
ABSTRACT

QUANTUM MECHANICAL ANALYSIS OF HIGH-RESOLUTION NUCLEAR

MAGNETIC RESONANCE SPECTRA

by Yuh Kang Pan

The quantum mechanical and algebraic procedures involved in the

analysis of high-resolution nuclear magnetic resonance spectra were

investigated. The formulation of the quantum mechanical problem for

analysis of high-resolution nuclear magnetic resonance spectra was

first discussed. Particular attention has been given to developing

a convenient computer program for calculating matrix elements of the

high-resolution nuclear magnetic resonance spin-coupling Hamiltonian.

The derivations of general equations for the chemical shifts

and spin coupling constants of a number of systemSof nuclei with spin

1/2 in terms of the values of the experimental energy levels have been

developed and presented. A computer technique for assigning the

observed spectral lines to transitions within the energy-level

diagram in a manner consistent with equal-spacing and intensity-sum

rules has been described. It has been shown that the analysis of

many complex NMR spectra can be reduced to the problem of assigning

observed spectral lines to the appropriate transitions within schematic

energy level diagrams, followed by direct calculation of the desired

spin parameters. This computer assignment technique was then applied

to examples of two, three, four and five-spin systems to illustrate

the procedure.
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I. PRINCIPLES OF HIGH-RESOLUTION NMR SPECTROSCOPY

I. A. Introduction

The introduction of the molecular beam resonance method (1),

which permits a direct measurement of nuclear gyromagnetic ratios,

was the first successful applicationof the nuclear magnetic resonance

‘ technique, but it was pointed out at an early stage that it should

be possible to observe resonance absorption in other forms of’matter

(2). The phenomenon of nuclear resonance was first discovered in the

‘condensed phase in l9h5 by Purcell, Torrey and Pound (3) at Harvard*fi

University and by Bloch, Hansen and Packard (h) at Stanfbrd University.

The growth and scope of this new field has been enormous, its uses now

extend into many fundamentalrresearch branches of physics and chemistry

including'the structure of solids, study of large local magnetic fields

in single crystals, the internal structure of molecules in the liquid

and gaseous states, the intermolecular structure of liquids and asso-

ciated electric and magnetic field effects, chemical.kinetics and.

still others, and its use as an analytical tool has been extensive.

This research will investigate the quantum mechanical and algebraic

procedures involved in the analysis of high-resolution NMR spectra.

The computer assignment—technique and the direct calculation method

for analysis of NMR spectra will be discussed.

In this chapter an attempt is made to give a very brief dis-.

cussion of the terminology and principles of nuclear magnetic reso-



nance spectroscopy which will be important in following chapters.

.For further details on any-point, a number of excellent references

are available which have covered general theoretical and experimental

advances in detail (5-26).

I. B. Nuclear Magnetic Moments

In order to explain the hyperfine structure of some optical

spectra, Pauli (27) suggested in l92h that some nuclei possess an

intrinsic angular-momentum and magnetic moment. It has been found

that only the atomic nuclei with odd“atomic number or odd mass number

“or with both odd atomic number‘and odd mass number have a nuclear

spin and these have integral or odd halfbintegral spin quantum number.

Nuclei with even mass number and even atomic number such as 12C or 160

do not have a nuclear spin-so the spin quantum number 180. The spin

angular momentum.§ of an atomic nucleus may be characterized by a

spin quantum.number I, such that the angular momentum.is I’in units h.

The spin of the positively charged nucleus confers on it a magnetic

'moment 3', which is proportional (28) to I, and.the proportionality

constant is y, the nuclear gyromagnetic ratio (or nuclear magnetogyric

ratio):

zflth'yp ‘(I.1)

For a simple particle of mass M and charge e, the value of y

1880......—

2Mc



nance spectroscopy which will be important in following chapters.

.For further details on any point, a number of excellent references

are available which have covered general theoretical and experimental

advances in detail (5-26).

I. B. Nuclear Magnetic Moments

In order to explain the hyperfine structure of some optical

spectra, Pauli (27) suggested in 192% that some nuclei possess an

intrinsic angular momentum and magnetic~moment. It has been found

that only the atomic nuclei with odd atomic number or odd mass number

-or-with both odd atomic number and odd mass number have a nuclear

spin and these have integral or odd halfrintegral spin quantum.number.

Nuclei with even mass number and even atomic number such as 12C or 160

do not have a nuclear spin sothe spin quantum number ISO. The spin

angular momentum.i'of an atomic nucleus may be characterized by a

spin quantum.number I, such that the angular momentum is I in units 5.

The spin of the positively charged nucleus confers on it a magnetic

'moment 3', which is proportional (28) to I, and.the proportionality

constant is y,the nuclear germagnet c ratio (or nuclear magnetogyric

ratio):

z'vffi'v'fi ' (L1)

For a simple particle of mass M’a d charge e, the value of y

1380......—

2Mc



+ e "

and 11830 'hI (1.2)

2Mc

where g is called the nuclear g factor.

 

From the theory oflquantum mechanics (28) we know that I has

the magnitude [ I (1+1)]3 but that the only measurable values of this

vector are given by the magnetic quantum number m, which may take on

any of the (2I+l) values: eI, -(I-l), ~(I-2),.....,+(I-l),...., +1.

The maximum Observable value ofbfi is , therefore:

eh

2Mc

where 8N - eH/2Mc, and is known as the nuclear magneton. It has the

 

8° . I 3 u . 8 BNeI (10 3)

value 5.050 x 10-27ergs/gauss. The maximum.observable value of ‘K

(the above equation) isocalled "the magnetic moment" of the nucleus

and is denoted by the letter u .

I. C. The Nucleus in a Magnetic Field

In the absence of a magnetic field, all orientations of a nuclear

magnet possess the same energy. But when a strong magnetic field, Ho,

is supplied, this degeneracy is removed. The energy of a nucleus of

magnetic moment i, in the magnetic field no is

.y

Em ' ;3 ° Ho

'- -Ho x component of‘fi along Ho

"Ho°m34.
(I. 16)

There are (21+l) energy levels, corresponding to the (21+l) values of

m. These energy levels are illustrated in Fig. l for the cases of

I - éand I- 1.

The selection rule for transitions among these nuclear energy

levels is mez.l, so that a quantum of radiation could induce a tran-



(1.5) sition 1f Ern+l,m 3 h “08 Em+1 .- Em = 8 HO BN 2

or using the definition of the magnetogyric ratio of equation (1.1),

 

n 10- y 5 no or v03 F Ho (I.6)

21!

\

301‘ .Ho’)

_- - "7r"

’“HO ”Ho

--1----1--

--.._ l o----d    
Fig. 1. Energy levels for nuclei with I-jfi and I=l in the magnetic field.

When transitions are induced between energy levels of this kind,

the phenomenon is known as nuclear resonance. If more nuclei are

excited from the lower level to the upper than the reverse, then

a net amount of energy is absorbed and an NMR spectrum may be observed.,

From equation (I.6) we note that the frequency is prOportional to the

applied field. For HO - 10“ gauss, typical values of we are given in

Table I. The frequencies lie in the radiofrequency region of the spectrum;

the experimental procedure is discussed in section (I.E).

The theory of transition probabilities shows that the Einstein

transition probability coefficient for the absorption of energy is

equal to the probability coefficient for stimulated emission (29). For

'this reason, any detectable net absorption of energy in a bulk sample



Table I. Typical Values of v0 for Ho 8 10“ gauss

 

 

 

1:a====se— -

v0 Mc/sec.

Nucleus I - 4 u when Ho-IO“ gauss

1
1H 4 w 2' 2.79270 h2.577

2H 1 0.85738 6.536

12C 0 0.00000 ---

13C %. 0.70216 10.705

inn 1 0.h0357 3.076

160 0 0.00000 ' --

S

170 '2' .10 8930 50772

19F %. 2.6273 no.055
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requires the existence of a population difference between adjacent

energy levels. If there is weak coupling among a group of identical

nuclei, and-between the nuclei and the remainder of the system, the

"lattice", thermal equilibrium may exist, and the energy levels will

be populated according to the Boltzmann factor. That is, the ratio of

the population of a lower energy level to that-of the next higher level

YfiHO/kTs
will be the factor e where TS is the temperature of the spin

system. As a typical example, we consider the proton, the ratio of

1

the population of a low energy level m a 3- to that of the next

. 1

higher level m I - 5- at temperature 27°C and Ho 8 10,000 gauss is

N l

 

. me+5- ZUHo/RTB

l = e g 2" Ho + 1 = 1.000007. So, under typical-

Nmp-g' . kT ' "‘ ' '"

conditions the fractional excess in the lower energy state will be



only about 10'5, but it is this-small excess which gives rise to an

observable net absorption of energy.

As a transition-inducing electromagnetic radiation is applied

to a system.of nuclear magnetic moments at thermal equilibrium, net

absorption will occur, and the excess population in the lower energy"

levels will rapidly diminish. The net absorption will then disappear,

unless some mechanism exists by which nuclei "relax" from the higher

to the lower energy levels, thus maintaining thermal equilibrium and

the Boltzmann distribution of populations.

I . D. Relaxation

If there is to be a net absorption of energy in the nuclear

magnetic resonance experiment, then some mechanisms must exist to

- promote thermal equilibrium between the papulations of the energy

levels and the surrounding matter (the lattice) which may be liquid,

solid or gas. There exist various possibilities for radiationless

transitions by means of which the nuclei can exchange energy with

'their environment and it can be shown (6) that such transitions are

more likely to occur from an upper to a lower state than in the

reverse direction, We therefore have the situation in which the

applied radiofrequency field is trying to equalize the spin-state

equilibrium while radiationless transitions are counteracting this

process. In the type of systems of interest to us a steady state

.is usually reached such that the original Boltzmann excess of nuclei

in the lower states is somewhat decreased but not to zero so that a

net absorption can still be registered. The various types of radia-



tionless transitions, by means of which nuclei in an upper spin state

return to a lower state, are called relaxation processes. We may divide

relaxation processes into two categories, namely,spin-lattice relaxation

and spin-spin relaxation. ‘

Spin-lattice relaxation (30) is sometimes called longitudinal

relaxation (31).»This process is responsible for the establishment and

maintenance of the absorption condition. The magnetic nuclei are

usually part of an assembly of molecules which constitute a sample

under investigation and the entire molecular system is referred to as

the lattice irrespective of the physical state of the sample. For the

moment we will confine our attention to liquids and gases in which

the atoms and molecules constituting the lattice will be undergoing

random translational and rotational motion. Since some or all of

these atoms and molecules contain the magnetic nuclei such motions

will be associated with fluctuating magnetic fields. Now, any given

magnetic nucleus will be precessing about the direction of the applied

field Ho and at the same time it will experience the fluctuating

magnetic fields associated with nearby lattice components. The fluctuap

ting lattice fields can be regarded as being built up of a number of

oscillating components so that there will be a component which will

Just match the precessional frequency of the magnetic nuclei. In other

‘words, the lattice motions, by virtue of the magnetic nuclei contained

in the lattice, can from time to time generate in the neighborhood of

a nucleus in an excited spin state, a field, which like the applied

radiofrequency field H1, is correctly oriented and phased to induce

spin-state transitions. In these circumstances a nucleus in an upper



spin state can relax to the lower state and the energy lost is given

to the lattice as extra translational or rotational energy. The same

process is responsible for producing the Boltzmann excess of nuclei

in lower states when the sample is first placed in the magnetic field.

Since the exchange of energy between nuclei and lattice leaves the

total energy of the sample unchanged,it follows that the process must

always operate so as to establish the most probable distribution of

energy or, in other words, so as to establish the Boltzmann excess

of nuclei in lower states. The so called spin-lattice relaxation

time T1 is a measure of the rate at which the spin system comes into

thermal equilibrium with the other degree of freedom. It, in effect,

is the half-life required for a perturbed system of nuclei to reach

an equilibrium condition. The value of T1 will depend on the magneto-

gyric ratio (or ratios) of nuclei in the lattice and on the nature

and rapidity of the molecular motions which produce the fluctuating

fields. Because of the great restriction of molecular motions in the

crystal lattice, most highly purified solids exhibit very long spin-

lattice relaxation times, often of the order of hours. For liquids

the value of T1 usually lies between 10‘2 and 102 sec., although in

the presence of paramagnetic ions it may be as low as 10'“ second.

Spin-spin relaxation or transverse relaxation (3), is a process

in which a nucleus in its upper state transfers its energy to a neigh-

bouring nucleus of the same isotope by a mutual exchange of spin. This

relaxation process therefore does nothing to offset the equalizing of

the spin state populations caused by radiofrequency absorption and is

not directly responsible for maintaining the absorption condition.



This relaxation process occurs with a characteristic time T2 called

the spin-spin relaxation time or transverse relaxation time. Both spine

lattice relaxation and spin-spin relaxation processes may control the

natural line width of a spectral line.

We have seen that adequate spin-lattice relaxation is a necessary

condition for the continued observation of radiofrequency absorption.

In practice this condition is not always fulfilled and in such circums-

tances the observed absorption signal diminishes with time and may, in

extreme cases vanish. For example, if the relaxation process is a slow

one, or if the perturbing radiofrequency field is strong, the observed'

absorption signal may vanish. This behaviour is called saturation.

This occurs when the papulations of all the energy levels are nearly

equal, in which case no net absorption of energy occurs.

I. E. The Nuclear Magnetic Resonance Experiment

The apparatus for observing nuclear magnetic resonance absorption

of energy consists essentially of four parts:

(1) A magnet capable of producing a very strong homogeneous field.

(2) A means of continuously varying the magnetic field over a very

small range.

(3) A radiofrequency oscillator.

(h) A radiofrequency receiver. I

The magnet is necessary to produce the condition fOr the absorption of

radiofrequency radiation. The remaining components then have analogues

in other method of absorption spectroscopy. Thus the radiofrequency

oscillator is the source of radiant energy. The device for varying the
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magnetic field over a small range corresponds to a prism or grating

in as much as it permits us to scan the spectrum and determine the

positions of absorption lines in terms of frequency or field strength.

The radiofrequency receiver is the device which tell us when energy.

from the source is being absorbed by the sample.

A sample containing nuclei which possess magnetic moments is

placed-between the poles of a magnet of magnetic field strength Ho.

The magnetic moments of the nuclei in the sample tend to orient in

the direction of the field, giving rise to a resultant macroscopic

magnetic moment. The effect of the magnetic field is to cause a

precession of the macroscopic moment about the direction of the field

with an angular frequency 7 Ho. If now a small coil.connected to an

rf signal generator, is wound around the sample so that the axis of

the coil is at right angles to the direction of the applied field,

there is introduced a small alternating magnetic field of strength H,

which rotates about the H6 direction with the particular radio fre-

quency used. The field H1 tends to tilt the direction of the macros-

copic moment away from the H6 direction as the radiofrequency

approaches the precession frequency; at the resonant frequency,

- transitions are induced between the nuclear Zeeman levels. These

”transitions correspond to some of the nuclear magnets.changing their

orientation in the field. The energy absorbed in this process produces

a drop in rf voltage in the tuned circuit containing the transmitter

coil; the voltage drop may be;detected, amplified, and fed into the

vertical deflection plates of an oscilloscope. In practice, the radio

frequency of the signal generator is usually fixed and the applied
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field H0 is varied near the value at which resonance occurs. This is

accomplished by mounting, on the pole faces of the magnet, coils which

can be used to sweep the field with an amplitude of a few gauss at

some low frequency (about 50 cps). The same sweep signal can be fed

into the horizontal deflection.plates an oscilloscope, and the recur-

ring absorption signal is displayed on the screen.

I. F. Chemical Shift

The nuclear resonance frequency of a particular nucleus occurs ..

at different values of a given applied magnetic field, according to the'

nature of the chemical compound containing the nucleus. These frequency '

differences have therefore been called "chemical shifts". In equation (1.5),

Ho refers to the magnetic field actually experienced by the nucleus and

this is not equal to the applied magnetic field, H, when the nucleus is ‘

present in a chemical compound. The reason is that when any

chemical substance is placed in a magnetic field, weak currents are induced

in the electron clouds surrounding the nuclei. These induced currents flow .

according to Lenz's law in such a way as to set up a magnetic moment which

opposes the applied fields, and it is this effect which is respohsible‘for

the bulk diamagnetism of all matter. These weak induced diamagnetic moments

reduce the field experienced by the nucleus to a value smaller than the

“ applied field, and it is usual to express this effect as

30-11(1-6) (1.7)

where 0 represents the factor by which H is modified by the induced

diamagnetism. Equation (1.5) is then written.:

“H (1-.) (La

I

hv
 

0
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and the parameter a is known as the "chemical shift" or magnetic

shielding constant. The chemical shift is dependent upon the externally

applied field, becoming larger with increasing field strength.

I. G. Spin-Spin Interactions

In NMR spectra the absorption lines are usually affected by inter-

actions between the nuclei and between the nuclei and their environment.“

These interactions can be classified as dipole-dipole interactions,

electric quadrupole coupling, and electron coupled spin-spin interactions.

