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ABSTRACT

STRUCTURE OF EVENTS AND AUTOMATA

By

Bobby Gene Reynolds

The relations between certain structural aspects of automata

and their accepted events are investigated.

A general repetitive machine is an automaton having a path

from every final state to the start state. The general repetitive

machines contain as a proper subclass the strongly connected machines.

General repetitive events are defined in terms of certain "factoriza-

tion" properties of the associated regular expressions, and a one-to-

one onto correspondence is shown between general repetitive machines

and general repetitive events.

Definite and ultimate-definite general repetitive machines are

investigated, and a number of properties exhibited. All ultimate-

definite automata are synchronizable; that is, there is an input

sequence which causes the machine to move to a predetermined state

regardless of the state of the machine before applying the sequence.

Ultimate-definite general repetitive machines are shown to be strongly

connected and hence synchronizable to the start state.

The structure question is also pursued from the vieWpoint of

a machine's cascade decomposition (Zeiger's method). An input to a

component machine of a Zeiger cascade either permutes the states or

resets to one state. It is shown that certain subsets of a machine

that are permuted under some input appear as cover elements somewhere

in a Zeiger cascade, and permutations of the states of component

machines appear when these subsets are not singletons. From this,

necessary and sufficient conditions are obtained for a machine to

have a Zeiger cascade with no permutations other than those assigned

arbitrarily. Finally, it is shown that an event R is definite if

and only if no Zeiger cascade for the machine accepting R has

permutations.
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1. INTRODUCTION

The development of finite automata theory in recent years is a

result of investigations of discrete-parameter systems; that is,

systems whose input, output,.and state variables each assume a finite

number of values. The proliferation of digital devices and their

usage in both military and commercial applications have provided

motivation to study such devices on an abstract level, independent of

any method of physical realization, in order to determine their capa-

bilities and limitations.

The aim of this study is to examine the relations between

certain structural aspects of automata and the events (sets of input

sequences) accepted by them. In this chapter most of the notation is

established, and basic concepts of automata theory are reviewed. In

Chapter 2 a general repetitive machine is defined in terms of paths

in the state graph of the machine, and properties of the event accepted

by the machine are studied. The important class of strongly connected

machines is a subclass of the general repetitive machines. Results

from Chapter 2 are applied in Chapter 3 to definite and ultimate-definite

automata. In Chapter 4 the cascade decomposition of automata is

examined, and the relations between permutations of state subsets of

an automaton and permutations of the states of component machines in

the cascade are investigated. Finally, it is shown that the definite

automata are precisely those whose cascade decompositions have no

component machines whose states are permuted under some input.

1.1 Notation and Basic Concepts
 

Let A and B be sets. The set-theoretic union of A and B

is written. A U B or A + B, and their intersection is A 0 B. |Al

denotes the number of elements in A.

An alphabet 2 is a finite non-empty set of symbols. The

*

concatenation of symbols 0 and T is the sequence UT. 2 is the
 

set of all finite sequences obtained by concatenating symbols from 2,

*

including the null (or empty) sequence A, and for B C 2, B is



similarly defined. A sequence from 2* is a papg. The length of a

sequence x 6 2?, 4(x), is the number of symbols in x. If x is a

tape, then xk denotes the tape xx...x (k times), and x0 = A. If

2k denotes the set of all tapes in 2* of length k, then

:* = {A + 2'+ 22'+ £9 + ...}. E* is thus a monoid under concatenation,

with identity A which has the property Ax = xA = x for any x E 2*.

Any subset P of Z? is an 33325. The product or concatenation of

events P and Q is PQ = {xy : x E P, y E Q}. If x is a tape, the

event Px is similarly defined: Px = {wx : w E P}. Thus we make no

notational distinction between a tape x and the singleton set {x}.

Let x = cl...cm be a tape. For 1 S j S k S m define jxk

by jxk = Oj"'ck-l' Then jxk is a subtape of x. Also 1xk is

a prefix of x and x is a suffix of x; they are proper iff

j m

k S m and j > 1 respectively. ("Iff” is an abbreviation for "if

and only if".)

A = (QA’M’SO’F) is a finite automaton, and is defined over an
 

input alphabet 2. QA is a finite non-empty set of states of A. M

is a map from 9A X 2 into QA’ and is called the move or transition
 

function. If s,t 6 9A and O E 2,‘M(s,6) = t means that if A is

in state s and input 0 is applied, A changes to state t.

  

s0 6 QA is the start state, an: F 5 QA is the set of final :tates.

M extends naturally to QA X 2 as follows: for each x E Z ,

o E 2 and s 6 QA’ M(s;xa) = M(M(s,x),o). For any state s, M(s,A) = s.

For B C QM and x 6 2 ‘we define M(B,x) = {M(s,x): s E B}. In

Chapter 4 the letters M, K and L will be used to denote finite

automata; the context will clearly show whether M denotes an automaton

or a move function. We use the words finite automaton, automaton, f.a.,

and machine interchangeably.

If the automaton is in state 80 and tape x = 01"'Om is

applied to the input, A goes through the states so, M(so,01),

M(sO,O‘1 02),...,M(so,x). If M(so,x) E F, the tape is accepted by *

the automaton A; otherwise it is rejected. A thus dichotomizes Z
 

into two events, the accepted tapes and the rejected tapes. An event

which is the accepted set of some f.a. is a regular event. The autom-

aton A whose accepted set is R is sometimes written A(R). More



generally, a tape x is accepted by the state 8 iff M(s,x) 6 F.
 

The f.a. defined above has an output associated with each state;

the output is "yes" or "1", say, if the automaton is in a state in F,

and "no" or "0" otherwise. Such automata are called Moore machines,

as distinguished from Mealy machines whose outputs are associated with

the transitions between states. Moore machines are used exclusively in

this study.

Automata can be represented by either a state graph or a flow

table, as illustrated in Figure 1.1.1. We will use both representations,

choosing the more convenient form for each situation. In a state graph,

circles denote states and a final state is denoted by two concentric

circles. Transitions between states are denoted by arrows, and each

arrow is labelled with the symbol causing the transition. If

M(s,O) = t, an arrow is drawn originating at the circle representing

state s and pointing to the circle representing state t, and O is

written near the arrow. The start state s is distinguished by an

O

arrow entering the circle for s but not originating from any circle.

0

A flow table has a column listing the states of QA and, for each

input symbol, a column listing "next states" of A under that input.

The final column designates final states by "l" and non-final states

by "OH .

A state t is reachable or accessible from state 3 iff
 

M(s,x) = t for some tape x. The set of states reachable from state

*

g is R(s) = {M(s,x): x 6 2 }. A is connected iff R(so) = QA’ and

strongly connected iff R(s) = 9A for every state 8. There is a

Apath from s to t iff t is reachable from s. B 5 QA is a
 

strongly connected subset iff B C R(s) for all s E B.

Two states 3 and t of A are said to be indistinguishable

*

or equivalent iff for all x E 2 , M(s,x) E F iff M(t,x) E F. Other-
 

wise they are distinguishable, and there is a tape y such that
 

M(s,y) E F and M(t,y) E F or vice versa. There are several equiv-

alent definitions of indistinguishability. In Figure 1.1.1 the states

B and E are indistinguishable. These can be replaced with a single

state B as in Figure 1.1.2. An automaton is reduced if it is con-

nected and any two states are distinguishable. For every non-reduced



 

 

      

A

B E

C E

D B

E B

(a) State graph (b) Flow table

Figure 1 1.1.

 

State graph and flow table representations for

an automaton with 2 . {0,1}

 

      

(a) State graph (b) Flow table

Figure 1.1.2- Reduced version of the automaton in Figure

1.1.1.



automaton there is an equivalent reduced automaton which accepts exactly

the same regular event. This study deals exclusively with reduced

automata unless otherwise stated.

As stated earlier, the class of regular events consists of just

those subsets of 2? which are accepted sets of finite automata.

There are non-regular events, for example {OnlOnz n = O,l,2,...}

with 2 = {0,1}. Regular events are represented by regular expressions,
 

which are constructed from an alphabet 2 by using only the union,

dot (concatenation), and star operations a finite number of times.

Thus, if U E 2 then {a} is regular, and if P and R are regular,

then P + R (or P U R), P-R (or PR), and P* = {A + P + P2 + P3+...}

are regular. No event is regular unless obtained in this fashion.

- Finally, we review derivatives of events and state without proof

several of their properties [2,3]. Let P 9 2? be an event. The

derivative of P with respect to the tape x E Z?,.denoted Dx(P), is

defined by Dx(P) = {w: xw 6 P}. For G,T E 2, D°(O) = A, and

Da(r) z ¢ if c I T; also, DO(A) = ¢, DA(T) = T, and DA(P) = P. If

0 E 2 and x E 2 , then DO(Dx(P)) = DxO(P)'

Define 6(P) by 6(P) = ¢ if A e P and 6(P) = A if A e P.

If Q is an event and o E Z, the following properties of derivatives

hold:

(1) DO(P+Q) = DO(P) + Dom),

(2) DO(P 0 Q) = DG(P) fl Dam),

(3) DO(PQ) = D°(P)-Q + 6(P)DG(Q),

* * -'

(4) DO(P ) = DO(P) -P .

Let R be a regular event. A derivative of R is a regular

event, and R has a finite number of derivatives. The number of

derivatives of R is equal to the number of states in the reduced

automaton A(R) = (QA’M’SO’F) accepting R. The relation between

derivatives of R and states of A(R) is as follows. With the state

M(so,w) E QA is associated the derivative Dw(R)' Then DW(R) is

exactly the set of tapes accepted by the state M(so,w), or the set of

tapes which take A(R) from M(so,w) to F. Dw(R) is the derivative
 



correSppnding to state M(so,w); and A E Dw(R) iff M(so,w) E F.

If A(P) = (QA’M’SO’F) is a f.a., not necessarily reduced, then

two states M(so,x) and M(so,y) are indistinguishable iff

Dx(P) = Dy(P).



2. GENERAL REPETITIVE EVENTS AND MACHINES

Considerable research has been devoted to the class of strongly

connected automata. One property of these machines is that the start

state is accessible from every final state (since all states are

accessible from every state). Since much of the ”loop" structure of

a strongly connected machine's state graph resides in this property,

it would seem interesting to investigate all machines having the prop-

erty. These are called general repetitive machines.

After precisely defining general repetitive machines we charac-

terize the state graphs of those not strongly connected. Then we define

a class of events called general repetitive events, and show that these

are exactly the events accepted by general repetitive machines. Some

properties of these events are exhibited and examples given. Next we

characterize the machines in terms of derivatives of the events accepted

by them, since many of the results in Chapter 3 are obtained by use of

derivatives. Synchronization of automata is defined and discussed and,

finally, closure properties of the class of general repetitive events

are considered.

2.1. State Graph Structure of General Repetitive Machines

Definition 2.1.1: An automaton A = (QA’M’SO’F) is a general repetitive
 

machine (GRM) iff for each state 31 E F there is a tape xi such that

M(si,xi) = so.

In some instances a single tape will suffice to return a general

repetitive machine from any final state to the start state; in others,

different final states may require different tapes. These conditions

are distinguished by the following definition.

Definition 2.1.2: An automaton A = (QA,M,so,F) is a repetitive

machine (RM) iff for some tape x and for all s E F, M(s,x) = so.

Both automata of Figure 2.1.1 are GRMs. The automaton of Figure

2.1.1(b) is an RM, since M(F,11) = so, but that of Figure 2.1.1(a) is

not; the RMB thus constitute a proper subclass of the GRMs.

The class of strongly connected machines is a proper subclass of

the GRMs. We partition the class of GRMs into two subclasses, strongly



  

 
 

 
 

 
 eoLloiQoo

Figure 2.1.1 . Examples of general repetitive machines.

connected and non-strongly connected, and designate them as Type I

and Type II, respectively.

Lemma 2.1.1: Let A(R) = (QA’M’SO’F) be a GRM. If A(R) has a final

dead state, then A(R) is a 1-state automaton. If A(R) has a non-

final dead state SD’ then QA - {SD} is a strongly connected subset

of states.

Proof: Let SD be a final dead state. Since A(R) is a GRM,

30 E R(sD); hence sD = so. But sD is dead so QA = {so}.

Suppose s is a non-final dead state. Let B = QA - {SD}.

D

If s E B, s is not dead, and for some SF E F, s E R(s). But

F

8



30 E R(sF) and B C R(so); hence B C R(s). That is, every state in

B is accessible from every state s in B, and so B is a strongly

connected subset of QA.

Q.E.D.

Theorem 2.1.1: Every Type II GRM .A = (QA,M,so,F) consists of a

single non-final dead state 8D and a strongly connected subset

QA - {SD}.

Proof: If A has no non-final dead state, then from every state s

there is a path to some SF E F. There is also a path from every state

in F to and from s to every other state. Hence R(s) = QAs

0’ 0

and A is strongly connected, contrary to the assumption that A is

Type II. Thus A has a non-final dead state and only one since8
D)

A is reduced. The rest follows from'Lemma 2.1.1.-

Q.E.D.

