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ABSTRACT

THE HOMOTOPY METHOD FOR THE

SYMMETRIC EIGEN-VALUE PROBLEMS

BY

Noah H. Rhee

The homotopy method is applied to solve the

linear algebraic eigen-value problems for symmetric

matrices. Special homotopy equations for symmetric

eigen-value problems Ax = Xx are constructed.

It is known that there are n distinct curves

connecting trivial solutions to desired eigen—pairs.

Each curve is composed of an eigenvector curve in

Rn

x [0,1] and an eigenvalue curve in R x [0,1]. In

this thesis we show that it is enough to consider only

an eigenvalue curve in R X [0.1].

The homotopy method for calculating eigen-values

and eigen-vectors of a matrix is a serious alternative

to the currently most popular approach EISPACK for

SIMD machine.

The computational results obtained through this

thesis are extremely promising. This thesis is the

first serious attempt to make the homotopy method for

symmetric eigen-value problems efficient by making use

of special features of the homotopy method.
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INTRODUCTION

Solving an eigenvalue problem Ax = Xx for a

symmetric n x n matrix A can be thought of as

solving a nonlinear system of polynomial equations.

Fcp(x.x) = o.

where Fm :Rn XR .. R“ xR is defined by

Ax - Ax

F (XA) =

‘9 cp(x)

and m is a polynomial from Rn to R. For example,

if we want eigenvectors to have Euclidean norm 1, we

might let m(x) = xi-+x§-+..u+x: —l, where

x = (x x x )T1' zl-oo'n c

From this point of view, many well developed methods

can then be employed to find zeros of this Fm.

We shall assume that all eigenvalues of A are

distinct. Then the classical Newton's method and

its many improved modifications are applicable for

solving F®(x,l) = 0. Unfortunately Newton’s method

converges to only one zero at a time. In order to

 



obtain all n—eigenpairs of A, we have to restart

the iteration by making n suitable initial guesses,

which is difficult in practice.

The homotopy method of finding all the isolated

solutions of a system of polynomials has attracted

considerable attention recently.

The basic idea of homotopy continuation is to

construct a homotopy from a trivial map to the one of

interest. Under suitable conditions, a smooth curve

starting from the solution of the trivial map will

lead us to the desired solution.

The homotopy method for the symmetric eigen—

value problems was studied by Chu [3]. For the

general eigenvalue problems, a homotopy was given

by Li, Sauer and Yorke [4]. They constructed homotopies

which give n-disjoint smooth curves in Rn+l)([0,l]

(or Cn+l)<[0,l]). And each curve leads from an

obvious starting point to an eigenpair (x,k) of

the given matrix.

In both [3] and [4] a curve in Rn+1)<[0,l] (or

Cn+l'x[0,l]) is composed of an eigenvector curve in

Rrl x [0,1] (or Cn x [0,1]) and an eigenvalue curve in

R x [0,1] (or C x [0,1]). In this thesis we consider

only an eigenvalue curve in R x [0,1] by constructing

the following homotopy equation:



H:Rn x R x [0,1] -* Rn

such that

(0.1) H(x,)\,t) = (1—t) [Xx-Dx] + t[).x—Ax] = 0,

where D is an n x n matrix whose eigenpairs can

be computed easily.

Under suitable conditions n-distinct smooth

eigenvalue curves (in R x [0,1]) of (0.1) exist,

and each eigenvalue curve leads from an eigenvalue of

D to that of A. Once we find an eigenvalue, the

corresponding eigenvector is immediate by Inverse Power

Iteration.

Each eigenvalue curve can be characterized by

the solution curve of a scalar ordinary differential

equation with an initial value an eigenvalue of D.

Hence each eigenvalue curve can be followed numerically.

Furthermore different eigenvalue curves correspond

only to different initial values of the same ordinary

differential equation. Following one eigenvalue

curve is completely independent of following the other

eigenvalue curves. Therefore the homotopy algorithm is

an excellent candidate for exploiting the advantages of

parallel processing.

Also the homotopy method maintains the structure

of the underlying matrix, if there is any.

 



Chapter I discusses the existence of n—distinct

smooth eigenvalue curves and the local conditioning

of the eigenvalue curve. Chapter II discusses the

curve following algorithm in detail. Chapter III

gives several numerical results which show that the

homotopy algorithm for eigenvalue problems can be a

serious alternative to the QR—algorithm which is currently

the most powerful algorithm for eigenvalue problems.

 



CHAPTER I: THE EIGENVALUE CURVE

The discussion of the eigenvalue curve is divided

into two sections: The Existence of n—distinct

Eigenvalue Curves, and The Local Conditioning Factors

of an Eigenvalue Curve.

§l.1: The Existence of n-Distinct Eigenvalue Curves

From (0.1) we have

H(x,l,t) = (1 -t)(lx -Dx) + t(lx-—Ax)

= Xx - (D+t(A—D))x

= Xx — A(t)x

where A(t) = D + t(A-D).

We call D the initial matrix and A the final

matrix.

Because A is symmetric, we can tridiagonalize

A by a standard tridiagonalization process. Hence we

shall assume that A is tridiagonal. We may assume

that none of the off-diagonal elements is zero, for

otherwise we would subdivide_ A into the direct sum of

tridiagonal matrices of lower order and work instead

with them.

 



We choose the initial matrix D such that

(a) D has distinct eigenvalues and all its

eigenpairs are available.

(b) A(t) = D + t(A-—D) is tridiagonal with

non—zero off-diagonal elements unless

t = 0.

