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ABSTRACT

THE HOMOTOPY METHOD FOR THE
SYMMETRIC EIGEN-VALUE PROBLEMS

By
Noah H. Rhee

The homotopy method is applied to solve the
linear algebraic eigen-value problems for symmetric
matrices. Special homotopy equations for symmetric

eigen-value problems Ax = Ax are constructed.

It is known that there are n distinct curves
connecting trivial solutions to desired eigen-pairs.
Each curve is composed of an eigenvector curve in

Rn

x [0,1] and an eigenvalue curve in R X [0,1]. 1In
this thesis we show that it is enough to consider only

an eigenvalue curve in R X [O,1].

The homotopy method for calculating eigen-values
and eigen-vectors of a matrix is a serious alternative
to the currently most popular approach EISPACK for

SIMD machine.

The computational results obtained through this
thesis are extremely promising. This thesis is the
first serious attempt to make the homotopy method for
symmetric eigen-value problems efficient by making use

of special features of the homotopy method.
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INTRODUCTION

Solving an eigenvalue problem Ax = Ax for a
symmetric n X n matrix A can be thought of as

solving a nonlinear system of polynomial equations.

Fcp(x.\) =0,
where Fw :R" xR * R xR is defined by

Ax - Ax
F_(x,\) =
o @ (x)
and @ 1is a polynomial from R" to R. For example,
if we want eigenvectors to have Euclidean norm 1, we
might let o(x) = xf +x§ +...+x: -1, where
T

x = (xl,xz,...,xn) .

From this point of view, many well developed methods

can then be employed to find zeros of this Fw.

We shall assume that all eigenvalues of A are
distinct. Then the classical Newton's method and
its many improved modifications are applicable for
solving Fw(x,x) = 0. Unfortunately Newton's method

converges to only one zero at a time. In order to




obtain all n-eigenpairs of A, we have to restart
the iteration by making n suitable initial guesses,

which is difficult in practice.

The homotopy method of finding all the isolated
solutions of a system of polynomials has attracted

considerable attention recently.

The basic idea of homotopy continuation is to
construct a homotopy from a trivial map to the one of
interest. Under suitable conditions, a smooth curve
starting from the solution of the trivial map will

lead us to the desired solution.

The homotopy method for the symmetric eigen-
value problems was studied by Chu [3]. For the
general eigenvalue problems, a homotopy was given
by Li, Sauer and Yorke [4]. They constructed homotopies
which give n-disjoint smooth curves in Rn+1 X 0.1
(or Cn+1 x [0,1]) . And each curve leads from an
obvious starting point to an eigenpair (x,\) of

the given matrix.

In both [3] and [4] a curve in Rn+1 x [0,1]1 (or
Cn+1 x [0,1]1) is composed of an eigenvector curve in
B %0, lent{on c? x [0,1]) and an eigenvalue curve in
R x [0,1] (or C x [0,1]). 1In this thesis we consider
only an eigenvalue curve in R X [0,1] by constructing

the following homotopy equation:




B:R" x R x [0,1] » R"
such that
(0.1) H(x,A,t) = (L -t)[Ax -Dx] + t[Ax -Ax] = O,

where D is an n X n matrix whose eigenpairs can

be computed easily.

Under suitable conditions n-distinct smooth
eigenvalue curves (in R x [0,1]) of (0.1) exist,
and each eigenvalue curve leads from an eigenvalue of
D to that of A. Once we find an eigenvalue, the
corresponding eigenvector is immediate by Inverse Power

Iteration.

Each eigenvalue curve can be characterized by
the solution curve of a scalar ordinary differential
equation with an initial value an eigenvalue of D.
Hence each eigenvalue curve can be followed numerically.
Furthermore different eigenvalue curves correspond
only to different initial values of the same ordinary
differential equation. Following one eigenvalue
curve is completely independent of following the other
eigenvalue curves. Therefore the homotopy algorithm is
an excellent candidate for exploiting the advantages of

parallel processing.

Also the homotopy method maintains the structure

of the underlying matrix, if there is any;




Chapter I discusses the existence of n-distinct
smooth eigenvalue curves and the local conditioning
of the eigenvalue curve. Chapter II discusses the
curve following algorithm in detail. Chapter III
gives several numerical results which show that the
homotopy algorithm for eigenvalue problems can be a
serious alternative to the QR-algorithm which is currently

the most powerful algorithm for eigenvalue problems.




CHAPTER I: THE EIGENVALUE CURVE

The discussion of the eigenvalue curve is divided
into two sections: The Existence of n-distinct
Eigenvalue Curves, and The Local Conditioning Factors

of an Eigenvalue Curve.

§1.1: The Existence of n-Distinct Eigenvalue Curves

From (0.1) we have

H(x,A,t) = (1L -t) (Ax -Dx) + t(Ax -Ax)

Ax - (D+t(A-D))x

Ax - A(t)x

where A(t) =D+ t(A-D).

We call D the initial matrix and A the final

matrix.

Because A is symmetric, we can tridiagonalize
A Dby a standard tridiagonalization process. Hence we
shall assume that A is tridiagonal. We may assume
that none of the off-diagonal elements is zero, for
otherwise we would subdivide A into the direct sum of
tridiagonal matrices of lower order and work instead

with them.




We choose the initial matrix D such that

(a) D has distinct eigenvalues and all its
eigenpairs are available.

(b) A(t) = D+ t(A-D) is tridiagonal with
non-zero off-diagonal elements unless

t=o0.

Remark 1.1:

(1) (a) and (b) imply that for each t € [0,1],
A(t) has n-distinct eigenvalues. For a
proof see [8, page 124].

(2) The conditions (a) and (b) are easily satis-
fied, for example, by choosing a diagonal

matrix D with distinct diagonal elemtns. baboid

We denote the n-distinct eigenvalues of A(t) by
1o A2(8),....A())  and assume that
Al(t) < Xz(t) oo A"(t). And we denote the corres-
ponding normalized (with respect to the Euclidean norm)
eigenvectors by (Ql(t),Qz(t),...,Qn(t)). Henceforth

A
-notation will be used for a unit vector. i

The eigenvalues of a matrix are continuous functions
of the elements of the matrix [7]. Hence we have the

following proposition.