This theorem shows that the Type II GRMs are quite similar to

the strongly connected machines, since all states but one lie in a

strongly connected subset of QA.

2.2 General Repetitive Events
 

Definition 2.2.1: A repetitive event (RE) is a regular event P with
 

the properties

(1) for some x E 2?, P = P(xP)*, and

(2) for any events R and Q, if R G P and RxQ C P then

Q C P.

The tape x is called a return tape. The class of REs is denoted by
 

A

R.

Definition 2.2.2: A general rppetitive event (GRE) is a regular event
 

R with the properties

m

(1) R = U P., where each Pi is an RE with return tape xi,

i=1 1

*

(2) for 1 S i,j S m, Pi can be written Pi = (ijj) Pi’ and

(3) for 1 S i,j S m and for any events R1 and Q, if

C C C ,Ri Pi and RixiQ Pj then Q Pj



The class of GREs is denoted by G.

Observe that an RE is a GRE, and hence R is a proper subclass

of G. Also, no finite event belongs to either class.

A lemma is needed for later use.

Lemma 2.2.1: If P is an event and x is a tape, the following are
 

equivalent:

(1) P = P(xP)*

(2) P = (Px)*P

(3) PxP C P.

Proof: The equivalence of 1 and 2 is seen as follows:

*

P(xP) PEA + xP + xPxP +...]

P + PxP + PxPxP +...

[A + Px + PxPx +...]P

*

(Px) P.

That 1 implies 3 is trivial. Conversely, if PxP C P, then

(PxP)xP C PxP C P, or P(xP)2 C P, and in like fashion we observe that

P(xP)n C P for n = 0,1,2,..., where (xP)0 = A. Hence P(xP)* C P.

Obviously P C P(xP)*, so P = P(xP)*.

Q.E.D.

The following theorem relates GRES to GRMs.

Theorem 2.2.1: Let A(R) = (QA’M’SO’F) be an automaton. Then A(R)
 

is a GRM if and only if R is a GRE.

Proof: Let F = {SF }?=l be the final states of A(R).

i

Suppose A(R) is a GRM. For 1 S i S m define Pi by

P1 = {y E 2*: M(so,y) = 8%.}; that is, Pi would be the accepped set of

is sF were the only final state. Then obviously R = .U Pi' By

i 1=l

Definition 2.1.1 there are tapes xi for l S i S m such that

M(sF ,xi) = so. We first show that each Pi is an RE. Suppose

i

. = = = . fw,y E Pi Then M(so,wxiy) M(sFi,xiy) M(so,y) sFi Hence or

all w,y E P., wx,y E P., which means P x,P, C P,. By Lemma 2.1.1,

1 1 1 1 1 1 1

10



*

= _ :Pi Pi(xiPi) Now suppose Ri and Q are events such that Ri Pi

d C . aan RixiQ Pi’ and let w E R1 and y E Q Since M(so,w) SF and

" I: = . i .

wxiy E Pi’ s - M(sO,wxiy) M(sF ,xiy) M(so,y), hence y E Pi' Th1s

F. .

shows that Q C Pi’ and completes the proof that Pi is a repetitive

event.

To show that Pi= (ijj

M(so,yxj) = M(M(so,y),,xj)= M(sF ,xj) = so. Hence for z E Pi’

) *Pi for l S j S m, let y E Pj. Then

M(sO,ysz)=nM(sO,z)= sFi , and thus P x P C P By a similar*argu-

”111 i
ment Px nP, C P for1 n = 0,1,2, , ieldin Pi Px *P( j xj) 1 1 y s =( Jxj)

Finally, suppose R1 and Q are events such that Ri 5 Pi1 and

RiXiQ C Pj for 1 S i,j S m. Let w E R1 and y E Q. Since M(so,w)

= SF1 and wxiy E Pj’ st = M(sO,wxiy) = M(sFi

y E Pj’ so that Q C Pj.

,xiy) = M(so.y); hence

This completes the proof that R is a GRE.

H
. I
K
Z
B

r
e

Conversely, suppose R is a GRE which we can write as R =

according to Definition 2.2.2. Each Pi cannot necessarily be asso-

ciated with a distinct final state in this case. Define instead the

subsets Fi of F by F1 = {3F E F: M(so,y) - sF for some y E Pi}'

We also define Si 3 {s E QA: M(SF’xi) = s for some sF E F1}, where

x is the return tape for Pi' The method of proof is to show that
1

each state in Si’ 1 S i S m, is indistinguishable from 3

S1 = {so} since A(R) is reduced), so that x

0 (that is,

i takes every state in

*

F1 to so. We must show that for every 8 in Si and y in 2 , and

for 1 S i S m, M(so,y) E F iff M(s,y) E F.

Suppose M(s0,y) E F for y E 2* and let s be any state in

Si' There is a tape 2 E P1 such that M(so,zxi) = s, where x1 is a

return tape for Pi' Since yER, YEPj for some j. Hence zxiy E Pixin,

and since by definition Px C P we have zxiy E P . Thus

ix PJ J j

M(sO,zxiy) = M(M(so,zxi),yy) M(s ,y) E Fj C F. Hence M(so,y) E F"
H
:

implies M(s,y) E F.

If s E Si and M(s,y) E F, choose 2 E Pi so that

M(so,zxi) = s. Then M(so,zxiy) = M(s,y) E F, so zxiyE Pj for some

j. Then {2} 5 Pi and {z}xi{y} C Pj’

2.2.2 {y} c Pj. That is, y E Pj, and hence M(so,y) E F. Thus

and by condition 3 of Definition

11



M(s,y) E F implies M(so,y) E F, completing the proof that 30 and

s E Si are indistinguishable.

Hence S1 = {so} for l S i S m, and M(Fi’xi) = s , showing

that A(R) is a GRM.

0

Q.E.D.

The above proof shows that the event R accepted by a GRM A(R)

can be expressed in terms of events Pi associated with individual

final states 3 . That is, PF is exactly the set of tapes taking

A(R) from s

i

0 to sFi, and x1 takes A(R) from sFi to so.

a general repetitive event might be expressible in a number of ways

1 But

satisfying the conditions of Definition 2.2.2, and some forms may not

allow the component repetitive events to be associated with individual

final states. One is assured, however, that a GRE form does exist so

that each Pi is associated with a single final state.

It also follows that A(R) is a repetitive machine iff R is a

repetitive event. For if A(R) is an RM we can select the same return

tape x for each state, and straightforward manipulations of R show

that it is an RE. The converse is easy.

We observe that many events P can be written P(xP)* for some

x E E* and yet do not satisfy condition 2 of Definition 2.2.1. In

particular, any ultimate-definite event P (to be investigated in the

next chapter) has the property P = ESP, and for any tape x,

P = E*P = 23P(X£*P)* = P(xP)*. However, not all ultimate-definite

events are RES. The property P = P(xP)* means that the state

s = M(sF,x), where SF E F, accepts the event P. Condition 2 of the

definition insures that s accepts exactly P. Ultimate-definite

machines A(P) will be seen to have the property that every state

accepts P but only 50 accepts exactly P.

Figure 2.2.1 shows an example of a repetitive machine A(P).

The repetitive event P is P = 11(Oll)*. Letting x = 0, P can be

written P = P(xP)* = 11(Oll)*[011(011)*]*. Condition 2 of Definition

2.2.1 is also satisfied since A(P) is an RM.

Before presenting some properties of repetitive events we extend

the definition of derivatives of events to the following.

12



 

  

Figure 2.2.1. A repetitivg machine A(P) where

P = 11(Oll)

Definition 2.2.3: Let W,Z be events. The derivative of W with
 

 

*

reppect to Z is Dz(W) = {y E 2 : zy E W for some 2 E Z}. It is

clear that D (W) = U D (W).

Z z

zEZ

 

Conditions 1 and 2 of Definition 2.2.1 for a repetitive event

P can be expressed in terms of the derivative DP(P); that is the

subject of the next two theorems, which provide alternative ways of

determining if a regular event is repetitive.

*

Theorem 2.2.2: Let P be a regular event. If P = P(xP) for some

*

tape x then DP(P) = DP(P)-(xP) .

 

2322:: Suppose P 8 P(xP)* an: let y E DP(P)-(xP)*. Then y = uv,

where u E DP(P) and v E (xP) . By Definition 3.2.3 there is a tape

w E P such that wu E P; hence wy = wuv E P(xP) = P, and so

y E DW(P) C DP(P). Thus DP(P) D DP(P);(xP)*. The reverse inclusion

is obvious, proving DP(P) = DP(P)-(xP) .

Q.E.D.

This result only provides a means, by contraposition, of deter-

*

mining that P is not repetitive. However, the condition P = P(xP)

l3



for RES is the easier of the two conditions to verify. Given that

*

P = P(xP) , the next theorem gives several necessary and sufficient

conditions for condition 2.

*

Theorem 2.2.3: Let P be an event with the property P = P(xP) for
 

*

some tape x E Z . The following are equivalent, where R and Q are

*

events and y E Z :

(l) R C P and RxQ C P imply Q C P,

(2) x is not a prefix of any tape in DP(P) - xP,

(3) P = Duo),

(4) xy E DP(P) iff y E P.

2322;: (l) = (2): Suppose R C P and RxQ C P imply Q C P. To

show that x is not a prefix of any tape in DP(P) - xP we must show

for each tape w that if xw E DP(P) then w E P.

If xw E DP(P), by Definition 2.2.3 there is a tape y E P such

that yxw E P. That is, {y} C P and {y}x{w} C P, so by hypothesis

{w} C P. Hence w E P.

(2) = (3): Suppose xw E DP(P) implies w E P, and let y E DPx(P).

Now DPx(P) = {y E 2?: zxy E P for some 2 E P}. Hence there is a

tape z E P such that zxy E P, and therefore xy E DP(P). By

hypothesis y E P, showing DPx(P) C P.

Since P = P(xP) we have PxP C P. It follows that

C =P : DPX(PxP) DPx(P). Hence P DPX(P).

(3) = (4): Suppose P = DPX(P).

Let xy E DP(P). Then y E DPx(P)’ so y E P.

Conversely, let y E P. Then y E DPx(P)’ and hence for some

tape 2 E P we have zxy E P. Thus xy E DP(P).

(4) = (1): Suppose xy E DP(P) iff y E P. We assume R and Q are

events such that R C P and RxQ C P, and show Q C P. Using the fact

that DR(RxQ) = U Dz(RxQ), observe that xQ C DR(RxQ) C DP(RxQ) C DP(P).

zER

Now if y E Q, then xy E DP(P), and by hypothesis y E P. Hence

Q c P' Q.E.D.
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An interpretation of the event DP(P) may be of interest. If

A(P) = (QA,M,so,F) is the machine accepting P, then P is the event

accepted by so. If y E P, then Dy(P) is the event accepted by the

final state M(so,y). Hence DP(P) is the union of the events accepted

by the final states of A(P); i.e., DP(P) = {w E if: M(sF,w) E F for

some SF E F}.

To close this section we show that events of a certain form are

repetitive.

*

Theorem 2.2.4: Let z,y E 2 . If 2 is a proper suffix of y, the

* *

events P = zy and R = y z are REs.

*

Proof: We can write y = wz, where w # A. Then P = z(wz) . Con-

dition l of Definition 2.2.1 is verified by observing that

* * * *

P(wP) z(wz) [w(z(wz) )]

z{(WZ)*EWZ(WZ)*l*}

z(wz)*

= P.

To show condition 2, suppose R C P and RwQ C P. Let v E R

and u E Q. Then ku E P, and hence ku = z(wz)i for some 1

(possibly zero). Similarly v E P so v = z(wz)j for some j

(possibly zero), and clearly j < i. Then ku = z(wz)qu = z(wz)i,

i j-

and so u = z(wz) - Hence u E P, proving Q C P.

It is similarly demonstrated that R is an RE.

Q.E.D.

2.3. Derivative Characterization of GREs and GRMs

Some of the structural properties of general repetitive events

were exhibited in the last section. In this section we provide a more

useful characterization in terms of derivatives so that these results

can more easily be applied to ultimate-definite events in Chapter 3.

Derivatives of regular events can be computed in a straightforward

manner using the properties discussed in Section 1.1.

We present two results, one for GRMs and one for strongly con-

nected automata.
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Theorem 2.3.1: An automaton A(R) = (QA’M’SO’F) is a GRM iff for

*

each y E R, there is a tape x E 2 such that Dyx(R) = R.

Proof; Let A(R) be a GRM. If y E R then M(so,y) E F, and by

Definition 2.1.1 there is a tape x such that M(M(so,y)x) = 5 That

is, M(so,yx) = 50 - M(sO,A); hence Dyx(R) - DA(R) = R.

0.

Conversely, suppose that for each y E R, there is a tape

x E 2* such that Dyx(R) . R. For any final state 3 there is a tape

y E R such that M(so,y) = s. Then for some tape x, Dyx(R)'. R I DA(R)’

which means that M(so,yx) = M(sO,A) = s . But M(so,yx) = M(M(so,y),x)

0

= M(s,x) = s and thus there is a path from s to s

0 0°

Q.E.D.

