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ABSIRACT

DIRECT GENERATION OF EFFICIENT'LOI-ORDER

MODELS FOR LINEAR MIXED-STRUCTURE SYSTEMS

By

William Frederick Resh

Many physical systems consist of lumped-parameter subsystems

coupled by continuum elements. For example. in an automotive

drivetrain the engine. transmission. differential. and wheels could be

represented as lumped-parameter systems and the drive shaft and axles

as continuum elements. In modelling these mixed-structure systems.

the continuum elements give rise to partial differential equations and

the discrete subsystems give rise to ordinary differential equations.

Because of the coupling between the subsystems, analytical solutions

are unobtaiuable in general.

Typical modelling approaches for these problems discretize the

continuum elements. using large numbers of local variables in order to

get an accurate representation of the entire system's behavior.

Often, because of the model's size, it is very expensive to work with

directly, particularly in an iterative design context. One way to try

to achieve efficiency in the design process for linear systems is to

apply a model-order reduction procedure to the large-order model to



William Frederick Resh

gobtain a lower-order working model. In this work. a procedure is

develcped that permits forming an efficient low-order model directly.

bypassing the formulation of the large-order model and application of

a model-order reduction procedure. A procedure of this type is

especially attractive for use in preliminary design. where constraints

on time and computational resources may prohibit iterative analyses of

large systems models.

The particular type of linear mixed-structure systems to be

exmmined are those having a cascade structure. A procedure is

deve10ped based on parameter information. coupling effects. and

tabulated error results for some prototype cases. Applications of the

procedure are illustrated.
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1. INTRODUCTION

1‘; 0 round

Many dynamical problems of practical interest are linear

mixed-structure systems. That is, they consist of linear subsystems

that are inherently discrete coupled by linear continuum elements.

- See Figure 1.1 for an abstract representation. The continua are shown

with each one coupling two discrete subsystems. which is the most

common case in engineering systems. Consider. for example, the

rotational positioning mechanism shown in Figure 1.2. In the process

of modelling the dynamics of such a system, the engineer is faced with

the problem of using finite dimensional models of the two shafts. The

questions emerge in this problem. The first of these is:. How should

one discretize each shaft in order to get a reasonable model of it?

Contained in this question is the matter of the type of discretization

to use (eg.. finite elements) and the number of elements or

degrees-of-freedom to use for each shaft. The second question is:

How do these discretized shaft models work in the combined system

model?

For the sake of example. assume that all the discrete-dynamic

e1ements-- inertias 31. 12, and 13. and springs k1 and k2 -- have unit

parameters. Assume that both shafts are uniform and identical except

that shaft 1 is twice the length of shaft 2. Also assume that modal

approximations are to be used to discretise the two shafts. Just

looking at the shafts. one might reasonably discretixe them using

twice as many modes for shaft 1 as for shaft 2 since they are .

identical except for shaft 1 being twice as long. Suppose one uses
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Figure 1.1 Typical Mixed-Structure System
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Figure 1.2 Rotational Positioning Mechanism
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four modes for shaft 1 and two modes for shaft 2. How well will these

shaft models work in the combined system model? What if J3 and ‘prin‘

12 have a frequency near the third mode of shaft 2? How will using

only two modes for shaft 2 affect the resulting system model?

Assuming th‘t 33 and spring k2 have a frequency near the third mode of

‘h‘ft 2. 'h‘t if I3 is much less than or much greater than the inertia

of shaft 2? How will using only two modes for shaft 2 affect the

quality of the resulting system model? So even if the discretized

continuum representations are assumed to be good approximations of the

continuum elements. some thought must be given to how the 1 ‘

approximations will be interacting with the discrete dynamic elements

in the mixed-structure system.

Above it was stated that there is a need to discretise the '

continuum elements in a mixed-structure system. This need to

discretize the continuum elements results from the coupling that

exists between the partial differential equations (PDEs) representing

the continuum elements and the systems of ordinary differential

equations (ODEs) representing the inherently discrete subsystems. As

shown in Figure 1.3. the continuum elements in the linear

mixed-structure (LMS) system give rise to partial differential

equations (PDEs) and boundary conditions (BCs). The discrete

subsystems yield ordinary differential equations (ODEs). Because of

the physical coupling in the LMS system. variables from the PDE

representations appear in the ODEs and lumped parameter variables from

the ODEs appear in the boundary conditions. coupling the two types of

. representations. In a few degenerate cases, some of which are

discussed in Timoshenko [1]. the behavior of the discrete.subsystem,



 

   
     

 

  
 

PDEs

LMS Continuum Elements

and

J at;

Discrete

Subsystems Coupling

 

 

Figure 1.3 Breakdown of LMS System into Mathematical Components

 

kd mass

   
Figure 1.4 Form of Discrete Subsystems
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can be described in terms of the coordinates of the continuum element.

permitting an analytical solution. But usually an analytical solution

is unobtainable. Moreover. the coupling in general has a nontrivial

effect on the subsystems and therefore cannot be neglected. Typically

what is done is to convert the PDE representations of the continuum

elements to ODE representations. so that all the dynamic equations are

ODEs.

Several methods are available to convert the PDE representations.

including finite element analysis. modal approximation. numerical

approximations to the Operators. and a physical lumping approach.

After a discretization technique has been applied. the discretised

. representations of the continuum elements and the inherently discrete

subsystems are then assembled into an ODE representation of the

complete system. To retain sufficient accuracy. large numbers of

variables are used to approximate the continuum elements. As a

result. the complete system model (hereafter referred to. as in

Skelton [2]. as the evaluation model) is often too large or expensive

to work with directly. In addition. one always has to address the

question of "How large is large enough?"

To save computation time in simulations and to facilitate control

system design. the evaluation model's size often is reduced in some

"optimal" fashion using a model-order reduction procedure. These

model order reduction techniques are of two basic types: aggregation

and singular perturbation. Both types require three basic elements.

namely. an evaluation model. a set of trial models. and a model

quality index. As described by Skelton. the model-order reduction

problem is fundamentally that of minimising some model quality index
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for all models of a given order that are reduced-order models of a

given evaluation model.

Application of either type of model-order reduction procedure is

not a simple task. From Aoki [3.4] the aggregation method is seen to

be a generalization of the modal approximation procedure developed by

Davison [5.6] and others. As such. it typically requires knowledge of

the eigenvalues. and often also of the eigenvectors. of the evaluation

model. The singular perturbation method does not require the

evaluation model eigenvalues and eigenvectors. But it is a nontrivial

problem to formulate the system equations in the format required by

the theory.

Since the aim of the modelling procedure often is to obtain an

accurate system representation of relatively low order. it would be

useful in these cases if this representation could be formulated

directly. bypassing the formulation of the evaluation model and

application of a model-order reduction procedure. Consider. for.

example. the preliminary stages of the design process. Here the

systems engineer quite often has a large number of possible design

configurations to choose from. In addition. available computational

resources may be limited. prohibiting the formulation and reduction of

many evaluation models. Even if computational resources aren't

limited. the engineer's time is. so it is always an advantage to

reduce the number and size of evaluation models to be considered.

1...; 32mm! 9111.29.11”: an_d £_L_rolam ___st_kestriion_s

The goal of this work is to develop a set of guidelines that will

help the designer to directly generate efficient working-order models
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for linear mixed-structure systems. With these guidelines the

designer:

1. specifies a model quality index.

2. breaks the mixed-structure system into segments.haviug one.

one continuum element in each segment.

3. distributes the eigenvalues among the segments.

4. chooses the number of spring-mass lumps to be used to

discretise the continuum elements by examining results for

some prototype cases. and

5. assembles the finite-dimensional model using the results

from step 4.

In this work a model quality index based on eigenvalues will be used.

To uphesize coupling effects and the coupling paths involved while

develOping the guidelines. linear mixed-structure systems examined

here will have cascade structure with discrete subsystems of the form

shown in Figure 1.4. To facilitate comparisons between the evaluation

model eigenvalues and the low-order model eigenvalues. work will be

limited to conservative systems where the continuum elements are

uniform and have both inertia and compliance effects.

So this work will pertain to the modelling of linear

mixed-structure systems having the following properties:

1. systems are cascade with one-dimensional dynamics.

2. systems are conservative.

3. continuum elements are uniform with dynamics described by

second-order equations of the form:

I'a’u/dt’ = d’u/ax’
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4. discrete subsystems are of the form shown in Figure 1.4. and

5. the model quality index used is based on eigenvalue errors.

In what follows. the particular index used is that the first

I eigenvalues are each within Y percent of the corresponding

eigenvalues from the evaluation model.

143 Dissertation Organization

The remainder of the dissertation is organized as follows. In

chapter 2. section 2.1 discusses discretizing methods for.the

continuum elements and the convergence rate of the method used. In

section 2.2. the prototype linear mixed-structure system is examined.

A new method for solving the problem analytically is develOped. along

with a procedure for generating evaluation model eigenvalues from the

eigenvalues of low-order models. Unit-parameter uniform cascades and

the effect of coupling are discussed in section 2.3. The modelling

procedure for direct generation of low-order models is given in

chapter 3 along with some application examples. Also discussed in

chapter 3 is the eigenvector behavior of these models. In chapter 4 a

requirement on the form of the discrete subsystems used in develOpimg-

the modelling procedure is relaxed. and the usefulness of the

procedure in these cases is verified.



2. FACTORS AFFECTING DIRECT GENERATION OF LOW-ORDER MODELS

2‘; Discretizing‘thg Continuum Elements ggd Eigenvalug Convergence

Having set the evaluation framework. the modelling problem can

now be addressed. There are two factors affecting the direct

formulation of efficient low-order models. They are the strengths of

the couplings between subsystems and the discretization method used‘.

for the individual continuum elements.

