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ABSTRACT

A PROPOSED MODEL FOR RENAL BLOOD FLOW CONTROL

by Clyde R. Replogle

Autoregulation of blood flow in the kidney was recognized bv Rein
in 1931, and its characteristics have been described by many authors
(Hartmann, et al. 1936; Forster and Maes, 1947; Selkurt, 1946; Hinshaw,
et al. 1959; Scott, et al. 1965). Although there are few arguments over
the existence of and the description of renal autoregulation, there have
been many hypotheses attempting to explain the mechanism of its operation
(Harvey, 196L; Scott, et al. 1965; Haddy and Scott, 1965; Hinshaw, 196l;
Replogle 1960a; Schmid and Spencer, 1962; Waugh and Shanks, 1960;

Wells, 1960). At the present time, three theories are generally accepted:
one suggests a myogenic principle, another indicates some role of meta-
bolic end-products, and a third invokes collapse of interlobular and
arcuate veins. Proponents of each of these theories cite various

lines of experimental evidence to support their theories which, at first
glance, are mutually contradictory.

Evidence supporting a conclusion that the blood flow resistance
change responsible for autoregulation is located in the interlobular
and arcuate veins (Hinshaw, et al. 1959, 1961, 1963, 196lL; Replogle, 1960a,
1960b, Wells, 1960) stimilated the study presented in this thesis.

If resistance change concomitant with autoregulation is located in the
renal veins, and is caused by a purely passive phenomenon of a trans-
mural pressure difference causing collapse, the blood flow control
mechanism must be non-linear. That is, fluid resistance at a given

pressure in a section of collapsible vein is dependent upon blood
1



pressure upstream, and upon flow. Flow, in turn, depends on the re-
sistance in the vein and resistance of the wvasculature upstream. In
such a control system it is difficult, if not impossible, to assess the
effects of changes in the prevenous circulation on autoregulation in
the venous circulation.

Equations are derived to describe the control of fluid flow through a
simplified model of a section of the renal circulation. This mathematical
model, when solved by a Runge-Kutta numerical technique, predicts (a)
that autoregulation can occur by passive collapse of small renal veins,
(b) that flow instability can arise as the result of a limit cycle, ie.
oscillation between two stable states. (The end of the collapsible tube
where the transmural pressure is highest, the tube collapses to com-
pletely stop flow. Pressure immediately increases and tube reopens).

In order to observe the control mechanism postulated by the
mathematical model in a real system, a hydraulic model was constructed
using Tygon tubing to represent the non-collapsible arterial circulation
and penrose surgical drainage tubing to represent the collapsible venous
circulation. Autoregulation occurred in this model and its form was
similar to that predicted by the mathematical model. Measurements were
made of input pressure, output pressure, flow, and pressure within a
water-filled chamber surrounding the penrose tubing through which water
was flowing. The penrose tubing was analogous to a vein immersed in
interstitial fluid. Several conclusions can be drawn from analyses of
these data:

1. Autoregulation of fluid flow, similar to that seen in the kidney,
can occur by the passive response of collapsible tubing to transmural

Pressure.

2. Because of the non-linear relationship between the area of the



collapsing tube and the transmural pressure, it is not necessary for
chamber (interstitial) pressure to increase suddenly in order to pro-
duce autoregulation.

3. Oscillation in outlet pressure can be caused by a limit cycle
when the resiétance Just upstream of the collapsible tube is low and
the flow rate is high,

Measurement of blood flow rate, arterial pressure, and interlobu-
lar venous pressure (by retrograde insertion of a small cannula) were
made on eight dog kidneys. Results indicate that the resistance change
responsible for autoregulation takes place in the interlobular veins
and the form of the pressure-flow curves approximates the form predic-
ted by the mathematical model. The hypothesis of non-linear venous
control of renal blood flow is compatible with other findings such as
the concomitant release of metabolic end-products (Scott, 1965) because
venous control is very responsive to changes elsewhere in therenal

circulation,
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A PROPOSED MODEL FOR RENAL

BLOOD FLOW CONTROL

I. Introduction

The phenomenon of blood flow control intrinsic to an organ or seg-
ment of the circulation, without external control centers, is generally
termed autoregulation. Autoregulation has been described in the liver
(Torrance, 1958), skeletal muscle (Folkow, 1949), myocardium (Berne,
1959), brain (Rapela and Green, 196lL), intestine (Johnson, 1960), and
kidney (Selkurt, 1946). It has been found in humans, dogs, cats, rats,
and calves. The form of pressure-flow curves can be quite different
in each of these organs, and, because of the differences in blood flow
rate per gram of tissue, interstital pressure levels, and reactivity
to vasodilator metabolites, it is unreasonable to assume that auto-
regulation in the kidney and in other organs might have a common mecha-
nism. Therefore, the model suggested in this thesis is proposed only
for the kidney and autoregulation in other organs will be considered
nowhere else in the thesis.

The first experiments on renal autoregulation were performed by
Rein (1931) and later by Unna (1935), Hartmann (1936), and Forgter and Maes
(1947). These investigators concluded that an increase in systemic blood
pressure causes an increase in resistance to blood flow resulting in less-
than-proportional increase in renal blood flow, and that this phenomenon
does not depend on neural cénnection to the rest of the body. Selkurt
(1946) further characterized renal autoregulation as a means of control

which only exists after arterial pressure exceeds 80 mm Hg. Below this



pressure, blood flow is directly proportional to pressure drop across
the kidney, Since these first descriptions of renal autoregulation,
many investigators have presented experimental evidence to support
various opinions concerning the mechanism by which it occurs, The
hypothesized mechanisms which are still widely accepted today may be
divided into two typess active, (i.e., requiring energy expenditure
by an effector), and passive (i.e., reacting to forces present with-
in the circulation,

Three types of active control have been suggested: reaction to
vasodilator metabolites, myogenic reaction to changes in transmural
pressure, and a local reflex causing arteriolar vasomotion in re-
sponse to pressure or flow within the kidney. All three of these
types are active feedback control mechanisms, While the three mecha-
nisms imply different sensing mechanisms to regulate flow, (response
of general or specialized cells to decreased flow in the case of the
metabolic mechanism, a flow or pressure sensor in the case of a local
reflex mechanism, and inherent response to muscular arterioles in the
case of the myogenic theory), and different control pathways (a chemi-
cal substance for metabolic control, neural pathways for a local re-
flex, and internal smooth muscle reaction for myogenic control), they
all require a common effector, namely, the smooth muscle of the arteriole
wall,

There is a good deal of evidence to suggest that a vasodilator meta-
bolite is somehow connected to renal autoregulation, In early experi-
ments, Winton (1934, 1951) and Bickford and Winton (1937) cooled dog
kidneys in an isolated perfusion arrangement and found a decreased regu-

lation with a concomitant increase in intrarenal pressure., This response



to temperature could easily be construed as affecting a metabolically
dependent mechanism.

Haddy and co-workers (1958a) hypothesized that renal autoregulation
was dependent on a metabolite, and that autoregulation of renal blood
flow is dependent on blood flow rather than blood pressure. They
based this conclusion on their findings that the onset of autoregula-
tion appears at the same flow rate but at widely different arterial
pressures, that lymph flow increases very little with increased ar-
terial pressure, and that decapsulation does not decrease autoregula-
tion.

Harvey (196l) showed that renal blood flow and glomerular filtra-
tion rate (GFR) (estimated by the product of directly measured renal
plasma flow and creatinine extraction) were held relatively constant in
spite of large changes in perfusion pressure in the isolated dog kidney.
He further showed that adenosinetriphosphate (ATP) when infused into
the renal artery could produce these results. He concluded that ATP
produced dilation of the efferent arteriole. His work shows that a vaso-
dilator metabolite could be released as a result of a decreased flow or
pressure. Scott et al. (1965) substantiated this hypothesis by using the
forelimb as an assay organ. They found that. a vasodilator substance is re-
leased from the kidney when perfusion pressure was decreased. Scott
and his co-workers found that adenosine, adenosine monophosphate (AMP),
and ATP cause dilation in the forelimb but only ATP dilates the kidney.
Also, they found that when ATP is infused into a kidney with the contra-
lateral kidney as the assay organ, the target kidney shows dilation

while the assay kidney shows constriction. As AMP has been found in re-



nal venous blood after reduction in perfusion pressure (Gordon, 1962),
Scott and his co-workers interpreted their finding to mean that ATP

is released when perfusion pressure is decreased. It then causes

vasodilation and is then quickly converted to AMP or adenosine.

Winton (196l) attempted to show that autoregulation is "activa-
ted" by changes in velocity of blood flow rather than pressure dif-

ferences across blood vessel walls. He obtained pressure-flow curves

from control, epinephrine treated (0.4 to 1l mm® of 10 to 20ug ml *

added as an impulse to each 0.6 ml of blood perfusing the kidney),

and kidney cooled to 6-8°C. He then plotted resistance versus flow and
resistance versus pressure. His curves show a better functional
relationship between resistance and flow than for resistance and pressure.

He cites this as evidence to support "a fairly clear indication of a

flow - dependent mechanism". Even if his curves did support this conclusion,
his method of calculating resistance produces a function which is unrelated
to usual concepts of fluid resistance. He calculated resistance as the

slope of the line connecting two adjacent points on a pressure-flow

diagram, referred to the pressure mid-way between the two relevant pres-
sures, divided by the slope of the line joining the origin to the point
representing blood flow at 100 mm Hg. This calculation yields a nor-
malized value of dP/dQ which has no physical significance. For example,

if one has a system in which flow is constant for all values of pres-

sure, Winton's method would calculate an infinite resistance for all



values of pressure and flow.

Bayliss (1902) and Folkow (1949) have shown that arteries and ar-
terioles respond to an increase in intraluminal pressure by increasing
the tone of their walls thereby decreasing their cross-sectional area
and increasing their resistance. Waugh (1958, 1960) proposed that this
myogenic, vasotonic reaction occurring in the afferent arteriole is
the mechanism responsible for renal autoregulation. He based his con-
clusions on his findings that autoregulation is abolished by cyanide
(suggesting an active process), that autoregulation is present after de-
nervation (discounting a neural mechanism), and that there is a short
delay of 2-3 seconds between the arterial pressure change and the onset
of regulation. Semple and De Wardener (1959) measured arterial and
venous pressure and flow in kidneys. By varying venous pressure they
found that autoregulation depends on arteriovenous pressure difference
rather than on the absolute pressure. They took this to indicate that
the mechanism must involve the distension of small renal arteries and
arterioles which causes a muscular reflex.