Of course one need not take derivatives of R with respect to

every tape in R to apply the above theorem. There are finitely many

distinct derivatives although R is infinite. This is clear from the

correspondence between distinct derivatives of R and distinct states

of A(R). A straightforward procedure for testing an event R for the

GRE property is as follows. First compute all derivatives of R accord-

ing to the procedure given by Brzozowski [2]. For each derivative D

of R which contains A compute all derivatives of D (again there

are finitely many). If every such derivative D of R has a deriv—

ative equal to R, then A(R) is a GRM.

The next theorem shows that one can check for strong connected-

ness by looking for empty derivatives of R.

Theorem 2.3.2: An automaton A(R) = (QA’M’SO’F) is strongly connected
 

iff A(R) is a GRM and all derivatives of R are non-empty.

nggf: A strongly connected automaton is obviously a GRM. Furthermore,

a derivative Dy(R) is exactly the set of tapes accepted by the state

M(so,y), and this set is non-empty since there is a path from M(so,y)

to F.

Conversely, suppose A(R) is a GRM and Dy(R) 3‘ d Vy E 2*.

Let s be any state, and let y be such that M(so,y) = s. For any

tape 2 E Dy(R), M(s,z) = sF E F. Hence 8 is accessible from s,

F

and since A(R) is a GRM s0 is accessible from sF. Thus 90 E R(s).

But all states are accessible from and hence all states are acces-so,
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sible from 5. That is, R(s) = QA’ and A(R) is strongly connected.

Q.E.D.

2.4. Sypchronization of Finite Automata

The concept of automaton synchronization was motivated by the

problem of driving a f.a. from an arbitrary unknown state to a known

state by applying a predetermined input sequence (e.g. see [13]).

For example, if the present state of the automaton of Figure

2.1.1(a) is not known, no input sequence exists which will bring the

automaton to a known state, since each input symbol permutes the state

set. However, the input sequence 11 assuredly leaves the Figure

2.1.1(b) automaton in state and all subsequent states are known3
0,

since each is reached from 30 by following paths corresponding to the

input symbols presented.

We introduce the concept at this point because it is intimately

related to ultimate-definite GRMs, the subject of Chapter 3.

Definition 2.4.1: The tape (sequence) x is a synchronizing tape
 

 

 

(sgguence) for the f.a. A = (Q ,M,sO,F) iff for each state 3 E QA’

 

M(s,x) = M(so,x). In such a case, x is said to synchronize A.

Definition 2.4.2: The f.a. A is synchronizable iff there is a tape
  

x which synchronizes A.

Thus, a synchronizing tape x for the f.a. A takes A from

any state to M(so,x).

The Figure 2.1.1 examples show that some, but not all, finite

automata are synchronizable. A synchronizable automaton has infinitely

many synchronizing tapes, for if x synchronizes A, so does wxy for

all tapes w and y in 2*.

Liu [11] investigated some aspects of automaton synchronization,

and established the following necessary and sufficient condition for

synchronizability.

 

Theorem 2.4.1: A = (QA,M,SO,F) is synchronizable iff for every pair

of states 3 and t in QA there is a tape x such that

M(s,x) = M(t,x). The tape x is said to merge states 3 and t.

The next result of Liu offers a second characterization of

synchronizing tapes.
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Theorem 2.4.2: The tape x synchronizes A = (QA,M,SO,F) iff
 

M(QA,X) = M(sO,x). That is, M(QA,X) must be a singleton subset of QA.

The proof is trivial.

We close this section with a result on synchronizability of Type

II GRMS.

Theorem 2.4.3: Every Type II GRM, A = (QA,M,sO,F) is synchronizable.

Proof: By Theorem 2.1.1 A has a dead state SD, and QA - {SD} is

strongly connected. Hence sD is accessible from every state, since

sD E R(sO) and 30 E R(s) for all s E (QA - {sD]). Then for each

state 51 E QA’ there is a tape xi such that M(Si’xi) = s , where

M(sD,A) = s

D

D' If 81’ sj E QA (not excluding Si = SD), and

= M(sj,xixk), so that the tape xixk merges s1 and s . By Theorem

J

then M(si,xixk) = 3

2.4.1 A is synchronizable.

Q.E.D.

2.5. Closure Properties of R and G
 

Closure of the classes of repetitive and general repetitive

events under the standard operations on events is important because

closure of a class under an operation provides a means of forming new

events of that class. Perhaps unfortunately, R and C are not closed

under any of the usual event operations. This is stated in the next

theorem. The proof will be delayed until Chapter 3 when more tools are

developed to facilitate construction of counterexamples.

A A

Theorem 2.5.1: Neither R nor G is closed under union, dot (con-
 

catenation), intersection, complementation or star.
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3. APPLICATIONS TO DEFINITE AND ULTIMATE-DEFINITE AUTOMATA

*

Events which can be expressed in the form R = P + 2 Q (P and

Q finite) are called definite events, and have been investigated by

several authors [1, 8, 15]. If Q = ¢, R = P is initial definite; if
 

*
p g ¢ and Q ¢ ¢, R = ZIQ is non-initial definite; and if P # d E Q,
 

R is composite definite. Each finite event is initial definite.

Paz and Peleg [l4] generalized the notion of non-initial definite

events by allowing Q to be an infinite set, calling the resulting class

of events ultimate-definite (u.d.).
 

In this chapter we investigate those definite and ultimate-definite

events which are GREs. The chapter proceeds as follows. Preliminary

material is presented in the first section, and in Section 3.2 the re-

lationships among general repetitiveness, strong connectedness, syn-

chronizability, and synchronizability to the start state are explored

for definite and ultimate-definite automata. These results, most of

which are for u.d. automata, are the main results of the chapter. ‘The

next section deals with structure properties of u.d. events and provides

short cuts for constructing canonical representations of the union and

intersection of u.d. events. Section 3.4 discusses closure properties

of certain classes of events.

3.1. Basic Properties of Definite and Ultimate-Definite Events and

Automata

 

This section contains some definitions and basic results con-

cerning definite and u.d. events and their automata. All results except

Theorem 3.1.1 are taken from Paz and Peleg [l4] and Brzozowski [1]; they

are listed as properties and no proofs are given here.

The class of u.d. events is denoted by U.D.

Property 1. P E U.D. iff P = ESP.

P and Q are u.d., then P + Q and P O Q

.d.

Property 3. If P is u.d. and Q is any event, then PQ is

u.d.

Property 4. If P is u.d., then P*

Property 2. If

are C

A+P.

2* iff AEP.Property 5. If P is u.d., then P
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*

Definition 3.1.1: If P is u.d., then a representation P = 2 Q of
 

P is canonical iff no tape in Q is a proper suffix of a tape in Q.

If P is u.d., define the following subsets of P, where

2° = {A}: p = p n 20,1». = P n 23'“ - 1(le 23+1"fi>k, j = 0,1,2,...
0 3+1

Property 6. An ultimate-definite event P has a unique canonical

*

representation, denoted by P = 2 Pt, where Pt = 60 P .

* =

The expression 2 (0+ll), where 2 = {0,1}, is in canonical form,

*

but 2 (0+10) is not since 0 is a proper suffix of 10. The canonical

* *

representation of 2 (0+lO) is 2 0.

Definition 3.1.2: The set of non-null suffixes of a tape y will be
 

denoted by Sy

The following property will be used extensively in this chapter.

Property 7. Let P be u.d. with canonical representation

*t * t

P B Z P . If x E 2 , then D (P) = P +- U D (P ) and

x we w

Pn U D Pt a. X[wEwa< )1 (b

The preceding properties apply to the general class of u.d. events,

which includes both regular and non-regular events. Only regular u.d.

events will be considered hereafter.

*

Property 8. If P = 2 Pt, then P is regular iff Pt is reg-

ular.

Definition 3.1.3: An automaton A(R) = (QA’M’SO’F) is ultimate-definite
 

 

iff R is u.d. A(R) is definite iff R is definite.

Property 9. A reduced f.a. A = (QA,M,sO,F) is u.d. iff all

accepted tapes x with length L(x) S IQAI (lQAI - 1) lead to F from

any state.

Every definite event R = P + zfq (i.e., P and Q are finite

events) haséiunique canonical representation obtained as follows [1]:

(1) Remove from P all tapes having suffixes in Q.

(2) Remove from Q all tapes having proper suffixes in Q.

(3) If x 6 P and 2?x 5 ZfQ, place x in Q and remove from

Q all tapes having x as a proper suffix.

(4) Delete any redundant listing of tapes in P and Q.
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Brzozowski [1] also assumed that the tapes in P and Q were ordered

in their listing, but this is not an important restriction and we will

not require it here.

The above procedure also yields a unique canonical representation

if P or Q or both are infinite regular events. Furthermore, if

R = P + zfq is a canonical representation of R, then ZrQ is in the

canonical form for ultimate-definite events. We will consider all events

P-+ 2*Q, where P # ¢: to be regular and in canonical form unless other-

wise stated, although no special notation will be used.

*

Property 10. If R = P + 2 Q is definite and in canonical form,

*

then P02Q=¢.

* *

Property 11. If y E 2 and R = P +-23Q is definite, the

derivative Dy(R) is definite.

The following theorem is the only new result included in this

section.

Theorem 3.1.1: If P is a (possible non-regular) event, then P is

*

u.d. iff for each x E Z , P C Dx(P)°

 

.nggf: The forward implication is clear from Property 7. Suppose

P C D (P) for each x G 2?. If 2 E P then 2 E Dx(P) for each

x 6 2 . Hence for each x 6 E* xz 6 P, or E*z 6 P. This holds for

every 2 6 P; hence ZrP C P. Since A E 2?, P C 2rP, and so P - er.

By Property 1 P is u.d.

Q.E.D.

3.2. Definite and Ultimate-Definite GRMs

Although strongly connected automata constitute a proper subclass

of the GRMS, for definite and u.d. automata these classes are actually

the same. This follows from the presence of an ultimate-definite sub-

set in the accepted event, and the following theorem proves this more

general fact.

*

Theorem 3.2.1: If R = P +-ZZQ where P and Q are arbitrary reg-
 

ular events and Q # ¢, then A(R) is a GRM iff it is strongly con-

nected.
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Proof: Let A(R) = (QA’M’SO’F) be a GRM and suppose s 6 QA' For

**

some x 6 2 , M(s ) = s, and for any y E Q we have xy 6 2 Q; hencex
O,

M(sO,xy) E F and thus M(s,y) E F. So there is a path from s to F,

and from each state in F to S0 since A(R) is a GRM, and from s

to every state in QA' Hence R(s) = QA for each s 6 QA’ and A(R)

O

is strongly connected.

The converse is trivial.

Q.E.D.

Thus the above theorem applies to all definite and ultimate-defi-

nite events, and shows that no automaton accepting such an event is a

Type II GRM.

The next result is a specialization of Theorem 2.3.1 to the u.d.

case.

 

*

Theorem 3.2.2: If A(P) = (QA,M,sO,F) and P = 2 Pt is u.d., then

*

A(P) is a GRM iff for each y E P, there is a tape x E 2 such that

for each suffix w # A of yx, Dw(Pt) = $-

*

Proof: If A(P) is a GRM then for each y E P there is a tape x E 2

such that D (P) = P by Theorem 2.3.1. But D (P) = P +. U D (Pt)

YX YX WESyx W

¢ for eachby Property 7, and P n ['éU Dw(Pt) = P. Hence Dw(Pt)

w S

w E S yx

yx

Conversely, for y E P let x be such that Dw(Pt) ¢ for each

suffix w # A of yx; that is, 6% Dw(Pt) = ¢. By Property 7

w
yx

t

D P = P + U D P ; hence D P = P and b Theorem 2.3.1 A Pyxw we w< ) yxw y H

is a GRM. yx

Q.E.D.

Synchronization was defined in Chapter 2, where it was shown

that all Type II GRMs are synchronizable. Among the strongly connected

machines (i.e., Type I GRMs) some are synchronizable and some are not.

For example, machines whose state sets are permuted by every input

symbol, that is, M(QA,O) = QA for each 0 E 2, are not synchronizable.

However, all u.d. machines are synchronizable, as the next theorem

shows, and this property is important in characterizing u.d. GRMs. The

proof uses the following result of Moore [12].
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Lemma 3.2.1: Let A = (QA’M’SO’F) be a reduced f.a. Two distinct
 

states of A can be distinguished by a tape x of length 5 IQA‘ - 1.

Theorem 3.2.3: All ultimate-definite automata are synchronizable.
 

Proof: We prove by contraposition, assuming A(P) is not synchro-

. . . . . t
nizable to obtain a contradiction in the construction of P . Assume

A(P) has n states.

By Theorem 2.4.1 there are two states 81,82 6 QA which cannot

*

be merged. Let x1,x2 E 2 be tapes for which M(so,xl) = 81 and

M(so,x2) = 52. There is a tape 2 of length S n-l which distin-
l

guishes s1 and s2, so that M(Sl’zl) = M(so,xlzl) E F or M(SZ’zl)

= M(SO’XZZl) E F but not both. That is, for i = l or 2 but not
1

-..-
. . t

both, M(si ,zl) M(so,xi zl) E F. Hence xi 21 has a suffix in P .

