
INVARIANT MANIFOLD THEORY AND ITS APPLICATIONS TO NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS

By

Jiayin Jin

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mathematics - Doctor of Philosophy

2015



ABSTRACT

INVARIANT MANIFOLD THEORY AND ITS APPLICATIONS TO NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS

By

Jiayin Jin

The theory of invariant manifolds and foliations provides indispensable tools for the study of

dynamics of nonlinear systems in finite or infinite dimensional space. As is the case here, invariant

manifolds can be used to capture complex dynamics and the long term behavior of solutions and

to reduce high dimensional problems to the analysis of lower dimensional structures. Invariant

manifolds with invariant foliations provide a coordinate system in which systems of differential

equations may be decoupled and normal forms derived. These play an important role in the study

of structural stability of dynamical systems or, when a degeneracy occurs, in understanding the

nature of bifurcations. This thesis is devoted to the study of the construction of invariant manifolds

of solutions with certain spatial structures to some nonlinear parabolic partial differential equations.

I approach these problems in two steps: the first step is to construct a manifold of states that is

approximately invariant, the second step is to show the existence of a truly invariant manifold of

these states near the approximately invariant one, and to determine the dynamics on this manifold.

Since this approach may be applied to many different systems, I also develop it in an abstract or

general way, extending earlier results of [19].

My thesis consists of two projects, in the first project, we consider the two-dimensional mass-

conserving Allen-Cahn Equation,


φt(x, t) = ε2∆φ(x, t) − f (φ(x, t)) +

>
Ω

f (φ(·, t)), x ∈ Ω, t > 0,

∂nφ(x, t) = 0, x ∈ ∂Ω, t > 0,

(0.0.1)



where Ω ⊂ R2 is a fixed bounded domain with smooth boundary ∂Ω, ∂n is the exterior normal

derivative to ∂Ω, and
>
Ω

= 1
|Ω|

∫
Ω

means the average over Ω. Here f is the derivative of a double

well potential W. We assume the following conditions for f :

f (±1) = 0, f ′(±1) > 0,
∫ s

−1
f =

∫ s

1
f > 0 for all s ∈ (−1, 1). (0.0.2)

We establish the existence of a global invariant manifold of bubble states for this equation and give

the dynamics for the center of the bubble.

In the second project, we consider the existence, in forward and backward time, of dynamical

interior multi-spike states driven by the nonlinear Cahn-Hilliard equation:


ut = −∆(ε2∆u − f (u)) in Ω × (0,∞),

∂n∆u = ∂nu = 0 on ∂Ω × (0,∞),

(0.0.3)

where Ω ⊂ Rn is a fixed bounded domain with smooth boundary ∂Ω and f is the derivative of

a double well potential W, that is , x f (x) > 0 for |x| large enough and f has two zeros a and

b such that f ′(a), f ′(b) > 0. We construct invariant manifolds of interior multi-spike states for

the nonlinear Cahn-Hilliard equation and then investigate the dynamics on it. An equation for

the motion of the spikes is also derived. It turns out that the dynamics of interior spikes has a

global character and each spike interacts with all the others and with the boundary. Moreover, we

show that the speed of the interior spikes is super slow, which indicates the long time existence of

dynamical multi-spike solutions in both positive and negative time.
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Chapter 1

Introduction

In dynamical systems, an invariant manifold is a manifold that is invariant under a map or a flow

(or semiflow). For instance, a fixed point or periodic orbit of an ordinary differential equation is

an invariant manifold for the flow generated by that ODE. The theory of invariant manifolds for

discrete and continuous dynamical systems has a long and rich history. Numerous applications can

be found where answers to the following questions are needed: 1) Assuming that a dynamical sys-

tem has an invariant manifold, does a perturbation of this system also have an invariant manifold?

2)When a dynamical system has an invariant manifold, how does one construct locally invariant

structures such as the center-stable, center-unstable manifold, and center manifold of the original

invariant manifold and invariant foliations of these, which essentially decouple the dynamics.

For the case of the invariant manifold consisting of a single fixed point, Hadamard [49] con-

structed the unstable manifold of a hyperbolic fixed point of a diffeomorphism of the plane by

iterating the mapping applied to a curve in the plane, therefore obtaining a convergent sequence

of curves. The limit of the sequence of curves gives the unstable manifold. People now call

this geometric approach Hadamard’s graph transform. Lyapunov [65] and Perron [78, 79, 80]

constructed the unstable manifold of an equilibrium point by formulating the problem as an in-

tegral equation. This method is analytic rather than geometric and now is called Lyapunov-

Perron method. There is an extensive literature on the stable, unstable, center, center-stable,

and center-unstable manifolds of equilibrium points for both finite and infinite dimensional dy-

namical systems. The general theory for finite dimensional dynamical systems may be found in
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[26, 29, 54, 52, 56, 58, 60, 67, 81, 83, 84, 86, 88]. For infinite dimensional dynamical systems we

refer the reader to [10, 16, 35, 51, 68, 87, 93]. Most of these works use the approach of Lyapunov-

Perron. A good treatment of center manifold theory for ODE’s using the Lyapunov-Perron method

can be found in the monograph by Carr [29], where several applications are also set forth. Cer-

tain infinite dimensional settings are also treated. Vanderbauwhede and Van Gils [88] also use the

Lyapunov-Perron method to obtain smooth center manifolds but with some important differences

in technique. Ball [10] used the Lyapunov-Perron approach to obtain local stable, unstable and

center manifolds for equilibrium points of dynamical systems in Banach space, with application

to the beam equation. Henry [51] developed the theory for semilinear parabolic equations. Later,

Chow and Lu [35] used this approach to prove the existence of smooth center-unstable manifolds

with application to the damped wave equation. For more on center manifold theory in the infinite

dimensional setting, using the Lyapunov-Perron method, see [87]. The theory of invariant mani-

folds for an equilibrium point of finite dimensional dynamical systems using Hadamard’s approach

may be found in [54]. For infinite dimensional dynamical systems, we refer to [16], where applica-

tions are given demonstrating the stability of a pulse solution to the FitzHugh- Nagumo equations

and the instability of stationary solutions to the nonlinear Klein-Gordon equation.

Chow, Liu and Yi [34] constructed center manifolds for smooth invariant manifolds for smooth

flows in finite dimensional spaces by using the method of Hadamard’s graph transform. Krylov

and Bogoliubov [24] studied time-periodic ordinary differential equations arising from the study

of nonlinear oscillations. Under the assumption that the averaged equation has an asymptotically

stable equilibrium point, they proved the existence of periodic integral manifolds, which gives the

existence of asymptotically stable periodic orbits for a class of equations. An integral manifold is

an invariant manifold in the product space of time and phase space. The above result and many

generalizations and related work in collected in the monograph of Bigoliubov and Mitropolsky
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[25].

Levinson [62] studied periodic perturbations of an autonomous ordinary differential equation

possessing an asymptotically stable periodic orbit. He proved that if the perturbation was suffi-

ciently small, then the perturbed equation has a periodic integral manifold, which may be viewed

as a two-dimensional torus. Levinson’s results were extended to periodic surfaces by Diliberto

[40], Hufford [55], and Kyner [61]. Hale [50] established a general theory of integral manifolds

for nonautonomous ordinary differential equations and obtained more general results than those

just mentioned above. An extension of Hale’s integral manifold theory to a larger class of nonau-

tonomous ordinary differential equations was obtained in [100].

The persistence under perturbation of a compact normally hyperbolic invariant manifolds for

a finite dimensional dynamical system was independently obtained by Hirsch, Pugh and Shub

[52, 53] and Fenichel [41, 42, 43]. They proved the persistence of normally hyperbolic invariant

manifolds, and the existence of the center-stable and center-unstable manifolds and their invariant

foliations. Pliss and Sell [82] studied the persistence of hyperbolic attractors for ordinary differen-

tial equations. Bates, Lu and Zeng in [11] proved the persistence of compact normally hyperbolic

invariant manifolds, and the existence of the center-stable and center-unstable manifolds and their

invariant foliations for semiflows in infinite-dimensional spaces and then extended their results

without assuming compactness in [17, 18].

Mañé [66] proved that normal hyperbolicity defined in [52] is a necessary condition for the

persistence of an invariant manifold under perturbation of a finite dimensional dynamical system.

Henry [51] extended Hale’s theory of integral manifolds to general nonautonomous abstract

semilinear equations whose linear part generates an analytic semigroup. Henry also studied com-

pact normally hyperbolic invariant manifolds with trivial normal bundle for semilinear parabolic

equations and obtained a coordinate transformation which lead to the setting of integral manifolds
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and persistence results.

In many singular perturbation problems for evolutionary partial differential equations, people

are interested in solutions which have certain qualitative features, such as interior or boundary lay-

ers or localized spikes, and motions of these layers and spikes, including the location of stationary

layers. The canonical shape of such solutions, in a neighborhood of the abrupt spatial disturbance

(layer or spike), can usually be determined by a rescaling or blow-up procedure. Thus, a reasonable

approximation to the shape of a solution is found quite easily by considering the equation on the

whole space and approximately invariant manifolds made up of these approximate solutions have

been constructed by many authors. The approach, involving the construction of an approximately

invariant manifold of states having a certain spatial structure, was pioneered more than thirty years

ago in papers of G. Fusco and J. Hale in [45] and by J. Carr and R. Pego in [31]. In those papers

the authors were interested in the slow dynamics of interfaces in solutions to the one-dimensional

Allen-Cahn Equation. The same approach was also taken to obtain similar results for the one-

dimensional Cahn-Hilliard equation in [4], [21] and [22], and to rigorously establish the slow

motion of ”bubble”-like solutions [6, 7] and multipeaked stationary solutions to the Cahn-Hilliard

equation [14, 96] in multi-dimensional domains. The approach was also used to produce spike-like

stationary solutions to the shadow Gierer-Meinhardt system of biological pattern formation [59].

In most of these papers, the qualitative shape of stationary solutions was the point of interest and

so a true invariant manifold was not shown to exist, although that was done in a subsequent paper

by Carr and Pego in [32] and also in [22].

It is natural to ask how to deduce the existence of a true invariant manifold in a small neighbor-

hood of the approximately invariant manifold constructed by hand, as described above. In [19], the

authors established a systematic way to find a true invariant manifold assuming the approximate

one is good enough and they found an invariant manifold of boundary spike states for a class of

4



parabolic equations. In this thesis, we first apply the abstract results in [19] to construct an invari-

ant manifold of boundary droplets for the 2-D mass-conserving Allen-Cahn equation. Then we

extend the abstract results in [19] to manifolds with boundary, consisting of approximately station-

ary states and construct invariant manifolds of dynamic interior-spike states for the Cahn-Hilliard

equation in higher space dimensions.
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Chapter 2

Preliminaries: Approximately invariant

manifolds

Here, we state some results from [19], which provide a tool for obtaining an invariant manifold

when a good approximation is available. Roughly speaking, if an immersed manifold ψ(M) is

approximately inflowing invariant under map T , and if ψ(M) is approximately normally hyperbolic,

then one can find a truly locally invariant manifold Wcs, its center-stable manifold, under map

T . Furthermore if ψ(M) is approximately overflowing invariant under map T and approximately

normally hyperbolic, then we can find a center-unstable manifold Wcu under map T . If Wcs and

Wcu intersect transversally, then their intersection is the truly invariant manifold we seek as a graph

over ψ(M). Now, we give the precise definitions and statements of the theorems.

Let X be a Banach space and T ∈ CJ(X, X), J ≥ 1 with M a connected C1 Banach manifold

and ψ : M → X an immersion.

Definition 2.0.1. ψ(M) is said to be approximately inflowing invariant under T if the following

conditions hold

(1) There exists η > 0 and u ∈ C0(M,M) such that |T (ψ(m)) − ψ(u(m))| < η, for all m ∈ M;

(2) There exists r0 ∈ (0, 1) such that ψ(Bc(m0, r0)) is closed in X for any m0 ∈ u(M), where

Bc(m0, r0) is the connected component of ψ−1(B(ψ(m0), r0)) containing m0.

6



Figure 2.1: Approximately normally hyperbolic invariant manifolds

Condition (1) means that ψ(M) is approximately invariant under T and u on M is an approxi-

mation of T on ψ(M). Condition (2) essentially states that the ‘distance’ between the projection of

T (ψ(M)) into ψ(M) and the boundary of ψ(M) is bounded from below.

Definition 2.0.2. We say that an approximately inflowing invariant manifold ψ(M) is approxi-

mately normally hyperbolic, if conditions (H1)-(H3) hold:

(H1) For each m ∈ M, there is a decomposition X = Xc
m ⊕ Xs

m ⊕ Xu
m of closed subspaces with

projections Πc
m,Π

s
m,Π

u
m.

(H2) For any m ∈ M, Πc
m is an isomorphism from Dψ(m)TmM to Xc

m. Furthermore there exist

constants B, L, and χ ∈ (0, 1/2), such that for any m0 ∈ M and m1,m2 ∈ Bc(m0, r0), with

m1 , m2, for α = c, u, s,



‖Πα
m0
‖ ≤ B, ‖Πα

m1
− Πα

m2
‖ ≤ L|ψ(m1) − ψ(m2)|,

|ψ(m1) − ψ(m2) − Πc
m0

(ψ(m1) − ψ(m2))|

|ψ(m1) − ψ(m2)|
≤ χ.

(2.0.1)

(H3) There exist σ, λ ∈ (0, 1) such that, for any m0 ∈ M, if m1 = u(m0), and α ∈ {c, s}, β ∈ {c, s, u},

with α , β, then

7



(a) ‖Πβ
m1

DT (ψ(m0))|Xαm0
‖ ≤ σ,

(b) ‖Πs
m1

DT (ψ(m0))|Xs
m0
‖ ≤ λ,

(c) λ‖(Πu
m1

DT (ψ(m0))|Xu
m0

)−1‖−1 > max{1, ‖Πc
m1

DT (ψ(m0))|Xc
m0
‖J}.

(H4) There exists B1, such that ‖D jT |B(ψ(M),r0)‖ ≤ B1 for 1 ≤ j ≤ J. When J = 1, we will need

the following functionA(δ) = sup{‖DT (x1) − DT (x2)‖ : x1, x2 ∈ B(ψ(M), δ), |x1 − x2| < δ},

and require it to be small enough.

Hypothesis (H3) specifies the different growth rates of DT , the linearization of T , in different

directions. Condition (a) represents the approximate invariance of the bundles Xc and Xs under

DT . Different rates in the unstable and center-stable directions are assumed in (b) and (c). Hy-

pothesis (H4) is a technical assumption on T , which holds automatically if ψ(M) is precompact.

For α = c, u, s, let Xαm(ε) = {x ∈ Xαm : |x| < ε} and Xα(ε) = {(m, x) : m ∈ M, x ∈ Xαm(ε)}.

Theorem 2.0.3. Assume that (H1)-(H4) hold. Depending on r0, B, B1, λ, L, when η, χ, σ, infA(δ)

are sufficiently small, there exists a CJ positively invariant manifold Wcs, which is given as the

image of a map

h : Xs(δ0)→ X,

for some δ0 > 0. The mapping h also satisfies

h(m, xs) − ψ(m) − xs ∈ Xu
m(δ0),

and so can be viewed as a graph over the bundle Xs(δ0.

Furthermore, it holds that, for any m0 ∈ M, there exists h̃ : Xc
m0

(δ0) ⊕ Xs
m0

(δ0)→ Xu
m0

(δ0), so

8



that

{h(m, xs) : m ∈ Bc(m0, r0) ∩ ψ−1(B(ψ(m0),
δ0
4

)), xs ∈ Xs
m(
δ0
4

)}

⊂ ψ(m0) + graph
(
h̃|

Xc
m0

(
δ0
2 )⊕Xs

m0
(
δ0
2 )

)
⊂ {h(m, xs) : m ∈ Bc(m0, r0) ∩ ψ−1(B(ψ(m0), δ0)), xs ∈ Xs

m(δ0)}.

Remark 2.0.4. Theorem 2.0.3 is a brief statement of the result in [19]. In applications, we will use

Theorem 4.2 in [19], which is a precise and rigorous version.

If we want to extend Theorem 2.0.3 to the case of a semiflow T t, then we need further assump-

tions [19]:

(H5)

(1) Conditions (H1)-(H4) hold for ψ(M) and T t0 for some t0,

(2) There exists an integer k ≥ 0, such that for any µ > 0, there exists ζ > 0, such that for any

x ∈ B(ψ(M), r) and t ∈ [kt0, kt0 + ζ], we have |T t(x) − T kt0(x)| < µ.

The next concept is that of approximately normally hyperbolic overflowing invariant manifold.

The results are basically parallel to the case of approximately inflowing invariant manifolds.

Definition 2.0.5. An immersed manifold ψ(M) is said to be approximately overflowing invariant

under T if the following conditions hold:

1 There exists a relatively open subset M1 ⊂ M, a homeomorphism v : M → M1, and η > 0 such

that |T (ψ(v(m))) − ψ(m)| < η, for all m ∈ M;

2 There exists r0 ∈ (0, 1) such that ψ(Bc(m0, r0)) is closed in X for any m0 ∈ v(M), where

Bc(m0, r0) is the connected component of ψ−1(B(ψ(m0), r0)) containing m0.

9



In addition to (H1) and (H2), instead of (H3), we assume the following approximate normal

hyperbolicity conditions.

(C3) There exist a, λ ∈ (0, 1) such that, for any m1 ∈ M, if m0 = v(m1), and α ∈ {c, u}, β ∈ {c, s, u},

with α , β, then

1. ‖Πβ
m1

DT (ψ(m0))|Xαm0
‖ ≤ σ, ‖(Πc

m1
DT (ψ(m0))|Xc

m0
)−1‖−1 > a

2. λ‖(Πu
m1

DT (ψ(m0))|Xu
m0

)−1‖−1 > 1,

3. ‖Πs
m1

DT (ψ(m0))|Xs
m0
‖ < λmin{1, ‖(Πc

m1
DT (ψ(m0))|Xc

m0
)−1‖−J}.

Theorem 2.0.6. Assume that (H1), (H2), (C3), and (H4) hold. Depending on r0, B, B1, λ, L, when

η, χ, σ, infA(δ) are sufficiently small, there exists a CJ negatively invariant manifold Wcu, which

is given as the image of a map

h : Xu(δ0)→ X,

for some δ0 > 0. The mapping h also satisfies

h(m, xu) − ψ(m) − xu ∈ Xs
m(δ0).

10



Chapter 3

Global invariant manifolds of boundary

droplets for the 2-D mass-conserving

Allen-Cahn equation

3.1 Introduction

We consider the two-dimensional mass conserving Allen-Cahn equation,


φε̂t (y, t) = ε̂2∆yφ

ε̂(y, t) − f (φε̂(y, t)) +
>
Ω

f (φε̂(·, t)), y ∈ Ω, t > 0,

∂nφ
ε̂(y, t) = 0, y ∈ ∂Ω, t > 0,

(3.1.1)

where Ω ⊂ R2 is a fixed bounded domain with smooth boundary ∂Ω, ∂n is the exterior normal

derivative to ∂Ω, ∆y represents the Laplacian with respect to y, and
>
Ω

= 1
|Ω|

∫
Ω

means the average

over Ω. Here f is the derivative of a double well potential W. We assume the following conditions

for f ∈ C∞(R):

f (±1) = 0, f ′(±1) > 0,
∫ s

−1
f =

∫ s

1
f > 0 for all s ∈ (−1, 1). (3.1.2)

11



Figure 3.1: Graph of the function f

(3.1.1) can be considered as the associated L2 gradient flow of the functional

Jε̂(u) =

∫
Ω

(
ε̂2

2
|∇u|2 + W(u))dx, u ∈ {v ∈ H1(Ω) :

?
Ω

vdx = m}. (3.1.3)

This functional has been investigated by several authors, for example, [5, 9, 27, 28, 30, 33, 38, 69,

70, 77, 85].

