
BAYESLAN DECISION MAKING AND LEARNING

FOR CONTINUOUS - TIME MARK-0V SYSTEMS

Thesis for the Degree of Ph. D.

MICHEGAN STATE UNIVERSITY

ERDAL PANAYERCI

1970

  



LIBPxiRY

meme Mldil? "'1 State

Uniursity

 

This is to certify that the

thesis entitled

BAYESIAN DECISION MAKING AND

LEARNING FOR CONTINUOUS -TIME

MARKOV SYSTEMS

presented by

ERDAL PANAYIRCI

has been accepted towards‘fnlfillment

of the requirements for

Ph.D. degree in Electrical Engineering &

Systems Science

' y —' ,w .a-N

I"! / » . U '3’. ‘ / ‘ ,,

I" - f a- . .

c/ ‘L. 4 _ . w’ 1.. .0, -' — .1.-.”-

 

thor professor

Date Novembg: 17, 1970
 

0-169



1.1 8-37



ABSTRACT

BAYESIAN DECISION MAKING AND LEARNING

FOR CONTINUOUS-TIME MARKOV SYSTEMS

BY

Erdal Panay1rc1

This thesis is concerned with Bayesian decision making and

learning algorithms for a particular problem in parametric pattern

recognition in which each of a finite set of pattern classes is

characterized by a continuous-time, discrete-state Markov process.

The basic problem considered is that of determining rules for making

decisions about the identity of the active pattern class based upon

observation of a sample function in some finite interval. The sta-

tionary transition probability matrices for the processes in question

are the parameters of the pattern classes.

Statistical decision theory is employed throughout to develop

optimal solutions. In the first part of the thesis, Bayes-optimum

decision rules are derived under a perfect observation mechanism

(noiseless case). The observed quantities are the sojourn times in

the states and the state numbers themselves. Using classified

samples from each pattern class, an algorithm for supervised learning

is presented and the existence of reproducing prior densities for

the parameters is demonstrated. Particularly useful results are the

formulations of recursive, computationally simple parametric forms

for the posterior densities of the unknown parameters and for the

optimum decision rules. The simulation of a Specific example shows
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Erdal Panayirc1

the empirical probability of error for different amounts of training

data and demonstrates the inherent practicality of the results.

The problem of computing probability of error is investigated

extensively for the noiseless case. The exact probability of error,

as well as lower and upper bounds and asymptotic expressions, are

established for several cases. Conditional error probabilities of

the first and second kinds are introduced by which the usual proba-

bility of error can be computed iteratively.

In the second part, only "noisy" observations are available.

In this case, a new model is defined in which the states of the con-

tinuous-time Markov chains are described by random processes, but

the transition times can be observed. Iterative, optimal (minimum

Bayes risk) decision rules are derived and conditions are established

under which these rules perform effectively. Optimum-adaptive

decision rules are defined when the underlying model is not completely

specified. Decision rules are formulated with two types of random

processes.

Finally, the situation when the transition times cannot be

observed is investigated for the Special case in which there are two

pattern classes and the states are observed with additive, Gaussian,

white noise. Both discrete and continuous observation times are

considered. Computationally feasible algorithms are derived for the

likelihood ratio which optimally solve the problem, assuming a discrete-

sampling scheme. Also, stochastic differential equations are found

for the continuous logarithm of the likelihood ratio and the continuous

conditional probabilities of errors from discrete results by a

limiting operation. The results are applied to the Specific problem





Erdal PanayerI

of detecting a random telegraph signal (two-state, continuous-time

Markov chain) in white noise.
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1J

(8)

Description

= N,j(xk) Number of one-step transitions from

1

. . k
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. k
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I
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D
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sample function produced by pattern class S.

= (TSI’TSZ’...’TSH ) SOJourns from training

sample function produced by pattern class S.
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functions.
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— (ql sq 2 900°:qN

entries of Q8.

) Vector of diagonal

Vector of all non-zero terms from the transition
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n(:S)
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n
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CHAPTER I

INTRODUCTION

In recent years, pattern recognition and learning theory

have received a great deal of attention from investigators in many

branches of sciences. Some applications are: Recognition of

speech and handwritten characters, checkers and chess playing

machines, classification of electrocardiograms and EEG'S, detec-

tion and filtering theory, System identification and Operations

research.

In this thesis, "pattern recognition" is another name for

"computerized decision making". Given a set of objects, each

arising in one of a finite number of sources, an algorithm is to

be established which efficiently classifies the objects and all

other Similar objects. A pattern recognition problem, in general,

consists of two sub-problems. The first sub-problem determines

which measurements should be taken on the objects. These measure-

ments, called "features", characterize all the possible objects.

A "pattern" is a vector of feature measurements. At present, there

is very little general theory for the selection of features. In-

vestigators have been concerned with the selection of subsets or

linear combinations of existing features or with ordering features

in a given set of measurements. The criterion for feature selection

or ordering is often based on either the importance of features in
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characterizing the patterns or on the contribution of the features

to the performance of a recognition algorithm. The second sub-

problem in pattern recognition is the problem of classification,

or making decisions about the source of the patterns. Thus, a

pattern recognizer consists of a "feature extractor", and a

"classifier". Statistical decision theory provides a powerful

mathematical tool for solving the classification problem when the

features representing the pattern classes can be described by

probability distributions. The application of decision theory to

the pattern recognition problem is called "parametric pattern

recognition". One can proceed to obtain optimal decision rules

satisfying a (subjectively chosen) classification criterion; e.g.,

minimum probability of misclassification (probability of error).

The problem of learning in parametric pattern recognition

must be solved when the distributions characterizing the pattern

classes are inadequately known. The unknowns of the class dis-

tributions are "learned" from sample patterns drawn from each of

the sources, or pattern classes. These samples are called "training

patterns". Supervised learning (learning with a teacher) refers to

the case when the training patterns are classified. When the origins

of the training patterns are unknown, learning is non-supervised

(learning without a teacher).

A so-called "non-parametric" approach to pattern recogni-

tion refers to the design of classifiers in which no assumption is

nade as to the form of the underlying probability distributions char-

acterizing each class. The goal of the recognition system is to

partition the feature Space into regions such that each region can
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be identified with a pattern class. This can be achieved by defining

a discriminant function for each pattern class on the feature space.

A pattern is classified by choosing the class corresponding to the

largest discriminant function. Training patterns from each class

are usually available and the problem is to establish a reasonable

set of functions from them.

In this thesis, a general parametric pattern recognition

problem is investigated in which the classification of an unknown

pattern is inferred from a finite set of training patterns. Each

pattern class is characterized by a different N-State, continuous-

time Markov chain. The stationary transition matrices of the

chains are the parameters of the pattern classes. Depending upon

the medium (noisy or noiseless) in which the observations are made,

several feature selection schemes are considered. Optimum Bayes

decision rules are formulated as solutions to problems in statistical

decision theory. When the parameters are not known, a supervised

learning scheme that uses classified training patterns is employed.

The general model considered here finds, specifically, an application

area in the classification of EEG'S which has been investigated by

Dubes [D-S], recently. It is also applicable to detection and

filtering problems with Gaussian noise when the underlying signal

is a function of a finite dimensional Markov process.

1.1 LITERATURE REVIEW

A comprehensive survey of early works on pattern recogni-

tion and learning theory has been written by Nagy [N-l]. Nilsson

[N-3] presented some of the theory of "learning machines", or
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nachines which can be trained to recognize patterns, and Sebestyen

[S-l] identified the task of finding clustering transformations as

central to the design of pattern recognizers. Fu [F-A] presented

the latest developments in the area of machine learning, emphasizing

sequential methods in statistical decision theory and estimation

theory. Recent books edited by Watanable [W—3], Kanal [K-B] and

Tou [T-Z] are collections of papers on pattern recognition. Each

author emphasizes the philosophy of the approach rather than mathe-

matical derivations or experimental data.

The problem of classification has, indeed, received much

attention by statisticians. Of the many sources, the books of

Fisher [F-Z], Anderson [A-l], Raiffa and Schlaifer [R-l], Ferguson

[F-ZJ and Blackwell and Girshick [B-B] Should be mentioned that

deal with the theory of statistical techniques and the application

to classification problems.

For learning theory, Spragins [S-S] and Braverman [B-A]

studied the convergence question in supervised learning. This

question deals with the Sufficient conditions under which the para-

meter posterior density approaches the delta function about the

true value of the parameters as the number of samples increases.

Patrick and Hancock [P-l] gave a rather general approach to learning

schemes.

The literature closely related to the thesis is now sum-

marized. Dubes and Donoghue [D-h] considered the problem of

determining which of a finite set of N-state, discrete-parameter

Markov chains is active. The states are observed without noise

and the transition probabilities for the chains in question are
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unknown. A Bayesian Strategy is employed throughout the report.

However, they did not investigate probability of error problems.

The reSults in Chapters II and III presented in this thesis differ

from reference [D-h] in that the pattern classes are described by

continuous-parameter Markov chains. The unknown parameters are the

transition rate matrices 62-matrices) and noisy observations are

considered. Exact and asymptotic probability of error expressions

are also derived for several cases.

When the state activity of a general system is described by

a first order, homogeneous, discrete-parameter Markov chain and the

states of the chain can be observed only in the presence of noise,

most of the literature deals with the design of optimum and sub-

optimum decision rules for making decisions about the states of the

system and establishing conditions under which the unknown para-

meters can be learned. Billingsley [B-Z], Martin [M-Z], Good [G-1]

and Bartlett [B-l] estimated the transition probability matrix of

the underlying chain assuming, by some external means, that the

states of the system could be observed. Removing the assumptions

of observability of the states, Raviv [R-Z] constructed a class of

adaptive decision rules using an estimate of the transition matrix,

P, and only part of the past observations. Recently, Signori [8-2]

studied the problem of determining the optimum-adaptive decision rule

when the observations were governed by an underlying discrete-para—

meter Markov chain. The conditional densities of the observed random

variables, given the state of the system, were characterized by a

set of unknown parameters. He derived an iterative, optimum adaptive

decision rule with the capability of using future and past observations
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as well as present observations. He also constructed a variety of

consistent estimators for the unknown parameters which yield a class

of Suboptimal rules.

Patrick and Hancock [P-l] gave a rather general approach to

the problem Of learning for classification and recognition of pat-

terns with or without supervision. Their model for the quantization

of the parameter Space is given as a reference in Chapter IV, to

the solution of the problem of finite computer storage in implementing

optimal decision rules and learning schemes.

Hilborn and Lainiotis [H-l] investigated the Optimal (in the

quadratic sense) nonlinear estimation of discrete-time or sampled

stochastic processes, where the processes can be characterized as

having probability distributions of known functional form but con-

taining a set Of unknown parameters. A Bayes optimal estimate for

a state was to be determined and expressed in terms Of the parameter-

conditional-optimum estimates and another statistic which could be

computed recursively. The observations obeyed a generalized Markov

property. The results of Chapters IV and V in this thesis differ

from [H—l] since the Optimization criterion used here was minimum

probability of error. The decision problem is alos different in

nature.

Recent studies of the problem of detecting an arbitrary

random signal in the presence of additive Gaussian noise by Kailath

[K-Z] have resulted in an exact formula for the optimal likelihood

ratio, which applies to the detection Of any continuous second order

Stochastic process. The result must be expressed in terms Of con-

tinuous Stochastic integrals, so it cannot be implemented directly.
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McLendon [M-l} investigated the general problem Of extracting an

arbitrary random process from additive white noise. Under certain

approximations, computationally feasible algorithms were derived

for the logarithm of the likelihood ratio. The assumption essential

to the solution of the problem was that the joint densities of the

Observation processes, when the signal is present, could be approx-

imated by Gaussian densities (Pseudo Bayes approximation).

The question of detection of Markov processes in a noisy

background has been studied by several authors. Nifontov and

Likharev [N-Z] considered the Optimal detection Of a Binary,

quantized, Markov signal in the presence of noise similar to the

Signal. SOSOlin [8-4] investigated the Optimal detection of Gauss-

Markov noise with discrete-time observations. They both adopted

the Bayes likelihood ratio criterion as an Optimum decision rule

and Obtained recurrent relationships for the likelihood ratio.

Kulman and Stratonovic [K-O] provided Optimal devices for detecting

a random telegraph Signal in the presence Of white Gaussian noise.

They first Obtained a non-linear stochastic differential equation

for the optimum filtering and then tried to solve it for some Special

cases and compared the results Of the probabilities Of errors with

non-linear and linear filtering. The work in Chapter V of this

thesis, related to their results, was done independently and deals

With a particular model which yields more specific results.

1.2 THESIS OUTLINE AND CONTRIBUTIONS

The emphasis of this research is on pattern recognition and

learning theory. The first major contribution of the thesis appears
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in Chapter II which contains a formal development of optimal and

adaptive decision making and learning, employing a new model which

has not been heretofore studied. The contribution lies in the fact

that, under some necessary and sufficient conditions, a finite set

Of constant parameters can be found which uniquely defines the

underlying model.

Chapter II is devoted to the case of perfect Observation

(noiseless case). The basic model and the decision problem are

defined in Sec. 2.1, Appendix A and Appendix B. In the early

sections of the chapter, the optimum and the optimum-adaptive

decision rules are found and expressed in terms Of sufficient

Statistics Of finite dimensions for two cases. A supervised

learning scheme is employed to learn the paramters, and the exis-

tence Of reproducing prior densities for them is exhibited. It

is also shown that the computer memory needed to implement these

rules is fixed. Finally, a computer simulation is developed and

discussed for a Special case.

The second major contribution appears in Chapter III in

which the probability Of error is studied. Some Specific reSults

are Obtained for the model considered in Chapter II. In the case

considered, all quantities in the model are known and there are

only two pattern classes. In Sec. 3.3, exact probability Of error

expressions are derived for a particular case while in the follow-

ing sections, upper and lower bounds and asymptotic expressions are

obtained. When the number of Observations increases without bound,

the bound on the probability of error is shown to approach zero.

In the last section of the chapter, conditional error probabilities
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Of the first kind and the second kind are introduced from which

the total probability of error can be computed. The expressions

derived for the error probabilities are original and self-contained.

Final contributions appear in Chapters IV and V in which

optimal and adaptive decision-making and parameter-learning problems

are investigated under an imperfect Observation mechanism. Inserting

this condition into the model of Chapter II requires a new model in

which the states Of the chains are described by random processes.

The main assumption Of Chapter IV is that the transition times from

one State tO another can be Observed. After discussing several

Sampling schemes for selecting features, the Optimum decision rule

is derived and its basic components are generated iteratively,

assuming all the parameters Of the model are known. Analytic

results are Obtained for two Special cases. In the second part

Of Chapter IV, adaptive decision-making and learning are studied

when the model is not completely specified. A theorem about the

convergence of the Optimum-adaptive decision rule is provided.

The storage problem in implementing the adaptive decision rule and

supervised learning algorithm is discussed.

In Chapter V, the model and decision problem are studied

but the assumption of observability of the transition times is re-

moved. A uniform sampling scheme (discrete-time Observations) is

assumed. The Bayes likelihood algorithm is developed for the

Optimum decision rule and the recurrent expressions for the likeli-

hood ratio is derived. In the case of continuous Observations,

non-linear stochastic differential equations are derived for the

IOgarithm of the likelihood ratio and the conditional error
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probabilities Of the first and second kinds. The results of Chapters

IV and V are original and have not appeared in the literature and

present one of the major contributions of the thesis.
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CHAPTER II

DECISION MAKING AND LEARNING WITH

OBSERVABLE STATES AND TRANSITION TIMES

The basic problem considered here is that Of determining

which of a finite set Of M continuous-time, discrete-state Markov

process is active, based upon Observations Of sample functions,

when the stationary transition probability matrices,

[P€§)(t)]g ._ ; s 6 {1,2,...,M}, for the processes in question

13 1,j—l

are unknown. The main reSults Of this chapter rely heavily upon

the definitions and theorems related with continuous-time, discrete-

state Markov processes (continuous-parameter Markov chains) which

are given without proofs in Appendix A.

A Bayesian strategy is employed throughout. The problem

is formulated as a problem in Statistical decision theory. Prior

distributions which lead to convenient computer implementations are

chosen for the unknown parameters. The amount Of computer storage

required is of prime importance.

The decision problem is defined and a source model is chosen

for generating Observations in Sec. 2.1. In Sec. 2.2, Observation

and parameter Spaces are defined, and in Sec. 2.3, the Optimal

decision rule is derived when the transition rate matrices «2-

matrices) are known for every pattern class. In Sec. 2.4, adaptive

decision rules are derived when the transition-rate matrices are

not known. A Supervised learning scheme is employed tO learn the

11
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unknown transition-rate matrices and the existence of reproducing

prior densities is demonstrated in Sec. 2.5. Algorithms for learn-

ing transition rates are introduced in Sec. 2.6, while the final

form for the optimal Optimum-adaptive Bayes decision rule is obtained

in Sec. 2.7. Section 2.8 is assigned to the computer implementation

of a Specific problem. Finally, the main results of the chapter are

summarized in Sec. 2.9.

2.1 SOURCE MODEL

Before going into decision rules and learning, the model by

which observations are generated must be chosen. The Object of all

decision rules is to decide which of M continuous-parameter

Markov chain is active; each continuous-parameter Markov chain

characterizes a pattern class. The observable quantities, or the

"features", are the sojourn times in the states and the state

numbers themselves. The transition-rate, or Q, matrices defining

the processes are the parameters Of the distributions governing the

Observations and must be learned from the training data. The train-

ing data consist Of sample functions from labelled sources and are

used to form posterior densities for the parameters which, in turn,

are employed in Bayes decision rules. The properties of the obser-

vation processes, some important definitions and theorems about

continuous-parameter Markov chains, and the necessary and sufficient

conditions under which infinitesimal parameters can uniquely

determine a process are given in Appendix A.

A key assumption is that a single Markov chain is active

during the entire Observation interval. A decision about the
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identity Of that chain is to be made after Observing a sample

function. Each sample function is assumed to be generated in a

manner consistent with the assumptions and conditions explained

in Appendix A. The generation process can be pictured as follows:

Suppose a typical realization starts in any state, say 1. Then,

a waiting time, having an exponential distribution with parameter

qi > 0, determines the length Of time Spent in state i. At the

end of this sojourn, the process jumps to State j with proba-

q.

bility -li'

qi

random duration, as determined by an exponential distribution with

, j # i. The process stays in the new state for a

parameter qj’ and then moves to another state, say k, with

probability Elk, k # j. The sojourn time again has an exponential

j

distribution with parameter All possible realization of theqk'

process can be generated by this procedure. A typical sample

function constructed by the above procedure is illustrated in

Fig. A.l.

2.2 DECISION RULES

The Observation Space is defined first. Each random variable

in the sequence xk é (x1,x2,...,xk) of state random variables takes

on values in a finite Space A = {l,2,...,N}, N < m, and each sojourn

time random variable in the sequence tk é {t1,t2,...,tk} takes on

values on the positive real line. All random variables are defined

on the Space Sk = {wt w E Ak X [0,m)k}. Thus, the sample space 8k

is the 2k-dimensional Euclidean space Of all sequences

k k

m = ( H gi) x ( H n1), where gi 6 A, “i E [0,m), vi. In particular,

i=1 i=1

the random variable xi, i s k, is defined as Xi(w) = gi and the
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random variable ti, i s k, is defined as ti(m) = “1'

The necessary and sufficient conditions and Theorem A.l

given in Appendix A show that {xk; k 2 l} is a discrete-state,

discrete-time Markov chain with transition matrix [rij]§,j=l

defined as follows:

= (2.2.1)

Chung [0-2] calls such a Markov chain, the jump chain associated

with the continuous-parameter Markov chain, [xt; O S t < w}.

The sojourn times (t1,t2,...,) are conditionally inde-

pendent random variables. That is, if P(-) is a probability

measure defined on the sample Space Sk’ then

P(t1 e A1,t2 e A2,...,tk e Ak\x1 = i,x2 = j,...,xk = L)

= P(t1 e A1\x1 = i) ... P(tk e Ak|xk = L) (2.2.2)

where A1 is Suitable Borel set on R1, i = l,2,...,k. Hence, for

each sequence of realizations xk = (x1,x2,...,xk), a conditional

distribution for tk = (t1,t2,...,tk), given xk is defined. In

this model, the conditional distribution can be described by the

. . . k k A
conditional denSity f(t ‘x ) - f(t1\x1)f(t2\x2)...f(tk‘xk) on

k

[O,m)k with reSpect to Lebesgue measure p .