Proposition 1.1: A'(t) is a continuous function

of 't ~for dyeigigane b

V



We shall denote ((A\}(t),t) :0 ¢t <1} by C
for 4 =.1,2,:..;0. ‘Note that Ci n Cj =g if
i # j from Remark 1.1: (1).

(1) Proposition 1.1 establishes that there are
n-distinct continuous eigenvalue curves
CI'CZ""'Cn such that Ci joints the
ith eigenvalue of D and the ith eigen-
value of A. We call this property the
Order Preserving Property of eigenvalues.

(2) The Order Preserving Property of eigenvalues
is important, since in application we often
need to find few eigenvalues which are either
algebraically the largest or smallest. The
Order Preserving Property of eigenvalue also
provides a valuable checking algorithm as we
follow an eigenvalue curve (see Chapter II,

section 3.) e

Now we want to show that Ci is, in fact, a ehs

curve for i =1,2,...,n.

For fixed v in [O,1], 1let (Q(v),h(v)) be the
ith eigenpair of A(v). Consider the linear functional

A
() :R" + R defined by ox = x(v)Tx for x € R".




Let H : R®™ x R x [0,1] *» R” X R be defined by

= Ax - A(t)x
H(x,A,t) = A
x(v)Tx -1

Lemma 1.2: The Frechet-Derivative

Dy X)E(Q(v).\(v) ,v) of H with respect to x and

A at (Q(v),k(v) ,v) is nonsingular.
Proof: See [3]. b %2l

Notice that H(;\c(v) ,A(v),v) = O. Hence by the
Implicit Function Theorem, there exist & > O and a

eo
unique C -curve

et
n

[I‘v(t) tv-8 <t v+b)

[}

{(x(t) ,A () ,t) & (x(V) ,A(V),V)

= RW) AW, v-b <t < v+b)

such that H(x,A,t) = O on I‘v.

We denote the second component of I‘v by Cv,

that is, C_ = { (A(E), 1) sv=8 <t cybis

Proposition 1.3: C_ is the restriction of

c; to (v=-6,v+8).




Proof: Since (1) (A (v),v) € c.1 n Cv, (2) Ci
is continuous and disjoint from Cj Foir. .« sy
and (3) C, is smooth, it follows that C_ must

be the restriction of C, to (v-06,v+8). *kx

Remark 1.3: This proposition shows that Ci

Ad :
is a C -curve for i=1,2,...,n. 4-3-4

§1.2: The Local Conditioning Factors of an Eigenvalue

Curve

Since C; is c®-curve and G =G [ EX(B):,.8)
v-8 < t<v+s) on (v-686,v+8) by Proposition 1.3,
the bound of the nth derivative of A(t) at t=v is
a good measure of determining the local conditioning of
ci' Hence we shall proceed to find a bound of the nth

derivative of A(t) at t = v.

Proposition 1.4:

~ A -
(D EEW AW ,v) &

AT - AW L R
:

where [A(V)I -=A(V) ]+ is the Pseudo-Inverse of

A(WI -A(v), and I is the n X n identity matrix.
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Proof: See [2]. bkt

Let d(i,v) = Min |A(v) -v|, where the minimum is
v#A (v)

taken over o (A(v)) and o(A(v)) is the spectrum of

A(v). In d(i,v), i means that A(v) is the ith

eigenvalue of A(v). We call d(i,v) the eigenvalue

separation at A(v). Let |/:!| denote either the

Euclidean norm for a vector or the spectral norm for a

matrix.
Lemma 1.5: |[(AMWI-Aw™Y| =1/a(,v).

Proof: From

o (A(v) =A(v))
= {0} U (A(v) =v:Vv €Eo(A(VW), VFAW],

we have
(AW I -a(w)1H
=0 U G vV ETAM), vF AW,
Hence [[(A(WMI-A( 1Y) =1/a(i,v). e

We denote (8%/at™i(v) by A (v) ana

(dn/dtn)x(v) by x(n) (v) . And we denote )\(1) (v)

m (v) by i(v) and ).c(v) respectively.

and x
Theorem 1.6:

% | < cmwlia -pi¥/a(i,w*?
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Ix® (| < cala-pl¥/aG,w¥ for x = 1,2+

where C(k) is a constant, which depends only on

k.

Proof: We will use induction to prove this
SN 1 3
theorem. For m= 1, (d/dt)H(x(v),A(v),v) = O implies
that

A ” A
A(V)I - A(v) : x(v) x(v) (A -D) x(v)
__--; ________ - =48 PR B Wi, s,

x0T 1 o A (v) o

By Proposition 1.5

%(v) (w1 -aw1*

A ) L *eF Lo o

A A
x(v) (A -D) x(v)

NI -AW 1T @ -D) X (V)

A
2@ -D) R (V)

. A
Thus x(v) = [A(v) -A(v) 17 (A -D)x(v)

Ix@) | = 1A (v) A 1@ -D) %) |
< Ilvw -a 1*)|)la -oj|

= lla-p|l/a(i,v).

Hence [x(v)]| & Ila -pll /d(i,v) .
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Also
1.n Aw) = 20T -D)R(W)
Bl =120 @)W
< Ix@ lla -l x|
= |la-of.
Hence U“(v)l < la - ol Therefore our Theorem is

true for m= 1.

Suppose that ”)‘(m) (v ¢ cmla -olI®/a(i,»™ ! anad

Il () ! <cmla -p|™/a(i,v)™ are true for m < k -1.

Let m=%k (k> 2). By repeatedly differentiating
E(x(t) JA(t) ,£t) = O with respect to t and using the
fact that (d/dt) [A(t)] = (d/dt) [D+t(A-D)] = A-D and

A
evaluating at (x(v),A(v),v), we obtain the following

expression:
AW -A(W) | X(v) x® (v)
]
]
X T . A8 ()

k@ -D)x* D (1) +a A D 0D (1) 4922 (9 x*D) ()

1ot Sat - — A +g.k_1x(k'1) (v)x(l) (v)

where 9 s 9preeerG_y are constants, which depend only on

k. Let 1 (¢ p< k-1l. Then by the induction hypothesis we have

VN
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In® ()| =c(la-d|P/ai,»P?t
x® (|| =cpa-DlPra(i,vP.