In [5], N.D. Alikakos et al. constructed an approximately invariant manifold for (3.1.1) using

a carefully devised asymptotic expansion. Each element of the manifold is a so-called droplet,

or bubble, that is, a state having a roughly semicircular interface attached to the boundary of the

domain, the interface separating regions where the solution takes on two different almost constant

values. These droplets move slowly towards the increasingly curved region, while maintaining

their shape. The motion of the center of the bubble can be determined by the following ODE,


dξ̂
dt

= −
4ξ̂2δ

3π
K ′

Ω
(ξ̂(t)) + O(ξ̂2δ2),

ξ̂(0) = ξ̂0,

(3.1.4)

where ξ̂ is the arc-length parameter of ∂Ω which represents the center of the bubble. More details

can be found in Section 3.2. Moreover, they proved that the bubble shape is stable, that is, if we
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start from a small H1-neighborhood of size O(ε) of the bubble solution, then the flow will stay, for

positive time, in a small neighborhood of the manifold of bubble states, in the H1 sense. Because

of the difficulty in handling the contact with the boundary of the domain in higher dimensions, in

[5], the authors considered only the two-dimensional case. In higher dimension, there are some

results for the interior bubbles, see[6, 7]. In those papers, N.Alikakos and G.Fusco considered

bubble solutions for Cahn-Hilliard equation (the mass-conserving Allen-Cahn equation will pro-

duce similar dynamics). Roughly speaking, the interface of the bubble has constant curvature and

it moves towards the boundary at a exponentially small speed, retaining its shape until it gets close

to the boundary. Once near the boundary, it is conjectured that the bubble quickly adhere to the

boundary, its energy roughly dropping by half, and then following the dynamics discussed here.

Figure 3.2: Four stages in the evolution for a two-dimensional domain Ω. The last stage is the
object of study in this paper.

In this project, we use the framework of [19] to construct a true invariant manifold for (3.1.1),

which is close to the approximately invariant manifold given in [5]. The definition of approxi-

mate invariancy in [5] is different from the definition in [19]. In [5], a manifold is approximately

invariant if the equation, evaluated at a point (i.e., function) of the manifold, is satisfied up to a

small error. In [19], approximate invariancy means the manifold is approximately invariant under
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the solution map for a fixed time (see Section 2.1 for more details). Hence, our main task is to

prove that the approximately invariant manifold constructed in [5] satisfies the conditions in the

definition given in [19]. Note that once we have obtained the global invariant manifold, bubble

solutions on it exist globally in time, forward and backward, being either stationary or connecting

stable and unstable equilibria.

This chapter is organized as follows, in Section 3.2 we give some background on the construc-

tion of the approximate bubble solution. In Section 3.3, we prove the existence of a true global

invariant manifold of bubble states for (3.1.1). Finally, we will discuss the dynamics of the bub-

ble, which includes the motion of the bubble in forward and backward time, and the location of

equilibrium bubble states.

3.2 Approximate bubble solution for the mass-conserving Allen-

Cahn equation

In this section, we will introduce the approximate bubble solutions of (3.1.1), which were con-

structed by N.D. Alikakos et al. in [5]. Roughly speaking, each has a semicircular interface Γ,

which is the zero level set, with small radius δ. The solution is almost −1 inside the interface,

and almost +1 outside. This state then moves along the boundary of the domain according to a

one-dimensional dynamical system. Now we give a more detailed description. First, we introduce

a change of variables that fixes the size of the bubble while δ is varied.

y = δx, ε̂ = εδ, uε(x, t) = φε̂(y, t), Ωδ = δ−1Ω := {x; δx ∈ Ω}. (3.2.1)

Then we can write (3.1.1) as
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
uεt (x, t) = ε2∆uε(x, t) − f (uε(x, t)) +

>
Ωδ

f (uε(·, t)), x ∈ Ωδ, t > 0,

∂nuε(x, t) = 0, x ∈ ∂Ωδ, t > 0.

(3.2.2)

We parameterize ∂Ωδ by zδ(ξ), where ξ is the arc-length of ∂Ωδ measured from some fixed

point of ∂Ωδ. We are seeking an invariant manifold M̃ consisting of bubble-like functions u(·, ξ, ε),

parameterized by ξ, which is the center of the approximately semicircular interface. Obviously, M̃

is one-dimensional. The invariance means that the vector field is tangent to the manifold, so for

u ∈ M̃ we can write (3.2.2) analytically in the form:



−ε2∆u + f (u) + ε2cuξ + εσ = 0, x ∈ Ωδ, t > 0, ξ ∈ R1

∂nu(x, ξ, ε) = 0, x ∈ ∂Ωδ, t > 0,

∫
Ωδ

u(·, ξ, ε) = |Ωδ| − π.

(3.2.3)

Here σ = σ(ξ, ε) and c = c(ξ, ε) are constants in x and following [5] we have multiplied by powers

of ε in anticipation of their size. We call c the speed of the droplet, and εσ =
>
Ωδ

f (u(·, ξ, ε))dx

adjusts for the mass constraint. The motion of the bubble can be represented by the motion of the

center ξ, which satisfies

dξ(t, ε)
dt

= ε2c(ξ, ε). (3.2.4)

Figure 3.3: Geometry of the bubble
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Considering the fact that our equation is the mass-conserving gradient flow of the energy func-

tional (3.1.3), heuristically we can see that asymptotically, solutions should be almost constant

taking on values ±1 everywhere except for an efficient transition between those values, dictated

by the predetermined average value. To make the transition efficient, it should take place along a

minimal curve enclosing a given area at ∂Ωδ, that is, a circular arc intersecting the domain bound-

ary orthogonally. Furthermore, the transition should have width O(ε) so that the gradient and bulk

parts of (3.1.3) are almost equal. So that the dynamics of the bubble state are determined locally,

we require the bubble to have small radius δ << 1 in original coordinateds and 1 in our expanded

coordinates, thus we fix our mass to be |Ωδ| − π. In order to rigorously perform the asymptotic

analysis in ε, one needs 0 < ε << δ.

By performing an outer expansion, an inner expansion, and a corner expansion (where the

interface meets the boundary of the domain), and patching these together, in [5] the authors con-

structed an approximate solution to system (3.2.3) having bubble-like structure. This solution is

parameterized by c, σ, the length of the interface, |Γ|, the curvature of the interface, K , and the

arc-length from the center, zδ(ξ), to {p±} the intersection of Γ and ∂Ωδ (see Figure 4.). Invariance

of the family with respect to the nonlocal parabolic equation and the mass constraint up to a spec-

ified order dictated certain solvable equations for these geometric parameters. Thus they found an

approximate solution for (3.2.3) given by the following:

Theorem 3.2.1. [5] Assume that δ and ε are small parameters satisfying ε ≤ 1
2C∗1δ

2, where C∗1 is

a constant defined by (2.65) in [5]. Then for any positive interger k, if ε is sufficiently small, there
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exist u = u(x, ξ, ε), σ = σ(ξ, ε), c = c(ξ, ε) such that



ε2∆u − f (u) + εσ = ε2cuξ + O(εk) in Ωδ,

∂nu = 0 on ∂Ωδ,∫
Ωδ

u(·, ξ, ε) = |Ωδ| − π,

εσ =
>
Ωδ

f (u(·, ξ, ε)dx.

(3.2.5)

Remark 3.2.2. 1. In [5], Theorem 3.2.1 requires that ε ≥ δm for some m ≥ 2. By carefully

checking the proof, we found that this condition is not necessary.

2. In fact when δ is small, there are two quasi-steady states, one being the droplet with an

interface separating regions where it is approximately +1 and −1, the other being a spike

state. The former shape is stable and the later is unstable. As δ becomes O(ε), the droplet

and spike merge and cause to exist for smaller δ.

3. For the inner expansion, near the interface, the authors use the coordinates (r, s), where r

is the signed distance from the interface, which is positive outside the bubble and negative

inside, and s is the arc-length along the interface. The leading order of the interior expansion

is the heteroclinic solution to

Ü − f (U) = 0, U(±∞) = ±1,
∫ ∞
−∞

RU̇2(R)dR = 0, (3.2.6)

in the stretched variable R = r
ε .

4. The leading term of the outer expansion is ±1, and the corner expansion is O(ε) and is

exponentially decaying away from the interface.
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5. The leading term of |Γ| is π, and the leading term of the curvature,K , of Γ is 1, which implies

that the interface is approximately a semicircle.

Now, we state some results of the spectral analysis for the operator obtained by linearizing at

one of these bubble states. Consider the following eigenvalue problem:



Lφ̄ := ε2∆φ̄ − f ′(u)φ̄ +
>
Ωδ

f ′(u)φ̄ = λ̄φ̄ in Ωδ,

∂nφ̄ = 0 on ∂Ωδ,∫
Ωδ

φ̄ = 0,

(3.2.7)

where u is the solution to (3.2.5). The largest eigenvalue is of the order δε2, which is very close

to zero since both factors are small, and the corresponding eigenfunction is close to uξ. More

precisely, the largest eigenvalue is
4ε2

3π

d2KΩδ

dξ2 (ξ) + O(ε2δ4), where KΩδ
is the curvature of the

boundary ∂Ωδ. The rest of the spectrum is negative but is only O(ε2) away from zero. The precise

estimate is given by the following theorem from [5].

Theorem 3.2.3. [5] Let u = u(x, ξ, ε) be the solution to (3.2.5). If for large constant C∗, δ2 > C∗ε

holds, then for any v ∈ H1(Ωδ) satisfying

∫
Ωδ

v = 0,
∫

Ωδ

vuξ = 0, (3.2.8)

we have

〈Lv, v〉 ≤ −
2ε2π2

|Γ|2

∫
Ωδ

v2. (3.2.9)

Thus, there is a gap between the largest eigenvalue and the others because the largest eigenvalue

is
4ε2

3π

d2KΩδ

dξ2 (ξ) + O(ε2δ4), where
d2KΩδ

dξ2 (ξ) is of order δ, and δ is very small.
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3.3 Invariant manifolds of boundary droplets

3.3.1 Construction ofMε

We choose the space X as H1(Ωδ) with norm given by |u|2X = |ε∇u|2
L2 + |u|2

L2 . First, we modify the

function f to make sure that the evolution defines a semiflow globally in time. Thus, we consider

uεt (x, t) = ε2∆uε(x, t) − f̃ (uε(x, t)) +

?
Ωδ

f̃ (uε(·, t)), (3.3.1)

where f̃ (u) = η(u) f (u). Here, η(s) ≥ 0 is a C∞ bump function satisfying

η(s) = 1, |s| ≤ 2; η(s) = 0, |s| ≥ 4. (3.3.2)

Note that | f̃ |Cm(R) < ∞. This modification does not affect the bubble solution we seek because

that solution has its range in [−1, 1]. For convenience, we keep the notation f , instead of f̃ .

Let W(x, ξ, ε) be the second order approximation of the solution to (3.2.5) given by Theorem

3.2.1, which means that W satisfies



ε2∆W − f (W) + εσ = ε2cWξ + O(ε3) in Ωδ,

∂nW = 0 on ∂Ωδ,∫
Ωδ

W(·, ξ, ε) = |Ωδ| − π,

εσ =
>
Ωδ

W(·, ξ, ε).

(3.3.3)

Define ψε : ∂Ωδ → X as ψε(ξ) = W(x, ξ, ε). Let Mε = ψε(∂Ωδ). We will prove that Mε is an

approximately normally hyperbolic invariant manifold, so that we can apply the Theorems 2.0.3
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and 2.0.6.

3.3.2 Mε is approximately invariant

One may expect that the flow of (3.2.2) starting from W(x, ξ, ε) will stay close to W(x, ξ(t), ε),

where ξ(t) satisfies (3.2.4). In fact, we have

Lemma 3.3.1. There exists C > 0 such that, for any small ε and zδ(ξ) ∈ ∂Ω, the solution u(t, x, ε)

of (3.3.1) with initial data u(0, x, ε) = ψε(ξ) satisfies

|u(t, x, ε) − ψε(ξ(t))|X ≤ Cε3eCt. (3.3.4)

Proof. Let v = u − ψε, then v satisfies


vt = ε2∆v − ( f (ψε + v) − f (ψε)) +

>
Ωδ

[ f (ψε + v) − f (ψε)]dx + O(ε3),

v(0, ·) = 0.

(3.3.5)

Let g(v) ≡ f (ψε + v) − f (ψε). Rewrite (3.3.5) as


vt = Lεv − g(v) +

>
Ωδ

g(v)dx + O(ε3),

v(0, ·) = 0

(3.3.6)

where Lε = ε2∆, with homogeneous Neumann boundary condition.
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Using the variation of constants formula, we have

v =

∫ t

0
eLε(t−s)( − g(v) +

?
Ωδ

g(v)dx + O(ε3)
)
ds. (3.3.7)

It is well known that Lε generates a contraction semigroup, and recall that f has been modified, so

we have |g(v)| ≤ C|v| and |∇g(v)| = |g′(v)∇v| ≤ C|∇v|, which implies

|v(·, t)|X ≤
∫ t

0

(
C|v|X + O(ε3)

)
ds. (3.3.8)

Applying Gronwall’s inequality to |v|X , we have

|v|X ≤ Cε3eCt. (3.3.9)

�

Lemma 3.3.1 implies thatMε is an approximately overflowing invariant manifold for T being

the time t0 solution operator, by taking the function v in Definition 2.0.5 as ξ(−t0, ·).

3.3.3 Splitting along the manifoldMε

From the spectral analysis mentioned in Section 2.2, we can split the space X alongMε naturally.

For any zδ(ξ) ∈ ∂Ωδ, let

Xc
ε,ξ = Tψε(ξ)Mε = span{Wξ(x, ξ, ε)},

Xs
ε,ξ = {v ∈ X :

∫
Ωδ

vṽ = 0, for all ṽ ∈ Xc
ε,ξ}.

(3.3.10)

Let Πα
ε,ξ
, α = c, s be the projections associated with this splitting.
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Lemma 3.3.2. ‖Πα
ε,ξ
‖ is uniformly bounded and smoothly depends on ξ.

Proof. For any x ∈ X, we can write x = xc + xs, where xα ∈ Xα
ε,ξ

. Since xc⊥L2 xs, |x|2
L2 =

|xc|2
L2 + |xs|2

L2 . Since Xc
ε,ξ

is finite dimensional, we have

C|xc|X ≤ |x
c|L2 ≤ |x|L2 ≤ |x|X , and

|x|X ≥ |x
s|X − |x

c|X ≥ |x
s|X −

1
C
|x|X

(3.3.11)

for some constant C independent of ε, because of our choice of norm on X.

By carefully checking the construction of the approximate bubble solutions in [5], we find that

every term in the asymptotic expansion comes from solving a certain elliptic equation which gives

the solution high regularity. Likewise, σ and c are also smooth functions of ξ (see section 2.2 and

2.3 of [5] and the appendix of [8]). This implies that ψε(∂Ω) is at least a C2 smooth manifold.

Then the uniform boundedness follows from the usual compactness argument and the smooth

dependence follows from the smoothness of ψε(ξ).

�

The third inequality in (H2) is satisfied automatically for compact manifolds (the proof can

be found in [11]). So far (H1) and (H2) in Definition 2.0.2 have been established. We need to

prove that Mε is approximately normally hyperbolic as an approximately overflowing invariant

manifold, that is, (C3) holds.

3.3.4 Mε is approximately normally hyperbolic

From the splitting of the space, we can see that the whole space X is the center-stable manifold

Wcs, because there is no unstable subspace. Hence, we only need to find the center-unstable man-
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ifold, which is actually just the center manifold. Since we need to study the linearized flow, we

consider the linearized system.

Let Lεv = ε2∆v− f ′(u)v+
>
Ωδ

f ′(u)vdx, where u is the solution to (3.2.2) with initial data W(x, ξ, ε)

from (3.3.3) for some fixed ξ.

Let W(t, ·) be the solution to 
W t = LεW,

W(0, ·) = W(·, ξ, ε).

(3.3.12)

Let L̃εv = ε2∆v − f ′(ψε(ξ(t)))v +
>
Ωδ

f ′(ψε(ξ))vdx, and W̃(t, ·) be the solution to


W̃t = L̃εW̃,

W̃(0, ·) = W(·, ξ, ε).

(3.3.13)

Lemma 3.3.3. |W(t, ·) − W̃(t, ·)|X ≤ Cε3|W(·, ξ, ε)|XeCt, for some constant C

Proof. The difference v = W − W̃ satisfies


vt = ε2∆v − f ′(ψε(ξ(t))v + g(u − ψε(ξ(t))W +

>
Ωδ

(
f ′(ψε(ξ))v − g(u − ψε(ξ(t))W

)
dx,

v(0, ·) = 0,

(3.3.14)

where g = f ′(u) − f ′(ψε(ξ(t))).
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By an argument similar to the proof of Lemma 3.3.1, we get

|W(t, ·)|X ≤ |W(·, ξ, ε)|XeCt. (3.3.15)

Using the variation of constants formula, we have

v =

∫ t

0
eLε(t−s)[− f ′(ψε(ξ(t))v + g(u − ψε(ξ(t))W +

?
Ωδ

( f ′(ψε(ξ))v − g(u − ψε(ξ(t))W)dx]ds.

(3.3.16)

Using Lemma 3.3.1 and (3.3.15), we have

|v(·, t)|X ≤
∫ t

0

(
C|v(·, s)|X + Cε3|W(·, ξ, ε)|XeCs)ds. (3.3.17)

Applying Gronwall’s inequality gives the desired result. �

Next we study the behavior of W̃(t, ·) in center and stable directions. Write W(·, ξ, ε) as

W(·, ξ, ε) = a(0)Wξ(x, ξ, ε) + W s(x, ξ, ε) and similarly, W̃(t, ·) = a(t)Wξ(x, ξ(t), ε) + W s(x, ξ(t), ε),

where W s(x, ξ(t), ε) ∈ Xs
ε,ξ(t).