1 1 1

But no suffix of 21 is in Pt, for then M(Sl’zl) E F and

M(sz,zl) E F contrary to the selection of 21. Thus for some non-null

suffix xi of x1 ,x: 6 Pt.

1 1 1

l
M(Sl’xi ) and M(sz,x: ) are distinct since 5 and 52 can-

1 l 1

not be merged. Let 2 be a tape of length S n-l which distin-

2

. 1 1 1
guishes them. Then M(sl’inZZ) M(so,x1xilzz) E F or M(sz,xi1z2)

= M(s ,x x} z ) E F but not both. Denote the one in F by

O 2 i1 2

l 1 l

M(s, ,x, 22) = M(so,x, x, 22). Then x, x, 22 6 P and, as before,

12 i1 12 i1 i2 11

for some non-null suffix x? of . , x? x} z 6 Pt.

12 12 12 i1 2

O O O O 0 0 t

Proceeding in this manner we obtain a list of tapes in P as

follows:
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X Z

1 1

X2 X1 Z

12 i1 2

j X2 X Z
X

ij 12 11

j+l xi 2 1

. . x x, 2

13+1 13 i2 11 3+1

Since each zi has length S n-l, for some integers m,n such that

. n t

m > n, z = z . But this means x, °--x? x} z E P and

m n i i i m
n 2 l

m n 2 1 t

x. *-°x. ---x. x. z E P , which is impossible since the former is a
1m in 12 11 m

proper suffix of the latter.

We conclude that A(P) is synchronizable.

Q.E.D.

Automata which are synchronizable cannot necessarily be syn-

chronized to every state. For example, synchronizable automata with a

dead state can be synchronized only to the dead state, as is the case

with Type II GRMs. If an automaton A is synchronizable to a state

s then it is synchronizable to any state in R(s), for if x syn-

chronizes A to s and M(s,y) = t, then xy synchronizes A to t.

Of particular interest is the case where A can be synchronized to the

start state so, or restarted; this is a useful property of many

practical machines. Such machines can be synchronized to any state.

Ultimate-definite GRMs can be described in terms of this property.

Theorem 3.2.4: Let A(P) = (QA,M,SO,F) be u.d. Then A(P) is
 

strongly connected iff it is synchronizable to so.

Proof: All u.d. automata are synchronizable; hence if A(P) is strong-

ly connected it is synchronizable to 5 since 6 R(s) for eachs

0 0

s 6 QA. Conversely, if A(P) is synchronizable to 30 then 80 E R(s)

for each s 6 QA’ and hence all states are accessible from any state
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s E Q .

Q.E.D.

We recall from Section 2.1 that a repetitive machine (RM) is a

GRM for which there is at least one tape which causes a transition from

every final state to the start state. The restartability property of

u.d. GRMs leads to the following result.

Theorem 3.2.5: Let A = (QA,M,SO,F) be u.d. Then A is a GRM iff
 

it is an RM.

Proof: By Theorems 3.2.1 and 3.2.4, if A is a GRM then it is re-

startable; suppose x restarts it. Then M(QA,x) = and in particu-

lar M(F,x) = s

80’

0° Hence A is an RM.

Q.E.D.

The above proof actually indicates a stronger result, namely

that any strongly connected synchronizable automaton is an RM.

Cutlip [6] has characterized the tapes which synchronize an

ultimate-definite automaton by proving the following: If P is a

regular u.d. event, then the tape x synchronizes A(P) iff x is

not a prefix of a proper suffix of any tape in Pt. This reSult, along

with the next theorem, characterizes the tapes which synchronize A(P)

to the start state.

Theorem 3.2.6: Let x synchronize the u.d. automaton A(P)
 

*

= (QA,M,s0,F), where P = 2 Pt. Then x restarts A(P) iff no suffix

of x of length > O is a prefix of any tape in Pt.

Proof: If x restarts A(P) then Dx(P) = P since M(so,x) = so.

But D (P) = P +- U D (Pt) and P 0 [:U D (Pt) = ¢; hence D (Pt) = ¢
x w w w

wESx WESx

for each w E Sx" That is, no tape in Pt begins with a suffix w # A

of x.

Conversely, if no suffix w # A of x is a prefix of any tape

in Pt then Dw(Pt) = ¢ for each suffix w # A of x, or

U D (Pt) = ¢. Hence D (P) = P + U D (Pt) = P and so M(s ,x) is

w x w 0

wESx WESX

indistinguishable from so. But since A(P) is reduced, M(so,x) = so.

Since x synchronizes A(P), it synchronizes A(P) to so.

Q.E.D.
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We come now to some results which relate strongly connected u.d.

machines to the canonical representation of events.

Theorem 3.2.7: If A(P) = (QA’M’SO’F) is a strongly connected u.d.

automaton over the alphabet 2, then there is a non-empty subset B C 2

such that no tape in Pt begins with a symbol in B.

nggf: If every symbol in 2 is a prefix of a tape in Pt then for

each a E 2, D0(Pt) # ¢. Then for each y 6 P and x E if, there is

at least one non-null suffix w of yx such that Dw(Pt) # Q. By

Theorem 3.2.2 A(P) is not a GRM and hence not strongly connected.

Q.E.D.

For the case of a two-symbol alphabet, if A(P) is strongly

connected then every tape in Pt begins with the same symbol. Hence if

2 = {0,1}, the machine for P = 2*(1+10) is strongly connected, but the

machine for 2*(oo+10) is not.

The converse of Theorem 3.2.7 is not true for u.d. events in

general, as shown by the machine of Figure 3.2.1 taken from Paz and

Peleg [14]. This machine is not strongly connected, although every

tape in Pt begins with 1. However, if Pt is finite the converse

can be proved.

 

 
*t

Figure 3.2.1. Machine accepting the event P = Z P ,

*

where z = {0,1} and Pt = 1(00) 1.

*

If R.; Z is a finite event, let L(R) denote the maximal

length of tapes in R. That is, L(R) = max {L(x): x 6 R}.

Theorem 3.2.8: Let A(P) = (QA,M,sO,F) be u.d. over the alphabet 2.
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C

If P is finite, then A(P) is strongly connected iff there is a non-

t

empty subset B C 2 such that no tape in P begins with a symbol in

B.

Proof: Only the reverse implication must be proved. Suppose no tape in

Pt begins with a symbol in B, and let L(Pt) = k. For each y E P we

will find a tape x E 2* such that for each w E Syx’ Dw(Pt) = ¢, and

the proof will be complete by Theorem 3.2.2. Let x Q Bk. For each

suffix ,x of x (j = 1,...,k), D (Pt) = ¢ since no tape in

J k+1 jxk+l

Pt begins with the first symbol of jxk+l‘ Then for any tape y 6 2?,

Dw(Pt) = ¢ for each non-null suffix w of yx since no tape in Pt k

has length exceeding L(x) = k. Hence for any y E P, any tape x 6 B

has the desired property. By Theorem 3.2.2 A(P) is a GRM and hence

strongly connected.

Q.E.D.

The class of u.d. events P = 2*Pt where Pt is finite is

exactly the class of non-initial definite events, which is a proper sub-

class of both the u.d. events and the definite events; in fact it is the

intersection of the two classes.

The next theorem concludes this section.

*

Theorem 3.2.9: Let R = P4+ 2 Q where P is a finite event and R is
 

in canonical form. If A(R) is strongly connected then every tape in

P is a proper suffix of a tape in Q.

.nggf: Suppose A(R) = (QA,M,so,F) is strongly connected and let

y E P. Then there is a return tape x such that M(so,yx) = so.

Hence for any non-negative integer m, (yx)m y 6 R. Choose an integer

n such that L[(yx)ny] > L(P). Then (yx)ny E R and (yx)ny Q P, so

(yx)ny E zfQ. Hence (yx)ny has a suffix in Q. Since y E P, no

suffix of y is in Q because R is canonical. Then (yx)ny = zw

where z E Z? and w 6 Q, and since w is not a suffix of y, y is

a proper suffix of w E Q.

Q.E.D.

The above theorem applies in particular to composite definite

events, and shows that not all such events yield strongly connected

27



*

machines. For example let R = l + 2 O.

3.3. Further Structure Properties of Ultimate-Definite Events
 

Suppose P = 2*Pt and Q = 2*Qt are ultimate-definite events.

By Property 2 the union and intersection of P and Q are ultimate-

definite. If R = P+Q = Zth and T = P D Q = EPIC, then Rt and Tt

can be found by applying the construction procedure of Property 6. How-

ever, the task could be simplified if Rt and Tt could be determined

from Pt and Qt only. This problem is the primary concern of the

present section.

The first result completely characterizes Rt in terms of Pt

and Qt, where R = P + Q.

The following property is an immediate consequence of Definition

3.1.1 and Property 6, but is listed for ease of reference.

*

Property 12. If P = 2 W is u.d. with canonical representation

'k

P = 2pc, then PtGW.

23*Rt = 23*Pt + 2*Qt = 2*(Pt + Qt), thenIt follows that if R

Rt: Pt +Qt.

Theorem 3.3.1: Let P and Q by u.d. and R
 

= P + Q, with canonical

*t *t *t

representations R = 2 R , P = 2 P , and Q = 2 Q . If 2 is a tape,

then 2 E Rt iff either

t

(1) z 6 Pt and no proper suffix of z is in Q , or

(2) z 6 Qt and no proper suffix of z is in Pt.

Proof: We first prove the implication to the left.

Suppose z 6 Pt and no proper suffix of z is in Qt. Note

that z 6 R since Pt 5 R, and hence either 2 E Rt or a proper suffix

of z is in Rt. Since 2 6 Pt no proper suffix of z is in Pt,

and hence none is in Pt+Qt. But Rt C Pt + Qt, so 2 has no proper

t

suffix in Rt. Hence 2 E R .

If 2 6 Qt and no proper suffix of z is in Pt, a similar

argument applies.

The converse is a statement of the form A 3 [(B and C) or (D

éand E)], where A,...,E correspond to propositions as follows:
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z E RtA

B 2 6 Pt

C no proper suffix of z is in Qt

D z 6 Qt

E no proper suffix of z is in Pt.

It can be shown that the following logical statement is valid, where

"4A" means "not A."

{[(~B and ~D) = NA] and [~c = ~A] and [~E e MA]} = {A = [(B and c) or

(D and E)]}.

To complete the proof of the theorem we will prove the first three

implications of the above statement.

[(~B and ND) = ~A]: Suppose z E Pt and z E Qt. The result 2 Q Rt

. . . t

is immediate since R 5 Pt + Qt.

[~C = ~A]: Suppose a proper suffix w of z is in Qt. Then w E Q

and hence w E R, so either w 6 RC or a proper suffix of w is in

t

R . In either case a proper suffix of 2 would be in Rt, so that

t

z E R .

[~E = NA]: The preceding argument applies with Pt and P substituted

for Qt and Q, respectively.

Q.E.D.

From this result the procedure for constructing Rt from Pt

and Qt, where R = P + Q, becomes clear. Beginning with the shortest

tapes, place in Rt all tapes in Pt + Qt which do not have proper

suffixes already in Rt. This procedure is in general more efficient

than constructing Rt from R. To express the procedure compactly let

t t

R:, P, and Q: represent the tapes of length i in Rt, P and Qt,

respectively; then

R P

t

+ Q1

t t

+Q§ - (m, + 221)R P

t
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By Property 12, Rt is contained in Pt + Qt. The conditions for

equality follow from Theorem 3.3.1.

Corollary 3.3.1: Let P and Q be u.d. and R = P + Q. Then

t t t t

R = P + Q iff no tape in P has a proper suffix in Qt and no

 

t

tape in Q has a proper suffix in Pt.

We now turn to the problem of determining the canonical repre-

sentation of the intersection of two u.d. events.

Theorem 3.3.2: Let P and Q be u.d. and T = P D Q, with canonical
 

* t * t * t

representations T = Z‘T , P = 2 P , and Q = 2 Q . If 2 is a tape,

then z E Tt iff either

t

(1) z E P and a suffix of z is in Qt, or

(2) z E Qt and a suffix of z is in Pt.

Proof: We first prove the implication to the left.

Suppose z E Pt and z = wx, where x E Qt and L(w) 2 0.

Then 2 E P, and z E Q since a suffix x of z is in Qt. Hence

2 E P D Q = T. If 2 has a proper suffix u in T then u E P, and

hence either u E Pt or a proper suffix of u is in Pt. In either

case 2 would have a proper suffix in Pt, which is impossible since

2 E Pt. Hence 2 has no proper suffix in T and so z E Tt.

If 2 E Qt and a suffix of z is in Pt, a similar argument

applies.

As in Theorem 3.3.1, the converse is a statement of the form

A = [(B and C) or (D and E)], where A,...,E correspond to propositions

as follows:

A z E Tt

t

B z E P

C a suffix of z is in Qt

D 2 E Qt

E a suffix of z is in Pt.

