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ABSTRACT

DIRECT GENERATION OF EFFICIENT LOW-ORDER
MODELS FOR LINEAR MIXED-STRUCTURE SYSTEMS

By

William Frederick Resh

Many physical systems consist of lumped-parameter subsystems
coupled by continuum elements. For example, in an automotive
drivetrain the engine, transmission, differential, and wheels could be
represented as lumped-parameter systems and the drive shaft and axles
as continuum elements. In modelling these mixed-structure systems,
the continuum elements give rise to partial differential equations and
the discrete subsystems give rise to ordinary differential equations.
Because of the coupling between the subsystems, lntlyticai solutions

are unobtainable in general.

Typical modelling approaches for these problems discretize the
continuum elements, using large numbers of local variables in order to
get an accurate representation of the entire system’s behavior.

Often, because of the model'’s size, it is very expensive to work with
directly, particularly in an iterative design context. One way to try
to achieve efficiency in the design process for linear systems is to

apply a model-order reduction procedure to the large—order model to



William Frederick Resh
obtain a lower—order working model. In this work, a procedure is
developed that permits forming an efficient low-order model directly,
bypassing the formulation of the large—order model and application of
a model-order reduction procedure. A procedure of this type is
especially attractive for use in preliminary design, where constraints
on time and computational resources may prohibit iterative analyses of

large systems models.

The particular type of linear mixed-structure systems to be
examined are those having a cascade structure. A procedure is
developed based on parameter information, coupling effects, and
tabulated error results for some prototype cases. Applications of the

procedure are illustrated.
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1. INTRODUCTION

1.1 Background

Many dynamical problems of practical interest are linear
mixed-structure systems. That is, they consist of linear subsystems
that are inherently discrete coupled by linear continuum elements.

- See Figure 1.1 for an abstract representation. The continua are shown
with each one coupling two discrete subsystems, which is the most
common case in engineering systems. Consider, for example, the
rotational positioning mechanism shown in Figure 1.2. In the process
of modelling the dynamics of such a system, the engineer is faced with
the problem of using finite dimensional models of the two shafts. Two
questions emerge in this problem. The first of these is: How should
one discretize each shaft in order to get a reasonable model of it?
Contained in this question is the matter of the type of discretization
to use (eg., finite elements) and the number of elements or
degrees—of-freedom to use for each shaft. The second question is:

How do these discretized shaft models work in the combined system
model?

For the sake of example, assume that all the discrete. dynamic
elements—— inertias J;, J,, and J3, and springs k3 and k3 —- have unit
parameters. Assume that both shafts are uniform and identical except
that shaft 1 is twice the length of shaft 2, Also assume that modal
approximations are to be used to discretize the two shafts., Just
looking at the shafts, one might reasonably discretize them using
twice as many modes for shaft 1 as for shaft 2 since they.l:e .

identical except for shaft 1 being twice as long. Suppose one uses



Discrete Continuum

Discrete

Subsystem

Continuum

Discrete

. Subsystem

Continuum . ,

Discrete

Subsystem

Subsystem

Figure 1.1 Typical Mixed-Structure System



/974

L]

]

Figure 1.2 Rotational Positioning Mechanism

N

L

shaft 1

L

—
shaft 2

—




4
four modes for shaft 1 and two modes for shaft 2. How well will these

shaft models work in the combined system model? What if J3 and spring
k, have a frequency near the third mode of shaft 2? How iill using
only two modes for shaft 2 affect the resulting system model?
Assuming that J3 and spring k; have a frequency near the third mode of
shaft 2, what 1f J3 is much less than or much greater than the inertia
of shaft 2? How vill using only two modes for shaft 2 affect the
quality of the resulting system model? So even if the discretized
continuum representations are assumed to be good approximations of the
continuum elements, some thought must be given to how the T
approximations will be interacting with the discrete dynamic elements
in the mixed-structure system.

Above it was stated that there is a need to discretize the
continuum elements in a mixed-structure system. This need to
discretize the continuum elements results from the coupling that
exists between the partial differential equations (PDEs) represeamting
the continuum elements and the systems of ordinary differential
equations (ODEs) representing the inherently discrete subsystems. As
shown in Figure 1.3, the continuum elements in the linear
mized-structure (LMS) system give rise to partial differential
equations (PDEs) and boundary conditions (BCs). The discrete
subsystems yield ordinary differential equations (ODEs). Because of
the physical coupling in the LMS system, variables from the PDE
representations appear in the ODEs and lumped parameter variables from
the ODEs appear in the boundary conditions, coupling the two types of
~ representations. In a few degenerate cases, some of which are

discussed in Timoshenko [1], the behavior of the discrete .subsystem
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can be described in terms of the coordinates of the continuum element,

permitting an analytical solution. But usually an analytical solution
is unobtainable. Moreover, the coupling in general has a nontrivial
effect on the subsystems and therefore cannot be neglected. Typically
what is done is to coanvert the PDE representations of the continuum
elements to ODE representations, so that all the dynamic equations are
ODEs.

Several methods are available to convert the PDE representations,
including finite element analysis, modal approximation, numerical
approximations to the operators, and a physical lumping approach.
After a discretization technique has been applied, the discretized
- representations of the continuum elements and the inherently discrete
subsystems are then assembled into an ODE representation of the
complete system. To retain sufficient accuracy, large numbers of
variables are used to approximate the continuum elements. As a
result, the complete system model (hereafter referred to, as in
Skelton [2], as the evaluation model) is often too large or expemsive
to work with directly, In addition, one always has to address the
question of "How large is large emough?”

To save computation time in simulations and to facilitate control
system design, the evaluation model'’s size often is reduced in some
"optimal” fashion using a model-order reduction procedure. These
model order reduction techniques are of two basic types: aggregation
and singular perturbation. Both types require three basic elements,
namely, an evaluation model, a set of trial models, and a model
quality index. As described by Skeltom, the model-order reduction

problem is fundamentally that of minimizing some model quality index
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for all models of a given order that are reduced-order models of a
given evaluation model.

Application of either type of model-order reduction procedure is
not a simple task. From Aoki [3,4] the aggregation method is seen to
be a generalization of the lodai approximation procedure developed by
Davison [5,6]) and others. As such, it typically requitos'knovled;o of
the eigenvalues, and often also of the eigenvectors, of the evaluation
model. The singular perturbation method does not require the
evaluation model eigenvalues and eigenvectors. But it is a nontrivial
problem to formulate the system equations in the format required by
the theory.

Since the aim of the modelling procedure often is to obttin an
accurate system representation of relatively low order, it would be
useful in these cases if this representation could be formulated
directly, bypassing the formulation of the evaluation model and
application of a model-order reduction procedure. Considet..fOt
example, the preliminary stages of the design process. Here the
systems engineer quite often has a large number of possible design
configurations to choose from. In addition, available computational
resources may be limited, prohibiting the formulation and reduction of
many evaluation models. Even if computational resources aren't
limited, the engineer'’s time is, so it is always an advantage to

reduce the number and size of evaluation models to be considered.

1,2 Research Objectives and Problem Restrictions

The goal of this work is to develop a set of guidelines that will

help the designer to directly generate efficient working-order models
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for linear mixed-structure systems. With these guidelines the

designer:

1. specifies a model quality index,

2. breaks the mixed-structure system into segments having one
one continuum element in each segment,

3., distributes the eigenvalues among the segments,

4, chooses the number of spring-mass lumps to be used to
discretize the continuum elements by examining results for
some prototype cases, and

5. assembles the finite—-dimensional model using the results
from step 4.

In this work a model quality index based on eigenvalues will be used.
To emphasize coupling effects and the coupling paths involved while
developing the guidelines, linear mixed-structure systems examined
here will have cascade structure with discrete subsystems of the form
shown in Figure 1.4. To facilitate comparisons between the evalnat;on
model eigenvalues and the low—order model eigenvalues, work will be
limited to conservative systems where the continuum elements are
uniform and have both inertia and compliance effects.

So this work will pertain to the modelling of linmear
mixed-structure systems having the following properties:

1. systems are cascade with one-dimensional dynaniés,

2, systems are conservative,

3. continuum elements are uniform with dynamics described by

second-order equations of the form:

a?9%u/ot?® = 9%u/3x?



9
4. discrete subsystems are of the form shown in Figure 1.4, and

5. the model quality index used is based on eigenvalue errors.
In what follows, the particular index used is that the first
X eigenvalues are each within Y percent of the‘ébrrespondin;

eigenvalues from the evaluation model.

1,3 Dissertation Organization

The remainder of the dissertation is organized as follows. 1In
chapter 2, section 2.1 discusses discretizing methods for .the
continuum elements and the convergence rate of the method used. In
section 2.2, the prototype linear mixed-structure system is examined.
A new method for solving the problem analytically is developed, along
with a procedure for genmerating evaluation model eigenvalues from the
eigenvalues of low-order models. Unit-parameter uniform cascades and
the effect of coupling are discussed in section 2.3. The modelling
procedure for direct gemeration of low-order models is givén in
chapter 3 along with some application examples. Also discussed in
chapter 3 is the eigenvector behavior of these models. In chapter 4 a
requirement on the form of the discrete subsystems used in developiag -
the modelling procedure is relaxed, and the usefulness of the

procedure in these cases is verified.



2. FACTORS AFFECTING DIRECT GENERATION OF LOW-ORDER MODELS

2,1 Discretizing the Continuum Elements and Eigenvalue Conveggence

Having set the evaluation framework, the modelling problem can
now be addressed. There are two factors affecting the direct
formulation of efficient low-order models. They are the strengths of
the couplings between subsystems and the discretization methéd used'.‘
for the individual continuum elements.

There are many types of discretization techniques available for:
representing continuum elements. Each of these techniques has its own
particular set of advantages and disadvantages with respect to items
of interest such as ease of use, convergence behavior, and complexity
of the resulting finite dimensional model. The type of discretization
used for the continuum elements in this work will be a physical
lumping technique. If one considers the continuum element in Figure
2.1, the discretized model of Figure 2.2 results when physical lumping
techniques are applied. In determining the discretized system'’s
parameters, the shaft’s elastic modulus E, density p, length h, and
cross—sectional area A are used to define a static stiffness, k =EA/h,
. and the shaft’'s mass, m =pAh, Then, in discretizing, the shaft is |
broken into L spring-mass lumps, with each spring having stiffness .
k=k_ L, and each mass having mass m=m,/L. The resulting eigenvalue

problem for the system in Figure 2.2 is:

—o'm[Ilx+k, [K]1x=0 (2-1)

Here ©w is the system natural frequency,[I] is the LxL identity matrix,

10
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V(it)—p E, A, 4

Figure 2.1 Uniform Continuum Element
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|

L spring-mass lumps

Figure 2.2 Discretized Uniform Continuum Element
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x is the vector of displacements, and [K] is the banded stiffness

matrix given below.