Lemma 3.3.4. If a(0) = 0, i.e., W(·, ξ, ε) ∈ Xs
ε,ξ

, then

|a(t)||Wξ(x, ξ(t), ε)|X ≤ Cε1/2eCt|W(·, ξ, ε)|X . (3.3.18)

Proof. By differentiating with respect to ξ in (3.3.3), we have

L̃εWξ(x, ξ(t), ε) = ε2cWξξ(x, ξ(t), ε) + ε2cξWξ(x, ξ(t), ε) + O(ε2). (3.3.19)

One finds that the residual O(ε3) in (3.3.3) becomes O(ε2), because taking a derivative near the
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interface generates a factor of 1
ε . It is easy to see that near the interface Wξ is of order 1

ε and Wξξ

is of order 1
ε2 . Also note that the width of the layer is O(ε), so |Wξ |L2 ≤ Cε−1/2 and |Wξξ |L2 ≤

Cε−3/2, which implies that

|L̃εWξ(x, ξ(t), ε)|L2 ≤ Cε1/2. (3.3.20)

For a detailed proof of these facts, use the expression for uξ from p.294 of [5] and the derivative

bounds in [5], Sections 2.2 and 2.3. By an argument similar to the proof of Lemma 3.3.1, we have

|W̃ |L2 ≤ CeCt|W(·, ξ, ε)|L2 for some constant C, which implies that

|a(t)||Wξ |L2 , |W
s(x, ξ(t), ε)|L2 ≤ CeCt|W(·, ξ, ε)|L2 . (3.3.21)

Since L̃ε is self-adjoint and L̃εW̃ = W̃t, we have

〈W̃(t, ·), L̃εa(t)Wξ(x, ξ(t), ε)〉 =〈W̃t(t, ·), a(t)Wξ(x, ξ(t), ε)〉

=〈a′(t)Wξ(x, ξ(t), ε) + a(t)Wξξ(x, ξ(t), ε)ξ̇, a(t)Wξ〉+

〈W s
t , a(t)Wξ〉

=a(t)a′(t)〈Wξ,Wξ〉 +
1
2

a2(t)
d
dt
〈Wξ,Wξ〉−

a(t)〈W s(x, ξ(t), ε),Wξξ · ξ̇〉

=
d
dt

(
a2(t)

2
|Wξ |

2
L2) − a(t)〈W s(x, ξ(t), ε),Wξξ · ξ̇〉

(3.3.22)

For the third identity, we use the fact that 〈Wξ(x, ξ(t), ε),W s(x, ξ(t), ε)〉 = 0. Note that, from p.294

of [5], |Wξ |L2 ≥ C−1ε−1/2, which combined with (3.3.21), gives

|a(t)| ≤ Cε1/2eCt|W(·, ξ, ε)|L2 . (3.3.23)
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Combine (3.3.23), (3.3.22), (3.3.21), (3.3.20) and use ξ̇ = ε2c to obtain

d
dt

(a(t)2|Wξ |
2
L2) ≤ 4C2εe2Ct|W(·, ξ, ε)|2

L2 , (3.3.24)

which implies that

a2(t)|Wξ(x, ξ(t), ε)|2
L2 − a2(0)|Wξ(x, ξ(0), ε)|2

L2 ≤ 2Cε(e2Ct − 1)|W(·, ξ, ε)|2
L2 . (3.3.25)

Thus, if a(0) = 0, i.e., W(·, ξ, ε) ∈ Xs
ε,ξ

, then we have

|a(t)||Wξ(x, ξ(t), ε)|L2 ≤ Cε1/2eCt|W(·, ξ, ε)|L2 . (3.3.26)

Since Xc
ε,ξ

is finite dimensional, we have

|a(t)||Wξ(x, ξ(t), ε)|X ≤ Cε1/2eCt|W(·, ξ, ε)|X . (3.3.27)

�

Note that ξ(t) is given by an ODE, so we can consider W̃(−t, ·) = a(−t)Wξ(x, ξ(−t), ε) +

W s(x, ξ(−t), ε). Following an analagous argument to that in Lemma 3.3.4, we have if W s(x, ξ, ε) =

0, then

a2(−t)|Wξ(x, ξ(−t), ε)|2
L2 − a2(0)|Wξ(x, ξ, ε)|2

L2 ≤ 2CεeCta2(0)|Wξ(x, ξ, ε)|2
L2 , (3.3.28)

26



which implies that

|a(t)||Wξ(x, ξ(t), ε)|X ≥ (
C

1 + CεeCt )1/2|a(0)||Wξ(x, ξ, ε)|X . (3.3.29)

We also have the estimate:

Lemma 3.3.5. If a(0) = 0, i.e., W(·, ξ, ε) = W s(x, ξ, ε) ∈ Xs
ε,ξ

, then

|W s(x, ξ(t), ε)|L2 ≤ (e−bt + CεeCt)|W s(x, ξ, ε)|L2 , (3.3.30)

and

|ε∇W s|L2 ≤ C(e−bt + εeCt + ε
3
2 eCt(e−bt + CεeCt)

1
2 )|W s(x, ξ, ε)|L2 , (3.3.31)

where b =
2π2

|Γ|2
, coming from (3.2.9).

If W s(0, ·) = 0, i.e., W(·, ξ, ε) = a(0)Wξ(x, ξ, ε) ∈ Xc
ε,ξ

, then

|W s(x, ξ(t), ε)|L2 ≤ CεeCt|a(0)||Wξ(x, ξ, ε)|L2 , (3.3.32)

and

|ε∇W s|L2 ≤ CεeCt|a(0)||Wξ(x, ξ, ε)|L2 . (3.3.33)

Proof. With the decomposition of W̃ given prior to Lemma 3.3.4, we write (3.3.13) as

a′(t)Wξ(x, ξ(t), ε) + a(t)Wξξ(x, ξ(t), ε)ξ̇ + W s
t (x, ξ(t), ε) = L̃ε(a(t)Wξ(x, ξ(t), ε) + W s(x, ξ(t), ε)).

(3.3.34)
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Using (3.3.19), we get

a′(t)Wξ(x, ξ(t), ε) + W s
t = L̃ε(W s(t)) + ε2a(t)cξWξ(x, ξ(t), ε) + a(t)O(ε2). (3.3.35)

Taking the inner product with W s and using W s
t = W s

ξ
ξ̇, we have

d
dξ

(|W s(t)|2
L2)ε2c = 2〈L̃εW s,W s〉 + a(t)〈O(ε2),W s〉, (3.3.36)

Note that from the calculations given in [5], the O(ε2) term is of order O(ε2) near the interface, but

of order O(ε3) away from the interface, so its L2 norm is O(ε
5
2 ). If a(0) = 0, we may use Theorem

3.2.3, Lemma 3.3.4, and (3.3.21) to obtain that for some positive constants b and C (which may

change from line to line),

d
dξ

(|W s(x, ξ(t), ε)|2
L2) ≤ −b|W s(x, ξ(t), ε)|2

L2 + CεeCt|W s(x, ξ, ε)|L2 |W
s(x, ξ(t), ε)|L2 , (3.3.37)

which implies that

|W s(x, ξ(t), ε)|L2 ≤ (e−bt +
Cεe(b+C)t

b + C
)|W s(x, ξ, ε)|L2 ,

≤ (e−bt + CεeCt)|W s(x, ξ, ε)|L2 .

(3.3.38)

If W s(0, ·) = 0, we may use Theorem 3.2.3, (3.3.25) and (3.3.21) to obtain that for some constant

b and C,

d
dξ

(|W s(x, ξ(t), ε)|2
L2) ≤ −b|W s(x, ξ(t), ε)|2

L2 + CεeCt|a(0)||Wξ(x, ξ, ε)|L2 |W
s(x, ξ(t), ε)|L2 ,

(3.3.39)
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which implies that

|W s(x, ξ(t), ε)|L2 ≤
CεeCt

b + C
|a(0)||Wξ(x, ξ, ε)|L2 ,

≤ CεeCt|a(0)||Wξ(x, ξ, ε)|L2 .

(3.3.40)

If a(0) = 0, note that
∫
Ωδ

W sdx = 0, (3.3.36) gives

2〈L̃εW s,W s〉 = −
d
dt

(|W s|2
L2) + a(t)〈O(ε2),W s〉,

−2
∫

Ωδ

ε2|∇W s|2 + f ′(W)|W s|2dx = −
d
dt

(|W s|2
L2) + a(t)〈O(ε2),W s〉.

(3.3.41)

Using (3.3.37) and (3.3.38) in (3.3.41) gives

ε2|∇W s|2
L2 ≤

∫
Ωδ

| f ′(W)||W s|2dx + bε2|W s|2
L2 + Cε3eCt|W s(x, ξ, ε)|L2 |W

s(x, ξ(t), ε)|L2 ,

≤
(
(C + bε2)(e−bt + CεeCt)2 + Cε3eCt(e−bt + CεeCt)

)
|W s(x, ξ, ε)|2

L2 ,

(3.3.42)

which implies that

|ε∇W s|L2 ≤ C(e−bt + εeCt + ε
3
2 eCt(e−bt + CεeCt)

1
2 )|W s(x, ξ, ε)|L2 . (3.3.43)

If W s(x, ξ, ε) = 0, we may combine (3.3.36), (3.3.39) and (3.3.40) to obtain
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ε2|∇W s|2
L2 ≤

∫
Ωδ

| f ′(W)||W s|2dx + bε2|W s|2
L2 + Cε3eCt|a(0)||Wξ(x, ξ, ε)|L2 |W

s|L2 ,

≤ (C + bε2)
(
CεeCt)2|a(0)|2|Wξ(x, ξ, ε)|2

L2 + Cε3eCtCεeCt|a(0)|2|Wξ(x, ξ, ε)|2
L2 ,

(3.3.44)

which implies that

|ε∇W s|L2 ≤ CεeCt|a(0)||Wξ(x, ξ, ε)|L2 . (3.3.45)

�

Now combining Lemma 3.3.2, Lemma 3.3.3, Lemma 3.3.4, (3.3.29), and Lemma 3.3.5, gives

(C3) in the definition of normal hyperbolicity for T
t0
ε , the time-t0 solution map of (3.3.1) pro-

vided t0 is large and with ε chosen small enough. Precisely, η = Cε3eCt0 , σ = Cε
1
2 eCt0 ,

a = ( C
1+CεeCt0

)1/2, and λ = C(e−bt0 + εeCt0 + ε
3
2 eCt0(e−bt0 + CεeCt0)

1
2 ). For instance, we

choose t0 such that Ce−bt0 ≤ 1
2 , and choose any ε ≤ ε(t0) to satisfy all the conditions (C3).

3.4 Dynamical bubble solution

So far we have constructed the approximately normally hyperbolic invariant manifoldMε. Using

the splitting

X = H1(Ωδ) = Xc
ε,ξ ⊕ Xs

ε,ξ (3.4.1)

and their related estimates we have established approximate normal hyperbolicity. Hence, we may

apply Theorem 2.0.6 for sufficiently small ε, to the time-t0 map T
t0
ε of the semiflow defined by

(3.3.1) for some t0 large enough. We have the following:
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1. For the map T
t0
ε , there exists a unique C2 normally hyperbolic invariant manifold M̃ε =

Ψε(∂Ωδ) ⊂ X, where Ψε satisfies Ψε(ξ) − ψε(ξ) ∈ Xs
ε,ξ

.

2. From Lemma 3.3.1 and Theorem 2.0.6, we have that |Ψε(ξ)−ψε(ξ)|C0(∂Ωδ,X) → 0 as ε→ 0.

To see that M̃ε is invariant under the semiflow T t
ε generated by (3.3.1), we just need to verify

condition (H5) stated in Section 2.1: There exists an integer k ≥ 0, such that for any µ > 0, there

exists ζ > 0, such that for any x ∈ B(ψ(M), r) and t ∈ [kt0, kt0 + ζ], we have |T t(x) − T kt0(x)| < µ.

Actually, we can easily prove this by letting k = 1 and using the variation of constants formula.

We have

T t
ε(x) − T

t0
ε (x)

= eLεtx − eLεt0 x +

∫ t

0
eLε(t−s)r(T s

ε(x))ds −
∫ t0

0
eLε(t0−s)r(T s

ε(x))ds

=

∫ t

t0
eLε(t−s)LεeLεt0 xds +

∫ t

t0
eLε(t−s)r(T s

ε(x))ds +

∫ t0

0
(eLε(t−s) − eLε(t0−s))r(T s

ε(x))ds

=

∫ t

t0
eLε(t−s)LεeLεt0 xds +

∫ t

t0
eLε(t−s)Lε

∫ t0

0
eLε(t0−τ)r(Tτε (x))dτds+∫ t

t0
eLε,P(t−s)r(T s

ε(x))ds

=

∫ t

t0
eLε(t−s)[LεT

t0
ε (x) + r(T s

ε(x))]ds,

(3.4.2)

where

r(u) = − f (u) +

?
Ωδ

f (u). (3.4.3)

Recall that the function f has been cut off, so condition (H5) follows from the smoothing effect

of the semigroup operator. Therefore, the manifold M̃ε is locally invariant under (3.3.1). Fur-

thermore, since M̃ε is in an O(ε) neighborhood of Mε in H1(Ωδ), by a regularity argument and
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Sobolev inequality, we can actually follow the same proof to get the same result for the space

X = W1,q for any large q. Also the invariant manifold is independent of q. Therefore, we have the

following theorem.

Theorem 3.4.1. For every sufficiently small ε, there exists a globally invariant manifold for (3.2.2),

M̃ε, in an O(ε) neighborhood ofMε in L∞ ∩ H1 and being a graph overMε.

Qualitatively, M̃ε consists of functions each of which has a roughly semicircular interface

structure attached to the boundary of Ωδ. In the next section, we will give the dynamics on M̃ε.

3.4.1 Motion on M̃ε

Fix ξ0, let Ψε(ξ(τ(t))) be the solution starting from Ψε(ξ0). Here ξ(·) is the motion of the approxi-

mate bubble solution, which satisfies (3.2.4), i.e.,

dξ(t, ε)
dt

= ε2c(ξ, ε). (3.4.4)

Note that c(ξ, ε) is determined by the geometric problems, so it is a known function. The

function τ(t) describes the motion on M̃ε.

Theorem 3.4.2. τ(t) satisfies the equation

τ′ =
O(ε) + c

(1 + O(ε))c
, (3.4.5)

which implies that the leading order of τ(t) is t.

Proof. Since Ψε(ξ)−ψε(ξ) ∈ Xs
ε,ξ

, we write Ψε(ξ(τ(t))) = W(x, ξ(τ(t)), ε)+V(t). By the invariance
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of Ψε(ξ(τ(t))) under (3.2.2), we have that

Wξ(x, ξ(τ(t)), ε)ξ′(τ(t))τ′(t) + V′(t)

= ε2∆W − f (W) +

?
f (W)dx + ε2∆V + N(W,V),

(3.4.6)

where N(W,V) = f (W) − f (W + V) +
>

f (W + V) − f (W)dx, which is at least quadratic in V .

Plugging (3.3.3) and (3.2.4) into (3.4.6), we have that

ε2c(ξ(τ(t)), ε)(τ′ − 1)Wξ(x, ξ(τ(t)), ε) + V′(t) = ε2∆V + N(W,V) + O(ε3). (3.4.7)

Taking the inner product with Wξ(x, ξ(τ(t)), ε), we get

ε2c(τ′ − 1)|Wξ |
2
L2 + 〈V′(t),Wξ〉 = 〈N(W,V),Wξ〉 + 〈O(ε3),Wξ〉. (3.4.8)

By taking the derivative with respect to t in 〈V(t),Wξ〉 = 0, we get 〈V′(t),Wξ〉 = 〈V(t), ε2cτ′Wξξ〉.

Then we have

ε2c(τ′ − 1)|Wξ |
2
L2 + ε2cτ′〈V(t),Wξξ〉 = 〈N(W,V),Wξ〉 + 〈O(ε3),Wξ〉. (3.4.9)

Note that 〈V(t),Wξξ〉 = O(1) = O(ε)|Wξ |
2
L2 . Furthermore, since N(W,V) is at least quadratic in V ,

we have that 〈N(W,V),Wξ〉 = O(ε2)|Wξ |L1 = O(ε3)|Wξ |
2
L2 and 〈O(ε3),Wξ〉 = O(ε4)|Wξ |

2
L2 , since

|Wξ |L1 = O(1). Using these in (3.4.9), we obtain

ε2c(τ′ − 1) + O(ε3)cτ′ = O(ε3) + O(ε4), (3.4.10)

which implies
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c(τ′ − 1) + O(ε)cτ′ = O(ε), (3.4.11)

giving the desired result. �

3.4.2 Equilibria

Theorem 3.4.3. Let zδ(ξ0) be a point on ∂Ωδ where the curvature of ∂Ωδ experiences a strict

extreme; namely:

K ′
Ωδ

= 0, K ′′
Ωδ
, 0. (3.4.12)

Then there exists ξ∗ in a δ neighborhood of ξ0 such that Ψε(ξ∗) is an equilibrium of (3.2.2). If

in addition, K ′′
Ωδ

(ξ0) > 0, i.e., the curvature archives a local minimum, then the equilibrium is

unstable. If K ′′
Ωδ

(ξ0) < 0, i.e., the curvature archives a local maximum, then the equilibrium is

stable.

Proof. We let ξ̃(t) = ξ(τ(t)), which describes the motion on the invariant manifold M̃ε. From

Theorem 3.4.2, we have

ξ̃′(t) = ξ′(τ(t))τ′ = ε2(1 + O(ε))c(ξ(τ(t)), ε)

= ε2(1 + O(ε))c(ξ(t + O(ε)), ε)

= ε2(1 + O(ε))(c(ξ(t), ε) + O(ε3)).

(3.4.13)

Let ξ̃(t, ξ̃0) be the flow of the ODE


ξ̃′(t) = ε2(1 + O(ε))(c(ξ(t), ε) + O(ε3))

ξ̃(0) = ξ̃0.

(3.4.14)
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In [5] the authors show that c = −
4δ2

3π
K ′

Ω
(δξ) + O(δ3). We now assume thatK ′′

Ωδ
(ξ0) > 0, then

there exist ξ1 < ξ0 < ξ2, with |ξi − ξ0| = O(δ) such that

(c(ξ1, ε) + O(ε3)) < 0 < (c(ξ2, ε) + O(ε3)). (3.4.15)

The Intermediate Value Theorem gives the existence of a stationary solution and the positivity

of the derivative gives the instability.

�
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Chapter 4

Invariant manifolds of interior multi-spike

states for the Cahn-Hilliard equation in

higher space dimensions

4.1 Introduction

This chapter is concerned with the existence, in forward and backward time, of dynamic interior

multi-spike states (see Figure 4.1 for an illustration of an interior multi-spike state) driven by the

nonlinear Cahn-Hilliard equation:


ut = −∆(ε2∆u − f (u)) in Ω × (0,∞),

∂∆u
∂n

=
∂u
∂n

= 0 on ∂Ω × (0,∞),

(4.1.1)

where Ω ⊂ Rn is a bounded domain with smooth boundary, ∂
∂n is the exterior normal derivative

to ∂Ω, 0 < ε << 1 is a small parameter and f : R → R is assumed to be smooth and supports

a nondegenerate ground state w with asymptotic value 0 for the equation ∆ν − g(ν) = 0 in Rn,

g(ν) = f (m̄ + ν)− f (m̄) for fixed m̄ with f ′(m̄) > 0, that is for m̄ in the metastable region. A typical

example is f (u) = up − u with 1 < p < n+2
n−2 , if n ≥ 3. The usual choice for the Cahn-Hilliard

equation is f (u) = u3 − u.
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Figure 4.1: Interior multi-spike state

We first prove an abstract result on the existence of an invariant manifold with boundary for

a map when one only has a family of approximately invariant manifolds that are approximately

normally hyperbolic, each consisting of almost stationary states. The abstract result is an extension

of results in [19] to tackle the case of manifolds with boundary. Our abstract result is instrumental

in proving the existence of locally invariant manifolds of multi-spike states for the Cahn-Hilliard

equation. Though we do not set up a general framework for semiflows, the proof in the current

paper is quite general and should be widely applicable.

The Cahn- Hilliard equation (where f (u) = u3 − u) is a widely accepted model for the com-

plicated patterning of the local concentrations in a binary alloy contained in a vessel Ω, as it is

rapidly quenched below the curve of miscibility. Above that curve, the alloy is in a homogeneous

phase corresponding to thermodynamic equilibrium. Below the curve, the thermodynamic equi-

librium corresponds to two separated phases. The separation phenomena that originate after the

rapid quenching include nucleation, spinodal decomposition and the formation and dynamics of

fronts. We refer the readers to [28] and the references therein for the physical background. For a

discussion of the stationary problem for this equation, we refer readers to [14].

The multi-spike equilibria of (4.1.1) has been studied by many authors. In [14], the authors

proved the existence of stationary interior multi-spike solutions to (4.1.1) by using an invariant
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manifold approach. They constructed quasi-invariant manifolds of interior multi-spike states and

estimated the motion of each spike, then proved the existence of stationary interior multi-spike

states. Similar results were reported independently in [96, 97, 99], where the authors used a

Lyapunov-Schmidt reduction technique. In [12] multiple boundary spike solutions were found.

The rich collection of solutions to the stationary problem for the Allen-Cahn equation


ut = ε2∆u − u + f (u), x ∈ Ω ⊂⊂ Rn

∂u
∂N = 0, x ∈ ∂Ω.

(4.1.2)

has also been studied by many authors, especially for the case where f (u) = up with superlin-

ear but subcritical growth. In [71], the authors investigated the Gierer-Meinhardt system in the

asymptotic limit as the diffusivity of the inhibitor becomes unbounded. In that limit, one is lead to

(4.1.2), referred to as the ‘shadow equation’. They showed that no non-constant positive stationary

solutions exist when ε is large. For (4.1.2), it was shown in [64] that positive solutions must have

peaks with exponentially decaying tails as ε ↓ 0. The paper [72] studies (4.1.2) with f (u) = up.