The mass function p(xk) é p(x1,x2,...,xk), which is a

discrete density over Nk points in Rk with reapect to counting

tneasure vk is defined in terms Of the initial distribution over

1N

ij i,j=l'

Tflien, the joint density for (xk,tk), denoted by g(-), is well-

the states and the transition probability matrix, [r
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k k k

defined in terms of f(t ‘x ) and p(x ), with respect to the pro-

. k 2k
duct Of counting and Lebesgue measures v xu on R and can be

expressed as

k k

g(x at) 8(X19°°°9Xk9 tla°°°atk)

f(t1,...,tk‘x1,...,xk)p(x1,...,xk) (2.2.3)

The general elements of the decision making problem and

derivation of the non-randomized, Optimal decision rules for any

arbitrary loss function, L(.,.) are given in Appendix B. In the

following two sections, Optimal and adaptive decision rules are

derived for the cases Of known and unknown Q-matrices, assuming

a Special loss function.

2.3 OPTIMAL DECISION RULES WHEN Q-MATRICES ARE KNOWN

The first case to be considered assumes that the Q-matrix,

(S) N . _
[qij Ji,j=l is known for every pattern class, 8 l,2,...,M. The

special "0-1" loss function is chosen, defined by L(i,j) = 1 - A(i,j)1.

*

The optimal decision rule, d (.), follows from (B.5), Appendix B,

and is given by the Bayes decision rule:

k k

,t ) = s if s is the first index such that

P(9 = s xk,tk) 2 P(e = L‘xk,tk),

*

d (x

v L f s, {as E A (2.3.1)

It follows from.Bayes rule that

l

A(i,j) denotes the Kronecker delta.
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k

xk,tk) = P(9=S)g(:ji§19=s) . (2.3.2)

80‘ at )

Defining gS (xk,tk) é g(xk,tk‘e = s), P: =P(e= s) and employing

P(e = 8‘

(2.3.2), (2.3.1) becomes

d*(xk,tk) = s if s is the first index such that

o k k k k

PS gs(x ,t ) 2 1);:ng ,t ) v 1, ¢ s, 3,4, 6 A. (2.3.3)

The density functions required in (2.3.3) are given by

k k

gs(x ,t ) — fS(t1,t2,...,tk x1,x2,...,xk)ps(x1,...,xk)

V S E A (2.3.4)

The first factor in (2.3.4) is now computed. From the con-

ditional independence of (t1,t2,...,tk) and (A.14),

k

fs(tl,...,tk‘xl,...,xk)
= .n fs(ti‘xi)

i=1

k k

‘ H q<3> exp - E q(s)t. (2'3'5)
. x . x. 1

i=1 i i=1 1

The second factor in (2.3.4) is found from (A.13).

 

o k'1 qié)’ x1+1
pS(x1,x2,...,xk) = Ps(x1) .H 1 (2.3.6)

i=1 q(s)

xi

Then, the joint density gs(xk,tk) is given from (2.3.5) and

(2.3.6) as:

 

k k k-l (1(3) x
k

, .

83(x ,tk) = H qis) exp — E q(s)t. Po(x ) H Xi 1+1 (2.3.7)

. . x. i l ,
i=1 1 i=1 1 i=1 (8)

qx
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Equation (2.3.7) can be written in a more convenient way

k

as follows: Let Nij = Nij(x ) denote the number of one-step

transitions from state i to state j in xk = (x1,...,xk). Let

k

Ki = Ki(x ) be the number of occupancies Of state i in x ,

not counting x1, and let tij = tij(tk) be the waiting (sojourn)

. . . .th
times in state 1, for the j- occupancy of the process. The total

. . . k .
sojourn time in State 1, 2i = Zi(t ) is then,

= +t +...+t I

Zi til 12 1K1 V 6A

Then, (2.3.7) can be written as,

(s) N..
k k N K. N N N q'j 13

830‘ ,t ) = n mi”) 1 exp -z: qis)zi P:(x1) n n :8)

i=1 i=1 i=1 3‘1 qi
ji‘i

(2.3.8)

Taking natural logorithms Of (2.3.8) and noting that

ij i k

‘
i
L
I
I
M
Z

.
.
.
:

2

II

N H "
I

:
4

‘
I
L

H

L
4
.
L
4
-

H
.

= K, +1 if x =1 (2.3.9)

the Optimal decision rule in (2.3.3) can be expressed in a Simpler

form as follows:

k* k

d (x ,t ) = s if s = L maximizes

N N N

0 0 (L) (L) (L)
Ln P (x )P - 2: q. z. + 2 EN an (2.3.10)
[L .1 L qxl] i=1 1 ,1 i=1j=1 ij ij

ji‘i

2.4 ADAPTIVE DECISION RULES WHEN Q-MATRICES ARE NOT KNOWN

When the infinitesimal parameters, {q§:)}§ j’ s E {l,2,...,M},

3

are not known, they are treated as parameters in density functions
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describing the observations. To make effective decisions under

such circumstances, information about these unknowns must be

extracted from classified Observations. The state numbers and the

sojourn times Of sample functions from each pattern class are

Observed and the infinitesimal parameters can be eliminated from

the decision rule using supervised learning techniques. The train-

ing data from pattern class 3 form a random vector

ns ns A
= ... ... of states numbers(yS ’Ts ) (ysl.ysz. ’ysnS’Tsl’TSZ’ .Tsns)

and Of sojourn times. The optimal decision rule in this case is

* k k

d (x ,t ) = s if s is the first index such that

o k k “s “s o k k “L “4,

PS gs(x .t lys ’Ts ) 2 PL s,(x .t \yL ’TL )

v L 5‘ s. as e A (2.4-1)

where

k k n “S k k nS nS nS nS

85(X .t \ySS,TS ) = INZ 88(X ,t ‘ys ,TS ,qs,rs)f(qs,r3\yS ’Ts )dqsdrS

R

(2.4.2)

where

9 (S) (S) (s) .

qs - (q1 .q2 ....,qN ),

= (S) N

rs {rij }i,j=1
(2.4.3)

(s) N
The term r, was defined in (2.2.1); 2 r(S) = 1, Vi E A.

1J ._1 ij
J—

j#i

The supervised learning procedure is the same for all

Pattern classes so the subscript and superscript s will be dropped

from the following development. The first factor in the integrand

0f (2.4.2) can be written in a form similar tO (2.3.8) as follows:
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N K N N N N

k k n n
1

O
.

30‘ ’t ‘y ’T ’q’r) = n qi exp ' 2 qizi P (X1) 11 II (rij) U

3541

(2.4.4)

k _ k _ k .
where Nij - Nij(x ), Zi - Zi(t ) and K1 - Ki(t ) are defined

as before. The second factor in the integrand Of (2.4.2) is computed

in Sec. 2.5. As a result, the required density has the form:

k k n n o N Ki N

30‘ ’t ‘3' ’t ) = P (x1) 1qu .13 qi exp ' E qizi
i—l i—l

N N Ni. n n

x n n (r..) J f(q,r\y ,w >dq dr (2.4.5)
._ ._ 13

1—1 j—l

j¢1

Equation (2.4.5) Shows explicitly that the required density

function is proportional to a joint moment of the posterior distribu-

tion. As shown in the next section, the computer Storage is limited

whenever a natural conjugate family of distribution is used for each

(qs.rs)-

2.5 SUPERVISED LEARNING

The Object Of this section is to form the posterior density

n n

function for (qs,rs) from the training samples (ySS,T S). The

S

learning is supervised because the continuous-parameter Markov

chain that produces each set of training data is labelled. The s

subscript and superscript will be dropped for convenience.

The necessary and sufficient condition for the existence Of

a reproducing prior distribution for (q,r) is that a sufficient

statistic Of finite dimension exists for (q,r) (Theorem 2,

Spragins [S-6j). TO demonstrate this finite-dimensioned Sufficient

Statistic, the likelihood function g(yn,Tn‘q,r) can be written
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from (2.3.8) as:

N k.
n n 1

8(Y :T ‘Q:r) = H (11 exp -

i=1 i

o N N nij

q-z. P (y ) 11 n (r. ) (2.5.1)

1 1 1 1 i=1j=l ‘3

ja‘i

I
I
M
Z

where nij = nij(yn); zi = 21(Tn), ki = kiCYn)-

Equation (2.5.1) shows that g(yn,7n|q,r) belongs to an

exponential family of distributions. Thus, (q,r) has a sufficient

Statistic of finite dimension. One such statistic is denoted by

T(yn,Tn) and can be easily determined by applying the factoriza-

tion theorem to (2.5.1).

N N N

T(yn.Tn) = nij(yn) . 21(Tn) . ki(yn)

i,j=l i=1 i=

j-‘i‘i

(2.5.2)

Thus, a reproducing prior density exists for the para-

meter (q,r). Any reproducing prior density can be written in the

following form:

8(Y_ :°-°:y :T_ 900°3T ‘Q:r)V(Qar)

f(q,r|yO,To) = m 0 m 0 (2.5.3)

8(Y_m9"°’y097_ ’°°°’TO‘Qar)¢(Q:r)dq dr

qxr
m

where (yO,TO) = (y_m,...,yo,r_m,...,To) are fictitious Observations

and ¢(q,r) is an arbitrary positive function Of (q,r) except

that the denominator in (2.5.3) must exist. In particular, setting

¢(q,r) E l, the following reproducing prior density is Obtained for

(q,r). This density is the product of N gamma censities and a

matrix beta density.

 

  

' vi+l v. -w,q, ' O

N w, q 1e 1 1 N N p, -1

i=1 (V1 ) i=1 j=l N 13

._ .J ja‘i
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where

F(D.)

do A 1 A N O

B (1.1.) = 9 fl. = E 14.. (2.5.5)

N l N o 1 ,=1 13

n F(u..) J

i=1 ‘3
j¢1

The parameters Of this distribution are the matrix

p = [no ]N where ”O = 0 and the vectors v = (v v ... v )

0 ij i,j=l ii ’ - 1’ 2’ ’ N

j#i

and w_= (w1,w2,...,wN). The posterior density for (q,r), based

on all training samples (yn,Tn) = (y1,...,yn,71,...,Tn) is found

to be:

s<yn.Tn\q.r)f(q.r\yo.¢o)
 

f(q.r|y“.w“) =

f g(y“.w“\q.r>£(q.r\yo.¢o)dq dr

 

 

qxr

V +1 V, 4W,q,

N wi1 qil e 1 1 [ N N A mij-l

= H ' H H B (m.)r.. i].

1:]. F(Vi + 1) i=1 j=1 N 1 1.]

j#i

(2.5.6)

where

V 9 v, + k,, ‘W = w + z , m e p? + n

i 1 ij ij ij

F(Mi) N (2.5.7)

91m” wash-é M92
ijJi,j=l’ i N ’ i ,=1 mij

II NHL.) 3

i=1 13

The posterior density has the same mathematical form as the prior

density for (yn,7n). The only difference between (2.5.4) and

(2.5.6) is in the parameters Of the two densities, which are re-

lated by (2.5.7).

The convergence question in supervised learning deals with

conditions under which the joint prior densities of the parameters,
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(3) N (s) N .

= d =

q3 {qi }i=1 an rs {rij }i,j=l approach delta functions

#1

centered at the true values of the parameters as the number Of

training patterns increases. The most general theorem for answering

this question is given by Spragin's [8-6], and is stated below.

THEOREM 2.5.1 Assume that the following conditions are satisfied.

A. The data generation model under Supervised learning

is employed; 90 is the "true" value Of 9.

B. fe(z) > 0 for all z in a Sphere containing 90.

C. The posterior density fe(.‘yn) is defined as before.

D. A consistent sequence Of estimators t1 = t1(y1),

t2 = t2(y1,y2),...,tk = tk(y1,...,yk) exists that

converges to 90 Wpl.

Then, fe(z‘yn)-E::>|6(z - 90) Wpl, where 6(.) is an impulse

function having the same dimension as 90.

For the problem considered above, it is easily seen that

the first three conditions are satisfied for g(q,r|yn,Tn). To

exhibit the existence Of a sequence Of consistent estimators for

the unknown parameters, (q,r), the following well known result

[0-3] is used: If a sufficient statistic of an unknown parameter

exists, then any maximum.1ikelihood estimator will be a function

Of this sufficient statistic. Bartlett [B-l] first showed that the

maximum likelihood estimators, e, , Obtained by Eij = nij/ni’

j
N

where n1 3 E nij form the consistent sequence Of estimation

i=1

for the parameters rij in (2.5.1). It can be also shown that

there exists a set Of consistent maximum likelihood estimators for

the parameters q. in (2.5.1), iven in terms of the Sufficient
1 8

Statistics ki and 21 as a1 = (ki +-l)/zi, i = l,2,...,N.
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Thus, the last condition Of Theorem 2.5.1 is satisfied for

n n n

8(q,r\yn,Tn) and g(q,r‘y ,T )-¥:£9’6(r - ro,q - qo) w.p.1.

N
2.6 LEARNING {qijh’j=1

ja‘i

N

J}i.j=1

N ja‘i

i.J'=1’

ji‘i

'8, given the

N
S fa 1 th a a t a dO r, on y e p r me ers {qi}i=l n {ri

have been learned. It is also possible tO learn {qij}

or to determine the posterior densities for the qij

. . n n
.

training samples, (y ,T ), and to prove that these posterior

densities converge to 6(qij - q? ) w.p.l., as n tends to infinity.

3

0 . . n n
Here, qij is the true value Of qij' TO find ¢(qij‘y ,T ), the

posterior density for qij’ let

q.. = q.r.. i,j 6 A(j # i) and (2.6.1)

.(yk). (2.6.2)define N. Q .

i 1 ij

i~
‘
l
|
~
l
l
[
"
1
2

H

D

J

j

The joint posterior density function for (qi,ri), given

(yn,Tn), can be obtained easily by integrating (2.5.6). The

required density has the form:

V.+l V. -q W.

l. 1 l 1

 

 

W. q. e

n n _ 1 1

f(ql’rlj‘y 9T ) - 1n(vi + 1)

I‘(Ni - nij)I‘(nij) ij ij

0<qi<ao; 0<rij<1

0 elsewhere (2.6.3)

The posterior density ¢(.‘yn,Tn) is given by the following

formula:



 

 

 



 

 

q
l i

(ql.\y“.w“) =j —— f( 13.. 71) dr1J
J o 13 ij

a q

= J—j l “.11, u)du
q. u

13 qij

nij-l Vifl V

= qij I‘CNi) Wi °° u 1

qij I‘(nij)I‘(Ni - nij) F(Vi+l) q unij

1 Ni-nij-l 'UWi

XTT'T(U"‘1J) e d“
1 13

u

. . . . Li A - -
USing the Binomial expanSion for (u - qi,) N1 nij l,

in the above

V,+l L

nij-z rm) W11 1 1“qu co m1 -uw1

= ~1kd

iJ'

(2.6.4)

. Q _ _ . . . . =
Since mi Vi nij k is a pOSitive integer k O,1,...,Li,

the following integral formula can be used to evaluate the integral

in (2.6.4).

on m. -uW. I‘(m. + 1) -q.w. mi (q..w.)r

j u 1e 1du = ——1———— e 1 1 z —-l-L-1-— (2.6.5)
q. L. + 1 r!
ij W 1 r=0

1

Using (2.6.5) in (2.6.4)

 

n n 191 m1 nun—+192 -qijwi

(2.6.7)

= O elsewhere

where

a _ k Ni'nij'l 1"(N) 1‘(Vi -n..i-k+1_)Wniij+r+k

kr ('1) k1"(niij)I‘(N--nj).I‘(v:W+1)I‘(r+1)
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The fact that V(qij‘yn,1n)——E:3>.5(qij - qij) w.p.l., is

shown in Appendix C.

2.7 OPTIMUM-ADAPTIVE DECISION RULE

In the previous section, joint posterior density functions

for the parameters of each pattern class were obtained and used to

eliminate the unknown infinitesimal parameters, {qij}, from the

decision rule. The decision rule obtained in this manner is an

adaptive decision rule which is optimal for the prior information

and cost function given. Furthermore, the decision rule adapts

or converges to what the optimal rule would be if the true para-

meter values were known. Thus, in summary, the optimum-adaptive

Bayes decision rule is given by:

*

d (xk,tk) = s if s is the first index such that

n 1'1 n n

o k k s s o k k L L

Pg(X.t\y .1 _)=max {Ps(X.t\y .T }
S S S S Le[l,2,...,M} LL " L

(2.7.1)

where

k k “L “L - k k “L TIL “L “L

81(x ,t \YL ’TL ) - qur3c(x ,t ‘yL ,TL ,q,r)f(q,r‘yL ’TL )dq dr \IL

(2.722)

The first and second factors in the integrand above are given

in (2.4.4) and (2.5.6), respectively. After some algebra,

(L)
v+1

(L) 1

NM
 

 

(L)

8:}x ’t ‘YLL’TLL) a n (L) ' 1 (01

1‘1 (L) vi ”‘1'” 1"("1 +1)(w. .)
1 i

N

jgl (Nij +mg’) - 1)....(mi3J)

o N j¢i (2 7 3)
x P (x ) n ' '

L 1 i=1 (Ni +mi(L) _ 1)....“ng
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where

w(L) 9 (L) + (TQL , v(L) g (L) + k ( 9L) (L) g ( 9L) + o(L)

i ‘ W1 zi L )’ i Vi i XL ’ mij “ij yL “ij

21 Z (t ), K Ki(x )a Nij N1J(X )3

N N

EL) A 2 mg). N1 A 8 Ni' V L

j=1 J j=1 J

j¢i j¢i

2.8 COMPUTER IMPIEMENTATION

The optimum-adaptive Bayes decision rule obtained in (2.7.1)

and (2.7.3) would be implemented in an iterative fashion in an actual

application. Such an implementation and a simUIation are given in

this section. The storage requirements and execution time required

to simulate the decision rule are discussed.

Equation (2.7.3) can be written iteratively as follows:

 

 

 

ViL)+Kx (Xk'l)+1

k-l k k

k k n n (L) k [wifj-mxka )]
g (x¢\yLnL)=V +K Q)
(L) {I L xk Xk

ViL)+Kx (xk)+1

[wi:)+£xk(tk)] k k

a) k'1+N (X )

x ka-l’xk xk-l’xk - g (xk-1 tk-lh’nL T114”) (2 8 1)
méL) *‘Nx (xk-l L ’ L ’ L

k-l k-l VS.)+1

(vs) 1

1 1 “L InL _ (L) 180! ,t ”L ’TL ) — (Vx1 + 1) Va)“ +1 P (X1)

X "X

w“)+z 1 1
x1 X1
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In (2.8.1), Rx (xk) is the number of occupancies of state

k

k

xk in x , Zx (t ) is the total sojourn time in state x

k

k-l _ . .
N (X ) is the number of one-step tranSitions from state
x x
k-l’ k

k-l k-l
x to state x in x and N (X ) is the number of
k-l k xk_1

. . . k-l . . . .
one-step tranSitions in x whose initial state is

. k
k in x ,

xk_1. An

algorithm for computing (2.8.1) is shown in Fig. D.1 of Appendix D.

The optimum-adaptive decision rule implemented in this

fashion is a fixed memory rule. No matter how many learning samples

are employed and no matter how large the size of the vector to be

classified, only the parameters for the posterior densities need

be stored. Including the storage requirements for prior informa-

tion, the total number of words of storage needed is equal to

M(N2 + 2N + 2).

A computer simulation was made to illustrate the performance

of the optimum and optimum-adaptive decision rules. All computer

simulations discussed below were performed on the CDC 6500 digital

computer at Michigan State University. The Specific case considered

is the following:

1. There are two pattern classes denoted by ml and wz;

Pi = P; = 1/2.

2. The continuous-parameter Markov chains which produce

the samples are assumed to have 3 states for both

pattern classes.

3. The Q-matrices used to produce all observations are

listed below.



 

 

 

 



Q1 =

r

0.60

0.40

 L036

0.12

1.00

0.84

28

q

0.48

0.60

 1.20
.4

Q2 =

P

0.50

0.60

 Lo.7o

0.15

1.20

0.30

The initial state probability distributions for the

bility distributions of the correSponding chains.

were computed by (A.11) and are given as follows:

E
“

L
A
N
D
-
d

0

P1("1
1)

 

0.387

0.306

0.307

O

2(x1
P _ i)

 

0.388

0.224

0.388

The following parameter matrices were used for the

1

0.35

0.60

 1.00
‘

chains were chosen to be equal to the stationary proba-

They

matrix-beta prior density, which was used for the para-

meters of the jump chain.

0

”1

  

o

“2 =

{o

5

 7
b

6. The following parameters for the prior

the sojourn times were used.

  

F"

= 1.0

 h-

1.0

1.0

7

 -

V
—2

 

densities of

F- -

15

10 ,

  b120‘

In the first part of the sinulation, the average error

Q-matrices were not known.

curve was obtained using the decision rule in (2.3.10).