Dipole-dipole interactions between neighboring nuclear magnetic

moments are dependent upon separation and relative orientations of the

nuclear moments. Thus, instead of all nuclei experiencing the.same uniform

magnetic field Ho, different nuclei in a specimen will experience various

fields spread over a range of frequencies and the spectral line will be

broadened. These considerations are effective, however, only if the nuclei

maintain the same orientation relative to one another and to the external

field, as in solids. In liquids and gases, where the molecules are rotap'

ting and tumbling about rapidly, the magnetic field at any one nucleus.

due to the others effectively averages out to zero. The cause of the

magnetic dipole broadening (dipole-dipole interaction) is removed by ""

this averaging and the resonance signals become much sharper. In solids,

' since nuclei for which I I‘% have no electric quadrupole moment, the

dipole-dipole coupling is usually the dominant mechanism for line broap

dening. In a solid containing nuclei (I ..% ) grouped in relatively

isolated pairs, each nucleus experiences a magnetic field whose direction

is taken as the z-axis Ho 2 Hlocal , where “local is the local magnetic
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field set up by one nuclear magnet in the region of the other. For

dipoles of moment u at a distance r apart and with the internuclear

vector making an angle“. with Ho (which is parallel to the z-axis)

Hlocal - 23(3 c0826 - 1) (1.9)

r

so that H = no t “a (3 c0826 - 1). (1.10)

r

The nuclear resonance spectrum would therefore be expected to be

a pair of lines at frequencies separated by

2 u 3 29 - 1 . ‘ I.ll_;3.( cos ) ( )

In fact, however, there is an additional quantum mechanical interaction

which in this case leads to a pair of lines separated by

i g (3 cosze - 1): for pairs of identical nuclei. (1.12)

The detailed shape of this pair of lines has been obtained by Pake (32)

by_a simple quantum mechanical perturbation calculation using the

‘ dipole-dipole interaction Hamiltonian:

)6: r-3[ 31-352 - 3:"? (it.- a) (32-3)], (1.13)

where r is the internuclear distance and r is the unit vector. For

two protons at a distance of l: , the doublet separation is of the

order of lO gauss or h2 kc/sec at 10,000 gauss field. If the pair of

nuclei arennot,identical the line separation is then

2 u 2 .

“;r ( 3 cos ex 1) (1.1h)

In a single crystal containing pairs of nuclei with the internuclear

vectors all pointing in the same direction, the doublet separation

'*varies from 3 u when 6 is “ to 6 u when 0 - 0. From the

r3 7 .3

  



1h

variation of the doublet separation with the orientation of the crystal

in the magnetic field, the directions of the H-H vectors in the crystal

can be found, and from the spacing of the doublet r can be deduced. When

the nuclei are grouped in a crystal in more complicated arrangements

than those described above, the absorption line is often a broad and

shapeless hump. Van Vleck (33) showed that useful information can still

be derived. Rigorous expressions were obtained for the second and fourth'

moments of the absorption line in terms of the internuclear distances

in the crystals.

Nuclei for which Izi ‘usually have an electric quadrupole'moment

2 from spherical symmetry

(7). This is a measure of the deviation of the electric charge dis-

tribution within the nucleus. If the positive charge is spread over a

prolate spheroid,the quadrupole moment is said to be positive; if the

charge is spread over an oblate spheroid,the quadrupole moment is

taken to be negative. Nuclei with I -'%Phave no electric quadrupole

moment, therefOre NMR experiments on these nuclei are not complicated

by direct interactions of the nuclear spin with the electrical environ-

ment. ‘

When a number of liquids were examined by NMR spectroscopy, it

'was feund that certain substances showed more lines than could be

explained by means of the chemical shift alone. For example, Gutowsxy, ‘

McCall and Slichter (3h) found that the fluorine resonance spectrum of -

POCle consists of two lines of equal intensity, although there is

only one fluorine atom in the molecule. Other molecules gave symme-

trical multiplet signals. These multiplicities were attributed by

‘Gutowsky, McCall and Slichter (3h), and by Hahn and Maxwell (35), to
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an interaction between the nuclear spins which is proportional to the

scalar product IioIJ where Ti and 13 are the nuclear spin vectors.

'Unlike the direct interaction of magnetic dipoles (dipole-dipole

interaction) an energy of this sort does not average to zero when

the molecules are in rapid random motion, so its effect is still

observable in the spectra of liquids and solutions. Furthermore,

the splitting of the lines which results from this interaction is

independent of the applied magnetic field, in contrast to the sepap

ration of chemically shifted lines which is proportional to it. The

pinterpretation of these interactions was first given by Ramsey and

Purcell (36) and by Ramsey (37). They showed that they arise from

an indirect coupling mechanism via the electrons in the molecule.

Thus a nuclear spin tends to orient the spins of’ the) electrons

and consequently spins of other nuclei. The magnitudes of the spin-

interaction energies are usually expressed in cycles per second (cps).

Observed interaction energies vary from about 1,000 cps to small

values at the limit of experimental detection ( <1 cps ).

The way in which the spin-spin coupling affects the NMR spectrum

can be seen easily for the simple case of a pair of unlike nuclei, A

and B, coupled together. From equations (1.1) and (I.h) the energy of

interaction of the nucleus with the strong field Ho,taken to be along

the z-axis, is 45» Yomfio(l- 0) ' (1.15)

For a system of two particles with no spin coupling, the Hamiltonian

-for interaction with a static field Ho in the z-direction is therefore

3‘6,- -fi[YAHo(l- °A) IzA + yBH°(1- GB) 123 . (1.16)

If we take‘vo as the mean of the two resonance frequencies, and. 5 as
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an interaction between the nuclear spins which is prOportional to the'

scalar product IioIJ where Ti and I3 are the nuclear spin vectors.

Unlike the direct interaction of’magnetic dipoles (dipole-dipole

interaction) an energy of this sort does not average to zero when

the molecules are in rapid random motion, so its effect is still

observable in the spectra of liquids and solutions. Furthermore,

the splitting of the lines which results from this interaction is

independent of the applied magnetic field, in contrast to the sepap

ration of chemically shifted lines which is proportional to it. The

’interpretation of these interactions was first given by Ramsey and

Purcell (36) and by Ramsey (37). They showed that they arise from

an indirect coupling mechanism via the electrons in the molecule.

Thus a nuclear spin tends to orient the spins of' the. electrons

and consequently spins of other nuclei. The magnitudes of the spin-

interaction energies are usually expressed in cycles per second (cps).

Observed interaction energies vary from about 1,000 cps to small

values at the limit of experimental detection ( <1 cps ).

The way in which the spin-spin coupling affects the NMR spectrum

can be seen easily for the simple case of a pair of unlike nuclei, A 3

and B, coupled together. From equations (1.1) and (I.h) the energy of

interaction of the nucleus with the strong field Ho,taken to be along

the z-axis, is 46» YomHo(l- 0) (1.15)

For a system of two particles with no spin coupling, the Hamiltonian

for interaction with a static field Ho in the z-direction is therefore

)6,- -6[1Ano(1- 0A) 12A + ”3110(1- 03) IzB . (1.16)

If we take‘vo as the mean of the two resonance frequencies, and 5 as
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an interaction between the nuclear spins which is proportional to the

scalar product Iiofj where Ti and I: are the nuclear spin vectors.

Unlike the direct interaction of magnetic dipoles (dipole-dipole

interaction) an energy of this sort does not average to zero when

the molecules are in rapid random motion, so its effect is still

observable in the spectra of liquids and solutions. Furthermore,

the splitting of the lines which results from this interaction is

independent of the applied magnetic field, in contrast to the sepap

ration of chemically shifted lines which is proportional to it. The

{interpretation of these interactions was first given by Ramsey and

Purcell (36) and by Ramsey (37). They showed that they arise from

an indirect coupling mechanism via the electrons in the molecule.

Thus a nuclear spin tends to orient the spins of’ the electrons

and consequently spins of other nuclei. The magnitudes of the spin-

interaction energies are usually expressed in cycles per second (cps). .

Observed interaction energies vary from about 1,000 cps to small

values at the limit of experimental detection ( <1 cps ).

The way in which the spin-spin coupling affects the NMR spectrum

can be seen easily for the simple case of a pair of unlike nuclei, A

and B, coupled together. From equations (1.1) and (1.h) the energy of

interaction of the nucleus with the strong field Ho,taken to be along

the z-axis, is .11. YomHo(l- a) (1.15)

.For‘a.system of two particles with no spin coupling, the Hamiltonian

‘for-interaction with a static field H0 in the z-direction is therefore

)6; -munou- 0A) 1.1 + mucu- .3) 123 . (1.16)

' If we take v0 as the mean of the two resonance frequencies, and 5 as
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h the chemical shift between them, this can be re-written:

M- -h[(v° - -:- 5) IM + ( v0 + -:- a) 123] . (1.17)

The energy levels are therefore,

Emma - 4.11.0 - 1.) “A + < .0 + 5 ) m3] . (1.18)

The energy levels are shown in Fig. 2 (a),and if the allowed transitions

are Am.A a l and AmB - l, we obtain two lines in the spectrum, sepa»

rated by the chemical shift 5 , each of the two lines being doubly
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Fig. 2.

If the two nuclei are coupled together, the Hamiltonian now becomes:

1 1

36- -h[( v0-35) 1M + (”0‘1“ IzB]-£J1A.TB (1.19)

where J is the coupling constant in cps. If J is very much smaller than.5 ,

the last term in equation (1.19) can be treated as a small perturbation

onJ‘e , so that mA and mB remain good quantum numbers, and we can write

E -h[(vo - .56) mA + (v0 *‘36 ) mg + JmAmB] (I.20)

The energy levels are now as in Fig. 2 (b) and transitions of nuclei A and
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B give energy changes of ABA-‘h(vo -.%5 + JmB) and AEBIh(v° +'%5 +Jmm),

respectively. The perturbation has lifted the degeneracy of the two

lines which are split by J cps. Note that the resonance due to the A

nuclei is split according to the values m3 of the B nuclei and vice-

versa.

If the two nuclei A and B are entirely equivalent (5 I 0), then

no splitting of the lines can be observed and only a single resonance

occurs. This is because the now indistinguishable nuclei must be described

by writing wave functions which are either symmetric or antisymmetric in

the spin, as in describing the ortho and para states of hydrogen. The

singlet state with 1- O has no magnetic sublevels and the triplet state

has m I +1, 0 and -1. However, all the sublevels of the triplet have

IAf TB . +-% , so that the interaction shifts them all equally and pro-

duces no Observable splitting.

In the case of the proton resonance spectrum of acetaldehyde (CH3CH0),

there are;two sets of equivalent nuclei, one in the CHO group (A) and

the other in the CH3 group (B). Since the protons of the CH3 group are

indistinguishable we must treat them as a group with MEI 2mB. The energy

changes are then feund to be:

A

i e - l e e . l

CHO group. AE - h (v0 25 + JMB), CH3 group. 5E3 h(v° +m56 +JmA).

Now mAcan take on the values t g. , so that the CH3 resonance is a

doublet, and since the two values of mAare equally probable, the two

components of the doublet are of equal intensity. ”B can take on the

values ;. , %.,-é_ , -3 by combination of the three B spins:

1 1 1 1 1 1 1 1 1

+-1—-.l.+i . -l+-L-l ’

2 2 2 2 2 2

2 2 2 2 2 2
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The CHO resonance is therefOre a quartet, and since the values +3,

2

and -%. of MB can be achieved in three times as many ways as the values

3
+3 and - % , the intensities of the quartet lines are in the ratio 133:3:1-

In the general case for a set of NA equivalent nuclei of type A inter-

acting with Nx equivalent nuclei of type X, the A signal has 2lex + 1

components and the X signal has 2NAIA + 1 components. The relative

intensities of each group of signals are in the ratio of the corres-

ponding binomial coefficients. The A and X nuclei may belong to different

species, or they may be of the same species if the chemical shift between

their resonance signals is large. When the value of J is not small comp~

pared with 6 , then it can no longer be considered as a simple pertur-

"bation and an exact calculation must be made. The methods for the analysis

of complex spectra will be discussed in Chapters III (and IV..

I. H. Classification of Nuclear Group;

It is convenient to introduce a notation for typical groups of

nuclei which may appear in molecules and which will possess character-

istic NMR spectra. First of all we should distinguish between iso-

chronous nuclei and equivalent nuclei (38). Isochronous nuclei are

"those which have exactly the same chemical shift; while equivalent

"nuclei not only have the same chemical shift but are also identically ‘

coupled to all other nuclei in the system. A pair of nuclei can be

equivalent only if they are isochronous. There is a well known theorem

stating that scalar couplings between equivalent nuclei are unobservable

in an NMR experiment (18, 23). The proof of this theorem does not depend

on symmetry in any way. The importance of the distinction between iso-



19

chronous and equivalent nuclei lies in the fact that the total spin

angular momentum of a group of equivalent nuclei is a good quantum

number. As a consequence, the NMR spectrum of a molecule containing

a group of equivalent nuclei consists of a superposition of spectra

arising from the various "spin particles" formed by the equivalent

nuclei. This observation makes direct analysis of spectra of this

type much simpler, once assignment of spectral lines to the corres-

ponding transitions within the appropriate energy-level diagrams

is accomplished. We shall use the symbols A, B, ... for nonequi-

valent nuclei of the same species whose relative chemical shifts

are of the same order of magnitudes as the spin couplings between

them. X, Y, ... will be used for another such set whose signals

are not close to those of the set A, B, ... The nuclei in the set

X, Y, °-- may or may not be of the same species as those in the set

A, B, °-°, the only feature that is important in the theory is that

the chemical shift between the groups A, B, ... and X, Y, --- is

large compared with any of the spin couplings. Equivalent nuclei

will be described by the same symbol. Thus, 1,1,1-trifluoroethane

(CH3CF3) is an example of an A3X3 system since the carbon nuclei

have no magnetic moment and may be ignored. The protons in l-bromoethane

(CHBCHZBr) form two groups of equivalent protons and are described as

an A B system, for the chemical shift between the three protons in
3 2

CH3-group and the two protons in CH2

small. o-Dichlorobenzene protons, on the other hand, constitute a

-group is observed to be relatively

system of two groups of isochronous protons and would be represented

as AA'BB'. Here we notice that the primes on A and B are used to

describe nuclei that are isochronous but not equivalent.



II. FORMULATION OF THE QUANTUMAMECHANICAL PROBLEM

The fundamental procedure involved in the analysis of NMR spectra '

consists of finding the energies and transition intensities corresponding'

to the stationary states of the nuclear spin system. The basic quantum-—‘

mechanical method of finding expressions for the nuclear energy levels

of the system of interest, together with expressions for the relative

transition probabilities between these levels, is quite similar to the

methods that have been extensively employed in other field of spectros-

copy (e.g” infrared, ultraviolet etc.). This requires deriving or hypo-

thesizing a satisfactory Hamiltonian for the system of nuclear magnetic‘

moments in magnetic field and solving the SchrBdinger equation fer the‘

eigenvalues of this Hamiltonian, which are the desired levels of the

system. Usually, the exact Hamiltonian for the energy of a molecule is '

simplified in-some way so as to give an approximate Hamiltonian: the "‘-

approximate Hamiltonian is chosen to be as accurate as possible and, at

' the same time, to be such that the Schr8dinger equation can be solved

exactly and conveniently. The zero-order energies and wavefunctions thus

obtained are then used as a starting point for a more accurate calculation

of energies and wave functions using, in so far as possible, a complete

exact Hamiltonian. This latter calculation is, in many cases, greatly

simplified by selecting the zero-order wave functions to be eigen-

functions of all those molecular properties that commute with the complete

Hamiltonian. Molecular symmetry and spin or rotational angular momenta

are typical of such molecular prOperties. The exact wave functions and

energies are also commonly classified according to such molecular pro-

perties-inasmuch as the spectroscopic selection rules are generally

conveniently formulated in terms of such classifications. Also the

20
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classification of energy states according to these molecular properties

often enables one to predict how transition energies and intensities will

behave under specified perturbations.

II. A. Hamiltonian

It has been well established that high—resolution NMR spectra

(omitting relaxation effects) are fully accounted for by the following

spin Hamiltonian (18, 3h, 36, 37):

M '}(€0 ) +a»€_( 1 )' (11.1)

SHE? ) , the external-field Hamiltonian, corresponds to the interaction

of the nuclear moments with the external field. If the direction of the-

strong magnetic field H is the "negative" z-direction, the energy of a

nucleus in this field will be thIz, measured in ergs if H is measured‘

in gauss. The more convenient unit for measurement will be cps. With

' this unit, the interaction becomes yHIz/2n . For a set of nuclei with'

'magnetogyric ratios Y1 and acted on by field Hi’ the external-field

Hamiltonian will be

94: °’ - (2 ”"15? 71111141) - (11.2)

Where 11 will depend only on the species of nucleus and 12(‘) is the

angular momentum component in the z-direction (in units of 2b ). For

s

1
nuclei of spin;- , 12(i) can take values 4- .. or - }_ . The sign

2 2

convention is such that the external field is in the negative z-direction

 

so that nuelei with positive spins have high energies. The magnetic field

H1 will differ from the external field HD because of electronic screening.

Thus,we write Hi I Ho (1- Oi): where oi is the appropriate screening

"constant. Because the theoretical presentation is simpler, we shall
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discuss the set of energy levels when the external field H0 is held

constant. although.as we have already mentioned1the experiment is

usually perfbrmed by varying Ho to get the resonance at a fixed

frequency.

The other part of the Hamiltonian corresponds to the indirect

spin coupling and can be written:

(1) -> +

96 - 1: .1 1(1)~1(1) (11.3)

.. w ‘3
where 1(i) is the spin angular momentum vector (in units _2_.) and

21

J1J is the coupling constant between nuclei 1 and J and will have

the dimensions of energy(cpal

'In the presence of a perturbing rf field, HI I 2H1cos mt,

along the x-axis, it is necessary to include a third term.in the

Hamiltonian:

(2) “
ag— - - 11‘) + + (IIJ-t)

2" 2 1(1) 1;

1 _ , .ial IX

However, to avoid saturation Hx is kept very small in practice and

this term.may be neglected in the complete spin Hamiltonian. So the

complete spin Hamiltonian is:

0 1

as ..a Mac} ’
-1 + 0-)

- (2x) :11 1.111201%~ 153 JiJIU) 1(1) (11.5)

II. B. Spin Functions, Basic Product Functions and Basic State

Wavefunctions

We write<s for the spin function of the nuclei with spin quantum

‘ ‘numberé. ends for nuclei with spin quantum number - i. If the system

. 2

contains N nuclei (all with spin%. ). there will be a total of 2N
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possible spin states. The simplest set of functions describing this

many-spin system would be the 2" aasic product functions such as

*3 I 0(1) B(2)a(3) ........ 8(N). This product will usually be shor-

tened to use ......... B, it being implied that the rt

h

h symbol applies-

to the :rt nucleus. If the nuclei were actually independent, the basic"~‘

product functions would themselves be stationary-state wavefunctions

' (or basic state wavefunctions) in the presence of the external magnetic "

field. The only constant of the motion in this case is 12,.the total“

z-component of spin. However, the spin-coupling Hamiltonian‘aél) may

cause mixing between different product functions. Since the various

basic product functions Wu are all orthogonal to one anothgr, the

correct 22§ig_gtgts_wavefunctions are the linear combinations of the--

basic product functions which diagonalize the matrix of the complete

spin Hamiltonian. The coefficients in the linear combinations of the

basic product functions may be obtained from the secular equations*‘

by substituting the roots and normalizing. It often happens that-in'

'a molecule there are several equivalent nuclei as far as equation (I.5)~’

is concerned. These are treated as groups of equivalent nuclei x, 1,...