2L -L 0
-L 2L -L 0

[K]J=]| 0 -L 2L -L 0 T (2-2)

This system of equations is the same as the finite difference
formulation given below in equations (2-3) and (2-4). That is, if the
values of the index n are substituted in (2-3) and the boundary

conditions (2-4) applied, the system of equations in (2-1) results.
~EAL(©;,1-20,+6,-1) /b = w’pAb6,/L (2-3)

60=0 (0+1-0p,) / (h/L)=0 (2-4)

Solving the finite differemce equation for w (see Appendix A) and
using the known solution @ of the continuum boundary value problem,
one can generate the following expression for the eigenvalue errors in

the discrete approximation.

((ri)/'i)j = (4L/(2j-1)n)sin[(2j-1)n/2(2L+1)] - 1 (2-5)
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j=1,2' . . L] OL

Performing a Taylor series expansion of the sine term in equation

(2-5) above results in the error expression below.

(u-i‘/ﬁ)j = -1/(2L+1)- . . . (2-6)

| So the convergence of the physical lumping discretization is of the

order (1/(2L+1)), or approximately order (1/2L) for large L.

2.2 The Prototype Linear Mixed-Structure System

2,2,1 Analytical Solutions

Define the system of Figure 2.3 to be the prototype linear

mixed-structure system. Analytical solutions for this case are more
difficult to obtain than for the system of Figure 2.4, whose solution
is discussed in Timoshenko. The difficulty in solving the prototype
linear mixed-structure system results from the appearance of the
independent coordinate y describing the position of the discrete mass.
Jacquot and Soedel [7] and Young [8] have found a solution to this
problem. In their approach, the discrete spring-mass subsystem is

replaced by a harmonic forcing function. Assuming that th;
eigonvalues w; and eigenfunctions @;(x) of the shaft are known, the
forced solution can be obtained in terms of eigenfunction expansions.
Using the displacement impedance for the spring-mass system at the
point of attachment, the forced solution can then be viewed as a
solution to the prototype linear mixed-structure system.  ,From this

one obtains the frequency relation:
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L u(x,t)
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Figure 2.3 Prototype LMS System
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Figure 2.4 One-Segment LMS System with Dependent Mass Element
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1-kgmge®/ (kg-mgw?) Y5=10;* (1) /pAll0; ||* (w; *-a?)=0 (2-7)

Hore w is the natural frequency of the prototype LMS system, ®; and

Oi(x) are the eigenvalues and eigenfunctions of the shaft, and kg and
my are the stiffness and mass of the discrete subsystem.

In this work an alternative solution to the prototype limear
mixed-structure problem is developed that treats the boundary value
problem directly.(See Appendix B). For the prototype linear

mixed-structure system, the boundary value problem is:

3%u/dx%=(1/a%)d%u/at? a*=E/p B (2-8)
Bay"(t)=—kg(y(t)-u(h,t)) (2-9)
u(0,t)=0 EA(an/ax)'x,h=kd(y(t)-u(h,t)) (2-10)

At a natural frequency of the system, the motions are synchronous and
all amplitudes can be expressed in terms of the amplitude of one of
the points. So with the assumption that y(t)=cu(h,t), ¢ constant, the
coordinate y can be removed from the problem. Solving using the
standard separation of variables technique results in the frequency

relation:

w=(aky/EA) (w’my/ (kg—w’mg) ) tan(wh/a) (2-11)

Contrasting the two solutions one can see that the direct

solution to the boundary value problem has some advantages over the
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solution from Jacquot and Soedel. In particular, one need not know

the eigenvalues and eigenfunctions of the shaft. Both equations (2-7)
and (2-11) require an iterative solution technique. But equation
(2-7) also requires that ome truncate the infinite series before
beginning any computation for the natural frequencies. This is a
level of approximation not required in equation (2-11). T?o two
solutions were compared for a prototype system with elastic modulus
E=100, density p=100, cross—sectional area A=0.01, shaft lemgth h=1.0,

and discrete subsystem parameters kjy=1 and mg=1. For the shaft, the

eigenvalues and eigenfunctions are:

Wi=jig/2 9;(x)=sin(inx) i=1,3,5, . . .  (2-12)

Keeping 10000 modes in equation (2-7), the results shown in Table 2.1

below were obtained.

Table 2.1 Comparison of Analytical Eigenvalue Solutions

Eigenvalue Solution from (2-7) Solution from (2-11)
1 0.6762 0.6762
2 2,117 2.117
3 4.921 4.921
4 7.980 7.980
5 11,086 11.086

One can see that the solution technique developed here yields results
that agree with those derived from Jacquot and Soedel’s techamique.

The primary use of these analytical solutions in this work is as a
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check for the procedure used to generate the evaluation model

eigenvalues for linear mixed-structure systems.

2,2,2 The Discretized Prototype Problem and Evaluation Model

Eigenvalues

Now consider the discretized prototype linear mixed-structure

system in Figure 2.5. The elements labelled k and m are derived from

the continuum, while ky and my denote the discrete subsystem. The

eigenvalue problem for this system is:

-w? [M]x+[K]x=0 (2-13)
M]= E 0 (2-14)
0 m O
0 m O
0 m O
0 ny )
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x 'Y x x
Vi) oM 2 M) 8 .. MN] n [N

Figure 2.5 Discretized Prototype LMS System
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(2-15)

Here k=k I, and m=m /L. Premultiplying by [M]~* gives the equivalent

expression:
-0 [I]1x+[A]lx=0
Where [Al=[M]-*[K].

[A]‘ks/-‘ 5

(kg/kq+L)L

-Lkg/k,

kdm' /k‘.dJ

(2-16)

(2-17)

T (2-18)

One can see from (2-18) above that the parameters of interest in the

discretized problem are the stiffness ratio k4/kg, the mass ratio

m,/mq, and the number of spring-mass lumps, L.
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If one lets L go to infinity, the eigenvalues of the discretized

problem will converge to the eigenvalues from the analytical solutioms
discussed above. For a physical lumping discretization of the
continuum element, it was shown previously that the convergence was of
order (1/(2L+1)). Making explicit use of the rate of coanvergence, a
least—-squares method was used to generate the evaluation model

eigenvalues without solving a very large eigenvalue p:oble;. Let

®j=Cq+Cy/ (2L4+1)+C,/ (2L41) *+C,/ (2L+1) * (2-19)

Here C,, C;, Ci, and C; are constants to be determined, L is the
number of spring-mass lumps used to discretize the continuum, and TR
is the corresponding eigenvalue for a given L. If a number of
relatively low-order models are run and a least-squares method is
applied using equation (2-19), the constants C,, C;, C5, and C; can be
determined. Note that C, will correspond to the evaluation model
eigenvalue for a given sequence of eigenvalues {uj(L)} j=constant. To
check this procedure, a number of low-order problems were run for the
example above, and a least-squares curvefit was applied using equation
(2-19). Consider the second eigenvalue of the system. To apply the
curvefit procedure, 11 relatively low-order models were run, using
between 3 and 80 spring-mass lumps to approximate the shaft. Applying
& least-squares fit of equation (2-19) to the data for the second

eigenvalue gives:

Co=4.921 C,=—4.495 C,=—21.469 C,=20.519
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Figure 2.6 shows a plot of equation (2-19) using these parameters

through the eigenvalue data. Table 2.2 below compares the results
obtained from the curvefit technique with the analytical solutions
from equation (2-7).The results from the least-squares curvefit
technique agree with the analytical solutions, supporting the idea
that the convergence for the linear mixed-structure system is the same
type as it is for the continuum element when physical lumping is used
to discretize. So in future examples the evaluation model eigenvalues

will be generated using this curvefit techmique.

Table 2.2 Comparison of Curvefit Results and Analytical Solutions

Eigenvalue Solution from Curvefit Solution from (2-7)
1 0.6762 0.6762
2 2.117 2.117
3 4.921 4.921 .
4 7.980 7.980
5 11.086 11.086

2,3 Unit-Parameter Uniform Cascades

2,3.1 Clustering Behavior of Eigenvalues

Having dealt with the question of how to discretize the continuum
elements, the other main point to address is the coupling offgct
between subsystems. In order to examine coupling effects, a study was
run using the sequence of unit-parameter uniform cascades shown in

Figure 2.7. For all the continuum elements, the parameters were k=1,

m,=1. And for all the discrete subsystems, they were kg=1, m4=1.
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Figure 2.7 Cascade Systems of Increa
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Consider for example, the two—segment cascade shown in Figure
2.8. Since the two uncoupled segments in Figure 2.9 are ideantical,
they have identical spectra. Then when the segments are coupled, as
in Figure 2.8, one expects the coupling to perturb the eigenvalues
somevwhat, Bni because the uncoupled segments have identic,l spectra,
one would intuitively expect the coupled system spectrum to have
clusters of eigenvalues, with two eigenvalues to a cluster.
Similarly, one would expect that as the number of segments in the
vniform cascade changes, the nunﬁo: of eigenvalues in a cluster
changes such that the number of eigenvalues in a cluster is the same
as the number of segments in the cascade. As an example, consider the
three—segmoent case. VWith L=15 for each shaft, the first 15

eigenvalues are those given in Table 2.3 below.

Table 2.3 Eigenvalues for the 3-Segment Unit-Parameter Uniform Cascade

0.2498 1.9863 4.7455 7.6415 10.503
0.7277 2.3269 4.9142 7.7489 10.579
1.1013 2.5446 4.9883 7.77191 10.594

Near the low end of the spectrum, some clustering is evident but the

width of the cluster is relatively large. As the frequency increases

through the spectrum the width of the clusters decreases. Using the
- following theorem from Crawford [9], a bound can be obtained on the

L

perturbation introduced by the coupling.

1. Theorem: Let M, g , F, and H be real symmetric nxn

matrices with M, 4nd (M,+F) positive definite. Let
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V(t)—) M M

Figure 2.8 Two-Segment Cascade

Figure 2.9 Two Identical One-Segments
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(Aj)=r(My,Ky) and {Xj)=A(My+F, K +H)
with {kjl. (ij1 numbered in increasing order. Then

o] Jonn

I( “F”Ixji +“n”) j=1,....n (2-20)

For the cascade problem with physical lumping discretizations of the

continuum elements:
F=0 Aj=03>0 Xy=uj>0

Then from the theorem above,

IB “ (2-21)

53] ¢ [|w
So the absolute perturbation in any eigenvalue is bounded by a
constant I'In'1| IIHII. More importantly, if ome considers the

relative perturbation,

it is clear that as the frequency increases the effect of the coupling

(0j-uj) /o] l < qu“ /o] X (2-22)

decreases.
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2,3.2 Average Eigenvalues and Error Behavior

In order to compare the systems of Figure 2.7 directly, average
eigenvalues were defined for each system, The average eigenvalues are
defined to be the averages of the eigenvalues in the clusters. Vith
this concept, the unit parameter uniform cascades can be compared
directly.

