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ABSTRACT

CHOICE OF PERFORMANCE INDEX

FOR THE OPTIMAL CONTROL

OF MACROECONOMIC SYSTEMS

By

Jong-goo Park

The specification of a performance criterion is one of the

basic requirements for the formal analysis of quantitative decision

problems. In macroeconomic policy problems, in particular, in order

to analyze the quantitative impact of a given set of policy decisions,

the procedure should be based on the policy maker's preference re-

garding the developments in his economy. Such preferences are

specified by a performance index in the analysis.

The purpose of this thesis is to analyze the selection of the

performance index by solving the inverse optimal control problem.

When a closed-100p system with a known control policy is given, the

inverse optimal control problem is to determine performance indices

for which the given control rule is optimum.

A sufficient condition is developed for the solution of the

inverse problem for a linear discrete-time multi-control regulatory

process (the main concern of the regulator problem is to keep the

state variables near a fixed target zero), with a quadratic per-

formance index. An explicit solution is obtained for a Special

case where the performance functional does not contain the control

variables, and the result is further extended to a linear tracking
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problem (an important feature of the tracking problem is to make

the state variables track the changing targets), which can be easily

adapted to the macroeconomic regulation problems.

It is shown that the solution of the inverse problem is not

unique in general, which implies that the optimal control policies

are fairly robust against different performance indices under the

conditions stated above. Also, it is found that the solution of the

inverse problem for a linear regulator holds true without any modifica-

tion for the linear tracking problem.

Finally, the developed techniques for the selection of the

performance criteria are illustrated through a macroeconomic

stabilization policy model with a quadratic performance functional

whose arguments consist of the deviations of the policy goal variables

from their target values during the discrete time period of a finite

planning horizon. The illustration highlights three main points:

the determination of the steady-state values of the trajectories of

goal variables which are under control, the computation of the feed-

back control policy, and the construction of a performance index.

It is shown that the number of the policy goal variables that

can be made to attain the prescribed steady-state values is equal to

the number of the control variables in the model. It is also

demonstrated that the relative weights given to the competing policy

goals in the performance index can be quantitatively determined by

the method of the inverse optimal control problem for a dynamic

policy model.
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INTRODUCTION

Recent trends in control theory deal with the fundamental

understanding of large scale systems and decentralized decision

making. Economic processes, which are characterized by complex,

and often unknown relationships among their constituent components,

fall in this class of problems.

The research tools of optimal control theory can be used

to study the dynamic responses of the economic system and to evaluate

its performances. Most of the economic decisions consist of examining

various actions together with their associated consequences, and

choosing the particular action which would generate the most desirable

outcome. Such elementary decision making could be improved by using

econometric models for the purpose of examining various decision

rules and their associated results in terms of the trajectories of

the variables generated. The decision making process could be

further improved by specifying some performance functional to gen-

erate certain optimal decision rules because the ad hoc decision

rules may not be optimal for certain reasonable performance criterion

and some better rules might be discovered by the optimal control

approach which would otherwise remain unnoticed by the elementary

method.

The performance criterion, in essence, enables one to

Specify a desired response toward which the system is Optimized.
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In order that a performance index be generally applicable, it not

only must reveal the performance characteristics of the optimal

system, but also must enable the decision maker to choose what the

desired characteristics of the Optimum system should be.

In practice, however, the actual process of selecting

which performance measure is to be used to "measure the distance"

between a desired trajectory and its approximation is a major

difficulty. That is, any mathematical criterion in practical control

problems is rarely explicit enough to define the optimum system

uniquely, and consequently even when a realistic performance index

can be defined, it is often found that the basic concept of a per-

formance index is too restrictive.

In this case, it is hardly expected that a certain per-

formance index can be generally agreed upon. In fact, it is

frequently argued that the choice of the performance functional

to be optimized is subjective and arbitrary. This poses the so-

called "inverse Optimal control problem" -- instead of seeking a

control rule corresponding to a given performance index, one can

try to determine all performance criteria, if any, for which a given

control rule is optimal.

In macroeconomic regulation problems where the performance

indices are, in general, of the quadratic form in the deviations

of policy goal variables from their target values, the inverse prob-

lem is to find, given economic policies, the relative "welfare"

weights to be given to the competing policy goals and "costs"

associated with the control policies.
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By solving the inverse problems, one may discover gen-

eral prOperties shared by all optimal control policies. Further,

if it can be discovered that there exist many performance indices

for which a single control policy is Optimal, then the preceding

criticism about the choice of performance index is irrelevant since

the important aSpects of optimality will hold independently of the

Specific choice of a performance index.

Also, as the inverse optimal problem is the Opposite to

the optimal control problem, the solution of the inverse problem

must distinguish between control policies which are optimal and

those which are not, and perhaps disclose practical advantages of

using specific control policies in combination with Specific per-

formance indices.

AS the inverse Optimal problem is a relatively new

addition to the theoretical and methodological repertories of the

systems science and is more so for the social sciences, no general

solution of the inverse problem is yet found. In particular, the

explicit solution of the inverse problem is not known for the

discrete-time, multi-control regulatory processes.

Considering the fact that the market framework of the

economic system is working through the myriad individual decisions,

and the economic problems are generally formulated in terms of

discrete-time difference equations, it is desirable for the economists

that the solution to the inverse problem be found for the discrete-

time, multi-control systems.

The purpose of this thesis is to solve this subclass of

the inverse problem and to demonstrate the applicability of the



solution

new insi

includes

to the C

that an

dynamic

Cussion

problem.

problems

linear d 
Five 11}

t0 Sane

VOIVeS a

for fur:

 



solution to macroeconomic regulation models, and thereby to derive

new insights for the economic policy manipulations.

The outline of this study is as follows. Chapter One

includes some examples of the applications of optimal control theory

to the economic field. The main concern of the chapter is to Show

that an economic regulation process can be viewed as a multi-Stage

dynamic optimization process. Chapter Two contains a brief dis-

cussion on control system design and the significance of the inverse

problem. Chapter Three presents a literature survey of the inverse

problems. In Chapter Four, the solution of the inverse problem for

linear discrete-time multi-control systems is develOped. Chapter

Five illustrates the applications of the results in Chapter Four

to some simple macroeconomic regulation problems. Chapter Six in-

volves a summary and conclusions and suggests some recommendations

for further study.
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CHAPTER ONE

ECONOMIC APPLICATIONS OF OPTIMAL CONTROL THEORY

Recently optimal control theory has found substantial

applications in economics, because much of modern economic theory

is concerned with optimal behavior of economic decision units over

time.

Principal applications of control theory in macroeconomic

and microeconomic problems have been:

(1) growth models for analysis of expansion of economies over long

periods of time;

(2) planning models for sectoral allocation of resources over

periods of time;

(3) short-run economic models for the study of short-run effects

of economic policies on macroeconomic goals;

(4) consumer choice problems over the household life cycle;

(5) dynamic models of investment and pricing by firms;

(6) multiperiod portfolio analysis models; and

(7) dynamic models of a number of sectors including water

resources and banking.

1.1 Optimal Growth Models

The central problem of these models is the division of

output over time between consumption and investment so that some
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measure of social welfare is maximized. A simplified version of

such a model is as follows.

Suppose that in a simple economy, the stream of output

F(K) attainable from the services of a given stock K of capital

equipment are allocated into consumption flow C and gross invest-

ment I:

F(K) = C + I . (1.1)

In turn, after deduction of provision for replacement

of capital equipment at a rate of OK investment expenditure leads

to further accumulation of capital stock:

K=I-6K,(-=—'). (1.2)

Also, aggregate saving rate S(t) describes the com-

position of output at each moment:

I(t) = S(t) F[K(t)] . (1.3)

Physical considerations impose the constraints:

C 2 O , I 2 O , O s s s 1 . (1.4)

Equations (1.1) - (1.4) constitute, for given functions

F and s and given initial condition K(O) = KO, a differential

equation describing the economic system.

Let

N

J = g U[C(t)] exp(-a t)dt (1.5)

be the social welfare criterion accurately reflecting the desires

of the community, where U(°) is a Specified smooth, concave,
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positive welfare function and a, a non-negative constant, is the

social rate of time preference. If the society by choosing proper

S(t) wants to attain the maximum value of J, subject to the con-

straints, (1.1) - (1.4) and at the same time maintain the terminal

capital stock equal tots prescribed value KN’ then the solution of

a standard problem in the Optimal control theory is required

(Stoleru, 1965; Lele, et.al., 1971; Shell, 1967; Sakakibara, 1970;

Burmeister and Dobell, 1972).

1.2 Development Planning Models

The development planning models are also concerned with

the choice between consumption and investment over time, but the

primary focus is on the sectoral allocation of investment over the

planning period.

Since the development programs, in general, emphasize

the overall economic growth as well as the intersectoral consistency

of the projects, the planning models are usually formulated in

complex nonlinear constraints including sectoral production functions

and capital accumulations and the overall resource constraints to

each sector. Also, as the development plan involves the changes in

the composition of aggregate supply and demand in the economy over

the planning period, the performance indices optimized by the planning

models are customarily specified to be additive over both various

consumption goods and time.

1)
Here the numerical control theory methods are employed

to facilitate the solution of the complex dynamic models (Arrow,

 

l

) For example, the Conjugate Gradient Method (Lasdon, et.al., 1967).
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et.al., 1970; Little, 1969; Levhari, 1969; Simon, 1956; Kendrick

and Taylor, 1970).

1.3 Short-Run Economic Policy Models

These models are concerned with the choice of economic

policy to best regulate and stabilize the economy. It is assumed

that policy maker has a model of the economy that he believes is

an acceptable representation of the structure of the economy and on

which he will base his policy decisions. With difference equation

macroeconomic models in general, focus of the study is on the use

of, for instance, fiscal and monetary policies to control unemploy-

ment, price fluctuations, and balance of payments.

The main idea of such a study is to steer the policy

goal variables close to the targets by choosing appropriate policy

instruments.

As an illustration (Turnovsky, 1973), consider a problem

of determining government expenditures for regulating a standard

multiplier-accelerator model.

The system comprises the aggregate demand equation:

Z = CY + I + G (1.6)

(aggregate demand Z is broken down into consumption cY, investment

I, and government expenditures G); the flexible accelerator:

I = a? - kI (1.7)

(investment is an exponentially declining weighted average of past

income changes); and the output adjustment equation for the aggregate

excess demand:
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I = r(Z -Y) , (1.8)

where c, a, k, r are positive constants with O s c s 1.

From (1.6) - (1.8), the evolution of national income

Y over time given values of G and G is derived as follows.

Y+blY+b2Y-b3G-rG=O, (1.9)

where b1, b2, b3 are constants expressed in terms of c, a. k, r.

Now the policy maker is assumed to control government

expenditures so as to minimize some objective functional,

.J-f(Y Y2+F(C 62+N (Y 172

q2(G - (5)2 + n(G)2}dt

where Y and G. are some desired level of income and associated

level of government expenditures respectively. The terms,

q1(Y - E)2 and q2(G - G)2 are losses incurred by being away from

these Optima. The fact that these are quadratic implies that

positive and negative deviations from desired levels are weighted

equally and are increasingly costly. The term n(G)2 denotes the

cost of changing fiscal policy and can be described as adjustment

costs. f1(YN - E)2 and f2(GN- G)2 measure the terminal costs of

being away from the targets.

In the above problem, it is possible that the government

may be subjected to limits on the amount of its expenditures (Theil,

1964; Phillips, 1954, 1957; Pindyck, 1972; Erickson, et.al., 1970;

Norman, 1971; Livesey, 1970; Chow, 1970, 1972; Fischer and Cooper,

1971; Turnovsky, 1973).
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1.4 ConSumer Choice Problems

The consumer choice problems characterize the individual

as choosing a time path of his available time (or energy) to be

divided between earning (by renting human capital) and investment in

human capital so as to maximize the present value of lifetime

earnings.

Following Haley (1973), then the individual's disposible

income in any period is the difference between his earnings rE(t)

and the cost of input used for the investment in human capital rK(t)

during that period, where E(t) is total stock of human capital

possessed by the individual at time t, K(t) the human capital

stock used as input to the human capital investment at t, and r

the constant rental rate per unit of time on the human capital stock

(capital markets are assumed to be perfect).

The human capital stock grows at a rate governed by

S(t) = F[K(t)] - 5E<t> . (1.10)

where F(K) is the flow of investment at time t attainable from

the only input of human Capital stock and 6, a constant rate of

human capital depreciation.

