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ABSTRACT

A PROPOSED MODEL FOR RENAL BLOOD FLOW CONTROL

by Clyde R. Replogle

Autoregulation of blood flow in the kidney was recognized by Rein

in 1931, and its characteristics have been described by manv authors

(Hartmann, et a1. 1936; Forster and.Maes, 19h7; Selkurt, 19h6; Hinshaw,

et al. 1959; Scott, et a1. 1965). Although there are few arguments over

the existence of and the description of renal autoregulation, there have

been many hypotheses attempting to explain the mechanism of its operation

(Harvey, l96h; Scott, et a1. 1965; Raddy and Scott, 1965; Hinshaw, 196h;

Replogle 1960a; Schmid and Spencer, 1962; waugh and Shanks, 1960;

Wells, 1960). At the present time, three theories are generally accepted:

one suggests a myogenic principle, another indicates some role of meta-

bolic end-products, and a third invokes collapse of interlobular and

arcuate veins. Proponents of each of these theories cite various

lines of experimental evidence to support their theories which, at first

glance, are mutually contradictory.

Evidence supporting a conclusion that the blood flow resistance

change responsible for autoregulation is located in the interlobular

and arcuate veins (Hinshaw, et al. 1959, 1961, 1963, 196h; Replogle, 1960a,

1960b, Wells, 1960) stimulated the study presented in this thesis.

If resistance change concomitant with autoregulation is located in the

renal veins, and is caused by a purely passive phenomenon of a trans-

mural pressure difference causing collapse, the blood flow control

mechanism must be non-linear. That is, fluid resistance at a given

pressure in a section of collapsible vein is dependent upon blood

1



pressure upstream, and upon flow. Flow, in turn, depends on the re-

sistance in the vein and resistance of the vasculature upstream. In

such a control system it is difficult, if not impossible, to assess the

effects of changes in the prevenous circulation on autoregulation in

the venous circulation.

Equations are derived to describe the control of fluid flow through a

simplified model of a section of the renal circulation. This mathematical

model, when solved by a RungeéKutta numerical technique, predicts (a)

that autoregulation can occur by passive collapse of small renal veins,

(b) that flow instability can arise as the result of a limit cycle, ie.

oscillation between two stable states. (The end of the collapsible tube

where the transmural pressure is highest, the tube collapses to com-

pletely stop flow. Pressure immediately increases and tube reopens).

In order to observe the control mechanism postulated by the

mathematical model in a real system, a hydraulic model was constructed

using Tygon tubing to represent the non-collapsible arterial circulation

and penrose surgical drainage tubing to represent the collapsible venous

circulation. Autoregulation occurred in this model and its form was

similar to that predicted by the mathematical model. Measurements were

made of input pressure, output pressure, flow, and pressure within a

water-filled chamber surrounding the penrose tubing through which water

was flowing. The penrose tubing was analogous to a vein immersed in

interstitial fluid. Several conclusions can be drawn from analyses of

these data:

1. Autoregulation of fluid flow, similar to that seen in the kidney,

can occur by the passive response of collapsible tubing to transmural

pre ssure .

2. Because of the non-linear relationship between the area of the



collapsing tube and the transmural pressure, it is not necessary for

chamber (interstitial) pressure to increase suddenly in order to pro—

duce autoregulation.

3. Oscillation in outlet pressure can be caused by a limit cycle

when the resistance just upstream of the collapsible tube is low and

the flow rate is high.

Measurement of blood flow rate, arterial pressure, and interlobu-

lar venous pressure (by retrograde insertion of a small cannula) were

made on eight dog kidneys. Results indicate that the resistance change

responsible for autoregulation takes place in the interlobular veins

and the form of the pressure-flow curves approximates the form predic-

ted by the mathematical model. The hypothesis of non-linear venous

control of renal blood flow is compatible with other findings such as

the concomitant release of metabolic end-products (Scott, 1965) because

venous control is very responsive to changes elsewhere in therenal

circulation.
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A PROPOSED MODEL FOR RENAL

BLOOD FLOW CONTROL

I. Introduction

The phenomenon of blood flow control intrinsic to an organ or seg-

ment of the circulation, without external control centers, is generally

termed autoregulation. Autoregulation has been described in the liver

(Torrance, 1958), skeletal muscle (Folkow, 19h9), myocardium (Berne,

1959), brain (Rapela and Green, 196A), intestine (Johnson, 1960), and

kidney (Selkurt, 19h6). It has been found in humans, dogs, cats, rats,

and calves. The form of pressure-flow curves can be quite different

in each of these organs, and, because of the differences in blood flow

rate per gram of tissue, interstital pressure levels, and reactivity

to vasodilator metabolites, it is unreasonable to assume that auto-

regulation in the kidney and in other organs might have a common mecha-

nism. Therefore, the model suggested in this thesis is proposed only

for the kidney and autoregulation in other organs will be considered

nowhere else in the thesis.

The first experiments on renal autoregulation were performed by

Rein (1931) and later by Unna (1935), Hartmann (1936), and Forster and Maes

(19h7). These investigators concluded that an increase in systemic blood

pressure causes an increase in resistance to blood flow resulting in less-

than-proportional increase in renal blood flow, and that this phenomenon

does not depend on neural cennection to the rest of'the body. Selkurt

(l9h6) further characterized renal autoregulation as a means of control

which only exists after arterial pressure exceeds 80 mm Hg. Below this



pressure, blood flow is directly proportional to pressure drop across

the kidney. Since these first descriptions of renal autoregulation,

many investigators have presented experimental evidence to support

various opinions concerning the mechanism by which it occurs. The

hypothesized mechanisms which are still widely accepted today may be

divided into two types: active, (i.e., requiring energy expenditure

by an effector), and passive (i.e., reacting to forces present with-

in the circulation.

Three types of active control have been suggested: reaction to

vasodilator metabolites, myogenic reaction to changes in transmural

pressure, and a local reflex causing arteriolar vasomotion in re-

sponse to pressure or flow within the kidney. All three of these

types are active feedback control mechanisms. While the three mecha-

nisms imply different sensing mechanisms to regulate flow, (response

of general or specialized cells to decreased flow in the case of the

metabolic mechanism, a flow or pressure sensor in the case of a local

reflex mechanism, and inherent response to muscular arterioles in the

case of the myogenic theory), and different control pathways (a chemi-

cal substance for metabolic control, neural pathways for a local re-

flex, and internal smooth muscle reaction for myogenic control), they

all require a common effector, namely, the smooth muscle of the arteriole

wall.

There is a good deal of evidence to suggest that a vasodilator meta-

bolite is somehow connected to renal autoregulation. In early experi-

ments, Winton (1934, 1951) and Bickford and Winton (1937) cooled dog

kidneys in an isolated perfusion arrangement and found a decreased regu-

lation with a concomitant increase in intrarenal pressure. This response



to temperature could easily be construed as affecting a metabolically

dependent mechanism.

Haddy and CO-WOerrS (19583) hypothesized that renal autoregulation

was dependent on a metabolite, and that autoregulation of renal blood

flow is dependent on blood flow rather than blood pressure. They

based this conclusion on their findings that the onset of autoregula-

tion appears at the same flow rate but at widely different arterial

pressures, that lymph flow increases very little with increased ar-

terial pressure, and that decapsulation does not decrease autoregula-

tion.

Harvey (l96h) showed that renal blood flow and glomerular filtra-

tion rate (GFR) (estimated by the product of directly measured renal

plasma flow and creatinine extraction) were held relatively constant in

spite of large changes in perfusion pressure in the isolated dog kidney.

He further showed that adenosinetriphosphate (ATP) when infused into

the renal artery could produce these results. He concluded that ATP

produced dilation of the efferent arteriole. His work shows that a vaso-

dilator metabolite could be released as a result of a decreased flow or

pressure. Scott et a1. (1965) substantiated this hypothesis by using the

forelimb as an assay organ.‘nry'found that a vasodilator substance is re-

leased from the kidney when perfusion pressure was decreased. Scott

and his co—workers found that adenosine, adenosine monophosphate (AMP),

and ATP cause dilation in the forelimb but only ATP dilates the kidney.

Also, they found that when ATP is infused into a kidney with the contra-

1atera1 kidney as the assay organ, the target kidney shows dilation

while the assay kidney shows constriction. As AMP has been found in re—



nal venous blood after reduction in perfusion pressure (Gordon, 1962),

Scott and his co-workers interpreted their finding to mean that ATP

is released when perfusion pressure is decreased. It then causes

vasodilation and is then quickly converted to AMP or adenosine.

Winton (196h) attempted to show that autoregulation is "activa-

ted" by changes in velocity of blood flow rather than pressure dif-

ferences across blood vessel walls. He obtained pressure—flow curves

from control, epinephrine treated (0.h to 1h mm3 of 10 to 20LJg ml-1

added as an impulse to each 0.6 m1 of blood perfusing the kidney),

and kidney cooled to 6-630. He then plotted resistance versus flow and

resistance versus pressure. His curves show a better functional

relationship between resistance and flow than for resistance and pressure.

He cites this as evidence to support "a fairly clear indication of a

flow - dependent mechanism". Even if his curves did support this conclusion,

his method of calculating resistance produces a function which is unrelated

to usual concepts of fluid resistance. He calculated resistance as the

slope of the line connecting two adjacent points on a pressure-flow

diagram, referred to the pressure mid-way between the two relevant pres-

sures, divided by the slope of the line joining the origin to the point

representing blood flow at 100 mm Hg. This calculation yields a nor-

malized value of dP/dQ which has no physical significance. For example,

if one has a system in which flow is constant for all values of pres-

sure, Winton's method would calculate an infinite resistance for all



values of pressure and flow.

