M‘N) = (JIS)
Hi g2 = (/2- )(;)(M-N) -',i- (%15)
Hip 13 = 5K = 2035340 4)
Hip gy = By p5 ™ (%) (-;-) (M+N) ‘%‘Jas’
Hive " Hyp 03 "2 3 = 0
e = Bye ™ (',% ) (%) (K-L) = (,;- ) ()
Hiz 15 = His 16 = () ) (KoL) = (1) (3,,)
Biu = B3 s = (.!.) (.;_) (M-K) = %(Jls)
B3 ,6 " ( ) ( ) (M*N) = (',;1? )(3,)

Bllo’ls - ;P = le

Continued
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Table V- Continued

1117’13 = (/;- )(';‘)(M'N) = (/;- )(JIS)

Hi7 19 = (/k ) (P (Mem) = (A )(J35)
Hig 19 ® é‘K = % (J23%J,54)

Bor,22 © %"" % (Jp3~713)

Bys oy = - 3 Q=% (J12-734)

Ha3 25 = Hay 25 = (.;.)(%.)(u-n) - i. (J15)
“Hy3 26 = a4 26 = -(%)(-;-)(M) = '%)(Jss)
Hzs 26 = - %L . -(%)(J23-J13)

Hy7,28 * %1' = (-21-)(J23-J13)

-327’29 = H27.30 = (-.;. )(.él.)(M*N) = -(-;-)(Jas)
Hza’zg = H28.30 = (-% )(%)(M-N) - -(.;_)(Jls)
329.30 = -(i-) Q '-g- (J12=93,)

Hy) 32 = =(}) L = =(2)(3,3-7,3)
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vhile =P -Q = %(M-O-N ) =K is subtracted from each of the diagonal elements

of the antisymmetric states to make E% = 0. Throughout this chapter we will

measure the chemical shifts relative to that of the group of A nuclei in

each molecule. Thus, GB = 'A = Vpo Gc =V - vc, etc. For example:

1p 4 1
Hyp= vg + v, * Fop + K+ P+ M= 0. To reduce Hy 5, Hyg 19, Hy) )
and 332 329 Ve let (\)B# %\)A)*k(\)B#vc* _;.\) ) = (l k#?(v -y )-k(vA_v )

1 ke 1 3 gekel 3 gel
(5 ke i)vA*(k+l)vB+kvc ( kek+2 )v ( kel )vB*'kv

'y
(k"l)VB-( _k—)“B' -z—k- ? k-. T

I+l = o3 3 4lma9+S5Smo a2 therefore
Ekz'?'zz To To 1o 5° i
(\.Bq. %"A) - %55 + _50 « To reduce Hy 3,H;g 18,H22 22

and H,, 4, ve let (_VC* '%"A)*k("s*"c \, ) = k(v -“B)..,(a K+ _)(v -y ).
(%k*%_ )vA+ka¢(k+l)vc = (.i.k-k+.12. )vA+ka-(_:k+§. Ives
= (3 . -3 .- .
(k-o-l)vc (? k+ .;-)vc,C ;;’k ok .g. :

therefore, (v + -l-v ) = %63 - %ﬁc . To reduce H, , and Hy7 ;9

ve let (v 5*Ves lv RacS +vc+ )-(.l.k.% )(vA.vB)a-(%g.%.)(vA.vc);
(k+1)(vpev,) = -(_k- -)(v *vo)s %k - %, K= % ;

+ lv )-(3 k+ ;.)OA-vB)-(kﬂ)(vA-vc);

o let (v_+v = v )+k(Vv +V
rve le (B C 2A) (B

c
| (kel)vg "‘%‘“?B‘i“"%'k"%'
therefore, v +v.= A - %63— Z.GC . To reduce Hg 5 and H,g ;¢
ve let (vB-vc-o- lv )¢k(vB+vc+ E.\,v )-(3 k- _){v -V ) (k-l)(v -V ),
(kel)vy = (-%bf _;_)vB; _:_k - _;., k --% R
therefore,  v-v.+ ;“A = . %AB + %5(: . To reduce Hg ¢, ¥y 5, H,, |,

l - - -
and H . ., Ve let _v +k( vB+vc+ ) = k(v “B) k(v "C)'
(_l_k+_)v = =2kv,; Sk=al; k=al |
2 2 A 2 2 5

1 1 1
therefore, . v, = 25, + 15, . To reduce Hyg 10 Hyy 110 Hag 26
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and Hy; ;74 Ve let (VC‘ %NA)*k(VB*VC* %»A) = -k(vA-vB)*(;.k- %J(vAfvc)i
(k#1)vg = (== ke v dk=-l k=-1,
therefore, (v - %NA) = %AB - %Gc - To reduce Hg g, Hy3 )3 Hyg 55
and Hyg 59, Ve let (V- %»A)+k(v3+vc¢ %NA) = ( ;x. %J(vA.vB)-k(vA.vc);
(k+1)vB-(-33k*§)\'; -:‘-k---;-. k-g% ,
therefore, (VB- %NA) - - %‘B + %ﬁc . To reduce Hq 4
and Hy, o, Ve let (v +v s+ %»A)+k(gs+vc+ %NA) = ( §k+'%J(YA-vB)-(k+1)(YA-vc);

(kel)v = «(3 k#3 )v; Skwal,6 k=l
B 2 7 B 2 2’ 5 °

therefore, v, + v, + %NA - %‘B - %§C'
After we reduce all these matrix elements into standardized forms, the
32x32 secular determinant can be obtained. This secular determinant can
be factorized into subdeterminants corresponding to the experimentally-
observed subdeterminants in diagonal form. Exploitation of this equivae~

lence permits derivation of equations for spin coupling constants and

chemical shifts in terms of the cbserved energy eigenvalues. Thus, if

3
RN :
25435 <1Kk-1(M+N)-E lk 1_(MeN E}Z-E 0 O
sn'&"cz“ﬂ‘ ) 2 v ) 3
1 3 2 1 1 1 d
lk 35 28 =lgel(M-N)-E L (M-N o E-E
2 s BsC EK u( ) 272 ) - 32 0
1 1 2, 2 s
M’ ja - - -
Hg0en) B e |0 o der

B3oE2(o1s o s ke IM)oE([-2(8 M1l 26 -6 e 16 1 g 1 205 _8
E - (=zhy= 28 K= M)-B{[-8pedo)-M][= S(8=8.)+ Zhoms Ko ZUMeR)4( 606 )e

15 o lg, 1 ol 205 - 15 . Leo 1 2 (5. 1y _ L 1
g oo 000 bt Zhagete Yior e NMIIE (ei)e 4850 Jom e

1 YRR TV Jp | 2 e 2(g o8 VoMl 208 o 1g o g 1 2 -
3m.u) + T.n& E‘“’“) } +{[ g“s 6c)-M](= He-6)+ Lo = Lk z(mn)][.g(cn

ls o1 Ka 1 1 m2oN2)k- 1 2 2(s o 15 o Ix 1 -
‘c): g2 K :(u-n)]z' E(nz N°)K. _e_m-n) [ E“B 8)+ 45 gx :(mn)]
(= 2 ageag)-Mle Lel) [ 2 6ym60)+ 1oo = UM-N)]) = -g3+EZ(E§1*Bgz+

8 8 8 °
E33)-E(ES)E3,+ E§ Ej,+ Ej,E;,) +Ej ES E. (1v.2)
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If I =<3, then
z 2

25 o285 _ 1 1 8 _
?53%50 M-E ) K —r M¢N) E;;-E 0 0

1 35 428 1( M-N)- 1 - S -

= K 2 B+5 C-»-;-K-:(M-N) E 7_(M---m) 0 Ej-E 0

1 1 25 35 1.l - s _
ZOeD g Boloens) | o o
~ES+EZ( 18 4 15 oKe 3M)-E([ 2(6 +6 )=M][ 2(6 =6 )= 15 = 1g. 1 - 25 -
BV 0 Porte J0-BULE6,08 )1 s o800- 38 - e Jaen)- X6,
GC) ;62 -2'K :(M-N)]:[ E‘ B C) ?C EK-T(M*N)][ 5 ( B C) s B Ex T(M-N)]’
1 2,1 2(5 +6 )= § =8 )= A8 o dga 1 - 2(8 =6 )a
HUM-N)"+ .‘l'x + MeR) [ X R =Ml §( 5~5¢) }S-sc tx wem) ] [= 28,6 )
Ls o dge 1(MeN) ]+ IK(M2=N2)e L(M=N)?[ 2(5_=6 )= 15 = 1K= L(MeN)]= A 2(6_+
sB 2 ¥ \ 8 8 s B C 5C 2 . b s B

-M]- - 2(§ =5 )= - dK= 1 = E3¢p2 (RS -
§5)-M] .g.(mn) ( '5(63 §) ,#B éx :.(M-N)]} E3+E2 (EZ,, +E 3, +E_,, )