Hence the upper part of the right hand side is bounded by
c(x)|a -DHk/d(i,v)k-l. Let us denote the right hand side

by [h,01T. Then |l < c® |a-p|¥/a(i,» ¥ . Hence

x) (v) DI -am1* Ao ] [n
- uve B
A
A X () x(v)T o o]
(I -aMWI1™h
o A
x(v)Th
Thus
1% @) | = (AT -2 1]

<live -a@ 1 [Inll

<cmla-ol¥/aE,wk
® ()| = |%)nl
< Nz [llinll
< cmwlla-pl*/a,n* . wax

Remark 1.4:

(1) The bound of lk(k)(v)l shows that there are
two important factors which can influence the
local conditioning of eigenvalue curve. First,

the poorer the eigenvalue separation is, the




(2)

(3)

(4)

14

poorer the local conditioning of the
eigenvalue curve can be. Second, the
closer D is to A, the better the local
conditioning of the eigenvalue curve can be.
Since the choice of D is basically free,
it may be possible to improve the condi-
tioning of the eigenvalue curve globally
by a suitable choice of D, since |A-D
does not depend on i or v.

The bound of IX(k) (v) | is independent

of the size of the matrix. So the growth
of the matrix size does not imply that the
eigenvalue curve becomes ill-conditioned.
The equation (1.l1) is a known result.

(See, for example, [7] or [10, page 389]).
It gives the scalar ordinary differential
equation which characterizes the eigenvalue

curve as its solution curve. bk ito?




CHAPTER II: THE ALGORITHM

Since ):(t) = ;\((t)T(A-D);\((t) from (T.1) -d%vie
feasible to use any available ODE software solvers to
follow an eigenvalue curve. However to calculate
i(t), we need Q(t). Hence to use any available ODE
software solvers as they are, a suitable form of ordinary

differential equation is

) -1
x(t) P(t)l BY) Q(tﬂ1 [(A -D))’é(t)_\
ee it = i salle s 4 - L R .
A (8) e g b o .
4 L J & o
[see [3]]. Hence to calculate
x(t):
o)

we need to solve a linear system

AT -A) « x®) | | x®) (A -D) % (t)
(oDt e by b BB - - - %
O A o

But the matrix which is involved in (2.1) is no longer

tridiagonal, which is expensive to solve.

15
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Besides, the accuracy requirement in ODE software
solvers keeps the step-sizes in a range where instability
does not occur. Hence, stability consideration limits

the step-size.

But in our problem (Q(t),k(t),t) is a solution to
H(x,A,t) = 0 (0.1), where (X(t),A(t)) is an
eigenpair of A(t). Hence we can locate (%(t),A(t))
as accurate as we want, for example, by correcting a
reasonable approximation by the Newton method. Hence

in homotopy method, there is no problem of instability.

Hence it is desirable to develop a numerical algorithm
which makes use of the special structure of homotopy method
for the symmetric eigenvalue problems instead of using

any available ODE software solvers.

The major difficulty in following an eigenvalue
curve is that there are n -1 other eigenvalue
curves. Hence in following an eigenvalue curve, the
important question is how we can prevent ourselves

from jumping into another eigenvalue curve.

As usual, there are two main steps in following
the solution curve of an ordinary differential
equation, namely the prediction step and the correction
step. In this chapter, in addition to these two steps,

we also discuss a checking step.

VT



.

Therefore the description of the algorithm will
be divided into three parts: Prediction, Correction
and Checking. Then we summerize the algorithm through

the Flow Chart.

Suppose that we have found (% (v) A(v)), the
ith eigenpair of A(v) and O ¢ v { 1l. Now we want

(Q(v +h) ,A(v+h)), the ith eigenpair of A(v+h).

Throughout this chapter we assume that we are
following the ith eigenvalue curve Ci. We shall

denote C; by fUN(E)L E) 20 LT

§2.1: Prediction

In this section, we want to determine the next
step-size h and prediction for A(v+h) and

Rv+n) .

The description of the prediction is divided
into three parts: Eigenvalue Prediction, Eigenvector

Prediction and Step-Size Updating.

(a) Eigenvalue Prediction

For now, let us assume that the next step size

h was determined.
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From (1.1) i(v) = Q(V)T(A—D)Q(v) - X.(v) is
immediately available. Thus we use therHermite Inter-
polation which interpolates (A (u) ,)I\(u) A (V) ,i(v) }
to predict A(v+h), where A(u) and ):(u) are
the eigenvalue and eigenvalue derivative at the previous

step respectively.

At v = O we choose the initial matrix D which
has a simple structure so that it is easy to get higher
derivatives of A(t) at t = O. Thus we used third

order Taylor method to predict for the next step eigenvalue.

Let P(t) be the polynomial which interpolates

A(E) at (A(w) . X(w),A(v),A(v)]. Then

P(t) = A(u) + A(u) (£ -u)

A(v) =A(w) =A(u) (v-u)
(v =u)

(t-w?

$

s v-w i +i(u)31-2lx(v) =Rl L a
(v -u)

Let w=v+h and Xo(w) = P(w), that is,
Xo(w) is the prediction for A(w). We summarize the

eigenvalue prediction as follows:

Algorithm 1: Eigenvalue Prediction Algorithm
(1) calculate A(v) = X()T(A-D)k(v)
(2) Calculate P(w)

(3) set \o(w) = P(w). b




o

(b) Eigenvector Prediction

After the eigenvalue prediction we have Xo(w)

A
and x(v). Then we construct the eigenvector pre-

A
diction, say xo(w), by Inverse Power Iteration as

follows:

Algorithm 2: Eigenvector Prediction Algorithm
A
(1) set [XO(W) =AW ]y = x(v) .

Solve for y.

(20 set xy(w = y/llyl. hhkd

(c) Step-Size Updatin
Now we discuss how to determine the step-size

h to achieve

ERR = |A(v+h) _xo(vﬂm < €

where € > O 1is a prescribed accuracy.