Bayliss (1902) and Folkow (19h9) have shown that arteries and ar-

terioles respond to an increase in intraluminal pressure by increasing

the tone of their walls thereby decreasing their cross-sectional area

and increasing their resistance. waugh (1958, 1960) proposed that this

myogenic, vasotonic reaction occurring in the afferent arteriole is

the mechanism responsible for renal autoregulation. He based his con-

clusions on his findings that autoregulation is abolished by cyanide

(suggesting an active process), that autoregulation is present after de-

nervation (discounting a neural mechanism), and that there is a short

delay of 2-3 seconds between the arterial pressure change and the onset

of regulation. Semple and De Wardener (1959) measured arterial and

venous pressure and flow in kidneys. By varying venous pressure they

found that autoregulation depends on arteriovenous pressure difference

rather than on the absolute pressure. They took this to indicate that

the mechanism must involve the distension of small renal arteries and

arterioles which causes a muscular reflex.

Haddy and Scott (1965) investigated the relationship between blood

flow, arterial pressure, venous pressure, and pressure in an occluded

hilar lymphatic vessel and found that hilar lymphatic pressure rises

greatly on elevation of venous pressure but is little affected by a

change in arterial pressure. They cite these data as evidence that the

change in resistance caused by an increase in arterial pressure occurs

in the arterioles. In the same study, Haddy and Scott were able to

show that renal arterial pressure increases transiently for 2-h seconds

in response to a transient flow pulse lasting 0.5-2 seconds which they



state could represent a constriction (arteriolar) elicited.by the

stretch. They conclude that a myogenic response to a change in trans-

mural pressure might assist the metabolic mechanism they have postu-

lated (Scott, et al. 1965).

It is new interesting to note that while Haddy and co-workers

(the strong proponents of a metabolic mechanism) have begun to sus-

pect that there may be some myogenic responses creeping into their

theory, waugh (l96h) (the strong proponent of a myogenic mechanism)

has "tentatively suggested" that, while he is not going to throw out

the transmural pressure idea altogether, autoregulation (still located in

the afferent arterioles) may be dependent on variable metabolic feedback.

This metabolic factor in turn is dependent on tubular re-absorption of glo-

merular filtrate and all are related finally to changes in transmural

glomerular capillary pressure. His conclusions are based on some rather

extensive observations on the fully isolated kidney; Measurement

of intrarenal venous pressure (arcuate, interlobular) allowing division

of renal resistance into prevenous and postvenous resistance indicate that

the autoregulating resistance change is prevenous. Perfusion with a cell-

free solution (e.g., 20% plasma - 80% PVPALocke) resulted in good autoregu-

lation thus eliminating a hematocrit change as important. A step increase

in arterial pressure resulted in a transient, almost critically damped,

pulse in flow with about a five second.time constant, and a new, less-than-

proportional, increase in steady state flow.

waugh reports the observation of a "hunting-type" reaction of flow

in response to a pressure step. But his curves show nothing more than

a decrease in damping (approximately 3 cycles to half-amplitude rather



than approximately 0.8 cycles to half-amplitude, for his "non-hunting"

kidney). The resistance of the higher damped kidney was 1.10 PRU be-

fore pressure step and 1.85 after, while the resistance of the under-

damped kidney (treated with yohimbine to accomplish intrarenal sym-

patholysis) was 0.78 before pressure step and 1.28 after. The dif-

ference in his two responses could more easily be accounted for by the

lower inertance and resistance of his treated kidney, rather than by a

complex servomechanism."hunting" of a predetermined operating level.

waugh further observed that the flow response to a pressure step in a

kidney in which the vascular reactivity was completely abolished by treat-

ment with chloral hydrate, was also a step which changed proportionally

more than pressure. This indicated to waugh a mechanism which relies

on vasomotion. By comparing the autoregulation capability of the same

kidney one hour after isolation and three hours later (after mannitol

diuresis) he was able to show that even though resistance had increased

h-5 times and flow reduced greatly, autoregulation.responses were still

good. He concluded that autoregulation is pressure dependent not flow

dependent. Since glomerular filtration rate (GFR) is also autoregulated

(Harvey, l96h; Schmid et al.,196h), Waugh contends that his observations

confirm the concept of a preglomerular vasomotion change during regulation.

waugh's final paragraph (Naugh, 196h) is as follows:

"The reported experimental findings appear to sup-

port the hypothesis that myogenic vasomotor changes

in the renal arterioles, in response to transmural

arteriolar pressure, underlie active renal circula-

tory autoregulation. However, the experimental

findings also support, perhaps more strongly, a new

hypothesis that active renal circulatory autoregula-

tion is accomplished by afferent arteriolar changes

in resistance caused by tubular re-absorptive meta-

bolism in response to flow of glomerular filtrate or

to the level of glomerular transcapillary pressure."



Meanwhile, Schmid, who with Spencer in 1962 postulated an active

feedback control system, has now (Schmid, et a1, 196h) supported waugh's

old theory. Their first postulate was based on their observation that

the renal pressure-flow curves are sharply inflected which,they main-

tained (without presenting evidence or 10gical argumenO, would exclude

a passive mechanism. In their later experiments, Schmid and his co-

workers found that blood flow is controlled by either a reduction in

arterial pressure or increase in venous pressure and that GFR is also

regulated in a like manner. They concluded that the regulation re-

sults from reduced pressure gradient and the resultant fall in trans-

mural pressure of the preglomerular vessels.

In contrast to the active type of control demanded by the previous

mechanisms, a passive feed-forward control has been postulated by Hin-

shaw (1959, 1960a, 1960b, 19600, 1961, 1963a, 1963b, 196h), Replogle

(1960a, l960b),and wells (1960). This mechanism is based on partial

collapse of small intrarenal veins (interlobular) caused by a positive

interstitial - intraluminal pressure difference. It is a passive con-

trol because no energy expending actuator is postulated and it is feed-

forward control because the controlling variable (interstitial pressure)

is derived upstream from the controlled variable (interlobular vein area).

The first evidence supporting this "tissue pressure" hypothesis

came from two experiments (Hinshaw, 1960a; Replogle, 1960a, 1960b;

Wells, 1960) using different indirect techniques to separate prevenous

from postvenous resistance. These experiments show the autoregulating

resistance changes occurring downstream from the glomerular capillaries

(Hinshaw 1960a) and downstream from the peritubular capillaries (Replogle



1960a, 1960b; Wells, 1960). More recently HinShaw (1960) and Section

IV of this thesis show the resistance changes are located in the inter—

lobular or arcuate veins.

Hinshaw (1959) blocked ureteral flow and, when ureteral pressure

reached equilibrium, took the value of ureteral pressure as the pres-

sure within Bowman's capsules Having determined this pressure value,

it is possible to calculate the pressure droprbetween the renal artery

and Bowman's capsule (glomerular capillaries), and the pressure drop

between the glomerular capillaries and the renal vein.

By plotting each of these pressure differences against flow, the

amount of autoregulation in each section can be compared. Although

the regulation in each segment is calculated in the same way, the man-

ner in which an intrarenal pressure is obtained is different for each

of the methods. Direct pressure values are obtained from a cannula

inserted into an interlobular vein just short of the wedging point.

The indirect method used by Replogle and Wells is more complicated.

With the isolated kidney weighed continuously and flow blocked at the

renal artery, renal venous pressure is increased in stages and a rela-

tionship between distending pressure and distensiOn volume noted.

With flow at zero, pressure throughout the kidney is the same and the

distending pressure is taken to be the average pressure at the site

of interstitial fluid formation. Flow through the kidney is then

resumed and by measuring arterial pressure, flow rate, venous pressure,

and kidney weight, the resistance of the segments of the circulation up-

stream and downstream from the transudation site can be calculated.

The disagreement between the direct small vein measurements of
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Waugh (1961.) and those of Hinshaw and Replogle, and the criticism of

both techniques by Haddy and Scott (1965) are virtually the only contro-

versies over data (see page 53 for discussion of Haddy‘s priticism and

page 68 for discussion of Waugh's measurement). However, the contro-

versy over possible mechanism is widening.

Perhaps the difficulties encountered in the attempt to merge the

existing postulates and supporting data into a simple, and possibly

correct, hypothesis are that the "criteria" (See Johnson, l96h) that have

been suggested to separate the various mechanisms, and the "reasoning"

used to reach the conclusions, have been largely intuitive.

By intuitive it is not meant that the proposed mechanisms and

"critical experiments" were created from whole cloth, but that they

have not'been examined in the light of a rigorous description of renal

fluid mechanics. Koch (196h) presented certain physical relationships

which would exist in each of the proposed mechanisms by examining

solutions obtained from idealized models. His approach, designed to

provide a physical basis for separating one hypothesis from another, is

certainly correct as far as he went. He did not, however, go beyond

this to an illustrative solution of an entire control system.

The model proposed in this thesis is based on passive collapse of

the interlobular veins. The study was stimulated by earlier work

suggesting that the autoregulatory resistance changes take place in

these veins, and by the desire to show how arteriolar changes would af-

fect venous regulation. Some of the confusion surrounding explana-
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tions for autoregulation can be explained by the non-linear relation-

ships which must exist in such a passive control system. The collaps-

ing pressure at any point in the veins is the difference between the

extraluminal and intraluminal pressure at that point. The intralumi-

nal pressure is a function of a) the resistance upstream from that

point, b) the arterial pressure, and c) the flow. When the vessel

collapses, its resistance increases, thereby changing the flow, and

changing the variables on which collapsing pressure depends. It is

very difficult to assess the influence of all of the fluid flow para-

meters in such a system by intuition alone.

It is the purpose of this study to describe mathematically a sys-

tem which could operate to control renal blood flow in the venous cir—

culation by passive means. A model is described which predicts the

effects of the remainder of the renal circulation. Analysis of a

hydraulic test model is presented to verify the mathematical model.

Measurements of prevenous and postvenous regulation in the dog kidney

are presented to verify the site of resistance change. Pressure-flow

curves obtained from dog kidneys are compared with curves obtained

from the hydraulic test model and predictions from mathematical theory.

Results obtained by other investigators are examined in the light of

the model.



II. Mathematical.Mode1
 

Concept

The purpose of a model is to reduce a complicated system by im-

position of assumptions and constraints to a simple system for which

descriptions can be feund and from which productive predictions of

behavior of the complicated system can be made. If the modeling pro-

cedure has been correct, the mathematical description of the model is

also the description of those aspects of the system that have been

modeled.

