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ABSTRACT

STRUCTURE OF EVENTS AND AUTOMATA

By

Bobby Gene Reynolds

The relations between certain structural aspects of automata
and their accepted events are investigated.

A general repetitive machine is an automaton having a path
from every final state to the start state. The general repetitive
machines contain as a proper subclass the strongly connected machines.
General repetitive events are defined in terms of certain '"factoriza-
tion" properties of the associated regular expressions, and a one-to-
one onto correspondence is shown between general repetitive machines
and general repetitive events.

Definite and ultimate~-definite general repetitive machines are
investigated, and a number of properties exhibited. All ultimate-
definite automata are synchronizable; that is, there is an input
sequence which causes the machine to move to a predetermined state
regardless of the state of the machine before applying the sequence.
Ultimate-definite general repetitive machines are shown to be strongly
connected and hence synchronizable to the start state.

The structure question is also pursued from the viewpoint of
a machine's cascade decomposition (Zeiger's method). An input to a
component machine of a Zeiger cascade either permutes the states or
resets to one state. It is shown that certain subsets of a machine
that are permuted under some input appear as cover elements somewhere
in a Zeiger cascade, and permutations of the states of component
machines appear when these subsets are not singletons. From this,
necessary and sufficient conditions are obtained for a machine to
have a Zeiger cascade with no permutations other than those assigned
arbitrarily. Finally, it is shown that an event R is definite if
and only if no Zeiger cascade for the machine accepting R has

permutations.
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1. INTRODUCTION

The development of finite automata theory in recent years is a
result of investigations of discrete-parameter systems; that is,
systems whose input, output, .and state variables each assume a finite
number of values. The proliferation of digital devices and their
usage in both military and commercial applications have provided
motivation to study such devices on an abstract level, independent of
any method of physical realization, in order to determine their capa-
bilities and limitations.

The aim of this study is to examine the relations between
certain structural aspects of automata and the events (sets of input
sequences) accepted by them. In this chapter most of the notation is
established, and basic concepts of automata theory are reviewed. 1In
Chapter 2 a general repetitive machine is defined in terms of paths
in the state graph of the machine, and properties of the event accepted
by the machine are studied. The important class of strongly connected
machines is a subclass of the general repetitive machines. Results
from Chapter 2 are applied in Chapter 3 to definite and ultimate-definite
automata. In Chapter 4 the cascade decomposition of automata 1is
examined, and the relations between permutations of state subsets of
an automaton and permutations of the states of component machines in
the cascade are investigated. Finally, it is shown that the definite
automata are precisely those whose cascade decompositions have no

component machines whose states are permuted under some input.

1.1 Notation and Basic Concepts

Let A and B be sets. The set-theoretic union of A and B
is written AU B or A + B, and their intersection is A N B. |A|
denotes the number of elements in A.

An alphabet T 1is a finite non-empty set of symbols. The

*
concatenation of symbols O and T is the sequence OT. T 1is the

set of all finite sequences obtained by concatenating symbols from I,

*
including the null (or empty) sequence A, and for B& L, B is



similarly defined. A sequence from Z* is a tape. The length of a
sequence x € £ , 4(x), is the number of symbols in x. If x is a
tape, then xk denotes the tape xx...x (k times), and x° = A. If
Ek denotes the set of all tapes in Z* of length k, then

2* ={A+3T+ 22 + 23 +...}. Z? is thus a monoid under concatenation,
with identity A which has the property Ax = xA = x for any x € 2*.
Any subset P of ﬁ* is an event. The product or concatenation of
events P and Q is PQ={xy : x € P, y €Q}. If x is a tape, the
event Px is similarly defined: Px = {wx : w € P}. Thus we make no

notational distinction between a tape x and the singleton set {x].

Let x = ol...cm be a tape. For 1< j <k <m define jxk
by jxk = oj"'ck-l' Then jxk is a subtape of x. Also Xk 1s
a prefix of x and jxm is a suffix of x; they are proper iff

k <m and j > 1 respectively. ("Iff" is an abbreviation for "if
and only if".)

A= (QA,M,SO,F) is a finite automaton, and is defined over an

input alphabet Z. QA is a finite non-empty set of states of A. M

is a map from QA X ¥ into QA’ and is called the move or transition
function. If s,t € Q and 0 € T, M(8,0) = t means that if A is

in state s and input O 1is applied, A changes to state t.

€ Q, 1is the start state, and F£Q, is the set of final states
M extends naturally to Q, X 2 as follows: for each x € E
OE€EY and s € QA’ M(s, xc) = M(M(s,x) ,0). For any state s, M(s,A) = s.
For B & QM and x € 2 we define M(B,x) = {M(s,x): s € B}. 1In
Chapter 4 the letters M, K and L will be used to denote finite
automata; the context will clearly show whether M denotes an automaton

or a move function. We use the words finite automaton, automaton, f.a.,

and machine interchangeably.

If the automaton is in state 50 and tape x = 01...cm is
applied to the input, A goes through the states S¢° M(so,Gl),
M(so,c1 02),...,M(so,x). If M(so,x) € F, the tape is accepted by

*
the automaton A; otherwise it is rejected. A thus dichotomizes X

into two events, the accepted tapes and the rejected tapes. An event
which is the accepted set of some f.a. is a regular event. The autom-

aton A whose accepted set is R is sometimes written A(R). More



generally, a tape x is accepted by the state s iff M(s,x) € F.

The f.a. defined above has an output associated with each state;
the output is "yes'" or "1", say, if the automaton is in a state in F,
and "no" or "0" otherwise. Such automata are called Moore machines,
as distinguished from Mealy machines whose outputs are associated with
the transitions between states. Moore machines are used exclusively in
this study.

Automata can be represented by either a state graph or a flow
table, as illustrated in Figure 1.1.1. We will use both representations,
choosing the more convenient form for each situation. In a state graph,
circles denote states and a final state is denoted by two concentric
circles. Transitions between states are denoted by arrows, and each
arrow is labelled with the symbol causing the transition. If
M(s,0) = t, an arrow is drawn originating at the circle representing
state s and pointing to the circle representing state t, and ¢ is

written near the arrow. The start state s is distinguished by an

arrow entering the circle for 8o but not 2riginating from any circle.
A flow table has a column listing the states of Qy and, for each
input symbol, a column listing ''mext states' of A wunder that input.
The final column designates final states by '"1" and non-final states
by "0".

A state t is reachable or accessible from state s 1iff

M(s,x) = t for some tape x. The set of states reachable from state

*
s is R(s) = {M(s,x): x € £ }. A 1is connected iff R(so) = QA’ and

strongly connected iff R(s) = QA for every state s. There is a

path from s to t 1iff t is reachable from s. B & Q is a
strongly connected subset iff B < R(s) for all s € B.

Two states s and t of A are said to be indistinguishable

*
or equivalent iff for all x € © , M(s,x) € F iff M(t,x) € F. Other-
wise they are distinguishable, and there is a tape y such that

M(s,y) € F and M(t,y) € F or vice versa. There are several equiv-
alent definitions of indistinguishability. 1In Figure 1.1.1 the states
B and E are indistinguishable. These can be replaced with a single
state B as in Figure 1.1.2. An automaton is reduced if it is con-

nected and any two states are distinguishable. For every non-reduced



A
B E
c E
D B
E B
(a) State graph (b) Flow table

Figure 1 1.1. State graph and flow table representations for
an automaton with ¥ = {0,1}

(a) State graph (b) Flow table

Figure 1.1.2. Reduced version of the automaton in Figure
1.1.1.



automaton there is an equivalent reduced automaton which accepts exactly
the same regular event. This study deals exclusively with reduced
automata unless otherwise stated.

As stated earlier, the class of regular events consists of just
those subsets of Zr which are accepted sets of finite automata.
There are non-regular events, for example {0“10“: n=0,1,2,...}

with T = {0,1}. Regular events are represented by regular expressionms,

which are constructed from an alphabet I by using only the union,
dot (concatenation), and star operations a finite number of times.
Thus, if 0 € £ then {0} 1is regular, and if P and R are regular,
then P+R (or PUR), P-R (or PR), and P* ={A+P+ P2 + P3+...}
are regular. No event is regular unless obtained in this fashion.
Finally, we review derivatives of events and state without proof
several of their properties [2,3]. Let P& Z? be an event. The
derivative of P with respect to the tape x € Zr,.denoted Dx(P), is
defined by D _(P) = {w: xw € P}. For 0,7 €%, Dy(0) = A, and
Da('r) =¢ if © : T; also, DO(A) =@, DA('r) = T, and DA(P) =P, 1If
c€ZT and x € ¥, then Dc(Dx(P)) = Dxc(P).
Define 6(P) by 6(P) =% if A¢P and 6(P) =A if A€ P,
If Q 1is an event and 0 € T, the following properties of derivatives
hold:

(1) D (P+Q) = D (P) + Dy(Q),

(2) D (P N Q) =D (P) N DL(Q)>
(3) D, (PQ) = D (P)-Q + 6 (P)D,(Q) ,
* %

(4) Dc(P ) = D(P) P .

Let R be a regular event. A derivative of R 1is a regular
event, and R has a finite number of derivatives. The number of
derivatives of R 1is equal to the number of states in the reduced
automaton A(R) = (QA’M’SO’F) accepting R. The relation between
derivatives of R and states of A(R) 1is as follows. With the state
M(so,w) € QA is associated the derivative Dw(R)' Then Dw(R) is
exactly the set of tapes accepted by the state M(so,w), or the set of
tapes which take A(R) from M(so,w) to F. Dw(R) is the derivative



corresponding to state M(so,!l; and A € Dw(R) iff M(so,w) € F.

If A(P) = (QA,M,so,F) is a f.a., not necessarily reduced, then
two states M(so,x) and M(so,y) are indistinguishable iff

Dx(P) = Dy(P).



2. GENERAL REPETITIVE EVENTS AND MACHINES

Considerable research has been devoted to the class of strongly
connected automata. One property of these machines is that the start
state is accessible from every final state (since all states are
accessible from every state). Since much of the '"loop" structure of
a strongly connected machine's state graph resides in this property,
it would seem interesting to investigate all machines having the prop-

erty. These are called general repetitive machines.

After precisely defining general repetitive machines we charac-
terize the state graphs of those not strongly connected. Then we define

a class of events called general repetitive events, and show that these

are exactly the events accepted by general repetitive machines. Some
properties of these events are exhibited and examples given. Next we
characterize the machines in terms of derivatives of the events accepted
by them, since many of the results in Chapter 3 are obtained by use of
derivatives. Synchronization of automata is defined and discussed and,
finally, closure properties of the class of general repetitive events

are considered.

2.1, State Graph Structure of General Repetitive Machines

Definition 2.1.1: An automaton A = (QA,M,SO,F) is a general repetitive

machine (GRM) iff for each state 8, € F there is a tape Xy such that

M(si,xi) =8,

In some instances a single tape will suffice to return a general
repetitive machine from any final state to the start state; in others,
different final states may require different tapes. These conditions

are distinguished by the following definition.

Definition 2.1.2: An automaton A = (QA,M,so,F) is a repetitive
machine (RM) iff for some tape x and for all s € F, M(s,x) = 8¢

Both automata of Figure 2.1.1 are GRMs. The automaton of Figure
2.1.1(b) is an RM, since M(F,1ll) = 84> but that of Figure 2.1.1(a) is
not; the RMs thus constitute a proper subclass of the GRMs.

The class of strongly connected machines is a proper subclass of

the GRMs. We partition the class of GRMs into two subclasses, strongly



(a) GRM

Figure 2.1.1 . Examples of general repetitive machines.

connected and non-strongly connected, and designate them as Type I

and Type II, respectively.

Lemma 2.1.1l: Let A(R) = (QA,M,SO,F) be a GRM. If A(R) has a final
dead state, then A(R) 1is a l-state automaton. If A(R) has a non-
final dead state s, then Q, - {sD} is a strongly connected subset

of states.

Proof: Let sD be a final dead state. Since A(R) 1is a GRM,

sy € R(sD); hence s_=s.. But s_ is dead so Q, = {so}.

D 0 D

Suppose s is & non-final dead state. Let B = Q - {sD}.

If s € B, s 1is not dead, and for some Sp €F, Sg € R(s). But

8



5o € R(sF) and B & R(so); hence B & R(s). That is, every state in
B 1is accessible from every state s in B, and so B 1is a strongly
connected subset of Q-

Q.E.D.

Theorem 2.1.1: Every Type II GRM A = (QA’M’SO’F) consists of a

single non-final dead state 8p and a strongly connected subset

Q, - {sp}.

Proof: If A has no non-final dead state, then from every state s
there is a path to some Sg € F. There is also a path from every state

in F to Sy and from s to every other state. Hence R(s) = QA

0
and A 1is strongly connected, contrary to the assumption that A is

Type I1. Thus A has a non-final dead state and only one since

s
D,
A is reduced. The rest follows from Lemma 2.1.1. .

Q.E.D.