For each of the systems of Figure 2.7 a large number of
discretized models was evaluated. The average eigenvalues were
determined and the errors, compared to the average eigenvalues for the
evaluation model, were computed and tabulated. These results in Table
2.4 show that the errors in the average eigenvalues are nearly
stationary. At each location in the table, a set of four numbers
appears. From top down in a set, these four numbers are éhe
magnitudes of the errors in the average eigenvalues for the ome, two,
three, and four-segment models respectively. Consider, for example,
the fourth average eigenvalue when the number of lumps per shaft L is
6. The errors for the ome, two, three, and four—segment cases are
13.22, 13.28, 13.30, 13.31 percent respectively. Also, in examining
the table, it is clear that any increases in errors between tye
one-segment case and the multi-segment cases aée less than one
percent., From this it can be concluded that the cascade coupling has
little effect on the eigenvalue errors. Because the coupling has
little offect, large cascades can be viewed as assemblies ofnl-se;;;;g
cascades. Discretization can be performed on each segment separately
to meet the model quality index.

In order to apply the procedure suggested above, errors for the

l1-segment case must be well documented. Recall that in section 2.2
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the key parameters in the discretized l1-segment (prototype) linear
mixed-structure system were determined to be kd’ks' ‘c/'d' and L. The
1-segment case was studied for a number of variations of these
parameters and the error results were tabulated using tables of the
form shown in Figure 2.10.(See Appendix C). In examining these

tables, keep in mind that L is a discrete variable, but the stiffness

ratio ky/k  and the mass ratio m,/my are continuous variables.
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n /m
s

L

Figure 2.10 Format of the One-Segment Error Tables



3. NON-UNIFORM CASCADE MODELLING PROCEDURE

3.1 Description of Procedure

Having examined the factors affecting direct gemeration of

efficient low-order models, a design procedure can now be given. The

following procedure is applicable to any linear cascade system having

the properties given in Chapter 1.

1.

Define a model quality index based on eigenvnlné errors.
This index will be used for determining the accuracy of the
low-order model. In the examples that follow, the index
used is that the first X eigenvalues each have less than Y
percent error.

Account for any coupling effects that occur whem joining
segments by reducing the acceptable eigenvalue error Y by
one percent. Y'=Y-1,

The X system eigenvalues of interest are now distributed
among the segments in the cascade. Say the c‘scade has M
sogments. Lot N; pe the number of eigenvalues ass;ciatea'

with segment i, 1{i<M. For each segment define:
Aj=(n/2hi Ej/p; (3-1)

Divide each A; py the largest of the A;, call it A;.

Then for each eigenvalue associated with segment k, segment
i has (Ay/A;) eigenvalues associated with it. Solve

the followini for the N;, If any of the Nj contain a

fractional part, round that N; yp to the next integer.

31
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Ni-(Ak/Ai)Nk i=1 ,2. . . . »

(3-2)

X=Nj+No+ . . . +Ny (3-3)

4. Consider each segment as a separate problem where
the model quality index is that the first N (rounded up
to the nearest integer) eigenvalues each have less than Y’
percent error. Determine iu/k;. and mg/my for each
segment. Check the first N ;rror table; in Appendix C to
find the number of lumps L needed for each segment to meeot
the error criterionm Y',

S. Assemble the low-order system model,

| 3,2 Application Examples,

Several examples are given here to illustrate the aé;licution 6f
the procedure to a number of different cascade systems of increasing
generality. Examples 1,2, and 3 have the system configuration shown

in Figure 3.1.

Example One: Both shafts are identical.

The parameters for the two segments are givem in Table 3.1 below.
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Table 3.1 Parameters for Example 1

Elastic Density Length Area kg m,
Modulus
segment 1 100 100 1.0 0.01 1.0 1.0
segment 2 100 100 1.0 0.01 1.0 1.0
kd md kd/ks I'{Id
segment 1 16.0 1.0 16.0 1.0
segment 2 1.0 1.0 1.0 1.0

- Applying the Modelling Procedure:

1. Say that one wants the first 6 eigenvalues each with less than 10
percent error.

2, Account for coupling effects by reducing the acceptable error by 1
percent, Y’'=10-1=9,

3. Distribute the eigenvalues among the segments.

Ay=(n/2h, {E,7p, =(n/2)41007100= n/2

A.=(n/2hz)1'§,/p. =(/2)7100/100= x/2

Ny=(A,/A,)Ny

Ny=((x/2)/(n/2))Ny=N, o

X‘N1+N2

6=2N; 3 Ny=3 N;=3
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4. Nl-Nz-S. so use the tables for the first three eigenvalues for

both segments. Looking in the 1-segment error tables with the mass
and stiffness ratios frqn Table 3.1 above gives L1=4, L2=7, The
low—-order system model with L1=4 and L2=7 was assembled(see Figure
3.2), and the eigenvalue simulation run. From the results in Table
3.2, it is clear that the requirements of the model quality index have

been met.

Table 3.2 Eigenvalue Data for Example 1

Eigenvalue Ll1=4 Evaluation Perceant Error

L2=7 Nodel
1 0.4476 0.4548 -1.58
2 1.0321 1.0419 -0.94
3 2.2337 2.3357 -4.36
4 3.1782 3.2644 -2.64
5 4.6767 5.0935 -8.18
6 5.5759 6.0834 -8.34

Note that if the discretization of the continuum elements was
based on the parameters of the continuum elements alone, the same
number of variables would be used on each shaft since they are
~ identical. For comparison purposes, the simulation was also run using
the same number of lumps on each shaft, with L1=L2=6. The results of

the simulation are as follows.
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Table 3.3 Eigenvalue Data for Example 1 when Shafts have
Identical Discretizations

Eigenvalue L1i=6 Percent Error
L2=6
1 0.4484 -1.40
2 1.0416 -0.03
3 2.2264 -4.68
4 3.2237 -1.25
5 4.6156 -9.38
6 5.8481 -3.87

The results here also meet the model quality index although the
maximum error is higher than when the procedure is followed. But one
important thing to note here is the selection of the number of lumps
to use. 8ix lumps were used for L1 and L2 so that the total number of
lumps used would be nearly the same for the two simulations. But
choosing L1=L2 implies that the discrete subsystems do not affect the
eigenvalue errors. So the number of lumps to use would be determined
by equation (2-5). Using this relation shows that 7 lumps should be
used for L1 and L2, approximately 30 percent more variables than the

procedure developed in this work requires.

Example Two: Shafts have different geometrical parameters.

In this example a 2-segment cascade is considered. ?ho shafts A
have the same stiffness and elastic modulus but have a difference in
the geometrical parameters. The second shaft is twice the length of

the first.



37
Table 3.4 Parameters for Example 2

Elastic Density Length Area k'. . m,
Modulus
segment 1 100 100 1.0 0.01 1.0 1.0
segment 2 100 100 2.0 0.01 0.5 2.0
ky my ky/kg mn,/my
segment 1 2.46 10.0 2.46 0.1
segment 2 1.23 2.0 2.46 1.0

Apply Modelling Procedure:

1. Say that one wants the first 6 eigenvalues each with less than 10
percent error.,

2. Reduce the acceptable error by 1 percent to account for coupling
effects. Y'=10-1=9,

3. Distribute the eigenvalues among the segments.

Ay=(x/211)1E17p; =(n/2)/1007100 = n/2  Ap=n/4
Ny=(A;/Ay)Ny=2N;

X=Ny+Ny

6=Nj+2N; 3 N;=2 Np=4

4. Since Ny=2 and Ny=4, the one-segment tables for the first two

eigenvalues are used for segment 1 and the tables for the first four
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eigoenvalues are used for segment 2. Looking in appropriate error
tables gives L1=3, 12=8. Assembling the finite dimensional model for
. the system results in the configuration shown in Figure 3.3.

Simulation yields the results shown in Table 3.5 below.

Table 3.5 Eigenvalue Data for Example 2

Eigenvalue L1=3 Evaluation Percent Error
L2=8 MNodel
1 0.2122 0.2135 -0.61
2 0.4580 0.4617 -0.80
3 1.2898 1.3107 -1.59
4 2.2237 2.3923 -7.05
5 2.4649 2.6167 -5.80
6 3.7229 4.0940 -9.06

Again the procedure has resulted in a low order model that meets
the given model quality index. In contrast to the last example, note
here that the number of lumps used for the two continuum eien;nts is
similar to what one would use if basing the decision on the continuum

elements alone.

Example Three: Shafts have different geometrical and comstitutive
parameters.
This is another 2-segment example. But here the shafts have

different dengsities in addition to having different lengths.
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Table 3.6 Parameters for Example 3

Elastic Density Leigth Area kg n,
Modulus
segment 1 100 100 1.0 0.01 1.0 1.0
segment 2 100 25 2.0 0.01 0.5 0.5
kg my ky/kg mg/my
segment 1 2.46 10.0 2.46 0.1
segment 2 1.23 0.5 2.46 1.0

Applying Modelling Procedure: .-

1. Assume that it is desired to have the first six eigenvalues with
less than 10 percent error in each.

2. Minus 1 percent for coupling effects. Y’=10-1=9.

3. Distribute the eigenvalues among the segments.
A;=n/2 Ay=n/2 > N;=N,
X=N; +N,
6=2N, > Ny=3 Ny=3

4. N1=N2-3, so use the tables for the first three eigenvalues for
both segments. Looking in the 1-segment error tables with the mass
and stiffness ratios from Table 3.6 above gives L1=6, 12=6,.
Assembling the low—order model and simulating gives the results shown

in Table 3.7 below.
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Table 3.7 Eigenvalue Data for Example 3

Eigenvalue L1=6 Evaluation Perceant Error
L2=6 Model

1 0.2507 0.2513 -0.24
2 0.7924 0.8073 -1.87
3 2.3113 2.3921 -3.38
4 2.5275 2.5810 -2.07
5 4.7251 5.1658 -8.52

6 4.7805 5.2072 -8.19

Example Four: A General Cascade.
As a final example in illustrating the use of the modelling
procedure, consider the four—segment cascade of Figure 3.4 having the

parameters given in Table 3.8.

Applying Modelling Procedure:

1., Assume that one wants first 8 eigenvalues each with less tham 12
pexcent error.