The authors obtained a positive solution that has a single peak, the so-called least energy solution,

by using a mountain pass argument. They further showed that this peak must actually locate on

∂Ω and the profile of the solution is a modification of the ground state on Rn, translated to ∂Ω

and rescaled by ε. Later, a topological lower bound on the number of such solutions was given

by Z-Q. Wang in [90]. In further work W-M Ni and I. Takagi, in [73], investigated the location of

the peaks, and they proved that the peak location tended, as ε → 0, to the point of ∂Ω where the

mean curvature achieved its maximum. Other papers followed, providing for solutions with spikes

at any collection of non-degenerate (in some cases only topologically nontrivial) critical points of

the mean curvature, and even multiple spikes accumulating at local minimal points of the mean
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curvature, or solutions to other singularly perturbed equations and systems (see, e.g., [44], [89],

[94], [39], [75], [76], [63], [20], [37], [48], [46], [47] and [98]).

Likewise, the Dirichlet problem has also attracted some attention, with results providing de-

tailed information about the existence and location of a stationary peak (see, e.g., [57], [74], and

[36]).

The case of critical growth is quite different, due to a scale invariance and related lack of

compactness. Still there are some results and we refer the readers to [91], [92], [2], [1], and [3],

for example.

For dynamical spike solutions, there are not many results. In [19], the authors found an invari-

ant manifold of boundary spike solutions to equations of the form


ut = ε2∆u − u + g(u), x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω,

(4.1.3)

and showed rigorously that the motion of the boundary spike is driven by the mean curvature of the

boundary of the domain. A related dynamical problem was considered in [15], where the authors

constructed an invariant manifold of boundary droplet solutions to the 2-d mass-conserving Allen-

Cahn equation


ut(x, t) = ε2∆u(x, t) − f (u(x, t)) +

>
Ω

f (u(·, t)), x ∈ Ω, t > 0,

∂u
∂n = 0, x ∈ ∂Ω, t > 0,

(4.1.4)

and also showed that the motion of the center of the droplet is driven by the curvature of the

boundary of the domain.

In this chapter, we show the existence of dynamical interior multi-spike solutions to (4.1.1) by
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constructing invariant manifolds of interior multi-spike states. Roughly speaking, we use k ground

states, translated to k points of Ω being δ-away from each other and δ
2 away from the boundary

and scaled with ε to comprise a manifold Mε parametrized by the location of the centers of the

spikes. Thus Mε has dimension nk and has boundary due to the non-proximity constraint. In

[19], the authors established a general theorem which states that in a small neighborhood of an

approximately invariant and approximately normally hyperbolic manifold, there exists a true in-

variant manifold being a smooth graph over the former manifold. In their setting, they require that

the approximately invariant manifold is inflowing or overflowing at an O(1) rate. However, due to

the super slow motion of the interior spikes, the results in [19] can not be applied to our problem

directly, so the first thing we do is to extend the results in [19] to make them applicable to our

case. This involves a “blow up” technique. Another technical difficulty in our problem is that the

linearized operator obtained by linearizing the Cahn-Hilliard equation at a multi-spike state is not

self-adjoint, so we cannot split the space according to the spectrum of that linearized operator to

prove the normal hyperbolicity. To overcome this difficulty, we turn to deal with the corresponding

“integrated” equation. That is, we transform the Cahn-Hilliard equation using (−∆)−
1
2 , and by

so doing, the corresponding linearized operator becomes self-adjoint. More details about how to

make this transformation well-defined can be found in Section 4.3.5. Then we construct a locally

invariant manifold of transformed (by (−∆)−
1
2 ) interior multi-spike states for the transformed semi-

flow, and after transforming everything back, we obtain a locally invariant manifold M̃ε of interior

multi-spike states for the original equation. Note that, once we obtain such an invariant manifold,

the solution of (4.1.1) starting from any point in that manifold exists for both positive and negative

time. By reducing (4.1.1) on M̃ε, we derive an equation which determines the velocity of each

spike analytically. It turns out that the dynamics of interior spikes for the Cahn-Hilliard equation

has a global character where not only the closest spikes interact but each spike interacts with all
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the others and with the boundary. Furthermore, the speed of the interior spikes is estimated to be

exponentially small, which indicates that the multi-spike states exist for a very long time, forwards

and backwards.

This chapter is organized as follows: in Section 4.2, we extend the results in [19] to slow man-

ifolds with boundary. In Section 4.3, we construct approximately invariant manifolds of interior

multi-spike states for (4.1.1) and then prove the existence of truly invariant manifolds of interior

multi-spike states nearby. In Section 4.4, we investigate the dynamics of multi-spike states and

give an estimate of the speed of the centers of the spikes.

4.2 Approximately stationary invariant manifolds with bound-

ary

In Definition 2.0.1, a technical assumption that the distance from u(M) to the boundary of the man-

ifold M is bounded below is made. This guarantees that the image under T of a graph over ψ(M)

is still a graph over ψ(M). A similar assumption is also made in Definition 2.0.5 for approximately

overflowing invariant manifolds. However, sometimes the approximately invariant manifold is ap-

proximately stationary, so that the map T is approximated by the identity map, and therefore that

assumption can not be satisfied. This happens when we are seeking an invariant manifold of states

with super slow motion . In this section, we establish a framework to obtain invariant manifolds

near approximately stationary and approximately normally hyperbolic manifolds. The idea is to

modify the map T only near the boundary of ψ(M) to get a new map T̃ such that ψ(M) is approx-

imately inflowing (overflowing) invariant under T̃ and T̃ = T when applied to the points away

from the boundary. More specifically, if the ”projection” of T (x) to ψ(M) is near the boundary of

ψ(M), then we move the ”projection” inside (outside) ψ(M) and away from the boundary of ψ(M).
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Moreover, the movement should be very slight for the purpose of keeping the normal hyperbolicity.

More precise statement may be found below.

Let X,Y be two Banach spaces and T ∈ CJ(X, X) with J > 1 and M ⊂ Y be a CJ finite-

dimensional closed manifold with smooth boundary ∂M. Let ψ ∈ CJ(M, X) be an embedding 1

satisfying ‖Diψ‖ < B2 for 1 ≤ i ≤ J and ‖Dψ−1‖ < B3 for all m ∈ M. We denote the metric on M

by d(·, ·). Furthermore, we make the following assumption on the boundary of M.

With B(∂M, r0) = {m ∈ M : d(m, ∂M) ≤ r0}, we assume that there exists r > 0, γ1, γ2 > 0

and φ : B(∂M, r) → Rn
+ such that φ(∂M) ⊂ ∂Rn

+, where Rn
+ is the upper half space of Rn, and

γ1 ≤ ‖Dφ−1‖ ≤ γ2, ‖Dφ‖ ≤ γ3, ‖D2φ−1‖ ≤ γ4. Here φ−1 means taking the inverse for a local

chart. Since M is assumed to be compact, it is possible to construct such a map φ by using a

partition of unity.

Definition 4.2.1. ψ(M) is said to be approximately stationary invariant under T if there exists small

η > 0 such that |T (ψ(m)) − ψ(m)| < η, for all m ∈ M.

Definition 4.2.2. We say that an approximately stationary invariant manifold ψ(M) is approxi-

mately normally hyperbolic, if the following conditions hold:

1. For each m ∈ M, there is a decomposition X = Xc
m ⊕ Xs

m ⊕ Xu
m of closed subspaces with

projections Πc
m,Π

s
m,Π

u
m varying in CJ way with respect to m.

2. For any m ∈ M, Πc
m is an isomorphism from Dψ(m)TmM to Xc

m and TmM = Xc
m + Λm(Xc

m),

where Λm ∈ L(Xc
m, X

s
m ⊕ Xu

m). Furthermore there exist B, L, and χ ∈ (0, 1/2), such that for

1This theory could be developed for immersed Banach manifolds, but in our opinion the increase in generality is
not worth the loss of clarity and increase of pages.
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any m0 ∈ M and m1,m2 ∈ Bc(m0, r0), with m1 , m2, for α = c, u, s,



‖Πα
m0
‖ ≤ B, ‖Πα

m1
− Πα

m2
‖ ≤ L|ψ(m1) − ψ(m2)|,

|ψ(m1) − ψ(m2) − Πc
m0

(ψ(m1) − ψ(m2))|

|ψ(m1) − ψ(m2)|
≤ χ.

(4.2.1)

3. There exist σ, λ ∈ (0, 1) and a such that, for any m0 ∈ M, and α ∈ {c, s, u}, β ∈ {c, s, u}, with

α , β, then

(a) ‖Πβ
m0

DT (ψ(m0))|Xαm0
‖ ≤ σ, ‖(Πc

m0
DT (ψ(m0))|Xc

m0
)−1‖−1 > a,

(b) ‖Πs
m0

DT (ψ(m0))|Xs
m0
‖ ≤ λ, λ‖(Πu

m0
DT (ψ(m0))|Xu

m0
)−1‖−1 > 1,

(c) λ‖(Πu
m0

DT (ψ(m0))|Xu
m0

)−1‖−1 > max{1, ‖Πc
m0

DT (ψ(m0))|Xc
m0
‖J},

‖Πs
m0

DT (ψ(m0))|Xs
m0
‖ < λmin{1, ‖(Πc

m0
DT (ψ(m0))|Xc

m0
)−1‖−J}.

4. There exists B1, such that ‖D jT |B(ψ(M),r0)‖ ≤ B1 for 1 ≤ j ≤ J.

Remark 4.2.3. (4.2.1) implies that ‖Λm‖ ≤ Bχ, for any m ∈ M

Define

Xαm(δ) := {xα ∈ Xαm : |Xαm| ≤ δ}, α = s, u,

and

N(M, ε) := {ψ(m) + xs + xu : xs ∈ Xs
m(ε), xu ∈ Xu

m(ε)}.

Lemma 4.2.4. If ε < min{L8 ,
BL
8 }, then N(M, ε) is a tubular neighborhood of M satisfying

1. For any two points ψ(mi) + xs
i + xu

i ∈ N(M, ε), i = 1, 2, if

ψ(m1) + xs
1 + xu

1 = ψ(m2) + xs
2 + xu

2,
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then

m1 = m2, xs
1 = xs

2, xu
1 = xu

2.

2. There exists small θ such that if |x− (ψ(m) + xs + xu)| ≤ θ, where (ψ(m) + xs + xu) ∈ N(M, ε),

then

x = ψ(m∗) + xs
∗ + xu

∗,

where |xs
∗| ≤ ε and |xu

∗ | ≤ ε.

Proof. We refer to the proof of Lemma 3.6 in [19]. �

Remark 4.2.5. As a consequence of the proof, we have that m(x), xs(x), xu(x) are all smooth in x

for x ∈ N(M, ε).

Now we start to construct a center-stable manifold for T . We first define several functions that

will be used later in this section. Write x ∈ Rn as (x′, xn), and define S α : Rn → Rn as

S α(x′, xn) = (x′, xn + α), (4.2.2)

and define e : Rn → R as

e(x′, xn) = xn. (4.2.3)

Let b(z) be a smooth monotone function satisfying

b(z)



= 1, z ≤ 0,

∈ (0, 1), z ∈ (0, 1),

= 0, z ≥ 1,

(4.2.4)
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then for any m ∈ M, we define

m̃ = φ−1(S α(m) ◦ φ(m)
)
, (4.2.5)

where

α(m) = b
(e(φ(m)) − d

d

)
· l, (4.2.6)

where d > 0 is a constant satisfying d <
γ1r
2 and l > 0 is a small constant to be determined.

Remark 4.2.6. Note that ‖Dφ−1‖ ≤ γ2, so ‖Dφ‖ ≥ 1
γ2

. It follows immediately that for any m

satisfying 2γ2d < d(m, ∂M) < r, we have e(φ(m)) > 2d, which implies that α(m) = 0. So m̃ = m if

2γ2d < d(m, ∂M) < r.

For x ∈ N(m, ε), by Lemma 4.2.4, we can write x as x = ψ(m(x)) + xs(x) + xu(x). We construct

a new map T̃ as

T̃ (x) =


T (x), m(x) ∈ M\B(∂M, r),

T (x) + ψ(m̃(x)) − ψ(m(x)), m(x) ∈ B(∂M, r)).

(4.2.7)

By Remark 4.2.6, we have T̃ ∈ CJ(X, X).

Let

u(m) =


m, for m ∈ M\B(∂M, r),

m̃, for m ∈ B(∂M, r).

(4.2.8)

By Remark 4.2.6, one can see that u is continuous.

Lemma 4.2.7. For any m ∈ M, d(u(m), ∂M) ≥ γ1l.

Proof. We write φ(m) = (x′, 0) and for any m̄ ∈ ∂M, we write m̄ = (x̄′, 0). Then one can check
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that

|u(m) − m̄| = |φ−1(x′, t) − φ−1(x̄′, 0)| ≥ γ1|(x′, t) − (x̄′, 0)| ≥ γ1t.

Thus d(u(m), ∂M) = infm̄∈∂M d(u(m), m̄) ≥ γ1t. �

Lemma 4.2.8. |T̃ (ψ(m)) − ψ(u(m))| < η, for any m ∈ M.

Proof. By direct computation, we have

T̃ (ψ(m)) − ψ(u(m)) = T (ψ(m)) − ψ(m),

which implies the desired result. �

Combining Lemma 4.2.7 and Lemma 4.2.8, it is clear that ψ(M) is an approximately inflowing

invariant manifold for T̃ . The map T̃ is almost the same as T , except that it shifts the “base

points” of x on ψ(M) that are near the boundary of ψ(M) a little. Intuitively, one may expect that

if l is small enough, ψ(M) is also approximately normally hyperbolic for T̃ , so that we can apply

Theorem 2.0.3 to conclude the existence of a center-stable manifold. However, one may notice that

the distance from u(M) to the boundary of M depends on l and l is also involved in the trichotomy

property of DT̃ . As we apply Theorem 2.0.3, the distance from u(M) to the boundary of M needs

to be fixed first, then we make the other parameters small. Therefore, Theorem 2.0.3 can not be

applied directly. To overcome this problem, we perform the following blow-up analysis.

46



Let

Ml =
M
l

= {ml =
m
l

: m ∈ M},

ψl(ml) =
1
l
ψ(lml),

T l(x) =
1
l
T (lx), T̃ l(x) =

1
l
T̃ (lx),

ul(ml) =
1
l
u(lml),

X̄α
ml = Xα

lml , Π̄
α

ml = Πα

lml , α = c, s, u.

(4.2.9)

First, it is easy to check that

|T̃ l(ψl(ml)) − ψl(ul(ml))| <
η

l
(4.2.10)

for any ml ∈ Ml, and

d(u(Ml), ∂ml) ≥ γ1. (4.2.11)

Thus, ψl(Ml) is an approximately inflowing invariant manifold for T̃ l
ε.

Clearly, for each ml ∈ Ml, X = X̄c
ml ⊕ X̄s

ml ⊕ X̄u
ml of closed subspaces with projections

Π̄c
ml , Π̄

s
ml , Π̄

u
ml , and for any ml

0 ∈ Ml and ml
1,m

l
2 ∈ Bc(ml

0,
r0
l ), with ml

1 , ml
2, for α = c, u, s,



‖Π̄α

ml
0
‖ ≤ B, ‖Π̄α

ml
1
− Π̄α

ml
2
‖ ≤ lL|ψl(ml

1) − ψl(ml
2)|,

|ψl(ml
1) − ψl(ml

2) − Π̄c
ml

0
(ψl(ml

1) − ψl(ml
2))|

ψl(ml
1) − ψl(ml

2)
≤ χ.

(4.2.12)
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Note that

Π̄α

ul(ml)
DT̃ l(ml)|X̄βml

= Πα
u(m)DT̃ (m)|

Xβm
,

thus in order to show the trichotomy property for T̃ l, we just need to consider Πα
u(m)DT̃ (m)|

Xβm
.

Furthermore, for m ∈ M\B(∂M, r), we have T̃ = T and u(m) = m, so we just need to deal with

m ∈ B(∂M, r).

Since DS α(m) = I + Dα(m) · en, where en = (0, · · · , 1), and Dφ−1(φ(x))Dφ(x) = I, we have

Dψ(m̃(x)) − Dψ(m(x))

= Dψ(m̃(x))Dm̃(x) − Dψ(m(x))Dm(x)

= Dψ(m̃(x))D(φ−1)(S α(m)φ(m))(I + Dα(m(x)) · en)Dφ(m(x))Dm(x) − Dψ(m(x))Dm(x)

= (Dψ(m̃(x)) − Dψ(m(x)))D(φ−1)(S α(m)φ(m))(I + Dα(m(x)) · en)Dφ(m(x))Dm(x)+

Dψ(m(x))D(φ−1)(S α(m)φ(m)) − D(φ−1)(φ(m))(I + Dα(m(x)) · en)Dφ(m(x))Dm(x)+

Dψ(m(x))D(φ−1)(φ(m))(Dα(m(x)) · en)Dφ(m(x))Dm(x).

(4.2.13)

Using the fact that ‖Diψ‖ ≤ B2, ‖Dφ−1‖ < γ2, ‖Dφ‖ < γ3, ‖Dα(m(x))‖ = O(l), ‖Dm(x)‖ is

uniformly bounded, |m̃ − m| ≤ γ2t and ‖Dφ−1(S α(m)φ(m)) − Dφ−1(φ(m))‖ = O(l), we have

‖Dψ(m̃(x)) − Dψ(m(x))‖ ≤ Cl, (4.2.14)

for some constant C being independent of x.
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Thus we have

‖Πα
u(m)DT̃ (m)|

Xβm
‖ ≤ ‖Πα

u(m) − Πα
m‖‖DT̃ (m)|

Xβm
‖ + ‖Πα

mDT̃ (m)|
Xβm
‖

≤ ‖Πα
u(m) − Πα

m‖(‖DT (m)|
Xβm
‖ + ‖Dψ(m̃(x)) − Dψ(m(x))‖)+

‖Πα
mDT (m)|

Xβm
‖ + ‖Πα

m‖‖Dψ(m̃(x)) − Dψ(m(x))‖

≤ ‖Πα
mDT (m)|

Xβm
‖ + Cl.

(4.2.15)

Similarly, one can prove

‖Πα
u(m)DT̃ (m)|

Xβm
‖ ≥ ‖Πα

mDT (m)|
Xβm
‖ −Cl. (4.2.16)

Therefore, when l is small enough, the trichotomy properties are satisfied, so that Theorem

2.0.3 can be applied to T̃ l and Ml to obtain a center-stable manifold W̄cs(l) for T̃ l. Note that if

W̄cs(l) is invariant under T̃ l, then Wcs(l) = lW̄cs is invariant under T̃ . Since T̃ (x) = T (x) when

e(φ(m(x))) > 2d or d(m(x), ∂M) > r, it is clear that Wcs(l) is locally invariant under T . So we have

the following theorem:

Theorem 4.2.9. Depending on r0, B, B1, λ, L, when η, χ and σ are sufficiently small, for every l

sufficiently small, there exists a CJ positively locally invariant manifold Wcs(l) for T , which is

given as the image of a map

h : {(m, xs) : m ∈ M, xs ∈ Xs
m(δ0)} → X,

for some δ0 > 0. Also for any x ∈ Wcs(l) with e(φ(m(x))) > 2d or d(m(x), ∂M) > r, we have

T (x) ∈ Wcs(l).
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Remark 4.2.10. Theorem 4.2.9 essentially says that Wcs(l) is invariant under T if the “base point”

on ψ(M) is away from the boundary of M.

Similarly, we can construct center-unstable manifolds for T . Let

m̃ = φ−1(S−α(m) ◦ φ(m)
)
, (4.2.17)

then we construct T̃ and v respectively as

T̃ (x) =


T (x), m(x) ∈ M\B(∂M, r),

T (x) + ψ(m̃(x)) − ψ(m(x)), m(x) ∈ B(∂M, r)),

(4.2.18)

and

v(m) =


m, for M ∈ M\B(∂M, r),

φ−1(S α(m) ◦ φ(m)
)
, for M ∈ B(∂M, r).