16.01

= 10.0

  12.0

In the

Second part, the average curves were obtained for the case when the

Two cases of supervised learning were
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employed, all applying (2.8.1) and differing in the number of

training samples provided per pattern class. Training samples of

size 50 and 100 were used for each pattern class. Each error curve

provides a Monte-Carlo estimate of the probability of error as a

function of the size of the observations. In each situation studied,

10 such error curves were obtained along with an average error

curve. Using the same notation as tD-4], 100Li(k) is defined as

the number of wrong decisions in 100 classifications of a sequence

k k

(X .t ) for the iEh-run of Fig. D.l. The kgh'point on the average

curve is defined by

10

- =}_ E L-(k)

L(k) 10 i=1 1

Thus, 1003(k) is the percent of wrong decisions in 1000 independent

classifications of k states. Average error curves for several

situations are shown in Fig. 2.8.1.

As mentioned in [D-4], the quality and amount of prior

information are critical factors in determining the rate at which

the error converges to that for known parameters. Equation (2.7.3)

shows that the posterior density function for (xk,tk), given the

training samples, depends on the parameters VEL), W(L) and mgL)

i ij

(L) __ (L) (L) _ (L) (L) _ 0(L)
where Vi - vi +-ki, Wi — wi + zi’ mij — uij +-nij.

The prior information as presented by va), WEL) and ui§L), can

thus be made to either overwhelm the initial training samples or

to be overwhelmed by them so the magnitudes of va), wa) and

uZ§L) are a measure of the amount of prior information being

inserted in the decision rule. If these parameters are properly

selected, the training data will reinforce the prior information
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A Estimated Error

Prdbability

0.3 -r

0.2 7

<::f-' Optimum, 50 learning samples

“—r Optimum, 100 learning samples

0.1 _.

Known

Q-matrices

. “— 4 >

50 100 Length of

Observation

Sequence

Fig. 2.8.1: Average Error Curves
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and the amount of training data used is not critical.

2.9 CONCLUSIONS

This chapter has dealt mainly with decision making and with

learning the unknown parameters in finite-state, continuous-para-

meter Markov systemuwith observable states and transition times.

The model by which observations are generated was defined in Sec.

2.1 and the properties of the observation process were given in

Sec. 2.2. Assuming the Q-uatrices defining the chains were known,

an optimal decision rule was defined in Sec. 2.3 to be that rule

in a given class of rules which minimizes the Bayes Risk. 08.2).

The optimum-adaptive decision rule (2.4.1) was derived in

Sec. 2.4, in case of unknown.Q-matrices while the supervised learn-

ing scheme for learning them'was employed in Sec. 2.5. The existence

of a reproducing prior distribution for (q,r) was exhibited.

It was also shown that, under the stated conditions, the parameter

posterior density (2.5.6) converges to a delta function centered

at the true value of the unknown parameter. The posterior densities

for the infinitesimal parameters given the training samples were

obtained in Sec. 2.6.

The final analytical form of the optimum-adaptive decision

rule was given in Sec. 2.7 and it was expressed in an iterative

form in Sec. 2.8. Finally, a computer sinulation was performed

for a specific case to obtain the probability of error curves in

both known and unknown parameter cases.



CHAPTER III

PROBABILITY OF ERROR

The quality of a decision rule is characterized by the

total probability of error. Unfortunately, for general decision-

making problems, exact analytic solutions for the probability of

error are impossible. Even if one could find such solutions, they

would be tremendously complex. For this reason, simple lower and

upper bounds, or asymptotic errors or iterative approximations are

more useful than exact error probabilities.

In Sec. 3.1, exact probability of error expressions are

derived for the two-pattern class case where both classes are de-

scribed by 2-state, continuous-parameter Markov chains with known

Q-matrices. Lower and upper bounds are given in Sec. 3.2. The

limit cases are also studied as the number of observations tends

to infinity. Asymptotic probability of error formulas are derived

for the two-pattern class problem with N-state Markov chains having

known Q-natrices in Sec. 3.3. The probability of error is shown to

converge to zero w.p.1 as the number of observations tends to

infinity. In Sec. 3.4, the conditional probability of error notion

is introduced and iterative expressions are established for them.

Finally, Sec. 3.5 summarizes the main results of the chapter.

3.1 EXACT PROBABILITY OF ERROR FOR N = 2 AND Q-MATRICES

Let Q1. and Q2 be known Q-matrices characterizing pattern

classes, ml and m2, reapectively. The following notation will

32
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be used:

Q1 = ; Q2 = 9 q19q2’p19p2 > 0

N

The density functions, (2.3.8), are evaluated below for the observa-

k

tion sequence (xk,t ) = (x1,...,xk,t1,...,tk). Since the states

must alternate, and assuming k is an even integer, Ki 8 k/Z and

rij = l V i,j E {1,2}, (j # i). Then

2 -Z q.
k k k/2

31(x .t ) = P:(X1) U qi e l 1 (3.1.1)

i=1

2 -Z.p.
k k k/Z

32(x .t ) = 930:1) 11 pi e 1 1 (3.1.2)

i=1

Hence, the likelihood ratio, A(-), is defined as

k k 0

g (x .t) P (X) 2 p. k/2 -z,(p,-q,)
2 _ 2 l (_19 e 1 1 1 (3.1.3)

A(Z ,2 ,X ) -—-——- - -———-

1 2 1 g1(xk,tk) 230(1) i=1 qi

Using the "0-1" loss function, the optimal decision rule is given as

 

 

* k

d(xk,t)=u)1 if L<'n

= (1)2 if L > n (3°1°“)

where

o 2/k o

P q q P (x )

1) QLn -% +Ln plpz; L3 ?an g 1 +12: 2 (qi - pi)Zi (3.1.5)

P2 1 2 P1(x1) i=1

The total probability of error, Pe’ is then given as

Fe = P(L > mml) P1 + P(L < n\w2)1>‘2’ (3.1.6)
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where p(x. > mmp = m > mxl -- 1.w1)P:(1)

+ P(L > n\x1 = 2,m1)Pi(2) (3.1.7)

P(L < n|m2) = P(L < n\x1 = 1,w2)P;(1)

+ P(L < n\x1 - 2,w2)P:(2) (3.1.8)

Using (3.1.5), (3.1.7) and (3.1.8), it follows that

O O

P(L > n\w1) = P(Z > n1\w1)P1(1) + P(Z > n2\w1)p1(2) (3.1.9)

0

P(L< U\w2) = P(Z < n1\w2)P2(1) + P(Z < n2‘w2)P3(2) (3°1-10)

where

2 2 ) P1P1(i) Z/k qiqz 1 2
Z=-£(q.-p.Z.; n.=Ln --—,i=,

k i=1 1 1 1 1 pgpg(1) p192

(3.1.11)

The density functions for Z1 and 22 are now obtained

k/2 k/2

Z1 = .2 t2i-1; Z2 = z t2i if x1 = 1 (3.1.12)

i=1 i=1

k/2 k/2

Z1 = .E t21 ; Z2 = ._ t2i-1 if x1 = 2 (3.1.13)

1—1 1—1

There are k/2 terms in each sum in the above expressions

and also

ti ~ Exponential (qi) when m1 active

ti ~ Exponential (pi) when w active

2

Thus, for both values of XI, Zi is the Sum of k/2 i.i.d. random

variables, all having the exponential distribution with parameter

(11 or pi (i = 1,2). Thus,

Zi ~ Gamma (k/2,qi) under ml

21 ~ Gamma (k/2,pi) under wz
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Explicit probability of error expressions are now derived

for several cases.

92. - . 9.2 .
Let g1 - k(q1 p1), g2 - R(qz-p2)) g1 > 0, g2 > 0' Then,

2, defined in (3.1.11) can be written as

z = 5121 + 5222

and, 5121 i Gamma (k/2,11); €222 Gamma (k/2,12) under m1

5121 ~ Gamma (k/2,p.1); €222 Gamma (k/Z,p.2) under (.02

- -——¥———— 1 = 1,2. (3.1.14)

The density function for 2 can be found by convolving

the densities and expanding the integrand with a power series.

 
 

 
 

As a result, the densities for Z under m1 and under wz are

given as

a n -122

f2 (Z1001) = 2‘. c112 e z > 0 (3.1.15)

i=0

m n -p22

fz(z\w2) = .2 C122 8 z > 0 (3.1.16)

i=0

wh é - + k _ 1. g F(k/2 + 1) (1 1 )k/Z (12 ' 1‘1)1 ,

ere “ 1 ’ C11 F(k+i)F(k/2) 1 2 1! ’

i

g F(k/2 +11) ( )k/Z (”2 ‘ “1)

C12 I"(k+i)I‘(k/2) 111112 1!

Using (3.1.6), (3.1.9), (3.1.10), (3.1.15) and (3.1.16), the total

probability of error can be evaluated for several sub-cases.

The following probabilities in (3.1.9) and (3.1.10) are first

computed. With a modest amount of effort, it can be shown that



‘hh n mnpj
P(Z > n11m1) = z b11 e 2 “‘3T"‘ (3.1.17)

i=0 j=0

a -n1 ncnxfl
P(Z > nzjml) = z bil e 2 2 z -—%T;—— (3.1.18)

i=0 j=

j
w -n 1 n (n 1 )

P(Z < n1\m2) = 2 13,2 [1 - e 2 2 —l!—2——] (3.1.19)

1: 1 J=0 ‘1

( n ‘ ) m [i ’BZIZ n (“212)j] (3 1 20)

P Z < w = 2 b. - e 2 -fi--—- . .
2 2 1= 12 j=0 J!

"
D C ng-i-k) . b QI‘(i+k)

11 11 i+k ’ ° “

1‘2 112

where b

Then, in terms of the above expressions, the total proba-

bility of error becomes

w -11 n<11fl -n1 n<nxfl
P = PO[ 2 bil(Po(l)e 1 2 z; —l-2—— + P:(2)e 2 2 z —-2—-2-—)]

i=0 =
e 1 1 j 0 1! 3:0 3!

w n» n mu)1 -nar1mu>3
o o 1 2 1 2 o 2 2 2 2

+ P 2 b. P (1) (1 - e 2 ——) + P (2)(1 - e Z _____)]

(3.1.21)

CASE IB. “1 < 0, “2 > O

P(Z > n1\m1) = 1 ; P(z < n1|m2) = o

The remaining probabilities are computed as above. Using these

probabilities in (3.1.6), the total probability of error is:

co '1“ A n (A T) )J

_ o o o 2 2 2 2
P8 — P1[i};obfl(?1(l) + p1(2) e 320 j! )]

°° Tm n (TN )1

+ P;[ E b12P(2)(2) (I - e 2 2 )3 -—-§-!—2—):l (3.1.22)

i=0 j=0
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CASEIC. n1>o,n2<o

j
°° 4) k n (T) 1)

_ o o 1 2 2 l 0

Fe ‘ P1[ E 1111(131”)e E ‘31—— + 13101)]
1-0 j-O

j
°° 11115 11 (T1 U» )

+ 133‘: .2. b12P2(2) (1 - e 2 .2 "'le"‘)] (3.1.23)

i=0 j=0

CASE ID. n1<o, n2<o

II

|
'
-
‘

P(Z > n11w1) = 1 ; P(Z > n2\w1)

P(Z < “1“”2) = 0 ; P(Z < n2|m2) = 0

Total probability of error is,

Pe = P1

Df' é3( - ). =2( -) 3124
e lne g1 k ql p1 a £2 k ‘12 p2 ( ' ' )

Then, the logarithm of likelihood ratio in (3.1.5) becomes

 

2 P2011)
L = ELn O + 5121 - |g2|22 (3.1.25)

P1(X1)

The total probability of error is calculated in terms of the formulas,

(3.1.6), (3.1.9) and (3.1.10), where

2/k

. D192

00, qq

P2P2(1) l 2

0 O .

Q A P1P1(1) .
z - 5121 - \g2122; 111 = Ln -— , 1 = 1,2. (3.1.26)

Here, €121 ~ Gamma (k/2,xl) ; lgzjzz Gamma (k/2,xz) under ml

5121 i Gamma (k/2,p,1) ; 1§2122 Gamma (k/2,p,2) under

  

where X. ' = 1,2,. (3.1.27)
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The density functions for 2, under ml and under wz,

can be determined as in Case I and are given by:

m n . . -Z(1 +1 )

fZ(z\w1) = Z 2 CE?) z1+J e 1 2 z > 0

i=0 j=0 J

m . 21

= z c§1) 21 e 2 z < 0 (3.1.28)

i=0 1

m n -z(u +u

2
fzczlmz)= z 2 f) 1 2 z>o

-0 j=0 J

m zu

= z cfz) 2 z < 0 (3.1.29)

i=0

where m 2 g - l ; n Q k - i - 2

k/2

C(1)3 H”) rgn -H1) (1112) ,
. 2 ,

1 (1N+12 r (k/2)
k/2

= (-1) ( ) n-l 2

1 (1114112) 1 (k/2)

(1 +1)1 < + )1
(1) A (1) 1 2 (2) 8 (2) ”1 LL2

= C. ° _.———— C.. - C. —'——:'—_-

C1] 1 J! 1] i j!

The total probability of error will be computed for the

f0110wing'sub-cases.

CASE IIA. n1 > 0, n2 > O

'The following probabilities are first computed as in Case I.

m n 'n (1 +1 )
b(1) 1 1 2

P(Z > n w ) = Z 2 Hr (3-1-30)
11 1 i-O j-O r-Obijr 1e

m n -B (1 +1 )

P(Z > n2|m1) = z z zbfji file 2 1 2 (3.1.31)

i=0 j=0 r=0

 



._ (2) “1 1‘ 1 (2) r T119111112)
P(Z < 11 (n) b 2 2 2b (3.1.32)

11 2 1=o j=0 r=0 131 1

m n L 'B (u +u )

p(z < nz\m2) - b(2) - z z z b(2) n: 2 1 2 (3.1.33)
m
>

fi
n
s
:

where m

b<1) g c<1) m. + 1) (11%)
 

 
 

 

b1jr ij (11+12)1+1 ' r! 1

r

b(2) 1 (2) m. + 1) , (‘11 1 1121 .
bijr — Cij (“17p2)L+1 r! ’

g m (2) P(i + 1 n (2) P(Lii-l)

b2 ‘ 113-01} 1) iii—1+ E01113 L+1 °

Substituting the above expressions in (3.1.9) and (3.1.10) and using

them in (3.1.6), the total probability of error is obtained.

_ o (1) o r ’“1‘11+12) o r '“2(11+12)

Pe ' P1 . 2 [E131 P1(111‘1 e +111611112 e
lajsr

o (1) o r ““1(“1+”2) o r '“2(”1+”2)
+ P2 62 - . E [1,,r P2(1)n1 e + P2(2)n2e ]

13J2r

(3.1.34)

Using the same procedures as in Case IIA, the total proba-

bility of error expressions are derived for the other sub-cases.

CASE 113. nl < 0, n2 > 0

Mn1-n (1 +1
_ o 012 (l)r 2 1 2

Pa - P1E31P1(l)- i23j1>°1(1)b::)1'(-1'\1)e + 2311111101101”)31-8112 3

n u -n (u 182 )

+ P0 [2 P°(1)b(2r)(-n1)re 1 2 + b2P:(2) - 2 P°(2)b(§)n;e 2 12]

i,r
i,j r

(3.1.35)
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CASE 110. nl > O , n2 < O

-T\ (1 +1) 1) 1
P = P0 2: P°(1)b(1)ne 1 1 2 +b P°(2) - 2: P°(2)b(1)(-412)2e 2 2
e 1 ”j 1jr 1e 1 1 i’r

4] (u +1») I.“ u

+ P‘2’[b2P‘2’(1) - 2 P3(1)bi(2)'n1e 1 1 2 + 2 P20(2)b,(2)((412).; 2 2]

i,jar i,r

(3.1.36)

CASE IID. n1 < 0 , “2 < 0

1X2_ o (1) o r n o 2 r n22‘2
pe _ p1 b1 - izrbir [P1(1)(-fl1) e + Plan-112) e :1

i,r

H u 11 u

+ P; . 2: b(2)[: P;(1)('Tl1)r e 1 2 + I";(fl)(--'flz)r e 2 2] (3-1-37)

Kr

where bf:) A <-1> a”) ‘i‘fi‘u T? ; his.) A <-1> cf” 4411?
2

“2

m n

b g z[(_11)<1>r;%11+2<1>_11_+_11]
1 , _ ij 2+1

1=0 12+ j--0 (1 14-12)

3.2 AN UPPER BOUND ON THE PROBABILITY OF ERROR

The exact probability of error formulas derived in Sec. 3.1

are very complicated and the asymptotic behavior is difficult to

ascertain. A simple upper bound on the probability of error is

needed and will be derived from the following theorem [K-l], for

the case considered in Sec. 3.1.

THEOREM 3.2.1. Let P: and P; be the prior probabilities for

the pattern classes, ml and wz, respectively, and let gi(-) be

the density function for the sequence of state and sojourn time

observations, (xk,tk) = (x1,...,xk,t1,...,tk) when pattern class
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mi is active, 1 = 1,2. Then, Pe is bounded by the Bhattacharyya

distance as follows:

%min(P‘iP;)p2 s Pe s (P3P;)% 9 (3.2.1)

where p is Bhattacharyya distance and is defined by

 

k

p a] #10:“: )gz(xk.tk) dxkdtk (3.2.2)

ARXEO a”)k

To apply this bound to the problem being considered, 31(-)

and g2(-) must first be determined. Since the 2-state continuous-

parameter Markov chain is being considered, the values of

(x2,...,xk) are known w.p.1 as soon as x1 is known. Substituting

r l i = l,2,...,k-l in (2.3.7), the desired densities

xi’x 1+1

are determined and are given as:

31(xk,tk) = <q1q2>“’2[:£1: emqltn"1 {(12:21 as(1-x2i_1>a<2-x211 ]P‘1’<1>

+ (q1q2)k/2[::§: e-qthZi-1 eqltsib(1-x21)6(2-x21_1)] Pq(2) (3.2.3)

82(Xk,tk) = (p1p2)k/2[:§: e-pltZi'l e-p2t816(1-x21-1)6(2-x21)] 193(1)

+ (p1p2)k/2[:1: e plt“ e-pztfi'laa—xnn(2-x21_l) 23(2)] (3.2.4)

Here, 6(-) is the impulse function. Then,

 

kl!» ”2 °° '(qulnzi 1 '(qzz 2)t21= o o - d .

P (qlqulpz) P1(1)P2(1) II I e dun”1 x {g e t21

1-1 0

9 +9 Ca +91

0 0 kn” '( 222)t21 1 ° " 12 ”21+ -

P1(2)P2(2)121 e dt21_1£ e (1:21 (3.2.5)





42

Performing the integrals in the above, the result follows.

 

 

k/Z
_ k/4 o 0 4

p - (qlqulpz) P1(1)P2(1)[ ((114131ansz

0 o [ 4 k/Z

+ P1(1) P2(2) (92"?2) ((114131) ] (3.2.6)

Then, the lower and upper bounds for probability of error are

given in terms of p, Pi, P0 by (3-2-1)-
2

o O 1/2

Since (Ple) s% P°1, P; 6 [0,1], each term in the

upper bound approaches zero as k tends to infinity so P;

approaches zero.

3.3 PROBABILITY 0F ERROR FOR LARGE SAMPUE SIZES

In this section, asymptotic probability of error expressions

are derived in the case of large sample sizes. In Sec. 3.3.1, the

2-pattern class problem with 2-state continuous-time Markov chains

is investigated when both Q-matrices are known while results are

generalized to N-state case in Sec. 3.3.2.

3.3.1 N = 2, M = 2, AND KNOWN Q-MATRICES

Let the Q-uatrices for the two-pattern classes be given as

in Sec. 3.1. The formulas necessary to calculate the total proba-

bility of error are given in (3.1.6), (3.1.9) and (3.1.10). For

large k, Z and Z defined in (3.1.10) are asymptotically
1 2

normally distributed. The means mi and variances oi, i I 1,2

are defined for ml and w2 as follows:

m, = -E- , a? 8 -E-' under w , i = 1,2

1 2q 1 2 1
i 2q1

k 2 ’ :3

mi = EST , Oi = .55. under wz, 1 1,2
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Then, 2, defined in (3.1.10) is asymptotically normal with

mean mm and variance of) defined by

   

  

  
 

i i

c11121 qz-pz 2 2 P(ql-p1)2 (qz-pz)?

mb = q +' q ; o¢ =-E +. 2 under ml

1

1 2 1 _ q1 (‘2 1

P 2 21

q -p q -p (q '13 ) (q -p ) w.

- 1 1 2 2 . 2 _ 2 __1___1__q” — p +- p , gm — k ,2 4--—3L7?L—- under wz

2 1 2 2 p p
.. 1 2 ..