There are many types of discretisation techniques available for:

representing continuum elements. Each of these techniques has its own

particular set of advantages and disadvantages with respect to items

of interest such as case of use. convergence behavior. and complexity

of the resulting finite dimensional model. The type of discretization

used for the continuum elements in this work will be a physical

lumping technique. If one considers the continuum element in Figure

2.1. the discretized model of Figure 2.2 results when physical lumping

techniques are applied. In determining the discretixed system's

parameters. the shaft's elastic modulus E. density 9. length h. and

cross-sectional area A are used to define a static stiffness. 1,-EA/h.

- and thO 'h‘ft" li“: ms=pAh. Then. in discretising. the shaft is .

broken into L spring-mass lumps. with each spring having stiffness -

k'kgL. and each mass having mass m=m,/L. The resulting eigenvalue

problem for the system in Figure 2.2 is:

’W'mlllx+k.[l]x=0 (2-1)

Here n is the system natural frequency.[I] is the LxL identity matrix.

10
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V(t)—> E. A. o

 

  

  
Figure 2.1 Uniform Continuum Element

  

V(t)———>eJ\/V\,—IIJV\/\r-"--o..-I\N\,—

      

L spring-mass lumps

Figure 2.2 Discretized Uniform Continuum Element
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x is the vector of displacements. and [I] is the banded stiffness

matrix given below.

'iL -L o -

-L 2L -L o

[r]: o -L 2L -L o ' ‘ (2-2)

-L 2L -L

L o -L Li  
This system of equations is the same as the finite difference

formulation given below in equations (2-3) and (2-4). That is. if the

values of the index n are substituted in (2-3) and the boundary

conditions (2-4) applied. the system of equations in (2-1) results.

'EAL(°n+1—2en+en_1)/h = o’pAhOn/L (2—3)

eo=o (eLil-eL)/(h/L)=o (2-4)

Solving the finite difference equation for u (see Appendix A) and

using the known solution 5 of the continuum boundary value problem.

one can generate the following expression for the eigenvalue errors in

the discrete approximation.

((0-3)/3)j a (4L/(21-1)n)sin[(23-1)n/2(2L+1)l - 1 (2-5)



18132) e e e IL

Performing a Taylor series expansion of the sine term in equation

(2-5) above results in the error expression below.

(«n-FIE” - -1/(2L+1)- . . . (2-6)

’ So the convergence of the physical lumping discretization is of the

order (l/(2L+1)). or approximately order (1/2L) for large L.

2;; Th; Prototype Linear Miged-Structure System

2.2.1 Apalytigal Solutions

Define the system of Figure 2.3 to be the prototype linear

 

mixed-structure system. Analytical solutions for this case are more

difficult to obtain than for the system of Figure 2.4. whose solution

is discussed in Timoshenko. The difficulty in solving the prototype

linear mixed-structure system results from the appearance of the

independent coordinate y describing the position of the discrete mass.

Jacquot and Soedel [7] and Young [8] have found a solution to this

problem. In their approach. the discrete spring-mass subsystem is

replaced by a harmonic forcing function. Assuming that the

918°3V413°3 ”1 and eigenfunctions 01(x) of the shaft are known. the

forced solution can be obtained in terms of eigenfunction expansions.

Using the displacement impedance for the spring-mass system at the—H.

point of attachment. the forced solution can then be viewed as a

solution to the prototype linear mixed-structure system. .From this

one obtains the frequency relation:
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1’kd-aw'l(ta-nau"§§-1¢1'(h"PAuoin""i"“”'° (2’7)

Eere u is the natural frequency of the protdtype LMS system. ”i and

01(x) are the eigenvalues and eigenfunctions of the shaft. and kd gnd

'd are the stiffness and mass of the discrete subsystem.

In this work an alternative solution to the prototype linear

mixed-structure problem is develOped that treats the boundary value

problem directly.(See Appendix B). For the prototype linear

mixed-structure system. the boundary value problem is:

a'ulax’cule’n’e/at3 a’aa/p 1" (2-8)

may"(t)=-kd(y(t)-u(h.t)) (2-9)

u(0.t)=0 EA(3u/ax)'x=h=kd(y(t)-u(h.t)) (2—10)

At a natural frequency of the system. the motions are synchronous and

all amplitudes can be expressed in terms of the amplitude of one of

the points. So with the assumption that y(t)*cu(h.t). c constant. the

coordinate y can be removed from the problem. Solving using the

standard separation of variables technique results in the frequency

relation:

””(‘kd/EA)(u’fld/(kd-u'fld))tan(eh/a) (2-11)

Contrasting the two solutions one can see that the direct

solution to the boundary value problem has some advantages over the
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solution from Jacquot and Soedel. In particular. one need not know

the eigenvalues and eigenfunctions of the shaft. Both equations (2-7)

and (2-11) require an iterative solution technique. But equation

(2-7) also requires that one truncate the infinite series before

beginning any computation for the natural frequencies. This is a

level of approximation not required in equation (2-11). The two

solutions were compared for a prototype system with elastic modulus

E8100. density 93100. cross-sectional area AF0.01. shaft length hpl.0.

and discrete subsystem parameters kd'l and .dal. For the .h.ft' the

eigenvalues and eigenfunctions are:

“i=in/2 01(x)=sin(inx) i=1.3.5. . .' . ‘ (2-12)

Keeping 10000 modes in equation (2-7). the results shown in Table 2.1

below were obtained.

Table 2.1 Comparison of Analytical Eigenvalue Solutions

Eigenvalue Solution from (2-7) Solution from (2-11)

1 0.6762 0.6762

2 2.117 2.117

3 4.921 4.921

4 7.980 7.980

5 11.086 11.086

One can see that the solution technique develOped here yields results

that agree with those derived from Jacquot and Soedel's technique.

The primary use of these analytical solutions in this work is as a
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check for the procedure used to generate the evaluation model

eigenvalues for linear mixed-structure systems.

2.2.2 Th; Disgretized Prototype Problem ggd Evaluation Model
 

Elam

Now consider the discretized prototype linear mixed-structure

system in Figure 2.5. The elements labelled k and m are derived from

th' continuum. 'h119 kg and ma denote the discrete subsystem. The '

eigenvalue problem for this system is:

w: [u]x+lxlx=0 (2'13)

[M]=l; 0 (2-14)

0 m 0

0 m 0

0 m 0

0 md -  
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k k «————-

vm—SLMIM. m ....

Figure 2.5 Discretized Prototype LMS System
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m- F21: -k 0

”E 2k 'k 0

O ’k 2k -k 0

-k (k+kd)

0 "kd 
301° k‘kgL and m'ms/L. Premultiplying by [II]-1

expression:

(2-15)

 
gives the equivalent

-u’[I]x+[A]x=0 (2’15)

Where [A]=[M]’1[x]. (2-17)

[Al-1,,” ’21] -L’ ' (2—13)

-L' 2L’ -L'

‘13 (kd/k,+L)L wad/1:,

0 'kdmslk,md kdms’ks'dJ  
One can see from (2-18) above that the parameters of interest in the

discretised problem are the stiffness ratio kd/ks- the mass :gtia

-‘/-d, and the number of spring-mass lumps. L.
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If one lets L go to infinity. the eigenvalues of the discretised

problem will converge to the eigenvalues from the analytical solutions

discussed above. For a physical lumping discretizstion of the

continuum element. it was shown previously that the convergence was of

order (1/(2L*1)). Making explicit use of the rate of convergence. a

least-squares method was used to generate the evaluation model

eigenvalues without solving a very large eigenvalue problem. Let

”J‘Co+C./ (2L+1)+C./ (2L+1) ‘+C./ (2L+1) ' (2—19)

Bare C., c1, C3. and C. are constants to be determined. L is the

number of spring-mass lumps used to discretize the continuum. and 01.

is the corresponding eigenvalue for a given L. If a number of

relatively low-order models are run and a least-squares method is

applied using equation (2-19). the constants C., c1, ca, ‘nd c, can be

determined. Nb 0.thOt C. will correspond to the evaluation model

eigenvalue for a given sequence of eigenvalues {uj(L)} j-constant- To

check this procedure. a number of low-order problems were run for the

example above. and a least-squares curvefit was applied using equation

(2-19). Consider the second eigenvalue of the system. To apply the

curvefit procedure. 11 relatively low-order models were run. using

between 3 and 80 spring-mass lumps to approximate the shaft. Applying

_ a least-squares fit of equation (2-19) to the data for the second

eigenvalue gives:

C.-4.921 c,=-4.495 c,=-21.469 c,-2o.519
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Figure 2.6 shows a plot of equation (2-19) using these parameters

through the eigenvalue data. Thble 2.2 below compares the results

obtained from the curvefit technique with the analytical solutions

from equation (2-7).The results from the least-squares curvefit

technique agree with the analytical solutions. supporting the idea

that the convergence for the linear mixed-structure system is the same

type as it is for the continuum element when physical lumping is used

‘ to discretize. So in future examples the evaluation model eigenvalues

will be generated using this curvefit technique.

Table 2.2 Comparison of Curvefit Results and Analytical Solutions

Eigenvalue Solution from Curvefit Solution from (2-7)

1 0.6762 0.6762

2 2.117 2.117

3 4.921 4.921.

4 7.980 7.980

5 11.086 11.086

2‘; Unit-ggrameter Uniform Cascade;

2.3,; Clustering Behavior 9; Eigenvalues

Raving dealt with the question of how to discretise the continuum

elements. the other main point to address is the coupling effect

between subsystems. In order to examine coupling effects. a study was

run using the sequence of unit-parameter uniform cascades shown in

Figure 2.7. For all the continuum elements. the parameters were k'31,

I,=l. And for all the discrete subsystems. they were kd-l. mdal.
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Consider for example. the two-segment cascade shown in Figure

2.8. Since the two uncoupled segments in Figure 2.9 are identical.

they have identical spectra. Then when the segments are coupled. as

in Figure 2.8. one expects the coupling to perturb the eigenvalues

somewhat. But because the uncoupled segments have identical spectra.

one would intuitively expect the coupled system spectrum to have

clusters of eigenvalues. with two eigenvalues to a cluster.