Assume that the individual wants to maximize the present

value of his disposible earnings over the life cycle:

N

J = (I; r[E(t) - K(t)] exp(-at)dt , (1.11)

where N is the end of the earning life cycle and a, the constant

individual time preference rate.

Then the general form of the individual optimization

problem is to maximize the objective functional (1.11) Subject to
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11

the constraint (1.10) as well as such physical constraints as

K(t) 2 O, E(t) > 0,

E(t) :» K(t) ,

and at the same time to keep the positive human capital stock at

the end of the earning period (Hakansson, 1969; Haley, 1973;

Stafford and Stephen, 1972; Yaari, 1964; Ben—Porath, 1967).

1.5 Theory of Firms

Various dynamic models for the theory of firm have been

developed. Let us consider a firm which seeks to maximize the

integral of the discounted profit flows over the planning period

by choosing optimal level of capital stock in each period (Leland,

1972).

If growth permits better achievement of the firm's goal

in the future, capital stock K is one of the key decision

variables for the firm. Following most dynamic formulation, it

is assumed that the rate of change of capital stock, K, is a func-

tion of current profits P . This formulation describes a self-

financing firm which reinvests all or a positive fraction

(0 < a s l) of its profits.

Then, the problem is given by the following. In a

dynamic environment, the firm will maximize

N -6t

[I e - P(K,L)dtL
. II

subject to

K aP(K,L), O < a S 1;

K(O) = K0 ... a given initial capital stock;
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12

where t is a constant discount rate, L is labor input for the

production of the firm, and N is a fixed terminal time. (Arrow,

et.al., 1958; Hakansson, 1970; Lucas, 1967; Thompson, et.al., 1971;

Zabel, 1967).

1.6 Portfolio Selection

The individual and/or firm is faced with the problem of

selecting a portfolio of bonds, stocks, and cash that will maximize

his utility function defined over the probability distributions of

returns generated by the various portfolios. For instance,

Samuelson (1969) considers an individual's portfolio selection

problem, postulating the existence of a risky asset that makes $1

invested in, at time t, return $1 Zt after one period, where

Zt is a random variable subject to the probability distribution,

Prob {2t 5 z} = p(z), z 2 0, along with the safe asset that makes

$1 invested in it at time t return $l(l + r) at the end of the

period. Yields at different time are assumed to be independent so

that p(zo,zl,...,zN) = p(zo)p(zl)...p(zN).

The problem is to find the Optimal fraction of total

wealth, at, that should be put into the risky asset, with 1 - a

I:

going into the Safe assets, at each instant of time. Specifically,

Max J = E

{Ct,at} t n
t
n
t
z

(1 + p)-tU(Ct)

0

subject to the wealth constraint,

_ -1

ct — wt - wt+1 [(1 - at)(1 + r) + atzt] ,

WO 8 given value, and
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l3

WN+1 = 0 (no bequeating of wealth at death),

where U(Ct) is the individual utility function depending on con-

sumption C at time t, p a constant discount rate, Wt the

individual's wealth at t, and E an "expectation" operator.

This problem is solved simultaneously for optimal saving-

consumption and portfolio-selection decisions over time using a

dynamic programming method. (Hakansson, 1969; Merton, 1969).

1.7 Pollution Control Problems

Haurie, et.al. (1972) analyze Optimal policies of con-

sumption and of pollution control in an economy using a two-sector

macroeconomic planning model.

It is assumed that one sector (Sector 1) of the economy

produces good Y to be consumed or invested and another sector

(Sector 2) produces good Z used exclusively to purify the environ-

ment.

Since in this problem there are two conflicting goals --

maximization of consumption flow and minimization of the accumula-

tion of pollution generated in the production processes -- over the

planning period, the policy maker faces the allocation of invest-

ments between two sectors in each period such that the objective

function including the weighted sum of social benefits derived

from consumption and the social cost of pollution accumulation is

to be maximized.

Emphasis is given to the following. By taking a Suf-

ficiently long interval of time, an Optimum path may contain an are

along which the pollution and per capita consumption are maintained
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constant. If such an arc is uniquely defined for each performance

criterion which gives different relative weights (A, 1 - X) to

per capita consumption and cost of pollution, it is possible for

policy maker to choose a particular weighting based on a long-term

cost effectiveness,analysis.

Formally, the problem is to maximize

_ N -6t H '6t
J - k g e c dt + (1 - x) $ e p(x3)dt , O S k S 1,

subject to the constraints of capital accumulations in two sectors,

pollution accumulation and the per capita consumption equations:

x
. I

1 — uly — (d +-n)x1

x2 = u2y - (d +'n)x2

x3 = G(Ly, Lz) - r x3

x

_ _ __1. ___ .
c - (1 - u1 u2)u3f1(u3), 0 5 U1 S 1, 1 1,2,3,

111 + u2 S 1,

where

xi (1 = 1,2) is the capital stock in sector 1 (measured

in terms of total labor (L) unit),

x3 is quantity of pollution agents accumulated,

ui (i = 1,2) is the gross investment in sector 1 (measured

in terms of good Y),

u3 is the prOportion of labor engaged in Sector One,

y is production of Y (measured in total labor unit),

2 is production of 2 (measured in total labor unit),

c is per capita consumption,

n is a constant rate of labor force increase,
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d is a constant rate of capital depreciation in both sectors,

f(°) is production function of Sector One (homogeneous of

degree one),

G(') is pollution generating function with §%-> O, §%'< O

for all Y 2 0 and Z 2 O, I

r is a constant rate of natural elimination of pollution,

p(x3) is the social cost of pollution.

The main concern of this chapter was to Show that an

economic regulation process can be viewed as a multi-stage dynamic

optimization process. This permits one to discuss meaningfully the

inverse Optimum control problem in the economic field, because the

inverse problem starts with a given control rule which iS assumed

to have already been obtained in the optimization process.

Before examining the inverse problem formally, we need

to discuss some aspects of the control system design in the next

chapter (Chapter Two).
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CHAPTER TWO

DESIGN OF CONTROL SYSTEMS AND THE INVERSE OPTIMAL

CONTROL PROBLEM

2.1 Performance Index

In modern control system design, it is emphasized that

an admissible control must have, in addition to the stability pro-

perty, an optimizing prOperty in some sense, for example, minimizing

the error of the system under control or satisfying certain Specifica-

tions of accuracy and speed of performance of the system.

In the design of control systems, the starting point is

the System Specification. This includes a description of the input

to the system and the desired response. Also included is a state-

ment of the basis on which the system performance will be judged.

This statement is in the form of a performance index. That is, the

performance index enables one to Specify a desired response towards

which the system is optimized.

In order that a performance index be generally applicable,

it not only must reveal the performance characteristics of the Optimal

system, but also must enable the designer to choose what the desired

characteristics of the optimum system should be.

The actual process of selecting which performance measure

is to be used to "measure the distance" between a desired output

time-function and an approximation to the desired function is the

16
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major difficulty. If a realistic performance index is defined

that represents most of the design requirements of a problem, then

the solution for the optimal control function can usually be

obtained only by numerical methods which yield solutions to only

a particular problem. On the other hand, if it is desired to obtain

a closed-form solution for the control and, thereby, to solve more

than numerical problem, simple performance indices must be used which

often do not specify many of the design requirements. Thus the

choice of a performance index is generally a compromise between a

realistic criterion and one that is mathematically tractable.

Even when a realistic criterion can be defined, it is

often found that the basic concept of a performance index is too

restrictive. In practice, any mathematical criterion is rarely

explicit enough to define the optimum system uniquely. It is here

that a certain amount of personal Opinion is found.

Very often, the quadratic performance index is considered

as a generalized criterion for designing linear multivariable

systems. The advantages of using this particular quadratic index

are: (1) it results in a closed-form solution for the control and,

therefore, the properties of the control as well as the Optimal

system can be determined; (2) under a reasonable set of restrictions,

it always produces a stable system; (3) once the numerical elements

of the performance index are Specified, the optimal feedback gains

can be determined by a straightforward computer solution (Tyler

and Tuteur, 1966); (4) when the dynamic systems are under the random

Shifts, it enables one to disregard the uncertainty elements for

obtaining the control rule. (Simon, 1956; Theil, 1957).
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The quadratic functional which is often times called a

quadratic social disutility function in economic problems on optimum

resource allocation over time and on macroeconomic stabilization

policies, has been used quite extensively (Sengupta, 1970; Chow,

1972; Simon, 1956; Theil, 1965). Also, it has been frequently used

as a generalized measure of the system performance in the control

theory (Kalman, 1964; Kuo, 1970); information theory (Adorno, 1962);

production, employment and inventory scheduling (Holt, et.al., 1956),

and statistical quality control theory (Barnard, 1959).

The quadratic index contains weighting matrices whose

elements can be Specified to Satisfy the requirements of specific

control problems -- in the short-run macroeconomic regulation prob-

lems, the elements of the weighting matrix are designed to measure

the social disutility associated with the deviations of the economic

variables from their specified targets -- and, in effect, these

elements become the design parameters of the Optimal system.

2.2 Feedback Control

A feedback control system is a combination of elements

which automatically COOperate to maintain a physical quantity or

process in accordance with a given command. It has three predominant

features; (1) it is a closed-100p system in which the control is

actuated by a quantity that is affected by the result of the control

operation; (2) it can establish control throughout a wide range of

command that may vary in a random manner, and (3) it permits the con-

trol of high-power operations at a remote point by low-power Opera-

tions at a local point.
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Some of the major reasons for employing feedback control

are; (1) the process or actuator which supplies the output may have

Signal transmission characteristics that make accurate Open-100p

operation (open-loop Operation yields an entire sequence of controls

to be followed from initial conditions) very difficult, (2) with

feedback, the precision of control can be made to depend largely on

the equipment used to measure the system output and to compare it

with its "ideal" value. This fact may enable accurate control to

be achieved in Spite of inaccuracies and variable characteristics

in the process. That is, the feedback will reduce the sensitivity

of the System characteristics to changes in parameters, (3) the

effects of disturbances on the output may be suppressed by employing

feedback, thereby eliminating the need for the elaborate disturbance

compensators that would be needed with open-loop control.

In the economic stabilization models, a linear feedback

control policy (the control policy is set to reSpond linearly on

the policy goal variables) is generally chosen in such a way that

the system under control (closed-loop system) will have a small

weighted sum of variances.

It can be seen that feedback is used to overcome limita-

tions of the physical components and is introduced to effect Specific

changes in the characteristics of the system (Ku, 1962).

In connection with the latter application of feedback,

there exists a problem of arbitrary pole (eigenvalue of the system

matrix) assignment (Willner, et.al., 1972). Given a controllable,

linear, time—invariant system,

x(t) = Ax(t) + Bu(t) , (2.1)
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where x(t) is an n-vector of state variables, u(t) is an m-vector

of control variables, and A,B, are constant matrices, find a feed-

back gain matrix G(m X n) Such that the feedback control

u(t) = Gx(t) (2.2)

yields the closed-loop system

x(t) = (A + BG)x(t) (2.3)

whose eigenvalues can be assigned arbitrary.

For a single-control system (B in (2.1) becomes an n-

vector), the problem of the pole assignment is solved as follows.

A nonsingular matrix T is found such that

TFT'1 = A'+'Bh'T-1 = A.+'BG , (2.4)

where F is the Jordan canonical matrix of desired closed-100p

eigenvalues (xi, 1 = 1,2,...,n), with only a single Jordan block

associated with each multiple eigenvalue, and

G = h'T , (2.5)

where h' = (l, l,..., 1), an n-vector.

For T, we solve TF - AT = Bh' by solving a sequence

of problems of the form

II

o
n(x11 - A):i (2.6)

where t1 is the 1th column of T. If Pi is a repeated eigen-

value, then (2.6) becomes

(111 - A)ti - B - t1-1 (2.7)

for all but the first column of T associated with xi.
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For multi-control System, the problem of finding G

for a given set of eigenvalues is generally nonlinear and has many

possible solutions. In order to obtain a linear solution, the

control u in (2.2) is restricted to the form

u(t) = 026 x(t) (2.8)

so that the closed-loop system (2.3) becomes

x(t) = (A + BaG)x(t) , (2.9)

where a is an m-vector with all elements equal to unity. If we

define

Ba = b , (2.10)

then (2.9) becomes

x(t) = (A‘+ bG)x(t) , (2.11)

which is the closed-loop system equation of a single-control system.