‘having resultant angular momenta H I £I1.(x ) etc., and having the "

“coupling constants JkA°°°° between groups and the couplings J13(x )

~between~nuclei in the same group. We can then write

a€ - (2.)"1 1: 11311.“)“0 it<..)»1:(1)+ 1’3 Juan-m» i1: Juan-1(1) (11.6)

Now it can be shown (18) that a selectieh rule on the reg tant spins

- of the group preventiany effects of the intra-group couplings from

'being manifested in the spectrum. Therefore all these couplings may

"be set equal to zero for simplicity. The remainder ofafiin equation(II.6)
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is then seen to be identical to equation (11.5) if we treat 12 and I:

in the same way as the spins of individual nuclei. We can .then take

advantage of the spin groups in evaluation of matrix elements and

obtain a significantly better factorization of‘the secular equation

if we use basic functions which are eigenfunctions of K2, K2 ......,

Just as the spin- functionsa and B are eigenfunctions of 12(i),'1z(i)

for individual nuclei. The basic product functions are eigenfunctions

of K2 but not K2. Linear combinations of: them which satisfy this addi-

tional requirement can be constructed using the projection operators

proposed by L8wdin (39, ho, bl):

 

0km-(2k+1).(.1£1.i'1)_‘_ l“Ml-'1”"..1))~1‘.‘."m”" 1191-!!!” (11.7)

(k-m)! v.0 v! (2kw +fi! ’

where k and m are quantum numbers which go. with K2 and Hz, and kmax is

the maximum value of k consistent with group of spin x.The raising

and lowering operators M and M- may be symmetrically expanded in terms

I

of the individual 1+1, whose matrix elements are known, by the multi-

nomial theorem. The operator 012.“, operating on a product function. of

known 1): turns it into a simultaneous eigenfunction of K2 . For‘example.

if km operate on cans , k I «L +%.+ .;_+ %I 2, k I l, mk I 1, thus: '

 

max 2

4711-3112215 <-1)"”-’-’“ .3:<a.—+.11-_s.+_)
vao v!(v+3)! 3! 11 M

0110008: 33[-222§-— + M+ an ] = :3[ 0008 ...M“ (00.08)]

31 I): a B 3) TI?“

= 3Hfff‘fw "(”1" Baaohsoa + oa801+ aao8)]

3. H

=—- ( 3ua08- Baas“ (180101' (10180))

When degeneraeics arise, the degenerate functions may be orthogonalized

by standard methods (1)0, ‘41). When the number of spins in a group is

large it may become awkward to handle the basic functions described
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above. It very often happens that several nuclei in a molecule have

the same chemical shift but each nucleus does not identically couple

to all other nuclei in the system (i.e., isochronous nuclei, see sec-

tion I. H. ). For example, in CH2 I CF2 both protons must have the

same chemical shift, but each is in a different relation to the F19

nuclei individually. Under such circumstances the H-H spin coupling

cannot be ignored and the above simplification is not valid. In this

case nothing is necessarily gained by using the basic spin wavefunc-

tions which are eigenfunctions of the squared-group angular momenta.

‘ It is profitable, however, to make them eigenfunctions of the symmetry

operations of the molecular point group; that is, use is made of sets

of basic spin wavefunctions that belong to the irreducible representa-

‘ tions of the symmetry group. Methods for setting up the desired basic

functions are discussed by McConnell et al. (h2), by Paple et al. (18)

and in detail, by Wilson(h3). As an example, the three hydrogen atoms

(numbered 1, 2, 3) in symptrifluorobenzene can interact through the terms

92‘?- Jnl 1(1)o1<2) + 1(2)«1<3) + imam). (11.3)

Consider the three product functions for these H nuclei, for the case .H-

i-, i.e, Baa,a8a,acB, These can be combined to form one Alcombination and

one pair in E [Alia one-dimensional group representation: while B is two-

dimensional group representation (h6)]. To construct the actual linear

combinations (symmetry basic spin wavefunctions) it is convenient to use

the formula (hh): ¢(Y) I n% xP)7)P ¢1 '- (11.9)

in which 0(") is a symmetry combination of species FY , n is a normalizing

factor ,' - x P(Y ) is the character for the permutation P and species RYIavai-

lable in tables (hh)], c1 is one of the product functions (here Baa

~for the H nuclei), and P ¢11s the function formed from(¢1 by applying
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the permutation P. The sum is over the whole group. In the present

case there results for the three hydrogen nuclei:

(A1)

H

l

' (£32.(81a2c3 *0182a3 +a1a283 )

W éEa)' (é) (2 81oza3’a18203 -°1“233 ) I ha .1 (II.lO)

It is often not necessary to construct the other member of the

degenerate E pair (abbreviated notation hb), but in case it is, it

can be done by applying the same formula but using ¢2 (I 513203 )

instead of ¢1(- 81o2a3 ), then forming the linear combination of

(E

H

a function orthogonal to ¢(EB)° The result is

H

the resulting function with p a) in the foregoing so as to obtain

1
1..

"(f-(Eb). (3)2 ( “182“3- “10283) a hb . (11.11)

11. C. Matrix Elements

The calculation of matrix elements of the NMR spin Hamiltonian

(equation 11.5) between basic state wavefunctions (or basic symmetry

state wavefunctions) is one of the preliminary steps for the detailed

analysis of high resolution NMR spectra. Since each basic product

function is itself an eigenfunction of each term in the external-

field Hamiltonian, the diagonal matrix elements of this part are simply

obtained by replacing 12(1) in this part by t.%.according to whether the corres-

ponding spin function is a or B; and there are no off-diagonal matrix‘

elements of external-field Hamiltonian between the basic product func-

tions. There will, however, be both diagonal and off-diagonal matrix

elements of the spin coupling Hamiltonian between the basic product

functions. McConnell et al. (h2) have shown some relatively simple rules

that can be used in the evaluation of non-zero matrix elements involving
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spin-spin interactions, i.e., the matrix elements of the spin coupling-

Hamiltonian between basic (symmetry) wavefunctions. In the evaluation

of a matrix element of the type

<00

m

there occur many terms of the type

(153 11,1(1)«1(1)| a: >

Z + 0+

<. (op |1<J Jum) 1(1)| ¢q>

where the up and sq are single products of spin functions such as

oBca ......(basic product functions). These integrals are easily eva-

luated-by the equations .

, z + 1 . _ 1 2
‘ "(P '1‘.) JiJHi) it)” "’p> To- 1‘.) JiJTiJ (11.12)

- where TU. +1 if spins iand J are parallel, and T I -1 if spine 1

i.)

and J are antiparallel, and

< .1) I133 J13I(i)°I(J)| .q , ..§. (111J (11.13)

where U I 1 if Hp only differs from *q in the permutation of spins'

i and J, and U I O in all other cases. If the basic set consists of

some linear combinations of products, corresponding matrix elements

are easily evaluated by expansion. The evaluation of these matrix

elements of the spin-coupling Hamiltonian is a relatively simple pro-

blem with but three or four nuclei; with five or more spins, however

there is considerable labor and tedious work involved. Corio (ks) has

proposed a method to simplify the calculations, but the calculation

still.must be done manually. A new method which employs a digital com-

puter to evaluate the matrix elements of the spin-coupling Hamiltonian

is proposed-in the following sections.



28

II. C-a. Glossary of Definition and Notations

J:

M(J):

The number of basic state wavefunctions, e.g.,the two spin

system has four states (22 Ih), so the maximum value of

J is h. *1 a as, J I 1; $2 I]; (08 +80 ), J I 2;...etc.

The number of basic product functions in a basic state

wavefunction.due to degeneracy. K I l, ...., M(J), e.g.,in

#2.: AM 68 +801), (yé-WB has J - 2, K- 1; (5-)... has

J - 2, K - 2.

The number of spin functions, L I l, ..., N in a basic

product function. e.g.,in #2 I.;5.( a8 + Bo ) the spin

function a in the first term of the right side of the

equation has J I 2, XhI l, L I l.

The total number of states (or basic state wavefunctions),

e.g.,two spin system has a total of four states (22 I h)

(or four basic state wavefunctions); J I l, 2, ...... I.

The total number“ of spins; e.g”.for the two spin system,

N - 2.

The total number of basic product functions in the state J;

e.g., for the two spin system in state J I 1, ((1 has only

one basic product function on, so M(J) I M(l) : 1; while

in state J I 2, $2 has two basic product functions, namely,

(.dl')“ and(f§-)Ba ,soM(J)IM(2)I2, and (,1)... is

the first basic product function in state J I 2 for which

H I 1 while (1%.)31 -is the second basic product function

in state J - 2 for which K - 2; x -'1, 2, ...., M(J).-
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CD(J, K): The coefficient for each of the basic product wavefunctions:

e.g., wz-j%((ae + Bo), CD(2, 1) - CD(2, 2) - Z; .

QI(K, L): Coefficients for the coupling constants between nuclei K

and L.

JL; The number of the last basic state wavefunction in the

system.

JF: Label for final basic state wavefunction in the matrix

1

element of¢}€£ ) connecting initial and final states as:

< final state|3f£l)| initial state >.

J1: Label for initial basic state wavefunction in the matrix

1)
element °fdd under computation, e.g.,dllaéul *3 >

JFIl,JII3.

KF: Final basic product function.

KI: Initial basic product function.

LS: Comparing two basic product functions the first pair of

different spin is labeled LS.

LT: The second pair of different spin.

L1: Label for the thh spin under consideration.

MD: --- The total number of pairs of different spins.

.The definitions of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given

in Table 111. Other variables in the flow chart are dummy variables.

From the above definitions and notations, we can use a three-

dimension array 1D(J, X, L) to denote gpig_functions, Eggigiproduct

functions and 23.1%.!_s_t_at_e_ wavefunctions, e. g. , in a two spin system,

ID(l, l, 1) means the first spin function in the first product function

of the first state wavefunction- Thus, 3. ID(2, 2, 1) means the first
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CD(J, X): The coefficient for each of the basic product wavefunctions;

1

l2

QI(K, L): Coefficients for the coupling constants between nuclei K

e.g., was]; ((18 + Bo), CD(2, 1) - CD(2, 2) .

and L.

JL; The number of the last basic state wavefunction in the

system.

JF: Label for final basic state wavefunction in the matrix

1

element of‘3€£_) connecting initial and final states as:

< final state|3f£1)| initial state >.

J1: Label for initial basic state wavefunction in the matrix

(1) 1
element of3.Q_ under computation, e.g.,<wl|3.d )I *3 > ,

JF I l, JI I 3.

HF: Final basic product function.

KI: Initial basic product function.

LS: Comparing two basic product functions the first pair of

different spin is labeled LS.

LT: The second pair of different spin.

L1: Label for the LIth spin under consideration.

MD: ~~- The total number of pairs of different spine.

.The definitions of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given

in Table 111. Other variables in the flow chart are dummy variables.

From the above definitions and notations, we can use a three-

dimension array ID(J, K, L) to denote gpin_functions, begig_product

functions and w'm wavefunctions, e.g. , in a two spin system,

ID(l, l, l) means the first spin function in the first product function

of the first state wavefunction- Thus. a. ID(2, 2, 1) means the first
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CD(J, K): The coefficient for each of the basic product wavefunctions;

1 l

e.g., )2-15.(ae + Bo), CD(2, 1) - CD(2, 2) . If .

QI(K, L): Coefficients for the coupling constants between nuclei K

and L.

JLi The number of the last basic state wavefunction in the

system.

JF: Label for final basic state wavefunction in the matrix

1

element of¢}€£ ) connecting initial and final states as:

< final state|3{51)| initial state >.

J1: Label for initial basic state wavefunction in the matrix

(1) (1)
element of&Q_ under computation, e.g.,<s1|3{_ I *3 > ,

JF - 1, J1 - 3.

HF: Final basic product function.

KI: Initial basic product function.

LS: Comparing two basic product functions the first pair of

different spin is labeled LS.

LT: The second pair of different spin.

L1: Label for the LIth spin under consideration.

MD: -.~ The total number of pairs of different spine.

.The definitions of ND(S), ND(t), NABS, NDD, NSUM, .... etc. are given

in Table 111. Other variables in the flow chart are dummy variables.

From the above definitions and notations, we can use a three-

dimension array 1D(J, X, L) to denote 32i2_functions, begig_product

functions and m'm wavefunctions, e.g. , in a two spin system,

ID(l, l, 1) means the first spin function in the first product function

of the first state wavefunction- Thus, 3. ID(2, 2. 1) means the first
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spin function in the second product function of the second state wave

function; i.e., B . So in the two spin system, plI as can be repre-

sented by ,1. ID(l, 1, 1) ID(l, 1, 2); (12' (153(3); +3., ) by

*2' 1 {ID(2, 1, 1) ID(2, 1, 2) + ID(2, 2, 1) ID(2, 2, 2)} .....etc.
'7?

The coefficients are introduced as CD(J, K).

II. C-b. Logical‘Argument of the Computer Program

From the last section and the simple rules for evaluating the matrix

elements (h2), we know that matrix elements of

Ts°ft ' Igx°Itx * Isy°Ity I Isz°Itz

exist only when the two basic product functions 1D(J, K, L),L I l, ....,N;

1....(IDJK11DJK20.°°ooIDJKN). and ID(J'. K'. L')‘ L. ‘ 1.0eeee,N; is...

(IDJ'H'l

computer calculation,we let these ID's have numerical values 1 or 2

IDJ.K.2.....IDJoKoN)differ by no more than two of the ID's. For

according as ID's are a or B spins; e.g., if a basic product function,

is (IDJK11DJK21DJKBIDJKh) I aBaB , then it has the numerical value l212.

If another basic product function is (IDJ'K'11DJ'K'ZIDJ'K'3IDJ'K'h) I

sang, then it has the numerical value 1121. These two wavefunctions

differ by three of the ID's (IDJK2 I IDJ.K12 3 IDJK3 # IDJIKI3 ;

IDJKh f IDJ'K'h) so there are no matrix elements between these two

product functions. Also.if the two product functions differ by one

of the ID's only, there are still no matrix element between them; e.g.,

(IDJKIIDszIDJK3IDJKh) I eBaB I 1212, and (IDJOKIllpJ.K.21DJOKOBIDJOKIh)

case I 1211 differ by one 1D only(IDJKh I IDJ'K'Q" the other ID's in

these two product functions are the same , so there are no matrix

elements between them. Matrix elements exist between two wavefunctions

:for even differences up to two (namely zero and two) of the spin func-
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JKl
J'K'IIDJ'K'2

IDJ'K'3IQJ'K'h) I ease I 1212 have zero difference, so matrix elements

tions, e.g., (1D IDJKQIDJKBIDJKH) - aBoB - 1212 and (ID

exist between them. (IDJKlIDszanK3IDJKh) I aBoBI 1212 and (IDJchl

IDJ.K.21DJ,K.3IDJ,K.h) . 0880 -1221 differ by two ID's (1DJK3 i 1DJ1K13

and IDJKh I IDJOKOh), so matrix elements also exist between these two

basic product functions.

From the above, we know that the typical term of the matrix

elements of the spin coupling Hamiltonian is J1JI(i)°I(J), in which

only two nuclei are involved. So when we calculate the matrix elements,

we need only consider two nuclei each time and Table II can be easily~

obtained. Using the numerical characteristics of each two pairs of

spin functions, Table 111 can be constructed. Based on Table III, the

flow chart and the Fortran computer program MATREL have been written

for the Control Data 3600 computer (see Appendix I).

Table II.

a

‘ Coeff. for Coeff. for Coeff. for Total coeff. for

_a_._ " __L '

 

 

a a a a O + 0 + l/h I l/h

a B a B 0 + 0 + .(-l/h) I -l/h'

s o a a (o + o + (-1/h) - A -1/h

B 8 B B 0 + 0 4- l/h --- l/h

a a B 8 l/h + (-1/h) + ,0 I 0

B B c a 1/h + (-l/h) + 0 I 0

a B B a l/h + l/h + 0 I l/2

B a a B 1/h + 1/h + O I 1/2
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JKl
J'KOIIQJcKIZ

IDJ'K'3IQJ'K'h) I dads I 1212 have zero difference, so matrix elements

tions, e.g., (ID IDJK21DJK3IDJKh) - aBaB . 1212 and (ID

exist between them. (IDJKlIDJKZIDJK3IDJKh) I 0868' 1212 and (IDJchl

IDJ.K.21DJ,K.3IDJ,K.h) . asaa I1221 differ by two ID's (IDUK3 I IDJ.K.3

and IDJKh # IDgoKth), so matrix elements also exist between these two

basic product functions.

From the above, we know that the typical term of the matrix

elements of the spin coupling Hamiltonian is Jidf(i)°f(J), in which

only two nuclei are involved. So when we calculate the matrix elements,

we need only consider two nuclei each time and Table II can be easily"~

obtained. Using the numerical characteristics of each two pairs of

spin functions, Table III can be constructed. Based on Table III, the

flow chart and the Fortran computer program MATREL have been written

for the Control Data 3600 computer (see Appendix I).

Table II.

. _.i_-A""

_ Coeff. for Coeff. for Coeff. for Tota% coeff. for

(IDJKSIDJKt) (IDJchSIDJoKvt) JBtIBXItx +J8tI3yIty *JstIBZItz I Jot ,- t

 

 

c a a a 0 + 0 + l/h I l/h

a a a B o + yo + .(-1/h) . -1/h-

B a ‘ a a .o + o + (-1/u) . - -1/u

B a B B o + o + 1/h --' 1/h

a a B 8 l/h + (-1/h) + .0 I 0

B B a a l/h + (Illh) + 0 I 0

a B B a l/h + 1/h + 0 I l/2

B a a B l/h + 1/h + 0 I ll?
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Table III.