We repeat the procedure used in the proof of Theorem 3.3.1 to

complete this proof.

[(NB and ~D) = ~A]: Suppose z E Pt and z E Qt. Either z E T or

t

z E T. If 2 E T then clearly z E T , so assume 2 E T = P n Q.
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Then 2 has proper suffixes x in Pt and v in Qt, and hence

z = wx = uv for some non-null tapes w and u. Thus either x is a

suffix of v or v is a suffix of x; say v = yx for some (possibly

null) tape y. Since x E Pt, v E P. But v E Qt C Q, so v E P Q Q = T.

Hence z has a proper suffix v in T, implying ~z E Tt.

[~C = ~A]: If 2 has no suffix in Qt then 2 E Q; hence z E T and

so 2 E Tt.

[~E ” ~A]: If 2 has no suffix in Pt the preceding argument applies.

Q.E.D.

This theorem yields a procedure for constructing Tt from Pt

and QC when T = P 0 Q. Beginning with the shortest tapes in Pt and

Qt, place in Rt each tape in Pt that has a (not necessarily proper)

suffix in Qt and each tape in QC that has a suffix in Pt. Letting

t t t t t

Ti’ Pi’ and Q: represent the tapes of length i in T , P , and Q ,

respectively, we can write

t = t t

T1 P1 fl Q1

t t t t t t t

T2=P20Q2+P20 [£121] +Q20 [ziPl]

Tt + Pt 0 Qt + Pt 0 [ZZQt + int] + Qt n [221): + ZIPt]

3 3 3 3 1 2 3 l 2

' j-l . J-l .
t t t t -k t t -th

= P + P U + , n Ur J. n <2j J n tk=1 :1 Qk] Q] [1... )9 1.3

Q

t

for j = 2,3,4,... Then Tt = U T,.

i=1 3

Corollary 3.3.2: Let P and Q be u.d. and T P D Q. Then
 

TtC Pt +Qt.

P 0 Q. Then TtCorollary 3.3.3: Let P and Q be u.d. and T

= 1>t +Qt iff Pt = Qt.

 

t

Proof: Suppose Tt = Pt + Qt and let y E Pt. Then y E T , and by

t

Theorem 3.3.2 y has a suffix x in Q ; hence y = wx for some

* . .

‘w E 2 . But Qt C Tt, so x E Tt. Since y has no proper suffix in
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t t

T , w = A and y = x. Thus y E Q , proving Pt : Qt. Similarly,

Qt C Pt, and so Pt = Qt.

If Pt = Qt then P = Q and hence T = P Q Q = P = Q. But

2*Pt and 2*Tt are both canonical representations of the same event,

so P = Tt. Similarly, Qt = Tt, and hence Tt = Pt + Qt.

Q.E.D.

For completeness we consider the complement and star of u.d.

events. No results were obtained for the concatenation of u.d. events.

If P is u.d. and R = P*, R is u.d. only in the trivial case

R = 2?. For, A E P* for any event P and by Property 5, R = E* iff

A E R. The canonical representation ert of R is given by Rt = {A}.

Paz and Peleg [14] proved the following result.

* *

Property 13. If P is u.d. and 2 E P ¢ ¢, then 2 - P is

not u.d.

*

From this property it follows that the complement 2 - P of a

*

u.d. event P is u.d. iff P = 2 or P = ¢.

3.4. Closure Properties of Certain Classes of Events
 

The class of general repetitive events has been denoted by C.

In addition, let N.I.D., U.D. and DEF denote the classes of non-initial

definite, ultimate-definite, and definite events, respectively. The

classes N.I.D. fl 0, U.D. n C, and DEF n C will be investigated for

closure under the standard event operations.

Recall that a non-initial definite event P is an event that can

be written P = ZEQ where Q is finite. Thus N.I.D. is a proper sub-

class of U.D., and is also a proper subclass of DEF.

Theorem 3.4.1: N.I.D. O C is not closed under union, dot (concatena-
 

tion), intersection, complementation or star.

Proof: We provide a counterexample for each case. 2 = {0,1}.

* * *

Union: Let P = 2 010 and Q = 2 11. Then P + Q = E (010+1l). By

Theorem 3.2.8 P and Q are in C but P + Q is not.

2 * * * *

(Z 1)(2 1) = X (12 1). Construct-

*t t *

2 R we see that R = 10 1,

*

Dot: Let P = 2 l and let R = P

ing the canonical representation R

32



which is infinite; hence R E N.I.D.

* *

Intersection: Let P = 2 (01+010) and Q = 2 (10+101). Both events

are in a by Theorem 3.2.8 and both are in canonical form, with

t

p = 01+010 and Qt = 10+101. Applying Theorem 3.3.2 we obtain

A*

P 0 Q = 2 (010+101), which by Theorem 3.2.8 is not in G.

* * *

Complementation: Let P = 2 11. The complement is z - P = 2 (10+01+00)

+ A + l + 0, which is not in N.I.D.

Star: By Property 4, if P is u.d. then P* = A + P. This also applies

to the non-initial definite events. Let P = {$1. Then P* = A + f*l,

which is not in N.I.D.

Q.E.D.

Theorem 3.4.2: U.D. n C is not closed under union, dot, intersection,

complementation or star.

“2599;: The counterexamples of the preceding theorem apply here for

union, intersection, complementation and star.

To see that U.D. n C is not closed under concatenation, consider

the events P = Z?[00(11)*1] and Q = {$1. Both events are u.d., as

is the event R = PQ. Q is in U.D. n 0 by Theorem 3.2.8. Construc-

tion of the machines for P and R shows that P is a GRE but R is

 

not.

Q.E.D.

Theorem 3.4.3: DEF n C is not closed under union, dot, intersection,

or star.

Proof:

Union, dot, intersection: The counterexamples of Theorem 3.4.1 apply.

Note that in the case of the dot, R is not in DEF because Rt is

infinite.

Star: Let P = 2:11. By Theorem 3.2.8 P E C. By Property 4,

P* = A + P, and construction of the machine for P* shows that P* is

not a GRE and hence not in C.

Q.E.D.

The question of closure of DEF n C under complementation has

A * A

not been resolved. If P E DEF 0 G, then 2 - P E G by Theorem 2.5.1.
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Hence we must show only that 2* - P E DEF. This seems to be a reason-

able conjecture.

The above results point up some rather disappointing features of

these classes of events. Theorem 3.2.1 shows that the classes

N.I.D. O C, U.D. fl 0 and DEF n C consist of exactly those events in

N.I.D., U.D. and DEF, respectively, that yield strongly connected

machines. These results show, for example, that a machine that is

equivalent to two strongly connected definite machines operating in

parallel (accepting the union of the events accepted by each parallel

machine) is not necessarily strongly connected.

In Section 2.5, Theorem 2.5.1 was stated without proof. We now

restate the theorem and prove it.

Theorem 2.5.1: Neither R nor 0 is closed under union, dot, inter-
 

section, complementation or star.

Proof:

Union, intersection: The counterexamples of Theorem 3.4.1 apply for

both R and C.

Dot: The counterexample of Theorem 3.4.2 applies.

Complemeniation: Observe that, for any event P, if A(P) = (QA,M,SO,F),

then .A(2 - P) = (QA’M’SO’QA-F)3 That is, the machine for the comple-

ment of P is just the machine for P with final states labelled

differently. Let P = 1(lll)*. A(P) is a Type II GRM as well as an

RM, and since the dead state is in QA - F, A(Z? - P) is neither in

A

R nor G.

Star: The counterexample of Theorem 3.4.3 applies.

Q.E.D.

We close this section with a result on the union of ultimate-

definite GREs.

Theorem 3.4.4: Let P,Q 6 U.D. n c and let R = P + Q. Then R E &
 

. *

iff for eaCH y E R there is a tape x E 2 such that for each non-

null suffix w of yx, Dw(Pt) : Q and Dw(Qt) : P.

Egggf: If R E C, then by Theorem 3.2.2 for each y E R there is a

*

tape x E 2 such that D (R) = R. But D (R) = D (P + Q)

yx YX YX
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t .t_ t
=P+ U Dw(P)+Q+ U Dw(Q)-R. If zE U DW(P)

wES wES wES

yx .vx yx

then x E P (Property 7). But 2 E R, so 2 E Q. Hence U Dw(Pt)

wES

t yx

C Q, and similarly U Dw(Q ) C P.

wES

*

Suppose that for each y E R there is a tape x E 2 such that

t t t

C C , ' Cfor each w E Syx’ Dw(P ) Q and Dw(Q ) P That is, U Dw(P ) Q

wES

yx

and U D (Qt) C P. This implies that D (R) = R, since D (R)

w yx yx
wES

W t t
=D(P+Q)=P+ UD(P)+Q+ UDW(Q)=P+Q=R. By

yx wES w wES

yx yx

Theorem 3.2.2 R is a GRE.
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4. ZEIGER'S CASCADE DECOMPOSITION OF AUTOMATA

Several authors have contributed methods of decomposing finite-

state machines into an interconnected network of "simpler" machines.

Major contributions have been made by Hartmanis and Stearns, Krohn and

Rhodes, and Zeiger. The decomposition theory of Hartmanis and Stearns

[7] involves partitions on the state set and uses the pair algebra

which they developed. Krohn and Rhodes [9, 10] use semigroup theory

to show that a finite-state machine can be realized as a cascade con-

nection of two-state machines with no non-trivial permutations and

permutation machines of a special type.

In 1965 Zeiger [16] presented a scheme for decomposing an auto-

maton into a cascade of permutation-reset (P-R) machines, and proved

the Krohn-Rhodes result by showing that a P-R machine can be decomposed

into a cascade of the two basic machines of Krohn and Rhodes. The 1965

paper contained some errors, and was subsequently revised and published

in 1967 [17]. This presentation also contained some important dis-

crepancies. A few corrections were published [18], not all of which

were correct, and F. Cutlip has suggested corrections for these and

the remaining known errors [4].

Some interesting questions arising from the Zeiger decomposition

theory are answered in this chapter. In the main these questions con-

cern relations between properties of a machine and the appearance of

resets and permutations in the corresponding Zeiger cascade. An

application to the decomposition of definite automata is presented.

4.1. The Corrected Decomposition Procedure
 

To establish notation and to make Chapter 4 self-contained, we

present in this section the corrected decomposition procedure of

Zeiger. Some of the notation of the previous chapters is changed in

order to be consistent with Zeiger's notation.

M, N, K, and L denote finite automata, or machines. The state

set of M is QM, and the input set is I . 1* is the set of all

M M

finite sequences obtained by concatenating symbols from I including
M,

the null sequence A, and is the set of all input sequences available
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to M. If G E IN, then OM is the transformation of QM defined as

follows: if B C QM’ then OM(B) = M(B,o) = {s E QM: M(t,c) = s for

some t E B}, where M(-,-) is the state transition function of M.

The range of OM is written ran OM. If o,T E 1M, then the compo-

- ' ' T = = =
Sition of GM and TM is OM M(B) OM[M(B,T),O] M(B,TO) (TO)M(B),

and SM denotes the semigroup of transformations generated by elements

of 1M under this composition operation.

If A is a set, EA denotes the identity map on A. A reset of

machine M is a map w that takes all states in QM to a single

state; that is, for some 5 E QM and for all t E QM’ w(t) = s. The

extended semigroup SR is defined by Sk = SMIU EQ U {w: w is a

reset of M}. If w E Sh is identity map on M B C QM’ we write

w(B) = B(id).

A 39333 C for machine M is a nonempty collection of nonempty

subsets of QM such that for each w E S and R E C, w(R) is a

M

subset of an element of C. Observe that every state of QM is in

some cover element. Cover elements and state subsets will usually be

denoted by capital letters.

If C is a cover for M and N is a machine,then. N tells

 

where M is in C means that (1) IN = IM and (2) there is a map

ZN of QN onto C such that for each 0 E I and S E QN’

CoM(zN<s)) zN<oN<s)>.

Let K,L, and N be machines. Then N E K.* L is read "N is

M

a series composition of K followed by L" and means (1) QN C QK x QL’

C C XIN IK’ and IL IK QK’ and (2) for each 0 E IN and (p,r) E QN’

ON(p,r) = (OK(p),(O,p)L(r)). See Figure 4.1.1.

 

   
 

 

    

Figure 4.1.1. Illustration of N E K.~ L.
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If A is a collection of sets, then max A denotes the set of

all elements of A which are not contained in other elements of A.

A permutation-reset (P-R) machine L is a machine for which

each input 0 E IL either resets L (OL(QL) is a single state) or

permutes the states of L (CL(QL) = QL).

The strategy for decomposing machine M is as follows. First

obtain a nontrivial cover C for M and construct a P-R machine K

which tells where M is in C. Then refine the cover C by select-

ing certain elements of C and replacing them with certain smaller

subsets of QM to obtain a refined cover C'. Construct a P-R machine

L so that N E K.* L and N tells where M is in C. Continue this

process until a cover consisting only of singletons is reached.