Since the eigenvalues of the system matrix govern the

pattern of time paths (in particular, the convergence of the time

paths, the Speed of the convergence, and the damping ratio, etc.)

of the state variables, the solution of the pole assignment problem

enables the designers of control systems to effect the "desired"

characterization of the system by prOper choice of feedback controls.

2.3 Inverse Optimal Control Problem

Recent trends in control theory deal with the fundamental

understanding of large scale systems and decentralized decision

making. Social and economic processes, which are characterized by

complex and often unknown relationships among their constitutent
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components, have such problems amenable to control theory applica-

tion.

The research tools of optimal control theory can be

used to study the dynamic responses of the social and economic

systems and to evaluate their performance. Most of the social and

economic decisions usually practiced at their basic levels consist

of examining various actions together with their associated con-

sequences and choosing the particular action which would generate

the most desirable outcome. Such elementary decision making could

be improved upon by using dynamic models for the purpose of

examining various decision rules and their associated results in

terms of the time paths of the variables generated.

The decision making process could be further improved

by specifying some performance indices to generate certain optimal

decision rules because the ad hoc decision rules may not be Optimal

for certain reasonable performance criteria and some better rules

might be discovered by the Optimal control approach which would

otherwise remain unnoticed by the elementary method.

In this case, it is hardly expected that certain per-

formance indices can be generally agreed upon. In fact, it is

frequently argued that the choice of the performance index to be

Optimized is arbitrary and subjective, perhaps only a matter of taste.

The argument is even greater in the social and economic regulatory

systems compared to the physical and technological systems where

the relative merits among various components of trajectories are

better understood and clearer, and sometimes they are measured

Specifically in terms of energy and cost expenses. This suggests
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that the design of socio-economic systems as well as physical and

technological systems involves the so-called "inverse Optimal con-

trol problem" -- instead of asking for a control policy correSpond-

ing to a given performance index, one might seek to determine all

performance criteria, if any, for which a given control policy is

optimal.

By solving this problem, one might be able to discover

general prOperties Shared by all optimal control policies. Further-

more, if it can be discovered that there exist many performance

indices for a single optimal control policy, then the preceding

criticism about the choice of performance index will be irrelevant

since the important aspects of optimality will hold independently

of the specific Choice of a performance index.

Also, as the inverse optimal control problem is the

opposite of the optimal control problem, the solution must dis-

tinguish between control policies which are optimal and those which

are not, and perhaps disclose practical advantages of using Specific

control policies in combination with specific performance indices.

For instance, if the given control policy has some undesirable

effects on the closed-loop system, the policy maker may want to

find another control policy. But once the system equation and the

specific performance index are given, the control policy is uniquely

determined and consequently the properties of the closed-100p System

cannot be changed. This means that given a system equation, difv

ferent performance indices should be Specified in order to get

different control policies. Here the solution of the inverse optimal

control problem may help to find out the appropriate performance
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index together with the control policy by which the closed-100p

system can achieve the desired characteristics of "goodness" (e.g.,

moderate overshoot, high lOOp gain, and flat frequency response).

One important class of this problem is how to design

optimal systems with prescribed closed-100p eigenvalues. We know

that if the system is controllable, it is always possible to find

a feedback gain matrix which will assign an arbitrary set of eigen-

values to the closed-loop system matrix (cf. Section 2.2). That is,

if some prescribed set of eigenvalues is assigned to the closed-

1oop system matrix such that the closed-100p system can reveal the

"desirable" characteristics, the corresponding feedback gain matrix

can always be found. Once this ”desirable" feedback gain matrix

is obtained, the corresponding performance index can be found by

the method of inverse Optimal control.

As an example for the inverse Optimal control problem,

consider a Simple dynamic macroeconomic model.

9 = u(c + 1 - y) (2.12)

é = 8(ay - c)

where

y = Y - YO

c = C - CO

1 — I - I0

0:3 ... dynamic adjustment coefficients

Y = GNP

C = consumption

I = investment
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a = marginal prOpensity to consume.

Subscript "0" denotes the equilibrium values.

The dynamic system (2.12) can be written as

-a a. a

2': = x + u , (2.13)

3a -6 0

where x = (y,c)', a vector of state variables, and u = i, a con-

trol variable. Here the prime denotes the transpose.

Let the performance index for the system (2.13) be

T

2
= I

J A (xtht + kut)dt (2.14)

where Q is symmetric and positive semidefinite and k is a

positive constant. Then the Optimal control policy in the feedback

form is given byl)

u = g'x (2.15)

where g is the time-varying feedback gain vector which can be

uniquely determined by the method of Optimal control theory.

The inverse Optimal control problem for the example is:

given an optimal control policy (2.15), find all performance func-

tional of the form (2.14), if any.2) Specifically, determine the

weighting matrices, Q and k in (2.14).

In the above example, if the given control policy for

the investment has some undesirable effects on the closed-loop

system, e.g., too drastic change in consumption level over the

 

1)

2) We would like to find only one, but this is not always the

case.

A * indicates the control is optimal with respect to (2.14).
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planning period, the policy maker may want to find another control

policy. But once the system equation (2.13), and weighting matrices

Q and k in (2.14) are given, the closed-loop system cannot be

changed.

Here, the solution of the inverse Optimal control prob-

lem may help to find out the appropriate weighting matrices Q and

k, and the control policy by which the closed-100p system can

achieve the desired characteristics. The solution to the problem

described above will be the subject of Chapter Four below.



CHAPTER THREE

THE INVERSE OPTIMAL CONTROL PROBLEMS -- LITERATURE SURVEY

Since the inverse optimal problem is to find the per-

formance indices (if any), given an optimal control policy, solu—

tion of the problem, in general, starts with the assumption that

there exists a solution for the Hamilton-Jacobi equation (which

provides a sufficient condition for Optimality) or for the matrix

Riccati equation which can be derived from the Hamilton-Jacobi

equation.

The main purpose of this survey is of a rather technical

nature, i.e., to examine the solution process for the inverse prob-

lems, which could be utilized for a broader class of the inverse

problem.

3.1 Inverse Control Problem for the Continuous-Time Systems

Kalman (1964) considers, for the first time, the inverse

Optimal control problem for the following case:

(a) The system is governed by a linear differential equation with

constant coefficients (linear, time-invariant, continuous-

time system).

x(t) = A x(t) + b u(t) , (3.1)

where x is a real n-vector, the state of the system, u(t) is a

continuous, real-valued function of time, the control function,

27
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A is a real constant n X n matrix, and b is a real constant

n-vector .

(b) The control policy is linear and constant,

110:) = -g'X(t) , (3-2)

where g is a real, constant n-vector of feedback coefficients.

(c) The performance index is a quadratic form with constant co-

efficients in the state and control variables.

t1 t1
2

J = 1im L(x(t),u(t))dt = lim a g (x'H'Hx + u )dt

t—K'JO t—ooo

1 l

where H is a 1 X n matrix with rank = l.

1) (3.3)

(d) There is only one control variable (or single-input system).

The basic assumptions employed are

(i) The system (3.1) is completely controllable; rank(b,Ab,...,An-1b) = n,

i.e., all the state variables can be affected by some suitable choice

of the control function u(t).

(ii) The pair (A,H) is completely observable;

rank(H',A'H',...,(A')n-1H') = n. This assures y = Hx must not

vanish identically along any free motion of the system unless the

initial state x0 = 0.

Then the inverse Optimal control problem in this case

is as follows:

 

1) This particular form of the quadratic functional L(x,u) can be

said to represent a more general form. Consider L(x,u) =

£{x'Qx.+ 2(r'x)u +'ou2} «2,r,o are constants, Q ==Q'). Without

loss of generality, set a = 1. Then

2L(x,u) = x'Qx + 2(rlx)u + u2 = x'(Q - rr')x + (u + r'x)2. _lzet

Q - rr' = H'H and u = u + r'x. Then 2L(x,u) = x'H'Hx + u

the system. x = Ax +-bu must be changed to x = Ex +1bu where

K's A - br', and g in u(t) = -g'x(t) is to be replaced by

g = s - r-

and
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Given a completely controllable constant linear system (3.1) and

constant linear control law (3.2), determine all loss functions

L in (3.3) such that the control law minimizes the performance

index (3.3).

A necessary and sufficient condition for u(t) = -g'x(t)

to be a stable optimal control law is that there exists a matrix

P which satisfies the following algebraic relations (Kalman, 1964)

(a) P = P' is positive definite

(b) Pb ... g (3.4)

(c) -PAg - Aé P = H'H + gg' (Riccati equation),

where A8 = A - bg'.

Since P in the above relations is unknown, it is desirable

to eliminate P and to get a Simple relation connecting the control

law g and the "representative" performance weighting matrix H.

For this, Kalman shows that a necessary and sufficient condition for

g to be an Optimal control law is that g be a stable control law

and that the condition

‘1 +g'§(iw)bI2 = l + IH@(iw)bI2 holds for all real w,1) (3.5)

-1 .2 . .
where 6(3) = (SI - A) , 1 = -1, and s 18 a complex variable.

If the condition (3.5) holds, H may be obtained by

factorizing the non-negative polynomial

. . 2 ._ . 2
I1 +'g T(1W)b\ - l — \H§(iw)bI . (3.6)

Since g is assumed to be stable, the rational function H@(iw)b

 

1) It is assumed that H is a matrix consisting of one row only.

Otherwise, the condition (A,H) is completely observable is not

sufficient to guarantee that the optimal control law is completely

observable.
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must not possess any common cancelable factor which has a zero

with non-negative real part. Using the canonical forms on matrices

A and b (Wonham and Johnson, 1964), it is possible to identify

the components of an n-vector H = (h1,h2,...,hn) with the

numerator coefficients of the rational function

h (1w)n'1 +...+ h
n 1

H§(iw)b =

(iw)n + an(iw) +...+ a

1

where ais, (i = 1,...,n) are constant scalars.

Then the matrix H so constructed is the solution for

the inverse Optimal control problem.

Thau (1967) extends the Kalman's inverse problem to the

multiple input system and a class of non-linear control system:

(a) The dynamic system equation considered is

x = f(x) + Bu , (3.7)

where x is an n-vector state variables and u(t) is an m-vector

control variable continuous in t. B is an n X m constant matrix.

(b) The integrand of the performance criterion is a sum of a func-

tional of the state variables and a functional of the control.

That is, the performance index is given by

V(x(O),u) = (I, [q(x) + h(u)]dt , (3.8)

where q(x) and h(u) are smooth functions of their arguments.

(c) It is assumed that

dh . .
n(u) 5‘3: 13 a one-to-one mapping,

2

h(O) =0 and £1mtg->0.

du

(d) The origin x = 0 is considered the target set and the
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feedback control law given by

*

u (t) = ¢[x(t)] (3.

is assumed to be Such that the resulting closed-100p system,

*

x = f(x) +'Bu (t) a F(x) + B¢(x), is asymptotically stable.

9)

*

Then assuming an optimal control law u (t) exists, the

inverse problem is as follows:

Given a control law (3.9) with the above-mentioned prOperties,

find the most general performance functional (if any) of the form

(3.8) which is minimized by the control law (3.9).

For the control problem (a) - (d), the necessary and

sufficient condition for the optimality is that the value of the

Optimum performance index (3.8) Vo(x) satisfies the Hamilton-

Jacobi equation

0

max {-(q(x) + h(u)) - 3%— (f(x) + 311)} = O, v°(O) = O. (3

11

From (3.10), the optimal control ¢(x) satisfies

aV_O_
“(p(X)) = -B ax (3

and

v0

q(X) = -h(¢(X)) - g;—'[f(X) + B¢(x)] . (3-

To obtain more explicit results, Thau considers a com-

pletely controllable multiple input linear time-invariant system

a = Ax +’Bu , (3

.10)

.11)

12)

.13)

where A is an (n X n) matrix and B an (n X m) matrix, and

the performance index in the form of

V = h g (x'H'Hx + u'u)dt . (3. 14)
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The given control law which drives the system toward the

origin is

u = -Gx , (3.15)

where G is a known constant matrix. It follows from (3.11) and

(3.12) that

G = B'P , (3.16)

where P satisfies the algebraic Riccati equation,

H'H + G'G = -PA - A'P + PBG + G'BP ,

or

-PA -A'P=H'H+G'G, A =A-BG. (3.17)

g g g

Following Kalman (1964), Thau derives the frequency-

domain characterization of optimality for the multiple-input system.

Using (3.16) and (3.17),

T'(iw)T(iw) = I + F'(iw)F(iw) for all real w, (3.18)

where T(iw) = I +'G§(iw)B and H§(iw)B = F(iw)

There is, however, no general way at the present to find

the explicit expression for H from the equation (3.18).