This theorem shows that the Type II GRMs are quite similar to
the strongly connected machines, since all states but one lie in a

strongly connected subset of QA'

2.2 General Repetitive Events

Definition 2.2.1: A repetitive event (RE) is a regular event P with

the properties
(1) for some x € £, P = P(xP), and
(2) for any events R and Q, if R& P and RxQ & P then
QS P.
The tape x is called a return tape. The class of REs is denoted by

~

R.

Definition 2.2.2: A general repetitive event (GRE) is a regular event

R with the properties

m
(1) R= U P,, where each Pi is an RE with return tape X5
i=1 *
*
(2) for 1<i,jSm, Pi can be written Pi = (ijj) Pi’ and

(3) for 1=<1i,j<m and for any events Ri and Q, if

(= = 1S .
Ri Pi and RixiQ Pj then Q Pj



The class of GREs is denoted by G.
Observe that an RE is a GRE, and hence ﬁ is a proper subclass
of G. Also, no finite event belongs to either class.

A lemma is needed for later use.

Lemma 2.2.1: If P is an event and x 1is a tape, the following are

equivalent:
(1) P=P@p)”
(2) P= (Px)*P
(3) PxP S P.

Proof: The equivalence of 1 and 2 is seen as follows:

*
P(xP) = P[A + xP + xPxP +...]

P + PxP + PxPxP +...
= [A + Px + PxPx +...]P

*
(Px) P.

That 1 implies 3 is trivial. Conversely, if PxP & P, then
(PxP)xP S PxP & P, or P(xP)2 S P, and in like fashion we observe that
PxP)* S P for n=0,1,2,..., where (xP)] = A. Hence P(xP)* S P.
Obviously P &« P(xP)*, so P = P(xP)*.

Q.E.D.

The following theorem relates GREs to GRMs.

Theorem 2.2.1: Let A(R) = (QA’M’SO’F) be an automaton. Then A(R)

is a GRM if and only if R 1is a GRE.

Proof: Let F = {SF }T-I be the final states of A(R).
i

Suppose A(R) is a GRM. For 1 < i <m define Pi by
Pi = {y € 2*: M(so,y) = s%.}; that is, Pi would be the accep;ed set of
A is sp were the only final state. Then obviously R = U Pi' By
i i=1
Definition 2.1.1 there are tapes X, for 1< i <m such that

i 0" We first show that each Pi is an RE. Suppose

w,y € Pi' Then M(so,wxiy) = M(sFi,xiy) = M(so,y) = sFi. Hence for

all w,y € P,, wx,y € P, which means P x P, S P, . By Lemma 2.1.1,
i i i iTiti i

M(sFi,x ) =s

10



*
= . c
Pi Pi(xipi) Now suppose Ri and Q are events such that Ri Pi

= =
and RixiQ Pi’ and let w € Ri and y € Q. Since M(so,w) Sp and

. i :
WX,y € Pi’ s M(so,wxiy) M(sF ,xiy) = M(so,y), hence y € Pi' This

F.
shows that Q& Pi’ and completes Ehe proof that Pi is a repetitive

event.

*
To show that Pi = (P,x,) Pi for 1< j<m let y€P Then

x .
M(so,yxj) = M(M(so,y),xj) = %(gF ,xj) =5,- Hence for z € Pi,j
M(so,ysz) =nM(so,z) = sFi, and thus ijjPi 5] Pi' By a similar*argu-
jxj) Pi < Pi for" n = 0,1,2,..., yielding Pi = (ijj) Pi'
Finally, suppose Ri and Q are events such that Ri = Pi and
RixiQ < Pj for 1 <i,j<m. Let wE Ri and y € Q. Since M(so,w)

ment (P

F, ,xiy) = M(so,y); hence

y €P

F

=5 and WX,y € Pj’ st = M(so,wxiy) = M(s .

i so that Q& Pj'

This completes the proof that R 1is a GRE.

m
Conversely, suppose R 1is a GRE which we can write as R = ggl Pi
according to Definition 2.2.2. Each P, cannot necessarily be asso-

i
ciated with a distinct final state in this case. Define instead the

subsets F, of F by F, = (sF € F: M(so,y) = sp for some y € Pi}'

We also define Si = {s € QA: M(SF’xi) =g for some BF € Fi}, where

X is the return tape for P The method of proof is to show that

i i’

each state in Si’ 1<1i<m is indistinguishable from s (that is,

0

5, = {so} since A(R) is reduced), so that x, takes every state in

Fi to 8o We must show that for every s in Si and y 1in 2*, and
for 1<1i<m, M(so,y) €F iff M(s,yl € F.

Suppose M(so,y) €EF for y€ v and let s be any state in
Si' There is a tape z € Pi such that M(so,zxi) = s, where X, is a
return tape for P.. Since ytR, yer for some j. Hence zx.y € Pixin,
and since by definition Pixipj = Pj we have zx.y € Pj' Thus
M(so,zxiy) = M(M(so,zxi),y) = M(s,y) € Fj S F. Hence M(so,y) €F
implies M(s,y) € F.

If s € Si and M(s,y) € F, choose 2z € Pi so that
M(so,zxi) = s. Then M(so,zxiy) = M(s,y) € F, so zxiyE Pj for some
j. Then {z} & P, and {z}xi{y} SP
2.2.2 {y}sp That is, y € P

T and by condition 3 of Definition
I It and hence M(so,y) € F. Thus

11



M(s,y) € F implies M(so,y) € F, completing the proof that 56 and
s € Si are indistinguishable.

Hence s, = {so} for 1<4is<m, and M(F ,x) = s,, showing
that A(R) 1is a GRM.

Q.E.D.

The above proof shows that the event R accepted by a GRM A(R)
can be expressed in terms of events Pi associated with individual
final states s_ . That is, Pi

F,
A(R) from s to s , and x takes A(R) from s to s.. But

0 Fi i Fi 0

a general repetitive event might be expressible in a number of ways

is exactly the set of tapes taking

satisfying the conditions of Definition 2.2.2, and some forms may not
allow the component repetitive events to be associated with individual
final states. One is assured, however, that a GRE form does exist so
that each Pi is associated with a single final state.

It also follows that A(R) 1is a repetitive machine iff R 1is a
repetitive event. For if A(R) 1is an RM we can select the same return
tape x for each state, and straightforward manipulations of R show
that it is an RE. The converse is easy.

We observe that many events P can be written P(xP)* for some
x € 2* and yet do not satisfy condition 2 of Definition 2.2.1. 1In
particular, any ultimate-definite event P (to be investigated in the
next chapter) has the property P = z;P, and for any tape x,

P = Z*P = E*P(XZ?P)* = P(xP)*. However, not all ultimate-definite
events are REs. The property P = P(xP)* means that the state

s = M(sF,x), where Sp € F, accepts the event P. Condition 2 of the
definition insures that s accepts exactly P. Ultimate-definite
machines A(P) will be seen to have the property that every state
accepts P but only 55 accepts exactly P.

Figure 2.2.1 shows an example of a repetitive machine A(P).

The repetitive event P is P = 11(011)*. Letting x = 0, P can be
written P = P(xP)* = 11(011)*[011(011)*]*. Condition 2 of Definition
2.2.1 is also satisfied since A(P) is an RM.

Before presenting some properties of repetitive events we extend

the definition of derivatives of events to the following.

12



Figure 2.2.1. A repetitivs machine A(P) where
P = 11(011)

Definition 2.2.3: Let W,Z be events. The derivative of W with

*
respect to 2z is D, (W) = fy € £: zy €W for some z € z}. It is

clear that D_(W) = U D (w)
VA
2€2Z

Conditions 1 and 2 of Definition 2.2.1 for a repetitive event
P can be expressed in terms of the derivative DP(P); that is the
subject of the next two theorems, which provide alternative ways of

determining if a regular event is repetitive.

*
Theorem 2.2.2: Let P be a regular event. If P = P(xP) for some
*
tape x then DP(P) = DP(P)-(xP)

Proof: Suppose P = P(xP)* and let y € DP(P)-(xP)*. Then y = uv,
where u € DP(P) and v € (xP)*. By Definition 2.2.3 there is a tape
w € P such that wu € P; hence wy = wuv € P(xP) = P, and so
y € D (p) < D (P). Thus D (P) 2 D (P) (xP) . The reverse inclusion
is obvious, proving D (P) = D (P) - (xP)
Q.E.D.
This result only provides a means, by contraposition, of deter-

*
mining that P is not repetitive. However, the condition P = P(xP)

13



for REs is the easier of the two conditions to verify. Given that
*
P = P(xP) , the next theorem gives several necessary and sufficient

conditions for condition 2.

*
Theorem 2.2.3: Let P be an event with the property P = P(xP) for

*
some tape x € £ . The following are equivalent, where R and Q are

*
events and y € T :
(1) RSP and RxQ & P imply Q& P,
(2) x 1is not a prefix of any tape in DP(P) - xP,
(3) P =D, (P),

(4) xy € DP(P) iff y € P.

Proof: (1) = (2): Suppose R& P and RxQ & P imply Q& P. To
show that x 1is not a prefix of any tape in DP(P) - xP we must show
for each tape w that if xw € DP(P) then w € P.

If xw € DP(P), by Definition 2.2.3 there is a tape y € P such
that yxw € P. That is, {y} € P and {yl}x{w} € P, so by hypothesis
{w} S P. Hence w € P.

(2) = (3): Suppose xw € DP(P) implies w € P, and let y € DPx(P)'
Now D, (P) = {y ¢ = zxy € P for some z € P}. Hence there is a
tape z € P such that zxy € P, and therefore xy € DP(P)' By
hypothesis y € P, showing DPx(P) S P.

Since P = P(xP) we have PxP & P, It follows that

= o =
P DPx(PxP) D x(P). Hence P = D__(P).

P Px

(3) = (4): Suppose P = DPx(P).
Let xy € DP(P)' Then y € DPX(P), so y € P,
Conversely, let y € P, Then y € DPx(P)’ and hence for some

tape z € P we have zxy € P. Thus xy € DP(P).

(4) ® (1): Suppose xy € DP(P) iff y € P. We assume R and Q are
events such that RS P and RxQ & P, and show Q & P. Using the fact

that DR(RxQ) = U Dz(RxQ), observe that xQ & DR(RxQ) = DP(RxQ) < DP(P)'
zER
Now if y € Q, then xy € DP(P)’ and by hypothesis y € P. Hence

Q<P Q.E.D.
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An interpretation of the event DP(P) may be of interest. If
AP = (QA’M’SO’F) is the machine accepting P, then P 1is the event
accepted by 8g° If y € P, then Dy(P) is the event accepted by the
final state M(so,y). Hence DP(P) is the union of the events accepted

*

by the final states of A(P); i.e., DP(P) ={w€Ezg: M(sp,w) € F for
some s, € FJ.

To close this section we show that events of a certain form are

repetitive.

*
Theorem 2.2.4: Let z,y € £ . If 2z 1is a proper suffix of vy, the

* *
events P =2y and R =y z are REs.

*
Proof: We can write y = wz, where w # A. Then P = z(wz) . Con-

dition 1 of Definition 2.2.1 is verified by observing that

* * * _%
P (wP) z(wz) [(w(z(wz) )]

z{(wz)*[wz(wz)*]*}

= z(wz)*

= P,

To show condition 2, suppose R & P and RwQ & P, Let v € R
and u € Q. Then vwu € P, and hence wvwu = z(wz)i for some i
(possibly zero). Similarly vE€P 80 v = z(wz)j for some j
(possibly zero), and clearly j < i. Then wvwu = z(wz)jwu = z(wz)i,
and so u = z(wz)i-j- Hence u € P, proving Q & P.
It is similarly demonstrated that R is an RE.

Q.E.D.

2.3. Derivative Characterization of GREs and GRMs

Some of the structural properties of general repetitive events
were exhibited in the last section. In this section we provide a more
useful characterization in terms of derivatives so that these results
can more easily be applied to ultimate-definite events in Chapter 3.
Derivatives of regular events can be computed in a straightforward
manner using the properties discussed in Section 1.1.

We present two results, one for GRMs and one for strongly con-

nected automata.
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Thesrem 2.3.1: An automaten A(R) = (QA’M’SO’F) is a GRM iff for
*
each y € R, there is a tape x € £ such that Dyx(R) = R.

Prcof: Let A(R) be a GRM. If y € R then M(so,y) € F, and by
Definition 2.1.1 there is a tape x such that M(M(so,y)x) =g That
is, M(so,yx) =5, = M(sO,A); hence Dyx(R) = DA(R) = R.

Conversely, suppose that for each y € R, there is a tape

0

*
x € £ such that Dyx(R) = R. For any final state s there is a tape
y € R such that M(so,y) = s, Then for some tape x, Dyx(R) =R = DA(R)’
which means that M(so,yx) = M(sO,A) =5, But M(so,yx) = M(M(so,y),x)

= M(s,x) = s and thus there is a path from s to s

0 0’
Q.E.D.