Haddy and Scott (1965) investigated the relationship between blood
flow, arterial pressure, venous pressure, and pressure in an occluded
hilar lymphatic vessel and found that hilar lymphatic pressure rises
greatly on elevation of venous pressure but is little affected by a
change in arterial pressure. They cite these data as evidence that the
change in resistance caused by an increase in arterial pressure occurs
in the arterioles. In the same study, Haddy and Scott were able to
show that renal arterial pressure increases transiently for 2-l seconds

in response to a transient flow pulse lasting 0.5-2 seconds which they



state could represent a constriction (arteriolar) elicited by the
stretch. They conclude that a myogenic response to a change in trans-
miral pressure might assist the metabolic mechanism they have postu-
lated (Scott, et al. 1965).

It is now interesting to note that while Haddy and co-workers
(the strong proponents of a metabolic mechamism) have begun to sus-
pect that there may be some myogenic responses creeping into their
theory, Waugh (196L) (the strong proponent of a myogemic mechanism)
has "tentatively suggested" that, while he is not going to throw out
the transmural pressure idea altogether, autoregulation (still located in
the afferent arterioles) may be dependent on variable metabolic feedback.
This metabolic factor in turn is dependent on tubular re-absorption of glo-
merular filtrate and all are related finally to changes in transmural
glomerular capillary pressure. His conclusions are based on some rather
extensive observations on the fully isolated kidney. Measurement
of intrarenal venous pressure (arcuate, interlobular) allowing division
of renal resistance into prevenous and postvenous resistance indicate that
the autoregulating resistance change is prevenous. Perfusion with a cell-
free solution (e.g., 20% plasma - 80% PVP-Locke) resulted in good autoregu-
lation thus eliminating a hematocrit change as important. A step increase
in arterial pressure resulted in a transient, almost critically damped,
pulse in flow with about a five second time constant, and a new, less-than-
proportional, increase in steady state flow.

Waugh reports the observation of a '"hunting-type" reaction of flow
in response to a pressure step. But his curves show nothing more than

a decrease in damping (approximately 3 cycles to half-amplitude rather



than approximately 0.8 cycles to half-amplitude, for his "non-hunting"
kidney). The resistance of the higher damped kidney was 1.10 PRU be-
fore pressure step and 1.85 after, while the resistance of the under-
damped kidney (treated with yohimbine to accomplish intrarenal sym-
patholysis) was 0.78 before pressure step and 1.28 after. The dif-
ference in his two responses could more easily be accounted for by the
lower inertance and resistance of his treated kidney, rather than by a
complex servomechanism "hunting" of a predetermined operating level.
Waugh further observed that the flow response to a pressure step in a
kidney in which the vascular reactivity was completely abolished by treat-
ment with chloral hydrate, was also a step which changed proportionally
more than pressure. This indicated to Waugh a mechanism which relies
on vasomotion. By comparing the autoregulation capability of the same
kidney one hour after isolation and three hours later (after mannitol
diuresis) he was able to show that even though resistance had increased
L4-5 times and flow reduced greatly, autoregulation.responses were still
good. He concluded that autoregulation is pressure dependent not tlow
dependent. Since glomerular filtration rate (GFR) is also autoregulated
(Harvey, 196lL; Schmid et al.,196l), Waugh contends that his observations
confirm the concept of a preglomerular vasomotion change during regulation.
Waugh's final paragraph (Waugh, 196L) is as follows:
"The reported experimental findings appear to sup-
port the hypothesis that myogenic vasomotor changes
in the renal arterioles, in response to transmural
arteriolar pressure, underlie active renal circula-
tory autoregulation. However, the experimental
findings also support, perhaps more strongly, a new
hypothesis that active renal circulatory autoregula-
tion is accomplished by afferent arteriolar changes
in resistance caused by tubular re-absorptive meta-

bolism in response to flow of glomerular filtrate or
to the level of glomerular transcapillary pressyre."



Meanwhile, Schmid, who with Spencer in 1962 postulated an active
feedback control system, has now (Schmid, et al, 196)) supported Waugh's
old theory. Their first postulate was based on their observation that
the renal pressure-flow curves are sharply inflected which,they main-
tained (without presenting evidence or logical argument), would exclude
a passive mechanism. In their later experiments, Schmid and his co-
workers found that blood flow is controlled by either a reduction in
arterial pressure or increase in venous pressure and that GFR is also
regulated in a like manner. They concluded that the regulation re-
sults from reduced pressure gradient and the resultant fall in trans-
mural pressure of the preglomerular vessels.

In contrast to the active type of control demanded by the previous
mechanisms, a passive feed-forward control has been postulated by Hin-
shaw (1959, 1960a, 1960b, 1960c, 1961, 1963a, 1963b, 196L), Replogle
(1960a, 1960b), and Wells (1960). This mechanism is based on partial
collapse of small intrarenal veins (interlobular) caused by a positive
interstitial - intraluminal pressure difference. It is a passive con-
trol because no energy expending actuator is postulated and it is feed-
forward control because the controlling variable (interstitial pressure)
is derived upstream from the controlled variable (interlobular vein area).

The first evidence supporting this "tissue pressure" hypothesis
came from two experiments (Hinshaw, 1960a; Replogle, 1960a, 1960b;
Wells, 1960) using different indirect techniques to separate prevenous
from postvenous resistance. These experiments show the autoregulating
resistance changes occurring downstream from the glomerular capillaries

(Hinshaw 1960a) and downstream from the peritubular capillaries (Replogle



1960a, 1960b; Wells, 1960). More recently Hinshaw (1960) and Section
IV of this thesis show the resistance changes are located in the inter-
lobular or arcuate veins.

Hinshaw (1959) blocked ureteral flow and, when ureteral pressure
reached equilibrium, took the value of ureteral pressure as the pres-
sure within Bowman's capsule. Having determined this pressure value,
it is possible to calculate the pressure drop between the renal artery
and Bowman's capsule (glomerular capillaries), and the pressure drop
between the glomerular capillaries and the renal vein.

By plotting each of these pressure differences against flow, the
amount of autoregulation in each section can be compared. Although
the regulation in each segment is calculated in the same way, the man-
ner in which an intrarenal pressure is obtained is different for each
of the methods. Direct pressure values are obtained from a cannula
inserted into an interlobular vein just short of the wedging point.

The indirect method used by Replogle and Wells is more complicated.

With the isolated kidney weighed continuously and flow blocked at the
renal artery, renal venous pressure is increased in stages and a rela-
tionship between distending pressure and distension volume noted.

With flow at zero, pressure throughout the kidney is the same and the
distending pressure is taken to be the average pressure at the site

of interstitial fluid formation. Flow through the kidney is then
resumed and by measuring arterial pressure, flow rate, venous pressure,
and kidney weight, the resistance of the segments of the circulation up-
stream and downstream from the transudation site can be calculated.

The disagreement between the direct small vein measurements of
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Waugh (196lL) and those of Hinshaw and Replogle, and the criticism of
both techniques by Haddy and Scott (1965) are virtually the only contro-
versies over data (see page 53 for discussion of Haddy's griticism and
page 68 for discussion of Waugh's measurement). However, the contro-
versy over possible mechanism is widening.

Perhaps the difficulties encountered in the attempt to merge the
existing postulates and supporting data into a simple, and possibly
correct, hypothesis are that the "criteria" (See Johnson, 196l) that have
been suggested to separate the various mechanisms, and the "reasoning"
used to reach the conclusions, have been largely intuitive.

By intuitive it is not meant that the proposed mechamnisms and
"eritical experiments" were created from whole cloth, but that they
have not been examined in the light of a rigorous description of renal
fluid mechanics. Koch (196L) presented certain physical relationships
which would exist in each of the proposed mechanisms by examining
solutions obtained from idealized models. His approach, designed to
provide a physical basis for separating one hypothesis from another, is
certainly correct as far as he went. He did not, however, go beyond
this to an illustrative solution of an entire control system.

The model proposed in this thesis is based on passive collapse of
the interlobular veins. The study was stimulated by earlier work
suggesting that the autoregulatory resistance changes take place in
these veins, and by the desire to show how arteriolar changes would af-

fect venous regulation. Some of the confusion surrounding explana-
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tions for autoregulation can be explained by the non-linear relation-
ships which must exist in such a passive control system. The collaps-
ing pressure at any point in the wveins is the difference between the
extraluminal and intraluminal pressure at that point. The intralumi-
nal pressure is a function of a) the resistance upstream from that
point, b) the arterial pressure, and c¢) the flow. When the vessel
collapses, its resistance increases, thereby changing the flow, and
changing the variables on which collapsing pressure depends. It is
very difficult to assess the influence of all of the fluid flow para-
meters in such a system by intuition alone.

It is the purpose of this study to describe mathematically a sys-
tem which could operate to control renal blood flow in the wvenous cir-
culation by passive means. A model is described which predicts the
effects of the remainder of the renal circulation. Analysis of a
hydraulic test model is presented to verify the mathematical model.
Measurements of prevenous and postvenous regulation in the dog kidney
are presented to verify the site of resistance change. Pressure-flow
curves obtained from dog kidneys are compared with curves obtained
from the hydraulic test model and predictions from mathematical theory.
Results obtained by other investigators are examined in the light of

the model.



II. Mathematical Model

ConceEt

The purpose of a model is to reduce a complicated system by im-
position of assumptions and constraints to a simple system for which
descriptions can be found and from which productive predictions of
behavior of the complicated system can be made. If the modeling pro-
cedure has been correct, the mathematical description of the model is
also the description of those aspects of the system that have been
modeled.

The model presented here is restricted to operate on a principle
compatible with operation in the renal venous circulation. That is,
it must employ no mechanism that would depend upon active vasocon-
striction. The mechanism is based on renal interstitial pressure aris-
ing by fluid leakage from the peritubular capillaries and renal tu-
bules. An increase in interstitial pressure compresses the thin-
walled veins. Although the model is concerned with a principle
mechanism of change in resistance responsible for autoregulation lo-
cated in the collapsible vessels, the resistances of the other seg-
ments of the renal circulation are considered as parameters affecting
the control.