Since the Hermite Interpolation, which interpolates

is used to predict A(v+h),

(A (@) A (@) A (W) A (W) ),
is related to the

[M(v+h) =A (v +h) |

the error in
t € [u,v+h]. In fact,

4th derivative of A(t) for
we have the following error formula:
A be

[a,b]

Theorem 2.1: Let the real function

times differentiable on the interval

(n+1)
and consider (m+1) support abscissae ti € [a,b]
If the polynomial P(t)

such that to < tl el tm.

(W]

where n+1 = n;.

whose degree is at the most n,
i=1
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interpolates at each support abscissae t.l not only
the value but also the first n; -1 derivatives of

A, tnat is, p™ () =A™ e k= 01,...0n-1)
for each i =0,1,...,m, then to every t € [a,b],
there exist &, which belongs to the smallest interval
containing t, such that

n n n
(= g) Otndadt 2 e by W io opy

A(E) - P(t) = TSR
Proof: See [10]. *hk
By Theorem 2.1,

My +h) = Ag(v+h) = (vah-w v+ -v) 2@ (@) /24

th+ (v -u 12022 @) (§) /24,

where € € [u,v+h].

Suppose that we have an estimate M, for l).M') ® |,
€ € [u,v+h]. To determine the next step size h, which
makes the error |X(v+h) -Ag (v +h) | 1less than €,
we set [h+ (v=-u) ]2'h2Mv/24 & €, ¥ that 1is
h+ (v-w1?h? = 24€/M,. Let £(h) = [(h+ (v-uw1’n’.
Then we shall look for the smallest positive solution
h of f(h) = 24E/Mv. The function f£(h) has two
double zeros at h =0 and h = -v(v-u). So we have

the following picture:
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24¢€
T o e
v
I
|
I
|
=-(v-u) (o] h
Figure 2.1

Clearly there is a unique positive solution h.
Furthermore it is easy to see that Newton Iteration
for the equation f(h) = 24E/Mv, starting from the

1 2 " ©
previous step-size hgy = v-u, will produce {hn}n=0
such that hn N A R e

To complete the updating of the step-size, we
need to update Mv so that we may have an estimate

for M M

v+h* v+h
of the next step-size from t = v+h.

will be used for the determination

Note that at this stage h is available. By
Algorithm 1, we shall have Xj(v+h). Later by
correction we shall have A(v+h). Let
ERR = |A(v+h) —)\o(v+u)|. Again by Theorem 2.1

we have
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2, 2
where t € [u,v+h]. Hence
l)‘(4) (F) l = 24ERR

[h+ (v =) ]2h2

We set

24ERR
f(h+ (v =-u) ]2h2

Mv-i-h =

Therefore, we have the following step-size updating

algorithm:

Algorithm 3: Step-Size Updating Algorithm

(1) set £(h) = [h+ (v-u1°h® = 24€e/m .
Solve for h by Newton Iteration starting
from h =v - u, where € is a prescribed
accuracy and Mv is an estimate for
lx(4)(t)l near t = v,

(2) Wait until Xo(v-Ph) and A(v +h)
are available.

(3) Calculate ERR = |\ (v +h) -2y (v +h) |.
24ERR

(4) Set M = >3-
(h+(v-u)lh

v+h

Remark 2.1: M, is found by calculating |2 (4) (o) |.

Since D has a simple structure, it can be found easily.
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§2.2: Correction

A
For the correction of (xo(w),ko(w)), we use the

A
Rayleigh Quotient Iteration starting from xo(w).

We

shall abbreviate Rayleigh Quotient Iteration by RQI.

The asymptotic rate of convergence of RQI

for a symmetric matrix ([8].

Algorithm 4: RQI-Algorithm

is cubic

Let A be an n X n symmetric matrix and

xTax
X x
) A
(1) Pick a unit vector Xq - For
j=0,1,2,..., repeat the following.
A
(2) Compute Xj+1 = pA(xj).
A
(3) Solve (Xj+11 -A)yj+1 = Xy for Yi41-

A = |
(4) Set xj+1 = Yj+1/“yj+ll .

(5) 1I1f (Hyj+1H is big enough) THEN

Accept (§j+l'xj+1) is an eigenpair of
ELSE

i=3+1

Go to (2)

END IF. *kk

A
Remark 2.2: (1) In our algorithm x

A
A = A(W). We shall write xj and Xj by

Xj(w) respectively, for j =1,2,-°-.

o)

* %%

Xq (w)
(w)

and

and
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(2) In step 5, that ”yj+lH is big enough means

that the residual is small enough. For
A

A Yin X.
Ay qI =A)X. o = (A, .I-A) roL1—=r = r—L1q
i+l j+l j+1 Tysalt Tyl

Hence
A

Now we want to show that for small enough step-size
A
h, RQI-Algorithm with starting point xo(v +h) produces

A A
X5 (v+h) which converges to x(v+h).

It suffices to consider diagonal matrices to
understand the geometry and dynamics of symmetric
matrices under RQI [l1]. Thus we shall assume that
A(v+h) is diagonal matrix with X]‘ (v+h),...,.A\P(v+h)

as diagonal elements for each h.

Definition 2.2: Let

i . i
pl(x) = ? )\sz/E; x2.

j=1 j j=1 J

n . n
py(x) = T a3x2/ T X2

j=1i 3 j=1 3

S

E=[x€Rn:x.=1, pl(x) > —5

i
)\i +itl
and p,(x) < —5—]

where x. 1is the jth coordinate of x and Z o is

the jth eigenvalue of the associated diagonal matrix

for j=1,2,...,n.
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Theorem 2.3: If we start RQI-algorithm from any

vector in E, the sequence of vectors by RQI-algorithm
converges to et = (0,0,...,0,1,0,...,0), which is
ith

the ith eigenvector of the associated diagonal matrix.

Proof: See [1]. *xk

Remark 2.3:

(1) E 1is not empty since el € E.

(2) E 1is open set in the X, = 1 chart,
since pl(x) and pz(x) are continuous

functions in the x; = 1 chart.

Theorem 2.4: There exists h > O such that

O < h¢h implies that RQI-algorithm starting from

A .
xo(v-bh) produces sequence which converges to el.