Of course one need not take derivatives of R with respect to
every tape in R to apply the above theorem. There are finitely many
distinct derivatives although R is infinite. This is clear from the
correspondence between distinct derivatives of R and distinct states
of A(R). A straightforward procedure for testing an event R for the
GRE property is as follows. First compute all derivatives of R accord-
ing to the procedure given by Brzozowski [2]. For each derivative D
of R which contains A compute all derivatives of D (again there
are finitely many). If every such derivative D of R has a deriv-
ative equal to R, then A(R) 1is a GRM.

The next theorem shows that one can check for strong connected-

ness by looking for empty derivatives of R.

Theorem 2.3.2: An automaton A(R) = (QA,M,SO,F) is strongly connected

iff A(R) 1is a GRM and all derivatives of R are non-empty.

Proof: A strongly connected autcmaton is obviously a GRM. Furthermore,
a derivative Dy(R) is exactly the set of tapes accepted by the state
M(so,y), and this set is non-empty since there is a path from M(so,y)
to F.

Conversely, suppose A(R) is a GRM and Dy(R) ) \/y € 2*.
Let 8 be any state, and let y be such that M(so,y) = g, For any

tape z € Dy(R), M(s,z) = Sp € F. Hence s is accessible from s,

F

and since A(R) 1is a GRM o is accessible from Sp Thus 50 € R(s8).

But all states are accessible from Sy» and hence all states are acces-

16



sible from s. That is, R(s) = Q

R and A(R) 1is strongly connected.

Q.E.D.

2.4. Synchronization of Finite Automata

The concept of automaton synchronization was motivated by the
problem of driving a f.a. from an arbitrary unknown state to a known
state by applying a predetermined input sequence (e.g. see [13]).

For example, if the present state of the automaton of Figure
2.1.1(a) is not known, no input sequence exists which will bring the
automaton to a known state, since each input symbol permutes the state
set. However, the input sequence 11 assuredly leaves the Figure
2.1.1(b) automaton in state s., and all subsequent states are known

0

since each is reached from s by following paths corresponding to the

0
input symbols presented.
We introduce the concept at this point because it is intimately

related to ultimate-definite GRMs, the subject of Chapter 3.

Definition 2.4.1: The tape (sequence) x 1is a synchronizing tape
(sequence) for the f.a. A = (Q ,M,SO,F) iff for each state s € QA’
M(s,x) = M(so,x). In such a case, x is said to synchronize A.

Definition 2.4.2: The f.a. A 1is synchronizable iff there is a tape

x which synchronizes A.

Thus, a synchronizing tape x for the f.a. A takes A from
any state to M(so,x).

The Figure 2.1.1 examples show that some, but not all, finite
automata are synchronizable. A synchronizable automaton has infinitely
many synchronizing tapes, for if x synchronizes A, so does wxy for
all tapes w and y 1in f*.

Liu [11] investigated some aspects of automaton synchronization,
and established the following necessary and sufficient condition for

synchronizability.

Theorem 2.4.1: A = (QA’M’SO’F) is synchronizable iff for every pair

of states s and t in QA there is a tape x such that

M(s,x) = M(t,x). The tape x 1is said to merge states s and ¢t.

The next result of Liu offers a second characterization of

synchronizing tapes.

17



Theorem 2.4.2: The tape x synchronizes A = (QA,M,SO,F) iff

M(QA,x) = M(so,x). That is, M(QA,x) must be a singleton subset of QA'

The proof is trivial.
We close this section with a result on synchronizability of Type
ITI GRMs.

Theorem 2.4.3: Every Type II GRM A = (QA’M’SO’F) is synchronizable.

Proof: By Theorem 2.1.1 A has a dead state s , and Q - {sD} is

strongly connected. Hence Sp is accessible from every state, since

Sp € R(so) and 54 € R(s) for all s € (QA - {SD}). Then for each

state s, € Q> there is a tape X, such that M(si’xi) = g _, where

D

M(sD,A) = s, { = sD), and
D k’xk) = M(M(sj’xi) ’xk)
]

,xixk), so that the tape X X, merges s and

i i’

If s, sy € Q, (not excluding s
then M(si,xixk) =5

= M(s By Theorem

h|
2.4.1 A 1is synchronizable.

Q.E.D.

2.5. Closure Properties of R and é

Closure of the classes of repetitive and general repetitive
events under the standard operations on events is important because
closure of a class under an operation provides a means of forming new
events of that class. Perhaps unfortunately, R and G are not closed
under any of the usual event operations. This is stated in the next
theorem. The proof will be delayed until Chapter 3 when more tools are

developed to facilitate construction of counterexamples.

~

Theorem 2.5.1: Neither ﬁ nor G is closed under union, dot (con-

catenation), intersection, complementation or star.
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3. APPLICATIONS TO DEFINITE AND ULTIMATE-DEFINITE AUTOMATA

*
Events which can be expressed in the form R=P+ X Q (P and
Q finite) are called definite events, and have been investigated by

several authors [1, 8, 15]. If Q = ® R=7P is initial definite; if

*
P=¢g and Q# ¢, R=2Q 1is non-initial definite; and if P # ¢ # Q,

R is composite definite. Each finite event is initial definite.

Paz and Peleg [14] generalized the notion of non-initial definite
events by allowing Q to be an infinite set, calling the resulting class

of events ultimate-definite (u.d.).

In this chapter we investigate those definite and ultimate-definite
events which are GREs. The chapter proceeds as follows. Preliminary
material is presented in the first section, and in Section 3.2 the re-
lationships among general repetitiveness, strong connectedness, syn-
chronizability, and synchronizability to the start state are explored
for definite and ultimate-definite automata. These results, most of
which are for u.d. automata, are the main results of the chapter. The
next section deals with structure properties of u.d. events and provides
short cuts for constructing canonical representations of the union and
intersection of u.d. events. Section 3.4 discusses closure properties
of certain classes of events.

3.1. Basic Properties of Definite and Ultimate-Definite Events and
Automata

This section contains some definitions and basic results con-
cerning definite and u.d. events and their automata. All results except
Theorem 3.1.1 are taken from Paz and Peleg [14] and Brzozowski [1]; they
are listed as properties and no proofs are given here.

The class of u.d. events is denoted by U.D.

Property 1. P € U.D. iff P = E*P.

P and Q are u.d., them P +Q and PN Q
.d.
Property 3. If P 1is u.d. and Q 1is any event, then PQ is
u.d.
Property 4. If P is u.d., then P*

Property 2. If

are

c

A + P.
s iff A€ P.

2]

Property 5. 1If is u.d., then P
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*
Definition 3.1.1: If P is u.d., then a representation P = £ Q of

P is canonical iff no tape in Q is a proper suffix of a tape in Q.

If P is u.d., define the following subsets of P, where

P={a) p,=pn e =pn gt kdo Dt L 5= 0,152,

0 j+1

Property 6. An ultimate-definite event P has a unique canonical
representation, denoted by P = Z?Pt, where Pt = 5 P..

The expression 2*(0+11), where T = {0,1}, ;2 in canonical form,
but 2*(0+10) is not since 0 1is a proper suffix of 10. The canonical
representation of 2*(0+10) is 2*0.

Definition 3.1.2: The set of non-null suffixes of a tape y will be

denoted by Sy’
The following property will be used extensively in this chapter.

Property 7. Llet P be u.d. with canonical representation

* ¢ * t
P=3XYP . If x€%, then D (P) =P+ U D (P) and
X wE w

t
PNl U D (P = @. X
[wes ¢ )] ¢
X
The preceding properties apply to the general class of u.d. events,
which includes both regular and non-regular events. Only regular u.d.

events will be considered hereafter.

*
Property 8. If P =1 Pt, then P 1is regular iff Pt is reg-

ular.

Definition 3.1.3: An automaton A(R) = (QA,M,SO,F) is ultimate-definite
iff R is u.d. A(R) 1is definite iff R 1is definite.

Property 9. A reduced f.a. A = (QA,M,sO,F) is u.d. iff all
accepted tapes x with length 4(x) < lQAl (lQAl - 1) 1lead to F from
any state,

Every definite event R =P + Z*Q (i.e., P and Q are finite
events) has @ unique canonical representation obtained as follows (1]:

(1) Remove from P all tapes having suffixes in Q.

(2) Remove from Q all tapes having proper suffixes in Q.

(3) If x€ P and Z?x < Z;Q, place x in Q and remove from

Q all tapes having x as a proper suffix.

(4) Delete any redundant listing of tapes in P and Q.
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Brzozowski [1] also assumed that the tapes in P and Q were ordered
in their listing, but this is not an important restriction and we will
not require it here.

The above procedure also yields a unique canonical representation
if P or Q or both are infinite regular events. Furthermore, if
R=P+ ifq is a canonical representation of R, then E?Q is in the
canonical form for ultimate-definite events. We will consider all events
P + Z?Q, where P # ¢, to be regular and in canonical form unless other-

wise stated, although no special notation will be used.

%
Property 10. If R =P + £ Q 1is definite and in canonical form,
*
then PN T Q = ¢.

* *
Property 11. If y€ £ and R=P + T Q is definite, the
derivative Dy(R) is definite.

The following theorem is the only new result included in this

section.

Theorem 3.1.1: If P 1is a (possible non-regular) event, themn P is
*
u.d. iff for each x €y , P& Dx(P)'

Proof: The forward implication is clear from Property 7. Suppose
PSD (P) for each x € F . If z€P then z €D (P) for each

x € . Hence for each x € Z? xz € P, or f*z € P. This holds for
every z € P; hence Z?P S P. Since A€ zf, PS ErP, and so P = Z?P.
By Property 1 P 1is u.d.

Q.E.D.

3.2. Definite and Ultimate-Definite GRMs

Although strongly connected automata constitute a proper subclass
of the GRMs, for definite and u.d. automata these classes are actually
the same. This follows from the presence of an ultimate-definite sub-
set in the accepted event, and the following theorem proves this more

general fact.

*
Theorem 3.2.1: If R=P + L Q where P and Q are arbitrary reg-
ular events and Q ¥ ¢, then A(R) 1is a GRM iff it is strongly con-

nected.
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Proof: Let* A(R) = (QA’M’SO’F) be a GRM and suppose s € QA°* For

some x € ¥ , M(so,x) = s, and for any y € Q we have xy € T Q; hence
M(so,xy) € F and thus M(s,y) € F. So there is a path from s to F,
and from each state in F to s

0
to every state in Q). Hence R(s) = QA for each s € QA’ and A(R)

since A(R) 1is a GRM, and from Sy
is strongly connected.

The converse is trivial.

Q.E.D.

Thus the above theorem applies to all definite and ultimate-defi-
nite events, and shows that no aytomaton accepting such an event is a
Type I1 GRM.

The next result is a specialization of Theorem 2.3.1 to the u.d.

case.

*

Theorem 3.2.2: If A(P) = (Q,M,s,,F) and P = ¢ PY is u.d., then
*

A(P) 1is a GRM iff for each y € P, there is a tape x € ¥ such that

for each suffix w # A of yx, Dw(Pt) = ¢.

*
Proof: If A(P) is a GRM then for each y € P there is a tape x € T

such that D_(P) = P by Theorem 2.3.1. But D _(P) =P+ U D (P
yx yx w€Syx w
by Property 7, and P N U Dw(Pt) = %, Hence Dw(Pt) = ¢ for each

wES
w €S yx
yX

Conversely, for y € P let x be such that Dw(Pt) = ¢ for each

suffix w# A of yx; that is, Gg Dw(Pt) = ¢. By Property 7
w

yx

t
D P) =P+ U D ((P); hence D P) = P and by Theorem 2.3.1 A(P
(P 3 eh; o ® y ®)

is a GRM. yx
Q.E.D.

Synchronization was defined in Chapter 2, where it was shown
that all Type II GRMs are synchronizable. Among the strongly connected
machines (i.e., Type I GRMs) some are synchronizable and some are not.
For example, machines whose state sets are permuted by every input
symbol, that is, M(QA,G) = QA for each 0 € L, are not synchronizable.
However, all u.d. machines are synchronizable, as the next theorem
shows, and this property is important in characterizing u.d. GRMs. The

proof uses the following result of Moore [12].
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Lemma 3.2.1: Let A = (QA’M’SO’F) be a reduced f.a. Two distinct
states of A can be distinguished by a tape x of length < IQA| - 1.

Theorem 3.2.3: All ultimate-definite automata are synchronizable.

Proof: We prove by contraposition, assuming A(P) 1is not synchro-
. . s . t
nizable to obtain a contradiction in the construction of P . Assume

A(P) has n states.