8 8 -] 8 8 8 8 8
E(E_yE ,,*E_ E  *+E_E )+E E E (1Iv.3)

Adding the coefficients of E? on both sides of equations (IV. 3) and (1IV.2),
1 1 3 1 3 8 » 8 g8
ve have - 28 o 25 ~K- Mt ls-aB+ 8 K= 2M = =2K-3M = B3 +E;, +E;3¢E 5, +
8 8 3y 178 8 8 _8 8 s
Substracting the coefficients of E on both sides of equations (IV.2) and (IV.3)
ve have 2 [?( 5" c)] E( B c)[ K EM] ;( B c)[ K -Z-(M-N)] e C[ K
1 1 4 2 2 &4 2 1 1
M=N) J=[ =X+ =(M+N 26 =6 )+ &5 1) §_+¢ EMr 2K+ EMP oK M) )+
L) 1-[ Jcr L0wom) 11 206 26 )+ 281} = (808 )1 Zee 2t 2o Lo )]

1 2 15 1 = 3l - 5(8 - -
N[- {563-60)70_63- F(8g=8c)+=08 ] = (8 +80) [ KcM]e[8 =8, 1[0)+N[—2(8 =6)]

s 8.8 8 8 8 g 8 8 8 8 _8
- B °C s 8 8 8 8 8 8 8 8
er e 5(8 =6..) + (2(B} B3, +E3 | B3 3#Eq B2y B =E2 B B2 B2 )/(85-6,
B C

(1v.5)
Subtracting the coefficients of E’ (the constant term) on both sides of
equations (IV. 2) and (IV. 3) we consider the first term:

(= 2(6_+6 )=M)[~ 2(6.=6.)+ 15 = 1Ko L(MeN)][ 2(8_=6.)+ 48 « 1K= L(MaN)]=[ 2(6_+

- 2 - - - ke 1 - - D T § ' | -
8o) M][?(GB 8) é-ac EK r(Mm)][ g-(sB 50) ?63 Zx r(M--nl)]
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2,3 . 2 2 1 2,,2 .2

2:( 2)7(8,48,)(8,-8)" +2( &) (8.=8.) ()8 -2+( 2)°(82-67, ) 8-
2 1,2 2y 1., 1 1, 1

2:( F)(Oge8 ) (517658 -2-( ) (8p#8 ) [= K- (M) ] [~ 2K~ (M) )=

2 1 1 1 1 2 1
2M( -s-)(GB-Gc) (- 7K=L (M-F) ]-2M[~ _K= —(M+) ][ r“n"‘c"’ .§6 (Iv.6)

B]
To the above equation (IV.6), add the following terms:

o Lem)? e 2(8_28 )aLs L (- 26 L(pen)’ [= 2 1
-2 3‘(“"‘) (- 5( B~ C)-o- 3 c]-a. K [« .5.( B4-60)].2. F(Mm) [« .5.(6’.60)- .5_63]
therefore, the total = EglEngga "E:31 E:azﬁ:”

Thén this is rcdnceg to th: rgllowing gormé s
s -
(‘n"c) . 5(Ej) By By = E 5 E3pF 53 )

(63-60)2 - 2 -3] 32 .33 (IV.T)
. (6546 )

When I, = 7

By =E 0 0 0 0 0 Eb4=E 0 0 0 0 O
0 Hs¢=E O 0 0 0 o EL,-E 0 0 0 0
0 0 H, ,=E 0 0 0 o0 o0 Ef3~E 0 0 O
0 0 0 Hgg=E O 0 - 0 0 O EN-E 0 0O
0 o o0 0 H 9=E 0 0 0 0 0 Es-E 0
0 0 0 0 B 10-E 0 0 0 O0 0 Eg-E

EP-E3(- 26+ 18- Ix- e Ine Lo o 25 o Zxeo..... .l )=ESeER(EY R el 0B ] Y )

B sC 2 §B 5C 2 16
therefore, -iK- .;.n- P = (E] +.cc00..+E] +E]. )
P = bk~ 2M-(EY) +E}, +E]; +E}, +E}g +E},) (1v.8)

For the antisymmetric case, when Iz = % 9
Hy3 25E O 0 0 E},-E 0 0 0

0 Hy ,~E 0 0 | oo El~E 0 0

0 0 Hyg 6°E O 0 0 E}&~E O

0 0 0 H,y ,e-E o o o E?.,-E(

26

1 1 1 a a
N - E]) +E}, +E7; +E), (1v.9)
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When Iz 2 - %-for the antisymmetric case,
Hy7 27=E O 0 0 E},-E 0 0 0

0 Hyg p9=E 0 0 0 EY,-E 0 0

=
0 0 Hag 29=E 0 0 0 E%3-E 0
0 0 0 Hip 30-E| 0 0 0 E4-E
go 1 a a a a

joa Bag = Vp=VoPm M = By tEopp 4Ryt (Iv.10)
Adding equations (IV.9) and (IV.10) and using the results given in
equations (IV.L4) and (IV.8) for K and P, we have:
M = %(E:l +E:2 +ET3 +E:“ +E2) +E2), ’E:la +E:l“ ) (Iv.11)

Subtracting equation (IV.10) from equation (IV.9) and using the results

given in equations (IV.4) and (IV.8), we have:

S/8 a a a a a a a
85+8c = = ZEN *E)p +Ey3 ¢y, <E ) <E ), -E ;3 ~B, )
When Iz = g-and Iz 5 - %-in the anti-symmetric case:

3 3 151
B2y 1B Hpy g | |8 PRt (e

' 1 3 2 1
Hap 21 Hpp 227E i T Saelo
E3) - E 0

0 E3 =E
3525 1. 1.3 1

Hiy 31-E  Hy 32| [~s%p*=’~F ~p(M-N)-E

=

1 25 35 1

Hyp 31  Haz 32-E - 5L £

&
E3 -E 0

0 E2;, -E

(1v.12)

(1v.13)

(IV.1k)
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Multiplying out the above two equations (IV.13) and»(IV, 14), 3rd simplifying

ve have: Q = q%ﬂ-[(E?lEgz - Efslﬁg32)/(5n-50)] (1v.15)
and s -(63-60)2-w;(n+2q)2-2(E§,Egé Bl Ey,) (1v.16)

By successive use of equations (IV.k), (IV.5), (IV.7), (IV.8), (Iv.11),
(1v.12), (IV.15) and (IV.16) it is possible to solve directly for both
of the chemical shifts and all of the spin coupling constants of this
five-spin system in terms of the experimental energy values obtained
from the observed spectrunm,

Using similar procedures to those described above, the general
equations for the chemical shifts and the spin coupling constants for
other spin systems can be derived. The equations for AB, AB,, A,B,,

AA'BB', A,BC, ABC and ABCD are given by Whitman (108).
, 2

1V, B. The Computer Assignment Technique

The most .difficult step in any analysis of a complex NMR spectrum
is usually that of making an assignment of the observed lines to the many
possible energy transitions. The proper assignment must be sorted out from
many thousands of possibilities. For example, in the general five«spin
system a total of 210 transitions which obey the selection rule AF,= -1
are possible, while a typical highe-resolution spectrum might contain
about 40°'lines. The total number of ways of distributing 4O lines among
- 210 t;;nliﬁions il about'—g¥£LL o So, all possibilities can be exhausted
only by the utilization of the speed of modern computers. A correct assigne
ment of experimental spectral lines to the permitted transitions within the

‘energy=-level diagram must be consistent with two sets of rules, namely, the

- 4ntensity sum-rules and the line spacing rules.
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Multiplying out the aBtVE two equations (IV.13) and»(IV,14),"3nd simplifying

ve have: Q = q%N-[(EglEgz - 5:315252)/(63'6c)] (1v.15)
2 2 a
and L= -(63-50)2-~117(N*2Q) -2(E3) E3, +Ei3,E,,) (1v.16)

By successive use of equations (IV.h), (IV.5), (IV.7), (IV.8), (IV.11),
(1Iv.12), (IV.iS) and (IV.16) it is possible to solve directly for both
of the chemical shifts and all of the spin coupling constants of this
five-spin system in terms of the experimental energy values obtained
from the observed spectrunm.

Using similar procedures to those described above, the general
equations for the chemical shifts and the spin coupling constants for
other spin systems can be derived. The equations for AB, AB,, A,B,,

AA'BB', A,BC, ABC and ABCD are given by Whitman (108).