A simplifying assumption is made in considering the converging
and diverging vessels of various diameters and wall thickness as
single tubes. This assumption does not compromise the model, because
the goal of the model is to show a principle on which renal autoregu-
lation could operate, and not to predict the actual magnitude of the
blood pressure at a specific location in a vein. The model is so con-

12
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structed that it is consistent with renal anatomy in the sense that the
same functional relationships between variables, such as pressure and
flow, exist in the kidney as they do in the model.

It is also assumed that distributed points in the renal circula-
tion can be modeled by discrete points. The error inherent in this
assumption is dependent on the distance between the points. (See Appen-
dix B for error analysis.) It is further assumed that the flow through-
out the system is laminar. This has been shown to be the case by Mc-
Donald (1960).

Symbols used in the development of the model are shown in Table
1. In addition to definition of physical units, a functional nota-
tion (see Fig. 1) is shown in Table 2. The functional notation is
used to describe locations within the kidney or model, and is used as
subscripts to variables. In the description of a segment of circula-
tion, the notation describing this segment is taken from the first
point of reference to the next point of reference. That is, for example,

the average flow between the inlet (#) and the leak point (S) is Qg;
the drop in pressure P¢ - PS = AP¢; the resistance of this section = R¢.

The control circuit segment is denoted by subscript c.

Derivation of Dynamic Equations of Motion for Model

Figure 2 shows a linear tube which is called "linear" because the
area does not change as a function of any system variable, but the area

can be made to change as a function of other inputs not considered.
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Table I
Symbols
Symbol  Name Units
A area em®
a minor axis of ellipse cm
b major axis of ellipse cm
c circumference cm
e base of natural log 2.718 approximate
g acceleration due to gravity 980.6 Dyne cm~*/em H,0
L fluid inertance cmHo0 sec® em™® defined
so that AP = L g% across
an element
L length of tubing cm
P pressure cm H 0
Q volume flow rate cm® sec”?!
R resistance to fluid flow cm HyO0 em™ 2 sec; P = RQ
r resistance per unit length cm H,0 em™ sec; R = £
Y shear stress dyne cm” 2
V] viscosity dyne sec cm >
v fluid flow velocity cm sec”!
X variable distance cm
) fluid density gm cm”®
t time sec
w frequency radians sec '
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Table IT Functional Notation and Systems Analogs

Kidney Model
Point a. Point of hydraulic input Point @. hydraulic input to
to kidney - a point in model

the renal artery Jjust
outside the kidney

Point 1. distributed point of Point S. 1leak point

exchange between cir-

culation system and
interstitial space.

(glomerular capil-

laries to tubules

to interstital space

and peritubular capil-

laries to interstitial

space).
Point 2. distributed point. Point (2). beginning of
Where the collapsa- collapsible tube.

bility of the veins
becomes large enough to
allow them to change area
with a pressure difference
across the wall.

Point DV. a point of measurement Point CT. a point within the
within the interlobular collapsible tube
veins, upstream hydrau- which represents
lically from a point of an average tube area.

maximum constriction.

Point V. a point of measurement in Point 3. a point at outlet of
the renal vein just out- system.
side the kidney.

Point I. interstitial space Point ¢. any location within the
pressure chamber surround-
ing the collapsible tube.
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Figure 2 Linear Resistance Tube

Perimeter C

According to Newton's second law of motion, force equals mass times

acceleration. Applying this principle to the fluid within a tube.

dv
ma =g P, A-g P, A-cTl

Since the term "cT4" represents the frictional force, the term may be
replaced by an equivalent force (g R(w) Q A) which is the pressure drop

(due to friction) times the area. This yields:

dv

m-§=gP,,, A-gP,: A-gR(w) QA.

> O

Further, m = 0A4, and v =

then, oA £ 4 <-§-> =gP, A-gP,: A-gR(w) QA.
at

Canceling the area and expanding the derivative
d Q
= @

04 dQ
— — = P - P R(w)Q.
gA it in out

Solving for P,,¢
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PL 4Q
P, =P, - Rw - — =
ut tn () Q Ag dt

If %£ is defined as L (fluid inertance), and a correction factor
g

(Stedman '56) is used to include the effect of frequency on the effec-
tive mass, the equation becomes:

Pyt = P, - R(w) Q-L(w) j—f- (1)

Applying this equation to each linear element (see Fig. 1) provides

the required set of dynamic equations. These are:

P, = Py - Ry®) Qp - ylw) =2 (2)
- «
P2 = Ps - Rl(w) Qs - L,(LU) dt (3)
P, = Py - Re(w)Qe - Lo(w) . (L)
dt

In addition to the above, an equation of continuity may be written
for the junction point (see Fig. 1):
Q = Qs+ Q. (5)

This completes the derivation of the continuity and momentum equations
for the linear elements. Although an energy equation could be derived,
it is not independent and provides no new information.

The methods of Shapiro (1953), for compressible fluid dynamics,
are used to derive the collapsible tube equations because a simple rela-
tionship exists between compressible flow in incompressible tubes and
incompressible flow in compressible tubes. The equations are written

for the fluid in a control volume (Fig. 3) defined by the walls of
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the collapsible tube. It has been assumed that the tube collapses in
an elliptical shape of constant circumference which holds for the
values of pressure and flow where regulation occurs.

The principle of conservation of mass may be applied to the fluid
in the control volume to derive the continuity equation. That is, the
time rate of change of mass in the control volume is equal to the rate
at which it enters one end minus the rate at which it leaves the other
(see Fig. 3c). Or,

o)
— (pAdx) = oAv| =~ pAv
ot (P ) lx ° \X"'dx

Figure 3 Control Volume

~.(as in Fig. 1)

1
Qg - - ) Q
K
P, }
x | d,
o | l x=4
X= /‘
Ellirse of Constant // \\
Perimeter c / \
N
v
v+ iv
P P+ dP
p T Q
A A+dA
x+Cx
b. X C.

(cross section) (control volume)
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Expanding cAv in a Taylor series about x,

3 ,
oAv\x rax oAle + ;; (oAv)dx,
which will yield

2 (pAdx) = =2 (bAv) dx.
At AX

Since the fluid is incompressible and x is not a function of time,

24,20 (6)
3t ox

Newton's second law may be applied to yield the momentum equation.
That is, the time rate of change of momentum in the control volume is
equal to the net rate of momentum entrance plus the sum of the forces.
Or,

o) - 2| _ 2 _
vy (pAvdx) = pAv \x oAv \x+ + gPA\x gPA\x+ +

dx dx

dP ~\ aga
g<P+?.EJ-(dx-Cde.
Again, expanding in a Taylor series,

d 3
— (pAvdx) = oAv?| - [ pAve| + — (pAv®) dx J +
dt X X ax

PA| - [PA\ D (PA) ax |+g(p+ &) A 4x - cTax.
gPAl - g x* 5o Jg< 2>dx

or,

d3(PA)

o) -9 AA
— (pAvdx) = — (pAv®) & - g + gP — dx +
ax dx

ot

dP d3A
gP—{—;dx-chx.

If the higher order differentials are neglected, and the derivative of
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PA expanded,

-3 dpP
g; (oAvdx) = " (0Av3) dx - g A o dx - cT dx.

This reduces to

0M+ a(Av‘?)"'gl‘.AP +¢T = 0.
ot AxX X

Expanding the differentials,

A(A dP
A—+ov +oAv—+gA—+c’r-O

and subtracting ov times the continuity equation (6) eliminates the

terms indicated. The equation then becomes,

v Av AP
pA5€+pAVS;+gA:;+CT=O'

Since the term "cT" represents the forces per unit length due to fric-
tion, it may be replaced by an equivalent force of the pressure drop
due to friction per unit length times the area. Therefore, since

= grQA, where r is the resistance of the tube per unit length,

Ay Av AP
A toav X 4 gpa s s -
oh Sy tohviy tehg terdd

It can be shown (see Appendix A) that for an elliptical tube of con-

7\ 3
stant perimeter, r = r’ ié—l—, where r’ is the resistance per unit
AS

length of the tube when it is circular and has the area A’. The equa-

tion then becomes:

dv Av AP , ()3
A — 4 A — A.__ + = N
P 3t oav AX & AX er A® Q 0 (7

The volume flow rate can be expressed in terms of area and velocity:
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Q = Av. (8)
The three differential equations (2,3,L) for the linear elements are
coupled to the two differential equations (6,7) for the fluid in the
collapsible tube. One coupling relation is the mechanical proper-
ties of the collapsible tube which will be called the "equation of
state" and which must be determined experimentally (see pagell).
The relationship is: A(x) = f (P, - P(x)). For ¥ " diameter pen-

rose tubing the function is:

A(x) = 0.362 o~ 0159 (P, - P(x))8 + 0.108 g~ © 008l (P, - P(x))a +

0.0398

+ 0.03. (see page 16) (9)
(P, - P(x) +1)°°®

A second coupling relation can be deduced by relating the area of the
collapsible tube to flow through the control circuit (c). Since the
chamber containing the collapsible tube is rigid, the net volume of
the chamber is a constant. Therefore, the flow equals the net rate

at which the tube is contracting:

-3 £
¢ = — Adx.
< At S; dx (10)

For the real kidney and in a model used to test the effect of the
stiffness of the renal capsule, the increase in volume of the system

must be measured and equation (10) becomes:

-3t dv
Qe ==\ Aax + &
3t Jo ’

where v is the volume of the chamber.

