INVARIANTMANIFOLDTHEORYANDITSAPPLICATIONSTONONLINEARPARTIAL DIFFERENTIALEQUATIONS By JiayinJin ADISSERTATION Submittedto MichiganStateUniversity inpartialoftherequirements forthedegreeof Mathematics-DoctorofPhilosophy 2015 ABSTRACT INVARIANTMANIFOLDTHEORYANDITSAPPLICATIONSTONONLINEAR PARTIALDIFFERENTIALEQUATIONS By JiayinJin Thetheoryofinvariantmanifoldsandfoliationsprovidesindispensabletoolsforthestudyof dynamicsofnonlinearsystemsinordimensionalspace.Asisthecasehere,invariant manifoldscanbeusedtocapturecomplexdynamicsandthelongtermbehaviorofsolutionsand toreducehighdimensionalproblemstotheanalysisoflowerdimensionalstructures.Invariant manifoldswithinvariantfoliationsprovideacoordinatesysteminwhichsystemsofdi erential equationsmaybedecoupledandnormalformsderived.Theseplayanimportantroleinthestudy ofstructuralstabilityofdynamicalsystemsor,whenadegeneracyoccurs,inunderstandingthe natureofbifurcations.Thisthesisisdevotedtothestudyoftheconstructionofinvariantmanifolds ofsolutionswithcertainspatialstructurestosomenonlinearparabolicpartialdi erentialequations. Iapproachtheseproblemsintwosteps:thestepistoconstructamanifoldofstatesthatis approximatelyinvariant,thesecondstepistoshowtheexistenceofatrulyinvariantmanifoldof thesestatesneartheapproximatelyinvariantone,andtodeterminethedynamicsonthismanifold. Sincethisapproachmaybeappliedtomanydi erentsystems,Ialsodevelopitinanabstractor generalway,extendingearlierresultsof[19]. Mythesisconsistsoftwoprojects,intheproject,weconsiderthetwo-dimensionalmass- conservingAllen-CahnEquation, 8 > > > > > > > < > > > > > > > : ˚ t ( x ; t ) = " 2 ˚ ( x ; t ) f ( ˚ ( x ; t )) + > f ( ˚ ( ; t )) ; x 2 ; t > 0 ; @ n ˚ ( x ; t ) = 0 ; x 2 @ ; t > 0 ; (0.0.1) where ˆ R 2 isaedboundeddomainwithsmoothboundary @ , @ n istheexteriornormal derivativeto @ ,and > = 1 j j R meanstheaverageover .Here f isthederivativeofadouble wellpotential W .Weassumethefollowingconditionsfor f : f ( 1) = 0 ; f 0 ( 1) > 0 ; Z s 1 f = Z s 1 f > 0forall s 2 ( 1 ; 1) : (0.0.2) Weestablishtheexistenceofaglobalinvariantmanifoldofbubblestatesforthisequationandgive thedynamicsforthecenterofthebubble. Inthesecondproject,weconsidertheexistence,inforwardandbackwardtime,ofdynamical interiormulti-spikestatesdrivenbythenonlinearCahn-Hilliardequation: 8 > > > > > > > < > > > > > > > : u t = ( " 2 u f ( u ))in (0 ; 1 ) ; @ n u = @ n u = 0on @ (0 ; 1 ) ; (0.0.3) where ˆ R n isaedboundeddomainwithsmoothboundary @ and f isthederivativeof adoublewellpotential W ,thatis, xf ( x ) > 0for j x j largeenoughand f hastwozeros a and b suchthat f 0 ( a ) ; f 0 ( b ) > 0.Weconstructinvariantmanifoldsofinteriormulti-spikestatesfor thenonlinearCahn-Hilliardequationandtheninvestigatethedynamicsonit.Anequationfor themotionofthespikesisalsoderived.Itturnsoutthatthedynamicsofinteriorspikeshasa globalcharacterandeachspikeinteractswithalltheothersandwiththeboundary.Moreover,we showthatthespeedoftheinteriorspikesissuperslow,whichindicatesthelongtimeexistenceof dynamicalmulti-spikesolutionsinbothpositiveandnegativetime. Copyrightby JIAYINJIN 2015 ACKNOWLEDGMENTS Iwouldliketoexpressthedeepestappreciationtomyadvisor,Dr.PeterBates,forhisguidance, assistance,encouragement,andheartysupportinallthephasesofmydoctoralprogramatMichi- ganStateUniversity.Thisdissertationwouldnothavebeenpossiblewithouthisguidanceand persistenthelp. Iwouldliketothankmycommitteemembers,Dr.KeithPromislow,Dr.RussellSchwab,Dr. BaishengYan,Dr.ZhengfangZhoufortakingtimetoserveonmydissertationcommitteeandfor theirusefulcommentsandsuggestions. IamthankfultoDr.ChongchunZengandDr.GiorgioFuscoforvaluablediscussions,during whichtheyprovidedmewithinspiringsuggestionsaboutmyresearch. IamgratefultoYinCao,HongliGao,YangGao,JiLi,YuLiang,QiliangWuandmanyothers fortheirfriendshipatMichiganStateUniversity. IalsowouldliketotakethisopportunitytoexpressmygratitudetoDr.PeterBates,Dr.Giorgio Fusco,Dr.KeningLu,Dr.ChongchunZengandDr.ZhengfangZhouforsupportingmypostdoc application. Atlast,butbynomeanstheleast,myheart-feltappreciationsgotomydearestparentsandgirl friend,XiaoyingHanfortheircontinuousandtime-invariantsupport.Withouttheirunderstanding, thisworkcannotbedone. v TABLEOFCONTENTS LISTOFFIGURES ...................................... vii Chapter1Introduction .................................. 1 Chapter2Preliminaries:Approximatelyinvariantmanifolds ............ 6 Chapter3Globalinvariantmanifoldsofboundarydropletsforthe2-Dmass-conserving Allen-Cahnequation ............................. 11 3.1Introduction......................................11 3.2Approximatebubblesolutionforthemass-conservingAllen-Cahnequation....14 3.3Invariantmanifoldsofboundarydroplets.......................19 3.3.1Constructionof M " ..............................19 3.3.2 M " isapproximatelyinvariant........................20 3.3.3Splittingalongthemanifold M " .......................21 3.3.4 M " isapproximatelynormallyhyperbolic..................22 3.4Dynamicalbubblesolution..............................30 3.4.1Motionon f M " ................................32 3.4.2Equilibria...................................34 Chapter4Invariantmanifoldsofinteriormulti-spikestatesfortheCahn-Hilliard equationinhigherspacedimensions .................... 36 4.1Introduction......................................36 4.2Approximatelystationaryinvariantmanifoldswithboundary............41 4.3Invariantmanifoldsofinteriormulti-spikestates...................51 4.3.1Constructionofthemanifold M " .......................51 4.3.2SpectralanalysisofthelinearizedAllen-Cahnoperator...........58 4.3.3SpectralanalysisofthelinearizedCahn-Hilliardoperator..........61 4.3.4 M " isapproximatelystationary.......................65 4.3.5Transformationofthephasespace......................67 4.3.6Splittingspace X ] alongthemanifold M ] " ..................70 4.3.7Trichotomy..................................72 4.3.8ofvector..........................78 4.4Longtimedynamicson f M " ..............................83 BIBLIOGRAPHY ....................................... 98 vi LISTOFFIGURES Figure2.1:Approximatelynormallyhyperbolicinvariantmanifolds..........7 Figure3.1:Graphofthefunctionf...........................12 Figure3.2:Fourstagesintheevolutionforatwo-dimensionaldomain .Thelast stageistheobjectofstudyinthispaper...................13 Figure3.3:Geometryofthebubble...........................15 Figure4.1:Interiormulti-spikestate..........................37 vii Chapter1 Introduction Indynamicalsystems,aninvariantmanifoldisamanifoldthatisinvariantunderamaporaw (orw).Forinstance,aedpointorperiodicorbitofanordinarydi erentialequationis aninvariantmanifoldforthewgeneratedbythatODE.Thetheoryofinvariantmanifoldsfor discreteandcontinuousdynamicalsystemshasalongandrichhistory.Numerousapplicationscan befoundwhereanswerstothefollowingquestionsareneeded:1)Assumingthatadynamicalsys- temhasaninvariantmanifold,doesaperturbationofthissystemalsohaveaninvariantmanifold? 2)Whenadynamicalsystemhasaninvariantmanifold,howdoesoneconstructlocallyinvariant structuressuchasthecenter-stable,center-unstablemanifold,andcentermanifoldoftheoriginal invariantmanifoldandinvariantfoliationsofthese,whichessentiallydecouplethedynamics. Forthecaseoftheinvariantmanifoldconsistingofasingleedpoint,Hadamard[49]con- structedtheunstablemanifoldofahyperbolicedpointofadi eomorphismoftheplaneby iteratingthemappingappliedtoacurveintheplane,thereforeobtainingaconvergentsequence ofcurves.Thelimitofthesequenceofcurvesgivestheunstablemanifold.Peoplenowcall thisgeometricapproachHadamard'sgraphtransform.Lyapunov[65]andPerron[78,79,80] constructedtheunstablemanifoldofanequilibriumpointbyformulatingtheproblemasanin- tegralequation.ThismethodisanalyticratherthangeometricandnowiscalledLyapunov- Perronmethod.Thereisanextensiveliteratureonthestable,unstable,center,center-stable, andcenter-unstablemanifoldsofequilibriumpointsforbothanddimensionaldy- namicalsystems.Thegeneraltheoryfordimensionaldynamicalsystemsmaybefoundin 1 [26,29,54,52,56,58,60,67,81,83,84,86,88].Fordimensionaldynamicalsystemswe referthereaderto[10,16,35,51,68,87,93].MostoftheseworksusetheapproachofLyapunov- Perron.AgoodtreatmentofcentermanifoldtheoryforODE'susingtheLyapunov-Perronmethod canbefoundinthemonographbyCarr[29],whereseveralapplicationsarealsosetforth.Cer- taindimensionalsettingsarealsotreated.VanderbauwhedeandVanGils[88]alsousethe Lyapunov-Perronmethodtoobtainsmoothcentermanifoldsbutwithsomeimportantdi erences intechnique.Ball[10]usedtheLyapunov-Perronapproachtoobtainlocalstable,unstableand centermanifoldsforequilibriumpointsofdynamicalsystemsinBanachspace,withapplication tothebeamequation.Henry[51]developedthetheoryforsemilinearparabolicequations.Later, ChowandLu[35]usedthisapproachtoprovetheexistenceofsmoothcenter-unstablemanifolds withapplicationtothedampedwaveequation.Formoreoncentermanifoldtheoryinthe dimensionalsetting,usingtheLyapunov-Perronmethod,see[87].Thetheoryofinvariantmani- foldsforanequilibriumpointofdimensionaldynamicalsystemsusingHadamard'sapproach maybefoundin[54].Fordimensionaldynamicalsystems,wereferto[16],whereapplica- tionsaregivendemonstratingthestabilityofapulsesolutiontotheFitzHugh-Nagumoequations andtheinstabilityofstationarysolutionstothenonlinearKlein-Gordonequation. Chow,LiuandYi[34]constructedcentermanifoldsforsmoothinvariantmanifoldsforsmooth wsindimensionalspacesbyusingthemethodofHadamard'sgraphtransform.Krylov andBogoliubov[24]studiedtime-periodicordinarydi erentialequationsarisingfromthestudy ofnonlinearoscillations.Undertheassumptionthattheaveragedequationhasanasymptotically stableequilibriumpoint,theyprovedtheexistenceofperiodicintegralmanifolds,whichgivesthe existenceofasymptoticallystableperiodicorbitsforaclassofequations.Anintegralmanifoldis aninvariantmanifoldintheproductspaceoftimeandphasespace.Theaboveresultandmany generalizationsandrelatedworkincollectedinthemonographofBigoliubovandMitropolsky 2 [25]. Levinson[62]studiedperiodicperturbationsofanautonomousordinarydi erentialequation possessinganasymptoticallystableperiodicorbit.Heprovedthatiftheperturbationwassu - cientlysmall,thentheperturbedequationhasaperiodicintegralmanifold,whichmaybeviewed asatwo-dimensionaltorus.Levinson'sresultswereextendedtoperiodicsurfacesbyDiliberto [40],Hu ord[55],andKyner[61].Hale[50]establishedageneraltheoryofintegralmanifolds fornonautonomousordinarydi erentialequationsandobtainedmoregeneralresultsthanthose justmentionedabove.AnextensionofHale'sintegralmanifoldtheorytoalargerclassofnonau- tonomousordinarydi erentialequationswasobtainedin[100]. Thepersistenceunderperturbationofacompactnormallyhyperbolicinvariantmanifoldsfor adimensionaldynamicalsystemwasindependentlyobtainedbyHirsch,PughandShub [52,53]andFenichel[41,42,43].Theyprovedthepersistenceofnormallyhyperbolicinvariant manifolds,andtheexistenceofthecenter-stableandcenter-unstablemanifoldsandtheirinvariant foliations.PlissandSell[82]studiedthepersistenceofhyperbolicattractorsforordinarydi eren- tialequations.Bates,LuandZengin[11]provedthepersistenceofcompactnormallyhyperbolic invariantmanifolds,andtheexistenceofthecenter-stableandcenter-unstablemanifoldsandtheir invariantfoliationsforwsinspacesandthenextendedtheirresults withoutassumingcompactnessin[17,18]. Ma Ÿ n ´ e[66]provedthatnormalhyperbolicityin[52]isanecessaryconditionforthe persistenceofaninvariantmanifoldunderperturbationofadimensionaldynamicalsystem. Henry[51]extendedHale'stheoryofintegralmanifoldstogeneralnonautonomousabstract semilinearequationswhoselinearpartgeneratesananalyticsemigroup.Henryalsostudiedcom- pactnormallyhyperbolicinvariantmanifoldswithtrivialnormalbundleforsemilinearparabolic equationsandobtainedacoordinatetransformationwhichleadtothesettingofintegralmanifolds 3 andpersistenceresults. Inmanysingularperturbationproblemsforevolutionarypartialdi erentialequations,people areinterestedinsolutionswhichhavecertainqualitativefeatures,suchasinteriororboundarylay- ersorlocalizedspikes,andmotionsoftheselayersandspikes,includingthelocationofstationary layers.Thecanonicalshapeofsuchsolutions,inaneighborhoodoftheabruptspatialdisturbance (layerorspike),canusuallybedeterminedbyarescalingorblow-upprocedure.Thus,areasonable approximationtotheshapeofasolutionisfoundquiteeasilybyconsideringtheequationonthe wholespaceandapproximatelyinvariantmanifoldsmadeupoftheseapproximatesolutionshave beenconstructedbymanyauthors.Theapproach,involvingtheconstructionofanapproximately invariantmanifoldofstateshavingacertainspatialstructure,waspioneeredmorethanthirtyyears agoinpapersofG.FuscoandJ.Halein[45]andbyJ.CarrandR.Pegoin[31].Inthosepapers theauthorswereinterestedintheslowdynamicsofinterfacesinsolutionstotheone-dimensional Allen-CahnEquation.Thesameapproachwasalsotakentoobtainsimilarresultsfortheone- dimensionalCahn-Hilliardequationin[4],[21]and[22],andtorigorouslyestablishtheslow motionofflbubblefl-likesolutions[6,7]andmultipeakedstationarysolutionstotheCahn-Hilliard equation[14,96]inmulti-dimensionaldomains.Theapproachwasalsousedtoproducespike-like stationarysolutionstotheshadowGierer-Meinhardtsystemofbiologicalpatternformation[59]. Inmostofthesepapers,thequalitativeshapeofstationarysolutionswasthepointofinterestand soatrueinvariantmanifoldwasnotshowntoexist,althoughthatwasdoneinasubsequentpaper byCarrandPegoin[32]andalsoin[22]. Itisnaturaltoaskhowtodeducetheexistenceofatrueinvariantmanifoldinasmallneighbor- hoodoftheapproximatelyinvariantmanifoldconstructedbyhand,asdescribedabove.In[19],the authorsestablishedasystematicwaytoatrueinvariantmanifoldassumingtheapproximate oneisgoodenoughandtheyfoundaninvariantmanifoldofboundaryspikestatesforaclassof 4 parabolicequations.Inthisthesis,weapplytheabstractresultsin[19]toconstructaninvari- antmanifoldofboundarydropletsforthe2-Dmass-conservingAllen-Cahnequation.Thenwe extendtheabstractresultsin[19]tomanifoldswithboundary,consistingofapproximatelystation- arystatesandconstructinvariantmanifoldsofdynamicinterior-spikestatesfortheCahn-Hilliard equationinhigherspacedimensions. 5 Chapter2 Preliminaries:Approximatelyinvariant manifolds Here,westatesomeresultsfrom[19],whichprovideatoolforobtaininganinvariantmanifold whenagoodapproximationisavailable.Roughlyspeaking,ifanimmersedmanifold ( M )is approximatelywinginvariantundermap T ,andif ( M )isapproximatelynormallyhyperbolic, thenonecanatrulylocallyinvariantmanifold W cs ,itscenter-stablemanifold,undermap T .Furthermoreif ( M )isapproximatelyovwinginvariantundermap T andapproximately normallyhyperbolic,thenwecanacenter-unstablemanifold W cu undermap T .If W cs and W cu intersecttransversally,thentheirintersectionisthetrulyinvariantmanifoldweseekasagraph over ( M ).Now,wegivethepreciseandstatementsofthetheorems. Let X beaBanachspaceand T 2 C J ( X ; X ) ; J 1with M aconnected C 1 Banachmanifold and : M ! X animmersion. 2.0.1. ( M )issaidtobeapproximatelywinginvariantunder T ifthefollowing conditionshold (1)Thereexists > 0and u 2 C 0 ( M ; M )suchthat j T ( ( m )) ( u ( m )) j < ,forall m 2 M ; (2)Thereexists r 0 2 (0 ; 1)suchthat ( B c ( m 0 ; r 0 ))isclosedin X forany m 0 2 u ( M ),where B c ( m 0 ; r 0 )istheconnectedcomponentof 1 ( B ( ( m 0 ) ; r 0 ))containing m 0 . 6 Figure2.1:Approximatelynormallyhyperbolicinvariantmanifolds Condition(1)meansthat ( M )isapproximatelyinvariantunder T and u on M isanapproxi- mationof T on ( M ).Condition(2)essentiallystatesthatthe`distance'betweentheprojectionof T ( ( M ))into ( M )andtheboundaryof ( M )isboundedfrombelow. 