The model presented here is restricted to operate on a principle

compatible with operation in the renal venous circulation. That is,

it must employ no mechanism that would depend upon active vasocon-

striction. The mechanisnlis based on renal interstitial pressure aris-

ing by fluid leakage from the peritubular capillaries and renal tu-

bules. An increase in interstitial pressure compresses the thin-

walled veins. Although the model is concerned with a principle

mechanism of change in resistance responsible for autoregulation lo-

cated in the collapsible vessels, the resistances of the other seg—

ments of’the renal circulation are considered as parameters affecting

the control.

A simplifying assumption is made in considering the converging

and diverging vessels of various diameters and wall thickness as

single tubes. This assumption does not compromise the model, because

the goal of the model is to show a principle on which renal autoregu-

lation could operate, and not to predict the actual magnitude of the

blood pressure at a specific location in a vein. The model is so con-

12
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structed that it is consistent with renal anatomy in the sense that the

same functional relationships between variables, such as pressure and

flow, exist in the kidney as they do in the model.

It is also assumed that distributed points in the renal circula-

tion can.be modeled by discrete points. The error inherent in this

assumption is dependent on the distance between the points. (See Appen-

dix B for error analysis.) It is further assumed that the flow through-

out the system is laminar. This has been shown to be the case by Mc-

Donald (1960).

Symbols used in the development of the model are shown in Table

1. In addition to definition of physical units, a functional nota-

tion (see Fig. l) is shown in Table 2. The functional notation is

used to describe locations within the kidney or model, and is used as

subscripts to variables. In the description of a segment of circula-

tion, the notation describing this segment is taken from the first

point of reference to the next point of reference. That is, for example,

the average flow between the inlet (O) and the leak point (S) is Q”;

the drOp in pressure Pg — PS = APg; the resistance of this section Rg.

The control circuit segment is denoted by subscript c.

Derivation o_f. manic guations 91 Motion for Model

Figure 2 shows a linear tube which is called "linear" because the

area does not change as a function of any system variable, but the area

can be made to change as a function of other inputs not considered.
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Table I

Symbols

Name Units

area cmz

minor axis of ellipse on

major axis of ellipse cm

circumference cm

base of natural log

acceleration due to gravity

fluid inertance

length of tubing

pressure

volume flow rate

resistance to fluid flow

resistance per unit length

shear stress

viscosity

fluid flow velocity

variable distance

fluid density

time

frequency

2.718 approximate

980.6 Dyne cm'g/cm H30

cmHgO seca cm-a defined

dQ
so that AP = L EE-across

an element

on

cm H20

3 —1
cm sec

cm H30 cm"3 sec; P = R9

cm H90 cm“L sec; R = r2

-3
dyne cm

-2
dyne sec cm

cm sec-1

cm

gm cm_3

sec

radians sec P 1
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Table II Functional Notation and Systems Analogs

Kidney ' Model

Point of hydraulic input Point O. hydraulic input to

to kidney - a point in model

the renal artery just

outside the kidney
 

Point 1. distributed point of Point S. leak point

exchange between cir-

culation system and

interstitial space.

(glomerular capil-

laries to tubules

to interstital space

and peritubular capil-

laries to interstitial

space).

 

Point 2. distributed point. Point (2). beginning of

Where the collapsa- collapsible tube.

bility of the veins

becomes large enough to

allow them to change area

with a pressure difference

across the wall.
 

Point DV. a point of measurement Point CT. a point within the

within the interlobular collapsible tube

veins, upstream hydrau- which represents

lically from a point of an average tube area.

maximum constriction.

 

Point V. a point of measurement in Point 3. a point at outlet of

the renal vein just out- system.

side the kidney.

 

Point I. interstitial space Point 0. any location within the

pressure chamber surround—

ing the collapsible tube.
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Figure 2 Linear Resistance Tube

   
Perimeter C

  
According to Newton's second law of motion, force equals mass times

acceleration. Applying this principle to the fluid within a tube.

mfl = g P1,, A—gPOut A-cTt

(11'.

Since the term "cw" represents the frictional force, the term may be

replaced by an equivalent force (g R(w) Q A) which is the pressure drop

(due to friction) times the area. This yields:

dv

maz= gP,u A-gPout A-gR(uJ) QA.

Further, m = 0A2, and v = %.

then, pawl. (63—) = g P," A-g P0,, A-g R(w) Q A.

dt

Canceling the area and expanding the derivative

.9.

dt A

on dQ

-— -— = P - o R(w Q.
gA d‘L in ut )

Solving for Pout
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pt dQ
P = P - R(D - - ~-—.
out in ( )Q Ag dt

2

If %-is defined as L (fluid inertance), and a correction factor

3

(Stedman '56) is used to include the effect of frequency on the effec-

tive mass, the equation becomes:

P... = P... - Pm) Q-L(w) 3% (1)

Applying this equation to each linear element (see Fig. 1) provides

the required set of dynamic equations. These are:

P. = P, - 12,0») Q, - 1,,(w) 1:? <2)

- 9.9.-e-P.-mm)m-medt e)

m=P.-mmm.-mm)§& d)
dt

In addition to the above, an equation of continuity may be written

for the junction point (see Fig. 1):

%=Q.+m. G)

This completes the derivation of the continuity and momentum equations

for the linear elements. Although an energy equation could be derived,

it is not independent and provides no new information.

The methods of Shapiro (1953), for compressible fluid dynamics,

are used to derive the collapsible tube equations because a simple rela-

tionship exists between compressible flow in incompressible tubes and

incompressible flow in compressible tubes. The equations are written

for the fluid in a control volume (Fig. 3) defined by the walls of
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the collapsible tube. It has been assumed that the tube collapses in

an elliptical shape of constant circumferencewhich holds for the

values of pressure and flow where regulation occurs.

The principle of conservation of mass may be applied to the fluid

in the control volume to derive the continuity equation. That is, the

time rate of change of mass in the control volume is equal to the rate

at which it enters one end minus the rate at which it leaves the other

(see Fig. 3c). Or,

a

— Adx = oAv - Av

at (p ) ‘x p ‘x+dx

 

Figure 3 Control Volume

-'-'--(as in Fig. l)

 

 

 

 

 

Ellipse of Constant

Perimeter c
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EXpanding oAv in a Taylor series about x,

B ..
OAV‘X‘l‘ as OAV‘X + 8—}: (OAV)Cl.X,

which will yield

3— (pAdX) = :3 (on) dx.
3t Ax

Since the fluid is incompressible and x is not a function of time,

A
~5— + L“) = o. (6)
at ox

Newton's second law may be applied to yield the momentum equation.

That is, the time rate of change of momentum in the control volume is

equal to the net rate of momentum entrance plus the sum of the forces.

Or,

a _ 2 2
530— (pAvdx) — pAv \x- oAv \x+ + gPA‘x- gPA‘x+ +

dx dx

dP dA
P+— ‘ -

g(: 2 . dx CT '

Again, expanding in a Taylor series,

a B

— (pAvdx) = oAvgl - [ pAv2\ 4' -- (psz) dx J +

at x x Bx ‘

 

gPM -g[PA) +_a_.(PA) dxj+g<P+£ EALdX-Cde,

x x dx 2 dx

or,

a (Adx)-:3(A3)dx a(P‘de+Pde+
atpv axov 'g 8 dx

Pg-EaAdx de

g 28x '° °

If the higher order differentials are neglected, and the derivative of
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PA expanded,

dPd -d

-- (oAvdx) =--(oAv2) dx -gA-dx- chx.

Ax dxAt

This reduces to

o iléXl.+ o jL-(Avg) + g A i§-+ cT = 0.

At Ax Ax

Expanding the differentials,

a! + A + A(A ) + EX_+ £2-+OAAt 0v t 0v OAvdx gAAx CT-O

and subtracting ov times the continuity equation (6) eliminates the

terms indicated. The equation then becomes,

Av Av AP

pASE+pAv§+gA§£+cT=O.

Since the term "cT" represents the forces per unit length due to fric-

tion, it may be replaced by an equivalent force of the pressure drop

due to friction per unit length times the area. Therefore, since

cT = grQA, where r is the resistance of the tube per unit length,

Av Av AP

A - + A _ + A _ + = O.

‘0 At 0 v Ax g Ax grQA

It can be shown (see Appendix A) that for an elliptical tube of con-

13

stant perimeter, r = r' AA—l—, where r' is the resistance per unit

A3

length of the tube when it is circular and has the area A’. The equa-

tion then becomes:

 

a Av AP , (A’)3

o A o v Ax g Ax gr A2 Q 0 (7)

The volume flow rate can be expressed in terms of area and velocity:
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Q = Av. (8)

The three differential equations (2,3,4) for the linear elements are

coupled to the two differential equations (6,?) for the fluid in the

collapsible tube. One coupling relation is the mechanical proper-

ties of the collapsible tube which will be called the "equation of

state" and which must be determined experimentally (see pagelJD.

The relationship is: A(x) = f (Po - P(x)). For 7a " diameter pen-

rose tubing the function is:

A(x) = 0.362 e_’°'159(P° ' P(x))a + 0.105 e"°'°°61(Pc - P(x))2 1

0.0398
 

+ 0.03. (see page hé) (9)

(Po " P(X) + 1)o .2

A second coupling relation can be deduced by relating the area of the

collapsible tube to flow through the control circuit (c). Since the

chamber containing the collapsible tube is rigid, the net volume of

the chamber is a constant. Therefore, the flow equals the net rate

at which the tube is contracting:

- A t

C = — A c

Q At So dx (10)

For the real kidney and in a model used to test the effect of the

stiffness of the renal capsule, the increase in volume of the system

must be measured and equation (10) becomes:

_ l

QC=JS Adx+gz,

At 0 dt

where v is the volume of the chamber.