By Theorem 2.4.1 there are two states $1°8, € Q, which cannot
*
be merged. Let X)X, € £ Dbe tapes for which M(so,xl) =5, and

M(so,xz) =5, There is a tape =z of length < n-1 which distin-

1
guishes s, and S, 80 that M(sl,zl) = M(so,xlzl) €F or M(SZ’ZI)

= M(so,xzzl) € F but not both. That is, for i, = 1 or 2 but not

1
. . t
both, M(si ,zl) M(so,xi zl) € F. Hence x, 2, has a suffix in P .
1 1 1
But no suffix of z, is in Pt, for then M(Sl’zl) € F and
M(sz,zl) € F contrary to the selection of z)- Thus for some non-null

suffix X, of x, ,x} € Pt.
1 1M

M(s ,x} ) and M(s ,x} ) are distinct since s and s can-
1 i 2 i 1 2

not be merged. Let =z, be a tape of length < n-1 which distin-

2

. 1 1 1
guishes them. Then M(sl,xilzz) M(SO’xlinZZ) €EF or M(sz,xilzz)
= M(s,.,x x% z,) € F but not both. Denote the one in F by

0’72 i, 2
1 1 1

M(s, ,X, z2) = M(so,x, ' 22). Then x, x z, € P and, as before,

2 M1 2 1 21
for some non-null suffix x? of N x? x} z_ € Pt.

i, i, iy i, 2

Proceeding in this manner we obtain a list of tapes in Pt as

follows:
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X, 2
1 1
2 1
xizxilz2
b2l
xd o
ij 12 il 3
j+1 ] 2 1
X% X, X, X, 2z
i41 1 1,71, 3+l

Since each z, has length < n-1, for some integers m,n such that

m>n, z =z . But this means x? "'x? x} z € pt and
m n i i, i, m
n 2 71
m n 2 1 t
X, ***'x, --+X, X, 2z € P, which is impossible since the former is a
i i i, m

proper suffix of the latter.

We conclude that A(P) 1is synchronizable.

Q.E.D.

Automata which are synchronizable cannot necessarily be syn-
chronized to every state. For example, synchronizable automata with a
dead state can be synchronized only to the dead state, as is the case
with Type II GRMs. If an automaton A 1is synchronizable to a state
s then it is synchronizable to any state in R(s), for if x syn-
chronizes A to s and M(s,y) = t, then xy synchronizes A to t.
Of particular interest is the case where A can be synchronized to the
start state 8g» OT restarted; this is a useful property of many
practical machines. Such machines can be synchronized to any state.

Ultimate-definite GRMs can be described in terms of this property.

Theorem 3.2.4: Let A(P) = (QA,M,SO,F) be u.d. Then A(P) is

strongly connected iff it is synchronizable to so.
Proof: All u.d. automata are synchronizable; hence if A(P) 1is strong-

ly connected it is synchronizable to 0

s € QA' Conversely, if A(P) 1is synchronizable to 5o then 5o € R(s)

for each s € Q> and hence all states are accessible from any state

since So € R(s) for each
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s €Q,.
Q.E.D.
We recall from Section 2.1 that a repetitive machine (RM) is a
GRM for which there is at least one tape which causes a transition from
every final state to the start state. The restartability property of

u.d. GRMs leads to the following result.

Theorem 3.2.5: Let A = (QA,M,SO,F) be u.d. Then A 1is a GRM iff

it is an RM.

Proof: By Theorems 3.2.1 and 3.2.4, if A 1is a GRM then it is re-
startable; suppose x restarts it. Then M(QA,x) =s and in particu-

lar M(F,x) = s

0 Hence A is an RM. °
Q.E.D.

The above proof actually indicates a stronger result, namely
that any strongly connected synchronizable automaton is an RM.

Cutlip [ 6] has characterized the tapes which synchronize an
ultimate-definite automaton by proving the following: If P is a
regular u.d. event, then the tape x synchronizes A(P) iff x is
not a prefix of a proper suffix of any tape in Pt. This result, along
with the next theorem, characterizes the tapes which synchronize A(P)

to the start state.

Theorem 3.2.6: Let x synchronize the u.d. automaton A(P)

*
= (QA,M,SO,F), where P = Pt. Then x restarts A(P) iff no suffix
of x of length > 0 1is a prefix of any tape in Pt.

Proof: If x restarts A(P) then Dx(P) = P since M(so,x) =8,

But D (P) =P+ U D (PY) and P N l:u D (PY)] = ¢; hence D (P%) = ¢
X w w w
WGSx w€Sx

for each w € Sx.' That is, no tape in Pt begins with a suffix w # A

of x.

Conversely, if no suffix w # A of x 1is a prefix of any tape
in P then Dw(Pt) = ¢ for each suffix w# A of x, or

U D (P") =% Hence D (P) =P+ U D (P°) =P and so M(s.,x) is
w X w 0
wESx wESx

indistinguishable from So° But since A(P) 1is reduced, M(so,x) =8,

Since x synchronizes A(P), it synchronizes A(P) to S
Q.E.D.
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We come now to some results which relate strongly connected u.d.

machines to the canonical representation of events.

Theorem 3.2.7: If A(P) = (QA’M’SO’F) is a strongly connected u.d.

automaton over the alphabet ¥, then there is a non-empty subset B & I

such that no tape in Pt begins with a symbol in B.

Proof: 1If every symbol in I 1is a prefix of a tape in P® then for
each 0 € g, Dc(Pt) # ¢. Then for each y € P and x € E?, there is
at least one non-null suffix w of yx such that Dw(Pt) # ¢. By
Theorem 3.2.2 A(P) 1is not a GRM and hence not strongly connected.
Q.E.D.

For the case of a two-symbol alphabet, if A(P) 1is strongly
connected then every tape in Pt begins with the same symbol. Hence if
= {0,1}, the machine for P = ﬁ*(1+10) is strongly connected, but the
machine for z*(00+10) is not.

The converse of Theorem 3.2.7 is not true for u.d. events in
general, as shown by the machine of Figure 3.2.1 taken from Paz and
Peleg [14]. This machine is not strongly connected, although every
tape in Pt begins with 1. However, if Pt is finite the converse

can be proved.

* t
Figure 3.2.1. Machine accepting the event P = T P,
*

where ¥ = {0,1} and P% = 1(00) 1.

*
If RS T is a finite event, let 4(R) denote the maximal

length of tapes in R. That is, 4(R) = max {4(x): x € R}.

Theorem 3.2.8: Let A(P) = (QA’M’SO’F) be u.d. over the alphabet E.
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t
1f P is finite, then A(P) is strongly connected iff there is a non-
t
empty subset B & ¥ such that no tape in P  begins with a symbol in
B.

Proof: Only the reverse implication must be proved. Suppose no tape in
Pt begins with a symbol in B, and let L(Pt) = k. For each y € P we
will find a tape x € 2? such that for each w € Syx’ Dw(Pt) = ¢, and
the proof will be complete by Theorem 3.2.2. Let x € BK. For each

of x (J=1,...,k, D (Pt) = ¢ since no tape in
K+

suffix jxk+1

*
Pt begins with the first symbol of Then for any tape y € T,

R+
Dw(Pt) = ¢ for each non-null suffix w of yx since no tape in Pt .
has length exceeding 4(x) = k. Hence for any y € P, any tape x € B
has the desired property. By Theorem 3.2.2 A(P) is a GRM and hence
strongly connected.

Q.E.D.

The class of u.d. events P = E*Pt where Pt is finite is

exactly the class of non-initial definite events, which is a proper sub-
class of both the u.d. events and the definite events; in fact it is the
intersection of the two classes.

The next theorem concludes this section.

*
Theorem 3.2.9: Let R =P + £ Q where P 1is a finite event and R 1is

in canonical form. If A(R) is strongly connected then every tape in

P is a proper suffix of a tape in Q.

Proof: Suppose A(R) = (QA,M,SO,F) is strongly connected and let
y € P. Then there is a return tape x such that M(so,yx) =5,
Hence for any non-negative integer m, (yx)m y € R. Choose an integer
n such that L[(yx)ny] >4(P). Then (yx)ny € R and (yx)ny ¢ P, so
(yx)ny € g*Q. Hence (yx)ny has a suffix in Q. Since y € P, no
suffix of y is in Q because R 1is canonical. Then (yx)ny = zZw
where 1z € Z? and w € Q, and since w 1is not a suffix of y, y is
a proper suffix of w € Q.
Q.E.D.
The above theorem applies in particular to composite definite

events, and shows that not all such events yield strongly connected
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*
machines. For example let R =1+ 0.

3.3. Further Structure Properties of Ultimate-Definite Events

Suppose P = Z*Pt and Q = E*Qt are ultimate-definite events.
By Property 2 the union and intersection of P and Q are ultimate-
definite. If R = P+Q = 2*Rt and T=PNQ-= Z?Tt, then R and T'
can be found by applying the construction procedure of Property 6. How-
ever, the task could be simplified if Rt and Tt could be determined
from Pt and Qt only. This problem is the primary concern of the
present section.

The first result completely characterizes Rt in terms of Pt
and Qt, where R =P + Q.

The following property is an immediate consequence of Definition

3.1.1 and Property 6, but is listed for ease of reference.

*
Property 12. If P = T W is u.d. with canonical representation

*
P =3P, then P' < W.

£RE = £ + Q% = £ @ +qQ%), then

It follows that if R
rR" < Pt + Q"

Theorem 3.3.1: Let P and Q by u.d. and R

=P + Q, with canonical
* t * t * t
representations R=TL R , P =L P ,and Q=L Q. If z is a tape,
then 2z € Rt iff either
t
(1) =z ¢ Pt and no proper suffix of z 1is in Q , or

(2) =z ¢ Qt and no proper suffix of 2z 1is in Pt.
Proof: We first prove the implication to the left.

Suppose z € Pt and no proper suffix of z 1is in Qt. Note
that z € R since Pt S R, and hence either 2z € Rt or a proper suffix
of z 1is in Rt. Since z € Pt no proper suffix of 2z 1is in Pt,
and hence none is in Pt+Qt. But Rt < Pt + Qt, so z has no proper

t
suffix in Rt. Hence z € R .

If =z € Qt and no proper suffix of z 1is in Pt, a similar
argument applies.
The converse is a statement of the form A = [(B and C) or (D

and E)], where A,...,E correspond to propositions as follows:
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z € Rt

A

B z € p*

c no proper suffix of 2z is in Qt
D z € Qt

E no proper suffix of z 1is in Pt.

It can be shown that the following logical statement is valid, where
".A" means "not A.'

{{(~B and ~D) = ~A] and [~C = ~A] and [~E = -A]} = {A=[(B and C) or
(D and E)]}.

To complete the proof of the theorem we will prove the first three
implications of the above statement.

[(~B and ~D) = .A]): Suppose z ¢ P' and : ¢ Qt. The result z ¢ RE

is immediate since Rt < Pt + Qt.

[(~c = ~A): Suppose a proper suffix w of 2z is in Qt. Then w € Q
and hence w € R, so either w € Rt or a proper suffix of w is in

t
R. In either case a proper suffix of z would be in Rt, so that
t
z ¢ R .

[-E = .A]: The preceding argument applies with P* and P substituted
for Qt and Q, respectively.
Q.E.D.

From this result the procedure for constructing Rt from Pt
and Qt, where R = P + Q, becomes clear. Beginning with the shortest
tapes, place in Rt all tapes in Pt + Qt which do not have proper
suffixes already in Rt. This procedure is in general more efficient
than constructing Rt from R. To express the procedure compactly let
R., P  and q%,
respectively; then

and QE represent the tapes of length 1 in Rt, P

t _ ot t
Rp=htq
t t t t t
R2 P2 + Q2 - (ZQl + ZPl)
£t i -k, _t t
RE=pF +qb - U [ %@t + 5]
J h| h| k=1 o k k
for j = 2,3,4,..., and Rt = U Rt.

i=1
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By Property 12, Rt is contained in Pt + Qt. The conditions for
equality follow from Theorem 3.3.1.

Corollary 3.3.1: Let P and Q be u.d. and R =P + Q. Then

t t t
R =P +Q iff no tape in Pt has a proper suffix in Qt and no

tape in Qt has a proper suffix in Pt.

We now turn to the problem of determining the canonical repre-

sentation of the intersection of two u.d. events.

Theorem 3.3.2: Let P and Q be u.d. and T =P N Q, with canonical

representations T = E*Tt, P = Z*Pt, and Q = z?Qt. If z is a tape,
then 2z € Tt iff either

(1) z€P" and a suffix of z is in Q°, or

(2) z €Q" and a suffix of z is in PC.

Proof: We first prove the implication to the left.

Suppose z € Pt and 2z = wx, where x € Qt and 4(w) 2 0.
Then z € P, and z € Q since a suffix x of z 1is in Qt. Hence
z € PNQ=T. If z has a proper suffix u in T then u € P, and
hence either u € Pt or a proper suffix of u 1is in Pt. In either
case z would have a proper suffix in Pt, which is impossible since
z € Pt. Hence z has no proper suffix in T and so z € Tt.

If z € Qt and a suffix of =z 1is in Pt, a similar argument
applies.

As in Theorem 3.3.1, the converse is a statement of the form
A= [(B and C) or (D and E)], where A,...,E correspond to propositions

as follows:

A z € Tt
t
B z €EP
c a suffix of z is in Q"
D z € Qt
E a suffix of z 1is in PC.