Similarly. one would expect that as the number of segments in the

uniform cascade changes. the number of eigenvalues in a cluster A

changes such that the number of eigenvalues in a cluster is the same

as the number of segments in the cascade. As an example.'consider the

three-segment case. With L=15 for each shaft. the first 15

eigenvalues are those given in Table 2.3 below.

Table 2.3 Eigenvalues for the 3-Segment Unit-Parameter Uniform Cascade

0.2498 1.9863 4.7455 7.6415 10.503

0.7277 2.3269 4.9142 7.7489 10.579

1.1013 2.5446 4.9883 7.7797 10.594

Near the low end of the spectrum. some clustering is evident but the

width of the cluster is relatively large. As the frequency increases

through the spectrum the width of the clusters decreases. Using the

' following theorem from Crawford [9]. a bound can be obtained on the

perturbation introduced by the coupling.

1- T300133: L°t “n. In, F. and E be real symmetric nxn

matrices with I“ “a (nun?) positive definite. Let
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ijl-t(nu.su) tee {ijl-L(Mu+F.Ku+H)

with [Aj]. {:j} numbered in increasing order; Then

  
kuu+p)"

 I‘j’le ‘ (llFlllljl +I'fllll i=1.....n (2—20)

For the cascade problem with physical lumping discretizations of the

continuum elements:

F=0 xj=ag>o ijfdj>o

Then from the theorem above,

< I

So the absolute perturbation in any eigenvalue is bounded by a

-i

ll“ l

relative perturbation,

9111

-'1

“u
 

I. u e-..)
  

 

  

constant

  
IIHII. More importantly, if one considers the

<

  

 

   

(mg—$3)/o3 uu“ l'nll/o3 -~ (2-22)

it is clear that as the frequency increases the effect of the coupling

decreases.
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2,3,2 Avergge Eigenvalues gag Error Eehavior

In order to compare the systems of Figure 2.7 directly. average

eigenvalues were defined for each system. The average eigenvalues are

defined to be the averages of the eigenvalues in the clusters. With

this concept. the unit parameter uniform cascades can be compared

directly.

For each of the systems of Figure 2.7 a large numberdof

discretized models was evaluated. The average eigenvalues were

determined and the errors. compared to the average eigenvalues for the

evaluation model. were computed and tabulated. These results in Table

2.4 show that the errors in the average eigenvalues are nearly

stationary. At each location in the table. a set of four numbers

appears. From top down in a set. these four numbers are the

magnitudes of the errors in the average eigenvalues for the one. two.

three. and four-segment models respectively. Consider, for example.

the fourth average eigenvalue when the number of lumps per shaft L is

6. The errors for the one. two. three. and four-segment cases are

13.22. 13.28. 13.30. 13.31 percent respectively. Also. in examining

the table. it is clear that any increases in errors between the

one-segment case and the multi-segment cases are less than one

percent. From this it can be concluded that the cascade coupling has

little effect on the eigenvalue errors. Because the coupling has

little effect. large cascades can be viewed as assemblies of 1-segment

cascades. Discretisation can be performed on each segment separately

to meet the model quality index.

In order to apply the procedure suggested above. errors for the

l-segment case must be well documented. Recall that in section 2.2
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the key parameters in the discretized l-segment (prototype) linear

mixed-structure system were determined to be kd/ks- 'sl'd' and L. The

l-segment case was studied for a number of variations of these

parameters and the error results were tabulated using tables of the

form shown in Figure 2.10.(See Appendix C). In examining these °

tables. keep in mind that L is a discrete variable. but the stiffness

ratio kdlk‘ and the mass ratio m‘lmd are continuous variables.
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m /m

s

  
k Ik

L

Figure 2.10 Format of the One-Segment Error Tables



3. NON-UNIFORM.CASCADE MODELLING PROCEDURE.

:4; Dpscrippion p; Procedprp

Having examined the factors affecting direct generation of

efficient low-order models. a design procedure can now be given. The

following procedure is applicable to any linear cascade system having

the properties given in Chapter 1.

1. Define a model quality index based on eigenvalue errors.

This index will be used for determining the accuracy of the

low-order model. In the examples that follow. the index

used is that the first X eigenvalues each have less than Y

percent error.

Account for any coupling effects that occur when joining

segments by reducing the acceptable eigenvalue error Y by

one percent. Y'=Y-l.

The X system eigenvalues of interest are now distributed

among the segments in the cascade. Say the cascade has M

segments. L08 "1 be the number of eigenvalues associated

with segment i. 1$iSM. For each segment define:

A1=(n/2hi Ei/pi (3’1)

DividO °fi°h A1 by the largest of the A1. call it Ak‘

Then for each eigenvalue associated with segment k. segment

i has (At/A1) eigenvalues associated with it. Solve

the 101109138 for th° "1. If any of the My contain a

fractional part. round that Ni up to the next integer.

31
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Ni-(Ak’Ai)Nk 181,2; e e e a (3'2)

=N1+Nz+ . . . +Nu (3‘3)

4. Consider each segment as a separate problem where

the model quality index is that the first N (rounded up

to the nearest integer) eigenvalues each have less than Y'

percent error. Determine kd/k;. and ‘sl'd for egch

segment. Check the first N error tables in Appendix C to

find the number of lumps L needed for each segment to meet

the error criterion Y'.

5. Assemble the low-order system model.

'uwm

Several examples are given here to illustrate the application of

the procedure to a number of different cascade systems of increasing

generality. Ekamples 1.2. and 3 have the system configuration shown

in Figure 3.1.

Example One: Both shafts are identical.

The parameters for the two segments are given in Table 3.1 below.
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Thble 3.1 Parameters for Example 1

Elastic Density Length Area k' "s

Modulus

segment 1 100 100 1.0 0.01 1.0 1.0

segment 2 100 100 1.0 0.01 1.0 1.0

kd lid kd/k8 .8(.d

segment 1 16.0 1.0 16.0 1.0

segment 2 1.0 1.0 1.0 1.0

- Applying the Modelling Procedure:

1. Say that one wants the first 6 eigenvalues each with less than 10

percent error.

2. Account for coupling effects by reducing the acceptable error by 1

percent. Y'-10-1-9.

3. Distribute the eigenvalues among the segments.

Ai=(u/21:,L)«r‘7"ti1p'. =(u/2Nioo7ioo'= u/2

A,”(fll2h3)i§3/pa =(fl/2) 00,100: 11,2

N1‘(A3/A1)N2

N1=((n/2)/(u/2))N2-N2 - -

X“N1+N2

632N2 '9 N233 N133
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4. Ni-Nz-S. so use the tables for the first three eigenvalues for

both segments. Looking in the l-segment error tables with the mass

and stiffness ratios from Table 3.1 above gives L1=4. L2-7. The

low-order system model with L1=4 and L287 was assembled(see Figure

3.2). and the eigenvalue simulation run. From the results in Table

3.2. it is clear that the requirements of the model quality index have

been met.

Table 3.2 Eigenvalue Data for Example 1

L1-4 Evaluation

L237 Model

Eigenvalue Percent Error

0.4476 0.4548 -1.58

1.0321 1.0419 -0.94

2.2337 2.3357 -4.36

3.1782 3.2644 -2.64

4.6767 5.0935 -8.18

5.5759 6.0834 -8.34

Note that if the discretization of the continuum elements was

based on the parameters of the continuum elements alone. the same

number of variables would be used on each shaft since they are

. identical. For comparison purposes. the simulation was also run using

the same number of lumps on each shaft. with L1=L2=6. The.results of

the simulation are as follows.
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Thble 3.3 Eigenvalue Data for Example 1 when Shafts have

Identical Discretisations

Eigenvalue L1=6 Percent Error

L286

1 0.4484 -1.40

2 1.0416 -0.03

3 2.2264 -4.68

4 3.2237 -1.25

5 4.6156 -9.38

6 5.8481 -3.87

The results here also meet the model quality index although the

maximum error is higher than when the procedure is followed. But one

important thing to note here is the selection of the number of lumps

to use. Six lumps were used for L1 and L2 so that the total number of

lumps used would be nearly the same for the two simulations. But

choosing L1-L2 implies that the discrete subsystems do not affect the

eigenvalue errors. So the number of lumps to use would be determined

by equation (2-5). Using this relation shows that 7 lumps'should be

used for L1 and L2. approximately 30 percent more variables than the

procedure developed in this work requires.

Exemple Two: Shafts have different geometrical parameters.

In this example a 2-segment cascade is considered. .?h° shafts .

have the same stiffness and elastic modulus but have a difference in

the geometrical parameters. The second shaft is twice the length of

the first.



37

Thble 3.4 Parameters for Example 2

Elastic Density Length Area ks_ - m‘

Modulus

segment 1 100 100 1.0 0.01 1.0 1.0

segment 2 100 100 2.0 0.01 0.5 2.0

kd md kd/ks mglmd

segment 1 2.46 10.0 2.46 0.1

segment 2 1.23 2.0 2.46 1.0

Apply Modelling Procedure:

1. Say that one wants the first 6 eigenvalues each with less than 10

percent error.

2. Reduce the acceptable error by 1 percent to account for coupling

effects. Y'-10-1=9.

3. Distribute the eigenvalues among the segments.

A1'(tt/2h1)‘/El—lt-)I flunk/1307175 - n/2 A2=nl4

N2'(A1/A2)N1=2N1

X=N1+N2

6===N1+2N1 -> N1==2 N2=4

4. Since N182 and N2-4. the one-segment tables for the first two

eigenvalues are used for segment 1 and the tables for the first four
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eigenvalues are used for segment 2. Looking in appropriate error

tables gives L1=3. 12'8. Absembling the finite dimensional model for

g the system results in the configuration shown in Figure 3.3.

Simulation yields the results shown in Table 3.5 below.