The third coupling relation is the overall energy rate equation
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for the chamber containing the collapsible tube. For the purpose of

this derivation, energy dissipated due to friction may be considered

lost because it can never be converted back to mechanical energy with-

in the system. Within the chamber as a control volume, the time rate

of change of energy stored is equal to the net rate at which kinetic

energy enters plus the net rate at which work is done on the system

minus the rate at which energy is dissipated due to friction. Or,

A ‘£ oAve oAgv: oAgvf

53°C +P.E.>dx= + -
   

 

2g 2g 23

OAgvg I (A’)3 2

where P.E. is the potential energy per unit length stored in the walls

of the collapsible tube. The potential energy stored in the tube is

equal to the work done on the tube in compressing it from the initial

area A’ to the final area. That is,

Pc - P

P.E. = 30 (pressure difference) (change in volume)

Pc-P

 

=3 a-dA(o)-i
0

or since

dA(O.) = BMQ) do,

Ax

 

P, "P AA(a)

P.E. = a do. dd=h (PC-P).
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Substituting

Q Q

vc =-£’ v8 =-."Q3 " Qfl, and

A, A,

Q

v3 = Ag, and setting P3 = 0 reduce Eh. 11 to

3

 

 

 

2

a 1. pAV’
P 0 3

all +hu,-p)]a= 93+ Qa-

 
 

28 2gAc2 ZgAsa

0 "Oz AI 3

3 Q¢ + Pc Qc + P2 Q3 " 3 r' ( 3) Q3 anv

2a). ° A

In summary, the complete set of equations consist of:

 

 

AQQ;

P1=P¢-%Q¢-L¢‘g;

AQ.

P2=P1 -R,Q,-L,g:c—

A

P.-P.-P.Q.-L.-9-‘i
At

Qg = Q3 + Qc

for the linear elements, and

35 + A(Av) _

At Ax

Aav+ A Av+ AAP+ , (1’)"Q o

O -— 0 v— — r =

Ax g Ax g 2

Q = Av

for the collapsible tube, and

:
b ll f (PC-P)

(2)

(3)

(h)

(5)

(6)

(7)

(8)

(9)
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-3 z

Qc = --S Adx
At 0

3 3 3 3

33.1, {a OAV 0 QchQ

2s 2g A, A, A,

“I. r, (A/)3

+ Pc Qc + P9. Qs'g (12)
 

O A3

for the coupling relations. This set of ten equations in ten unknowns

could (in principle) be solved to establish the dynamic behavior of the

system.

Steagy Flow Equations and Boundagy Conditions

When the flow is not changing with time, the equations describing

the system are reduced considerably. Under these conditions, the dif-

ferential equations may be integrated numerically with a Runge-Kutta

technique or by direct integration if the relationship between area

and pressure in the collapsible tube is simple. The set of equations

for steady flow reduces to:

 

 

Pc = P1 (13)

P2 = P1 - R, Q (1h)

Q = Av (8)

d(Av) _

dx - o (15)

0Av dv AdP I (A')3
-—g— a + a-x— + 1‘ A2 Q = O (16)

A = r (Pc - P) (9)
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This set of equations may be modeled in the following manner. There

is a relationship between P9, P0, and Q within the collapsible tube;

Q = g(Pe, PC), ‘which is represented below.

ch
Collapsible

tube

Pg—F "*Q

Q = 8(P23Pc)

 

   

The linear element also has a transfer function P9 = P1 - R. Q

 

Linear Element

Pl-l'r R 4P2

P,=P,-QR

1‘
Q

   

In the closed loop configuration these two elements are connected so

that Pc = P8 (see Fig. A).

 

Figure 4. Closed loop Configuration
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The method used to solve the system shown in Fig. h is to deter-

mine the transfer function Q = g(P2, PC), and then close the loop

Pc = P8 to find the relation QC = Q(P1). ‘Fig. h shows that there

are actually two control paths. The input pressure is "fed forward"

(a) to apply pressure to the collapsible tube and the flow rate is

"fed back" (b) to the linear resistance. To solve the set of equa-

tions (8,9,13,1h,15,l6), the differential equation for the collapsible

tube must be put in a form suitable for the use of Runge-Kutta tech-

niques. Expanding 15,

dv dA
_ + "— = cA dx v dx 0

or,

dv _ v dA

dx ’ ’ A dx

Putting this into (16) yields

PvedA+AdP+r’(A’)3Q =
_.___._. 0.

g (1X (1X A2

But from (8),

=9.
V A

Hence,

0 2 I I 3

-iE—A-+AEE+£—£§_.—)—_Q.=O.
(17)

gAe dx dx A2

If it is assumed that the area of the collapsible tube is a simple

function of pressure (i.e., such as A = Pc - P) then,

dA _ dA dP

dx dP dx

Therefore,
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- --- — —- + A + o.

gA‘a dP dx dx A2

Solving for 533,
dx

dP -r'(A')3 Q

dx A3 0Q2 dA (18)

' ? KP

This is in the required form for integration by a Runge-Kutta technique

(i.e., 1’1 = v <P)).
dx

In the real kidney, however, the area of the collapsible veins

would not be expected to be a simple function of pressure difference

across the walls. Collapsibility of the veins varies from venule to

renal vein as the diameter and wall thickness increases. The assump—

tion of variable properties only slightly complicates the mathemati-

cal solution. A more general case would assume that radius and area

are functions of distance along the collapsible tube.

(r’ = r' (x); A’ = A' (x), A = f (PC, P,, x). In this case

dA=35dx+§édP,
Ax AP

and

$-95 29:51,;

dx-Ax+A dx

Putting this into equation (17) and multiplying by A2,

0 2 2
.._Q_P_‘E‘._(E_P_AP£+A39£+IJ(X)3Q=O

g Ax g AP dx dx

- r'(x) A’(x)a Q (19)

 

P P '-

asain solving for EL, 2.. = s Ax

O
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Equation (19) is of the form.

dP

'- = Y (P,x),
dx

and hence can be solved by a similar Runge-Kutta technique. Even though

there may be some variations in tube properties with distance, a reason-

able approximation I‘or the present series of experiments is that the

tube area is only a function of collapsing pressure (Eq. 18).

 

Figure 5

Eld Boundary Conii tions of the Collaausible Tube

Chambe r  

 

Co" " A“ ’51 bl e

Tube

 

 

   
The boundary condition at x = 2 is derived from Venard ('57),

3 3 ( 2

V v -v)

2s 2g 2s

where K is a discharge coefficient, for a sharp area transition, K is

usually taken to be one (1). Setting K = l, and solving for PA,

2

V3 ' V£ V3

P =

£ a
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or,

2 8

p]a = Q2 _ Q (20)

gAs sAa At

 

this is the required boundary condition at x = A

Summagy

A set of equations is derived for a system which models blood flow

regulation in the kidney. The system contains two control loops which

can regulate rate of flow. These equations can be solved by an itera-

tive, third-order Runge—Kutta technique to show the relationships be-

tween pressure input (P2) and flow (Q) through the system with the

series resistance (R,) as a parameter.

Computer Solutions
 

A computer program was written for the IBM 709h to solve equation

(18) subject to the boundary conditions of equations (1h) and (20).

The logical sequence followed by the programs to solve for open loop

response, closed loop response, and pressure distribution along the

collapsible tube is shown in Appendix B.

The parametric fluid flow curves predicted'by the computer pro-

gram are shown in Fig. 6. Two results of this simulation seem signi-

ficant. With the range of R, used, the curves (when corrected with a

dimensional analysis for the difference between.blood viscosity and

water viscosity, i.e., P multiplied by 4) fall into the pressure-flow

range for the kidney and exhibit similar regulation characteristics.

Also, the results predict a region of instability where the flow rate

would oscillate. This unstable region has also been noted in the kid-
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Figure 6 Computer Results for Closed Loop Operation
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ney (Replogle, 1960; Hinshaw, 1961). An explanation of the instability

can be found by examination of the denominator of equation (18).

g: g r’ (A’)3 Q

dx - A3 OQQ dA (18)

g dP

 

As Q increases there is a point where the denominator approaches

zero for a given value of A and fig. The mathematical interpretation

is that as Q approaches a value which makes the denominator zero, the

steady flow equation no longer describes the system. This means that

the flow is no longer time independent but is oscillating. For any

given difference in pressure (Pc - P), A and i? may be calculated from

equation (9). Solving the equation (Denominator of Eq. 18),

$9.3953 =

A g dP
O (21)

for Q, predicts the maximum flow rate (Q...) for which steady flow

equations apply. The solution is plotted in Fig. 7. This procedure,

however, has a limitation in that it can predict the upper limit of

steady flow but not the actual flow rate at which the system will os-

cillate.

The predicted open loop curves are plotted in Fig. 8 and the pre-

dicted pressure distribution along the collapsible tube are plotted in

Figs. 9 and 10.



 

'li

/ //////// /

 



3h

Figure-8 Computer Results for Open Loop Operation
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III. Hydraulic Test Section

In order to check the predictions made by the computer analysis,

a mechanical model was constructed. The use of a mechanical model to

check predictions has several advantages. The mechanical model can

be made to conform exactly with the assumptions made for the equa-

tions eliminating questions concerning initial hypothesis of mechanism.

The model provides access to variables that are impossible to measure

directly in the kidney; Most important perhaps, is that it provides

a "proof of existence". That is, if a model can be made to control

flow using the mechanism postulated to exist in the kidney, at least

it could work this way in the kidney.

Pressure §EBElZ

The pressure supply (Fig. 11) consists of a variable height over-

flow reservoir. water enters at the top of a 6 inch diameter, 5 foot

high metal cylinder. Thofiafi inch diameter tubes are welded to the bot-

tom of the cylinder. One tube supplies constant pressure to the test

section while the other is attached to a variable height reservoir.

The overflow consists of two sections of 3/4 in. LB. flexible tubing

connected to a pipe tee. The pipe tee is clamped to a circular rod

so that the level of the overflow can be changed. A sight gauge is

also provided so that the applied pressure can be read directly in

cm H20. The system can hold pressure constant within t 0.1 cm.H20.