1V, B. The €omputer Assignment Technigque'
The most difficult step in any analysis of a complex NMR spectrum

is usually that of making an assignment of the observed lines to the many
possible energy transitions. The proper assignment must be sorted out from
many thousands of poasibilities. For example, in the general five=spin
system a total of 210 transitions which obey the selection rule AFz- =1

are possible, vhile a typical high=resolution spectrum might contain

about U0 °lines. The total number of ways of distributing 40 lines among
210 t;;nsifions iu about-JZ;SLL . So, all possibilities can be exhausted
only by the utilization of the speed of modern computers. A correct assigne
ment of experimental spectral lines to the permitted tramnsitions within the

‘energy-level diagram must be consistent with two sets of rules, namely, the

~- 4ntensity sum-rules and the line spacing rules.
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Multiplying out the above two equations (IV.13) and*(IV,14),~and simplifying

ve have: Q = q%n-[(nglngz - B E,) /(85-8,)] (IV.15)
2 2 a
and L= '(63'60)2‘*é(N+2Q) -2(Ey B3, +El3 E,,) (Iv.16)

By successive use of equations (IV.L), (IV.5), (IV.T), (Iv.8), (IV.11),
(1v.12), (IV.15) and (IV.16) it is possible to solve directly for both
of the chemical shifts and all of the spin coupling constants of this
five-spin system in terms of the experimental energy values obtained
from the observed spectrum.

Using similar procedures to those described above, the general
equations for the chemical shifts and the spin coupling constants for
other spin systems can be derived. The equations for AB, ABz. A,B,,

AA'BB', A,BC, ABC and ABCD are given by Whitman (108).

- IV, B. The Computer Assignment Technique

The most .difficult step in any analysis of a complex NMR spectrum
is usually that of making an assignment of the observed lines to the many
possible energy transitions. The proper assignment must be sorted out from
many thousands of poasibilities. For example, in the general five=spin
system a total of 210 transitions which obey the selection rule AFz- -1
are possible, while a typical higheresolution spectrum might contain
about L4O°'lines. The total number of ways of distributing 40 lines among
210 t£;nli£ious io about-iaigl- o So, all possibilities can be exhausted
only by the utilization of the speed of modern computers. A correct assigne
ment of experimental spectral lines to the permitted transitions within the
‘energy-level diagram must be consistent with two sets of rules, namely, the

~- {ntensity sum rules and the line spacing rules.
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IV, B-a. Intensity Sum Rules
The principle of spectroscopic stability states that the sum of

the intensities of all the transitions between two sets of nearly degen-
erate energy levels is independent of the strength of a perturbation.
This principle was originally applied to multiplet structures in atomiec
and molecular spectra. It applies in the NMR case even more rigorously.
When a small perturbation is applied to a system so as to break up a

line into a number of components, the sum of the intensities must be equal
to the intensity of the unsplit line. In NMR spectroscopy the small per-
turbations are the various chemical shift differences and the spin-spin
coupling constants. These perturbations are clearly small when compared
with a resonant frequency in the megacycle-per=second range. Castellano

and Waugh (104) have derived the intensity-sum rules for a three proton
Nel

system. If the total spectral intensity is normalized to N2 s then
‘& general sum rule of this sort for an Nespin system is:
R 11“ + 2F,(J) (Iv.17)

for any level J ( J is the upper level on the left of equation (IV.1l7)
and the lower one on the right). Thé rule states that the sum of the
intensities of all transitions from a given energy level is simply
related to the sum of the intensities of all transitions to that level.
The proof of this general rule as stated above has been given by
Gioumousis and Swalen (160) and by Whitman (107). The considerable
experimental error involved in measurements of intensities of spectral
lines means that it is futile to require of the proper assignment exact
adherence to the intensity sum rules. It is necessary to introduce some

“~validity limit on intensity sums by which the correct assignment may
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differ from exact agreement with the intensity sum rules. This parameter
is an estimate of the experimental error in intensity measurements.
IV, B-b. Line Spacing Rules

The line spacing rules (or the equal-spacing rules) are entirely
equivalent to those derived from the trace invariance properties of the
Hamiltonian. However, Whitman (107) first used the rules in a form which
is more convenient for computer programming and somevhat more obvious

physically. Examination of the schematic energy-level diagram in Fig. 3
I,

—— 2

1l

A .
- emases e  emese 0
wam— ans— -]

nm—— -2

Fig. 3. Scheﬁic energy-level diagram for a general foure

spin system, illustrating equal-spacing conditions.
shows that the two transitions A and B with a éamnon origin differ in
energy by the spacing between the energy levels which form their termi-
--nations., Similarly, the transitions D and C with a common terminal state
differ by this same spacing. Thus, after assigning two spectral lines to
the transitio;a A and B, we must seek two lincswith identical spacing toassign
5! to the transitions [ eng C, Similarldy, the lines assigned to the tran-
sitions F and E must have this same spacing. Such equalities of spacing
oceur throughout the energy-level diagram, and impose severe restrictions
upon the possible assignments of spectral lines to transitions between

energy levels. Because of the experimental error it is again futile to

require that the correct nssignﬁent of the observed spectral lines obey
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the equal-spacing rules exactly. Therefore it is necessary to introduce
some validity limit on equal line spacings in such a way that two energy
spacings are taken as equal if they differ by no more than this limit.
The magnitude chosen for this quantity will depend upon the accuracy of
‘the experimental spectrum. The number of experimental spectral lines is
usually much smaller than the number of possible transitions. For this
reason an actual transition diagram will contain many incomplete transi-
tion "loops", and many of the equal-spacing rules will not be applicable.
IV, B-c. Description of the Computer Program’

As mentioned before, a correct assignment of the experimental spec-
tral lines to the permitted transitions within the energy-level diagram
must dbe consistent with the intensity-sum rules and the line-spacing
rules. So we use these two sets of rules as the criteria for the computer:
assignment program. Because of the considerable experimental errors ine
volved in the measurements of the intensities and the positions of sgpectral
lines, the proper choice of the permitted limits of validity of the line- -
spacing and intensity-sum rules is of considerable importance. If these
-1imits are chosen so small as to be less than the experimental errors, then

-even the correct assignment will be excluded as unsatisfactory. On the
other hand, if these limits are too large a great number of assignments
may be found which are apparently equally satisfactory. In additiom, if
the validity qheckl are not sharp,the program running time may be-consi-
derably lengthened. The optimal technique is to choose the validity limits
to be about equal to a liberal estimate of the experimental errors and to
remember that the line positions are normally known with far greater acc-

- uracy than are the line intensities,so the validity limit on line spacings
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the equal-spacing rules exactly. Therefore it is necessary to introduce
some validity limit on equal line spacings in such a way that two energy
spacings are taken as equal if they differ by no more than this limit.
The magnitude chosen for this quantity will depend upon the accuracy of
the experimental spectrum. The number of experimental spectral lines is
usually much smaller than the number of possible transitions. For this
reason an actual transition diagram will contain many incomplete transi-
tion "loops", and many of the equal-spacing rules will not be applicable.
IV, B-c. Description of the Computer Program

As mentioned before, a correct assignment of the experimental spec-
tral lines to the permitted transitions within the energy-level diagram
must be consistent with the intensity-sum rules and the line-spacing
rules. So we use these two sets of rules as the criteria for the computer
assignment program. Because of the considerable experimental errors ine
volved in the measurements of the intensities and the positions of gpectral
lines, the proper choice of the permitted limits of validity of the line~ -
spacing and intensity-sum rules is of considerable importance. If these
-1imits are chosen so small as to be less than the experimental errors, then
even the correct assignment will be excluded as unsatisfactory. On the
other hand, if these limits are too large a great number of assignments
may be found which are apparently equally satisfactory. In addition, if
the validity qheckn are not sharp,the program running time may be-consi-
derably lengthened. The optimal technique is to choose the validity limits
to be about equal to a liberal estimate of the experimental errors and to
remember that the line positions are normally known with far greater acc-

- uracy than are the line intensities,so the validity limit on line spacings
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will be chosen relatively much smaller than the validity limit on inten-
sity sums. If no satisfactory assignment is obtained, the limits are
increased and the assignment procedure is repeated. Or, if a number of
different satisfactory assignments are obtained, the assignment program
"is rerun with the reduced validity limits until only one satisfactory
-assignment is obtained, or at most several. If a single basic spectral
line assignment is distinctly better than any other, this assignment is
used to determine the best set (or sets) of the chemical shifts and spin:
coupling constants by the method described in section IV. A, However,

if several almost equally satisfactory assignments are obtained, it is
desirable to use each of these assignments to calculate a set of chem-
cal shifts and spin coupling constants. A priori estimates of some para=
meters can then be used to immediately exclude some of these sets from
further consideration.