 

Thau further considers a class of nonlinear systemsl)

given as

x = Ax + be(u) (3-19)

u = g'x , (3.20)

1)
The development here incorporates Panda's (1971) corrected

version of Thau's solution.



33

where x,b, and g are n-vectors and A is an n X n matrix.

Here G(u) is considered to be a known scalar function, defined

and continuous for all u, 9(0) = 0, ue(u) > O for all u # O and

+1”

I 9(u)du diverges.

0
\

With the additional assumptions that (i) the value of the

optimum performance index is given by V0(x) = %x'Px, where P is

positive definite, (ii) 9(u) in (3.19) can be expressed as a

power series in odd powers of u with all positive coefficients,

)°° 1 + 1
i.e., 9(u) = X a,u , i E (I ),

i=11 0

function of n in (3.11) is also expressed as a power series

all ai > 0, and (iii) the inverse

-1 m

n (U)=}:

i=1

criteria of the form (3.8) for the system (3.19) and the control

ciul, i 6 (1;); explicit expressions for all performance

law (3.20) can be obtained as follows (Panda, 1971).

9(g'x) = n'1<-b'Px>

a co a

___._ _ I I __ __L c
q(x) % x (PA + A P)x + Cl iil 1+1 (g x) i+1, i 6 (1;). (3.21)

In order to have non-negative q(x) in (3.21), the con-

dition, ‘1 - g'§(iw)b\2 2 1, should hold for all real w, where

um) = (iwI - A)-1.

It is seen above that Thau gets the explicit algebraic

conditions for the solution of the inverse optimal control problem

by introducing the assumption that the optimum performance is of

the form Vo(x) = % x'Px, where P is a (positive definite)

symmetric matrix.

 

1)

odd.

+

IO represents the set of all integers that are positive and
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Yokoyama and Kinnen (1972) show the necessary and suf-

ficient conditions for Optimized performance indices of a general

class of controllable and uncontrollable systems with weakened

assumption about the form of the optimum performance.

Yokoyama and Kinnen have the following problem:

(a) The system,

)2 = G(X) + Bu 5 Ax + F(x) + Bu . (3.22)

(b) A feedback control law, u(x). (3.23)

(c) The functional form of the performance indices is restricted

to the general structure,

g {L(x) + u'Ru}dt . (3.24)

The assumptions for the problem are

(i) x is an n-vector of state variables. G(x) is an n-

dimensional vector valued function of class C2 satisfying

G(O) = O, and A is an n X n matrix such that Ax is the

first-degree homogeneous term of G(x).

(ii) u is an m-vector of control variables and B is an

n x m matrix of rank r such that O < r s m 5 n.

(iii) u(x) is an m-dimensional vector valued function of

class C2 such that u(O) = O and the origin of the

synthesized control system (3.22) is asymptotically stable in

the large.

(iv) R is restricted to an m X m matrix, symmetric and
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2

positive definite and L(x) to class C such that

L(O) = O and

g {L(¢(t,x) + u[¢(t,x)]'Ru[¢(t,x)]}dt (3.25)

is well defined, where ¢(t,x) is a solution of (3.22)

from x C R“.

Given a system equation (3.22) and a feedback control

law (3.23) a priori, the problem is to seek L(x) in the performance

indices (3.24) optimized in the synthesized feedback control system.

It is assumed that the inverse problem is considered for

the control equivalent canonical form (Luenberger, 1967). Thus

A =FA1W

  A21

n

L

and B =

where the

  

 

n-r = A(e) O 0 ..... O '1 Le

O O A(1,2) ..... 0 L1

r

O

O ................... O A(r-l,r) Lr-l

LA(r,e) A(r,l) ........ (r,r) .4 Lr

Le L1

F 3 _
0 I 0 n {r

L.0 1 I Lr

0‘L L

following is true:

(i) Le’Ll""’Lr-l’ and Lr are integers determined by A and B

r

such that Le + igibi = n, O < L1 3 L2 g...s Lt = r,

= 0; if A,B is a controllable pair

L
e

f 0; if A,B is not a completely controllable pair,
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(ii) A(i,i+1) is an Li x {3+1 matrix such that

A(i,r+1) = [0: IL 1, i = 1,2,...,r-1,

i

's are unspecified.

A(uni)

For convenience, define the following:

= r - =(i) x x1.) n r _[rx(e)l

x(l)

LXZJ r L3(rLJ    

 

the components of x2 = x(t) are directly dependent on u from

the structure of B. Those of x1 are indirectly controlled state

variables.

(ii) G1(x) n-r IF1(x) n-r

G(X) E . F(X) =

G2(X) r F2(X) 1'

(iii) u(x) = u1(x) m-r

(3.26)

u2(x) r

(iv) R11 R12 m-r

R =
(3.27)

!

R12 Rzzj r

1
- ‘ -

and R0 R22 R12R11 R12

For the optimal performance index V(x), the Hamilton-

Jacobi equation

min {L(x) + u'Ru + (a§£51)'[6(x) + Bu]} = 0 (3.28)

U

must be uniquely realized at each x E Rn by u such that

u: —a R'13'(5§£§1) . (3.29)
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Identifying (3.29) with the specified u(x), it follows

from (3.26), (3.27) that

1

    

u1(x) = -R11 R12 u2(x) (3.30)

and

M = -2
8X2 R0u2(x) . (3.31)

2

With the symmetry prOperty of §:§é£l , the following is

derived.

r— r‘ X .

avg ) _ avgx)‘1 2 5”2(x) l
= -2 -——-—- R dx + W(x )

ax 5x1 0 5x1 0 2 1

a (3.32)

M _2 R0U2(X) ,

L 5x2 J L 4

where W(x1) is an (n-r)-dimensional vector-valued function of

class C1 (i.e., with continuous first derivatives) to provide

2V x2 au (x)

the symmetry for a—-££l, and the integral I -;-- dx is defined

axlax 5x

1 0 l

au2(X)

(for an r-dimensional row vector function -;;—- a E(x)) as

1

x2 xn-r-l-l

g E(x)dx = g e1(x1,x2,...,xn_r,r1,0,...,0)dr1

x

n-r+2

+3; e2(x1,x2,...,xn_r+1,r2,0,...,O)dr2 +...

x

n

+ & er(x1,x2,...,xn;1,rr)drr .

The optimal performance index has an expression

X o

V(x) =f (dz-£51m): . (3.33)

o

Yokoyama and Kinnen (1972) show that a performance index

(3.24) can be optimized by the specified u(x) if and only if
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the following conditions are satisfied:

(a) u1(x) = -R11 R12 u2(x),

au2(x)
(b) R0(-;;--) is symmetric,

2

(c) there exists an (n-r)-dimensiona1 vector-valued function

W(x1) of class C1 insuring the symmetry of

x2 au2(x) . 3W(x1)

-2 . .r<--;.-—> +-——
5 1 0 a 3x1

(d) L(x) and R are related by

2 5112(X) . .

L(x) = ué(x)ROu2(x) + Zué (X)ROGZ(X) + 2 g [:-g;I—;] Rodx2 Gl(x)

- W'(x1)G1(x) . (3.34)

The above procedure does not guarantee that the solution

is unique and the resulting performance index V(x) is positive-

semi definite. However, Yokoyama and Kinnen develop a method

which insures the positive definiteness of V(x) as well as

-9(x) by adjusting V(x) and L(x) that are obtained as (3.33)

and (3.34).

All the inverse optimal problems mentioned so far con-

sider the performance index of a special form, i.e., the integrand

of the index does not explicitly depend on time.

Kurz (1969) and Bellman (1970) consider the inverse

problem which involves the performance index with time-dependent

integrand.

Kurz's system equation is

(a) x = f(x) ~ u, x(0) = x (3.35)
O 3
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with performance criterion of the form

(I)

J = g e'5th(u)dt . (3.36)

(c) The control law is given by

u = ¢(x) . (3.37)

It is assumed that f(x) in (3.35) is strictly concave

with f'(x) > O, f"(x) < O for all x(t); h(u) in (3.36) is strictly

concave belonging to the class C2, and 5 > O is constant. The

control law u is assumed to be monotonic, continuously differenti-

able function with ¢'(x) > 0.

Then, the inverse problem is to find the function h(u)

and 6 in the performance index such that the given u = ¢(x) is

the optimal control law for the system (3.35).

For the Hamiltonian defined by

H(x.u,t.p>e“ = h(u) + p[f(x) - u] ,

where p(t)'e-6t is a "costate" variable, the optimality condition

is given by

fi(t) = P(t)(6 - f'(X)) (3-38)

h'(u) = p(t) . (3.39)

Assuming that x f(x) - ¢(x) has at most one stationary

* * * *

solution x , f'(x ) > O, and f'(x ) - ¢'(x ) < 0, then the inverse

problem of u = ¢(x) has a solution. In fact, since the system

is a simple scalar equation, an explicit solution can be obtained

analytically as follows.
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From (3.38) and (3.39),

= f' x - 6

 

u
.3 - h" u .u (3.40)

h'(U)

Moreover, since u = $(x),

33:27.?” (3.41)

Thus from (3.40) and (3.41),

11322 _ f'(xl ' 5 (3.42)
- h'(U) — ¢'(X)[f(><) - c1500]

With x(u) = ¢-l(u), the equation (3.42) can be considered as an

equation in u only. The general solution of (3.42) may be

formally written as

f'x(u) - 6

¢'[X(U)][f(X(U)) - @(X(U))]

* C

At the stationary point x , it must be that x = O,

h'(u) = M exp{-f an}, (M > 0).(3.43)

* * * .

which implies that u = ¢(x ) = f(x ) is constant and p(t) = O

in (3.39), and therefore (3.38) gives

*

f'(x) =6 . (3.44)

The common features of the inverse problems discussed so

far are:

(1) the system matrices are constant (time-invariant systems),

(2) the optimization period is infinite.

The above-type of the inverse problem is of particular

interest, mainly because the problems involve a constant feedback

gain matrix for the control law.
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More interesting optimization problems, however, are

formulated in terms of the time-varying system matrices and involve

a finite time period of optimization.

Jameson and Kreindler (1973) consider the following dynamic

system

(a) x = Ax + Bu , x(tO) = x0 , (3.45)

(b) a given control law

u = -Gx , (3.46)

and a performance index

N

(C) J = x'(N)FX(N) +'{ (xWQx + u'Ru)dt , (3.47)

0

where x is an n-vector of state variables, u an m-vector of

controls, N is a fixed terminal time. The matrices, A,B,G,Q, and

R are time-varying and assumed to be uniformly bounded and con-

tinuous on [toy]. In addition, Q =Q' and F = F' are positive

semi-definite and R = R' is positive definite.

The explicit expression for G in (3.46) in this problem

is given by

1
G = R- B'P (3.48)

where P is the positive semi-definite solution of the Riccati

equation

-I'> = PA + A'P - PBR-LB'P +Q

P(N) = F . (3.49)

*

The minimum value J of the performance index (3.47)

is
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3* = x(t0)'P(tO)x(tO) . ' (3.50)

The inverse problem here is to find F, Q, and R in the

performance index (3.47), given the system equation (3.45) and the

control law (3.46).

Note that the existence of symmetric P, R, Q, and F

satisfying (3.48) and (3.49) is a necessary condition for a closed-

loop system x = (A - BG)x to be optimal with respect to the per-

formance index (3.47).

The solution of inverse problem is obtained by consider-

ing (3.48) , i.e. ,

RC = B'P (3.51)

or equivalently

RGB = B'PB , (3.52)

G'RG = G'B'P . (3.53)

Writing R = L'L, (3.52) implies

1 1 1

(L'1)'B'PBL' = (L'1)'RGBL' =LGBL' . (3.54)

If R = R' is positive definite and P = P' is positive

semi-definite, then (3.52), (3.53) and (3.54) imply

RGB = B'G'R , (3.55)

rank (BG) = rank (G) , (3.56)

GB has non-negative real eigenvalues, (3.57)

respectively. Therefore, if R = R' (positive definite) and

P = P' (positive semidefinite) could be constructed such that

(3.55) - (3.57) hold, then the chosen R and P satisfy (3.51).
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Jameson and Kreindler (1973) developed a procedure for constructing

such R and P as follows.

By suitably choosing P, which is a positive definite,

real, symmetric matrix such that PA = AF, R can be chosen as

R =vr'v' , (3.58)

where V is a matrix of eigenvectors of B'G' and A is the

diagonal matrix of corresponding eigenvalues.