The third coupling relation is the overall energy rate equation
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for the chamber containing the collapsible tube. For the purpose of
this derivation, energy dissipated due to friction may be considered
lost because it can never be converted back to mechanical energy with-
in the system. Within the chamber as a control volume, the time rate
of change of energy stored is equal to the net rate at which kinetic
energy enters plus the net rate at which work is done on the system

minus the rate at which energy is dissipated due to friction. Or,

3 4 7 oAv? pAvS oA
;SO + P.E.) dx = + -

2g 2g 2g
QA:;VS , (4’ 3
2g + Pc Qc M Pe Qa - Pa Q.‘i -r LA—S-)-— Qa dx (11)

where P.E. is the potential energy per unit length stored in the walls
of the collapsible tube. The potential energy stored in the tube is
equal to the work done on the tube in compressing it from the initial

area A’ to the final area. That is,

P.-P
P.E. = S; (pressure difference) (change in volume)

P. -P
-5 aaen
or since
dA(a
dA(a) = @) da,
ax
Pe-P 30()
Pch = c- aa da=h(Pc"‘P)c
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Substituting
Q Qs
VQ = '-i, V. = e— Qg = Qﬂ’ arld
[ Al

Q
Va = XQ: and setting P, = O reduce H. 11 to
3

S [OM th(Pe-P)] ax = —— Q%+ ——a -

2gA .2 2gA,°2
o} ~4 A’)®
——3Q¢+Pch+P2Q,-3° (3) Q? ax.
2gAs A

In summary, the complete set of equations consist of:

3Qy
Py =Py - Ry Qg - Ly == (2)
3Q,
Pe = Pl = Rs Ql = Ll 3t (3)
oQ.
Pc'Pl'Rch"Lc—g"' ()-l)
ot
Q¢ = Qs + Q¢ (5)
for the linear elements, and
A 3(Av)
5t T ox (6)
dv Av 3P , (A")3
PA— +0Av— + g A — + gr Q=0 (7)
Ax 3 A2
Q = Av (8)

for the collapsible tube, and

£ (P, - P) (9)

>
]
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)
Qc=—-S Adx
3t Jo

3 3 3 3

3d / OAv 0 Qc QcQ
S-{ \\-—-— + h) dx = — —5—5—%—) +

2g 2g S AL A, A,

- /1\3
+P.Q, + P, Q"Sz r,(A ) (12)

Q® &

for the coupling relations. This set of ten equations in ten unknowns
could (in principle) be solved to establish the dynamic behavior of the

system.

Steady Flow Equations and Boundary Conditions

When the flow is not changing with time, the equations describing
the system are reduced considerably. Under these conditions, the dif-
ferential equations may be integrated numerically with a Runge-Kutta
technique or by direct integration if the relationship between area
and pressure in the collapsible tube is simple. The set of equations

for steady flow reduces to:

Pc = Pl (13)
P, =P, -R, Q (1k)
Q = Av (8)
d(Av)

-0 (15)
oOAv dv AdP , (A’)?

T o Tm T e et (26)

A=f (P, -P) (9)
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This set of equations may be modeled in the following manner. There
is a relationship between P,, P., and Q within the collapsible tube;
Q = g(P,, P.), which is represented below.

i

Collapsible
tube
P+ —Q

Q= g(P?,Pc)

The linear element also has a transfer function P, = P, - R, Q

Linear Element

P R —$P,

P, =P, -QR

1.

Q

In the closed loop configuration these two elements are connected so

that P, = P, (see Fig. L).

Fixure 4, Closed Toop Configuration

i

Tinecar Collapsible
Resistance Tube

"
1
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The method used to solve the system shown in Fig. L is to deter-
mine the transfer function Q = g(P,, P.), and then close the loop
P. = P, to find the relation Q0 = Q(P, ). Fig. L shows that there
are actually two control paths. The input pressure is "fed forward"
(a) to apply pressure to the collapsible tube and the flow rate is
"fed back" (b) to the linear resistance. To solve the set of equa-
tions (8,9,13,14,15,16), the differential equation for the collapsible
tube must be put in a form suitable for the use of Runge-Kutta tech-

niques. Expanding 15,

dv dA
— —— °
A ix v ix 0
or,
dv _ v dA
dx T A dx

Putting this into (16) yields

- EXi A L, P, Eliﬁllilg = 0.
g dx dx A2

But from (8),

Hence,
°Q® dA dP  r'(A’)°Q _

- 0. (17)
gh® dx dx A2

If it is assumed that the area of the collapsible tube is a simple

function of pressure (i.e., such as A = P, - P) then,

Therefore,



28

°Q®aAgP , , dP  r'(A1)°Q _

-—_—== — + 0.
gh® dP dx dx A®
Solving for gg,
P -r'(a’)%Q
=T 19
g dP

This is in the required form for integration by a Runge-Kutta technique

(i.e., £ =y (P)).
dx

In the real kidney, however, the area of the collapsible veins
would not be expected to be a simple function of pressure difference
across the walls. Collapsibility of the veins varies from venule to
renal vein as the diameter and wall thickness increases. The assump-
tion of variable properties only slishtly complicates the mathemati-
cal solution. A more general case would assume that radius and area
are functions of distance along the collapsible tube.

(r' =r" (x); A" =A" (x), A=f(P.,P,,x). In this case

aa = 28 gy + 24 gp,
ox aP
and
dA 3A JAdP
dx ~ ox | oP ax

Putting this into equation (17) and multiplying by A3,

Q3 2
-—Q—--B—A_-Oi‘a—AiE'ﬁAagr;-%r,(x)aQso
g 9x g OP dx dx

0Q®23A Y
again solving for —, — = S
AS - 0Q° oA

€ 9JP
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Equation (19) is of the form.

dP
=Yy (P,x)’
dx

and hence can be solved by a similar Runge-Kutta technique. Even though

there may be some variations in tube properties wath distance, a reason-

able approximation tor the present series of experiments is that the

tube area is only a function of collapsing pressure (Eq. 18).

Figure 3
Eid Boundary Coniitions of tiie Collaisible Tube

Chamber

Co""a sibe
Tube

P,
* Q

The boundary condition at x = £ is derived from Venard ('57),

2 2 2

v (v, - v3)

Pz-f_‘e__:Paq-E.q-K_.i__._a_
g 2g 2g

where K is a discharge coefficient, for a sharp area transition, K is
usually taken to be one (1). Setting K = 1, and solving for P,,

2
V3 -Vz VQ

P =
L g
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or,
_ e Q® 5
P, (20)

= = -
gha gAa Ay

this is the required boundary condition at x = £

Summary

A set of equations is derived for a system which models blood flow
regulation in the kidney. The system contains two control loops which
can regulate rate of flow. These equations can be solved by an itera-
tive, third-order Runge-Kutta technique to show the relationships be-
tween pressure input (P;) and flow (Q) through the system with the

series resistance (R;) as a parameter.

Computer Solutions

A computer program was written for the IBM 7094 to solve equation
(18) subject to the boundary conditions of equations (1L4) and (20).
The logical sequence followed by the programs to solve for open loop
response, closed loop response, and pressure distribution along the
collapsible tube is shown in Appendix B.

The parametric fluid flow curves predicted by the computer pro-
gram are shown in Fig. 6. Two results of this simulation seem signi-
ficant. With the range of R, used, the curves (when corrected with a
dimensional analysis for the difference between blood viscosity and
water viscosity, i.e., P multiplied by L) fall into the pressure-flow
range for the kidney and exhibit similar regulation characteristics.
Also, the results predict a region of instability where the flow rate

would oscillate. This unstable region has also been noted in the kid-
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_
Figure 6 Computer Results for Closed Loop Operation
Q
(cm3 sec-l)
10
S N
8 b
[ 5
6 R, = 0.5

10 20 30 40 50 60 70 £0

P, = P, (em H0)
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ney (Replogle, 1960; Hinshaw, 1961). An explanation of the instability

can be found by examination of the denominator of equation (18).

@ r'(a)°Qq
x A3 0Q® dA (18)

g dP

As Q increases there is a point where the denominator approaches

zero for a given value of A and %%. The mathematical interpretation

is that as Q approaches a value which makes the denominator zero, the
steady flow equation no longer describes the system. This means that
the flow is no longer time independent but is oscillating. For any

given difference in pressure (P, - P), A and %% may be calculated from

equation (9). Solving the equation (Denominator of Eq. 18),

oQa dA
3———-.:
A° = P 0 (21)

for Q, predicts the maximum flow rate (Q.x) for which steady flow
equations apply. The solution is plotted in Fig. 7. This procedure,
however, has a limitation in that it can predict the upper limit of
steady flow but not the actual flow rate at which the system will os-
cillate.

The predicted open loop curves are plotted in Fig. 8 and the pre-
dicted pressure distribution along the collapsible tube are plotted in

Figs. 9 and 10.
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Figure-8 Computer Results for Open Loop Operation
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ITI. Hydraulic Test Section

In order to check the predictions made by the computer analysis,
a mechanical model was constructed. The use of a mechanical model to
check predictions has several advantages. The mechanical model can
be made to conform exactly with the assumptions made for the equa-
tions eliminating questions concerning initial hypothesis of mechanism.
The model provides access to variables that are impossible to measure
directly in the kidney. Most important perhaps, is that it provides
a "proof of existence". That is, if a model can be made to control
flow using the mechanism postulated to exist in the kidney, at least

it could work this way in the kidney.

Pressure Supply

The pressure supply (Fig. 11) consists of a variable height over-
flow reservoir. Water enters at the top of a 6 inch diameter, 5 foot
high metal cylinder. Two %4 inch diameter tubes are welded to the bot-
tom of the cylinder. One tube supplies constant pressure to the test
section while the other is attached to a variable height reservoir.

The overflow consists of two sections of 3} in. I.D. flexible tubing
connecﬁed to a pipe tee. The pipe tee is clamped to a circular rod
so that the level of the overflow can be changed. A sight gauge is
also provided so that the applied pressure can be read directly in

cm H;0. The system can hold pressure constant within + 0.1 cm HZ0.

37
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Figure 11 Pressure Supply

Overrlow v
System '4-6" ..I alve
@ Water inlet

¥

Reservoir

Sight gage

—a» To test section

Test Section

Water from the supply flows into the test section (Fig. 12) through
a %" I.D. Tygon tube which is fitted with an electromagnetic flow trans-
ducer (%" I.D. Medicon, Model C59-f18). The test section consists of
two Tygon tubes, three pressure fixtures, and a plastic chamber contain-
ing the collapsible tube.

The pressure fixture is shown in Fig. 13. It is constructed of
a 6" long stainless steel tube of a diameter to match the collapsible
tube. Four inches from the inlet (over 10 diameters) an 0.050" I.D.
tube, 1%" long is silver soldered to the large tube. ﬁanges are pro-

vided for mounting.
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Figure 12 Test Section

R. (Tyson tube)

vo

.Electromagnetic
Flow Transducer To P,
34 " T.D. Transducer

$

$
P, ﬂ Q
_9.., ,_ll ' - — ] i 4
( l é'/ﬁ " Penrose
R, (Iygon tube) ?