”

Coeff. ND(S)§ NDIt)- NABSI NDD NEUMI "“

 

 

JKt‘JKt IND(8}+ ND(s)-ND(B)*ID Both

IDJ'K'S IDJ'K't IND(t |_ND(t) ND(t) II Pairs
JKt

 

1/b o o a a 1-1-0 1-1-0 0 o o 0 same

-1/h o a o 8 1-1-0 2-2.0 o o o 71 same

-1/h a a e a 2-2-0 1-1-0 0 o o .1 same

1/h 'e a a a 2-2-0 2-2Io o o o 0 same

0 o o s a 1-2-1 1-2-1 2 o -2 0 diff.

o . a B o a 2-1-1 2-1-1 2 o 2 0 diff.

1/2 o a a a 1-2-1 ~2-1-1 2 -2 o -1 diff.

1/2 8 o o a 2-1-1 1-2I-1 2 2 o 1 diff.

 

 

II. C-c. Description of the Program

The program used for calculation of spin-coupling Hamiltonian matrix*‘

elements is quite straightforward. The basic state wavefunctions, the basic

product functions and the spin functions are numbered by J's, K's and L‘s ~

respectively. The program steps systematically through all of the basic ‘

wavefunctions, attempting to calculate-the matrix element between each"

different pair of the basic state wavefiynctions. First.it calculates the‘

e " 4

matrix element between W1 and h , then “’1 and 11:2 , then m and $3 ,....to

‘*JL which is the last of the basic state wavefunctions; then it comes back

'to calculate vzand *1, $2 and $2 , and so forth. The computer picks up-

two basic state wavefunctions Vland.-wl, then compares the basic product -'

functions in the basic state wavefunctions. (e;g., it compares the basic

product function of J -'1,~x --1 with that of J - 1, K I 1; then J - 1,

K I l with J I l, K I 2; then J I l, K I 2 with J I l, K I 1; then J I l,
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K I 2 with J I l, K I 2). If these two basic product wavefunctions

have matrix elements between them, then the computer goes further to

pick up each different pair of spin functions and performs various

tesuias listed in Table III, classifies it into one of the eight cases‘

. in Table III, and gives a value fer the coefficient of the spin coup-

ling constant of these two nuclei. If these two basic product wave-

functions do not differ-(i.e., have the same spin wavefunction) the

computer also assigns a value according to Table III for the coeffi-‘

cients of the spin coupling constants of any two nuclei. If these two

basic product do not have matrix elements, then the computer picks

up another basic product function for comparison. These procedures

"g won and on until it has calculated all the possible matrix elements.

'The-output will be all the coefficients of all the spin coupling cons-

tents, e.g., in five-spin systemm,the matrix element between *1 and *1

will be represented by coefficients of J1J in J11 J12 J13 J1“ J15 o

J2.1000000000J25’ J31 OOOOOOOJas. JH1°°°°°°°J‘95’ J51 OOOOOOOJSS 0

'Here obviously, we know that J11,J 33 ,...etc. are zero and that

22 ’J

J13 I J J ,.....etc..ao from the output we can easily obtain
31 ’ J12 ' 21 _

the matrix element between any two basic state wavefunctions.

In order to handle larger spin systems, the input basic state

wavefunctions of aysystem can be broken down into many subgroups, and

reach time we may take one subgroup as the input basic state wavefunc-

' Ations; e.g., in a five-spin system, there are a total of thirty-two

basic state wavefunctions; each time we can take eight or sixteen basic

'state-wavefunctions as input. The size of the subgroup (the total nump

her-of basic state wavefunctions of the subgroup) depends entirely on
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the size of the system (total number of nuclei) and the capacity of

the computer. One can also use the basic state functions with the same

projection of spin angular momentum M8 whichever is more convenient

for the computer .

II. D. The Secular Equation

0

1

0 .

andad ), respectively, and let E1 and Ego) be the corresponding

0

eigenenergies. Our quantum mechanical problem will then be to solve

We let 01 and 0 be the stationary state eigenfunctions of 29,

the secular equation

I)? - s 6 l - 0 (11.11;)
, J mn mn

for the‘energies, whereae I «2%) 92> (11.15)

‘ mm

and. Gmn 'I 1 if m I n and Gmn I 0 if m I n. The exact eigenfunctions of

. . O

the complete Hamiltonian are expressed in terms of the On by the equations

0

0mg”)? a O ,

[131 mn n

( 11.16)

where .the' 5m are obtained from the solutions of the P simultaneous

equations “£1139“ - Gmn Em] 8m I 0 ' - . (11.17)

The order of secular equation (II.lh) is 2", where N is the total number

of nuclei in the molecule with spin % . This 2Nx2N secular determinant

can only be useful for obtainingthe energies En for molecules with N>,5

when it is easily factored. It will be very important to obtain any

possible factorization of the secular determinant. The secular equation

(II.1h) can be factorized into a number of equations of lower degree in

E if we classify the basic state wavefunctions by total spin and synetry

i.e., we make use of the following mixing rules:

(1) There is no mixing between states of different total spin F2,
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where Fz . z I (1) (11.18)
1 z

' (2) There is no mixing between states of different symmetry.

The factorization of the secular equation arises because there are no

off-diagonal matrix elements of the Hamiltonian between the basic pro-

duct functions corresponding to different values of F and there arez'

no matrix elements of the Hamiltonian between functions belonging to

different irreducible representations. This is because the operator Fz

commutes with the Hamiltonianae and the Hamiltonian is totally symme-

tric with respect to permutations of equivalent nuclei. As a result we

can divide the basic state wavefunctions into classes according to

their values of Fz and their symmetries, and then it is only necessary

to evaluate the submatrices of functions in one such class. In other

words, for these cases, the basic symmetry functions are themselves

stationary-state functions. The set of functions ae,/%.( cB+ Be).

'/%( e6- 80). BB , for example, all differ from one another either in

spin or symmetry. There is no mixing and these are the correct stationary

-state wavefunctions for the symmetrical two-nuclear system.A2.

II. E. Selection Rules and Intensities of Transitions

The probability P(m+n)(in sec“) that a nuclear system undergoes

the transition m+n (i.e., ¢fi+ °n) is given (h6)-by the equation:

3

P . 1' .

(m) '1?— (fom 9» (11.20) .

where Mx I 2 vi 1x(i) (11:21)

1

and flax)“ . ( ml "xl on) ; (11.22)

MI is the x-component of the magnetic moment operator andpv is the
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energy density per unit frequency range arising from the oscillatory

radiofrequency field in the x-direction and 6m and in are the stationary

state wavefunctions. McConnell et al. (h2) derive the following two

selection’rules:

(1) In any allowed transition, the change of total spin is

AF I t 1 - (11.23)

(2) All allowed transitions must be between two states of the same

symmetry.

So (Mi)mn’ the transition moment, in equation (II.22) is different

from zero only when these two selection rules are obeyed and the inten-

sity of the transition between two states m and n is proportional to

the square of the transition moment.



III. A SURVEY OF THE VARIOUS METHODS CURRENTLY USED

FOR ANALYSIS OF NMR SPECTRA

In analysis of simple high-resolution NMR spectra, in which the

"ispin-spin couplings are much smaller than the difference between the '

chemical shifts, the simple rules based on a simple interaction Hamil-

tonian and first-order perturbation theory can be generally used (3%,

h2,-h7). The NMR spectra become complicated in substances where there

are nonequivalent nuclei of the same species whose relative chemical'

shifts are of the same order of magnitude as the splittings due to

spin coupling. If the chemical shifts are still moderately large, higher

order perturbation methods can be used with some success (h8, 39), but

eventually. individual multiplets become merged in a general mixed group

of lines which may have few features of regularity. One is then faced‘

with the problem of interpreting such a band system, assigning each line"‘

to a definite transition, and finally extracting numerical values fer

the chemical shifts and spin-coupling constants. A spectrum is considered-

'analyzed when the chemical shifts153 and the spin couplingconstants~513~'

of the system have been completely determined. Various methods have been-

proposed fer the analysis of complex NMR spectra. These methods can be

‘roughly~classified into three different approaches, namely, the iterative

approach (50-78), the subspectral analysis approach (79-102) and the dir-

ect calculation approach (103-113).

111. A. Iterative Approach

Analysis of complex spectra has most often been performed using the

iterative approach. In iterative procedures, Judicious estimates of chemi-

37
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cal shifts and spin coupling constants are inserted into the spin Hamil—

tonian and the eigenspectrum problem is solved to obtain transition energies

and relative transition probabilities which can be used to plot a calcu-

lated line spectrum. This calculated spectrum is compared with the experi-

mental spectrum and any differences are used as a basis for readjustment

'of the initial estimates of the chemical shifts and spin coupling cons-

tants. The initial estimates of the chemical shifts and spin coupling

'constants can frequently be obtained from known values in similar cases

or sometimes by use of the moment method of Anderson and McConnell or by

use of double resonance techniques. Swslen and Reilly's, Hoffman's,'Arata,"‘

Shimizu and Fujiwara's and Castellano andeothner-By's methods are all

based on the iterative principle.

In Swalen and_Reilly's method (SO-Sh), the experimental energy

levels are derived from the observed spectrum by making use of the trace

invariance property of the Hamiltonian matrix. They use derived levels

for iterative purposes. An approximate HamiltonianaLo is chosen and is

brought into diagonal form by a similarity transformation 8-968 I A0.

From.the experimental spectrum an energy level scheme is constructed,

and the reverse similarity transformation is then applied to the experi-

mental energy level matrix to obtain an improved Hamiltonian SAéxptls-1'

”imp. From”imp new values of 51 and JiJ are deduced, and the'process

repeated until a consistent set emerges. Two Fortran computer programs

based on this method have been written. These two programs are used in

three stageswin the analysis of a given spectrum, Systems up to and

including eight nuclei of spin-% can be analyzed. Recently, Ferguson

and Marquardt use magnetic equivalence factoring as a means of removing
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cal shifts and spin coupling constants are inserted into the spin Hamil—

tonian and the eigenspectrum problem is solved to obtain transition energies

and relative transition probabilities which can be used to plot a calcu-

lated line spectrum. This calculated spectrum is compared with the experi-

mental spectrum and any differences are used as a basis for readjustment

'of the initial estimates of the chemical shifts and spin coupling cons-

tants. The initial estimates of the chemical shifts and spin coupling

‘constants can frequently be obtained from known values in similar cases

‘or sometimes by use of the moment method of Anderson and McConnell or by

use of double resonance techniques. Swalen and Reilly's, Hoffman's, Arata,-

'Shimizu and Fujiwara's and Castellano and Bothner-By's methods are all

based on the iterative principle.

In Swalen anleeilly's method (SO-Sh), the experimental energy

levels are derived from the observed spectrum by making use of the trace

invariance property of the Hamiltonian matrix. They use derived levels

for iterative purposes. An approximate Hamiltonian){0 is chosen and is

brought into diagonal form by a similarity transformation 8-1»:8 I Ito.

From the experimental spectrum an energy level scheme is constructed,

and the reverse similarity transformation is then applied to the experi-

. .. ~1.x

exptls
mental energy level matrix to obtain an improved Hamiltonian 8A

”imp. Frommimp new values of 51 and Jij are deduced, and the'process

repeated until a consistent set emerges. Two Fortran computer programs

based on this method have been written.*These two programs are used in

three stageshin‘the analysis of a given spectrum» Systems up to and

including eight nuclei of spin %-can be analyzed. Recently, Ferguson

and Marquardt use magnetic equivalence factoring as a means of removing
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the eight spin limitation of Swalen and Reilly's method and have worked

out the case of ten nuclei of spin ‘/2 .

Arata, Shimizu and Fujiwara (59) use the observed frequencies and

relative intensities simultaneously for the iterative procedures. Both‘

frequencies and intensities are reduced to a dimensionless representa-

tion. The appropriate differentials are feund by equating terms in the

power series expansion of the correct parameters in terms of the dimena

sionless trial constants with the corresponding terms in the-perturba-

tion expansion of the Hamiltonian and Ix matrices.

In Hoffman's method (56, 57). first order perturbation theory is

used to determine the correction to an approximate set of parameters

fitted to the observed line positions. The line positions instead of

the derived experimental energy levels are used for iterative purposes.

An approximate Hamiltonian matrix is diagonalized. For selected experi-

mental transition frequencies, the approximation eigenvectors' ($568)!“-

0

(S’iJQjS)nn -‘vmn I*w - (vexptl) are evaluated, using the approxi-
mn mn

mate eigenvectors $.34L] is an estimate of the correction to the appro-

ximate Hamiltonian. If it is expressed algebraically as an array of

linear functions of the fundamental‘parameters, the set of approxima-

tions is obtained in the form of a set of linear simultaneous equations

in the corrections to the parameters. These may be solved by various

methods to yield the corrections and the iteration may be repeated until

a consistent set is obtained. Castellano and Bothner-By's method (61, 62,

67, 68) is very closely related to that of Hofflman. This method is appli-

Icable even if not all lines are assignable, is not affected by symmetry

:in the Hamiltonian, yields an estimate of the ellipsoid of error, and
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converges relatively rapidly to a predetermined assignment. A Fortran

computer program based on this method has been written systems up to

and including seven nuclei of spin %-are acceptable.

The most serious disadvantage of the iterative procedures is that

they are unsystemmatic and tedious where there are more than one or.two

-variables. In addition, these procedures still require identification

of the corresponding experimental and calculated spectral lines with one

another. For spectra containing many lines or with some closely-spaced

lines, such an assignment is particularly difficult. As a consequence"

ambiguity may exist in the derived values for the chemical shifts 6i and~

spin-spin coupling constants J13 and these procedures do not always give

'unique results. If only the transition frequencies (or experimental

energy levels) are used as the criteria for satisfactory agreement between -

calculated and experimental spectra ambiguities always exist since more

than one set of parameters give results consistent with the experimental

data~(10h).

The iterative approach is unsatisfactory for the reasons mentioned“ -

above; but once an approximate set of the NMR parameters is given, this "‘

method can then be applied to any general spin system up to eight nuclei

' 'of spin é.

III. B. Sub-eppctral Analysis‘Approach-"

The composite "particle" method of Waughrandwbobbs-(80)~and Whitman,

Onsager, Saunders and Dubb (79) is a special case of the subspectral ana-

llysis approach. This method has been applied to complex systems made up

of a' number of groups of magnetically equivalent nuclei. The spectra of
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such complex systems have been attributed to the superposition of sim—

pler spectra. The method considers each group of identical nuclei as a

composite "particle" with fixed total spin. When the symmetry of the

Hamiltonian (but not necessarily of the molecule) is very high, it is

often possible to handle the entire problem without any explicit refer-

ence to the zero-order spin eigenfunctions, thereby greatly simplifying

the mechanical details of calculation. This method offers no particular

advantages in dealing with cases of high molecular symmetry but low sym-

metry of the Hamiltonian, several examples of which have been previously

discussed (5. 6).

A more recent and powerful method is the effective frequencies

method which also can be considered as a special case of sub-spectral

analysis. Alexander (60) first recognized that complicated spectra can

be considered as being composed of two or more simpler spectra when

one interacting group is greatly chemically shifted from the other nuclei .

(or is of different nuclear species). This is the concept of "effective

frequencies". This concept has been first used by Narasimhan and Rogers -

(81, 82) in the interpretation of the proton portion (i.e., the ethyl

group portion) of the spectra of some organometallic compounds. The use

of effective frequencies was first put on firm theoretical ground and

applied to the calculations of ABR3X and ABZXq type spectra by Pople and

Schaefer (83) and Diehl and Pople (8h). In Pople, Schaefer and Diehl's

“effective frequencies method, if a group of n magnetically equivalent

nuclei, In, are greatly chemically shifted from any group of strongly

coupled nuclei, for example, ABC, then ABCXh spectrum can be considered

‘to be composed of n+1 ABC type subspectra. They define “A! v3, we as
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the chemical shifts that the A, B and C nuclei would have in the absence“

of spin coupling to the Kn group and they define x -‘Fz(xn) as the z-

component of the total spin of the group In. Then the apparent "internal '

chemical shifts" or "effective Larmor frequencies" fer each ABC subspectrum,

vA'(x), vB*(x) and vc*(x) are given by the equations:

vA’(X) I “A + x JAx

e
vB (X) I VB + x JBX

* I + J 111.1we (I) “C X CX ( )

The statistical weights of the various subspectra are given by the binomial

coefficients of n.

Each ABC subspectrum must have the same value of JAB’ JAc and JBC’

but will have different internal chemical shifts (if JAx I JBx I ch).

Hence frequency and intensity sum rules are directly applicable to the

job of dividing the ABC transitions into their apprOpriate subspectra.*'

ABC subspectra are then solved by previously developed methods, and equaI

tion (111.1) gives directly the magnitudes of J J and ch, and their
AX’ Bx

signs relative to each other, but not relative to the couplings within

the ABC group. This method has been limited to the analysis of spectra of

O O
the type AA ....BB ....Rp....xq

non-equivalence. In those case it leads to an impressive simplification

where the prime symbol denotes magnetic

of the analysis, and it has been possible to derive all the coupling cons-

‘tants and chemical shift data from the analysis of the subspectra'of the

" system.

Diehl, et. a1. and Bernstein (.859 87s 83) expamhthe effective fre-

<1uencies method and preposeda sub-spectral analysis which is‘applicable

'to all-possible combinations of magnetically equivalent and non-equivalent,
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strongly and weakly coupled, groups of nuclei and includes the special '

case of the composite particle model as well as the effective frequency-~

method. In this method, the number and type of sub-spectra can be Obtained*'

without knowledge of the Hamiltonian simply from group theory and good'

quantum numbers. In order to derive the relations between the parameters“"‘

of the complex problem and the parameters of the simple sub-spectra it‘

is necessary,however,to compare corresponding parts of the Hamiltonian

and to find transformations which leave transitions unchanged. As these

transitions may be non-analytical in terms of the molecular NMR para-

meters the transformations have to be obtained by a study of invariants.-

Diehl et al. (87) have given the rules for the general breakdown of NMR

‘ spectra into simpler sub-spectral problems as follows:

(1) Construct the basic local symmetry wave functions for the chemically

equivalent groups.