2, Minus 1 percent for coupling effects. Y’'=12-1=11,

3. Distribute the eigenvalues.

Aj=n/4  Ay=S5n  Ag=n/6 Ag=n/2

Ny=(A2/A1)Ny=20Ny N3=(A2/A3)Ny=30Ny Ng=(A3/A4)Ny=10N;

X-N1+N2+N3 "‘N4

8=61N; 9 Np=.13 3 Ny=2.6 N3=3.9 N,=1.3
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4. 8o after rounding up, use Ny=3, Ny=1, N3=4, N4=2. Looking in the

1-segment error tables under the appropriate eigenvalues with the mass
and stiffness ratios from Table 3.8 above gifou Ll=4, 1L2=1, L3=6,

14=5. Assembling the low—order model shown in Figure 3.5 and

simulating yields the results shown in Table 3.9 below.

Table 3.8 Parameters for Example 4

segment 1 segment 2 segment 3 segmeont 4

Elastioc

Modulus 100 400 50 100

Density 100 4.0 50 25

length 2.0 1.0 3.0 2.0

Area 0.01 0.01 0.01 0.01

k, 0.5 4.0 0.17 0.5

ng 2.0 0.04 1.5 0.5

k4 5.0 2.46 1.65 44.41 .-
By 2.0 0.4 1.5 0.05

kg/x, 10.0 0.62 9.87 22.21
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Table 3.9 Rigenvalue Data for Example 4

Eigenvalue L1=4, 12=1 Evaluation Percent Etror
L3=6, 1A=5 Model
1 0.1845 0.1896 -2.69
2 0.4383 0.44?0 -1.95
3 0.9628 0.9776 -1.51
4 1.451 1.507 -3.68
5 1.529 1.611 -5.09
6 1.769 1.796 -1.45
7 2.332 2.343 -0.46
8 2.710 2.980 -9.04

Examining the results shows that the modelling procedure yields good

. results for the general case.

3.3 Behavior of the Eigenvectors

One other issue that bears mentioning here is the "correctness”
of the eigenvectors associated with the low-order models generated
from the modelling procedure. The modelling procedure is not
dependent on the order in which the 1-segments are coupled, so a
question naturally arises as to the "correctness” of the eigenvectors.

To examine this question, a 3-segment cascade was considered,
with two of the segments being identical and the third segment being
different. Let the identical segments be called 'A’ segments, and the
different segment be called a 'B’ segment. Three systems were
oxamined, an AAB, an ABA, and a BAA configuration. Low order models

and evaluation models were developed for each configurationm. -
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Eigenvectors were then examined to determine the "correctness” of the
low—-order models’ eigemvectors.

Examining Figures 3.6, 3.7, and 3.8, which are ov;rllys of each
systems’ low-order and evaluation model eigenvectors, it is clear that
the low—-order models give good approximations to the eigenvectors of
their corresponding evaluation model. So the modelling procedure,
even though it does not account for how the cascade se;-eits are
ordered, and has a model quality index based on eigenvalue information

only, yields useful information about the system eigenvectors.
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4. MORE GENERAL CASCADE SYSTEMS

4.1 Relaxation of Restrictions

In this section, some restrictions of Chapter 1 will be relaxed.
Some examples will be considered to demonstrate the usefulness of the
modelling procedure in situations where the restrictions of Chapter 1
are not met. The particular restriction to be relaxed is that the
discrete subsystems must be of the form shown in Figure 1.4. Now the
discrete subsystems will bo permitted to have any one of the following
forms: o

1. spring-mass

2. mass-spring

3. mass-spring-mass

4. spring-mass-spring

5. spring-mass-spring-mass
The first of these forms (spring-mass) is the form of the discrete
subsystem used in developing the modelling procedure and is shown in
Figure 1.4. The other permissible forms of the discrete subsystem are
shown in Figures 4.1, 4.2, 4.3, and 4.4.

The modelling procedure given in Chapter 3 requires that a
stiffness ratio and a mass ratio be defined for each segment. For the
discrete subsystem forms shown in Figures 4.2, 4.3, and 4.4, it is
possible to define more than one mass ratio or more than one stiffmness
ratio for a segment, To‘use the modelling procedure unambiguously,
only a single mass and a single stiffness can be associated with each
discrete subsystem. To do this, a "first-oscillator-in” concept was

used. This notion is that for a segment, the discrete spring and
49 o :
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Figure 4.1 Mass-Spring Subsystem

Figure 4.2 Mass-Spring-Mass Subsystem

P i
AN n

Figure 4.3 Spring-Mass-Spring Subsystem

VW~ B AAA~ B

Figure 4.4 Spring-Mass-Spring—Mass Subsystem
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discrete mass nearest to the continuum element have a much greater

effect than the other springs and masses in the disorete. subsystem.
Consider the segment shown in Figure 4.5. Using the
"first-oscillator-in"” notion, the mass ratio and the stiffness ratio
to use with the modelling procedure are 'Sl'dA and de/k‘,

Using the "first-oscillator-in” concept, the modelling procedure
can be applied directly to systems having discrete subsystems with
more than one spring or more than one mass element. The following
examples demonstrate the usefulness of the modelling procedure for
cascade systems with more general discrete subsystems such as those

shown in Figures 4.1 through 4.4,

Example Five: Two segment cascade with a mass—-spring discrete
subsystenm.
Consider the system shown in Figure 4.6 with the parameters given

in Table 4.1 below. This example is the same as example two except

that the discrete subsystem in the first segment is reversed.
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A B
kd kd
E, A, AVAYAYS n: =AAVAYa

Figure 4.5 First-Oscillator-In Illustration

V(t) = s AYA Y A/ VA

Figure 4.6 System of Example §




53
Table 4.1 Parameters for Example §

Elastic Density Length Area k n

s s
Modulus
segment 1 100 100 1.0 .01 1.0 1.0
segment 2 100 100 2.0 .01 0.5 2.0

kg my kg/kg n,/my
segment 1 1.0 1.0 1.0 1.0

segment 2 1.0 1.0 1.0 1.0

Applying Modelling Procedure:

1. Say that one wants first 6 eigenvalues each with less than 10
percent error. B
Application of the modelling procedure follows exactly as in example
two. To meet the model quality index ome should use L1=3 and L2=8,.

Assembling the low-order model and simulating gives the results shown -

in Table 4.2 below.

Table 4.2 Eigenvalue Data for Example §

Eigenvalue Ll1=3 Evaluation Percent Error
L2=8 Model

1 0.2377 0.2399 -0.92
2 0.4405 0.4450 -1.01
3 1.150 1.155 -0.43
4 2.212 2.271 -2.60

5 3.024 3.173 -4.70

6 3.449 3.621 -4.75
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The results meet the specified model quality index, so the procedure

is seen to be useful for a cascade having this type of discrete

subsystenm.

Example Six: Two-segment cascade having a mass—spring-mass discrete

subsystem.

Consider the system shown in Figure 4.7 with the parameters given

in Table 4.3 below.

Table 4.3 Parameters for Example §

Elastic Density Length Area k n

Modulus : y
segment 1 100 25 1.0 .01 1.0 .25
segment 2 100 25 1.0 .01 1.0 .25
L VU 57 S N
segment 1 .6169 2.5 .6169 0.1 .25
segment 2 .616§ .25 .6169 1.0

Applying Modelling Procedure:

1. Say that one wants first 4 eigenvalues each with less than 12
percent error.

2, Minus 1 percent for coupling effects. Y’'=12-1=11.

3. Distributing the eigenvalues:

Ay=g Ag=n > N1=Ny

x-Nl +N2



EH)

L o1duexy jJo woisAg g°'¢ oxndyyg

Z 3uoudoeg I 3juouwBeg

) 1
e NN TN\
s A AAA e A~ < (3)A
Py mu wn

9 o1dumexg jJo me3si§ L°p oxnlyy

Z 3juoufeg 1 juomBeg

Pa AAANA s AANA Pu (1A




56
4-2N2 N]. =2 N2-2

4, N1-N2-2. so use the tables for the first two eigenvalues for both
segments. Looking in the appropriate 1-segment error tables with the
mass and stiffness ratioi from the parameter table above gives Ll=4,
L2=3, Assembling the low-order model and simulating yields the

results below.

Table 4.4 Eigenvalue Data for Example 6

Eigenvalue L1=4 Evaluation Perceat Error
L2=3 Model

1 0.5062 0.5093 -0.61
2 0.9321 0.9442 -1.28
3 1.916 1.869 2.51
4 4.188 4.634 -9.62

The errors are all within the 12 percent allowed by the specified
model quality index, so the procedure is seen to be useful for a

cascade system with a mass—spring-mass subsystem.

Example Seven: Two-segment cascade with a spring-mass—spring discrete
subsystem.
Consider the system shown in Figure 4.8 with the parameters given

in Table 4.5 below.
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Table 4.5 Parameters for Example 7

Elastic Density Length Area k, n,
Modulus
segment 1 1.0 1.0 1.0 1.0 1.0 1.0
segment 2 1.0 1.0 1.0 1.0 1.0 1.0

kA mh kA, mgmgt kP
segment 1 1.0 1.0 1.0 1.0 1.0

segment 2 1.0 1.0 1.0 1.0

Applying Modelling Procedure:

1. Say that one wants first 4 eigenvalues each with less than 10
percent error. ' |
2. Minus 1 percent for coupling effects. Y’'=10-1=9.

3. Distributing the eigenvalues:
Ay=n/2 A=n/2 9 Nj=Np
X=N1+N2
4=2N, Ny=2 Ny=2

4. N;=N;=2, s0 use the tables for the first two eigenvalues for both
segments. lLooking in the appropriate l-segment error tables with the
mass and stiffness ratios from the parameter table .bove';ives L1-3;
L2=3, Assembling the low-order model and simulating yields the

results below.
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Table 4.6 Eigenvalue Data for Example 7

Eigenvalue L1=3 Evaluation Perceant Error
L2=3 Nodel
1 0.3280 0.3328 -1.42
2 0.9285 0.9377 -0.97
3 1.5685 1.596 -1.72
4 1.9713 2.143 -8.01

The results satisfy the specified model quality index, so the
procedure gives useful results for a cascade having a

spring-mass—-spring discrete subsystem.

Example Eight: Cascade with discrete subsystems having two
degrees—of-freedom in a spring—mass-spring-mass configuration.
Now consider the system of Figure 4.9 with the parameters givem in

Table 4.7 below.