To P,
Transducer

Figure 13 Pressure Fixture
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The chamber (Fig. 1l) is constructed of clear plastic so that the

collapsible tube can be observed. Two-way valves are cemented into the
top for connection to pressure transducer, elastic reservoir, or inde-

pendent pressure source.

Methods of Measurements

The instrumentation consists of three pressure transducers
(Statham P23AA and P23Db) used to measure P., Py, and P,, and a
large flow transducer (Medicon Model C59-F18) connected to an electro-
magnetic flow meter (Medicon Model Fm-6R). The signals from the three
channels of pressure and flow channel were recorded on an Electronics
for Medicine Model DR-8, Simultrace Recorder. Care was taken to
assure the absence of bubbles in the water supply in order to avoid
interference with the flowmeter. The frequency response of the system
is entirely adequate to record the 3-L Hz oscillation which characteriz-
ed the instable regions of the tubing studied.

Three different measurements were taken in the system; (1) measure-
ment of the area of the collapsible tube as a function of pressure (the
"equation of state"), (2) measurement of the open loop characteristics
of the system, and (3) measurement of closed loop characteristics.

The area of the collapsible tube as a function of the pressure difference
across the wall was measured using the system pictured in Fig. 15. A
zero level is adjusted so that the system is full of water and the
collapsible tube has a circular cross-section. The chamber is then
pressurized by pouring water in the top of the manometer. For each

level above the zero point, the amount of fluid which has left the



Figure 15

Configuration for Measurements of
Area as a Function of Collapsing Pressure

Chamber

S NN N NN NSNS

|

Collapsible Tube

collapsible tube is measured. This procedure was repeated and found
to be reproducible within + 0.2 cn® for any given pressure.
The open loop and closed loop responses are measured with almost
the same system. The only difference is that for open loop response,
P, and P, are varied independently, and for closed loop response,
P, = P. and P, is related to P, by P, = P, - R,Q. Figure 16a shows
the system in closed loop configuration and Figure 16éb shows the loop
open with independent inputs. Figure 17 shows the apparatus for measure-

ment of open loop characteristics.
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Figure 16 Open and Closed Loop Configuration
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Results and Discussion

The "equation of state" as used in the theory (page 22) is an
empirically derived equation based on measurements of the area of the
collapsible tube portion of the hydraulic test section. As the collap-
sible tube is made to change area by application of a pressure dif-
ference across the walls, the cross-section changes shape from a circle
to an ellipse of increasing eccentricity to a complicated geometry of
a double ellipse, and ends as two circles connected by a fully colla-

psed section (see Fig. 18).

Figure 18

Cross Section of Collarsible Tube as a
Function of Collapsing Pressure

OOOC}:)H

P.-P=2 P ,-P=5 P__P=13 P,-P =10

-

(cm H O)

The relationship between collapsing pressure and area for a %6" pen-
rose tube is shown in Fig. 19. This relationship is difficult to fit
accurately with a polynomial. Without success, polynomials to tenth
order were tried by a curve-fitting technique on an IBM 1620. It was
found, however, that two decreasing exponentials and a power term
could be used to fit the curve. The resulting equation of area as a

function of applied pressure (P, - P) is:
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Figure 19

Area of Collapsible Tube as a
Function of Collapsing Pressure

Pressure P, - P (cm H,0)
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A = O 362 e- O el59 (Pc - P)2+ 0.105 e" Oe 002 (Pc - P)2+

0.398
(Pc - P+ 1)0.8

+ 0.03

The non-linear characteristics of this relationship are important
to the operation of the system. As noted in the introduction, other
investigators have stated that a change in the relationship between
interstitial pressure and arterial pressure would have to occur at
the pressures where autoregulation begins. This nee§ not be true if
the relationship between collapsing pressure and resistance of the
collapsible tube is non-linear. Fig. 20 shows the open loop charac-
teristics of the system for %, " penrose tube and Fig. 21 shows the

characteristics of a closed loop system.
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Q Figure 20 Open Loop Results
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Several observations @an easily be made. The system in closed
loop configuration can regulate quite well (Fig. 21). In fact, using
the proper materials and values ot the series resistance, the system
has application as a fluid flow controller. “This control is accom-
plished passively with a fixed relationship between input pressure
and collapsing pressure determined by the input resistance R¢, the
series resistance (R.), between the leak point and the collapsible tube
and the flow (Q). The difference in results between open loop and
closed loop systems emphasizes the importance of the resistance to
fluid flow between the cardiovascular system and the interstitial space.
The dependence of the shape of the closed loop control curve on R, is
also important. When the difference in viscosity between blood and
water is accounted for, it can be seen that for a certain value of
R, regulation will not occur within pressure ranges studied in
the cardiovascular system. This is significant when one considers
that the series resistance in the kidney contains the efferent ar-
terioles which can be affected by a wide variety of drugs and the au-
tonomic nervous system. Further analysis shows that the input resis-
tance, R¢, can also affect regulation. If R,, represented by afferent
arterioles and small arteries in the kidney is high, much of the
pressure will be lost before reaching the venous circulation. Since
the relationship between pressure and resistance in the wvenous circula-
tion is non-linear, different operating characteristics are found at a
lower venous pressure.

It can be seen from the theoretical development and from direct

measurements in a hydraulic test section designed to simulate the renal
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blood flow control mechanism, which parameters can be expected to affect
regulation if, indeed, the postulated model does represent actual renal
hemodynamics. Although it is postulated that the autoregulatory resis-
tance change occurs in the venous circulation, the form of this regula-
tion (shape of the pressure-flow curves) is affected by preglomerular
resistance, efferent arteriolar resistance, capillary permeability and
venous collapsibility.
The oscillatory behavior of the system is shown in Fig. 22.

This is the simplest mode of oscillation showing an equilibrium flow

1 1

of 9.5 er® sec ! with an amplitude of 3.5 cni’ sec ! and a frequency
of 2.8 Hz. The flow is leading the pressure with a phase shift of

26°.



IV. Experiments on Dog Kidneys

Observations were made on the kidney for three purposes: (1) to
find the section of the renal circulation in.which blood flow control
occurs, (2) to describe the pressure distribution in the renal vein,
and (3) to compare regulation in the venous circulation with the

mathematical model predictions.

Methods

Experiments were run on eight kidneys of one year old dogs rang-
ing from 25-30 kg. The dogs were anesthetized with sodium pentobarbi-
tal at a dose of 30 mg. per kg. of body weight and the kidney exposed
through a retroperitoneal flank incision. The renal artery and vein
were isolated with a minimum of manipulation. After the preparation
was completed, the dog was given L4 mg. of heparin per kg. of body
weight and 5 mg. per hour thereafter.

Renal artery pressure was measured from a needle in the renal ar-
tery and renal arterial blood flow was measured with an appropriately
sized electromagnetic transducer of the same type used in the model
measurements (page L1). Venous pressure at the renal vein and within
the kidney was measured by retrograde insertion of a drawn polyethy-
lene canmula.

Polyethylene tubes of various sizes were drawn in air over a small
electric heater to tip sizes ranging from 0.1 mm to 0.7 mm and inserted
through a needle fixed in a rubber tube inserted into the renal vein,
taking care not to wedge the cannula. Although this technique has been

in use for some time by other investigators (Hinshaw, 1963, 196l) and
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would seem to be almost routine, some difficulty was encountered in ob-
taining a cannula that had a small enough tip to pass into the deep
venous circulation and still have enough structural ridigity to pre-
vent it from folding over in a small vein. A great many sizes of

tube can be drawn to a still greater variety of tip sizes all of which
can be passed into the renal venous circulation. The criterion used
for satisfactory placement of the cannula was a recording of a high
pressure just before wedge. As venous pressure increases in a rather
smooth exponential for the first 1/0-50 mm up the venous circulation,
the arbitrary decision of accepting a particular pressure, obtained with a
given cannula, is difficult. If the cannula is not placed deeply
enough, the resistance changes will be upstream from the measurement
point. By using a slightly smaller cannula, the resistance changes
will occur downstream of the measurement point. Using a smaller can-
nula presents another difficulty. If the tip is too fine, it will in-
variably bend over and the folded tube inserted to the wedging point.
Also, with too small a cannula, it is almost impossible to detect
wedging of the tip.

Pressure and flow were measured with the same instruments used to mea-
sure the same variables on the mechanical test section (see page Ll). Hydrau-
lic occluders (Jacobson and Swan, 1966) were used on the aorta upstream and
downstream with respect to the kidney to vary renal arterial pressure.

Certain objections to direct measurement of pressure within small
renal veins by means of retrograde insertion of a cannula have been
brought forward oy Haddy (1965). Haddy has pointed out that it is im-

possible to calculate the actual values of resistance of segments of
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small veins. This is because of the fact that flow within the wvein

at the site of pressure measurement is not known. This observation

is certainly correct. In order to calculate the resistance of the seg-
ment of small vein, one would have to assume that flow is uniform in
all the parallel veins and know the total number of veins which shared
the flow measured at the renal artery. This assumption is not neces-
sary in the case where the only information sought is whether the resis-
tance changed upstream or downstream of the catheter tip. The only way
that such calculations could be improperly based would be if flow
through the particular vein containing the canmila decreased when per-
fusion pressure increased.

Although this specific reaction is quite unlikely, another artifact
can occur if the cannula is blocking flow as also mentioned by Haddy.
If there are very few side branches interconnecting the interlobular
veins and flow is blocked, it is possible to measure capillary, even,
arteriolar pressure with a canmila in a vein. That this is very un-
likely in the case of interlobular pressure measurements can be seen
by inspecting Figure 31. It can be seen that the slope of the curve
relating deep venous pressure to distance within the kidney is constant
near the deepest pressure measurement. This indicates that resistance
per unit length is constant, which is likely because of the almost con-
stant cross section found in that segment of the circulation, or that
cannula was interfering with flow in such a way that resistance per
unit length appeared exactly constant.