The input data for the computer program are the number of experi- -
mental (observed) spectral lines, the number of possible transitions,
the number of nuclei in the system, the number of energy levels, the
permissible error in intensities, the permissible error in positions,
the positions of observed spectral lines in order of decreasing inten-
sities and the normalized intensities of lines in decreasing order.
After the data have been read into the computer, the binomial coeffi-
cients of the number of nuclei in the system, the lowest numbered tran-
sition from each energy level, the total number of possible transitions
from each energy level, the normalized intensity factor by which inten-
sities of transitions from a level exceed those to the level, the energy

level numbers from which transitions occur (e.g., K(29) = 6 means the
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29th transition is from the energy level 6] and the energy level num-
bers to vhich transitions occur [e.g., L(24) = 7 means the 248 ¢ran-
sition is to the energy level 7] are calculated, then the size of the
energy-level diagram is determined.

The observed spectral lines are numbered in order of decreasing
intensity and the program steps systematically through all of the
possible transitions, attempting to assign to each transition the
most intense spectral line available. The most intense line available
- is assigned into the first possible transition. The intensity sum for
~the level involved is constructed; the line is either accepted or
rejected by this test. If it is rejected, the next most intense line
is tried and the testing begins anew, and so on until finally a zero-
intensity (or unobserved) 1ino is 4sed. If some line should pass the
first test,.shé program then constructs the line spacing test when
applicable (or possible). If it is not possible to construct this test,
as 1ixthc case for transitions 1, 2 and 3 for the two-spin system, and
1, 2, 3, %, 5, 6 and 13 for the three-spin system, or if some number
of this test has been assigned a zero intensity transition, the tenta=
tive assignment will be accepted and the program will proceed to the
assignment. of the next level. If a zero-intensity (or unobserved) line
is used, éyd it still fails both the intensity-sum test and the line=-
spacing test, then the program backs up and reassigns to the preceding
transition an unused, less intense line. A proper assignment has been
obtained vhen every spectral line has been assigned to some transition
in such a way that all of the spacing and intensity-sum rules are obeyed.

Computer time can be saved by taking advantage of the equivalent
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nuclei and (or) the molecular symmetry. For example, a plane of syme
metry exists in the ABB'CC' system. Choosing the basic functions which
are either symmetric or antisymmetric enables the secular determinant
to be factored into noncombining symmetric and antigymmetric portions.
The symmetric functions lead to secular subdeterminants of order 1, 3,
6, 6, 3 and 1 corresponding to the values +% , *.g. . +.;_ , =L, =3 and

-5 for I,, respectively. The antigymmetric functions yield secular
2

“subdeterminants of orders 2, 4, 4 and 2 corresponding to I, = +;. ’

+ _;_, - % and - %'. The schematic energy-level diagram is shown in
Fig. L.
Symmetric Anti-symmetric
Es. —
E3 E32 E3s 321 — B3, —
E), —E}, —=&7; —E], —E]s —El¢ — - £, —E); —E13 —=),
1y j'-lz £113 ns—u. _iils_E:l 6 E:u —JE:-IZ E:qa ‘E:lu
B, — EL —EL . B, — Eo—
ES, —

Fig. 4. The schematic energy-level diagram of AA'BB'C system

As mntioned‘ before, we identify the experimental energy eigenvalues
by a subscript indicating twice the corresponding Iz value and a super=-
script s or a indicating symmetric or antisymmetric. The schematic
energy-level diagram consists of two sets of levels between which no
transitions occur: an antisymmetric set of two levels for I, -;_ ;

2

four levels for I, =l 3 four levels for Iz = -% and two levels for
2 .

Iz = -_:2“_ , and the remaining set of symmetric levels.
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There are a total of 32 possible transitions within the anti-
symmetric levels and ;78 possible transitions within ’the symmetric
levels. The assignment procedure can be done in two -esnentls. In this
case, if we have 40 observed npecti‘cl lines, the 32 antigymmetric
transitions were first assigned from among the total of 4O observed
lines and then the remaining observed lines were uaigned’ to symme-
tric t.r-nlitions; When we assign the antisymmetric portion we con-
sider that the 178 transitions within the aymétri.c. levels are for-
bidden. In this case, besides the data mentiomed previously, two other
sets of data should be read in. The extrla t.ilro. Bets of data are the
number of unassignable (or forbidden) transitions and the set of values
( =1 or 0) assigned to the transitiong, €8y KD(U) = =1 nnil.nl the
transition 4 is forbidden or unassignable; KD(5) = O means the tran-
sition 5 is available to be assigned. So we give values of =1 to the
transitions which are forbidden or mu;i@ubl‘_ vhile we give values
of 0 to t'be transitions which are available to be assigned before
the computer starts to make the assignments. This set of values (either
=1 or 0) is read into the computer. When the computer starts to make
the assignments, it will skip the transitions which have values of =1
and only try to assign the observed spectral lines to the transitions
vhich have values of 0. For the symmetric portion, a similar proce-

dure can be applied. A lot of computer time can be saved in this way.
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IV. C. Examples

The technique described above is now applied to the study of
the spectrum of cyclopropyl cyanide, a five-spin ABB'CC' system.
The spectra of 2-bromo-5-chlorothiophene (two-spin AB system),
styrene o;ide (three-spin ABC system) and o-dichlorobenzene (four-
spin AA'BB' system) are also treated here for sake of completeness and

to illustrate the procedure.

IV. C-a. Twowspin System

2-Bromo-5 chlorothiophene has been studied by the pertubation
method (48). It belongs to the two-spin AB system. In this case,
the number of observed spectral lines is four (N=4), the number of
possible transitions is four (NA=4), the number of proton is two
(NB=2), and the number of energy levels is four (NthNB-22-4). The
permissible error of intensities is chosen to be 1€Q, about 10Z of
the intensity of the strongest line. The permissible error in position
is selected as 5 which usually is about twice the observed fluctuation
in position of the center of gravity of corresponding lines in the
symmetrical spectrum. In this case, we set both the number of
unassignable transitions (ND) and the number of the last initially
assigned transition (NT) equal to zero for the first run. The
experimental spectrum is taken from Anderson's paper (48). For
convenience of computer calculation the experimental values of
relative intensities are initially normalized to 1000-NB-2(NB-1)-
1000.2°2=4000, and the experimental values of the positions are

converted to fixed point values and referenced to the center of
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gravity of the spectrum as the origin. This corresponds to setting

VA + vg = 0 in the analytical form of the matrix elements. After

these manipulations, we arrange the positions of the experimental

lines in order of their decreasing intensities and arrange the normalized
intensities of the experimental lines in decreasing order. That is,

KA (1, 2, *+** N + 1) are -11, 11, -50 and 0, while KB (1, 2, +«+-

N + 1) are 1680,1€80,320,320, and 0. All the values mentioned above

are the input data. We then put these input data into Program "Assign"

and obtained two possible assignments as follows:

The first assignment gives the following values of the energy

levels: El = 0 cps, Eo1 = -5.0 cps, = 1.1 cps and E_1 = 0 cps.

Eo2
These values of the energy levels are substituted into the following

equations which have been derived for AB systems (108):

J = -(Eo1 + (1Iv-18)

Egp)

2
6" = -4 E01E02 (Iv-19)

These give J = 3.9 cps and 6§ = 4.7 cps which agree with Anderson's
results. From the second assignment, we have E1 = 0 cps, Eo1 =

5.0 cps, = 1.1 cps, and E_1 = 0 cps. We substitute these values

Eo2
into (IV-18) and (IV-19) and get J = -6.6 cps and 6§ = 4.,7icps. The

second solution 18 excluded since it is physically impossible.
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IV. C-b. Three-Spin System

Reilly and Swalen have analyzed the 40-MHz proton resonance

spectrum of styrene oxide by using the iterative method (50). 1In
the computer assignment technique, we have the following input data
for this spectrum: N = 12, NA = 15, NB = 3, NW = 2 "Pu27=8, NPEI =
160, NPEP = 190, KA(1, 2, +++ N + 1) = -655, -1423, -1729, -1061,
2254, 2508, 2652, 2902, -95, -2047, -496, -2306 and 0; and KB (1,
2, *+++ N+ 1) = 1521, 1456, 1324, 1248, 1141, 1088, 956, 812, 696

648, 564, 536 and 0. The best assignment we obtained is:

These lead to the energy levels E3 = 0 cps, Ell = -14.25 cps, E12 = -95 cps,

E13 = 29,02 cps, E_11 = -21.38 cps, E_12 = 11.69 cps, E_13 = 24.06 cps,

and E_3 = 0 cps. These values are then substituted into the following
equations (108):

JAB + JAC + JBc - - (E11 + E12 + E13) - - (E_11 + E_12 + E_13) (IV-20)
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Jap(8p280) *+ Iy (65-285) + Jpo(8p + §5) = 3(Ej By, + EpyEig + EpE

EioB13 ~ E3B g2 ~ EgpEg3 7 BB 49) (Iv-21)

2 2

2/3 GB + 2/3 GC - 2/3 GBG -3/2 @ +J J

AB AC AB AC BC)

= -(Ej4Ejp + BBy + EppEj 3 ¥ E_ E o tE 4E gy FE GE 33 HE OB 43)

(Iv-22)
3, (6, — 2802+ 3,5, — 2602 +J_ (6, + 6.)>
AB B C AC*°C B BC''B C
=9 (E11E12E13 E_11E-12E19) (1v-23)
(6 28 ) (6 - 2§ ) (6 + 6 ) 27(E11E12E13 - E-llE-IZE-13) . (Iv-24)
and the above equations solved numerically to obtain J,_ = 5.63 cps.