37
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Figure 11 Pressure Sipply

Overflow

System '06" *1 Valve

3-- Water inlet

s T

 

 

1 Reservoir

‘ Sight gage

     _. To test section (

   
 

Test Section

Water from the supply flows into the test section (Fig. 12) through

a 34 " I.D. Tygon tube which is fitted with an electromagnetic flow trans-

ducer (34 " I.D. Medicon, Model CS9-f18). The test section consists of

two Tygon tubes, three pressure fixtures, and a plastic chamber contain-

ing the collapsible tube.

The pressure fixture is shown in Fig. 13’. It is constructed of

a 6" long stainless steel tube of a diameter to match the collapsible

tube. Four inches from the inlet (over 10 diameters) an 0.050" I.D.

tube, 1 " long is silver soldered to the large tube. Flanges are pro-

vided for mounting.



 

39

 

Figure 12 Test Section
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The chamber (Fig. 11;) is constructed of clear plastic so that the

collapsible tube can be observed. Two-way valves are cemented into the

top for connection to pressure transducer, elastic reservoir, or inde-

pendent pressure source.

Methods o_f_ Measurements
 

The instrumentation consists of three pressure transducers

(Statham P23AA and P23Db) used to measure Pc, P3 , and P3, and a

large flow transducer (Medicon.Model C59-F18) connected to an electro-

magnetic flow meter (Medicon Model Fm—6R). The signals from the three

channels of pressure and flow channel were recorded on an Electronics

fer*Medicine Model DR-8, Simultrace Recorder. Care was taken to

assure the absence of bubbles in the water supply in order to avoid

interference with the flowmeter. The frequency response of the system

is entirely adequate to record the 3-h Hz oscillation which characteriz-

ed the instable regions of’the tubing studied.

Three different measurements were taken in the system; (1) measure-

ment of the area of the collapsible tube as a function of pressure (the

"equation of state"), (2) measurement of the open loop characteristics

of the system, and (3) measurement of closed loop characteristics.

The area of the collapsible tube as a function of the pressure difference

across the wall was measured using the system pictured in.Fig. 15. A

zero level is adjusted so that the system is full of water'and the

collapsible tube has a circular cross-section. (The chamber is then

pressurized by pouring water in the top of the manometer. For each

level above the zero point, the amount of fluid which has left the



Figure 15

Configuration for'Measurements of

Area as a Function of Collapsing Pressure
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collapsible tube is measured. This procedure was repeated and found

to be reproducible within.i 0.2 cm3 for any given pressure.

The open loop and closed loop responses are measured with almost

the same system. The only difference is that for open loop response,

P2 and Pc are varied independently, and for closed loop response,

P, = Pc and P2 is related to P, by P2 = P. - R.Q. Figure 16a shows

the system in closed loop configuration and Figure 16b shows the loop

open with independent inputs. Figure 17 shows the apparatus for measure-

ment of open loop characteristics.
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Figure 16 Open and Closed Loop Configuration
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Results and Discussion

The "equation of state" as used in the theory (page 22) is an

empirically derived equation based on measurements of the area of the

collapsible tube portion of the hydraulic test section. As the collap-

sible tube is made to change area by application of a pressure dif—

ference across the walls, the cross-section changes shape from a circle

to an ellipse of increasing eccentricity to a complicated geometry of

a double ellipse, and ends as two circles connected by a fully colla-

psed section (see Fig. 18).

Figure 18

Cross Section of Collapsible Tube as a

Function of Collapsing Pressure

0.- O (71) o—-<>

Pc-P=2 P -P=T’ P -P=3” - :1

(cm H 0:) ° ’ c 9 P. P do

The relationship between collapsing pressure and area for'a fig" pen-

rose tube is shown in Fig. 19. This relationship is difficult to fit

accurately with a polynomial. Without success, polynomials to tenth

order were tried by a curve-fitting technique on an IBM 1620. It was

found, however, that two decreasing exponentials and a power term

could be used to fit the curve. The resulting equation of area as a

function.of applied.pressure (Pc - P) is:



hS

Figure 19

Area of Collapsible Tube as a

Function of Collapsing Pressure

   
Pressure Pc - P (cm H20)
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2 2

A = 0.362 e“ °'159(P° ’ P) + 0.105 e“ °'°°62(P° ' P) +

0.398

(Pc ' P + 1)o.2

 

+ 0.03

The non—linear characteristics of this relationship are important

to the operation of the system. As noted in the introduction, other

investigators have stated that a change in the relationship between

interstitial pressure and arterial pressure would have to occur at

the pressures where autoregulation begins. This need not be true if

the relationship between collapsing pressure and resistance of the

collapsible tube is non—linear. Fig. 20 shows the open loop charac-

teristics of the system for 3/8 " penrose tube and Fig. 21 shows the

characteristics of a closed loop system.
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Q Figure 20 Open Loop Results
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Several observations carleasily be made. The system in closed

loop configuration can regulate quite well (Fig. 21). In fact, using

the proper materials and values or the series resistance, the system

has application as a fluid flow controller. This control is accom-

plished passively with a fixed relationship between input pressure

and collapsing pressure determined by the input resistance Rfl, the

series resistance (R.), between the leak point and the collapsible tube

and the flow (Q). The difference in results between open loop and

closed loop systems emphasizes the importance of the resistance to

fluid flow between the cardiovascular system and.the interstitial space.

The dependence of the shape of the closed loop control curve on R. is

also important. When the difference in viscosity between blood and

water is accounted for, it can be seen that for a certain value of

R. regulation will not occur within pressure ranges studied in

the cardiovascular system. This is significant when one considers

that the series resistance in the kidney contains the efferent ar-

terioles which can.be affected by a wide variety of drugs and the au-

tonomic nervous system. Further analysis shows that the input resis-

tance, Rfl’ can also affect regulation. If R , represented by afferent

arterioles and small arteries in the kidney is high, much of the

pressure will be lost before reaching the venous circulation. Since

the relationship between pressure and resistance in the venous circula-

tion is non-linear, different operating characteristics are found at a

lower venous pressure.

It can be seen from the theoretical development and from direct

measurements in a hydraulic test section designed to simulate the renal
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blood flow control mechanism, which parameters can be expected to affect

regulation if, indeed, the postulated model does represent actual renal

hemodynamics. Although it is postulated that the autoregulatory resis-

tance change occurs in the venous circulation, the form of this regula-

tion (shape of the pressure-flow curves) is affected by preglomerular

resistance, efferent arteriolar resistance, capillary permeability and

venous collapsibility.

The oscillatory behavior of the system is shown in Fig. 22.

This is the simplest mode of oscillation showing an equilibrium flow

of 9.5 cm3 sec-1 with an amplitude of i3.§ cm;3 sec-1 and a frequency

of 2.8 Hz. The flow is leading the pressure with a phase shift of

26° .



IV. Experiments 23 Dog Kidneys
 

Observations were made on the kidney for three purposes: (1) to

find the section of the renal circulation in which blood flow control

occurs, (2) to describe the pressure distribution in the renal vein,

and (3) to compare regulation in the venous circulation with the

mathematical model predictions.

Methods

Experiments were run on eight kidneys of one year old dogs rang-

ing from 25-30 kg. The dogs were anesthetized with sodium pentobarbi-

tal at a dose of 30 mg. per kg. of body weight and the kidney exposed

through a retroperitoneal flank incision. The renal artery and vein

were isolated with a minimum of manipulation. After the preparation

was completed, the dog was given h mg. of heparin per kg. of body

weight and 5 mg. per hour thereafter.

Renal artery pressure was measured from a needle in the renal ar-

tery and renal arterial blood flow was measured with an appropriately

sized electromagnetic transducer of the same type used in the model

measurements (page hl). Venous pressure at the renal vein and within

the kidney was measured by retrograde insertion of a drawn polyethy-

lene cannula.

Polyethylene tubes of various sizes were drawn in air over a small

electric heater to tip sizes ranging from 0.1 mm to 0.7 mm and inserted

through a needle fixed in a rubber tube inserted into the renal vein,

taking care not to wedge the cannula. Although this technique has been

in use for some time by other investigators (Hinshaw, 1963, l96h) and

S2
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would seem to be almost routine, some difficulty was encountered in ob-

taining a cannula that had a small enough tip to pass into the deep

venous circulation and still have enough structural ridigity to pre-

vent it from folding over in a small vein. A great many sizes of

tube can be drawn to a still greater variety of tip sizes all of which

can be passed into the renal venous circulation. The criterion used

for satisfactory placement of the cannula was a recording of a high

pressure just before wedge. As venous pressure increases in a rather

smooth exponential for the first NO-SO mm up the venous circulation,

the arbitrary decision of accepting a particular pressure, obtained with a

given cannula, is difficult. If the cannula is not placed deeply

enough, the resistance changes will be upstream from the measurement

point. By using a slightly smaller cannula, the resistance changes

will occur downstream of the measurement point. Using a smaller can-

nula presents another difficulty. If the tip is too fine, it will in-

variably bend over and the folded tube inserted to the wedging point.

Also, with too small a cannula, it is almost impossible to detect

wedging of the tip.

Pressure and flow were measured with the same instruments used to mea-

sure the same variables on the mechanical test section (see page hl). Hydrau-

Ik:occluders (Jacobson and Swan, 1966) were used on the aorta upstream and

downstream with respect to the kidney to vary renal arterial pressure.

Certain objections to direct measurement of pressure within small

renal veins by means of retrograde insertion of a cannula have been

brought forward by Haddy (1965). Haddy has pointed out that it is im—

possible to calculate the actual values of'resistance of segments of
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small veins. This is because of the fact that flow within the vein

at the site of pressure measurement is not known. This observation

is certainly correct. In order to calculate the resistance of the seg-

ment of small vein, one would have to assume that flow is uniform in

all the parallel veins and know the total number of veins which shared

the flow measured at the renal artery. This assumption is not neces-

sary in the case where the only information sought is whether the resis-

tance changed upstream or downstream of the catheter tip. The only way

that such calculations could be improperly based would be if flow

through the particular vein containing the cannula decreased when per-

fusion pressure increased.

Although this specific reaction is quite unlikely, another artifact

can occur if the cannula is blocking flow as also mentioned by Haddy.