Thus, the total probability of error for large k is I

given by the following integral formula:

* o O Q * o m *

= +Pe p1[1>1(1) 4; fz(z‘wl)dz 21(2) 4; f (z\m1)dz]

1 2

0 O 2 * 0 P2 * 1

+ P2 [:Pz(l) in fz (z‘w1)dz + P2(2) .m fz(z‘m2)dz] (3.3. )

*

where “1 and n2 are as defined in (3.1.10) and fz(z‘wi),

i = 1,2, is a limiting density function of the random‘variable

2. Performing the integrations in (3.3.1), the asymptotic proba-

*

bility of error, Pe is obtained.

 

 

  

 

nl-m flz-m

* _ o u)1 0 ml

Pe - P1 PC;(1)[1 - <I>(fk 01 )] + P1(2)[1 - 1(fk 01 )]

o o 111-me o “Z-mmz

+ P2[:P2(2)<§(fk °2 ) + P2(2)<§(/k 02 )] - (3.3.2)

2 2" 2 2

(q -p) (q- ) (q -p) (q -p)

where 0292 1 1 + 2p2 3 2“ —i-L-+-—Z'—2— 3
. 1 2 2 2 2 2

q1 q2 p1 p2

x 2

@(x) gig—L e-t ’2 dt .

/2n
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*

To show that Pe decreases toward zero as k increases

without bound, let ql > p1, q2 > p2. Then, it is clear from

(3.1.9) that

 

 
 

 

m9 1imn1= lim‘nz =an1:2>o

k—«oo k—cao P1 2

A little algebra shows that

m < < m

0"1 TL” “’2

“1..me “2..me

Thus, lim Q(,/k ) = lim 9 A = 1

k—ooo 0]. k—naa 0’1

nz'mbz n2-mb2

limQQ/‘k )=lim§(,/k———)=O.

k...» km 0

So, from (3.3.1), it follows that

*

P-+0 as k—oco.

e

3.3.2 N > 2, M = 2 AND KNOWN Q-MATRICES

In this section, the asymptotic probability of error is

derived for the N-state case, (N > 2), assuming that there are two

pattern classes and that the Q-matrices correSponding to the pattern

classes are given.

Let the Q-uatrices and the density functions for the observa-

k k

tion sequence (x ,t ) be given as

N
N x, N N q 13

Q =[<L.1. g (xk.tk) =[ II C! 1 exp{-q Z }]P°(x ) 11 110-11)
1 1] 1 i=1 i i i 1 1 i=1 j']. qi

1&1

(3.3.3)
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Ni
N K N ij

_ k k g 1 _ 0 p11

#1

(3.3.4)

for the wl and m2 respectively. Hence, the likelihood ratio,

A(.), defined in (3.1.3) becomes

1L

9. 1

MUS}, {21}: {Nij}’x1) =[(E:'> exP{'(pi-qi)zi}]

 
 

P°<x> N N p.. q. “11

x II n {—1-}- -1-) . (3.3.5)

P°1(x 1) i=1 j=-1 pi qij

1&1

Using the "0-1" loss function, the optimal decision rule is given

as in (3.1.4), where

 

 

A P° 2/k

n = Ln(-;) and (3-3-6)

P

2

L g imtn A

N pi N N N p Pp(x )

=‘11;[2K1Ln(—)+ 2 (q1'91)z1 + 2 Nijtn(—:‘,l°q—q—) +;Lno2 1 ]

1:1 1 i=1 i=1 j-l Pi 11 P°1(1:1)

1&1

N

For large k, Ki 5 Z N. , then,

=1 ij
J

1 N N pi. 1 N 1 P;(x1)

L = '1: Z 2 Ni' Ln “—1 + '1: 2 Zi(qi-pi) + Eta o . (3.3.7)

1=1 j=1 J ‘11) 1=1 131011)

ja‘i

N N

Since k is fixed and k = 2 z Nij’ the Nij's are

181 j-l

11‘1

stochastically dependent random variables. Bartlett [8-1] proved

that the asymptotic distribution of Nij's are normal with expected

values mij = kPirij, where
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g 111 . d
rij qi (j # 1) un er wl

3.3.8

é'Eli (' # i) nder ( ).. p J u (”2

i

and the Pi's are the stationary probabilities of the corresponding

jump chain. Using Bartlett's method, the covariance matrix V = KVO,

where V = {cov(nu ,n 1, can be determined by the expansion
N

O r tq)}u,r,t,q=

of Ln uIQQ) up to second degree in 913’ where u1(§) is the root

such that ”1(0) = 1, of the matrix

9.. N

R(fi) =[r.. e 1]] .

13 1.131

Then the matrix Vo which is independent of k is given by the

quadratic expression %h§?Vo§' in which 'g stands for the column

vector with components (g1,§2,...,§u) where 21 - (911’612""’91N)'

As a result of the above argument, the first term in (3.3.7),

N N p.

n A l- 2 2 N. Ln ‘L1, is asymptotically normally distributed
R ij q.

i=1 j=l ij

1941 2

according to N(mn, on), where

N N P

mm = z 2 Piri, Ln JJ- (3.3.9)

i=1 j=l J Q13

02 N P P
2 2

o = E2 ; 00 Q 2 (Ln -2£)(Ln -£g) Cov(n r,nt ) (3.3.10)

“ u,r,t,q ur qtq “ q

ufr,t¢q

1 N

To determine the distribution of 2 Q E: 2 Zi(q -p ), the

1.1 1 1

second term in (3.3.7), the distribution of the 21's is first

studied. The random variable 21 was defined by (3.1.12) and

(3.1.13) as

K.

A 1

Z ’ 2 t. i G A (3.3.11)
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N

Because of the linear relation k 8 2 K1, the Ki's are

i=1

dependent random variables. Also, the Ki's are asymptotically

normally distributed as k tends to infinity. Means and covariance

of the Ki's are given by Good [G-l]. They are as follows:

30(1) = k P1 1 e A (3.3.12)

Cov(Ki,Kj) = k xij i,j E A (3.3.13)

Here, the Pi's are the stationary probabilities of the chain and

1,. is defined as

1J

1

-1 -1
i]. {AijPi - P1P], + Pi[S(I-S) 11,1 + Pj[S(I-S) 11,1}.

(3.3.14)

The matrix S is defined in terms of the equation given by

R = g_§F +'S

T ,

where R — [rij]’-£ — [p1,p2,...,pN] and g. correSponds to left

T T
and right eigenvectors, reSpectively; i.e., _I_’ R I E and R g = 3.

Now, define

l
l
>

~
<

H x
fl
h
i

I
t
“
)
?
!

j-1 tij(qi-pi) V'i E A (3.3.15)

Since the Ki's are dependent random variables, the yi's are

also dependent random.variables. For small k, the distributions

of the yi's are too involved to compute. However, it can be

shown that as k tends to infinity, their distributions approach

the normal with probability one (w.p.1). Note that

K

p{11m E3- = 9,} w.p.1. (3.3.16)

k-aco 1
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So, for large k, Ki ~ k Pi w.p.1. Substituting this into (3.3.15),

it follows that

kP,
1 1

Y1 - k iEltijmi-pi) (3.3.17)

Since the tij's are i.i.d., exponentially distributed

random variables, when k is large enough, using the Central limit

theorem, it can be seen that the yi's are independent and

asymptotically normal according to N(m1,oi) where

 

 

 

2

_ P1(q1'p1) . 2 _ Pi(qi-pi)

1 kq
i

2

m = 31:31:311 . 02 _ Pi(q1'p1) under w
s ’ . — ‘2’

1 pi 1 kg. 2
1

N .

Also, 2 = 2 y is asymptotically normally distributed

i=1

according to N(m ,o ) under m and N(m ,02 ) under w ,

z z 1 z z 2
l 1 2 2

where

N p ( - ) N P ( - )2
1 qi Pi 2 1 1 q1 pi

1 1=1 q1 1 1=1 qi

m = N P1(q1'p1) . 02 = l. g P1(q1 9,) (3 3 19)

22 1=1 F1 22 k 1=1 p:

Q

As a result, 2 n + z is asymptotically normally dis-

tributed according to N(mz ,0: ), i = 1,2. Where

i i

_ . 2 _ 2 2

mzl — 11121 + In.r11 , 021 - azl +-an1 under ml (3.3.20)

mz = m + m ; 02 = 0'2 + 0'2 under (D2. (3.3.21)

2 22 n2 22 22 n2
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In the above, mn and a: , i = 1,2, are expressed in

i 1

terms of m.n and a: defined in (3.3.9) and (3.3.10) as follows:

q .

— ° 2 - 2 -- —1Ii . '

mn - mh , on — on when rij — q. i,j E A (j # 1)

l l 1

m = ° 2 = 2 when r = 331 i E A ( i i)

The total probability of error, then, can be calculated

using equations (3.16), (3.19) and (3.1.10). The result is as

  

  

 

follows:

, 1‘1'“1*21 T‘2'““z1

P8 = P1(l) 1 - @(/k a ) + 21(2) 1 - 1(flc 0* )

Z1 Z1

0 T‘fmzz T‘2’"‘22

+ P2 132(1) @(fko ) + 92 (2):(fk* 2) (3.3.22)

c’z
Z2 2

p(1)

where 0:. A,/k Uzi , “1' , i = 1,2.

i P: P2(i)

Note that lim 111 = 0, =.1,2

kam

It is shown that for a Specific case in which qi‘1 > pij’

V i,j E A (j f i), the total probability of error decreases toward

zero as k tends to infinity. The following lemma is first

introduced and its proof is given in Appendix E.

LEMMA 3.3.2 qij > pij = -m < mi < O < mi < +m

From Lemma 3.3.2 and the property of Q(.), the following

limits hold:



L
i
n
t
'
1

I



1‘1nmzl T‘Z-mzl

lim §(/k T) = lim 9(fk T) = 1

k—m 0' k—-m 0

z1 z1

Tll-mz 1‘12- 22

lim @(/k _,_2.) = lim @(fl —;——) = o

1?“ Oz k—cco Oz

2 2

Thus, from (3.3.20), it follows that

*

lim P = 00

e

k—m

3.4 RECURRENT EXPRESSIONS FOR THE PROBABILITY OF ERROR

In two-pattern class problems, the total probability of

error can always be expressed in terms of the probability of error

of the first kind (the probability of false alarm), go, the second

kind (the probability of a false dismissal), 50m and the prior

0

probabilities, P3, P2.

0 O

= + 3.4.1

where do and Bo are defined as follows:

0.0 ‘3 P[d*(xk,tk) = “’2‘9 = 1], Bo 9 P[d*(xk,tk) = mlle = 2]

(3.4.2)

From (3.1.4), they can be written in another form as

Q A - l 3 4 3aO-P[I.K>n\e=0],eo-PELK<nle-J (..)

where LK is the logarithm of the likelihood ratio and n is

a threshold.

In general, exact analytical expressions for go, and Bo

are impossible. However, it is possible to obtain them recursively
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in terms of the conditional error probabilities, aL(k) and BL(k)’

*

where qL(k) is the probability of d (xk,tk) = wz, given that

e = 1 and xi“ = (x1,...,xL), 4, s k while (k) is the proba-
BL

. . * k k . L
bility of d (x ,t ) = wl’ given that 9 = 2 and x = (x1,...,xL).

For short, this can be written as,

k

P[d*(xk,t ) 1,XL]u n

8 3
; u n01,00 PELK > 1119 = 105’1

(3.4.4)

6,00 P[d*(xk,tk) - 293’] P[LK < me = 2,151]

(3.4.5)

I

e

fi
L
.

(
D n

It is clear that the usual error probabilities, “0’50

are related to the conditional error probabilities by the follow-

ing expressions:

010 = 0,00.) , so = 6000 (“-6)

With the help of the conditional error probabilities and the total

probability law, a0 and so may be obtained in terms of the follow-

ing expressions:

a0 =2 J” aL(k>g1<x".t”>dc" (3.4.7)
4 L

x t

Bo=z j‘ BL(k)g2(xL,t‘)dt’° (3.4.8)

x". c"

where XL E A&, tL 6 [O,m)L, L = O,1,2,...,k.

The conditional probabilities of error can be generated

iteratively. This can be achieved writing gi(xL,tL), i - 1,2, as:

g.(xL,tL) = fi(xL XL-1,CL-1)fi(CL‘XL,tL-1)g.(it-1,6L-1) (3.4.9)
1 1

Substituting in (3.4.7):
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= L"1tL"1 L-1tL-l L'l

a0 2 f,_1 g1(x ) 2 It gc(k)f1(xL‘x ,t )f1(cL|x%H)dtL dt

L-l t Lt
X X

Defining

4- 1 4--1 44--1 .

4,, 10031,: J“, Maw(xJ" ,t )f (t\ )d4’ 4, l,...,k

(3.4.10)

the desired iterative form for qL(k) is obtained. Similarly,

for B£(k):

‘xL tL'1)dtL, L = 1,...,k.

(3.4.11)

= L—l L-l
BL_1(k) :4 {L BL(k)f2(xL‘x ,t )£2(th

X

From (3.4.4) and (3.4.5), it follows that these probabilities

of error must satisfy the following boundary conditions when L = k.

ak(k) = U(Lk - n). Bk(k) = 1 - u(Lk - n) (3.4.12)

Here, u(.) is the unit step function. In terms of the recurrent

relations (3.4.10), (3.4.11) and of the boundary conditions,

(3.4.12), it is possible to obtain Pe via a0 and BO. Un-

fortunately, except for some simple cases, an analytical form for

the total probability of error is almost impossible to obtain. How-

ever, because of the iterative character of the method, it is more

convenient for the computer implementation than the work in Sec. 3.3.

3.5 CONCLUSIONS

The aim of this chapter has been to derive expressions for

the total probability of error and to study their asymptotic pro-

perties for the problem considered in Chapter II. Because of the

tremendous complexity involved in computations with unknown para-

meters, attempts have been made only for the known parameters case
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with two pattern classes.

The exact analytical solutions were obtained in Sec. 3.1

for the total probability of error assuming two pattern classes

with 2-state chains and known.Q-matrices while lower and upper

bounds were given in Sec. 3.2. It was shown that the probability

of error decreases toward zero as the number of observations

increases without bound. Section 3.3 derives the asymptotic proba-

bility of errors for large sample sizes. Proving the asymptotic

normalities of the underlying distributions, asymptotic error

expressions were obtained for the case of two pattern classes,

N-states and known Q-matrices, and, in terms of the Lemma 3.3.2,

their convergence to zero as the number of observations tends to

infinity was proven.

Finally, In Sec. 3.4, the conditional probabilities of

error of the first and second kind were defined and it was shown

that the total probability of error can be computed in terms of

these conditional error probabilities and of the prior probabilities.

A method was also given to generate them in an iterative fashion.



CHAPTER IV

DECISION MAKING AND LEARNING WITH

UNOBSERVABLE STATES AND OBSERVABIE

TRANSITION TIMES

In this chapter, optimal decision making with unreliable

observations on finite-state, continuous-parameter Markov systems

is considered. The states of the systems cannot be observed

directly, but the exact times at which transitions from one state

to another occur can be observed. The decision problem itself is

the same as that in Chapter II.

The model by which observations are generated is defined

in Sec. 4.1. In Sec. 4.2, the optimal decision rule is established

and is generated iteratively for the case when all parameters in

the model are assumed known. In Sec. 4.3, the results of Sec. 4.2

are applied to two Specific cases. Section 4.4 deals with various

aSpeCtS of decision making for continuous-parameter Markov systems

when the model is not completely specified. The main problem of

Sec. 4.4 is to extract some information about the unknowns of the

model from the observations and use this information to construct

an optimum-adaptive decision rule which performs almost as well

(with reSpect to a well-defined criteria) as the optimal decision

rule of Sec. 4.3. Finally, Sec. 4.5 summarizes the main results of

the chapter.

54
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4.1 MATHEMATICA1.MODEL FOR GENERATING OBSERVATIONS

The basic model considered in this chapter is similar to

that in Chapter II. Each of the M-pattern classes is defined by a

finite-state, continuous-parameter Markov chain. The Q-matrices

for the chains are parameters of the problem. The states of the

chains cannot be observed directly, but each state is characterized

by an observable random process. For instance, a noise process can

be added to each state. The random variables describing the observa-

tions during a given time interval have joint distributions which

depend on the state of the continuous-parameter Markov chain during

that time interval.

Appendix A shows that almost all sample functions of a

finite-state, continuous-parameter Markov chain, {x O s t < a},t’

which satisfies certain conditions are step functions, and that the

process can be uniquely determined by observing any of the sample

functions in the interval 0 s t < w. Observing the sample function

on [0,m) is equivalent to observing the sequences of random vari-

ables {xk}:, {tk}: correSponding to the state numbers and the

sojourn times. It is also shown in Appendix A that {xk): is a

discrete-time Markov chain (jump chain) with the transition matrix

[rij] defined in (2.2.1) and that the sojourn time random variables

{tk}: are state-conditionally independent and have exponential dis-

tributions with parameters {qi}q.

In this chapter, the random variables {xk}: cannot be

observed directly, but it is known that when Au = i, a sample

function of a random process xi(t) can be observed. The random

variables {tk}: can be observed. The main assumption on the
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random processes {xi(t)}§, which describe the states of the chains

generated by each pattern class, is that the statistical properties

of the random processes {xi(t)}§ are known and are the same for

all pattern classes. This simplifies the formulation.

There are many possible sampling schemes for defining the

observation process. Here, it is assumed that time samples

x(t..) = x
1] ij’ i = 1,2,...; j = 1’2"°°’ni’ are taken during the

interval [pi-l’pi) where pi_1 and p11 are the successive jump

A
points of the process at which transitions occur and po = 0.

Another sampling scheme is discussed in Sec. 4.3.

The observation process is then defined by the sequence of

k

random variables {§_,tk}: where tk é (t1....,tk), ti A pi - pi_1:

and 5% Q (£1,xz,...,xk); ii correSponds to the iEE Observed vector

T

xi = [xil,...,xin ]. Sampling times t are determined as follows:

i
13

The first sample xi1 IS always taken at time t11 = pi-l’ just

after a transition occurs. The following samples (xi2""’xin )

i

are taken at times t. =12 pi-1+T,ooo,ti

u1 = 91-1 + (“i'DT’

reSpectively, where T > O is the time interval between two samples.

From the above, it is clear that the number of samples n1 is a

random variable which depends on ti and is determined by

ni = [ti/T], in which the expression [g] is defined for any real

number § 2 O as the largest integer less than or equal to g.

The general model with the sampling scheme defined above is

illustrated in Fig. 4.1.1. The :andom'vector x: = [xkl’xk2""’xknk]

defined above takes values in R k and has a nk-dimensional density

function denoted by fi('\9) when it is known that pattern class

9 is active and that the correSponding Markov chain is in state i
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during the interval [pi 1,pi). That is, fi(.|e) is the conditional

density of observations 5k given that chain 9 is in state i.

By assumption, fi(§k‘e) is independent of e for any 5k and

any k and will be denoted by fi(§k). Since the states of the

underlying continuous-parameter Markov chains are not observed,

5k has the following global density when pattern class 9 is

active:

N

f(gkle) = 2 fi(>;k)P(1k = its) 9 e a (4.1.1)
i=1

This density is a finite-mixture with component densities

{f,(.)}§ and mixing parameters {P(xk = i‘e)}§ where

1

N

E P(xk = i‘e) = 1. Another simplifying assumption is that the

i=1

. . km ..
random variables in the sequence {5 }l are state-conditionally

independent. That is,

fl(£1,£2,...,£k‘>\l = 12)).2 = j:'°-3Ak = L39) = f1(£1)fj(¥-2)..OfL(¥-k)

(4.1.2)

As in Chapter II, a single, continuous-parameter Markov

k k

chain is active to produce (§_,t ) during the entire observation

interval [0,T], T < m. A decision about the identity of that

chain is to be made.

4.2 ITERATIVE GENERATION OF THE OPTIMUM DECISION RULE

The model is completely Specified when the followingoquantities

are known: The compoennt densities, {fi(')}§’ the infinitesimal

parameters, {q:§)}q, and the initial probabilities, {P(x1=i|e)f:

over the states for all pattern classes 9 6 @. Decision theory

then provides the optimal strategies for processing the observations.