AB

= 2,47 cps, J,. = 4.08 cps, GB = 11.95 cps, and GC = 43,87 cps

JAC
which are in good agreement with Reilly and Swalen's results.

BC

IV, C-c. Four-Spin System

The 40 MHz proton resonance spectrum of o-dichlorobenzene has
been analyzed by Pople et al.,(122) using the conventional methods
and has been analyzed by Whitmgn (107) using the computer assignment
method. It is included here for the sake of illustration and to compare
different versions of the assignment program.

Since the molecule of §#dichlorobenzéne contains a plane of
symmetry the spin-energy-level diagram consists of two sets of levels
betveen which no transitions occur — an antisymmetric set of two
levels each for m = +1, 0, and -1, and the remaining set of symmetric

levels. There are a total of eight permitted transitions within the
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antisymmetric levels and 20 transitions within the symmetric levels.
In order to save computer time, the assignment procedure can be done
in two segments. First the eight antisymmetric transitions are assigned
from among the total of 24 observed lines, and then the remaining
observed lines are assigned to symmetric transitions. The input data
for the first segment of the assigmment are N=24, NA=56, NB=4, NW=16,
NPEI=250, NPEP=38, ND=48, NT=0, KA(1,2, ---N + 1) = 353, -353, 416,
-416, 680, -680, 843, -843, 967, -967, 1394, -1394, 1340, -1340, 1006,
-1006, 41, -41, 72, -72, 1645, -1645, 1738, -1738 and 0, KB(1,2y~suasN + 1)
= 3651, 3651, 3081, 3081, 1896, 1896, 1341, 1341, 1288, 1288, 1145,
1145, 959, 959, 919, 919, 855, 855, 669, 669, 104, 104, 90, 90 and 0. To save
computer time, another set of data KD(1,2, .. NA) should be read in,
i.e. KD(1,2, +++ NA) = . -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, O, O, -1, -1, -1, -1, O, O, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
o, 0, -1, -1, o0, 0, -1, -1, -1, -1. From the above input, we obtain

the best assigmment for the antisymmetric pottion as follows:

v N

For the second segment of the assignment, N=16, ND=36, KA(1,2,°°°*N + 1)
= 353, -353, 416, -416, 843, -843, 967, -967, 1394, -1394, 1340, -1340,

72, -72, 1738, -1738, 0; KB(1,2, ... N + 1) = 3651, 3651, 3081, 3081,
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1341, 1341, 1288, 1288, 1145, 1145, 959, 959, 919, 919, 669, 669,

90, 90, 0. KD(1,2, ¢-+ NA) = O, O, -1, -1, O, O, O, O, -1, -1,01”9, o, 0, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,-1, O, O, -1,-1, O, O, -1,-1,

-1, o, O, -1, -1, O, O, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, O, O, -1, -1.

All the other input data are the same as the first segments of the

assigmment. The best output for the symmetric portion is as follows:

The lines are now renumbered to the order of the input KA (1,2¢¢*N + 1)

of the first segment assigmment, which leads to the following assignment:

N

3 12

14

27 20 13

11
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The experimental values of the energy levels obtained from the

experimental spectrum using this assignment are E2s = 0, E § o

+11
s s s s
= -13.94, Ey;” = 7.69, E,” = -4.27, Eg,° = -13.22,

+12
s s S 0
04 = -27.34, E_;” = 4.16, E_;,” = -13.94, E_, =0, E,

E_u8 = + 5,24, E-lza = 5,24, The transition energies are measured

4.16, E
E 2 = 11.62,

relative to the average of the energies of the transitions 1, 2, 3, and 4, and
the energy of the state m = +2 is chosen as zero. Since the

antisymmetric levels are not joined by transitions to the symmetric

levels an additional zero of energy is needed for the antisymmetric

levels. This has been chosen such that fhe sums of the antisymmetric

energies for a given m value is zero. The values of the energy levels

are then substituted in the following equations (107) and solved,

S S
N= —(E11 + E12 ) = JAB + JAB' (1IV-25)
S S S ., S S ]
K-3(E11 + E12 )--(E01 + E02 + EO3 + Eol. ) JBB' + JAA'
(Iv-26)
1/2
- a ., a; a,,. S, S) s J v =J..
M= (E_)1 B 1y Byy By )/ (4B R, BB® “AA
(IV-27)
2_ a a, a; a2 S, 8, _ a_ _1 112
Lo=[(E_ )1 "E 5 By "By ) /4B 7R )] = 4By PR, = (3yp-Typ")
(IV-28)
6%= -4€, SE. Sa4E %E 2 - 2(E,.%E,.2 +E ,.%E ,.%)
11 712 01 702 11 712 -11 =12
(1v-29)
This leads to 5-VB—VA = 15.23 cps, JAB = 8.17 cps, JAB' = 1,01 cps,
JBB' = 7,44 cps, and JAA' = 0.36 cps, which are in excellent agreement

with Whitman's results.
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The experimental values of the energy levels obtained from the

experimental spectrum using this assignment are Ezs = 0, E+us
S S

4.16, E = -13.94, E 02 = -13.22,

S
+12 OS = 7.69’ E - -4027, E
= -13.9, E_

s
03

s s s 0
Ey, = -27.34, E_,° = 4.16, E_, s =0, Eg;

04
E, 2=+ 5.24, E_ 8 = 5.24. The transition energies are measured

-11 12
relative to the average: of the energies of the transitions 1, 2, 3, and 4, and

2 = 11.62,

the energy of the state m = +2 is chosen as zero. Since the
antisymmetric levels are not joined by transitions to the symmetric
levels an additional zero of energy is needed for the antisymmetric
levels. This has been chosen such that ﬁhe sumgs of the antisymmetric
energies for a given m value is zero. The values of the energy levels

are then substituted in the following equations (107) and solved,
S

s
N o= =(B),5 +ELS) = 0, + 3,0 (IV-25)
S s S . _ s S S
K=3(E )" + Ejp )-(Bg)” + Egy” + Egg” + Eg) = Jppe + Jyp
(IV-26)
1/2
- a, a, ay,. S, S) = J 0 =J,
M= (E_)1"E 1%y "By, )/ (=4E  E B" “AA
(IV-27)
2 a a, a. a2 S. S, _ a_ - 2
Lo=(E_)%E 1, By "By ) /4B "B )01 = 4Eq, %E ) = (3,50, p")
(IV-28)
§%= -4E, S, Sa4e_%e_ 2 - 2(2,.%,.2 +E ,.%E ..
11 B12 =4Ep1 Eo2 11 E12 -11 E-12
(1Iv-29)
This leads to 6=v_-v, = 15.23 cps, J,, = 8.17 cps, J = 1,01 cps,

B A AB AB'

J = 7,44 cps, and JAA' = 0.36 cps, which are in excellent agreement

BB'
with Whitman's results.
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IV. C-d. Five-Spin System

The proton resonance spectrum of cyclopropyl cyanide belongs
to the five-spin ABB'CC' system. As mentioned before, the ABB'CC'
is one of the most general system of five-spin spectra since the
A233 , Aszx , °**+ etc. systems can be considered as special
cases of ABB'CC'. The experimental 60 MHz proton spectrum was
taken by Dr. Myra Gordon with a Varian A-60 spectrometer. Since
a plane of symmetry exists in these systems the spin-energy-level
diagram also consists of two sets of levels between which no transitions
occur. The assignment procedure can also be done in two segments.
First, the 32 antisymmetric transitions are assigned from among the
total of 40 observed lines, and then the remaining observed lines
are assigned to the 78 symmetric transitions, or vice versa. However,
in this case, the best assignment can be obtained by assigning 40
observed spectral lines among 110 possible transitions, since from
the spin-energy-level diagram we know there are 100 unassignable or
forbidden transitions in this system. The input data for this spectrum
are: N=40, NA=210, NB=5, NW=32, NPEI=900, NPEP=35, ND=100, NT=0,
KA(1,2, .-+ N + 1) = 356, 349, 346, 342, 276, 340, 293, 286, 520,
469, 296, 281, 576, 302, 594, 384, 991, 310, 246, 507, 313, 377,
392, 539, 652, 649, 600, 657, 534, 548, 620, 743, 644, 0, 612, 694,
712, 721, 640, 727, O3 KB(1,2, .-« N + 1) = 11693, 9517, 8346, 5496,
5479, 4733, 3800, 3200, 3147, 2681, 2600, 2215, 1982, 1632, 1426,
1372, 1201, 1066, 933, 816, 799, 779, 610, 583, 579, 535, 439, 401,
350, 233, 233, 233, 148, 116, 116, 116, 93, 93, 85, 47, 0, KD(1,2, °°-

