
URBAN TRAFFIC SYSTEM SIMULATION

AND CONTROL

Thesis for the Degree of Ph» .D,

MICHIGAN; STATE UNIVERSITY

WAYNE DAVID PANYAN

1969

 



  

    

1 nests

  L 13 RA F 1

Michigane ...1

Univcrsitv

This is to certify that the

thesis entitled

URBAN TRAFFIC SYSTEM

SIMULATION AND CONTROL

presented by

Wayne David Panyan

has been accepted towards fulfillment

of the requirements for

Ph. D. degree in E. E.

WET/aw
Major professor

Date August 18, 1969

0-169

'5'

BINDING IY

  

 

  

' IIIIMI & SIIIIS'

BOOK BIIIIIEIIY INC.
LIBRARY BINDERS

 



  

 



 



 



 

  

ABSTRACT

URBAN TRAFFIC SYSTEM SIMULATION

AND CONTROL

by Wayne David Panyan

A simulation model for large urban vehicular traffic

systems is developed in the first part of this thesis. The

model is applicable to systems having signal controlled

intersections and vehicular densities described as light to

medium. Interpreting the system as an interconnection of

smaller components, each exhibiting the same phenomena as

the whole, is the keystone of the development. On each of

these components the behavior of platoons and queues (the

smallest vehicular units considered) are described by a

set of state equations. The variables in these equations

are position and vehicular density. Only one queue can be

present on the component and it can be described wholly by

its position. However, since more than one platoon may

exist on the component and since each requires two variables

in its description, the number of equations required is a

variable, 2 pi + l, where pi is the number of platoons at

any instance.
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A complete simulation model comprises an inter-

connection of several such components and a set of 2p + q

equations, where p and q are the total number of platoons

and queues, respectively. The structure of the system is

described by a connection matrix which is analogous to the

incidence matrix of graph theory. The inclusion of accel-

eration phenomena, random inputs and turning movements

results in a model which is general enough to simulate most

traffic structures and behavior. A Fortran program based

on the equations was written and used to simulate the

traffic behavior of the central business area of Lansing,

Michigan. Results of this simulation are included in the

thesis as an example.

In the latter parts of the thesis the control prob-

lem is considered. If the vehicular densities are suffi-

ciently low, the steady state control of an urban traffic

system can be effected by a synchronization of the traffic

signals. Such a synchronization, called a progression,

allows vehicles to travel the length of an artery without

having to stop for a traffic signal. Synchronizing the

signals so that progressions are established in the two

directions of a two—way street is simple enough in theory.

However, certain auxiliary strategies can also be applied

to discourage the queuing of vehicles. Further considera-

tions are required when an overall control strategy is to

be instituted on a traffic grid.
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The most efficient use of an artery can be achieved

when the progression design is selected in an optimal

manner. An important innovation is the inclusion of the

demands that exist on every part of the artery in a cost

function which is proportional to the total vehicle travel

time. Minimizing this function while satisfying the phys—

ical realizability constraints imposed by the arterial

geometry, fixed signal parameters, and upper and lower

velocity bounds results in the optimal design. The non-

linearities inherent in the problem and the nonconvexity

resulting from the constraints require that an iterative

solution technique be used. A Fortran program to obtain

this optimal design was written and used to find the design

for a typical street. These results are included in the

thesis.
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CHAPTER I

INTRODUCTION

The problem of urban congestion that accompanied

the increased use of the automobile has become so great

in recent times that the simple remedies developed in

the past no longer are effective. Observing traffic,

placing a signal here, and posting a speed limit there

are insufficient. Effective utilization of today's

traffic systems demands the use of sophisticated traffic

controls. Such controls can be developed through modern

control techniques. However, a prerequisite is a good

model of the traffic system behavior.

In the past ten or fifteen years some efforts

have been made to explain traffic flow mechanisms and

particular traffic phenomena, but no complete model has

been produced. In part this failure resulted from in-

adequate data. Gathering data is an enormous task be—

cause traffic systems are physically large, and to ob—

serve the propagation of variables within the system

requires many expensive vehicle detectors. More impor-

tantly, a traffic system almost defies macroscopic analy-

sis. The behavior it exhibits is the result of disparate



 

 

   

phenomena, some of which are little understood in isola—

tion and even less understood within the context of the

system. The system is non-linear, not completely pre-

dictable, and susceptible to small changes of many fac-

tors.

This thesis is concerned with the modeling and

control of an urban traffic system having signal con-

trolled intersections.

In Chapter II a model of signal—controlled

streets with medium traffic density conditions is devel-

oped. These conditions are often encountered during

morning and evening rush hours, periods when improved

control is definitely needed. After examining a set of

possible traffic flow variables, average velocity and

density are selected as most appropriate to describe

vehicular movements. Since the densities encountered

are assumed to be great enough, groups of vehicles,

called platoons and queues, are the smallest vehicular

units considered. It is reasonable to attempt the

study of a complete urban area if platoons and queues

are considered, but the problem becomes too complex and

inefficient to solve if individual vehicles are con-

sidered.

An urban street system can be looked upon as an

interconnection of basic components each displaying the

characteristics of the whole system. The existence of

 



such components is postulated, and for each component a

set of equations is derived which describes the platoon and

queue behavior in terms of the density and velocity

variables.

The problem of simulation is investigated in

Chapter III. It is demonstrated how an interconnection

of a number of basic components can be used to simulate

a variety of traffic systems. The simulation is achieved

by using a Fortran computer program based on the developed

equations.

The main objective in controlling an urban sys-

tem is to minimize the delay that vehicles experience as

they travel through the system. Usually this is achieved

through the use of progressions. A progression is estab-

lished by the settings of the traffic signals which com-

prise the primary control devices. In Chapter IV the

problem of establishing progressions is investigated.

Special attention is spent on one-way street progressions

and on the unique problems presented by grids.

In Chapter V the problem of selecting the opti-

mal progression design for a two-way street having

variable demands along its length is studied. The cri-

terion for this design is a minimization of the total

vehicle-hours of travel time. Since the travel time is

a non-linear function of the arterial geometry and



signal settings, an iterative computer solution is re-

, quired to obtain the optimal settings of the signals.

A simulation of the traffic system of Lansing,

Michigan's central business area is given as a demon—

stration of the versatility of the model developed in

Chapter II. A second example to demonstrate the opti-

mal design procedure on a two-way street is also in-

cluded. 'Flow charts for the simulation and design pro—

grams are given in the Appendix.

 



CHAPTER II

MODELING

The desire to know how a system behaves under a

wide spectrum of conditions when direct experimentatio
n

and observation are not possible (for reasons of economy,

time, safety, system inaccessibilit
y, inadequate instu-

mentation, etc.) is sufficient motivation for generating

a simulation model. If the model accurately describes

the phenomena exhibited by the system, it becomes a

powerful tool for determining the response of the system

to a variety of controls and for investigating
the ef—

fects of various parameters.

A traffic system belongs to a huge category of

systems which are difficult to study by direct means.

Physically it is large: in a metropolitan area a traf-

fic system of interest may cover several square miles.

To study such a system requires an extensive instrumenta-

tion network. The vehicle detectors needed for measuring

traffic variables are expensive and usually require

costly installation.
Unfortunately,

they do not always

prOVide the data in the form needed. Furthermore, many

 



traffic variables cannot be adjusted at will. For ex-

ample, average velocity and density result from the

interactions of many vehicles and are not easily con—

trolled. Finally, even though traffic signals are vari—

able control devices, they should not be indiscriminately

reset under the guise of scientific research.

The analysis situation is made worse by the fact

that an accurate model is difficult to obtain. Certainly

if better data were available, present mathematical de-

scriptions of the system behavior would be more accurate.

Secondly, within the system each driver, while constrained

by the proximity of other vehicles and by legal and phys-

ical limits on speed and maneuvering, operates his ve-

hicle according to his own driving habits. As a conse—

quence of this freedom the system is to a greater or

lesser extent stochastic in nature.

Furthermore, a traffic system exhibits more than

one mode of operation so that under a given set of con-

ditions certain behavioral aspects are dominant and

others are minimal.

As a result of the inherent complexity of a traf-

fic system one might rightfully conclude that its mathe—

matical model needs to be extremely complex. If, however,

a traffic system can be reduced to its essential charac-

teristics, a tractable model is possible.

In defining a traffic system some of the distinct

 



classifications become evident. A difference exists,

for example, between traffic studies on urban streets

and on limited—access freeways since the traffic signals

used to control the flow of vehicles through intersec-

tions force the vehicles into behavioral patterns not

observed on freeways. Moreover, traffic flow on surface

streets exhibits several modes depending on the vehicular

density. In a heavy density mode the queues which occur

at each intersection are sufficiently long that they do

not clear during a single green phase of the signal.

Under these conditions vehicles travel only a short dis-

tance before coming to a stop and each must react instant-

ly to the speed reductions of its predecessor to avoid

collision.

In a medium density mode each vehicle is still

constrained by the action of others, but a group of

vehicles, called a platoon, often can travel through more

than one intersection before stopping. In a light

density mode the speed of an individual vehicle is almost

independent of the speeds of other vehicles; queues and

platoons, existing as random, transient phenomena, do

not comprise a major feature of the flow.

2.1 Previous Modeling Approaches

Over the years many approaches have been taken

to describe traffic flow. If it were a simple task, the

 



work of these previous investigators would have included

a complete simulation model for traffic systems. How-

ever, their efforts have concentrated on very specialized

urban traffic problems and on the peculiar problems of

open highways.

For example, Gazis, et al (GAl) considered in—

dividual vehicles of a line of moving vehicles and pos-

tulated the reaction of the average driver to the braking

and accelerating behavior of the car ahead. Although

this model was used satisfactorily for investigating

local and asymptotic stability of the system of vehicles

and "correctly" simulated car-following data observed in

the Holland Tunnel, it has several weaknesses. Formulated

as a linear model, it describes poorly the transitions

between widely different steady state speeds. As a non-

linear model it overcomes this failing, but still does

not account for certain pnysical constraints, such as

the limited accelerating capability of a car.

In still another approach, Lighthill and Whitham

(LWl) modeled traffic flow as a continuous process.

They theorized on the existence of shock waves created,

for example, at bottlenecks and signalized intersections

but failed to get good correspondence with real data

since the theory was based on an assumed flow-density

function and neglected the detailed maneuvers of the cars

in changing speed.
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Others have viewed the traffic problem as a

stochastic one and have attacked it with the tools of the

statistician. Of particular interest is the work of

Beckmann, Tanner, Herman 9E al., Haight and others, in

which the problem of queuing at signalized (BEl, TAl)

and non-signalized (HRl, HA1) intersections is investi-

gated. These intersection models, however, are very

limited in scope since most often only a single inter—

section can be effectively modeled.

None of these modeling approaches are addressed

to the specific problem of modeling a complete signal-

ized traffic system. They are inadequate for describing

the peculiar platooning effects of the traffic signals

(although there is some attempt to simulate the behavior

of the platoon after it is formed). They do not simulate

the traffic routing of an actual arterial system (i.e.,

turning movements). Finally most of them satisfactorily

describe steady state behavior but fail to accurately

describe the acceleration and deceleration transients

occurring at intersections.

Goodnuff (G01) has investigated traffic systems

and established a model which simulates the peculiar com-

ponents (e.g., multi—laned arteries and intersections)

and behavior (e.g., turning movements) usually encountered

in traffic systems. For heavy density operating con-

ditions, he successfully formulated an optimization
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algorithm which clears a grid of queued vehicles in

minimum time. The most important variables in Goodnuff's

system are those describing the queues formed at each

intersection. Since vehicles must stop for each signal,

it is unnecessary to track them as they proceed through

an intersection toward the tail of the next queue--

their position as they traverse the space between queues

provides no useful information. Only when the system is

successfully reduced to a lower density mode do these

movements become important, but at lower densities the

model assumptions are no longer valid.

In the course of solving the control problem for

medium to light density conditions, Chang (CH1) has

developed a traffic model which suitably describes some

of the phenomena of arterial traffic. Chang's model

takes account of the queues and the vehicular flow be-

tween queues. This movement he considers as a continu-

ous flow. Because his ultimate concern is the optimal

setting of traffic signals, the approximations he makes

for velocity (it is always constant), acceleration (he

neglects it), etc., are justifiable. However, without

this ulterior motive the model in its present form in-

adequately simulates vehicular flow and, even further,

has no provisions for describing phenomena such as

turning movements.
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2.2 Present Model 

The lack of a versatile model for simulating

traffic flow within a system of signalized arteries led

to this investigation. The goal, from a qualitative

standpoint, is to develop a model which describes traf—

fic flow for medium heavy to medium light density con-

ditions such as might exist in morning and evening rush

hours. It should be noted that in this mode the behav—

ior of vehicles in transit is of equal importance with

the behavior of those queued at the intersections.