Remark 1.1:

(1) (a) and (b) imply that for each t 6 [0,1],

A(t) has n-distinct eigenvalues. For a

proof see [8, page 124].

(2) The conditions (a) and (b) are easily satis-

fied, for example, by choosing a diagonal

matrix D with distinct diagonal elemtns. ***

We denote the n—distinct eigenvalues of A(t) by

(Xl(t).X2(t),...,kn(t)) and assume that

X1(t) < X2(t) <...< Xn(t). And we denote the corres-

ponding normalized (with respect to the Euclidean norm)

eigenvectors by (Ql(t),xz(t),...,§n(t)). Henceforth

A

-notation will be used for a unit vector. ***

The eigenvalues of a matrix are continuous functions

of the elements of the matrix [7]. Hence we have the

following proposition.

Proposition 1.1: X1(t) is a continuous function

of t for i = l,...,n. ***

A



We shall denote [(X1(t) ,t) : o g t g 1] by ci

for i = l,2,...,n. Note that Ci n Cj = ¢ if

i ¥ j from Remark 1.1: (l).

Remark 1.2:

(1) Proposition 1.1 establishes that there are

n—distinct continuous eigenvalue curves

C1,C2,...,C such that Ci joints the
n

ith eigenvalue of D and the ith eigen—

value of A. We call this property the

Order Preserving Property of eigenvalues.

(2) The Order Preserving Property of eigenvalues

is important, since in application we often

need to find few eigenvalues which are either

algebraically the largest or smallest. The

Order Preserving Property of eigenvalue also

provides a valuable checking algorithm as we

follow an eigenvalue curve (see Chapter II,

section 3.) ***

Now we want to show that Ci is, in fact, a Ca-

curve for i = l,2,...,n.

A

For fixed v in [0,1], let (x(v),X(v)) be the

ith eigenpair of A(v). Consider the linear functional

A

w :Rn * R defined by ox = x(v)Tx for x E Rn.

 



Let H : Rn x R x [0,1] * Rn x R be defined by

~ Ax - A(t)x

H(x.>\.t) = A

x(v)Tx - 1

Lemma 1.2: The Frechet-Derivative

~ A N

D(x X)H(x(v),k(v),v) of H with respect to x and

l at (§(v),l(v),v) is nonsingular.

Proof: See [3]. ***

~ A

Notice that H(x(v),l(v),v) = 0. Hence by the

Implicit Function Theorem, there exist 6 > O and a

on

unique C —curve

I

v

[Fv(t) :v -6 < t < v +6}

{(X(t) Ix(t) It) : (X(V) IK(V) IV)

= (§<v).x<v).v). v—6 < t < v+6}

such that H(x,k,t) = O on TV

We denote the second component of TV by Cv’

that is, Cv= {(Mt),t) :v—6 < t < v+6].

Proposition 1.3: Cv is the restriction of

 



Proof: Since (1) (A(v),v) 6 Ci n Cv’ (2) Ci

is continuous and disjoint from Cj for j # i,

and (3) CV is smooth, it follows that Cv must

be the restriction of Ci to (v —6,v-+6). ***

Remark 1.3: This proposition shows that Ci

m l

is a C —curve for 1 = l,2,...,n. ***

§1.2: The Local Conditioning Factors of an Eigppyalue

Curve

Since Ci is Cm—curve and Ci = CV = [(X(t),t) :

v —6 < t < v-+5] on (v-6,v-+6) by Proposition 1.3,

the bound of the nth derivative of A(t) at t = v is

a good measure of determining the local conditioning of

Ci' Hence we shall proceed to find a bound of the nth

derivative of A(t) at t = v.

Proposition 1.4:

 
 

~ A _

(D(X'MH(x(v) ,Mv) ,v)) 1

l A ‘1 + I
A(v)I - A(v) I x(v) [A(v)I - A(v)] ' x(v)

I

I

{EMT . o QMT } o

where [A(V)I —A(v)]+ is the Pseudo-Inverse of

A(v)I - A(v), and I is the n X n identity matrix.
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Proof: See [2]. ***

Let d(i,v) = Min |A(v) -vl, where the minimum is

v#A(v)

taken over o(A(v)) and 0(A(v)) is the spectrum of

A(v). In d(i,v), i means that A(v) is the ith

eigenvalue of A(v). We call d(i,v) the eigenvalue

separation at A(v). Let H-” denote either the

Euclidean norm for a vector or the spectral norm for a

matrix.

Lemma 1.5: “[X(V)I -A(v)+H = l/d(i,v).

ngpf: From

o(A(v) -A(V))

= [0} U {x(v) -v :v E d(A(v)). V 9‘ MVH,

we have

o([>x(v)I-A(v)]+)

= {o} u [XT$%:3" v e o(A(v)), v e A(v)].

Hence H[x(v)1 -A(v)]+H = l/d(i,v). ***

We denote (dn/dtn)A(v) by A(n)(v) and

(dn/dtn)x(v) by x(n) (v) . And we denote 1(1) (v)

and x(1)(v) by A(v) and x(v) respectively.

Theorem 1.6:

Mk) (v)! < C(k) HA _D:ik/d(i,v)k‘1
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llx‘k’ (v) H gC(k) HA -D!lk/d(i.v)k for k = 1.2.---,

where C(k) is a constant, which depends only on

k.