We repeat the procedure used in the proof of Theorem 3.3.1 to
complete this proof.
[(~B and ~D) = ~A]: Suppose z ¢ P~ and z ¢ Qt. Either z ¢ T or
z €ET. If z & T then clearly 2z ¢ Tt, so assume z € T =P N Q.

t
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Then 2z has proper suffixes x in Pt and v in Qt, and hence

z = wx = uv for some non-null tapes w and wu. Thus either x 1is a
suffix of v or v 1is a suffix of x; say v = yx for some (possibly
null) tape y. Since x € Pt, v € P. But v € Qt SQ,so veEPNQ-=T.

Hence 2z has a proper suffix v in T, implying z ¢ T,

[~C = ~A]: 1f 2z has no suffix in Qt then z ¢ Q; hence z ¢ T and
so z £ T'.

(~E = ~A]: If 2z has no suffix in Pt the preceding argument applies.
Q.E.D.
This theorem yields a procedure for constructing Tt from Pt
and Qt when T = P N Q. Beginning with the shortest tapes in Pt and
Qt, place in Rt each tape in Pt that has a (not necessarily proper)
suffix in Qt and each tape in Qt that has a suffix in Pt. Letting
TE, P;, and Qz represent the tapes of length i in Tt, Pt, and Qt,

respectively, we can write

nQ'l‘

"
la°)

nqy + Py N (M1 + ;N [52)]

wWe N

n Qg + PN [zzqi + m;] + Q; n [zzpi + ngj

(a4
t
(a]
(ad

' -1 . -1y
T, =P, NQq, +P, N[U 2ijli]+Qt.:ﬂ[U zjkP{iJ
3} ket T kel

- -]
t
for j = 2,3,4,... Then Tt = UrT..

=1
Corollary 3.3.2: Let P and Q be u.d. and T =P N Q. Then

Tt < 4 Q"
t
Corollary 3.3.3: Let P and Q be u.d. and T =PN Q. Then T

=p" +q" iff " =q".

Proof: Suppose Tt = Pt + Qt and let y € Pt. Then vy € Tt, and by
t
Theorem 3.3.2 y has a suffix x in Q ; hence y = wx for some

* L
w € £ . But Qt < Tt, so x € Tt. Since y has no proper suffix in
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t
T,w=A and y = x. Thus y € Qt, proving Pt ¢ Qt. Similarly,

t
Q < Pt, and so Pt Qt.
1f Pt = Qt then P =Q and hence T=PN Q=P =Q. But

i*Pt and Z*Tt are both canonical representations of the same event,
so P' =T". similarly, Q" = T%, and hence T% = B% + qF.
Q.E.D.
For completeness we consider the complement and star of u.d.
events. No results were obtained for the concatenation of u.d. events.
If P is u.d, and R = P*, R is u.d. only in the trivial case
R = Z*. For, A € P* for any event P and by Property 5, R = 2* iff
A € R. The canonical representation f*Rt of R 1is given by Rt = {A}.

Paz and Peleg [14] proved the following result.

* *
Property 13. If P is u.d. and T # P # ¢, then £ - P is

not u.d.

*
From this property it follows that the complement £ - P of a
*
u.d. event P is u.d., iff P=% or P = ¢.

3.4. Closure Properties of Certain Classes of Events

The class of general repetitive events has been denoted by G.
In addition, let N.I.D., U.D. and DEF denote the classes of non-initial
definite, ultimate-definite, and definite events, respectively. The
classes N.I.D. N G, U.D. N G, and DEF N G will be investigated for
clesure under the standard event operations.

Recall that a non-initial definite event P 1is an event that can
be written P = Z?Q where Q 1is finite. Thus N.I.D. is a proper sub-

class of U.D., and is also a proper subclass of DEF.

Theorem 3.4.1: N.I.D. N G is not clecsed under union, dot (concatena-

tion), intersection, complementation or star.
Proof: We provide a counterexample for each case. g = {0,1}.

* * *
Union: Let P = Y 010 and Q = £ 11. Then P +Q = I (010+11). By
Theorem 3.2.8 P and Q are in G but P+ Q 1is not.

2 * * * %
(Z1(Z1l =% (1l 1). Construct-

* t t *
L R we see that R = 10 1,

*
Dot: Let P =X 1 and let R =P

ing the canonical representation R
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which is infinite; hence R ¢ N.I.D.

* *
Intersection: Let P = g (014+010) and Q = £ (10+101). Both events
are in & by Theorem 3.2.8 and both are in canonical form, with
Pt = 014010 and Qt = 10+101. Applying Theorem 3.3.2 we obtain

"

*
PN Q=2 (010+101), which by Theorem 3.2.8 is not in G.

* *
Complementation: Let P = T 1l1. The complement is y - P = Z*(10+01+00)
+ A+ 1+ 0, which is not in N.I.D.

Star: By Property 4, if P 1is u.d. then P* = A+ P. This also applies
to the non-initial definite events. Let P = 2?1. Then P* = A+ ﬁ*l,
which is not in N.I.D.

Q.E.D.

Theorem 3.4.2: U.D. N G is not closed under union, dot, intersection,

complementation or star.

Proof: The counterexamples of the preceding theorem apply here for
union, intersection, complementation and star.

To see that U.D. N 6 is not closed under concatenation, consider
the events P = Z?[OO(II)*I] and Q = £'1. Both events are u.d., as
is the event R =PQ. Q 1is in U.D. N G by Theorem 3.2.8. Construc-
tion of the machines for P and R shows that P 1is a GRE but R is

not.

Q.E.D.
Theorem 3.4.3: DEF N & is not closed under union, dot, intersection,
or star.
Proof:

Union, dot, intersection: The counterexamples of Theorem 3.4.1 apply.
Note that in the case of the dot, R 1is not in DEF because Rt is

infinite.

Star: Let P = 2?11. By Theorem 3.2.8 P € G. By Property 4,
P* = A + P, and construction of the machine for P* shows that P* is
not a GRE and hence not in 6.
Q.E.D.
The question of closure of DEF N G under complementation has
not been resolved. If P € DEF N &, then 2? -PEG by Theorem 2.5.1.
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Hence we must show only that E* - P € DEF. This seems to be a reason-
able conjecture.

The above results point up some rather disappointing features of
these classes of events. Theorem 3.2.1 shows that the classes
N.I.D. NG, U.D. N G and DEF N G consist of exactly those events in
N.I.D., U.D. and DEF, respectively, that yield strongly connected
machines. These results show, for example, that a machine that is
equivalent to two strongly connected definite machines operating in
parallel (accepting the union of the events accepted by each parallel
machine) is not necessarily strongly connected.

In Section 2.5, Theorem 2.5.1 was stated without proof. We now

restate the theorem and prove it.

Theorem 2.5.1: Neither R nor G is closed under union, dot, inter-

section, complementation or star.

Proof:
Union, intersection: The counterexamples of Theorem 3.4.1 apply for

both R and G.
Dot: The counterexample of Theorem 3.4.2 applies.

Complemeniation: Observe that, for any event P, if A(P) = (QA’M’SO’F)’
then A(Z - P) = (QA,M,SO,QA-F): That is, the machine for the comple-
ment of P 1is just the machine for P with final states labelled
differently. Let P = 1(111)*. A(P) 1is a Type 11 GRM as well as an
RM, and since the dead state is in QA - F, A(Z? - P) 1is neither in

A

ﬁ nor G.

Star: The counterexample of Theorem 3.4.3 applies.

Q.E.D.

We close this section with a result on the union of ultimate-

definite GREs.

Theorem 3.4.4: Let P,Q € UD. NG and let R=P +Q. Then R € &

. *
iff for eac y € R there is a tape x € £ such that for each non-

null suffix w of yx, Dw(Pt) €q and Dw(Qt) < p.

Proof: If R € &, then by Theorem 3.2.2 for each y € R there is a
*
tape x € £ such that D R) =R. But D (R) =D (P+Q
P yx( ) Q
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=P+ U Dw(Pt) +Q+ U Dw(Qt) =R. If z€ U Dw(Pt)
wES wES wES
yx yx

then x ¢ P (Property 7). But z € R, so z € Q. Hence U D (Pt)
wES
t yx
S Q, and similarly U D (Q) S P,
w
wES

*
Suppose that for each y € R there is a tape x € T such that
t t t
< o i =
for each w € Syx’ Dw(P ) Q and DW(Q ) P. That is, U DW(P ) Q

wES
yx
and U D (Q%) € P. This implies that D_(R) = R, since D _ (R)
wes ¥ yx yx
=D (P+Q =P+ U Dw(Pt) +q+ U Dw(Qt) =P +Q=R. By
yx wEs w€s
yx yx

Theorem 3.2.2 R 1is a GRE.
Q.E.D.
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4. ZEIGER'S CASCADE DECOMPOSITION OF AUTOMATA

Several authors have contributed methods of decomposing finite-
state machines into an interconnected network of "simpler' machines.
Major contributions have been made by Hartmanis and Stearns, Krohn and
Rhodes, and Zeiger. The decomposition theory of Hartmanis and Stearns
[7] involves partitions on the state set and uses the pair algebra
which they developed. Krohn and Rhodes [9, 10] use semigroup theory
to show that a finite-state machine can be realized as a cascade con-
nection of two-state machines with no non-trivial permutations and
permutation machines of a special type.

In 1965 Zeiger [16] presented a scheme for decomposing an auto-
maton into a cascade of permutation-reset (P-R) machines, and proved
the Krohn-Rhodes result by showing that a P-R machine can be decomposed
into a cascade of the two basic machines of Krohn and Rhodes. The 1965
paper contained some errors, and was subsequently revised and published
in 1967 [17]. This presentation also contained some important dis-
crepancies. A few corrections were published [18], not all of which
were correct, and F. Cutlip has suggested corrections for these and
the remaining known errors [4].

Some interesting questions arising from the Zeiger decomposition
theory are answered in this chapter. In the main these questions con-
cern relations between properties of a machine and the appearance of
resets and permutations in the corresponding Zeiger cascade. An

application to the decomposition of definite automata is presented.

4.1 The Corrected Decomposition Procedure

To establish notation and to make Chapter 4 self-contained, we
present in this section the corrected decomposition procedure of
Zeiger. Some of the notation of the previous chapters is changed in
order to be consistent with Zeiger's notation.

M, N, K, and L denote finite automata, or machines. The state
set of M is Q> and the input set is I . 1I* is the set of all

M M

finite sequences obtained by concatenating symbols from I including

M)
the null sequence A, and is the set of all input sequences available
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to M. If o€ Iy then 0O, 1is the transformation of Qy defined as

M
follows: if B & Q then GM(B) = M(B,0) = {s € QM: M(t,0) = s for
some t € B}, where M(‘*,:) 1is the state transition function of M.

The range of oy is written ran Oy . If o,T € IM’ then the compo-

M
I3 I : GT = = =
sition of oy and T, is O, (B) aM[M(B,-r),a] M(B,10) = (T9),(B),
and SM denotes the semigroup of transformations generated by elements
of IM under this composition operation.

If A 1is a set, EA denotes the identity map on A. A reset of
machine M is a map w that takes all states in Qy toa single
state; that is, for some s € QM and for all t € QM’ w(t) = s. The

extended semigroup §h is defined by §ﬁ = Sy UE. U {w: w is a

reset of M}. If w € §ﬁ is identity map on K B &S Qs we write
w(B) = B(id).

A cover C for machine M 1is a nonempty collection of nonempty
subsets of QM such that for each w € §M and R € C, w(R) 1is a
subset of an element of C. Observe that every state of QM is in
some cover element. Cover elements and state subsets will usually be
denoted by capital letters.

If C is a cover for M and N is a machine, then N tells

where M is in C means that (1) IN = IM and (2) there is a map
Zg of Qq onto C such that for each 0 € Iy and s € Q>
[

0 (2 (8)) & 2, (@ (8))

Let K,L, and N be machines. Then N € K= L 1is read '"N is
a series composition of K followed by L'" and means (1) Qy = QK X QL’

[ S X

IN IK’ and IL IK QK’ and (2) for each @ € IN and (p,r) € QN’
ON(p,r) = (OK(p),(d,p)L(r)). See Figure 4.1.1.

Figure 4.1.1. Illustration of N € K= L.
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If A is a collection of sets, then max A denotes the set of
all elements of A which are not contained in other elements of A.

A permutation-reset (P-R) machine L is a machine for which
each input o€ IL either resets L (OL(QL) is a single state) or
permutes the states of L (OL(QL) = QL)'

The strategy for decomposing machine M 1is as follows. First
obtain a nontrivial cover C for M and construct a P-R machine K
which tells where M 1is in C. Then refine the cover C by select-
ing certain elements of C and replacing them with certain smaller
subsets of Qy to obtain a refined cover C'. Construct a P-R machine
L so that N € K- L and N tells where M 1is in C. Continue this

process until a cover consisting only of singletons is reached.

Theorem 4.1.1 (Zeiger's Proposition 1) shows how the first cover
and P-R machine of a cascade decomposition of M are constructed;
Theorem 4.1.2 (Zeiger's Proposition 2) gives the induction step, show-
ing that successive refined covers and corresponding P-R machines can

be constructed to complete the cascade.