Table 4.7 Parameters for Example 8 -

Elastic Density Length Area kg n,
Modulus
segment 1 1.0 1.0 1.0 1.0 1.0 1.0
segment 2 1.0 1.0 1.0 1.0 1.0 .1.0
U Y P T L Ve
segment 1 1.0 1.0 1.0 1.0 1.0 - 1.0
segment 2 1.0 1.0 1.0 1.0 1.0 1.0

Applying Modelling Procedure:
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1. Assume that it is desired to have the first 8 eigenvalues each

with less than 15 perceat error.
2. Subtract 1 perceant for coupling effects. Y'=15-1=14,

3. Distributing the eigenvalues:
Ay=n/2 A,=n/2 Ny=N,
X=N; +N,
8=2N, 3 Ny=4  N;=4

4. N;=Ny=4, so use the tables for the first four eigenvalues for both
segments. Looking in the 1-segment error tables with the mass and
stiffness ratios from Table 4,7 above gives L1=6, L2=6, Simulation

gives the results shown in Table 4.8 below.

Table 4.8 Eigenvalue Data for Example 8

Eigenvalue L1=6 Evaluation Percent Error
L2=6 Model

1 0.2459 0.2468 -0.34
2 0.7056 0.7019 0.53
3 1.271 1.292 -1.61
4 1.567 1.566 0.09
S 2.057 2.144 -4.05
6 2.409 2.498 -3.54
7 4.458 4.921 -9.39

8 4.641 5.11 -9.17
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The errors here are all well under the 15 percent aliowed‘by th&
choice of model quality index. So for cascade linear mixed-structure
systoms where the discrete subsystems have a spring-mass—spring-mass
structure, the modelling procedure is still useful.

This example also serves to illustrate an interesting artifact
that oocurs when identical segments are coupled together as they are
in example six. Note that some of the eigenvalues in the low-order
model have positive errors. In this example, the second and fourth
eigenvalues have positive errors. The interesting thing to note about
these eigenvalues is that their frequencies correspond closely with
those of the discrete subsystem. Consider the discrete subsystem

shown in Figure 4.10. The equations of motion for this system are:

Solving the system equations for the eigenvalues gives w={0.62, 1.62}.
Comparing with the true spectrum for the linear system of example 6
shows that these eigenvalues cortespond'closely with the second
(0.7056) and the fourth (1.5663) eigenvalues.

In examples five through eight above, it has been shown that the
modelling procedure is useful for cascades more gemeral than those
that were used in developing the procedure. As a final illustration
of the usefulness of the procedure in general cascade systems,

consider example nine below.

Example Nine: Cascade with a force inmput.
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The system in this example is identical to that in example two

(shown in Figure 3.1) with the exception that the velocity input in
example two is replaced with a force input here. Suppose that as in
example two, the model quality index is that the first six eigenvalues
each have less than 10 percent error. The modelling procedure does
not account for the type of input, so following through example two,
one finds that for the low-order model, L1=3 and L2=8, Askembling the
low—order model shown in Figure 4.11 and simulating yields the results

shown in Table 4.9 below.

Table 4.9 Eigenvalue Data for Example 9

Eigenvalue L1=3  Evaluation Percent Error
L2=8 Model

1 0.0000 0.0000 0.00
2 0.4319 0.4361 -0.96
3 1.262 1.179 7.04
4 1.343 1.319 1.82
5 2.462 2.615 -5.85
6 3.628 3.732 -2.79
7 3.723 4.094 -9.06

Even if the zero eigenvalue is assumed given, the results still meeot
the model quality index. So the procedure is seen to be useful for a
cascade having a force input,

It is interesting to note here the type of physical lumping used
for the continuum element in segment one. As in all other

discretizations in this work, a sp:ing4na:s physical lumping was used.
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But in segment one, the spring element next to the force input is

dependent. Since the continuum element is causally independent, one
might consider it "better” to use a physical lumping discretization
that has mass elements at both ends, such as the discretization shown
in Figure 4.12. But comparing the errors in example nine.with those.
from example two, where the discretization matches the end conditionms,
shows that they are quite similar although the correspondence in not
one—to-one., The effect on the errors of choosing the type of physical
lumping based on the shaft’s end conditions is an area that has not

been adequately explored yet.

4,2 Modifying the Procedure under Certain Conditions

One last thing to be discussed is a caution concerning the use of
the modelling procedure. In modelling cascades where there are two
identical segments coupled together and also segments having higher
frequency spectra than the identical omnes, if one is interested in
relatively few eigenvalues, then step 3 in the procedure.should be
modified slightly. Before discussing this modification, the
difficulty is illustrated in the following example.

Consider an AAB configuration of a 3-segment cascade where the

'A’ and 'B’ segments have the parameters given below.
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Figure 4.12 Physical Lumping Discretization Having MNass
Elements at Both Ends
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Table 4.10 Parameters for AAB Example

Elastic Density Length Area kg n,
Modulus

A segments 1.0 1.0 1.0 1.0 1.0 1.0

B segment 20.0 5.0 1.0 1.0 20.0 5.0
kg mg kg/k, ng/my

A segments 1.0 1.0 1.0 1.0

B segment 200.0 0.5 10.0 10.0

Assume that one wants the first 5 eigenvalues with less than 10

| percent error im each. Following through the modelling procedure
gives Nj=2, Np=1. Checking tho 1-segment tables gives LA=4, LB=5.
Assembling the low-order model and simulating yields the eigenvalues

below.

Table 4.11 Eigenvalue Data for AAB Example

Eigenvalue LA=4 Evaluation Percent Error
LB=5 Nodel '

1 0.1853 0.1859 -0.32
2 0.7996 0.7916 1.01
3 1.860 2.029 -8.33
4 2.308 2.457 -6.06
5 4.174 4.896 -14.75

Examining the results shows that the fifth eigenvalue has too-large an
error. To explain this, examine the evaluation model eigenvalues for

the 'A’ segment, the 'B’' segment, and the 2-segment AA component given
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in Table 4.12.

Table 4.12 Evaluation Model Eigenvalues for Components of AAB Cascade

Eigenvalue 'A’' segment 'B’ segment 'AA’' component
1 0.6762 2.85 0.3667
2 2.117 8.47 1.005
3 4.921 13.85 2.042
4 7.98 19.04 2.495
5 11.086 24.3 4.91

Comparing the eigenvalues with those from the AAB evaluation model
reveals the difficulty. The procedure indicated that one of the five

eigenvalues should come from the 'B' segment (Ng=1), But comparing
the eigenvalues shows that all five came from the 2-segment 'AA’

component. The solution to this problem is to modify step 3 in the

procedure to:
1. Round the N values up to the nearest integer.
2. For the identical coupled segments, increase their N value by

one.

Re-examining the problem using the modified procedure gives NA,3.

NB=1. and from the error tables ome gets that LA=7, LB=5., Assembling

the model and simulating gives the results below.
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Table 4.13 Eigenvalue Data for AAB Example using Modified Procedure

Eigenvalue LA=17 Percent Error
LB=5
1 0.1855 -0.22
2 0.7962 0.58
3 1.932 -4.78
4 2.374 -3.38
5 4.521 -7.65

So the modification to the procedure corrected the difficulty. A note
on this is that the difficulty does not arise if omne is interested in
a relatively large number of eigenvalues. Consider the same problem
but now assume that one wants the first 10 eigenvalues with less than
10 pexcent error in each. Using the unmodified procedure gives N,=4,
Ng=2, and LA=9, LB=5. Simulating yields the following results, which

do meet the model quality index requirement.
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Table 4.14 Eigenvalue Data for AAB Example with Model Quality
Index Based on the First Ten Eigenvalues

Eigenvalue LA=9 Evaluation Percent Error
LB=5 Model

1 0.1856 0.1859 -0.16
2 0.7951 0.7916 0.44
3 1.9539 2.0299 -3.74
4 2.3935 2.4570 -2.58
5 4.6172 4.896 -5.69
6 4.755 4.901 -2.96
7 4.900 §5.133 -4.53
8 7.343 7.999 -8.19
9 7.4517 8.126 -8.22

10 9.438 9.872 -4.39
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5. SUMMARY AND CONCLUSIONS

The most important result of this work is the develoﬁnent of a
modelling procedure to directly gemerate efficient low-order models
for cascade linear mixed-structure systems. The procedure is a
five-step method in which the designer specifies a model quality
index, uncouples the cascade, distributes the eigenvalues of interest
among the segments, discretizes the segments individually using the
orror tables, and then assembles the low—order model. Developed using
some restrictive assumptions, this modelling procedure was showa in
Chapter 4 to still be useful when the assumption concerning the form
of the discrete subsystems is violated. This procedure gives the
systems modeller a rational approach to modelling linmear |
mixed-structure systems, helping to remove the modelling of these
types of systems from the realm of a "black art”.

In Chapter 2, two interesting techniqn;s for generating the
eigenvalues of linear mixed-structure systems are introduced. The
first of these generates analytical solutions for linear
mixed-structure systems having only one continuum element. In
contrast to other solution techniques for these systems [7,8], it
requires no a priori knowledge of the continuum element'’s eigenvalue
and eigenvector behavior.

The other technique generates evaluation model eigenvalues using
a sequence of relatively low-order discretized representations of the
system, It exploits the convergence behavior of the discretizing
technique in an absolute sense by applying a least squares technique

to a truncated convergence rate expression, in order to gemerate the

70
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evaluation model eigenvalues. While applied here to limear
mixed-structure systems discretized using a physical lumping approach,
its usefulness does not appear to be limited to these cases.

Future efforts in modelling linear mixed-structure systems would
most naturally be directed toward examining application 6f the
modelling procedure to other types of system topologies and
development of an analogous modelling procedure based on finite
element discretizations., With further development of the 1-segment
error tables, it may be useful to implement the modelling procedure
within modelling and simulation programs such as ENPORT“5~[10] and
MEDUSA [11].

One final note is that since the procedure is only a guideline
and connot guarantee that the results will meet the model quality
index, it may be desireable in some cases to increase ome’s confidence
in the results. One possible way to do this is to follow through the
procedure to find the number of lumps to use. But when assembling the
low-order model, replace the physical lumping discretizations with a
method having a faster comvergence rate, such as a linear finite

olement, using the number of lumps (elements) given by the procedure.



APPENDIX A

SOLUTION TO THE FINITE DIFFERENCE PROBLEM

To solve the System in (A-1),

~EAL/h) (8., 9-26,+6,_1)=w” (PAR/L)O,

8=0  (81,1-6y)/(h/L)=0

first use the central difference operator motation

A 6,=6,41-20,+tyy

to rewrite the system equations (A-1) in the form (A-4).