Proof: We will use induction to prove this

~ A . .

theorem. For m = 1, (d/dt)H(x(v) ,Mv) ,v) = 0 implies

 

 

that

I /\ A

A(v) I - A(v) ll x(v) x(v) (A —D)x(v)

A ' :--- = ——————————

x(v)T I o A(v) o

By Proposition 1.5

. + | A A

x(v) [A(V)I - A(v)] | x(v) (A -D)x(v)

(

_—-— = I

A(v) QMT - o o

[l(v)I -A(v) ]+(A -D)§(v)

 

A T A

x(v) (A -D)X(V)

. A

Thus x(v) = [A(v) -A(V)]+(A-D)X(V)

”x(v)” = llmv) -A(v)1+(A—n)§2(v)u

<_. H [x(v) —A<v>1+HHA -DH

= HA -Dll/d (i.v).

Hence ”x(v)” 3 ‘IA -Dll/d(i.v) .
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Also

(1.1) i<v> = §(v)T(A -D)§‘<<v)

IMwl=leTm-m§wn

g the HHA —D|H|>A<(v) u

= HA -D||-

Hence [A(VH g ”A — DH . Therefore our Theorem is

true for m = 1.

Suppose that Him) (VH1 S C(m) ”A —D”,m/d(i,v)m-l and

”x(m) W)” i C(m) llA -DHm/d(i,v)m are true for m g k -1.

Let m = k (k 2 2) . By repeatedly differentiating

H(x(t) ,Mt) ,t) = O with respect to t and using the

fact that (d/dt) [A(t)] = (d/dt) [D+t(A —D)] = A -D and

A

evaluating at (x(v) ,Mv) ,v) , we obtain the following

 

expression:

x(v): -A(v) i QM x(k) (v)
I

A + """"
x(v)T : 0 And (v)

k(A _D)x(k-1) (V) +gl)‘(1) (V)X(k_1) (V) +921”) (v)x(k—2) (V)

 + + 9k_lx(k‘” (mam (v)

 

where 91, 92, . . . , gk_1 are constants, which depend only on

k. Let 1 g p g k -1. Then by the induction hypothesis we'have
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1MP) (v)! = C(p) HA -D||p/d(i,v) p'l

”x(P) (v) II = C(p) HA —DHp/d(i,v)P.

Hence the upper part of the right hand side is bounded by

C(k)HA-DHk/d(i,v)k_l. Let us denote the right hand side

by [b.01T. Then HhHgC(k)HA-DHk/d(i,v)k-l. Hence

i

x‘“ (v) [A(v): - A(V)]+ ; QMi h

——————— = ———-———————————-.l————— -—-

A

A(k)(v) x(v)T : O O

[Mv)I - AM 1*}.

Q(V)Th

Thus

ux‘k) (v) u = u we I we mu

: tlmv) -A<v)1+lllth

S C(k) HA -DHk/d(i,v)k

11(k)(v)i = 19mm

3 ”x(v) Illlhll

g cm IIA -Dllk/d(i,v)k‘l. ***

Remark 1.4:

(1) The bound of [A(k)(v)[ shows that there are

two important factors which can influence the

local conditioning of eigenvalue curve. First,

the poorer the eigenvalue separation is, the

 



(2)

(3)

(4)

14

poorer the local conditioning of the

eigenvalue curve can be. Second, the

closer D is to A, the better the local

conditioning of the eigenvalue curve can be.

Since the choice of D is basically free,

it may be possible to improve the condi-

tioning of the eigenvalue curve globally

by a suitable choice of D, since ”At-DH

does not depend on i or v.

The bound of ]X(k)(v)] is independent

of the size of the matrix. 80 the growth

of the matrix size does not imply that the

eigenvalue curve becomes ill—conditioned.

The equation (1.1) is a known result.

(See, for example, [7] or [10, page 389]).

It gives the scalar ordinary differential

equation which characterizes the eigenvalue

curve as its solution curve. ***

 



CHAPTER II: THE ALGORITHM

Since A(t) = 9(t)T(A—D)§‘<(t) from (1.1). it is

feasible to use any available ODE software solvers to

follow an eigenvalue curve. However to calculate

A(t), we need §(t). Hence to use any available ODE

software solvers as they are, a suitable form of ordinary

differential equation is

 

. I ' -1

x(t) [MOI-A(t) QM)“: ((A-D)Q(t)

-- -_ = 1 _ i __ _ 7- . _ . 1--.._ . I-

- |

Mt) ' QMT , o 1 o

.J _J L .4

[see [3]]. Hence to calculate

x(t)

A(t)

we need to solve a linear system

A(t)I-A(t) I 9cm 22(t) (A-Dh’ém

(2.1) --------'. .

Q(t)T '. o A(t) 0

But the matrix which is involved in (2.1) is no longer

tridiagonal, which is expensive to solve.

15

 



16

Besides, the accuracy requirement in ODE software

solvers keeps the step-sizes in a range where instability

does not occur. Hence, stability consideration limits

the step—size.

But in our problem (Q(t).l(t).t) is a solution to

H(x,>.,t) =0 (0.1), where (§(t),x(t)) is an

eigenpair of A(t). Hence we can locate (§(t),k(t))

as accurate as we want, for example, by correcting a

reasonable approximation by the Newton method. Hence

in homotopy method, there is no problem of instability.

Hence it is desirable to develop a numerical algorithm

which makes use of the special structure of homotopy method

for the symmetric eigenvalue problems instead of using

any available ODE software solvers.

The major difficulty in following an eigenvalue

curve is that there are n‘-1 other eigenvalue

curves. Hence in following an eigenvalue curve, the

important question is how we can prevent ourselves

from jumping into another eigenvalue curve.