Theorem 4.1.1 (Zeiger): For each machine M there is a cover C, not

containing QM’ and a machine N for which (1) N tells where M is
in C, (2) for each O € IN’ ran GN is either QN or a singleton, and

(3) the permutations of QN are uniquely determined.

Proof: Let C = max ({w(QM): w € SM} - Q- Llet Q =C and 2z =E..
The transitions of N are defined as follows. Let O € IN = IM.

(1) 1f UM(QM) # Q> then OM(QM) S R' € C for some R'.For each
R € C let GN(R) = R'. If more than one R' has this
property, choose any one. Note that GN resets N to
state R' € Q-

(2) Suppose GM(QM) = QM; that is, GM permutes QM' If RE€C
then GM(R) ST flc. Since GM is a permutation it has an
inverse; thus OM (T) contains R. But this cannot be a
proper containment since R € C and C 1is max of a col-
lection of subsets. Hence cél(T) = R, and OM(R) =T € C,

showing that o, maps elements of C onto elements of C.

M
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Since Oy is invertible on QM’ it is invertible on sub-
sets of QM’ and in particular on C. Hence GM is 1-1 on
C, and so permutes C.
For R € C let GN(R) = R' if and only if GM(R) = R'.
Since OM permutes C, ON permutes C, and so permutes
the states of N.
It is clear that N is a P-R machine and the permutations of
QN are uniquely determined. Since ZN is identity on C, the con-
dition "N tells where M is in C" is satisfied.

Q.E.D.

Corollary 4.1.1 (Zeiger): The group of permutations in SN is a

homomorphic image of a subgroup of SM.

. i [ = . = i
Proof: Define GM SM by GM {xM € SM. xM(QM) QM} and define

[ = . = i =
GN SN by GN {xN € SN' xN(QN) QN} or, equivalently, GN

{xN € Sy xN(C) = C}. It is easily verified that Gy and G are

groups. The map f: GM - S defined by f(xM) = Xq for Xy € GM is

the desired homomorphism. MNote that f 1is in general many-to-one
since two input sequences to M may permute QM differently but have
the same effect on C.
Q.E.D.
Figure 4.1.2 shows the result of applying Theorem 4.1.1 to a
machine M. Note that the second box, representing ''what is left'" of

M, is unspecified.

Figure 4.1.2. The first step in decomposing M.
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The following lemmas are used in the proof of Theorem 4.1.2.

Definition 4.1.1: Let C be a cover for M. Elements P and R of

C aze said to be similar if there are transformations Xy and Yu
in SM such that xM(P) = R and yM(R) = P. An element R of C is
initial in C if it is not the image under transformations from SM
of any element of C except those similar to it.

Similarity is an equivalence relation on C. If R € C 1is in-
itial, then so is every element in the similarity class of R. Such

classes are called initial similarity classes.

Lemma 4.1.1: If C 1is a cover for M then C has an initial

similarity class among the elements of C of maximal cardinality.

Proof: Let D, be a similarity class whose elements are of maximal

1
cardinality. TIf Dl is not initial, then another similarity class
D2 # D1 has elements with images in D1 under appropriate trans-
formations from éM' 1f D2 is not initial, select D3 in a similar

fashion, and so on. Since the elements of Di are not similar to any
elements in Dj for i # j, no Di can appear twice in the sequence.
Since there are a finite number of similarity classes in C, the
sequence must terminate in an initial similarity class.

Q.E.D.
Lemma 4.1.2: Let C be a cover for M having initial similarity

class D. If P €D and R € D then there are transformations vR

P
and vg in § with the propertles (1D Vo (P) =R and v (R)
and (2) VR VP(R) = R(id) and v; VP(P) = P(1d)

. . I3 . ~. = d =
Proof: By similarity, for some X0 Yy € SM, xM(P) R an yM(R)
Thus nyM(P)m= P and xMyM(R) = R. nThere are integers m,n for
which (nyM) (P) = Zild) and (xMyM) (R)
= P(id) and (xMyM) (R) = R(id). Let v

R(id), and hence (yMg )
)mn 1

|

= x._ and vP = (ny

M R M

these clearly have the desired properties.
Q.E.D.

We now can present Zeiger's Proposition 2. See Figure 4.1.3.
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Figure 4.1.3. The induction step in decomposing M.

Theorem 4.1.2 (Zeiger): If K and M are machines, C is a cover

for M not consisting entirely of singleton sets, and K tells where
M is in C, then there are machines N and L and a cover C' for
M for which:
(1) Cc' 1is a proper refinement of C, i.e., if R € C' then R
is contained in an element of C, and for some T € C, T is
not a subset of any element of C'.
(2) N tells where M is in C'.
(3) NEK-~-L.
(4) For each (o,p) € IL’ ran (O,p)L is either QL or a single-
ton.
(5) There is a subset B & QM for which there is a homomorphism
from the group of all permutations of B produced by state

transformations of M onto the group in S (It follows

L
that the group in SL is a homomorphic image of a subgroup

of SM.)

Proof: To construct C', choose an initial similarity class D among
the elements of C of maximal cardinality. C' is obtained from C
by replacing each P € D with a collection of subsets of P to be
specified. Denoting that collection R(P) (the replacement set for
P), define R(P) = max {w(T): w G'EM, T € C, and w(T) is a proper
subset of P}. Then C' = (c-D) U [ U R(P)]. Clearly C' is a proper
refinement of C (if C consists PGDonly of singletons the cascade

in complete and C' is empty).
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Machines N and L are constructed as follows. Choose a fixed

element U of D, which will be called the reference element of D.

For each P € D select transformations vﬂ and Vg according to

Lemma 4.1.2. (Note that if A € R(U) and P € D, then VE(A) € R(P);
for if A 1is properly contained in A' € R(P) then vg(A') =2 A since
vg is 1-1, implying that A was not max among the subsets from which
R(U) was chosen.) Let QL = {R €C': RC U}; that is, to each element
of R(U) we correspond a state of Q- let I =1 X QK’ QN = QK X QL

L K

= = '
and IN IK IM’ Let ZN map QN onto C' so that for each

(p,r) € Q>
(D If ()
(2) 1f 2, (p)

r denotes both a state of L and an element of C'.

P ¢ D, then ZN(p,r) =2 (p).
P € D, then ZN(p,r) = VU(r), where the symbol

n

One further lemma is needed before the transitions of N can be

specified.

Lemma (Cutlip): Let P € C and S € D. 1If OM(P) is properly con-

tained in S, there is an element A in R(U) such that ngM(P) S A.

Proof: If OM(P) S S then vch(P) S U since vU maps S one-to-

one onto U. Hence ngM(P) is among the Subsetssof U whose max is
taken to get R(U).
Q.E.D.

To specify the transitions of N, for each ¢ € IN and
(p,r) € QN’ define ON(p,r) = (s,t) by:

() s =0.(m.

(2) 1f ZK(S) =S €CNC', let t = "don't care".

(3) If ZK(p) =P€CNC' and ZK(S) =8 €D, choose t so

U
S t.
that chM(P) t

(4) 1If ZK(p) =P €D and ZK(s) = 8§ € D, choose t so that

U P
(¢ S t.
VS MvU(r) t

Again, the symbols r and t refer both to states of L and
corresponding elements of C' in R(U). 1In step 2, the next state
of L can be arbitrarily chosen. Zeiger chose to let t = r, which

means OL performs the identity permutation on states of L. The
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"don't care' specification given here is preferred so that when the
terms "permutation' and '"reset' are used, only the nontrivial cases in
steps 3 and 4 are understood. 1In step 3, OL resets L to state t,

and such a state transition specification is allowable in view of the

preceding lemma. In step 4, when ngMvz(r) = t a permutation of

QL is produced by O. 1In some situations cM is not a one-to-one
map from P to S, and vgonE(r) is properly contained in t; in
this case O resets L to state t, and this is also an allowable
transition in view of the lemma.

These transition specifications for N will be referred to fre-
quently in this chapter as Rules 1, 2, 3, and 4.

This completes the construction of N and L. Conclusions 1,
3 and 4 of the theorem are verified directly. The proofs of conclusions
2 and 5 do not significantly aid understanding of the construction;
hence the former is included in the appendix and the latter is omitted.

Q.E.D.

The machine L 1is called a component machine.

Examples of this decomposition are given by Cutlip in [4].

The next two sections contain the new results of this study.

4.2. Permutations, Resets, and Zeiger Covers

Let M be a machine, and let C Cn be a sequence of covers

170
obtained in a cascade decomposition of M as described in the pre-
vious section, where Cn consists of singletons. This sequence is not
unique in general, since each cover may have more than one initial
similarity class available for refinement. Each Ci is called a

Zeiger cover, and C Cn is called a sequence of Zeiger covers

ERRRE
for M. The term Zeiger cover for M refers to an arbitrary cover

from any sequence of Zeiger covers for M.

In this section the properties of Zeiger covers for M and sub-
sets of QM which have special significance in a cascade decomposition
of M are investigated. Necessary and sufficient conditions for an
input to cause resets or identity permutations of the component
machines are obtained.

Throughout this section the following situation is assumed.
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Cl,...,Cn is a sequence of Zeiger covers for M, with initial simi-
larity classes Dl""’Dn-l and corresponding component machines
Ll""’Ln' The cascade connection of Ll""’Ln is a Zeiger cascade

for M. Ki or Ni is the cascade of L "Li' For economy of

10"
space these conditions will not be written into every lemma and theorem.
The first result shows the structure of initial similarity

classes.

Theorem 4.2.1: Let C = {Sl,...,Sm} be a Zeiger cover for M with
initial similarity class D = {Sl,...,Sk}, k < m, and reference element

S,. For each i < k let the replacement set for Si be R(Sl) =

1
{sil,siz,...,siri}.
Then r, =...=r, = r, and the labels §, can be assigned so
S 1 k S ij

=3 for each i < k and h < r.

1
and v (Sih) 1h

1 —
that Vg (Slh) = Sih Si

1

Proof: Let R(S;) = {s } be any labelling of R(S,)-

11’ 12,...,Slrl s
For each i < k select vS1 and v 1 according to Lemma 4.1.2.

S,
1 i S

To assign labels to R(Si) define Sij (SlJ) for j = 1,...,r1

S S, S, 1

1 _ 1 7i _

and note that Vg (Sij) = VS'VS (Slj) S1j . We must show that
i il S

55 € R(S,) for each j and that v ' maps R(S,) onto R(S).

51

S, is contained in some element T of R(Si)’ and T = w(S)

ij

for some w € §M and S € C by definition of R(S,). Now

S, s, 5, S, t S,
S..=v_. (5,.) Sv, (T) =v,w(). But v, wé€S , so v, ,w(S) is
15 s, i) 5, s, S, M S,

among the subsets of Qy Swhose max is taken to get R(Sl)' But

€ R(S,), so S = v 1(T) is required. Thus

$13 1 13 S

S. S
S.. =v_(s,.) Lty =T e RrGs)).
1 1j 1 S1 i
S.
S

To show that v 1: R(Sl) - R(Si) is onto, let T be any
1
S

Yy s

element of R(Si). Then for some h < r
i

€ R(Sl)'

1 1h
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S. S S

1 i
= - = = i
Thus T vslvsi(T) vsl(Slh) Sih’ and so T Sih since T € R(Si)'
Q.E.D.
It is not necessarily true that v j(S. ) =8, for every
Si ih jh
S.
i,j <k and h < r. However, vSJ can be selected to have this
S5, 8,85 i s, sj S s,
property. Let VS, = vs VS,' Then vs (Sih) S v ( ) = v (Slh)
i 171 i 1 1
S. S
= th, and it is easily verified that Vg ij(S ) =S8 (1d)
]

Zeiger shows that the permutations of the states of a component
machine are caused by permutations of subsets of states of the original
machine. The following results characterize these permuted state sub-

sets and show that some appear as elements in Zeiger covers.

Notation: Let Xy € §M and B & QM. If x = 0102...Gk € I; then
xM(B) = (Gk)M...(Ol)M(B) = M(B,x), where M(-,:) 1is the state transi-
tion function and M(B,x) = {s € QM: for some t € B, M(t,x) = s}.

Note that (cl)M i? applied fiFst to B. If i 1is a positive integer,
then xM(B) = M(B,xl), where x  is x concatenated i times. De-

fine xﬁ(B) = AM(B) = B(id), where A is the null tape.

*
1f Xy is a reset such that x ¢ IM, let x;(B) = XM(QM) for

i=1,2,....

*
Definition 4.2.1: Let x € Iy A subset B of Qy is called a

minimal x-permuted subset of Q_  if and only if xM(B) =B and
JY S

xM(A) # A for all proper subsets A of B.

If Xy is a permutation on QM (xM(QM) = QM) then the minimal

x-permuted subsets of QM are the orbits of the permutation.