Before pursuing details of the model, it is

necessary to establish its nature. The model can be

neither too elaborate nor simple An elaborate model

could achieve the stated goal by tracing the path of

each vehicle through the system while maintaining a con-

tinuous surveillance of surrounding vehicles. Predict-

ably, however, it becomes too complex and the computa-

tions inefficient as the system approaches any meaning-

ful size. On the other hand, a continuous model is too

simple since it does not depict all the phenomena that

are important to the control problem.

Between these extremes there exists a suitable

approach to modeling an urban system. Introducing

platoons and queues as the smallest vehicular units allows

studies to be made of large systems without becoming
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cumbersome. Equally important, it preserves enough of

the identity of the vehicles that acceleration phenomena,

turning movements and vehicle counts can be incorporated.

It has been observed that vehicles in close

proximity to each other behave similarly in many re-

spects, and many mathematical theories rely on this fact

to describe average vehicular behavior and relative

motion between vehicles. For the assumed densities,

then, it is reasonable to model vehicles as platoons and

queues and to describe the platoons and queues by average

vehicular values.

The model can be either deterministic or stochas—

tic in nature. It is assumed that the environment in

which the vehicles move (the medium vehicular density

and the relatively short distances between signals) and

the platooning effects of the traffic signals constrain

the individual's movements so that they are realistically

described in a deterministic way. Some blending with

statistical ideas is achieved in the model via the de-

scription of the generation of input vehicles and of the

vehicle behavior at the intersections where turning is

allowed.

2.3 Basic Component Introduced

A large system is often considered as an inter-

connection of primitive elements or components. The
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properties of such a component can be defined without

reference to any other components. It is not necessarily

the simplest such part since it may be possible to re-

solve it into a set of even simpler pieces.

Between every successive pair of traffic signals

there lies a section of pavement which carries traffic

in one direction. This length of pavement is an arter-

ial section. It serves well as a base for a traffic

system component since all the phenomena of a complete

system can be observed on it. The complete component

consists of the arterial section, the upstream signal,

the upstream queue, and the platoons in transit on the

section. Figure 2.1 illustrates such a component. All

positions are measured positively with respect to the

signalized end of the component.

 

We /,/,/I//1 "T/AI

IL___ DI ____.I

Figure 2.1. Traffic model component.

 

Associated with this component is a set of equa-

tions describing the vehicular units. The platoon de-

scription is complete if its length, its position, and

its number of vehicles are known for every instant of
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time. A queue is described by its length and its number

of vehicles. The set of equations given here are com-

plicated since the platoons and queues are functions

of many primary- and secondary—level factors.

31—: = f(z, Aj,D, t) (Z-D

where

k k k T
Z = (Pld’ Ptr' np, Q, nq) I k = 1,009, n (2.2)

The elements of the 2 vector are the position of the

leading edge of each platoon, PId; the position of the

trailing edge of each platoon, P: the number of vehiclesr'

in each platoon, n2; the queue length, Q; and the number

of vehicles belonging to the queue, nq. The jth phase

of the traffic signal is denoted by Aj, the length

of the arterial section is given by D, and the

independent variable time is represented by t. The

function f (-) is also implicitly a function of street

conditions, prevailing weather, time of day, and other,

more subtle, secondary—level factors.

Since more than one platoon may exist on an

arterial section at a time, the index k is used to dis-

tinguish them. As each platoon is formed it is given a

new index; thus the latest platoon has the highest index

n. The dimension of the vector 2 is 3n + 2.

The relation expressed in equation (2.1) can be

made more tractable if
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(l) The number of elements in 2 can be reduced.

(2) Velocity and vehicular density on an arterial

section are strongly correlated.

(3) The theory of queuing is applicable.

(4) Arterial streets have no inclines, banking

or curves.

When these assumptions are incorporated into the

model, it is possible to spell out the equations explic—

itly and yet not sacrifice accuracy.

The first statement suggests that either some of

the elements of z are redundant or that a better set can

be found.

The second statement, supported by theoretical

and experimental studies, suggests that vehicular dens-

ity is a first—order effect in the determination of

platoon and queue positions. Conversely, the number of

vehicles (or density) in the platoons and queues are

determined almost wholly by the average velocity of

vehicles. The second-order effects (arterial geometry,

weather conditions, etc.) are in comparison negligible

but accounted for implicitly in the velocity-density

relation.

The third merely states that the description of

the phenomena observed at the signalized intersections

can be couched in the terminology of queuing theory.

The last statement disallows peculiar arterial geometries
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and suggests that the effects of geometry in the deter-

mination of densities and velocities be relegated to a

secondary role.

By confronting each of these assumptions in

depth, the simplifications can be achieved. Before pro-

ceeding, however, it is helpful to note that vehicular

density and lane occupancy are alternative measures for

the number of vehicles. Vehicular density is the number

of vehicles per unit pavement length. Lane occupancy is

a normalized density defined in the following manner:

total vehicular length

total pavement length

 LANE OCCUPANCY =

2.4 Selection of State Variables

In a queue the vehicular density is at a maximum

and the velocity is essentially zero. This value for

density, the ratio of the number of vehicles to the

queue length, is generally assumed to be a constant.

Because the length is proportional to the number of

vehicles, either is sufficient to serve as the state

variable describing the queue. For computational ease,

the length is selected.

The state description of a platoon must include

any set of independent variables from which its length,

position, and number of vehicles can be determined. The

following list suggests most candidates.
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1. Position of leading edge of platoon, (ft).

2. Average vehicular density of platoon, ¥%E),

vehicle ft ) _ (:3

ft '
or average lane occupancy (EEVEEEEE_IE

3. Number of vehicles in the platoon, (veh).

4. Pavement length of the platoon, (ft).

5. Total length of vehicles in the platoon,

(ft).

6. Mean headway between vehicles, (ft or sec).

Variables (2, 3, 5), for example, are not independent.

An arterial section may hold several platoons at

a time. A simplification results if one always assumes

that all the space behind a platoon is occupied by other

platoons, considering a free space as a platoon having

a vehicular density of zero. Consequently, the platoon

state at any time can be provided by any two variables

listed above except for the pairs (1,4), (3,5), (1.6),

and (2,6). The same two must be used to describe each

platoon. For computational reasons the position of the

leading edge and the vehicular length are selected to

describe each platoon.

Since the states of the platoons and queues are

derived from the density and velocity, the relations

between these variables are established by experimental

and theoretical investigations.
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2.5 Velocity-Density Relationg for an 

Arterial Section

Drivers in a traffic stream, aware or not, react

to increasing density by lowering their speed. This

natural control mechanism was studied closely by Green-

shields in 1934 and led him to conclude a linear relation

between the speed of vehicles in the traffic stream and

the stream density. Subsequent experiments have sub-

stantiated that for many purposes Greenshields' linear

model is realistic. Thus the speed is given by

_ x

3

where vf is the free speed, a mathematical value for

speed as density approaches zero. The jam density, the

density at which the speed goes to zero, is denoted by

xj. A typical value for xj is 40 per cent of the bumper-

to—bumper density. This relation, established under very

restrictive conditions, applies to steady state condi—

tions for vehicles moving on a highway (i.e., an uncon-

trolled artery) and it applies to average values of the

variables.

Although the equation does not reflect it, Green-

shields introduced a kink at the top of the graph to

describeIin a realistic way, the region where the speed

is unaffected by density below a certain limiting value.
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This truncation is observed for any speed-density relation.

On a controlled artery when the densities are light

and the speeds are normally higher, the conditions are not

too unlike the steady state stream. With xj about forty

per cent equation (2.3) predicts velocity quite well.

As the density increases, however, the velocity

does not approach zero as quickly as equation (2.3) pre-

dicts. The average velocity is zero on an artery when it

is filled from intersection to intersection with a queue.

Thus under these conditions xj should equal xq.

Stated mathematically, the equations describing

velocity and density for arterial traffic are given as

x

f1 x.l 1

v = v (1 —— —£—), x < x < x. = x (2.5)
f2 sz l - - 32 q

where x. is approximately 0.4. The constants v , v ,

31 fl f2

and x1 are selected to match observed traffic behavior on

particular arteries. Figure 2.2 depicts a typical velocity

- density characteristic.

The relations given in equations (2.4) and (2.5)

are used to determine the average speed for all platoons

on a particular arterial section. Speeds on other sec-

tions are determined similarly. Individual vehicle
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speeds, it must be emphasized, may be somewhat different

from this average. Within the platoons, particularly

when the density is light, accelerating and decelerating

vehicles and passing phenomena may be present.

  
Figure 2.2. Velocity—density characteristic.

2.6 Queues Examined 

In the terminology of queue theory an intersec-

tion is regarded as a rate-limited server which is sub-

ject to breakdowns. However, despite the impressive

amount of literature available on queue theory in gen-

eral and on traffic congestion in particular, most work

has centered on the problem of gap acceptance (i.e.,

vehicle crossing or merging) (TA 1, MR1) or on the rela-

tively simple problem of a single traffic signal on a

two-lane artery (HA1, NEl). The problems encountered

when queue theory is used as a primary analytic tool in
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the study of a complete traffic system are far too diffi—

cult (WEl).

The main difficulties result from the "artificial"

behavior that the signals impose on the traffic. No longer

can the distribution of arrivals at a signal be considered

Poisson or exponential. Instead it is intimately related

to the parameters of the signals (red and green times,

relative phasing). For the same reasons the distribution

of service times at each intersection involves intractable

mathematics.

Nevertheless it is possible to utilize some queuing

concepts to describe the events at the intersections. At

any given instant there are n vehicles in a queue. The

first vehicle in line enters the intersection. The time

elapsing between this first entry and the entry of the

vehicle next in line is the service time ts for the first

vehicle. During this time interval a vehicles arrive at

the queue's end. The number of vehicles in the queue at

the end of the service time is given by

n' = n - l + a (2.6)

It may happen that the original queue has zero length. If

so, it is necessary to await a vehicle's arrival so that

n=1, and consider the service time for it. Then,

n' = a (2.7)
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The two above equations can be combined into the single

equation

n' = max (n-l, 0) + a (2.8)

or even more simply as

n' = n - l + d + a (2.9)

if d is defined as follows

dl if

0

n = 0

n > 0 (2.10)

Alternatively, during a time interval At a total

vehicle length p leaves the queue and a length a? arrives

at its end so that equation (2.9) can be written

(n'-n) I = -p pd a7
——ZE—— XE + XE + XE (2.11)

Average vehicle length is given by I and is used here to

convert the number of vehicles to an equivalent vehicle

length.

In the limit as At approaches zero

Q = -Vq + qu + v (2.12)

where Q is the net rate of queue length change, vq is

the rate of outward flow, and y is the rate of increase

in queue length, all measured in feet/sec or some other

equivalent units.

The effect of the signal can be introduced as a

second, but imaginary, queue served by the intersection
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which has a "head of the line" priority. It has an

arrival rate which is a constant, one per signal cycle.

Its service rate equals a red phase. Viewed from the

real queue the effect of the imaginary one is to cause

the intersection to switch continuously between opera-

tion and breakdown.

Equation (2.12) describes the observed behavior

at intersections. However, the rate vq at which the

vehicles are served must still be determined. As noted

previously this rate is governed to a great extent by

the signal timing since the timing determines the arter-

ial velocity.

At the beginning of the green phase of a signal

the queue, assuming that its length is not zero, injects

the first vehicle into the next arterial section. After

a moment the queue sends another vehicle into the section

and continues to do so until the queue is dissipated or

the signal changes phase, at which time the next platoon

begins to form. The spacing between vehicles determines

the vehicle density within the platoon. However, this

density differs significantly from the average density

observed on an arterial component.

Platoon density is closely tied to the velocity

Emevailing during its formation. A rule of thumb sug—

sgested by safety advertisements, etc., advises that a

(driver allow a vehicle length between vehicles for each
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ten miles per hour of speed. This relation stated math—

ematically gives the lane occupancy of a platoon as

x = ————-— , v in mph (2.13)

P l + IO

or

x = _—_l_5__ , v in fps (2.14)

p 1+""147

The "ten" figure is not rigid, it could be some more

accurately determined value. (One suspects, however,

that this advice is not the result of idle daydreaming

but corresponds closely to the natural tendencies of

the average safe driver.) In order to have equation

(2.13) consistent with the requirement that vehicles

at reSt have a density xq the following modified equa-

tion is used instead.

1 (2.15)
+

s
a
l
t
.