As usual, there are two main steps in following

the solution curve of an ordinary differential

equation, namely the prediction step and the correction

step. In this chapter, in addition to these two steps,

we also discuss a checking step.

A
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Therefore the description of the algorithm will

be divided into three parts: Prediction, Correction

and Checking. Then we summerize the algorithm through

the Flow Chart.

A

Suppose that we have found (x(v),l(v)), the

ith eigenpair of A(v) and 0 g v g 1. Now we want

(Q(v-+h),l(v-+h)), the ith eigenpair of A(v-rh).

Throughout this chapter we assume that we are

following the ith eigenvalue curve Ci' We shall

denote ci by [(A(t),t):0gtg1].

§2.l: Prediction

In this section, we want to determine the next

step-size h and prediction for A(v-th) and

§(v+h) .

The description of the prediction is divided

into three parts: Eigenvalue Prediction, Eigenvector

Prediction and Step-Size Updating.

(a) Eigenvalue Prediction

For now, let us assume that the next step size

h was determined.
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From (1.1) My) =§(v)T(A—D):’é(v). So A(v) is

immediately available. Thus we use therHermite Inter-

polation which interpolates [A(u),A(u),A(v),A(v)]

to predict A(v-th), where A(u) and A(u) are

the eigenvalue and eigenvalue derivative at the previous

step respectively.

At v = 0 we choose the initial matrix D which

has a simple structure so that it is easy to get higher

derivatives of A(t) at t = 0. Thus we used third

order Taylor method to predict for the next step eigenvalue.

Let P(t) be the polynomial which interpolates

Mt) at {Mu).i(u).x<v).i(vn. Then

P(t) = Mu) + Mu) (t-u)

MV) -Mu) -;~iu) (v-u) (t-u)2

+ (v-u)

+ (v—u)Li(v) +i(u)1-2[Mv) -Mu)]

(v -u)

(t—u)2<t-v)

Let w = v-+h and Ao(w) = P(w), that is,

lo(w) is the prediction for A(w). We summarize the

eigenvalue prediction as follows:

Algorithm 1: Eigenvalue Prediction Algorithm

(1) Calculate Mv) = Q(v)T(A _D)£(v)

(2) Calculate P(w)

(3) Set Ao(w) = P(w). ***
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(b) Eigenvector Prediction

After the eigenvalue prediction we have Ao(w)

A

and x(v). Then we construct the eigenvector pre—

. . A .
diction, say x0(W), by Inverse Power Iteration as

follows:

Eigenvector Prediction AlgorithmAlgorithm 2:

(1) Set noon -A(w)1y = 9cm.

Solve for y.

***

(2) Set 9:0(w) = Y/HYH-

(c) Step—Size Updating

Now we discuss how to determine the step-size

h to achieve

ERR =1x(v+h)_xo(v+h)ige

where E > O is a prescribed accuracy.

Since the Hermite Interpolation, which interpolates

[A(u),A(u),A(v),A(v)], is used to predict A(v-th),

ll(v+h) —>.O(v +11)!

A(t) for t E [u,v-+h]. In fact,

the error in is related to the

4th derivative of

we have the following error formula:

Theorem 2.1: Let the real function A be

(n-+l) times differentiable on the interval [a,b]

and consider (m-tl) support abscissae ti 6 [a,b]

such that to < t1 <...< tm. If the polynomial P(t)

11-:n, where n:+1 =
1 i

7!
.
[
‘
4
3

whose degree is at the most
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interpolates at each support abscissae ti not only

the value but also the first ni —l derivatives of

x, that is, p(k) (ti) = W" (ti) (k = 0,1,....ni-l)

for each i = 0,1,...,m, then to every t 6 [a,b],

there exist E, which belongs to the smallest interval

containing t, such that

(t-t )n0(t—t )n1 (t-t )nmx(n+1’ (E)0 1 ... m

(n-tl)!

 

A(t) - P(t)

Proof: See [10]. ***

By Theorem 2.1,

l(v+h) — xo(v+b) = (v+h-u)2(v+h-v)2l(4)(t)/24

= [h + (v —u) 1213).“) (E) /24,

where t E [u,v-+h].

Suppose that we have an estimate Mv for [1(4)(t)l,

t E [u,v-+h]. To determine the next step size h, which

makes the error [A(v:+h) -AO(v-+h)l less than 6,

we set [h-+(v«-u)]2h2Mv/24 = E, that is

[h+(v-u)]2h2 = 24E/Mv. Let f(h) = [h+(v-u)]2h2.

Then we shall look for the smallest positive solution

h of f(h) = 24E/Mv. The function f(h) has two

double zeros at h = 0 and h = -v(v -u). So we have

the following picture:
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M ————_—-——

  D
‘
_
.
_
_
.
_

—(v-u) 0

Figure 2.1

Clearly there is a unique positive solution h.

Furthermore it is easy to see that Newton Iteration

for the equation f(h) = 246/MV, starting from the

. . _ co

preVious step—Size ho — v-u, Will produce [hn]n=o

such that hn * h as n * w.

To complete the updating of the step-size, we

need to update Mv so that we may have an estimate

M will be used for the determination
v+h' v+h

of the next step-size from t = v-th.

for M

Note that at this stage h is available. By

Algorithm 1, we shall have Xo(v-+h). Later by

correction we shall have A(v-th). Let

ERR = [A(v-th) -Ao(v-+u)l. Again by Theorem 2.1

we have
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[11+ (v -u) 12h2
 

 

 

ERR = 24 It“) (E) I.

where E 6 [u,v-th]. Hence

HM) (EH __, 24ERR 2 2

[h + (v -u)] h

We set

Mv+h = 24ERR .