 





59

* k k

An optimum, non-randomized decision rule d (x_,t ) can

be chosen as in Appendix B. In particular, when the loss function

is given by L(i,j) = 1 - Aij (O-l loss function), then the

optimum decision rule becomes a minimum probability of error rule

defined by l

d*(£k’tk) = S if P(9=S|§.k’tk) {max {P(e=%\ak.tk)}] :1 ’

LEO L=s

or

if Pzgs(xk,tk) = [max {PZgL()_<_k,tk)}] (4.2.1)

LEO L=s

The rule above can be written iteratively. For simplicity,

the subscript L denoting pattern class will be drOpped. From

the Markov property

k k k tk- 1)f k- l tk- 1 k-l k-l

8(§ :t ) = f(tk‘x mk‘ )g(§. ,t ) (4.2.2)

k-l k-l , ,
The last factor, g(§_ ,t ), is available from the pre-

k-l tk- l

vious step of the iteration scheme. The middle factor, f(x#1 ,t ),

can be written in an iterative manner as follows. By the total

probability law,

k-l k-l k- 1 tk- 1
N

_. k- l k- 1

fags .t )— iEIf(§_ka-1:_ WM?"— .c > (4.2.3)

where Assumption (4.1.2) implies

f(xkhks-i " ,c ) = £,(§k) (4.2.4)

The second factor in (4.2.3) will also be required in the

first part of (4.2.2) and is computed below. This factor,

P(xk=i‘xk 1,tk 1), can be obtained iteratively as follows:
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N

k- 1 tk- l k- 1 tk- l , k- 1 k-l

P(kk=i‘_ ) = 2P()\k=i‘xk_1=xja )P()\k_1=J‘x ,t )

j#i (4.2.5)

From (4.2.1),

Xk- 1 tk- l . .

P(kk?_1hk_ 1:]j at )= rji 1f J # i

= o if j = 1 (4.2.6)

Using Bayes rule for the second factor in summation (4.2.5),

 

‘ k- 1 k2 P1 k- 1 k-2

k 1=j ) - N k- 1k-2 k- 1 k-2

j§1f(tk- 1l1k_1=1x )P(1k_1=1|x .t >

(4.2.7)

where, from the state-conditionality independence assumption

 

 

 

_. k-l k-l _. _

f(tk_1\xk_1-J.§. .t ) = f(tk_1\xk_1-J) - qj exp{-qjtk_1} (4-2.8>

and

k- 2 k- 2

f gc )P<1=j|x .c )
P(xk 1__.‘Xk 1,k2) = N -k- 1 k- 1 k (4.2.9)

k-2 2

m_1

Then, putting (4.2.6) and (4.2.7) into (4.2.5),

k-2k- 2

k- 1 k- 1 N f(tk-I‘Xk-1=j)fj (Xk-1)P(xk- 1=j‘x )
P(x =i\_ ) = z r .

k j=1 31 N f =m)f p ‘ k- 2 1c-2

j#i mE1 (tk-l‘xk-l m(Xk-1) ("k-1:“?x ’t )

(4. 2.10)

This is a "predictive" factor since it used the present

and past samples to make decisions about future states. Substituting

this in (4.2.3) will produce the middle factor of (4.2.2).

The first factor in (4. 2.2), f(tk|xk,tk 1), can be written

in an iterative form as follows: By the total probability law and

the Bayes rule,
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N
k k-l X1. -1 , k k-l

f(tk\x,t )= iz_; f(t kl1k=i ._ ,t )P()(k=1\x,t ) (4.2.11)

where

, k k-l . .
f(tkhk=1”i ,t ) = f(tkh‘fl) = qi exp{-qitk} (4.2.12)

k 1-1 t‘i<1k>1>(1k=i|_k 1.1:“ 1)
P(xk=i\§ ,t ) = (4.2.13)

N k=1t-k 1

2: fm<xk>r<1k=mlx ,t >
m=1

Substituting (4.2.12) and (4.2.13) in (4.2.11),

1(— -

k tk- 1 N fi()ik)P(>\k=i‘§ 1,tk 1)

f(t \x ,c )= )3 f(t \1 =1) (4.2.14)

k =1 k k N k-l k-l
mzlfm(xk)P(xk=m\x )

k-l k-l

Here, again, {P(Xk=i1£ ,t )]§=1 can be obtained iteratively

from (4.2.2).

The starting procedure for the iterative scheme is given

below. When k = 1, observe (x1,t1) and compute

 

1 1

8(1 .t ) = f(t1|§1)f(§1) (4.2.15)

where

N o A

f(£1)= 23 f.(x 1:)1’ . Pi - P()(1 =- 1)

i=1

N f (x )P:
_ _. i -1

f(tllil) " 1211301141“) N o

E ftn(}'('1)Pm

m-l

Next, compute the predictive probabilities, {P(12=i‘x1,t1)}1=1.

N f(t I1 =j)f (x )P°
1 1 _

P(12=i\§.t)=2rjiN 11 111

,1-

j l _ 0

j mEIf(t1h1m)fm(£1)Pm
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When k = 2, observe (x2,t2), compute

2 2 2 1 1 l 1 1

f(>_<. .t ) = f(t2\1<_ .t >f<>12|§ .t >134; ,t)

1 1 . .
where f(x ,t ) 18 obta1ned from the above, and

N

f<§Q\£}.t1) = 2 fi(§2)P(kz=i|£}.tl)

£1(§2>P<12=i|§1.t1>
 

f(t2\§?’t1) = f“2112:” N 1 1
malfmczgpmfmtz .12 )

1

"
(
‘
1
2

H

2 N
Again, {P(x3=i\§?,t )}i-1 must be computed for the next

step. This procedure can be repeated up to time k. The flow-

diagram 4.2.1 shows how gs(xk,tk) can be determined in an iterative

fashion.

4.3 APPLICATION OF THE MODEL TO SPECIAL CASES

The model defined in Sec. 4.1 is quite general and applicable

to problems encountered in communication theory, pattern recogni-

tion and operations research. The major difficulty in implementing

the Optimal decision rule is that even if all information about

the random processes {xi(t)}1:=1 is known, determining the n%h

order density of 5i = (xil’xi2’°'°’xini) can be very complex and,

sometimes, impossible. Some ways of getting around this problem

are presented below.

1. Take only one sample from each time interval [p1_1,pi).

The random vector 5i is then reduced to a single random'variable,

xi. Sampling points may be taken at times pi_1 when transitions

occur. Fig. 4.3.2 shows the sampling scheme for a particular

sample function.  
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Observe ]

(5151) ‘

4k

Compute g(x1,t1) |

 

Eq. (4.2.15) 
 

   

 

 

 

  
 

  

 

 

 

 

   
  

 

  

    
   

 

    

—“L‘;

1 = 1

Predict Next Step

Com ut

{P(Xj+1=1‘x ’t )}i=1

7 l I

I Observe I

(£j+1:t1+1)

' .12

_____.L__. .____ilr

Compute Compute

N . N

A {f1(§j+1)}1=1 {f(tj+l‘)‘j+l=1}i=

(Known) Eq. (4-2-8)

‘71 L1 L 4:12.:
Compute Compute Compute

1
f<xj+1‘xj,tj) g()_c_j+1,tj+1) f(tj+1‘2‘_j+ ’12:!)

Eq. (4.2.3) Eq. (4.2.2) - Eq. (4.2.14)

j = 1+1

N0 < j > k

YES
 

Eq. (4.2.2)

Fig. 4.2.1: An Algorithm for Iterative Implementation of g(xF,tk).

l Obta in 3(xk,tk)

 
 



   
 

  

x3

6 t1 e: t2 4?. t3 —: > t

po p1 p2 P3

Fig. 4.3.2: A Sampling Scheme

2. Choose processes for which the joint distribution of

{5k}:=1 can be simply described.

In the following developments, the iterative results obtained

for optimal decision rule are applied to the case when the random

processes {xi(t)}§=1 defining the states of the continuous-para-

meter Markov chains, are wide-sense stationary normal processes.

In this case, the component densities {fi(°)}§-1 for observation

vector Ek’

vectors E1 and covariance matrices 21 are assumed known. They

can be computed from the mean function and auto-correlation function

a vector of order ni, have known forms. The mean

of the correSponding process as follows: 91 = niI, where I is a

unit vector of order ni and Cov(x = Ri(t - t
ku’xkv) ku 1G,) 2

u,v = l,2,...,ni. The joint density fi(°) may be written in the

following form and is the same for all pattern classes.

N
I
H -1

fi(§k) = n /2 exp{- (5k - 111(1)T :1 (5k - 111(1)} (4.3.1)
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The iterative, optimal decision rule in Sec. 4.2 can be

rewritten as

* k k

d (g ,tk) = s if P:g8()_<_k,t ) > PEfL(§k,tk) 2?. 9‘ s (4.3-2)

where, from (4.22), the density required has the form

 

k k xk- 1 tk- 1

Omitting, again, supercript and subscript L, Jfi_ and

FiL are defined as:

1 N A i N 1 N

Jkoik’tk’U-‘k-lh) ’ Jkl(§k’{Pk-1}1)Jk2(x ’tk’{rk-1}1) “'3'“

A k-1tk-1xk k- 1

Jkl f(x“-1.1 ), Jk2=Akf(t ,t ) (4.3.5)

t)k

Pk =Fk(Xk:tk’{r.k- 131):A(Ak+11xk:t (ll-3:6)

. . i .
The fOIIOW1ng expre551ons for the Pk, Jk1 and sz are der1ved

using the iterative equations in Sec. 4.2.

 

 

 

 

 

 

 

N . r

' 1 T -1

121 Fi‘l “jib 1/2 exp“ 501W?) 21 (’inI) ' “1‘13

Pi ___ iii (2") ‘3‘

k N I‘m m - I I t
#21 k-l n,/2 1/2 exp{' 2(xkfum )sz1(§k-um ) - qm k}

<2“) 1 12ml.

.. N 1 _1_ -1
Jk1 " 121 Fk- 1 n /2 1/2 expi' flak-ping (1151411)}

(211) |Zi|

N . q.
1 1 1 T -1

121 rk-l n./2 1,2 “91‘ f(ik'PiI) 21 (’ifl‘il) ' qitk}

(211) 1 lzd
J =

k2 N
m 1 1 T -l

2: I‘k-1 n [2 exP{' 2 (’ik‘uml) 3m (ik‘uml)
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Note that {qi}1 and {rij}§,j=1 depend on the pattern

#1

class, but the mean vectors and covariance matrices are the same

. . . i

for all pattern classes. The initial values of Pk, Jk1 and sz

can be easily determined by putting k = l in the above expressions

1

and noting that F = P?.

o i

The optimal decision rule can also be established for the

case when the random processes {xi(t)1§=1’ describing the states

of the chains, are Gauss-Markov processes. Then, the transition

probabilities and initial distributions for a given observation

vector 5k may be written in the form:

 

 

 

 

 

1 _[xk +1 (Xk “95’le
piock .+1‘xk .) = 2 exp 412 g 1 (4.3.7)

’1 ’3 2n(1-Ri)oi 201(1 - R1)

(x - u.)
1

P(i)(xk 1) = exp - k’1 2 1 (4.3.8)

’ 21101 201

Note that the double subscript notation, x was used to

191’

denote xkj for convenience. Here, pi, Oi and R1 are the

correSponding mean, variance and correlation functions of the process

xi(t) where R1 = exp{-yi‘¢l}; T is the sampling interval, —-

 

Y1

is the correlation time. The JOlnt density of Ek = (xk1,...,xknk)

is determined in terms of (4.3.7) and (4.3.8) as follows:

0 nk-l

g1(-k) _ P1(Xk,1) 121 pi(xk,j+1‘xk,_])

nk-l 2

[x (x - )R ]
1>°i(xk 1) E1 k,j+l k,j 1‘ 1 ““1

- T’— 8*? J
i
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n-l

k

2 2 2

where Ai [’3 [211(1 - Ri)oi] . Then, the necessary quantities,

Flt, Jlk’ J2k defined in (4.3.4), (4.3.5), (4.3.6), determining the

iterative optimal decision rule, are computed. The expressions

are given below.

 
 

 

 
 

 

 

 

 

 

 

1

Pk =

nk-l 2

N r..q.p‘.’(x ) 31 [xk.r+1'(xk r'”j)Rj " ”1]
J J1 .1 J ksl r _

2 Fk-l A P ‘ 2 2 qjtk

1,1

nk-l 2

0 2 x '( '1») -u
g [‘m qum(Xk’1) p r‘l k,r+l k,r m m 111 q t

k-l A - 2 2 - m k
m=1 m 2qm(1 - Rm)

nk-l 2

R " 1N 1 p(i)(xk 1) r21 [xk,r+1 (xk rqli) i "l

Jkl = Z rk-l A ex" ' 2 2
i=1 i 201(1 - R )

sz —

nk-l 2

N i qip:(xk 1) 131 [xk,r+l (xk r u'i)Ri - H'1:l

2Fk_1 A L em) 2 2 -qik

i=1 20.(1 - R )
i i

nk-l 2

N m p0 (x ) E [xk,r+1 (xk r M'tn) m - p'm.J
z r‘ In R 1 r—l

=1 k-l ———X—L—'exp - 2 2

In m 20 (1 ‘ R )
m m

The initial values of Flt, Jk1 and sz are given as

followa:

N’
o o

I’ t , , x ex - ,t

121 j leJ( 1.1)qj p{ (11 1}

i _ 1in .

1 " N ’

P0 ° -

mil mpm (xl,1)qm exp{ qmtl}
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n -1

k

2

where A1 9 [2n(1 - Ri)ci] . Then, the necessary quantities,

 

Ti, Jlk’ J2k defined in (4.3.4), (4.3.5), (4.3.6), determining the

iterative optimal decision rule, are computed. The expressions

are given below.

  

 

  

 

 

 

 

 

 

1

Pk =

0 21h -(X '1» )R -u]2
N ..Q.P.(X1)e k,r+1 k,r j J j

J Jl l l ”k r-1

2 Fk-l A 2 2 - thk
j=1 j 203 (1 - Rj)

1941

nk-l 2

0 2‘. x 'X( '13. )R -u
N pm qmpm(xk,l) r—_1 k, r+1 k,r m m m _ t

21 k-l A e - 2 1 R2 qm k

m m qm( " up

nk-l

N 1 9:05:11) r21 [xk“‘1 (ka-u )R - p‘ 3

Jk1 = z Fk-l A "p '
i=1 i 201(1 ‘ R )

sz _

nk-l 2

N . q.po(x ) E [xk,r+l - (xk,r-ui)Ri - H'i:I
i i 1 k,l r-l

’3 rkq A exp 2 2 ' qitk
i=1 20.0. - R )

i i

nk-l 2

Z Fm p;(xk 1) r21 [xk,r+l - (Xk,r-um>Rm.- p'm]

_ k-l ---L- exp -

““1 A 2 2(1 - R2)
m cm m

The initial values of Pi, Jk1 and sz are given as

follows:

N

e - ,t121 Pjtj.pj(x1 1)qj xp{ <1] 1}

1 _ fii .
F1 -' N o ,

P° -
Z P (X 1, 1) qm EXP{ qmt 1}

m=1 m.m  



 

x1,1

4.4 ADAPTIVE DECISION MAKING

Adaptive decision making schemes are now studied when the

underlying Markov model is not completely Specified. The unknOWns

of the model are the Q-matrices, QS = [q§:)]§,j=1, qis) g Qii),

S 6 ®. The parameters and the properties of the random processes,

{xi(t)}§, describing the states of the underlying continuous-

parameter Markov chains are assumed to be known. The component

densities, {fi(.‘e)fi, defined in Sec. 4.1, are, then, completely

known. Furthermore, for simplicity, they are again chosen to be

the same for each pattern class. That is,

fi(1<_k>= ankle) v £1. (4.4.1)

A prior distribution summarizing initial knowledge about the

unknown infinitesimal parameters is available for each pattern class.

Using a supervised learning scheme, posterior distributions for the

fixed, but unknown, parameters are "learned" from training samples

(2:8, T:S). The training data are employed to form posterior

densities for the parameters which, in turn, lead to an adaptive

decision rule which makes decisions with minimum error probability.

The purpose of Sec. 4.4.1 is to derive the optimum-adaptive decision

rule using the Supervised learning scheme. In Sec. 4.2.2, components

of the optimum-adaptive decision rule are generated iteratively and
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the structure and computational feasibility of the iterative scheme

are discussed. The learning feature of the rule is discussed in

1+ . 1+ . 1 OPTIMAL-ADAPTIVE DECISION RULE

The optimum-adaptive decision rule will be derived for the

problem defined above. The following definitions introduce the

problem.

0 I I k

The non randomized dec1810n rule

k

,t ), given the

C k k j C .

observation sequence (x ,t ), given all training samples

n n n
A

(BUT) = {(111,T11),...,(1MM,TM )} and given Q-matrices

dean.

n

9, = {Ql’Q2’°°"QM}’ has expected loss

M
k

R[d\ (fl :tk):(Y:T) 9Q] = 2 L[d(xk:tk):i]P[e=i‘(ngtk)9(Y:T) ’9‘] (40402)

1=1

Equation (4.4.2) is referred to as the sample-parameter-

2

conditional risk . The parameter-conditional, adaptive-Bayes risk

is defined as:

ra<p°,d\9) = f, R[d\(xk,tk>,<y,-r>mf<§k,tk\(m), >42k dck (4.4.3)
k

0

where P0 = (P3,P2,...,PO)M is the prior distribution over the para-

meter Space and

k k M o k k n. n,

{[5 ,t [(y,'r),Q] = 2: Pigi[§ ,t “111,35 .91] (4.4.4)

i=1

Thus, the adaptive-Bayes risk is given by

O O

ra(P .d) = jg ra(P ,d\g)fo(9)dg (4.4.5)

 

'2

Signori [8-2], pg. 14.
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This development, which involves the use of conditional risks,

differs from that given in Appendix B and emphasises the role of

prior information in constructing the total risk.

* *-

The optimum-adaptive decision rule da 9 d (xk,tk) is

defined as a non-randomized decision rule which minimizes the

adapt ive-Bayes risk. That is,

0 * . o
ra(P ’da) = inf ra(P ,d) (4.4.6)

dED

where, D is the set of all non-randomized decision rules. Note

that

* * k k

ra<P°.da) = E{R[d31<§,.t ),(y.T),Q]} (4.4.7)

In particular, assuming the 0-1 loss function, the optimum-

adaptive decision rule becomes a minimum probability of error rule

defined by

k k k k n n k k n “

da(x .t ) = s if p[e=s1(§ .t ).(xss.'rss)] = max pEG=Ll(>_<_ .t ).(yLL.TLL>]

Leo

, k k n n o k k n n
or, 1f pggs(x ,t ‘ySS,TSS) = 2:; BLsL(X .c \y,‘.¢,‘> (4.4.8)

The basic elements of the above decision rule are the posterior

densities of the observation sequence, given the learning samples.

These densities are obtained by averaging the parameter-conditional

densities over the posterior densities as in (4.4.9).

n n n n

L L a k k L L L L

8L0; .t ”at ”L ) £24;st .t Ix, {TL ’QL)f(QL‘XL ,TL )dQL L E a

(4.4.9)

Both factors in the integrand above are generated iteratively in

the next sect ion.



V
I
I
I
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4.4.2 ITERATIVE FORM FOR THE DECISION RULE

The first factor in the integrand of (4.4.9) can be imple-

mented iteratively in exactly the same way as in Sec. 4.2, conditioned

“L

on the unknown parameter QL. The second factor f(Qm121TZL)

can be implemented iteratively as follows. In the following, the

subscript L will be dropped as a convenience; f(Q‘yé,¢n) is

given by the Bayes theorem as follows:

f(x“ .“0\Q>f (Q)

f(Q‘yn,'rn)= (4.4.10)

“in ’1'n)

 

where fo(Q) is the prior density function over the Q Space.

Using the Markov dependency between the samples, (4.4.10) can be

written as

 

- -lTn-1

m li‘n“ ,Q)f( \y," .Q)

f(len.'rn) = n n _1 1““!m1 “-1 mix"1“1) (4.4.11)

f(Tn‘z .w min”. .«r )

Equation (4.4.11) is the desired result. The last factor

n-1Tn- 1

on the right side of (4. 4. 11), fGQ‘x ), is the density in

the Q space at the (k-1)-h'stage and is available from the pre-

vious step of the iteration scheme. The first and second factors

. n n--l tn- 1
in the same numerator, f(rn‘y_,mn1,Q) and f(yn|y ,Q),

are the densities directly utilizing the prior knowledge above and

can be obtained iteratively as explained in Sec. 4.3. The

denominator of (4.4.11) is a normalization constant which assures

that f(Q‘lnn'n) integrates over the Q Space to unity. The

n n

parameter-conditional density,gL(xk,tk‘yLL ,Ll, ), is the density

. k .
function for observation (§.,t k) correSponding to pattern class

{, and is given by (4.2.2) (where QL was assumed known) as a
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function of the unknown parameters and the training samples. This

term can be generated iteratively in a manner Similar to that of

Sec. 4.2, but conditioned on knowledge of the unknown parameters.

The information about the fixed but unknown parameters {QL}I is

n n

summarized by f(QL‘th’TLé) which is generated iteratively as

explained above and is employed in the decision rule by the

averaging procedure given in (4.4.9).