2.0.2. Wesaythatanapproximatelywinginvariantmanifold ( M )isapproxi- matelynormallyhyperbolic,ifconditions(H1)-(H3)hold: (H1)Foreach m 2 M ,thereisadecomposition X = X c m X s m X u m ofclosedsubspaceswith projections c m ; s m ; u m . (H2)Forany m 2 M , c m isanisomorphismfrom D ( m ) T m M to X c m .Furthermorethereexist constants B ; L ,and ˜ 2 (0 ; 1 = 2),suchthatforany m 0 2 M and m 1 ; m 2 2 B c ( m 0 ; r 0 ),with m 1 , m 2 ,for = c ; u ; s , 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : k m 0 k B , k m 1 m 2 k L j ( m 1 ) ( m 2 ) j ; j ( m 1 ) ( m 2 ) c m 0 ( ( m 1 ) ( m 2 )) j j ( m 1 ) ( m 2 ) j ˜: (2.0.1) (H3)Thereexist ˙; 2 (0 ; 1)suchthat,forany m 0 2 M ,if m 1 = u ( m 0 ),and 2f c ; s g , 2f c ; s ; u g , with , ,then 7 (a) k m 1 DT ( ( m 0 )) j X m 0 k ˙ , (b) k s m 1 DT ( ( m 0 )) j X s m 0 k , (c) k ( u m 1 DT ( ( m 0 )) j X u m 0 ) 1 k 1 > max f 1 ; k c m 1 DT ( ( m 0 )) j X c m 0 k J g . (H4)Thereexists B 1 ,suchthat k D j T j B ( ( M ) ; r 0 ) k B 1 for1 j J .When J = 1,wewillneed thefollowingfunction A ( ) = sup fk DT ( x 1 ) DT ( x 2 ) k : x 1 ; x 2 2 B ( ( M ) ; ) ; j x 1 x 2 j < g , andrequireittobesmallenough. Hypothesis(H3)thedi erentgrowthratesof DT ,thelinearizationof T ,indi erent directions.Condition(a)representstheapproximateinvarianceofthebundles X c and X s under DT .Di erentratesintheunstableandcenter-stabledirectionsareassumedin(b)and(c).Hy- pothesis(H4)isatechnicalassumptionon T ,whichholdsautomaticallyif ( M )isprecompact. For = c ; u ; s ,let X m ( " ) = f x 2 X m : j x j <" g and X ( " ) = f ( m ; x ): m 2 M ; x 2 X m ( " ) g . Theorem2.0.3. Assumethat(H1)-(H4)hold.Dependingonr 0 ; B ; B 1 ; L ; when ˜;˙; inf A ( ) aresu cientlysmall,thereexistsaC J positivelyinvariantmanifoldW cs ,whichisgivenasthe imageofamap h : X s ( 0 ) ! X ; forsome 0 > 0 .Themappinghalso h ( m ; x s ) ( m ) x s 2 X u m ( 0 ) ; andsocanbeviewedasagraphoverthebundleX s ( 0 . Furthermore,itholdsthat,foranym 0 2 M,thereexists Ÿ h : X c m 0 ( 0 ) X s m 0 ( 0 ) ! X u m 0 ( 0 ) ,so 8 that f h ( m ; x s ): m 2 B c ( m 0 ; r 0 ) \ 1 ( B ( ( m 0 ) ; 0 4 )) ; x s 2 X s m ( 0 4 ) g ˆ ( m 0 ) + graph Ÿ h j X c m 0 ( 0 2 ) X s m 0 ( 0 2 ) ˆf h ( m ; x s ): m 2 B c ( m 0 ; r 0 ) \ 1 ( B ( ( m 0 ) ; 0 )) ; x s 2 X s m ( 0 ) g : Remark 2.0.4 . Theorem2.0.3isabriefstatementoftheresultin[19].Inapplications,wewilluse Theorem4.2in[19],whichisapreciseandrigorousversion. IfwewanttoextendTheorem2.0.3tothecaseofaw T t ,thenweneedfurtherassump- tions[19]: (H5) (1)Conditions(H1)-(H4)holdfor ( M )and T t 0 forsome t 0 , (2)Thereexistsaninteger k 0,suchthatforany > 0,thereexists > 0,suchthatforany x 2 B ( ( M ) ; r )and t 2 [ kt 0 ; kt 0 + ],wehave j T t ( x ) T kt 0 ( x ) j < . Thenextconceptisthatofapproximatelynormallyhyperbolicovwinginvariantmanifold. Theresultsarebasicallyparalleltothecaseofapproximatelywinginvariantmanifolds. 2.0.5. Animmersedmanifold ( M )issaidtobeapproximatelyovwinginvariant under T ifthefollowingconditionshold: 1Thereexistsarelativelyopensubset M 1 ˆ M ,ahomeomorphism v : M ! M 1 ,and > 0such that j T ( ( v ( m ))) ( m ) j < ,forall m 2 M ; 2Thereexists r 0 2 (0 ; 1)suchthat ( B c ( m 0 ; r 0 ))isclosedin X forany m 0 2 v ( M ),where B c ( m 0 ; r 0 )istheconnectedcomponentof 1 ( B ( ( m 0 ) ; r 0 ))containing m 0 . 9 Inadditionto(H1)and(H2),insteadof(H3),weassumethefollowingapproximatenormal hyperbolicityconditions. (C3)Thereexist a ; 2 (0 ; 1)suchthat,forany m 1 2 M ,if m 0 = v ( m 1 ),and 2f c ; u g , 2f c ; s ; u g , with , ,then 1. k m 1 DT ( ( m 0 )) j X m 0 k ˙ , k ( c m 1 DT ( ( m 0 )) j X c m 0 ) 1 k 1 > a 2. k ( u m 1 DT ( ( m 0 )) j X u m 0 ) 1 k 1 > 1, 3. k s m 1 DT ( ( m 0 )) j X s m 0 k < min f 1 ; k ( c m 1 DT ( ( m 0 )) j X c m 0 ) 1 k J g . Theorem2.0.6. Assumethat(H1),(H2),(C3),and(H4)hold.Dependingonr 0 ; B ; B 1 ; L ; when ˜;˙; inf A ( ) aresu cientlysmall,thereexistsaC J negativelyinvariantmanifoldW cu ,which isgivenastheimageofamap h : X u ( 0 ) ! X ; forsome 0 > 0 .Themappinghalso h ( m ; x u ) ( m ) x u 2 X s m ( 0 ) : 10 Chapter3 Globalinvariantmanifoldsofboundary dropletsforthe2-Dmass-conserving Allen-Cahnequation 3.1Introduction Weconsiderthetwo-dimensionalmassconservingAllen-Cahnequation, 8 > > > > > > > < > > > > > > > : ˚ ‹ " t ( y ; t ) = ‹ " 2 y ˚ ‹ " ( y ; t ) f ( ˚ ‹ " ( y ; t )) + > f ( ˚ ‹ " ( ; t )) ; y 2 ; t > 0 ; @ n ˚ ‹ " ( y ; t ) = 0 ; y 2 @ ; t > 0 ; (3.1.1) where ˆ R 2 isaedboundeddomainwithsmoothboundary @ , @ n istheexteriornormal derivativeto @ , y representstheLaplacianwithrespecttoy,and > = 1 j j R meanstheaverage over .Here f isthederivativeofadoublewellpotential W .Weassumethefollowingconditions for f 2 C 1 ( R ): f ( 1) = 0 ; f 0 ( 1) > 0 ; Z s 1 f = Z s 1 f > 0forall s 2 ( 1 ; 1) : (3.1.2) 11 Figure3.1:Graphofthefunctionf (3.1.1)canbeconsideredastheassociated L 2 gradientwofthefunctional J ‹ " ( u ) = Z ( ‹ " 2 2 jr u j 2 + W ( u )) dx ; u 2f v 2 H 1 ( ): ? vdx = m g : (3.1.3) Thisfunctionalhasbeeninvestigatedbyseveralauthors,forexample,[5,9,27,28,30,33,38,69, 70,77,85]. In[5],N.D.Alikakosetal.constructedanapproximatelyinvariantmanifoldfor(3.1.1)using acarefullydevisedasymptoticexpansion.Eachelementofthemanifoldisaso-calleddroplet, orbubble,thatis,astatehavingaroughlysemicircularinterfaceattachedtotheboundaryofthe domain,theinterfaceseparatingregionswherethesolutiontakesontwodi erentalmostconstant values.Thesedropletsmoveslowlytowardstheincreasinglycurvedregion,whilemaintaining theirshape.ThemotionofthecenterofthebubblecanbedeterminedbythefollowingODE, 8 > > > > > > > < > > > > > > > : d ‹ ˘ dt = 4 ‹ ˘ 2 3 ˇ K 0 ( ‹ ˘ ( t )) + O ( ‹ ˘ 2 2 ) ; ‹ ˘ (0) = ‹ ˘ 0 ; (3.1.4) where ‹ ˘ isthearc-lengthparameterof @ whichrepresentsthecenterofthebubble.Moredetails canbefoundinSection3.2.Moreover,theyprovedthatthebubbleshapeisstable,thatis,ifwe 12 startfromasmall H 1 -neighborhoodofsize O ( " )ofthebubblesolution,thenthewwillstay,for positivetime,inasmallneighborhoodofthemanifoldofbubblestates,inthe H 1 sense.Because ofthedi cultyinhandlingthecontactwiththeboundaryofthedomaininhigherdimensions,in [5],theauthorsconsideredonlythetwo-dimensionalcase.Inhigherdimension,therearesome resultsfortheinteriorbubbles,see[6,7].Inthosepapers,N.AlikakosandG.Fuscoconsidered bubblesolutionsforCahn-Hilliardequation(themass-conservingAllen-Cahnequationwillpro- ducesimilardynamics).Roughlyspeaking,theinterfaceofthebubblehasconstantcurvatureand itmovestowardstheboundaryataexponentiallysmallspeed,retainingitsshapeuntilitgetsclose totheboundary.Onceneartheboundary,itisconjecturedthatthebubblequicklyadheretothe boundary,itsenergyroughlydroppingbyhalf,andthenfollowingthedynamicsdiscussedhere. Figure3.2:Fourstagesintheevolutionforatwo-dimensionaldomain .Thelaststageisthe objectofstudyinthispaper. Inthisproject,weusetheframeworkof[19]toconstructatrueinvariantmanifoldfor(3.1.1), whichisclosetotheapproximatelyinvariantmanifoldgivenin[5].Theofapproxi- mateinvariancyin[5]isdi erentfromthein[19].In[5],amanifoldisapproximately invariantiftheequation,evaluatedatapoint(i.e.,function)ofthemanifold,isuptoa smallerror.In[19],approximateinvariancymeansthemanifoldisapproximatelyinvariantunder 13 thesolutionmapforaedtime(seeSection2.1formoredetails).Hence,ourmaintaskisto provethattheapproximatelyinvariantmanifoldconstructedin[5]theconditionsinthe givenin[19].Notethatoncewehaveobtainedtheglobalinvariantmanifold,bubble solutionsonitexistgloballyintime,forwardandbackward,beingeitherstationaryorconnecting stableandunstableequilibria. Thischapterisorganizedasfollows,inSection3.2wegivesomebackgroundontheconstruc- tionoftheapproximatebubblesolution.InSection3.3,weprovetheexistenceofatrueglobal invariantmanifoldofbubblestatesfor(3.1.1).Finally,wewilldiscussthedynamicsofthebub- ble,whichincludesthemotionofthebubbleinforwardandbackwardtime,andthelocationof equilibriumbubblestates. 3.2Approximatebubblesolutionforthemass-conservingAllen- Cahnequation Inthissection,wewillintroducetheapproximatebubblesolutionsof(3.1.1),whichwerecon- structedbyN.D.Alikakosetal.in[5].Roughlyspeaking,eachhasasemicircularinterface , whichisthezerolevelset,withsmallradius .Thesolutionisalmost 1insidetheinterface, andalmost + 1outside.Thisstatethenmovesalongtheboundaryofthedomainaccordingtoa one-dimensionaldynamicalsystem.Nowwegiveamoredetaileddescription.First,weintroduce achangeofvariablesthatesthesizeofthebubblewhile isvaried. y = x ; ‹ " = ; u " ( x ; t ) = ˚ ‹ " ( y ; t ) ; = 1 : = f x ; x 2 g : (3.2.1) Thenwecanwrite(3.1.1)as 14 8 > > > > > > > < > > > > > > > : u " t ( x ; t ) = " 2 u " ( x ; t ) f ( u " ( x ; t )) + > f ( u " ( ; t )) ; x 2 ; t > 0 ; @ n u " ( x ; t ) = 0 ; x 2 @ ; t > 0 : (3.2.2) Weparameterize @ by z ( ˘ ),where ˘ isthearc-lengthof @ measuredfromsomeed pointof @ .Weareseekinganinvariantmanifold Ÿ M consistingofbubble-likefunctions u ( ;˘;" ), parameterizedby ˘ ,whichisthecenteroftheapproximatelysemicircularinterface.Obviously, Ÿ M isone-dimensional.Theinvariancemeansthatthevectoristangenttothemanifold,sofor u 2 Ÿ M wecanwrite(3.2.2)analyticallyintheform: 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : " 2 u + f ( u ) + " 2 cu ˘ + "˙ = 0 ; x 2 ; t > 0 ;˘ 2 R 1 @ n u ( x ;˘;" ) = 0 ; x 2 @ ; t > 0 ; R u ( ;˘;" ) = j j ˇ: (3.2.3) Here ˙ = ˙ ( ˘;" )and c = c ( ˘;" )areconstantsin x andfollowing[5]wehavemultipliedbypowers of " inanticipationoftheirsize.Wecall c thespeedofthedroplet,and "˙ = > f ( u ( ;˘;" )) dx adjustsforthemassconstraint.Themotionofthebubblecanberepresentedbythemotionofthe center ˘ ,which d ˘ ( t ;" ) dt = " 2 c ( ˘;" ) : (3.2.4) Figure3.3:Geometryofthebubble 15 Consideringthefactthatourequationisthemass-conservinggradientwoftheenergyfunc- tional(3.1.3),heuristicallywecanseethatasymptotically,solutionsshouldbealmostconstant takingonvalues 1everywhereexceptforane cienttransitionbetweenthosevalues,dictated bythepredeterminedaveragevalue.Tomakethetransitione cient,itshouldtakeplacealonga minimalcurveenclosingagivenareaat @ ,thatis,acirculararcintersectingthedomainbound- aryorthogonally.Furthermore,thetransitionshouldhavewidth O ( " )sothatthegradientandbulk partsof(3.1.3)arealmostequal.Sothatthedynamicsofthebubblestatearedeterminedlocally, werequirethebubbletohavesmallradius << 1inoriginalcoordinatedsand1inourexpanded coordinates,thusweourmasstobe j j ˇ .Inordertorigorouslyperformtheasymptotic analysisin " ,oneneeds0 <"<< . Byperforminganouterexpansion,aninnerexpansion,andacornerexpansion(wherethe interfacemeetstheboundaryofthedomain),andpatchingthesetogether,in[5]theauthorscon- structedanapproximatesolutiontosystem(3.2.3)havingbubble-likestructure.Thissolutionis parameterizedby c ;˙ ,thelengthoftheinterface, j j ,thecurvatureoftheinterface, K ,andthe arc-lengthfromthecenter, z ( ˘ ),to f p g theintersectionof and @ (seeFigure4.).Invariance ofthefamilywithrespecttothenonlocalparabolicequationandthemassconstraintuptoaspec- orderdictatedcertainsolvableequationsforthesegeometricparameters.Thustheyfoundan approximatesolutionfor(3.2.3)givenbythefollowing: Theorem3.2.1. [5]Assumethat and " aresmallparameterssatisfying " 1 2 C 1 2 ,whereC 1 is aconstantby(2.65)in[5].Thenforanypositiveintergerk,if " issu cientlysmall,there 16 existu = u ( x ;˘;" ) ;˙ = ˙ ( ˘;" ) ; c = c ( ˘;" ) suchthat 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : " 2 u f ( u ) + "˙ = " 2 cu ˘ + O ( " k ) in ; @ n u = 0 on @ ; R u ( ;˘;" ) = j j ˇ; "˙ = > f ( u ( ;˘;" ) dx : (3.2.5) Remark 3.2.2 . 1.In[5],Theorem3.2.1requiresthat " m forsome m 2.Bycarefully checkingtheproof,wefoundthatthisconditionisnotnecessary. 2.Infactwhen issmall,therearetwoquasi-steadystates,onebeingthedropletwithan interfaceseparatingregionswhereitisapproximately + 1and 1,theotherbeingaspike state.Theformershapeisstableandthelaterisunstable.As becomes O ( " ),thedroplet andspikemergeandcausetoexistforsmaller . 3.Fortheinnerexpansion,neartheinterface,theauthorsusethecoordinates( r ; s ),where r isthesigneddistancefromtheinterface,whichispositiveoutsidethebubbleandnegative inside,and s isthearc-lengthalongtheinterface.Theleadingorderoftheinteriorexpansion istheheteroclinicsolutionto ¨ U f ( U ) = 0 ; U ( ) = 1 ; Z 1 R U 2 ( R ) dR = 0 ; (3.2.6) inthestretchedvariable R = r : 4.Theleadingtermoftheouterexpansionis 1,andthecornerexpansionis O ( " )andis exponentiallydecayingawayfromtheinterface. 17 5.Theleadingtermof j j is ˇ ,andtheleadingtermofthecurvature, K ,of is1,whichimplies thattheinterfaceisapproximatelyasemicircle. Now,westatesomeresultsofthespectralanalysisfortheoperatorobtainedbylinearizingat oneofthesebubblestates.Considerthefollowingeigenvalueproblem: 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : L ¯ ˚ : = " 2 ¯ ˚ f 0 ( u ) ¯ ˚ + > f 0 ( u ) ¯ ˚ = ¯ ¯ ˚ in ; @ n ¯ ˚ = 0on @ ; R ¯ ˚ = 0 ; (3.2.7) where u isthesolutionto(3.2.5).Thelargesteigenvalueisoftheorder 2 ,whichisveryclose tozerosincebothfactorsaresmall,andthecorrespondingeigenfunctioniscloseto u ˘ .More precisely,thelargesteigenvalueis 4 " 2 3 ˇ d 2 K d ˘ 2 ( ˘ ) + O ( " 2 4 ),where K isthecurvatureofthe boundary @ .Therestofthespectrumisnegativebutisonly O ( 2 )awayfromzero.Theprecise estimateisgivenbythefollowingtheoremfrom[5]. Theorem3.2.3. [5]Letu = u ( x ;˘;" ) bethesolutionto(3.2.5).IfforlargeconstantC , 2 > C " holds,thenforanyv 2 H 1 ( ) satisfying Z v = 0 ; Z vu ˘ = 0 ; (3.2.8) wehave h Lv ; v i 2 " 2 ˇ 2 j j 2 Z v 2 : (3.2.9) Thus,thereisagapbetweenthelargesteigenvalueandtheothersbecausethelargesteigenvalue is 4 " 2 3 ˇ d 2 K d ˘ 2 ( ˘ ) + O ( " 2 4 ),where d 2 K d ˘ 2 ( ˘ )isoforder ,and isverysmall. 18 3.3Invariantmanifoldsofboundarydroplets 3.3.1Constructionof M " Wechoosethespace X as H 1 ( )withnormgivenby j u j 2 X = j " r u j 2 L 2 + j u j 2 L 2 .First,wemodifythe function f tomakesurethattheevolutionawgloballyintime.Thus,weconsider u " t ( x ; t ) = " 2 u " ( x ; t ) Ÿ f ( u " ( x ; t )) + ? Ÿ f ( u " ( ; t )) ; (3.3.1) where Ÿ f ( u ) = ( u ) f ( u ).Here, ( s ) 0isa C 1 bumpfunctionsatisfying ( s ) = 1 ; j s j 2; ( s ) = 0 ; j s j 4 : (3.3.2) Notethat j Ÿ f j C m ( R ) < 1 .Thisdoesnota ectthebubblesolutionweseekbecause thatsolutionhasitsrangein[ 1 ; 1].Forconvenience,wekeepthenotation f ,insteadof Ÿ f . Let W ( x ;˘;" )bethesecondorderapproximationofthesolutionto(3.2.5)givenbyTheorem 3.2.1,whichmeansthat W 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : " 2 W f ( W ) + "˙ = " 2 cW ˘ + O ( " 3 )in ; @ n W = 0on @ ; R W ( ;˘;" ) = j j ˇ; "˙ = > W ( ;˘;" ) : (3.3.3) " : @ ! X as " ( ˘ ) = W ( x ;˘;" ).Let M " = " ( @ ).Wewillprovethat M " isan approximatelynormallyhyperbolicinvariantmanifold,sothatwecanapplytheTheorems2.0.3 19 and2.0.6. 3.3.2 M " isapproximatelyinvariant Onemayexpectthatthewof(3.2.2)startingfrom W ( x ;˘;" )willstaycloseto W ( x ;˘ ( t ) ;" ), where ˘ ( t )(3.2.4).Infact,wehave Lemma3.3.1. ThereexistsC > 0 suchthat,foranysmall " andz ( ˘ ) 2 @ ,thesolutionu ( t ; x ;" ) of(3.3.1)withinitialdatau (0 ; x ;" ) = " ( ˘ ) j u ( t ; x ;" ) " ( ˘ ( t )) j X C " 3 e Ct : (3.3.4) Proof. Let v = u " ,then v 8 > > > > > > > < > > > > > > > : v t = " 2 v ( f ( " + v ) f ( " )) + > [ f ( " + v ) f ( " )] dx + O ( " 3 ) ; v (0 ; ) = 0 : (3.3.5) Let g ( v ) f ( " + v ) f ( " ).Rewrite(3.3.5)as 8 > > > > > > > < > > > > > > > : v t = L " v g ( v ) + > g ( v ) dx + O ( " 3 ) ; v (0 ; ) = 0 (3.3.6) where L " = " 2 ,withhomogeneousNeumannboundarycondition. 20 Usingthevariationofconstantsformula,wehave v = Z t 0 e L " ( t s ) g ( v ) + ? g ( v ) dx + O ( " 3 ) ds : (3.3.7) Itiswellknownthat L " generatesacontractionsemigroup,andrecallthat f hasbeenso wehave j g ( v ) j C j v j and jr g ( v ) j = j g 0 ( v ) r v j C jr v j ,whichimplies j v ( ; t ) j X Z t 0 C j v j X + O ( " 3 ) ds : (3.3.8) ApplyingGronwall'sinequalityto j v j X ,wehave j v j X C " 3 e Ct : (3.3.9) Lemma3.3.1impliesthat M " isanapproximatelyovwinginvariantmanifoldfor T being thetime t 0 solutionoperator,bytakingthefunction v in2.0.5as ˘ ( t 0 ; ). 3.3.3Splittingalongthemanifold M " FromthespectralanalysismentionedinSection2.2,wecansplitthespace X along M " naturally. Forany z ( ˘ ) 2 @ ,let X c ";˘ = T " ( ˘ ) M " = span f W ˘ ( x ;˘;" ) g ; X s ";˘ = f v 2 X : Z v Ÿ v = 0 ; forallŸ v 2 X c ";˘ g : (3.3.10) Let ";˘ ; = c ; s betheprojectionsassociatedwiththissplitting. 