[h+ (v-u)]2h2

Therefore, we have the following step-size updating

algorithm:

Algorithm 3: Step-Size UpdatinguAlgorithm

(1) Set f(h) = [h+ (v-u)]2h2 = 246/Mv.

Solve for h by Newton Iteration starting

from h = v - u, where E is a prescribed

accuracy and Mv is an estimate for

[A(4)(t)] near t = v.

(2) Wait until Ao(v-+h) and A(v-th)

are available.

(3) Calculate ERR = (Minn) -lo(v+h) 1.

24ERR

(4) Set M = 7-5.

v+h [h+(v-u)] h

 

Remark 2.1: MO is found by calculating lk(4)(0)l.

Since D has a simple structure, it can be found easily.
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§2.2: Correction

, A

For the correction of (xO(w),AO(w)), we use the

A

Rayleigh Quotient Iteration starting from xo(w). We

shall abbreviate Rayleigh Quotient Iteration by R01.

The asymptotic rate of convergence of R01 is cubic

for a symmetric matrix [8].

Algorithm 4: ROI-Algorithm

Let A be an n X n symmetric matrix and

(1)

(2)

(3)

(4)

(5)

T

 

_ x ax

x x

'. . A

Pick a unit vector x0. For

j = 0.1.2,..., repeat the following.

A

Compute Xj+l - pA(xj).

A

Solve (Aj+II«-A)yj+1 — xj for yj+1.

Set 9 = /HY H
j+1 yj+1 - j+1"

If (Hyj+1H is big enough) THEN

A . . .
Accept (xj+l'xj+l) is an eigenpair of A.

 

ELSE

j = j + 1

Go to (2)

END IF. ***

Remark 2.2: (1) In our algorithm 90 = xO(w) and

A = A(w) . We shall write Q]. and xj by Qjm) and

Xj(W) respectively, for j = l,2,°--. ***
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(2) In step 5, that is big enough meansHyj+lH

that the residual is small enough. For

A

A y.+1 x.

l. I-A . = x. I-A = .
( 3+1 )X3+l ( 3+1 ’ Hyj+1H Hyj+lH

Hence

”(Aj+11"A)Qj+1H = l/HYj+1H°

Now we want to show that for small enough step-size

A

h, RQIeAlgorithm with starting point x0(v-+h) produces

A A

xj(v-th) which converges to x(v-th).

It suffices to consider diagonal matrices to

understand the geometry and dynamics of symmetric

matrices under ROI [1]. Thus we shall assume that

A(v-th) is diagonal matrix with A1(v-th),...,kn(v-+h)

as diagonal elements for each h.

Definition 2.2: Let

i . i

p1(x) = Z xjxi/Z x2.
j=1 j j=1 J

n n

p2(x) = Z 13x2./23 x2.

j=i J j=1 J

'-l i

- n . _ A:L__ilL_
E - {X E R .Xi - 1: 01(X) > 2

xi-+Ai+l

and p2(x) < -—jf——-—i

where Xj is the jth coordinate of x and A] is

the jth eigenvalue of the associated diagonal matrix

for j = l,2,...,n.
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Theorem 2.3: If we start RQI-algorithm from any

vector in E, the sequence of vectors by ROI—algorithm

converges to e1 = (0,0,...,0,1,0,...,0), which is

ith

the ith eigenvector of the associated diagonal matrix.

Proof: See [1]. ***

Remark 2.3:

(1) E is not empty since ei E E.

(2) E is open set in the x1 = l chart,

since p1(x) and p2(x) are continuous

functions in the xi = l chart.

Theorem 2.4: There exists 5 > 0 such that

0 < h < 3 implies that ROI-algorithm starting from

A .

x0(v-+h) produces sequence which converges to e1.

Proof: For given h > O, we associate

Ai-l

 

i

E(h) = {X E Rn :Xi = 1'p1(x) > XV+h)2+A (Vi-h)

li(v +h) + Ai+1(v +h)

Since E(h) is open in xi = l chart, there

exists a neighborhood of e1 with radius 6(h) in

x. = 1 chart, say N6(h)(ei)’ such that N (ei)
i 6(h)

is the maximal open ball which is in E(h). Note that

6(h) is a continuous function of h since everything

which is involved is continuous with respect to h.
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Now we fix h > 0. Let 6 = mink 6(h). Then

Oghgh

6 > 0, since 6(h) is a positive continuous function

and [0,h] is compact. Note that as h * 0,

[Ai(v+h) -l0(v+h)l -: o and thus Qo(v+h) -> e1.

Hence there exists h such that 0 < h < h

and if h < h then Hx0(v-+h)-eiH < 6, where

xo(v-+h) is the constant multiple of Q0(v-+h) so

that x0(v-+h) may belong to xi = l chart. Thus

the Theorem immediately follows. ***

Remark 2.4: The convergence in Theorem 2.3 and

Theorem 2.4 is the convergence in the real projective

space PRn-l. Hence the correction may end up

(-§(v+h),Mv+h)) instead of (9(v+h).l(v+h)).

However, it has no effect in our algorithm at all

since

i(v+h) x(v+h)T(A —o):’2(v+h)

-§(v+h)T(A—D)(-a’2(v+h)). ***
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§2.3: Checking

A

Even though we find (x(w),A(w)) from

A

(x(v),A(v)) by prediction and correction, where

w v-th, A(w) may be on a different eigenvalue curve

from what we expect.