Even though the iterative expressions are available for

both posterior densities in the integrand of (4.4.9), it has one

major draw-back. The posterior densities for the parameters are

not usually reproducing because the class of densities involved

are mixtures. In general, two Serious problems are immediately

encountered when trying to implement this decision rule on a

computer. The storage problem refers to the difficulty in allocat-

ing computer Storage locations for the posterior densities in

(4.4.9). The computation time problem refers to the difficulty

inherent in performing the number of computations required to

change the old posterior densities calculated at (k-1)£h'step,

into the new posterior densities at kEE-step. Since the entries

of each matrix Qi are continuous random.variables, in general,

the amount of storage required to store these densities is infinite.

The only way to make use of the rule is by quantization of

the parameter Space. Then, each parameter taken to be a discrete

random variable so only a finite number of values needed to be

stored and updated with each observation. By quantizing fine

enough, it is possible to get arbitrarily close to the optimum

solution at the expense of increased memory. However, the memory
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grows exponentially with the dimensionality of the parameter vector

{1, making the method feasible only for problems with a small number

of States. As a simple example, assume that M = 2,‘N = 3; then,

there are 2 x 9 = 18 parameters. Using 10 quanta level for each

parameter, 1018 storage allocations are required for storing

posterior densities of the parameters for both classes. One way

to get around this problem is to use some sub-optimum methods in

which consistent estimators for the parameters are found and, in

turn, used in the decision rule as if they were the true values

of the parameters.

4.4.3 ASYMPTOTIC OPTIMALITY AND ADAPTATION

In the previous sub-sections, the decision making problem

was studied for the case when the Q-matrices describing the pattern

classes were unknown. In that case, the optimum-adaptive decision

rule d:(x ,t ) was used instead of the optimum decision rule

d*(xk,tk). To discuss the learning capability of the optimum

adaptive decision rule, the following definition is given, [R-Z].

*

DEFINITION 4.4.1 An optimum-adaptive decision rule dat is said

*

to be an asymptotically Optimum decision rule d relative to

RC = (Qi,Q:,...,Q;), the true value of Q, if and only if

. o * o *

11m r(p .da) = r(p .d )

n1, 0 o o ,nM—oaa

That is the Bayes risk in using the optimumsadaptive decision

rule, when 9_ is unknown, converges as the number of training

samples ni‘» m, i E {l,2,...,M}, to the same limit as the Bayes

risk when Q is known and the optimal decision rule is used.
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The following theorem, then, insures the asymptotic optimality

of the adaptive-optimum decision rule.

*

THEOREM 4.1.1 da is asymptotical optimal relative to go.

A lemma which will be used in the proof of Theorem 4.1.1

is first given.

n n n,~o

1mm 4.1.1 P[9=i‘(_x_k,tk),(x in i>.Q11—L—>P[e=i\<xk:tk>s0‘§1

w.p.l i E {l,2,...,M}

The proof of the above lemma is anologous to that given by

Signori [8-2] and will be omitted.

PROOF OF THEOREM 4.1.1: For Simplicity, the following are defined.

[1 n n

k A k k . i t.) i i Q
U (E at ) : V (Xi ,Ti ) , Vni (yini’Tini)

Then, from (4.4.6) it follows that

o s r(po,d:) - r(p°,d*) E[R(d:|uk) - R(d*[uk)]

n .

E[R(d:|uk - R(dZ‘uk, {V l}?.9]

n, n,

+ E1R<djluk. {v 112‘s) - R<d*lu“.{v 1119.1

4.
.

121124313, {vnifi‘m - R<d*\uk>1

But,

E1R<d:\u“.£vnifi’9) - R<d*|uk.{vnifi’91 = ra<P°AdZ> - ra<P°:d*> S 0

ThuS,

o _<. r<p°.d:) - r<p°.d*> s EthZluk) - R(d:\uk. {Vnifl‘m

n

+ E[R(d*|uk, {v 1%,(1) - R(d*\uk)]
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Substituting the values of R(.‘.) defined in (4.4.2) in the above,

it fo llows that

o * 0*

0sr<p .da> -r(p,d>

M k M n

i=1 i=1

nM . M

+ E{ 2 L(d*,i)P(e=i|uk,V 1,9) - 2 L(d*,i)P(6‘iluk9

i=1 i=1

M n.

s s{ 2 L(d:,i>tp<e=i\uk> - P<e=i\uk,v 1.991}
i=1

M
n-

+ E{.2 L(d*,i)[P(e=i\uk.V 1.9) - P<9=i|uk)]}i=1

Using Lemma 4.4.1 in the above, the convergence follows. That is,

lim [r(d:) - r(d*)] = 0 w.p.1

n ...,n—m

M
1’

As a result, the rule adapts, or converges, to the optimal

rule that would be obtained if 90 were known.

The conditions under which the posterior distribution of

Q, which suumarizes all the information about Q0 contained in

“i n' M
{Y1 ’Tilh’ approaches, with probability one, a delta function

whose mass is centered about 90 were stated in Chapter II. For

decision rule (4.4.8), condition 1 follows from (4.1.2). Condition

2 is assumed. Condition 3 is the major requirement for which a

strongly consistent estimator for Q0 (a function of the observa-

tions that converges with probability one to QC) must be

exhibited.



76

4.5 CONCLUSIONS

Optimal decision making and Bayesian learning with con-

tinuous-parameter Markov systems with unobservable states and

observable transition times have been the t0pics of this chapter.

The object of the decision rules is to decide which of M con-

tinuous-parameter Markov chains is active. The observable quantities

were random processes describing the states of the chains and the

sojourn times in these states. The general mathematical model,

the properties of the observation processes and sampling schemes

were defined in Sec. 4.1. Assuming a prior distribution over the

pattern classes and that all the parameters of the model were known,

the optimal decision rule was defined in (4.2.1) to be that rule in

a given class of rules which minimizes the Bayes risk. Its basic

components (4.2.2) were generated iteratively. In Sec. 4.3, the

analytic results were obtained for the iterative optimal decision

rule using special random processes, the normal process and the

Gauss-Markov process, to describe the states of the chains.

In Sec. 4.4, the adaptive decision making was studied when

the underlying model was not completely Specified. The unknowns

of the model were the Q-matrices. A prior distribution summarizing

the initial knowledge about these unknown parameters was assumed

for each pattern class. The fixed but unknown elements of the Q-

matrices were learned, using a supervised learning scheme, from

the training samples by forming posterior densities for the para-

meters 0

In Sec. 4.4.1, the basic elements of the adaptive decision

making problem were defined, such as sample-parameter conditional
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risk, the parameter conditional adaptive Bayes risk and adaptive-

Bayes risk. Assuming the (0-1) loss function, the optimum-adaptive

decision rule was defined as a non-randomized decision rule which

minimizes the adaptive Bayes risk. Iterative expressions for the

opt imum-adaptive rule were obtained in Sec. 4.2.2. Some serious

prob lesm encountered in implementing this decision rule on a

computer were discussed. It was noted that only a high storage

quantization procedure could be used to implement the rule.

Asymptotic optimality of the optimum-adaptive decision rule was

proved in a manner that exhibits the learning capability of the

rule. It was also shown that, under the stated condition, the

posterior density of the parameter Q, which summarizes the know-

ledge about the true value of parameter g0. converges to a delta

function. Thus, 9'0 is learned and the rule adapts.



CHAPTER, v

DECISION MAKING WITH

UNOBSERVABLE STATES AND TRANSITION TIMES

In this chapter, the problem of decision making is inves-

tigated when the underlying model is completely specified but

neither the states nor the transition times can be observed

directly. The basic model considered here consists of two

pattern classes, each of which is characterized by an N-state,

continuous-parameter Markov chain with different stationary

transition probability matrices. Every T < o seconds, one of

the two classes is chosen according to the probability distribu-

o

tirui P = (P:,P:) and a sample function, I is generated from
t,

the corresponding chain. It is assumed that the features are

selected in a medium.disturbed by the addition of white Gaussian

noise, so that the observed sample function is

Xt = xt +nt , 0 S t S T. (5.01)

wTuzre nt is a sample function from a white Gaussian process with

E(nt) = o ; R(t) = v06(t) (5.02)

The decision problem is, as defined in the previous chapter,

tc> determine which pattern class is active based upon observation of

}{t° The entire model is illustrated in Fig. 5.01.

In Sec. 5.1, Optimal decision making with discrete-time

cflaservations is studied and iterative expressions are obtained for

78
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the likelihood ratio. In Sec. 5.2, a continuous likelihood ratio

is obtained by a limiting operation. Section 5.3 discusses a

method for solving the classical problem of detecting a random

telegraph signal in additive white noise.

5.1 OPTIMAL DECISION MAKING WITH TIME SAMPLES

In this section, the features on which decisions are based

are defined as point samples of the observed function xt as

follows:

= k + n , k = l,2,...,K, (5.1.1)

k k k

where K = T/T and T is the interval between samples;

2

k n(k-m

Gaussian processes at time (k-1)T, with

n represents the noise sample taken from the white

E(nk) = o, Cov(nk,n£) = v06(k-L), k,L = l,2,...,K. (5.1.2)

The sequence of random variables {Ak}§, xk é x(k-1)T’

take values {a1,a2,...,aN} corresponding tozifinite state Space

A = {l,2,...,N}. That is, if the Markov process is in state i

at time (k-l)T, then xk = ai. Since the xk's are the time

samples from the process At they satisfy the Markov prOperty;

namely,

= = _ _ _ (S)
P(Kk aj‘xk-l a.,..., ll — a ,9-3) - p1 L ij (T) when mg is active

(5.1.3)

( )
where pi:

function of the continuous-parameter Markov chain describing chain 5.

(T), s = 1,2, is the stationary transition probability
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The observed random variables {Xk}§ takes values in a

finite-dimensional Euclidean Space and have the following density

when it is known that the chain in state i at time kT.

fi(xk) = p(xk - ai) (5.1.4)

Since the noise samples are Gaussian and uncorrelated, it

follows that they are state-conditionally independent. That is,

P(Xk-l’xk‘Xk-l = ai’xk = j) P(Xk-l‘kk-l = ai)P(Xk‘xk = j)

fi(xk_1)fj(xk) (5.1.5)

Since the true states of the chain that is active cannot

be observed directly, xk has the global density:

N

f(xk\e) = iElfi(xk)P(>.k = ai\e) e E e (5.1-6)

In accordance with the discussion in Chapter III, the

*

Optimum decision rule, d (.) is given by the Bayes decision rule:

* K

d (x ) = ml if AK < n

= m, if AK > n (5.1.7)

where

K 0

K g (x ) A P2 K K

AK = AK(X ) ‘ K , fl =‘—; ; ss(x ) = g(x \e = s)

81(X ) P1

Using conditional probabilities, the likelihood ratio, AK,

can be written iteratively as follows:

k+1 k k

2(x ) = g2<x ) . f(xk+1\x ,9—2)

k

g1<x +1) g1<xk> f(xk+1\xk.e=1>

8

 A =
k+1 (5.1.8)
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By the total probability law,

N

k - - k = = = k = =

By the state-conditional independence, the first factor in

the summation above can be written as:

f(x \xk x =a e=s> = f (x >= p(x - a > (5.1.9)
H4 ’kfl i’ i kn 1&1 i

The following notation is now introduced.

 

111; = k __ . iZQ = k _ . ___

rk mm ailx .e 1) .rk mm ailx ,e 2). 1 e A. s 1.2.

(5.1.10)

. il

Iterative expressions are then obtained for AK, Pk

'2

and F; as follows:

N
i2

121 p("k+1 aiwk

Ak+1 = AK N 11 (5.1.11)

, - a

._ p(xk+1 i)rk
1-1

From the total probability law, Fis, s = 1,2, is given by

is k N k k

rk = P(Ak+1=ailx 39:8) = .EIP(Ak+1—ai‘Ak—ajix 59:3)P(Ak—J‘X 39‘s)

1 (5.1.12)

where (5.1.3) and state-conditional independence imply

P(x =a ‘1 =a xk 9:5) = P(S) = 1 2 (5 1 13)

k+likj” ji(T)’S " '°

The second factor in (5.1.12) can be evaluated from the

Bayes rule as:
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k-l

f(x \x =a..e=s)P< =a.\x .e=s)
P(xk=aj‘xk,e=s) = k k l )‘k J
 

f - - P - \ k'l -1 (xk\xk—a,,e-s) (1k_L x .e-s)

"
1
4
5
2

L

js

p(x - a.)F _

= N R J k 1 (5.1.14)

L3

2 p(x - )F _

 

at

Substituting (5.1.13) and (5.1.14) into (5.1.12) gives the

following recursive relation.

 

g (S)( > (x - a >rjs
is .=1pji T p k j k-l

r =*1 , s = 1,2 (5.1.15)
K N PL3

2 p(x - a ) _
L=1 k L k 1

. . . il 12 N .

The initial values, A1 and {F1 ’r1 )1, are given by

N

0 .

p(x1 - a,)P1(i)

i 1 1

A1 " (5.1.16)

p(x1 - ai)P§<i>

"
P
1

"
P
1
3
2

1)
4
.

Z

 

2 P;:)(T)p(x1 - aj)P:(j)

F18 = 1=1h , s = 1,2, 1 e A. (5.1.17)

2 p(x - a >Pp(2>
i=1 1 L s

where (P:(l), P:(2),...,P:(N)); s = 1,2, are the prior probabilities

over the states.

The recurrent expressions (5.1.11), (5.1.15) and the initial

values (5.1.16), (5.1.17) permit sequential computation of the like-

lihood ratio for any k. The rule d*(xK) is an iterative, optimal

decision rule which can be though of as an element of a class of on-
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line decision rules with fixed memory. However, the number of

computations needed to make the optimum decision grows linearly

with the length of the observation sequence.

5.2 OBSERVATION OF ENTIRE SAMPLE FUNCTION

Expressions analogous to those obtained in Sec. 5.1 can

be obtained when the entire sample function xt is observed for

T seconds. In this case, the iterative expressions (5.1.11) and

(5.1.15) are replaced by a set of non-linear stochastic differential

equations with a limiting argument. Difficulties are encountered

when attempts are made to take a mathematically rigorous limit of

the results derived from the model of Sec. 5.1 as the sampling

interval goes to zero. Because of the infinite variance of the

resulting continuous white noise, mathematical operations (e.g.,

differentiation and integration) do not exist in any strict sense.

For this reason, it is necessary to modify the sampling scheme so

that the correSponding limits exist. To achieve this, a new

observation scheme will be employed.

Let the observed process be x = kt t + nt, t E [0,T],

where xt is an N-state, continuous-time Markov chain with the

. .. .. (S) N- _
stationary tranSition probability matrix [pij (t)]i j—l, s - 1,2,

.9

and nt is a white Gaussian process. The process At is first

approximated by a homogeneous, N-state, discrete-time Markov process

*

(Markov chain), xt = {xk, k = l,2,...,K}, taking values in a finite

set {a1,...,aN} at times (k-1)T; k = l,2,...,K, TK = T, with

transition matrix [p§:)(r)]§ 1=1, s = 1,2. Good [G-l] showed

3

*

that At will converge to xt as T a O with probability one.
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Thus, for sufficiently small T, x may be approximated by
t

*

xt ~ kt +nt 0 S t S T (5.2.1)

where the equality will be held when T = O, w.p.1. The sampling

process being employed here is defined in (5.2.2)

+ nik k , k = l,2,...,K. (5.2.2)
1 k

xk = ;'I T xtdt z

(k-1)T

It is clear from (5.02) and (5.2.2) that,

 

E(nk) = o, Var(nk) = $9- (5.2.3)

1 2
p(nk) = v exp{- §-'nk} (5.2.4)

(2n o)l/2

The distributions and the prOperties of the observed random

variables {xk}§ are the same as with discrete-time observations

and are given in (5.1.4), (5.1.5) and (5.1.6). Thus, the stochastic

differential equations for the logarithm of the likelihood ratio,

Lk+1 = LnAk+1, can be obtained in the case of continuous-time

observations as follows. Taking logarithms in (5.1.11), substituting

' for p(.), and cancelling common terms:

N
- .. 12 _T_ - 2

Lk+l Lk L“ [121 Fk eXP{" 2vO (Xk+l ai) 1]

i=1

N il T 2
- {,n[ I‘k exp{- —2Vo (Xk+1 - ai) }] (5.2.5)

For sufficiently small T,

Ir 2 ... 1' 2

exp{ 23;.(xk+1 ai) } ~ 1 - 2;;'(Xk+1 ai) . (5.2.6)

From the definitions of Til, Fiz, it follows that
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N

2 F = 1 , s = 1,2 . (5.2.7)

Putting these expressions into (5.2.5) produces

N .
~ .;L_ 2 il

Lk+1 ' Lk " L“ [I ' 2vo .2 “k+1 ‘ ai) Pk]

T N 2 il
- Ln [1 - E— 2 (xk+1 - ai) Pk] . (5.2.8)

0 i=1

Also, for sufficiently small T,

(«ml-“LEW '8)2FiSs--I-g( -a)2'I‘iSs=12
2v0 i=1 k+1 i k 2v .=1Xk+1 i k ’ ’ '

° 1 (5.2.9)

Thus, (5.2.8) becomes

N . .
g T 2 il 12

Lk+l Lk 2vo i'_’3_1("k+1 ' ai) (Pk ’ I‘k )° (5°2°10)

Dividing both sides by T and letting T a O, the approx-

imate expression in (5.2.10) becomes an exact stochastic differential

equation for the logarithm of the likelihood ratio.

2 o o

- 31) (r:1 - r12) 0 s t s 'r (5.2.11)_=_1_ N
dt 2v .E(X t

is is ,

where Ft , s = 1,2, is the corresponding value of Fk in con-

tinuous time and is defined as

is _
= :2Ft _ P(xt ai‘xa, 0 s a S t, e s) , s 1,2.

The initial condition will be obtained from (5.1.16) by

setting T = O and taking into account the substitution L1 = LnAl.

L a 0 (5.2.12)



87

From (5.2.11) and (5.2.12), it follows that

L__1_
t 2v ,

o i

t 2 '1 '2

f0 (xz - a1) (r: - r: )dz (5.2.13)

"
N
Z

1

In a similar manner a system of stochastic differential

equations are obtained for {F:3}2, s = 1,2, as follows. Replacing

k by k+1 in (5.1.15) and then subtracting ris from both sides,

 

2 I

2p (3i--2—-)<w)exp{—---<xk+1 - aj> )rf’

Fis 'PiS~j=1pjl V0 -Fis s=12

k+1 k N k ° ’ °

2 exp{- -—“’— (x - a fir”
L“1 2vO k+1 {, R

For small T, using approximation (5.2.6) and considering (5.2.7),

12p(Si) (T) T (X _ a )2 rjs

r - F18 2 ° - r13 (5 2 14)
k+1 k N k ' ’ °

2 Ls
1-; -

2‘.( 611,)?x
2vML_1 k+1

For Sufficiently small T,

N -l N

T 2 s N T _ 2 Ls

[ -—2.M§ (Xk+1 a3 rig] ~ 1+—-—, 2““ ap rk. (5.2.15)

Thus, (5.2.14) becomes

is is 1 _1;_ N 2 LS

Fk+1 ‘ rk ‘5 + 2v 2 (xk+l ' aN)
o L=l

N (5) 2 js is

T 1-— -a, P -I‘.

X j21p31( )l: V0 (Xk+1 J) :] k. k

Expanding the right side of the above expression and taking

only the first orders terms in T gives



 

 

is ‘_ is _ (s) is (s) is

I“k+1 I5k ~ (1 pii (fl) I“k + jfilpji (flrk

js‘i

T (s) _ 2 is _1;_ (s) _ 2 js

' 2v ii (T)(Xk+1 ai) I“k 2v 2 pji (12(ka ai) Pk
o o j=l

jaéi

N N
(s) 2 Ls T Fsz 2

+_ (TN: 2(X )I‘ +— 2 )(T) 1" S(x -a).
2v0 L'-_1 k+18!, k 2vOj""1!,=1p‘llSi k k+1 L

j¥i

Dividing both sides by T, letting T a O and taking into

account the following limiting conditions,

1-p$5)(T) p(S.)(T)
lim--—%%—-—- = qES) ; lim -li;—-—'=’(1'Aij)q(:S) ; 11m P(: )(T) = AU

T-eO T—20 T-+0

(5.2.16)

where Aij denotes the Kronecker delta, (5.2.17) follows.

dI‘iS N N
t _ - (s) is fl (3) js '1 _ 2 is l is _ Ls

dc " qi Ft +,2_‘qjirt '2v (Xt 8L) I‘t +2v I51: 2 (xt aL2t)F
J-l o o L=1

ji‘i

i E A, s = 1,2 . (5.2.17)

is N .

The initial conditions for {Ft }1, s = 1,2, can be obtained

from (5.1.17) by putting T = O.