(4.2.19)

By the construction of v, one can easily see that v is a homeomorphism. Following the same

argument as above, we obtain the follow theorem:

Theorem 4.2.11. Depending on r0, B, B1, λ, L, when η, χ and σ are sufficiently small, for every

t sufficiently small, there exists a CJ negatively locally invariant manifold Wcu(l) for T , which is

given as the image of a map

h : {(m, xu) : m ∈ M, xu ∈ Xu
m(δ0)} → X,

for some δ0 > 0. Also for any x ∈ Wcu(l) with e(φ(m(x))) > 2d or d(m(x), ∂M) > r, we have

T (x) ∈ Wcu(l).
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4.3 Invariant manifolds of interior multi-spike states

4.3.1 Construction of the manifoldMε

We start from the following equation,

−ε2∆u + f (u) = σ, (4.3.1)

whose solutions are stationary solutions to (4.1.1).

Let σ = f (m̄), where m̄ is in a metastable region, which means that f ′(m̄) > 0. We make the

following transformation,

u = v + m̄, g(v) = σ − f (v + m̄). (4.3.2)

Obviously g(0) = 0. Let g′(0) = −µ, then we can write g(v) = −µv + h(v) with h satisfying

h(0) = h′(0) = 0. Then (4.1.1) becomes


vt = −∆(ε2∆v + g(v)) in Ω × (0,∞),

∂∆v
∂n

=
∂v
∂n

= 0 on ∂Ω × (0,∞),

(4.3.3)

or 
vt = −∆(ε2∆v − µv + h(v)) in Ω × (0,∞),

∂∆v
∂n

=
∂v
∂n

= 0 on ∂Ω × (0,∞).

(4.3.4)

And (4.3.1) becomes

ε2∆v + g(v) = 0, (4.3.5)

or

ε2∆v − µv + h(v) = 0. (4.3.6)
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By the main theorem of [23], there exists a ground state w satisfying



∆w + g(w) = 0 in Rn,

w(0) = max w(x), w > 0,

w(x) = w(|x|),

w(x)→ 0, |x| → ∞.

(4.3.7)

Also, w(x) satisfies that |∂k
rw(x)| ≤ Ce−ν|x| for any x ∈ Rn and k ≥ 0, where ∂r is the derivative in

the radial direction. Note that g is assumed to be smooth, so w is smooth. Furthermore, we assume

the ground state w is non-degenerate, that is, the operator obtained by linearizing at w has 0 as an

eigenvalue of multiplicity n (when f = u3 − u, the ground state is non-degenerate).

We will construct an approximately invariant manifold of interior multi-spike states parametrized

by the locations of the spikes for (4.1.1). Roughly speaking, we patch k translated and ε-rescaled

ground states together, requiring that k center points of the spikes are at least δ > 0 away from each

other and δ
2 away from the boundary. Here the constant δ is not necessarily O(1), but must satisfy

δ
ε → ∞ as ε→ 0, so δ could be O(|εlnε|) or O(

√
ε), for example.

Let

Ω̃k =
{
P = (p1, p2, · · · , pk) : pi ∈ Ω, |pi − p j| ≥ δ, d(pi, ∂Ω) ≥

δ

2
}
, (4.3.8)

obviously, Ω̃k is a closed submanifold of Ω × · · · ×Ω︸        ︷︷        ︸
k−copies

with boundary.

Then we let

Wε,P(x) =

k∑
i=1

wε,pi , (4.3.9)

where P = (p1, p2, · · · , pk) ∈ Ω̃k and wε,pi = w( x−pi
ε ).

From this point on, to simplify the notation, we have replaced ν
2 by ν in the exponentially small
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terms.

Lemma 4.3.1. Wε,P satisfies

ε2∆Wε,P − µWε,P + h(Wε,P) = Rε,P(x), (4.3.10)

where |Rε,P(x)|Cm(Ω) = O(e−
νδ
ε ) for any m.

Proof. First, note that Wε,P and h are smooth, so Rε,P is smooth. For any x ∈ {x ∈ Ω : d(x, pi) <

δ
2 }, we have |w(

x−pl
ε )| = O(e−

νδ
ε ) for l , i. Using the fact that h(0) = 0, we have

|Rε,P(x)| = |h(Wε,P) − h(w(
x − pi
ε

)) −
∑
l,i

h(w(
x − pl
ε

))|

≤ C
∑
l,i
|w(

x − pl
ε

)|

= O(e−
νδ
ε ).

For any x ∈ {x ∈ Ω : d(x, pi) > δ
2 , i = 1, · · · , k}, we have |w( x−pi

ε )| = O(e−
νδ
ε ) for i = 1, · · · , k.

Thus

|Rε,P(x)| = |h(Wε,P) −
k∑

i=1
h(w(

x − pl
ε

))| = O(e−
νδ
ε ).

Therefore, |Rε,P(x)|C0(Ω) = O(e−
νδ
ε ). One can follow the same argument to show that for any m,

|Rε,P(x)|Cm(Ω) = O(e−
νδ
ε ).

Note that taking a derivative of Rε,P generates 1
ε which is absorbed by e−

νδ
ε by changing ν slightly.

�

Now, we see that Wε,P(x) approximately satisfies (4.3.6). However it does not satisfy the
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Neumann boundary conditions in (4.1.1), so we need to modify it slightly.

LetH(ρ) be the solution to


ε2∆v − µv = 0 in Ω,

∂v
∂n =

∂ρ
∂n on ∂Ω,

(4.3.11)

and letH(ρ) be the solution to


ε2∆v − µv = ε2χ∆ρ − ε2∆H(ρ) in Ω,

∂v
∂n = 0 on ∂Ω,

(4.3.12)

where χ(x) is a smooth cut-off function satisfying


χ(x) = 0, x ∈ {x : d(x, ∂Ω) ≥ δ

4 },

χ(x) = 1, x ∈ {x : d(x, ∂Ω) ≤ δ
8 }.

(4.3.13)

One can easily check that H(Wε,P) =
∑

1≤i≤kH(wε,pi) and H(Wε,P) =
∑

1≤i≤kH(wε,pi). To

estimate H(Wε,P) and H(Wε,P), we first prove the following lemma. It may have been proved

elsewhere, but for the completeness, we give a proof here.

Lemma 4.3.2. If G ∈ Lq(Ω) and H ∈ Lq(∂Ω) for some q ≥ 2, and if v is the solution to


∆v − µv = G in Ω,

∂v
∂n = H on ∂Ω,

(4.3.14)
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then

|v|
L

nq
n−2 (Ω)

≤ C(|G|Lq(Ω) + |H|Lq(∂Ω))

Proof. ∫
Ω

∆v · v − µv2dx =

∫
Ω

Gvdx.

By Green’s formula, we have

−

∫
Ω
|∇v|2dx +

∫
∂Ω

vHds −
∫

Ω
µv2dx =

∫
Ω

Gvdx.

Then, we have

∫
Ω
|∇v|2dx +

∫
Ω
µv2dx

≤

∫
∂Ω
|vH|ds +

∫
Ω
|Gv|dx

≤ λ

∫
∂Ω
|v|2ds +

1
4λ

∫
∂Ω
|H|2ds + λ

∫
Ω
|v|2dx +

1
4λ

∫
Ω
|G|2dx

≤ λC(
∫

Ω
|v|2ds +

∫
Ω
|∇v|2dx) +

1
4λ

∫
∂Ω
|H|2ds + λ

∫
Ω
|v|2dx +

1
4λ

∫
Ω
|G|2dx,

which implies that

(1 − λC)
∫

Ω
|∇v|2dx + (µ − λC − λ)

∫
Ω
|v|2dx ≤

1
4λ

∫
Ω
|G|2dx +

1
4λ

∫
∂Ω
|H|2ds.

Choosing λ small enough, we have

|v|W1,2 ≤ C(
∫

Ω
|G|2dx +

∫
∂Ω
|H|2ds).
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For q > 2, and with v+ = max{v, 0},

∫
Ω

∆v · vq−1
+ dx − µ

∫
Ω

vq
+dx =

∫
Ω

Gvq−1
+ dx.

By Green’s formula, we get

−(q − 1)
∫

Ω
vq−2
+ |∇v+|

2dx +

∫
∂Ω

vq−1
+ Hds − µ

∫
Ω

vq
+dx =

∫
Ω

Gvq−1
+ dx.

Then

(q − 1)
∫

Ω
vq−2
+ |∇v+|

2dx + µ

∫
Ω

vq
+dx ≤

∫
∂Ω

vq−1
+ |H|ds +

∫
Ω
|G|vq−1

+ dx,

4(q − 1)
q2

∫
Ω
|∇(v

q
2
+ )|2dx + µ

∫
Ω

vq
+dx ≤ λ

∫
∂Ω

vq
+ds + κ(λ)

∫
∂Ω
|H|qds + λ

∫
Ω

vq
+dx +

∫
Ω
|G|qdx,

which indicates that

|v
q
2
+ |W1,2(Ω) ≤ C(|G|Lq(Ω) + |H|Lq(∂Ω)).

So

|v+|
L

nq
n−2 (Ω)

≤ C(|G|Lq(Ω) + |H|Lq(∂Ω)).

One can prove the same inequality for v−, which completes the proof. �

Using Lemma 4.3.2 and routine bootstrap argument, we have that for any m, |H(Wε,P)|Cm(Ω)

and |H(Wε,P)|Cm(Ω) are both O(e−
νδ
ε ). Let

H̃(Wε,P) = H(Wε,P) +H(Wε,P) + Kε,P, (4.3.15)
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then let

W̃ε,P = Wε,P − H̃(Wε,P), (4.3.16)

where Kε,P is a constant for fixed P with Kε,P = 0 for some P = P∗, such that the mass
∫
Ω

W̃ε,Pdx

remains constant as we vary P ∈ Ω̃k. One can easily check that

∂W̃ε,P

∂n
=
∂∆W̃ε,P

∂n
= 0.

By the exponentially decaying property of ground states and the fact that H(Wε,P),H(Wε,P) =

O(e−
νδ
ε ), one can easily see that Kε,P = O(e−

νδ
ε ). By using the symmetry of the ground states, one

also can check that DPKε,P = O(e−
νδ
ε ). More precisely, by direct computation, one has DPKε,P =

1
|Ω|

∫
Ω

DPWε,P −
(
DPH(Wε,P) + DPH(Wε,P)

)
dx. First, it is easy to verify that DPH(Wε,P) =

−∇x
∑
i
H(Wε,pi) = O(e−

νδ
ε ), similarly we have DPH(Wε,P) = O(e−

νδ
ε ). It remains to esti-

mate
∫
Ω

DPWε,Pdx. Since DPWε,P = −
∑
i
∇xwε,pi , it is sufficient to show that

∫
Ω
∇xlwε,pidx =

O(e−
νδ
ε ). Note that ∇xlw is odd in xl and B(pi, δ/2) ⊂ Ω, so we have

∫
B(pi,δ/2) ∇xlwε,pidx = 0. By

the exponentially decaying property of the ground state, it is also clear that
∫
Ω\B(pi,δ/2) ∇xlwε,pidx =

O(e−
νδ
ε ). It follows immediately that DPKε,P = O(e−

νδ
ε ). Moreover, since Kε,P is a constant in x,

one finds that for any m,

|H̃(Wε,P)|Cm(Ω) = O(e−
νδ
ε ). (4.3.17)

Define

ψε(P) = W̃ε,P. (4.3.18)

Then the approximately invariant we construct is

Mε = ψε(Ω̃k). (4.3.19)
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Remark 4.3.3. Every point on the manifoldMε has the same mass. Since we are only building an

approximately invariant manifold, this may seem unnecessary. However, as we will see in Section

4.3.5, this is important for the transformed equation.

4.3.2 Spectral analysis of the linearized Allen- Cahn operator

Let

L0v := ∆v − µv + h′(w)v, H2(Rn)→ L2(Rn),

L̃ε0v := ε2∆v − µv + h′(W̃ε,P)v, H2(Ω)→ L2(Ω),
(4.3.20)

and

Bu(v, v) =

∫
Ω

(ε2|∇v|2 + µv2 − h′(u)v2)dx (4.3.21)

Recall that the ground state w is assumed to be non-degenerate, which means that there exists b >

0, λ1 > 0, such that σ(L0)∩ (−b,∞) = {0, λ1} with 0 having multiplicity n. In fact λ1 is simple, and

the corresponding eigenfunction V is radially symmetric and exponentially decaying with the same

rate as that of w. Also, the corresponding eigenspace with respect to 0 is span{ ∂w
∂xi
, i = 1, · · · , n}.

We will use the spectrum of L0 to estimate the spectrum of L̃ε0. Now we consider the eigenvalue

problem 
L̃ε0φ = −λεφ, in Ω,

∂φ
∂n = 0 on ∂Ω.

(4.3.22)

First we let

W i j
ε = χiwx j(

x − pi
ε

),

V i = χiV(
x − pi
ε

),

(4.3.23)
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where χi is a smooth cut-off function satisfying

χi(x) =


1, x ∈ Ωi := {x : d(x, pi) ≤ 1

2δ, d(x, ∂Ω) ≥ 1
4δ},

0, x ∈ Ω̃i := {x : d(x, pi) ≥ 3
4δ, d(x, ∂Ω) ≤ 1

8δ}.

(4.3.24)

Lemma 4.3.4.

BW̃ε,P
(W i j

ε ,W
i j
ε )

〈W i j
ε ,W

i j
ε 〉

= O(e−
νδ
ε ),

BW̃ε,P
(V i,V i)

〈V i,V i〉
= −λ1 + O(e−

νδ
ε ),

(4.3.25)

Proof. Here, we just prove the first statement, the proof of the other one is similar.

BW̃ε,P
(W i j

ε ,W
i j
ε )

= Bwε,pi
(W i j

ε ,W
i j
ε ) +

∫
Ω

(h′(wε,pi) − h′(W̃ε,P))(W i j
ε )2dx

=

∫
Ωi

(ε2(∇W i j
ε )2 + µ(W i j

ε )2 − h′(wε,pi)(W
i j
ε )2)dx +

∫
Ω

(h′(wε,pi) − h′(W̃ε,P))(W i j
ε )2dx

+

∫
Ω\(Ωi∪Ω̃i)

(ε2(∇W i j
ε )2 + µ(W i j

ε )2 − h′(wε,pi)(W
i j
ε )2)dx

= I + II + III.

(4.3.26)

Obviouly, I = O(e−
νδ
ε ). By direct computation, we have

|II| ≤
∫

Ω
C|W̃ε,P − wε,pi |(W

i j
ε )2dx

≤

∫
Ω\Ω̃i

(C|
∑
l,i

wε,pl | + O(e−
νδ
ε ))(W i j

ε )2dx ≤ Ce−
νδ
ε

∫
Ω

(W i j
ε )2dx.

(4.3.27)
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We are finish the proof by estimating III. First it is easy to check that W i j
ε , ε∇W i j

ε = O(e
−νδ
ε )

in Ω\(Ωi ∪ Ω̃i) and |ε∇χi|L2 = o(1). Combining with the fact that h′(0) = 0, we have |III| ≤

O(e−
νδ
ε )〈W i j

ε ,W
i j
ε 〉.

�

So far we see that L̃ε0 has k positive eigenvalues and nk eigenvalues near 0. In [20], the authors

used a scaling and limiting process to show that there is an O(1) spectral gap between the negative

spectrum and the spectrum near zero for the linearized Allen-Cahn operator obtained by linearizing

at a boundary multi-spike state. In [95], the authors used a similar technique to show such spectral

gap for the operator obtained by linearizing at a single interior-spike state. The same argument

adapts here. Performing a change of variable y =
x−pi
ε , where pi is the center of one of the spikes,

extending the eigenfunction for (4.3.22) to Rn, then letting ε tend to zero (see [20, 72, 73] for

more details about this process), one finds that the eigenvalue problem (4.3.22) converges along a

sequence weakly in H1(Rn) to the limiting eigenvalue problem

∆φ∞ − µφ∞ + h′(w)φ∞ = λ∞φ∞ in Rn. (4.3.28)

If we let y = x−z
ε for z ∈ Ω and z < {pi}

k
i=1 and then perform the same limiting process, we find the

limiting eigenvalue problem

∆φ∞ − µφ∞ = λ∞φ∞ in Rn. (4.3.29)

In both (4.3.28) and (4.3.29), the negative spectrum is bounded away from 0. Therefore, for ε

sufficiently small the rest of the spectrum of L̃ε0 lies in (−∞,−C] for some constant C > 0.
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4.3.3 Spectral analysis of the linearized Cahn-Hilliard operator

Consider the eigenvalue problem:


−∆(ε2∆φ − µφ + h′(W̃ε,P)φ) = λεφ in Ω,

∂φ

∂n
=
∂∆φ

∂n
= 0 on ∂Ω.

(4.3.30)

First, we recall the variational characterization of the eigenvalues of Cahn-Hilliard equation

([13] Theorem 5):

−λεn = minnmaxn

BW̃ε,P
(v, v)

〈(−∆)−1)v, v〉
, (4.3.31)

where maxn is over all v ∈ Tn, and minn is over all n-dimensional subspaces Tn of Ĥ1(Ω) := {v :

v ∈ H1(Ω),
∫
Ω

vdx = 0}. Also, (−∆)−1 is defined on Ĥ1(Ω) by (−∆)−1v = η for v ∈ Ĥ1(Ω) if and

only if η ∈ Ĥ1(Ω) is the solution to


−∆η = v in Ω,

∂η
∂n = 0 on ∂Ω.

Now, we construct a test function for (4.3.31) using the unstable eigenfunction V . Let θ be a

function satisfying

supp(θ) ⊂ {x :
3
8
δ ≤ |x| ≤

1
2
δ}, and

∫
Rn
θ(x) =

∫
Rn

V(x),

then let

θβ(x) = βnθ(βx). (4.3.32)
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It is easy to verify that

|θβ(x)|2
L2(Rn)

= βn|θ(x)|2
L2(Rn)

, |∇θβ(x)|2
L2(Rn)

= βn+2|∇θ(x)|2
L2(Rn)

.

We let

V
i
= αi(x)V(

x − pi
ε

) − θi
β(x). (4.3.33)

Here, αi(x) is an smooth cut-off function satisfying

αi(x) =


1, x ∈ {x ∈ Ω : d(x, pi) ≤ 1

4δ},

0, x ∈ {x ∈ Ω : d(x, pi) ≥ 3
8δ},

(4.3.34)

and

θi
β(x) = τiθβ(

x − pi
ε

), (4.3.35)

where τi is a constant such that
∫
Ω

V
i
dx = 0. Note that τi = O(1) and

supp(θi
β) ⊂

{
x :

3εδ
8β
≤ d(x, pi) ≤

εδ

2β
}
.

So if we choose β such that 1 < ε
β < 1+ε, then supp(θi

β
) and supp(αi) are disjoint, and furthermore

supp(θi
β
) is contained in Ω for ε small enough. Then, one has

BW̃ε,P
(V

i
,V

i
) = BW̃ε,P

(αi(x)V(
x − pi
ε

), αi(x)V(
x − pi
ε

)) + BW̃ε,P
(θi
β(x), θi

β(x))

= (−λ1 + O(e−
νδ
ε ))〈αi(x)V(

x − pi
ε

), αi(x)V(
x − pi
ε

)〉 + O(βn).

(4.3.36)

It remains to estimate 〈(−∆)−1V
i
,V

i
〉, which is the point of the following lemma.
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Lemma 4.3.5. 0 < 〈(−∆)−1v, v〉 ≤ C〈v, v〉, for any v ∈ Ĥ1(Ω), v , 0 for some constant C > 0.

Proof. (−∆) as a operator acting on functions with mean-value zero and homogenous Neumann

boundary condition is a positive operator, so 〈(−∆)−1v, v〉 > 0. Let η be the mean value zero

solution of the equation 
(−∆)η(x) = v(x) in Ω,

∂η
∂n = 0 on ∂Ω.

(4.3.37)

By direct calculation, we have

〈(−∆)−1v, v〉 =

∫
Ω

vηdx =

∫
Ω
|∇η|2dx. (4.3.38)

For any λ > 0,

∫
Ω

vηdx ≤
1

4λ

∫
Ω

v2dx + λ

∫
Ω
η2dx

≤
1

4λ

∫
Ω

v2dx + λC
∫

Ω
|∇η|2dx.