*
Lemma 4.2.1: Suppose B & QM and x € IM' Then xM(B) =B if and

only if B is the union of minimal x-permuted subsets of QM'

Proof: 1If xM(B) =B and AB =ANB ¥# ¢, where A is a minimal x-
permuted subset of QM’ then xM(AB) S B. But xM(A) = A, so
xM(AB) S A, yielding xM(AB) SANB-= AB. Since A is finite and

Xy is one-to-one on A, xMQAB) = AB. Thus AB = A since A has no
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proper subsets permuted by Xy and A S B since A=A N B. That is,
any minimal x-permuted subset of Qy is either contained in B or
disjoint from B. Noting that every element of B is an element of
some minimal x-permuted subset, we conclude that B is the union of
such subsets.

Conversely, if B = BIU"'UBk where each Bi is a minimal x-
permuted subset, then xM(B) = xM(BfJ...UBk) = xM(Bl)U .Ux (Bk)
BIU’°'UBk

Q.E.D.

~ i
e 2.2 defi =
Definition 4.2.2: For each Xy € SM efine le xM(QM) for
i=1:,2,.... 1If § , =58, for some i, let S , be called S
x1i i+l x1 *x=

Lemma 4.2.2: For each Xy € §M there is an integer k such that

S =S =S . for all integers 20, and S , &S . for
< xk xk+_] g j xi xl-l

i < k.

Proof: Since Xy (Q ) < v ¥ (Q ) = [x (QM)] 1 1(QM)' Re-

peated application of X to QM yields a nested sequence of sub-

M
sets QM’ 2, K30 of QM. Let Sxk be the subset of lowest

index with the property Sxk = Sxk+l' Such a subset exists since QM

is finite. Then xM(Sxk) = xM(Sxk+1)’ or Sxk+1 = Sxk+2, and clearly

- 2 0. L < .
Sxk Sxk+j for all j 0. For i <k, Sxi is properly contained
in S |, because of the choice of k.
xi=-1
Q.E.D.
Lemma 4.2.3: For each Xy € §M, S o 1is the union of all the minimal
X

x-permuted subsets of QM'

Proof: Since xM(S °°) =85 .» S5, 1is the union of minimal x-permuted
X X X

subsets by Lemma 4.2.1. If B & QM is any minimal x-permuted subset

k k
. . = = [
and k is an integer such that Sxk wa, then B xM(B) xM(QM)

=S _. Hence every minimal x-permuted subset of Qy is contained in

®’ Q.E.D.
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We can now relate the subsets S)dm to the Zeiger covers for M.

The effect of Sx°° on component machiiies will be shown later.

Theorem 4.2.2: Let X, € §M' 1f xM(QM) # Q> there is a cover having

S as an element.
x°
Proof: 1If an is a singleton, then Sx@ € Cn. If not, Sxao is con-

tained in at least one cover element, namely Cl. Let Cu € {Cl,...,Cn}

be the cover of largest index having an element B containing Sx”°

Then B € D ; otherwise B € C .
u u+l i

For each positive integer i let x_(B) =B.,. Then S _ S B,

M i x*® i

since S S B. Hence B is contained in an element Ti of D ;

x® i u

otherwise Ti €cC , contrary to the choice of Cu

u+l

If Bi is properly contained in T then Bi is among the sub-

i
sets from which R(Ti) is chosen, and consequently S _ is a subset
X

of an element of R(Ti) since S _ = Bi' This implies § _ is con-
X X

tained in an element of Cu+1’ contrary to the choice of Cu' Hence
B. =T, €D for each i.
i i u
Since Du has a finite number of elements, there are integers

. m-k
k and m with m 2 k such that xM(Bm) Bk' Then Xy (Bk) Bm,

m-k+1
° Xy (Bk) xM(Bm) Bk' Let r be any integer such that
xM(QM) =5 _= Sx“’ and choose j such that (m-k+1)j 2 r. Then
(m-k+1) § _ _(m-ktD) c
Xy (QM) I and hence B, Xy (Bk) Sxm. But
S & B, for each i, so B, =8 and hence S €EcC.
x® i k xcp xco u

Q.E.D.
It is possible to construct a sequence Cl,...,Cn of Zeiger
covers for M without constructing the corresponding component

machines L "Ln' What information about the permutations and re-

1
sets in the component machines can be obtained from the covers? This

question is examined in the next few results.
Let Ki be the cascade of machines Ll""’Li' Recall that an

input to Li+ is a pair (p,0) where p € QK and 0 € I_. The

1 . M
symbol o is said to cause a permutation of L;+1 if for some p,
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(p,c)L (QL ) = QL . Observe that © might cause a permutation
i i+

i+l i+l 1
of Li+1 when Ki is in state p, but reset Li+1 when Ki is in a
state other than p. The phrase L, has permutations means that

i+l

some symbol ¢ € IM causes a permutation of Li+1°

In Theorem 4.1.2 the replacement set R(P) for an element P
of initial similarity class D was defined. We extend this to define

the replacement set for D as R(D) = U R(P).
PED
The next lemma follows directly from the procedure for construct-

ing a Zeiger cascade for M given in Theorem 4.1.2, but is presented

here because of its importance in the next several results.

Lemma 4.2.4: If B,B' € Di and GM(B) = B', then ¢ cause a permu-

tation of Li+1‘

Proof: Let Ki be the cascade of Ll""’Li' Since Ki tells where

M is in C,, there are states p and s of Q such that 2_ (p)
1 Ki K,

= B and ZK (s) = B'. Since B,B' € Di’ the state transitions of

Li+1 are deEermined by Rule 4 of Theorem 4.1.2. But oMis a one-to-
one map from B to B', so the input (p,0) to Li+1 permutes the
states of Li+1' That is, O causes & permutation of Li+1'

Q.E.D.

Lemma 4.2.5: If B € Di and xM(B) € Di for Xy € SM’ then every

prefix of x maps B onto an element of Di'

Proof: B and xM(B) are both in Di and hence similar. Let
Yy € SM be the transformation taking xM(B) to B; that is, yMgM(B)
= (xy)M(B) = B. Let w, be a prefix of x, so that x = WiV, and

1

= B'. ' -to-
let (wl)M(B) B B is an element of Ci since (wl)M is one-to

one and B is of maximal cardinality in Ci. Then (WZ)M(B') =
= = ! = = .
(WZ)M(WI)M(B) (wlwz)M(B) XM(B) and YM(WZ)M(B ) nyM(B) B
Thus B and B' are similar, implying B' € D, .
Q.E.D.

Theorem 4.2.3: Suppose Xy € SM. 1f Sx°° € Di then every symbol em-

bedded in x causes a permutation of Li+1'

*
. = o) ’ (e} .
Proof: Suppose x w,0w, where WY, € IM and € IM Let
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(wl)M(sxﬂ) B and (wlc)M(sx°) B'. Then OM(B) B', and B € Di

and B' € Di by Lemma 4.2.5. Hence O causes a permutation of Li+1
by Lemma 4.2.4.

Q.E.D.

Theorem 4.2.3 shows that the presence of the subsets § o IN
X

initial similarity classes produces permutations in the corresponding
component machines. The next theorem shows that non-singleton initial
similarity classes produce permutations in their component machines,

and that subsequent refinements of these classes give the same result.

First a lemma is required.

Lemma 4.2.6: Let Cu and Cr be covers from a sequence Cl""’Cn
of Zeiger covers for M, and let v > u. Let Cu = {Sl,...,Sm} and
= . < m. < = . .
D = {s,, ,sk}, kS m. For each i =k, let R(S)) [sil, ,sir}
i < dj<r . e = .
If Sij € D_for any i < k and j , then {Slj’ ’Skj} D,

Proof: It is sufficient to show that the elements of {Slj""’skj}
are similar, and hence when one element appears ig an initigl similar-
ity class, all do. Choose the transformations Vg and vS1 for

1 i

i £ k and assume the elements of R(Du) are labelled so that
S S
i 1
= . = d
vsl(Slj) Sij Then vsi(Sij) Slj’ and hence Slj an Sij are
similar. By transitivity of similarity, all elements in {Slj,...,Skj}

are similar.
Q.E.D.

Theorem 4.2.4: If Du is not a singleton, then Lu+1 has permuta-

tions, and if Dv contains an element of R(Du) for v > u then

L has permutations.

v+1
Proof: Let B,B' be distinct elements of Du. Since they are simi-
lar, xM(B) = B' for some Xy € §M. By Lemma 4.2.5 each prefix of x
maps B onto an element of Du, and hence each symbol embedded in x
maps an element of Du onto another, causing a permutation of Lu+1
by Lemma 4.2.4.

Lemma 4.2.6 shows that if Dv contains an element of R(Du)
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then it contains an element of R(B) for each B € Du' So if Du is

not a singleton, neither is Dv’ and Lv+ has permutations by the

argument above. '
Q.E.D.

A natural question concerns the conditions for obtaining a cas-

cade having no permutations. The next theorem answers this question,
and in the following section the events realized by such machines are

examined.

Theorem 4.2.5: A Zeiger cascade M has no permutations if and only

*
if S,.w 1S @ singleton for all x in {IM - A},

*
Proof: Suppose Sx“ is not a singleton for some x € {IM - A}, If
S o % QM then the first machine of the cascade has permutations, and
X

if s # QM then by Theorem 4.2.3 some component machine has permu-
X

tations, proving the forward implication by contraposition.

*
Suppose Sx°° is a singleton for all x € {IM - A}. Let

c ,Cn be a sequence of Zeiger covers for M with component

170"
machines Ll""’Ln’ and let Ni be the cascade of Ll""’Li for
each i < n. We prove by induction on the machines Nl,...,Nn that

the cascade for M has no permutations.

For each ¢ € IM’ S is a singleton, so no input symbol per-

om

mutes QM. Hence N1 = L1 is reset by every input.

Assume N, 1is a cascade of resets and "don't cares* and consider
1

transitions O (p,r) = (s,t) where ZN (p) =P €D, and Z_ (s) = S.
N, , i N
i+l i i
I1f S ¢ Di then O produces a "don't care" in Li+1' Suppose S € Di'
Then OM(P) S S. If the containment is proper, 0 produces a reset

in L Suppose OM(P) =8. Since P and S are similar there is

such that y,(S) = P. Then y @ (P) = (@y) (B

i+1°
a transformation Ym
= yM(S) = P; thus (Oy)M permutes P and P 1is the union of minimal

(Cy) -permuted subsets of QM. But is a singleton and

S [ -]
(oy)

< S(o )Q, so P 1is a singleton. Hence P could not appear in the
y

initial similarity class Di' This shows that Li+1’ and hence the

cascade Ni+1’ has no permutations, which proves the theorem.

Q.E.D.
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We finally turn to the special but important case in which the
symbol O permutes the whole state set. In this case the minimal O-
permuted subsets of Qy are the orbits of the permutation. It is
clear that o will cause a permutation of Li+1 whenever the state
of Ni corresponds to a Di element, say B, for ¢ maps B one-to-
one onto another Di element. This is so because for some j,
oJ(B) = B(id) and hence 0,(B) €D by Lemma 4.2.5. The following

results concern the conditions for © to produce only identity permu-

tations in the cascade.

Definition 4.2.3: If C 1is a Zeiger cover for M and OM € §M, then

gM permutes C means that, for each B € C, OM(B) = M(B,0) € C, and

the map on C so defined is one-to-one.

Clearly, EM

OM(B) = B, but OM

is identity on C means that for each B € C,

is not necessarily the identity permutation of the
state subset B.

Again, we let Cl""’cn be a sequence of Zeiger covers for M
with initial similarity classes D .,D

.»L .
n

and corresponding com-

1’ n-1

ponent machines Ll"'

Lemma 4.2.7: If OM is identity on Cu, o is identity on Ci for

M
each 1i < u.

Proof: It is sufficient to show that GM is identity on Cu-l' If
B € D,.; then B is the union of the subsets of Qy which replace
B to obtain Cu. But each of these subsets is permuted by OM by
assumption; hence each is the union of minimal O-permuted subsets of
QM’ and therefore so is B. So OM(B) =B by Lemma 4.2.1. Hence OM

1 N Cu by

is identity on Du 1 Since cM is also identity on Cu
assumption, the lemma follows.

Q.E.D.

is identity

Theorem 4.2.6: 1If OM(QM) = QM’ then for each u < n GM
on Cu if and only if the permutations due to ¢ of component

machines L1

Proof: For u =1 the theorem follows directly by construction of

L

through Lu are identities.

1
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Assume u > 1 and suppose GM is identity on C . Let C 1 -
u u-
Cos = e <
{Sl, S } and D 1 {Sl, Sy } for ku_1 m o1 and let
u-1 u-1
S1 be the reference element. Let R(Si) = {Sil,...,Siru 1} for each
i< ku-l and assume the elements of R(Si) are labelled so that
i
= i < and each j < .
vsl(Slj) Sij for each i ku-l ch j -1
By Lemma 4.2.7 OM is identity on Cu-l' Hence GM(Sij) = sij'
Consider any transition of the form UN (p,r) = (s,t), where ZN (p)

u u-1
= = < .
Si € Du_1 and ZNu-l(S) Sm €D Then OM(Si) Sm But

GM(Si) = Si by assumption, so S[n = Si since

u-1°
Du.1 is chosen among

the elements of C of maximal cardinality. We will show t = r,

u-1
where r = Slj’ for each j = To1 Now t is chosen so that
S1 Si S1 S1
g = t. H t = o (S = = = h -
vSi Mvsl(Slj) ence vSi M( ij) VSi(Sij) S1j r, show

ing that the permutation of Lu due to 0 is the identity. By Lemma
4.2.7 OM is identity on Ci for i £ u, so the same argument applies

to Li for each i < u.