The matrix P can be constructed, by choosing a symmetric,

positive semidefinite matrix Y, as

P = G'R(RGB)+RG +-Y , (3.59)

where (RGB)+ denotes the Penrose generalized inverse of RGB,

i.e., (RGB)(RGB)+(RGB) = (RGB).

Once R and P are constructed as (3.58) and (3.59),

F and Q can be found from the Riccati equation (3.49).

It should be noted that Q so determined may not be non-

negative definite. However, the performance index of the form (3.47)

with the chosen P, Q, R, and P attains its absolute minimum J*

over all square-integrable controls for all x(to) and all

tO<NSoo.

3.2 Inverse Control Problem for Discrete-Time Systems

All the above inverse optimal control problems are con-

cerned with the continuous-time system equations. But there exist

the problems, eSpecially in such fields as biology and economics,

etc., for which discrete-time models are the natural ones to assume.
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For instance, many of the functions of time representing

responses with time-lags that are met with in economics do not

correspond with continuous-time equations of known and simple form,

as analogous relationships usually do in, say, engineering fields.

The economic reSponses are not given "experimentally" and must,

mathematically, be considered to be of arbitrary form, and so are

conveniently Specified by the discrete-time models.

In other problems, where computation must be done on a

digital computer, the discrete-time model often results as suitable

approximation to a continuous-time system. A final important class

of discrete-time systems comes from sampled-data system. In sampled-

data systems, a continuous system is driven by an input specified

at discrete-time points and has state and output variables available

only at discrete-time points.

Wu and Schroeder (1968) solve the inverse problem for time-

invariant, single-input, discrete-time system. They consider the
 

dynamic system given by

= + =
.xt+1 Axt But , xto X0 , (3 60)

with performance index,

°° 2
J(x.) = 2 (x'H'Hx +'u ) , (3.61)

J _ t t t

t-J

and the control law given by

= - ' . .

ut g xt (3 62)

It is assumed that the given control law has the stability

property, i.e., xt+1 = (A - bg')xt is asymptotically stable.
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The system equation (3.61) and the performance index

(3.63) are assumed to be in the canonical form (Wonham and Johnson,

1964; Tuel, 1967). That is,

  

  

  

A = '0 1 o 0‘1 , b = V o)

o o o

O O l L1J

L—al “'82 ... -anJ

H'H = ' qlnj . (3.63)

C) an

qun q2n ... qnn_,)

Then, the inverse problem is to determine n elements of H'H,

q , i = 1,2,...,n, given the system equation (3.60) and the con-

in

trol law (3.62).

The Riccati difference equation for this problem is given

by

P = H'H + A'P(A - bg') , (3.64)

where g' = (b 'Pb + 1)-1b'PA. (3.65)

Considering the canonical forms in (3.63), (3.65) can

be written as

' = F = ___—- ..
g g1) P +_1 F a1 Pnn 1 , (3.66)

82 P n -8 P

    LgnJ gpn'lan -811 PnnJ
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where P = [pij]’ i,j = 1,2,...,n. This gives an explicit solution

for the last column of the matrix P,

= + + :23 ..., , 3.

pi-lm (pnn 1)gi aipnn ’ 1 ’ ’ n ( 67)

where

81 3

p = “‘_—T:—“ - ( .68)
nn a1 g1

The elements in the matrix H'H can be easily obtained by sub-

stituting the canonical forms (3.63) into the Riccati equation

(3.64), and by using (3.67), (3.68).

It is seen from the above literature survey that the gen-

eral solution of the inverse problems has not yet been found. In

particular, no explicit solution of the inverse problem is known

for the discrete-time multi-control systems.

Considering the fact that the market framework of the

economic system is working through the myriad individual decisions

and the economic problems are generally formulated in terms of

discrete-time difference equations, it is desirable for the

economists that the solution to the inverse problem be found for

the discrete-time multi-control systems. The solution to this

subclass of the inverse problem is the subject of the following

chapter.



CHAPTER FOUR

THE INVERSE CONTROL PROBLEM OF DISCRETE-TIME MULTIVARIATE

CONTROL SYSTEMS

4.1 The Solution of a General Inverse Problem

In this section a general inverse control problem will

be formulated for an autonomous discrete-time linear system with

an g_priori linear feedback control law, and then a sufficient

condition will be develOped for the solution of the inverse prob-

lem. More Specifically, the inverse problem is considered for

the system

_ _ 0
— Axt + But , x — x (4.1)

x ot+1

a feedback control law

u = -Gx , (4.2)

and with the performance indices restricted to the general quadratic

structure

on

J = Z [xéth + uéRut] . (4.3)

t=O

Here, x is an n-vector of state variables; u is an m-vector of

control variables; A and B are constant n X n and n X m

matrices; and Q and R are constant symmetric positive

47.
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1)
semidefinite and definite matrices. The following assumptions

will be made:

(A.l) The matrix A is nonsingular.

(A.2) The matrix B is of full rank, m.

(A.3) The closed-100p system (4.1) with (4.2) is asymptotically

stable in large.2)

(A.4) The pair (A,B) is stabilizable and the pair (D,A) is

observable, where Q = D'D. ‘

The assumptions (A.l) and (A.2) are made mainly for

simplicity, and (A.3) and (A.4) are for the existence of positive

semi-definite solution of matrix Riccati equation (4.9) below.

(Aoki, 1973).

By introducing a new control variable

6 = u - u , (4.4)

the problem (4.1) - (4.3) can be transformed into an equivalent

 

problem:

xt+1 = Axt +But , (4.5)

St = -E§t , (4.6)

and

J = 2 x'Qx (4.7)
t=0 t t

1)
Optimal control of this problem involves maintaining the state

variables close to the zero state (origin) after some initial dis-

turbance away from the zero state. This problem is commonly re-

ferred to as a regulator problem (Dorato and Levis, 1971).

2) "Asymptotically stable in large" means that any initial points

away from origin approaches origin as time goes to infinity (La

Salle, 1962-63).



  

r W
_ ‘— A

Where x = xt , A = B ,

LUQJ 0 Im

_ 3 _

BJO , Q=[Q 0] , ....

I »0 R

L WJ

6-= [6, Im]'A. Note that the assumptions (A.l), (A.2), (A.3),

and (A.4) are preserved for the equivalent problem (4.5) - (4.7).

It will be seen that the inverse problem can be solved easily for

l

the equivalent system compared to the original system (4.1) - (4.3). )

Since the control policy (4.6) is optimal, the feedback

gain matrix is characterized by (Kleinman and Athans, 1966)

_ _u _ '1_u '—

G = (B PB) B PA , (4.8)

. . . . . . . 2)
where P satisfies the folloWing matrix Riccati equation

F =6+ Ema - BE) . (4.9)

In order to express 6' explicitly in terms of P, let P be

partitioned as

f 7
P11 P12

P = , (4.10)

.' P

L112 ZZJ  

where P22 is an m X m nonsingular matrix. Then 6 in (4.8)

can be written as follows.

 

1)
Note that the performance index (4.7) for the transformed

system does not contain a quadratic term involving the newly de-

fined control vector (4.6).

2) Refer to Kleinman and Athans (1966) or Kuo (1970) for deriva-

tion of discrete Riccati equation.
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E = P22 [P12 ’ P223K

= LP; P1'2 . Imj-K (4.11)

= [_G, Im1A ,

which shows that G = P5; P12’ the feedback gain matrix for the

system (4.1) - (4.3).

The closed-100p optimal system has the following property.

t

Lemma 1: The (n+m) h-order closed-100p system matrix

A - BE. for (4.5) - (4.7) is singular, and if A. is non-singular,

then rank (A - BG) = n.

Proof: From (4.8)

X - 1'3— = X - E(B'PB)-LB-'P_A = EX, (4.12)

where E e: In+m - B-(B'PB-YIB'P. Since EE = E, the idempotent

matrix,

rank (E) = trace (E)

= trace (In+m) - trace {(B'PB) 1B'PB}

n + m - m = n .

Therefore, rank.(EA) s n and thus EA) is singular. Furthermore

if 'X is nonsingular, then rank.(EA) = n, completing the proof.

The solution of the inverse problem for (4.5) - (4.7)

can be obtained as follows. Equations (4.8), (4.11), and (4.12)

implyl)

E'P(X - 13—5) = o , (4.136)

 

1

) Due to the transformation of the problem carried out in (4.4) -

(4.7), we have the following homogeneous equation (4.13) to solve

for P.
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or

r"I o 7
n

3'1 X'= o . (4.13b)

L‘G 0.1  

Since A is non-singular, A is also non-singular. Thus (4.13)

is equivalent to

B'P = o . (4.14)

L_-G OJ

By inspection, if P is chosen to be

  

P = w[c, 1m) , (4.15)

where W is an (n+m) X m arbitrary non-zero matrix still to be

1)
decided, then

In 0 In 0

P = w[c, I ] = o . (4.16)

-G o m -G 0

‘_ 0

On the other hand, since B = , P may be chosen to be

I

m

M

P =[ J , (4.17)

0

where M is an n x (n+m) non-zero matrix yet to be determined.

Then

_ M

B P -- [0, 1m] [0] = 0 . (4.18)

 

1) In fact, the matrix [6, Im] is an em X_(n+m)_ complete left

annihilator (with rank m) of the matrix (A - BC) in (4.13a),

i.e. [6, Im](A - BG) = O (Bodewig, 1959).
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Therefore, the solution P of (4.13) is, from (4.15) and (4.17),

M

P {J +w[c, 1m] . (4.19)

o

The matrix P obtained by (4.19) still needs to satisfy (4.9) for

optimality, and thus the following theorem leads to the solution

of the inverse problem.

Theorem 1: A sufficient condition for the solution of

the inverse problem for (4.1) - (4.3) is that there exist M f 0,

w # o in (4.19) such that

and

6'= P - K‘P(K - 85)

is symmetric and positive semidefinite.

As it is intractable at the moment to find the

apprOpriate M and W in (4.19), a solution is sought for a

special case in the next section more explicitly.

4.2 The Solution of a Class of Inverse Problem

For the economic system, in contrast to physical and

technological systems, the relative weight on the state vari-

ables is more significant and heavier than the weight on the

control efforts to be implemented. In fact, the existing

government structure, for example, requires a fixed (basic)

operational budget and does not require additional expenses in

implementing a designed Optimal control policy, because it is quite

possible that the only costs associated with government policy are

associated with levels and not with any changes in the policy.



ing U

is ze

afe

and

whe

lem

Can

can

wit

1)

the 
we)



53

Thus this section is devoted to the case where the weight-

ing matrix R for the control variables in the performance index

is zero. This leads to an explicit formula for the solution of

the inverse problem.

The inverse problem is considered for the system

_ _ O
xt+1 - Axt +‘But , x0 - x (4.20)

a feedback control law

= .2ut -Gtxt (4 l)

and with a modified performance indices of the forml)

N

= c

J E xtht (4.22)

t=O

where rank 62) = rank (B).

Since the system (4.20) is controllable, the above prob-

lem (4.20) - (4.22) can be transformed into the control equivalent

canonical form by applying a nonsingular transformation T to the

state variable x. We assume that (4.20) - (4.22) are in the

2

canonical form (Tuel, 1967) ); that is

A = , B = , (4.23)

with the following properties:

(i) B2 is a nonsingular (m x m) triangular matrix,

 

1) Now problem involves a finite-time Optimization in contrast to

the previous section 4.1.

2) This transformed form is convenient for simplifying subsequent

work and obtaining compact results. See (4.31) - (4.33) below.
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(ii) the matrices A21 and A22 are m X (n-m) and

m X m respectively but are otherwise arbitrary,

(iii) there exists a set of m positive integers {Li}

depending on the structure of the system such that

  

m

2 L. = n,

i=1 1

(iV)

M ‘
A =:
11 0 W2 0

O O

L'0 ......... O me

rel O ..... 0 2

A12 = 0 e2 0 . O

0

L0 ......... O emj  
where A11 is (n-m) X (n-m), A12 is (n-m) X m; W1 is a

(Li - 1) X (Li - 1) matrix of the form

F0 1 o .... 05

  

W = O O l O ... 0

I 1 O

O ......... O 1

L0 ........... OJ

and ei is a (L.1 - 1) column vector of the form

F0)

0

  L13
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Since the control policy (4.21) is optimal, the feedback

gain matrix is characterized by (Kleinman and Athans, 1966)

= I " I

Gt (6 Pt+l B) 113 Pt+lA . (4.24)

where Pt satisfies the following matrix Riccati equation

= ' - = '-Pt Q+APt+1 (A BGt) ,t O,l,...,N 1,

IN =Q, (4.25)

It is always possible to factorize a positive semi-

definite matrix Q into the product DD' where D is a matrix

Of full rank corresponding to the rank of Q. Thus (4.24) and

(4.25) lead to

PN_1 = Q + A'Q[A - B(B'QB) lB'QA]

= Q + A'DD'[A - B(B'DD'B)'lB'DD'A]

_1 _ (4.26)

= Q + A'DD’A - ADD'B(D'B) (B 'D) lB'DD'A

=Q,

provided that the indicated inverse exists. Note that (4.26)

implies, for all t = O,l,...,N,

Pt =Q, (4.27)

ct = c = (D'B)-]'D'A , (4.28)

which implies that the admissible control law (4.21) must be a

constant feedback control. Moreover, (4.28) implies

D'(A - BG) = 0, (41-29)

which is analogous to (4.13) for the general inverse problem.