Proof: For given h > O, we associate

AL an) +al(ven)

—-— nc 3
E(h) = {x € RM:x, = 1,p,(x) > 5

AL(v+n) #2311

(V +h) ]
2 .

and pz(x) <

Since E(h) 1is open in X, = 1 chart, there

exists a neighborhood of el with radius 6(h) in

x. =1 chart, say Né(h)(ei)' such that N

i
i 5 (h) (&)

is the maximal open ball which is in E(h) . Note that
6(h) is a continuous function of h since everything

which is involved is continuous with respect to h.
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Now we fix h > 0. Let 6= min_ 6(h). Then
O<h<h

& > 0, since 6(h) 1is a positive continuous function

and [0,h] is compact. Note that as h = O,

l)\i(v+h) —Xo(v+h)l % O and thus Qo(v+h) + et
Hence there exists h such that 0 < h < h

and if h < h then on(v-+h) -el|| < 5, where

xo(v-+h) is the constant multiple of Qo(v-+h) so

that xo(v-+h) may belong to X, = 1 chart. Thus

the Theorem immediately follows. * k%

Remark 2.4: The convergence in Theorem 2.3 and

Theorem 2.4 is the convergence in the real projective
space PRn_l. Hence the correction may end up
(-X(v+h) ,A(v+h)) instead of (X(v+h),A(v+h)).
However, it has no effect in our algorithm at all

since

A(v+h) = x(v+h)T(A-D)X(v+h)

X +h) T(A-D) (-k(v+h)). >k
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§2.3: Checking

A
Even though we find (x(w),A(w)) from

A
(x(v) ,A(v)) by prediction and correction, where

w v+h, A(w) may be on a different eigenvalue curve

from what we expect.

There are two reasons for this failure. First,
(B { £ { W) is not known exactly. Second,
the eigenvalue separation of A(w) is not known.
Fortunately there is a simple and accuract checking
algorithm for tridiagonal eigenvalue problem, which
can assure that if A(v) was the ith eigenvalue of
A(v), then X(w) is alsb the ith eigenvalue of

A(w) .

The description of the checking algorithm is
divided into two parts: Prediction Checking and

Correction Checking.

(a) Prediction Checking

Since A(t) = D+t(A-D) is symmetric for

each t € [0,1], the eigensystem forms a complete
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orthonormal system for each t. Hence the eigensystem
may be considered as rotating continuously from

t =0 to t=1. If the rotation of the eigenvector
is too big in two consecutive steps, we might have

jumped into another eigenvalue curve.

A
After eigenvector prediction, we have xo(w).
A
And we hope that the rotation between xo(w) and
A
x(v) 1is not too big. So we have the following

prediction checking algorithm:

Algorithm 5: Prediction Checking Algorithm

Let CRI be a positive real number.
A A
(1) Calculate 1IP = x(v)Txo(w).
(2) 1If (l1P| > CRI) THEN
A
Accept xo(w).
ELSE
Cut the current step-size by half.
Go back to eigenvalue prediction.

END IF. fadiadd

Remark 2.5:

(1) The number CRI actually restricts the

rotation angle between the eigenvectors.



In our program, we set CRI

It means that no more than
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T

6

eigenvector rotation is allowed in two

consecutive steps.

then indeed we might have

jumped into another eigenvalue curve.

|TIP|> CRI

does not necessarily
is on the right eigen-

To be safe, we devise a

correction checking algorithm as follows.

(2) If |1P|L CRI,
However
imply that A (w)
value curve.

(b) Correcti

on Checking

To state correction checking algorithm, we need

some background ma

Let T =

where B # 0 for

terial.

_
a4 B,

i=2,3,...,n.

The characteristic polynominals Pi(X)

principle minor formed by the first

of the matrix T

relations:

i

X

i

of the

submatrix

satisfy the following recursive
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PO(X) =1
Pl(k) =0qy - A
= 2 :

for i=2,3,...,n.

Then the roots of Pi strictly separate those of
Pi-l(l < ig¢n-=1) [12]. We call this property of

PO,P .,Pn the Strum Sequence Property.

l:o-

The Sturm Sequence Property for symmetric
tridiagonal matrices with non-zero off diagonal

elements forms the basis of the following Theorem.

Theorem 2.5: Let G(M) be the number of sign

changes of P (H),...,P (K) at location K. Then

G(M) is the number of roots of Pn(l) with X < M.

Proof: See [12]. % bk

Remark 2.6: If P.(M) = O, we take the sign of

Pi(u) as that of Pi_l(u). Note that no two con-

secutive Pi(u) can be zero. *hk

Let Q. (A) =P, (M)/P, (1) (1=1,2,...,n).

Then Qi(k) satisfies the following relations:



and G (M)

Q. (M.
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Ql(K) =a; - A

2 .
QM) = (o =N = B{/Q; ; (M (i=2,...,n)

is given by the number of negative

We thus have the Sturm Sequence Algor ithm.

Algorithm 6: Strum Sequence Algorithm

(1)
(2)

(3)

(4)

(5)
(6)

Set COUNT = O
Calculate Ql(u) =a -u
IF i=2,3,...,n, repeat the following.
IF (@ _,(W) =0) ., = |p;| MACH,
where MACH 1is the smallest number for
which 1 + MACH > 1 on the computer.

_ 2
Calculate Q. (M) = (o, -W) - BJ/Q, (M.
If (Qi(u) < O0) COUNT = COUNT + 1.
IF (i = n) THEN
Set G(M) = COUNT
ELSE
i=1i+1
Go to (3)

END IF. *kk

Remark 2.7:

(1)

(2)

G(M) is the number of eigenvalues of T
which is less than Wu.

When Qi_l(u) = 0, replacing Qi_l(u)

by lsil MACH (note that this is positive:

this is essential because if Qi_l(u) = 0,
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it is treated as positive) is equivalent
to replacing a, , by a, , + lBil MACH .
Hence this algorithm is stable.

(3) For the detailed discussion of this

algorithm see [6]. *kk

Algorithm 6 can be used to check whether A (w)
is on the right eigenvalue curve. By the prediction
and correction step, we have the sequence
{(Qj(w),kj(w))]§=1, where Hyk:w)H is big enough
[Algorithm 4]. And the pair (xk(w),xk(w” is con-
sidered as the ith eigenpair of A(w). At this
stage there are two possibilities:

(1) % _, T X @ >0
or

2 % _, T % (W <o.