21 Lemma3.3.2. k ";˘ k isuniformlyboundedandsmoothlydependson ˘ . Proof. Forany x 2 X ,wecanwrite x = x c + x s ,where x 2 X ";˘ .Since x c ? L 2 x s , j x j 2 L 2 = j x c j 2 L 2 + j x s j 2 L 2 .Since X c ";˘ isdimensional,wehave C j x c j X j x c j L 2 j x j L 2 j x j X ; and j x j X j x s j X j x c j X j x s j X 1 C j x j X (3.3.11) forsomeconstant C independentof " ,becauseofourchoiceofnormon X . Bycarefullycheckingtheconstructionoftheapproximatebubblesolutionsin[5],wethat everytermintheasymptoticexpansioncomesfromsolvingacertainellipticequationwhichgives thesolutionhighregularity.Likewise, ˙ and c arealsosmoothfunctionsof ˘ (seesection2.2and 2.3of[5]andtheappendixof[8]).Thisimpliesthat " ( @ )isatleasta C 2 smoothmanifold. Thentheuniformboundednessfollowsfromtheusualcompactnessargumentandthesmooth dependencefollowsfromthesmoothnessof " ( ˘ ). Thethirdinequalityin(H2)isautomaticallyforcompactmanifolds(theproofcan befoundin[11]).Sofar(H1)and(H2)in2.0.2havebeenestablished.Weneedto provethat M " isapproximatelynormallyhyperbolicasanapproximatelyovwinginvariant manifold,thatis,(C3)holds. 3.3.4 M " isapproximatelynormallyhyperbolic Fromthesplittingofthespace,wecanseethatthewholespace X isthecenter-stablemanifold W cs ,becausethereisnounstablesubspace.Hence,weonlyneedtothecenter-unstableman- 22 ifold,whichisactuallyjustthecentermanifold.Sinceweneedtostudythelinearizedw,we considerthelinearizedsystem. Let L " v = " 2 v f 0 ( u ) v + > f 0 ( u ) vdx ,where u isthesolutionto(3.2.2)withinitialdata W ( x ;˘;" ) from(3.3.3)forsomeed ˘ . Let W ( t ; )bethesolutionto 8 > > > > > > > < > > > > > > > : W t = L " W ; W (0 ; ) = W ( ;˘;" ) : (3.3.12) Let e L " v = " 2 v f 0 ( " ( ˘ ( t ))) v + > f 0 ( " ( ˘ )) vdx ,and e W ( t ; )bethesolutionto 8 > > > > > > > < > > > > > > > : e W t = e L " e W ; e W (0 ; ) = W ( ;˘;" ) : (3.3.13) Lemma3.3.3. j W ( t ; ) e W ( t ; ) j X C " 3 j W ( ;˘;" ) j X e Ct ,forsomeconstantC Proof. Thedi erence v = W e W 8 > > > > > > > < > > > > > > > : v t = " 2 v f 0 ( " ( ˘ ( t )) v + g ( u " ( ˘ ( t )) W + > f 0 ( " ( ˘ )) v g ( u " ( ˘ ( t )) W dx ; v (0 ; ) = 0 ; (3.3.14) where g = f 0 ( u ) f 0 ( " ( ˘ ( t ))). 23 ByanargumentsimilartotheproofofLemma3.3.1,weget j W ( t ; ) j X j W ( ;˘;" ) j X e Ct : (3.3.15) Usingthevariationofconstantsformula,wehave v = Z t 0 e L " ( t s ) [ f 0 ( " ( ˘ ( t )) v + g ( u " ( ˘ ( t )) W + ? ( f 0 ( " ( ˘ )) v g ( u " ( ˘ ( t )) W ) dx ] ds : (3.3.16) UsingLemma3.3.1and(3.3.15),wehave j v ( ; t ) j X Z t 0 C j v ( ; s ) j X + C " 3 j W ( ;˘;" ) j X e Cs ds : (3.3.17) ApplyingGronwall'sinequalitygivesthedesiredresult. Nextwestudythebehaviorof e W ( t ; )incenterandstabledirections.Write W ( ;˘;" )as W ( ;˘;" ) = a (0) W ˘ ( x ;˘;" ) + W s ( x ;˘;" )andsimilarly, e W ( t ; ) = a ( t ) W ˘ ( x ;˘ ( t ) ;" ) + W s ( x ;˘ ( t ) ;" ), where W s ( x ;˘ ( t ) ;" ) 2 X s ";˘ ( t ) . Lemma3.3.4. Ifa (0) = 0 ,i.e.,W ( ;˘;" ) 2 X s ";˘ ,then j a ( t ) jj W ˘ ( x ;˘ ( t ) ;" ) j X C " 1 = 2 e Ct j W ( ;˘;" ) j X : (3.3.18) Proof. Bydi erentiatingwithrespectto ˘ in(3.3.3),wehave e L " W ˘ ( x ;˘ ( t ) ;" ) = " 2 cW ˘˘ ( x ;˘ ( t ) ;" ) + " 2 c ˘ W ˘ ( x ;˘ ( t ) ;" ) + O ( " 2 ) : (3.3.19) Onethattheresidual O ( " 3 )in(3.3.3)becomes O ( " 2 ),becausetakingaderivativenearthe 24 interfacegeneratesafactorof 1 " .Itiseasytoseethatneartheinterface W ˘ isoforder 1 " and W ˘˘ isoforder 1 " 2 .Alsonotethatthewidthofthelayeris O ( " ),so j W ˘ j L 2 C " 1 = 2 and j W ˘˘ j L 2 C " 3 = 2 ,whichimpliesthat j e L " W ˘ ( x ;˘ ( t ) ;" ) j L 2 C " 1 = 2 : (3.3.20) Foradetailedproofofthesefacts,usetheexpressionfor u ˘ fromp.294of[5]andthederivative boundsin[5],Sections2.2and2.3.ByanargumentsimilartotheproofofLemma3.3.1,wehave j e W j L 2 Ce Ct j W ( ;˘;" ) j L 2 forsomeconstantC,whichimpliesthat j a ( t ) jj W ˘ j L 2 ; j W s ( x ;˘ ( t ) ;" ) j L 2 Ce Ct j W ( ;˘;" ) j L 2 : (3.3.21) Since e L " isself-adjointand e L " e W = e W t ,wehave h e W ( t ; ) ; e L " a ( t ) W ˘ ( x ;˘ ( t ) ;" ) i = h e W t ( t ; ) ; a ( t ) W ˘ ( x ;˘ ( t ) ;" ) i = h a 0 ( t ) W ˘ ( x ;˘ ( t ) ;" ) + a ( t ) W ˘˘ ( x ;˘ ( t ) ;" ) ˘; a ( t ) W ˘ i + h W s t ; a ( t ) W ˘ i = a ( t ) a 0 ( t ) h W ˘ ; W ˘ i + 1 2 a 2 ( t ) d dt h W ˘ ; W ˘ a ( t ) h W s ( x ;˘ ( t ) ;" ) ; W ˘˘ ˘ i = d dt ( a 2 ( t ) 2 j W ˘ j 2 L 2 ) a ( t ) h W s ( x ;˘ ( t ) ;" ) ; W ˘˘ ˘ i (3.3.22) Forthethirdidentity,weusethefactthat h W ˘ ( x ;˘ ( t ) ;" ) ; W s ( x ;˘ ( t ) ;" ) i = 0.Notethat,fromp.294 of[5], j W ˘ j L 2 C 1 " 1 = 2 ,whichcombinedwith(3.3.21),gives j a ( t ) j C " 1 = 2 e Ct j W ( ;˘;" ) j L 2 : (3.3.23) 25 Combine(3.3.23),(3.3.22),(3.3.21),(3.3.20)anduse ˘ = " 2 c toobtain d dt ( a ( t ) 2 j W ˘ j 2 L 2 ) 4 C 2 " e 2 Ct j W ( ;˘;" ) j 2 L 2 ; (3.3.24) whichimpliesthat a 2 ( t ) j W ˘ ( x ;˘ ( t ) ;" ) j 2 L 2 a 2 (0) j W ˘ ( x ;˘ (0) ;" ) j 2 L 2 2 C " ( e 2 Ct 1) j W ( ;˘;" ) j 2 L 2 : (3.3.25) Thus,if a (0) = 0,i.e., W ( ;˘;" ) 2 X s ";˘ ,thenwehave j a ( t ) jj W ˘ ( x ;˘ ( t ) ;" ) j L 2 C " 1 = 2 e Ct j W ( ;˘;" ) j L 2 : (3.3.26) Since X c ";˘ isdimensional,wehave j a ( t ) jj W ˘ ( x ;˘ ( t ) ;" ) j X C " 1 = 2 e Ct j W ( ;˘;" ) j X : (3.3.27) Notethat ˘ ( t )isgivenbyanODE,sowecanconsider e W ( t ; ) = a ( t ) W ˘ ( x ;˘ ( t ) ;" ) + W s ( x ;˘ ( t ) ;" ).FollowingananalagousargumenttothatinLemma3.3.4,wehaveif W s ( x ;˘;" ) = 0,then a 2 ( t ) j W ˘ ( x ;˘ ( t ) ;" ) j 2 L 2 a 2 (0) j W ˘ ( x ;˘;" ) j 2 L 2 2 C " e Ct a 2 (0) j W ˘ ( x ;˘;" ) j 2 L 2 ; (3.3.28) 26 whichimpliesthat j a ( t ) jj W ˘ ( x ;˘ ( t ) ;" ) j X ( C 1 + C " e Ct ) 1 = 2 j a (0) jj W ˘ ( x ;˘;" ) j X : (3.3.29) Wealsohavetheestimate: Lemma3.3.5. Ifa (0) = 0 ,i.e.,W ( ;˘;" ) = W s ( x ;˘;" ) 2 X s ";˘ ,then j W s ( x ;˘ ( t ) ;" ) j L 2 ( e bt + C " e Ct ) j W s ( x ;˘;" ) j L 2 ; (3.3.30) and j " r W s j L 2 C ( e bt + " e Ct + " 3 2 e Ct ( e bt + C " e Ct ) 1 2 ) j W s ( x ;˘;" ) j L 2 ; (3.3.31) whereb = 2 ˇ 2 j j 2 ,comingfrom(3.2.9). IfW s (0 ; ) = 0 ,i.e.,W ( ;˘;" ) = a (0) W ˘ ( x ;˘;" ) 2 X c ";˘ ,then j W s ( x ;˘ ( t ) ;" ) j L 2 C " e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 ; (3.3.32) and j " r W s j L 2 C " e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 : (3.3.33) Proof. Withthedecompositionof e W givenpriortoLemma3.3.4,wewrite(3.3.13)as a 0 ( t ) W ˘ ( x ;˘ ( t ) ;" ) + a ( t ) W ˘˘ ( x ;˘ ( t ) ;" ) ˘ + W s t ( x ;˘ ( t ) ;" ) = e L " ( a ( t ) W ˘ ( x ;˘ ( t ) ;" ) + W s ( x ;˘ ( t ) ;" )) : (3.3.34) 27 Using(3.3.19),weget a 0 ( t ) W ˘ ( x ;˘ ( t ) ;" ) + W s t = e L " ( W s ( t )) + " 2 a ( t ) c ˘ W ˘ ( x ;˘ ( t ) ;" ) + a ( t ) O ( " 2 ) : (3.3.35) Takingtheinnerproductwith W s andusing W s t = W s ˘ ˘ ,wehave d d ˘ ( j W s ( t ) j 2 L 2 ) " 2 c = 2 h e L " W s ; W s i + a ( t ) h O ( " 2 ) ; W s i ; (3.3.36) Notethatfromthecalculationsgivenin[5],the O ( " 2 )termisoforder O ( " 2 )neartheinterface,but oforder O ( " 3 )awayfromtheinterface,soits L 2 normis O ( " 5 2 ).If a (0) = 0,wemayuseTheorem 3.2.3,Lemma3.3.4,and(3.3.21)toobtainthatforsomepositiveconstants b and C (whichmay changefromlinetoline), d d ˘ ( j W s ( x ;˘ ( t ) ;" ) j 2 L 2 ) b j W s ( x ;˘ ( t ) ;" ) j 2 L 2 + C " e Ct j W s ( x ;˘;" ) j L 2 j W s ( x ;˘ ( t ) ;" ) j L 2 ; (3.3.37) whichimpliesthat j W s ( x ;˘ ( t ) ;" ) j L 2 ( e bt + C " e ( b + C ) t b + C ) j W s ( x ;˘;" ) j L 2 ; ( e bt + C " e Ct ) j W s ( x ;˘;" ) j L 2 : (3.3.38) If W s (0 ; ) = 0,wemayuseTheorem3.2.3,(3.3.25)and(3.3.21)toobtainthatforsomeconstant b and C , d d ˘ ( j W s ( x ;˘ ( t ) ;" ) j 2 L 2 ) b j W s ( x ;˘ ( t ) ;" ) j 2 L 2 + C " e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 j W s ( x ;˘ ( t ) ;" ) j L 2 ; (3.3.39) 28 whichimpliesthat j W s ( x ;˘ ( t ) ;" ) j L 2 C " e Ct b + C j a (0) jj W ˘ ( x ;˘;" ) j L 2 ; C " e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 : (3.3.40) If a (0) = 0,notethat R W s dx = 0,(3.3.36)gives 2 h e L " W s ; W s i = d dt ( j W s j 2 L 2 ) + a ( t ) h O ( " 2 ) ; W s i ; 2 Z " 2 jr W s j 2 + f 0 ( W ) j W s j 2 dx = d dt ( j W s j 2 L 2 ) + a ( t ) h O ( " 2 ) ; W s i : (3.3.41) Using(3.3.37)and(3.3.38)in(3.3.41)gives " 2 jr W s j 2 L 2 Z j f 0 ( W ) jj W s j 2 dx + b " 2 j W s j 2 L 2 + C " 3 e Ct j W s ( x ;˘;" ) j L 2 j W s ( x ;˘ ( t ) ;" ) j L 2 ; ( C + b " 2 )( e bt + C " e Ct ) 2 + C " 3 e Ct ( e bt + C " e Ct ) j W s ( x ;˘;" ) j 2 L 2 ; (3.3.42) whichimpliesthat j " r W s j L 2 C ( e bt + " e Ct + " 3 2 e Ct ( e bt + C " e Ct ) 1 2 ) j W s ( x ;˘;" ) j L 2 : (3.3.43) If W s ( x ;˘;" ) = 0,wemaycombine(3.3.36),(3.3.39)and(3.3.40)toobtain 29 " 2 jr W s j 2 L 2 Z j f 0 ( W ) jj W s j 2 dx + b " 2 j W s j 2 L 2 + C " 3 e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 j W s j L 2 ; ( C + b " 2 ) C " e Ct 2 j a (0) j 2 j W ˘ ( x ;˘;" ) j 2 L 2 + C " 3 e Ct C " e Ct j a (0) j 2 j W ˘ ( x ;˘;" ) j 2 L 2 ; (3.3.44) whichimpliesthat j " r W s j L 2 C " e Ct j a (0) jj W ˘ ( x ;˘;" ) j L 2 : (3.3.45) NowcombiningLemma3.3.2,Lemma3.3.3,Lemma3.3.4,(3.3.29),andLemma3.3.5,gives (C3)intheofnormalhyperbolicityfor T t 0 " ,thetime- t 0 solutionmapof(3.3.1)pro- vided t 0 islargeandwith " chosensmallenough.Precisely, = C " 3 e Ct 0 , ˙ = C " 1 2 e Ct 0 , a = ( C 1 + C " e Ct 0 ) 1 = 2 ,and = C ( e bt 0 + " e Ct 0 + " 3 2 e Ct 0 ( e bt 0 + C " e Ct 0 ) 1 2 ).Forinstance,we choose t 0 suchthat Ce bt 0 1 2 ,andchooseany " " ( t 0 )tosatisfyalltheconditions( C 3). 3.4Dynamicalbubblesolution Sofarwehaveconstructedtheapproximatelynormallyhyperbolicinvariantmanifold M " .Using thesplitting X = H 1 ( ) = X c ";˘ X s ";˘ (3.4.1) andtheirrelatedestimateswehaveestablishedapproximatenormalhyperbolicity.Hence,wemay applyTheorem2.0.6forsu cientlysmall " ,tothetime- t 0 map T t 0 " ofthewby (3.3.1)forsome t 0 largeenough.Wehavethefollowing: 30 1.Forthemap T t 0 " ,thereexistsaunique C 2 normallyhyperbolicinvariantmanifold f M " = " ( @ ) ˆ X ,where " " ( ˘ ) " ( ˘ ) 2 X s ";˘ . 2.FromLemma3.3.1andTheorem2.0.6,wehavethat j " ( ˘ ) " ( ˘ ) j C 0 ( @ ; X ) ! 0as " ! 0. Toseethat f M " isinvariantunderthew T t " generatedby(3.3.1),wejustneedtoverify condition(H5)statedinSection2.1:Thereexistsaninteger k 0,suchthatforany > 0,there exists > 0,suchthatforany x 2 B ( ( M ) ; r )and t 2 [ kt 0 ; kt 0 + ],wehave j T t ( x ) T kt 0 ( x ) j < . Actually,wecaneasilyprovethisbyletting k = 1andusingthevariationofconstantsformula. Wehave T t " ( x ) T t 0 " ( x ) = e L " t x e L " t 0 x + Z t 0 e L " ( t s ) r ( T s " ( x )) ds Z t 0 0 e L " ( t 0 s ) r ( T s " ( x )) ds = Z t t 0 e L " ( t s ) L " e L " t 0 xds + Z t t 0 e L " ( t s ) r ( T s " ( x )) ds + Z t 0 0 ( e L " ( t s ) e L " ( t 0 s ) ) r ( T s " ( x )) ds = Z t t 0 e L " ( t s ) L " e L " t 0 xds + Z t t 0 e L " ( t s ) L " Z t 0 0 e L " ( t 0 ˝ ) r ( T ˝ " ( x )) d ˝ ds + Z t t 0 e L "; P ( t s ) r ( T s " ( x )) ds = Z t t 0 e L " ( t s ) [ L " T t 0 " ( x ) + r ( T s " ( x ))] ds ; (3.4.2) where r ( u ) = f ( u ) + ? f ( u ) : (3.4.3) Recallthatthefunction f hasbeencuto ,socondition(H5)followsfromthesmoothinge ect ofthesemigroupoperator.Therefore,themanifold f M " islocallyinvariantunder(3.3.1).Fur- thermore,since f M " isinan O ( " )neighborhoodof M " in H 1 ( ),byaregularityargumentand 31 Sobolevinequality,wecanactuallyfollowthesameprooftogetthesameresultforthespace X = W 1 ; q foranylarge q .Alsotheinvariantmanifoldisindependentof q .Therefore,wehavethe followingtheorem. Theorem3.4.1. Foreverysu cientlysmall " ,thereexistsagloballyinvariantmanifoldfor(3.2.2), f M " ,inanO ( " ) neighborhoodof M " inL 1 \ H 1 andbeingagraphover M " . Qualitatively, f M " consistsoffunctionseachofwhichhasaroughlysemicircularinterface structureattachedtotheboundaryof .Inthenextsection,wewillgivethedynamicson f M " . 3.4.1Motionon f M " Fix ˘ 0 ,let " ( ˘ ( ˝ ( t )))bethesolutionstartingfrom " ( ˘ 0 ).Here ˘ ( )isthemotionoftheapproxi- matebubblesolution,which(3.2.4),i.e., d ˘ ( t ;" ) dt = " 2 c ( ˘;" ) : (3.4.4) Notethat c ( ˘;" )isdeterminedbythegeometricproblems,soitisaknownfunction.The function ˝ ( t )describesthemotionon f M " . Theorem3.4.2. ˝ ( t ) theequation ˝ 0 = O ( " ) + c (1 + O ( " )) c ; (3.4.5) whichimpliesthattheleadingorderof ˝ ( t ) ist. Proof. Since " ( ˘ ) " ( ˘ ) 2 X s ";˘ ,wewrite " ( ˘ ( ˝ ( t ))) = W ( x ;˘ ( ˝ ( t )) ;" ) + V ( t ).Bytheinvariance 32 of " ( ˘ ( ˝ ( t )))under(3.2.2),wehavethat W ˘ ( x ;˘ ( ˝ ( t )) ;" ) ˘ 0 ( ˝ ( t )) ˝ 0 ( t ) + V 0 ( t ) = " 2 W f ( W ) + ? f ( W ) dx + " 2 V + N ( W ; V ) ; (3.4.6) where N ( W ; V ) = f ( W ) f ( W + V ) + > f ( W + V ) f ( W ) dx ,whichisatleastquadraticin V . Plugging(3.3.3)and(3.2.4)into(3.4.6),wehavethat " 2 c ( ˘ ( ˝ ( t )) ;" )( ˝ 0 1) W ˘ ( x ;˘ ( ˝ ( t )) ;" ) + V 0 ( t ) = " 2 V + N ( W ; V ) + O ( " 3 ) : (3.4.7) Takingtheinnerproductwith W ˘ ( x ;˘ ( ˝ ( t )) ;" ),weget " 2 c ( ˝ 0 1) j W ˘ j 2 L 2 + h V 0 ( t ) ; W ˘ i = h N ( W ; V ) ; W ˘ i + h O ( " 3 ) ; W ˘ i : (3.4.8) Bytakingthederivativewithrespectto t in h V ( t ) ; W ˘ i = 0,weget h V 0 ( t ) ; W ˘ i = h V ( t ) ;" 2 c ˝ 0 W ˘˘ i . Thenwehave " 2 c ( ˝ 0 1) j W ˘ j 2 L 2 + " 2 c ˝ 0 h V ( t ) ; W ˘˘ i = h N ( W ; V ) ; W ˘ i + h O ( " 3 ) ; W ˘ i : (3.4.9) Notethat h V ( t ) ; W ˘˘ i = O (1) = O ( " ) j W ˘ j 2 L 2 .Furthermore,since N ( W ; V )isatleastquadraticin V , wehavethat h N ( W ; V ) ; W ˘ i = O ( " 2 ) j W ˘ j L 1 = O ( " 3 ) j W ˘ j 2 L 2 and h O ( " 3 ) ; W ˘ i = O ( " 4 ) j W ˘ j 2 L 2 ,since j W ˘ j L 1 = O (1).Usingthesein(3.4.9),weobtain " 2 c ( ˝ 0 1) + O ( " 3 ) c ˝ 0 = O ( " 3 ) + O ( " 4 ) ; (3.4.10) whichimplies 33 c ( ˝ 0 1) + O ( " ) c ˝ 0 = O ( " ) ; (3.4.11) givingthedesiredresult. 3.4.2Equilibria Theorem3.4.3. Letz ( ˘ 0 ) beapointon @ wherethecurvatureof @ experiencesastrict extreme;namely: K 0 = 0 ; K 00 , 0 : (3.4.12) Thenthereexists ˘ ina neighborhoodof ˘ 0 suchthat " ( ˘ ) isanequilibriumof(3.2.2).If inaddition, K 00 ( ˘ 0 ) > 0 ,i.e.,thecurvaturearchivesalocalminimum,thentheequilibriumis unstable.If K 00 ( ˘ 0 ) < 0 ,i.e.,thecurvaturearchivesalocalmaximum,thentheequilibriumis stable. Proof. Welet Ÿ ˘ ( t ) = ˘ ( ˝ ( t )),whichdescribesthemotionontheinvariantmanifold Ÿ M " .From Theorem3.4.2,wehave Ÿ ˘ 0 ( t ) = ˘ 0 ( ˝ ( t )) ˝ 0 = " 2 (1 + O ( " )) c ( ˘ ( ˝ ( t )) ;" ) = " 2 (1 + O ( " )) c ( ˘ ( t + O ( " )) ;" ) = " 2 (1 + O ( " ))( c ( ˘ ( t ) ;" ) + O ( " 3 )) : (3.4.13) Let Ÿ ˘ ( t ; Ÿ ˘ 0 )bethewoftheODE 8 > > > > > > > < > > > > > > > : Ÿ ˘ 0 ( t ) = " 2 (1 + O ( " ))( c ( ˘ ( t ) ;" ) + O ( " 3 )) Ÿ ˘ (0) = Ÿ ˘ 0 : (3.4.14) 34 In[5]theauthorsshowthat c = 4 2 3 ˇ K 0 ( ) + O ( 3 ).Wenowassumethat K 00 ( ˘ 0 ) > 0,then thereexist ˘ 1 <˘ 0 <˘ 2 ,with j ˘ i ˘ 0 j = O ( )suchthat ( c ( ˘ 1 ;" ) + O ( " 3 )) < 0 < ( c ( ˘ 2 ;" ) + O ( " 3 )) : (3.4.15) TheIntermediateValueTheoremgivestheexistenceofastationarysolutionandthepositivity ofthederivativegivestheinstability. 35 Chapter4 Invariantmanifoldsofinteriormulti-spike statesfortheCahn-Hilliardequationin higherspacedimensions 4.1Introduction Thischapterisconcernedwiththeexistence,inforwardandbackwardtime,ofdynamicinterior multi-spikestates(seeFigure4.1foranillustrationofaninteriormulti-spikestate)drivenbythe nonlinearCahn-Hilliardequation: 8 > > > > > > > < > > > > > > > : u t = ( " 2 u f ( u ))in (0 ; 1 ) ; @ u @ n = @ u @ n = 0on @ (0 ; 1 ) ; (4.1.1) where ˆ R n isaboundeddomainwithsmoothboundary, @ @ n istheexteriornormalderivative to @ ,0 <"<< 1isasmallparameterand f : R ! R isassumedtobesmoothandsupports anondegenerategroundstate w withasymptoticvalue0fortheequation g ( ) = 0in R n , g ( ) = f (¯ m + ) f (¯ m )fored¯ m with f 0 (¯ m ) > 0,thatisfor¯ m inthemetastableregion.Atypical exampleis f ( u ) = u p u with1 < p < n + 2 n 2 ; if n 3.TheusualchoicefortheCahn-Hilliard equationis f ( u ) = u 3 u . 