S
l
“

 x

P
 

Figure 2.3. Velocity-platoon density characteristic
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It is now possible to demonstrate the close corre—

lation of the rate at which vehicles are discharged from a

queue and the speed of the platoon on the arterial. This

results from the fundamental requirement that the flow into

an intersection must equal the outward flow. Equating the

inward flows at an intersection during T seconds,

x v T = x v T (2.16)

where x is average density and v is average velocity.

Obviously, then

x

v =52 v (2.17)

q

This equation can be interpreted in two ways. As noted

earlier the queue can be regarded as standing still but

becoming shorter as a "shock wave" moves backward through

it at a velocity vq. The shock wave is the discontinuity

resulting from the difference between the queue and platoon

densities. The second interpretation assumes that the

queue moves forward at a velocity vq and the so—called

shock wave remains stationary at the foot of the intersec-

tion. In either case the rate of change of queue length

is —vq. For the simulation model the first interpretation

is less desirable since it introduces a platoon between the

queue and the entrance to the intersection.
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2.7 Component Equations

Some vehicles which leave the queue turn rather

than continue straight. The fraction that continues

straight is given by the constant a.

Using the state variables selected earlier and

the constraint conditions imposed by queue theory, the

component equations are as follows for the ith arterial

section.

={o, if jth phase of ith signal is red

11 1, otherwise (2.18)

P(i,k) = vi, k=l,..., n; 0§P(i,k)<Di-Q(i+l) (2.19)

fi (i'k) = _ng.,k.) 6 (t-Ti, k) , k=l,u ..,n-l k

aivi_§:EAij — Px(i, n) 6 (t—Ti n)' - n

Q 3 o (2.20)

Q(i) = _Vj(x p)iAij + Pac (i--1 k)<5(t-‘Ti-1k),

q Q(i) : 0 (2.21)

qQ(i+l) +k21Pr (1, k)

xi = Di (2.22)
 

P(i,k) is the position of the front edge of the kth

platoon; Px(i,k) is the vehicular length of the kth

platoon. Q(i) is the queue length for the ith section.

The characteristic velocity, vi = f(xi), is determined

according to Figure 2.2 once the average density xi is

known. Di is the pavement length of the ith section.

The platoon density mp is determined from equation (2.15).
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The impulse function is denoted by 5(t); Ti,k is the

time of occurrence for P(i,k) = Di - Q(i+l).

The use of the indices i—l and i+l implies that

the ith queue extends into the (i-l)st arterial section

and the (i+l)st queue extends into the ith arterial

section.

Equations (2.19 - 2.22) are less formidable if

it is kept in mind that vehicles released from the ith

queue during a green phase (2.21) appear as part of the

nth platoon (2.20). The platoon travels the length of

the arterial section (2.19) until it joins the upstream

queue where it ceases to exist as a platoon (2.20). In

the meantime new platoons are added to the ith queue

(2.21). It is this cyclic conversion of the vehicles

from a queue to a platoon to a queue which characterizes

the model.

It is precisely this cycling of vehicles which

allows a traffic system to be represented as an inter-

connection of similar components. Also it permits the

use of iterative techniques to obtain solutions. Be-

cause of the size of the problem, the non-linearities

involved, and the randomness of certain of the vari-

ables, these solutions are best obtained using a digital

computer.
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CHAPTER III

SIMULATION

Between the phases of modeling a component and

programming a computer there lies the important process

of simulation. This simulation is a demonstration of

how a complete traffic system can be interpreted as an

interconnection of basic components. In this chapter

the simulation models for several traffic structures are

developed. With the addition of acceleration phenomena,

random input generation, and a varying turning pattern

.the simulation can be made adaptable to most situations

encountered in real systems.

3.1 Acceleration Phenomena

With the inclusion of acceleration effects the

model has a greater potential for simulating traffic

behavior. The model presently employs a constant ac-

celeration function which could be generalized to any

function if future experiments dictate a change.

The acceleration process is simple to describe.

When the signal phase becomes green the first vehicle

in the queue crosses the intersection to begin a platoon.

28
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The velocity of this platoon is initially zero, in-

creasing to the prevailing average velocity vi corre-

spondixjto the average density on the section.

In both real systems and models the process of

decelerating is more complicated. When the signal turns

green, the vehicles accelerate or remain still if their

path is blocked. On the other hand, the driver of a

vehicle approaching an intersection at a constant velo-

city must decide whether to begin braking. He must con-

sider the phase of the approaching signal, the behavior

of the traffic ahead, the distance to the next intersec-

tion, and his own speed. In a simulation model, these

same factors must be weighed.

In the present model, a driver makes the decision

to brake or continue at the same speed through an inter-

section when he is at a critical distance from the

intersection. This critical distance Dcr is a function

of the vehicle's velocity v and the number of vehicles

before it. It is braked for any one of the following

reasons.

1. A queue lies ahead.

2. The signal ahead is red and will remain red for

a time T greater than Dcr/v'

3. The signal ahead is green but will change phase

in time T less than Dcr/V.

4. The vehicles ahead are decelerating.
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In the model, after this decision is made, the

vehicles involved are transferred from their own platoon

to one of two transition platoons which carries them from

the critical point to the intersection at either (1) a

constant velocity or (2) a decreasing velocity.

3.2 Turning Movements 

The turning movements at an intersection observed

over a long period of time can be used to establish a

value p which is the ratio of the number of vehicles that

turn to the total number that enter the intersection per

unit time interval (a green phase). This average value

can be interpreted as a probability estimate that a ve-

hicle turns. Alternatively, p is the expected value of

the fraction of a queue that turns. Although this frac-

tion can assume any value in the closed interval [0.0,

1.0], for computation it is easier to discretize the set

i - n = o, 1,...,100}. The problem
100 '

Of arriving at the fraction

to the finite set I

"a" of turning vehicles for a.

particular green phase can be handled as follows.

The queue in question is normalized to one hundred

vehicles. A binomial probability function is used to es-

tablish the probability that k vehicles turn

P(x = k) = (1E0) pk (1—p)1°°'k (3.1)

where the random variable X has possible values 0,1,...,100.
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A complete table of these random variables and their cor-

responding probabilities is generated. In the simulation

a random variable r which is uniformly distributed on the

. . . _ k
interval [0.0, 1.0] 15 generated. The turn ratio a — IOO

is determined by searching the table for k such that

Fx(k—1) < r i Fx(k) (3.2)

Here F£-) is the distribution function defined as Fx(k) =

P(x 1 k).

3.3 Input and Output Elements 

The portion of the traffic network being simulated

may have several sections connecting it to other streets

or parking facilities. The sections by which vehicles

enter the simulated traffic network are the inputs, and

those by which the vehicles leave are the outputs.

The queues of the input sections are formed in a

way uniquely different from the queues of the other sec—

tions. Vehicles are assumed to arrive at these queues in

a random manner. The traffic signals and traffic behavior

outside the system, location of parking lots, time of day,

etc., play significant parts in establishing the distri-

bution of arrivals. However, as a simplified representa-

tion a Poisson probability function is‘used in this model

to describe the arrivals.

An expected value It describes the average demand

 



Observed. The Poisson probability function given by

-}.t k

P(X = k) = 2%?— (3.3)

is used to determine the number of arrivals in the time

interval t. A random number I having a uniform distribu-

I tion on the interval [0.0, 1.0] is generated every t sec-

onds. The number of arrivals k is then established every

t seconds by

; FX(k-l) < r 1 Ex (k) (3.4)

In this latter relation, the distribution function is

denoted by FX(-). For an input section it is easy to con—

tinuously adjust the probability parameters to simulate a

changing arrival pattern.

The output sections are hardly different from the

internal sections. Instead of allowing the vehicles to

form into platoons after crossing the intersection, they

are accumulated in a counter or sink. This implies that

the sinks are of great enough capacity (infinite) that

there is no cumulative congestion which reflects back into

the system. If this is not true, it is necessary to extend

the portion of the network being simulated until such a

section is reached or to reduce the flow rate into the out-

put section as congestion builds up.
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3.4 System Simulation

In the simulation of traffic systems, components

like the one modeled in the previous chapter are connected

together according to the geometric pattern of the system.

This model has associated with it a connection matrix which

details the manner in which these connections are made and

the direction of traffic flow. In all respects it is analo-

gous to the incidence matrix used in graph theory (KTl).

The matrix has dimensions 2 x m, a column for each of the

m components. The first entry of the ith column is the

index of the component following the ith component. The

second entry of the ith column is the index of the compo—

nent preceding the ith. An input or output element has a

zero for its second or first entry, respectively.

In the following examples the components are rep-

resented by the simplified symbol shown in Figure 3.1.

IO I

 

Figure 3.1. Traffic component symbol.

One-way artery

A one-way artery with m signals is the simplest of

all traffic structures to simulate. The complete model

Consists of m traffic components joined end to end as in

Figure 3.2. The first one is an input component and the
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(b)

Figure 3.2. (a) Artery with m signalized intersections.

(b) Model of artery (a).

last an output. No indexing scheme is implied by the

formulation, so for simplicity the components are numbered

successively beginning with the input element. For the

system of Figure 3.2 the connection matrix is

_ 2 3 4 0

KM‘I:0123J

Two-way artery

A two-way artery can be considered to be two one-

way arteries side by side as shown in Figure 3.3. It is

important to remember, however, that at each intersection

the signal phase, red or green, is the same for both the

inbound and outbound directions.

Intersection of two one-way arteries 2

The model for a pair of intersecting one-way

streets can be considered as two arterial components at
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Figure 3.3. (a) Two-way artery.

(b) Model of artery (a).

right angles to each other as shown in Figure 3.4. Each

has a turning coefficient defined for it. Since there is

only one signal for the two components, they must share it.

 

l 1
 
 

   
Figure 3.4. Basic component for grid structures.

The component equations for this basic grid element are

as follows. In these equations 1 = l, 2.

_ 0, if kth phase is red (3.5)

lk _ {1, otherwise

Elk = logical complement of Alk (3.6)
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P(i,j) = vi, j = l, n; O : P(i,j) < Di-Q(i+l) (3.7)

—P . . 6 — . . . = —

15 (1.3) s ”0””) (t Tm): 3 1' n l
x

aiVi(93p)iA + (1-a-i) Vi(x i (1-A) (3.8)

x xq

-Px(i,n)<5(t-Ti’n), j = n

Q(i): 0

0(1) -vi(a: )i A + Px(i-l, j) 6 (t-Ti_l’j); Q(i) 3 o

”q (3.9)

A if i =
A = 1k

Kik if i = 2 (3°10)

where i = 1 if i =

2 if i = (3°11)

The turning split factor is ai.

Grid of one-way arteries

Within a grid of one-way arteries the signal at

each intersection is shared by the two competing directions

of traffic. In the model, therefore, the grid components

described above is the basic building element. For con-

venience, especially in a computer simulation, the following

numbering scheme is suggested. Label the signals in any

order from 1 to m. The horizontal component associated

with signal i is labelled i and the vertical component is

labeled m + i, as shown in Figure 3.5. The actual values
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(C)

Figure 3.5. (a) Traffic grid of one-way arteries.

(b) Model for grid (a).

(c) Connection matrix.
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for ai (i = 1,...,2m) must be determined through observa-

tion. Note that there are several input components in a

grid. The connection matrix for the system is also given

in Figure 3.5.

Intersection of a two-way artery and a one-way artery
 

A vehicle on a one-way artery which crosses a two-

way artery can turn either right or left while a vehicle

on the two-way artery can turn only right or left depending

on which direction it is traveling. To simulate these

turning Options in a model,a dummy is introduced at the

intersection on the one-way artery as shown in Figure 3.6.

This dummy (labeled 1) has a length D1 = 0, and the right

turning coefficient for the one-way artery is defined on

it. Signals l and 2 may work in unison or the red phase

on the one-way artery of signal 1 may be delayed slightly

in order to simulate the amber phase during which vehicles

from the two—way artery making left turns have the

‘EL_ If
-—> ; —> 1 1 r 2

I I I 3 I

I (a) (b)

Figure 3.6. (a) Intersection of a one-way artery and a

two-way artery.

v
b

 

   

N

 

   

(b) Model of intersection (a).
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opportunity to complete their turn. These vehicles turn-

ing left, therefore, do not interfere with the oncoming

platoons.

Intersection of two two-way arteries
 

The model for a pair of intersecting two-way ar-

teries uses four dummy components to simulate the traffic

flow. As shown in Figure 3.7 the dummies are numbered

1, 4, 6, and 7; the right turning coefficients are defined

on them. All four signals must Operate in unison. Un-

fortunately there is no simple way of simulating an amber

phase for all four directions simultaneously.