(2) Determine the total molecular symmetry.

(3) Reclassify the basic local symmetry functions according to their

stransformation properties under the covering operations of the total

molecular symmetry and rewrite them in the abbreviated notation.

(h) Construct the 2n (n is number of nuclei in the system. We consider

only systems of spinémuclei here) molecular basic symmetry product, - -

wave functions. Use these to form the 2n possible basic group symmetry

functions.

(5) Derive the symmetry species of the products of basic groupasymmetry

functions.

(6) Regroup the molecular wave functions into the molecular symmetry

species.
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(7) Sort out the transitions of the contributing species (e.g., ABB'

transitions of ABB'XX' : AFz(XX') I 0; AFz(ABB') I I l).

(8) Isolate the sub-spectral patterns and analyze them.

(9) Using the sub-spectra of maximum lel derive the parameters of

the strongly coupled parts.

(10) In those cases where the Hamiltonian matrix elements of the NMR

problem are given in the literature in detail, steps 1 to 5 can be

deleted and step 7 can be performed on the existing tables.

In general, sub-spectral transformations considerably simplify

'the treatment of complex systems containing at least one pair of weakly~

coupled nuclei and help the analysis. However, in sorting out of sub-

spectra, one needs a lot of experience and possibly the help of double

resonance experiments or tickling techniques. If the structure of a

given system is not very well known, it is difficult to sort out sub-

spectra. Sometimes, even if the sorting out of sub-spectra can be easily'

achieved, the sub-spectra may be still very complicated. If we use the

'conventional methods to analyze these sub-spectra, sometimes clear cut

solutions can not be obtained. So this method also has the disadvantages

“of the conventional methods as mentioned previously.

III. C. Direct Calculation Approach'

The moment method was worked out by Anderson and McConnell (103)

on a basis laid down by Van Vleck (ll5) and makes use of the experimen-

~tally determined moments of the spectrum. This method provides a tech—

nique for direct calculation of chemical shifts and spin coupling con-

stants from the observed line positions and intensities of the experi-
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mental spectra in principle, but it is seriously handicapped in practice-

by its sensitivity to the relatively large errors present in most inten-

sity measurements. Considering this point, Castellano and Waugh (10h)

have developed a new method for calculating the chemical shifts and spin-

spin coupling constants dtrectly from the observed spectrum which does-"

not suffer from this limitation. Their method consists in astigning each

experimental spectral line to one of the possible transitions between

spin energy levels, utilizing the trace invariance property of the Hamil-

tonian matrix and its square in a manner similar to that of Swalen and

Reilly (sh), of Alexander (60) and of Banwell' and Sheppard (70). The use --

“of experimental intensities is kept separate from that of experimental I

frequencies, and the former may be omitted entirely when experimental

values of sufficient accuracy are not available by using intensity rules-

for transitions. In this method, trial-and-error adjustment of the chemi-~

“cal shifts-and spin-spin coupling constants is avoided entirely, and the-

values of these parameters obtained are exactly consistent with‘the input

information. From the theoretical point of view this method is an ideal‘

one. In order to apply this method completely, however, one needs consi-

derable practice and one must be able to resolve and measure most of the

lines that are theoretically present. This presents practical difficulties

when the lines overlap each other or the line intensity is very weak. In

addition, the amount of manual labor involved is such as to make exhaus- £

tion of all possibilities impractical in many cases. In practice this

:method can be applied only to an analysis of the nonequivalent'three spin

system.

Whitman (107) has developed a similar technique for calculating NMR
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' spectra. He uses frequency sum rules and intensity sum rules to Obtain

an assignment of spectral lines to an energy-level diagram for the system.

He instructs the computer to construct all possible energy-level diagrams

consistent with the sum rules and a set of estimated experimental errors.“

When a satisfactory spectral line assignment has been found, it is used "

to calculate the experimental eigenvalues of the spin Hamiltonian. Whitman“

(108) also has developed the general equations for chemical shifts and

spin coupling constants of a number of proton systems in terms of the ex4

perimental energy eigenvalues. In many cases formulas explicit in the NMR .

parameters are obtained while in other cases the equations are implicit

and must be solved numerically.So the chemical shifts and spin coupling

constants can then be derived from the observed experimental energy eigen-

values. This method has the advantage of eliminating any bias, but1requires

-considerable computer time trying the many possibilities.~The-assignment~

'technique is limited by the resolution of the experimental spectrum. If ‘

two real lines are*unresolved in an experimental spectrum,then any assign-.

‘ment based on this pair considered as a single line is doomed to failure. '

Unfortunately, the more complex the spectrum, the greater the probability

of unresolved pairs of lines. However, this shortcoming can be overcome

by examining high-resolution spectra at two different frequencies and by

choosing a relatively large validity limit on the intensity sum rules in

the assignment program. Hence, this method is a very promising one.

~Primas and Banwell (l09, 110) have developed another method for

direct calculation of NMR spectra which gives the resonance frequencies

and intensities directly as solutions ofta new eigenvalue problem, invol-

' ving the derivation superoperator of the Hamiltonian. From this direct
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'method the more elegant and compact correlation function method is

developed, yielding the complete spectrum as a single entity. The two-

nucleus AB system has been worked out by this method. It seems very pro-

mising. However, its applicability to larger spin systems is still un-

known.

BY’Starting from the energy diagram of the spectrum and without

guessing initial values, the perturbation method proposed by Granger

(11h) yields an iterative procedure leading to 6 and J. The ABC system

is worked out as an example. However, this method can not handle large

spin systems.

111. D. Miscellaneous Approaches -~-

. ~ There are many miscellaneous methods (116-158). Some of the. methods have

-'combinedudifferent approaches. Some methods are proposed for special aysq

'tems. However, there is still no general perfect method. All-thermethods

~~ proposed for calculating NMR spectra have their advantages and disadvanI‘

tages. It is suggested that by combining different methods for special

systems, when appropriate, better results could be obtained.



IV. COMPUTER ASSIGNMENT TECHNIQUE FOR ANALYSIS OF NMR SPECTRA

The present method is based on that of Whitman for the direct ana-

lysis of spectra. The aim of the present work is to utilize more fully

the computer and more general computer language in order to handle bigger

spin systems.

This investigation consists of two parts, namely, the derivations

of general equations for the chemical shifts and spin coupling constants,

and the computer assignment of experimental spectral lines to transi-.

tions between spin-energy levels. The first part gives the general equa-

tions for the chemical shifts and spin coupling constants of a number of

nuclei with spin-2)- systems in terms of the values of the experimental energy

levels.From the second part we can obtain the unambiguous experimental

'eigenvalues. When the experimental eigenvalues are inserted into these

equations derived in the first part, they can be solved numerically for

the chemical shifts and the spin coupling constants. Thus, the calcula- -

tion of these NMR parameters from the experimental spectrum is reduced

"in the-most general case to the solution of a system of nonlinear simul-

taneous equations.

IV. A. General Equations for the Chemical Shifts and Spin Coupling

8 Constants

The method of derivation of equations for the calculation of chemi-

cal shifts and spin coupling constants of a molecule directly from the

epin energy levels derived from its experimental nuclear magnetic reso-

nance spectrum (nuclei with é-spin) consists of several essential steps.

-First of all, we have to write out the Hamiltonian for the system and

hR
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Obtain the basic state wavefunctions for the system, then evaluate die--

gonal and off-diagonal matrix elements of the Hamiltonian between the

basic state wavefunctions. We reduce the original forms of the matrix

elements into standardized-forms by choosing the center of gravity of

the spectrum as the origin for measuring the transition energies and

choosing the energy of the state with the highest spin quantum number

as zero energy level. The secular determinant obtained with the Hamil-

tonian, using basic product functions or basic state wavefunctions as

a basis set, factor into subdeterminants corresponding to the different

eigenvalues of 12° If the nuclear system is symmetric or if groups of

equivalent nuclei exist, additional factoring results. The factoring

of the analytical secular determinants necessarily corresponds with -

the factoring of experimentally-observed energy eigenvalue diagrams.

Thus, the secular subdeterminants in analytical form.must be isomor- -

phic with the experimentally-observed subdeterminants in diagonal form3"

Exploitation of this equivalence permits derivation of equations for the*

spin—coupling constants and the chemical shifts in terms of observed

energy eigenvalues. The eigenvalue problem is essentially worked "back---

wards" by a;method similar to the one proposed by Parker and Brown (159).

The five spin ABB'CC' system will be discussed in detail as an illustrap

tive example. The spin Hamiltonian of the ABB'CC' system is

3Q. _- ZvBIBz(l) + 2.0102(3) + VAIAZG) + JBB.IB(1)IB,(2) +

Ic(h)IC.(3) + 2JABIA(5)IB(1)’+ 2JACIA(5)IC(h) +

BC,IB(1)ICo(3) (IV.l)

After we obtain the basic state wavefunctions by the method des-

J
cc'

2JBCIB(1)IC(h) + 2J

cribed in section II. B, the diagonal and off-diagonal matrix elements
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of the Hamiltonian (equation IV. 1) between the basic state wavefunctions'

can be evaluated easily by the proposed computer program MATREL (see sec-

tion 11. C-a to II. C-d). In Table IV, the basic state wavefunctions, the“ '

diagonal matrix elements and their standardized forms (last column in the'"

table) are given. In Table V, the off-diagonal matrix elements and their

standardized forms are shown. Following Pople, Schneider and Bernstein's

notations (18), we can use the following convenient variables: K.JBC+JBC';

M I JLiI J -J AC N I J - J P I J + J

‘BC BC'; AB; AC AB; cc‘ BB'3” BB.JCC'

Reducing the diagonal and off-diagonal matrix elements into standar-

+ J -QIJ

dized forms is a rather important step. It will be illustrated in the

following examples. As mentioned before, the transition energies can be

"measured relative to anyidesired origin, but for the present purposes-it'

is most convenient to choose the center of gravity of the spectrum as the

- origin. In the ABB'CC' system this corresponds to setting vB+vc+‘%»A.I‘0*-‘

in the analytical form of the matrix elements. A plane of symmetry exists~~

'-in this system and consequently the basic state wavefunctions canwbewcho----'

sen to-be either symmetric or antisymmetric. The symmetric functions lead~'

"to secular subdeterminants of orders 1, 3, 6, 6, 3 and 1 corresponding to

the values +5, ti, ti. I1, I2.and -5 for Iz,respectively. The antisymme-'

2' 2 2 2 2 '5

tric functions yield secular subdeterminants of orders 2, h, h and 2 cor-

responding to 1z I egg +%, -%-and ‘§~ We identify experimental energy

eigenvalues by a subscript indicating twice the corresponding Izvaiue and-

a superscript s or a indicating symmetric or antisymmetric. So, when we

reduce the matrix elements into standardized forms, besides setting “B +

1
v +-

02th
I 0, we also set 3280 and EgIO; i.e.,%.K+éP+%M is substracted

from each of the diagonal elements of the symmetric state, making EgIEESIO,
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Table V. Off-«11:30:19.1 matrix elements of‘ the Hamiltonian for ABB'CC'

 

 

Hz 3 = %K ' %(J23+Jla)

Hz.» - (4-) (%) (Mm) - 4- (J35)

(4-) (51.) (Mi) - f; (J15)

, 115,9 .- (le )(.:.)(L+x) =7;- (J23)

117,9 -(,21)(.21.)(K-L)-',§.(J13)

(4. M90”) ”2‘ (.135)

5.9 ' H5,10 ' 38.9 a 0

H6,7 '%P " J12

“5,9' “7.9' (gym-u) - 5.115)

a
:

:
1
3

n
:

u
u
:

o
n

C

q
a
s

+
-

I
I

I

8
1
:

u
:

a
: I

as,” - 37’“, - (ygnmn) fin“)

H13,10 ' ix ' '%(J23+J13)

39,10 - ( éHiHM-N) 5,;- (J15)

an ’12 - (,4- )(éHM—N) 1,;- (J15)

H11,131 ‘é‘x ‘%(J23*J13)

an.“ - 1111,15 - g) (.21) (m) ‘§‘(J35)

“11,16 ' “12,13 ' “12,16 ' 0

“12.1.. - Hum; - (A. ) Lg.) (K-L) - (é. ) (J13)

1112,15 - 315’", - (,5. ) Lg.) (K+L) = (é) (J23)

H13,11. ' “13,15 " ('3') L? ”H” ' -;-(J1s)

1113,15 - (J;— ) (é) (um) - (é. )(Jas)

1

3110,15 . 3P 3 J12

 

Continued
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Table V- Continued

 

317,18 - <,;1<§)<M-n) - (,4- H.115)

1117.19 - (,ZL )(;.)<M+u) - (,4- )(J35)

318.19 ' ix ‘%(J23*J13)

H21,22 ‘2'L 2 ”23"]13)

323,21. " " '5' Q '§'(J12‘J3“)

a ‘ 8 l. l. M-N '1-323’25 H2“’25 (2)(2)( ) 2 (J15)

4123,25 - 112...“ =- -(.i1.)(-;-)(M+N) - 4:40:35)

H25.26 " £1: . '(.;_)(J23'J13)

“27.28 %J' ' (.21.)(J23-J13)

-327’29 ' 1127.30 ' (’i— )(El-)(M+N) . -(-:.)(J35)

1128.29 - 1128.30 - (-.g. )(.;_)(M-N) - 4.9015)

H29.30 ' 4%) Q "2; (J12'J3u)

H31’32 ' '(é') L " ‘(%)(J23'J13)
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while -P -Q - %(M+N) -K is subtracted from each of the diagonal elements

of the antisymmetric states to make E2 = 0. Throughout this chapter we will

measure the chemical shifts relative to that of the group of A nuclei in

each molecule. Thus. GB I VA - 3’ do I “A - vc, etc. For example:

1 1
.

Hll- VB 4' vc 4' %~A + %K '0 EP + EM - 0. To raduc. Hz 2’ H19 19, 321 21

and H32 32, we let (“8* IVAHKWB'NC+ lvA) ' (12%)“-vBC)-k(vA-v )

(11" _)v“(huh+kv - (3mug“ (-.3. k+.1..)u3+kvc;
C "«A

(k1)v2-(.E.k2 )vB. 21" 5-. .31

21“.; .-3 '_3_ +_l_ 3-9 + 5 I-ii-zg; therefore,

2 2 1' '2' 2 10 To 10

(VD... $311) ‘. - $3 + 54C . To reduce H3 3,313 18.322 22

and H31 31, we let (vC+ .zLoA)+k(vB+vc+ in“) 3' -k(vA-VB)+(.:_II* 'P‘VA-VCIH

(gm-é )vA+ka+(k+1)vC I (gk-k-ré. )vfkaJé’m-é. ') vC;

mmc - 4.3.» 'zL’Vc‘c g1: - -§. . k - u} 1

513 C . To reduce H“ 1, and 317 1?,

we let (vB-2«wc_vu)+:(vB-zl—HvC-o-—vA)--(lk._ )(vA-vBHQK-é'HVA-vc)‘

(k+1)(VB+VC ) I -(— 1&- —)(VB+Vc); rk .- %. k a - %;

therefore, (vc+ é»?) I 36 - %.6

or we let (v «w - 1»A)«0-1;(v w + g»A)-(3 k+ TWA-vB-)(k+l)(VA-VG);
B C B C

(k+l)vB --(lk+ v 2.Ak--_k--B_3.

. 2 7) B’ 2 2' s '

1v 2 2
therefore, vB+vc- ivA .' - 3153- 3.60 . To reduce HS 5 and 316 15

we let (vBz-vc+_vA2)-o-k(\.vB4-vc4-..vA)I(3 k- ..HvA-vB)-(k-.l)(\1A-vc);

k+1)v--.3_k+ ikI-lz k'-.l.
( B ( 2 ‘2')B 2 2 ’ s '

therefore, vB-vc+ iVA - - %5B 4» EEC . To reduce 85 5', 87 7, H“ In

and HIS 15. we let _vHk("3+"c+1vA) 3' -k(vA-"13) - k(vA'VC)‘

(zllfl'JVI-ZkvA; 33--3 1;...}_.

2 2 A 2 2 s

1 1 1therefore, 7 “A I 3'53 4' “5'60 . To reduce 310 10- 311 11' 326 26
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d - l. +k + + 1 -k - + 3 k- 1 - .an 327 27, we let (vc sz) (VB v EwA) ' (vA v3) (3' 33(vA vc).
C

3 l S l 1
k+1VI-_k+ V'-k--_ k.--

( ) C ( 2 2 C’ 2 2’ 5 ’

l l 3!
therefore, (vC- EMA) I 353 - 36C . To reduce Hg 89 H13 13, 325 25

C

(“*1)“b - ( 3u+ 2)v . 2 k - 2 . k - ’ 5 .

-l +v+v+lv 3-1. v-v-v-v~and H28 289 we let (vB sz) k( B 2 A) s ( 3k 2)( A B) k( A c),

l ‘9 l ‘
therefore, (VB ENh) I 353 + 350 . To reduce Hg 9

and H12 12, we let ( vB+vC+ E.\)A)-0»lt(vB4-\oc+6 EVA) a ( git-t .2.)(VA VB) (k+l)(VA VG).

(k-1)V '-(1k+_3_)v° ikI-l. kI-J.

B 2 2 B’ 2 2 ' s ’

therefore, .23 + vc + éNA I gfiB - gfic.