Conversely, suppose the permutations due to © of L1 through
Lu are identities. We will use induction to show that OM is identity
on C .
u
Clearly, OM is identity on C1 by Theorem 4.1.1. Suppose oM
is identity on C for 1< v<u., Let C = {B seeesB } and D =
v v 1 m v
<m
{Bl,...,Bkv} for k_ ,» and let B, be the reference element.
Let R(B.)={B..,...,B. } for each i < k_and assume the elements
i il ir B v
of R(B.) are labelled so that v_"(B,,) = B,, for each i < k_and
i B1 1j ij v
j=r_.
v

Since OM(Bi) = Bi for each Bi € Cv’ and since each permutation
of L due to O is the identity, Rule 4 of Theorem 4.1.2 for de-

Vil B; Bj
termining state transitions becomes v_ O v_"(B.,) =B for i s kv

B. M B, ' 1j
B i 1

and j < r, Applying vBi

1
B, B.
[vBi(Blj)] = vBi(Blj). But any element of R(Dv) can be written as

13

to both sides of this equality yields

c
M
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B

VBl(Blj) for some 1i,j, so GM is identity on R(Dv), which is con-

atned i ) . o is id . . Lo
tain in Cv+l Since M is identity on CV by assumption, it is

identity on all of Cv+1'

We conclude that OM is identity on each cover C .,C .

1’
Q.E.D.

Corollary 4.2.1: 1If OM permutes QM’ then CM is the identity on
QM if and only if every component machine in a Zeiger cascade for M

has only identity permutations due to .

Proof: If C c is a Zeiger cascade for M then Cn = QM’ and

1009 C,
the conclusion follows from Theorem 4.2.6.
Q.E.D.
This corollary shows that any non-trivial permutation of the
state set by an input ¢ causes a non-trivial permutation in one or
more machines in the cascade. Furthermore, if OM permutes QM one
can determine which of the component machines have non-trivial permu-

tations due to © by observing the effect of OM on the Zeiger covers.

4.3. An Application to Definite Automata

Cutlip [5] pointed out that prefix automata, i.e., automata
which recognize events of the form Z?Z where Z & ¥ for some
positive integer k, decompose into a cascade having only resets and
identity permutations. These permutations arise from the arbitrary
next-state assignment of Rule 2 of Theorem 4.1.2, which we have pre-
ferred to call "don't cares." 1In this section we consider decomposition
of the more general class of machines, definite automata. Recall from
Chapter 3 that these recognize events of the form R =P + ZrQ where
P and Q are finite and one or both are non-empty.

Notation will be taken from both this and earlier chapters, but
no confusion should arise.

Let W be a regular event and MW) = (QM,M,SO,F) the machine

recognizing W. T 1is the input alphabet.

Lemma 4.3.1: If no non-singleton subset of QM is permuted by any
*
tape in {£ - A} then there is an integer m such that every tape

of length 2 m synchronizes M(W).
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Proof: If no non-singleton subset of Q is permuted by any tape in

*
{£ - A} then S 1s a singleton for each x € {Z - A}. If MW)

has n states then QM has 2" subsets. Let m = 2. Suppose
y € Z L(y) =k 2m, and y = SAEE Ok. For each i such that
<ic< i = e . i
1 i k, define Ai (a1 ci)M(QM) Since y has length greater

than the number of subsets of Qy there are integers u,v such that

v>u and A = A . Then the tape ¢ ...0 maps A to A ; that
v u u+l v u u
is, (cu+1...cv)M(Au) = Av = Au. Hence Au is a singleton because
S o 1is a singleton and no non-singleton subset of Q, can
(cu+1...cv) M
PR < i = i
be permuted by Gu+1 v This shows that Ak yM(QM) is also a

singleton and thus y synchronizes M(W). So every tape of length
2m= 2" synchronizes M(W).
Q.E.D.

*
Lemma 4.3.2: Suppose R =P + £ Q where P is finite and R 1is in
canonical form. Then Q 1is infinite if and only if QM has a non-

singleton subset B which is permuted by some non-null tape x € Z

Proof: Since R 1is in canonical form, no tape in Q 1s a proper

suffix of another tape in Q.

Suppose B & QM is permuted zy x, where B 1is not a singleton
and i # A. For some integer Kk, Xy is the identity on B; let .
y=x . Let s and t be distinct states in B and let 2z € I
distinguish them. Without loss of generality assume M(s,z) € F and
M(t,z) ¢ F. Choose tapes u and v such that M(s ,u) = s and

*
M(so,v) = t. Let R = vy z and observe that R, S R

1 2 1
and R2 NR=¢@¢. Since P 1is finite, an infinite number ofitapes in

= uy z and R

* * i
Rl must be in £ Q. If T = R1 N £Q, denote T by T = {uy 1z, uy 2,
i
uy 3z,...}, where each ij is a non-negative integer and i > ij 1
for j = 1,2,3, . Since R, NR=¢, no Suffixes of tapes in R2

are in Q, so in particular no suffix of vy Y2 is inQ for i =20,1,2,...
But every tape in T has a suffix in Q. Hence there are suffixes

uj of u for j=1,2,3,... such that if uj is not a suffix of
i i
y for any j,m, then the following tapes are in Q: uly 1z, uzy 2z,
i
ugy “z,.... But uj cannot be a suffix of ym, for if j 1is the
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smallest index such that wu, has this property, then u,yljz €Q,
which implies that ymyijzé Z?Q, and the fact that no su%fix of yiz
is in Q for i =20,1,2,... 1is contradicted. Hence Q has an in-
finite number of tapes.

Conversely, assume that no non-singleton subset of QM is per-
muted by any tape in {Z? - A}. By Lemma 4.3.1 tapes of length
>2m=2" synchronize M(R), where M(R) has n states. Suppose the
longest tape in P has length r, and suppose y is any tape in Z?Q
such that 4(y) > max {m,r} + 1. Let y = wx, where x 1is a suffix
of y of length max {m,r} + 1. Now y synchronizes M(R) to some
state t € F. Let s = M(so,w). Since 4(x) ® m, x synchronizes
M(R), and since M(s,x) = t, x synchronizes to state t. This means
M(SO’:) = t, so that x € R. But 4(x) >r, so x € P. Hence
x € £Q and so has a suffix in Q. Then y has a suffix in Q, so
y ¢ Q since R is in canonical form. Thus no tape in Z?Q of length
greater than max {m,r} + 1 is in Q, so Q is a finite set.

Q.E.D.

The main theorem can now be stated.

Theorem 4.3.1: R 1is definite if and only if no Zeiger cascade for

M(R) has permutations.

*
Proof: Assume R 1is definite and in canonical form. Then R =P + T Q
and Q 1is finite, so by Lemma 4.3.2 no non-singleton subset of QM

is permuted by any non-null tape. That is, S is a singleton for all

(- -]
X
*
x € {£ - A}, and by Theorem 4.2.5 a Zeiger cascade for M(R) has no
permutations.
Conversely, if no Zeiger cascade for M(R) has permutations,

*
then by Theorem 4.2.5 Sx°° is a singleton for all x € {£ - A}. By

Lemma 4.3.1 every tape of length 2 m = 2" synchronizes M(R), where
M(R) has n states.

If u€ R and u synchronizes M(R), then Z*u S R. Let Q
be the set of all tapes in R of length 2 m. Then Z?Q S R. Letting
P be the set of all tapes in R of length less than m, we see that
R=P+ Z?Q where P 1is finite.

Let R =P' + Z?Q' be the canonical form for R. P' is still
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finite, and since QM has no non-singleton subsets permuted by tapes
*
in {T - A}, Q' 1is finite by Lemma 4.3.2. Hence R is definite.
Q.E.D.
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5. SUMMARY AND CONCLUSIONS

We summarize in this chapter some of the more important results
of the study and suggest areas for further research.

Relations between certain structural aspects of automata and their
accepted events are the object of the preceding investigation. The
structural aspects of an automaton are expressed in terms of the state
graph, and event structure is given by the properties of the regular
expression describing the event.

In Chapter 2 general repetitive machines are defined. This class
of automata consists of machines that have a path from every final state
to the start state, and contains as a proper subclass the strongly con-
nected machines. A class of events, called general repetitive events,
is defined in terms of certain '"factorization'" properties of the
associated regular expressions. The main result of the chapter is
Theorem 2.2.1, which shows a one-to-one onto correspondence between
general repetitive machines and general repetitive events. These
"factorization" properties of the regular expressions for GREs result
from the "loop'" structure of the paths linking start and final states
in the GRM.

The concept of synchronization, which has been investigated by
other authors, [11, 13], is introduced in Chapter 2. It is shown that
all non-strongly-connected GRMs are synchronizable.

Definite and ultimate-definite GRMs are the topic of Chapter 3,
where it is demonstrated that these are exactly the strongly connected
machines of each class. A number of properties of ultimate-definite
GRMs are shown to be equivalent, among them the properties of general
repetitiveness, strong connectedness, synchronizability to the start
state, and, in the case of events of the form Z?Pt with Pt finite, *
the absence from Pt of tapes beginning with certain symbols. These
equivalent properties depend on the fact that all ultimate-definite
automata are synchronizable (Theorem 3.2.3). Chapter 3 concludes with
several results concerning the canonical representations of the union
and intersection of ultimate-definite events, and with closure pro-

perties of certain subclasses of the events considered in this study.
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In Chapter 4, the structure question is pursued from the view-
point of a machine's cascade decomposition. The cascade decomposition
procedure of Zeiger [16] is presented first, so that all the known
corrections to his original version might appear in one place. An in-
put to a component machine of a Zeiger cascade either permutes the
states or resets to one state, and Chapter 4 focuses on the properties
of the machine being decomposed which cause such permutations or resets.
It is shown that certain subsets of a machine that are permuted under
some input appear as cover elements somewhere in a Zeiger cascade, and
permutations of component machines appear when these subsets are not
singletons. From this result, necessary and sufficient conditions are
obtained for a machine to have a Zeiger cascade with no permutations.
For the special case where a symbol O permutes the whole state set
of a machine, necessary and sufficient conditions are obtained for ¢
to produce only identity permutations in the machine's Zeiger cascade.

Perhaps the most interesting result of Chapter 4 is the applica-
tion to definite automata, where it is proved that an event R is
definite if and only if no Zeiger cascade for M(R) has permutations.

Several topics that warrant further research arise from this
study. It would be interesting, for example, to study the general
repetitive machines associated with other classes of events, such as
star events (that is, events of the form P*), and to characterize the
way these machines decompose via the Zeiger method. Also, those
machines which are restartable (synchronizable to the start state)
should be investigated since the restartability property is useful in
such practical situations as error correcting. Finally, it would be
enlightening to attack the problems investigated in Chapter 4 using

the semigroup approach of Krohn and Rhodes.
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APPENDIX

Completion of proof of Theorem 4.1.2.

To show that N tells where M 1is in C', consider transitions
cN(p,r) = (s,t) of QN’ where © € IN’ ZK(p) =P € C, ZK(S) =8 € C,
and r and t are states of L and hence subsets of U. By
hypothesis K tells where M is in C, so cM[ZK(p)] ] ZK(s). We

<« .
must show that GM[ZN(p,r)] ZN(s,t)

Case 1: If P¢D and S € D then ZN(p,r) = ZK(p) and ZN(s,t) =
ZN(s). Hence OM[ZN(p,r)] S ZN(s,t).

Case 2: If P¢¢D and S € D then zN(p,r) = ZK(p) = P and ZN(s,t)

= vg(t), and by Rule 3 t 1is chosen so that Vch(P) & t. Applying

the transformation v% and observing that v_v is the identity map

us

- S.u S
(o} = (= o [= .
on S, we obtain vUvS M(P) GM(P) vU(t), or M[ZN(p,r)] ZN(s,t)

Case 3;: If PE€D and S ¢ D then ZN(p,r) = vg(r) and ZN(s,t) =
ZK(S) = §. By hypothesis OM(P) S S, and since vg(r) S P the result
P . .
=0 [ S = b d.
OM[ZN(P,r)] M[VU(r)] GM(P) S ZN(s,t) is obtaine

P

Case 4: If P €D and S € D then ZN(p,r) = vU(r) and ZN(s,t) =
vi(t), and by Rule 4 t 1is chosen so that ngMvﬁ(r) S t. Thus
P S U P S
= = - = .
o [z, (@01 = 0, [vi (0] = vyvela v ()] & vi () = z(s,0)

This completes the proof that N tells where M is in C'.
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