I
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Figure 3.7. (a) Intersection of two two-way arteries.

(b) Model of intersection (a).

Multiple lane arteries
 

If an artery has more than one lane then some
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modifications are necessary in the component equations.

If m1 is the number of lanes in the ith arterial section,

then equations (2.20-2.22) are modified in the follow-

ing manner, respectively.

Px(i'j) 6 (t‘T- 0)! j = 1,...,1'1-1

 

1,]

Px(ipj) = , .

miviIxE)i Alk - Px(1'n) 6 ‘t'T1,n" 3 = n

x

‘1 Q(i) 1 o (3.12)

6(1) = -mj_vi(acfi)i Aik + Px(i-l.j) 6 (t-Ti-l,j);

”q of. 0 (3.13)

’2‘xi = qu(l + l) + j=lPx(l,j) (3.14)

miDi

The simulation ideas presented in this chapter

have been incorporated into a digital computer program

which is capable of handling a significant traffic

area. In the Appendix a flow chart of this program is

given along with a list of the symbols used to represent

the variables in these chapters.

3.5 Example

Under the best of conditions the worth of a simu-

lation model can be demonstrated by comparing data from

a real system and from the model. Evaluating the model

developed in these chapters would be easy if adequate

traffic data were available. Unfortunately, much of the
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data from large traffic systems consist merely of hourly

vehicle counts. Usually these are for widely separated

points and are acquired over a period of several months.

Consequently, one cannot know accurately how events at

one point affect the vehicular movements at other points

in the system. Little of the data is concerned with

velocity and density variations over short time inter-

vals. Thus, evaluating the wealth of data generated by

the model is difficult.

The system used in the following simulation is

the CBD (Central Business District) of Lansing,

Michigan. The arterial component network is developed

from a street map supplied by the Traffic Division of

the City of Lansing (GE 1). These maps are shown in

Figures 3.9 and 3.8, respectively. In Figure 3.8 there

are 72 signalized intersections. Due to the additional

dummy elements, the number of traffic signals in Figure

3.9 is increased to 100 and the number of arterial com-

ponents is 200.

The number of lanes and arterial lengths are

accurately depicted in the model. The other necessary

data are estimated as accurately as possible. Input

rates, based on typical hourly counts supplied by the

traffic department, range from 0.1 to 0.2 vehicles/sec/

lane. The expected values for the turning split factors

are based on these counts and on the system geometry.
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Figure 3.8. Traffic grid of Lansing, Michigan's

central business district.
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For example, all vehicles traveling west on Michigan Avenue

must turn left at Capitol Avenue, and thus the turning

split factor is zero. It is assumed that all the traffic

signals operate with a 60 second cycle and an equal red-

green split. The relative timing of these signals is more

or less random.

A constant acceleration of 5 ft/sec2 and a free

speed of 60 ft/sec is used throughout the model. Referring

to Figure 2.2, v0, v1, x1 and xq are 57 ft/sec, 30 ft/sec,

0.5 and 0.85, respectively. The vehicles in the system

are assumed to have an average length of 20 feet.

This hypothetical study of Lansing's traffic has

two main objectives. The first is to demonstrate the

effectiveness of the model in simulating a large, realistic

system and to establish a measure for the ratio of computer

time to real time. The second objective is to illustrate

the variety of investigations which are possible with the

model. These investigations may be either macrosc0pic--

dealing with such variables as vehicle counts and velocities

for an extensive area of the system--or microscopic--dealing

with the detailed behavior on a small portion of the system.

Simulation

The simulation was performed on a CDC 6500
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computer. Using a time increment of 1.0 second, 2000

seconds were simulated in 252 seconds. Based on these

figures, approximately 0.63 millisecond is required to

simulate the traffic behavior on a single component for

one increment of time. As indicated in the following

studies the data available as output varies widely.

Microscopic Study

Between Saginaw and Shiawassee streets on Logan,

the southbound platoon and queue behavior were studied as

a function of time. Data were printed every second.

The leading and trailing edges of the platoons and queues

are plotted on space-time coordinates in Figure 3.10.

It is easy to follow the cyclic behavior of the vehicles:

their accumulation at Saginaw, their acceleration, their

transit to Shiawassee and their deceleration. In the

figure one also notes that during the red time vehicles

are appearing on the street due to the turning movements

from Saginaw.

A cross-section of Figure 3.10 taken at a par-

ticular time produces a picture of the platoon and queue

states like Figure 2.1. As more vehicles are added to

the street the average vehicular velocity decreases, and

this is reflected in the decreasing slopes of the lead-

ing and trailing edges of the platoonszat t = 0 the

velocity is 57 ft/sec and at t = 140 it is 42 ft/sec.
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Note that the ends of the queues, having zero velocity

during the red times, are represented by lines with

zero slope.

Since it is assumed that the whole platoon be-

comes part of a queue once its leading edge has reached

the end of the queue, an impulse appears in the position

of the platoon's trailing edge. Although this descripe

tion is unrealistic, it is felt that no serious conse-

quences result. First, the important variables are the

average transit time per vehicle, which is determined

for the leading edge, and the time headway between the

two edges. If it were necessary to approximate the true

behavior of the trailing edge, using the above data

this would be easy. Secondly, since the queue serves

the vehicles on a first come-first served basis, the

vehicles from the end of the platoon (even though it is

assumed that they arrive early) will not be served until

their turn.

Macroscopic Study

The input rate to Capitol Avenue was assumed to

have a normal value of 0.15 veh/sec/lane. After an

initial period of 300 seconds, in which the system

reached a more or less steady state, this input rate

was increased by a factor of 3 for an interval of 100

seconds and then returned to normal. The average
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velocity for several sections of Capitol Avenue are plotted.

The velocity on the input section (between Oakland and

Saginaw) drops considerably due to the increased load. On

the following section (between Saginaw and Shiawassee) the

effect is less evident. This is probably due to the greater

distance between intersections (1200 versus 800 feet).

Between Shiawassee and Ionia the velocity demonstrates the

same drastic response to the increased load as the input

section.

Between Ottawa and Allegan the disturbance is still

strongly felt, but the velocity in this region is also

influenced considerably by the turning movements onto

Capitol from Michigan. Note, for example, that the veloc-

ities in this region, even for normal operation, tend to be

lower than observed elsewhere. Finally between Washtenaw

and Kalamazoo the effect of the disturbance has been greatly

diminished--only a slight depression is noted. The effect

of the signal timing is one factor which influences the

results--e.g., the rate of the disturbance propagation.
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CHAPTER IV

CONTROL OF URBAN TRAFFIC SYSTEMS

Within a system of signalized intersections traf-

fic flow is governed almost entirely by the traffic sig-

nals. By a judicious choice of signal variables one can

minimize total vehicle travel time and time spent waiting

in queues while maximizing vehicle counts. For medium

density traffic conditions an effective control strategy

based on minimal queue build-up is the establishment of

progressions on the arteries. A progression can be de-

fined as a steady state mode of Operation which allows

vehicles to travel at a specified velocity (the design

speed) from one end of an artery to the other without

stopping. The portion of the signal cycle for which this

is possible is called the bandwidth.

A method developed by Morgan and Little (MLl) is

a useful basis for determining a particular progression

design on a two-way artery. With the introduction of two

important theorems, it is possible to inspect a wide

range of designs with a minimum of calculations.

While a prerequisite for smooth, efficient flow

on an artery is the establishment of a progression, the

51
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possibility that queues develoP always exists. Since the

signal parameters which satisfy the design specifications

of bandwidth and velocity are not unique, adjustments

within the framework of a particular design can discourage

the build-up of queues. In situations where queues have

developed, it may be necessary to perturb the progression

settings to eliminate them.

A discussion of traffic control would be incomplete

if it did not touch on the special problems encountered

on traffic grids. The extension to a grid of the control

. methods used on arteries is possible if some preliminary

ground rules are established.

This chapter presents some of the important ideas

pertaining to progressions. It also presents methods for

establishing progressions on one-way and two-way streets

as well as grids and, finally, some auxillary techniques

for maintaining progressions in the face of disturbances.

4.1 Space-Time Diagrams and Traffic Signals

In studying the motion of a body in a one—dimen-

saional space, a plot of its displacement from some refer-

ence point as a function of time is often helpful. On

Slush a graph the velocity at any instant is given by the

Slope of the plot.

Engineers, studying the behavior of vehicle pla-

'UMDIis on an artery, have long used space-time graphs as a
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visual aid. These graphs display the locations of the

leading and trailing edges of the platoon as functions of

time. The spatial length of the platoon is measured as

1p; its length in time (headway) is measured as tp. The

ratio of these variables is the platoon velocity v.

When the behavior of vehicular platoons in the two

directions of a street are displayed on a space-time dia-

gram at the same time, a complete picture of traffic flow

on the street is obtained (GAZ). However, the diagram's

usefulness is limited to illustrating the flow for a given

set of traffic signal parameters and design velocities.

Under limited circumstances it may be possible to use the

diagram for noting how a change in a parameter affects

the flow. For example, in Figure 4.1 it can be seen that
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Figure 4.1. Typical space-time diagram.
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if the timing of signal 5 is advanced slightly the size of

the platoons which can be accommodated increases in both

directions. Such observations produce only limited quali-

tative information for improving the system's flow.

It is appr0priate to introduce a list of some

basic traffic terms and the symbols which represent them.

These terms occur frequently enough in what follows to

warrant their inclusion.

CYC - common cycle of signals (sec); a cycle con-

sists of successive red and green phases, the amber phase

being relegated to the red or green.

Gi - green time of the ith signal (sec).

Dij - distance between intersections i and j (ft).

vij - design velocity for vehicles traveling from

intersection i to intersection j (§§%)

Tij - transit time for vehicles traveling from

D

intersection i to intersection j (sec); Tij = ij.

V"

13

BW - bandwidth, the measure of the band for which

vehicles can travel the length of the artery without stop-

ping (sec); the bandwidth-cycle ratio is B = gga .

Bij - offset of signal j measured with respect to

signal 1 (sec); Bij is measured from the center of a green

of signal i to the center of the first green of signal j

such that (0 5 Bij < CYC).
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These parameters are illustrated on the space-time diagram

of Figure 4.2. Often it is convenient to normalize the

 

   

time parameters by dividing by "CYC." Thus, gi = SIC ,

0': 91 < 1; etc.

F———— CYC R. G.
9f ‘1'“19’ l

» ' —_1 signal i

D. .

13

I- signal j

‘é—Bij A 
Figure 4.2. Traffic parameters defined.

4.2 Steady State Queuing

The problem of attaining an efficient traffic sys-

tem and of maximizing flow is closely related to the prob-

lem of queuing. Therefore, a useful (though incomplete)

measure of a control system's effectiveness is the total

time that the vehicles spend waiting in queues.

As previously indicated determining vehicle behav-

ior at the intersections of a large system using mainly

statistical methods is nearly impossible. A study of

steady state queue behavior, however, is a reasonable ob-

jective. For the purposes of the following discussion steady
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state implies that the vehicles are flowing continually

through the intersections during the green phases and that

the velocity is always assumed to be the same. A constraint

implied by these assumptions is that the green phases of

all signals are equal and the cycle length is the same for

all signals.

It will be shown that the formation of a queue at

an intersection is a function of the offset 3 of that inter-

section's signal measured with respect to the previous

signal, the velocity v of the vehicles and the green time

to cycle length ratio, g.

Used as an aid in the discussion of the queuing at

a single intersection, Figure 4.3 is a Space-time diagram

for two intersections illustrating the vehicle flow between

them. From the figure, it is evident that four cases exist

depending on the values of g and B. The first two cases

(a and b) correspond to situations where the trailing por-

tion or the leading portion, respectively, of platoons

leaving the first intersection encounters the red phase at

the second intersection. In the third case (c) the entire

platoon encounters the red phase, and in the last case (d)

the center portion of a platoon arrives at the second inter-

section during the red phase.

For each case three new variables are defined.

Vehicles arriving at the second intersection when the sig-

nal is red form a queue. The queue continues to grow until
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(C) (d)

Figure 4.3. Steady state queuing at an intersection.
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the signal changes to green (Figures 4.3 a, d) or until

vehicles cease to arrive at its end (Figures4.3 b, CL In

either event, the variable n represents the time interval

of queue formation.

If the signal turns green and if vehicles are still

arriving at its end (Figures 4.3 a, d), the queue length

remains constant until vehicles cease to arrive at its

end. Alternatively, if vehicles cease to arrive at its

end but the signal remains red (Figures 4.3 b, c), the

queue length remains constant until the signal becomes

green. In either event, the time interval that the queue

exists with a constant (nonzero) length is T.