-A Gns( (w’ph’) /(EL?) )en

Using the finite difference identity (A-5) from Goudreaum [12],

sin(An/L) sin(An/L)

A 4sin®(A/2L)
[ cos(ln/L)]- [ cos(An/L)

the general solution to the system equation is:

6,=Asin(An/L)+Bcos(An/L)

72
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(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)
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The 6p=0 boundary condition gives B=0. Applying the other boundary

condition:
(®141-67) / (h/L)=0 (A-2)
sin(A(L+1)/h)-sinA=0 (A=17)

Applying a trigomometric identity to equation (A-7) gives:

cos(0.5A(2L+1)/L)sin(0.52(1/L))=0 (A-8)
So either:

A=2jnlL j=1,2,3,. . . (A-9)
or

A=(L/(2L+1))(2j-1)n j=1,2,3,. . . (A-10)

Substituting (A-9) into the general solution (A-6) gives
O,=Asin(2jmm)=0 . - (A-11)

So A=2jnL results in the trivial solution. Substituting (A-10) into

the general solution yields:

6, =Asin[(2j-1)nn/(2L+1)] n=1,2,. . .,L j=1,2,. . . (A-12)

So the displacements at the points n=1,2,., . .,L are determined by a

set of sine functions. Comparing equations (A-4) and (A-5) results in

[~ T O ——
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the following expression for the natural frequencies.
4sin?[)/2L]=w®ph®/EL? (A-13)

Using equation (A-10) to substitute for A and solving (A-13) for w

gives:
uj'(ZL/h) E/p sin[(2j-1)n/(4L+2)] j=1,2,. . .,L (A-14)
Dividing by the solution (A-15) to the continuum boundary value

problem and subtracting 1 gives the error expression shown in section

2.2 and reproduced below in (A-16).
6y=((2j-1)n/2){Elp (A-15)

[(e—w)/wl=(4L/(2j-1)n)sin((2j-1)n/(4L+2))-1 j=1,2, . . . ,L (A-16)



APPENDIX B

DIRECT SOLUTION TO THE BOUNDARY VALUE PROBLEM FOR THE

PROTOTYPE LINEAR MIXED-STRUCTURE SYSTEM.

For the prototype linear mixed-structure system of Figure 3.1a,

the boundary value problem is:

a’u/ax’-u.’a’u/at’ a’=E/p (B-1)
mgy(t)=k4(y(t)-u(h,t)) (B-2)
u(0,t)=0 EA(3u/3x) ;_p=k,(y(t)-u(h,t)) (B-3)
Assume that y(t)=cu(h,t). C (B-4)

Substituting into (B-2) and (B-3) gives

maca*u(h, t) /3t ==k u(h,t) (c-1) (B-5)

EA(an/ax)xghfkdu(h.t)(c-l) . . (B-6)

Applying the standard separation of variables assumption

u(x, t)=P(x)Q(t) (B-7)

to the boundary value problem gives:
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22P"(x) /P(x)=Q"(t)/Q(t)=w? (B-8)
P(0)=0 (B-9)
EAP’ (h)=k4P(h) (c-1) (B-10)

From equation (B-8), one obtains:

Q"(t)+0*Q(t)=0 (B-11)

P"(x)+(w/a)3P(x)=0 (B-12)

~ The solution to equation (B-12) is

P(x)=Dsin(wx/a)+Fcos(wx/a) (B-13)

Using the boundary condition in (B-9) gives F=0. So

P(x)=Dsin(wx/a) (B-14)

Substituting equation (B-14) into (B-10) gives

(w/a)cos(wh/a)=k;(c-1)/EA)sin(wh/a) (B-15)

w=(aky/EA) (c-1) tan(wh/a) (B-16)

This equation represents the frequency relation for the shaft.
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Applying the same separation of variables to equation (B-S5) yields

macP(h)Q"(t)+ky(c-1)P(h)Q(t)=0 (B-17)

Q"(t)+(kg(c-1)/mgc)Q(t)=0 (B-18)
So the natural frequency of the discrete portion is

wg=(kgq(c-1) /mgc)*/? © T (B-19)
At a system natural frequency, wy=w. So Solving (B-19) for c and

substituting into equation (B-16) results in the following frequency -

relation for the system.

w=(aky/EA) (0'my/ (kg-w’mq) ) tan(wh/a) (B-20)



APPENDIX C
THE ONE-SEGMENT ERROR TABLES

The results in the following tables are for ome-segment cascade
systems as shown in Figure 2.2a, discretized into the form in Figure
2.3. As discussed in section 2.2.2, there are three key parameters in
the discretized one—segment system. They are the stiffness ratio
kd/k,. the mass ratio m /m;, and the number of spring-mass lumps L
used to discretize the continuum element.

The error tables are structured as follows. They are first
grouped according to the eigenvalue number. That is, there is a set
of tables for the first eigenvalue, a set for the second eigenvalue,
and so on., For each page in the tables, a mass ratio is specified.
Each row on a given table corresponds to a different L value and each
column on a given table to a different stiffness ratio. The entries
in the tables are the magnitudes of the errors (in perceat) in the low
order models. The errors are calculated using the relation (C-1).

Error= (“-“trno/”tru.)loo (c-1)

To use the tables, one begins by obtaining the reduced acceptable
error Y', the mass ratio m /my, the stiffness ratio ky/k,, and the
number of eigenvalues N associated with the given 1-segment. For the
segment, the sets of error tables for the first N eigenvalues must be
oxamined. The mass ratio indicates which table in each set to use.

The stiffness ratio indicates a particular column in each table.

78



79
Beginning with the appropriate table and columa for the first

eigenvalue, one merely reads down the column until an entry is found
that is less than Y’'. Reading across the table gives the number of
lumps L(1) poeded to meet the error criterion for the first
eigenvalue. Checking the appropriate table and column for the second
through the Nth eigenvalues gives values L(2) through L(N). . Choosing _
the largest of the values L(1) through L(N) gives the number of lumps
L to use to discretize the segment.

To illustrate use of the tables, consider example tw; froi
Chapter 3. Segment 1 in this example has 2 eigenvalues associated
with it, so the sets of tables C.1.1, C.1.2, C.1.3 and C.2.1, C.2.2,
C.2.3, corresponding to the first two eigenvalues, will be used. The
mass ratio is 0.1, This specifies that tables C.1.1 and C.2.1 are to
be used. The stiffness ratio is 2.46 which corresponds to the second
column in each table. So ome follows down the second column in each
table until an entry is reached that has a value less than Y’.(Here
Y’'=9). Finding this entry and reading across the table shows that for
the first eigemvalue, L(l)-l. and for the second eigenvalue, L(2)a3,
Choosing the largest of these requires that 3 spring-mass lumps must
" be used to discretize segment 1.

Segment 2 has 4 eigenvalues associated with it, so iﬁo sets of
tables: C.1.1, C.1.2, C.1.3; C.2.1, C.2.2, C.2.3; C.3.1, C.3.2,
C.3.3; and C.4.1, C.4.2, C.4.3 will be used. The mass ratio is 1.0
for segment 2, therefore tables C.1.2, C.2.2, C.3.2, and C.4.2 will be
used. The stiffness ratio for this segment is 2.46, so one must
follow down the second column to find an entry less than Y’'. Checking

this column shows that the first entry less than Y’ occurs when
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L(Duz, L(2)ay, 1(3)ug, and L(4)=g, So 8 spring-mass lumps will be

used to discretize segment 2.

As another illustration of the use of the tables, comsider
example one from Chapter 3. Three eigenvalues are associated with
each segment in the system. So the sets of tables corresponding to
the first three eigenvalues will be used. For both segments, the mass
ratio is one, so tables C.1.2, C.2.2, and C.3.2 will be nged. For
segment 1, the stiffness ratio is 16, and for segment 2 it is 1.0.

Now just follow down the appropriate columns until the entry is less
than the reduced acceptable error Y'. In this problem, both stiffness
ratios are between columns on the table. So onme must interpolate im
some fashion., One could either interpolate linearly, or more
conservatively, one could require the entries in both columns to be
less than Y'. Choosing the latter option, for segment ome, kd/k;‘15-
so one would search columns three and fowr. Following down these two
columns, at L(1)=2. L(z’-S. L(3)-4. the entries in both columns are
less than Y’'=9, Choosing the largest of these values gives L1=4. For
segment two, k4/k =1, so examine columns one and two. When LD,
L(2)=4, and L(3)=7, the entries in both columns are less than Y'.
Again, choosing the largest of these gives L2=7. So in tio loﬁ-order

model, one would use Ll1=4, L2=7,
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Table C. 1.1
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ms/md=0. 1

First Eigenvalue

Stiffness Ratio (kd/ks)

2. 59

1. 16

0.74

0. 34

0. 43

0. 33

0. 30

0. 26

0. 23

0.21

0.19

1 0.17

0. 16

0.135

0. 14

0.13

0.12

0. 11

2.

206 39.
82 2.
.27 1.
.B1 0.
. 60 0.
. 47 0.
.39 0.
.33 0.
. 29 0.
.29 0.
.23 0.
.21 0.
. 19 0.
.17 0.
.16 0.
.19 0.
.14 0.
. 13 0.
.12 0.

478 61.
96 2.
31 1
84 o
61 0o
48 O
40 O
34 o
30 O
26 O
23 O
21 o
19 0
18 O
17 0O
139 O
14 0
14 O
13 0

683 88
98 3
.34 1.
.86 0.
.63 0.
.49 O
.41 0o
.33 0.
.30 O
.27 0.
. 24 0.
.22 0
.20 O
.18 0O
.17 0.
.16 O
.13 0.
.14 0.
.13 0.

. 820 120. 90
.01 3.03
33 1.39
86 0.87
63 0.463
.90 0.90
.41 0. 41
33 0.3%
30 0.30
27 0.27
24 0.24
.22 0.22
.20 0.20
:;8 0.lé
17 0.17
.16 0.16
19 0.19
14 O0.14

13
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Table C.1.2 First Eigenvalue

ms/md=1.0
Number
ot Stiffness Ratio (kd/ks)
Lumps

0. 6169 2.44674 9.8696 22. 206 39. 478 61. 685 88. 820 120. 90

1 9.97 13.37 16.63 17.27 17.91 17.62 17.67 17.72
2 2. 39 6. 40 8. 39 8.77 8. 91 8. 98 9. 02 9. 04
3 1. 31 4.17 3. 59 3. 85 3. 99 6. 00 6. 03 6. 05
4 1.10 3. 09 4.19 4. 38 4. 446 4. 50 4. 352 4. 54
) 0. 86 2. 46 3. 39 3. 50 3. 97 3. 60 3.&1 3. 63
-] 0.71 2.04 2.79 2.92 2.97 3. 00 3.01 3. 02
7 0. 60 1. 74 2. 40 2. 30 2. 33 2. 57 2.38 2.59
8 0. 32 1. 02 2.10 2. 18 2.23 2.23 2. 26 2.27
9 0. 46 1. 34 1.87 1. 94 1.98 2.00 2.00 2. 02

10 0. 42 1. 21 1. 69 1.75 1.78° 1.80 1.80 i1.81
11 0. 38 1. 10 1. 353 1. 59 1. 62 1. 63 1.6 " 1.63
12 0. 34 1. 00 1. 41 1. 45 1.48 1. 50 1. 50 1. 31

13 0. 32 0. 93 1. 30 1. 34 1.37 1. 38 1.38 1. 39

14 0. 29 0. 86 1.21 1.29 1.27 1.28 1. 29 1.29

19 0. 27 0. 80 1. 13 1. 16 1. 19 1.20 1.20 1. 21
16 0.26 0.7 1.06 1. 09 1.11 1.12 1.12 1.13
17 0. 24 0.70 1. 00 1.02 1.05 1. 06 1. 06 1. 07

18 0. 23 0. 67 0. 95 0.97 0. 99 1.00 1. 00 1.01
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Table C.1.3 First Eigenvalue

ms/md=10.0

Stiffness Ratio

0. 61697 2. 4674 9. B696 22. 206 39. 478

31. 19

17. 41

12. 01

9.