N+1) = O, O, O, -1, -1, O, O, O, O, O, O, -1, -1, -1, -1, O, O, O,
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-1, -1, -1, -1, O, O, O, O, O, O, -1, -1, -1, -1, -1, -1,

-la '1: '1, -1: 00 0’ 09 0’ -1’ -1’ _1’ -1’ '1’ -1’ 09 09 0’ 0, Os

0: 0) 0: 0, 0) -1’ ‘19 _1: -li oa 0’ 0: 0’ 0’ 0) -1’ -1’ "1: '1’ 0)

0’ 0, 0; 0’ 0’ -1) -19 -1: -1’ 0: 0) 0) Oa 0’ 0, -1: —1) '1) 0: 0: 0’

0: 0’ 0: '1’ "1) -1’ -19 0, 0’ 09 0’ 0: 0’ -1’ -1’ _1: -1’ -1: -19

'1’ 'la -1’ '1’ 0’ 0) ov 0: -1’ -19 _1’ '1’ '1: -1’ 0: 0’ 0: 0: _1’

.1’ -1’

-1,

-1,

—19 0’ 09 0’ 0’ -1’ ‘1) '1: -1’ _1: '1: 0: 0’ 0’ 0)

oo 0, 0’ -1’ -1’ 09 0’ Os '1: -ls ov 09 0, ‘1’ -1’ 0: 0’ 0: _1$ -1’

09 0; 0) -19 -1’ 0’ 0: 0’ _1) -1’ -1’ -19 '13 0: 0’ -1, -li -1’ 0: os

-1, -1, -1, o0, O, -1, -1, -1, O, O, O, O, O, -1, -1. The output of

the assignment 4,28, 41, -1, -1, 3, 19, 34, 41, 41, 41, -1, -1, -1,

-1, 41,
-1, -1,
-1, -1,

16, 41,

a1,
-1,
10,
15,

41,

41,
-1,
18,
41,

41,

41,

7, 27, 40, -1, -1, -1, -1, 8, 41, 41, 24, 41, 41, -1,
-1, -1, -1, -1, -1, 9, 23, 35, 41, -1, -1, -1, -1,
41, 33, 1, 14, 36, 41, 41, 41, -1, -1, -1, -1, 41,
41, -1, -1, -1, -1, 37, 25, 41, 41, 17, 38, -1, -1,
41, 41, 22, 41, -1, -1, -1, -1, 41, 41, 41, 41, 41,
-1, 41, 41, 41, 41, 41, 41, -1, -1, -1, -1, -1, -1,
5, 12, 41, 41, -1, -1, -1, -1, -1, -1, 41, 41, 11,
-1, -1, -1, 41, 41, 41, 13, -1, -1, -1, -1, -1, -1,
2, 21, 30, -1, -1, 41, 41, 41, -1, -1, 26, 31, 41,
32, -1, -1, 41, 41, 41, -1, -1, 41, 39, 41, -1, -1,

41, -1, -1, -1, 41, 41, -1, -1, -1, 41, 41, -1, -1,

-1, 6, 41, 41, 41, 41, 41, -1, -1. Before we evaluate all the values

of the energy levels, we rewrite all the positions of the observed

spectral levels relative to the center of gravity of the spectrum as

the origin.

So we have KA(1,2, --+ N + 1) = =130, -137, -140, -144,
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-210, -146, -193, -200, 34, -17, -190, -205, 90, -184, 108, -102,

505, -176, -240, 21, -173, -109, -94, 53, 166, 163, 114, 171, 48,

62, 134, 257, 158, -486, 126, 208, 226, 235, 154, 241, and O.
The energy of state m = +5 is chosen as zero and for the antisymmetric
energy levels the sum of the antisymmetric energies for m = 3 is
chosen as an additional zero as in the four-spin case. From this
assignment, we obtain the following "experimental" values of energy
levels: ESS = (0 cps, E3ls = -14.4 cps, E32s = 17.1 cps, E33s -

3.1 cps, E31a = 4.1 cps, E32a = -4,1 cps, Ells = -28.4 cps, Elzs -
38.4 cps, E13s = 53.0 cps, E1as = 2.2 cps, EISS = 14.5 cps, E16s =
32.5 cps, Eua = 7.5 cps, Elza = 5.3 cps, E13a = 16.7 cps, Elaa -
15.8 cps, Eils -12 -13s
E_,,5 =-27.8 cps, E_,° = 0.9 cps, E_ 5 = -17.2 cps, E_,,* =

=41.4 cps, E f - -18.4 cps, E = -7.6 cps,

-13.5 cps, E 2 . -13.0 cps, E 3 u 24,3 cps, E_Ma = 24.8 cps,

-12 -13
E .5 = 17.7 cps, E ..°> 29.1 cps, E .,.° = 17.4 cps, E ,,° = 18.7
=31 : XY * * 7-33 * > T=34 *
cps, E_Ss =0, E_31a = 7.3 cps, and E_32 = -7.3 cps. Substituting

these values into equ:tions (IV-4) to (IV-16) gives GB = 48.0cps,
Gc = 42,2 cps, J12 = 7.6 cps, 313 = 4.1 cps, 314 = 7.6 cps,

7.1, J,, = 7.1, J

Jis = 4.1 cps, Jy3 5.6, Jp, = 10:4, Jyg = 7.1, Iy, 35 "

10.1, J45 ==5.6.

IV. C-e. Conclusions

The computer assignment method described here has considerable
applicability. If the high-resolution spectrum to be analized is
well resolved, the present method always gives a cleaz-cut solution

without guessing initially any parameters. For spectra for which
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we cannot estimate a set of good parameters for the iterative
methods, the present method thus has advantages. The major
limitation of the computer assignment method is the resolution
of the experimental spectrum, as mentioned in a previous section.
Also, this method usually needs more computer time than other
methods do, especially if we cannot choose sharp validity limits
on the line-spacing rules and on the intensity-sum rules; the

computer time required may then be considerably lengthened.
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28
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s1
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33
41
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46
51
600

601
92
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95
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97

521
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523
52

APRENDIX 1 PROGRAM YMATKELE?®

PROGRAM WMATRELE

DIMENSION ID(3234¢5)eCJ(5¢5)eN(32)9CD(3204)
ReAD 109¢7 oNN

FORMAT(215)

READ 15éJ

FORMAT(12)

JL=u+1-1

READ 20+ (N(K) oK=JeJL)

FORMAT (3212)

PRINT 20+ (N(K)sK=JesJL)

DO 27 K=JesJlL

NK=N(K)

DO 27 NCD=1+NK

READ 26+CD(KeNCD)
FORMAT(F10e7)

PRINT 28¢CD(KoNCD)

FORMAT(1H +F10e7)

DO 32 JUK=J,sJl

NK=N(JK)

DO 32 KN=14NK T
READ 316 (ID(JKsKNILN) o LN=1eNN)
FORMAT(D11)

PRINT 33e¢ (JO(JUKoKNILN) sLN=]1oNN)
FORMAT(1H +5S11)

JF=J=1

JF=UF+1

IF(JUF=JL)51+451¢350

JIi=y

DO 601 K=14NN

DO 601 L=1NN

CJ(KsL)=0

KF=0

NJF=N(JF)

KrF=KF+1 -
Kl=0

IF(KF=NJF )96+:964¢521

NJI=N(JI)

KI=KI1+1

IF(KI=NJI)1114111495

PRINT 522+ JFeJl

FORMAT(215)

PRINT 522¢ ((CU(KsL)e K=1eNN)o L=1eNN)
FORMAT(12F10e6/7)

Ji=Jl+1

IF(JI=JL)600+600445

89



121
122
131
141

161
151
181

12

184

201
202
211
2zl
c22
231
241

251

261
271

281
291

301
311
321
350

NSuUM=0

NASS=0

MD=0

LI=0

LI=LI+1 .