Finally, the queue begins to shorten at the first

instant when both the signal is green and no vehicles are

arriving at its end. The time required to dissipate the

queue is assumed to be the same as that required to form

it, n_

The third variable defined is 8'. Measured at the

second intersection, 8' is the time between the arrival of

the first vehicle in the platoon and the start of the next

green phase.

These variables are defined mathematically as

n = min [8" 1 - B', 9: l - g] (4-1)

T = '8' — 9' (4.2)

s' = B —’T + nCYC (4.3)

where T is the transit time between the signals and n is
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an integer selected so that 0 5,8' < CYC. These relations

are more apparent after examining Figure 4.3

In Figure 4.3 there is presented also a graph de-

picting the queue length behavior during a cycle. The

average vehicle time spent waiting in a queue per cycle is

proportional to the integral of queue length with respect

to time over a cycle.

1 . CYC20
-
3

ll [(nY) g + (nY) r + (nY) g

= [n2 + nT] Y°CYC2 (4.4)

Substituting (4.1) and (4.2) into (4.4) results in

  
Tq = min [8'2 + B'~ 8'-gl. <1—B'>2 + (1-8')- B'-g|.

92 + 9-IB'-g|, (1-9)2 + (l-g)-|B'-g|]y-CYC2

(4.5)

For a fixed value of g the minimum total wait per

cycle of all vehicles is given by

 

Tq(min) = mi?'IminlB'2 + B'-|s'-g|. (l-B')2

I I 2 I 2

+ (1‘8 )' B '9! . g + gole -g|, (l-g)

+ (l-g)-|s'-g|1} y - cyc2 (4,6,

The value for B' which achieves this minimum is 0 so that

T = 0. This result is readily seen from equation
q(min)
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(4.6) or from Figure 4.4 which illustrates equation (4.5).

The conclusion that can be gleaned from the fore-

going discussion is that the Optimal selection of 8 occurs

2

Q Tq (max) (1-9) M CYC

 
 

Figure 4.4. Queue integral as a function of offset 8'.

when 8' = 0, (i.e., B = T—nCYC). At this value no queues

are formed and the flow y is maximum. For all other choices

queues are present and they have the detrimental effect of

reducing Y. For the assumptions in this example it is

clear that the best way to control an artery is to set the

signal variables so that vehicles can travel from one end

to the other without stOpping somewhere in between to form

a queue. For a real artery the same conclusion applies:

it is desirable to set the signal variables in conjunction

with the prevailing vehicle speed so the vehicles do not

need to stop at intermediate intersections.

4.3 Progressions

A method attributed to Morgan and Little can be

used to determine the signal settings for progressions on a

two-way artery when the velocities are specified everywhere.
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Briefly summarized, they have shown that with each

offset value of either zero or one half of a cycle (that

is, half cycle synchronization), there results inbound

and outbound bandwidths which are equal. Among all the

possible half cycle synchronizations there exists a com-

bination which maximizes this equal bandwidth value.

The procedure suggested by them to achieve maximum

equal bandwidths is basically simple: A bandwidth is es-

tablished between the first and second signals. This band-

width can be maximized by selecting the proper half cycle

offset value (either 0 or %). The third signal can then

be selected with either 0 or % cycle offset so that the

bandwidth is reduced as little as possible. The procedure

is continued until all signals are considered. The pro-

cedure is then repeated for every pair of initial signals

and from the resulting bandwidthsthe combination of off-

sets producing the maximum bandwidth is selected.

The method has not been fully exploited for design

purposes. For example, they have shown in a corollary to

the main presentation how a design having equal bandwidths

for the two directions can be modified by reapportioning

the total available bandwidth between the two directions.

However, no sound criterion is given for this redistribu-

tion.

Another shortcoming is the lack of information re-

garding bandwidth as a function of velocity (or of any



62

variable, for that matter). If the progression velocities

are fixed precisely in advance, this information is not

needed to determine a progression design. However, this

is generally not true in a genuine design situation. The

better approach is to consider all designs for a range of

acceptable velocities and to select the one which pro-

vides the most bandwidth. Since the bandwidth is measur-

ably affected by even small changes in velocity, it is

worthwhile to have this information.

The simplest, yet most common, problem encountered

on a two-way street is to establish a proqression in each

direction when only two velocities are specified, one for

each direction of flow. A progression design exists for

each point of the subset defined by

2 - .
V - {(v1, v2). 0 < vi 5 Vmax}

For this important case, the following theorem demon-

strates how the bandwidth can be depicted as a function of

a single variable, thereby simplifying the design problem.

Theorem 1. Between a pair of intersections i and

j, if the bandwidths BW1 and BW2 are realizable for a

), then these same band-design velocity pair (vi ,. v..

3 31

widths are realizable with the design velocities (Vij,

!

vji) where
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Vl‘ + v.1._.= ;%—. + v$—- (4.7)

ij ji ij ji

Proof: Assume that the progression bands 1 and 2 are as-

sociated,respectively, with the design velocities vij and

v between the intersections i and j. The distance be—

tween the intersections is designated Dij (or Dji). Bij

is the offset value for which the original design is

ji

realized.

Transit times for vehicles in the two bands are

D..

T.. = —£1 (4.8)
13 v..

1]

Dji

.. = v.. (4.9)

31 31

If the offset Bij is altered so that

I .—

Bij — Bij + AT (4.10)

new transit times can be defined

01'

I ._ _

Tij - Tij + AT — ‘ng- (4.11)

D'i
' = —- =Tji Tji AT §+ (4.12)

31

Thus

+T.. =T! +T! (4.13)

Tij :1 1j 31
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and

91.4.; —I—+-11— (4.14)
ij ji ij ji

The change in transit time does not affect the

relative time spacing of the leading and trailing edges

of the progression bands, thus the bandwidths BWi remain

fixed.

With this result it is possible to define a new

velocity ve such that

l l 2
5;; + ngr— V;_ (4.15)

where V6 is the value when the two velocities are equal.

For the two-way street example cited above, the design

problem is reduced to examining the equal bandwidth pos-

sibilities corresponding to the points of V where

V = {v : 0 < v < v I
e e - max

This information can be set forth in a graph. The

ordinate, bandwidth-cycle ratio, is the total available

bandwidth which can be freely apportioned between the two

directions, subject only to the constraint, that the band-

width in either direction must not exceed the minimum

green time, g Similarly, each abscissa point (velocity-
min'

Cycle product) represents a set of inbound and outbound
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velocities constrained only by equation (4.14). Once a

point on the graph is selected and the individual veloci-

ties are fixed, one needs only to determine the cycle

length to complete the design of the progression.

As an example of such a plot consider the artery

used by Morgan and Little in their presentation: a two-

way street having ten intersections with specified green

phases. An immediate observation is that the graph of

025‘

B/cyc

  
I

5000 V-CYC (ft)

Figure 4.5. Bandwidth/cycle versus velocity-cycle.

Figure 4.5 is very erratic having no truly periodic com-

(ponents. Despite this lack of mathematical periodicity,

however, most values of the function are repeated many

izimes suggesting that the total bandwidth range may be

realized over a relatively narrow velocity domain.

This fact is especially fortunate since it is
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likely that the choices of velocities and cycle length

come from relatively narrow ranges. That is, the veloci—

ties may range from 20 to 80 ft/sec and the cycle length

from 30 tc>100 sec; thus the product may range from 600

to 8000 ft. However, low velocities are usually associ-

ated with long cycles and vice-versa. Under these cir-

cumstances, the abscissa interval of interest is more

likely to be 2000 to 4000 ft. Over this interval all

values from the bandwidth range are realized and only

this part of the graph needs to be determined.

In the general problem the desired velocity along

the street may not be constant. In this case, it is use-

ful to divide the street into n segments, each segment

having constant inbound and outbound velocities. For

each point in the set v?“ there exists an equal bandwidth

progression design where

2n _ .
V — { (V1, 0 o o ,Vzn) o 0<ViSVmax }

where

i = 1,..., Zn

The previous theorem permits reducing the dimension of

this set by a factor of two, thereby cutting the search

thne. A greater simplification for this n-segment street

can be achieved with the result of the following theorem.
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Theorem 2. If a street for which a progression

is being designed is partitioned into n segments such that

a different design velocity vek prevails over each seg-

ment, the band is equivalent to one having a universal

velocity ve obtained by defining an equivalent length for

each section such that

135.: D.. £- (4.16)

/
I

Proof: The transit time for vehicles in any seg-

ment is given by

D..

T.. = —1—1 (4.17)
13 v k

e

If the transit time is kept constant, then

e

OLD.. Di'

T.. = ——1% = —l (4.18)

13 av ve

e

Thus

k-

and

v

e _ e
Dij — __F’Dij (4.20)

ve

TTHe bandwidth remains unchanged with these transformations

0f velocity and length.

The preceding result is useful in determining the

Progression design for a street which may be partitioned
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into segments, each having distinct design velocities.

Although the result does not reduce the dimension of the

space to be searched, it allows a more systematic search

to be made. It is possible to make a plot of available

bandwidth as a function of the single velocity ve. This,

however, does not constitute the complete picture.

4.4 One-way Streets

Although the problems encountered when establish-

ing a progression on a one-way street can be readily

solved using the methods for two-way arteries, the wide

usage of one-way streets, particularly in central business

areas, justifies a separate discussion.

The specifications for a one-way street include

the velocity over each arterial segment and the bandwidth.

The bandwidth can be set equal to the minimum green time

on the artery no matter what the specified velocities are.

Morgan and Little's method could be used to determine the

offset values which accommodate this specified design.

However, these offsets can be determined more simply by

the following relation.

3.. = iii-acre (4.21)
l] Vij

‘where n is selected so that 0 s Bij < CYC. Such a set of
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offsets locates the progression band centrally within each

signal's green time.

Consider the one-way street progression of the

space-time diagram of Figure 4.6 For simplicity a constant

velocity is assumed along the street so that v12 = v23 =

... = v. Intersection l is the primary input for vehicles.

However, at each intersection vehicles are injected onto

the artery from cross-streets by turning movements (second-

ary inputs). A vehicle leaving intersection l at the

9‘ % r—‘Gl-T-BW

    g

BW

   
Figure 4.6. Progression bandwidth.

progression velocity v during the interval (T 5.t 5_T + BW)

can travel the artery without stopping. The group of

vehicles leaving during this opportune time is a progres-

sion platoon.
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Vehicles within the system which are not part of

a progression platoon result from one of the following

phenomena.

1. Vehicles which enter the artery at the primary

input at time t where (0 fi_t < T or T + BW < t E'TG ).

l

2. Vehicles which enter the artery at one of the

secondary inputs. (These vehicles necessarily enter the

artery during a red phase.)

3. Vehicles, which fail to maintain progression

speed, falling away from the platoons.

These vehicles are (probably) stOpped at one of

the succeeding intersections (especially intersection i)

forming queues. Unless these queues are dissipated before

the platoons arrive, they interfere with the movement of

the platoons. Under severe conditions, the queues cause

the breakdown of the progression, and, for this reason,

their effects must be minimized. Several steps can be

taken to this end.

Light Density Conditions

The first intersection of an artery is the primary

.input for vehicles. Forcing vehicles from this intersection

into progression platoons tends to minimize the number of

'vehicles which form queues. Therefore, by reducing the

green time of this first signal so that it has the smallest

green time of all signals, any vehicle entering the artery
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at this point is in a progression platoon and can travel

to the other end without stopping.

This corrective action may be less desirable if

there are a significant number of vehicles which could

use the non-progression band and leave the artery before

being queued. Figure 4.7 shows some of these non-platoon

vehicles which leave the artery before reaching the criti-

cal signal i.

Q ueue __
V —

Non-platoon “

vehicles ‘

Progression

band

  
Figure 4.7. Non-platoon vehicles and queue on one-way

artery.

The band occupies the entire green phase of the

Ininimum green signal. For the other signals it is wise to

distribute the excess green time so it occurs to the left

Of the band; that is, so it occurs earlier in time. (See

Figure 4.8.) This shift in offset provides time for any



 

_

—

I

O

.—

: “‘\_
__\__

  
Figure 4.8. Progression with excess green distributed to

left of band.

queue formed at the intersection to start moving before

the arrival of the scheduled platoon, thereby minimizing

the interference between queue and platoon. The new off-

set value is given by

D.. G. —G.

8.. = _il + —$————1-—— n CYC (4.22)

13 vij 2

where n is selected so that 0 $.Bij< CYC. Figure 4.9

illustrates how this relation is obtained.

At troublesome intersections (e.g., intersection

i in Figure 4.7) the above measures are not sufficient to

completely dissipate the queues. In such cases a transient

control can achieve the desired result. If all the off-

sets are changed by the same amount the steady state set—

tings of the signals remain unchanged. During the transient
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time, however, the queues are provided an opportunity to

clear.