If there are very few side branches interconnecting the interlobular

veins and flow is blocked, it is possible to measure capillary, even,

arteriolar pressure with a cannula in a vein. That this is very un-

likely in the case of interlobular pressure measurements can be seen

by inspecting Figure 31. It can be seen that the slope of the curve

relating deep venous pressure to distance within the kidney is constant

near the deepest pressure measurement. This indicates that resistance

per unit length is constant, which is likely because of the almost con-

stant cross section found in that segment of the circulation, or that

cannula was interfering with flow in such a way that resistance per

unit length appeared exactly constant.

Also, if the cannula were wedged into the vein preventing flow,

the measured pressure would not increase with distance but would re-
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main constant. If the cannula were influencing flow, a bend toward the

pressure axis would be evident at the deepest measurement. It is also

unlikely that all measurements were taken just at the wedge point be-

cause the cannula was withdrawn slightly from the point of maximum

insertion.

Results and Discussion
 

Data from the kidney studies are tabulated in Appendix D and

plotted in Figures 2h-3l. In each figure, the curve marked "A" is the

pressure-flow diagram of the entire renal circulation while "B" and

"C" are pressure-flow diagrams of the circulation before and after

the interlobular veins respectively. Autoregulation is shown in pressure-

flow curves by'a change in slope. If the change is toward the pressure

axis, it indicates an increase in resistance to maintain constant flow.

Location of autoregulation in the arterial or venous circulation can be

done by inspecting curves "B" and "C" to see which has the greater

change in slope. Each of the kidneys exhibits autoregulation, and in

each kidney the regulation occurs downstream of the deep-venous pressure

measuring point. In Figures 23b-29b a slight increase in resistance is

evident at the high end of the pressure range and in Figure 30b regulation

is present upstream from the venous measurement point.

There is no evidence to suggest that this change in resistance,

upstream of the measurement point, occurs in the arterioles. In each

measurement it was noted that if the venous cannula was not placed far

enough into the venous circulation, the resistance change responsible

for regulation was upstream from the point of measurement. When a
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smaller cannula was substituted, the resistance change was downstream

from the measurement point. This suggests that the slight changes in

resistance upstream of the interlobular veins seen in the first seven

kidneys are still in the venous circulation but above (upstream of)

the position of the cannula, and, in kidney VIII, it probably was not

possible to work the cannula in far enough. Therefore, all the resis-

tance would occur downstream of the measurement point if a cannula

could be made to pass far enough into the interlobular veins.

Some comparisons can now be made between the regulation predicted

by the mathematical model and the regulation measured in the mechanical

model and kidney. From Figure 6 it can be seen that the initial slope

of the pressure-flow diagram and the maximum flow rates are dependent

on the series resistance (RS). RS is identified exactly in the mathe-

matical and mechanical models as the resistance between the point where

pressure is fed forward to collapse the thin-walled tubing, and the be-

ginning of the collapsible tube (See Figs. 1 and 3). The analogous

series resistance in the kidney (Fig. l and Table II) must be more

vaguely described. The section of the renal circulation representing

R5 is the section between the distributed site of tissue fluid formation

and the beginning of the collapsible veins. Resistance of the

efferent arterioles and part of the peritubular capillaries, and permea-

bility of filtration membranes, proximal tubules, and peritubular

capillaries can all be parts of the series resistance. Unfortunately

it is difficult to assess the contribution of any of these possibilities

except to note that the efferent arterioles have a high vasomotor

reactivity.
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Without being able to identify E structurally with precision

within the kidney, it can still be identified functionally. In order

to compare pressure-flow curves from the model to the curves from the

kidneys, a correction must be made to account for the difference be-

tween the viscosity of blood and of water. In hydrodynamics, flow

characteristics are usually expressed in terms of the Reynolds number

which is a function of viscosity (Prandl and Tietjens, 1931;; Schlichting,

1960). If this expression had been used, it would be apparent that the

pressure-flow curves predicted by the model for R. > 5.0 (Fig. 6),

measured in the hydraulic test section with R. > 14.5 (Fig. 21), and

measured in the kidney (Figs. 23a-29a) would have the same form. The

use of a dimensionless quantity such as the Reynolds number would have

made it difficult for physiologists to compare the kidney results with

those of other investigators. To make a comparison between model

curves and kidney curves, it is necessary, therefore, to multiply the

pressure in the model curves by four (Ll blood '- h'u water).

The conclusion that can be drawn from the pressure-flow curve

comparison is that the series resistance in the kidney is probably

higher than the uncollapsed venous resistance. This conclusion must

be qualified because the collapsibility of the penrose tubing used is

much higher than that of the small renal veins. Collapsibility is a

function of both wall structure and radius of the vessel. The diffe-

rence in wall elasticity between interlobular veins and penrose tubing

is not easily measured, but the veins are certainly smaller than the

smlleet penrose tubing available. Because collapsibility varies as

the cube of the radius, greater regulation is expected using penrose
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tubing in the test section.

A similar comparison can be made between the computer predictions

for pressure distribution along the collapsible tube (Fig. 10) and

measurement of venous pressure as a function of distance along a venous

vessel within the kidney (Fig. 31). The pressure distribution is also

affected by R. and the model also predicts that the series resistance in

the kidney is high compared to the uncollapsed venous resistance.

Some investigators have made a few intuitive guesses of how the

renal blood flow control system would work if it operated on a "tissue

pressure" principle. The mere existence of the mathematical and mecha-

nical models is enough to show that these attempts at theory were mis-

guided. Swann (l96h) and.Winton (l96h) have stated that a passive mecha-

nism could not explain autoregulation because interstitial pressure in-

creases proportionately with arterial pressure. They have stated that

a disproportionate increase in interstitial pressure relative to arterial

pressure would be required to collapse the renal veins significantly in

the pressure range in which autoregulation occurs. Without a model or

physical description they did not realize that their "criteria" would

only hold if the area of the collapsible veins were a linear function

of collapsing pressure. This linearity cannot exist in a geometry of

a collapsing tube as shown in Appendix.A.

Johnson (1961;) stated that autoregulation should not be abolished

by agents which paralyze vascular smooth muscle. He was not aware of

(or concerned with) the effects achange in the resistance of muscular

arterioles could have on passive autoregulation. Schmid and Spencer

(1962) stated, "The linearity of the (pressure-flow) relationship and
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the sharp inflection of the curve...are indirect evidence against a

passive mechanism." Figure 21 shows pressure-flow curves measured in

a passive system made up of penrose tpbing. These curves show more

linearity and a sharper inflection than measured in kidneys.

Other investigators have hypothesized control functions to explain

their observations that could be more easily explained by a passive

control. waugh (196h) has shown that it is possible to elicit a

damped second-order response in flow to a step input of pressure.

He attributed this response to a "hunting type" reaction. The same

response is seen in passive svstems and depends on control loop time

constants. waugh noted that the oscillating response is abolished

when renal vascular reactivity is abolished with chloral hydrate.

He interpreted this as proving that the oscillations were caused by

smooth muscle reactivity. Another explanation could be that by

changing vascular diameter with the chloral hydrate, he changed the

control loop time constants. Haddy (1965) found that renal arterial

pressure increases transiently for 2-h seconds in response to a 0.5—2

sec flow pulse. He interpreted the reaction as vasotonic, but the

same reaction could occur easily in a passive system. A flow pulse

forced upon a system which is designed to regulate flow can cause in-

ternal pressures to increase markedly. If the fluid transudation time

constant is high or the system is surrounded by an elastic capsule,

the control system can display a long time constant to equilibrium.

Regulation of GFR (Harvey, 1961,; Schmid, 1961;) and regulation of

lymphatic pressure (Haddy, 1958a) are more difficult to explain with a

passive control system. It could be that the tubules and lymphatic
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vessels also regulate by collapsing just as hypothesized for the small

veins.

waugh (1964) has based many of his conclusions on his observations

of deep venous pressure during autoregulation. His results show the

resistance change located upstream from the catheter tip instead of

downstream. One explanation is that waugh failed to insert his can-

nulae far enough into the venous circulation. This can easily be done

if the proper sized tubing is not chosen and proper technique is not

used in drawing the tubing to correct taper.



V. Summary and Conclusions
 

The results of the computer solution of a mathematical model and

the direct measurements on a hydraulic test section to verify the model

show the existence of a possible passive mechanism for the renal blood

flow control which can operate in the renal venous circulation. The

model also provides an insight into the role of arterial and arterio-

lar resistance and capillary permeability might play in influencing

this resistance.

Autoregulation of blood flow in the kidney is postulated to be

caused by an increase in resistance of the interlobular and arcuate

veins, caused by their collapse with increasing arterial pressure.

The cross~sectional shape of these veins is a function of their

structure and collapsing pressure. Collapsing pressure, in turn, is

the difference between pressure at the site of formation of intersti-

tial fluid and pressure within the collapsing vein. At a given blood

flow rate, the magnitude of the collapsing pressure depends on the

resistance (R5) of the segment between the site of formation of inter-

stitial fluid and the collapsing veins. Any factor which can effect

Rs can change the regulation characteristics of the collapsible veins.

Because the relationship between resistance of the collapsible veins

and the absolute magnitude of the collapsing pressure is nonwlinear,

and because the drop in pressure across the small arteries and pre-

glomerular arterioles determines the pressure at the site of formation

of interstitial fluid, the resistance (Ra) upstream of the leak point

affects regulation.

Other factors predicted to influence autoregulation include ca-
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pillary permeability and collapsibility of the veins. Capillary per-

meability influences regulation time constants and series resistance.

Collapsibility of the veins is a function of both stiffness and ra-

dius. As the vein size increases from the venules to renal vein, the

collapsibility as a function of radius increases. But, as they be-

come larger, the wall thickness increases and they become stiffer, de-

creasing collapsibility. Collapsibility is a function of distance

along the venous circulation and has a maximum somewhere between the

ends.

Measurement of renal arterial pressure, blood flow rate, and deep

venous pressure within the dog kidney support earlier findings (Hinshaw,

l96h) that the site of autoregulation resistance changes is in the in-

terlobular or deep arcuate veins.