7.

19

. 19

.33

. &7

. 16

.73

. 42

.14

. 90

. 69

.92

. 10

18. 84

13.17

10. 11

32. 83

20

. 90

.96

. 24

. &7

. 22

.93

.27

. 04

. 84

. 66

.3

.37

33.17 33.20 33.24
19.11 19.13 19.17
13.38 13.41 13.43
10.28 10.31 10.32

8.33 8. 36 8. 38
7.03 7.05 7. 06
6. 07 6. 09 6. 09
3. 34 3.3 3. 36
4.76 4.78 4179
4. 30 4. 32 4. 32
3. 92 3.93 3. 94
3. 60 3. 61 3. 62
3.33 3.34 3.3%
3.10 3.114 3. 11
2. 90 2.91 2. 91
2.72 .73 2.73
2. 56 2. 57 2.57

2. 42 2. 43 2.43

(kd/ks)

61. 685 88. 820 120. 90

33. 24

19.17

13. 43

10.33

39

. 06

. 10

. 36

.79

.32

. 74

. 62

.33

.11

.21

.73

. 97

. 43

33. 24
19. 18
13. 44
10. 33

39

. 06

. 10

.37

.79

. 32

. 94

. 62

.39

.12

.91

.73

33. 24

19. 18

13. 44

10. 33

W

N

N WWw

39

. 06

. 10

.37

.79

. 32

.94

. 62

.39

12

.91

.73

.37

. 43
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Table C.2.1 Second Eigenvalue

ms/md=0. 1
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2. 4674 9. 8696 22. 206 39. 478 61. 685 88. 820 120. 90

2 17.99 10.76 7.21 8. 50 9. 22 ?. 60 .81 9. 94
3 12.37 7.03 3. 50 3.80 4.12 4. 30 4. 41 4. 48
4 9. 41 S.19 2.135 2.17 2. 32 2.42 2.49 2.93
S ~ 7.98 4. 09 1. 50 1.41 1. 49 1.55 1.(b0 1.‘62
6 6.335 3.38 1.12 0.99 1.04 1. 08 1.11 1.13
7 3. 46 2.87 0.89 0.74 0.76 0.79 0.81 0. 83
8 4.79 2. 30 0.73 0.37 0. 359 0. 61 0. 62 0. 63
9 4. 26 2. 21 0. 61 0. 46 0. 46 0. 48 0. 49 0. 30

10 -3. 84 1.98 0. 52 0. 38 0.38 0.39 0. 40 0. 41

11 3. 350 1.79 0. 46 0. 32 0.31 0. 32 0.33 - 0.33

12 3.21 1.64 0.41 0.27 0.26 0.27 0.28 0.286
13 2.9 1. 31 0.36 0.23 0.22 0.23 0.24 0.24
14 2.73 1.40 0.33 0.20 0.19 0.20 0.200 0.21 -
15 2.97 1. 30 0.30 0.18 0.17 0.17 0. 18 0.18

16 2. 41 1. 22 0. 28 0.16 0.15 0.13 0.13 0.16
17 2. 27 1.14 0.2%5 0.14 0.13 0.13 0.14 0. 14

18 2.19 1.08 0.24 0.13 0.12 0.12 0.12 0.12
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Table C. 2.2 Second Eigenvalvue
ma/md=1.0

Stiffness Ratio (kd/ks)

0. 6149 2. 4674 9. B696 22. 206 39. 478 41. 685 88. 820 120. 90

16.13 6.

11.12

8.

44

. 81

.70

.89

. 28

.81

. 43

. 11

. 63

. 44

.27

. 13

. 00

86

.36
.16
. 47
. 02
.71
. 48
.30
. 16
.03
.96
. 88
.81
.76
.71
. 66 -

. 62

9. 07 11.953 12.31 12.96 13.22
3. 92 S. 32 5.96 6.25 6.
2.18 3. 06 3.%2 3.73 3.
1.39 2.00 2.34 2.%0 a.
0. 97 1.42 1.69 1.81 1.
0.71 1.06 1.29 1.38 1.
0. 55 0. 83 1. 02 1.10 1.
0. 43 0.67 0.83 0.90 O.
0.33 0. 33 Q.70 0.73 0.
0. 29 0. 46 0. 39 0.64 0.
0.23 0.40 0. 31 0.3% O.
0. 21 0. 34 0. 43 0. 49 0.
0. 18 0. 30 0. 40 0.43 O
0. 16 0.27 0.36 0.39 0.
0.14 0. 24 0.33 0.3% O
0. 13 0.21 0.30 0.32 0.

0.11 0.19 0. 27 0. 29 0.

a4
86
&0
90
46
16
96
80
&9
40
s
a7
43
39
3s

32

13. 36
6. 33
3. 92
2.63
1.93
1. 49
1.19
0.97
0. 82
0.70
0. 61
0. 54
0. 48
0. 43
0. 3%
0. 36

0.33



86
Table C. 2.3 Second Eigenvalue

ms/md=10. 0
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 61469 2.4674 9. 8696 22. 206 39. 478 641. 685 88. 820 120. 90

2 2.33 20.06 235.48 26.12 26.32 26.41 26.46 26.48
3 1.37 10.99 135.82 16.39 16.37 1é6. 65 16. 69 16.72
4 0. 98 7.19 11.23 11.74 11.89 11.96 12.00 1‘2. 02
S 0.77 3. 23 8. 63 9. 08 9. 21 9. 27 ?.30 9. 32
6 0. 63 4. 06 7. 00 7.37 7.49 7. 34 7.37 7.38
7 0. 33 3. 29 S. 87 6.19 6. 30 6. 34 6.36 6. 38
8 0. 46 2.76 5.03 S. 34 3. 43 3. 47 3. 49 3. 390
9 0. 40 2.37 4.42 4. 68 4.76 4. 80 4. 82' 4.83

10 0.36 2.07 3. 93 4.17 4. 24 4. 28 4. 29 4. 30
11 0.33 1.83 3. 54 3.76 3. 82 3.8% 3.87 3.
12 0. 30 1. 63 3.21 3. 42 3. 48 3.91 3. 92 3.93
13 0. 27 1. 49 2. 94 3.13 3.19 3. 22 3. 23 3. 24
14 0. 23 1.36 2.72 2.89 2.99 2.97 2. 98 2. 99
13 0. 24 1.29 2. 32 2. 69 2.74 2.76 2.77 2. .78
16 0. 22 1.16 2.33 2 91 2.36 2.38 2. 39 2. 60
17 0.21 1.08 2.20 2. 35 2.40 2.42 2. 43 2. 43

18 0. 20 1.01 2.07 2. 21 2.25 2. 27 2.268 2. 29
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Table C. 3.1 Third Eigenvalue

ms/md=0. 1
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2. 4674 9. 84696 22. 206 39. 478 41. 683 88. 820 120. 90

3 20.82 19.93 13.83 135.01 13.93 16.495 16.74 16.91
4 15.19 13.80 8.65 8.38 9. 06 9.37 9. 36 9. 68
3 11.80 10.34 6.10 3. 61 3.84 6. 03 6. 16 6. 24
) 9. 63 8. 46 4. 62 3. 99 4. 09 4. 21 4. 29 4.35
7 8. 10 7. 04 3.66 3.00 3. 02 3.10 3.16 3 20
a 6. 99 6.01 3.01 2 33 2.33 2. 38 2. .42 2.40
9 6.13 S.23 2. 33 1.90 1.893 1.68 i.91 1.94

10 9. 46 4. 63 2.18 1. 38 1. 91 1. 93 1.39 1.37
11 4. 92 4. 195 1. 90 1.33 1.26 1.27 1.28 1.29

12 4.48 3.79 1.68 1. 14 1. 06 1.07 1.08 1. 09

13 4.10 3. 43 1. 91 0. 99 0.91 0. 91 0. 92 0. 92
14 3.79 3.19 1. 36 0.87 0.79 0.78 0.79 0.80
13 3. 52 2. 92 1.24 0.78 0. 69 0. &8 0. 69 0. 69

16 3. 28 2.71 1.14 0.70 0. 61 0. 60 0. 60 0. 61
17 3.07 2. 94 1.03 0. 63 0. 393 0. 33 0. 33 0. 54

18 2. 89 2.38 0.98 0. 57 0. 49 0. 48 0.48 0.48
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Table C.3.2 Third Eigenvalue

ms/md=1.0
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 61469 2. 4674 9. 84696 22. 206 39. 478 61. 683 88. 820 120. 90

3 20.82 18.80 13.68 15.93 17.13 17.62 17.99 18.12

4 15.16 13.29 6.04 8.94 9.79 10. 12 10.42 10.91
S 11.82 10.14 3J.47 9.72 6.32 6.53 6.77 '6.82
6 9. 65 8. 14 4.04 3. 98 4. 42 4. 35 4.76 4.78
7 8. 13 6.77 J3.14 2.94 3.27 3.3 3.33 J3.83
8 7.01 S5.78 2.34 2.26 2.353 2. 37 2.72 2.