--——~——‘I‘. .—-————>

Gi/ I" 13

signal

Si
2

(— B..+nCYC —J

1]

    

 

Figure 4.9. Illustration for Bij determination.

The phasing of the signals should be performed in

the following manner.

1. Increase, successively, the red times of sig-

nals k (k = l, 2,..., i - l) by 0 seconds.

2. Then increase successively the green times of

signals k (k = i, i + l,..., n) by a seconds.

This procedure increases temporarily the time for

which the queue at intersection i can move while maintain-

ing the usual number of vehicles entering at the primary

input. Repeated intermittenly, this procedure helps to

clear queues. Figure 4.10 illustrates this transient con-

trol.

Heavy Density Conditions

In a well-designed progression the timing of the

signals is such that as a platoon approaches an intersection
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Transient Period

Figure 4.10. Clearing of queues by transient effects.
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the signal turns green. Under heavy density conditions in

which vehicles are queuing at the intersections a good de-

sign is difficult to maintain. When a platoon reaches

the end of a queue it has for all purposes reached the

intersection, and the signal should be turned green at

this time. As a general policy, therefore, as the queue

at an intersection increases, the offset of that inter-

section should decrease with respect to the preceding

intersection. Equation (4.21) becomes

Di' - aQi.

8.. = 3 3 -- n cyc, 0.31.0 (4.23)
13 vij

 

If a is selected greater than one, the queued vehicles

have a chance to accelerate before the platoon arrives.

Under extreme conditions where a queue is formed at every

intersection and extends over the entire artery, the off-

sets should be reduced to zero so that all signals turn

green simultaneously. Goodnuff discusses this problem in

detail (601).

By increasing the green phase of all signals but

the first, the vehicles on the artery have more time to

pass through each intersection. At the same time, all the

inputs, primary and secondary, are regulated (i.e., the

number of vehicles permitted onto the artery is decreased).

Lengthening the cycle of all signals results in a

lower progression speed, hOpefully coinciding with the

lower natural speed dictated by the heavier density
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conditions. (See Figure 2.2.) This policy is very effec-

tive and easy to implement on an artery which has pro-

gression settings. Figure 4.11 illustrates a progression

for which the cycle is increased at t = T.

 

 

i-l

   'i+1‘   
Figure 4.11. Effect of increasing cycle length.

4.5 Grids

The study of arterial traffic leads naturally to

the study of arterial networks having at least one complete

circuit. A grid, as such a system of intersecting arteries

isicalled, operates most effectively when a progression is

established on each of its arteries. The same techniques

for'establishing progressions on isolated arteries can be

applied to the arteries of a grid, but there are constraints

for the signal parameters which cannot be violated.

A grid can be visualized as a mesh of arteries
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having one or more internal circuits or loops. A simple

grid loop may consist of four arterial sections formed

into a closed path as in Figure 4.12. The following

definitions are useful in establishing the important re-

lation for the signal offsets around such a 100p.

Let the underlined index refer to the green phase

for north-south flows and the other index to the green

phase for east-west flows. Thus Bil is the relative off—

set of signal j with respect to signal i, measured from

the center of the east-west green for the ith signal to

the center of the north-south green of the jth signal.

The following relations are obvious from any space-

time diagram.

Bii = 929" (4-24)

Bij = QCYC _ Bjil a = 0'1 (4.26)

Since offsets are positive fractions of a cycle, the a's

are necessary to maintain this status.

The offsets around a closed 100p sum. to an integer

number of cycles. To show this, the following relations

can be used. (See Figure 4.12.)

+ 323 + 533 + alcyc, a1 =-1,-2
813 = 812 + 523

(4.27)
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   60 C3)  

Figure 4.12. A grid loop model.

and

813: 811+ 814+Bi4+ B43+0I2CYC, a = -1,-2 (4.28)
2

Using the relations (4.24-4.26) above and equating (4.27)

and (4.28) the following can be stated.

812+832 = 812 + 843 + (a2 -al)CYC (4.29)

312+3£2+623+83§fcyc = B£1+Bl4+84§CYC

+343+(0I2-0I1)CYC (4. 30)

a3 = 0,1,2 (4.31)

Since the 8's are positive, (a3 + a2 - a1) must equal

(OI 1, 2, Or 3).

By using Morgan and Little's method iteratively
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it may be possible to establish progressions on a grid,

which satisfy the geometrical constraints of the arteries

and equation (4.31) for every closed grid 100p.

It was noted earlier that on an arterial more than

one design could be realized. The designs that are pos-

sible for a grid are even more varied. One may seek a

design which establishes a progression on every part of

the grid. Theoretically this is possible but it may re-

quire an enormous amount of computation time and ultimate—

ly result in very narrow bandwidths. It is reasonable,

therefore, to establish less restrictive objectives for

a grid and to devise methods to achieve them.

One effective technique is to divide the procedure

into two stages. In the first, the grid is broken into

simple subsystems of single grid 100ps and arteries. Com-

plete progressions can be established on these pieces

using material presented previously. In the second stage,

when the system is re-joined, one may not be able to

maintain the progressions established; however, one may be

able to minimize the delay on each artery by a compromise

shift of offsets at the tie points.

Consider the hypothetical grid consisting of three

north-south arteries crossing three east-west ones. As-

sume that in-order of demand priority, the highest is

labeled A and so on to the lowest which is labeled F.

This grid is broken into two subsystems as indicated in
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Figure 4.13. For the first stage of the design the pro-

cedures presented previously produce progressions on each

of the arteries. In the second stage the system is re-

assembled an artery at a time beginning with A. The off-

sets on A, B, and C remain unchanged after assembly. An

B-—ll In _—

WV [I

 

 

    
 

 

    

Figure 4.13. Subdivided grid.

interruption in the progression on D may result where D

crosses C. This is due to the fact that the progression

on C has already fixed the offset of the signal at the

intersection. Most likely, the progression established

on D fixed this offset at some other value. Since only

one offset is possible the progression on either artery

(or both) must be disrupted at this intersection. Simi-

larly one disruption results in the progression on E
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where E crosses D and on F where it crosses B. If any of

these arteries are one-way arteries or two-way arteries

with traffic flow predominantly in one direction, it may

be desirable to have these disruptions occur either up-

stream or downstream depending on the particular arterial

traffic conditions. This would dictate to some extent

how the grid is sub-divided in the first stage.

Fortuitous geometries of certain grids having a

large number of one-way streets make the problem of es-

tablishing progressions less formidable. For very regular

geometries it is always possible to satisfy equation

(4.31) using zero, half-cycle or quarter cycle signal

offsets. However, even with a good choice of cycle length,

the service on the established progressions may be low in

quality.

4.6 Example
 

As a further illustration of the diverse applica-

tions of the simulation model developed in the preceding

chapters a simple control problem is considered. Within

one section of the computer program it is possible to

adjust the timing of the traffic signals on a one-way

street to obtain a progression. The basis for these set-

tings is equation 4.22

Along Walnut Street the signal offsets were ad-

justed initially for a progression velocity of 40 ft/sec,
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and these were not changed during the run. On Pine Street,

which is parallel to Walnut, the offsets were set arbitrar-

ily initially but during the run were intermittently (every

60 seconds) adjusted by the program so that a progression

was obtained. The input rate for each street is 0.25

vehicles per second. Figure 4.14 depicts the input compo-

nent velocities of these two streets. Succeeding figures

(4.15-4.19) illustrate successive downstream component

velocities. The average steady state velocity is 9 per

cent higher when the signal settings are adjusted (36 vs

33 ft/sec).

One notes, however, that the velocities observed

along Pine are more susceptible to oscillations. This

illustrates a serious problem which must be dealt with in

the future: In an attempt to attain a certain steady state

control strategy the signals have to be changed. During

the transient period resulting from this change the state

of the system may change enough that a different steady

state strategy is called for. This stability problem has

not been adequately considered in the program.

In Figure 4.20 the output as a function of time is

plotted. The steady state outputs (determined from the

slope of the linear region) are 650 and 595 veh/hr/lane

for Pine and Walnut, respectively. The output is improved

by 9.2 per cent when the adjustments are made. In Figure

4.21 the accumulated time spent by all vehicles in a queue
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is shown. More time (7 per cent) is spent waiting in

queues when no adjustments are made. The steady state

rates are 41.4 and 44.3 veh-sec/sec for Pine and Walnut,

respectively. (It seems reasonable to expect that a more

sophisticated adjustment of the settings could result in

a reduction of the "41.4" figure.)

For an individual vehicle the improvement is more

pronounced. In the steady state the average vehicle must

spend a total of 115 and 135 sec in queues while traveling

the lengths of Pine and Walnut, respectively--a 17.4 per

cent improvement with the adjustment. The average total

trip time on Walnut is 12 per cent greater.

The conclusion that can be drawn from this example

is obvious. The better the progression matches the condi-

tions existing on the artery the smoother will be the

traffic flow. The velocity will be increased, the wait

time decreased and the output increased. Although one

cannot determine a synchronization which will be good for

all conditions, any synchronization is better than a random

setting of signals. On the other hand, stability becomes

a serious problem when corrections are attempted.
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CHAPTER V

OPTIMAL PROGRESSION DESIGN

Although the theory Of Optimal control is a fairly

well—established one, its application to real systems is

often severely limited. Many times the equations for the

system are not known with a great degree of accuracy, and

without an accurate description nothing like an Optimal

control is possible. On the other hand, if all the facts

were accounted for, by sheer magnitude the problem of Op-

timality for certain (large, nonlinear) systems would

overwhelm even the most ambitious engineer.

It would be unfair to generalize by concluding

that an Optimal control for a traffic system cannot be

devised for (l) a lack of knowledge and (2) an overabund-

ance and complexity of variables. Sufficient evidence

indicates that a traffic system can be efficiently con-

trolled using a progression. A reasonable next step is

to select the progression design in a manner which best

satisfies the demands of the artery. This chapter sets

forth a practical method for arriving at this Optimal

design.

92



93

5.1 Preliminary Remarks

The specifications for a progression design include

the bandwidths and velocities over every segment of the

artery. If this design is achieved without regard to the

prevailing traffic conditions, it is likely to be inade—

quate. For example, the velocities cannot be arbitrarily

specified since they are closely correlated to the number

Of vehicles demanding use Of the artery. It is necessary

and reasonable, therefore, to include this demand some-

where in the procedure.

In the discussion to follow a demand, speaking

quantitatively, is a measure of the number of vehicles

per unit of time desiring the use of an artery. Similarly,

a flow rate is a measure of the number of vehicles per

unit time actually using an artery.

For a one-way street it may be possible to find a

progression design which handles a maximum demand at a

good average velocity. For a two-way artery on which

neither flow demand is negligible, selecting a good de-

sign is more difficult. There are many combinations of

design parameters (bandwidths and velocities) to try and

many that satisfy the given traffic conditions. The prob-

lem of selecting a best design is further complicated when

the demand does not remain constant along the artery.

A space-time diagram is useless in this instance.
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While it illustrates the structure Of a particular design,

it fails to show if the system is effectively meeting the

flow demands. Likewise, while the methods of Morgan and

Little are useful for determining the signal settings for

a two-way street progression, they too fail to give an

indication to the user as to which sets Of parameters

satisfy the flow demands on the artery.

In fact present methods for establishing a pro-

gression on two-way streets avoid this question almost

completely. They (l) a priori specify the velocities based

on gross Observations Of the traffic, and then (2) deter-

mine the bandwidths that these velocities produce. For

the two-way street either the bandwidths in the two direc-

tions are made equal and maximum or one is maximized

subject to the restriction that the other does not drOp

below a pre-assigned minimum. (This latter alternative

hinges on the well-established fact that an increase in

the bandwidth Of one direction is usually accompanied by

a decrease in the bandwidth Of the other direction.) In

no way, however, do these techniques provide an answer

to the Optimal progression design problem. Yet very

little, if any, work on progression design uses more.

A progression that is optimally adjusted to the

prevailing traffic demands must be implemented with

traffic signals which can be automatically changed by a

central digital controller. Initial steps toward a
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central traffic control have already been taken in Toronto,

San Jose, and Witchita Falls (HUI, SJl, CA1) with signifi-

cant gains reported.

5.2 The Mathematical Model
 

For a progression to Operate effectively no con-

gestion can occur and the demand everywhere must be

matched exactly by the flow rate. To achieve this when

the demand does not remain constant complicates the prob-

lem.