Since Qk_l(w) and Qk(w) have almost the same

direction, Qk_l(w)T Qk(w) cannot be O.

Theorem 2.6: Suppose that Xk(w) and Qk_l(w)

are sufficiently close to A(w) = \l(w) and
A .
xX(w) = Ql(w), respectively. Then,

M) 1f % _, T X () >0, then A (W) > A(w).

(2) 1f Qk_l(w)T Qk(w) < 0, then Xk(w) < X(w) .
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Proof: It is sufficient to prove (l1). Let
A A A
(xl(w),xz(w),...,xn(w)] be the set of n orthonormal
eigenvectors of A(w). Step (3) in Algorithm 4 with

j =k-1 can be written as:

M WI-AW]y, (W) = ;\‘k-l(“’)"

Let
A 3 Aj
(w) = g.ix- (w),
*x-1 j=1 I
where
(2.1) 95 = BT Fw@ =120,

A Ai
Since xk_l(w) is close to x (w) by assumption,

g. 1is not small. Then,
i

() = Dy I -a@) 10 % (W)
n .
= N WI1-2 172 g P W
j=1 J
n g.
= 2 B! ;\((W)

- ] 3
j=1 lk(w) -2 (w)

From (2.1), we obtain

A T 55 ?;
(W) © y. (W) = :
k-1 k §=1 A (w) -3 w)
g2
1

e

A (W) = AT (w)
for Xk(w) is, by assumption, sufficiently close to

\'(w), and g; is not small.
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A
Because yk(w) and xk(w) have the same
. . A T A . . A T
direction, x _, (W) " x (W) > O implies Xx ,(wW)" y_ > O.
It follows that A (w) > AL(w) = A(w) . *hx

Theorem 2.6 and the Sturm Sequence Property lead

to the following correction checking algorithm.

Algorithm 7: Correction Checking Algorithm

Suppose that (Q(O),X(O)) is the ith eigenpair

of the initial matrix D.

IF (%, _, ()" X (W) >0) THEN
IF (G(Xk(w)) = i) THEN
Accept (% (W) )y (W) .
ELSE
Cut the current step-size by half
Go back to eigenvalue prediction
END IF

ELSE
IF (G(kk(w)) = i-1) THEN
Accept (%, (w) A, (W)
ELSE
Cut the current step-size by half
Go back to eigenvalue prediction
END IF

END IF. *kx
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Remark 2.8: The usage of Sturm Sequence in

Algorithm 7 is quite different from that of
finding eigenvalues by the method of bisection.
The convergence process of the bisection is linear
with convergence rate 0.5. But the Strum Sequence
Algorithm is used only one time in Algorithm 7 to
check whether Xk(w) is on the right eigenvalue

curve. *kk
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§ 2.4: Flow Chart

t=0
(i) Determine the ith eigenpair of D

(ii) Determine the initial step-size

4

. Prediction for (x,A) at the
P4
7
next step by Alg. 1 and Alg. 2 ®
Prediction checking
by Alg. 5
otherwise i’ checks out
v v
L—[Cut _the step-size by half | [Correction by Alg. 4 ]

A S

Check the correction

by Alg. 6 and Alg. 7

otherwise checks out

| Check t-valve |

lt(l
otherwise

Print-out the ith

eigenpair (x,\) of A Update the
\L step-size —
by Alg. 3
STOP .




CHAPTER III: NUMERICAL RESULTS

The computations described in this chapter
were performed on the CDC Cyber 750 at Michigan

State University.

This chapter is divided into two parts:

Examples and Comparison with EISPACK.
§3.1: Examples

Two examples will be presented in this section.

Example 1:
r ~ <
al Bz 7 1
B, a, 1 .
2 "2 . 1 3 ¢
Let A = . . '.B = . .t
.. L] n '. L] '1
-B .l n
n n
_ i L )
That is, ai =i (i=11,2,...,n) and
B, = 1 (i=2,3,...,n). This kind of matrices arises in

connection with a study of the John-Teller effect [5,11].

37
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The matrix A has the ith eigenvalue nearby i
except for few smallest and largest eigenvalues.

Hence A has a good eigenvalue separation.

The homotopy algorithm was used to find the
first eigenpair of A with n = 20,40, and 80.

For each n, we used three different initial matrices:

o =
%
Gy
b, = ..
.G
- -nd
r i . M
ale ] '
\ |
Ba%2 o v
93 Pygy .
- | !
b, = By 9y ‘
e
i i :‘,
‘!____.__-..'___' —_ - - -
, : 'an—an
- | i |Bn an..l
r J
@ By , ]
By Gy By :
B3 A3 By
_ |
Dy = By %4
_ . _ ._:_a; ______
I %6
| .'.
_ } a
n -
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The first eigenvalue of Dl is clearly 1
and the corresponding eigenvector is (l,O,O,...,O)T.
The first eigenpair of D2 is easily available since
the first eigenpair is essentially the first eigen-
pair of the first 2 X 2 submatrix. The first
eigenvalue of D2 is .381966 and the corresponding
eigenvector is (.850651, -.525731,0,...,0) . The
first eigenpair of D3 is essentially the first
eigenpair of upper 4 X 4 matrix and it was found
by the EISPACK subroutine IMTQL2. The first

eigenvalue of D is .254719 and the corresponding

3
eigenvector is (.777951, -.579792, .233949, -.,0624651,
O,O,...,O)T. Here we are taking advantage of the nice

performance of EISPACK with small matrices.

We chose the error tolerance € = lE -2, and
corrected eigenpair until HyjH > €2 - 1E+4 if
t <1, and HyjH >1E + 10 if t=1. (For
notation, see Algorithm 3 and Algorithm 4) . We

obtain the following results.

STEPS L-SYSTEMS MAXERR FAILURES
D1 4 8 .8643E-2 (0]
D2 2 4 .9422E-2 0
D3 1l 2 .9067E-5 (o]
Table 3.1: n = 20
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Notations 3.1

STEPS: The total number of steps to find

the first eigenpair of A, where a
step means a loop of prediction,

correction and checking.