36 Figure4.1:Interiormulti-spikestate Weproveanabstractresultontheexistenceofaninvariantmanifoldwithboundaryfor amapwhenoneonlyhasafamilyofapproximatelyinvariantmanifoldsthatareapproximately normallyhyperbolic,eachconsistingofalmoststationarystates.Theabstractresultisanextension ofresultsin[19]totacklethecaseofmanifoldswithboundary.Ourabstractresultisinstrumental inprovingtheexistenceoflocallyinvariantmanifoldsofmulti-spikestatesfortheCahn-Hilliard equation.Thoughwedonotsetupageneralframeworkforws,theproofinthecurrent paperisquitegeneralandshouldbewidelyapplicable. TheCahn-Hilliardequation(where f ( u ) = u 3 u )isawidelyacceptedmodelforthecom- plicatedpatterningofthelocalconcentrationsinabinaryalloycontainedinavessel ,asitis rapidlyquenchedbelowthecurveofmiscibility.Abovethatcurve,thealloyisinahomogeneous phasecorrespondingtothermodynamicequilibrium.Belowthecurve,thethermodynamicequi- libriumcorrespondstotwoseparatedphases.Theseparationphenomenathatoriginateafterthe rapidquenchingincludenucleation,spinodaldecompositionandtheformationanddynamicsof fronts.Wereferthereadersto[28]andthereferencesthereinforthephysicalbackground.Fora discussionofthestationaryproblemforthisequation,wereferreadersto[14]. Themulti-spikeequilibriaof(4.1.1)hasbeenstudiedbymanyauthors.In[14],theauthors provedtheexistenceofstationaryinteriormulti-spikesolutionsto(4.1.1)byusinganinvariant 37 manifoldapproach.Theyconstructedquasi-invariantmanifoldsofinteriormulti-spikestatesand estimatedthemotionofeachspike,thenprovedtheexistenceofstationaryinteriormulti-spike states.Similarresultswerereportedindependentlyin[96,97,99],wheretheauthorsuseda Lyapunov-Schmidtreductiontechnique.In[12]multipleboundaryspikesolutionswerefound. TherichcollectionofsolutionstothestationaryproblemfortheAllen-Cahnequation 8 > > > > > > > < > > > > > > > : u t = " 2 u u + f ( u ) ; x 2 ˆˆ R n @ u @ N = 0 ; x 2 @ : (4.1.2) hasalsobeenstudiedbymanyauthors,especiallyforthecasewhere f ( u ) = u p withsuperlin- earbutsubcriticalgrowth.In[71],theauthorsinvestigatedtheGierer-Meinhardtsysteminthe asymptoticlimitasthedi usivityoftheinhibitorbecomesunbounded.Inthatlimit,oneisleadto (4.1.2),referredtoasthe`shadowequation'.Theyshowedthatnonon-constantpositivestationary solutionsexistwhen " islarge.For(4.1.2),itwasshownin[64]thatpositivesolutionsmusthave peakswithexponentiallydecayingtailsas " # 0.Thepaper[72]studies(4.1.2)with f ( u ) = u p . Theauthorsobtainedapositivesolutionthathasasinglepeak,theso-calledleastenergysolution, byusingamountainpassargument.Theyfurthershowedthatthispeakmustactuallylocateon @ andtheofthesolutionisaofthegroundstateon R n ,translatedto @ andrescaledby " .Later,atopologicallowerboundonthenumberofsuchsolutionswasgiven byZ-Q.Wangin[90].InfurtherworkW-MNiandI.Takagi,in[73],investigatedthelocationof thepeaks,andtheyprovedthatthepeaklocationtended,as " ! 0,tothepointof @ wherethe meancurvatureachieveditsmaximum.Otherpapersfollowed,providingforsolutionswithspikes atanycollectionofnon-degenerate(insomecasesonlytopologicallynontrivial)criticalpointsof themeancurvature,andevenmultiplespikesaccumulatingatlocalminimalpointsofthemean 38 curvature,orsolutionstoothersingularlyperturbedequationsandsystems(see,e.g.,[44],[89], [94],[39],[75],[76],[63],[20],[37],[48],[46],[47]and[98]). Likewise,theDirichletproblemhasalsoattractedsomeattention,withresultsprovidingde- tailedinformationabouttheexistenceandlocationofastationarypeak(see,e.g.,[57],[74],and [36]). Thecaseofcriticalgrowthisquitedi erent,duetoascaleinvarianceandrelatedlackof compactness.Stilltherearesomeresultsandwereferthereadersto[91],[92],[2],[1],and[3], forexample. Fordynamicalspikesolutions,therearenotmanyresults.In[19],theauthorsfoundaninvari- antmanifoldofboundaryspikesolutionstoequationsoftheform 8 > > > > > > > < > > > > > > > : u t = " 2 u u + g ( u ) ; x 2 ; @ u @ n = 0 ; x 2 @ ; (4.1.3) andshowedrigorouslythatthemotionoftheboundaryspikeisdrivenbythemeancurvatureofthe boundaryofthedomain.Arelateddynamicalproblemwasconsideredin[15],wheretheauthors constructedaninvariantmanifoldofboundarydropletsolutionstothe2-dmass-conservingAllen- Cahnequation 8 > > > > > > > < > > > > > > > : u t ( x ; t ) = " 2 u ( x ; t ) f ( u ( x ; t )) + > f ( u ( ; t )) ; x 2 ; t > 0 ; @ u @ n = 0 ; x 2 @ ; t > 0 ; (4.1.4) andalsoshowedthatthemotionofthecenterofthedropletisdrivenbythecurvatureofthe boundaryofthedomain. Inthischapter,weshowtheexistenceofdynamicalinteriormulti-spikesolutionsto(4.1.1)by 39 constructinginvariantmanifoldsofinteriormulti-spikestates.Roughlyspeaking,weuse k ground states,translatedto k pointsof being -awayfromeachotherand 2 awayfromtheboundary andscaledwith " tocompriseamanifold M " parametrizedbythelocationofthecentersofthe spikes.Thus M " hasdimension nk andhasboundaryduetothenon-proximityconstraint.In [19],theauthorsestablishedageneraltheoremwhichstatesthatinasmallneighborhoodofan approximatelyinvariantandapproximatelynormallyhyperbolicmanifold,thereexistsatruein- variantmanifoldbeingasmoothgraphovertheformermanifold.Intheirsetting,theyrequirethat theapproximatelyinvariantmanifoldiswingorovwingatan O (1)rate.However,dueto thesuperslowmotionoftheinteriorspikes,theresultsin[19]cannotbeappliedtoourproblem directly,sothethingwedoistoextendtheresultsin[19]tomakethemapplicabletoour case.Thisinvolvesafiblowupfltechnique.Anothertechnicaldi cultyinourproblemisthatthe linearizedoperatorobtainedbylinearizingtheCahn-Hilliardequationatamulti-spikestateisnot self-adjoint,sowecannotsplitthespaceaccordingtothespectrumofthatlinearizedoperatorto provethenormalhyperbolicity.Toovercomethisdi culty,weturntodealwiththecorresponding fiintegratedflequation.Thatis,wetransformtheCahn-Hilliardequationusing( ) 1 2 ,andby sodoing,thecorrespondinglinearizedoperatorbecomesself-adjoint.Moredetailsabouthowto makethistransformationcanbefoundinSection4.3.5.Thenweconstructalocally invariantmanifoldoftransformed(by( ) 1 2 )interiormulti-spikestatesforthetransformedsemi- w,andaftertransformingeverythingback,weobtainalocallyinvariantmanifold f M " ofinterior multi-spikestatesfortheoriginalequation.Notethat,onceweobtainsuchaninvariantmanifold, thesolutionof(4.1.1)startingfromanypointinthatmanifoldexistsforbothpositiveandnegative time.Byreducing(4.1.1)on f M " ,wederiveanequationwhichdeterminesthevelocityofeach spikeanalytically.ItturnsoutthatthedynamicsofinteriorspikesfortheCahn-Hilliardequation hasaglobalcharacterwherenotonlytheclosestspikesinteractbuteachspikeinteractswithall 40 theothersandwiththeboundary.Furthermore,thespeedoftheinteriorspikesisestimatedtobe exponentiallysmall,whichindicatesthatthemulti-spikestatesexistforaverylongtime,forwards andbackwards. Thischapterisorganizedasfollows:inSection4.2,weextendtheresultsin[19]toslowman- ifoldswithboundary.InSection4.3,weconstructapproximatelyinvariantmanifoldsofinterior multi-spikestatesfor(4.1.1)andthenprovetheexistenceoftrulyinvariantmanifoldsofinterior multi-spikestatesnearby.InSection4.4,weinvestigatethedynamicsofmulti-spikestatesand giveanestimateofthespeedofthecentersofthespikes. 4.2Approximatelystationaryinvariantmanifoldswithbound- ary In2.0.1,atechnicalassumptionthatthedistancefrom u ( M )totheboundaryoftheman- ifold M isboundedbelowismade.Thisguaranteesthattheimageunder T ofagraphover ( M ) isstillagraphover ( M ).Asimilarassumptionisalsomadein2.0.5forapproximately ovwinginvariantmanifolds.However,sometimestheapproximatelyinvariantmanifoldisap- proximatelystationary,sothatthemap T isapproximatedbytheidentitymap,andthereforethat assumptioncannotbeThishappenswhenweareseekinganinvariantmanifoldofstates withsuperslowmotion.Inthissection,weestablishaframeworktoobtaininvariantmanifolds nearapproximatelystationaryandapproximatelynormallyhyperbolicmanifolds.Theideaisto modifythemap T onlyneartheboundaryof ( M )togetanewmap e T suchthat ( M )isapprox- imatelywing(ovwing)invariantunder e T and e T = T whenappliedtothepointsaway fromtheboundary.More,iftheflprojectionflof T ( x )to ( M )isneartheboundaryof ( M ),thenwemovetheflprojectionflinside(outside) ( M )andawayfromtheboundaryof ( M ). 41 Moreover,themovementshouldbeveryslightforthepurposeofkeepingthenormalhyperbolicity. Moreprecisestatementmaybefoundbelow. Let X ; Y betwoBanachspacesand T 2 C J ( X ; X )with J > 1and M ˆ Y bea C J dimensionalclosedmanifoldwithsmoothboundary @ M .Let 2 C J ( M ; X )beanembedding 1 satisfying k D i k < B 2 for1 i J and k D 1 k < B 3 forall m 2 M .Wedenotethemetricon M by d ( ; ).Furthermore,wemakethefollowingassumptionontheboundaryof M . With B ( @ M ; r 0 ) = f m 2 M : d ( m ;@ M ) r 0 g ,weassumethatthereexists r > 0 ; 1 ; 2 > 0 and ˚ : B ( @ M ; r ) ! R n + suchthat ˚ ( @ M ) ˆ @ R n + ,where R n + istheupperhalfspaceof R n ,and 1 k D ˚ 1 k 2 , k D ˚ k 3 ; k D 2 ˚ 1 k 4 .Here ˚ 1 meanstakingtheinverseforalocal chart.Since M isassumedtobecompact,itispossibletoconstructsuchamap ˚ byusinga partitionofunity. 4.2.1. ( M )issaidtobeapproximatelystationaryinvariantunder T ifthereexistssmall > 0suchthat j T ( ( m )) ( m ) j < ,forall m 2 M . 4.2.2. Wesaythatanapproximatelystationaryinvariantmanifold ( M )isapproxi- matelynormallyhyperbolic,ifthefollowingconditionshold: 1.Foreach m 2 M ,thereisadecomposition X = X c m X s m X u m ofclosedsubspaceswith projections c m ; s m ; u m varyingin C J waywithrespectto m . 2.Forany m 2 M , c m isanisomorphismfrom D ( m ) T m M to X c m and T m M = X c m + m ( X c m ), where m 2 L ( X c m ; X s m X u m ).Furthermorethereexist B ; L ,and ˜ 2 (0 ; 1 = 2),suchthatfor 1 ThistheorycouldbedevelopedforimmersedBanachmanifolds,butinouropiniontheincreaseingeneralityis notworththelossofclarityandincreaseofpages. 42 any m 0 2 M and m 1 ; m 2 2 B c ( m 0 ; r 0 ),with m 1 , m 2 ,for = c ; u ; s , 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : k m 0 k B , k m 1 m 2 k L j ( m 1 ) ( m 2 ) j ; j ( m 1 ) ( m 2 ) c m 0 ( ( m 1 ) ( m 2 )) j j ( m 1 ) ( m 2 ) j ˜: (4.2.1) 3.Thereexist ˙; 2 (0 ; 1)and a suchthat,forany m 0 2 M ,and 2f c ; s ; u g , 2f c ; s ; u g ,with , ,then (a) k m 0 DT ( ( m 0 )) j X m 0 k ˙ , k ( c m 0 DT ( ( m 0 )) j X c m 0 ) 1 k 1 > a , (b) k s m 0 DT ( ( m 0 )) j X s m 0 k , k ( u m 0 DT ( ( m 0 )) j X u m 0 ) 1 k 1 > 1, (c) k ( u m 0 DT ( ( m 0 )) j X u m 0 ) 1 k 1 > max f 1 ; k c m 0 DT ( ( m 0 )) j X c m 0 k J g , k s m 0 DT ( ( m 0 )) j X s m 0 k < min f 1 ; k ( c m 0 DT ( ( m 0 )) j X c m 0 ) 1 k J g . 4.Thereexists B 1 ,suchthat k D j T j B ( ( M ) ; r 0 ) k B 1 for1 j J . Remark 4.2.3 . (4.2.1)impliesthat k m k B ˜ ,forany m 2 M X m ( ): = f x 2 X m : j X m j g ; = s ; u ; and N ( M ;" ): = f ( m ) + x s + x u : x s 2 X s m ( " ) ; x u 2 X u m ( " ) g : Lemma4.2.4. If "< min f L 8 ; BL 8 g ,thenN ( M ;" ) isatubularneighborhoodofMsatisfying 1.Foranytwopoints ( m i ) + x s i + x u i 2 N ( M ;" ) ,i = 1 ; 2 ,if ( m 1 ) + x s 1 + x u 1 = ( m 2 ) + x s 2 + x u 2 ; 43 then m 1 = m 2 ; x s 1 = x s 2 ; x u 1 = x u 2 : 2.Thereexistssmall suchthatif j x ( ( m ) + x s + x u ) j ,where ( ( m ) + x s + x u ) 2 N ( M ;" ) , then x = ( m ) + x s + x u ; where j x s j " and j x u j " . Proof. WerefertotheproofofLemma3.6in[19]. Remark 4.2.5 . Asaconsequenceoftheproof,wehavethat m ( x ) ; x s ( x ) ; x u ( x )areallsmoothin x for x 2 N ( M ;" ). Nowwestarttoconstructacenter-stablemanifoldfor T .Weseveralfunctionsthat willbeusedlaterinthissection.Write x 2 R n as( x 0 ; x n ),and S : R n ! R n as S ( x 0 ; x n ) = ( x 0 ; x n + ) ; (4.2.2) and e : R n ! R as e ( x 0 ; x n ) = x n : (4.2.3) Let b ( z )beasmoothmonotonefunctionsatisfying b ( z ) 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : = 1 ; z 0 ; 2 (0 ; 1) ; z 2 (0 ; 1) ; = 0 ; z 1 ; (4.2.4) 44 thenforany m 2 M ,we e m = ˚ 1 S ( m ) ˚ ( m ) ; (4.2.5) where ( m ) = b e ( ˚ ( m )) d d l ; (4.2.6) where d > 0isaconstantsatisfying d < 1 r 2 and l > 0isasmallconstanttobedetermined. Remark 4.2.6 . Notethat k D ˚ 1 k 2 ,so k D ˚ k 1 2 .Itfollowsimmediatelythatforany m satisfying2 2 d < d ( m ;@ M ) < r ,wehave e ( ˚ ( m )) > 2 d ,whichimpliesthat ( m ) = 0.So e m = m if 2 2 d < d ( m ;@ M ) < r . For x 2 N ( m ;" ),byLemma4.2.4,wecanwrite x as x = ( m ( x )) + x s ( x ) + x u ( x ).Weconstruct anewmap e T as e T ( x ) = 8 > > > > > > > < > > > > > > > : T ( x ) ; m ( x ) 2 M n B ( @ M ; r ) ; T ( x ) + ( g m ( x )) ( m ( x )) ; m ( x ) 2 B ( @ M ; r )) : (4.2.7) ByRemark4.2.6,wehave e T 2 C J ( X ; X ). Let u ( m ) = 8 > > > > > > > < > > > > > > > : m ; for m 2 M n B ( @ M ; r ) ; e m ; for m 2 B ( @ M ; r ) : (4.2.8) ByRemark4.2.6,onecanseethat u iscontinuous. Lemma4.2.7. Foranym 2 M,d ( u ( m ) ;@ M ) 1 l. Proof. Wewrite ˚ ( m ) = ( x 0 ; 0)andforany¯ m 2 @ M ,wewrite¯ m = (¯ x 0 ; 0).Thenonecancheck 45 that j u ( m ) ¯ m j = j ˚ 1 ( x 0 ; t ) ˚ 1 (¯ x 0 ; 0) j 1 j ( x 0 ; t ) (¯ x 0 ; 0) j 1 t : Thus d ( u ( m ) ;@ M ) = inf ¯ m 2 @ M d ( u ( m ) ; ¯ m ) 1 t . Lemma4.2.8. j e T ( ( m )) ( u ( m )) j < ,foranym 2 M. Proof. Bydirectcomputation,wehave e T ( ( m )) ( u ( m )) = T ( ( m )) ( m ) ; whichimpliesthedesiredresult. CombiningLemma4.2.7andLemma4.2.8,itisclearthat ( M )isanapproximatelywing invariantmanifoldfor e T .Themap e T isalmostthesameas T ,exceptthatitshiftsthefibase pointsflof x on ( M )thatareneartheboundaryof ( M )alittle.Intuitively,onemayexpectthat if l issmallenough, ( M )isalsoapproximatelynormallyhyperbolicfor e T ,sothatwecanapply Theorem2.0.3toconcludetheexistenceofacenter-stablemanifold.However,onemaynoticethat thedistancefrom u ( M )totheboundaryof M dependson l and l isalsoinvolvedinthetrichotomy propertyof D e T .AsweapplyTheorem2.0.3,thedistancefrom u ( M )totheboundaryof M needs tobeedthenwemaketheotherparameterssmall.Therefore,Theorem2.0.3cannotbe applieddirectly.Toovercomethisproblem,weperformthefollowingblow-upanalysis. 46 Let M l = M l = f m l = m l : m 2 M g ; l ( m l ) = 1 l ( lm l ) ; T l ( x ) = 1 l T ( lx ) ; e T l ( x ) = 1 l e T ( lx ) ; u l ( m l ) = 1 l u ( lm l ) ; ¯ X m l = X lm l ; ¯ m l = lm l ; = c ; s ; u : (4.2.9) First,itiseasytocheckthat j e T l ( l ( m l )) l ( u l ( m l )) j < l (4.2.10) forany m l 2 M l ,and d ( u ( M l ) ;@ m l ) 1 : (4.2.11) Thus, l ( M l )isanapproximatelywinginvariantmanifoldfor e T l " . Clearly,foreach m l 2 M l , X = ¯ X c m l ¯ X s m l ¯ X u m l ofclosedsubspaceswithprojections ¯ c m l ; ¯ s m l ; ¯ u m l ,andforany m l 0 2 M l and m l 1 ; m l 2 2 B c ( m l 0 ; r 0 l ),with m l 1 , m l 2 ,for = c ; u ; s , 8 > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > : k ¯ m l 0 k B , k ¯ m l 1 ¯ m l 2 k lL j l ( m l 1 ) l ( m l 2 ) j ; j l ( m l 1 ) l ( m l 2 ) ¯ c m l 0 ( l ( m l 1 ) l ( m l 2 )) j l ( m l 1 ) l ( m l 2 ) ˜: (4.2.12) 47 Notethat ¯ u l ( m l ) D e T l ( m l ) j ¯ X m l = u ( m ) D e T ( m ) j X m ; thusinordertoshowthetrichotomypropertyfor e T l ,wejustneedtoconsider u ( m ) D e T ( m ) j X m . Furthermore,for m 2 M n B ( @ M ; r ),wehave e T = T and u ( m ) = m ,sowejustneedtodealwith m 2 B ( @ M ; r ). Since DS ( m ) = I + D ( m ) e n ; where e n = (0 ; ; 1),and D ˚ 1 ( ˚ ( x )) D ˚ ( x ) = I ,wehave D ( g m ( x )) D ( m ( x )) = D ( g m ( x )) D e m ( x ) D ( m ( x )) Dm ( x ) = D ( g m ( x )) D ( ˚ 1 )( S ( m ) ˚ ( m ))( I + D ( m ( x )) e n ) D ˚ ( m ( x )) Dm ( x ) D ( m ( x )) Dm ( x ) = ( D ( g m ( x )) D ( m ( x ))) D ( ˚ 1 )( S ( m ) ˚ ( m ))( I + D ( m ( x )) e n ) D ˚ ( m ( x )) Dm ( x ) + D ( m ( x )) D ( ˚ 1 )( S ( m ) ˚ ( m )) D ( ˚ 1 )( ˚ ( m ))( I + D ( m ( x )) e n ) D ˚ ( m ( x )) Dm ( x ) + D ( m ( x )) D ( ˚ 1 )( ˚ ( m ))( D ( m ( x )) e n ) D ˚ ( m ( x )) Dm ( x ) : (4.2.13) Usingthefactthat k D i k B 2 , k D ˚ 1 k < 2 , k D ˚ k < 3 , k D ( m ( x )) k = O ( l ), k Dm ( x ) k is uniformlybounded, j e m m j 2 t and k D ˚ 1 ( S ( m ) ˚ ( m )) D ˚ 1 ( ˚ ( m )) k = O ( l ),wehave k D ( g m ( x )) D ( m ( x )) k Cl ; (4.2.14) forsomeconstant C beingindependentof x . 48 Thuswehave k u ( m ) D e T ( m ) j X m kk u ( m ) m kk D e T ( m ) j X m k + k m D e T ( m ) j X m k k u ( m ) m k ( k DT ( m ) j X m k + k D ( g m ( x )) D ( m ( x )) k ) + k m DT ( m ) j X m k + k m kk D ( g m ( x )) D ( m ( x )) k k m DT ( m ) j X m k + Cl : (4.2.15) Similarly,onecanprove k u ( m ) D e T ( m ) j X m kk m DT ( m ) j X m k Cl : (4.2.16) Therefore,when l issmallenough,thetrichotomypropertiesaresothatTheorem 2.0.3canbeappliedto e T l and M l toobtainacenter-stablemanifold ¯ W cs ( l )for e T l .Notethatif ¯ W cs ( l )isinvariantunder e T l ,then W cs ( l ) = l ¯ W cs isinvariantunder e T .Since e T ( x ) = T ( x )when e ( ˚ ( m ( x ))) > 2 d or d ( m ( x ) ;@ M ) > r ,itisclearthat W cs ( l )islocallyinvariantunder T .Sowehave thefollowingtheorem: Theorem4.2.9. Dependingonr 0 ; B ; B 1 ; L ; when ˜ and ˙ aresu cientlysmall,foreveryl su cientlysmall,thereexistsaC J positivelylocallyinvariantmanifoldW cs ( l ) forT,whichis givenastheimageofamap h : f ( m ; x s ): m 2 M ; x s 2 X s m ( 0 ) g! X ; forsome 0 > 0 .Alsoforanyx 2 W cs ( l ) withe ( ˚ ( m ( x ))) > 2 dord ( m ( x ) ;@ M ) > r,wehave T ( x ) 2 W cs ( l ) . 