There are two reasons for this failure. First,

A(4)(t) (u g_t g_w) is not'known exactly. Second,

the eigenvalue separation of A(w) is not known.

Fortunately there is a simple and accuract checking

algorithm for tridiagonal eigenvalue problem, which

can assure that if A(v) was the ith eigenvalue of

A(v), then A(w) is also the ith eigenvalue of

A(W) .

The description of the checking algorithm is

divided into two parts: Prediction Checking and

Correction Checking.

(a) Prediction Checking

Since A(t) = D-+t(A-D) is symmetric for

each t 6 [0,1], the eigensystem forms a complete
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orthonormal system for each t. Hence the eigensystem

may be considered as rotating continuously from

t = 0 to t = 1. If the rotation of the eigenvector

is too big in two consecutive steps, we might have

jumped into another eigenvalue curve.

A

After eigenvector prediction, we have x0(w).

A

And we hope that the rotation between xo(w) and

A

x(v) is not too big. So we have the following

prediction checking algorithm:

Algorithm 5: Prediction Checking Algorithm

Let CRI be a positive real number.

(1) Calculate IP = x(v)TQO(w).

(2) If ([IP] > CRI) THEN

Accept Q0(w).

ELSE

Cut the current step-size by half.

Go back to eigenvalue prediction.

END IF. ***

Remark 2.5:

(l) The number CRI actually restricts the

rotation angle between the eigenvectors.
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In our program4'we set CRI = .85.

It means that no more than g

eigenvector rotation is allowed in two

consecutive steps.

(2) If IIPlg_CRI, then indeed we might have

jumped into another eigenvalue curve.

However IIPI> CRI does not necessarily

imply that A(w) is on the right eigen-

value curve. To be safe, we devise a

correction checking algorithm as follows.

(b) Correction Checking

To state correction checking algorithm, we need

some background material.

 

r

Cl1 32 1

B2 “2 °'.

Let T = '. °. °.

0°. '. Bn

L an n  
where Bi #'0 for i = 2,3,...,n.

The characteristic polynominals Pi(X) of the

principle minor formed by the first i X i submatrix

of the matrix T satisfy the following recursive

relations:
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PO(A) = l

Pl(l) = o1 - A

_ 2 -

for i = 2,3,...,n.

Then the roots of Pi strictly separate those of

Pi-1(1 g_i g_n-1) [12]. We call this property of

,P .,Pn the Strum Sequence Property.
Po 1'“

The Sturm Sequence Property for symmetric

tridiagonal matrices with non-zero off diagonal

elements forms the basis of the following Theorem.

Theorem 2.5: Let G(u) be the number of sign

changes of Po(u),...,Pn(u) at location M. Then

G(H) is the number of roots of Pn(A) with A < H.

Proof: See [12]. ***
 

 

Remark 2.6: If Pi(u) = 0, we take the sign of

Pi(u) as that of Pi_1(u). Note that no two con-

secutive Pi(u) can be zero. ***

Let Qi(A) = Pi(A) /Pi-1()\) (i = 1,2:oooon) .

Then Qi(A) satisfies the following relations:
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01(A) = o1 - A

2 . _
Qi()\) (Oi -A) - Bi/Qi-1(X) (1 -' Zloooln)

and C(u) is given by the number of negative

Qi(H). We thus have the Sturm Sequence.Algorithm.

Algorithm 6: Strum Sequence Algorithm

(1) Set COUNT = O

(2) Calculate 01(H) = a1 - u

IF i = 2,3,...,n. repeat the following.

(3) IF (Oi-1‘“) = 0) Qi_1(u) = 1811 MACH.

where MACH is the smallest number for

which 1 + MACH > 1 on the computer.

(4) Calculate aim) = (oi-u) - ref/eight).

(5) If (Qi(H) < O) COUNT = COUNT + 1.

an IF (i = n) THEN

Set (sun = COUNT

ELSE

i = i + 1

Go to (3)

END IF . ***

Remark 2.7:

(1) G(u) is the number of eigenvalues of T

which is less than H.

(2) When Qi_l(u) = 0, replaCing Qi_1(H)

by (Bil MACH (note that this is positive:

this is essential because if Qi_1(u) = 0,
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it is treated as positive) is equivalent

to replaCing ai-l by oi_1 + [Bi] MACH.

Hence this algorithm is stable.

(3) For the detailed discussion of this

algorithm see [6]. ***

Algorithm 6 can be used to check whether A(w)

is on the right eigenvalue curve. By the prediction

and correction step, we have the sequence

{(xj(w),lj(w))]§p1, where ”Yk(W)H is big enough

[Algorithm 4] . And the pair (9k (w) ,A.k(w)) is con-

sidered as the ith eigenpair of A(w). At this

stage there are two possibilities:

(l) Qk_1(w)T §k(w) > 0

or

(2) Qk_l(W)T Qkhv) < o.

A

Since Qk_1(w) and xk(w) have almost the same

direction, §k_1(w)T Qk(w) cannot be 0.

Theorem 2.6: Suppose that Ak(w) and §k_1(w)

are sufficiently close to A(w) = 11(w) and

A A'

x(w) = x1(w), respectively. Then,

(1) If 95(_1(w)T Qk(w) > 0, then )‘1<(W) > MW).

(2) If §k_1(w)T Qk(w) < 0. then xk(w) < A(w).
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Proof: It is sufficient to prove (1). Let

A

{x1(w),xz(w),...,xn(w)] be the set of n orthonormal

eigenvectors of A(w). Step (3) in Algorithm 4 with

j = k-l can be written as:

[ARMI -A(W)] yk(W) = QJPIW) .