. P°(i)
is s _

Ft = N , i E A, s = 1,2. (5.2.18)

0 .

2 PS (J)

j=1

Expressions (5.2.13), (5.2.17) permit computing the logarithm

of the likelihood ratio for any point in time. The stochastic

differential equations representing the solutions for Lt and

{F:8}q, s = 1,2, appear initially to be neat and concise. How-

ever, careful examination shows that they represent an infinite-
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dimensional system of first-order stochastic differential equations,

each with the observation process xt as a driving term. Because

of this fact, these stochastic differential equations must be solved

by representing the non-linear functions in these equations as

series expansions and retaining only the first few terms. The

infinite system of differential equations then reduces to a finite

set and realizable algorithms are possible [8-6].

5.3 OPTIMAL DETECTION OF RANDOM TELEGRAPH SIGNAL IN ADDITIVE,

GAUSSIAN NOISE

The problem of detecting the presence of a random tele-

graph signal in white Gaussian noise is investigated in this

section. This signal is a 2-state, continuous-time Markov chain.

Observations are made over a time interval of fixed duration, T.

This problem is a Special case of the model considered in the

previous section. There are two pattern classes. One is associated

with the presence of the random telegraph signal and the other

pattern class is associated with noise alone.

The optimal decision rule and an iterative implementation

are given in Sec. 5.3.1, while the mean and the variance of the

logarithm of the likelihood ratio are derived and discussed in

Sec. 5.3.2. In Sec. 5.3.3, the probabilities of errors of the

first and second kinds are given and recurrent relationships are

established for the conditional error probabilities. Finally, in

Sec. 5.3.4, stochastic differential equations are obtained both

for the continuous logarithm of the likelihood ratio and for the

error probabilities.
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5.3.1 OPTIMAL DECISION RULE

In the particular statistical decision problem considered

here, the action Space and the parameter Space consist of two

elements, ® = {90,61}, 6': {wo,w1}. The basic problem is, then,

that of choosing between the two alternatives in (5.3.1); namely,

where, T = TK, T is

the finite observation interval and K

samples.

Sec. 5.1.

The signal process, represented by kk =

k = l,2,...,K, is a 2-state, continuous-time Markov chain which

can take values 0 and a with

Q given by (5.3.2).

ll

xk + nk

= n

k

the sampling interval, T

  

k = l,2,...,K, (5.3.1)

is the duration of

is the (fixed) number of

x(k-1)vr’

a specified transition-rate matrix

The same sampling scheme is employed as was defined in

(5.3.2)

The stationary transition probability matrix, P(T) = [pij(T)]

can be obtained by solving the backward Kolmogoroff system of

differential equations, The complete matrix is:

 

 

 

q1 + qo

qofill qofil

P(T) =

q1 q0

qo+q1 qo+q

 

 

-(qo+q1)T

-(qo+q1)T

 

 

 

 

'1

qo _ qo e-(qo+q1)T

o+q1 qo+q1

qo + q1 e-(qo+q1)T

ofiH qdml

 (5.3.3)
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The noise process, represented by nk = n(k-1)T’

k = l,2,...,K, is a zero mean, Gaussian noise process.

The observation process {xk}§ is as defined in (5.1.1).

The optimal decision rule is expressed in terms of the likelihood

ratio, AK, and the threshold n. That is,

if AK < n choose mo

(5.3.4)

if AK > n choose
u’1

where the notations are the sane as in Sec. 5.1. Taking logarithm

of (5.3.5) produces the recurrent relationship for the logarithm

of the likelihood ratio,

 

k-l

_ f(xk\x .91) 5 3 5

Lk ’ Lk+1 +‘Ln k-l ( ° ' )
f(xklx .90)

where Lk g LnAK k = l,2,...,K. (5.3.6)

The probability density functions f(xklxk-1,ei), i = 0,1,

are determined from (5.1.6) as

k-1
f(xk\x ,90) = p(xk) (5.3.7)

k-l _ o a _ a P(Xk'a)
f(xk‘X ,91) - I‘k_1 + Fk_1p (xk-a) — p(xk) [I + Fk-1(—p-(_X—;)- - 1)

(5.3.8)

where

A
o = _ k+1 a _ k 0 a _ k

Pk p("k+1-W ) ; Pk ’ P<Kk+1‘alx ) ; rk + Pk ’ 1 ‘V x °

The noise density, p(.), is defined in (5.1.2). Substituting

(5.3.7) and (5.3.8) into (5.3.5),

_ a p(xk-a)

Lk - Lk+1 + Ln [1 + Fk_1(—m'k—)- - 1)] . (5.3.9)
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For the initial value, set k = 1.

L [l 1 + p 1 ___— 1 o . O

From arguments Simi lar to those USEd in the previous SeCCIOD,

o a

the following expressions are obtained for Pk and Pk,

k = l,2,...,K:

O a

POO(T)p(xk)Fk_1 + P10(T)R(xk-a)I‘k_1

 

 

o _ o o a =

Pk Pk(xk,rk_1,rk_l) )r0 +, (x -a)Fa (5.3.11)

P(Xk k-l p k k-l

O a

a _ a O a _ 901(T)p(xk)Fk_1 + P11('r)p(xk-a)1‘k_1

l—‘k " Tk(Xkark 1,Fk 1) - a (5°3°12)

‘ ' (x )r" + p(x -a)r
p k k-l k k-l

For the initial values, setting k = l in the above expressions

to have

p (w>p<x )p°<0> + p <w>p<x -a>p°(1>

r = 0° 1 0 10 O 1 (5.3.13)

p(X1)P (0) +'D(X1'3)P (1)

 

0 0

Pa = p01(T)p(x1)p (0) + P10(T)9(X1‘3)P (1) (5.3.14)

p<x1)p°<1> + p(X1-3)P0(1)

 

5.3.2 ITERATIVE COMPUTATIONS OF THE MEAN AND VARIANCE OF Lk

In this section, the mean and variance of the logarithm of

the likelihood ratio are derived. Iterative algorithms are dis-

cussed and a theorem, related to the likelihood ratio algorithm,

is given.

Before getting into the details, the following is first

defined for convenience:

_ k é a p(xk-a)

gk " §k(x ) " Ln [1 + rk‘l(W - 1) (5.3.15)
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The expected value of the lograithm of the likelihood ratio

can be determined directly from (5.3.9) as follows:

k k
E(Lk - Lk_1‘ei) =11. §k(x )gi(x )dxk i = 0,1, (5.3.16)

X

In general, it is impossible to evaluate the integral in

(5.3.16) analytically. As an alternative, it may help to investigate

the conditional expectations , ”L(klei)’ which are defined as

A- L - a p(xk-a)
L

”L(k‘ 9i) _ E(§k‘ei)x ) - E {Ln [1 + PIC-1(W - ei’x ,

L = 1:2: °°3k

k = 1,2, .

Using the above definition and the fact that the o-field

L+1

3
induced by XL is a sub-field of the o-field induced by x

“L(k‘ei) can be written iteratively as follows:

am3
L

I "1+1‘klei>f(xi+1\9yx >dx,+1 (5.3.17)

xL+1

uL(k\ei)

 

This is the desired result. It is clear that at the final point,

i.e., L = k,

k‘ _ _ 1 4'8 p(xk-a) ._ 1

uk( 91) — gk ~Ln + k_1 W - 1)] , 1 - 0,1. (5.3.8)

With the help of (5.3.16) and (5.3.17), it is possible to

‘ - bobtain E(Lk Lk-l‘ei) y the expression

I~:(Lk - Lk_1\ei) = 1.00499 , i = 0,1. (5.3.19)

Substituting the values of f<xL+llei’xL) into (5.3.17)

gives
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u,(kleo) ==£ uL+1(k\eo)p(xL+l)de+l (5.3.20)

(+1

a p(XL-+1.6” )

“L(k‘el) =j‘ Ha£+1(kl91)p(XL+]-) 1 + FL (W - 1 (kl/+1.

X2+1 L (5.3.21)

The variance of the logarithm of the likelihood ratio is

now found. Taking the variances of both Sides of (5.3.9), when

9 = Bi, 1 = 1,2, produces the expression for the variance of Lk'

Var(Lk‘ei) = Var(Lk_1|ei) +-Var(gk\ei) + 2 Cov(Lk_1,§k‘ei) (5.3.22)

For the initial value,

Var(L1‘ei) = Var(g1\ei) (5.3.23)

Here, Var(Lk_1‘ei) is available from the previous step of iteration

scheme. The second and third terms in (5.3.22) are evaluated from

the usual definitions of variance and covariance, as

2 2

var<§k|ei> = E<§klei> - uo(k\ei) (5.3.24)

Cov<Lk_1.§k\ei> = E<Lk_1.§k|ei> - E(Lk_1\ei)uo(k\ei) (5.3.25)

But, from (5.3.9), Lk-l can be expressed as

k-l r

Lk-l = 2 §r(x ) (5.3.26)

r=l

Substituting this into (5.3.25) gives

k-l k-l

Cov(Lk_1.§k\ei) = z E<§r.§k\ei> - uo<k\e,) z uo(r\er) (5.3.27)

r=l r=0

To simplify the computations of E(§2‘91) and E(§r,§k‘ei),

the conditional expectations, SL(k‘ei) and eL(r,k\ei), defined

below are introduced.
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2

3,049,) ‘5 EEgkckaeiax‘]

eL(r,k|9i) 9 E[gr(xr)§k(xk>\ei.x”]

These conditional expectations can be expressed iteratively,

using the similar argument as in (5.3.17), as follows:

_ L
81.0491) -£ sL+1(k\ei)f(xL+1\x ”31)de

+1

(+1

_ Lk _ = ...eL(r, ‘91) )3; eL+l(r’k‘ei)f(XL+l‘X ,ei>dx,+1,2+1 1.2, ,k,

(+1
i = 0,1.

The boundary values are obtained putting L = k.

_ 2 k _ 2 a p(Xk-a)
Sk(k\ei) - §k(x ) — Ln [:1 + Fk_1 (_EIEET— - I)

k p(x -a)
ek(r,klei) = §r(xr)§k(x ) = Ln {[1 + F:_1 (Ti-1%?- - 1)]

a p(xr-a)

x [l +Fr-l (___—90%) - 1)]}

It is obvious that the usual expected values in (5.3.24)

and (5.3.27) are related to these conditional expectations by the

expressions:

2
E(§k\ei) = 30(k‘ei) ; E(§r§k‘ei) = eo(r,k‘ei) , i = 0,1. (5.3.28)

In terms of (5.3.22), (5.3.24), (5.3.27), (5.3.28) and

the boundary values, it is possible to compute Var<Lk‘8i)’

i = 0,1, iteratively.
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5.3.3 PROBABILITIES OF ERRORS

The quality of the optimum detector is characterized by

the probabilities of errors of the first kind, a0, and of the

second kind, 80' For the problem considered here, they are de-

fined as follows:

* *

oz = P(LK >11 \eo). 80 = P(1R< n ‘91),
0

where n* 2 in“.

In general, exact analytical expressions for do and

Bo are impossible. However, it is possible to obtain them re-

cursively in terms of the conditional error probabilities, ak(K)

and Bk(K) which are defined below, similar to those in (8.4.4),

(3.4.5).

ak<1<> = P(LK > n*\eo,xk). ekao = Par.K < n*\el.xk). k = 1.2.....K.

By the same argument used in the previous section, the

following recurrent expressions for the conditional error proba-

bilities can be obtained.

01km) = 3E xk+1(1()p(xk+1)dxk+1 (5.3.29)

k+1

_ a p(xk-a)

51.00 '£ Bk+l(K)p(Xk+1) [1 + Fk (W— ' 1)] dxk+l

1"” (5.3.30)

From (5.3.29) and (5.3.30), it follows that these probabilities

of errors at the final point, k = K, must satisfy the expressions:

01K(K) = u(Lk - 11*) ; exao = 1 - u(LK - 11*).
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where u(.) is the unit step function. In terms of these relations

and the boundary values, the usual error probabilities can be com-

puted by

do = 00(K) ; 80 = 80(K)

5.3.4 OBSERVATION OF ENTIRE SAMPLE FUNCTION

The results obtained in Sec. 5.3.2 can be Specialized to

the present problem. The following stochastic differential equa-

tion is obtained for the logarithm of the likelihood ratio.

dL

t l a
_ = ___ 2 - 1 .3031dt ZVO ( xt )Ft 0 s t S T (5 )

The initial condition is obtained from (5.3.10). Setting

T = 0 in the expressions of L1,

In a similar manner, the following system of non-linear

. . . . . o a

stochastic differential equations are obtained for Pt and Ft-

dF: o a l o a

E = -qOI‘t + q11—‘t + 2v—O (l - th)I‘tI‘t (5°3°32)

dF: a o l o a

Again, the initial conditions are obtained from (5.3.4)

and (5.3.13) by setting T = 0 in the expressions of F: and P:-

o = 2°(O) a p°(1)
;I‘= -

p°<0> + p°<1> ° p°<0> + p°<1>

The non-linear stochastic differential equation obtained for zt,



98

F - F: is identical to that derived in [K-6] by Kulman and

Stratonovich, using a completely different technique.

Expressions (5.3.31), (5.3.32), (5.3.33) permit computing

the logarithm of the likelihood ratio for any time t E [0,T].

The block diagram of the optimum receiver is realized in terms of

these expressions in Fig. 5.3.1.

 

   

    

 

>

Solve the select a

xt=xt+n Diff. Eqs. F°,F: Solve the L Compare ”"“*° °

-€t (5.3.35) t :>— diff. Eq. t3>- 1‘ with n*

(5.3.36) (5.3.34) t select a

select max. ‘--——-0 1      

 

 

Fig. 5.3.1: The Block Diagram of the Optimum Detector

Recurrent expressions for the conditional probabilities of

errors obtained in (5.3.29), (5.3.30) can also be obtained for the

case of continuous-time observations. The details of the deriva-

tions are as follows: Replacing k with t and k+1 with t+¢,

(5.3.29) can be written in a new form.

)dx (5.3.34)
0 .—

at(Lt.I’t) -f m
x at+T

t+¢

(L )p(

O

t+T’rt+T xc+¢

Feller [F-l] Showed that, under mild regularity conditions,

a Q at(Lt,F:) must be bounded and p(xt ) must satisfy the
+1-

postulates, (4.2), (4.3) and (4.4)3 and a muSt satisfy the

"backward diffusion equation,"

 

2 2 2

at 11 2 12 o 22 2 1 5L 2 0
5L aLaF 0 BF

5L

3

Feller [F-l], pg. 321.
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For the problem considered here, it is easily proved that

p(xt+T) satisfies the above postulates and since a is a proba-

bility of error, then, \a‘ s 1. Thus, the regularity conditions

are satisfied.

Coefficients in (5.3.35) can be determined as follows: r

From (5.3.34) for T > O, the following equation is first obtained.

0 0 O

at‘H'(Lt,rt) ‘ at(Lt’rt) — atd‘T(Lt’I-‘t)

T T

  

 

  

 
 
 

1

-:r-f at+r(L”Tm M)p(x)dxHT (5.3.36)

X t-l-T

Expanding at+T(Lt+T’r:+T) in a Taylor series about (Lt,F:)

and taking only the first and second order terms gives

0 o

L 9

t+T t+'r t+T t+T t’ t 1- aLt-H' T o

a?
t+T

2 o 2 o

+ L + 21 F + 1“ ,

I 2 T T 3L az t 2

5 HT

Wh é - L . 0 Q 0 _ O.

ere’ LT Lt+T t ’ FT rt-Pr I‘t;

Substituting this expansion into (5.3.36), performing

the resulting integration and then passing to the limit as T 4 O

produce the coefficients in (5.3.38). The resulting partial

stochastic differential equation can be written as:

1-0
1_022

ae+__f‘_.ae_q+(_1__q_q)P0,_Ll-°m__$_f_‘_1_a_e

l 2vo o 1 2v arota 2v0 5L

 

o 2

+ (1'1“) _a do _ r0(1 - I“0) 23% (5.3.37)
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Using similar arguments, a partial Stochastic differential

equation can be obtained for the conditional probability of error

of the second kind and is given below.

 

 

 

o o

(l-F )(1-2r )

3.6.- t BE_ ___1__ _ o _1_ _o _ o as
at 2v 5L [ 2v qo q1)F +2v (1 P )(1 2F ) at

o o o

Il‘ro)2 2 (l-PO 2 2 02 o 2 2

_ V A C; + V 2 Afio .. I“ (14" ) M2 = 0 (5.3.38)

0 3L 0 aLaF Bro

where

A o . A o . _ o . 011 0
Cl’ —at(Lt’rt) 2 B '— Bt(Lt’Ft) a L " Lt(xt,rt) a P — Ft

Equations (5.3.37) and (5.3.38) describe the change in a

conditional error probability for a recurrent period of time.

From (5.3.34), it follows that these probabilities must satisfy

the conditions,

6,0,5; = u(L.r - 11*) ; 0,0,3"? = 1 - u(L.r - 11*) (5.3.39)

where T is the time for which the detection is completed. If

at(Lt,F:) and Bt(Lt,F:) are the solutions of equations (5.3.37),

(5.3.38) with the boundary conditions (5.3.39), then the first

kind and the second kind of probabilities of errors are determined

by the expressions

0 C

p0 p0

0' = 0’ (O: ) a B = B (O: )

° O p + pc 0 ° 90 p
O O O

5.4 CONCLUSIONS

In the first part of this chapter, the optimal decision

making problem was investigated for the model which consists of
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two pattern classes characterized by different N-State continuous-

parameter Markov chains. All parameters of the underlying model

were assumed known. Because of the noisy medium which affects

the model in an additive manner, neither the states nor the

transition times of the sample function generated by these chains

could be observed directly.

In Sec. 5.1, assuming additive white Gaussian noise and a

discrete-time sampling scheme, the observation process was defined

and the Bayes likelihood ratio algorithm.was derived. The likeli-

hood ratio and a statistic (5.1.10) were computed recursively.

Continuous-time results were obtained by introducing a new sampling

scheme and applying a limiting argument. A set of non-linear

differential equations were obtained fro the logarithm of the

likelihood ratio and for the statistics defined in (5.1.10).

The second part of this chapter considers the problem of

detecting a random telegraph signal with a fixed observation time

in additive white Gaussian noise. It was shown that the problem

is a Special case of the model considered in the first part. The

optimum detector was defined in Sec. 5.3.1 and its basic components

(5.3.9), (5.3.11), were generated recursively. Iterative schemes

for computing the mean and variance of the logarithm of the like-

lihood ratio were given in Sec. 5.3.2. In order to analyze the

quality of the Optimum detector, it was necessary to consider the

probabilities of error of the first and second kind. For this,

the conditional error probabilities were first investigated in

Sec. 5.3.3. Recurrent relationships were established for them

from which the usual error probabilities were found as a function
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of the observation time and the parameters of the problem.

Finally, in Sec. 5.3.3, the case of continuous observation

times were considered. Stochastic differential equations were

obtained for the logarithm of the likelihood ratio and for the

conditional probabilities of errors.



CHAPTER VI

GENERAL CONCLUSIONS AND EXTENSIONS

The main objectives of the thesis are reviewed in this

chapter and possibilities for future research are discussed.

6.1 CONCLUSIONS

This thesis has been concerned with Bayesian decision

making and learning algorithms for a particular problem in para-

metric pattern recognition. Each of M pattern classes was

characterized by an N-state, continuous-time, homogeneous Markov

chain and the infinitesimal-rate matrices (Q-matrices) for the

chains were the parameters of the problem. The object of the

decision rules was to decide which of M chains produced the

sample function observed. Statistical decision theory was

employed throughout the thesis to develop optimal solutions for

a Special loss function (0-1 loss function).

In Chapter II, the Bayes-optimum decision rules were de—

rived under a perfect observation mechanism (noiseless case).

The observable quantities, or the "features", were the sojourn

times in the states and the state numbers themselves. Using

classified training data from each pattern class, an algorithm

for supervised learning was presented and the existence of repro-

ducing prior densities for the parameters was demonstrated. The

main result was the formation of recursive, computationally simple

103
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parametric forms for the posterior densities of the unknown para-

meters and for the components of the optimum decision rules. It

was shown that the amount of computer storage required to implement

these algorithms was fixed and finite. Computer simulations of a

specific example gave curves showing probability of error versus

the length of the observation sequence for different amounts of

training data and demonstrated the inherent practicality of the

results.

The problem of computing probability of error was inves-

tigated for the noiseless case in Chapter III. All parameters in

the model were assumed known and there were only two pattern classes.