L-SYSTEMS: The total number of linear systems

solved, (see Algorithm 2 and
Algorithm 4) .

MAXERR : The maximum error in eigenvalue

predictions.

FAILURES: The total number of failures in

either prediction checking or
correction checking, where a failure
means the case in which we need to
cut the step-size by half and pre-
dict eigenvalue again, (see

Algorithm 5 and Algorithm 7). *kk

Remark 3.1:

(1)
(2)

(3)

The error control was completely satisfactory.
We keep track of the total number of linear
systems solved, since it is the most time
consuming process in the homotopy algorithm.
For n= 40 and 80, we obtained almost the
same results. Hence the growth of n did
not make the first eigenvalue curve ill

conditioned.
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(4) D2 gives much better conditioning to the
first eigenvalue curve than Dl' D3 gives

still better conditioning than D2. *kk

A similar idea can be used to find the other
eigenpair. For example, suppose that we want to find

the 50th eigenpair of A. Now we choose D4 as follows:

'cl I ' h
* [ |
. |
o °4j;_~ o
Gug Pag |
i
1349 %9 Pso |
Dy = ! Bso %50 Psy |
|
l Bs1 %51 Bsy |
| A
L P52 %52
_ o IDs2ts2 . _ L
53
| |
1 ! ...
‘ | "%g0
L | | J

The 50th eigenpair of D4 is essentially one of

the eigenpairs of the middle 5 X 5 submatrix, and

it was found by IMTQL2. The 50th eigenvalue of D4

is 50 and the corresponding eigenvector is

' (0,0,...,0, .301511, .603023, .301511, -.603023,
48th 49th 50th 51th
.301511, O,...,0) T,
52th
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To find the 50th eigenpair of A, we needed only
one step, and the solution of one linear system.

Other eigenpairs can be handled in a similar fashion.

Remark 3.2: The above discussion shows that we

can make each eigenvalue curve in Example 1 have
almost the same conditioning by a suitable choice

of the initial matrix D.

Example 2: The following example is from [11].

a, Bi At
1 .25000 0000 .00000 0000 .06437 9910
2 .76849 1173 .15366 0746 ,07359 7119
3 .91955 6756 .46726 0328 .08422 5269
4 .23093 8895 .11925 6498 .09720 9219
5 .13305 3788 .08076 3539 .10321 5761
6 .22254 9575 .03394 7196 .12278 7524
7 .11612 7856 .03609 0904 .14342 2880
8 .12033 9373 .03502 2375 .16632 4602
9 .12371 9912 .02915 7561 .17130 7560
10| .12856 1407 .03745 3705 .17735 6337
11| .10776 8089 .01609 0599 .23163 9484
12| .13703 9203 .02382 6467 .26773 3297
13| .13805 7030 .02946 8449 .46276 6202
14| .10379 6943 .00764 6394 1.33403 4844

Table 3.2
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where a, is a diagonal element (i =1,2,...,14)
Bi is an off-diagonal element (i = 2,3,...,14)
A' is the ith eigenvalue (i =1,2,...,14).

Remark 3.3: The eigenvalue separation is poor.

For example 23 - a4 = 0060065 . dekok

We choose the initial matrix D as follows:

! 62. i |
By @y -, | |
L Bs
Bg A5 .
T g T T T T o
D= iB7_°7. -
| .. Pro
1 P10 %10 |
N S T
| P12 %12 Py3
| | B13 %13 Pig
: | Br1a %14 ]
L

The choice of D was guided by Theorem 1.6. Since
B6 is less than BS and 37, and Bll is less
than BlO and 612' by the above choice of D,

lA -Dll is minimized and D has reasonably sized

sub-blocks. We write
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and found all eigenpairs of U,M and L by using
EISPACK subroutine IMTQL2. We chose the error
tolerance € = 1lE - 4 and corrected the eigenpair

until Hyj” > 6_2 =1E +8 if t <¢1l, and

”yjH > 1E + 10 if t = 1. We obtained the following

result.
i |2l STEPS|L-SYSTEMS| MAXERR FAILURES AL (1)
1 |.06634 0723| 2 5 1 .0880E-4 o .06437 9909
2 |.07878 7312| 2 6 1.4849E-4 o} .07359 7119
3 |.08852 7020| 4 9 .8085E-4 o] .08422 5268
4 |.09408 9982 4 10 .8073E-4 o} .09720 9219
.10255 7223 2 5 .7869E -4 o] .10321 5760
6 |.12351 1014| 2 5 .8523E-4 o .12278 7523
7 |.14116 5599 2 4 .9097E -4 o .14342 2879
8 |.16767 9729| 2 4 .9339E-4 0 .16632 4601
9 |.17206 4026| 3 7 .7269E-4 o .17130 7559
10|.17497 7810| 3 7 .7432E-4 o .17735 6336
11].23472 2400| 3 7 .8802E-4 o) .23163 9484
12.25880 1504| 3 6 .8933E-4 o} .26773 3296
13|.46273 7255| 1 2 .4505E-7 o) .46276 6202
14 [L33403 4811| 1 1 o} o 1.33403 4842

Table 3.3
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Remark 3 .4:

(1) Example 2 was chosen to demonstrate the
accurate execution of the homotopy
algorithm. As we started from the ith
eigenpair of D, we arrived at the ith
eigenpair of A for each i =1,2,...,14.
There was no FAILURE at all in the checking
process.

(2) The average number of STEPS is 2.4286
and the average number of L-SYSTEMS is
5.5714, to find one eigenpair of A. Thus
we need to solve an average of 2.2941 linear
systems in each STEP. This is typical of

our homotopy algorithm. Tk

Example 3: The following example is from [8, page 125].

- —
1

Let A = . o °.

T}lat is, Gi=8—i (i=1'2)coo'8)o
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and

B, = 1 (i=2,3,...,15).

o(A) = {-1.125441522005, .253805837119,
.947534612211, 1.789326378193,.
2.130221682144, 2.961274130561,
3.043336908165, 4 .000000000000,
4.008304183180, 5.038725869439,
5.039166155057, 6.210673621807,
6.210683778125, 7.746194162881,

7.746194203123]}.