Since A - BC is singular by Lemma 1, (4.29) has a non-

trivial solution for D'. The matrix solution D can be chosen as



Iti

Mo rt

Sin

“OH

fro

   The

 
W

US
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0' = 23 (4.30)

where S is a complete left annihilator of (A - BG), i.e.,

S(A - BG) = O, and Z is an arbitrary m X m nonsingular matrix.

Note that, for P defined in (4.10)

A - B6 A - B(B'PB) -1B'PA

[In - B(B'PB)-1B 'P]A (4.31)

I l O
n-m

ll 3
,

-P’1P' 0
22 12

It is easy to see from (4.31) that

_. " I

Moreover,

-1 O

' = = ' =

2

Since both Z and B2 are nonsingular in (4.33), D'B is also

nonsingular. Thus, (D'B)--1 exists as is necessary in (4.26).

The solution of the inverse problem for the canonical

from (4.21) - (4.23) is therefore

Q = DD' = S'Z'ZS . (4.34)

The solution for the original system is then simply

6 = T'QT = T'S'Z'ZST , (4.35)

where T is a non-singular matrix for the canonical transformation

leading to (4.21) - (4.23).

The rank of Q and Q can be determined as follows by

using the Sylvester's inequality
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rank (S'Z') + rank (ZS) - m 5 rank (S'Z'ZS)

(4.36)

5 {rank (S'Z'), rank (ZS)}.

Since rank (S'Z') = rank (ZS) = m, (4.36) implies that

rank (0) = rank (Q) = m = rank-(B).

It has been observed that the solution of the inverse

problem can be obtained by determining P22 P12 from the known

matrices A, B and G in (4.31). The computational procedure

will be illustrated through examples in Chapter Five. One must

also note that the solution of the inverse problem is not unique

because it depends upon the choice of a nonsingular matrix Z as

is shown in (4.34).

4.3 The Inverse Optimal Control Problem in Macroeconomic Policy

Models

The basic approach develOped in the previous sections

will be extended to a macroeconomic model. Although the system

is in a more complicated form than what was discussed in the pre-

vious sections, it will be seen that the solution of the inverse

problem developed in Section 4.2 also holds true for this economic

system.

For many economic policy problems, linear macroeconomic

models can be reduced to the following equation (Pindyck, 1972)

= +
.yt+1 Ayt But + Czt + VC (4 37)

where yt ... n-vector of endogenous variables,

u ... m-vector of control variables,

2 ... r-vector of other exogenous variables outside the

policy consideration,
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v ... n-vector of random disturbances with zero mean

vector and a constant variance-covariance matrix,

A,B,C, ... constant matrices.

The deterministic policy question is formulated by

examining the conditional behavior of y in (4.37) under the
t+l

influence of ut given that the policy-maker sets the disturbance

vt equal to zero and utilizes a projection of values of z
t,

t = O,l,...,N. Then, for the deterministic policy problem, (4.37)

can be written as

= + + . .yt+1 Ayt But Czt (4 38)

The performance index is given by

N-l

J = E(YN - 9N) 'Q(yN - 9N) + A: E (yt - it) 'Q(yt - it) + ut'Rut. (4-39)

t=0

where yt is an n-vector of target values of yt, which is

Specified for the entire planning period.1) The assumptions (A.l) -

(A.3) in Section 4.1 will also be made here for simplicity of the

analysis.

Using the discrete-time maximum principle and the matrix

identity, I - (Y +-X)-1X = (Y +-X)-1Y, the Optimal control policy

for the system (4.38) - (4.39) can be expressed as (See Appendix):

u*=-(R+B'K B)-1B'I( A -(R+B'K B)-]'B'
t t+1 t+l yt t+1 gt+1

I " I

-(R + B K B) 13 x“, Czt , (4.40)
t+l

where Kt and gt satisfy the following equations

 

1) Optimal control problem for (4.38), (4.39) is Often referred

to as a linear tracking problem (Athans and Falb, 1966).
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= ' - ' '

Kt Q + A KtflEA E(R + B KH1B) 113 Kt+1A , (4.41)

= _ I I ' I _

gt A [Kt+1 B(R + B Kt+1 B) :1]; 13g”1

l _ I _ A

+ A (Kt+1 Kt+1 B(R + B Kt+1 B) 113'')CI<t+1 Qyt . (4.42)

Now, consider the case where R = O in the above model. Let the

positive semi-definite matrix, Q be factorized into the product

DD' where rank (D) = rank «2) and (D'B) is nonsingular. Then,

the matrix Riccati equation (4.41) becomes

_ I _ I ___
— Q + A Kt+1[A B(B Kt+1 B) 13''AKt+1 , KN Q, (4.43)

and as in Section 4.2,

KN_1 = Q + A'DD'[A - B(B'DD'B)-]‘B'DD'A] (4.44)

= Q + A'DD'A - A'DD'B(D'B)-1(B'D)-lB'DD'A =Q,

which implies Kt =‘Q for all t = 0,1,2,...,N. Similarly, (4.42)

is reduced to

_ _ I I ' I _

gt - A [Kt-+1 B<B 1<t+1 B) ’B I]gt+1 (4.45)

I _ I " I _ A
+ A [Kt+1 Kt+1 B(B Kt+1 B) 18 Kt+1]Czt Qyt,

and

-A'[DD' B(B 'DD '3) '18' - I] (4233,)
gN-l

+ A'[DD' - DD 'B(B 'DD 'B)'1B 'DD']CzN - Q9},

A'[D(B 'D) '18' - 13m) 'yN

+ A'[DD' - DD'B(D'B)-1(B'D)-LB'DD']CZN ' Q9101

.QYN‘I, (4'46)

which implies that

8,; = 'Q’S't . t = O,l,...,N . (4,47)
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*

Again, consider the Optimal control policy ut in (4.40)

for the period N-l, i.e.,

-(B'DD'B)'IB'DD'AyN_1 - (B'DD'B)'1B'gN - (B'DD'B)-1B'DD'CzN_1
'7
"

H
"

1 l
-(D'B)' D'AyN_1 + (D 'B)'1(B 'D)-LB'DD 'yN - (D 'B)- 0%sz

-(D'B)']‘D'AyN_1 + (D'B)'1D'yN - (D'B)'lD'CzN_1 , (4.48)

which implies that

1

C
.
‘ II -(D'B)-1D'Ayt + (D'B)- D'§t+1 - (D'B)-1D'Czt (4.49)

II
I .ey +13) -Fz ,t=o.1....,N-1.

t t+l t

Thus the optimal feedback gains are

(D'B)-1D'A =G’

(D'B)-1D' - E, (4.50)

(D'B)-1D'C = F .

The equations in (4.50) are equivalent to

D'(A - B6) = 0,

D'(I -BE) =0, (10-51)

D'(C - BF) = 0,

which implies that

D'(A - B6) = D'[A - B(D'B)-1D'A] = 0'[1 - B(D'B)-1D']A = 0

D'(I - BE) = D'[I - B(D'B)-1D'] = 0 (4.52)

D'(C - BF) = D'[C - B(D'B)-1D'C] = 0'[1 - B(D'B)-1D']C = 0

Equations in (4.52) show that a solution for D' for

any equation will also Satisfy remaining two equations. This

implies that the solution of the inverse problem for a linear
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regulator model in Section 4.2 Still holds true for this linear

tracking problem. Using the Similar arguments that were made in

Section 4.2, the solution for D' in (4.52) is

D' I 28 , (4.53)

where s[1 - B(D'B)‘1D'] = 0, and Z is an arbitrary m X m non-

singular matrix. Thus the required solution for the weighting

Inatrix Q is given by

Q = S'Z'ZS . (4.54)

The Steps Obtaining the solution of the inverse problem

were studied in Section 4.2.

Recall that the inverse problem (4.38) - (4.40) in this

section was set up for the macroeconomic policy problems. Thus,

the solution of the problem provides the explicit procedure to

quantify the performance index (or preference function) for the

policy making processes, enabling the decision maker to get the

numerical measure of the relative "welfare" weights to be given to

the competing policy goals.

Note, however, the solution (4.54) is not unique in this

problem where the performance index does not contain the costs of

adjusting the control policies. This implies that the Optimal con-

trol policies are fairly robust against different performance indices

under the conditions stated in this inverse problem.

The develOped techniques so far will be illustrated

through examples in the following chapter.



CHAPTER FIVE

APPLICATIONS OF THE INVERSE OPTIMAL CONTROL TO

MACROECONOMIC MODELS

The dynamic economy under study is characterized by

the following short-run macroeconomic model.1)

pt-I-1 = alpt + aZwt ' azyt + aBmt

rr+1 = blpt + b2rt + b3yt - b4mt (5.1)

ut-I-l = C1px: + Czut + c3”: ' C43,1:

where

p; price

r; interest rates

U; unemployment rate

m; money supply

y; real production

w; money wage rate

a., b., c ; constant coefficients (positive),

(all the variables are in terms of quarterly change rates.)

The price equation in (5.1) is basically an inflationary

model which involves the cost-push effects of wages and the

aggregate demand-pull effect. That is, price increases are

 

1) This is a submodel of Pindyck's short-run macroeconomic policy

model of the U.S. (1972), Slightly modified by Shupp's inflationary

model of the U.S. (1972).

62
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positively related to increases in average unit labor cost and

to increases in money supply.

The second equation in (5.1) expresses the interest

adjustments to the disequilibrium in the markets. Since demand

for bonds changes together with changes in real value of bonds and

money stock (hence, inversely to the price changes) and the supply

of bonds (investments) are positively related to the changes in

income, interest rate variations are positively related to price

and income changes, and inversely to the money supply.

The last equation of the model explains the changes

in unemployment rates in the labor market.

Now, define a performance index for the system (5.1)

as follows:

J= 1:20: -x*)'Q(x -x*) (5 2)
t=0 t t t t ’ '

where xt = (pt, rt, ut)' and x: is the target trajectory of

xt, and Q ==Q' is positive semi-definite.

For the purpose of illustration, we assign numerical

values to the coefficients of the system (5.1) based on the models

of Pindyck (1972) and Shupp (1972).

pH,1 0.77 O 0 pt 0.02 0.23 -0.23

rt+l = 0.48 0.37 0 rt +' -0.16 0 mt +‘ 0.03 yt

ut+1 -0.01 0 0.8 ut 0 0.002 wt -0.0004

(5.3)

Eigenvalues of the system (5.3) are 11 = 0.77, 12 = 0.37,

and k3 = 0.8. Since all the eigenvalues are real and less than

unity in absolute value, the basic homogeneous solution for the
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time paths of state variables, pt’ rt, u , apart from the influence

t

of exogenous variables and of initial conditions, are damped, non-

oscillatory movements, i.e., all reSponses of the open-100p economic

system converge to their equilibrium values without oscillations

(Kuo, 1970).

5.1 A Single-Control Model

We consider the first two equation submodel of the system

(5.3), assuming that the labor market is always in equilibrium and

also noting that unemployment rate ut influences neither the price

changes pt nor the interest rate variations rt.

Pt+1 0.77 0 pt 0.02 0.23 -0.23 wt

= + mt+

rt+1 0.48 0.37 rt -0.16 0 0.03 t
. (5.4)

In the submodel (5.4), wt and yt are treated as vari-

ables outside the policy considerations. For the purpose of

simplicity, it is assumed that the goal Of policy is to maintain

a stable price and interest rate, i.e., p* = r* = 0, and at the

beginning of the planning period, both price and interest rates

have been stabilized; p0 = r0 = 0. In addition, as the model is

of the short-run nature, constant values are given to wt and yt;

wt = 0.9%, yt = 0.38%.