IF(LI=-NN)131+131,4201
ND=ID(JF ¢ KF 4L 1) =ID(JIeKI 4L 1)

NSUM=NSUM+ND ‘

NAB=XABSF (ND)

NABS=NABS+NAB

IF(NAS3)15141214181

STOP

MO=MD+ 1

IF(MD=2)182+1844121

Ls=L1

GO TO 121

LT=L1

GO TO 121

IF(NA3S=3)202497497

IF(MD=1)211497¢211

IF(NABS=2)2214231497

IF(NABS)2224261497

sToOP

IF(NSUM)2414+251 4241
CI(LSILT)=CJI(LSsLT)+0e0

GO TO 97
CI(LSILT)I=CI(LSILT)I+0e5*¥CO(JIF oKF)*¥CL(J] oK)
GO TO 97

LSS=0

LSS=LSS+1

LTS=LSS+1

IF(LSS=NN)281497497

IFCID(JUF oKF oLSS)=ID(JF sKF sLTS) )291 43014291
CJU(LSSILTS)=CU(LSSILTS)=0e25%CD(JF ¢yKF ) #CD(JI oK 1)
GO TO 311
CI(LSSILTS)I=CU(LSSILTS)+0e25*%COCJF oKF)*CD(JI oK)
LTS=LTS+1

IF(LTS=NN)281+2814¢271

END
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SET DIMENSIONS OF

L), MUJ)
CJ(K, L) 8 CO(J,M)

READ IN:
TOTAL NUMBERS OF BASIC
STATE WAVEFUNCTIONS I
TOTAL NUMBERS OF SPINS
IN THE SYSTEM N

Program "Matrele"

FLOW CHART
14

\
[NSUM = NSUM+ND
(NAB= XABS F(ND)

ABS=NABS+NAB|

FROM 131

READ IN:
THE_NUMBER OF THE FIRST BASIC
STATE WAVEFUNCTION
TOTAL NUMBERS OF BASIC PRODUGCT
FUNGTION IN IT "M(J)

THE COEFFICIENT FOR EACH OF TH
BASIC PRODUGCT FUNCTION CD
€D(J,2),60(J,3) CD(,

bt

ey

3

CJ(LSS,LTS)=C
0.25 X CD(JF,KF

J(
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92
APPENDIX II. PROGRAM ®ASSIGN"

VARTABLES, NAMES AND ARRAYS

N Number of observed spectral lines (input).
NA Number of possible transitions (input).
NB Mumber of nuclei with spin % (input).

ND Number of unassignable (forbidden) transitions (input).

NN Number of times zero-intensity (unobserved) spectral line
has been used.

NT Number of last initially assigned transition (input).

IP Next available location in KH array, initially IP = 1,

NFEI Permissible error of intensities (input).

NPEP Permissible error of positions (input).

Q Next available network number, initially IQ = 5.

IR Next available index of I and J arrays.

IS Number of energy level from which current transition occurs.

ISss Index to avoid meaningless permutations of equivalent energy
levels, If ISSS = O, try the first spectral line in the
list for the next tramsition, If ISSS = 1, try the next

, spectral line in the list for the next transition.

IT Number of energy level to which current transition occurs.

IU Number of spectral line being considered.

Iv Number of transition curregitly to be assigned.

NW Number of energy levels, 2 (input).

IX, IY, ‘IZ, IYY and IZZ aré dummy variables.

KA(1,25000,N+1) Positions of lines in order of decreasing inten-
sities. KA(N+1) = O (input).

LAB(1,2,400,NW) Normalized intensity factor by which intensities of
transitions from a level exceed those to the

KB(1,2,... ,N+1) Normalized intensities of lines in decreasi-nz order.
KB(N41) = O (input).

IBC(1,2,...,NB+1) Binomial coefficients of NB,

KC(1,25e00,N) Transition assigmments of lines. O = unassigned,

KD(1,2,000,NA) Numbers of lines assigned to transitionsy e.g.,
KD(4)=7 means line 7 has been assigned to transi-
tion L, KD(5)=-1 means transition 5 is forbidden.

KE(152 000, ,0W) Energies of energy levels, relative to KE(1) = O.

KF(1,25000,MW) Network assignments of energy levels., O = unassigned,
1 = network 1, etc.

KG(1,2,000,NA) Number of energy levels assigned to networks by each

transition. KG(12)=3 means three levels were assigned
to a new network by the 12th transition.

KH(1,24000) Numbers of energy levels assigned to networks by each
transition, stored consecutively. KG array keeps
track of how many are due to each transition.

I(1,2,.00) Network numbers of levels before IV transition
assignment , indexed by IR.



J(1,2500es )
K(1,25e0e,NA)

L(l’z’..o’m)

M(1,25000,NW) °

MA(1,2,4..NW)
MB(1,2,..NW)
m(l,z,.o .Nw)

93

Amount added to network to bring it into correlation
with another network, through transition V.
Energy level numbers from which transitions occur.
e.g, K(29)=6 means the 29th transition is from
level 6.

Energy level numbers to which transitions occur.
Lowest numbered transition from each energy level.
Total number of possible transitions from each
energy level.

Accumulated intensities of transitions to each
energy level.

Accurmlated intensities of transitions from

each energy level.

NOTES

All data areintroduced as integers and all calculatioms

are fixed point.

(NB-1)

Intensities are initially normalized to 1000 NBe 2 N

Networks ldentify the possibility of non-interacting
sets of levels, e.gs, symmetric and antisymmetric.
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PROGRAM ASSIGN i
CIMENSION KA(S0) +KB(50) +sKC(50) +KD(3VU03) oK (128) +KF(128) +KG(3003) »
1KH(400) ¢ 1(200) ¢J(200) ¢K(3003) L (3003) sM(128) smA(128)+sMB(128) s
2MC(128)LAB(128) +1C(9)
100 REZAD 101e NoeNAJNBINWINPET o NPEP «ND o NT
101 FORMAT(8195) -
NEE=N+1
READ 104+ (KA(IX)e IX=1eNEE)
104 FORMAT(1316)
READ 1046 (KB(JX) sJX=1oNEE)
. READ 2100+ (KD(JX) oeJX=m]1sNA)
2100 FORMAT(4012)
1Z2=1
NV=Ni3+1
DO 102 IX=1+NBvV
IBC(IX)=1Z
1Z2=1Z%(NB=IX+1)/1X
102 PRINT 103s (IBC(IX))
103 FORMAT (14)
Iv=1
1YY=0
122Z2=1
DO 106 JUX=1e+NB
IoCE=1IBC(JX)
DO 116 1Y=1,1B8CL
MX=1Y+1YY
M(MX)=1V
JXAz=JUX+1
MA(MX)=IBC(JXA)
LAB(MX)=1000% (NBS+2=2%JUX)
I8CV=18BC(JXA)
DO 116 1Z=1.1BCV
KCIV)=1Y+1YY
L(IV)=1Z+12Z
PRINT 8¢ (K(IV)se L(IV))
8 FCRMAT(219)
116 [v=1V+1
IYY=]YY+1B8C(JIX)
KX=JX+1
106 12Z2=122+1EC(KX)
200 DO 201 IX=14N
201 KC(IX)=0
DO 202 JUX=1+NW
KE(JX)=0
KF(JX)=0

Mo (JX) =0
202 MC(JUX)=0



204
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IP=1

1Q=5

IR=1
KF(1)=1
IvV=1

NN=0 .
KAN=0
KBN=0

KCN=0

KON=0

KEN=Q
KFN=0

KGN=0

KHN=0

KIN=0

KJN=0

KKN=0

KILN=0

KMN=0
KNN=0Q

KON=0
KPN=0
PRINT 204+ NsNAINS s NWINPE] s NPEP ¢sND o NT
FORMAT(815)

. NZ=N+1

205

206

999

2201
2202

PRINT 205¢(KA(IX)eIX=14NE)
FORMAT(1316)

PRINT 206+ (KB(JX) sJX=]1eNE)
FORMAT(1316)
IF(NT=1)3000999+999

DO 2201 LX=1sNT

IF (KD (LX) )300+¢30092202
CONT INUE

DO 2222 NX=1sNT

1Y=KD (NX)

KC(IY)=NX

I1S=K(NX)

IT=L(NX)
KE(IT)I=KE(IS)+KA(IY)
KFC(IT)=sKF(1S)

KG(NX)=1

KH(IP)=1IT

IP=1P+1
MC(IS)=MC(1S)+KB (1Y)
MB(IT)aMB(IT)+KB(1Y)

2222 1V=NT+])



300
301

400

500
511
501

502
503

S04
700
701
702
703

704

705
706
707
708
1100

800

810

880
811

sol
812
882
813
683
814

884
815
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IF(KD(IV))3014400+400

IV=1V+1l

GO TO 30r

155S5=0

[u=1 .
IFCIU=(N+1))511¢501+1800
IF(KC(IUVU) 60045014600
IS=K(1IV)

IT=LC(IV)
IF((MC(IS)+KB(IU) ) =(MB(IS)+LAB(IS)+NPE1))S03¢503+¢502
IF(IU=(N+1))600+1800+1800
IX=M(IS)+MA(IS)~-1V
IF(ISSS=1)504+700¢504
IF(IX=1)701¢700+701
IFCIMCUIS)+IX¥KB (V) )=(Mp(IS)+LAB(IS)=NPEL))1800¢701+701
IF(IU=(N+1))704¢7024¢702