After we reduce all these matrix elements into standardized forms, the

32x32 secular determinant can be obtained. This secular determinant can

be factorized into subdeterminants corresponding to the experimentally-

observed subdeterminants in diagonal form. Exploitation of this equiva-

lence permits derivation of equations fOr spin coupling constants and

chemical shifts in terms of the Observed energy eigenvalues. Thus. if

1-3

.2 2' '-

-£5+3 -lK1M+N -E ix 741 n+1: E” -E o 0

5335027“ ) 2 22 ) 31

1 3 2 1 1 1 i
..x .5...- -_M-N-E._,_(M-1I . o E -1: o

2 s B s C 5K u< ) 2 2 ) 32

l l 2 2 .
uwn M9" ._5 - -M-E

37." ’ 275‘ ’ ...‘c ° ° .3...    
...-.6... ..-...-..B..c,-..- ...» ... 6- .»->-..—.»
.6. M666”- ...... .. .6- .666». m.» .6. .- .m-m-
%(M-N)2 + 1.1.1134» 115.9102} +{[- -§1°B‘5c)‘M”‘ £153.50» #0. ix. gmnmé (63-

5C)+ é‘s‘% K- %(M-N)]+ %(M2_N2)K_ gin-NFL gun-ac)». €50- ix- lawn]-

gxzt- gag-.50)...- élw’nfl gag-ac» .53. .1. gm]. - -.3..2<.gl..gz.

3 8 3 "

E33)*E(E§1E32? EglEga+ 332333) *’E§1E§2E:3 (IV‘Z)
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IfI --.3.,"then'

z 2

35 +35 -M-E 1- K .741mm 3‘ -E o '0
5350 2 22 ) '31

1 3 2 1 1 3
-1: ._6+_6-1-1< M-N-E M-N - o E as o
2 sascz-T‘ ) m‘ ) '32

$41M" £74144.) Efi-kfimM-E o o 3' -E
22 22 sBscz 1. 43     
-3215 L6--3-{266- 35-5-1-1-1 -25-3W .6>6t.<.*.>6N.<. .> J .6 .666 J5 c 5 B

1 l l 2 1 ‘1 2 l 1

5c” Ed];- 5" 304-1014 3133-3c)- :50- Ex-fimmll-g- (sB-Gc)- :33- '2'“ rubs)»

1 2 2 1 2 2
F(M-n) + 1%“ + _8_(M+n)}+{[ TS.(5B+.sc).m][ gala-ac)- é‘c" ix.

6
1
:

M+N>][- $63-63-

1-_1 12-2-122_-1_-1 _253 ix T{(34.11)}. 31cm s) 3.04.11) [#513 5C) 356 2 than). fixfigaf

cc)-M]- gmmzt- %‘3.-‘c" if." 12.. gmm - 23.32 (.1331 +3132 ..133 )-

H

s s s s s 9 s s s

4' .E(E_31 _32 E_31 _33 E_32E_33 ) E_312_32E_33 (IV 3)

Adding the coefficients of E2 on both sides Of equations (IV. 3) and (IV.2),

we have - 3.5 - is -x- _M+3 1.6 + is -K- in - -2K- i 3' +2“ +38 +1." +
SB 50 2 5‘Bsc 2 3M 3132 33-31

8 8 3 1 8 8 8 8 8 I

3.32 +E_33 or K - - ;M» .24231 +£32+E33+E41 +E_32 +E_33 ) (IVA)

Substracting the coefficients of E on both sides of equations (IV.2) and (IV.3)

we have {-2u[ gonna”- 7:,‘513’5c’l‘x‘ $.34]- gonacnm- £424.10].- get-x-

i-(M-NHJ ix. 5mm %“.“c’* .3631} - “We” .3)» 55x. gm 5-x. ‘5“) 1+

Nl- ?‘53'58‘737‘.’ gun-693.3661 - “3’60” §K;%341*[‘.-5c1[°1*3[1%<‘B-3c>1 -

(Eg1EgtE.1E; *Enga 'Ef-s1E:32‘E:313-'-3 3'3132‘3133)
(gr-rm sync?

. 3 3 s s 8 s 3o, N . 5(6 -6 ) + {2(E31332*Ea1E33*332333‘E-3lE-32‘ -31 -33" -32 -33

B C

(Iv.5)

 

Subtracting the coefficients of E0 (the constant term) on both sides of

equations (IV. 2) and (IV. 3) we consider the first term:

6-26+6-M-26-6+.1.5-1-}_M+n $5-5 +16-.Lx.-}_6M.fi-- £54.

- 2 _ __ _ l -1 _ _ -1 _ l -1 .
ac) Mltgusnec) 154C 3x :(M+N)][ €463.53) 3.63 3K T(rd-m}
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2 3 3 3 2 2 2 1 2 2 2 2
2.( ;) (53+5c)(§B-5C) +2.( 3;) (53-50) ( 3353-24 .5.) (513-50 )( 966--

2 1 2 2 . 1 1 1
2-( ?’(5B“°c" 3) 633C -2«( §)(53+GC)[- 7K— 11.4mm“- '2'“ ?(mm-

2 l l l 1 2 1

2M( §)(3B-5c)[- fx- gnu-N) 1-2MI- 2K" 7””) ll 1:“3’5c)‘ 3.6 (IV.6)B]

To the above equation (IV.6), add the following terms:

. l 2 3. 6 6 1.6 .1. 2 2 5 l 2 2 1

-2 304-1!) [- 5( 3' C)+ 5 C142» “K [- 34 Been-2. 3"”) [- 1:“:"c" .63]

therefore, the total I 2:11-2:23; dialing”

Then this is reduce? to the following form:

(5 +60) 5(23 23 EB - E' E“ E' )

 

(GB-6C)2 . :5 + 31 32 33 -31 -32 .33 (IV.7)

1 (53“c)

when I2 I 5

as 5-3 0 o o o o Efl-E o o o o o

o as 5-1-2 0 o o o o Efz-E o o o o

o o 11., 7-3 0 o o o o Ef3-E o o o

o o o Hag-E o o . o o o Ef..-E o o

o o o o as 9-13 0 o o o o sfs-E o

o o o 0 H10 lo-E o o o o o Q‘s-E   
5 S h l l 3 l l h l 6 5 B ' . 3
E'E (- g5+54- -:M*~4*‘SJ-—5-J+eeoeoeoeo).E-E (3611+312*000+E15*E )

   

B C 2 B s c 2 16

therefore, -hx- gn- P - (231+.......+E:5 “.15 )

P - -mc- gin-(£11 +232 +313 +33“ +E'15 +1.36) (IV.8)

For the antisymmetric case, when I2 I -:- ,

323 234:: o o o E’l‘l-E o o o

o 112,. “-13 o o - o E'fz-E o o

o o 1125 25-}: o o o Rafa-E o

o o o “25 26.1: o o 0 she

2}.
1 1 1 . a a15.21%“ avaC-P- 3.4-- E’vA'P' EM 531 +312 +313 +E” (IV.9)
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When Iz I - %.f0r the antisymmetric case,

327 27-3 0 o o Bill-E o o o

0 H28 ze-E o o 0 5212-3 -0 o
.

o o 329 29-3 0 o o tha-E o

o o 0 H30 ao-E ' L o o o Eflnu-E

:0 1 a a 8 8-

1-27311 ‘ 'vn'vc’P’ 2“ ' L11 “5-12 ”-13 “L13 ("'10)

Adding equations (IV.9) and (IV.lO) and using the results given in

equations (IV.h) and (IV.8) for K and P, we have:

1 a 8 a a a a a a

11 -- 34E“ +212 “313 +13” +3.“ m.” +162.l3 +2.” ) (Iv.11)

Subtracting equation (IV.lO) from equation (IV.9) and using the results

'given in equations (IV.h) and (IV.8), we have:

 

 

S 8 8‘ a 8. ' a a I. a,

63+6C - II E-(Ell +E12 +E13 +El‘! -E—ll I'E-12 -E_13 -E_1“ ) (IVel2)

'WhenJIz I'i-and I2 I - %.in the anti-symmetric case:

H -1; H .15 +25 -1-P-—1-K MW -13 l L
2121 2122 SBSCZZ-éQ-‘llfl ) 2

8

n ' 1 3 2 1 1 1 1

“22, 21 H22 22"E '2' L 7:: GBTGC'Ip‘I'K*IQ‘u"‘M'N)‘E

£21 - E o

3

0 E32 -E (Iv.13)

3 ~ 2 1 1 3 1 1

H31 31-3 331 32 off-5507? I:(M-N)-E - 7L

.

1 2 3 1 1 1 1

“32 31 “32 32"” " TL 's'Gs’E'Gc ‘Iq‘r(“‘")‘E_ 
§

E-31 '3 0

  o 3232 -3 '(Iv.1h)
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Multiplying out the above two equations (IV.13) anefl(iv,14),‘Zfiflflsimilifying

we have: Q I e%N-[(E:1E§é - 3:312:32)/(5B-50)] (IV.15)

2 2
and L - -(GBJC)2_.n1_(N+2q) -2(E§'IE§‘2 mini”) (IV.16)

By successive use of equations (IV.h), (IV.5). (IV.7). (IV.8), (IV.ll),

(IV.12), (IV.15) and (IV...) it is possible to solve directly for both

of the chemical shifts and all of the spin coupling constants of this

five-spin system in terms of the experimental energy values obtained

from the observed spectrum.

Using similar procedures to those described above, the general

equations for the chemical shifts and the spin coupling constants for

other spin systems can be derived. The equations for A3, A32, A232,

AA'BB', A BC, ABC and ABCD are given by Whitman (108).
r 2

‘IV. B. The Cgmput r Assignment Technique-

'The most.difficult step in any analysis of a complex NMR spectrum

is usually that of making an assignment of the observed lines to the many

possible energy transitions. The proper assignment must‘be sorted.out from

many thousands of possibilities. For example, in the general fiveqspin

system a total.of 210 transitions which obey the selection rule AFzI -l

are possible, while a typical high-resolution spectrum.might contain

about he'lines. The total number of ways of distributing ho lines among

V 210 transitions is about ’22}. . So, all possibilities can be exhausted

only by the utilization of the speed of modern computers. A correct assign-

ment of experimental spectral lines to the permitted transitions within the

‘energy-level diagram must be consistent with two sets of rules, namely, the

"6intensity sum rules and the line spacing rules.
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Multiplying out the above two equations (IV.13) andI(IV,14),‘and"simiii£ying

we have: Q I q%N-[(E:1E§§ - E2313232)/(63'Gc)] (IV.15)

2 2 8

and _ L - -(GB-éc)2-.117(N+2Q) -2(E§,E§‘2 +3331EL32) (IV.16)

By successive use of equations (IV.h), (IV.5). (IV.T). (IV.8), (IV.ll),

(IV.12), (IV.lS) and (IV.l6) it is possible to solve directly for both

of the chemical shifts and all of the spin coupling constants of this

five-spin system in terms of the experimental energy values obtained

from the observed spectrum.

Using similar procedures to those described above, the general

equations for the-chemical shifts and the spin coupling constants for

other spin systems can be derived. The equations for AB, ABZ, A232,

AAfBB', AzBC, ABC and ABCD are given by Whitman (108).

-IV. B. The ngputer Assignment Technique-

The most.difficult step in any analysis of a complex NMR spectrum

is usually that of making an assignment of the observed lines to the many

possible energy transitions. The proper assignment must be sorted out from

many thousands of possibilities. For example, in the general fivegspin

system a total.of 210 transitions which obey the selection rule AFzI -l

are possible, while a typical high-resolution spectrum might contain

about he‘lines. The total number of ways of distributing ho lines among

210 transitions is about-jaLgl- . So, all possibilities can be exhausted

only by the utilization of the speed of modern computers. A correct assign-

ment of experimental spectral lines to the permitted transitions within the

'energy-level diagram.must be consistent with two sets of rules, namely, the

6—intensity sum rules and the line spacing rules.
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Multiplying out the above two equations (IV.13) andfitiv,lh){'3nddsimilifiying

we have: q - -%N-[(E§1E§2 - tangy/(634g) (mm)

2 2 2 a

and g L - 468-60) -.117(N+2q) -2(E§1E§2 +£1.11”) (IV.16)

By successive use of equations (IV.h), (IV.S), (IV.7). (IV.8), (IV.ll),

(IV.lZ), (IV.lS) and (IV.l6) it is possible to solve directly fer both

of the chemical shifts and all of the spin coupling constants of this

five-spin system.in terms of the experimental energy values obtained

from the observed spectrum.

Using similar procedures to those described above, the general

equations for the chemical shifts and the spin coupling constants for

other spin systems can be derived. The equations for AB, ABZ, A232,

AAfBB', AzBC, ABC and ABCD are given by Whitman (108).

-‘-iV. B. The ngputer Assignment Technique

The most.difficult step in any analysis of a complex NMR spectrum

is usually that of making an assignment of the observed lines to the many

possible energy transitions. The prOper assignment must be sorted out from

many thousands of possibilities. For example, in the general fiveqspin

system a total of 210 transitions which obey the selection rule AFzI -l

are possible, while a typical high-resolution spectrum might contain

about he'lines. The total number of ways of distributing ho lines among

210 transitions is about‘ingl- . So, all possibilities can be exhausted

only by the utilization of the speed of modern computers. A correct assign-

ment of experimental spectral lines to the permitted transitions within the

‘energy-level diagram.must be consistent with two sets of rules, namely, the

~—intensity sum rules and the line spacing rules.
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IV. B-a. Intensity Sum Rules

The principle of spectroscopic stability states that the sum of

the intensities of all the transitions between two sets of nearly degen-

erate energy levels is independent of the strength of a perturbation.

This principle was originally applied to multiplet structures in atomic

'and molecular spectra. It applies in the NMR case even more rigorously.

When a small perturbation is applied to a system so as to break up a

line into a number of components, the sum of the intensities must be equal

to the intensity of the unsplit line. In NMR spectroscopy the small per-

turbations are the various chemical shift differences and the spin-spin

coupling constants. These perturbations are clearly small when compared

with a resonant frequency in the megacycle-per-second range. Castellano

and Waugh (10%) have derived the intensity-sum rules for a three proton

system. If the total spectral intensity is normalized to H2N'1, then

-a general sum.rule-of this sort for an N-spin system is:

i133 - 1113+ 2Fz(a) (IV.17)

for any level J ( J-is the upper level on the left of equation (IV.lT)

and the lower one on the right). The rule states that the sum.of the

~ "intensities of all transitions from a given energy level is simply

related to the sum of the intensities of all transitions tg_that level.

The proof of this general rule as stated above has been given by

Gioumousis and Swalen (160) and by Whitman (107). The considerable

experimental error involved in measurements of intensities of spectral

lines means that it is futile to require of the proper assignment exact

adherence to the intensity sum rules. It is necessary to introduce some

-~validity limit on intensity sums by which the correct assignment may
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differ from exact agreement with the intensity sum rules. This parameter

is an estimate of the experimental error in intensity measurements.

IV. B-b. Line Spacing Rules

The line spacing rules (or the equal-spacing rules) are entirely

equivalent to those derived from the trace invariance properties of the

Hamiltonian. However, Whitman (107) first used the rules in a form which

is more convenient for computer programming and somewhat more obvious

physically. Examination of the schematic energy-level diagram in Fig. 3

I2

.... 2

l

--' 0
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Fig. 3. Schefiic energy-level diagram for a general fours

spin system, illustrating equal-spacing conditions.

shows that the two transitions A and B with a common origin differ in

energy by the spacing between theenergy levels which form their termi-

~“nations. Similarly, the transitions D and C with a common terminal state

differ by this same spacing. Thus, after assigning two spectral lines to

the transitions A and B, we must seek two linvswi (.11 identical Spacing to assign

an to the transitions L;end.C, Similarly,~the lines assigned to the tran-

sitions F and E must have this same spacing. Such equalities of spacing

occur throughout the energy-level diagram, and impose severe restrictions

upon the possible assignments of spectral lines to transitions between

energy levels. Because of the experimental error it is again futile to

require that the correct assignment of the observed spectral lines obey
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the equal-spacing rules exactly. Therefore it is necessary to introduce

some validity limit on equal line spacings in such a way that two energy

spacings are taken as equal if they differ by no more than this limit.

The magnitude chosen for this quantity will depend upon the accuracy of

‘the experimental spectrum. The number of experimental spectral lines is

usually much smaller than the number of possible transitions. For this

reason an actual transition diagram will contain many incomplete transi-

tion "loops", and many of the equal-spacing rules will not be applicable.

IV. B-c. Description of the Computer ProgramJ

As mentioned before, a correct assignment of the experimental spec-

tral lines to the permitted transitions within the energy-level diagram

must be consistent with the intensity-sum rules and the line-spacing

rules. So we use these two sets of rules as the criteria for the computer“

assignment program. Because of the considerable experimental errors in»

volved in the measurements of the intensities and the positions of spectral

lines, the proper choice of the permitted limits of validity of the line— *

spacing and intensity-sum rules is of considerable importance. If these

‘limits are chosen so small as to be less than the experimental errors, then -

'even the correct assignment will be excluded as unsatisfactory. On the

other hand, if these limits are too large a great number of assignments

may be found which are apparently equally satisfactory. In addition, if

the validity checks are not sharp,the pragram running time-may-be~consi-

derably lengthened. The optimal technique is to choose the validity limits

to be about equal to a liberal estimate of the experimental errors and to

remember that the line positions are normally known with far greater acc-

~- uracy than are the line intensities,so the validity limit on line spacings
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will be chosen relatively much smaller than the validity limit on inten-

sity sums. If no satisfactory assignment is obtained, the limits are

increased and the assignment procedure is repeated. Or, if a number of

different satisfactory assignments are obtained, the assignment program

‘is rerun with the reduced validity limits until only one satisfactory

'assignment is obtained, or at most several. If a single basic spectral

line assignment is distinctly better than any other, this assignment is

used to determine the best set (or sets) of the chemical shifts and spin‘

coupling constants by the method described in section IV. A. However,

if several almost equally satisfactory assignments are Obtained, it is

desirable to use each of these assignments to calculate a set of champ

cal shifts and spin coupling constants. A priori estimates of some para-

meters can then be used to immediately exclude some of these sets from

further consideration.

The input data for the computer pragram are the number of experi- -

mental (observed) spectral lines, the number of possible transitions,

the‘number of nuclei in the system, the number of energy levels, the

permissible error in intensities, the permissible error in positions,

the positions of observed spectral lines in order of decreasing inten-

sities and the normalized intensities of lines in decreasing order.