The findings indicate that the principle mechanism of renal auto-

regulation is a passive collapse of interlobular veins. This passive

type of control is very sensitive to changes in resistance upstream

from the veins, however, and could be augmented or controlled com-

pletely by arteriolar changes, particularly efferent arteriolar changes.

The model in no way proves how autoregulation works but its existence

shows that a paseive mechanism is possible. With a mathematical de—

scription from which to work, it may be possible to design more mean-

ingful experiments.
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Appendix A

In this section the pressure-flow relationship for fluid flowing

in elliptical tubes is derived. It is shown that for an elliptical

rI (AI)3

A3

tube r as

"A" is the area.

where "r" is the resistance per unit length and

A thin shell of fluid in a circular tube is shown below. The

velocity (v) is parallel to the axis (x) of the tube and is a function

of the distance (h) from the axis. The shearing stress (T) on the

inner surface is (assuming laminar flow), T1 = u

viscosity. The stress on the outer surface is To

Expanding ’1' O in a Taylor series about h,

Av A 3v

T =u-— +—— u— dh.

0 oh h Ah 5h)

The net axial shearing force is

dF = 2wh£('r, -To).
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av .

Eli-‘3’ where u is the

_ dv‘

Lldx h+dh°
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Substituting for T and expanding the derivative,

2

oh2

 

dF=-2fih£u &L

This force must be balanced by the net axial pressure force.

 

 

 

2

(P1 —P2)2Trhdh =dF=2 2nh£u 2 dh.

Ah

Or,

Pl'Pe_ Rev

l Lloh2

Pl'Pe d

In the limit as 1 approaches zero, —-Z———— becomes E;-and

dP 82v
_=-H~

dx Aha

More generally,

<11) 2

a‘;=-M v

That is,

0A)

where‘%? is the radial Laplacian operator in the coordinate system

being used.

An elliptical tube is shown below. ./

 
  OB)



This equation has the solution

 

a 2

v = c(:1 - 3.”.X__

a2 b2 ’

providing

1 a3 b2 dP
C = O

2U. 32 + b2 dX

Therefore,

 

1 2 2 P 3 3

V = a b d (1 _ 3:.— _y__)

The volume flow rate (Q) is

Q_&b§bdd_dp TTa3b3

'- "ov y Z-dx 4L1 a2+b2

 

Since the resistance per unit length is defined to be the pressure

drop divided by the volume flow rate,

_ dP _lul a2+b2

1'- dx /Q - Tr a3 b3 .

 

For a tube of constant perimeter "a2 + b3" is nearly a constant,

hence, combining the constant terms

r = K’/aa b3

For an ellipse, a3b9 =.A§/n‘3, and therefore,

r = K/A3 where K = to (a2 + b2)n2

This leads directly to the required result,

3 I I 3 r’(A')3 . . .
r A = r (A ) or, r = ---—-—'whlch is used in the theo-

A3

retical development.
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Appendix‘B

The computer program logic and programs for solving the open

loop, closed loop, and pressure distributions are presented in this

section. Each program is followed by a table of the results which

are used in the body of the thesis. The logic proceeds as follows:

1.

10.

11.

Set Pc and Rs.

Guess a value of Q.

Check to be sure Q is not too large.

Use a third-order Runge-Kutta technique to step along the tube

increments of Ax from x = O to x = 2.

Check to see if the value of Q meets the end boundary condition.

If it does, print out results, index the applied pressure and use

the current value of Q for the next operation at the new value of

PC.

If the end boundary condition is not satisfied, check to see if

cycle has been performed more than once.

If this is the first guess at Q, check the sign of the error at

the end boundary condition and guess at a new value of Q accord-

ingly.

See if the error has changed in sign if the cycle has been per-

formed more than once.

If the error has changed in sign, Q is somewhere between the old

value and the present value so start searching between these two

points.

If the error has not changed in sign, guess at a new value of Q ac-
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12

20

24

600
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cordingly. The final search routine consists of a simple interval

slicing technique.

The parametric fluid flow control curves predicted by the computer

program are shown in Fig. 6. The results plotted are for a x s 0.5 cm

for a 30 cm tube length. ‘When x was reduced to 0.25 cm, the values of

flow changed a maximum of 0.05% showing that the procedure of lumping

the tube into 0.5 cm lengths is sufficient and this value was used

thereafter.

The same area subroutine listed below was used for each program.

SUBROUTINE AREA (C’AgcA,

IF‘C‘IS.)10¢109125

0 CA=C*C*.159

CB=C*C*-0061

A=.362/EXP(CA) +.105/EXP(CB) +.0398/(C+1.)**.Z +.O3

DA=.115*C/EXP(CA) +.00128*C/EXP(CB) +.00796/(C+1o)901o2

GO TO 600

5 IF‘C“50.)2019201'24

1 CB=C*C*.0061

A=.105/EXP(CB) +.0398/(C+1.)¢*.2 +.O3

DA=.00128*C/EXP(CB) +.00796/(C*1o)**1o2

GO TO 600

A=.0398/(C+1.)"-2 +.03

DA=000796IIC+10)‘*102

RETURN

END
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Listed below is the computer program used to solve the closed

loop curves.

25 READ(5.ICO) R90X99.N0

100 FORMAI(3E16.8.IIO)

WRITE(6,103) R.Dx,N0

103 FCRMATClHla7X916HSULUTION FUR R HoFSonaHp OX 3 9F4.Z'7H9

NO x, 115)

032.66

PC=1.

DC 1 K=1920

IO=O

805 [=0

N80

IF!!O-50)3.3cll

3 PA=PC-QcR

E¢Q*DX!.000155

FBQ'Q'.OOIOZ

[FCPA14.4,5

1' 030-01

60 70 3

5 DC 6 L=11N0

C=PC-PA

CALL AREA (Ccthll

0ENO=Ai03—F*DA

IE!DENO)804¢804,801

801 RKAa-E/DENO

PAG=PA+o55RKA

CsPC-RAG

CALL AREA (Consul)

DENOsbifia-Foon

IF!DENO)804.804¢802

804 IO=IO§1

030-.051

65 TO 805

802 RK83-E/DEN0

PAGSPA+ZoGRKB-RKA

ChPC-PAG

CALL AREA (CcthAI

DENOtAOG3-FODA

IF(DEN0)8O49804:803

803 RKCz-EIDENO

6 RA=PA4lRKA+4.£RK8+RKC)I6.

N=N+l

IF‘N-75)5051505011

505 CrABStPC-PA)
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CALL AREA (C,A.DA)

502 PA'PA'4o*F*Zo*F/A

1F‘ABS‘PA)’H)11¢11:12

12 IF(N-1)17917114

17 IF(PA)15115116

15 0330

PAB=PA

030‘005

GO TO 3

16 0830

PAB‘P‘

030*005

GO TO 3

14 [P(PACPA8118o13013

13 IF(I)17:17¢20

18 I=I+1

QA=0

PAASPA

GO TO 19

20 0880

PAB‘PA

19 0808+.3910A-QB)

IF(ABS(QA-QB)-.001111.1123

11 WRITE(6o102) PcvaQ

102 FORMAT‘1HOa4XQ4HPC 39F501011X93HN 3.13113X93HQ 39F905)

IF!PC-9.)7001700u701

70° PC3PC*lo

60 T0 1

701 PC=PC+6o

1 CONTINUE

1F1R‘100125025026

26 STOP

END





Solution for Closed Loop Operation
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Tabulated Results of Computer

 

Series

Resistance 5.0 2.0 1.0 0.7 0.6 0.5 0.h 0.3 0.2

P1 = P .(cm-H, O)

2 0.36 0.96 1.82 2.52 2.91 3.h1 h.ll 5.26 7.21

h 0.71 1.58 2.78 3.66 h.10 h.69 5.b8 6.63 8.h6

6 0.9h 1.91 3.16 h.oh h.h8 5.05 5.83 6.95 8.72

8 1.16 2.22 3.h6 h.32 h.75 5.32 6.07 7.17 8.90

10 1.35 2.h8 3.71 b.5h h.96 5.50 6.2h 7.30 8.99

16 1.65 2.87 h.07 h.8h 5.23 5.73 6.h3 7.hh 9.0h

22 1.76 3.00 h.l9 b.9h 5.31 5.81 6.h8 7-h7 Unstable

3h 1.88 3.15 h-Bh 5.07 S.h3 5.91 6.57 7.55

h6 2.00 3.29 h.h8 5.20 5.55 6.02 6.67 7.63

58 2.11 3.h2 h.62 5.32 5.66 6.12 6.76 7.71

70 2.23 3.5h h.75 S.hh 5.78 6 22 6.85 7.78

Resulting Flow Rate (cma/sec)



81:

Listed below is the computer program used to solve for the open

loop curves. The logic of the program is basically the same as that

used for the closed 100p curves except that the boundary condition

at x = O is independently controlled.

25 READ‘501001 RO0X9H9NU

100 FORMA113El6o8c110)

”(3:10.

DC 1 K3197

02.001

PAK=lc

HRITE‘69103) PC

103 FORMAT(IH107X026HOPEN LOOP SOLUTION FOR PC'oF5o21

IC=O

805 130

N80

17110“501313011

3 PA=PAK

530*DXO.000155

F=Q.Q.000102

5 DO 6 L=1sNU

CSABSCPC-PA)

CALL AREA (C,A,DA1

DENDabcu3-Fcoa

[P(DEN0180498049801

801 RKA=~EIDENO

PAG=PA+o59RKA

C?ABS(PC'PAG)

CALL AREA (CoAvDA)

DENO=A§*3'F*DA

1F‘DENU)80498041802

804 ICSIO+1

QQQ’OOSI

GO TO 805

802 RKflz‘E/DENU

PAG=PA+2.*RKB-RKA

C=ABS(PC‘PAG)

CALL AREA (C'A,DA1

DEN03A993-F*DA

1F105N018049804g803

803 RIC3‘E/DENO

6 PA=PA+1RKA+4oIRK89RKC1’6.

N=N+l

1F!N-75)5050505911

505 C$ABSCPC-PA)

CALL AREA (CvoDAI

502 PA=PA-4.-F+2.¢F/A‘

IFCABSIPA1-H111011012

12 1F1N-1117017014

17 1F1PA115915916

15 0830
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PAB=PA

030-005

60 IO 3

16 08=Q

PABtPA

010+.05

GO TO 3

16 [FIPACPA8118r13c13

13 IF!!!17,17.20

18 131*1

QA3Q

PAABPA

GE 70 19

20 0830

PAB'PA

19 03080.3CIQA-QB,

IFIABSIQA-QBI-o00111191103

11 NRIIEI691021 PAKoNOQ

102 FCRHAII1H0,4X,4H P 39F561911X03HN 3013013X03HQ 8gF9o5’

PAK=PAK+1.