Also, if the cannula were wedged into the vein preventing flow,

the measured pressure would not increase with distance but would re-
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main constant. If the cannula were influencing flow, a bend toward the
pressure axis would be evident at the deepest measurement. It is also
unlikely that all measurements were taken just at the wedge point be-
cause the cannula was withdrawn slightly from the point of maximum

insertion.

Results and Discussion

Data from the kidney studies are tabulated in Appendix D and
plotted in Figures 24-31. In each figure, the curve marked "A" is the
pressure-flow diagram of the entire renal circulation while "B" and
"C" are pressure-flow diagrams of the circulation before and after
the interlobular veins respectively. Autoregulation is shown in pressure-
flow curves by a change in slope. If the change is toward the pressure
axis, it indicates an increase in resistance to maintain constant flow.
Location of autoregulation in the arterial or venous circulation can be
done by inspecting curves "B" and "C" to see which has the greater
change in slope. Each of the kidneys exhibits autoregulation, and in
each kidney the regulation occurs downstream of the deep-venous pressure
measuring point. In Figures 23b-29b a slight increase in resistance is
evident at the high end of the pressure range and in Figure 30b regulation
is present upstream from the venous measurement point.

There is no evidence to suggest that this change in resistance,
upstream of the measurement point, occurs in the arterioles. In each
measurement it was noted that if the venous cannula was not placed far
enough into the venous circulation, the resistance change responsible

for regulation was upstream from the point of measurement. When a
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smaller cannula was substituted, the resistance change was downstream
from the measurement point. This suggests that the slight changes in
resistance upstream of the interlobular veins seen in the first seven
kidneys are still in the venous circulation but above (upstream of)
the position of the cannula, and, in kidney VIII, it probably was not
possible to work the cannula in far enough., Therefore, all the resis-
tance would occur downstream of the measurement point if a cannula
could be made to pass far enough into the interlobular veins,

Some comparisons can now be made between the regulation predicted
by the mathematical model and the regulation measured in the mechanical
model and kidney. From Figure 6 it can be seen that the initial slope
of the pressure-flow diagram and the maximum flow rates are aependent
on the series resistance (Rs)' Ry 1s identified exactly in the mathe-
matical and mechanical models as the resistance between the point where
pressure is fed forward to collapse the thin-walled tubing, and the be-
ginning of the collapsible tube (See Figs. 1 and 3). The analogous
series resistance in the kidney (Fig. 1 and Table II) must be more
vaguely described. The section of the renal circulation representing
Ry is the section between the distributed site of tissue fluid formation
and the beginning of the collapsible veins, Resistance of the
efferent arterioles and part of the peritubular capillaries, and permea-
bility of filtration membranes, proximal tubules, and peritubular
capillaries can all be parts of the series resistance, Unfortunately
it is difficult to assess the contribution of any of these possibilities
except to note that the efferent arterioles have a high vasomotor

reactivity.
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Without being able to identify R structurally with precision
within the kidney, it can still be identified functionally. In order
to compare pressure-flow curves from the model to the curves from the
kidneys, a correction must be made to account for the difference be-
tween the viscosity of blood and of water. In hydrodynamics, flow
characteristics are usually expressed in terms of the Reynolds mumber
which is a function of viscosity (Prandl and Tietjens, 193L; Schlichting,
1960). If this expression had been used, it weuld be apparent that the
pressure-flow curves predicted by the model for R, > 5.0 (Fig. 6),
measured in the hydraulic test section with R, > 4.5 (Fig. 21), and
measured in the kidney (Figs. 23a-29a) would have the same form. The
use of a dimensionless quantity such as the Reynolds mumber would have
made it difficult for physiologists to compare the kidney results with
those of other investigators. To make a comparison between model
curves and kidney curves, it is necessary, therefore, to multiply the
pressure in the model curves by four (4 blood = LU water).

The conclusion that can be drawn from the pressure-flow curve
comparison is that the series resistance in the kidney is probably
higher than the uncollapsed venous resistance. This conclusion must
be qualified because the collapsibility of the penrose tubing used is
mich higher than that of the small renal veins. Collapsibility is a
function of both wall structure and radius of the vessel. The diffe-
rence in wall elasticity between interlobular veins and penrose tubing
is not easily measured, but the veins are certainly smaller than the
smallest penrose tubing available. Because collapsibility varies as

the cube of the radius, greater regulation is expected using penrose
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tubing in the test section.

A similar comparison can be made between the computer predictions
for pressure distribution along the collapsible tube (Fig. 10) and
measurement of venous pressure as a function of distance along a venous
vessel within the kidney (Fig. 31). The pressure distribution is also
affected by Ry and the model also predicts that the series resistance in
the kidney is high compared to the uncollapsed venous resistance.

Some investigators have made a few intuitive guesses of how the
renal blood flow control system would work if it operated on a "tissue
pressure" principle. The mere existence of the mathematical and mecha-
nical models is enough to show that these attempts at theory were mis-
guided. Swann (196}) and Winton (196}) have stated that a passive mecha-
nism could not explain autoregulation because interstitial pressure in-
creases proportionately with arterial pressure. They have stated that
a disproportionate increase in interstitial pressure relative to arterial
pressure would be required to collapse the renal veins significantly in
the pressure range in which autoregulation occurs. Without a model or
physical description they did not realize that their "criteria" would
only hold if the area of the collapsible veins were a linear function
of collapsing pressure. This linearity camnot exist in a geometry of
a collapsing tube as shown in Appendix A.

Johnson (196}) stated that autoregulation should not be abolished
by agents whieh paralyze vascular smooth muscle. He was not aware of
(or concerned with) the effects achange in the resistance of muscular
arterioles could have on passive autoregulation. Schmid and Spencer

(1962) stated, "The linearity of the (pressure-flow) relationship and
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the sharp inflection of the curve...are indirect evidence against a
passive mechanism." Figure 21 shows pressure-flow curves measured in
a passive system made up of penrose tpbing. These curves show more
linearity and a sharper inflection than measured in kidneys.

Other investigators have hypothesized control functions to explain
their observations that could be more easily explained by a passive
control. Waugh (196}) has shown that it is possible to elicit a
damped second-order response in flow to a step input of pressure.

He attributed this response to a "hunting type" reaction. The same
response is seen in passive svstems and depends on control loop time
constants. Waugh noted that the oscillating response is abolished
when renal vascular reactivity is abolished with chloral hydrate.

He interpreted this as proving that the oscillations were caused by
smooth muscle reactivity. Another explanation could be that by
changing vascular diameter with the chloral hydrate, he changed the
control loop time constants. Haddy (1965) found that renal arterial
pressure increases transiently for 2-l seconds in response to a 0.5-2
sec flow pulse. He interpreted the reaction as vasotonic, but the
same reaction could occur easily in a passive system. A flow pulse
forced upon a system which is designed to regulate flow can cause in-
ternal pressures to increase markedly. If the fluid transudation time
constant is high or the system is surrounded by an elastic capsule,
the control system can display a long time constant to equilibrium.

Regulation of GFR (Harvey, 196l; Schmid, 196lL) and regulation of
lymphatic pressure (Haddy, 1958a) are more difficult to explain with a

passive control system. It could be that the tubules and lymphatic
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vessels also regulate by collapsing just as hypothesized for the small
veins,

Waugh (1964) has based many of his conclusions on his observations
of deep venous pressure during autoregulation. His results show the
resistance change located upstream from the catheter tip instead of
downstream. Cne explanation is that Waugh failed to insert his can-
nulae far enough into the venous circulation, This can easily be done
if the proper sized tubing is not chosen and proper technique is not

used in drawing the tubing to correct taper.



V. Summary and Conclusions

The results of the computer solution of a mathematical model and
the direct measurements on a hydraulic test section to verify the model
show the existence of a possible passive mechanism for the renal blood
flow control which can operate in the renal venous circulation. The
model also provides an insight into the role of arterial and arterio-
lar resistance and capillary permeability might play in influencing
this resistance,

Autoregulation of blood flow in the kidney is postulated to be
caused by an increase in resistance of the interlobular and arcuate
veins, caused by their collapse with increasing arterial pressure,

The cross-sectional shape of these veins is a function of their
structure and collapsing pressure. Collapsing pressure, in turn, is
the difference between pressure at the site of formation of intersti-
tial fluid and pressure within the collapsing vein., At a given blood
flow rate, the magnitude of the collapsing pressure depends on the
resistance (RS) of the segment between the site of formation of inter-
stitial fluid and the collapsing veins. Any factor which can effect
RS can change the regulation characteristics of the collapsible veins,
Because the relationship between resistance of the collapsible veins
and the absolute magnitude of the collapsing pressure is non-linear,
and because the drop in pressure across the small arteries and pre-
glomerular arterioles determines the pressure at the site of formation
of interstitial fluid, the resistance (R;) upstream of the leak point
affects regulation.

Other factors predicted to influence autoreguiation include ca-
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pillary permeability and collapsibility of the veins. Capillary per-
meability influences regulation time constants and series resistance.
Collapsibility of the veins is a function of both stiffness and ra-
dius. As the vein size increases from the venules to renal vein, the
collapsibility as a function of radius increases. But, as they be-
come larger, the wall thickness increases and they become stiffer, de-
creasing collapsibility. Collapsibility is a function of distance
along the venous circulation and has a maximum somewhere between the
ends.

Measurement of renal arterial pressure, blood flow rate, and deep
venous pressure within the dog kidney support earlier findings (Hinshaw,
196L) that the site of autoregulation resistance changes is in the in-
terlobular or deep arcuate veins.

The findings indicate that the principle mechanism of renal auto-
regulation is a passive collapse of interlobular veins. This passive
type of control is very sensitive to changes in resistance upstream
from the veins, however, and could be augmented or controlled com-
pletely by arteriolar changes, particularly efferent arteriolar changes.
The model in no way proves how autoregulation works but its existence
shows that a passive mechanism is possible. With a mathematical de-
scription from which to work, it may be possible to design more mean-

ingful experiments.
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ABEendix g

In this section the pressure-flow relationship for fluid flowing
in elliptical tubes is derived. It is shown that for an elliptical

’ ’7\3
tube r = T’ (A)° here " is the resistance per unit length and
AS

"A" is the area.
A thin shell of fluid in a circular tube is shown below. The

velocity (v) is parallel to the axis (x) of the tube and is a function

of the distance (h) from the axis. The shearing stress (T) on the
inner surface is (assuming laminar flow), T, = u ;%\2, where u is the

dv
viscosity. The stress on the outer surface is 7, =u — |

dx 'h+ dn’

Expanding T, in a Taylor series about h,

A A 3
To=u v F — .th.

dh 'h Ah Ah

The net axial shearing force is

dF = 27he (7, -7,).
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Substituting for T and expanding the derivative,

%y

dF=-2TTth dhc

3hZ

This force must be balanced by the net axial pressure force.