For the case with zero control, mt = 0, i.e., keeping

money supply constant, the behavior of pt and rt over the

period is shown in Figure l.
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pt = - 0.52(0.77)t + 0.52

rt a - 0.62(0.77)t+ 0.21(0.37)t+ 0.41

 

 

 

_,..___.pt

——————— -l--'----¥rt

l l

5 10 15 20 t

Figure 1. Responses of System (5.4) with Zero Control

It is seen from Figure 1 that when the money supply is

kept constant, the policy goal, pt = rt = 0 (t > 0), is not

attained.

Now, assume that policy makers want to achieve price

stability using a feedback control of the form (4.49) in Chapter

Four:

*

mt = glpt + 82rt +'k , (5.5)

where g1, g2, and k are constant scalars.

Specifically, it is desired that zero steady-state value

of p be attained by using a control of the form (5.5).

t

A digression is in order at this point. Let the system

(5.4) be written as

x = Axt +Bmt+Czt , (5.6)

t+1

= ' _-_—_ ' = I

where xt (pt , rt) , zt (w , yt) (0.9, 0.38) ,

t
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0.77 0 0.02 0.23 -0.23

0.48 0.37 -0.16 0 0.03

Note in this example, Czt is a constant vector.

From (4.49) in Chapter Four, the feedback control

policy (5.5) is also written as

-1
= + 5.mt gxt gA CZt , ( 7)

where 8 = (81,82)

Then the system under the feedback control (or

closed-loop system) is governed by the relation

_ -1

xt+1 - (A + Bg)xt + (BgA +I)Czt . (5.8)

The steady-state values of xt in the closed-loop system (5.8)

is given byl)

X

II (A + Bg)xe + (BgA’1 +1)Czt

013'

:
4 ll (1 - A - Bg)-1(BgA-1 + neet . (5.9)

From (5.9), we derive

-1 e e

Bg(A Czt + x ) = (I - A)x - Czt . (5.10)

By solving (5.10) for g, it is possible to find the required feed-

back control rule for a prescribed steady-state value vector xe

of the state variables.

Note, however, that g(A-1c2t + xe) in (5.10) is a

scalar. Define

801*th +xe) = k, (5.11)

where k is a scalar.

 

l
) Since the closed-loop system (5.8) is assumed to be stable,

the indicated inverse in (5.9) exists.
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Then it is seen that in order to solve (5.10) for g,

xe should be chosen Such that

xe = (1 - A)'1(Bk + Czt) (5.12)

holds.1)

If xe in (5.12) is considered as an arbitrarily chosen

known vector, (5.12) becomes a two-equation system with only one

unknown k, and in general, cannot be solved. One element of x8

should be set "free" to be determined together with k by the

system. This implies that only one element of xe can be

2)
specified arbitrary if k is a scalar. That is, if there is

only one control variable in the model, only one state variable Of

the closed-100p system can be steered to have the prescribed steady-

state value. This can be generalized that the number of the policy

goal variables which can be controlled to attain the steady-state

values is equal to the number of the control variables in the model

(cf. Tinbergen, 1967).

As the state variable xt = (pt , rt)' in (5.8) are

required to have the steady-state values, the closed-loop system

must be stable, and eigenvalues of the closed-100p system should be

restricted to be less than unity in absolute magnitude. This implies

that the feedback gain vector of the required control for the price

Stabilization should be determined so as to make the closed-100p

system be stable ("arbitrary pole assignment problem" in Chapter Two).

 

1

) Since all the eigenvalues of A are less than unity in absolute

value, (I - A)‘1 exists.

2

) k in (5.11) is a scalar since the system (5.6) has one control,

m o

t
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That is, from (2.5) in Chapter Two, the feedback gain

vector 3 needs to satisfy

g = h'T.1 or gT = h' , (5,13)

where h' = (l, 1) and a nonsingular matrix T = (t1 , t2). The

columns of matrix T, t1 and t2 are determined for the pre-

scribed closed-IOOp eigenvalues )1 as follows.

(111 - A)ti B . i = 1,2 . (5.14)

Equations (5.13) and (5 14) imply  
gti = 1 . (5.15)

Since the solution for the inverse problem requires

that the closed-loop system matrix, A + Bg, is singular (Lemma 1,

Chapter Four), we assign k1 = 0 for (5.14) and find the

corresponding t1.

Then, from (5.11) and (5.15), the following relations

should be satisfied simultaneously for the required feedback gain

vector g:

-0.026535 g1 - 0.215176 g2 = 0.9428

-0.026 g1 + 0.4661 g2 = l . (5.16)

Solving (5.16) for g1 and 82’ we find the following

"desired" feedback control policy:

*

mt = -36.4 pt + 0.11 rt - 5.7 . (5.17)

The behavior of the resulting closed-loop system is shown in

Figure 2.
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a 12

pt = - 0.01(0.39) + 0.01

rt = - 1.52(o.39)t + 1.52

2.0—

r

1.0—

0.

O J l IJJI' t
 

5 10 15

Figure 2. Responses of System (5.4) under Control (5.17) 4

 
Given the chosen feedback control policy (5.17), the 1

weighting matrix Q in the performance index can be determined

by the method of inverse Optimal control problem discussed in

the previous chapter.

Recall (4.52) - (4.54) in Chapter Four:

D'(A + Bg) = 0,

Q = DD'

For the given system (5.4) and the feedback gain vector

8 (5-17).

0.04 0.00224 1 0

A-+ Bg = = E , (5.18)

6.31 0.352 157 0

where E is the inverse of the product of the elementary (column)

operation matrices. Thus,

D' = z(-157 l) , (5.19)

where z is a non-zero, otherwise arbitrary, scalar, Choosing

z = 1,
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24649 -157

Q = . (5.20)

-157 1

From Figure 2, it is seen that one of the targets,

price stability, is now attained by the prescribed feedback con-

trol policy. Also, Since the dominant eigenvalue of the closed-

lOOp system, 0.39, is smaller than that 0.77 of the zero-control

system, trajectories of both price and interest rate converge to

their steady-state values in shorter time in this case.

Note, however, that the steady-state value of the

interest rate is higher in the closed-100p system with the chosen

control rule (5.17). This can be explained by the fact that the

optimum control policy involves the continuously decreasing money

supply (Figure 3), effecting the price stability, but on the other

hand, causing the interest rate to increase continuously.

 

 

 

Z

l l l

O 5 10 15 t

WV?_AA A.— __‘v—vW

WA::W'A AV;A WW

-4.0b

mt = - 36.4 pt + 0.11 rt - 5.7

-500-

N ’: mt  
Figure 3. Optimal Feedback;Control for Price Stabilization
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It is to be noted that the weighting matrix Q in

(5.20) gives the very heavy weight to the price variable compared

to the interest rate. Negative sign of the Off-diagonal elements

of Q indicates that there exists "trade-off" between the monetary

policy for price regulation and that for_interest rate control.

Anologously, another feedback control policy is found

for interest rate stabilization:

*

"‘t - 313': + 2.31 rt + 0.06 . (5.21)

 
Time paths of price and interest changes and of the

money supply changes under this policy (5.21), are Shown in

Figure 4 and Figure 5, respectively.

In this case, the closed-loop system matrix is

A + bg = 0.83 0.05

-0.001 -0.00006

and the weighting matrix Q is found to be

Q = 1 0

0 594441 . (5 .22)

AS expected, in (5.22) the interest rate variable is

given larger weight compared to the price variable.

One remark concerning the chosen control policies (5.17)

and (5.21): the continuously decreasing or continuously increasing

money supply policy would not be feasible in reality, for, say,

political reasons, if the change rates are big all over the period.

It is important, however, to observe that in the examples, the

control is not constrained and no cost for conducting control policy
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pt . - 0.71(0.83)t + 0.71

rt - - 0.001(0.83)t + 0.001

N

 

 
 

 

 
 

t

It:

0.5L-

0.

L 11 1 .L I rt

0 5 10 15 20 H t

Figure 4. Responses of the System (5.4) under Control (5.21).

2

mt = 3 pt + 2.31 rt + 0.06

3.0“—

mt

r—1I>-

l l

15 20 t

 
Figure 5. Optimal Feedback Control for Interest Stabilization
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is included in the performance criterion, and accordingly the con-

trol is free to vary in the control Space (i.e., the real line in

this case). Obviously, further research needs to be done when the

controls have some constraints and/or the costs of conducting the

policies are incOrporated in the performance index.

5.2 Two-Control Model I

Dropping the perfectly competitive, full employment t

assumption for the labor market, we will consider the overall

 
system given by (5.3).

In this model,we choose wt as a control variable,

since in an assumed imprefectly competitive market, the discre-

tionary pricing power of unions can be used to demand monetary

wage increases in excess of productivity gains. TO the extent

that price expectations are based upon recent price changes, these

demands for larger monetary wage increases will persist in the

absence of any continuing excess demand. Furthermore, these large

increases in money wage rates induce a higher rate of price in-

flation which confirms the original expectations. In such

circumstances, temporary wage-price controls by curbing these

expectations may prove effective. Since it is generally agreed

that wage controls are the more easily administered, wt is chosen

to be a control variable.

The time paths of state variables for the system with

zero controls, mt = 0 = w , i.e., when both money supply and money
I:

wage rate are kept constant, are shown in Figure 6.
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pt - 0.38(0.77)t - 0.38

0.1 - rt - O.456(0.77)t- O.186(0.37)t- 0.27

ut - 0.127(0.77)t- 0.147(0.8)t + 0.02 u

0 1 '1 --l>--T—" t

15 20 t

—001

-0.2

~‘..“‘————--->————t;

.3

f p1
-0.4 (-

Figure 6. ReSponses Of System (5.3) with Zero Control

In order to have price stability with a linear feed-

back control, the chosen feedback gain vector g = (g1, 82, g3)'

should satisfy the following relations simultaneously [(5.11),

(5.15) above]:

-0.028125 g1 + 0.027015 g2 + 0.000348 g3 = 0.08763

-0.3247 g1 + 0.8536 g2 - 0.00656 g3 = l

-O.5 g1 +,4 g2 - 0.01321 g3 = l . (5.23)

From (5.23), the following feedback control policy is

Obtained:

= a(-3-44 pt - 0.21 rt - 9.76 ut + 0.37) (5.24)

*

m

t

*

w

t
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1)
where a = [l] .

l

The resulting time paths of state variables and of the

control variable are shown in Figure 7 and Figure 8, respectively.

With the selected control policy (5.24), the closed-

100p system matrix is

A‘+ Bag = -0.09 -0.053 -2.44

1.03 0.404 1.56

-0.02 -0.0004 0.78

= 1 0 03

0 1 0 E ,

-0.35 -0.05 oj 

where E is a nonsingular matrix.

Applying the inverse Optimal control method as dis-

cussed in (4.52) - (4.54),

D'(A+ Bag) = 0,

DD' “<2 .

where D' = z(0.35, 0.05, l) , (5.25)

the weighting matrix Q in the performance index is found by

setting 2 = l in (5.25) to be

 

(0.12 0.02 0.35‘

Q = 0.02 0.002 0.05 (5.26)

10.35 0.05 1 J 

 

1
) For the computational convenience, the system is converted to

a single-control model [(2.8) - (2.11), Chapter Two].
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-0.01‘ pt - -0.008(O.27) +0.007(0.824) +0.001

-0.02*I; rt = 0.063(0.27)t+0.007(O.824)t- 0.07.

\ ut = -0.0002(0.27)t-0.0028(0.824)t+0.003

\
\

\

—0.051- \
\

\

\\

__________________F — -..—rt

Figure 7. Responses of System (5.3) under Control (5.24).

2

mt - - 3.44 pt- 0.21 rt - 9.76 ut + 0.37

0.36-

ml:

0.35.— "

J l

O 5 10 15 t

Figure 8. Optimal Feedback Control for Price Stabilization.



77

Similarly, the control policy which would achieve full

employment is:

*

mt

* =a(-7.7 pt+0.07 rt+237.1 ut+0.5)

W

t

where (y = (l , l)' . (5.27)

The correSponding time paths of the state and control

variables are shown in Figure 9 and Figure 10.

The weighting matrix for the performance index, in this

 

case is

2

r(0.021) 0 -0.021‘

2

Q = 0 (0.0007) 0.0007 (5.28)

L-0.021 0.0007 1 J 

Comparing the two cases considered so far for the system

(5.3) (price stabilization policy and full employment policy), we

observed the following.