49 Remark 4.2.10 . Theorem4.2.9essentiallysaysthat W cs ( l )isinvariantunder T ifthefibasepointfl on ( M )isawayfromtheboundaryof M . Similarly,wecanconstructcenter-unstablemanifoldsfor T .Let e m = ˚ 1 S ( m ) ˚ ( m ) ; (4.2.17) thenweconstruct e T and v respectivelyas e T ( x ) = 8 > > > > > > > < > > > > > > > : T ( x ) ; m ( x ) 2 M n B ( @ M ; r ) ; T ( x ) + ( g m ( x )) ( m ( x )) ; m ( x ) 2 B ( @ M ; r )) ; (4.2.18) and v ( m ) = 8 > > > > > > > < > > > > > > > : m ; for M 2 M n B ( @ M ; r ) ; ˚ 1 S ( m ) ˚ ( m ) ; for M 2 B ( @ M ; r ) : (4.2.19) Bytheconstructionof v ,onecaneasilyseethat v isahomeomorphism.Followingthesame argumentasabove,weobtainthefollowtheorem: Theorem4.2.11. Dependingonr 0 ; B ; B 1 ; L ; when ˜ and ˙ aresu cientlysmall,forevery tsu cientlysmall,thereexistsaC J negativelylocallyinvariantmanifoldW cu ( l ) forT,whichis givenastheimageofamap h : f ( m ; x u ): m 2 M ; x u 2 X u m ( 0 ) g! X ; forsome 0 > 0 .Alsoforanyx 2 W cu ( l ) withe ( ˚ ( m ( x ))) > 2 dord ( m ( x ) ;@ M ) > r,wehave T ( x ) 2 W cu ( l ) . 50 4.3Invariantmanifoldsofinteriormulti-spikestates 4.3.1Constructionofthemanifold M " Westartfromthefollowingequation, " 2 u + f ( u ) = ˙; (4.3.1) whosesolutionsarestationarysolutionsto(4.1.1). Let ˙ = f (¯ m ),where¯ m isinametastableregion,whichmeansthat f 0 (¯ m ) > 0.Wemakethe followingtransformation, u = v + ¯ m ; g ( v ) = ˙ f ( v + ¯ m ) : (4.3.2) Obviously g (0) = 0.Let g 0 (0) = ,thenwecanwrite g ( v ) = v + h ( v )with h satisfying h (0) = h 0 (0) = 0 : Then(4.1.1)becomes 8 > > > > > > > < > > > > > > > : v t = ( " 2 v + g ( v ))in (0 ; 1 ) ; @ v @ n = @ v @ n = 0on @ (0 ; 1 ) ; (4.3.3) or 8 > > > > > > > < > > > > > > > : v t = ( " 2 v v + h ( v ))in (0 ; 1 ) ; @ v @ n = @ v @ n = 0on @ (0 ; 1 ) : (4.3.4) And(4.3.1)becomes " 2 v + g ( v ) = 0 ; (4.3.5) or " 2 v v + h ( v ) = 0 : (4.3.6) 51 Bythemaintheoremof[23],thereexistsagroundstate w satisfying 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : w + g ( w ) = 0in R n ; w (0) = max w ( x ) ; w > 0 ; w ( x ) = w ( j x j ) ; w ( x ) ! 0 ; j x j!1 : (4.3.7) Also, w ( x )that j @ k r w ( x ) j Ce j x j forany x 2 R n and k 0,where @ r isthederivativein theradialdirection.Notethat g isassumedtobesmooth,so w issmooth.Furthermore,weassume thegroundstate w isnon-degenerate,thatis,theoperatorobtainedbylinearizingat w has0asan eigenvalueofmultiplicity n (when f = u 3 u ,thegroundstateisnon-degenerate). Wewillconstructanapproximatelyinvariantmanifoldofinteriormulti-spikestatesparametrized bythelocationsofthespikesfor(4.1.1).Roughlyspeaking,wepatch k translatedand " -rescaled groundstatestogether,requiringthat k centerpointsofthespikesareatleast > 0awayfromeach otherand 2 awayfromtheboundary.Heretheconstant isnotnecessarily O (1),butmustsatisfy " !1 as " ! 0,so couldbe O ( j " ln " j )or O ( p " ),forexample. Let e k = P = ( p 1 ; p 2 ; ; p k ): p i 2 ; j p i p j j ; d ( p i ;@ ) 2 ; (4.3.8) obviously, e k isaclosedsubmanifoldof | {z } k copies withboundary. Thenwelet W "; P ( x ) = k X i = 1 w "; p i ; (4.3.9) where P = ( p 1 ; p 2 ; ; p k ) 2 Ÿ k and w "; p i = w ( x p i " ). Fromthispointon,tosimplifythenotation,wehavereplaced 2 by intheexponentiallysmall 52 terms. Lemma4.3.1. W "; P " 2 W "; P W "; P + h ( W "; P ) = R "; P ( x ) ; (4.3.10) where j R "; P ( x ) j C m ( ) = O ( e " ) foranym. Proof. First,notethat W "; P and h aresmooth,so R "; P issmooth.Forany x 2f x 2 : d ( x ; p i ) < 2 g ,wehave j w ( x p l " ) j = O ( e " )for l , i .Usingthefactthat h (0) = 0,wehave j R "; P ( x ) j = j h ( W "; P ) h ( w ( x p i " )) X l , i h ( w ( x p l " )) j C X l , i j w ( x p l " ) j = O ( e " ) : Forany x 2f x 2 : d ( x ; p i ) > 2 ; i = 1 ; ; k g ,wehave j w ( x p i " ) j = O ( e " )for i = 1 ; ; k . Thus j R "; P ( x ) j = j h ( W "; P ) k X i = 1 h ( w ( x p l " )) j = O ( e " ) : Therefore, j R "; P ( x ) j C 0 ( ) = O ( e " ).Onecanfollowthesameargumenttoshowthatforany m , j R "; P ( x ) j C m ( ) = O ( e " ) : Notethattakingaderivativeof R "; P generates 1 " whichisabsorbedby e " bychanging slightly. Now,weseethat W "; P ( x )approximately(4.3.6).Howeveritdoesnotsatisfythe 53 Neumannboundaryconditionsin(4.1.1),soweneedtomodifyitslightly. Let H ( ˆ )bethesolutionto 8 > > > > > > > < > > > > > > > : " 2 v v = 0in ; @ v @ n = @ˆ @ n on @ ; (4.3.11) andlet H ( ˆ )bethesolutionto 8 > > > > > > > < > > > > > > > : " 2 v v = " 2 ˜ ˆ " 2 H ( ˆ )in ; @ v @ n = 0on @ ; (4.3.12) where ˜ ( x )isasmoothcut-o functionsatisfying 8 > > > > > > > < > > > > > > > : ˜ ( x ) = 0 ; x 2f x : d ( x ;@ ) 4 g ; ˜ ( x ) = 1 ; x 2f x : d ( x ;@ ) 8 g : (4.3.13) Onecaneasilycheckthat H ( W "; P ) = P 1 i k H ( w "; p i )and H ( W "; P ) = P 1 i k H ( w "; p i ).To estimate H ( W "; P )and H ( W "; P ),weprovethefollowinglemma.Itmayhavebeenproved elsewhere,butforthecompleteness,wegiveaproofhere. Lemma4.3.2. IfG 2 L q ( ) andH 2 L q ( @ ) forsomeq 2 ,andifvisthesolutionto 8 > > > > > > > < > > > > > > > : v v = Gin ; @ v @ n = Hon @ ; (4.3.14) 54 then j v j L nq n 2 ( ) C ( j G j L q ( ) + j H j L q ( @ ) ) Proof. Z v v v 2 dx = Z Gvdx : ByGreen'sformula,wehave Z jr v j 2 dx + Z @ vHds Z v 2 dx = Z Gvdx : Then,wehave Z jr v j 2 dx + Z v 2 dx Z @ j vH j ds + Z j Gv j dx Z @ j v j 2 ds + 1 4 Z @ j H j 2 ds + Z j v j 2 dx + 1 4 Z j G j 2 dx C ( Z j v j 2 ds + Z jr v j 2 dx ) + 1 4 Z @ j H j 2 ds + Z j v j 2 dx + 1 4 Z j G j 2 dx ; whichimpliesthat (1 C ) Z jr v j 2 dx + ( C ) Z j v j 2 dx 1 4 Z j G j 2 dx + 1 4 Z @ j H j 2 ds : Choosing smallenough,wehave j v j W 1 ; 2 C ( Z j G j 2 dx + Z @ j H j 2 ds ) : 55 For q > 2,andwith v + = max f v ; 0 g , Z v v q 1 + dx Z v q + dx = Z Gv q 1 + dx : ByGreen'sformula,weget ( q 1) Z v q 2 + jr v + j 2 dx + Z @ v q 1 + Hds Z v q + dx = Z Gv q 1 + dx : Then ( q 1) Z v q 2 + jr v + j 2 dx + Z v q + dx Z @ v q 1 + j H j ds + Z j G j v q 1 + dx ; 4( q 1) q 2 Z jr ( v q 2 + ) j 2 dx + Z v q + dx Z @ v q + ds + ( ) Z @ j H j q ds + Z v q + dx + Z j G j q dx ; whichindicatesthat j v q 2 + j W 1 ; 2 ( ) C ( j G j L q ( ) + j H j L q ( @ ) ) : So j v + j L nq n 2 ( ) C ( j G j L q ( ) + j H j L q ( @ ) ) : Onecanprovethesameinequalityfor v ,whichcompletestheproof. UsingLemma4.3.2androutinebootstrapargument,wehavethatforany m , jH ( W "; P ) j C m ( ) and j H ( W "; P ) j C m ( ) areboth O ( e " ).Let e H ( W "; P ) = H ( W "; P ) + H ( W "; P ) + K "; P ; (4.3.15) 56 thenlet e W "; P = W "; P e H ( W "; P ) ; (4.3.16) where K "; P isaconstantfored P with K "; P = 0forsome P = P ,suchthatthemass R e W "; P dx remainsconstantaswevary P 2 e k .Onecaneasilycheckthat @ e W "; P @ n = @ e W "; P @ n = 0 : Bytheexponentiallydecayingpropertyofgroundstatesandthefactthat H ( W "; P ) ; H ( W "; P ) = O ( e " ),onecaneasilyseethat K "; P = O ( e " ).Byusingthesymmetryofthegroundstates,one alsocancheckthat D P K "; P = O ( e " ).Moreprecisely,bydirectcomputation,onehas D P K "; P = 1 j j R D P W "; P D P H ( W "; P ) + D P H ( W "; P ) dx .First,itiseasytoverifythat D P H ( W "; P ) = x P i H ( W "; p i ) = O ( e " ),similarlywehave D P H ( W "; P ) = O ( e " ).Itremainstoesti- mate R D P W "; P dx .Since D P W "; P = P i r x w "; p i ,itissu cienttoshowthat R r x l w "; p i dx = O ( e " ).Notethat r x l w isoddin x l and B ( p i ; 2) ˆ ,sowehave R B ( p i 2) r x l w "; p i dx = 0.By theexponentiallydecayingpropertyofthegroundstate,itisalsoclearthat R n B ( p i 2) r x l w "; p i dx = O ( e " ).Itfollowsimmediatelythat D P K "; P = O ( e " ).Moreover,since K "; P isaconstantin x , onethatforany m , j e H ( W "; P ) j C m ( ) = O ( e " ) : (4.3.17) " ( P ) = e W "; P : (4.3.18) Thentheapproximatelyinvariantweconstructis M " = " ( e k ) : (4.3.19) 57 Remark 4.3.3 . Everypointonthemanifold M " hasthesamemass.Sinceweareonlybuildingan approximatelyinvariantmanifold,thismayseemunnecessary.However,aswewillseeinSection 4.3.5,thisisimportantforthetransformedequation. 4.3.2SpectralanalysisofthelinearizedAllen-Cahnoperator Let L 0 v : = v v + h 0 ( w ) v ; H 2 ( R n ) ! L 2 ( R n ) ; e L " 0 v : = " 2 v v + h 0 ( ] W "; P ) v ; H 2 ( ) ! L 2 ( ) ; (4.3.20) and B u ( v ; v ) = Z ( " 2 jr v j 2 + v 2 h 0 ( u ) v 2 ) dx (4.3.21) Recallthatthegroundstate w isassumedtobenon-degenerate,whichmeansthatthereexists b > 0 ; 1 > 0,suchthat ˙ ( L 0 ) \ ( b ; 1 ) = f 0 ; 1 g with0havingmultiplicity n .Infact 1 issimple,and thecorrespondingeigenfunction V isradiallysymmetricandexponentiallydecayingwiththesame rateasthatof w .Also,thecorrespondingeigenspacewithrespectto0is span f @ w @ x i ; i = 1 ; ; n g . Wewillusethespectrumof L 0 toestimatethespectrumof e L " 0 .Nowweconsidertheeigenvalue problem 8 > > > > > > > < > > > > > > > : e L " 0 ˚ = " ˚; in ; @˚ @ n = 0on @ : (4.3.22) Firstwelet W ij " = ˜ i w x j ( x p i " ) ; V i = ˜ i V ( x p i " ) ; (4.3.23) 58 where ˜ i isasmoothcut-o functionsatisfying ˜ i ( x ) = 8 > > > > > > > < > > > > > > > : 1 ; x 2 i : = f x : d ( x ; p i ) 1 2 ; d ( x ;@ ) 1 4 g ; 0 ; x 2 Ÿ i : = f x : d ( x ; p i ) 3 4 ; d ( x ;@ ) 1 8 g : (4.3.24) Lemma4.3.4. B e W "; P ( W ij " ; W ij " ) h W ij " ; W ij " i = O ( e " ) ; B e W "; P ( V i ; V i ) h V i ; V i i = 1 + O ( e " ) ; (4.3.25) Proof. Here,wejustprovethestatement,theproofoftheotheroneissimilar. B e W "; P ( W ij " ; W ij " ) = B w "; p i ( W ij " ; W ij " ) + Z ( h 0 ( w "; p i ) h 0 ( e W "; P ))( W ij " ) 2 dx = Z i ( " 2 ( r W ij " ) 2 + ( W ij " ) 2 h 0 ( w "; p i )( W ij " ) 2 ) dx + Z ( h 0 ( w "; p i ) h 0 ( e W "; P ))( W ij " ) 2 dx + Z n ( i [ Ÿ i ) ( " 2 ( r W ij " ) 2 + ( W ij " ) 2 h 0 ( w "; p i )( W ij " ) 2 ) dx = I + II + III : (4.3.26) Obviouly, I = O ( e " ).Bydirectcomputation,wehave j II j Z C j e W "; P w "; p i j ( W ij " ) 2 dx Z n Ÿ i ( C j X l , i w "; p l j + O ( e " ))( W ij " ) 2 dx Ce " Z ( W ij " ) 2 dx : (4.3.27) 59 Wearetheproofbyestimating III .Firstitiseasytocheckthat W ij " ;" r W ij " = O ( e " ) in n ( i [ Ÿ i )and j " r ˜ i j L 2 = o (1).Combiningwiththefactthat h 0 (0) = 0,wehave j III j O ( e " ) h W ij " ; W ij " i . Sofarweseethat e L " 0 has k positiveeigenvaluesand nk eigenvaluesnear0.In[20],theauthors usedascalingandlimitingprocesstoshowthatthereisan O (1)spectralgapbetweenthenegative spectrumandthespectrumnearzeroforthelinearizedAllen-Cahnoperatorobtainedbylinearizing ataboundarymulti-spikestate.In[95],theauthorsusedasimilartechniquetoshowsuchspectral gapfortheoperatorobtainedbylinearizingatasingleinterior-spikestate.Thesameargument adaptshere.Performingachangeofvariable y = x p i " ,where p i isthecenterofoneofthespikes, extendingtheeigenfunctionfor(4.3.22)to R n ,thenletting " tendtozero(see[20,72,73]for moredetailsaboutthisprocess),onethattheeigenvalueproblem(4.3.22)convergesalonga sequenceweaklyin H 1 ( R n )tothelimitingeigenvalueproblem ˚ 1 1 + h 0 ( w ) ˚ 1 = 1 ˚ 1 in R n : (4.3.28) Ifwelet y = x z " for z 2 and z < f p i g k i = 1 andthenperformthesamelimitingprocess,wethe limitingeigenvalueproblem ˚ 1 1 = 1 ˚ 1 in R n : (4.3.29) Inboth(4.3.28)and(4.3.29),thenegativespectrumisboundedawayfrom0.Therefore,for " su cientlysmalltherestofthespectrumof e L " 0 liesin( ; C ]forsomeconstant C > 0. 60 4.3.3SpectralanalysisofthelinearizedCahn-Hilliardoperator Considertheeigenvalueproblem: 8 > > > > > > > > < > > > > > > > > : ( " 2 ˚ + h 0 ( e W "; P ) ˚ ) = " ˚ in ; @˚ @ n = @ ˚ @ n = 0on @ : (4.3.30) First,werecallthevariationalcharacterizationoftheeigenvaluesofCahn-Hilliardequation ([13]Theorem5): " n = min n max n B e W "; P ( v ; v ) h ( ) 1 ) v ; v i ; (4.3.31) wheremax n isoverall v 2 T n ,andmin n isoverall n -dimensionalsubspaces T n of ‹ H 1 ( ): = f v : v 2 H 1 ( ) ; R vdx = 0 g .Also,( ) 1 ison ‹ H 1 ( )by( ) 1 v = for v 2 ‹ H 1 ( )ifand onlyif 2 ‹ H 1 ( )isthesolutionto 8 > > > > > > > < > > > > > > > : = v in ; @ n = 0on @ : Now,weconstructatestfunctionfor(4.3.31)usingtheunstableeigenfunction V .Let bea functionsatisfying supp ( ) ˆf x : 3 8 j x j 1 2 g ; and Z R n ( x ) = Z R n V ( x ) ; thenlet ( x ) = n ( x ) : (4.3.32) 61 Itiseasytoverifythat j ( x ) j 2 L 2 ( R n ) = n j ( x ) j 2 L 2 ( R n ) ; jr ( x ) j 2 L 2 ( R n ) = n + 2 jr ( x ) j 2 L 2 ( R n ) : Welet V i = i ( x ) V ( x p i " ) i ( x ) : (4.3.33) Here, i ( x )isansmoothcut-o functionsatisfying i ( x ) = 8 > > > > > > > < > > > > > > > : 1 ; x 2f x 2 : d ( x ; p i ) 1 4 g ; 0 ; x 2f x 2 : d ( x ; p i ) 3 8 g ; (4.3.34) and i ( x ) = ˝ i ( x p i " ) ; (4.3.35) where ˝ i isaconstantsuchthat R V i dx = 0.Notethat ˝ i = O (1)and supp ( i ) ˆ x : 3 8 d ( x ; p i ) 2 : Soifwechoose suchthat1 < " < 1 + " ,then supp ( i )and supp ( i )aredisjoint,andfurthermore supp ( i )iscontainedin for " smallenough.Then,onehas B e W "; P ( V i ; V i ) = B e W "; P ( i ( x ) V ( x p i " ) ; i ( x ) V ( x p i " )) + B e W "; P ( i ( x ) ; i ( x )) = ( 1 + O ( e " )) h i ( x ) V ( x p i " ) ; i ( x ) V ( x p i " ) i + O ( n ) : (4.3.36) Itremainstoestimate h ( ) 1 V i ; V i i ,whichisthepointofthefollowinglemma. 62 Lemma4.3.5. 0 < h ( ) 1 v ; v i C h v ; v i ,foranyv 2 ‹ H 1 ( ) ,v , 0 forsomeconstantC > 0 . Proof. ( )asaoperatoractingonfunctionswithmean-valuezeroandhomogenousNeumann boundaryconditionisapositiveoperator,so h ( ) 1 v ; v i > 0.Let bethemeanvaluezero solutionoftheequation 8 > > > > > > > < > > > > > > > : ( ) ( x ) = v ( x )in ; @ n = 0on @ : (4.3.37) Bydirectcalculation,wehave h ( ) 1 v ; v i = Z v dx = Z jr j 2 dx : (4.3.38) Forany > 0, Z v dx 1 4 Z v 2 dx + Z 2 dx 1 4 Z v 2 dx + C Z jr j 2 dx : (4.3.39) Bychoosing smallenough,itfollowsimmediatelythat Z v dx C Z v 2 dx : Since V i isconstructedbyscaling V and by " ,andsince V decaysexponentially,onehas < ( ) 1 V i ; V i > = O ( " 2 ).OnemayarigorousproofofthisfactintheproofofLemma 4.4.3inthecurrentpaper.Combining(4.3.31),(4.3.36)andLemma4.3.5,wehavethatthereare k positiveeigenvalues i " (1 i k )greaterthan C 1 " 2 withcorrespondingeigenfunctionsdenotedby 63 V i " forsomeconstant C .Similarly,onecanprovethatthereare nk eigenvalueswhichare O ( e " ). Ifthereareotherpositiveeigenvaluesawayfromzero,thenby(4.3.31)onecanseethattherewill beextrapositiveeigenvaluesawayfrom0forthecorrespondinglinearizedAllen-Cahnoperator, whichisacontradiction.Therefore,thereareexactly k positiveeigenvaluesboundedawayfrom0 for(4.3.30).Moreover,ifthereisanegativeeigenvaluefor(4.3.30)oforder o ( 1 " 2 ),thenby(4.3.31) andLemma4.3.5,oneseesthattherewillbeanegativeeigenvalueapproachingzeroas " ! 