Table 3.5 Eigenvalue Data for Example 2

Eigenvalue L1=3 Evaluation Percent Error

L288 Model

0.2122 0.2135 -0.61

0.4580 0.4617 -0.80

1.2898 1.3107 -1.59

2.2237 2.3923 -7.05

2.4649 2.6167 -5.80

4.0940 -9.066 3.7229

Again the procedure has resulted in a low order model that meets

the given model quality index. In contrast to the last example. note

here that the number of lumps used for the two continuum elements is

similar to what one would use if basing the decision on the continuum

elements alone.

Example Three: Shafts have different geometrical and constitutive

parameters.

This is another 2-segment example. But here the shafts have

different densities in addition to having different lengths.
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Thble 3.6 Parameters for Example 3

Elastic Density Length Area k' m‘

Modulus

segment 1 100 100 1.0 0.01 1.0 1.0

segment 2 100 25 2.0 9 0.01 0.5 0.5

1:d "a kd/k. ‘s/‘d

segment 1 2.46 10.0 2.46 0.1

segment 2 1.23 0.5 2.46 1.0

Applying Modelling Procedure: ,. -

1. Assume that it is desired to have the first six eigenvalues with

less than 10 percent error in each.

2. Minus 1 percent for coupling effects. Y'-10-1=9.

3. Distribute the eigenvalues among the segments.

Ag=ul2 A2=n/2 9 N1=N2

X=N1+N2

6=2N1 9 N1=3 N2=3

4. N1‘N2'3' so use the tables for the first three eigenvalues for

both segments. looking in the 1-segment error tables with the mass

and stiffness ratios from Table 3.6 above gives L1=6. L286.

Assembling the low-order model and simulating gives the results shown

in Table 3.7 below.
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Thble 3.7 Eigenvalue Data for Example 3

Eigenvalue L1=6 Evaluation Percent Error

L286 Model

0.2507 0.2513 -0.24

0.7924 0.8073 -1.87

2.3113 2.3921 -3.38

2.5275 2.5810 -2.07

4.7251 5.1658 -8.52

4.7805 5.2072 -8.19

Example Four: A General Cascade.

As a final example in illustrating the use of the modelling

procedure. consider the four-segment cascade of Figure 3.4 having the

parameters given in Table 3.8.

Applying Modelling Procedure:

1. Assume that one wants first 8 eigenvalues each with less than 12

percent error.

Y'=12-1-11.2. Minus 1 percent for coupling effects.

3. Distribute the eigenvalues.

A1'8/4 A2=5u A3=nl6 A4=nl2

Nl-(Az/A1)N2-20N2 N3= (Ag/A3 ) N2230N2 Ng" (AztA4m2-10Nz _

X-N’1+N2+N3+N4

s-oinz -> N2=.13 -) N1=2.6 N3-3.9 N4=1.3
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4. So after rounding up. use N1-3. N2-1. N3-4. Ng-Z. Looking in the

. 1-segment error tables under the appropriate eigenvalues with the mass

and stiffness ratios from Table 3.8 above gives L134. chl. L386.

L485. Assembling the low-order model shown in Figure 3.5 and

simulating yields the results shown in Table 3.9 below.

Table 3.8 Parameters for Example 4

segment 1 segment 2 segment 3 segment 4

Elastic

Modulus 100 400 50 100

Density 100 4.0 50 25

length 2.0 1.0 3.0 2.0

Ares 0.01 0.01 0.01 0.01

k, 0.5 4.0 0.17 0.5

n, 2.0 0.04 1.5 0.5

kd 5.0 2.46 '1.65 44.41 , _

“a 2.0 0.4 1.5 0.05

kd/k, 10.0 0.62 9.87 22.21

-,/-d 1.0 0.1 1.0 10.0
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Table 3.9 Eigenvalue Data for Example 4

Eigenvalue L1=4. L281 Evaluation Percent Error

L3=6. L4=5 Model

1 0.1845 0.1896 -2.69

2 0.4383 0.4470 -1.95

3 0.9628 0.9776 ' -1.51

1.451 1.507 -3.68

1.529 1.611 g -5.09

1.769 1.796 -l.45

2.332 2.343 —0.46

2.710 2.980 -9.04

Examining the results shows that the modelling procedure yields good

. results for the general case.

1‘; Eehavior p; pEp Eigenvectors

One other issue that bears mentioning here is the "correctness"

of the eigenvectors associated with the low-order models generated

from the modelling procedure. The modelling procedure is not

dependent on the order in which the 1-segments are coupled. so a

question naturally arises as to the "correctness" of the eigenvectors.

To examine this question. a 3-segment cascade was considered.

with two of the segments being identical and the third segment being

different. Let the identical segments be called 'A' segments. and the

different segment be called a 'B' segment. Three systems were

examined. an AAB. an ABA. and a BAA configuration. Low order models

and evaluation models were developed for each configuration. «
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Eigenvectors were then examined to determine the "correctness" of the

low-order models' eigenvectors.

Examining Figures 3.6. 3.7. and 3.8. which are overlays of each

systems' low-order and evaluation model eigenvectors. it is clear that

the low-order models give good approximations to the eigenvectors of

their corresponding evaluation model. So the modelling procedure.

even though it does not account for how the cascade segments are

ordered. and has a model quality index based on eigenvalue information

only. yields useful information about the system eigenvectors.
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4. MORE GENERAL CASCADE SYSTEMS

5;; Relaxation 2; Restrictions

In this section. some restrictions of Chapter 1 will be relaxed.

Some examples will be considered to demonstrate the usefulness of the

modelling procedure in situations where the restrictions of Chapter 1

are not met. The particular restriction to be relaxed is that the

discrete subsystems must be of the form shown in Figure 1.4. Now the

discrete subsystems will be permitted to have any one of the following

forms:

1. spring-mass

2. mass-spring

3. mass-spring-mass

4. spring-mass-spring

5. spring-mass-spring-mass

The first of these forms (spring-mass) is the form of the discrete

subsystem used in develOping the modelling procedure and is shown in

Figure 1.4. The other permissible forms of the discrete subsystem are

shown in Figures 4.1. 4.2. 4.3. and 4.4.

The modelling procedure given in Chapter 3 requires that a

stiffness ratio and a mass ratio be defined for each segment. For the

discrete subsystem forms shown in Figures 4.2. 4.3. and 4.4. it is

possible to define more than one mass ratio or more than one stiffness

ratio for a segment. To use the modelling procedure unambiguously.

only a single mass and a single stiffness can be associated Fith.°!99-

discrete subsystem. To do this, a "first-oscillator-in" concept was

used. This notion is that for a segment. the discrete spring and

49 "
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Figure 4.1 Mass-Spring Subsystem

Figure 4.2 Mass-Spring-Mass Subsystem

1A 1:3

OJVVV

Figure 4.3 Spring-Mass-Spring Subsystem

    

Figure 4.4 Spring-Mass-Spring-Mass Subsystem



 

51

discrete mass nearest to the continuum element have a much greater

effect than the other springs and masses in the discrete,subsystem.c

Consider the segment shown in Figure 4.5. Using the

"first-oscillator-in" notion. the mass ratio and the stiffness ratio

to use with the modelling procedure are 's/‘dA and deIk‘.

Using the "first-oscillator-in" concept. the modelling procedure

can be applied directly to systems having discrete subsystems with

more than one spring or more than one mass element. The following

examples demonstrate the usefulness of the modelling procedure for

cascade systems with more general discrete subsystems such as those

shown in Figures 4.1 through 4.4.

Example Five: Two segment cascade with a mass-spring discrete

subsystem.

Consider the system shown in Figure 4.6 with the parameters given

in Table 4.1 below. This example is the same as example two except

that the discrete subsystem in the first segment is reversed.
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A B

B. A. }’VOJ\r "d 'd

Figure 4.5 First-Oscillator-In Illustration

 

 

 

V(t)‘4

    LAM”! W
Figure 4.6 System of Example 5
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Thble 4.1 Parameters for Example 5

Elastic Density Length Area k‘ m,

Modulus

segment 1 100 100 1.0 .01 1.0 1.0

segment 2 100 100 2.0 .01 0.5 2.0

kd md kd/ks m‘lmd

segment 1 1.0 1.0 1.0 1.0

segment 2 1.0 1.0 1.0 1.0

Applying Modelling Procedure:

1. Say that one wants first 6 eigenvalues each with less than 10

percent error. ‘

Application of the modelling procedure follows exactly as in example

two. To meet the model quality index one should use L1-3 and L2=8.

Assembling the low-order model and simulating gives the results shown:

in Table 4.2 below.

Thble 4.2 Eigenvalue Data for Example 5

Eigenvalue L1-3 Evaluation Percent Error

L2=8 Model

1 0.2377 0.2399 -0.92

2 0.4405 0.4450 -1.01

3 1.150 1.155 -0.43

4 2.212 2.271 -2.60

5 3.024 3.173 -4.70

6 3.449 3.621 -4.75
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The results meet the specified model quality index. so the procedure

is seen to be useful for a cascade having this type of discrete

subsystem.

Example Six: Two-segment cascade having a mass-spring-mass discrete

subsystem.

Consider the system shown in Figure 4.7 with the parameters given

in Table 4.3 below.

Table 4.3 Parameters for Example 5

Elastic Density Length Area k8 m

s

Modulus

segment 1 100 25 1.0 .01 1.0 .25

segment 2 100 25 1.0 .01 1.0 .25

kd IdA kd/ks nslndA "43

segment 1 .6169 2.5 .6169 0.1 .25

segment 2 .6169 .25 .6169 1.0

Applying Modelling Procedure:

1. Say that one wants first 4 eigenvalues each with less than 12

percent error.

2. Minus 1 percent for coupling effects. Y'=12-1=11.

3. Distributing the eigenvalues:

A138 A381! '9 N1=N2

X‘Nl+N2
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4-2N1 N132 "2-2

4. Nl-N2-2. so use the tables for the first two eigenvalues for both

segments. Looking in the appropriate 1-segment error tables with the

mass and stiffness ratios from the parameter table above gives L1-4.