Let

A n A'

(w) = Z 9.x3(w).
xk-l j=l j

where

(2.1) gj = Qk-1(w>T Qj(w) (j = 1.2.....n).

A A'

Since xk_1(w) is close to xl(w) by assumption,

gi is not small. Then,

yk(W) WW” -A(w)1‘l a.“ (w)

n .

(x(w): -A(w) 1‘1 2 9. film)

i=1 3
n g.

= Z) J . Q.(w)

j=l 1km) —l3(w) 3

 

From (2.1), we obtain

 

 

2

" (w)T y (w) = 2% ‘5
xk‘l k j=1 Ak(w) -A3(w)

9?
’8 1' .

NJ“) -l1(w)

for Ak(w) is, by assumption, sufficiently close to

li(w), and 9.1 is not small.
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A

Because yk(w) and xk(w) have the same

d' t' A ( )T A (w) 0 ' l' A (w)T 0irec ion, Xk-l w xk > imp ies Xk-l yk > .

It follows that x(w) > l1(w) .-. A(w). ***

Theorem 2.6 and the Sturm Sequence Property lead

to the following correction checking algorithm.

Algorithm 7: Correction Checking Algorithm

A

Suppose that (x(O),X(0)) is the ith eigenpair

of the initial matrix D.

IF (95(_1(w)'r 42km > 0) THEN

IF (G(Ak(w)) = i) THEN

Accept (9e<(w).xk(w)).

ELSE

Cut the current step-size by half

Go back to eigenvalue prediction

END IF

ELSE

IF (GO-Rho) = i-1) THEN

Accept (Qk(w).1kiw))

ELSE

Cut the current step-size by half

Go back to eigenvalue prediction

END IF

END IF. ***
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Remark 2.8: The usage of Sturm Sequence in

Algorithm 7 is quite different from that of

finding eigenvalues by the method of bisection.

The convergence process of the bisection is linear

with Convergence rate 0.5. But the Strum Sequence

Algorithm is used only one time in Algorithm 7 to

check whether Ak(w) is on the right eigenvalue

curve. ***
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§ 2.4: Flow Chart

 

t = O

(i) Determine the ith eigenpair of D

(ii) Determine the initial step-size

¢.

   
g

 

 

 

   

 

   

 

  

‘. Prediction for (x,A) at the

I

I \

next step by A19. 1 and.Alg. 2

Prediction checking

by A19. 5

otherwise checks out

L--[Cut the steprsize by half;] [Correction by Alg. 4']
 
 
 

A J.

Check the Correction

 

 

by A19. 6 and A19. 7

   

 otherwise checks out

 

[Check t-valve]

‘L t < 1

,otherwise
 

 

Print-out the ith

 

    

 

eigenpair (x,A) of A Update the

\L step—size (—

by A19. 3

STOP .    
    



CHAPTER III : NUMERICAL RESULTS

The computations described in this chapter

were performed on the CDC Cyber 750 at Michigan

State University.

This chapter is divided into two parts:

Examples and Comparison with EISPACK.

§3.1: Examples

Two examples will be presented in this section.

 

    

Example 1:

r r 7
ol BZ 7 l

B o l 2

2 2 . 1 3 .

Let A = '. '. 0'5 = . . °.

‘ ° n I 0. I1

'5 G 'l n
n n

L. s L 3

That is, oi = i (i = l,2,...,n) and

B. = 1 (i = 2,3,...,n). This kind of matrices arises in

i

connection with a study of the John-Teller effect [5,11].

37
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The matrix A has the ith eigenvalue nearby i

except for few smallest and largest eigenvalues.

Hence A has a good eigenvalue separation.

The homotopy algorithm was used to find the

first eigenpair of A with n = 20,40, and 80.

For each n, we used three different initial matrices:

  

  

 

fi

F ol

“2

D1 =

o

C '1'! J

F ‘ a fi

GIBZ I I

I |

B2G2 i ‘ I
._ _ _ {.a_.g T...- F - -.__

l 3 4t ;

_ p I ‘

D2 ' * 34 a4. .
._.. _ T___._ 7... _ _. _ _.

| I |(III-'1fir1

L ‘ 5 Ian an J

V l

“1 32 I A

52 “2 B3 1

53 “3 B4)

_ 1

D3 ‘ 54 “4'
____ _ __._l_a; _______

I

I a6
l O

L i ”a
n .J 
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The first eigenvalue of D1 is clearly l

and the corresponding eigenvector is (l,0,0,...,0)T.

The first eigenpair of D2 is easily available since

the first eigenpair is essentially the first eigen-

pair of the first 2 X 2 submatrix. The first

eigenvalue of D2 is .381966 and the corresponding

eigenvector is (.850651, -.525731,0,...,0)T. The

first eigenpair of D3 is essentially the first

eigenpair of upper 4 X 4 matrix and it was found

by the EISPACK subroutine IMTQLZ. The first

eigenvalue of D is .254719 and the corresponding
3

eigenvector is (.777951, -.579792, .233949, -.0624651,

0,0,...,0)T. Here we are taking advantage of the nice

performance of EISPACK with small matrices.

We chose the error tolerance 6 = lE-2, and

corrected eigenpair until Hyj” 2_€'2 = lE-t4 if

t < l, and llyjll 2 1E + 10 if t = 1. (For

notation, see Algorithm 3 and Algorithm 4). We

obtain the following results.