(4.3.39)

By choosing λ small enough, it follows immediately that

∫
Ω

vηdx ≤ C
∫

Ω
v2dx.

�

Since V
i

is constructed by scaling V and θβ by ε, and since V decays exponentially, one has

< (−∆)−1V
i
,V

i
>= O(ε2). One may find a rigorous proof of this fact in the proof of Lemma

4.4.3 in the current paper. Combining (4.3.31), (4.3.36) and Lemma 4.3.5, we have that there are k

positive eigenvalues λi
ε(1 ≤ i ≤ k) greater than

Cλ1
ε2 with corresponding eigenfunctions denoted by
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V i
ε for some constant C. Similarly, one can prove that there are nk eigenvalues which are O(e−

νδ
ε ).

If there are other positive eigenvalues away from zero, then by (4.3.31) one can see that there will

be extra positive eigenvalues away from 0 for the corresponding linearized Allen-Cahn operator,

which is a contradiction. Therefore, there are exactly k positive eigenvalues bounded away from 0

for (4.3.30). Moreover, if there is a negative eigenvalue for (4.3.30) of order o( 1
ε2 ), then by (4.3.31)

and Lemma 4.3.5, one sees that there will be a negative eigenvalue approaching zero as ε→ 0 for

the corresponding linearized Allen-Cahn operator, which is again a contradiction. Thus, the rest of

the spectrum is in (−∞,− b̄
ε2 ) for some b̄ > 0. For convenience, we denote the size of this spectral

gap by bε = b
ε2 .

Note that

−∆(ε2∆W̃ i j
ε − µW̃ i j

ε + h′(W̃ε,P)W̃ i j
ε ) = O(e−

νδ
ε ), (4.3.40)

where

W̃ i j
ε = D j(wε,pi − H̃(wε,pi)), (4.3.41)

and W̃ i j
ε almost satisfies the boundary conditions. Thus, we may use span{W̃ i j

ε , i = 1, · · · , k, j =

1, · · · , n} to approximate the center space for Lε,P, where Lε,Pv := −∆(ε2∆v−µv+h′(W̃ε,P)v) with

the domain {
v : v ∈ W4,q

ε (Ω),
∂v
∂n

=
∂∆v
∂n

= 0
}
.
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4.3.4 Mε is approximately stationary

First of all, we define a rescaled Sobolev space Wk,q
ε as the family of k− th differentiable functions

(in distribution sense) endowed with the rescaled norm

| · |
Wk,q
ε

=
∑

0≤|α|≤2
|ε|α|Dα(·)|Lq(Ω,ε−ndµ).

Then we choose our phase space X :=
{
u ∈ W2,q

ε :
∂∆u
∂n

=
∂u
∂n

= 0
}

with large q. Recall that we

define Lε,P as

Lε,Pv := −∆(ε2∆v − µv + h′(W̃ε,P)v) (4.3.42)

with the domain {
v : v ∈ W4,q

ε (Ω),
∂v
∂n

=
∂∆v
∂n

= 0
}
.

It is clear that Lε,P generates an analytic semigroup etLε,P : Lq
ε → Lq

ε, where Lq
ε = W0,q

ε . By using

the spectral property of Lε,P and the embedding theorem of fractional power spaces (see [51]), we

have

|etLε,P |(Lq
ε,L

q
ε) ≤ Ce

Ct
ε2 ,

|etLε,P |
(Lq
ε,W

2,q
ε )
≤ C(1 + (

t
ε2 )−

1
2 )e

Ct
ε2 .

(4.3.43)

We first modify h to make sure (4.3.4) generates a semiflow globally in time. Let h̃(u) =

η(u)h(u), where η(s) is a smooth cut-off function satisfying

η(s) =


1, |s| < max w + 1,

0, |s| > max w + 2.
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We now consider the equation

ut = −∆(ε2∆u − µu + h̃(u)) (4.3.44)

with the same Neumann boundary conditions. For convenience, we still keep the notation h instead

of h̃.

For any fixed P ∈ Ω̃k, we consider the initial value problem



ut = −∆(ε2∆u − µu + h(u)) in Ω × (0,∞),

∂∆u
∂n

=
∂u
∂n

= 0 on ∂Ω × (0,∞),

u(·, 0) = W̃ε,P in Ω.

(4.3.45)

Lemma 4.3.6. Let u be the solution to (4.3.45). Then u satisfies

|u − W̃ε,P|X ≤ C(t + εt
1
2 )e−

νδ
ε e

Ct
ε2 . (4.3.46)

Proof. Let v be the difference u − W̃ε,P, then v satisfies



vt = −∆(ε2∆v − µv + h′(W̃ε,P)v) + ∆(ε2∆H̃ − µH̃ + h(W̃ε,P + H̃) − h(W̃ε,P + v)

+h′(W̃ε,P)v − Rε,P)

= Lε,Pv + r(v),

∂∆v
∂n

=
∂v
∂n

= 0,

v(·, 0) = 0.

(4.3.47)
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Using Lemma 4.3.1, (4.3.17) and the fact that h has been modified, we get

|r(v)|Lq
ε
≤ C(|v|X + e−

νδ
ε ). (4.3.48)

Using the variation of constants formula, we write the solution v as

v =

∫ t

0
eLε,P(t−s)r(v)ds. (4.3.49)

Applying (4.3.43) to (4.3.49), we have

|v|X ≤
∫ t

0
C(1 + (

t − s
ε2 )−

1
2 )e

C(t−s)
ε2 (|v|X + e−

νδ
ε )ds.

Then it follows directly by Gronwall’s inequality that

|v|X ≤ C(t + εt
1
2 )e−

νδ
ε e

Ct
ε2 . (4.3.50)

�

4.3.5 Transformation of the phase space

Observe that the linearized Cahn-Hilliard operator Lε,P is not self-adjoint in L2, so it is hard to

show the normal hyperbolicity which leads to the existence of an truly invariant manifold directly.

To handle this, we introduce the following transformation. For any φ ∈ X satisfying
∫
Ω
φdx = 0,
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let ψ be the solution to the equation



−∆ψ = φ in Ω,

∂ψ
∂n = 0 on Ω,

∫
Ω
ψdx = 0.

(4.3.51)

Define A : Ŵ4,q
ε ∩ {u ∈ W4,q

ε : ∂u
∂n = 0 on Ω} → Ŵ2,q

ε by Aψ = φ, where Ŵk,q
ε = Wk,q

ε ∩ {u :∫
Ω

udx = 0}. For any φ ∈ Ŵ2,q
ε , let φ] ∈ Ŵ3,q

ε satisfy A
1
2φ] = φ, i.e. φ] = A−

1
2φ. One can check

that the spectrum of A lies in (0,∞) (A is a positive operator), so A−
1
2 is well-defined ([51]). Let

u(t, ·) be the solution to (4.3.44). Since the Cahn-Hilliard equation conserves the mass, one can

define u] = A−
1
2 (u − q(u)), where q(u) = 1

|Ω|

∫
Ω

udx is a constant in t and x. It is clear that u]

satisfies


((−∆)

1
2 u])t = −∆(ε2∆((−∆)

1
2 u]) − µ((−∆)

1
2 u]) + h((−∆)

1
2 u] + q(u))) in Ω,

∂(−∆)
1
2 u]

∂n =
∂(−∆)

3
2 u]

∂n = 0 on ∂Ω.

(4.3.52)

Note that all points on the approximately invariant manifold Mε have the same mean value,

which we denote by qε. Let

M
]
ε = A−

1
2 (Mε − qε) := {A−

1
2 (ψε(P) − qε) : P ∈ Ω̃k}. (4.3.53)

Since DP
∫
Ω
ψε(P)dx =

∫
Ω

DPψε(P)dx = 0, the tangent space of M]
ε is also well-defined as

A−
1
2 TMε. In order to obtain a truly invariant manifold nearMε for the semiflow u(t, ·) generated

by (4.3.44), we first find a truly invariant manifold nearM]
ε with zero mass for u](t, ·), then by the
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injectivity of A−
1
2 , one obtains a truly invariant manifold for u(t, ·) nearMε. Naturally, we choose

the phase space X] for u] to be Ŵ3,q
ε . First of all, one can easily check thatM]

ε is approximately

stationary for u](t, ·). In fact, by Lemma 4.3.6, one has

|u]
(
t, A−

1
2 (W̃ε,P − qε)

)
− A−

1
2 (W̃ε,P − qε)|

W3,q
ε

= |A−
1
2
(
u(t, W̃ε,P) − W̃ε,P

)
|
W3,q
ε

≤ C|u(t, W̃ε,P) − W̃ε,P|X

≤ C(t + εt
1
2 )e−

νδ
ε e

Ct
ε2

(4.3.54)

Linearizing equation (4.3.52) at A−
1
2 (W̃ε,P − qε), we obtain

δu]t = (−∆)
1
2 (ε2∆(−∆)

1
2 δu] − µ(−∆)

1
2 δu] + h′(W̃ε,P)(−∆)

1
2 δu]) = L]

ε,Pδu
], (4.3.55)

where

L]
ε,P := (−∆)

1
2 ◦ (ε2∆ − µ + h′(W̃ε,P)) ◦ (−∆)

1
2 , (4.3.56)

with the domain

{v : v ∈ W4,q
ε ,

∂(−∆)
1
2 v

∂n
=
∂(−∆)

3
2 v

∂n
= 0}.

By the main theorems of [13], we know that L]
ε,P is self-adjoint in L2

ε (after taking the self-

adjoint extension) and the eigenvalue problem for L]
ε,P is equivalent to the eigenvalue problem for

Lε,P. Let

W̃ i j,]
ε = A−

1
2 Dpi jW̃

i j
ε ,

V i,]
ε = A−

1
2 V i

ε.

(4.3.57)
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These are well-defined since both Dpi jW̃
i j
ε and V i

ε have mean-value zero. Also, one can check

L]
ε,PW̃ i j,]

ε = O(e−
νδ
ε ), (4.3.58)

and

L]
ε,PV i,]

ε = λi
εV i,]

ε . (4.3.59)

Without loss of generality, we assume that |W̃ i j,]
ε |L2

ε
= |V i,]

ε |L2
ε

= 1. Furthermore, it is clear that

L]
ε,P generates an analytic semigroup e

L]
ε,Pt

with similar properties to eLε,Pt.

4.3.6 Splitting space X] along the manifoldM]
ε

Spectral analysis of L]
ε,P yields that the approximate unstable space of L]

ε,P is span{V i,]
ε } and the

approximate center space of L]
ε,P is span{W̃ i j,]

ε : 1 ≤ i ≤ k, 1 ≤ j ≤ n} ∼ T
ψ
]
ε(P)
M

]
ε. We will use

this to construct center-stable and center-unstable manifolds forM]
ε.

Remark 4.3.7. W̃ i j,]
ε does not satisfy the boundary conditions, but we can modify it slightly with

the same way that we modified Wε,P in Section 4.3.1. Note that the modification will be O(e−
νδ
ε ).

For convenience, we will keep the notation W̃ i j,]
ε for the modified function.

Since L]ε,p is self-adjoint, we have

λl
ε〈W̃

i j,]
ε ,V l,]

ε 〉 = 〈W̃ i j,]
ε , L]ε,pV l,]

ε 〉 = 〈L]ε,pW̃ i j,]
ε ,V l,]

ε 〉 = O(e−
νδ
ε ),

which implies that

〈W̃ i j,]
ε ,V l,]

ε 〉 = O(e−
νδ
ε ), (4.3.60)

where 〈, 〉 denotes the L2
ε inner product, i.e., 〈 f , g〉 =

∫
Ω

f gε−ndx. Since 〈W̃ i j,]
ε , W̃ lm,]

ε 〉 = 〈(−∆)−1W̃ i j
ε , W̃

lm
ε 〉,
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we have the following lemma

Lemma 4.3.8.

〈W̃uv,]
ε , W̃ lm,]

ε 〉 = o(ε) if (l,m) , (u, v). (4.3.61)

Proof. We just state this lemma here, the proof is similar to the proof of Lemma 4.4.3 in the last

section of the current paper. �

Let V̄ i,]
ε be the component of V i,]

ε which is orthogonal (in the sense of L2
ε) to span{W̃ i j,]

ε }.

Clearly |V̄ i,]
ε − V i,]

ε |X]
= O(e−

νδ
ε ). Then we decompose X] as X] = Xc

ε,P ⊕ Xs
ε,P ⊕ Xu

ε,P, where

Xc
ε,P = span{W̃ i j,]

ε , i = 1, · · · , k, j = 1, · · · , n},

Xu
ε,P = span{V̄ i,]

ε , i = 1, · · · , k},

Xs
ε,P =

{
v :

∫
Ω

vṽdx = 0, for any ṽ ∈ Xc
ε,P ⊕ Xu

ε,P

}
.

(4.3.62)

Denote the associated projection maps by Πα
ε,P, α = c, u, s. By the smoothness of W̃ i j,]

ε and V i,]
ε , we

have that Πα
ε,P, α = c, s, u, are smooth in P. Using the L2

ε-orthogonality and finite dimensionality

of center and unstable spaces, we have the boundedness of these projections. Following from

the compactness of Mε, we immediately have that Πα
ε,P are uniformly bounded and uniformly

Lipschitz in P. Clearly all the bounds are independent of ε for ε small enough. Furthermore, we

have that for small enough ε, there exists B > 0, independent of ε, such that

|Πα
ε,P|Cm(

Ω̃k,L(x)
) ≤ B, for any positive integer m. (4.3.63)
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4.3.7 Trichotomy

To investigate the linearized flow at a solution u] to (4.3.52) with initial condition A−
1
2 W̃ε,P, we

consider

δ̄u]t = (−∆)
1
2 ◦ (ε2∆ − µ + h′((−∆)

1
2 u])) ◦ (−∆)

1
2 δ̄u]. (4.3.64)

To get estimates for δ̄u], we also consider

δu]t = L]
ε,Pδu

] = (−∆)
1
2 ◦ (ε2∆ − µ + h′(W̃ε,P)) ◦ (−∆)

1
2 δu]. (4.3.65)

Lemma 4.3.9. If δ]u(0) = δ̄u](0), then |δ̄u] − δu]|
X]
≤ C(t + εt

1
2 )(t + ε

3
2 t

1
4 )e−

νδ
ε e

Ct
ε2 |δ̄u](0)|

X]
.

Proof. First it is easy to prove that

|δ̄u]|
X]
, |δu]|

X]
≤ Ce

Ct
ε2 |δ̄u](0)|

X]
. (4.3.66)

Let v = δ̄u] − δu]. Then v satisfies


vt = L]

ε,Pv − (−∆)
1
2 [(h′(W̃ε,P) − h′(u))(−∆)

1
2 δ̄u]],

v(0) = 0.

Using the variation of constants formula, we get

v =

∫ t

0
e

L]
ε,P(t−s)

(−∆)
1
2 [−(h′(W̃ε,P) − h′(u))∆

1
2 δ̄u]]ds.
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Note that |W̃ε,P − u|
W2,q
ε
≤ C(t + εt

1
2 )e−

νδ
ε e

Ct
ε2 , so for q large enough, we have

|W̃ε,P − u|C1 ≤ C(t + εt
1
2 )e−

νδ
ε e

Ct
ε2 ,

which implies that

|(−∆)
1
2 [(h′(W̃ε,P) − h′(u))(−∆)

1
2 δ̄u]]|Lq

ε
≤ C(t + εt

1
2 )e−

νδ
ε e

Ct
ε2 |δ̄u]|

W2,q
ε
. (4.3.67)

Clearly,

|e
L]
ε,Pt
|
L(Lq

ε,X
])
≤ C(1 + (

t
ε2 )−

3
4 )e

Ct
ε2 .

Then it follows immediately that

|v|
X]
≤ C(t +

t
1
2

ε
)(t + ε

3
2 t

1
4 )e−

νδ
ε e

Ct
ε2 |δ̄u](0)|

X]
.

�

Decompose δu] as

δu] = εDW̃]
ε,P · a(t) +

∑
bi(t)V̄

i,]
ε + W s(t), (4.3.68)

where D means the gradient with respect to P. It is easy to check that |δu]|
X]
≤ Ce

Ct
ε2 |δu](0)|

X]

and |δu]|Lq
ε
≤ Ce

Ct
ε2 |δu](0)|Lq

ε
. Then by the boundedness of the projection maps, we have

|a(t)| ≤ Ce
Ct
ε2 |δu](0)|Lq

ε
, |bi(t)| ≤ Ce

Ct
ε2 |δu](0)|Lq

ε
, |W s(t)|Lq

ε
≤ Ce

Ct
ε2 |δu](0)|Lq

ε
, (4.3.69)
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and

|W s(t)|
X]
≤ Ce

Ct
ε2 |δu](0)|

X]
. (4.3.70)

Taking the inner product of (4.3.68) with L]
ε,PεDW̃]

ε,P · a(t), we have

〈δu], L]
ε,PεDW̃]

ε,P · a(t)〉 = 〈L]
ε,Pδu

], εDW̃]
ε,P · a(t)〉

= 〈δu]t , εDW̃]
ε,P · a(t)〉

= 〈εDW̃]
ε,P · a

′(t), εDW̃]
ε,P · a(t)〉 + 〈

∑
i

b′i(t)V̄
i,]
ε , εDW̃]

ε,P · a(t)〉.

(4.3.71)

Note that |δu]|Lq
ε
≤ Ce

Ct
ε2 |δu](0)|Lq

ε
and |Lε,PεDW̃]

ε,P·a(t)|L∞ ≤ Ce−
νδ
ε |a(t)| ≤ Ce−

νδ
ε e

Ct
ε2 |δu](0)|Lq

ε
.

Combining with (4.3.69) and Lemma 4.3.8, we obtain

|a(t) · a′(t)| ≤ Ce−
νδ
ε e

Ct
ε2 (|δu](0)|2

Lq
ε

+ |δu](0)|Lq
ε
|b′i(t)|). (4.3.72)

Since d
dt |a(t)|2 = 2a(t) · a′(t), by integrating both sides of (4.3.72) we get

∣∣∣|a(t)|2 − |a(0)|2
∣∣∣ ≤ Ce−

νδ
ε e

Ct
ε2 |δu](0)|2

Lq
ε
. (4.3.73)

Similarly, taking the inner product of (4.3.68) with L]
ε,PV̄ i,]

ε , we have

|bi(t) − eλ
i
εtbi(0)| ≤ Ce

Ct
ε2 e−

νδ
ε |δu](0)|Lq

ε
. (4.3.74)
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Now we consider the stable direction. Since L]
ε,P is self-adjoint, one has

|〈L]
ε,PW s, εDW̃ε,P · τ〉| = |〈W

s, L]
ε,PεDW̃ε,P · τ〉| ≤ Ce−

νδ
ε |τ||W s|

L2
ε
,

and |〈L]
ε,PW s, V̄ i,]

ε 〉| = |〈W
s, L]

ε,PV̄ i,]
ε 〉 ≤ Ce−

νδ
ε |W s|

L2
ε
,

(4.3.75)

which implies that

|Πc
ε,PL]

ε,PW s|
L2
ε

+ |Πs
ε,PL]

ε,PW s|
L2
ε
≤ Ce−

νδ
ε |W s|

L2
ε
. (4.3.76)

Using the fact that center and unstable bundles are finite dimensional, we have

|Πc
ε,PL]

ε,PW s|
X]

+ |Πs
ε,PL]

ε,PW s|
X]
≤ Ce−

νδ
ε |W s|

X]
. (4.3.77)

Write (4.3.65) as

εDW̃ε,P·a
′(t)+

∑
b′i(t)V̄

i,]
ε +

d
dt

W s(t) = L]
ε,PεDW̃ε,P·a(t)+

∑
bi(t)L

]
ε,PV̄ i,]

ε +L]
ε,PW s(t). (4.3.78)

Applying Πs
ε,P to both sides, we obtain

d
dt

W s(t) = Πs
ε,PL]

ε,PW s + Πs
ε,P(L]

ε,PεDW̃ε,P · a(t) +
∑

bi(t)L
]
ε,PV̄ i,]

ε ). (4.3.79)

By (4.3.77), we see that Πs
ε,PL]

ε,P : Xs
ε,P → Xs

ε,P is a small perturbation of L]
ε,P, so Πs

ε,PL]
ε,P

generates a semigroup. Then by the spectral gap for L]
ε,P and perturbation theory, we have

|W s(t)|X ≤ e−bεt|W s(0)|X + Ce−
νδ
ε e

Ct
ε2 |δu(0)|Lq . (4.3.80)
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Denote the semiflow generated by (4.3.52) by T ]tε . Combining (4.3.73), (4.3.74), (4.3.80) and

Lemma 4.3.9, we obtain the following trichotomy properties:

Lemma 4.3.10. If t = O(ε2) and ε is small enough, for α, β = c, u, s and α , β, we have

‖Π
β
ε,PDT ]tε |Xα

ε,P
‖ ≤ Ce−

νδ
ε e

Ct
ε2 ,

‖Πs
ε,PDT ]tε |Xs

ε,P
‖ ≤ e−bεt + Ce−

νδ
ε e

Ct
ε2 ,

1 −Ce−
νδ
ε e

Ct
ε2 ≤ ‖(Πc

ε,PDT ]tε |Xc
ε,P

)−1‖−1 ≤ ‖Πc
ε,PDT ]tε |Xc

ε,P
‖ ≤ 1 + Ce−

νδ
ε e

Ct
ε2 ,

‖(Πu
ε,PDT ]tε |Xu

ε,P
)−1‖−1 ≥ eλ̃εt −Ce−

νδ
ε e

Ct
ε2 ,

(4.3.81)

where λ̃ε is defined in section 4.3.2.