Theorem 4.1.1 (Zeiger's Proposition 1) shows how the first cover

and P-R machine of a cascade decomposition of M are constructed;

Theorem 4.1.2 (Zeiger's Proposition 2) gives the induction step, show-

ing that successive refined covers and corresponding P-R machines can

be constructed to complete the cascade.

Theorem 4.1.1 (Zeiger): For each machine M there is a cover C, not
 

containing QM’ and a machine N for which (1) N tells where M is

in C, (2) for each 0 E IN, ran UN is either QN or a singleton, and

(3) the permutations of QN are uniquely determined.

Proof: Let C = max ({w(QM): w E SM} - QM). Let QN = C and ZN = EC.

The transitions of N are defined as follows. Let 0 E IN = IM.

(1) If OM(QM) # QM, then OM(QM) C R' E C for some R'.F0r each

R E C let GN(R) = R'. If more than one R' has this

property, choose any one. Note that ON resets N to

state R' E QN.

(2) Suppose OM(QM) = QM; that is, 6M permutes QM. If R E C

then OM(R) C T Elc. Since OM is a permutation it has an

inverse; thus 6M (T) contains R. But this cannot be a

proper containment since R E C and C is max of a col-

lection of subsets. Hence Gé1(T) = R, and OM(R) = T E C,

showing that GM maps elements of C onto elements of C.
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Since CM is invertible on QM’ it is invertible on sub-

sets of QM, and in particular on C. Hence OM is 1-1 on

C, and so permutes C.

For R E C let ON(R) = R' if and only if OM(R) = R'.

Since OM permutes C, ON permutes C, and so permutes

the states of N.

It is clear that N is a P-R machine and the permutations of

QN are uniquely determined. Since ZN is identity on C, the con-

dition "N tells where M is in C" is satisfied.

Q.E.D.

Corollary 4.1.1 (Zeiger): The group of permutations in SN is a
 

homomorphic image of a subgroup of SM.

. . c g . g .
Proof. Define GM SM by CM {xM E SM. xM(QM) QM} and define

C = ' = ' I:GN SN by GN {xN 6 SN. xN(QN) QN} or, equivalently, GN

{XN E SN: xN(C) = C}. It is eaSily verified that GM and GN are

groups. The map f: GMH S defined by f(xM) = xN for xM E G is

the desired homomorphism. MNote that f is in general many-to-oge

since two input sequences to M may permute QM differently but have

the same effect on C.

Q.E.D.

Figure 4.1.2 shows the result of applying Theorem 4.1.1 to a

machine M. Note that the second box, representing "what is left” of

M, is unspecified.

 

   

 

      

Figure 4.1.2. The first step in decomposing M.
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The following lemmas are used in the proof of Theorem 4.1.2.

Definition 4.1.1: Let C be a cover for M. Elements P and R of
 

C are said to be similar if there are transformations xM and yM

in SM such that XM(P) = R and yM(R) = P. An element R of C is

initial in C if it is not the image under transformations from SM

of any element of C except those similar to it.

Similarity is an equivalence relation on C. If R E C is in-

itial, then so is every element in the similarity class of R. Such

classes are called initial similarity classes.
 

Lemma 4.1.1: If C is a cover for M then C has an initial
 

similarity class among the elements of C of maximal cardinality.

Proof: Let D be a similarity class whose elements are of maximal
l

cardinality. If D1 is not initial, then another similarity class

D2 # D1 has elements with images in D1 under appropriate trans-

formations from SM. If D2 is not initial, select D3 in a similar

fashion, and so on. Since the elements of D1 are not similar to any

elements in Dj for i E j, no Di can appear twice in the sequence.

Since there are a finite number of similarity classes in C, the

sequence must terminate in an initial similarity class.

Q.E.D.

Lemma 4.1.2: Let C be a cover for M having initial similarity
 

class D. If P E D and R E D then there are transformations vR

P

and v: in SM with the properties (1) v%(P) = R and v:(R) = P,

and (2) vg-v:(R) = R(id) and VE°V§(P) = P(id).

- ' ' ' "' = d = P.Proof. By Similarity, for some XM’yM E SM, xM(P) R an yM(R)

Thus nyM(P)m= P and xMyM(R) = R. nThere are integers m,n for mm

which (nyM) (P) = P(id) and (xMyM) (R) = R(id), and hence (nyM) (P)

= P(id) and (xMyM)mn(R) = R(id). Let v = x and vP = (y )mn'1
M R"

U
F
U

M yM;

these clearly have the desired properties.

Q.E.D.

We now can present Zeiger's Proposition 2. See Figure 4.1.3.
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Figure 4.1.3. The induction step in decomposing M.

Theorem 4.1.2 (Zeiger): If K and M are machines, C is a cover

for M not consisting entirely of singleton sets, and K tells where

M is in C, then there are machines N and L and a cover C' for

M for which:

(1) C' is a proper refinement of C, i.e., if R E C' then R

is contained in an element of C, and for some T E C, T is

not a subset of any element of C'.

(2) N tells where M is in C'.

(3) N E K r L.

(4) For each (O,p) E I ran (O,p)L is either QL or a single-L9

ton.

(5) There is a subset B C QM for which there is a homomorphism

from the group of all permutations of B produced by state

transformations of M onto the group in SL. (It follows

that the group in S is a homomorphic image of a subgroup

of SM.)

L

Pgoof: To construct C', choose an initial similarity class D among

the elements of C of maximal cardinality. C' is obtained from C

by replacing each P E D with a collection of subsets of P to be

specified. Denoting that collection R(P) (the replacement set for

P), define R(P) = max {w(T): w E SM, T E C, and w(T) is a proper

subset of P]. Then C' = (C-D) U [PEDR(P)]. Clearly C' is a proper

refinement of C (if C consists only of singletons the cascade

in complete and C' is empty).
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Machines N and L are constructed as follows. Choose a fixed

element U of D, which will be called the reference element of D.
 

For each P E D select transformations v5 and vg according to

Lemma 4.1.2. (Note that if A E R(U) and P E D, then v5(A) E R(P);

for if A is properly contained in A' E R(P) then vg(A') 2 A since

vg is 1-1, implying that A was not max among the subsets from which

R(U) was chosen.) Let QL = {R E C': R<Z U}; that is, to each element

of R(U) we correspond a state of QL. let IL = IK X QK’ QN = QK X QL

and IN = 1K = IM' Let zN map QN onto C' so that for each

(p,r) E QN.

(1) If ZK(p) P E D, then ZN(p,r) = Z§(p).

(2) If ZK(p) P E D, then ZN(p,r) = vU

r denotes both a state of L and an element of C'.

(r), where the symbol

One further lemma is needed before the transitions of N can be

Specified.

Lemma (Cutlip): Let P E C and S E D. If GM(P) is properly con-

tained in S, there is an element A in R(U) such that ngM(P) C A.

U U
o C 0’ C 'Proof. If OM(P) S then vS M(P) U Since vS

one onto U. Hence ngM(P) is among the subsets of U whose max is

maps S one-to-

taken to get R(U).

Q.E.D.

To specify the transitions of N, for each 0 E IN and

(p,r) E QN’ define ON(p,r) = (s,t) by:

(1) s = OK(p)-

(2) If ZK(S) = S E C O C', let t = "don't care".

(3) If ZK(8) = P E C n C' and ZK(s) = S E D, choose t so

that vSOM(P) C t.

(4) If ZK(P) = P E D and ZK(S) = S E D, choose t so that

U P

O C .vS MvU(r) t

Again, the symbols r and t refer both to states of L and

corresponding elements of C' in R(U). In step 2, the next state

of L can be arbitrarily chosen. Zeiger chose to let t = r, which

means CL performs the identity permutation on states of L. The
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"don't care” specification given here is preferred so that when the

terms "permutation” and "reset" are used, only the nontrivial cases in

steps 3 and 4 are understood. In step 3, O resets L to state t,

L

and such a state transition Specification is allowable in view of the

. P

preceding lemma. In step 4, when ngMvU(r) = t a permutation of

QL is produced by O. In some situations OM is not a one-to-one

U P
0map from P to S, and vS MVU

this case 0 resets L to state t, and this is also an allowable

(r) is properly contained in t; in

transition in view of the lemma.

These transition specifications for N will be referred to fre-

quently in this chapter as Rules 1, 2, 3, and 4.

This completes the construction of N and L. Conclusions 1,

3 and 4 of the theorem are verified directly. The proofs of conclusions

2 and 5 do not significantly aid understanding of the construction;

hence the former is included in the appendix: and the latter is omitted.

Q.E.D.

The machine L is called a component machine.
 

Examples of this decomposition are given by Cutlip in [4].

The next two sections contain the new results of this study.

4.2. Permutationo, Resets) and Zeiger Covers
 

Let M be a machine, and let C ,Cn be a sequence of covers1,...

obtained in a cascade decomposition of M as described in the pre-

vious section, where Cn consists of singletons. This sequence is not

unique in general, since each cover may have more than one initial

similarity class available for refinement. Each Ci is called a

Zeiger cover, and C Cn is called a sequence of Zeiger covers
 

1,...,

for M. The term Zeiger cover for M refers to an arbitrary cover

 

 

from any sequence of Zeiger covers for M.

In this section the properties of Zeiger covers for M and sub-

sets of QM which have Special significance in a cascade decomposition

of M are investigated. Necessary and sufficient conditions for an

input to cause resets or identity permutations of the component

machines are obtained.

Throughout this section the following situation is assumed.
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C1"'°’Cn is a sequence of Zeiger covers for M, with initial simi-

larity classes Dl’°"’Dn-l and corresponding component machines

L1,...,Ln. The cascade connection of L1,...,Ln is a Zeiger cascade
 

for M. Ki or Ni is the cascade of L °’Li° For economy of1".

space these conditions will not be written into every lemma and theorem.

The first result shows the structure of initial similarity

classes.

Theorem 4.2.1: Let C = (81,...,Sm} be a Zeiger cover for M with

initial similarity class D = {Sl,...,Sk], k S m, and reference element

81' For each i S k let the replacement set for Si be R(Sl) =

{si1,siz,...,siri}.

Then r =...= r = r, and the labels 8,. can be assigned so

S l k S ij

i 1

that vsl(Slh) Sih and vSi(S
= ' S

ih) Slh for each i S k_and h r.

Proof: Let R(Sl) = {S ..,S1r } be any labelling of R(Sl)',S ,.

11 812 1 81

For each i S k select vS and vS according to Lemma 4.1.2.

1 i
3.

To assign labels to R(S.) define s,, = v 1(S .) for j = 1,...,r
i 13 S1 lj

S1 818i

and note that vS (Sij) = VS,VS (Slj) = Slj . We must show that

i i 1 S

S,, E R(S.) for each j and that v 1 maps R(S ) onto R(S ).

ij 1 S1 1 i

Sij is contained in some element T of R(Si)’ and T = w(S)

for some w E S and S E C by definition of R(S,). Now

M 1

S1 S1 S1 81 S1

S . = v (8..) C v (T) = v w(S). But v w E S , so v w(S) is
lj S 1] S S. S M S

i i i i 1

among the subsets of QM Swhose max is taken to get R(Sl)° But

1

= ' d. hSlj E R(Sl), so Slj VS (T) is require T us

1

Si Si

S =v (Slj)=vsv
l

.. (T)=TER(S,).

13 81 1 - 11

1: R(Sl) m R(Si) is onto, let T be any

1

S

S

S

To show that vS

S
. 1

element of R(Si)' Then for some h s r1 vSi(T) C S1h E R(Sl).
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S. S S

1 l
h = C = = '

T us T vslvsi(T) vsl(Slh) Sih’ and so T Sih Since T E R(Si)'

Q.E.D.

S.

It is not necessarily true that v J(S. ) = S. for every

Si 1h jh

S.

i,j S k and h S r. However, vsJ can be selected to have this

sj s s 1 33 S, 31 Sj

t o g , J =proper y Let VS. vS VS. Then vS (Sih) I vS VS.(Sih) vS (81h)

i l i i l 1 1

Si S

= S. , and it is easily verified that v v j(8,) = S,(id).

jh Sj Si i l

Zeiger shows that the permutations of the states of a component

machine are caused by permutations of subsets of states of the original

machine. The following results characterize these permuted state sub-

sets and show that some appear as elements in Zeiger covers.

~ *

o . d c O f a O O 0 IO.EEEEElEB- Let xM E SM an B QM I x 102 k E I then

M

xM(B) = (Ok)M...(Ul)M(B) = M(B,x), where M(-,-) is the state tranST-

tion function and M(B,x) = {s E QM: for some t E B,M(t,x) = a}.

Note that (ol)M is applied first to B. If i is a positive integer,

then xM(B) = M(B,xl), where x1 is x concatenated i times. De-

fine x;(B) = AM(B) = B(id), where A is the null tape.

. * i

If XM 13 a reset such that x E IM, let xM(B) xM(QM) for

i = 1,2,....

*

Definition 4.2.1: Let x E IN. A subset B of QM is called a
 

minimal x:permuted subset of Q" if and only if xM(B) = B and

1'1

xM(A) # A for all proper subsets A of B.