IFIPAK‘PCIO°590050701

701 chpC*IOo

1 CONTINUE

IFIR'100125025926

26 SIOP

(END
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Tabulated Results of

Computer Solution

for Open Loop Operation

Pc(cm-H20) P2(cm—H20) Q(cm3/sec) Pc(cm-H20) PQ(cm-H20) Q(cm3/sec)

 

 

10 1 0.33 to 36 h.7h

10 2 0.73 to 37 5.9h

10 3 1.21 to 38 8.51

10 h 1.77

10 5 2.hh 50 20 0.51

10 6 3.3h 50 30 0.85

10 7 h.91 50 35 1.20

10 8 8.08 50 to 2.09

10 9 11.83 50 h2 2.75

50 uh 3.66

20 5 0.36 50 us h.22

20 8 0.80 50 h6 h.93

20 10 1.28 50 h7 6.09

20 12 1.98 50 h8 8.59

20 1h 2.93

20 15 3.53 60 25 0.61

20 16 h.30 60 35 0.89

20 17 5.59 60 ho 1.08

20 18 8.30 60 us 1.h3

60 50 2.31

60 52 2.97

30 10 0.3h 60 52 2.97

30 15 0.70 60 St 3.86

30 20 1.60 60 55 h.h1

30 22 2.29 60 56 5.11

30 21 3.22 60 57 6.2h

30 25 3.80 60 58 8.72

30 26 h-Sh

3O 27 5.77 70 35 0.8h

30 28 8.38 70 h5 1.12

70 50 1.30

to 15 0.hl 70 55 1.65

ho 20 0.60 70 60 2.52

to 25 0.96 70 62 3.17

ho 30 1.85 70 6h h.05

to 32 2.53 70 65 h.60

to 3b 3.h5 70 66 5.28

ho 35 h.02 70 67 6.39

70 68 8.80



tions is listed below.
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The computer program used to solve for the pressure distribu-

REAOI52100’ROPC90

F0RMATI3E1608)

HRITE1601031R09C20

FORMAT!1H197X929HPRESSURE DISTRIBUTION FOR R 8gF502g8Ho

1F602,7H9 Q 319F905,

HRITE1691341

FORHATI1H 913X91HX015X01HPT

X=.0

E80900003775

F80'C'oCOIQZ

PAapc-Q'R

00 6 L3126$

WRITEI60105) XcPA

FORMATIlH 97X9F502.1OX9F12o5)

CSABSIpc-PAI

CALL AREA (C9A90A1

DENO=A'*3'F*0A

RKA8-E/0EN0

PAGSPAtoS'RKA

C3ABSIPC'PAG’

CALL AREA (C.A.0A)

DEN0=AI03-F¢DA

RKB3*E/DEN0

PAG’PA+Z.*RKB-RKA

CsABSIPC-PAG)

CALL AREA ICvooA’

DENOaAuca-FIDA

RKCt-E/DENO

x3x*05

PA8PA+IRKA+4o*RKB‘RKC’Ibo

IFIR‘100125225026

STOP

END

The flow rate solutions obtained from the

PC
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Computer Results for

Pressure Distribution for R, = 5.0

and values of Pc = P1 (cm-HQCD

 

Distance

x cm = 10 . = 16 . = 22 . = 3b Pc = 52

0.0 .27 7.77 13.22 2h.59 h1.72

h.0 .93 7.22 12.55 23.76 h0.60

8.0 .56 6.60 11.78 22.77 39.15

12.0 .18 5.89 10.87 21.52 37.0h

16.0 .76 5.07 9.7h 19.81 33.hh

20.0 .31 h.07 8.26 17.18 26.h7

22.0 .07 3.h8 7.31 15.20 21.68

2h.0 .82 2.81 6.13 12.h7 16.50

25.0 .69 2.h3 5.h2 10.77 13.83

26.0 .56 2.02 h.61 8.86 11.11

27.0 .h2 1.58 3.68 6.77 8.3h

28.0 .28 1.09 2.60 h.55 5.5u

29.0 .13 0.55 1.3h 2.2h 2.70

29.5 .06 0.25 0.6h 1.06 1.27
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Computer Results for

Pressure Distribution for PG = 16 (cm-HQCD

and Values of Rs

 

Distance R. = 5.0 R, = 2.0 R8 = 1.0 R, = 0.5 R, - 0.2

X cm

0.0 7.77 10.26 11.93 13.13 1h.19

8.0 7.22 9.62 11.36 12.83 1h.05

8.0 6.60 8.90 10.62 12.37 13.89

12.0 5.89 8.08 9.73 11.63 13.66

16.0 5.07 7.10 8.67 10.53 13.33

20.0 6.07 5.90 7.35 9.12 12.60

22.0 3.h8 5.16 6.5h 8.25 11.6h

2u.0 2.81 n.29 5.55 7.19 10.u1

25.0 2-h3 3.78 h.97 6.56 9.76

26.0 2.02 3.21 1.30 5.81 9.03

27.0 1.58 2.56 3.50 h.91 8.17

28.0 1.09 1.80 2.53 3.7h 7.07

29.0 0.55 0.90 1.29 2.07 5.62

29.5 0.25 0.38 0.51 0.87 3.08



Appendix C

Ekperimental Data from Hydraulic Test Section

——~‘

Applied Pressure Displaced Resulting Change

(cmpHQCD Vol (cma) in.Area (cma) Area (cma)

0.0 0.0 0.0 0.537

1.0 0.8 0.027 0.510

1.5 1.6 0.053 0.h8h

2.0 h.2 0.1h0 0.397

2 2 6.0 0.200 0.337

2.5 8.0 0.267 0.270

2.8 9.0 0.300 0.237

3.2 9.9 0.330 0.207

h.0 10.8 0.360 0.177

6.9 11.2 0.37h 0.163

10.0 12.8 0.h27 0.110

18.0 1h.0 0.h67 0.070

27.0 1h.5 0.h8h 0.053

h0.0 lh.8 0.h9h 0.0h3

Above 100 15.2 0.507 *0.030

*Assumed for the case when the tube is completely collapsed.

90
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Ihta for Open Loop Curves

P0 = 70 cm-HQO

 

 

 

P2 cm~H20 P3 cm-HQO AP cmpHeO Q ems/sec

26.2 1.0 25.2 0.hh

31.0 1.0 30.0 0.57

h1.3 1.2 h0.1 0.93

51.6 1.3 50.3 1.51

62.0 1.3 60.7 2.56

65.0 l.h 63.6 3.28

67.0 l.h 65.6 3.80

68.0 1.h 66.6 h.71

68.6 1.5 67.1 6.h2

69.0 1.5 67.5 7.58

69.2 1.5 Unstable

= 60 cm-H20

J cméHQO AP cm-HQO Q cmg/sec

55.8 1.6 5h.u 3.61

56.6 1.h 55.2 3.92

57.7 1.1 56.3 h.h2

58.5 l.h 57.1 5.52

58.8 1-h S7.h 7.25

h2.6 1.2 h1.h 1.67

h8.5 1.2 h7.3 2.22

3h.0 1.1 32.9 1.11

2h.5 1.1 23.h 0.67

15.0 1.1 . 13.9 0.33

59.0 1.5 Unstable

Pc = 50 cm-HQO

P2 cm-H20 P3 cmrHQO AP cmeHQO Q cmé/sec

15.0 1.1 13.9 0.hh

22.0 1.1 20.9 0.76

30.3 1.2 29.1 1.33

36.5 1.2 35.3 1-75

h3.0 1.3 hl.7 2.77

h7.0 l.h h5.6 h.23

h8.7 l-h h7.3 7.h3

A9. 1.5 Unstable
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Pa = ’40 cm-HQO

AP cm-HQO Q ems/secP3 cm-HQOP;2 cm-HQO 
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Q cma/secAP cm-HQOP 2 cm-H 2.0 P 3 cm-H 9’0 

R
o
o
t
v
u
A
u
1
1
n
u
d
/

.
w
l
o
m
s
m
A
w
7
7
.

1
1
2
2
2
2

6
2
0
5
7
8
9
0
2

1
.
9
.
9
.
9
.
9
.
9
_
9
_

Pc = 20 cm—H20

AP cm-HQO Q ems/secP"3 cm-HQOP 2 cm-H 20 
5
0
2
3
7
1
4
6

5
1
w
h
.
2
(
.
7
8
8

1
1
1
1
1
1



93

Pc = 10 cm—HQO

AP cm-H20 Q cmé/secP9 cm-HPO 

Data for Closed Loop Curves 

Q ems/secP1-P.AP== 
B., = 0.73

AP = P1 - P3 cm-HQO Q cmé/secPQ cm-HQO P.a cm-HQO 
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R5 = 0.h0

AP = P1 - Pa cm-H,0 Q ems/secP2 cm-H20 Pa cm-HQOP1 = Pc cm-HQO 
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R3 = 0.21

Q ems/secAP = P1 - P3 cm-HDOcm-H 20
P3

P , cm-H 20P1 = Pc cm-HQO 
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Kidney I

Kidney II

Kidney III

Kidney IV

Appendix D

Experimental Data from Dog Kidneys
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Kidney V

Kidney VI

Kidney VII

Kidney VIII
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