IF (NN=(NA=N=ND))703+1800+1800
NN=NN+1

KG(IV)=0

GO TO 800

KFS=KF(1S)

KFT=KF(IT)
IF(KFS=KFT)900+¢705+900
IF(KFS)7064¢10004s706
IF(KE(IT)Y=(KE(IS)+KA(IU)+NPEP ) )707¢707+600
IF(KE(IT)-(KE(]S)+KA(IU)fNPtP))60007080708
KG(IV)=0

KC(IV)=]lV
MB(IT)=MB(IT)+Kb(IU)
MC(IS)=MC(IS)+KB(1U)
KO(IVv)=lU
IF(IV=26)1400¢810¢830
KAN=KAN+1
IF(KAN=5)801+80141400
IF(IV=31)1400+811+881
KBN=K3N+1
IF(KBN=5)801+801+1400
IF(IV=45)14004812+882
KCN=KCN+1
IF(KCN=5)801+80141400
IF(IV=55)1400¢813¢883
KON=KDN+
IF(KDN=5)86801+801+1400
IF(IV=58)1400¢814.884
KEN=KEN+1
IF(KEN=S5)801+80141400
IF(IV=61)1400¢815+¢885
KFN=KFN+1



IF(KFN=5)801+¢8014+1400
885 IF(1V=-68)1400:816:886
816 KGN=KGN+1
IF(KGN=5)801+801+1400
886 IF(IV=71)1400+8174+887
817 KHN=KHN+1
IF(KHN=5)801+80141400
887 IF(IV=768)1400:818.,888
818 KIN=KIN+1
IF(KIN=5)801+80141400
888 IF(IV-81)1400:819.889
819 KJUN=KJIN+1
IF(KJUN=5)801+801,41400
889 IF(IV-105)1400¢820+890
820 KKN=KKN+1
' IF(KKN=5)801+80141400
890 IF(1V=145)1400:8214891
821 KLN=KLN+1
IF(KLN=5)801+801+1400
891 IF(IV=163)1400+822:892
822 KMN=KMN+1
IF(KMN=5)801+8014+1400
892 IF(1IV=180)1400¢8234893
823 KNN=KNN+1 |
IF(KNN=5)801+8014+1400
893 IF(IV=190)1400¢824+894
824 KON=KON+1
IF(KON=5)801+801+1400
894 IF (1V=200) 1400+825+825
825 KPN=KPN+1
IF(KPN=-5)801+80141400
801 PRINT 1151¢(KD(IX)s IX=1sNA)
1151 FORMAT(3014)
1400 IF(IV=NA)14014115041150
1401 IV=1V+1
IF(KD(1IV))14004140241402
1402 IF(IS-K(IV))400+¢16004400
1600 1T=L(1V)
IF(KF(IT))40041601+400
1601 IF(1S=1)1602+1700+1602
1602 IF(15-2)1603+1700+1603
1603 IF(IS=(NB+2))16044¢1700+1604
1604 IF(1SSS=1)1605¢41700¢1605
1605 1SSS=1
1U=1
GO TO S00
1700 1SSsS=1



600
1701
1000

1200

900
901

902
903

904
907
<08
1300

1304
1306

1307
1308

1800
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IF(IU=(N+1))600+500+¢500
IU=1U+1

GO TO S00

KF(I1S)=1Q

1Q=1Q+1

KG(IV)=2

KH(IP)=1S

IPV=1P+1

KH(IPV)=1T

1(IR)=0

KE(IS)=0

J(IR) =0

IP=1P+2

IR=IR+1

KF(IT)=KF(1S)
KEC(IT)I=KE(IS)+KA(IU)

GO TO 1100
IF(KFT)9024901+¢902
KG(IV)=]

KH(IP)=1T

IP=1P+1

GO TO 1200
IF(KFS)904+9034+904
KG(IV)=1

KH(IP)=1S

IP=1P+1

KF(IS)I=KF(IT)
KE(IS)=KE(IT)=-KA(IUV)

GO TO 1100

IF(KFS=XMINOF (KFS+KFT))908¢907+908
ICIR)=KFT
JIIR)=KE(IS)+KA(IU)Y=KE(IT)
GO TO 1300

I(IR)=KFS :
JUIR)=KE(IT)Y-KE(1S)=KA(IU)
KG(1V)=0

DO 1307 IX=1sNW
IF(KF(IX)=XMAXOF (KFS+KFT))1308+1304+1308
KF(IX)=XMINOF(KFS«KFT)
KE(IX)=KE(IX)+J(IR)
KG(IV)I=KG(IV)+1

KH(IP)=1X

IP=]1P+1

IR=IR+]

GO TO 1100

Iv=lvV=]

IF(IV)1801418014¢1500



1601

1888
1500
101

1504
1505

10506

1507
1900

1150

<000

NPE I =2#¥NPE |

NPEP=2*NPEP
IF(NPEP=100)200+2004+1888
STOP
IF(KD(IV))1800+1501+41501
1U=KD(1V)

KC(I1u)=0

KO(IV)=0
IFCIU=(N+1))150341502¢19082
NN=NN-1

GO TO 1800

15=K(1V)

IT=L(IV)
MBCIT)I=MB(IT)=KB(1IUV)
MC(IS)=MC(IS)=KB(IU)
IF(KG(IV))150441900+¢1504
IF(KG(IV)=1)150641505¢1906
IP=]P-1

IX=KH(IP)

KF(IX)=0
IF(IX=1T)1900+¢1700+1900
IR=IR-1

KGV=KG(1V)

DO 1507 1IX=1+KGV

IP=1P=1

IY=KH(IP)

KF(IY)=1(IP)
KECIY)I=KE(]IY)=JU(IR)
18SS=0

GO TO 600

PRINT 1151¢ (KD(IX)s [IX=1sNA)

GO TO 1500
END

99
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PROGRAM "ASSIGN™

FLOW. SHEET 1

A

100 eece Read data

Calculate arrays
IBC,M,MA,IAB,K,L

L

200 eo00 Initialize arrays
and variables

d

Is Insert cond itions

this first No for starting with
run? . partial assignment |
Yes
A\'d
Print input data
, ¥
Is transition IV N Go to next
300 «o0e to be assigned? ° S, transition
.| Yes
N
hOO eeee ' Tl'y firat line I
J .
Is this line | No 600 .. | Try next line |
500 ceeo available? -
J Yes
Is this line Y Is this zero- No
too.intense? es intensity line?,
\L No lIes
" Is this line ¥ Back up
700 ceee too weak? €S 3 (Sheet IV)

\L No

Sheet II



900...
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PLOW SHEET II

Sheet I

Back Up!
(Sheet IV)

T

Is initial level
in any network?

Yes

4

Prepare to comect
initial and final

levels into earlier
of the two networks

to same network as

No )ﬂfinal and calculate

energy

Assign initial level

% 1300. oo

Connect

Is the zero-inten-
Is this zero- | ygg .| sity line used
intensity line? 7] too often?
V No J No
Are initial and Use zero-intensity
final levels in line once again
same network?
% N Ies
Is final level Is initial level N4
in any network? in any network? 800...(Sheet III)
/Yes No No \I/ Yes

Assign initial level

to next available
1000.. network Equal spacing?
Yes \LNO
Record Record
Present State Present qS/tate 600. .(Sheet I)

Assign final level

to same network as

initial and calcu-~ ssign transition

1200+« |late energy —> 1100, IV to this line

networks [
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FLON SHEET III

Sheet 1I

Assign this line
800.s to transition IV

\
%hOO.. Last transition?
N
Yes
No R
Consider next Print assignment |—>1500...(Sheet IV)
transition
¢ .
Is this to be |
No assigned?
Yes Same initial level
as previous trans- Yes | Is final level
ition? 1600.. | in any network?
l Yes No
No .
1;00. ¢« (Sheet I) Is initial level
' first of a row?
Yes No
1700¢00s ° ISSS = 1|, Yes Is ISSS=1?
\L 3 No
Is this zero- | JISSS = 1
. intensity line?
No Start with
Yes first line

6004 ¢¢(Sheet I) 500.¢¢(Sheet I)
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FLOW SHEET IV
Back up
N
Consider previous
—> 1800.. transition
2 .
Already at first Y Double permissible
transition? es error of intensity
No
/
Was this transition 200...(Sheet I)
1500.. to be assigned
ﬂ l Yes
. Remove line
originally assigned
NP
Was zero-intensity No Restore previous
line assigned? >{transition inten-
, 1 'sities
N Yes | AP
Reduce number of Were any levels
zero-intensity assigned to a
line used network by this
transition?
)LYés No
Restore level to Yes Was only one
zero-network level assigned?
Ny No
Was final level
assigned? Restore all levels |
T to previous networks
Yes No \
1700...(Sheet III) 1900... IsSS = 0 [&—

600. X (Sheet I)