L2-3. Assembling the low-order model and simulating yields the

results below.

Table 4.4 Eigenvalue Data for Example 6

Eigenvalue L1=4 Evaluation Percent Error

L2-3 Model

1 0.5062 0.5093 -0.61

2 0.9321 0.9442 -1.28

3 1.916 1.869 2.51

4 4.188 4.634 -9.62

The errors are all within the 12 percent allowed by the specified

model quality index. so the procedure is seen to be useful for a

cascade system with a mass-spring-mass subsystem.

Example Seven: Two-segment cascade with a spring-mass-spring discrete

subsystem.

Consider the system shown in Figure 4.8 with the parameters given

in Table 4.5 below.
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Table 4.5 Parameters for Example 7

Elastic Density Length Area k8 .‘

Modulus

segment 1 1.0 1.0 1.0 1.0 1.0 1.0

segment 2 1.0 1.0 1.0 1.0 1.0 1.0

‘4‘ IIaA kaA/ke leifiaA kaB

segment 1 1.0 1.0 1.0 1.0 1.0

segment 2 1.0 1.0 1.0 1.0

Applying Modelling Procedure:

1. Say that one wants first 4 eigenvalues each with less than 10

percent error. O l

2. Minus 1 percent for coupling effects. Y'=10-1=9.

3. Distributing the eigenvalues:

Aigfl/Z Aggfl/Z '2 N1=N2

13"]:sz

4-2N2 N122 N2=2

4. Ni-Nzt2. so use the tables for the first two eigenvalues for both

segments. Looking in the appropriate 1-segment error tables with the

mass and stiffness ratios from the parameter table above gives L1-3.

L2-3. Assembling the low-order model and simulating yields the

results below.
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Table 4.6 Eigenvalue Data for Example 7

Eigenvalue L1-3 Evaluation Percent Error

L2-3 Model

1 0.3280 0.3328 -1.42

2 0.9285 0.9377 -0.97

3 1.5685 1.596 -l.72

4 1.9713 2.143 -8.01

The results satisfy the specified model quality index. so the

procedure gives useful results for a cascade having a

spring-mass-spring discrete subsystem.

Example Eight: Cascade with discrete subsystems having two

degrees-of-freedom in a spring-mass-spring-mass configuration.

Now consider the system of Figure 4.9 withlthe parameters given in

Table 4.7 below.

segment 1

segment 2

segment 1

segment 2

Table 4.7 Parameters for Example 8

Elastic Density Length Area k m
8 s

Modulus

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

de "'aA de’k. 'sI'dA ken "'aB

1.0 1.0 1.0 1.0 1.0 A. 1.0

1.0 1.0 1.0 1.0 1.0 1.0

Applying Modelling Procedure:
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1. Assume that it is desired to have the first 8 eigenvalues each

with less than 15 percent error.

2. Subtract 1 percent for coupling effects. Y'=l5-1814.

3. Distributing the eigenvalues:

Aian/z A.=n/2 N18N2

X'Nl-i'Nz

8=2N2 ') N234 N134

4. Ni-N284. so use the tables for the first four eigenvalues for both

segments. Looking in the 1-segment error tables with the mass and

stiffness ratios from Table 4.7 above gives L186. L286. Simulation

gives the results shown in Table 4.8 below.

Table 4.8 Eigenvalue Data for Example 8

Eigenvalue L186 Evaluation Percent Error

L286 Model

1 0.2459 0.2468 -O.34

2 0.7056 0.7019 0.53

3 1.271 1.292 -1.61

4 1.567 1.566 0.09

5 2.057 2.144 -4.05

6 2.409 2.498 -3.54

7 4.458 4.921 -9.39

8 4.641 5.11 -9.17
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The errors here are all well under the 15 percent allowed by the

choice of model quality index. So for cascade linear mixed-structure

systems where the discrete subsystems have a spring-mass-spring-mass

structure. the modelling procedure is still useful.

This example also serves to illustrate an interesting artifact

that occurs when identical segments are coupled together as they are

in example six. Note that some of the eigenvalues in the low-order

model have positive errors. In this example. the second and fourth

eigenvalues have positive errors. The interesting thing to note about

these eigenvalues is that their frequencies correspond closely with

those of the discrete subsystem. Consider the discrete subsystem

shown in Figure 4.10. The equations of motion for this system are:

Solving the system equations for the eigenvalues gives m8[0.62. 1.62].

Comparing with the true spectrum for the linear system of example 6

shows that these eigenvalues correspond closely with the second

(0.7056) and the fourth (1.5663) eigenvalues.

In examples five through eight above. it has been shown that the

modelling procedure is useful for cascades more general than those

that were used in develOping the procedure. As a final illustration

of the usefulness of the procedure in general cascade systems.

consider example nine below.

Ekample Nine: Cascade with a force input.
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The system in this example is identical to that in example two

(shown in Figure 3.1) with the exception that the velocity input in

example two is replaced with a force input here. Suppose that as in

example two. the model quality index is that the first six eigenvalues

each have less than 10 percent error. The modelling procedure does

not account for the type of input. so following through example two.

one finds that for the low-order model. L183 and L288. Astembling the

low-order model shown in Figure 4.11 and simulating yields the results

shown in Table 4.9 below.

Table 4.9 Eigenvalue Data for Example 9

Eigenvalue L183 Evaluation Percent Error

L288 Model

1 0.0000 0.0000 0.00

2 0.4319 0.4361 -0.96

3 1.262 1.179 7.04

4 1.343 1.319 1.82

5 2.462 2.615 -5.85

6 3.628 3.732 -2.79

7 3.723 4.094 -9.06

Even if the zero eigenvalue is assumed given. the results still meet

the model quality index. 80 the procedure is seen to be useful for a

cascade having a force input.

It is interesting to note here the type of physical lumping used

for the continuum element in segment one.

discretixations in this work. a springmmass physical lumping was used.

As in all other
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But in segment one. the spring element next to the force input is

dependent. Since the continuum element is causally independent. one

might consider it "better” to use a physical lumping discretixation"

that has mass elements at both ends. such as the discretisation shown

in Figure 4.12. But comparing the errors in example nine.with those.

from example two. where the discretization matches the end conditions.

shows that they are quite similar although the correspondence in not

one-to-one. The effect on the errors of choosing the type of physical

lumping based on the shaft's end conditions is an area that has not

been adequately explored yet.

1‘; Modifying LE3 Progedure under Certpin Congitions

One last thing to be discussed is a caution concerning the use of

the modelling procedure. In modelling cascades where there are two

identical segments coupled together and also segments having higher

frequency spectra than the identical ones. if one is interested in

relatively few eigenvalues. then step 3 in the procedure.should be _

modified slightly. Before discussing this modification. the

difficulty is illustrated in the following example.

Consider an AAB configuration of a 3-segment cascade where the

'A' and 'B' segments have the parameters given below.
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lmllll

Figure 4.12 Physical Lumping Discretization Having Mass

Elements at Both Ends
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Table 4.10 Parameters for AAB Example

Elastic Density Length Area ks “s

Modulus

A segments 1.0 1.0 1.0 1.0 1.0 1.0

B segment 20.0 5.0 1.0 1.0 20.0 5.0

kn In. kd/t, eyed

A segments 1.0 1.0 1.0 1.0

B segment 200.0 0.5 10.0 10.0

Assume that one wants the first 5 eigenvalues with less than 10

percent error in each. Following through the modelling procedure

81V°' NA82. N381. Checking the 1-segment tables gives LA84. LB85.

Assembling the low-order model and simulating yields the eigenvalues

below.

Table 4.11 Eigenvalue Data for AAB Example

Eigenvalue LA84 Evaluation Percent Error

L885 Mode l

1 0.1853 0.1859 -0.32

2 0.7996 0.7916 1.01

3 1.860 2.029 -8.33

4 2.308 2.457 -6.06

5 4.174 4.896 -14.75

Ekamining the results shows that the fifth eigenvalue has too-1arge an

error. Tb explain this. examine the evaluation model eigenvalues for

the 'A’ segment. the 'B' segment. and the 2-segment AA component given
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in Table 4.12.

Table 4.12 Evaluation Model Eigenvalues for Components of AAB Cascade

Eigenvalue 'A' segment 'B' segment 'AA' component

1 0.6762 2.85 0.3667

2 2.117 8.47 1.005‘

3 4.921 13.85 2.042

4 7.98 19.04 2.495

5 11.086 24.3 4.91'

Comparing the eigenvalues with those from the AAB evaluation model

reveals the difficulty. The procedure indicated that one of the five

eigenvalues should come from the 'B' segment (N331). But comparing

the eigenvalues shows that all five came from the 2-segment 'AA'

component. The solution to this problem is to modify step 3 in the

procedure to:

1. Round the N values up to the nearest integer.

2. For the identical coupled segments. increase their N value by

0110 .

Re-examining the problem using the modified procedure gives N‘ng.

Np81. and from the error tables one gets that LA87. 1885." Assembling

the model and simulating gives the results below.