2

(P, - P,)2nhdh = dF =2 2mhiu = dh.
Or,
P, - P, _ A2y
L SSTH
P, - P, dpP
In the limit as £ approaches zero, -z————-becomes o and
dP_ _ uaav
dx Ah2

More generally,

dP 2
rral el

That is,

(14)

where V,2> is the radial laplacian operator in the coordinate system

being used.

An elliptical tube is shown below. ’

(1B)



This equation has the solution

<
1

c<l - Ei-z—a—

a2 b2 /s
providing

1 a?b? dpP
2U. az + b2 dx

Therefore,

1 a®b® 4P <l_z_2_y2)
2

2u g2 + p2 dx 7

The volume flow rate (Q) is

_&b&b g _dP T ad b3
Q=)\vy Z_dx Lu a2 + p?

Since the resistance per unit length is defined to be the pressure

drop divided by the volume flow rate,

_dP _Lu a® +1b?
r_dx/Q _Traabs )

For a tube of constant perimeter "a® + b®" is nearly a constant,
hence, combining the constant terms
r = K’'/a® b?
For an ellipse, a®b® = A3/n®, and therefore,
r = K/A® where K = Lu (a® +b?)n?

This leads directly to the required result,

3 ’ 7\ 3 I" (A’)a . . .
rA®=1r'(A")® or, r-= E— which is used in the theo-
A
retical development.



T T v e



Appendix B

The computer program logic and programs for solving the open
loop, closed loop, and pressure distributions are presented in this
section. Each program is followed by a table of the results which
are used in the body of the thesis. The logic proceeds as follows:
1. Set P, and R;.

2. Guess a value of Q.

3. Check to be sure Q is not too large.

L. Use a third-order Runge-Kutta technique to step along the tube
increments of Ax from x = 0 to x = £.

S. Check to see if the value of Q meets the end boundary condition.

6. If it does, print out results, index the applied pressure and use
the current value of Q for the next operation at the new value of
P..

7. If the end boundary condition is not satisfied, check to see if
cycle has been performed more than once.

8. If this is the first guess at Q, check the sign of the error at
the end boundary condition and guess at a new value of Q accord-
ingly.

9. See if the error has changed in sign if the cycle has been per-
formed more than once.

10. If the error has changed in sign, Q is somewhere between the old
value and the present value so start searching between these two
points.

11. If the error has not changed in sign, guess at a new value of Q ac-
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12
2GC

24

60C

80

cordingly. The final search routine consists of a simple interval

slicing technique.

The parametric fluid flow control curves predicted by the computer
program are shown in Fig. 6. The results plotted are for a x = 0.5 cm
for a 30 cm tube length. When x was reduced to 0.25 cm, the values of
flow changed a maximum of 0.05% showing that the procedure of lumping
the tube into 0.5 cm lengths is sufficient and this value was used
thereafter.

The same area subroutine listed below was used for each program.

SUBROUTINE AREA {C,A,CA)
IF(C-15.)10+1Cs125
0 CA=C#C*.159
CB=C#C#.C061
A=.362/EXP(CA) +.105/EXP(CB) +.0398/(C+l.)®®.2 +.03
DA=.115#C/EXP(CA) +.00128#C/EXP(CB) +.00796/(C+l.)enl.2
GO TO 600
1 CB=C#C+.0061
A'—'QIOS/EXP‘CB) *00398/(C*10).'02 '.'003
DA=.00128#C/EXP(CB) +.,00796/(C+l.)ne]l,.2
GC TO 60¢C
A=.0398/(C"1.).'02 *003
DA=.00796/(C+1l.)unl.2
RETURN
END
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Listed below is the computer program used to solve the closed

loop curves.

25 READ(5,1C0) R,DXyH,NC
100 FORMAT(3E16.8,110)
WRITE(6,4103) R,DX,NO
103 FCRMAT(1H1,7Xo16HSOLUTION FOR R S9FS5e298Hy DX = 9F4,2¢7THy
NO =, 115)
Q=2.66
pPC=1.
0C 1 K=1,20
10=0
805 I1=0
N=0
IF(I0-50)3,3,11
3 PA=PC-Q#R
E=Q#DX#,.000155
F=QsQ#,00102
IF(PA)&4,4,5
4 Q"Q"ol
GG 70 3
5 0DC 6 L=1»NC
C=PC-PA
CALL AREA (C,A,DA)
DENO=A=#3-FaDA
IF(DENC) 804,804,801
801 RKA=-E/DENOC
PAG=PA+.58RKA
C=PC-PAG
CALL AREA (C,A,D2)
DENO=A=u3-FaDA
IF(DENO) 804,804,802
804 [10=10+1
Q=Q-.051
GC TO 805
802 RKB=-E/DENQ
PAG=PA+2.#RKB-RKA
C=pPC-PAG
CALL AREA (C,A,DA}
DENO=Ass3-FaDA
IF(DENC)804,8C4,803
803 RKC=-E/DENC
6 PA=PA¥({RKA+4,.#RKB+RKC) /6.
N=N+1
IF(N-75)505,5C5,11
505 C#ABS(PC-PA)
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CALL AREA (C,A,DA)
502 PA=PA-4,#F+2,%F/A
IF(ABS(PA)-H)11,11,12
12 IF(N-1)17,17,14
17 IF(PA)15,15,16
15 QB=Q
PAB=PA
Q=Q-.05
GO TO 3
16 QB=Q
PAB=PA
Q=Q+.,05

GO TO 3
14 IF(PA*PAB)18,13,13
13 IF(I)17,17,20
18 I=1+1
QA=Q
PAA=PA
GO 70 19
20 QB=Q
PAB=PA
19 Q=QB+.3+(QA-Q8B)
IF(ABS(QA-QB)-,001)11,11,3
11 WRITE(6,102) PCyN,yQ
102 FORMAT(1HO ,4X4HPC =3F5.1,14iX,3HN 2913,13Xy3HQ =yF9e5)
IF(PC-9,)7092,700,701
70¢C PC=PC+1,
G0 T0 1
701 PC=PC+6.
1 CONTINUE
IF(R-10.)25925,26
26 STOP
END
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Tabulated Results of Computer
Solution for Closed Loop Operation

Series
Resistance 5.0 2.0 1.0 0.7 0.6 0.5 0.4 0.3 0.2
P, = P.(cm-H,0)
2 0.36 0.96 1.82 2.52 2.91 3.41 L.11 5.26 7.21
L 0.71 1.58 2.78 3.66 L4.10 L.69 5.48 6.63 8.L46
6 0.94 1.91 3.16 L.04 L.LB ©5.05 5.83 6.95 8.72
8 1.16 2.22 3.46 L.32 L4.75 5.32 6.07 7.17 8.90
10 1.35 2.48 3.71 L.54 L.96 5.50 6.2L 7.30 8.99
16 1.65 2.87 L4.07 L.84 65.23 5.73 6.43 7.4 9.04
22 1.76 3.00 L.19 L.94 5.31 5.81 6.48 7.47 Unstable
3L 1.88 3.15 L.34 5.07 5.43 5.91 6.57 7.55
Lé 2.00 3.29 L4.LB ©5.20 65.55 6.02 6.67 7.63
58 2.11 3.42 L.62 5.32 5.66 6.12 6.76 7.71
70 2.23 3.54 L.75 S5.WL4 5.78 622 6.85 7.78
Resulting Flow Rate (cm?/sec)
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Listed below is the computer program used to solve for the open
loop curves. The logic of the program is basically the same as that
used for the closed loop curves except that the boundary condition

at x = 0 is independently controlled.

25 READ(5,100) RysDXsHoNO
100 FORMAT(3E16.8,110)
PC=10.
OC 1 K=1,7
Q=.001
PAK=1.
WRITE(6,103) PC
103 FORMAT(1H1,7X,26HOPEN LOOP SOLUTION FOR PC=,F5.2)
IC=0
805 I=0
N=0
IF(I0=-50)3,3,11
3 PA=PAK
€E3QeDX#,000155
F=QeQ®.00102
5 DC 6 L=1,NO
C=ABS(PC-PA)
CALL AREA (C,A,DA)
DENO=A#a3-FaDA
IF(DENO) 804,804,801
801 RKA=-E/DENO
PAG=PA+.5«RKA
C3ABS(PC-PAG)
CALL AREA (C,A.D2)
DENO=A«s3-F=DA
IF(DENQO) 804,804,802
804 IC=10+1
QQQ"QOSI
GO TO 805
802 RKB=-E/DENO
PAG=PA+2 ., #RKB~-RKA
C=ABS(PC-PAG)
CALL AREA (C,A,DA)
DENO=A##3~FaDA
IF(DENO) 804,804,803
803 RKC=-E/DENO
6 PA=PA+(RKA+4.%RKB+RKC) /6.
N=N+1
IF(N-75)5059505,11
505 C3ABS(PC-PA)
CALL AREA (CeA,DA)
502 PA=PA-4.%F+2.8F/A
IF(ABS(PA)-H)11,11912
12 IF(N=-1)17,17,14
17 IF(PA)15,15,16
15 Q8=Q
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PAB=PA

Q=Q-.05

GO 70 3
16 Q8=Q

PAB=PA

Q=Q+.05

GO T0 3
14 IF(PA«PAB)18+13,13
13 IF(I)17,17,20

18 I=l+l
QA=Q
PAA=PA
GC TO 19
20 QB=Q
PAB=PA
I9 Q=QB+.3#(QA-Q8)
IF(ABS(QA-QB)-.001)11,11,3
11 WRITE(69102) PAK,N,Q
102 FCRMAT(1HO,4X,4H P =3F5.1911X93HN =913,13X¢3HQ =,F9.5)
PAK=PAK+1,
IF(PAK-PC) 805,805,701
701 PC=PC+10.
1 CONTINUE
IF(R-10.)25,25926
26 STOP
END