9 4. 16 5.0 2.11 1.79 2.02 2.03 2.17 2.19

10 3. 49 4.43 1.79 1. 46 1. 63 1. 64 1. 77 1.74
11 4. 93 3.99 1. 59 1.21 1.38 1.33 1. 48 1. 44
12 4. 31 3. 61 1.37 1.02 1.17 1.14 1.29 1.21
13 4.14 3. 30 1.21 0.87 1.01 0.97 1.08 1.03

14 3. 82 3. 03 1.09 0.76 0.88 0.83 0.94 0. 89

13 3.93 2.61 0.99 0.66 0.78 0.72 0.82 0.78
16 3.32 2. 61 0.90 0.359 0.70 0.63 0.73 0.68
17 3. 11 2. .44 0.83 0.9%2 0.63 0.3 0.635 0.60
18 2.93 2. 30 0.77 0.47 0.957 0.30 0.59 0.54

71
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Table C.3.3 Third Eigenvalue

ms/md=10. 0
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2.4674 9. 8696 22. 206 39. 478 61. 685 88.820 120. 90

3 20.12 10.49 23.00 24.91 20.46 25.468 23.80 23.87
4 14.63 3.64 14.41 16.2% 16.77 17.00 17.11 17.18
S 11.39 4.10 ?.96 11.62 12.10 12.30 12.41 12 47
6 9. 28 3.13 7.38 8. 83 9. 208 9. 46 9.. ;5 9. 61.
7 7.81 2. 54 3.74 7.03 7.43 7.39 7. 68 7.73
8 6.73 2. 12 4. 63 3. 80 6.13 6. 29 6.37 6.42
9 3.9 1.82 3.84 4. 90 S. 21 3.34 3. 42 3. 46

10 S. 26 1.39 3. 29 4. 22 4. 51 4. 63 4. 69 4.73
11 4. 74 1.41 2. 80 3. 69 3. 96 4. 07 4. iS 4. 16
12 4.31 1.27 2. 45 3.27 3. 52 3. 62 3. 68 3.71
13 3.93 1. 19 2.17 2.93 3. 16 3. 26 3.31 3.34
14 3. 64 1.06 1.95 2 63 2.87 2. 96 3.01 3.03
15 3. 38 0.97 1.76 2. 42 2. 62 2.70 2.73 2.77
16 .15 0.91 L. 60 2.22 2.41 2. 49 2. .33 2. %6
17 2. 96 0.83 1. 46 2. 03 2.23 2.30 2.34 -2 .37

18 2.78 0. 80 1.34 1.90 2.07 2.14 2.18 2.20
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Table C. 4.1 Fourth Eigenvalue

ms/md=0. 1
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2. 4674 9. B69S6 22. 206 39. 478 61. 683 88. 820 120. 90

4 22.25 22.49 18.61 19.11 20.03 20.58 20.89 21.08
9 16.80 16.79 13.19 12.48 12.98 13.35 13.58 13.74
6 13.32 13.19 9.97 8. 89 9.10 9. 34 9.51 ;.63
7 10.935 10.73 7.88 6.71 6.73 &. 90 7.02 7. 11
8 9.23 9. 02 6.43 S. 28 3. 22 3. 31 3. 39 3. 46
Q9 7.97 7.73 3. 38 4. 28 4.16 4.21 4. 27 4.32
10 6. 99 & .74 4.60 3.39 3. 39 3. 42 3. 46 3. %0
11 6. 21 S.97 3. 99 3.01 2. 83 2.83 2.87 2. 90
12 3. 98 3.34 3. 91 2. 38 2. 40 2.39 2. 41 2. 43

13 3. 06 4. 82 3.13 2.295 2. 06 2. 04 2.05 2.67
14 4. 63 4. 40 2. 81 1.98 1.79 1.76 1.77 1.78
19 4. 26 4. 03 2. 39 1.77 1. 57 1. 94 1. 94 1. 93
16 3.94 372 2.32 1. 59 1.39 1.39 1.35 1. 36
17 3. 67 3. 46 2.13 1.43 1. 24 1. 20 1.20 1.20

18 3. 43 3. 22 1.97 1. 30 1.11 1. 07 1.07 1.07
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Table C. 4.2 Fourth Eigenvalue

ms/md=1.0
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2. 4674 9. B696 22. 206 39. 478 61. 4683 88. 820 120. 90

4 22.34 22.43 18.13 19.48 20.70 21.13 21.57 21.67
S 16.90 16.73 12.63 12.95 13.42 13.74 14. 1.2 14. 18
& 13.42 13.14 9. 30 8. 82 9. 41 9. 61 9. 93 ?.95.
7 11.06 10.71 7.48 &. 37 6. 97 7. 08 7.36 7.33
8 9.36 8. 99 6.10 9. 11 3. 39 3. 43 S. 68 3. 64
9 8. 09 7.70 3. 10 4.10 4. 30 4. 29 4. 91 4. 46

10 7.10 6.72 4. 36 3.37 3. 92 3. 47 3. 48 Q. 62
11 6. 33 5.99° 3.79 2. 83 2.94 2.87 3. 06 2. 99
12 3.70 9. 32 3.33 2. 42 2. 50 2. 41 2. .99 2. 91
13 J.18 4. 81 2. 97 2. 09 2.135 2.03 2. 22 2. 13
14 4.74 4. 39 2. 67 1.83 1.88 1.76 1.93 1.83
135 4. 36 4.03 2. 43 1. 62 1. 66 1.93 1. 69 1. 99
16 4. 06 3.72 2. 22 1.44 1.48 1. 34 1. 30 1. 40
17 3.78 3. 49 2.04 1.29 1. 33 1. 19 1. 34 1.23

i8 3. 34 3. 22 1.89 1.17 1. 20 1. 06 1.20 1. 09



Number
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10
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Table C. 4.3 Fourth Eigenvalue
ms/md=10. O

Stiffness Ratio (kd/ks) . -

0. 61469 2. 4674 9. 84696 22. 206 39. 478 61. 683 88. 820 120. 90

22. 23

16.77

13. 30

10. 93

9.

7.

a3

95

.97
.19
. 6
.03
. 61
. 24
.93
.63

.41

19. 69

14. 84

11. 68

9.

7.

92

97

. B2

. 94

. 24

. 68

.23

. 84

. o2

. 29

.01

. 80

21.69 24.86 25.78 26.19 26.34 26,46
13.85 16.92 17.84 18.22 18.41 18.52
9.49 12.26 13.12 13.48 13.66 13.76
6.88 9.31 10.09 10.43 10.59 -10.69
5.20 7.33 8.05 8.395 8.50 8.60
4.07 5.94 65 687 7.01 7.10
3.26 4.92 5.5 578 5.91 599
2.67 4.15 4.70 4.94 5.06 5. 14
2.23 3.5 4.07 4.29 4.40 4.47
1.83 3.09 3.% 3.77 3.88 3.94
1.61 2,71 3.13 3.35 3.45 3.51
1.39 2,41 2.82 3.00 3.09 3.15
1.21 2,15 2.% 2.71 2.80 2.8%
1.06 21.94 2.30 2.46 2.5 2.60

0.94 1.7 2. 10 2.29 2.33 2.38
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Table C. 3.1 Fifth Eigenvalue

ms/md=0. 1
Number
of Stiffness Ratio (kd/ks)
Lumps :

0. 6169 2. 4674 9. 8696 22. 206 39. 478 61. 685 88. 820 120. 90

9 23.70 24.11 22.23 21.89 22.73 23.26 23.357 23.76
6 18.47 19.71 16.83 13.356 16.00 16.38 16.63 16.79
7 14.92 15.06 13.2% 11.77 11.89 12.14 12.33 12.46
8 12.40 12.47 10.76 9.27 9. 20 ?. 36 9. 30 9. 60
9 10.54 10.3%6 8.93 7. 33 7.33 7. 43 7. 94 7.61

10 9. 11 9.10 7. 60 6.26 6.01 6. 03 6. 12 6.18
11 8. 00 7.97 6. 56 5.31 S. 02 3. 02 3. 07 3.11
12 7. 11 7. 06 3.74 4. 57 4. 26 4. 23 4. 27 4. 30
13 6.38 6. 32 S.08 3. 98 3. &6 3. 62 3. 64 3. 66
14 3.78 S.71 4. 54 3.9 3. 18 3.13 3. 14 3.16
13 9. 27 9. 20 4. 09 3. 13 2.80 2.73 2.73 2.75
16 4. 684 4.76 3.71 2.681 2. 48 2.41 2. 40 2. 41
17 4. 47 4. 39 3. 39 2.94 2.21 2. 14 2.13 2. .14

18 4.15 4,07 3.11 231 1.99 1.91 1.90 1.90



Number
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Lumps

10
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13
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Table C. 3.2 Fifth Eigenvalue
ms/md=1.0

Stiffness Ratio (kd/ks)

0. 6169 2. 4674 9. 8696 22. 206 39. 478 61. 685 88. 820 120. 90

23. 89

18. 63

13. 09

12. 98-

10. 72

9.

30

18

.29

. 36

.96

. 46

.03

. 66

.34

24. 11
18. 71
15. 03
12. 46
10. 55
9.

6.

i0

6

. 06

. 32

.71

. 20

.76

.39

.07

21.93 22.06 23.23 23.39 24.08 24.11

16.63 13.33 16.38 16.61

13. 14 11.464 12.18 12.30

10.72 9.11 9. 45 9. 46

8.9 7.36 7.36 7.30

7.63 &. 09 6. 20 6.08

&. 63 3.14 S.20 3.03

9.83 4. 40 4. 43 4.23

9.19 3.83 3.83 3.61

4.66 3.36 3.33 3.11

4. 23 2. .98 2. 96 2.71

3.86 2.7 2.65 2.38

3. 93 2. .41 2. 38 2.11

3. 28 2.19 2.16 1.88

17. 09

12. 73

9.

as

. 83
. 41
.34
.92
.89
.38
.97
.63
.33

.12

17.07

12. 67

9.

7.

6.

76

74

.19
.36
.71
.20
.78
. 44
.19

.91
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Table C. 5.3 Fifth Eigenvalue

ms/md=10. O
Number
of Stiffness Ratio (kd/ks)
Lumps

0. 6169 2. 4674 9. 8696 22. 206 39. 478 61. 685 88. 820 120. 90

9 23.70 23.83 21.93 25.17 26.3&6 26.86 27.11 27.26
) 18.47 18.46 14.93 17.69 19.10 19.61 19.86 20.01
7 14.92 14.83 10.89 13.29 14.43 14.92 15.17 19 31
8 12.40 12.26 8.37 10.23 11.28 11.74 11.98 12. 11
9 10.33 10.37 6.68 8.10 ?.06 9.49 9.71 9. 83

10 9. 11 8. 94 S. 49 6. 36 7. 44 7.83 8. 04 8. 16
11 8. 00 7.81 4.61 9. 42 6. 22 6. 39 6.78 6. 89
12 7.10 6.92 3.93 4. 953 3. 28 3. 62 3. 80 3. 90
13 6. 37 6. 19 3. 43 3.87 4. 33 4. 86 35.03 _ 9.12
14 3.77 5.%59 3.01 3.33 3.9 4. 23 4. 40 4. 49
13 3. 26 3. 08 2. 67 2. 89 3. 47 3.76 3. 90 3.98
16 4.83 4.66 2.39 2. 33 3.07 3.33 3. 47 3.55.
17 4. 446 4. 29 2.16 2. .24 2.74 2 .99 3.12 3.19

18 4.14 3. 98 1.96 1. 99 2. .46 2. 69 2.82 2. .69
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