We tried to locate the biggest eigenvalue of A Dby

using homotopy methods starting from the initial matrix

71
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The biggest eigenvalue of D is 7.745281240174
and the corresponding eigenvector is (.7779570546743,

.579791948271, .233949463778, .062465125788, O.....O)T.

We chose the error tolerance € = 1lE -4, and
corrected eigenpair until HyjH > €2 = l1E+8 if
t <1, and HyJH > 1lE+10 if t = 1. However the
second largest eigenvalue of A agrees the largest
eigenvalue of A up to 7 decimal places. Hence we may

expect some failures in correction checking.

Indeed 7 failures in correction checking were
observed until the homotopy algorithm located the
largest eigenvalue of A. Even if the homotopy algorithm
could locate the largest eigenvalue of A, many failures

made it inefficient.

Remark 3.5: Many failures in correction checking
x14 xlS

occurred due to the fact that (1) and (1) are
very close. Hence if A has very close algorithm in
this thesis can be inefficient. Hence we need to
develop another homotopy algorithm for the case in
which A has very close eigenvalues. This will be

one of the further research topics.
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§3.2: Comparison With EISPACK

In this section we consider Example 1 with the

choice of D as the initial matrix. We also found

3

all the eigenpairs of A in Example 1 with n = 20,

40,80 by using IMTQL2 subroutine in EISPACK.

IMTQL2 determines the eigenvalues and eigenvectors

of a symmetric tridiagonal matrix. IMTQL2 uses the
implicit QL method to compute the eigenvalues and
accumulates the QL transformations to compute

eigenvectors [9].

(a) Execution Time

We obtained the following results:

1 2 3 4 5 6 7
(sec) (sec) Egg Egg log Egg log Egg Egi
n Hn En Hn En 2 Hn 2 En n‘Hn
10 .000375*| .004 _— —_— 1.0667
20 .00075* .026 — 6 .5000 -_— 2.7004 | 1.7333
40 .0015* .196 m— 7.5385 S 2.9143 | 3.2667
|80 .003 1.226 _ 6.2551 _— 2.6450 |- 5.1083
160 .006 7.993 2.0000 | 6.5196 1 2.7048 | 8.3260
320 .011 54.988 | 1.8333 [ 6.8795 .8744 | 2.7823 | 15.6216
640 .024 _— 2.1818 —_— 1.1255 -_ —_—
1280 .047 _— 1.9583 E— .9696 _— E—

Table 3.4
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Notation 3.2

H : The execution time in seconds to find the first

n
eigenpair of n X n matrix in Example 1 by
the homotopy algorithm with the initial
matrix D3.

E : The execution time in seconds to find all

eigenpairs of the n x n matrix in Example

1 by using IMTQL2.

Remark 3.6:

(1) InColumn l * means estimated time.
(n = 10,20,40, actual measurement of Hn
is not reliable since H is too short) .

(2) In Column 2, E640 and E1280 become
too long (that is, too expensive) .

(3) Column 7 shows that if n > 20, the
homotopy algorithm is better than EISPACK
even with one CPU. As n gets bigger the

homotopy algorithm becomes increasingly better.

(b) Computational Complexity

Column 5 in Table 3.4 shows that the complexity
of following one eigenvalue curve is O(n). Hence
the camplexity of finding all eigenpairs of a matrix
by the homotopy algorithm is Q(nz) by assuming

that each eigenvalue curve has more or less the same
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conditioning, which is true in this Example [Remark 3.2].
Therefore, if we adopt parallel processing the com-
plexity of the homotopy algorithm is better than

O(nz). If we assume that there are n parallel pro-

cessors, then the complexity becomes O(n).

However column 6 in Table 3.4 shows that the
2.6)

complexity of IMTQL2 is worse than O(n

Remark 3.7: The discussions in (a) and (b) are
not general assertions. They are based on Example 1.
Hence the discussions in (a) and (b) are true for

matrices which have good eigenvalue separations. * kX

(c) Storage Consideration

In IMTQL2, Z is a real two dimensional variable
with row dimension at least n and column dimension
at least n. If the eigenvectors of the symmetric
tridiagonal matrix are desired, then on input, 2
contains the identity matrix of order n, and on
output the orthonormal eigenvectors of this tridiagonal
matrix. Hence to use IMTQL2, at least nz-storage is
needed [9]. For the homotopy algorithm storage needed
equals only a few multiples of n. According to our
program the storage requirement of the homotopy

algorithm is around 20n.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(81

(9]

(10]

REFERENCES

Batterson, Steve and Smillie, John, "The
Dynamics of Rayleigh Quotient Iteration",
Preprint.

Blattner, J.W. (1962), "Bordered Matrices",
J. Soc. Indust. Appl. Math. 10: p. 528-536.

Chu, M.T. (1984), "A simple application of the
homotopy method to symmetric eigenvalue
problems”, Linear Algebra Appl. 59: p.85-90.

Li, T.Y., Sauer, T. and Yorke, J., "Numerical
solution of a class of deficient polynomial
systems", to appear.

Longuet-Higgins, H.C., Opik, U., Pryce, M.H.L.
and Sack, R.A. (1958), "Studies of the
John-Teller effect", Preceedings of the
Royal Society Vol. 244: p.l-16.

Martin, R.S. and Wilkinson, J.H. (1967),
"Calculation of the eigenvalues of a symmetric
tridiagonal matrix by the method of bisection",
Numerical Math. 9: p.386-393.

Ortega, J.M. (1972), "Numerical Analysis: a
second course", New York. Academic Press.

Parlett (1980), "The Symmetric Eigenvalue Problem",
Englewood Cliffs, N.J. Prentice-Hall.

Smith, B.T., et. al (1976), "Matrix Eigensystem
Routines, EISPACK Guide", 2nd Edition, Springer-
Verlag, New York.

Store, J. and Bulirsch, R. (1980), "Introduction

to Numerical Analysis", Springer-Verlag,
New York Inc. '

51






52

[11] Wilkinson, J.H. (1958), "The calculation of
the eigenvectors of codiagonal matrices",
Computer Journal 1l: p.90-96.

[12] Wilkinson, J.H. (1965), "The Algebraic Eigenvalue
Problem", Oxford University Press, New York.