Tabulated Results of
Computer Solution
for Open Loop Operation

P.(cm-H,0) P, (cm-H,0) Q(em®/sec) P (cm-H,0) P,(cm-H,0) Q(cm®/sec)

10 1 0.33 L0 36 L. 74
10 2 0.73 LO 37 5.9L
10 3 1.21 L0 38 8.51
10 L 1.77
10 5 2.4l 50 20 0.51
10 6 3.3L 50 30 0.85
10 7 L.91 50 35 1.20
10 8 8.08 50 L0 2.09
10 9 11. 83 50 L2 2,75
50 Ll 3.66
20 S 0.36 50 L5 4.22
20 8 0.80 50 L6 L.93
20 10 1.28 50 L7 6.09
20 12 1.98 50 L8 8.59
20 1L 2.93
20 15 3.53 60 25 0.61
20 16 4.30 60 35 0.89
20 17 5.59 60 1,0 1.08
20 18 8.30 60 L5 1.43
60 50 2.31
60 52 2.97
30 10 0.3L 60 52 2.97
30 15 0.70 60 N 3.86
30 20 1.60 60 55 L. 41
30 22 2.29 60 56 5.11
30 2L 3.22 60 57 6.24
30 25 3.80 60 58 8.72
30 26 L.SkL
30 27 5.77 70 35 0.8L
30 28 8.38 70 L5 1.12
70 50 1.30
L0 15 0.41 70 55 1.65
L0 20 0.60 70 60 2.52
L0 25 0.96 70 62 3.17
L0 30 1.85 70 6L .05
L0 32 2.53 70 65 L. 60
L0 34 3.L45 70 66 5.28
L0 35 .02 70 67 6.39
70 68 8. 80
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The computer program used to solve for the pressure distribu-

READ(5,100)RyPC,Q
FORMAT (3El6.8)
WRITE(64123)R,PC,Q

FORMAT(1H1,7X,29HPRESSURE DISTRIBUTION FOR R =4F54258H,

1F602'7H' Q "quS)
WRITE(6,104)

FORMAT(1H ,1J3Xy1HX915X51HP)

X=,0

E=Qe,CUCIT775
F=Q#C#»,C01(2
PA=PC-QeR

00 6 L=1,67
WRITE(6+105) X,yPA

FORMAT(1H »7XyF562910X9F1245)

C=ABS(PC-PA)

CALL AREA (C,A,DA)
DENO=A#e#3-FaDA
RKA==-E/DENO
PAG=PA+,5#RKA
C=ABS(PC=-PAG)

CALL AREA (C,A,DA)
DENO=Aw##3=-F#DA
RKB=-E/DENO
PAG=PA+2, #*RKB=RKA
C=ABS(PC-PAG)

CALL AREA (C,A,DA)
DENQO=A#e#3-Fa#DA
RKC=-E/DENO

X8X+.5
PA=PA+(RKA+4, *RKB+RKC) /6.
IF(R=136)25,25,26
STOP

END

The flow rate solutions obtained from the

PC
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Computer Results for
Pressure Distribution for R, = 5.0
and Values of P, = P, (ecm-H,0)

Distance
X cm P,=10 P,=1 P, =22 P.,=34 P.,=252
0.0 3.27 7.77 13.22 2L. 59 L1.72
4.0 2.93 7.22 12.55 23.76 1,0. 60
8.0 2.56 6.60 11.78 22.77 39.15
12.0 2.18 5.89 10. 87 21.52 37.0L
16.0 1.76 5.07 9.74 19.81 33. Lk
20.0 1.31 L.07 8.26 17.18 26.47
22.0 1.07 3.148 7.31 15.20 21.68
2.0 0.82 2.81 6.13 12.147 16.50
25.0 0.69 2.L3 5.42 10. 77 13.83
26.0 0.56 2.02 L. 61 8.86 11.11
27.0 0.42 1.58 3.68 6.77 8.3L
28.0 0.28 1.09 2.60 L.55 5.54
29.0 0.13 0.55 1.34 2.2l 2.70

29.5 0.06 0.25 0.6L 1.06 1.27



89

Computer Results for
Pressure Distribution for P, = 16 (cm-H,O0)

and Values of R,
Distance @R, =5.0 R, =2.0 R,=1.0 R,=0.5 R, =0.2
X cm
0.0 7.77 10.26 11.93 13.13 14.19
L.0 7.22 9.62 11.36 12.83 1L. 05
8.0 6.60 8.90 10.62 12.37 13.89
12.0 5.89 8.08 9.73 11.63 13.66
16.0 5.07 7.10 8.67 10.53 13.33
20.0 L. 07 5.90 7.35 9.12 12.60
22.0 3.48 5.16 6.5 8.25 11.6L
2l.0 2.81 .29 5.55 7.19 10.41
25.0 2.43 3.78 L.97 6.56 9.76
26.0 2.02 3.21 L.30 5.81 9.03
27.0 1.58 2.56 3.50 L.91 8.17
28.0 1.09 1.80 2.53 3.74 7.07
29.0 0.55 0.90 1.29 2.07 5.02
29.5 0.25 0.38 0.51 0.87 3.98



Appendix C

Experimental Data from Hydraulic Test Section

Area as a Function of Pressure

Applied Pressure Displaced Resulting Change
(em-H, 0) Vol (cm®) in Area (cm?®) Area (cm?)

0.0 0.0 0.0 0.537

1.0 0.8 0.027 0.510

1.5 1.6 0.053 0.L48L

2.0 L.2 0.140 0.397

2.2 6.0 0.200 0.337

2.5 8.0 0.267 0.270

2.8 9.0 0.300 0.237

3.2 9.9 0.330 0.207

L.0 10.8 0.360 0.177

L.9 11.2 0.37L 0.163

10.0 12.8 0.427 0.110
18.0 14.0 0.L467 0.070
27.0 14.5 0.L8L 0.053
Lo.0 14.8 0.L9L 0.043
Above 100 15.2 0.507 %#0.030

*Assumed for the case when the tube is completely collapsed.

90
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Data for Open Loop Curves

P, =70 cm-H,0

P, cm-H 0 P, cm-H 0 AP em-H,0 Q cm®/sec
26.2 1.0 25.2 0. Ll
31.0 1.0 30.0 0.57
Ll.3 1.2 4O.1 0.93
51.6 1.3 50.3 1.51
62.0 1.3 60.7 2.56
65.0 1.L 63.6 3.28
67.0 1.h 65.6 3.80
68.0 1.L 66.6 L.71
68.6 1.5 67.1 6.42
69.0 1.5 67.5 7.58
69.2 1.5 Unstable

P, = 60 cm-H 0

P, cm-H 0 P, cm-H 0 AP cm-H 0 Q cm®/sec
5508 lo)-l Sh-h 3061
56.6 1.L 55.2 3.92
57.7 1.4 56.3 L. L2
58.5 1.h 57.1 5.52
58.8 1.5 57.L 7.25
L2.6 1.2 L1.4 1.67
L8.5 1.2 L7.3 2.22
34.0 1.1 32.9 1.11
2L4.5 1.1 23.L 0.67
15.0 1.1 13,9 0.33
59.0 1.5 Unstable

P, = 50 em-H 0

P, cm-H 0 P, cm-H 0 AP em-H_0 Q cm®/sec
15.0 1.1 13.9 0.4l
22.0 1.1 20.9 0.76
30.3 1.2 29.1 1.33
36.5 1.2 35.3 1.75
L3.0 1.3 L1.7 2.77
L7.0 1.4 Ls.6 L.23
L8. 1L L7.3 7.13
L9.0 1.5 Unstable
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P. = 40 cm-H;0

AP cm-H 0 Q cm?®/sec

P, em-H 0
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P, =10 em-H,0

P, cm-H, 0 AP cm-H,0 Q cm¥/sec

P, cm-H, 0

ccccc

Data for Closed Loop Curves

L.5
P, = P, em-H, 0

Q cm®/sec

Pl - Pa

AP =

P, em-H,0

P, cm-H,0

ooooooo

ooooooo

ooooooo

ooooooo

R, = 0.73

AP = P, - P, cem-H,0 Q cm®¥/sec

P, cm-H,0 P, cm-H 0

P, =P, em-H,0
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oooooo

oooooo

oooooo

oooooo
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R, = 0.40

AP =P, - P,cm-H,O Q cm®/sec
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R, = 0.28

AP = P, - P, em-H,0 Q cm®/sec

P, ecm-H,0 P, em-H,0

P, = P, cm-H 0
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R, = 0.21

Q cm®/sec

AP = P, - P3 cm-H.,O

cm-H,0

Py

P, em-H, 0

P, = P, cm-H,0
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Kidney I

Kidney II

Kidney III

Kidney IV

Aprendix D

Experimental Data from Dog Kidneys

Pl PDV Pl - PDV Q
8 1 7 0.17
30 6 2L 0.75
58 8 50 1.720
72 10 62 2.16
93 12 81 2.70
120 19 101 2.83
132 25 107 2.95
8 1 7 0.25
31 7 2l 1.55
62 15 L7 2.59
83 20 63 l.05
108 29 79 5.00
126 L3 83 5.27
139 L7 92 AY.
146 55 91 5.58
9 2 7 -
25 7 18 0.3l
34 8 26 0.50
52 13 39 0.92
61 1L L7 1.05
78 20 58 1.28
90 26 6l 1.70
103 27 76 1.72
11L 33 81 1.88
123 36 87 1.88
131 Lo o1 1.82
139 L6 93 1.95
29 3 26 0.50
52 L L8 1.08
62 5 57 1.33
77 6 71 1.83
86 7 79 1.92
99 9 90 2.25
107 11 96 2.33
124 16 108 2.50
138 2l 11l 2.62
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Kidney V

Kidney VI

Kidney VII

Kidney VIII

15
36
6L
97
115
123
137
1Lh

35

68
8l

112
125
134

L2
51
68
81
93
100
111
12)
132
140
1,8

22
32

52
60
71
85
2
102
116
123
135
1Lk

97

13
27
L7
68
77
77
85
88

31

58
71
76
8L
92
96

39

61
70
79
80
85
oL
100
10k
107

o
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.16
.75
.37
.15
.33

-55
.60