Proof. If Πc
ε,Pδu

](0) = 0, i.e., a(0) = 0, by (4.3.73), we have

|a(t)| ≤ Ce−
νδ
ε e

Ct
ε2 |δu](0)|Lq

ε
,

which implies

|Πc
ε,Pδu

]|Lq
ε
≤ Ce−

νδ
ε e

Ct
ε2 |δu](0)|Lq

ε
≤ Ce−

νδ
ε e

Ct
ε2 |δu(0)|X .

Since Xc
ε,P is finite dimensional, we have

|Πc
ε,Pδu

]|
X]
≤ Ce−

νδ
ε e

Ct
ε2 |δu](0)|

X]
,

which implies ‖Πc
ε,PDT ]tε |Xα

ε,P
‖ ≤ Ce−

νδ
ε e

Ct
ε2 , for α , c.

If δu](0) ∈ Xc
ε,P, i.e., δu](0) = εDW̃]

ε,P · a(0), by (4.3.73), we have

|a(t)| ≤ (1 + Ce−
νδ
ε e

Ct
ε2 )|a(0)|, (4.3.82)
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which implies |Πc
ε,Pδu

]|Lq
ε
≤ (1 + Ce−

νδ
ε e

Ct
ε2 )|δu](0)|Lq

ε
. Again we use the finite dimensionality of

the center space to obtain

‖Πc
ε,PDT ]tε |Xc

ε,P
‖ ≤ 1 + Ce−

νδ
ε e

Ct
ε2 . (4.3.83)

Observe that when t = O(ε2) and ε is small enough, (4.3.72) combined with Lemma 4.3.8 im-

plies that Πc
ε,PDT ]tε |Xc

ε,P
is a small perturbation of the identity map, so Πc

ε,PDT t
ε|Xc

ε,P
is also an

isomorphism. One can follow a similar argument to obtain

1 −Ce−
νδ
ε e

Ct
ε2 ≤ ‖(Πc

ε,PDT ]tε |Xc
ε,P

)−1‖−1. (4.3.84)

The other inequalities can be proved similarly, this being left to the readers. The only thing we

want to point out is that by (4.3.74), Πu
ε,PDT ]tε |Xu

ε,P
is a small perturbation of an isomorphism if

t = O(ε2) and ε is small enough, which indicates that Πu
ε,PDT ]tε |Xu

ε,P
is an isomorphism. �

Recall that bε, λ̃ε = O( 1
ε2 ). For fixed δ, we first choose to = ε2K with K large enough to make

e−bεt0 small enough and eλ̃εt0 large enough, then we let ε be sufficiently small, so that Mε is

an approximately stationary invariant and approximately normally hyperbolic manifold for T
]t0
ε .

Then by the general theorem we established in Section 4.2, we have a locally truly invariant mani-

fold nearMε for T
]t0
ε by intersecting the center-stable manifold and the center-unstable manifold

ofMε. However, due to the non-uniqueness of center manifolds (different modifications give dif-

ferent center manifolds), we cannot conclude that the center manifold for T
]t0
ε is invariant under

the semiflow T ]tε . The correct way should be to modify the vector field to generate a modified

semiflow, then prove the existence of a truly invariant manifold for the modified semiflow.
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4.3.8 Modification of vector field

In this section, we take t0 = ε2K such thatMε is an approximately stationary invariant and approx-

imately normally hyperbolic manifold for T
]t0
ε . We also assume that the boundary of Ω satisfies

the conditions listed in Section 4.2. Following the set up in Section 4.2, we define P̃ ∈ Ω̃k the same

way as m̃. For any x ∈ N(M]
ε, r), where N(M]

ε, r) is a tubular neighborhood ofM]
ε, let m(x) be the

projection of x intoM]
ε and let P(x) ∈ Ω̃k be that point such that ψ]ε(P(x)) = m(x), then we write

x as x = ψ
]
ε(P(x)) + xs(x) + xu(x).

Rewrite (4.3.52) as

u]t = L]
ε,Pu] + rP(u]), (4.3.85)

where rP(u]) = (−∆)
1
2
(
h((−∆)

1
2 u]) − h′(ψε(P))(−∆)

1
2 u]

)
.

Using the variation of constants formula, we write (4.3.85) as

u] = e
L]
ε,Pt

u(0) +

∫ t

0
e

L]
ε,P(t−s)

rP(u])ds. (4.3.86)

By Lemma 4.3.6, we have that for ε small enough,

ψ
]
ε(P) = e

L]
ε,Pt

ψ
]
ε(P) +

∫ t

0
e

L]
ε,P(t−s)

rP(ψ]ε(P))ds + O(e−
νδ
ε )e

Ct
ε2 , (4.3.87)

where O(e−
νδ
ε ) is in the X] sense.

Now we modify the vector field to obtain a new equation:


ũ]t = L]

ε,Pũ] + rP(ũ]) + 1
t0

e
L]
ε,Pt

ψ
]
ε(P̃) + rP(ψ]ε(P̃)) − [ 1

t0
e

L]
ε,Pt

ψ
]
ε(P) + rP(ψ]ε(P))],

ũ](0) = x.

(4.3.88)
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Using the variation of constants formula, we write (4.3.88) as

ũ] = e
L]
ε,Pt

x +

∫ t

0
e

L]
ε,P(t−s)

[rP(ũ]) +
1
t0

e
L]
ε,Ps

ψ
]
ε(P̃) + rP(ψ]ε(P̃)) − (

1
t0

e
L]
ε,Ps

ψ
]
ε(P) + rP(ψ]ε(P)))]ds

= e
L]
ε,Pt

x +

∫ t

0
e

L]
ε,P(t−s)

rP(ũ])ds +
t
t0

e
L]
ε,Pt

ψ
]
ε(P̃) +

∫ t

0
e

L]
ε,P(t−s)

rP(ψ]ε(P̃))ds − (
t
t0

e
L]
ε,P̃

t
ψ
]
ε(P)

+

∫ t

0
e

L]
ε,P(t−s)

rP(ψ]ε(P))ds).

(4.3.89)

Denote the semiflow generated by (4.3.88) by T̃ ]tε . Recall that T ]tε (x) is the semflow defined by

(4.3.85). Then T ]tε (x) = e
L]
ε,Pt

x +
∫ t
0 e

L]
ε,P(t−s)

rP(T ]sε (x))ds. It follows from (4.3.89) that

T̃ ]tε (x) = T ]tε (x) +

∫ t

0
e

L]
ε,P(t−s)

(rP(T̃ ]sε (x)) − rP(T ]sε (x)))ds +
t
t0

e
L]
ε,Pt

ψ
]
ε(P̃)+∫ t

0
e

L]
ε,P(t−s)

rP(ψ]ε(P̃))ds − (
t
t0

e
L]
ε,Pt

ψ
]
ε(P) +

∫ t

0
e

L]
ε,P(t−s)

rP(ψ]ε(P))ds).

(4.3.90)

Recall that in Section 4.2, we use l to denote how much we shift the base point. Note that

|P̃ − P| ≤ Cl for any P, one can easily prove by using Gronwall’s inequality that

|T̃ ]tε (x) − T ]tε (x)| ≤ C(t + εt
1
2 )e

Ct
ε2 l,

and

‖DT̃ ]tε (x) − DT ]tε (x)‖ ≤ C(t + εt
1
2 )e

Ct
ε2 l.

(4.3.91)

For x ∈ W3,q
ε , let x̄ = (−∆)

1
2 x and (−∆)

1
2 T̃ ]tε (x) = T̃ t

ε(x̄). Then by direct computation, we have

rP(T̃ ]tε (x)) − rP(T ]tε (x)) = −(−∆)
1
2
(
h′(ψε(P))

(
T̃ t
ε(x̄) − T t

ε(x̄)
)
−

(
h(T̃ t

ε(x̄)) − h(T t
ε(x̄)

))
(4.3.92)
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We have

h(T̃ t
ε(x̄)) − h(T t

ε(x̄)) = h′(T t
ε(x̄))(T̃ t

ε(x̄) − T t
ε(x̄)) + O(|T̃ t

ε(x̄) − T t
ε(x̄)|2). (4.3.93)

Recall that h has been modified, by using Lemma 4.3.6, one can check that for x = ψ
]
ε(P), we

have

|rP(T̃ ]tε (x)) − rP(T ]tε (x))|
W1,q
ε
≤ C

(
(t + εt

1
2 )e

Ct
ε2 e−

νδ
ε l + ((t + εt

1
2 )e

Ct
ε2 l)2

)
. (4.3.94)

Therefore, combining with (4.3.87), (4.3.90), (4.3.91) and (4.3.94), we have that for any x =

ψ
]
ε(P),

T̃
]t0
ε (x) = T

]t0
ε (x) + ψ

]
ε(P̃(x)) − ψ]ε(P(x)) + O(e−

νδ
ε l + l2),

DT̃
]t0
ε (x) = DT

]t0
ε (x) + Dψ]ε(P̃(x)) − Dψ]ε(P(x)) + O(e−

νδ
ε l + l2).

(4.3.95)

Following the estimates in Section 4.2.1, now one can apply Theorem 2.0.3 to obtain a Cm (m

depends only on the smoothness of the nonlinearity and the boundary ∂Ω) center-stable manifold

Wcs]
ε nearM]

ε for T̃
]t0
ε . To obtain the invariance for the semiflow T̃ ]tε , we need to verify the weak

uniform continuity in (H5). In fact, we will prove

• For any µ > 0, there exists ζ > 0, such that for any x ∈ B(M]
ε, r) and t ∈ [t0, t0 + ε2ζ], we

have |T̃ ]tε (x) − T̃
]t0
ε (x)| < µ.

An important point here is that we want ζ and µ to be independent of ε. First we write (4.3.88)

as

ũ]t = L]
ε,Pũ] + r̃P(ũ]), (4.3.96)
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where for x ∈ X], r̃P(x, t) = rP(x) + 1
t0

e
L]
ε,Pt

ψ
]
ε(P̃) + rP(ψ]ε(P̃)) − [ 1

t0
e

L]
ε,Pt

ψ
]
ε(P) + rP(ψ]ε(P))].

Then by direct calculation, we have

T̃ ]tε (x) − T̃
]t0
ε (x)

= e
L]
ε,Pt

x − e
L]
ε,Pt0 x +

∫ t

0
e

L]
ε,P(t−s)

r̃(T̃ ]sε (x))ds −
∫ t0

0
e

L]
ε,P(t0−s)

r̃(T̃ ]sε (x))ds

=

∫ t

t0
e

L]
ε,P(t−s)

L]
ε,Pe

L]
ε,Pt0 xds +

∫ t

t0
e

L]
ε,P(t−s)

r̃(T̃ ]sε (x))ds

+

∫ t0

0
(e

L]
ε,P(t−s)

− e
L]
ε,P(t0−s)

)r̃(T̃ ]sε (x))ds

=

∫ t

t0
e

L]
ε,P(t−s)

L]
ε,Pe

L]
ε,Pt0 xds +

∫ t

t0
e

L]
ε,P(t−s)

L]
ε,P

∫ t0

0
e

L]
ε,P(t0−τ)

r̃(T̃ ]τε (x))dτds+

∫ t

t0
e

L]
ε,P(t−s)

r̃(T̃ ]sε (x))ds

=

∫ t

t0
e

L]
ε,P(t−s)

[L]
ε,PT̃

]t0
ε (x) + r̃(T̃ ]sε (x))]ds.

(4.3.97)

First note that e
L]
ε,Pt

is an analytic semigroup, so

‖(−L]
ε,P)

1
2 e

L]
ε,Pt0‖ ≤ C(

t0
ε2 )−

1
2 e

Ct0
ε2 = CK−

1
2 eCK .

Observe that |r̃P(·, t)|
W1,q
ε

is uniformly bounded on any bounded set in X] for any time period,

therefore (−L]
ε,P)

1
2 T̃

]t0
ε (Γ) is bounded for any bounded set Γ ⊂ X]. Again we use the fact that

‖(−L]
ε,P)

1
2 e

L]
ε,P(t−s)

‖ ≤ C( t−s
ε2 )−

1
2 e

C(t−s)
ε2 to obtain

|T̃ ]tε (x) − T̃
]t0
ε (x)| ≤ Cζ

1
2 eCζ , (4.3.98)

which implies the weak uniform continuity required in (H5).
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Therefore Wcs]
ε is locally invariant under T̃ ]tε . Note that T ]tε (x) = T̃ ]tε (x) if the base point

P(x) is l-away from the boundary of Ω̃k, which implies that Wcs]
ε is locally invariant under T ]tε .

Similarly, we can construct a center-unstable manifold Wcu]
ε for T̃ ]tε . The manifolds Wcs]

ε and

Wcu]
ε are graphs over the stable bundle and unstable bundle, respectively, of M]

ε, both having

small Lipschitz constant. The intersection of these gives M̃]
ε, a locally invariant manifold for T ]tε

in forward and backward time. Also, since M̃]
ε is a graph overM]

ε, it may be written as Ψ
]
ε(Ω̃k)

and Ψ
]
ε(P) − ψ]ε(P) ∈ Xs

ε,P ⊕ Xu
ε,P. Furthermore, since the original measure of non-invariance, η,

is of order O(e−
νδ
ε ), M̃]

ε is in an O(e−
νδ
ε ) neighborhood ofM]

ε in the X](W3,q
ε ) topology. Then,

by the injectivity of A
1
2 , there exists a locally invariant manifold M̃ε = Ψε(Ω̃k) for T t

ε, and M̃ε

is in an O(e−
νδ
ε ) neighborhood of Mε in the W2,q

ε sense. Also, from the fact that A
1
2 acting on

any function in its domain gives a function with mean-value zero, the mass of each state in Ψε(P)

is qε for any P ∈ Ω̃k. However, T t
ε is the semiflow generated by (4.3.44), where we modified the

nonlinearity h. Notice that when q is large, W2,q
ε is embedded into C0,α, which indicates that M̃ε

is in an O(e−
νδ
ε ) neighborhood ofMε in the L∞ sense. Therefore, M̃ε is locally invariant under

the semiflow generated by the original equation (4.3.4). In summary, we have the main result:

Theorem 4.3.11. For fixed δ, if ε is sufficiently small, then there exists a Cm(Ω̃k, X)(m only depends

on the smoothness of the nonlinearity and the boundary ∂Ω) manifold M̃ε = Ψε(Ω̃k) which is

locally invariant under the semiflow generated by (4.3.4). Furthermore, M̃ε lies in a O(e−
νδ
ε )

neighborhood ofMε in the L∞ ∩W2,q
ε sense.

Remark 4.3.12. 1. The proof of Theorem 4.2 and the parallel version of the center-unstable

manifolds in [19] indicates that Ψε − ψε ∈ Cm(Ω̃k, X) with bounded Cm norm, furthermore

|Ψε − ψε|C0(Ω̃k,X) ≤ Ce−
νδ
ε , lim

ε→0
|Ψε − ψε|C1(Ω̃k,X) → 0. (4.3.99)
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2. Roughly speaking, Theorem 4.3.11 yields that multi-spike states exist until the spikes attach

to the boundary of the domain or they collide with each other . We will show in the next

section that the motion of each spike is exponentially slow, so multi-spike states exist for

very long positive and negative time.

4.4 Long time dynamics on M̃ε

So far, we constructed a locally invariant manifold M̃ε of interior multi-spike states for (4.3.4),

such that an interior multi-spike state maintains until a spike attaches to the boundary of the domain

or a collision between spikes occurs. Now we investigate the dynamics on M̃ε. By the invariance

of M̃ε, we have that for any P ∈ Ω̃k, there exists τε(P) such that

DΨε(P) ·
(
ετε(P)

)
= −∆

(
ε2∆Ψε(P) − µΨε(P) + h(Ψε(P))

)
, (4.4.1)

where D means the derivative with respect to P and ετε(P) is the velocity vector of all spikes. Here

we include a factor of ε with τε to eliminate the 1
ε in our calculations generated by differentiating

Ψε.

Let

h̃ε(P) = Ψε(P) − ψε(P). (4.4.2)

Note that

|h̃ε(P)|C0(Ω̃k,X) ≤ Ce−
νδ
ε , and lim

ε→0
|h̃ε(P)|C1(Ω̃k,X) → 0. (4.4.3)

Recall that ψε(P) = Wε,P − H̃(Wε,P), and rewrite (4.4.1) as

DΨε(P) ·
(
ετε(P)

)
=

(
Dψε(P) + Dh̃ε(P)

)
·
(
ετε(P)

)
= Lε,Ph̃ε + γε,P(x), (4.4.4)

83



where

γε,P = ∆
(
Rε,P+ε2∆H̃(Wε,P)−µH̃(Wε,P)−(h(Wε,P−H̃(Wε,P)+h̃ε(P))−h(Wε,P)−h′(W̃ε,P)h̃ε(P))

)
.

(4.4.5)

It is clear that

|γε,P|Lq
ε(Ω) ≤

C
ε2 e−

νδ
ε . (4.4.6)

So far, we only know lim
ε→0
|Dh̃ε(P)|X → 0. In order to get a refined estimate for |Dh̃ε(P)|X , an

expression for A−
1
2 h̃ε(P) should be obtained from (4.3.52) by using the normal hyperbolicity.

Reducing the equation (4.3.52) to the invariant manifold M̃]
ε, we get

DΨ
]
ε(P) ·

(
ετε(P)

)
= L]

ε,Ph̃ε(P) + γ
]
ε,P(x). (4.4.7)

Clearly,

|γ
]
ε,P(x)|Lq

ε(Ω) ≤
C
ε

e−
νδ
ε .

Our purpose is to get an expression for h̃]ε(P) without involving DΨ
]
ε(P) · (ετε(P)), so we

consider the following decomposition

Lq
ε = X⊥ε,P ⊕ T

Ψ
]
ε(P)
M̃

]
ε,

where T
Ψ
]
ε(P)
M̃

]
ε = {DΨ

]
ε(P) · τ : τ ∈ Rnk} and X⊥ε,P = {v ∈ Lq

ε(Ω) :
∫
Ω

vDΨ
]
ε(P) · τdx =

0 for any τ ∈ Rnk}. The corresponding projection map Π⊥ε,P for X⊥ε,P is

Π⊥ε,P = I − DΨ
]
ε(P)

(
Dψ]ε(P) + Πc

ε,PDh̃]ε(P)
)−1

Πc
ε,P

=
(
I − Πc

ε,P

)(
I − Dh̃]ε(P)

(
Dψ]ε(P) + Πc

ε,PDh̃]ε(P)
)−1

Πc
ε,P

)
.