68

Table 4.13 Eigenvalue Data for AAB Example using Modified Procedure

Eigenvalue LA87 Percent Error

1885

1 0.1855 -0.22

2 0.7962 0.58

3 1.932 -4.78

4 2.374 -3.38

5 4.521 -7.65

So the modification to the procedure corrected the difficulty. A note

on this is that the difficulty does not arise if one is interested in

a relatively large number of eigenvalues. Consider the same problem

but now assume that one wants the first 10 eigenvalues with less than

10 percent error in each. Using the unmodified procedure gives NAF4:

N382. and LA89. 1885. Simulating yields the following results. which

do meet the model quality index requirement.
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Table 4.14 Eigenvalue Data for AAB Example with Model Quality

Index Based on the First Ten Eigenvalues

Eigenvalue LA89 Evaluation Percent Error

1885 Model

1 0.1856 0.1859 -0.16

2 0.7951 0.7916 0.44

3 1.9539 2.0299 -3.74

4 2.3935 2.4570 -2.58

5 4.6172 4.896 -5.69

6 4.755 4.901 -2.96

7 4.900 5.133 -4.53

8 7.343 7.999 -8.19

9 7.457 8.126 -8.22

10 9.438 9.872 -4.39
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5. SUMMARY AND CONCLUSIONS

The most important result of this work is the development of a

modelling procedure to directly generate efficient low-order models

for cascade linear mixed~structure systems. The procedure is a

five-step method in which the designer specifies a model quality

index. uncouples the cascade. distributes the eigenvalues of interest

among the segments. discretises the segments individually using the

error tables. and then assembles the low-order model. DevelOped using

some restrictive assumptions. this modelling procedure was shown in

Chapter 4 to still be useful when the assumption concerning the form

of the discrete subsystems is violated. This procedure gives the

systems modeller a rational approach to modelling linear .

mixed-structure systems. helping to remove the modelling of these

types of systems from the realm of a "black art".

In Chapter 2. two interesting techniques for generating the

eigenvalues of linear mixed-structure systems are introduced. The

first of these generates analytical solutions for linear

mixed-structure systems having only one continuum element. In

contrast to other solution techniques for these systems [7.8]. it

requires no a priori knowledge of the continuum element's eigenvalue

and eigenvector behavior.

The other technique generates evaluation model eigenvalues using

a sequence of relatively low-order discretized representations of the

system. It exploits the convergence behavior of the discretising

technique in an absolute sense by applying a least squares technique

to a truncated convergence rate expression. in order to generate the
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evaluation model eigenvalues. While applied here to linear

mixed-structure systems discretised using a physical lumping approach.

its usefulness does not appear to be limited to these cases.

Future efforts in modelling linear mixed-structure systems would

most naturally be directed toward examining application of the

modelling procedure to other types of system tapologies and

develOpment of an analogous modelling procedure based on finite

element discretirations. With further development of the 1-segment

error tables. it may be useful to implement the modelling procedure

within modelling and simulation programs such as ENPORT85-[10] and

MEDUSA [11].

One final note is that since the procedure is only a guideline

and connot guarantee that the results will meet the model quality

index. it may be desireable in some cases to increase one's confidence

in the results. One possible way to do this is to follow through the

procedure to find the number of lumps to use. But when assembling the

low-order model. replace the physical lumping discretizatibns‘with a

method having a faster convergence rate. such as a linear finite

element. using the number of lumps (elements) given by the procedure.



 

APPENDIX A

summon TO THE FINITE DIFFERENCE PRWLEM

To solve the System in (Arl).

-EAL/h) (93+1-2en+en.1)-te’(pAh/L)On

9080 (°L+1’°L”‘h’L"°

first use the central difference operator notation

A on‘enrtl'zon'l'tn-l

to rewrite the system equations (A-l) in the form (A-4).

-A enattn’ph’HmL’Hen

Using the finite difference identity (A-5) from Goudreau [12].

sin(1n/L) sin(An/L)

A ]-—4.in’ (1121.)

cos(1n/L) cos(1n/L)

the general solution to the system equation is:

9n8Asin(1n/L)+Bcos(An/L)

72

(A-l)

(A-2)

(A-3)

(A-4)

(A85)

(A-6)
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The 9080 boundary condition gives B80. Applying the other boundary

condition:

(em-0L) / (h/L)=0

sin(A(L+1)/h)-sink80

Applying a trigonometric identity to equation (Ar7) gives:

cos(0.5A(2L+1)IL)sin(0.51(1/L))80

So either:

A‘ZjflL j=1,2,3.. o 0

or

18(L/(2L*1))(2181)n j81.2.3.. . .

Substituting (A-9) into the general solution (A76) gives

9n8Asin(2jnn)80 . -

So 1821nL results in the trivial solution. Substituting (A-lO)

the general solution yields:

9n8Asin[(21-1)nn/(ZL&1)] n81.2.. e esL j=1,2,. e e

(A-2)

(A-7)

(Ar8)

(A-9)

(A810)

(A-ll)

into

(Ar12)

So the displacements at the points n81.2.. . ..L are determined by a

set of sine functions. Comparing equations (A-4) and (A-5) results in

w
m
m
n

.
m
m
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the following expression for the natural frequencies.

4sin’IA/2Llcn'ph‘lat' (A-13)

Using equation (Ar10) to substitute for 1 and solving (Ar13) for m

gives:

uj8(2L/h) E/p sin[(2j-1)n/(4L+2)] j=1.2.. . ..L (A-14)

Dividing by the solution (A-15) to the continuum boundary value

problem and subtracting 1 gives the error expression shown in section

2.2 and reproduced below in (A-16).

Gj-(tzj-1)n/2 Elp (A815)

l(08;)/;]8(4L/(21-1)n)sin[(21-1)n/(4Le2)]-1 j=1.2. . . . .L (A-16)



APPENDIX B

DIRECT SOLUTION TO THE BOUNDARY VALUE PROBLEM FOR THE

PROTOTYPE LINEAR MIXED-STRUCTURE SYSTEM.

For the prototype linear mixed-structure system of Figure 3.1a.

the boundary value problem is:

a‘n/ax’-1/e'a‘ntat‘ a°8E/p (9-1)

md§(t)8-kd(y(t)-u(h.t)) (B—2)

u(0.t)80 EA(du/dx) x..h-=kd(y(t)--u(h.t)) (B-3)

Assume that y(t)8cu(h.t). ' ‘ (3'4)

substituting into (B-2) and (B-3) gives

mdca’u(h.t)/3t’8-kdn(h,t)(c-l) (345)’

EA(du/3x)x=h8kdu(h.t)(c-l) ,, . (3-6)

Applying the standard separation of variables assumption

u(x.t)8P(x)Q(t) (3'7)

to the boundary value problem gives:
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4’P"(x)/P(x)8Q"(t)/Q(t)8-u'

P(0)=0

EAP'(h)'de(h)(c-l)

From equation (B-8). one obtains:

0"<t>+o‘o(t>-o

P"(x)+(m/a)'P(x)=0

, The solution to equation (B-12) is

P(x)8Dsin(mxla)+Fcos(ox/a)

Using the boundary condition in (B-9) gives F80.

P(x)8Dsin(wx/a)

Substituting equation (B-14) into (B-lO) gives

(o/a)cos(uh/a)8kd(c-1)lEA)sin(uh/a)

08(akd/EA)(c-l)tan(mh/a)

So

This equation represents the frequency relation for the shaft.

(B-S)

(B-9)

(B-lO)

(B-ll)

(B-12)

(B-l3)

(B—14)

(B-15)

(B-16)
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Applying the same separation of variables to equation (B-5) yields

adepumm)+kd(e-l)p(n)0(t)=o (B-17)

Q"(t)+(kd(c-1)Indc)Q(t)80 (B-18)

So the natural frequency of the discrete portion is

(038(kd(c-1)Indc)1/a ' ‘ (3’19)

At a syste- natural frequency. of... So Solving (B-19) for c and

substituting into equation (B-16) results in the following frequency ~

relation for the system.

o=(skd/EA)(o‘nd/(kd—o‘nd))t.n(nn/e) (a~2o)



APPENDIX C

THE ONE-SEGMENT ERROR TABLES

The results in the following tables are for one-segment cascade

systems as shown in Figure 2.2a. discretised into the form in Figure

2.3. As discussed in section 2.2.2. there are three key parameters in

the discretised one-segment system. They are the stiffness ratio

kd/k'. the mass ratio ‘s/‘d' and the number of spring-mass lumps L

used to discretise the continuum element.

The error tables are structured as follows. They are first

grouped according to the eigenvalue number. That is. there is a set

of tables for the first eigenvalue. a set for the second eigenvalue.

and so on. For each page in the tables. a mass ratio is epecified.

Each row on a given table corresponds to a different L value and each

column on a given table to a different stiffness ratio. The entries

in the tables are the magnitudes of the errors (in percent) in the low

order models. The errors are calculated using the relation (C-l).

Error8 (”-“true/”truo)100 (C-l)

To use the tables. one begins by obtaining the reduced acceptable

error Y'. the nu ratio "/Id, the stiffness ratio kd/R.. and the

number of eigenvalues N associated with the given 1-segment.‘ For the”

segment. the sets of error tables for the first N eigenvalues must be

examined. The mass ratio indicates which table in each set to use.

The stiffness ratio indicates a particular column in each table.
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Beginning with the appropriate table and column for the first

eigenvalue. one merely reads down the column until an entry is found

that is less than Y'. Reading across the table gives the number of

1‘39! L(1) needed to meet the error criterion for the first

eigenvalue. Checking the appropriate table and column for the second

through the Nth eigenvalues gives values L(2) through L‘N). .Choosing,

the largest of the values L‘l) through L(N) gives the number of lumps

L to use to discretize the segment.

To illustrate use of the tables. consider example two from

Chapter 3. Segment 1 in this example has 2 eigenvalues associated

with it. so the sets of tables C.1.1. C.1.2. C.1.3 and C.2.1. C.2.2.

C.2.3. corresponding to the first two eigenvalues. will be used. The

mass ratio is 0.1. This specifies that tables C.1.1 and C.2.1 are to

be used. The stiffness ratio is 2.46 which corresponds to the second

column in each table. So one follows down the second column in each

table until an entry is reached that has a value less than Y'.(Eere

Y'89). Finding this entry and reading across the table shows that for

the first eigenvalue. L(1)8l. and for the second eigenvalue. L(2)-3.

Choosing the largest of these requires that 3 spring-mass lumps must

I be used to discretize segment 1.

Segment 2 has 4 eigenvalues associated with it. so the sets of.

tables: C.1.1. C.1.2. C.1.3; C.2.1. C.2.2. C.2.3; C.3.1. C.3.2.