 

If xM is a permutation on QM (xM(QM) = QM) then the minimal

x-permuted subsets of QM are the orbits of the permutation.

 

*

Lemma 4.2.1: Suppose B C QM and x E IM' Then xM(B) = B if and

only if B is the union of minimal.x-permuted subsets of QM.

Proof: If xM(B) = B and AB = A 0 B E ¢, where A is a minimal x-

permuted subset of QM’ then xMKAB) C B. But xM(A) = A, so

xMCAB) C A, yielding xMCAB) C A O B = AB. Since A is finite and

xM is one-to-one on A, xM(AB) = AB. Thus AB = A since A has no
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proper subsets permuted by xM, and A C B since A = A H B. That is,

any minimal x-permuted subset of QM is either contained in B or

disjoint from B. Noting that every element of B is an element of

some minimal x-permuted subset, we conclude that B is the union of

such subsets.

Conversely, if B = BlU...UB where each Bi is a minimal x-
k

permuted subset, then xM(B) = xM(BfJ...UBk) = XM(Bl)U°°'UxM(Bk) =

BlU...UBk = B.

Q.E.D.

~ . _i
Definition 4.2.2. For each xM E SM define Sxi - xM(QM) for

i = 1,2,.... If S . = S . for some i, let S . be called S .

Xi Xl+l x1 x”

Lemma 4.2.2: For each xM E SM there is an integer k such that

Sx00 = Sxk = SX for all integers j 2 0, and SXi 9 Sxi'l for

 

k+j

i S k.

. i = i-l i-l _
Proof: Since xM(QM) C QM’ xM(QM) x M [xM(QM)] C xM (QM). Re

peated application of xM to QM yields a nested sequence of sub-

sets QM,SX,Sx2,Sx3,... of QM. Let Sxk be the subset of lowest

index with the property Sxk = Sxk+1. Such a subset exists since QM

is finite. Then xM(Sxk) = xM(Sxk+l), or Sxk+1 = Sxk+2, and clearly

= 2 . . s .
SXk Sxk+j for all j 0 For i k, Sxi is properly contained

in S i-l because of the choice of k.

Q.E.D.

Lemma 4.2.3: For each xM E SM, S m is the union of all the minimal
 

x-permuted subsets of QM.

Proof: Since xM(S co) = S m, S w is the union of minimal x-permuted

x x x

subsets by Lemma 4.2.1. If B C QM is any minimal x-permuted subset

k k
u 0

g
t cand k is an integer such that Sxk Sxm, then B xM(B) xM(QM)

= S Q. Hence every minimal x-permuted subset of QM is contained in

x

00' Q.E.D.
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We can now relate the subsets SK” to the Zeiger covers for M.

The effect of San on component machines will be shown later.

 

Th 4.2.2: Lt ES". If , h ' 'eorem e xM M xM(QM) # QM t ere is a cover haVing

S as an element.

x”

Proof: If SK” is a singleton, then SXoo E On. If not, Sx00 is con-

tained in at least one cover element, namely C1. Let Cu E {C1,...,Cn)

be the cover of largest index having an element B containing 8x9.

Then B E D ; otherwise B E C .

u u+l i

For each positive integer i let x (B) = B,. Then S C B,
M i x0° 1

since S C B. Hence B is contained in an element T, of D ;

f” i i u

otherwise Ti E C contrary to the choice of Cu
u+l’

If B1 is properly contained in T1 then Bi is among the sub-

sets from which R(Ti) is chosen, and consequently S a is a subset

x

of an element of R(Ti) since S a C Bi. This implies S m is con-

x x

tained in an element of Cu contrary to the choice of C . Hence

L1+1’

B. = T, E D for each i.
l i u

Since Du has a finite number of elements, there are integers

. m-k

k and m With m 2 k such that xM(Bm) B Then xM (Bk) Bm,k'

m-k+l

r xM (Bk) xM(Bm) Bk' Let r be any integer such that

g = ' - 2 .xM(QM) S r 8x”, and choose 3 such that (m k+1)j r Then

(m-k+1)J .. = (In-“1H sxM (QM) wa’ and hence Bk XM (Bk) 8*”. But

S C B, for each i, so B = S and hence S E C .
X00 1 k x0: X0.) u

Q.E.D.

It is possible to construct a sequence C1,...,Cn of Zeiger

covers for M without constructing the corresponding component

machines L .,Ln. What information about the permutations and re-1,..

sets in the component machines can be obtained from the covers? This

question is examined in the next few results.

Let Ki be the cascade of machines L1’°°°’Li° Recall that an

input to Li+l is a pair (p,o) where p E QK, and 0 E IN. The

symbol 0 is said to cause a permutation of L:+1 if for some p,
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(p,0)L (QL ) = QL . Observe that 0 might cause a permutation

 

i+1 i+1 i+1

h o c

of Li+1 w en K1 is in state p, but reset Li+1 when K1 is in a

state other than p. The phrase Li+1 has permutations means that

some symbol 0 E IM causes a permutation of Li+l°

In Theorem 4.1.2 the replacement set R(P) for an element P

of initial similarity class D was defined. We extend this to define

the replacement set for D as R(D) = U R(P).

PED

The next lemma follows directly from the procedure for construct-

ing a Zeiger cascade for M given in Theorem 4.1.2, but is presented

here because of its importance in the next several results.

Lemma 4.2.4: If B,B' E Di and OM(B) - B', then 0 cause a permu-
 

tation of Li+l'

Proof: Let Ki be the cascade of Ll""’Li' Since Ki tells where

, there are states p and s of Q such that 2 (p)

1 xi K1

= B and zK (s) - B'. Since B,B' E Di’ the state transitions of

L

M is in C

are defermined by Rule 4 of Theorem 4.1.2. But a is aone-to-

i+l M

one map from B to B', so the input (p,O) to Li+1 permutes the

states of Li+1' That is, 0 causes a permutation of Li+l'

Q.E.D.

 

Lemma 4.2.5: If B E Di and xM(B) E Di for xM E SM, then every

prefix of x maps B onto an element of Di'

Proof: B and xM(B) are both in Di and hence similar. Let

yM E SM be the transformation taking xM(B) to B; that is, nyM(B)

= (xy)M(B) = B. Let w1

let (w1)M(B) = B'. B' is an element of C1 since (w

be a prefix of x, so that x 3 wlwz, and

1)M is one-to-

one and B is of maximal cardinality in Ci' Then (w2)M(B') =

. = ' . = .

Thus B and B' are similar, implying B' E Di'

Q. E . D.

Theorem 4.2.3: Suppose xM E SM. If SX00 E Di then every symbol em-

bedded in x causes a permutation of L

 

i+l'

*

Proof: Suppose x = w10w2 where wl,w2 E IM and O E IM. Let
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= = ' = '(w1)M(Sxm) B and (wlO)M(Sx”) B . Then OM(B) B , and B E Di

and B' E Di by Lemma 4.2.5. Hence 0 causes a permutation of Li+1

by Lemma 4.2.4.

Q.E.D.

Theorem 4.2.3 shows that the presence of the subsets S m in

x

initial similarity classes produces permutations in the corresponding

component machines. The next theorem shows that non-singleton initial

similarity classes produce permutations in their component machines,

and that subsequent refinements of these classes give the same result.

First a lemma is required.

 

Lemma 4.2.6: Let Cu and Cr be covers from a sequence C .,Cn1,..

of Zeiger covers for M, and let v > u. Let Cu = {Sl,...,Sm} and

l O O O 1 O . I O I O |.

for at! 1. S k arid . S r, ‘ C O O l p l c 0

Proof: It is sufficient to show that the elements of {Slj"'°’skj}

are similar, and hence when one element appears i3 an initigl similar-

ity class, all do. Choose the transformations vs and vs1 for

1 i

i S k and assume the elements of R(Du) are labelled so that

S, S

lj) = Sij° Then vs:(Sij) = Slj’ and hence Slj and Sij are

similar. By transitivity of similarity, all elements in {slj’°'°’skj}

are similar.

Q.E.D.

Theorem 4.2.4: If Du is not a singleton, then Lu+ has permuta-
1

tions, and if Dv contains an element of R(Du) for v > u then

L

 

has e mutati ns.

v+l p r o

Pgoof: Let B,B' be distinct elements of Du. Since they are simi-

lar, xM(B) = B' for some xM E SM. By Lemma 4.2.5 each prefix of x

maps B onto an element of Du’ and hence each symbol embedded in x

maps an element of Du onto another, causing a permutation of Lu
+1

by Lemma 4.2.4.

Lemma 4.2.6 shows that if Dv contains an element of R(Du)
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then it contains an element of R(B) for each B E Du' So if Du is

not a singleton, neither is Dv’ and Lv+ has permutations by the

argument above. 1

Q.E.D.

A natural question concerns the conditions for obtaining a cas-

cade having no permutations. The next theorem answers this question,

and in the following section the events realized by such machines are

examined.

Theorem 4.2.5: A Zeiger cascade M has no permutations if and only
 

*

if wa is a Singleton for all x in {1M - A].

*

Proof: Suppose S m is not a singleton for some x E {1M - A}. If

-—‘**’ x

S m * QM then the first machine of the cascade has permutations, and

x

if S m E Q then by Theorem 4.2.3 some component machine has permu-

x M

tations, proving the forward implication by contraposition.

*

Suppose SX00 is a singleton for all x E {IM - A}. Let

C1,...,Cn be a sequence of Zeiger covers for M with component

machines L1,...,Ln, and let Ni be the cascade of Ll""’Li for

each i S n. We prove by induction on the machines N1,...,Nn that

the cascade for M has no permutations.

For each 0 E IM’ So”’ is a singleton, so no input symbol per-

mutes QM. Hence N1 = L1 is reset by every input.

Assume N1 is a cascade of resets and "don't cares" and consider

tranSitions 0Ni+l(p,r) = (s,t) where ZNi(p) = P E Di and ZNi(S) = S.

If S E Di then 0 produces a ”don't care" in L Suppose S E Di'
i+l'

Then CM(P) C S. If the containment is proper, 0 produces a reset

in Li+l' Suppose 0M(P) = S. Since P and S are similar there is

0
= . = Ua transformation yM such that yM(S) P Then yMOM(P) ( y)M(P)

= yM(S) = P; thus (O‘y)M permutes P and P is the union of minimal

(Gy)-permuted subsets of QM. But is a singleton and
S w

(W)

G S( )m, so P is a singleton. Hence P could not appear in the

CY

initial similarity class Di' This shows that Li+1’ and hence the

cascade N,+1, has no permutations, which proves the theorem.

1
Q.E.D.
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We finally turn to the special but important case in which the

symbol 0 permutes the whole state set. In this case the minimal 0-

permuted subsets of QM are the orbits of the permutation. It is

clear that 0 will cause a permutation of Li+1 whenever the state

of Ni corresponds to a Di element, say B, for 0 maps B one-to-

one onto another Di element. This is so because for some j,

OJ(B) = B(id) and hence OM(B) E Di by Lemma 4.2.5. The following

results concern the conditions for U to produce only identity permu-

tations in the cascade.

Definition 4.2.3: If C is a Zeiger cover for M and OM E SM, then

EM opermutes C means that, for each B E C, OM(B) = M(B,O) E C, and

the map on C so defined is one-to-one.

 

 

Clearly, 2M is identity on C means that for each B E C,

CM(B) = B, but 0

 

M is not necessarily the identity permutation of the

state subset B.

Again, we let C .,Cn be a sequence of Zeiger covers for M

.,D

1,0.

with initial similarity classes D

.,L .
n

and correSponding com-

l’°' n-l

ponent machines L1,..

is identity on C1 for
 

. . : a . . . , 0
Lemma 4 2 7 If M 13 identity on Cu M

each i S u.

Proof: It is sufficient to show that GM is identity on Cu 1' If

B E Du-1 then B is the union of the subsets of QM. which replace

B to obtain Cu' But each of these subsets is permuted by GM by

assumption; hence each is the union of minimal c-permuted subsets of

QM’ and therefore so is B. So OM(B) = B by Lemma 4.2.1. Hence OM

. . . . . . . . b
is identity on Du_1 Since OM is also identity on Cu 1 fl Cu y

assumption, the lemma follows.

Q.E.D.

Theorem 4.2.6: If OM(QM) = QM, then for each u S n O is identity
M

on Cu if and only if the permutations due to o of component

 

machines L1 through Lu are identities.