(4.4.8)
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By (4.4.3), one can verify that Π⊥ε,P is well-defined and uniformly bounded for any P and small

enough ε. Since L]ε,p almost leaves each subspace Xα
ε,P, α = c, s, u invariant, and T

Ψ
]
ε(P)
M̃

]
ε is

very close to Xc
ε,P, it is clear that there exists C > 0, independent of P and ε, such that

|(Π⊥ε,PL]ε,p|Xs
ε,P⊕Xu

ε,P∩D(L]ε,p)
)−1|

L(X⊥
ε,P,W

4,q
ε (Ω)∩D(L]

ε,P))
≤ Cε2. (4.4.9)

Applying Π⊥ε,P to (4.4.7) and using the fact that h̃]ε(P) ∈ Xs
ε,P ⊕ Xu

ε,P, we have

h̃]ε(P) = (Π⊥ε,PL]ε,p|Xs
ε,P⊕Xu

ε,P∩D(L]ε,p)
)−1Π⊥ε,P(γ]

ε,P). (4.4.10)

By direct computation, one can check that for some C independent of P and ε,

|DΠ⊥ε,P|L(Lq
ε) ≤ C, |Dγ]

ε,P|Lq
ε
≤

C
ε

e−
νδ
ε .

Therefore, it follows immediately from (4.4.10) that

|Dh̃]ε(P)|
W4,q
ε
≤ Cεe−

νδ
ε , (4.4.11)

which implies that

|Dh̃ε(P)|
W3,q
ε
≤ Cεe−

νδ
ε . (4.4.12)

We now derive an equation for τε,P. Since M̃ε is constructed with all points having equal

mass, one has
∫
Ω

DΨε(P)dx = 0. Then (4.4.1) can be rewritten as

(
(−∆)−1(Dψε(P) + Dh̃ε(P)

))
·
(
ετε(P)

)
= ε2∆Ψε(P) − µΨε(P) + h

(
Ψε(P)

)
+ ρε

= Λε,Ph̃ε(P) + γ̄ε,P,

(4.4.13)
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where ρε = − 1
|Ω|

∫
Ω

[ε2∆Ψε(P)−µΨε(P)+h
(
Ψε(P)

)
]dx is added to make the right hand side of mean

value zero as required by our definition of (−∆)−1 and Λε,Pv := ε2∆v−µv + h′(ψε(P))v and γ̄ε,P =

−(Rε,P +ε2∆H̃(Wε,P)−µH̃(Wε,P)− (h(Wε,P−H̃(Wε,P)+ h̃ε(P))−h(Wε,P)−h′(W̃ε,P)h̃ε(P))+ρε.

As in Section 4.3.5, (−∆)−1 acting on a mean-value zero function v is defined to be the mean-

value zero solution of −∆η = v with the homogeneous Neumann boundary condition. Note that

ε2∆Ψε(P) − µΨε(P) + h
(
Ψε(P)

)
= O(e−

νδ
ε ), so ρε = O(e−

νδ
ε ).

Recall that ψε(P) =
∑

1≤i≤k wε,pi − H̃ , so direct computation yields

Dψε(P) = (−∇wε,p1 , · · · ,−∇wε,pk) − DH̃ ,

where ∇ means the derivatives with respect to x. Write P = (p1, · · · , pk) and pi = (pi1, · · · , pin),

then let

Θlm
i j = 〈(−∆)−1εDpi jΨε,P,−ε∇xmwε,pl〉

= 〈(−∆)−1(ε∇x jwε,pi − qi j
ε ), ε∇xmwε,pl〉 + 〈(−∆)−1(qi j

ε + εDpi jH̃ − εDpi j h̃ε), ε∇xmwε,pl〉,

(4.4.14)

where qi j
ε = 1

|Ω|

∫
Ω
ε∇x jwε,pidx = − 1

|Ω|

∫
Ω
εDpi jH̃ − εDpi j h̃εdx.

Clearly, qi j
ε = O(e−

νδ
ε ) since

∫
Ω
εDi jH̃ − εDi jh̃εdx = O(e−

νδ
ε ). Before we estimate Θlm

i j , we

prove the following lemma. Here we want to remind the readers that 〈·, ·〉 is still the L2
ε inner

product defined as 〈 f , g〉 =
∫
Ω

f gε−ndx.

Lemma 4.4.1. If f (x) : Rn → R satisfies | f (x)| + |Di f (x)| ≤ Ke−k|x| for any x ∈ Rn, then

|S (Di f )(x)| := |cn
∫
Rn

(Di f )(y)
|x−y|n−2 dy| ≤ C

1+|x|n−1 for any x ∈ Rn, where cn = 1
n(n−2)ωn

with ωn

the volume of the unit ball in Rn.
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Proof. Let Br be the ball with radius r > 0 centered at origin. We write

∫
Rn

(Di f )(y)
|x − y|n−2 dy =

∫
BR

(Di f )(y)
|x − y|n−2 dy +

∫
Rn\BR

(Di f )(y)
|x − y|n−2 dy

= IR + JR.

(4.4.15)

For fixed x and any y ∈ Rn\BR with R large enough, we have

|y| ≥ |x − y| − |x|,

|x − y| ≥ R − |x|.

It follows that

|JR| ≤ Kek|x|
∫
Rn\BR

e−|x−y|

|x − y|n−2 dy ≤ Kek|x|
∫ ∞

R−|x|
e−krrdr =

K
k

e2k|x|e−2kR(
1
k

+ R − |x|), (4.4.16)

which indicates that

lim
R→∞

JR = 0. (4.4.17)

Write y = η+yiei where η =
∑

j,i y je j and e j is the canonical basis ofRn. Then, with an integration

by parts, we have

IR =

∫
|η|<R

∫ √
R2−|η|2

−

√
R2−|η|2

(Di f )(η + yiei)
|η + yiei − x|n−2 dyidη

=

∫
|η|<R

f (η +
√

R2 − |η|2ei)

|η +
√

R2 − |η|2ei − x|n−2
−

f (η −
√

R2 − |η|2ei)

|η −
√

R2 − |η|2ei − x|n−2
dη

+ (n − 2)
∫
|η|<R

∫ √
R2−|η|2

−

√
R2−|η|2

f (η + yiei)(η + yiei − x) · ei
|η + yiei − x|n

dyi

= Ia
R + Ib

R.

(4.4.18)

87



Since | f (η ± yiei)| ≤ Ke−kR and |η ± yiei − x| ≥ |R| − |x|, one has

Ia
R ≤ 2K

e−kR

(R − |x|)n−2ωnRn−1, (4.4.19)

and so

lim
R→∞

Ia
R = 0. (4.4.20)

By direct computation, we have

|Ib
R| = (n − 2)

∣∣∣ ∫
BR

f (y)(y − x) · ei
|y − x|n

dy
∣∣∣

≤ (n − 2)
∫

BR

| f (y)|
|y − x|n−1 dy ≤ (n − 2)

∫
Rn

| f (y)|
|y − x|n−1 dy.

(4.4.21)

Combining (4.4.17), (4.4.20) and (4.4.21), we have

∣∣∣ ∫
Rn

(Di f )(y)
|x − y|n−2 dy

∣∣∣ ≤ (n − 2)
∫
Rn

| f (y)|
|y − x|n−1 dy. (4.4.22)

We now estimate
∫
Rn

| f (y)|
|y−x|n−1 dy. We first consider the case |x| ≤ 1. Since |y| ≥ |x− y| − |x|, we have

∫
Rn

| f (y)|
|x − y|n−1 dy ≤ K

∫
Rn

e−k|y|

|x − y|n−1 dy

≤ Kek|x|
∫
Rn

e−k|x−y|

|x − y|n−1 dy

≤ Kek
∫
Rn

e−k|x−y|

|x − y|n−1 dy

= C0,

(4.4.23)

where C0 = Kek
∫
Rn

e−k|y|

|y|n−1 dy. Assume now |x| > 1, let Br(x) be the ball centered at x with radius
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r, then write

∫
Rn

| f (y)|
|x − y|n−1 dy =

∫
B|x|/2(x)

| f (y)|
|x − y|n−1 dy +

∫
Rn\B|x|/2(x)

| f (y)|
|x − y|n−1 dy = I + II. (4.4.24)

We estimate

I ≤ Ke−k |x|2
∫

B|x|/2(x)

1
|x − y|n−1 dy

= ωnKe−k |x|2
|x|
2

=
1
2
ωnK|x|ne−k |x|2 |x|−(n−1)

≤ C|x|−(n−1),

(4.4.25)

and

II ≤ (
|x|
2

)−(n−1)
∫
Rn\B|x|/2(x)

| f (y)|dy

≤ (
|x|
2

)−(n−1)
∫
Rn
| f (y)|dy

≤ C|x|−(n−1).

(4.4.26)

Then, the desired result follows directly. �

Lemma 4.4.2. Assume Ω ⊂ Rn is a smooth bounded connected open set. Let L̂2(Ω) be the subset

of L2(Ω) of the functions with mean-value zero. Then, for each f ∈ L̂2, there is a unique solution

ū with mean-value zero of the problem


−∆u = f (x), in Ω,

∂u
∂n = 0, on ∂Ω.

Moreover, there exits a Neumann function (sometimes called second type of Green’s function)
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N : Ω ×Ω\{(x, x) : x ∈ Ω} → R such that

ū(x) = ((−∆)−1 f )(x) =

∫
Ω

N(x, y) f (y)dy. (4.4.27)

For n ≥ 3, the Neumann function is of the form

N(x, y) = G(x, y) + φ(x, y), (4.4.28)

where G(x, y) =
|x−y|2−n
n(n−2)ωn

and φ(x, y) : Ω ×Ω→ R is smooth.

Proof. One can find the proof of this Lemma in [85], where they construct an Neumann function

for n = 3. The same argument is valid in general.

�

Lemma 4.4.3.

Θlm
i j = C∗ε2 + O(εn+1), if i = l, j = m,

Θlm
i j = O(εn+1), if i = l, j , m,

Θlm
i j = O(

εn+1

δn−1 ), if i , l,

(4.4.29)

where C∗ is a positive constant defined below.

Proof. Since N(x, y) ∼ |x − y|2−n, we have
∫
Ω

∫
Ω
|N(x, y)|dydx ≤ C. Combining this with the

fact that qi j
ε , εDpi jH̃ , εDpi j h̃ε) = O(e−

νδ
ε ), it follows that we can ignore the contribution of these

terms. Therefore it is sufficient to estimate

∫
Ω

N(x, y)ε∇x jwε,pi(y)dyε∇xmwε,pl(x)dx. (4.4.30)
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Let ∇iw(x) = ∂w
∂xi

, then one has ε∇x jwε,pi(y)dy = ∇ jw( x−pi
ε ). By Lemma 4.4.2, we have

∫
Ω

N(x, y)ε∇x jwε,pi(y)dy =

∫
Ω

N(x, y)∇ jw(
y − pi
ε

)dy

= cn

∫
Ω

1
|x − y|n−2∇ jw(

y − pi
ε

)dy +

∫
Ω
φ(x, y)∇ jw(

y − pi
ε

)dy

= Ii j + Ji j.

(4.4.31)

Changing variables by setting y = εz + pi, we have

Ii j = cnε
2
∫

Ωi
ε

∇ jw(z)

|
x−pi
ε − z|n−2

dz

= cnε
2
∫
Rn

∇ jw(z)

|
x−pi
ε − z|n−2

dz − cnε
2
∫
Rn\Ωi

ε

∇ jw(z)

|
x−pi
ε − z|n−2

dz

= Ia
i j + Ib

i j,

(4.4.32)

where Ωi
ε = {z : pi + εz ∈ Ω}. We estimate

|Ib
i j| ≤ cnε

2
∫
Rn\Ωi

ε∩{|
x−pi
ε −z|≤1}

|∇ jw(z)|

|
x−pi
ε − z|n−2

dz + cnε
2
∫
Rn\Ωi

ε∩{|
x−pi
ε −z|>1}

|∇ jw(z)|

|
x−pi
ε − z|n−2

dz

≤ Cε2e−
νδ
ε

∫
|ξ|≤1

1
|ξ|n−2 dξ + Cnε

2
∫
|z|> δ

2ε

|∇ jw(z)|dz

= O(e−
νδ
ε ).

(4.4.33)
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To estimate Ji j, we write

Ji j =

∫
Bδ

2
(pi)

φ(x, y)∇ jw(
y − pi
ε

)dy +

∫
Ω\Bδ

2
(pi)

φ(x, y)∇ jw(
y − pi
ε

)dy

= Ja
i j + Jb

i j.

(4.4.34)

Since ∇ jw(x) is odd in x j, we have
∫

Bδ
2

(pi)
∇ jw(y−pi

ε )dy = 0. It follows that

|Ja
i j| = |

∫
Bδ

2
(0)

(φ(x, z + pi) − φ(x, pi))∇ jw(
z
ε

)dz|

≤ C
∫

Bδ
2

(0)
|z|e−

C|z|
ε dz

= Cnwnε
n+1

∫ δ
2ε

0
sne−Csds

≤ Cδε
n+1.

(4.4.35)

Also, one can estimate

|Jb
i j| ≤ Ce−

νδ
ε

∫
Ω
|φ(x, y)|dy = O(e−

νδ
ε ). (4.4.36)

Let Ni j(x) =
∫
Ω

N(x, y)ε∇x jwε,pi(y)dy =
∫
Ω

N(x, y)∇ jw(y−pi
ε )dy. For i , l, recall that |pi − pl| > δ

and d(pl, ∂Ω) ≥ δ
2 , therefore, for any x ∈ Bδ

2
(pl), we have |x− pi| ≥

δ
2 . From this and using Lemma

4.4.1, we have
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|

∫
Ω

Ni j(x)∇mw(
x − pl
ε

)dx|

≤ |

∫
Bδ

2
(pl)

Ni j(x)∇mw(
x − pl
ε

)dx| + |
∫

Ω\Bδ
2

(pl)
Ni j(x)∇mw(

x − pl
ε

)dx|

≤ Cε2(
ε

δ
)n−1

∫
Bδ

2
(pl)
|∇mw(

x − pl
ε

)|dx + Ce−
νδ
ε

∫
Ω\Bδ

2
(pl)
|Ni j(x)|dx

≤
C
δn−1ε

2n+1 + Ce−
νδ
ε (

∫
Bδ

2
(pi)
|Ni j(x)|dx +

∫
Ω\(Bδ

2
(pl)∪Bδ

2
(pi)
|Ni j(x)|dx

≤
C
δn−1ε

2n+1 + Ce−
νδ
ε εn+1 +

C
δn−1 e−

νδ
ε εn+1

= O(
ε2n+1

δn−1 ).

(4.4.37)

For i = l, j , m, we start with

|

∫
Ω

Ni j(x)∇mw(
x − pl
ε

)dx| ≤ |
∫

Ω
Ia
i j∇mw(

x − pl
ε

)dx| + |
∫

Ω
(Ib

i j + Jb
i j)∇mw(

x − pl
ε

)dx|

+ |

∫
Ω

Ja
i j∇mw(

x − pl
ε

)dx|.

Since Ia
i j(x + pi) is odd in x j and ∇mw is odd in xm, we have

|

∫
Ω

Ia
i j∇mw(

x − pl
ε

)dx| = |
∫

Bδ
2

(pi)
Ia
i j∇mw(

x − pl
ε

)dx +

∫
Ω\Bδ

2
(pi)

Ia
i j∇mw(

x − pl
ε

)dx|

= |

∫
Ω\Bδ

2
(pi)

Ia
i j∇mw(

x − pl
ε

)dx|

≤ C
εn+1

δn−1 e−
νδ
ε .

(4.4.38)
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One can also easily check that

|

∫
Ω

(Ib
i j + Jb

i j)∇mw(
x − pl
ε

)dx| ≤ Ce−
νδ
ε εn,

|

∫
Ω

Ja
i j∇mw(

x − pl
ε

)dx| ≤ Cε2n+1.

(4.4.39)

Therefore, we have for i = l, j , m,

∫
Ω

Ni j(x)∇mw(
x − pl
ε

)dx = O(ε2n+1). (4.4.40)

Finally, we consider the case i = l, j = m. We write

∫
Ω

Ni j(x)∇ jw(
x − pi
ε

)dx =

∫
Ω

Ia
i j∇ jw(

x − pi
ε

)dx +

∫
Ω

(Ib
i j + Jb

i j)∇ jw(
x − pi
ε

)dx

+

∫
Ω

Ja
i j∇ jw(

x − pi
ε

)dx.

(4.4.41)

We compute

∫
Ω

Ia
i j∇ jw(

x − pi
ε

)dx =

∫
Bδ

2
(pi)

Ia
i j∇ jw(

x − pi
ε

)dx +

∫
Ω\Bδ

2
(pi)

Ia
i j∇ jw(

x − pi
ε

)dx. (4.4.42)

One can check by direct computation that

∫
Bδ

2
(pi)

Ia
i j∇ jw(

x − pi
ε

)dx = cnε
2
∫

Bδ
2

(pi)

∫
Rn

∇ jw(z)

|
x−pi
ε − z|n−2

dz∇ jw(
x − pi
ε

)dx

= cnε
n+2

∫
B δ

2ε
(0)

∫
Rn

∇ jw(z)

|y − z|n−2 dz∇ jw(y)dy

= C∗εn+2,

(4.4.43)
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where C∗ = cn
∫

B δ
2ε

(0)

∫
Rn

∇ jw(z)

|y−z|n−2 dz∇ jw(y)dy. Also we have

|

∫
Ω

(Ib
i j + Jb

i j)∇ jw(
x − pi
ε

)dx| ≤ Ce−
νδ
ε εn,

|

∫
Ω

Ja
i j∇ jw(

x − pi
ε

)dx| ≤ Cε2n+1.

(4.4.44)

Then the desired result follows directly.

�

Taking the inner product of (4.4.13) with −∇x jwε,pi for i = 1, · · · , k and j = 1, · · · , n, we get a

linear system consisting of nk equations which can be written as

Θε,P · τε,P = Γε,P, (4.4.45)

where

Θε,P =



Θ11
11 · · · Θ11

1n · · · · · · Θ11
k1 · · · Θ11

kn
...

...
...

...
...

...
...

...

Θ1n
11 · · · Θ1n

1n · · · · · · Θ1n
k1 · · · Θ1n

kn
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

Θk1
11 · · · Θk1

1n · · · · · · Θk1
k1 · · · Θk1

kn
...

...
...

...
...

...
...

...

Θkn
11 · · · Θkn

1n · · · · · · Θkn
k1 · · · Θkn

kn



,

95



and

Γε,P =



〈Λε,Ph̃ε(P) + γ̄ε,P,−ε∇x1wε,p1〉

...

〈Λε,Ph̃ε(P) + γ̄ε,P,−ε∇xnwε,p1〉

...

...

〈Λε,Ph̃ε(P) + γ̄ε,P,−ε∇x1wε,pk〉

...

〈Λε,Ph̃ε(P) + γ̄ε,P,−ε∇xnwε,pk〉



.

Since Λε,P is self-adjoint and γ̄ε,P = O(e−
νδ
ε ), one immediately has

Γε,P = O(e−
νδ
ε ).

By Lemma (4.4.3), one finds that Θε,P is a diagonally dominant matrix, which implies that

Θε,P is invertible. Thus τε,P can be expressed as

τε,P = (Θε,P)−1Γε,P, (4.4.46)

and so

|τε(P)| = O
(
ε−2e−

νδ
ε
)
. (4.4.47)

Remark 4.4.4. Once the matrix Θε,P has been computed, equation (4.4.46) determines the com-

plete dynamics of the spikes on the invariant manifold. Although entries of Γε,P may have different

exponential rates, each entry of the matrix Θε,P is of order ε to some power, therefore Θε,P mixes

all the entries of Γε,P together, which yields that the interior multi-spike dynamics of the Cahn-
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Hilliard equation has a global character where not only the closest spikes interact but each spike

interacts with all the others and with the boundary.
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