0for thecorrespondinglinearizedAllen-Cahnoperator,whichisagainacontradiction.Thus,therestof thespectrumisin( ; ¯ b " 2 )forsome ¯ b > 0.Forconvenience,wedenotethesizeofthisspectral gapby b " = b " 2 . Notethat ( " 2 e W ij " e W ij " + h 0 ( e W "; P ) e W ij " ) = O ( e " ) ; (4.3.40) where e W ij " = D j ( w "; p i e H ( w "; p i )) ; (4.3.41) and e W ij " almosttheboundaryconditions.Thus,wemayuse span f e W ij " , i = 1 ; ; k ; j = 1 ; ; n g toapproximatethecenterspacefor L "; P ,where L "; P v : = ( " 2 v v + h 0 ( e W "; P ) v )with thedomain v : v 2 W 4 ; q " ( ) ; @ v @ n = @ v @ n = 0 : 64 4.3.4 M " isapproximatelystationary Firstofall,wearescaledSobolevspace W k ; q " asthefamilyof k th di erentiablefunctions (indistributionsense)endowedwiththerescalednorm jj W k ; q " = X 0 2 j " j j D ( ) j L q ( ;" n d ) : Thenwechooseourphasespace X : = u 2 W 2 ; q " : @ u @ n = @ u @ n = 0 withlarge q .Recallthatwe L "; P as L "; P v : = ( " 2 v v + h 0 ( e W "; P ) v )(4.3.42) withthedomain v : v 2 W 4 ; q " ( ) ; @ v @ n = @ v @ n = 0 : Itisclearthat L "; P generatesananalyticsemigroup e tL "; P : L q " ! L q " ,where L q " = W 0 ; q " .Byusing thespectralpropertyof L "; P andtheembeddingtheoremoffractionalpowerspaces(see[51]),we have j e tL "; P j ( L q " ; L q " ) Ce Ct " 2 ; j e tL "; P j ( L q " ; W 2 ; q " ) C (1 + ( t " 2 ) 1 2 ) e Ct " 2 : (4.3.43) Wemodify h tomakesure(4.3.4)generatesawgloballyintime.Let Ÿ h ( u ) = ( u ) h ( u ),where ( s )isasmoothcut-o functionsatisfying ( s ) = 8 > > > > > > > < > > > > > > > : 1 ; j s j < max w + 1 ; 0 ; j s j > max w + 2 : 65 Wenowconsidertheequation u t = ( " 2 u u + Ÿ h ( u ))(4.3.44) withthesameNeumannboundaryconditions.Forconvenience,westillkeepthenotation h instead of Ÿ h . Foranyed P 2 e k ,weconsidertheinitialvalueproblem 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : u t = ( " 2 u u + h ( u ))in (0 ; 1 ) ; @ u @ n = @ u @ n = 0on @ (0 ; 1 ) ; u ( ; 0) = e W "; P in : (4.3.45) Lemma4.3.6. Letubethesolutionto(4.3.45).Thenu j u e W "; P j X C ( t + " t 1 2 ) e " e Ct " 2 : (4.3.46) Proof. Let v bethedi erence u e W "; P ,then v 8 > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > : v t = ( " 2 v v + h 0 ( e W "; P ) v ) + ( " 2 e H e H + h ( e W "; P + e H ) h ( e W "; P + v ) + h 0 ( e W "; P ) v R "; P ) = L "; P v + r ( v ) ; @ v @ n = @ v @ n = 0 ; v ( ; 0) = 0 : (4.3.47) 66 UsingLemma4.3.1,(4.3.17)andthefactthat h hasbeenweget j r ( v ) j L q " C ( j v j X + e " ) : (4.3.48) Usingthevariationofconstantsformula,wewritethesolution v as v = Z t 0 e L "; P ( t s ) r ( v ) ds : (4.3.49) Applying(4.3.43)to(4.3.49),wehave j v j X Z t 0 C (1 + ( t s " 2 ) 1 2 ) e C ( t s ) " 2 ( j v j X + e " ) ds : ThenitfollowsdirectlybyGronwall'sinequalitythat j v j X C ( t + " t 1 2 ) e " e Ct " 2 : (4.3.50) 4.3.5Transformationofthephasespace ObservethatthelinearizedCahn-Hilliardoperator L "; P isnotself-adjointin L 2 ,soitishardto showthenormalhyperbolicitywhichleadstotheexistenceofantrulyinvariantmanifolddirectly. Tohandlethis,weintroducethefollowingtransformation.Forany ˚ 2 X satisfying R ˚ dx = 0, 67 let bethesolutiontotheequation 8 > > > > > > > > > > > > > < > > > > > > > > > > > > > : = ˚ in ; @ @ n = 0on ; R dx = 0 : (4.3.51) A : ‹ W 4 ; q " \f u 2 W 4 ; q " : @ u @ n = 0on g! ‹ W 2 ; q " by A = ˚ ,where ‹ W k ; q " = W k ; q " \f u : R udx = 0 g .Forany ˚ 2 ‹ W 2 ; q " ,let ˚ ] 2 ‹ W 3 ; q " satisfy A 1 2 ˚ ] = ˚ ,i.e. ˚ ] = A 1 2 ˚ .Onecancheck thatthespectrumof A liesin(0 ; 1 )(Aisapositiveoperator),so A 1 2 is([51]).Let u ( t ; )bethesolutionto(4.3.44).SincetheCahn-Hilliardequationconservesthemass,onecan u ] = A 1 2 ( u q ( u )),where q ( u ) = 1 j j R udx isaconstantin t and x .Itisclearthat u ] 8 > > > > > > > < > > > > > > > : (( ) 1 2 u ] ) t = ( " 2 (( ) 1 2 u ] ) (( ) 1 2 u ] ) + h (( ) 1 2 u ] + q ( u )))in ; @ ( ) 1 2 u ] @ n = @ ( ) 3 2 u ] @ n = 0on @ : (4.3.52) Notethatallpointsontheapproximatelyinvariantmanifold M " havethesamemeanvalue, whichwedenoteby q " .Let M ] " = A 1 2 ( M " q " ): = f A 1 2 ( " ( P ) q " ): P 2 e k g : (4.3.53) Since D P R " ( P ) dx = R D P " ( P ) dx = 0,thetangentspaceof M ] " isalsoas A 1 2 T M " .Inordertoobtainatrulyinvariantmanifoldnear M " forthew u ( t ; )generated by(4.3.44),weatrulyinvariantmanifoldnear M ] " withzeromassfor u ] ( t ; ),thenbythe 68 injectivityof A 1 2 ,oneobtainsatrulyinvariantmanifoldfor u ( t ; )near M " .Naturally,wechoose thephasespace X ] for u ] tobe ‹ W 3 ; q " .Firstofall,onecaneasilycheckthat M ] " isapproximately stationaryfor u ] ( t ; ).Infact,byLemma4.3.6,onehas j u ] t ; A 1 2 ( e W "; P q " ) A 1 2 ( e W "; P q " ) j W 3 ; q " = j A 1 2 u ( t ; e W "; P ) e W "; P j W 3 ; q " C j u ( t ; e W "; P ) e W "; P j X C ( t + " t 1 2 ) e " e Ct " 2 (4.3.54) Linearizingequation(4.3.52)at A 1 2 ( e W "; P q " ),weobtain u ] t = ( ) 1 2 ( " 2 ( ) 1 2 u ] ( ) 1 2 u ] + h 0 ( e W "; P )( ) 1 2 u ] ) = L ] "; P u ] ; (4.3.55) where L ] "; P : = ( ) 1 2 ( " 2 + h 0 ( e W "; P )) ( ) 1 2 ; (4.3.56) withthedomain f v : v 2 W 4 ; q " ; @ ( ) 1 2 v @ n = @ ( ) 3 2 v @ n = 0 g : Bythemaintheoremsof[13],weknowthat L ] "; P isself-adjointin L 2 " (aftertakingtheself- adjointextension)andtheeigenvalueproblemfor L ] "; P isequivalenttotheeigenvalueproblemfor L "; P .Let e W ij ;] " = A 1 2 D p ij e W ij " ; V i ;] " = A 1 2 V i " : (4.3.57) 69 Thesearesinceboth D p ij e W ij " and V i " havemean-valuezero.Also,onecancheck L ] "; P e W ij ;] " = O ( e " ) ; (4.3.58) and L ] "; P V i ;] " = i " V i ;] " : (4.3.59) Withoutlossofgenerality,weassumethat j e W ij ;] " j L 2 " = j V i ;] " j L 2 " = 1.Furthermore,itisclearthat L ] "; P generatesananalyticsemigroup e L ] "; P t withsimilarpropertiesto e L "; P t . 4.3.6Splittingspace X ] alongthemanifold M ] " Spectralanalysisof L ] "; P yieldsthattheapproximateunstablespaceof L ] "; P is span f V i ;] " g andthe approximatecenterspaceof L ] "; P is span f e W ij ;] " :1 i k ; 1 j n g˘ T ] " ( P ) M ] " .Wewilluse thistoconstructcenter-stableandcenter-unstablemanifoldsfor M ] " . Remark 4.3.7 . e W ij ;] " doesnotsatisfytheboundaryconditions,butwecanmodifyitslightlywith thesamewaythatwe W "; P inSection4.3.1.Notethatthewillbe O ( e " ). Forconvenience,wewillkeepthenotation e W ij ;] " forthefunction. Since L ] "; p isself-adjoint,wehave l " h e W ij ;] " ; V l ;] " i = h e W ij ;] " ; L ] "; p V l ;] " i = h L ] "; p e W ij ;] " ; V l ;] " i = O ( e " ) ; whichimpliesthat h e W ij ;] " ; V l ;] " i = O ( e " ) ; (4.3.60) where h ; i denotesthe L 2 " innerproduct,i.e., h f ; g i = R fg " n dx .Since h e W ij ;] " ; e W lm ;] " i = h ( ) 1 e W ij " ; e W lm " i , 70 wehavethefollowinglemma Lemma4.3.8. h e W uv ;] " ; e W lm ;] " i = o ( " ) if ( l ; m ) , ( u ; v ) : (4.3.61) Proof. Wejuststatethislemmahere,theproofissimilartotheproofofLemma4.4.3inthelast sectionofthecurrentpaper. Let ¯ V i ;] " bethecomponentof V i ;] " whichisorthogonal(inthesenseof L 2 " )to span f e W ij ;] " g . Clearly j ¯ V i ;] " V i ;] " j X ] = O ( e " ).Thenwedecompose X ] as X ] = X c "; P X s "; P X u "; P ,where X c "; P = span f e W ij ;] " ; i = 1 ; ; k ; j = 1 ; ; n g ; X u "; P = span f ¯ V i ;] " ; i = 1 ; ; k g ; X s "; P = n v : Z v Ÿ vdx = 0 ; foranyŸ v 2 X c "; P X u "; P o : (4.3.62) Denotetheassociatedprojectionmapsby "; P , = c ; u ; s .Bythesmoothnessof e W ij ;] " and V i ;] " ,we havethat "; P , = c ; s ; u ,aresmoothin P .Usingthe L 2 " -orthogonalityanddimensionality ofcenterandunstablespaces,wehavetheboundednessoftheseprojections.Followingfrom thecompactnessof M " ,weimmediatelyhavethat "; P areuniformlyboundedanduniformly Lipschitzin P .Clearlyalltheboundsareindependentof " for " smallenough.Furthermore,we havethatforsmallenough " ,thereexists B > 0,independentof " ,suchthat j "; P j C m e k ; L ( x ) B ; foranypositiveinteger m : (4.3.63) 71 4.3.7Trichotomy Toinvestigatethelinearizedwatasolution u ] to(4.3.52)withinitialcondition A 1 2 e W "; P ,we consider ¯ u ] t = ( ) 1 2 ( " 2 + h 0 (( ) 1 2 u ] )) ( ) 1 2 ¯ u ] : (4.3.64) Togetestimatesfor ¯ u ] ,wealsoconsider u ] t = L ] "; P u ] = ( ) 1 2 ( " 2 + h 0 ( ] W "; P )) ( ) 1 2 u ] : (4.3.65) Lemma4.3.9. If ] u (0) = ¯ u ] (0) ,then j ¯ u ] u ] j X ] C ( t + " t 1 2 )( t + " 3 2 t 1 4 ) e " e Ct " 2 j ¯ u ] (0) j X ] . Proof. Firstitiseasytoprovethat j ¯ u ] j X ] ; j u ] j X ] Ce Ct " 2 j ¯ u ] (0) j X ] : (4.3.66) Let v = ¯ u ] u ] .Then v 8 > > > > > > > < > > > > > > > : v t = L ] "; P v ( ) 1 2 [( h 0 ( e W "; P ) h 0 ( u ))( ) 1 2 ¯ u ] ] ; v (0) = 0 : Usingthevariationofconstantsformula,weget v = Z t 0 e L ] "; P ( t s ) ( ) 1 2 [ ( h 0 ( e W "; P ) h 0 ( u )) 1 2 ¯ u ] ] ds : 72 Notethat j e W "; P u j W 2 ; q " C ( t + " t 1 2 ) e " e Ct " 2 ,sofor q largeenough,wehave j e W "; P u j C 1 C ( t + " t 1 2 ) e " e Ct " 2 ; whichimpliesthat j ( ) 1 2 [( h 0 ( e W "; P ) h 0 ( u ))( ) 1 2 ¯ u ] ] j L q " C ( t + " t 1 2 ) e " e Ct " 2 j ¯ u ] j W 2 ; q " : (4.3.67) Clearly, j e L ] "; P t j L ( L q " ; X ] ) C (1 + ( t " 2 ) 3 4 ) e Ct " 2 : Thenitfollowsimmediatelythat j v j X ] C ( t + t 1 2 " )( t + " 3 2 t 1 4 ) e " e Ct " 2 j ¯ u ] (0) j X ] : Decompose u ] as u ] = " D e W ] "; P a ( t ) + X b i ( t ) ¯ V i ;] " + W s ( t ) ; (4.3.68) where D meansthegradientwithrespectto P .Itiseasytocheckthat j u ] j X ] Ce Ct " 2 j u ] (0) j X ] and j u ] j L q " Ce Ct " 2 j u ] (0) j L q " .Thenbytheboundednessoftheprojectionmaps,wehave j a ( t ) j Ce Ct " 2 j u ] (0) j L q " ; j b i ( t ) j Ce Ct " 2 j u ] (0) j L q " ; j W s ( t ) j L q " Ce Ct " 2 j u ] (0) j L q " ; (4.3.69) 73 and j W s ( t ) j X ] Ce Ct " 2 j u ] (0) j X ] : (4.3.70) Takingtheinnerproductof(4.3.68)with L ] "; P " D e W ] "; P a ( t ),wehave h u ] ; L ] "; P " D e W ] "; P a ( t ) i = h L ] "; P u ] ;" D e W ] "; P a ( t ) i = h u ] t ;" D e W ] "; P a ( t ) i = h " D e W ] "; P a 0 ( t ) ;" D e W ] "; P a ( t ) i + h X i b 0 i ( t ) ¯ V i ;] " ;" D e W ] "; P a ( t ) i : (4.3.71) Notethat j u ] j L q " Ce Ct " 2 j u ] (0) j L q " and j L "; P " D e W ] "; P a ( t ) j L 1 Ce " j a ( t ) j Ce " e Ct " 2 j u ] (0) j L q " . Combiningwith(4.3.69)andLemma4.3.8,weobtain j a ( t ) a 0 ( t ) j Ce " e Ct " 2 ( j u ] (0) j 2 L q " + j u ] (0) j L q " j b 0 i ( t ) j ) : (4.3.72) Since d dt j a ( t ) j 2 = 2 a ( t ) a 0 ( t ),byintegratingbothsidesof(4.3.72)weget j a ( t ) j 2 j a (0) j 2 Ce " e Ct " 2 j u ] (0) j 2 L q " : (4.3.73) Similarly,takingtheinnerproductof(4.3.68)with L ] "; P ¯ V i ;] " ,wehave j b i ( t ) e i " t b i (0) j Ce Ct " 2 e " j u ] (0) j L q " : (4.3.74) 74 Nowweconsiderthestabledirection.Since L ] "; P isself-adjoint,onehas jh L ] "; P W s ;" D e W "; P ˝ ij = jh W s ; L ] "; P " D e W "; P ˝ ij Ce " j ˝ jj W s j L 2 " ; and jh L ] "; P W s ; ¯ V i ;] " ij = jh W s ; L ] "; P ¯ V i ;] " i Ce " j W s j L 2 " ; (4.3.75) whichimpliesthat j c "; P L ] "; P W s j L 2 " + j s "; P L ] "; P W s j L 2 " Ce " j W s j L 2 " : (4.3.76) Usingthefactthatcenterandunstablebundlesaredimensional,wehave j c "; P L ] "; P W s j X ] + j s "; P L ] "; P W s j X ] Ce " j W s j X ] : (4.3.77) Write(4.3.65)as " D e W "; P a 0 ( t ) + X b 0 i ( t ) ¯ V i ;] " + d dt W s ( t ) = L ] "; P " D e W "; P a ( t ) + X b i ( t ) L ] "; P ¯ V i ;] " + L ] "; P W s ( t ) : (4.3.78) Applying s "; P tobothsides,weobtain d dt W s ( t ) = s "; P L ] "; P W s + s "; P ( L ] "; P " D e W "; P a ( t ) + X b i ( t ) L ] "; P ¯ V i ;] " ) : (4.3.79) By(4.3.77),weseethat s "; P L ] "; P : X s "; P ! X s "; P isasmallperturbationof L ] "; P ,so s "; P L ] "; P generatesasemigroup.Thenbythespectralgapfor L ] "; P andperturbationtheory,wehave j W s ( t ) j X e b " t j W s (0) j X + Ce " e Ct " 2 j u (0) j L q : (4.3.80) 75 Denotethewgeneratedby(4.3.52)by T ] t " .Combining(4.3.73),(4.3.74),(4.3.80)and Lemma4.3.9,weobtainthefollowingtrichotomyproperties: Lemma4.3.10. Ift = O ( " 2 ) and " issmallenough,for = c ; u ; sand , ,wehave k "; P DT ] t " j X "; P k Ce " e Ct " 2 ; k s "; P DT ] t " j X s "; P k e b " t + Ce " e Ct " 2 ; 1 Ce " e Ct " 2 k ( c "; P DT ] t " j X c "; P ) 1 k 1 k c "; P DT ] t " j X c "; P k 1 + Ce " e Ct " 2 ; k ( u "; P DT ] t " j X u "; P ) 1 k 1 e Ÿ " t Ce " e Ct " 2 ; (4.3.81) where Ÿ " isinsection4.3.2. Proof. If c "; P u ] (0) = 0,i.e., a (0) = 0,by(4.3.73),wehave j a ( t ) j Ce " e Ct " 2 j u ] (0) j L q " ; whichimplies j c "; P u ] j L q " Ce " e Ct " 2 j u ] (0) j L q " Ce " e Ct " 2 j u (0) j X : Since X c "; P isdimensional,wehave j c "; P u ] j X ] Ce " e Ct " 2 j u ] (0) j X ] ; whichimplies k c "; P DT ] t " j X "; P k Ce " e Ct " 2 ,for , c . If u ] (0) 2 X c "; P ,i.e., u ] (0) = " D e W ] "; P a (0),by(4.3.73),wehave j a ( t ) j (1 + Ce " e Ct " 2 ) j a (0) j ; (4.3.82) 76 whichimplies j c "; P u ] j L q " (1 + Ce " e Ct " 2 ) j u ] (0) j L q " .Againweusethedimensionalityof thecenterspacetoobtain k c "; P DT ] t " j X c "; P k 1 + Ce " e Ct " 2 : (4.3.83) Observethatwhen t = O ( " 2 )and " issmallenough,(4.3.72)combinedwithLemma4.3.8im- pliesthat c "; P DT ] t " j X c "; P isasmallperturbationoftheidentitymap,so c "; P DT t " j X c "; P isalsoan isomorphism.Onecanfollowasimilarargumenttoobtain 1 Ce " e Ct " 2 k ( c "; P DT ] t " j X c "; P ) 1 k 1 : (4.3.84) Theotherinequalitiescanbeprovedsimilarly,thisbeinglefttothereaders.Theonlythingwe wanttopointoutisthatby(4.3.74), u "; P DT ] t " j X u "; P isasmallperturbationofanisomorphismif t = O ( " 2 )and " issmallenough,whichindicatesthat u "; P DT ] t " j X u "; P isanisomorphism. Recallthat b " ; Ÿ " = O ( 1 " 2 ).Fored ,wechoose t o = " 2 K withKlargeenoughtomake e b " t 0 smallenoughand e Ÿ " t 0 largeenough,thenwelet " besu cientlysmall,sothat M " is anapproximatelystationaryinvariantandapproximatelynormallyhyperbolicmanifoldfor T ] t 0 " . ThenbythegeneraltheoremweestablishedinSection4.2,wehavealocallytrulyinvariantmani- foldnear M " for T ] t 0 " byintersectingthecenter-stablemanifoldandthecenter-unstablemanifold of M " .However,duetothenon-uniquenessofcentermanifolds(di erentgivedif- ferentcentermanifolds),wecannotconcludethatthecentermanifoldfor T ] t 0 " isinvariantunder thew T ] t " .Thecorrectwayshouldbetomodifythevectortogeneratea w,thenprovetheexistenceofatrulyinvariantmanifoldforthew. 77 4.3.8ofvector Inthissection,wetake t 0 = " 2 K suchthat M " isanapproximatelystationaryinvariantandapprox- imatelynormallyhyperbolicmanifoldfor T ] t 0 " .Wealsoassumethattheboundaryof theconditionslistedinSection4.2.FollowingthesetupinSection4.2,we Ÿ P 2 e k thesame wayas e m .Forany x 2 N ( M ] " ; r ),where N ( M ] " ; r )isatubularneighborhoodof M ] " ,let m ( x )bethe projectionof x into M ] " andlet P ( x ) 2 e k bethatpointsuchthat ] " ( P ( x )) = m ( x ),thenwewrite x as x = ] " ( P ( x )) + x s ( x ) + x u ( x ). Rewrite(4.3.52)as u ] t = L ] "; P u ] + r P ( u ] ) ; (4.3.85) where r P ( u ] ) = ( ) 1 2 h (( ) 1 2 u ] ) h 0 ( " ( P ))( ) 1 2 u ] . Usingthevariationofconstantsformula,wewrite(4.3.85)as u ] = e L ] "; P t u (0) + Z t 0 e L ] "; P ( t s ) r P ( u ] ) ds : (4.3.86) ByLemma4.3.6,wehavethatfor " smallenough, ] " ( P ) = e L ] "; P t ] " ( P ) + Z t 0 e L ] "; P ( t s ) r P ( ] " ( P )) ds + O ( e " ) e Ct " 2 ; (4.3.87) where O ( e " )isinthe X ] sense. Nowwemodifythevectortoobtainanewequation: 8 > > > > > > > < > > > > > > > : Ÿ u ] t = L ] "; P Ÿ u ] + r P (Ÿ u ] ) + 1 t 0 e L ] "; P t ] " ( Ÿ P ) + r P ( ] " ( Ÿ P )) [ 1 t 0 e L ] "; P t ] " ( P ) + r P ( ] " ( P ))] ; Ÿ u ] (0) = x : (4.3.88) 78 Usingthevariationofconstantsformula,wewrite(4.3.88)as Ÿ u ] = e L ] "; P t x + Z t 0 e L ] "; P ( t s ) [ r P (Ÿ u ] ) + 1 t 0 e L ] "; P s ] " ( Ÿ P ) + r P ( ] " ( Ÿ P )) ( 1 t 0 e L ] "; P s ] " ( P ) + r P ( ] " ( P )))] ds = e L ] "; P t x + Z t 0 e L ] "; P ( t s ) r P (Ÿ u ] ) ds + t t 0 e L ] "; P t ] " ( Ÿ P ) + Z t 0 e L ] "; P ( t s ) r P ( ] " ( Ÿ P )) ds ( t t 0 e L ] "; Ÿ P t ] " ( P ) + Z t 0 e L ] "; P ( t s ) r P ( ] " ( P )) ds ) : (4.3.89) Denotethewgeneratedby(4.3.88)by e T ] t " .Recallthat T ] t " ( x )isthewby (4.3.85).Then T ] t " ( x ) = e L ] "; P t x + R t 0 e L ] "; P ( t s ) r P ( T ] s " ( x )) ds .Itfollowsfrom(4.3.89)that e T ] t " ( x ) = T ] t " ( x ) + Z t 0 e L ] "; P ( t s ) ( r P ( e T ] s " ( x )) r P ( T ] s " ( x ))) ds + t t 0 e L ] "; P t ] " ( Ÿ P ) + Z t 0 e L ] "; P ( t s ) r P ( ] " ( Ÿ P )) ds ( t t 0 e L ] "; P t ] " ( P ) + Z t 0 e L ] "; P ( t s ) r P ( ] " ( P )) ds ) : (4.3.90) RecallthatinSection4.2,weuse l todenotehowmuchweshiftthebasepoint.Notethat j Ÿ P P j Cl forany P ,onecaneasilyprovebyusingGronwall'sinequalitythat j e T ] t " ( x ) T ] t " ( x ) j C ( t + " t 1 2 ) e Ct " 2 l ; and k D e T ] t " ( x ) DT ] t " ( x ) k C ( t + " t 1 2 ) e Ct " 2 l : (4.3.91) For x 2 W 3 ; q " ,let¯ x = ( ) 1 2 x and( ) 1 2 e T ] t " ( x ) = e T t " (¯ x ).Thenbydirectcomputation,wehave r P ( e T ] t " ( x )) r P ( T ] t " ( x )) = ( ) 1 2 h 0 ( " ( P )) e T t " (¯ x ) T t " (¯ x ) h ( e T t " (¯ x )) h ( T t " (¯ x ) (4.3.92) 79 Wehave h ( e T t " (¯ x )) h ( T t " (¯ x )) = h 0 ( T t " (¯ x ))( e T t " (¯ x ) T t " (¯ x )) + O ( j e T t " (¯ x ) T t " (¯ x ) j 2 ) : (4.3.93) Recallthat h hasbeenbyusingLemma4.3.6,onecancheckthatfor x = ] " ( P ),we have j r P ( e T ] t " ( x )) r P ( T ] t " ( x )) j W 1 ; q " C ( t + " t 1 2 ) e Ct " 2 e " l + (( t + " t 1 2 ) e Ct " 2 l ) 2 : (4.3.94) Therefore,combiningwith(4.3.87),(4.3.90),(4.3.91)and(4.3.94),wehavethatforany x = ] " ( P ), e T ] t 0 " ( x ) = T ] t 0 " ( x ) + ] " ( g P ( x )) ] " ( P ( x )) + O ( e " l + l 2 ) ; D e T ] t 0 " ( x ) = DT ] t 0 " ( x ) + D ] " ( g P ( x )) D ] " ( P ( x )) + O ( e " l + l 2 ) : (4.3.95) FollowingtheestimatesinSection4.2.1,nowonecanapplyTheorem2.0.3toobtaina C m ( m dependsonlyonthesmoothnessofthenonlinearityandtheboundary @ )center-stablemanifold W cs ] " near M ] " for e T ] t 0 " .Toobtaintheinvarianceforthew e T ] t " ,weneedtoverifytheweak uniformcontinuityin(H5).Infact,wewillprove Forany > 0,thereexists > 0,suchthatforany x 2 B ( M ] " ; r )and t 2 [ t 0 ; t 0 + " 2 ],we have j e T ] t " ( x ) e T ] t 0 " ( x ) j < . Animportantpointhereisthatwewant and tobeindependentof " .Firstwewrite(4.3.88) as Ÿ u ] t = L ] "; P Ÿ u ] + Ÿ r P (Ÿ u ] ) ; (4.3.96) 80 wherefor x 2 X ] ,Ÿ r P ( x ; t ) = r P ( x ) + 1 t 0 e L ] "; P t ] " ( Ÿ P ) + r P ( ] " ( Ÿ P )) [ 1 t 0 e L ] "; P t ] " ( P ) + r P ( ] " ( P ))]. Thenbydirectcalculation,wehave e T ] t " ( x ) e T ] t 0 " ( x ) = e L ] "; P t x e L ] "; P t 0 x + Z t 0 e L ] "; P ( t s ) Ÿ r ( e T ] s " ( x )) ds Z t 0 0 e L ] "; P ( t 0 s ) Ÿ r ( e T ] s " ( x )) ds = Z t t 0 e L ] "; P ( t s ) L ] "; P e L ] "; P t 0 xds + Z t t 0 e L ] "; P ( t s ) Ÿ r ( e T ] s " ( x )) ds + Z t 0 0 ( e L ] "; P ( t s ) e L ] "; P ( t 0 s ) )Ÿ r ( e T ] s " ( x )) ds = Z t t 0 e L ] "; P ( t s ) L ] "; P e L ] "; P t 0 xds + Z t t 0 e L ] "; P ( t s ) L ] "; P Z t 0 0 e L ] "; P ( t 0 ˝ ) Ÿ r ( e T ]˝ " ( x )) d ˝ ds + Z t t 0 e L ] "; P ( t s ) Ÿ r ( e T ] s " ( x )) ds = Z t t 0 e L ] "; P ( t s ) [ L ] "; P e T ] t 0 " ( x ) + Ÿ r ( e T ] s " ( x ))] ds : (4.3.97) Firstnotethat e L ] "; P t isananalyticsemigroup,so k ( L ] "; P ) 1 2 e L ] "; P t 0 k C ( t 0 " 2 ) 1 2 e Ct 0 " 2 = CK 1 2 e CK : Observethat j Ÿ r P ( ; t ) j W 1 ; q " isuniformlyboundedonanyboundedsetin X ] foranytimeperiod, therefore( L ] "; P ) 1 2 e T ] t 0 " ( )isboundedforanyboundedset ˆ X ] .Againweusethefactthat k ( L ] "; P ) 1 2 e L ] "; P ( t s ) k C ( t s " 2 ) 1 2 e C ( t s ) " 2 toobtain j e T ] t " ( x ) e T ] t 0 " ( x ) j C 1 2 e C ; (4.3.98) whichimpliestheweakuniformcontinuityrequiredin(H5). 