Often the ends of an artery do not comprise the

only vehicular entry and exit points on the artery. A

large number of vehicles may enter at one or more internal

intersections, and possibly many vehicles leave the artery

before reaching its end. As a result of these turning

movements both onto and Off the artery or due to a change

in the number Of traffic lanes, the demand along each

direction of flow may not remain constant. An excellent

approximation is that this demand varies in a stepwise

fashion along the artery's length. It is natural, there-

fore, to assume each point (intersection) where the de-

mand changes significantly represents a boundary between

segments having unequal demands for one or both directions.

Thus an artery is, for the present purposes, divided into

n segments if at n-l internal intersections there is a

change in either the inbound or outbound demand.
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The first point Of concern is to determine the

flow rate that a given progression can sustain. The

number of vehicles per unit of time that can be served

by the street depends not only on the bandwidth of the

progression but also on the density of the vehicles in

the band. The relationship between average vehicular

velocity and density has already been presented in Chap-

ter II. Greenshields and others have established by the-

oretical and experimental studies that for a single lane

of traffic there is an almost parabolic relationship be-

tween the flow rate and the lane occupancy as shown in

Figure 5.1 (GRl). The corresponding speed of the traffic

 
 

Y

ys y = G(x)

Y1 = 313'”)

7 x

0 xj

Figure 5.1. Flow-density characteristic based on Green-

shields' linear model.

stream varies with occupancy as shown in Figure 5.2.



97

 

Figure 5.2. Velocity-density characteristic.

Inasmuch as the same basic phenomena governing speed and

density are effective in a platoon as in the continuous

stream of vehicles, the flow-occupancy characteristic for

the progression system is given by the product of the

continuous stream's characteristic and the bandwidth to

cycle length ratio. Figure 5.1 illustrates both charac-

teristics. The continuous stream flow rate is given by

y8 = G(x), the lane occupancy by x and the ratio of band-

width and cycle length by B. There is a unique graph for

each distinct bandwidth: yi = Bi G(x).

In a continuous steady state traffic stream the

vehicles adjust their speed so that the flow rate matches

the demand exactly, provided the capacity Of the traffic
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lane is not exceeded. If the demand exceeds the capacity

Of the street, congestion quickly occurs upstream. Below

the saturation level, an increase in demand is accommo-

dated by a lower'individual vehicle speed and higher lane

occupancy, as demonstrated in Figures 5.1 and 5.2.

Analogously, within a progression system the speed

should be selected so that the service flow rate always

matches the demand and so that the platoons within the

band are filled with vehicles at the density dictated by

the speed—occupancy characteristic. Setting the progres-

sion Speed higher than the value for which demand and ser-

vice rate are balanced invites queuing and congestion,

while setting it lower implies a needlessly lower quality

Of service.

If the demands on each part of the partitioned two—-

way street do not exceed the capacity then many combina-

tions of speeds and bandwidths for a progression design

are possible. The problem is tO determine the unique

combination which Offers the highest quality of service.

In the analysis which follows, Greenshields' traf-

fic model

y = 4ysm (cf—I) (l - f—j (5.1)

3 J

v = vf (l — jig (5,2)

3'
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is used where ysm is the peak flow rate, 33 is the jam

lane occupancy and vf is the free speed. Comparable re-

sults may be obtained using other models which have been

prOposed.

If'x is eliminated from (5.1) and (5.2) the result

is

_. _1’__‘£_
Y - 4ysm (1 Vf) (Vf) (5.3)

Applying the principle that bandwidths and progression

speeds should be selected such that service rate equals

demand on each arterial segment, requires

= 4  
 

1 V2k-l (Vzk-l)
" I

y2k-l B2k-l ysm Vf vf

k: 1,000,!) (504)

and

V V

_ _ 2k 2k _

sz ' 4B2k Ysm (' VE—I (GE-Io k - l.--..n (5.5)

where y2k-l and y2k are the inbound and outbound demands

and v2k-l and v2k are the progression speeds on the kth

segment.

5.3 The Optimization
 

A reasonable expectation for the progression is

that it satisfy the demands of the artery while minimiz-

ing the total vehicle-hours of travel time in the system.
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A measure Of total vehicle-hours of travel time under

steady state Operation is

y2k-1 sz
V D+——D

1 2k-1

(5.6)

k v2k

 

'
1
1

II

II
M
b

k k

Here y is a measure of the number of vehicles served in

an interval Of time. The individual trip time over each

segment of the artery is given by D/v, the ratio of the

segment length and steady state velocity. The function

F must be minimized while taking into account the con-

straints Of realizability Of the bandwidths and progres-

sion speeds selected.

Before proceding with the Optimization process,

the relation established in Chapter IV, equation (4.16)

is recalled.

k=lp000pn (507)
 

Within each segment the progression speeds can vary with-

in this constraint without changing the bandwidths of

that segment. Note that vek is the progression speed

which would prevail if v2k-l and v2k are equal. Inspec-

tion Of equation (5.7) indicates that allowing vek to

increase without disturbing bandwidths results in higher

permISSIble values of VZk-l and V2k .
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If equations (5.4) and (5.5) are substituted into

(5.6), the result is

  

 

3.: % 4sz-l ysm Dk 1 _ v2k-1 +

k=l Vf Vf

4B2k ysm Dk 1 _ Vzk (5 3)

Vf Vf

If F is minimized by the method of Lagrange mul-

tipliers subject to the constraint of (5.7), the Optimum

occurs when

 

 

3 n

-5—v-—-——- F+ Eu.[ 1 +3—1—-""2_] =0k=l’000,n

2k-l j=1 3 V2j-1 2j ej

(5.9)

n

33 F+ 211 [V1 +—-V1 __V2] -0 k=1,...,n

2k ._13 2j-l 2j ej

3‘ (5.10)

where u is a Lagrange multiplier.

The simultaneous solution of (5.9) and (5.10)

after substitution Of (5.8) results in

 
 

k = 1,...,n (5011)

2

v2k-1 B2k

Vzk

To be sure that the extremum Obtained is a minimum and

not a maximum, note that a maximum for F requires all the
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velocities to be zero--clearly this is not the case. The

relationship given in equation (5.11) is for a minimiza-

tion of F.

This latter relation must be satisfied within each

segment on the artery. Taking the ratio of (5.5) and (5.4)

results in

 

  

 

Y2k B2k Vzk (Vf ' Vzk' _
u-y— —B V TV -V ) k-lp000'n

2k-l 2k-l 2k-1 f 2k-1

(5.12)

Substituting (5.11) into (5.12) yields

sz = v2k-1 (Vf'vzkI = Vzk _

y2k-1 V2k Wf'vzk-l,’ Vf _ 1

v2k-1

k = 1,...,n (5013)

Simultaneous solution Of (5.7) and (5.13) results in

 

  

 

y
v (1 + y 2k )

2k-1 = 2k-1 k = 1’...’n

Vf sz + zvf 1

Y2k-1 Vek (5'14)

and
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Y _

v 1 + 2k 1

_2i<_ = y2k

Vf 2v k = 1,...,n (5015)

y2k-1 + f _ 1

y2k vek

A realizable design, Obtained using the Morgan and Little

procedure and the theorems introduced in Chapter IV, ac-

counts for the physical dimensions of the artery, the

signal green times and the maximum allowable speeds.

In applying these methods it is implied that the total

bandwidth along the artery is constant,

sz-1 + 32k = c k = 1,...,n (5.16)

The Optimal design results from an iterative

search employing the exact equations (5.14) and (5.15)

and the design method of Morgan and Little, subject to

the minimization of the cost function of equation (5.8).

5.4 The Search
 

The search is initiated by selecting a point Vo

having n coordinates, each coordinate representing the

equal progression velocity on a segment of the artery.

Each coordinate is restricted to the interval

0.5 v 5 vf k = 1,...,n (5.17)
f 5 Vko
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A design with one or more velocity coordinates in the

neglected interval, 0 S'Vko < 0.5 vf, always provides

lower quality service than one with all coordinates in

the interval (5.17). This means that the flows are al—

ways achieved on the left half Of the flow-density curve

of Figure 5.1.

The second theorem of Chapter IV permits trans-

forming the point VO associated with the given artery A to

the equivalent point V5 associated with the equivalent

artery A'. The point V5 is given by

V; = (l, 1,...,1)VO

Theorem 1 permits the determination Of the maximum band-

width which is realizable On the artery A' for the vel-

ocities V6, or equivalently, on A for V0. Equations

(5.14) and (5.15) determine the inbound and outbound

progression velocities on each segment. Finally, these

values are substituted into the cost function expression

and stored as F.

The coordinates of V0 are successively incremented

and in each instance the above procedure is repeated to

determine Fi' This Fi is compared with F0 to determine

if better service is achieved. The procedure is repeated

until no improvement is Obtained. The incremental step

size is then reduced for finer resolution Of the function
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space. A steepest descent approach is used tO speed the

rate of convergence.

The combination of the arterial geometry and the

signal variables produces a bandwidth-velocity function

which is not convex as noted in Chapter IV, see Figure

4.5. As a result the function F(-) to be minimized is

not convex. Therefore, one cannot achieve a global mini-

mum for F(-) by a direct application of the above search

procedure, although a local one is assured. The global

minimum is Obtained by determining the minimum for the

function resulting from a number of different starting

pOints V0.

5.5 Example
 

Present attempts to establish progressions on

two-way streets are mostly concerned with the heavier

demand directions. TO adjust to a change in the demand

once the system is in Operation, the signal cycle is

modified. Such action decreases or increases the pro-

gression velocities in both directions by the same factor.

This unduly penalizes the traffic in the low demand

direction.

Euclid Avenue in Cleveland, Ohio, is a typical

street on which progressions might be established. It

has ten intersections, unequally spaced over its 6050

feet, and traffic signals having a variety Of red-green
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splits. Initially it has been assumed that the two

demands are constant along the street length. The results

in Figure 5.3 illustrate that it is possible to give

better service to traffic in both directions in terms of

a higher progression Speed by taking account of the light

demand as well as the heavy.

When the street is partitioned into two or three

sections corresponding to lengths of constant demands,

similar results are obtained and examples are given in

Figure 5.3



107

 

l 0 Bi BO Vi 52'
ysm ysm f f

0.23 0.23 0.237 0.237 0.589 0.589

0.20 0.23 0.226 0.249 0.669 0.638

0.15 0.23 0.210 0.265 0.767 0.682

0.10 0.23 0.196 0.280 0.850 0.711

0.07 0.23 0.188 0.288 0.896 0.724

2-sections

section 1 0.23 0.20 0.257 0.235 0.663 0.693

2 0.15 0.10 0.259 0.229 0.824 0.875

section 1 0.15 0.10 .266 0.237 0.831 0.8801

2 0.15 0.18 0.238 0.257 0.804 .773J

3-sections

section 1 0.23 0.20 0.259 0.237 0.668 0.698

2 0.15 0.20 0.233 0.265 0.798 0.747

3 0.18 0.10 0.270 0.221 0.788 0.870

Figure 5.3. Optimal progression characteristics.



CHAPTER VI

CONCLUDING REMARKS

The primary objectives at the outset of this re-

search were tO develop a simulation model for arterial

traffic systems and to establish a steady state control

strategy for the system for medium to light density traf-

fic conditions. During the research many other facets

of the problem were recognized. The intent of this con—

cluding chapter is to summarize the material presented

in this dissertation and to indicate potential areas for

future research.

6.1 Traffic Model
 

Crucial to the development of the traffic model

were the identification of certain entities and the selec-

tion Of variables to describe them. The features which

distinguish the arterial system are the platoons and queues

formed as a consequence of the traffic signal controls.

Describing these phenomena in the most direct manner dic-

tated to a great extent the choice Of position and density

as the basic variables for the system. Thus the descrip-

tion of each platoon and queue in the system requires a

108
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pair of these variables. The differential equations for

these variables were based on published experimental and

theoretical investigations and other approximations due

to the author. These equations given for the platoons

and queue Of an arterial section comprise a component

state model. When a number of these component models are

combined according to the procedures of system theory,

they form a state model (KTl). With such combinations

the simulation Of all traffic structures (e.g., two-way

streets, grids) is possible.

Despite the relative simplicity of the simulation

model several factors make analysis difficult. (l) The

simulation model for ordinary traffic systems quickly

becomes large. Its order at any time is given by 2p + q,

where p is the number of platoons and q the number of

queues. The number of platoons is not constant--it is

affected by the density conditions and the signal con-

trols. (2) The velocity-density relationship is a non-

linear one. (3) Certain random phenomena used to give

more realistic results make the system only quasi-deter—

ministic.

The present model has several advantages over other

models making it a desirable and effective simulation

tool.

1. Variety of Applications. A large number of

traffic situations which might require investigation by
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simulation have densities ranging from light to medium.