After the data have been read into the computer, the binomial coeffi-

cients of the number of nuclei in the system, the lowest numbered tran-

sition from each energy level, the total number of possible transitions

from each energy level, the normalized intensity factor by which inten-

‘sities of transitions £222.“ level exceed those 32Dthe level, the energy

'level numbers from which transitions occur [e.g., K(29) I 6 means the
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29th transition is from the energy level 6] and the energy level DUMP

bers §g_which transitions occur (e.g., L(2h) . 7 means the zhth tran-'

sition is £g_the energy level 7] are calculated, then the size of the

energy-level diagram is determined.

The observed spectral lines are numbered in order of decreasing

intensity and the program steps systematically through all of the

possible transitions, attempting to assign to each transition the

most intense spectral line available. The most intense line available

- is assigned-into the first possible transition. The intensity sum for

"“the level involved is constructed; the line is either accepted or

reJected by this test. If it is rejected, the next most intense line

is tried and the testing begins anew, and so on until finally a zero-

intensity (or unobserved) line is.eeed. If some line' should pass the

'first test,g§hi program then constructs the line spacing test when

applicable (or possible). If it is not possible to construct this test,

as is the case for transitions 1, 2 and 3 for the two-spin system, and

l, 2, 3,‘h, 5, 6 and 13 for the three-spin system, or if some number

”of this test has been assigned a zero intensity transition, the tents-

tive-assignment will be accepted and the program will proceed to the

assignment of the next level. If a zero-intensity (or unobserved) line

is used, find it still fails both the intensity-sum test and the line-

spacing test, then the program.backs up and reassigns to the preceding

transition an unused, less intense line. A proper assignment has been

obtained when every spectral line has been assigned to some transition

in such a way that all of the spacing and intensity-sum rules are obeyed.

Computer time can be saved by taking advantage of the equivalent
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nuclei and (or) the molecular symmetry. For example, a plane of sym-

metry exists in the ABB'CC' system. Choosing the basic functions which

are either symetric or antisymmetric enables the secular determinant

to be factored into noncombining symmetric and anti symmetric portions.

The symmetric functions lead to secular subdeterminants of order 1, 3,

6, 6, 3 and 1 corresponding to the values hi. , £3. , +31. , -_;. , -3. and

2

-2 for 1,, respectively. The antisymetfic functions yield secular

2

3

E- O

* 3.. . - g. and--' .3. '. The schematic energy-level diagram is shown in
2 .

“subdeterminants of orders 2, h, h and 2 corresponding to Iz - +

Fig. 3:.

Symetric Anti-symmetric

E‘s. —-

331 "" 332 "'""" E33 —- 321-— 3:2 ‘-

3:1 -—E‘12 4:3 ‘4?» 435 4816 -- -‘ Eii 4:2 “—4.13 4.1.1. ""

38-1 1411241134115—3:54:15“ 1"3:1 14:124:13—8216""

3:31 _..' E132:— 3133— E131-- 3:32....

3:5 --

Fig. lb. The schematic energy-level diagram of AA'BB'C system

As mentioned“ before, we identify the experimental energy eigenvalues

by a subscript indicating twice the corresponding Iz value and a super-

script s or a indicating symetric or antisymetric. The schematic

energy-level diagram consists of two sets of levels between which no

transitions occur: an antisymmetric set of two levels for Iz -; ;

four levels for Iz -.;_ ; four levels for Iz - -% and two levels for

I2 I “2:. , and the remaining set of symmetric levels.
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There are a total of 32 possible transitions within the anti-

symmetric levels and l78 possible transitions within’the symmetric

levels. The assignment procedure can be done in two segments. In this

case, if we have to observed spectral lines, the 32 antisymmetfic

transitions were first assigned from among the total of ho observed

lines and then the remaining observed lines were assigned to symme-,

tric transitions. When we assign the antisymmetric portion we con-

sider that the 178 transitions within the symmetric levels are for-

bidden.-Ia this case, besides the data mentioned previously, two other

- sets of data should be read in. The extra two sets of data are the

number of unassignable (or~forbidden) transitions and the set of values

( -l or 0) assigned to the transitions, e.g., KD(h) I -1 means the

transition h is forbidden or unassignable; KD(5) = 0 means the tran-

sition 5 is available to be assigned. So we give values of--l to the

transitions which are forbidden or unassignable, while we give values

of 0 to the transitions which are available to be assigned before

the computer starts to make the assignments. This set of values (either

-l or 0) is read into the computer. When the computer starts to make

theassignments, it will skip the transitions which have values of -l

and only try to assign the observed spectral lines to the transitions

which have values of 0. For the symmetric portion, a similar proce-

dure can be applied. A lot of computer time can be saved in this way.
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IV. C. Examples

The technique described above is now applied to the study of

the spectrum of cyclopropyl cyanide, a five-spin ABB'CC' system.

The spectra of 2-bromo-S—chlorothiophene (two-spin AB system),

styrene oxide (three-spin ABC system) and o-dichlorobenzene (four-

spin AA'BB' system) are also treated here for sake of completeness and

to illustrate the procedure.

IV. C-a. Two-spin System

Z-Bromo-S chlorothiophene has been studied by the pertubation

method (48). It belongs to the two-spin AB system. In this case,

the number of observed spectral lines is four (N-h), the number of

possible transitions is four (NA-4), the number of proton is two

(NB-2), and the number of energy levels is four (NWHZNB-Zz-é). The

permissible error of intensities is chosen to be lfq,about 102 of

the intensity of the strongest line. The permissible error in position

is selected as 5 which usually is about twice the observed fluctuation

in position of the center of gravity of corresponding lines in the

symmetrical spectrum. In this case, we set both the number of

unassignable transitions (ND) and the number of the last initially

assigned transition (NT) equal to zero for the first run. The

experimental spectrum is taken from Anderson's paper (48). For

convenience of computer calculation the experimental values of

relative intensities are initially normalized to 1000-NB-2(NB-1)-

1000o2'2-4000, and the experimental values of the positions are

converted to fixed point values and referenced to the center of
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gravity of the spectrum as the origin. This corresponds to setting

“A + “B I O in the analytical form of the matrix elements. After

these manipulations, we arrange the positions of the experimental

lines in order of their decreasing intensities and arrange the normalized

intensities of the experimental lines in decreasing order. That is,

RA (1, 2, -°°° N + 1) are -11, 11, -50 and 0, while KB (1, 2, ....

N + 1) are 1680.1680,320.320,and 0. All the values mentioned above

are the input data. We then put these input data into Program."Assign"

and obtained two possible assignments as follows:

   
The first assignment gives the following values of the energy

levels: E1 I 0 cps, I -5.0 cps, I 1.1 cps and E__1 I 0 cps.
E01 E02

These values of the energy levels are substituted into the following

equations which have been derived for AB systems (108):

J I -(E01 + (IV-18)

£02)

2
6 I -4 EDIEOZ (IV-19)

These give J I 3.9 cps and 6 I 4.7 cps which agree with Anderson's

results. From the second assignment, we have E1 I 0 cps, E01 I

5.0 cps, I 1.1 cps, and E_1 I 0 cps. We substitute these values
E02

into (IV-18) and (IV-19) and get J I -6.6 cps and 6 I 4.71cps. The

second solution is excluded since it is physically impossible.
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IV. C-b. Three-Spin sttem

Reilly and Swalen have analyzed the 40-MHz proton.resonance

spectrum of styrene oxide by using the iterative method (50). In

the computer assignment technique, we have the following input data

for this spectrum: N I 12, NA I 15, NB I 3, NW I ZNBI23I8, NPEI I

160, NPEP I 190, KA(1, 2, --~ N + l) I -655, -1423, -l729, ~1061,

-2254, 2508, 2652, 2902, -95, -2047, -496, -2306 and O; and KB (1,

2, .... N + l) I 1521, 1456, 1324, 1248, 1141, 1088, 956, 812, 696

648, 564, 536 and 0. The best assignment we obtained is:

  
These lead to the energy levels E3 I 0 cps, E11 I -14.25 cps, E12 I -95 cps,

E1 I 29.02 cps, E I ~21.38 cps, E I 11.69 cps, E I 24.06 cps,
3 -11 -12 -13

and E_3 I 0 cps. These values are then substituted into the following

equations (108):

J + J + J I - (E11 + EAB AC BC + E13) I - (E_ + E + E

11 -12 -13) (IV'ZO)12
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JAB(5B’250) + JAc(5c'263) + Jsc(53 + 5c) ' 3(1'311E12 + E11E13 + E12E13

+ E12313 ‘ E-llE-lz ' E-llE-lB ’ E-12E-13) (IV‘ZI)

2 2
2/3 GB + 2/3 6C - 2/3 686C - 3/2 (JABJAC + JABJBC + JACJBC)

. '(E11E12 + 311213 + E12E13 + E_11E_12 + E_11E_12 + E_11E_13 + E_12E_13)

(IV-22)

J (a -25 )2 + J (5 -25 )2 + J (5 + a )2
AB B C AC C B BC B C

' 9 “31113121311+ E—11E-12E-13) (IV'23)

2(53- 25C) (6C ; 253) (5B + cc) - -27(E11E12E13 - E_11E_12E_13) (IV-24)

and the above equations solved numerically to obtain J I 5.63 cps.
AB

J I 2.47 cps, I 4.08 cps, GB I 11.95 cps, and 6C I 43.87 cps
AC JBc

which are in good agreement with Reilly and Swhlen's results.

IV. C-c. Four-Spin System

The 40 MHz proton resonance spectrum of o—dichlorobenzene has

been analyzed by Pople et a1”(122) using the conventional methods

and has been analyzed by Whitman (107) using the computer assignment

method. It is included here for the sake of illustration and to compare

different versions of the assignment program.

Since the molecule of owdichlorobenzene contains a plane of

symmetry the spin-energy-level diagram consists of two sets of levels

between which no transitions occur-- an antisymmetric set of two

levels each for m I +1, 0, and -1, and the remaining set of symmetric

levels. There are a total of eight permitted transitions within the
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antisymmetric levels and 20 transitions within the symmetric levels.

In order to save computer time, the assignment procedure can be done

in two segments. First the eight antisymmetric transitions are assigned

from among the total of 24 observed lines, and then the remaining

observed lines are assigned to symmetric transitions. The input data

for the first segment of the assignment are NI24, NAI56, NBI4, NWI16,

NPEI-zso, urns-28, NDI48, NTIO, KA(1,2, ---N + 1) - 353, -353, 416,

-416, 680, -680, 843, -843, 967, -967, 1394, -l394, 1340, —1340, 1006,

—1006, 41, -41, 72, -72, 1645, -1645, 1738, -1738 and 0. KB(1.2.1~matN +11)

I 3651, 3651, 3081, 3081, 1896, 1896, 1341, 1341, 1288, 1288, 1145,

1145, 959, 959, 919, 919, 855, 855, 669, 669, 104, 104, 90, 90 and 0. To save

computer time, another set of data KD(1,2, --- NA) should be read in,

i.e. KD(1,2, ... NA) - f -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

-l, -l, -l, -l, -1, -l, -l, -l, —1, 0, 0, -1, -1, -1, -l, 0, 0, -1,

-l, -l, -1, -1, -1, -l, -1, -l, -1, -l, -1, -l, -l, -1, -1, -1, -1,

0, 0, -1, -l, 0, 0, -1, -1, -1, -1. From the above input, we obtain

the best assignment for the antisymmetric portion as follows:

18 16

For the second segment of the assignment, NI16, NDI36, KA(1,2,'°°N + l)

I 353, -353, 416, -416, 843, -843, 967, -967, 1394, -l394, 1340, -l340,

72, -72, 1738, ~1738, o, KB(1,2, ... N + 1) - 3651, 3651, 3081, 3081,
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1341, 1341, 1288, 1288, 1145, 1145, 959, 959, 919, 919, 669, 669,

90, 90, o. KD(1,2, NA) - o, o, -1, -1, o, o, o, o, -1, -1, 019,0, 0, o, -1, -1,

-1, -l, -1, —1, -l, -1, -l, —1, -1, -l, -l,-l, 0, 0, -1,-l, 0, 0,-1,-1,

-l, 0, 0, -1, -l, 0, 0, -l, -1, -l, -l, -1, -1, -1, -l, -1, -l, 0, 0.-1, -1.

All the other input data are the same as the first segments of the

assignment. The best output for the symmetric portion is as follows:

 
The lines are now renumbered to the order of the input KA (l,2°--N + l)

of the first segment assignment, which leads to the following assignment:

K
3 12

14

 

2 7 20 13

11
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The experimental values of the energy levels obtained from the

experimental spectrum using this assignment are E2S I 0, E+lls I

S S S
4.16, E+12 I -l3.94, E0s I 7.69, E02 I -4.27, E -l3.22,

S S S 0
04 I -27.34, E_11 I 4.16, E_12 —13.94, E_2

E_na ..+ 5.24, E_12a I 5.24. The transition energies are measured

8

03

E - o, a - 11.62,
E+11

relative to the average of the energies of the transitions 1, 2, 3, and 4, and

the energy of the state m I +2 is chosen as zero. Since the

antisymmetric levels are not joined by transitions to the symmetric

levels an additional zero of energy is needed for the antisymmetric

levels. This has been chosen such that the sums of the antisymmetric

energies for a given m value is zero. The values of the energy levels

are then substituted in the following equations (107) and solved,

8 S

N I -(E11 + E12 ) I JAB + JAB' (IV-25)

S S S ' S S S

KI3(E11 + E12 )-(E01 + E02 + E03 + E04 ) JBB' + JAA'

(IV-26)

1/2
- a. a_ a - S S) - J ' -J '

M (E-11 E-12 E11aE12 )’( 4E11 E12 BB AA

(IV-27)

2_ a a_ a a 2 S S _ a. _ , 2

L [(E-11 E~12 E11 E12 ) ’4E11 E12 ] 4Eo1anz (JAB JAB )

(IV-28)

2 S S a a a a

5 ' ‘4E11 E12 4EOianz ' 2(“11:35:12 + E~11 E-12 )

(Iv-29)

This leads to dIvB-uA = 15.23 cps, JAB - 8.17 cps, JAB' I 1.01 cps,

JBB' I 7.44 cps, and JAA' I 0.36 cps, which are in excellent agreement

with Whitman's results.
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IV. C-d. Five-Spin System

The proton resonance spectrum of cyclopropyl cyanide belongs

to the five-spin ABB'CC' system. As mentioned before, the ABB'CC'

is one of the most general system of five-spin spectra since the

A283 , AZBZX , --- etc. systems can be considered as special

cases of ABB'CC'. The experimental 60 MHz proton spectrum was

taken by Dr. Myra Gordon with a Varian A—60 spectrometer. Since

a plane of symmetry exists in these systems the spin-energy-level

diagram also consists of two sets of levels between which no transitions

occur. The assignment procedure can also be done in two segments.

First, the 32 antisymmetric transitions are assigned from among the

total of 40 observed lines, and then the remaining observed lines

are assigned to the 78 symmetric transitions, or vice versa. However,

in this case, the best assignment can be obtained by assigning 40

observed spectral lines among 110 possible transitions, since from

the spinrenergy-level diagram we know there are 100 unassignable or

forbidden transitions in this system. The input data for this spectrum

are: NI40, NAI210, NBIS, NWI32, NPEII900, NPEPI35, NDI100, NTIO,

KA(1,2, ... N + 1) I 356, 349, 346, 342, 276, 340, 293, 286, 520,

469, 296, 281, 576, 302, 594, 384, 991, 310, 246, 507, 313, 377,

392, 539, 652, 649, 600, 657, 534, 548, 620, 743, 644, 0, 612, 694,

712, 721, 640, 727, o; KB(1,2, ... N + 1) - 11693, 9517, 8346, 5496,

5479, 4733, 3800, 3200, 3147, 2681, 2600, 2215, 1982, 1632, 1426,

1372, 1201, 1066, 933, 816, 799, 779, 610, 583, 579, 535, 439, 401,

350, 233, 233, 233, 148, 116, 116, 116, 93, 93, 85, 47, 0, KD(l,2, °°°

N + 1) I 0, O, 0, -1, -1, 0, O, O, O, 0, 0, -l, -1, -1, -l, 0, 0, O,
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09 09 09 0, 09 ‘19 ’19 '12 '19 0: Os 09 0: 09 0, '19 '19 '19 09 O: 09

0, O, 0, ’19 '19 ’19 ‘19 0’ 09 09 02 09 09 ’1: '1: '19 '1: '19 '19

-l, -l, -l, -l, 0, O, 0, 0, -1, -1, -l, -l, -l, -1, O, 0, O, 0, -l,

.1: ’19 ‘19 “19 “19 09 09 09 09 "1: ‘19 “19 “19 "19 '12 08 09 09 0,

0’ 09 0: '19 '19 0, 09 09 '19 '19 09 09 09 '19 '19 0: 09 09 '19 "19

09 09 09 '19 '12 0: 09 09 '19 '19 '19 '1: ‘19 09 O: '19 '1: '19 09 O:

-1, -1, -1, o, o, -1, -1, -1, o, o, o, o, o, -1, -1. The output of

the assignment 4,28, 41, -l, -1, 3, 19, 34, 41, 41, 41, -1, -1, -l,

-l, 41,

'1: '12

‘1’ '19

16, 41,

41,

-1,

10,

15,

41,

41,

-1,

18,

41,

41,

20,

41,

41,

7, 27, 4o, -1, -1, -1, -1, 8, 41, 41, 24, 41, 41, -1,

-1, -1, -1, -1, -1, 9, 23, 35, 41, —1, -1, -1, -1,

41, 33, 1, 14, 36, 41, 41, 41, -1, -1, -1, -1, 41,

41, -1, -1, -1, -1, 37, 25, 41, 41, 17, 38, -1, -1,

41, 41, 22, 41, -1, -1, -1, -1, 41, 41, 41, 41, 41,

-1, 41, 41, 41, 41, 41, 41, -1, -1, -1, -1, -1, -1,

5, 12, 41, 41, -1, -1, -1, -1, -1, -1, 41, 41, 11,

71, -1, -1, 41, 41, 41, 13, -1, -1, -1, -1, -1, -1,

2, 21, 3o, -1, -1, 41, 41, 41, -1, -1, 26, 31, 41,

32, -1, -1, 41, 41, 41, -1, -1, 41, 39, 41, -1, -1,

41, -l, -1, -1, 41, 41, -1, -1, -1, 41, 41, -1, -1,

-1, 6, 41, 41, 41, 41, 41, -1, -1. Before we evaluate all the values

of the energy levels, we rewrite all the positions of the observed

spectral levels relative to the center of gravity of the spectrum as

the origin. 50 we have KA(1.2. N + 1) . ~130, ~137, -14o, -144,
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-210, -146, -193, -200, 34, -17, —190, -205, 90, -184, 108, -102,

505, -176, -240, 21, -173, -109, -94, 53, 166, 163, 114, 171, 48,

62, 134, 257, 158, -486, 126, 208, 226, 235, 154, 241, and 0.