C.3.3; and C.4.1. C.4.2. 0.4.3 will be used. The mass ratio is 1.0

for segment 2. therefore tables C.1.2. C.2.2. C.3.2. and C.4.2 will be

used. The stiffness ratio for this segment is 2.46. so one must

follow down the second column to find an entry less than Y'. Checking

this column shows that the first entry less than Y' occurs when



so

Lm-z. Lm-z. 1(3’86. and LW-s. So a spring-mass lumps will be

used to discretize segment 2.

As another illustration of the use of the tables. consider

example one from Chapter 3. Three eigenvalues are associated with

each segment in the system. So the sets of tables corresponding to

the first three eigenvalues will be used. For both segments. the mass

ratio is one. so tables C.1.2. C.2.2. and C.3.2 will be used. For

segment 1. the stiffness ratio is 16. and for segment 2 it is 1.0.

Now just follow down the appropriate columns until the entry is less

than the reduced acceptable error Y'. In this problem. both stiffness

ratios are between columns on the table. So one must interpolate in

some fashion. One could either interpolate linearly. or more

conservatively. one could require the entries in both columns to be

less than Y'. Choosing the latter option. for segment one. kd/k‘alfi,

so one would search columns three and four. Following down these two

columns. at L(1)82. L(2)83. L(3)84. the entries in both columns are

less than Y'89. Choosing the largest of these values gives L184. .For

segment 8'0: kd/k’8l. so examine columns one and two. When L(1)82.

L(2)84. and L(3)87. the entries in both columns are less than Y'.

Again. choosing the largest of these gives L287. So in the low-order

model. one would use L184. L287.
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Table C.1.1 First Eigenvalue

ms/md80.l

Number

of Stiffness Ratio (id/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

1 0.47 1.66 2.59 2.82 2.96 2.98 3.01 _3.03,

2 0.21 0.73 1.16 1.27 1.31 1.34 1.35 1.35

3 0.14 0.46 0.74 0.81 0.84 0.86 0.86 0.87

I 4 0.10 0.34 0.54 0.60 0.61 0.63 0.63 0.63

5 0. 08 0. 27 0. 43 0. 47 0. 48 0. 49 0. 50 0. 50

6 0.07 0.22 0.35 0.39 0.40 0.41 0.41 0.41

7 0.05 0.19 0.30 0.33 0.34 0.35 0.35 0.35

8 0.05 0.16 0.26 0.29 0.30 0.30 0.30 0.30

9 0. 04 0. 14 0. 23 0. 25 0. 26 0. 27 0. 27 0. 27

10 0.04 0.13 0.21 0.23 0.23 0.24 0.24 0.24

11 0.03 0.11 0.19 0.21 0.21 0.22 0.22 0.22

12 0.03 0.11 . 0.17 0.19 0.19 ‘0.20 0.20 0.20

13 0.03 0.09 0.16 0.17 0.18 0.18 0:18 0.18

14 0.03 0.09 0.15 0.16 0.17 0.17 0.17 0.17

15 0.02 0.08 0.14 0.15 0.15 0.16 0.16 0.16

16 0.02 0.08 0.13 0.14 0.14 0.15 0.15 0.15

17 0.02 0.07 0.12 0.13 0.14 0.14 0.14 0.14

18 0.02 0.07 0.11 0.12 0.13 0.13 0.13 0.13
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Table 0.1.2 First Eigenvalue

ms/md8l.0

Number

acmps Stiffness Ratio (id/ks)

0.6169 2.4674 9.8696 22.206 39.478 61.685 881820 120.90

1 5.57 13.37 16.63 17.27 17.51 17.62 17.67 17.72

2 2.39 6.40 8.39 8.77 8.91 8.98 9.02 9.04

3 1.51 4.17 5.59 5.85 5.95 6.00 6.03 6.05

4 1.10 3.09 4.19 4.38 4.46 4.50 4.52 4.54

5 0.86 2.46 3.35 3.50 3.57 3.60 3.61 3.63

6 0.71 2.04 2.79 2.92 2.97 3.00 3.01 3.02

7 0.60 1.74 2.40 2.50 2.55 2.57 2.58 2.59

8 0.52 1.52 2.10 2.18 2.23 2.25 2.26 2.27

9 0.46 1.34 1.87 1.94 1.98 2.00 2.00 2.02

lo 0.42 1.21 1.69 1.75 1.78- 1.80 1.80 1.81

11 0.38 1.10 1.53 1.59 1.62 1.63 1.64 '1.65

12 0.34 1.00 1.41 1.45 1.48 1.50 1.50 1.51

13 0.32 0.93 1.30 1.34 1.37 1.38 1.38 1.39

14 0.29 0.86 1.21 1.25 1.27 1.28 1.29 1 29“

15 0.27 0.80 1.13 1.16 1.19 1.20 1.20 1.21

16 0.26 ' 0.75 1.06 1.09 1.11 1.12 1-12 _1.13.

17 0.24 0.70 1.00 1.02 1.05 1.06 1.06 1.07

18 0.23 0.67 0.95 0.97 0.99 1.00 1.00 1.01
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Table 0.2.1 Second Eigenvalue

ms/md=0.1

Number

09 Stiffness Ratio (Rd/k5)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

2 17.99 10.76 7.21 8.50 9.22 9.60 9.81 9.94

3 12.37 7.03 3.50 3.80 4.12 4.30 4.41 4.48

4 9.41 5.19 2.15 2.17 2.32 2.42 2.49 2.53

5 ' 7.58 4.09 1.50 1.41 1.49 1.55 1.60 1.62

6 6.35 3.38 1.12 0.99 1.04 1.08 1.11 1.13

7 5.46 2.87 0.89 0.74 0.76 0.79 0.81 0.83

8 4.79 2.50 0.73 0.57 0.59 0.61 0.62 0.63

9 4.26 2.21 0.61 0.46 0.46 0.48 0.49 0.50

10 -3.84 1.98 0.52 0.38 0.38 0.39 0.40 0.41

11 3.50 1.79 0.46 0.32 0.31 0.32 0.33 ” 0.33

12 3.21 1.64 0.41 0.27 0.26 0.27 0.28 0.28

13 2. 96 1. 51 0. 36 0. 23 0. 22 0. 23 0. 24 0. 24

14 2.75 1.40 0.33 0.20 0.19 0.20 0.20' 0.21‘

15 2.57 1.30 0.30 0.18 0.17 0.17 0.18 0.18

16 2.41 1.22 0.28 0.16 0.15 0.15 0.15 .0.16.

17 2.27 1.14 0.25 0.14 0.13 0.13 0.14 0.14

18 2.15 1.08 0.24 0.13 0.12 0.12 0.12 0.12
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Table 0.2.2 Second Eigenvalue

ma/md-1.0

Number

06 Stiffineee Ratio (kd/ke)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

2 16.13 6.86 9.07 11.53 12.51 12.96 13.22 13.36

3 11.12 4.36 3.92 5.32 5.96 6.25 6.44 6.53

4 8.46 3.16 2.18 3.06 3.52 3.75 3.86 3.92

5 6.81 2.47 1.39 2.00 2.34 2.50 2.60 2.65

6 5.70 2.02 0.97 1.42 1.69 1.81 1.90 1.93

7 4.89 1.71 0.71 1.06 1.29 1.38 1.46 1.49

8 4.28 1.48 0.55 0.83 1.02 1.10 1.16 1.19

9 3.81 1.30 0.43 0.67 0.83 0.90 0.96 0.97

10 3.43 1.16 0.35 0.55 0.70 0.75 0.80 0.82

11 3. 1 1 1. 05 0. 29 0. 46 0. 59 0. 64 0. 69 0. 70

12 2.85 0.96 0.25 '0.40 0.51 0.56 0.60 0.61

13 2.63 0.88 0.21 0.34 0.45 0.49 0.53 0.54

14 2.44 0.81 0.18 0.30 0.40 0.43 0.47 0.48

15 2.27 0.76 0.16 0.27 0.36 0.39 0.43 0.43

16 2. 13 0. 71 0. 14 0. 24 0. 333 0. 35 0. 39 0. 39

17 2.00 0.66 -‘0.13 0.21 0.30 0.32 0.35 0.36

18 1.89 0.62 0.11 0.19 0.27 0.29 0.32 0.33
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Table 0.2.3 Second Eigenvalue

ms/md-10.0

Number

0* Stiffness Ratio (Id/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

2 2.33 20.06 25.48 26.12 26.32 26.41 26.46 26.48

3 1.37 10.99 15.82 16.39 16.57 16.65 16.69 16.72

4 0.98 7.19 11.25 11.74 11.89 11.96 12.00 12.02

5 0. 77 5. 23 8. 65 9. 08 9. 21 9. 27 9. 30 9. 32

6 0.63 4.06 7.00 7.37 7.49 7.54 7.57 7.58

7 0.53 3.29 5.87 6.19 6.30 6.34 6.36 6.38

8 0.46 2.76 5.05 5.34 5.43 5.47 5.49 5.50

9 0.40 2.37 4.42 4.68 4.76 4.80 4.82 4.83

10 ' 0.36 2.07 3.93 4.17 4.24 4.28 4.29 4.30

11 0.33 1.83 3.54 3.76 3.82 3.85 3.87 ‘ 3.88

12 0.30 1.65 3.21 3.42 3.48 3.51 3.52 3.53

13 0.27 1.49 2.94 3.13 3.19 3.22 3.23 3.24

14 0.25 1.36 2.72 2.89 2.95 2.97 2.98 2.99

15 0.24 1.25 2.52 2.69 2.74 2.76 2.77 2.78

16 0.22 1.16 2.35 2 51 2.56 2.58 2.59 2.60

17 0.21 1.08 2.20 2.35 2.40 2.42 2.43 2.43

18 0.20 1.01 2.07 2.21 2.25 2.27 2.28 2.29
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Table 0.3.1 Third Eigenvalue