The model is develOped especially for these conditions.

Without requiring a prohibitively large amount of data,

it functions equally well in the study of single arteries

or complete grids.

2. Design and Analysis Capabilities. Since the

effects of some changes in a traffic system cannot be

predicted, the capability to evaluate these changes be-

fore they are instituted proves to be an economic, time-

saving, safety, and even political advantage. The simu-

lation model can be used to determine the best locations

and settings of traffic signals, to specify speed limits,

to evaluate the desirability Of one-way streets and other

prOposed changes in the traffic system, and to predict

effects, for example, Of a parking lot on traffic pat—

terns. Further, it may prove useful in the investigation

of disturbance propagation along an artery and through-

out a grid.

3. Ease of Computer Programming. To simulate a

traffic system requires a minimum of data preparation,

and the variables (e.g., vehicular velocity, position,

and counts) which are time and Space dependent, are

readily available as outputs. Although velocity, accel-

eration, and vehicle input behavior have been simulated

in the model, it is possible to rapidly change these
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descriptions if Special studies are required or if fur-

ther research dictates better ones.

6.2 Control
 

In Chapter IV it was shown how the procedure

developed by Morgan and Little can be used as a basis

for designing progressions. The question Of selecting

design parameters is easier to answer with the inclusion

of two results which provide a means for displaying the

velocity and bandwidth dependence and the effects of a

nonconstant velocity along an arterial, respectively.

These results find the greatest application in the Opti-

mal design procedure presented in Chapter V.

The Optimal design is the steady state control

of an artery which minimizes the total travel time on

the artery. The iterative search procedure used to ac-

complish this considers not only the Optimality conditions

relating velocities and bandwidths but also the constraints

imposed by the geometry of the artery and the traffic

Signal variables.

6.3 Future Investigations
 

Although many aspects of the arterial problem

have been considered, several studies are suggested by

this dissertation.

Most of the control strategies presented apply to
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steady state operation. It is possible to use the model

to investigate stability when the input demands change

or the signal parameters are varied. Such a study would

reveal how quickly the system controls should be adjusted

to meet new demands while minimizing transients.

The biggest menace to progression systems is the

formation of queues. Although some strategies were sug-

gested in Chapter IV for avoiding queue development, in-

vestigations for the future could place greater emphasis

on the queue phenomenon and how it contributes to conges-

tion. These studies may suggest the best control strat-

egy to return a congested system to a normal one having

progression. Transient stability would be a significant

factor in this analysis.

In the event that it is not possible to establish

progressions throughout a traffic system, a simulation

test can be made to determine alternative traffic settings

which will minimize travel and wait time. Although this

has been done before, vehicle acceleration and decelera-

tion have always been neglected. It is likely that tak—

ing these into account will reveal significant differences

between the results Obtained when acceleration is con-

sidered and when it is ignored.



APPENDIX A

The primary goal achieved in Chapters II and III

is the development of an efficient Simulation model for

urban traffic systems. The equations which comprise

this model are best solved using a digital computer. A

Fortran program for this purpose is available. The pro-

gram consists of a main program called TRAFIK and three

subroutines: BINOM, POISSON, and GENERAT.

Within the program the following scalars (con-

stant) are used.

ACL average car length

B vl (see Figure 2.2)

BRAKE deceleration constant

D1 x1 (see Figure 2.2)

F lane occupancy for queues

H time increment

KN length of table for Poisson distributed

inputs

MN artery (1) or grid (2) indicator

MPN number of outputs

MSF number of expected values of turn

coefficients

NEX ramp (0) or exponential (l) accelera-

tion indicator

113
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N00 number of inputs

NP number Of arterial components

NS number of traffic Signals

TF total simulation time

TQUEUE accumulated queue waiting time

ZOOM acceleration constant

The following vectors (constant) are used. Unless

otherwise specified, the vectors have NP coordinates.

CM free velocity

DT length of arterial section

EXPVAL expected inputs per unit time (NOO

coordinates)

KM3 integer denoting index of appropriate

expected value Of turn coefficient

(1 f. KM3 (I) _<_ MSF)

M number of traffic lanes

TURN expected value of turn coefficient (MSF

coordinates)

The matrix KM is used to specify how the system is

connected. Its dimensions are NPxZ.

KM(I,l) index of the component succeeding the

Ith (equals 0 if Ith is an output)

KM(I,2) index Of the component preceding the Ith

(equals 0 if Ith is an input)

The variable T is time.

The following vectors (variable) each have NP

coordinates.

D output counter (if KM(I,l) = 0), distance

from lead vehicle of lead platoon to end

of queue (otherwise)



Of rows

in each

DCR

DENMAT

115

critical distance at which vehicles

either begin braking or continue at

constant velocity

average lane occupancy for component

queue length

current turn coefficient

position Of leading edge Of lead pla-

toon

In the following matrices (variable) the number

is always NP. The number of columns is indicated

instance.

ACCEL

CRIT

DECEL

PD

accelerated velocity, (2 columns)

(col 1) for platoon; (col 2) for queue

steady state velocity, (2 columns)

(col 1) for platoons; (col 2) for

queue

description of transition platoon ex-

isting between platoons and queue and

having a constant velocity, (4 columns)

(col 1) length of platoon

(col 2) vehicular length of platoon

(col 3) distance to end of queue

(col 4) velocity of platoon

description of transition platoon ex—

isting between platoons and queue and

having a decelerated velocity, (4

columns)

(col 1) length of platoon

(col 2) vehicular length of platoon

(col 3) distance to end Of queue

(col 4) velocity of platoon

length of platoon, (KP columns, see

below)

vehicular length of platoon, (KP col-

umns, see below)
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The vector NDECL having dimension NP is an indi—

cator for the presence of CRIT and DECEL platoons

(a) neither type platoon present, indicated by 0

(b) only a CRIT platoon present, indicated by 1

(c) both type platoons present, indicated by 2

(d) only a DECEL platoon present, indicated by 3.

9%

Equations (2.17 - 2.20) for the states of the ‘I

platoons and queues are deceptively simple, but require

 
meticulous care in programming. AS a result several L ‘

variables, not explicit in the equations, have to be ii

introduced.

KQ is a vector with NP coordinates which describes

the nature of the queue.

(a) the absence of a queue, indicated by 0.

(b) a queue whose vehicles are accelerated across

the intersection, indicated by +1.

(c) a queue whose vehicles move at a constant {1

velocity across the intersection, indicated

0
.

.
'
J
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.
.
‘
.
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'

o
.

-

by -10

Since the number of platoons on the arterial'sec-

 ‘§‘
.
"
L
.
.
'

2
‘
!

.
:

tion is variable, the vector KP of dimension NP denotes

this number.

The variables of the traffic signals are contained

in the matrix MT having dimensions NS x 5.
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(col 1) the current time such that 0 :_MT(I,1)

<MT(I,2)

(col 2) the signal cycle length

(col 3) the green time

(col 4) indicator for current phase

(a) signal is green, indicated by 0.

(b) signal is red, indicated by 1.

(col 5) indicator for phase of previous time

increment.

(Note: If MT(I,4) = MT(I,5), then signal has not changed

phase during the time increment.)

Three subroutines are used in the program TRAFIK.

Two of them, BINOM and POISSON, determine tables of dis-

tribution functions, and the third, GENERAT, using these

tables selects random variables which are Poisson or bi-

nomially distributed.

BINOM: For each expected value, TURN, for the

turn ratio, a row of the matrix ATPOI is determined such

that

I-l

ATPOI (',I) = Z P(X = J)

J=0

where P(X = J) = (130) TURNJ (l—TURN)100"J

POISSON: For each expected value, EXPVAL, for the

input arrival rate, a row of the matrix THRESH is determined

such that

,
‘
F
'
fl
l
-
n
I
A
-
u

.
I
!
"

-
.

.
.
-
-

n
.

 k-T
:

.
I
"

'I
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I-l

THRESH (HI) = Z P(X = J)

J=0

where

J

p(x = J) = exp (EXPng)(EXPVAL)

GENERAT: A uniformly distributed variable R is

generated (R = RANF(-l)) and is compared with a table to

determine another random variable NGEN which is either

Poisson or binomially distributed, depending on the table

used.

THRESH 0, NGEN-l) < R g THRESH (-, NGEN)

An abbreviated flow diagram of the program is pre-

sented in Figure A.1. Since the program is long (over

500 statements) and uses over 150 "IF" statements, only

the major logical branches are included. Most of the

blocks in the diagram represent a "DO" loop with "J =

l, NP" or "J = 1, NS." It is clear in each instance which

one is intended.
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[tREAD input data

 V 

{-Determine MPN,NOO

  

  

PRINT input data

   

 
 

Set initial values for

DECEL, CRIT

KQ

X

MT

DENMAT

C

ACCEL

TQUEUE  
 

  

CALL POISSON

CALL BINOM

   

  

‘ Increment time

T = T + H

   

  

IF T = nMT(I,2)

CALL GENERAT to

determine binomially

distributed turn ratios

  
 

db
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93
 

 

CALL GENERAT

generate vehicles at inputs

Q = Q + n veh

  

  110

T :_TF? r————~‘:l’I

1 yes

Update MT

   

 

   

  
no

MT(I,4) = MT(I,5)?  

   

yes

  

Determine DENMAT(I),

C(I,J)

   

  

  
KP(I) = KP(I) + l

 

  
 

Update DECEL

   

 I 

Update ACCEL

   

 
I
 

X = 2P

O
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 MT(I,4)

  
 

 I: 0

Decrement Q

5}
Increment PD, P

(For output component

increment counter.)

I

Determine distance

to end of queue

D = DT -X “Q

I

Update CRIT

I

Form DECEL, CRIT

platoons if possible

I

Transfer vehicles from

CRIT, DECEL to Q if necessary

I

Update KQ

 

   

  
 

  
 

 

  
 

 

  
 

 

  
 

 
 

   

 

 

I

Determine TQUEUE

  

  
 

 
I

PRINT output

 

   

Figure A.l Flow diagram for TRAFIK



APPENDIX B

To find the optimal set of velocities and band-

widths for progressions on a two-way street when the

demand is not

written. The

constant the Fortran program SEARCH was

program uses two subroutines: INITIAL and

MORLIT. The variables used in SEARCH are listed below.

The dimensions of the matrix variables are clearly in-

dicated.

BW

BMAX

DELTA

DIST

TWOB

VA

XE

bandwidth requirement for inbound (row 1)

and outbound (row 2) directions, (2 x M)

maximum available bandwidth

length of section, (M)

step increment (3)

pavement length between successive traffic

Signals, (N-l)

number of sections

number of traffic signals

total required bandwidth

normalized velocity of inbound (row 1) and

outbound (row 2) traffic flow, 0.5 < VA 3

1.0, (2 x M)

reciprocal equal velocity, (M)

122
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XET trial reciprocal equal velocity, (M)

Y flow demand of inbound (row 1) and outbound

(row 2) traffic, (2 x M)

The purpose of the subroutine INITIAL is to deter-

mine a set of velocities VA (and XE) and bandwidths BW

(which meet the realizability requirements of a solution)

to serve as a starting point in the search.

The subroutine MORLIT is based on the equations

developed by Morgan and Little. It has been written so

that for a range of equal velocities the maximum avail-

able bandwidth BMAX is determined. This subroutine con-

siders the constraints imposed by the green-red splits

of the traffic signals and the distances between them.

The following flow diagram, based on the ideas

developed in Chapter V, outlines the main features of

the program SEARCH.
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READ input data:

N,M

RED

DIST

DELTA

D

Y    
 II 

Estimate XE

   

 
 

CALL INITIAL

determine VA, XE, BW

   

 I 

 

Determine FO:

 

  

  

  

F0 = z D(J)v(I,J)/VA(I.J)

I=l,2

J=l,M

XET = XE

I

J = 1
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no

 

  

XET(J) = XE(J) -DELTA 1

  

  

Determine VA

corresponding to XET

 

  

    
 

J=J+l .4 no 0.5 5 VA 5 1.0? 

    

 

yes

 
 

TWOB = max{BW(l,J)Y(1,J) + BW(2,J)Y(2,J)} I

J
  

I  

CALL MORLIT

determine BMAX

  

  

no BMAX Z. TWOB? 

   

yes

 



 

PRINT,

END
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2 D(J)Y(I,J)/VA(I,J)

F
J
H

L
I
H

n
n

‘
2
‘
»

  

yes

  

yes
 

   

 

 

   

Decrease Step size.

Third decrease?

  
no

 

 

 PC = F, XE = XET

Increase step size

in direction of success

  

Figure B.l Flow diagram for SEARCH
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