The exact probability of error, as well as lower and upper bounds,

were established for several cases. Conditional error probabilities

of the first and second kinds were introduced by which the usual

probability of error could be computed iteratively. The main con-

clusion of the chapter was that, even for a simple case, exact

expressions for the probability of error were very complicated

and it was difficult to evaluate them. However, the fact that the

probability of error decreases toward zero as the number of samples

increased without bound was proved by employing a Bhattacharyya

bound. The asymptotic behavior of error probability was also

studied.

The model of Chapter II was extended in Chapter IV to

include the case in which the observations are made in a noisy

medium. In the new model, the states of the chains were described

by random processes, but sojourn times could be observed. The

optimal and the adaptive-optimal decision rules were defined and
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their basic components were generated iteratively. The asymptotic

optimality of the adaptive rules was exhibited. For the known

parameter case, the iterative optimal decision rule can be im-

plemented on a computer using only a finite memory. However,

computer time increases linearly with the number of observation

sequences. One can also conclude that the optimum-adaptive rule

is a fixed memory, iterative rule and only a high Storage quantiza-

tion procedure is needed to implement it.

Finally, Chapter V dealt with the case when neither the

transition times nor the states could be observed but the processes

defining the states were white Gaussian processes. This is equi-

valent to additive white, Gaussian noise. The Bayes likelihood

algorithm was established for the Optimal decision rule assuming

two pattern classes and a discrete-time sampling scheme. Non-

linear stochastic differential equations were obtained for the

logarithm of the likelihood ratio and for the conditional error

probabilities when the sampling scheme was changed to permit

observation of the entire sample function. The results were

applied to the Specific problem of detecting a random telegraph

signal in white noise. In general, the algorithms for the like-

lihood ratio are computationally feasible. The implementation

of the optimal decision rule with discrete-time sampling requires

the knowledge of the stationary transition probability functions

for each pattern class. These functions could be obtained by

solving N2 System of linear differential equations with constant

coefficients. The continuous sampling scheme leads to much

simpler algorithms and do not require transition functions.
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6.2 EXTENSIONS

The work in this thesis suggests several extensions that

should be investigated.

First is the problem of developing sub-optimum decision

rules that are easier to implement than the high-Storage quantiza-

tion procedure of Sec. 4.4.2 implicit in the optimal-adaptive rule.

Strongly consistent estimators for the unknown Q-matrices might

be deve10ped. These are functions of the observations that con-

verge with probability one to the true value Of the parameter.

Conditions for the existence of such estimators are important

because, in Sec. 4.4.3, it was shown that a strongly-consistent

estimator for go must be exhibited to ensure that these para-

meters will be learned during the Operation of the optimal rule.

Secondly, the expressions obtained for the probability of

error can be extended to the cases where M patterns are present

and the parameters of the underlying models are not known. The

conditional error probabilities, introduced in Sec. 3, suggest a

useful computer implementation algorithm for evaluating adaptive

decision making devices.

In Chapter V, stochastic differential equations were derived

for several quantities, but these equations were not solved. Since,

in general, these differential equations are non-linear as well as

stochastic, one must not expect to obtain any exact analytical

solutions for them. A natural extension of these results would be

to seek some approximate solution methods, Such as expressing

them in the form of difference equations which can be solved on a

computer, or, by some reasonable assumptions, reducing them to
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stochastic linear differential equations for which exact aolutions

may exist.

Finally, a particularly significant theorem concerning

the Bayes likelihood algorithm in Chapter V can be proved. The

probability of error goes to zero as the number of samples, k,

increases without bound. This can be proved from the fact that the

expected value of the logarithm of the likelihood ratio is a monotonic

increasing function of k under 91 and a monotonic decreasing

function of k under 90.  
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APPENDIX A.

DEFINITIONS AND PROPERTIES

In this appendix, some important definitions and theorems

related to continuous-parameter Markov chains are given. Most

results are based on Doob [D-2] and Chung [C-Z].

Consider a family of real random variables indexed by t,

{xt,0 s t < m} on a probability triplet (0,5,P), where the

possible values of xt is a set of non-negative integers. Here

0 is a probability Space, 3 is a o-field of subsets of n and

P is a probability measure defined on 3.

DEFINITION 1.A The stochastic process, {xt,0 s t < m} is said

to be a homogeneous, continuous-time, discrete-state Markov pro-

cess (continuous- parameter Markov chain), if and only if the

following two conditions are satisfied

1) Markov prOperty:

P(X

n—1 n-1

(A.l)

for every n 2 2, O s t1 < t2 <...< tn and for all possible values

0f the random variables in question.

ii) Homogeneity property:

The chain is said to be Homogeneous, or said to have

Stationary transition probabilities, if and only if

P(xHh-j‘xhq) = P..(t) Vi,j e A and c > 0 (A.2)

1J
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where Pij(t) is independent of h 2 0.

N

DEFINITION 2.A The functions {Pij(t)}, are called stationary
1,j=l

transition probability functions if and only if the following con-

ditions are satisfied:

Al-l. Pij(t) 2 0 Fa

N

A1-2. Z P..(t) = l t > 0, V i E A

. ij

J=1

N

Al-3. 2 P, (t)P ,(S) = P,,(t + s) S,t > 0

k=1 1k kj 1] ‘ 
The following continuity condition is also assumed to be satisfied

for t > 0

A1—4. lim P,,(t) = A,

t40 11 1
J

The matrix [Pij(t)]NXN is called the stationary transition proba-

bility matrix.

DEFINITION 3.A The process {xt; 0 s t < m}, is said to be separable

(relative to the class of closed sets), if and only if there exists

a denumerable subset, R C {t; 0 s t < m}, called a separability

set, and a null set N with the following property: for any closed

linear set A and open interval G in (~m,m)

fw: Xt(w) e A, t e G n R} - [wz xt(w) E A, t e G n [0,m)} czN

The main reSults in this thesis are based upon the follow-

ing theorems which are given without proof:

THEOREM 1.A If [Pij(t)] is the stationary transition probability

matrix, then, the following limits exist:

1 - P11“) A
. = - ' m . = ' .11m Pii(0) < v 1 e A, q, Pii(0) (A 3)

t~0 t 1
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P..(t)

iim—U——=P!.(0)<ao Vi,jeA(j#i);q..-QP!.(O) (AA)

t—.0 t 13 13 13

Furthermore, if {xt: 0 s t < m] is a separable process determined

by [Pij(t)]§ j—l together with an initial probability distribution,
’ _

{Pi; i E A} over the states, then, the probability of remaining

in state i for a time units, given that the chain in state i is:

41.0!

P{xt=i,hStsh+Q/\xh=i}=e 1,0120 (A.5)

In addition, if qi > 0 V i E A and if xt = i, there is

a sample function discontinuity for some t > tO with probability

one (w.p.1). If 0 < a s m, and if there is a discontinuity in the

interval [to,tO + a]. the probability that the first jump is to j

is qij/qi'

N

The matrix Q = [qij]1,j=1 where q.. Q -q,, defined above

11 1

is called the infinitesimal matrix or the transition-rate matrix

or the Q-matrix. From Al-l and Al-2 it follows that

q.20, z q..=qi Vi,J'EA (ja‘i) (A.6)

Differentiating A1-3 with reSpect to each variable and

setting the result equal to zero produces the following system of

differential equations for the stationary transition probability

functions which is called the "backward differential equation

system".

N

I = _ -

Pik(t) quik(t) + jEI qiijk(t) V i,k e A (A.7)

j¢i
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The initial conditions are given by

Pij(0) = Aij V i,j E A (A.2)

The following question is of interest: What are the

necessary and Sufficient conditions that the qi's and q,,'s

1J

must satisfy to determine the {Pij(t)}§ j=l uniquely? Or, in .*

9

other words, what conditions on the qi's and qij's ensure a

unique solution to the backward differential equation system?

 Doob [D-Z] shows that the necessary and Sufficient conditions rd

under which an allowable set of stationary transition probabilities

are defined by the backward differential equation system for a

given infinitesinmJ.Q-matrix are that the process is separable

(which assures that the sojourn times in the states are independent

and exponentially distributed), has a finite number of states,

satisfies (A.6), and that the states are stable (i.e., qi > O).

For a discrete-parameter Markov chain, these conditions imply

that the process is ergodic.

As long as the above conditions are satisfied, a unique

continuous-parameter Markov chain with the stationary transition

probability matrix [Pij(t)] can always be found from a given

Q-matrix. The process, constructed in this way, is called a

minimal process. The relation between the Pij(t)'s and q1

is given by one of the following integral equations.

-qit N t -qis

P k(t) = 61k e +j1§ qu ijk(t-s)ds (A.9)

31¢

or



'qkt N t -qk(t-s)

Pik(t) = 61k e + jgl Pij(s)qjke ds. (A.10)

j¢k

If the eigenvalues of the Q-matrix are real and distinct,

then the solutions of the above integral equations are the same

and are given by

 Pik(t) = z V i,j E A, (A.1l)

mEl(pL-pn9

m¢£

where p1,p2,...,pN are the eigenvalues of the Q-matrix and Aik(L)

is the cofactor of the matrix A({) = {p61 - Q]. Here, I is the

unit matrix.

Doob also proves that the sample functions Of a continuous-

parameter Markov chain satisfying the conditions stated above are

almost all Step functions. The corresponding continuous-parameter

Markov chains can thus be constructed in terms of their sample

functions in the following manner:

Let xl,x ,... be random variables taking values in

2

A = {l,2,...,N} only. Let T1,T2,... be positive random variables

N

1 j'l are any real positive numbers
, _

N
and Suvpose {qi}i=1. {qij}

j#i

satisfying (A.6) and 0 < qi < m. Define the following conditional

probabilities:

-qit1
P(T1 s t1\x1 = i) = 1 - e t1 > 0 (A.12)

. . i' . . .
P(xk=j‘xk_1=1,...,xl=L,tk_1,...,tl) = -a%' qi > 0 V i,j 6 A (j # 1)

1 (A.13)



117

-q.t

= - J kP(Tk s tk‘tk_1,...,t1,xk,...,x1) 1 e ck > 0 k e A (A.14)

This shows that the random variables {Xk}:=l have a

Markov dependency and the random variables {Tk}:=l are condi-

tionally independent. Now, define the process, {xt: 0 s t < m}

as follows:
F?

x - x if p s t < pn

t n n-l

where T Q

n

pn - pn-l and p0 E 0. Then, it is easy to Show that j

 
the process defined in this way is a continuous-parameter Markov

chain and that the qi's and qij's satisfy the limit conditions

Specified in Theorem A.1. The xn's are the state numbers and

Tn's are the sojourn times in these states. A typical sample

function from this process is illustrated in Fig. A.l.
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APPENDIX B

DERIVATION OF OPTIMAL DECISION RULES

The basic elements of statistical decision theory are

summarized in this Appendix. Most of the results are taken from

the literature, but are presented from a slightly different point

of view, more suitable for the problem of interest in this thesis.

A problem in decision theory consists of three basic

elements:

1. A non-empty set, @, of possible state of nature

(parameter Space)

2. A non-empty set,(7, called an action Space

3. A real-valued loss function, L(9,a), defined on ® X(7.

In pattern recognition terminology, a state of nature is

called a "pattern class". Before making a decision, a random

vector, (xk,tk) Q (x1,...,xk,t1,...,tk) is Observed whose dis-

tribution depends on the true State of nature 9 6 ®. The sample

A k k

space, Sk = (w: w = (121:1) X(iglni)}, is taken to be a Borel sub-

set of a finite dimensional Euclidean Space and the probability

distributions of (xk,tk) are defined on the class of Borel sub-

sets .8 on Sk' For each 9 6 @, there is a product measure

u(xk) X v(tk) defined on (B and correSponding multivariate

k
density function g(x ,tk‘e), which represents the distribution

k k .

of (x ,t ) when a is the true state of nature.
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On the basis of the set of observations (xk,tk), an action

d(xk,tk) €¢7 is chosen. In choosing d(xk,tk), the loss

L[9,d(xk,tk)], e 6 G, which is a random quantity, is incurred.

The expected value of L[e,d(xk,tk)], when 9 is the true State

of nature is called the risk.

R(e,d> = EeLie.d(xk,tk>] (3.1)

Any function, d(.), that maps the sample Space, S intok’

(7 is called a non-randomized decision rule, provided the risk

function, R(e,d), exists and is finite. The Bayes principle involves

the notion of the Bayes risk. A distribution Po is imposed on

the parameter Space called a prior distribution. The Bayes risk

is the expectation Of the risk function with reSpect to PO; namely,

r(PO,d) = ER(Z,d) (B.2)

. . . . . . o
where Z is a random variable over ® hav1ng distribution P .

*

DEFINITION 8.1 A non-randomized decision rule, d (xk,tk) is

said to be Bayes with reSpect to the prior distribution Po, if

and only if

r<P°,d*> = inf r<P°.d) (3.3)
d

DEFINITION B.2 A non-randomized decision rule d*(xk,tk) is

said to be an Optimum decision rule if and only if it is Bayes

with reSpect to the prior distribution P0.

In the following, the optimum decision rule is first derived

for the general loss function, and then for the Special "0-1" loss

function, which leads to a minimum probability of error rule.

r
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In Chapter II, the parameter Space, ® and the action space,

(7 are finite, i.e., ® =(7 = {l,2,...,M}, where each integer in

this set correSponds to a different continuous-parameter Markov

k k .
chain. The random vector (x ,t ) is observed. Its value de-

pends on which continuous-parameter Markov chain is active. The

0 .

problem, then, for any given prior distribution P on O, is to

. . . . * k k . .
find a non-randomized dec131on rule d (x ,t ) that minimizes

the Bayes risk

r<PO,d) =

"
M
K

R(e = i,d)P9
1 1.

i

where

R(0,d) = jk k Lie.d<xk.tk)]g<xk,tk\mama“) x 6(3)) 6 e O

A XR

Using Fubini's theorem,

k k k k k k

R<e,d> =j [f Lie.d<x .t )]g(x ,t \9)dp»(t )]dv<x>
k k

A R

. k . . k k
Since x is defined on A = {l,2,...,N} , the outer

Lebesgue integral with reSpect to counting measure v(xk) becomes

a summation over AR, and the inner integral becomes a Riemann

integral over [0,m)k. Thus,

R(e,d) = 2 f L[e,d(xk,tk)]g(xk,tk‘e)dtk' where dtk A dtldtz...dtk

k k

A [09”)

Then, the Bayes risk is,

M

r(P°,d) = 2 [zk.f
i=1

L[6=i,d(xk
,tk)]g(xk,

tk‘9=i>dtk
] P:

A [0,m)
k
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0

Since P on ® is finite, the order of integration and

. . . o k k _.
Summation can be interchanged. Since Pi g(x ,t \9—1) =

k k
,tP(e=i|xk.ck>g<x )

o _ M

“P ,d) ‘ Zki z L<e=i,d(xk,tk>]P<e=i\xk,tk>] g(xk,tk>dtk (3.4)
A [0,m 1=1

*

Now, to find a function d (.) that minimizes r(PO,d),

. . * k k k k
an action, call it d (x ,t ), may be found for each (x ,t ) E Sk

that minimizes

:
3

z L[e = i,d(xk,tk)]P(e = i\xk,tk).

1=1

. . . * k k . . .
In other words, the Optimum dec1Sion rule, d (x ,t ), minimizes

. . . . k
the posterior conditional expected loss, given (x ,t ).

For the problem considered in Chapter IV, the optimum

decision rule is determined in exactly the same way as above.

. . R., k.
The only difference is that x is defined on R instead of

, k

A so the counting measure becomes a Lebesgue measure u(x )

. . . k
and the summation becomes a Riemann integral over R .

In particular, when the loss function is given by

L(i,j) = 1 - Aij (0-1 loss function), the optimal decision rule

Obtained above becomes a minimum probability of error rule, de-

fined by

d (xk,t ) = s if S is the first index Such that

k k

P(e = slxk.t > 2 P(e = 2\xk.t > v 2 ‘1‘ s

k

or P:g(xk,tkle=s) 2 P:8(X ,tk\9=L) V s # L 55% E {1,2,---9M1

(B.5)

 



APPENDIX C.

A PROOF OF CONVERGENCE

n 11 n—KD

The fact that N(qij‘y ,¢ )————-3p6(qij - qij) w.p. 1,

V i,j E A (j # i), is proved in this Appendix. It was shown in

Chapter II that

f(q ,r.“\y ,w“>—“——>6<q - q:.qij - <12,» 1.1 e A o f i) (0.1)

But, from the definition of the delta dirac function, 6(.), it

follows that

O O 0

6m, - qi,q,j - q,,) = 6m, - q,)6<q,j - q§j> . (c.2>

Thus, taking limit of ¢(qij‘yn,wn) in Sec. 2.6 gives

1

lim 112(qj“\y ,Tn)=1imJ”—1— f(riJ.,—ii‘y“,rn)drij (0.3)

mam new 0 rij ij

Since W(q.11‘yn,Tn) < m qi 0 < qij < l and

1J

V(yn,1‘n ) 6 Sn’ the limit and integration Sign in (C.3) can be inter-

changed. Doing so,

lim ((q. |y“,¢“)= :— lim f(rij ,Jijynflnmr. . (0.4)
ij 11

n—cco ij n—cao rij

In terms of (0.1) and (C.2), the last factor in the inte-

grand of (0.4) can be written as:

q 1 Q. q

Substituting this into (C.3) to give

123
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1'1"“

1 q
, n n 1 O i’

l = -——— - .__l

 

J u 13

. A l qij 0

Define h(ri,) =—6( -q,) then,

3 rij rij 1

n n 1 O 0

lim q.. T = h r.. 5 r.. - r.. dr.. = h ..Hugh. > i (UH,J 1,) 1, (r13)

q q0 r0
__1_ ij - i ii- 0 0( O >

r.. r..

1J 1J

0

Since 0 Q q°r° and 5(Eii_:_iii. — ° 6( ° ) th 1t
’ qi i ij ro ) ” rij qij qij ’ e res”

follows. That is, 13

n n O

1' .. = .. - .n}: 1(quly yr) 5(qu qu ) ViijEA (ja‘i).

O

- d , 0 10qi) rij <r” <

 

 



APPENDIX D

ALGORITHMS FOR ERROR CURVES AND FOR DECISION MAKING

 

 

Read in

Q-matrices,

A priori probabilities,

Parameters of the prior densities,

Number of the training samples.
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Generate the training data
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Choose PC r with probability P: 1

l
Generate classification sequence

k
(x ,tk) = (x1....,xk,t1,...,tk)

 

 
 

 

for PC r

k k

Classify (x ,t )

9

Count the number of misclassifications

_L
i = i+l

NO < i = 100

YES

Compute Error Probability

_.L
k = k+40

  
 

 

   

 

   

   

 
 

 

   

   

 
NO < k>120

YES

Figure D.l: Algorithms for a single error curve and for decision

making.
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Observe (x1,t1)

11nn
Compute gr(x ,c /yrr,Trr)
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APPENDIX E

THE PROOF OF IEMMA 3.3.2

First, it is shown that -m < m2 < O.

1

> > '
qij pij 3 qi Pi V 1 E A

From (3.3.19), (3.3.18), (3.3.9), it follows that

N N q.. P.. N q. - p.

mz=2 Zpi—éanq—lli'ZPi—IT'I'

1 i=lj=l i ij i=1 i

j¢i

q..

Because q.. > p,, 2 Ln -ll-> 0, m can be rewritten as

N pi [ ) N qi']

=2—(q.-P.-£q..Ln-—l
mil i=1 qi 1 1. j=1 1J pij

j¢i

qi' Pi.

Using the inequality, Ln-——1 2 l - ——J3 in the above it follows

Pi. q..

J 1J

that

N qi. N pi. N

Zq Ln—lzzq..(1-'—l)=2(q..-p..)=q.-p.>OVi€/\

j=1 1.] pij J=1 1.] qij j=1 1:] l] 1 1

j¥i J#i j#i

Thus,

N q.

2 qi.. Ln —l1 2 (qi - pi) i e A = -m < mi < 0

j¢i

Now, it is shown that O < mZ < +m.

2

From (3.3.20), (3.3.19) and (3.3.9)
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N N pic pic N q. -p

mZ = 2 z Pi--11Ln-—l +- 2 P. l 1
2 1=1 j=1 Pi qu 1=1 :1 qi

Using the same argument as in the first part of the proof, m2

2

can be written as

N Pi [ N qi.

=z_ 2 ..-—L]
mzz i=1 Pi 1 1 j=1 13 pij

j¢i

Q.. Q..

Using the inequality, Ln -il 5 —il - l, in the above it follows

p

ij pij

that

N q.. . N
, 1|

Z Pl Ln 5 pi (“Ll - 1) = 2 (q1 - pl ) = qi - pi > 0

j#i j¢i J 1

Thus,

N qi

-—~l - ' < +mE Pijtnpusml pi) 16A=50<mZ

3-1 13 2

j¢i

and the lemma is proved.