ms/md-0.1

Number

of Stiffness Ratio (Rd/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

8 20.82 19.53 13.83 15.01 15 95 16.45 16.74 16.91

4 15.15 13.80 8.65 8.58 9.06 9.37 9.56 9.68

5 11.80 10.54 6.10 5.61 5.84 6.03 6.16 6.24

6 9.63 8.46 4.62 3.99 4.09 4.21 4.29 4.35

7 8.10 7.04 3.66 3.00 3.02 3.10 3.16 3.20

8 6.99 6.01 3.01 2 35 2.33 2.38 2.42 2.45

9 6.13 5.23 2.53 1.90 1.85 1.88 1.91 1.94

10 5.46 4.63 2.18 1.58 1.51 1.53 1:55 1.57-

11 4.92 4.15 1.90 1.33 1.26 1.27 1.28 1.29

12 4.48 3.75 1.68 1.14 1.06 1.07 1.08 1.09

13 4.10 3.43 1.51 0.99 0.91 0.91 0.92 0.92

14 3.79 3.15 1.36 0.87 0.79 0.78 0.79 0.80

15 3.52 2.92 1.24 0.78 0.69 0.68 0.69 0.69

16 3.28 2.71 1.14 0.70 0.61 0.60 0.60 0.61

17 3.07 2.54 1.05 0.63 0.55 0.53 0.53 0.54

18 2.89 2.38 0.98 0.57 0.49 0.48 0.48 0.48



C

Table 0.3.2 Third Eigenvalue

ms/md-1.0

Number

of Stiffness Ratio (Rd/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

3 20.82 18.80 13.68 15.93 17.15 17.62 17.99 18.12

4 15.16 13.29 8.04 8.94 9.79 10.12 10.42 10.51

5 11.82 10.14 5.47 5.72 6.32 6.53 6.77 "6.82

6 9.65 8.14 4.04 3.98 4.42 4.55 4.76 4.78

7 8.13 6.77 3.14 2.94 3.27 3.35 3.53 3.53

8 7.01 5.78 2.54 2.26 2.53 2.57 2.72 2.71"'

9 6.16 5.04 2.11 1.79 2.02 2.03 2.17 2.15

10 5.49 4.45 1.79 1.46 1.65 1.64 1.77 1.74

11 4.95 3.99 1.55 1.21 1.38 1.35 1.48 1.44

12 4.51 3.61 1.37 1.02 1.17 1.14 1.25 1.21

13 4.14 3.30 1.21 0.87 1.01 0.97 1.08 1.03

14 3.82 3.03 1.09 0.76 0.88 0.83 0.94 0.89

15 3.55 2.81 0.99 0.66 0.78 0.72 0.82 0.78

16 3.32 2.61 0.90 0.59 0.70 0.63 0.73 0.68

17 3.11 2.44 0.83 0.52 0.63 0.56 0.65 0.60

18 2.93 2.30 0.77 0.47 0.57 0.50 0.59 0.54



Number

of

Lumps

10

11

12

13

14

15

16

17

18
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Table 0.3.3 Third Eigenvalue

ms/md810.0

Stiffness Ratio (id/ks)

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

20.12

14.63

11.39

9.

7.

28

81

.73

.91

.26

.74

.31

.95

.64

.38

.15

.96

.78

10.49 23.00 24.91 25.46 25.68 25.80 25.87

5.

4.

84

10

.15

.54

.12

.82

.59

.41

.27

.15

.06

.97

.91

85

.80

14.41 16.25 16.77 17.00 17.11 17.18

9.96 11.62 12.10 12.30 12.41 12.47

7.38 8.85 9.28 9.46 9.55 9.61

5. 74 7. 05 7. 43 ‘ 7. 59 7. 68 7. 73

4.63 5.80 6.15 6.29 6.37 6.42

3. 84 4. 90 5. 21 5. 34 5. 42 5. 46

3. 25 4. 22 4. 51 4. 63 4. 69 4. 73

2.80 3.69 3.96 4.07 4.13 4.16

2.45 3.27 3.52 3.62 3.68 3.71

2. 17 2. 93 3. 16 3. 26 3. 31 3. 34

1.95 2.65 2.87 2.96 3.01 3.03

1.76 2.42 2.62 2.70 2.75 2.77

[.60 2.22 2.41 2.49 2.53 2.56

1.46 2.05 2.23 2.30 2.34 "2.37

1.34 1.90 2.07 2.14 2.18, 2.20
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Table 0.4.1 Fourth Eigenvalue

ms/md=0.1

Number

of Stiffness Ratio (Rd/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

4 22.25 22.49 18.61 19.11 20.05 20.58 20.89 21.08

5 16.80 16.79 13.19 12.48 12.98 13.35 13.58 13.74

6 13.32 13.19 9.97 8.89 9.10 9.34 9.51' 9.63

7 10.95 10.75 7.88 6.71 6.75 6.90 7.02 7.11

8 9.25 9.02 6.43 5.28 5.22 5.31 5.39 5.46

9 7.97 7.73 5.38 4.28 4.16 4.21 4.27 ’4.32"

10 6.99 6.74 4.60 3.55 3.39 3.42 3.46 3.50

11 6.21 5.97 3.99 3.01 2.83 2.83 2.87 2.90

12 5.58 5.34 3.51 2.58 2.40 2.39 2.41 2.43

13 5.06 4.82 3.13 2.25 2.06 2.04 2.05 2.07

14 4.63 4.40 2.81 1.98 1.79 1.76 1.77 1.78

15 4.26 4.03 2.55 1.77 1.57 1.54 1.54 1.55

16 3.94', 3.72 2.32 1.59 1.39 1.35 1.35 1.36

17 3.67 3.46 2.13 1.43 1.24 1.20 1.20 1.20

18 3.43 3.22 1.97 1.30 1.11 1.07 1.07 1.07
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Table C.4.2 Fourth Eigenvalue

ms/md-1.0

Number

of Stiffness Ratio (Rd/ks)

Lumps

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

4 22.34 22.43 18.13 19.48 20.70 21.15 21.57 21.67

5 16.90 16.73 12.63 12.55 13.42 13.74 14.12 14.18

6 13.42 13.14 9.50 8.82 9.41 9.61 9.93 9.95.

7 11.06 10.71 7.48 6.57 6.97 7.08 7.36 7.35

8 9.36 8.99 6.10 5.11 5.39 5.43 5.68 5.64

9 8.09 7.70 5.10 4.10 4.30 4.29 4.51 4.46

10 7.10 6.72 4.36 3.37 3.52 3.47 3.68 3.62

11 6.33 5.95' 3.79 2.83 2.94 2.87 3.06 2.99

12 5.70 5.32 3.33 2.42 2.50 2.41 2.59 2.51

13 5.18 4.81 2.97 2.09 2.15 2.05 2.22 2.13

14 4.74 4.39 2.67 1.83 1.88 1.76 1.93 1.83

15 4.36 4.03 2.43 1.62 1.66 1.53 1.69 1.59

16 4.06 3.72 2.22 1.44 1.48 1.34 1.50 1.40

17 3.78 3.45 2.04 1.29 1.33 1.19 1.34 1.23

18 3.54 3.22 1.89 1.17 1.20 1.06 1.20 1.09
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Number

of

Lumps

10

11

12

13

14

15

16

17

18

23.70

18.47

14.92

12.40

10.54

9.11

8.00

7.11

6.38

5.78

5.27

4.84

4.47

4.15

24.11

19.71

15.06

12.47

10.56

9.10

7.97

7.06

6.32

5.71

5.20

4.76

4.39

4.07

Table 0.5.1 Fifth Eigenvalue

Stiffness Ratio (kd/ks)

22.25

16.83

13.25

10.76

8.95

7.60

6.56

5.74

5.08

4. 54

4.09

3.71

3.39

3.11

93

ms/md=0.1

21.89

15.56

11.77

9.27

7.53

6.26

5.31

4.57

3.98

3.51

3.13

2.81

2.54

2.31

22.75

16.00

11.89

9.20

7.35

6.01

5.02

4.26

3.66

3.18

2.80

2.48

2.21

1. 99

23.26

16.38

12.14

9.36

7.43

6.05

5.02

4.23

3.62

3.13

2.73

2.41

2.14

1.91

23. 57

16. 63

12. 33

9. 50

7. 54

6. 12

5. 07

4. 27

3. 64

3. 14

2. 73

2. 40

2.13

1.90'

0.6169 2.4674 9.8696 22.206 39.478 61.685 88.820 120.90

23.76

16. 79

12. 46

9. 60

7. 61

6. 18

5. 11

4. 30

3. 66

3. 16

2. 75

2. 41

2. '14

1.90"



Number

of

Lumps

10

11

12

13

14

15

16

17

18

23.85

18.63

15.09

12.58'

10.72

9.30

8.18

7.29

6.56

5.96

5.46

5.03

4.66

0.6169 2.4674

24. 11

18. 71

15. 05

12. 46

10. 55

9. 10

6. 96

7. 06

6. 32

5. 71

5. 20

4. 76

4. 39

4.07

Table 0.5.2 Fifth Eigenvalue

Stiffness Ratio (id/ks)

21.93

16.63

13.14

10.72

8.96

7.65

6.63

5.83

5.19

4.66

4.23

3.86

3.55

3.28

94

ms/md-1.0

22.06 23.23

15.53

11.64

9.11

7.36

6.09

5.14

4.40

3.83

3.36

2.98

2.67

2.41

2.19

16.38

12.18

9.45

7.56

6.20

5.20

4. 43

3.83

3.35

2.96

2.65

2.38

9.8696 22.206 39.478 61.685 88.820

23.59 24.08

16.61

12.30

9.46

7.50

6.08

5.03

4.23

3.61

3.11

2.71

2.38

2.11

1.88

17. 09

12. 73

9. 85

7. 85

6. 41

5. 34

4. 52

3. 89

3. 38

2. 97

2. 63

2. 35

2.12
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2. 44'
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