Proof: For u = 1 the theorem follows directly by construction of

L1.
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Assume u > 1 and suppose CM is identity on C . Let

U

£31,...,sm } and Du_1 = {sl,...,sk } for ku_1 s mu_1,

u-l u-l

S be the reference element. Let R(S.) = (S, ,...,S, } for each

1 i 11 iru 1

i S k and assume the elements of R(Si) are labelled so that

Cu-l =

and let

i
= .S ad 311.5 .v81(slj) Sij for each i ku-l n e C J ru-l

By Lemma 4.2.7 CM is identity on Cu-l' Hence °M(Sij) = Sij'

Consider any transition of the form ON (p,r) = (s,t), where ZN (p)

u u-l

= E D d = o C .Si u-l an ZNU_1(S) Sm E D Then (Si) Sm But

0' = . ' = . ,

M(Si) Si by assumption, so Sm 81 Since Du_1 is chosen among

the elements of Cu 1 of maximal cardinality. We will show t = r,

where r = Slj’ for each j S ru_1. Now t is chosen so that

S1 S1 S1 S1

0 = t. H t = G S = = = h -vSi Mvsl(Slj) ence vSi M( ij) vSi(Sij) Slj r, s ow

ing that the permutation of Lu due to O is the identity. By Lemma

u-l°

4.2.7 CM is identity on C1 for i S u, so the same argument applies

to Li for each i S u.

Conversely, suppose the permutations due to O of L1 through

Lu are identities. We will use induction to show that GM is identity

on C .

u

Clearly, a is identity on C by Theorem 4.1.1. Suppose OM

M l

is identity on C for 1 S v < u. Let C = {B ,...,B } and D =

v v 1 m v

{B ,...,B } for k S m , and let B be the reference element.

1 kv v v 1

Let R(B.)= {B, ,...,B, } for each i S k and assume the elements
1 il ir B v

of R(Bi) are labelled so that v 1(B

B lj
) = 3.. for each i S k and

1 1J V

' S r .

J v

Since OM(Bi) = Bi for each Bi E Cv’ and since each permutation

of L due to O is the identity, Rule 4 of Theorem 4.1.2 for de-
V+1 B1 Bl.

termining state transitions becomes v o v (B ) = B , for i S k
B. M B lj lj v

B i l

and j S rv. Applying VB1 to both sides of this equality yields

1

B.

OMEVB:(Blj)] = VB:(B1j). But any element of R(Dv) can be written as
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B

vBl(Blj) for some i,j, so GM is identity on R(Dv)’ which is con-

. . . a . . . . . .
tained in Cv+1 Since M 13 identity on Cv by assumption, it is

identity on all of Cv+l'

We conclude that GM is identity on each cover C ,C1,... u.

Q.E.D.

 

Corollary 4.2.1: If OM permutes QM, then OM is the identity on

QM if and only if every component machine in a Zeiger cascade for M

has only identity permutations due to a.

Proof: If C C is a Zeiger cascade for M then Cn = QM’ and1,..., n

the conclusion follows from Theorem 4.2.6.

Q.E.D.

This corollary shows that any non-trivial permutation of the

state set by an input 0 causes a non-trivial permutation in one or

more machines in the cascade. Furthermore, if OM permutes QM one

can determine which of the component machines have non-trivial permu-

tations due to O by observing the effect of OM on the Zeiger covers.

4.3. An Application to Definite Automata

Cutlip [5] pointed out that prefix automata, i.e., automata

which recognize events of the form E*Z ‘where 2 C 2 for some

positive integer k, decompose into a cascade having only resets and

identity permutations. These permutations arise from the arbitrary

next-state assignment of Rule 2 of Theorem 4.1.2, which we have pre-

ferred to call "don't cares." In this section we consider decomposition

of the more general class of machines, definite automata. Recall from

Chapter 3 that these recognize events of the form R = P + E*Q where

P and Q are finite and one or both are non-empty.

Notation will be taken from both this and earlier chapters, but

no confusion should arise.

Let W be a regular event and M(W) = (QM,M,SO,F) the machine

recognizing W. 2 is the input alphabet.

Lemma 4.3.1: If no non-singleton subset of QM is permuted by any
 

*

tape in {2 - A} then there is an integer m such that every tape

of length 2 m synchronizes M(W).

53





Proof: If no non-singleton subset of QM is permuted by any tape in

*

{Z - A} then SXao is a singleton for each x E {2* - A}. If M(W)

has n states then QM has 2n subsets. Let m = 2“. Suppose

y E 2*,1L(y) = k 2 m, and y = 01.. .Ok. For each i such that

S ' S ' = ...O . '1 1 k, define A1 (01 i)M(QM) Since y has length greater

than the number of subsets of QM there are integers u,v such that

v > u and A = A . Then the tape a ...0 maps A to A ; that

v u u+l v u u

is, (Ou+1...OV)M(Au) = Av = Au. Hence AU 18 a Singleton because

S m is a singleton and no non-singleton subset of Q can
(a O O CO ) M

u+l v

a O 0 0° 3 . = .be permuted by n+1 v This shows that Ak yM(QM) is also a

singleton and thus y synchronizes M(W). So every tape of length

n

2 m = 2 synchronizes M(W).

Q.E.D.

*

Lemma 4.3.2: Suppose R = P + 2 Q where P is finite and R is in
 

canonical form. Then Q is infinite if and only if QM has a non-

singleton subset B which is permuted by some non--null tape x E 2*.

Proof: Since R is in canonical form, no tape in Q is a proper

suffix of another tape in Q.

Suppose B C QM is permuted :y x, where B is not a singleton

and R E A. For some integer k, xM is the identity on B; let *

y = x . Let s and t be distinct states in B and let 2 E 2

distinguish them. Without loss of generality assume M(s,z) E F and

M(t,z) E F. Choose tapes *u and v such*that M(so,u) = s and

M(so,v) = t. Let R = uy z and R = vy z and observe that R C R
1 2 l

and R2 0 R = o. *Since P is finite, an infinite number ofitapes in

* 1

R1 must be in 2*Q. If T = R1 0 ZIQ, denote T by T - {uy 12, uy 22,

i

uy 32,...}, where each ij is a non-negative integer and ij > ij- 1

for j = 1,2,3, .. Since R2 n R= O, no suffixes of tapes in R2

are in Q, so in particular no suffix of y1 z is inQ for i = 0,1,2,...

But every tape in T has a suffix in Q. Hence there are suffixes

u of u for j = l,2,3,... such that if uj is not a suffix of

i i

y for any j,m, then the following tapes are in Q: uly 1z, uzy z,

i

u3y z,.... But uj cannot be a suffix of ym, for if j is the
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smallest index such that u, has this property, then u,y1jz E Q,

which implies that ymyijZE ESQ, and the fact that no suffix of yiz

is in Q for i = 0,1,2,... is contradicted. Hence Q has an in-

finite number of tapes.

Conversely, assume that no non-singleton subset of QM is per-

muted by any tape in {If - A}. By Lemma 4.3.1 tapes of length

2 m = 2n synchronize M(R), where M(R) has n states. Suppose the

longest tape in P has length r, and suppose y is any tape in ESQ

such that L(y) > max {m,r} + 1. Let y = wx, where x is a suffix

of y of length max {m,r} + 1. Now y synchronizes M(R) to some

state t E F. Let s = M(so,w). Since L(x) > m, x synchronizes

M(R), and since M(s,x) = t, x synchronizes to state t. This means

M(SO’:) = t, so that x E R. But L(x) > r, so x E P. Hence

x E {IQ and so has a suffix in Q. Then y has a suffix in Q, so

y E Q since R is in canonical form. Thus no tape in ZUQ of length

greater than max {m,r} + l is in Q, so Q is a finite set.

Q.E.D.

The main theorem can now be stated.

Theorem 4.3.1: R is definite if and only if no Zeiger cascade for
 

M(R) has permutations.

*

Proof: Assume R is definite and in canonical form. Then R = P + 2 Q

and Q is finite, so by Lemma 4.3.2 no non-singleton subset of QM

is permuted by any non-null tape. That is, S a is a singleton for all

x

x

x E {2 — A}, and by Theorem 4.2.5 a Zeiger cascade for M(R) has no

permutations.

Conversely, if no Zeiger cascade for M(R) has permutations,

*

then by Theorem 4.2.5 Sx00 is a singleton for all x E {2 - A}. By

Lemma 4.3.1 every tape of length 2 m = 2n synchronizes M(R), where

M(R) has n states.

If u E R and u synchronizes M(R), then iru C R. Let Q

be the set of all tapes in R of length 2 m. Then ZEQ C R. Letting

P be the set of all tapes in R of length less than m, we see that

R = P + ESQ where P is finite.

Let R = P' + 2*Q' be the canonical form for R. P' is still
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finite, and since QM has no non-singleton subsets permuted by tapes

*

in {2 - A}, Q' is finite by Lemma 4.3.2. Hence R is definite.

Q.E.D.

56



  

l
l
‘
l
i
l
'
l



5. SUMMARY AND CONCLUSIONS

We summarize in this chapter some of the more important results

of the study and suggest areas for further research.

Relations between certain structural aspects of automata and their

accepted events are the object of the preceding investigation. The

structural aspects of an automaton are expressed in terms of the state

graph, and event structure is given by the properties of the regular

expression describing the event.

In Chapter 2 general repetitive machines are defined. This class

of automata consists of machines that have a path from every final state

to the start state, and contains as a proper subclass the strongly con-

nected machines. A class of events, called general repetitive events,

is defined in terms of certain "factorization" properties of the

associated regular expressions. The main result of the chapter is

Theorem 2.2.1, which shows a one-to-one onto correspondence between

general repetitive machines and general repetitive events. These

"factorization" properties of the regular expressions for GREs result

from the "loop" structure of the paths linking start and final states

in the GRM.

The concept of synchronization, which has been investigated by

other authors, [11, 13], is introduced in Chapter 2. It is shown that

all non-strongly-connected GRMs are synchronizable.

Definite and ultimate-definite GRMs are the topic of Chapter 3,

where it is demonstrated that these are exactly the strongly connected

machines of each class. A number of properties of ultimate-definite

GRMs are shown to be equivalent, among them the properties of general

repetitiveness, strong connectedness, synchronizability to the start

state, and, in the case of events of the form 22*Pt with Pt finite, ‘

the absence from Pt of tapes beginning with certain symbols. These

equivalent properties depend on the fact that all ultimate-definite

automata are synchronizable (Theorem 3.2.3). Chapter 3 concludes with

several results concerning the canonical representations of the union

and intersection of ultimate-definite events, and with closure pro-

perties of certain subclasses of the events considered in this study.
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In Chapter 4, the structure question is pursued from the view-

point of a machine's cascade decomposition. The cascade decomposition

procedure of Zeiger [16] is presented first, so that all the known

corrections to his original version might appear in one place. An in-

put to a component machine of a Zeiger cascade either permutes the

states or resets to one state, and Chapter 4 focuses on the properties

of the machine being decomposed which cause such permutations or resets.

It is shown that certain subsets of a machine that are permuted under

some input appear as cover elements somewhere in a Zeiger cascade, and

permutations of component machines appear when these subsets are not

singletons. From this result, necessary and sufficient conditions are

obtained for a machine to have a Zeiger cascade with no permutations.

For the special case where a symbol 0 permutes the whole state set

of a machine, necessary and sufficient conditions are obtained for O

to produce only identity permutations in the machine's Zeiger cascade.

Perhaps the most interesting result of Chapter 4 is the applica-

tion to definite automata, where it is proved that an event R is

definite if and only if no Zeiger cascade for M(R) has permutations.

Several topics that warrant further research arise from this

study. It would be interesting, for example, to study the general

repetitive machines associated with other classes of events, such as

star events (that is, events of the form P*), and to characterize the

way these machines decompose via the Zeiger method. Also, those

machines which are restartable (synchronizable to the start state)

should be investigated since the restartability property is useful in

such practical situations as error correcting. Finally, it would be

enlightening to attack the problems investigated in Chapter 4 using

the semigroup approach of Krohn and Rhodes.
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APPENDIX

Completion of proof of Theorem 4.1.2.

To show that N tells where M is in C', consider transitions

oN(p,r) = (s,t) of QN, where U E IN’ ZK(p) = P E C, ZK(s) = S E C,

and r and t are states of L and hence subsets of U. By

hypothesis K tells where M is in C, so OM[ZK(p)] C ZK(s). We

must show that OM[ZN(p,r)] C ZN(s,t).

Case 1: If P E D and S E D then ZN(p,r) Z (P) and ZN(s,t) =
-—————' K

ZN(s). Hence OM[2N(p,r)] C ZN(s,t).

Case 2: If P E D and S E D then ZN(p,r) ZK(p) = P and zN(s,t)

= v:(t), and by Rule 3 t is chosen so that VSCM(P) C t. Applying

the transformation v3 and observing that vlsjvS is the identity map

. S U S
o = c P C o C .on S, we obtain vUvS M(P) M( ) vU(t), or M[ZN(p,r)] ZN(s,t)

Case 3: If P E D and S Q D then ZN(p,r) = V:(r) and ZN (s,t) =

ZK(S) = S. By hypothesis OM(P) C S, and since v5(r) C P the result

oM[zN(p.r)] = 0M[v5(r)] C oM(P) C s = ZN(s,t) is obtained.

P

Case 4: If P E D and S E D then ZN(p,r) = vU(r) and ZN(s,t) =

v:(t), and by Rule 4 t is chosen so that ngMv:(r) C t. Thus

P S U P S
= = C = .

OM[2N(p,r)] OMEVU(r)] VUVSEOMVU(r)] VU(t) ZN(s,t)

This completes the proof that N tells where M is in C'.
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