81 Therefore W cs ] " islocallyinvariantunder e T ] t " .Notethat T ] t " ( x ) = e T ] t " ( x )ifthebasepoint P ( x )is l -awayfromtheboundaryof e k ,whichimpliesthat W cs ] " islocallyinvariantunder T ] t " . Similarly,wecanconstructacenter-unstablemanifold W cu ] " for e T ] t " .Themanifolds W cs ] " and W cu ] " aregraphsoverthestablebundleandunstablebundle,respectively,of M ] " ,bothhaving smallLipschitzconstant.Theintersectionofthesegives f M ] " ,alocallyinvariantmanifoldfor T ] t " inforwardandbackwardtime.Also,since f M ] " isagraphover M ] " ,itmaybewrittenas ] " ( e k ) and ] " ( P ) ] " ( P ) 2 X s "; P X u "; P .Furthermore,sincetheoriginalmeasureofnon-invariance, , isoforder O ( e " ), f M ] " isinan O ( e " )neighborhoodof M ] " inthe X ] ( W 3 ; q " )topology.Then, bytheinjectivityof A 1 2 ,thereexistsalocallyinvariantmanifold f M " = " ( e k )for T t " ,and f M " isinan O ( e " )neighborhoodof M " inthe W 2 ; q " sense.Also,fromthefactthat A 1 2 actingon anyfunctioninitsdomaingivesafunctionwithmean-valuezero,themassofeachstatein " ( P ) is q " forany P 2 e k .However, T t " isthewgeneratedby(4.3.44),wherewethe nonlinearity h .Noticethatwhen q islarge, W 2 ; q " isembeddedinto C 0 ,whichindicatesthat f M " isinan O ( e " )neighborhoodof M " inthe L 1 sense.Therefore, f M " islocallyinvariantunder thewgeneratedbytheoriginalequation(4.3.4).Insummary,wehavethemainresult: Theorem4.3.11. For ,if " issu cientlysmall,thenthereexistsaC m ( e k ; X ) (monlydepends onthesmoothnessofthenonlinearityandtheboundary @ )manifold f M " = " ( e k ) whichis locallyinvariantunderthegeneratedby(4.3.4).Furthermore, f M " liesinaO ( e " ) neighborhoodof M " intheL 1 \ W 2 ; q " sense. Remark 4.3.12 . 1.TheproofofTheorem4.2andtheparallelversionofthecenter-unstable manifoldsin[19]indicatesthat " " 2 C m ( e k ; X )withbounded C m norm,furthermore j " " j C 0 ( e k ; X ) Ce " ; lim " ! 0 j " " j C 1 ( e k ; X ) ! 0 : (4.3.99) 82 2.Roughlyspeaking,Theorem4.3.11yieldsthatmulti-spikestatesexistuntilthespikesattach totheboundaryofthedomainortheycollidewitheachother.Wewillshowinthenext sectionthatthemotionofeachspikeisexponentiallyslow,somulti-spikestatesexistfor verylongpositiveandnegativetime. 4.4Longtimedynamicson f M " Sofar,weconstructedalocallyinvariantmanifold f M " ofinteriormulti-spikestatesfor(4.3.4), suchthataninteriormulti-spikestatemaintainsuntilaspikeattachestotheboundaryofthedomain oracollisionbetweenspikesoccurs.Nowweinvestigatethedynamicson f M " .Bytheinvariance of f M " ,wehavethatforany P 2 e k ,thereexists ˝ " ( P )suchthat D " ( P ) "˝ " ( P ) = " 2 " ( P ) " ( P ) + h ( " ( P )) ; (4.4.1) where D meansthederivativewithrespectto P and "˝ " ( P )isthevelocityvectorofallspikes.Here weincludeafactorof " with ˝ " toeliminatethe 1 " inourcalculationsgeneratedbydi erentiating " . Let Ÿ h " ( P ) = " ( P ) " ( P ) : (4.4.2) Notethat j Ÿ h " ( P ) j C 0 ( e k ; X ) Ce " ; andlim " ! 0 j Ÿ h " ( P ) j C 1 ( e k ; X ) ! 0 : (4.4.3) Recallthat " ( P ) = W "; P e H ( W "; P ),andrewrite(4.4.1)as D " ( P ) "˝ " ( P ) = D " ( P ) + D Ÿ h " ( P ) "˝ " ( P ) = L "; P Ÿ h " + "; P ( x ) ; (4.4.4) 83 where "; P = R "; P + " 2 e H ( W "; P ) e H ( W "; P ) ( h ( W "; P e H ( W "; P ) + Ÿ h " ( P )) h ( W "; P ) h 0 ( e W "; P ) Ÿ h " ( P )) : (4.4.5) Itisclearthat j "; P j L q " ( ) C " 2 e " : (4.4.6) Sofar,weonlyknowlim " ! 0 j D Ÿ h " ( P ) j X ! 0.Inordertogetaestimatefor j D Ÿ h " ( P ) j X ,an expressionfor A 1 2 Ÿ h " ( P )shouldbeobtainedfrom(4.3.52)byusingthenormalhyperbolicity. Reducingtheequation(4.3.52)totheinvariantmanifold f M ] " ,weget D ] " ( P ) "˝ " ( P ) = L ] "; P Ÿ h " ( P ) + ] "; P ( x ) : (4.4.7) Clearly, j ] "; P ( x ) j L q " ( ) C " e " : Ourpurposeistogetanexpressionfor Ÿ h ] " ( P )withoutinvolving D ] " ( P ) ( "˝ " ( P )),sowe considerthefollowingdecomposition L q " = X ? "; P T ] " ( P ) f M ] " ; where T ] " ( P ) f M ] " = f D ] " ( P ) ˝ : ˝ 2 R nk g and X ? "; P = f v 2 L q " ( ): R vD ] " ( P ) ˝ dx = 0forany ˝ 2 R nk g .Thecorrespondingprojectionmap ? "; P for X ? "; P is ? "; P = I D ] " ( P ) D ] " ( P ) + c "; P D Ÿ h ] " ( P ) 1 c "; P = I c "; P I D Ÿ h ] " ( P ) D ] " ( P ) + c "; P D Ÿ h ] " ( P ) 1 c "; P : (4.4.8) 84 By(4.4.3),onecanverifythat ? "; P isanduniformlyboundedforany P andsmall enough " .Since L ] "; p almostleaveseachsubspace X "; P , = c ; s ; u invariant,and T ] " ( P ) f M ] " is verycloseto X c "; P ,itisclearthatthereexists C > 0,independentof P and " ,suchthat j ( ? "; P L ] "; p j X s "; P X u "; P \ D ( L ] "; p ) ) 1 j L ( X ? "; P ; W 4 ; q " ( ) \ D ( L ] "; P )) C " 2 : (4.4.9) Applying ? "; P to(4.4.7)andusingthefactthat Ÿ h ] " ( P ) 2 X s "; P X u "; P ,wehave Ÿ h ] " ( P ) = ( ? "; P L ] "; p j X s "; P X u "; P \ D ( L ] "; p ) ) 1 ? "; P ( ] "; P ) : (4.4.10) Bydirectcomputation,onecancheckthatforsome C independentof P and " , j D ? "; P j L ( L q " ) C ; j D ] "; P j L q " C " e " : Therefore,itfollowsimmediatelyfrom(4.4.10)that j D Ÿ h ] " ( P ) j W 4 ; q " C " e " ; (4.4.11) whichimpliesthat j D Ÿ h " ( P ) j W 3 ; q " C " e " : (4.4.12) Wenowderiveanequationfor ˝ "; P .Since f M " isconstructedwithallpointshavingequal mass,onehas R D " ( P ) dx = 0.Then(4.4.1)canberewrittenas ( ) 1 D " ( P ) + D Ÿ h " ( P ) "˝ " ( P ) = " 2 " ( P ) " ( P ) + h " ( P ) + ˆ " = "; P Ÿ h " ( P ) + ¯ "; P ; (4.4.13) 85 where ˆ " = 1 j j R [ " 2 " ( P ) " ( P ) + h " ( P ) ] dx isaddedtomaketherighthandsideofmean valuezeroasrequiredbyourof( ) 1 and "; P v : = " 2 v v + h 0 ( " ( P )) v and¯ "; P = ( R "; P + " 2 e H ( W "; P ) e H ( W "; P ) ( h ( W "; P e H ( W "; P ) + Ÿ h " ( P )) h ( W "; P ) h 0 ( e W "; P ) Ÿ h " ( P )) + ˆ " . AsinSection4.3.5,( ) 1 actingonamean-valuezerofunction v istobethemean- valuezerosolutionof = v withthehomogeneousNeumannboundarycondition.Notethat " 2 " ( P ) " ( P ) + h " ( P ) = O ( e " ),so ˆ " = O ( e " ). Recallthat " ( P ) = P 1 i k w "; p i e H ,sodirectcomputationyields D " ( P ) = ( w "; p 1 ; ; w "; p k ) D e H ; where r meansthederivativeswithrespectto x .Write P = ( p 1 ; ; p k )and p i = ( p i 1 ; ; p in ), thenlet lm ij = h ( ) 1 " D p ij "; P ; " r x m w "; p l i = h ( ) 1 ( " r x j w "; p i q ij " ) ;" r x m w "; p l i + h ( ) 1 ( q ij " + " D p ij e H " D p ij Ÿ h " ) ;" r x m w "; p l i ; (4.4.14) where q ij " = 1 j j R " r x j w "; p i dx = 1 j j R " D p ij e H " D p ij Ÿ h " dx . Clearly, q ij " = O ( e " )since R " D ij e H " D ij Ÿ h " dx = O ( e " ).Beforeweestimate lm ij ,we provethefollowinglemma.Herewewanttoremindthereadersthat ; isstillthe L 2 " inner productas h f ; g i = R fg " n dx . Lemma4.4.1. Iff ( x ): R n ! R j f ( x ) j + j D i f ( x ) j Ke k j x j foranyx 2 R n ,then j S ( D i f )( x ) j : = j c n R R n ( D i f )( y ) j x y j n 2 dy j C 1 + j x j n 1 foranyx 2 R n ,wherec n = 1 n ( n 2) ! n with ! n thevolumeoftheunitballin R n . 86 Proof. Let B r betheballwithradius r > 0centeredatorigin.Wewrite Z R n ( D i f )( y ) j x y j n 2 dy = Z B R ( D i f )( y ) j x y j n 2 dy + Z R n n B R ( D i f )( y ) j x y j n 2 dy = I R + J R : (4.4.15) Fored x andany y 2 R n n B R with R largeenough,wehave j y jj x y jj x j ; j x y j R j x j : Itfollowsthat j J R j Ke k j x j Z R n n B R e x y j j x y j n 2 dy Ke k j x j Z 1 R x j e kr rdr = K k e 2 k j x j e 2 kR ( 1 k + R j x j ) ; (4.4.16) whichindicatesthat lim R !1 J R = 0 : (4.4.17) Write y = + y i e i where = P j , i y j e j and e j isthecanonicalbasisof R n .Then,withanintegration byparts,wehave I R = Z j j < R Z q R 2 j 2 q R 2 j 2 ( D i f )( + y i e i ) j + y i e i x j n 2 dy i d = Z j j < R f ( + p R 2 j j 2 e i ) j + p R 2 j j 2 e i x j n 2 f ( p R 2 j j 2 e i ) j p R 2 j j 2 e i x j n 2 d + ( n 2) Z j j < R Z q R 2 j 2 q R 2 j 2 f ( + y i e i )( + y i e i x ) e i j + y i e i x j n dy i = I a R + I b R : (4.4.18) 87 Since j f ( y i e i ) j Ke kR and j y i e i x jj R jj x j ,onehas I a R 2 K e kR ( R j x j ) n 2 ! n R n 1 ; (4.4.19) andso lim R !1 I a R = 0 : (4.4.20) Bydirectcomputation,wehave j I b R j = ( n 2) Z B R f ( y )( y x ) e i j y x j n dy ( n 2) Z B R j f ( y ) j j y x j n 1 dy ( n 2) Z R n j f ( y ) j j y x j n 1 dy : (4.4.21) Combining(4.4.17),(4.4.20)and(4.4.21),wehave Z R n ( D i f )( y ) j x y j n 2 dy ( n 2) Z R n j f ( y ) j j y x j n 1 dy : (4.4.22) Wenowestimate R R n j f ( y ) j j y x j n 1 dy .Weconsiderthecase j x j 1.Since j y jj x y jj x j ,wehave Z R n j f ( y ) j j x y j n 1 dy K Z R n e k j y j j x y j n 1 dy Ke k j x j Z R n e k j x y j j x y j n 1 dy Ke k Z R n e k j x y j j x y j n 1 dy = C 0 ; (4.4.23) where C 0 = Ke k R R n e k j y j j y j n 1 dy .Assumenow j x j > 1,let B r ( x )betheballcenteredat x withradius 88 r ,thenwrite Z R n j f ( y ) j j x y j n 1 dy = Z B j x j = 2 ( x ) j f ( y ) j j x y j n 1 dy + Z R n n B j x j = 2 ( x ) j f ( y ) j j x y j n 1 dy = I + II : (4.4.24) Weestimate I Ke k j x j 2 Z B j x j = 2 ( x ) 1 j x y j n 1 dy = ! n Ke k j x j 2 j x j 2 = 1 2 ! n K j x j n e k j x j 2 j x j ( n 1) C j x j ( n 1) ; (4.4.25) and II ( j x j 2 ) ( n 1) Z R n n B j x j = 2 ( x ) j f ( y ) j dy ( j x j 2 ) ( n 1) Z R n j f ( y ) j dy C j x j ( n 1) : (4.4.26) Then,thedesiredresultfollowsdirectly. Lemma4.4.2. Assume ˆ R n isasmoothboundedconnectedopenset.Let ‹ L 2 ( ) bethesubset ofL 2 ( ) ofthefunctionswithmean-valuezero.Then,foreachf 2 ‹ L 2 ,thereisauniquesolution ¯ uwithmean-valuezerooftheproblem 8 > > > > > > > < > > > > > > > : u = f ( x ) ; in ; @ u @ n = 0 ; on @ : Moreover,thereexitsaNeumannfunction(sometimescalledsecondtypeofGreen'sfunction) 89 N : nf ( x ; x ): x 2 g! R suchthat ¯ u ( x ) = (( ) 1 f )( x ) = Z N ( x ; y ) f ( y ) dy : (4.4.27) Forn 3 ,theNeumannfunctionisoftheform N ( x ; y ) = G ( x ; y ) + ˚ ( x ; y ) ; (4.4.28) whereG ( x ; y ) = j x y j 2 n n ( n 2) ! n and ˚ ( x ; y ): ! R issmooth. Proof. OnecantheproofofthisLemmain[85],wheretheyconstructanNeumannfunction for n = 3.Thesameargumentisvalidingeneral. Lemma4.4.3. lm ij = C " 2 + O ( " n + 1 ) ; ifi = l ; j = m ; lm ij = O ( " n + 1 ) ; ifi = l ; j , m ; lm ij = O ( " n + 1 n 1 ) ; ifi , l ; (4.4.29) whereC isapositiveconstantbelow. Proof. Since N ( x ; y ) ˘j x y j 2 n ,wehave R R j N ( x ; y ) j dydx C .Combiningthiswiththe factthat q ij " ;" D p ij e H ;" D p ij Ÿ h " ) = O ( e " ),itfollowsthatwecanignorethecontributionofthese terms.Thereforeitissu cienttoestimate Z N ( x ; y ) " r x j w "; p i ( y ) dy " r x m w "; p l ( x ) dx : (4.4.30) 90 Let r i w ( x ) = @ w @ x i ,thenonehas " r x j w "; p i ( y ) dy = r j w ( x p i " ).ByLemma4.4.2,wehave Z N ( x ; y ) " r x j w "; p i ( y ) dy = Z N ( x ; y ) r j w ( y p i " ) dy = c n Z 1 j x y j n 2 r j w ( y p i " ) dy + Z ˚ ( x ; y ) r j w ( y p i " ) dy = I ij + J ij : (4.4.31) Changingvariablesbysetting y = " z + p i ,wehave I ij = c n " 2 Z i " r j w ( z ) j x p i " z j n 2 dz = c n " 2 Z R n r j w ( z ) j x p i " z j n 2 dz c n " 2 Z R n n i " r j w ( z ) j x p i " z j n 2 dz = I a ij + I b ij ; (4.4.32) where i " = f z : p i + " z 2 g .Weestimate j I b ij j c n " 2 Z R n n i " \fj x p i " z 1 g jr j w ( z ) j j x p i " z j n 2 dz + c n " 2 Z R n n i " \fj x p i " z j > 1 g jr j w ( z ) j j x p i " z j n 2 dz C " 2 e " Z j ˘ 1 1 j ˘ j n 2 d ˘ + C n " 2 Z j z j > 2 " jr j w ( z ) j dz = O ( e " ) : (4.4.33) 91 Toestimate J ij ,wewrite J ij = Z B 2 ( p i ) ˚ ( x ; y ) r j w ( y p i " ) dy + Z n B 2 ( p i ) ˚ ( x ; y ) r j w ( y p i " ) dy = J a ij + J b ij : (4.4.34) Since r j w ( x )isoddin x j ,wehave R B 2 ( p i ) r j w ( y p i " ) dy = 0.Itfollowsthat j J a ij j = j Z B 2 (0) ( ˚ ( x ; z + p i ) ˚ ( x ; p i )) r j w ( z " ) dz j C Z B 2 (0) j z j e C j z j " dz = Cnw n " n + 1 Z 2 " 0 s n e Cs ds C " n + 1 : (4.4.35) Also,onecanestimate j J b ij j Ce " Z j ˚ ( x ; y ) j dy = O ( e " ) : (4.4.36) Let N ij ( x ) = R N ( x ; y ) " r x j w "; p i ( y ) dy = R N ( x ; y ) r j w ( y p i " ) dy .For i , l ,recallthat j p i p l j > and d ( p l ;@ ) 2 ,therefore,forany x 2 B 2 ( p l ),wehave j x p i j 2 .FromthisandusingLemma 4.4.1,wehave 92 j Z N ij ( x ) r m w ( x p l " ) dx j j Z B 2 ( p l ) N ij ( x ) r m w ( x p l " ) dx j + j Z n B 2 ( p l ) N ij ( x ) r m w ( x p l " ) dx j C " 2 ( " ) n 1 Z B 2 ( p l ) jr m w ( x p l " ) j dx + Ce " Z n B 2 ( p l ) j N ij ( x ) j dx C n 1 " 2 n + 1 + Ce " ( Z B 2 ( p i ) j N ij ( x ) j dx + Z n ( B 2 ( p l ) [ B 2 ( p i ) j N ij ( x ) j dx C n 1 " 2 n + 1 + Ce " " n + 1 + C n 1 e " " n + 1 = O ( " 2 n + 1 n 1 ) : (4.4.37) For i = l ; j , m ,westartwith j Z N ij ( x ) r m w ( x p l " ) dx jj Z I a ij r m w ( x p l " ) dx j + j Z ( I b ij + J b ij ) r m w ( x p l " ) dx j + j Z J a ij r m w ( x p l " ) dx j : Since I a ij ( x + p i )isoddin x j and r m w isoddin x m ,wehave j Z I a ij r m w ( x p l " ) dx j = j Z B 2 ( p i ) I a ij r m w ( x p l " ) dx + Z n B 2 ( p i ) I a ij r m w ( x p l " ) dx j = j Z n B 2 ( p i ) I a ij r m w ( x p l " ) dx j C " n + 1 n 1 e " : (4.4.38) 93 Onecanalsoeasilycheckthat j Z ( I b ij + J b ij ) r m w ( x p l " ) dx j Ce " " n ; j Z J a ij r m w ( x p l " ) dx j C " 2 n + 1 : (4.4.39) Therefore,wehavefor i = l ; j , m , Z N ij ( x ) r m w ( x p l " ) dx = O ( " 2 n + 1 ) : (4.4.40) Finally,weconsiderthecase i = l ; j = m .Wewrite Z N ij ( x ) r j w ( x p i " ) dx = Z I a ij r j w ( x p i " ) dx + Z ( I b ij + J b ij ) r j w ( x p i " ) dx + Z J a ij r j w ( x p i " ) dx : (4.4.41) Wecompute Z I a ij r j w ( x p i " ) dx = Z B 2 ( p i ) I a ij r j w ( x p i " ) dx + Z n B 2 ( p i ) I a ij r j w ( x p i " ) dx : (4.4.42) Onecancheckbydirectcomputationthat Z B 2 ( p i ) I a ij r j w ( x p i " ) dx = c n " 2 Z B 2 ( p i ) Z R n r j w ( z ) j x p i " z j n 2 dz r j w ( x p i " ) dx = c n " n + 2 Z B 2 " (0) Z R n r j w ( z ) j y z j n 2 dz r j w ( y ) dy = C " n + 2 ; (4.4.43) 94 where C = c n R B 2 " (0) R R n r j w ( z ) j y z j n 2 dz r j w ( y ) dy .Alsowehave j Z ( I b ij + J b ij ) r j w ( x p i " ) dx j Ce " " n ; j Z J a ij r j w ( x p i " ) dx j C " 2 n + 1 : (4.4.44) Thenthedesiredresultfollowsdirectly. Takingtheinnerproductof(4.4.13)with x j w "; p i for i = 1 ; ; k and j = 1 ; ; n ,wegeta linearsystemconsistingof nk equationswhichcanbewrittenas "; P ˝ "; P = "; P ; (4.4.45) where "; P = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 11 11 11 1 n 11 k 1 11 kn : : : : : : : : : : : : : : : : : : : : : : : : 1 n 11 1 n 1 n 1 n k 1 1 n kn : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : k 1 11 k 1 1 n k 1 k 1 k 1 kn : : : : : : : : : : : : : : : : : : : : : : : : kn 11 kn 1 n kn k 1 kn kn 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 ; 95 and "; P = 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 h "; P Ÿ h " ( P ) + ¯ "; P ; " r x 1 w "; p 1 i : : : h "; P Ÿ h " ( P ) + ¯ "; P ; " r x n w "; p 1 i : : : : : : h "; P Ÿ h " ( P ) + ¯ "; P ; " r x 1 w "; p k i : : : h "; P Ÿ h " ( P ) + ¯ "; P ; " r x n w "; p k i 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5 : Since "; P isself-adjointand¯ "; P = O ( e " ),oneimmediatelyhas "; P = O ( e " ) : ByLemma(4.4.3),onethat "; P isadiagonallydominantmatrix,whichimpliesthat "; P isinvertible.Thus ˝ "; P canbeexpressedas ˝ "; P = ( "; P ) 1 "; P ; (4.4.46) andso j ˝ " ( P ) j = O " 2 e " : (4.4.47) Remark 4.4.4 . Oncethematrix "; P hasbeencomputed,equation(4.4.46)determinesthecom- pletedynamicsofthespikesontheinvariantmanifold.Althoughentriesof "; P mayhavedi erent exponentialrates,eachentryofthematrix "; P isoforder " tosomepower,therefore "; P mixes alltheentriesof "; P together,whichyieldsthattheinteriormulti-spikedynamicsoftheCahn- 96 Hilliardequationhasaglobalcharacterwherenotonlytheclosestspikesinteractbuteachspike interactswithalltheothersandwiththeboundary. 