The energy of state m I +5 is chosen as zero and for the antisymmetric

energy levels the sum of the antisymmetric energies for m I 3 is

chosen as an additional zero as in the four-spin case. From this

assignment, we obtain the following "experimental" values of energy

levels. E5 0 cps, E31 14.4 cps, E32 17.1 cps, E33

a a S S
3.1 cps, E31 4.1 cps, E32 -4.1 cps, E11 I -28.4 cps, E12 I

SS S S
38.4 cps, E13 I 53.0 cps, E14 I 2.2 cps, I 14.5 cps, E16 I

E15

a a a a
32.5 cps, E11 7.5 cps, E12 5.3 cps, E13 I 16.7 cps, E14 I

S

-13

a
s “ u

a
I -24.3 cps, E_14 24.8 cps,

I-41.4 cps, E S I -18.4 cps, E I -7.6 cps,
~12

S I 0.9 cps, E

S

F=11

I -27.8 cps, E

15.8 cps,

s

-14

-13.5 cps, E_12 _138

S S
E_31 I 17.7 cps, E_32 29.1 cps, E_33 _34

S a
cps, E_5 I 0, E_31 I 7.3 cps, and E_32 I -7.3 cps. Substituting

these values into equ: tions (IV-4) to (IV-l6) gives GB I 48.0cps,

-15

a I -l3.0 cps, E

S I 17.4 cps, E S I 18.7

6C I 42.2 cps, J12 I 7.6 cps, J13 I 4.1 cps, J14 I 7.6 cps,

J1 7.1I 4.1 cps, J23 I-5.6, J24 I 10.4, J I 7.1, J
5 25 ' ' J34 35 '

10.1, J I-5.6.
45

IV. C-e. Conclusions

The computer assignment method described here has considerable

applicability. If the high-resolution spectrum to be analized is

well resolved, the present method always gives a clean-cut solution

without guessing initially any parameters. For spectra for which
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we cannot estimate a set of good parameters for the iterative

methods, the present method thus has advantages. The major

limitation of the computer assignment method is the resolution

of the experimental spectrum, as mentioned in a previous section.

.Also, this method usually needs more computer time than other

‘methods do, especially if we cannot choose sharp validity limits

on the line-spacing rules and on the intensity-sum rules; the

computer time required may then be considerably lengthened.
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111

121

122

131

141

161

151

181

162

184

201

202

211

221

222

231

241

261

271

281

291

301

311

321

350

NSUM=O

NABS=O

MD=0

LI=O

L1=L1+1 .

IF(L1‘NN)13191310201

ND=ID(JFOKFOL1)’ID(J11K19L1)

NSUM=NSUM+ND ‘

NAB=XABSF(ND)

NABS=NABS+NAB

1F(NAS)151.121.181

STOP

MD=MD+1

IF(MD-2)182eld4e121

L5=LI

GO TO 121

LT=LI

GO TO 121

1F(NAas-3)202.97.97

1F1M0-1)211.97.211

1F<NAas-2>221.231.97

1F<NAB$1222.261.97

STOP

1F<N50M>241.251.241

CJ(LSQLT)=CJ(LSOLT)+Oe0

GO TO 97

CJ(LS¢LT)=CJ¢LSoLT)+0e5*CD(JFeKF)*CU(JI0K1)

GO TO 97

LSS=O

LSS=LSS+1

LTS=LSS+1

1F<Lss-NN)281.97.97

IFcID(JF.KF.L53)-ID(JF.KF.L15)1291.301.291

CJ(LSSeLTS)=CJ(LSSoLTS)‘Oe25*CD(JFoKF)*CD(JIeKI)

GO TO 311

CJ(LSSeLTS)=CJ(LSSeLTS)+Oe25*CD(JFeKF)*CD(J10K1),

LTS=LTS+1

1F¢LTS~NN>281.281.271

END
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Prom "mtrele"

FLOW CHART

  

I

NSUM . NSUMTND

NABI XABSFUID)

NA85=NABSONAB

  

 

  

SET DIMENSIONS or

ID(J.K.L). M(J)

CJ(K,L) 8 CD(J M)

  
FROM l3|

    

 

   

  

 

READ IN-

TOTAL NUMBERS or BASIC

STATE WAVEFUNCTIONS I

TOTAL NUMBERS or SPINS

TNE SY TME N

READ :

HE NRUMBE or THE FIRST BASIC

STATE WAVEFUNCTION

TOTALNUMBENS OF BASIC PRODUCT

FUNCTION IN IT M J

TNE COEFFICIENT FOR EA

BASIC PRODUCT FUNCTION co .1" I)

cow2)CD(J, 3)------ CD(J, ('Jn’

 

   

   

   

  

 

 

 

 

 

 

 

 

 

94 F-NJ

NJF-MUF)

5 96 ‘0

-x +I EEJI-MIJIH

9 97

K , [K1aKI+I VVN

 
 
  ‘ 0(JF,KF,LSS)-ID(JF,KF. LT S)  

  

   

   

 

 

 
°‘ I-NJ

 

     

29I 2°

GJ(LSS,LTS)-CJ(LSS,L S)-

o.25uco(.IF,I<I=)u CD(JI, Kl)

30I

CHLSS LTS) - CJ(LSS,LTS)+

O.25!Cb(JF,KF)*CD(JI, x1)

3”

LTSI LTSf-l

 

I

PRINT

JF , J1

um- o 523
N 8510 PRINT K=I

:0 CJ(K,L), Lg' 'N
      J S + JI-J

0< GO 1045    '.LH LI- >0 COTozoI ”\1

(0
ISI

IND: Tour, KF,L 11-IDIJI.KI.Lm—4
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APPENDIX II. PROGRAM "ASSIGN"

VARIABLES, NAMES AND ARRAYS

Number of observed spectral lines (input).

Number of possible transitions (input).

Number of nuclei with spin % (input).

Number of unassignable (forbidden) transitions (input).

Number of times zero-intensity (unobserved) spectral line

has been used.

Number of last initially assigned transition (input).

Next available location in.KH array, initially IP - l.

Permissible error of intensities (input).

Permissible error of positions (input).

Next available network number, initially IQ = 5.

Next available index of I and J arrays.

Number of energy level from which current transition occurs.

Index to avoid meaningless permutations of equivalent energy

levels. If 1383 = 0, try the first spectral line in the

list for the next transition. If 1338 = 1, try the next

spectral line in the list for the next transition.

Number of energy level to which current transition occurs.

Number of spectral line being considered.

Number of transition currefifily to be assigned.

Number of energy levels, 2 (input).

IYI and 122 are dummy variables.

KA(1,2,...,N+1) Positionsrof lines in order of decreasing_inten-

LAB(l,2,...

sities. KA(N*1) e 0 (input).

,NW) Normalized intensity factor by which intensities of

transitions from a level exceed those to the"

KB(1,2,...,N+1) Normalized intensities of lines in decreasifiE’order.

KB(N*1) a 0 (input).

IBc(l,2,...,NB+1) BinOmial coefficients of NB.

KC(1,2,...,N) Transition assignments of lines. 0 - unassigned,

KD(1,2,...,N1) Numbers of lines assigned to transitions; e.g.,

KD(h)=7 means line 7 has been assigned to transi-

tion h, KD(5)=-l means transition 5 is forbidden.

KE(1,2,...,NU) Energies of energy levels, relative to KE(1) - O.

KF(1,2,...,NW’ Network assignments of energy levels. 0 - unassigned,

l - network 1, etc. ,

KG(1,2,...,NA) Number of energy levels assigned to networks by each

transition. KG(12)-3 means three levels were assigned

to a new network by the 12th transition.

KH(1,2,...) Numbers of energy levels assigned to networks by each

transition, stored consecutively. KG array keeps

track of how many are due to each transition.

I(l,2,...) Network numbers of levels before IV transition

assignment , indexed by IR.



J(1,2,.... )

K(1,2,...,NA)

L(1’2’0 00,“)

11(1,2,...,NW) "

M1(1,2,...NW)

MB(1,2,.0.NW)

m(1,2’00 CNN)

93

Amount added to network to bring it into correlation

with another network, through transition V.

Energy level numbers from which transitions occur.

e.g, K(29)=6 means the 29th transition is from

level 6.

Binary level numbers to which transitions occur.

Lowest numbered transition from each energy level.

Total number of possible transitions from each

energy level.

Eccunmlated intensities of transitions to each

energy level.

Accumulated intensities of transitions from

each energy level.

NOTES

All data are introduced as integers and all calculations

are fixed point .

Intensities: are initially normalized to 1000 NB°
2(NB-l).

Networks identify the possibility of non-interacting

sets of levels, e.g., symmetric and mtisymmetric.
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300

301

400

500

511

501

502

503

504

700

701

702

703

704

705

706

707

708

1100

800

880

811

881

812

882

813

883

814

884

815
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IF(KD(1V))30194009400

1v=1v+1 ‘

GO TO 300

ISSS=O

1U=1 .

IF(1U-(N+111511950111800

IF(KC(1U))60005019600

IS=K(1V)

1T=L(IV)

IF((MC(IS)+K8(1U))-(MB(IS)+LA8(IS)+NPE1)150305030502

1F(1U-(N+1)16009180091800

1X=M1151+MA(IS)‘1V

1F(ISSS-1)50497009504

IF(1X-1)7019700¢701

IF((MC(IS)+1X*K8(IU))‘(Mb(IS)+LA8(151-NPE1))180007010701

1F(1U-(N+l))70407020702

1F(NN-(NA-N-ND)17030180091800

NN=NN+1

KG(1V)=0

GO TO 800

KFS=KF(IS)

KFT=KF(1T)

1F(KFS-KFT)90097050900

1F(KFS)706010009706

IF(KE(IT)-(KE(IS)+KA(IU)+NPEP)1707.7070600

IFKKE(IT)-(KE(IS)+KA(IU)fNPtP)160097089708

KG(1V1=0

KC(IU)=1V

M8(1T)=M8(1T)+KU(1U)

MC(IS)=MC(IS)+K8(IU)

KD(1V)=1U

IF(1V-26)140098109880

KAN=KAN+1

1F(KAN-5)801o80191400

1F(1V’31)140008119881

KBN=K8N+1

1F(KBN-5)801v80191400

IF(1V-45)14009812o882

KCN=KCN+1

1F(KCN-5)801980191400

1F(1V-55)140008139883

KDN=KDN+1

IF(KDN-5)8019801v1400

1F(1V-58)140008140884

KEN=KEN+1

IFCKEN-51801080101400

1F(1V-61)140008159885

KFN=KFN+1



885

816

886

817

887

818

888

819

889

820

890

821

891

822

892

823

893

824

894

825

801

1151

1400

1401

1402

1600

1601

1602

1603

1604

1605

1700

1F(KFN-5)801080191400

1F(1V-68)140008160886

KGN=KGN+1

1F(KGN-5)801080101400

1F(1V‘71)140008179887

KHN=KHN+1

1F(KHN-5)801080191400

1F(1V“78)140008189888

K1N=K1N+1

1F(K1N-5)801980191400

IFCIV-81114000819o889

KJN=KJN+1

1F(KJN-5)801v80101400

1F(1V-105)140008200890

KKN=KKN+1

IF‘KKN-51801s80191400

IF(1V-145)140008219891

KLN=KLN+1

IF(KLN-5)801v80101400

1F‘IV-1631140098220892

KMN=KMN+1

1F(KMN-5)8019801¢1400

1F(1V'1801140008239893

KNN=KNN+1‘

1F(KNN-5)801980191400

1F(1V-190)140098249894

KON=KON+1

1F(KON-5)801080191400

1F (1V-200)_l40098259825

KPN=KPN+1

1F(KPN-5)801080101400

PRINT 11510(KD(1X19 1X=19NA)

FORMATC3014)

1F(1V-NA)14019115001150

1V=1V+1

1F(KD(1V1)14000140291402

XF(I$-K(IV))400016009400

1T=LCIV1

1F(KF(1T))400916010400

1F(1$“1116029170091602

1F(IS'2)16030170001603

IFCIS-(N8+21116040170091604

1F(1$$S-1’16059170091605

155531

1U=1

GO TO 500

15$S=1
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1801

1888

1500

1501

1504

1505

1506

1507

1900

1150

2000

99

NPEI=2*NPEI

NPEP=2*NPEP

IF(NPEP-100)200c20091888

STOP

IF(K0(1V))18000150101501

1U=KD(1V1

KC(IU)=0

KD(1V)=0

IF(1U*(N+1)11503.150201502

NN=NN-1

GO TO 1800

IS=K(1V1

1T=L<1V1

M8(IT)=MB(1T)-K8(1U)

MC(IS)=MC(IS)-K8(1U)

1F(KG(1V1)15049190091504

1F(KG(IV)-1)15060150501506

IP=IP-1

IX=KH<IP1

KF(1X)=0

IF(1X-1T)190091700o1900

IR=1R~1

KGV=KG(IV)

DO 1507 1X=19KGV

IP=IP-1

IY=KH(1P)

KF(IY)=1(IP)

KE(1Y)=KE(1Y)-J(IR)

ISSS=0

GO TO 600

PRINT 11519

GO TO 1500

END

(KD(1X)0 1X=19NA1
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PROGRAM WASSIGN“

FLOK SHEET I

l
 

100 .... Read data

1

Calculate arrays

IBC,M,MA,LAB,K,L

J,

.206 .... Initialize arrays

and variables

1

Is ,

this first No

 

 

 

 

  
 

 

 

 

  run?
 

Yes

 
 

  
Print_input data
 

Insert conditions

for starting with

partial assignment . 

 

 L I}

Is transition IV

 

 

  

300 .... to be assigned? N0

 

. Yes
\V

1100 | Try first line |

\1/

Is this line No

500 . . . . available? ~

~1 Yes

Is this line

  

 

 

   

 

\
/

 

 

Go to next

transition

 

 

600 .e [Try next line |
 

 

 

  
too intense? Yes

\L No

‘ Is this line

 

 

 

Is this zero- No

  

 

 

  
intensity'line?

 

  
700 o o o 0 too weak? 1 3 Yes

\L’ No

Sheet II

 

\

‘LYes-

Back up

(Sheet IV)
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FLOR SHEET II Back Up!

(Sheet IV)

Sheet I TY“

 

Is the zero-inten-
 

 

      

   

 

   

 

  
 

      

 

 

     

 

 
  
 

 

Is this zero- p Yes sity line used

intensity line? I too often?

\ No v No

Are initial and Use zero-intensity

final levels in ‘ line once again

same network?

M \V Yes

Is final level Is initial level

900... in any network? in any network? 800...(Sheet III)

1Yes 1 No it No ‘2 1 A Yes

Assign initial level

to next available

1000.. network . Equal spacing?

Yes \LNO

Record Record

4 Present State A Present£§tate 600..(Sheet I)

  
 

Assign final level

  
  

   1200... late energy IV to this line
 

to same network as

initial and calcu- ssign transition

#51100.

  

 

 Assign initial level

to same network as

)Ifinal and calculate

energy

Is Initial level

in any network? No
 

   
   

Yes

 

Prepare to connect

initial and final

levels into earlier Connect

of the two networksI--4> 1300... networks'

   
      



Sheet II

 

 
800..

Assign this line

to transition IV

 
 

lhOO..|Last transition?
\ V i

 No

 J)
 

  

No,‘
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FLOR SHEET III

Yes
 

 

Consider next

transition
 

Print assignment ———>1500...(Sheet IV)

  
 

1’

Is this to be .

assigned?

 

 

  
 

 

 

 

Yes Same initial level _

   
 

  

  
 

  
 

  
 

    

 
 

 

  
 

 

  
 

as previous trans- Yes Is final level

ition?< 1600.. in any network?

l Yes No

Not _ - *

h00...(Sheet I) Is initial level

' first of a row?

Yes No

1700... ’ 1888 = 1 , Yes Is ISSS-l?

\L A fl'Non

Is this zero- ISSS - 1

intensity line?

No - Start with

Yes first line

v? 
600.00(Sheet I) 5m000(5h%t I)
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FLOW SHEET IV

 

  
 

 

  
 

 

  
 

 

 

 
 

 

 

 

 
 

   
 

 

 

 

 

  
 

 

 

 
 

 
 

 
 

Back up

it

Consider previous

-—§ 1800.. transition

Jz - T

Already at first Y Double permissible

transition? as error of intensity -

1N0 ' I
‘Was this transition 200...(Sheet I)

1500.. to be assigned

/N/O
I i Yes

..Remove line

originally«assigned.

\1/ I

I ‘Was zero-intensity' No Restore previous.

line assigned? \‘transition inte ,

, I .sities

\V Yes I W ‘1’

Reduce number of ”were any levels

zero-intensity assigned to a

line used network by'this

transition?

Restore level to Yes

zero-network [level assigned?

- V“ 1 No

'Was final level . _

assigned? Restore all levels '

'* to previous networks

Yes

1700...(Sheet III)

  

  

 

 
 

  
 

i

ISSS - 0

 

600...(Sheet I)

 