(i) The model reveals the familiar Phillips Curve relation for the

price changes and unemployment variations. That is, when the

steady-state value of ut is reduced from 0.003% to 0.001%, that

of pt increases from 0.001% to 0.045% (Figure 7 and Figure 9).1)

(ii) Relative weight for the price variable is higher for the price

stabilization policy compared to the full employment policy (vice

versa), even though the major weight is found to be given to the

unemployment variable in both cases.

 

1) Magnitudes of figures may be too small to claim the Phillips

curve relation. However, the figures show the essential char-

acteristics of the curve.
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CHAPTER SIX

CONCLUSIONS AND RESEARCH RECOMMENDATIONS

6.1 ‘Summary of Conclusions

By solving the inverse optimal control problem, this

study has demonstrated the feasibility of quantifying performance

criteria for the economic decision making problems. Economic

processes, which are characterized by complex and Often unknown

relationships among their constituent components, require one to

formulate the decision making problems in general, in terms of dis-

crete-time difference equation systems. This demands the solution

of the inverse problem for the discrete-time multi-control systems

for the choice Of the performance indices.

A sufficient condition was developed for the solution

of the inverse problem for a linear discrete-time multi-control

regulatory process with a quadratic performance index. An explicit

solution was obtained for a special case where the performance

functional does not contain the control variables, and the result

was further extended to a linear tracking problem, which could be

easily adapted to the macroeconomic regulation problems.

It has been shown that the solution of the inverse

problem is not unique in general, which implies that the optimal

control policies are fairly robust against different performance

indices under the conditions stated above. Also, it was found that
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the solution of the inverse problem for a linear regulator holds

true without any modification for the linear tracking problem.

In Chapter Five, the illustrations about the applica-

tions of the developed techniques for the selection of the per-

formance criteria emphasize three points; the determination of the

steady-state values of the trajectories of goal variables which

are under control, the computation of the feedback control policy,

and the construction of a performance index. It was shown that

the number of the policy goal variables that can be made to attain

the prescribed steady-state values is equal to the number of the

control variables in the model. It was also demonstrated that the

relative weights given to the competing policy goals in the per-

formance index can be quantitatively determined by the method Of

the inverse Optimal control problem for a dynamic policy model.

6.2 Recommendations for Further Studies

Further research is needed to find a general solution

of the inverse problem for the performance indices which involve

the state variables as well as the control variables. This will

enable one not only to quantify a more general class of performance

functional but also to compare quantitatively the relative merits

of different control policies.

Another line of research can be conducted for defining

the performance functional of a more general type, which could

even reflect the sociological, group dynamic, and gametheoretical

aSpects of the administrative interactions involved in the determina-

tion Of policy objectives.
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Considering the fact that the economic decisions are

typically made under uncertainty and decision makers increase their

knowledge by the cumulative past experiences, the study of the

adaptive control problems would greatly improve our knowledge of

the economic decision processes.

Since the adaptive systems include a performance index

as an essential function which permits correction of system dynamic

reSponse during actual operation, the performance index takes on

much greater significance in the multistage adaptive decision pro-

cesses (Murphy, 1965).
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APPENDIX

THE SOLUTION OF A LINEAR TRACKING PROBLEM

The dynamic system is governed by

+ But + Czt , y = y0 , (A.l)Ay 0

yt+1 = t

where yt is an n-vector of state variables, ut an m-vector of

control variables, zt an r-vector of other exogenous variables

outside the control consideration. The matrices, A (non-singular),

B (with rank m), and C are constant matrices.

The performance functional is

N-l

= - A I _ A - A g - A

J 3567,, yN) Q(yN yN) + ’1 z {(yt yt) (Myt yt)

t=0

+ uéRut} , (A.2)

where Q ==Q' is a positive semi-definite matrix with rank m,

R = R' a positive-definite matrix, and 9C a vector of target

values of the state yt assumed to be Specified for the entire

Optimization period.

The problem is to determine the control sequence

{u:, t = 0,1,2,...,N-l} such that the corresponding state vari-

able sequence {y:, t = O,l,...,N} satisfies the given initial

condition, y; = y0 such that the performance functional (A.2)

is minimized.

In order to get the necessary conditions for the solu-

tion, construct the Hamiltonian,
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H(yt. Pt+1’ ut) = 5(yt - 9t) 'Q()'t - it)

+ ' + ' +5 utRut Pt+1(Fyt + But Czt)

[Here, the system equation (A.l) is considered to be yt+1 - yt =

Fyt +But + Czt. Thus F + I = A], where PC is the vector of

"co-states"

The minimization of the Hamiltonian is written

13* 'k = * ' * =

§;-'(y:P, t++1, ut) Rut +-B Pt+1 0 . (A.3)

The canonical equations for the problem are

* x P* x * *

- = 5— = + + A.
yt+1 yt 3Pt+1 (yt’P +1’ ut) Fyt But Czt ( 48)

* * P* * x
- = -aH—- = - c - I

* 0
with the "Split" boundary conditions y0 = y and (A.5)

* = 3.. x - A . * _ A = * - A

W 5553,10,, yN) Q(yN yN)} Q(yN yN) - (A-6)

We know that (Lee, et.al., 1972)

* * + A 7Pt — Ktyt gt . ( .p)

Substituting (A.7) into (A.3),

6* = -R‘lwx y + g ) (A.8)
t t+l t+1

and with (A.7), (A.8), (A.4a), and (A.4b),

* *

yt+1 - yt = - BRNIBKt+1y:+1 BRNIBgt+1+ (A.9)

*

t
o I

t
o II

* * *

- A - '
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From (A.9),

(I + BR-IB'Kt+1)y:+1 = (I + F)y: - BR-lB'gt+1 + Czt

= Ay: - BR'hs'gtH + Czt . (A.11)

Substituting (A.7) into (A.10),

A'K y* +Qy* - K y* = -A'g + g + Q3) . (A.12)

t+1 t+1 t t t t+1 t t

Define W = I + BR-IB'Kt+ Then (A.11) becomes1.

= -1 * _ - - g '1

yt+1 W Ayt w 1BR 13 gt+1 + w Czt . (A.13)

Substituting (A.13) into (A.12),

-1 * -1 - -1 * *
I w _ I _

A Kt+1{ Ayt W BR 1B gt+1 + W Czt} +Qyt Ktyt

=-' + + " . -Agt+1 8t Qyt (A14)

Rearranging (A.14),

1
Q*+A'1< w'A*-A'K w‘LBR’LB' +A'K w Cz -Q" +A'g
y yt t+1 gt+1 t+1 t yt: t+1t t+l

*

— Ktyt + gt (A.15)

*

for any initial value y0 and for all yt, which implies that

-1
= I

Kt Q + A Kt+1W A (A.16)

- - -1 A

gt A Kt+1W l‘BR 113 g”1 + A gt+1 + A Kt+1W ozt Qyt . (A.17)

By the transversality condition (A.6) and (A.7),

* * " - *+ f * A18PN-Qin-YN)-KNyN 3N orany yN. (- )



Then,

and

and

0
0

H

II
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KN = Q (A.19)

gN = _QSIN . ‘ (A.20)

Recall w"1 = (1 + BR-lB'Kt+1)-1

= 1 — B(R + B'KtflBYIB'Kt+1 . (A.21)

Substitution (A.21) into (A.16) and (A.17),

Kt = Q + A'Kt+1[A - B(R + B'Kt+1B)-LB'Kt+1A] (A.22)

-A'[1<t+1 - Kt+1B (R + B'KHlels'1<t_|_1]BR'IB'gt+1 + A'gt+1

+ A'[Kt+1 - Kt+1B(R + B'Kt+1B)-LB'KC+1]Czt - Qyt

0t + A'[Kt+1 - Kt+1B(R + B'Kt+1B)-LB'Kt+1]Czt - Qyt . (A.23)

-A'[Kt+1 - Kt+1B(R + B'Kt+lB)-1B'Kt+1]BR-IB'gt+1 + A'8t+1

-A'[Kt+1BR-1B'- Kt+1B(R +-B'Kt+lB)-1B'Kt+lBR-1B' - I'jgt+1

-A'[Kt+1B[I - (R + B'Kt+1B)-lB'Kt+1B]R-]‘B' - I}gt+1

-A'[Kt+1B[I - R'1(1 + B'KfilBR-1)-lB'Kt+1B]R-lB' - I}gt+1

_A'{Kt+1B[I + R-IB'Kt+1B]-1‘R-1B' - Ijgt+1

-A'{Kt+lB(R + B'Kt+lB)’1RR'IB' - i}gt+1

-A'{Kt+1B(R + B'Kt+1B)-]‘B' - I}gt+1 . (A-24)

-A'{Kt+1B(R + B'Kt+1B)-1B' - I}gt+1

+A'{Kt+1 - Kt+1B(R + B'Kt+1B)-1B'Kt+1]Czt - Qyt . (A.25)

Substituting (A.13) and (A.21) into (A.8),
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-1 , -1
“r e -R (I -B'Kt+1B(R+BK B) ]B'K

t+1 t+lAy

‘1 I I

+R [I BKt+1B(R+BK+
'1 I " I

t 13) 33 Kt+1BR 13 gt+1

'1 I I

R [1 BKt+1B(R+BKt+B
-1 I - I

1 ) 38 Kt+lczt ‘ R 13 gt+1 ‘

By making use of the matrix identity

I — X(Y +X)'1 =Y(Y + X)'1 ,

C

II

.. ' - . * ‘1 ' " I - I-R 1R(R +'B Kt+1B) 1B Kt+lAyt + R R(R + B Kt+lB) 1B Kt+1BR 1B gt+1

_ '1 I ' I _ ' I

R R(R + B Kt+1B) 1B Kt:102t R 1B gt+1

I

-(R+B K B) 113''AthH*
t+1

B} R1B' g
, -1B

-{_1 -(R+BKt+B
_ I ' I

1 ) Kt+1 (R + B Kt+1B) 18 Kt+1CZt+1

Again, using the matrix identity

I - (Y + X)'1x = (Y + X)'1Y

I I " 'II

-(R + B K+1B) 1B''RC+IM -(R + B Kt+1B) 1RR B gC

II

t+1

I ' I
-(R +IB Kt+1B) 1B Kt+1Cz

I I " I
-(R+BK B)-'Ay:]'BKt+1-(R+BK B)1Bgt+1

t+1 t+1

_ I " I

(R +'B K B) 1B Kt+ICzt . (A.26)
t+1

Now consider the case where R = 0 in the above model.

Let the positive semidefinite matrix: Q be factorized into the

product DD' where rank (D) = rank 62) and (D'B) is non-singular.

Then the matrix Riccati equation (A.22) becomes
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= I _ I ' I
Kt Q + A Kt+1[A B(B Kt+lB) 113 Kt+lA]

1%, =Q

RN_1 = Q + A'DD'[A - B(B'DD'B)']'B'DD'A]

= Q + A'DD'A - A'DD'B(D'B)-1(B'D)-]‘B'DD'A

=Q

This implies

Kt=Q for all t=0,1,2,...,N. (A.27)

The equation (A.25) becomes

_ I I ‘ I _

at — -A th+1B<B Km» 13 133cm

I _ I ' I _ A
+A [Kt+1 Kt+lB(B Kt+1B) 13 Kt+1]Czt Qyt .

Then

-A'[DD'B(B'DD'B)-IB' - I](-Q’$'N)
gN-l

+A'[DD' - DD 'B(B 'BB'B)'1B'BB']cZN - Q9N

+A'[D(B 'D) "113' - I]DD'§IN

+A'[DD' - DD'B(D'B)-1'(B'D)-]B'DD']CzN - Q§N_1 = -Q$rN_1.

(A.28)

Equation (A.28) implies that

gt=-Qyt , t=0,l,...,N. (A.29)

*

Again, consider the optimal control policy ut (A.26) for the

period N-l.
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a“ P
}

.(B'DD'B)'lB'DD'Ay;_1 - (B'DD'BYIB'gN - (B'DD'B)'IB'DD'CzN_1

' -1 ' * I '1 I ‘ I IA _ ' - '-(D B) D AyN-l + (D B) (B D) 1B DD yN (D 3) 1D CZN_1

1
-(D'B)'11)'Ay;_1 + (D'B)'ID"yN - (D'B)- D'CzN_1 , (A.30)

which implies that

* ..

“t — -(D'B) 1
l

D'Ay* + (D'B)- D'? - (D'B)-1D'Cz
t t+1 t

*

-Gyt +Eyt+1 - th , t = O,l,...,N-l . (A 31)
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