97 BIBLIOGRAPHY 98 BIBLIOGRAPHY [1]Adimurthi,G.Mancini,andS.L.Yadava, Theroleofthemeancurvatureinsemilinear Neumannprobleminvolvingcriticalexponent:Probleminvolvingcriticalexponent ,Com- municationsinPartialDi erentialEquations 20 (1995),no.3-4,591Œ631. [2]Adimurthi,F.Pacella,andS.L.Yadava, Interactionbetweenthegeometryoftheboundary andpositivesolutionsofasemilinearneumannproblemwithcriticalnonlinearity ,Journal ofFunctionalAnalysis 113 (1993),no.2,318Œ350. [3] , CharacterizationofconcentrationpointsandL 1 -estimatesforsolutionsofasemi- linearNeumannprobleminvolvingthecriticalSobolevexponent ,Di erentialandIntegral Equations 8 (1995),no.1,41Œ68. [4]N.D.Alikakos,P.W.Bates,andG.Fusco, SlowmotionfortheCahnŒHilliardequationin onespacedimension ,JournalofDi erentialEquations 90 (1991),no.1,81Œ135. [5]N.D.Alikakos,X.Chen,andG.Fusco, Motionofadropletbysurfacetensionalongthe boundary ,CalculusofVariationsandPartialDi erentialEquations 11 (2000),no.3,233Œ 305. [6]N.D.AlikakosandG.Fusco, SlowdynamicsfortheCahnŒHilliardequationinhigherspace dimensionpartI:spectralestimates ,CommunicationsinPartialDi erentialEquations 19 (1994),no.9-10,1397Œ1447. [7] , SlowdynamicsfortheCahnŒHilliardequationinhigherspacedimensions:the motionofbubbles ,ArchiveforRationalMechanicsandAnalysis 141 (1998),no.1,1Œ61. [8]N.D.Alikakos,G.Fusco,andV.Stefanopoulos, Criticalspectrumandstabilityofinterfaces foraclassofreactionŒdi usionequations ,JournalofDi erentialEquations 126 (1996), no.1,106Œ167. [9]S.M.AllenandJ.W.Cahn, Amicroscopictheoryforantiphaseboundarymotionandits applicationtoantiphasedomaincoarsening ,ActaMetallurgica 27 (1979),no.6,1085Œ 1095. [10]J.M.Ball, Saddlepointanalysisforanordinarydi erentialequationinabanachspace,and anapplicationtodynamicbucklingofabeam ,Nonlinearelasticity(1973),93Œ160. 99 [11]PeterW.Bates,KeningLu,andChongchunZeng, Existenceandpersistenceofinvariant manifoldsforinBanachspace ,Mem.Amer.Math.Soc. 135 (1998),no.645, viii + 129. [12]P.W.Bates,E.N.Dancer,andJ.Shi, Multi-spikestationarysolutionsoftheCahnŒHilliard equationinhigher-dimensionandinstability ,AdvancesinDi erentialEquations 4 (1999), no.1,1Œ69. [13]P.W.BatesandP.C.Fife, SpectralcomparisonprinciplesfortheCahnŒHilliardandphase- equations,andtimescalesforcoarsening ,PhysicaD:NonlinearPhenomena 43 (1990), no.2,335Œ348. [14]P.W.BatesandG.Fusco, EquilibriawithmanynucleifortheCahnŒHilliardequation ,Jour- nalofDi erentialEquations 160 (2000),no.2,283Œ356. [15]P.W.BatesandJ.Jin, Globaldynamicsofboundarydroplets ,DiscreteandContinuousDy- namicalSystems 34 (2014),no.1,1Œ17. [16]P.W.BatesandC.K.R.T.Jones, Invariantmanifoldsforsemilinearpartialdi erential equations ,Dynamicsreported,Vol.2,Dynam.Report.Ser.Dynam.SystemsAppl.,vol.2, Wiley,Chichester,1989,pp.1Œ38. [17]P.W.Bates,K.Lu,andC.Zeng, Persistenceofomanifoldsfor ,Com- municationsonPureandAppliedMathematics 52 (1999),no.8,983Œ1046. [18] , Invariantfoliationsnearnormallyhyperbolicinvariantmanifoldsfor , TransactionsoftheAmericanMathematicalSociety 352 (2000),no.10,4641Œ4676. [19] , Approximatelyinvariantmanifoldsandglobaldynamicsofspikestates ,Inven- tionesMathematicae 174 (2008),no.2,355Œ433. [20]P.W.BatesandJ.Shi, Existenceandinstabilityofspikelayersolutionstosingularpertur- bationproblems ,JournalofFunctionalAnalysis 196 (2002),no.2,211Œ264. [21]P.W.BatesandJ.Xun, MetastablepatternsfortheCahnŒHilliardequation,partI ,Journal ofDi erentialEquations 111 (1994),no.2,421Œ457. [22] , MetastablepatternsfortheCahnŒHilliardequation:PartII.Layerdynamicsand slowinvariantmanifold ,JournalofDi erentialEquations 117 (1995),no.1,165Œ216. 100 [23]H.BerestyckiandP-L.Lions, Nonlinearscalarequations,Iexistenceofagroundstate , ArchiveforRationalMechanicsandAnalysis 82 (1983),no.4,313Œ345. [24]N.BogoliubovandN.Krylov, Theapplicationofmethodsofnonlinearmechanicsinthe theoryofstationaryoscillations ,Publ.8oftheUkrainianAcad,Sci.Kiev(1934). [25]N.N.BogoliubovandY.A.Mitropolsky, Asymptoticmethodsinthetheoryofnon-linear oscillations ,TranslatedfromthesecondrevisedRussianedition.InternationalMonographs onAdvancedMathematicsandPhysics,HindustanPublishingCorp.,Delhi,Gordonand BreachSciencePublishers,NewYork,1961. [26]A.Burchard,B.Deng,andK.Lu, Smoothconjugacyofcentremanifolds ,Proceedingsof theRoyalSocietyofEdinburgh 120A (1992),no.1-2,61Œ77. [27]J.W.Cahn, Onspinodaldecomposition ,ActaMetallurgica 9 (1961),no.9,795Œ801. [28]J.W.CahnandJ.E.Hilliard, Freeenergyofanonuniformsystem.I.Interfacialfreeenergy , TheJournalofChemicalPhysics 28 (1958),no.2,258Œ267. [29]J.Carr, Applicationsofcentremanifoldtheory ,AppliedMathematicalSciences,vol.35, Springer-Verlag,NewYork-Berlin,1981. [30]J.Carr,M.E.Gurtin,andM.Slemrod, Structuredphasetransitionsonainterval , ArchiveforRationalMechanicsandAnalysis 86 (1984),no.4,317Œ351. [31]J.CarrandR.L.Pego, Metastablepatternsinsolutionsofu t = " 2 u xx f ( u ),Communica- tionsonPureandAppliedMathematics 42 (1989),no.5,523Œ576. [32] , Invariantmanifoldsformetastablepatternsinu t = " 2 u xx f ( u ),Proceedingsof theRoyalSocietyofEdinburgh:SectionAMathematics 116 (1990),no.1-2,133Œ160. [33]X.ChenandM.Kowalczyk, ExixtanceofequilibriafortheCahn-Hilliardequationvialocal minimizersoftheperimeter ,CommunicationsinPartialDi erentialEquations 21 (1996), no.7-8,1207Œ1233. [34]S.-N.Chow,W.Liu,andY.Yi, Centermanifoldsforsmoothinvariantmanifolds ,Trans. Amer.Math.Soc. 352 (2000),no.11,5179Œ5211. [35]S.-N.ChowandK.Lu, Invariantmanifoldsforinbanachspaces ,JournalofDi eren- tialEquations 74 (1988),no.2,285Œ317. 101 [36]E.N.Dancer, Somemountain-passsolutionsforsmalldi usion ,Di erentialandIntegral Equations 16 (2003),no.8,1013Œ1024. [37]E.N.DancerandS.Yan, Asingularlyperturbedellipticprobleminboundeddomainswith nontrivialtopology ,AdvancesinDi erentialEquations 4 (1999),no.3,347Œ368. [38]E.DeGiorgiandT.Franzoni, Suuntipodiconvergenzavariazionale ,AttiAccad.Naz. LinceiRend.Cl.Sci.Fis.Mat.Natur. 58 (1975),no.6,842Œ850. [39]M.DelPino,P.L.Felmer,andJ.Wei, Ontheroleofmeancurvatureinsomesingularly perturbedneumannproblems ,SIAMJournalonMathematicalAnalysis 31 (1999),no.1, 63Œ79. [40]S.P.Diliberto, PerturbationtheoremsforperiodicsurfacesI-andmaintheorems , RendicontidelCircoloMatematicodiPalermo 9 (1960),no.3,265Œ299. [41]N.Fenichel, Persistenceandsmoothnessofinvariantmanifoldsfor ,IndianaUniversity MathematicJournal 21 (1971),no.193-226,1972. [42] , Asymptoticstabilitywithrateconditions ,IndianaUniversityMathematicJournal 23 (1973),no.1109-1137,74. [43] , Asymptoticstabilitywithrateconditionsii ,IndianaUniversityMathematicsJour- nal 26 (1977),no.1,81Œ93. [44]A.FloerandA.Weinstein, NonspreadingwavepacketsforthecubicSchr¨odingerequation withaboundedpotential ,JournalofFunctionalanalysis 69 (1986),no.3,397Œ408. [45]G.FuscoandJ.K.Hale, Slow-motionmanifolds,dormantinstability,andsingularpertur- bations ,JournalofDynamicsandDi erentialEquations 1 (1989),no.1,75Œ94. [46]C.GuiandJ.Wei, MultipleinteriorpeaksolutionsforsomesingularlyperturbedNeumann problems ,JournalofDi erentialEquations 158 (1999),no.1,1Œ27. [47] , Onmultiplemixedinteriorandboundarypeaksolutionsforsomesingularlyper- turbedNeumannproblems ,CanadianJournalofMathematics 52 (2000),no.3,522Œ538. [48]C.Gui,J.Wei,andM.Winter, Multipleboundarypeaksolutionsforsomesingularlyper- turbedNeumannproblems ,Annalesdel'InstitutHenriPoincare(C)NonLinearAnalysis, vol.17,Elsevier,2000,pp.47Œ82. 102 [49]J.Hadamard, Surl'it´erationetlessolutionsasymptotiquesdes´equationsdi ´erentielles , Bull.Soc.Math.France 29 (1901),224Œ228. [50]J.K.Hale, Integralmanifoldsofperturbeddi erentialsystems ,Ann.ofMath.(2) 73 (1961), 496Œ531. [51]D.Henry, Geometrictheoryofsemilinearparabolicequations ,LectureNotesinMathemat- ics,vol.840,Springer-Verlag,Berlin-NewYork,1981. [52]M.W.Hirsch,C.C.Pugh,andM.Shub, Invariantmanifolds ,LectureNotesinMathematics, Vol.583,Springer-Verlag,Berlin-NewYork,1977. [53]M.W.Hirsch,C.C.Pugh,andM.Shub, Invariantmanifolds ,BulletinoftheAmerican MathematicalSociety 76 (1970),no.5,1015Œ1019. [54]M.W.HirschandC.C.Pugh, Stablemanifoldsandhyperbolicsets ,GlobalAnalysis(Proc. Sympos.PureMath.,Vol.XIV,Berkeley,Calif.,1968),Amer.Math.Soc.,Providence,R.I., 1970,pp.133Œ163. [55]G.A.Hu ord, Banachspacesandtheperturbationofordinarydi erentialequations ,Ph.D. thesis,PrincetonUniversity,1953. [56]M.C.Irwin, Onthestablemanifoldtheorem ,BulletinoftheLondonMathematicalSociety 2 (1970),no.2,196Œ198. [57]J.Jang, Onspikesolutionsofsingularlyperturbedsemilineardirichletproblem ,Journalof Di erentialEquations 114 (1994),no.2,370Œ395. [58]A.Kelley, Thestable,center-stable,center,center-unstable,unstablemanifolds ,Journalof Di erentialEquations 3 (1967),no.4,546Œ570. [59]M.Kowalczyk, MultiplespikelayersintheshadowGierer-Meinhardtsystem:existenceof equilibriaandthequasi-invariantmanifold ,DukeMathematicalJournal 98 (1999),no.1, 59Œ111. [60]J.Kurzweil, Invariantmanifoldsfor ,Di erentialEquationsandTheirApplications (1967),89Œ92. [61]W.T.Kyner, Apointtheorem ,Contributionstothetheoryofnonlinearoscillations, vol.3,AnnalsofMathematicsStudies,no.36,PrincetonUniversityPress,Princeton,N.J., 1956,pp.197Œ205. 103 [62]N.Levinson, Smallperiodicpertubationsofanautonomoussystemwithastableorbit , AnnalsofMathematics 52 (1950),no.3,727Œ738. [63]Y.Li, Onasingularlyperturbedequationwithneumannboundarycondition ,Communica- tionsinPartialDi erentialEquations 23 (1998),no.3-4,487Œ545. [64]C.-S.Lin,W.-M.Ni,andI.Takagi, Largeamplitudestationarysolutionstoachemotaxis system ,JournalofDi erentialEquations 72 (1988),no.1,1Œ27. [65]A.Lyapunov, Probl˚emeG´en´eraldelaStabilit´eduMouvement ,AnnalsofMathematics Studies,no.17,PrincetonUniversityPress,Princeton,N.J.;OxfordUniversityPress,Lon- don,1947. [66]R.Ma Ÿ n ´ e, Persistentmanifoldsarenormallyhyperbolic ,Trans.Amer.Math.Soc. 246 (1978),261Œ283. [67]J.MarsdenandJ.Scheurle, Theconstructionandsmoothnessofinvariantmanifoldsbythe deformationmethod ,SIAMJournalonMathematicalAnalysis 18 (1987),no.5,1261Œ1274. [68]AlexanderMielke, HamiltonianandLagrangianoncentermanifolds ,LectureNotes inMathematics,vol.1489,Springer-Verlag,Berlin,1991,Withapplicationstoellipticvari- ationalproblems. [69]L.Modica, Gradienttheoryofphasetransitionandsingularperturbation ,ArchiveforRa- tionalMechanicsandAnalysis 98 (1986),123Œ142. [70]L.ModicaandS.Mortola, Unesempiodi -convergenza ,Boll.Un.Mat.Ital.B 14 (1977), no.1,285Œ299. [71]W.-M.NiandI.Takagi, OntheNeumannproblemforsomesemilinearellipticequations andsystemsofactivator-inhibitortype ,TransactionsoftheAmericanMathematicalSociety 297 (1986),no.1,351Œ368. [72]W-MNiandI.Takagi, Ontheshapeofleast-energysolutionstoasemilinearNeumann problem ,CommunicationsonPureandAppliedMathematics 44 (1991),no.7,819Œ851. [73] , Locatingthepeaksofleast-energysolutionstoasemilinearNeumannproblem , DukeMathematicalJournal 70 (1993),no.2,247Œ281. 104 [74]W.-M.NiandJ.Wei, Onthelocationandprofspike-layersolutionstosingularlyper- turbedsemilinearDirichletproblems ,CommunicationsonPureandAppliedMathematics 48 (1995),no.7,731Œ768. [75]Y.-G.Oh, ExistenceofsemiclassicalboundstatesofnonlinearSchr¨odingerequationswith potentialsoftheclass ( V ) a ,CommunicationsinPartialDi erentialEquations 13 (1988), no.12,1499Œ1519. [76] , Onpositivemulti-lumpboundstatesofnonlinearSchr¨odingerequationsunder multiplewellpotential ,CommunicationsinMathematicalPhysics 131 (1990),no.2,223Œ 253. [77]N.C.OwenandP.Sternberg, Gradientandfrontpropagationwithboundarycontact energy ,Proc.Roy.Soc.LondonSer.A 437 (1992),no.1901,715Œ728. [78]O.Perron, ¨ Uberstabilit¨atundasymptotischesverhaltenderintegralevondi erentialgle- ichungssystemen ,MathematischeZeitschrift 29 (1929),no.1,129Œ160. [79] , Diestabilit¨atsfragebeidi erentialgleichungen ,MathematischeZeitschrift 32 (1930),no.1,703Œ728. [80]OskarPerron, ¨ Uberstabilit¨atundasymptotischesVerhaltenderl¨osungeneinessystems endlicherDi erenzengleichungen ,Journalf ¨ urdiereineundangewandteMathematik 161 (1929),41Œ64. [81]V.A.Pliss, Areductionprincipleinthetheoryofstabilityofmotion ,IzvestiyaRossiiskoi AkademiiNauk.SeriyaMatematicheskaya 28 (1964),no.6,1297Œ1324. [82]V.A.PlissandG.R.Sell, Perturbationsofattractorsofdi erentialequations ,J.Di erential Equations 92 (1991),no.1,100Œ124. [83]J.Sijbrand, Propertiesofcentermanifolds ,TransactionsoftheAmericanMathematical Society 289 (1985),no.2,431Œ469. [84]S.Smale, Di erentiabledynamicalsystems ,BulletinoftheAmericanmathematicalSociety 73 (1967),no.6,747Œ817. [85]P.Sternberg, Thee ectofasingularperturbationonnon-convexvariationalproblems , ArchiveforRationalMechanicsandAnalysis 101 (1988),no.3,209Œ260. 105 [86]A.Vanderbauwhede, Centremanifolds,normalformsandelementarybifurcations ,Dynam- icsreported,Vol.2,Dynam.Report.Ser.Dynam.SystemsAppl.,vol.2,Wiley,Chichester, 1989,pp.89Œ169. [87]A.VanderbauwhedeandG.Iooss, Centermanifoldtheoryindimensions ,Dynamics reported:expositionsindynamicalsystems,Dynam.Report.ExpositionsDynam.Systems (N.S.),vol.1,Springer,Berlin,1992,pp.125Œ163. [88]A.VanderbauwhedeandS.VanGils, Centermanifoldsandcontractionsonascaleofba- nachspaces ,JournalofFunctionalAnalysis 72 (1987),no.2,209Œ224. [89]X.Wang, OnconcentrationofpositiveboundstatesofnonlinearSchr¨odingerequations , CommunicationsinMathematicalPhysics 153 (1993),no.2,229Œ244. [90]Zhi-QiangWang, Ontheexistenceofmultiple,single-peakedsolutionsforasemilinear Neumannproblem ,ArchiveforRationalMechanicsandAnalysis 120 (1992),no.4,375Œ 399. [91]Z.Q.Wang, RemarksonanonlinearNeumannproblemwithcriticalexponent ,Houston JournalofMathematics 120 (1992),no.4,375Œ399. [92] , Thee ectofthedomaingeometryonthenumberofpositivesolutionsofNeumann problemswithcriticalexponents ,Di erentialandIntegralEquations 8 (1995),no.6,1533Œ 1554. [93]C.E.Wayne, Invariantmanifoldsforparabolicpartialdi erentialequationsonunbounded domains ,ArchiveforRationalMechanicsandAnalysis 138 (1997),no.3,279Œ306. [94]J.Wei, OntheboundaryspikelayersolutionstoasingularlyperturbedNeumannproblem , JournalofDi erentialEquations 134 (1997),no.1,104Œ133. [95] , OnsingleinteriorspikesolutionsoftheGiererŒMeinhardtsystem:uniquenessand spectrumestimates ,EuropeanJournalofAppliedMathematics 10 (1999),no.04,353Œ378. [96]J.WeiandM.Winter, OnthestationaryCahnŒHilliardequation:interiorspikesolutions , JournalofDi erentialEquations 148 (1998),no.2,231Œ267. [97] , StationarysolutionsfortheCahn-Hilliardequation ,Annalesdel'InstitutHenri Poincare(C)NonLinearAnalysis,vol.15,Elsevier,1998,pp.459Œ492. 106 [98] , Multi-peaksolutionsforawideclassofsingularperturbationproblems ,Journal oftheLondonMathematicalSociety 59 (1999),no.02,585Œ606. [99] , Multi-interior-spikesolutionsfortheCahnŒHilliardequationwitharbitrarily manypeaks ,CalculusofVariationsandPartialDi erentialEquations 10 (2000),no.3, 249Œ289. [100]Y.Yi, Ageneralizedintegralmanifoldtheorem ,J.Di erentialEquations 102 (1993),no.1, 153Œ187. 107