 

STEPS L-SYSTEMS MAXERR FAILURES

 

 

 

D1 4 8 .8643E-2 0

D2 2 4 .9422E-2 0

D3 1 2 .9067E-5 O

       
Table 3.1: n = 20
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Notations 3.1

STEPS: The total number of steps to find

the first eigenpair of A, where a

step means a loop of prediction,

correction and checking.

L-SYSTEMS: The total number of linear systems

solved, (see Algorithm 2 and

Algorithm 4).

MAXERR: The maximum error in eigenvalue

predictions.

FAILURES: The total number of failures in

either prediction checking or

correction checking, where a failure

means the case in which we need to

cut the step-size by half and pre-

dict eigenvalue again, (see

Algorithm 5 and Algorithm 7). ***

Remark 3.1:

(l)

(2)

(3)

The error control was completely satisfactory.

We keep track of the total number of linear

systems solved, since it is the most time

consuming process in the homotopy algorithm.

For n = 40 and 80, we obtained almost the

same results. Hence the growth of n did

not make the first eigenvalue curve ill

conditioned.
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(4) D2 gives much better conditioning to the

first eigenvalue curve than D1. D3 gives

still better conditioning than D2. ***

A similar idea can be used to find the other

eigenpair. For example, suppose that we want to find

the 50th eigenpair of A. Now we choose D4 as follows:

 

P01 1
t T

. l I

.. l

_.-_ [“43‘_.__<_ __ _ __ _ —. _ _ _.__ _ _

“48 549 i
i

(B49 “49 “so 1

D4 = . “so “so “51 .
I

l 351 “51 552 .

I t

_ ~_ __ _1 __ “52 “52
__ __ __ _ _ -1 l _ __ - _. -

( “53
I

I
’ ...

l ’ °“80

L ' J 
The 50th eigenpair of D4 is essentially one of

the eigenpairs of the middle 5 X 5 submatrix, and

it was found by IMTQLZ. The 50th eigenvalue of D4

is 50 and the corresponding eigenvector is

'(o,o....,o, .301511, .603023, .301511, -.603023,

48th 49th 50th 51th

.301511, 0.....0)T.

52th
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To find the 50th eigenpair of A, we needed only

one step, and the solution of one linear system.

Other eigenpairs can be handled in a similar fashion.

Remark 3.2: The above discussion shows that we

can make each eigenvalue curve in Example 1 have

almost the same conditioning by a suitable choice

of the initial matrix D.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Example 2: The following example is from [11].

di Bi A1

1 .25000 0000 .00000 0000 .06437 9910

2 .76849 1173 .15366 0746 .07359 7119

3 .91955 6756 .46726 0328 .08422 5269

4 .23093 8895 .11925 6498 .09720 9219

5 .13305 3788 .08076 3539 .10321 5761

6 .22254 9575 .03394 7196 .12278 7524

7 .11612 7856 .03609 0904 .14342 2880

8 .12033 9373 .03502 2375 .16632 4602

9 .12371 9912 .02915 7561 .17130 7560

10 .12856 1407 .03745 3705 .17735 6337

11 .10776 8089 .01609 0599 .23163 9484

12 .13703 9203 .02382 6467 .26773 3297

13 .13805 7030 .02946 8449 .46276 6202

14 .10379 6943 .00764 6394 1.33403 4844

 

Table 3.2

 



where (1.1 is a diagonal element (i = l,2,...,14)

Bi is an off-diagonal element (i = 2,3,...

A1 is the ith eigenvalue (i = l,2,...,l4).

Remark 3.3: The eigenvalue separation is poor.
 

For example

We choose the initial matrix D

 

(1132 i i

“2 “2.. . ‘

° . '.. “5 :

°“5 “5 I .

”Has—“TH“—
D= (37.07. B

‘ -.°.. 10

I “10'“10

——'_ — “i.'— - I '—9fi.%3 —'- -

‘ 2512 “12 B13

. ‘ B13 “13 “14

L i i “14 “14

The choice of D was guided by Theorem 1.6. Since

86 is less than BS and B7, and 811 is less

than 310 and 812, by the above choice of D,

HA-—D” is minimized and D has reasonably sized

sub-blocks. We write

l5 - 14 = .0060065.

43

***

as follows:
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and found all eigenpairs of U,M and L by using

EISPACK subroutine IMTQLZ.

tolerance 6

until llyjll 2 6'2

HyjH 2_1E + 10 if t = l.

1E - 4

1E + 8 if t < 1,

We chose the error

and corrected the eigenpair

and

We obtained the following

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

result.

i 11(0) STEPS L-SYSTEMS MAXERR FAILUREd 11(1)

1 .06634 0723 2 5 1.0880E-4 0 .06437 9909

2 .07878 7312 2 6 1.4849E-4 0 .07359 7119

3 .08852 7020 4 9 .8085E-4 0 .08422 5268

4 .09408 9982 4 10 .8073E-4 0 .09720 9219

5 .10255 7223 2 5 .7869E-4 0 .10321 5760

6 .12351 1014 2 5 .8523E-4 0 '.12278 7523

7 .14116 5599 2 4 .9097E-4 0 .14342 2879

8 .16767 9729 2 4 .9339E-4 0 .16632 4601

9 .17206 4026 3 7 .7269E-4 0 .17130 7559

10 .17497 7810 3 7 .7432E-4 0 .17735 6336

11 .23472 2400 3 7 .8802E-4 0 .23163 9484

12 .25880 1504 3 6 .8933E-4 0 .26773 3296

13 .46273 7255 1 2 .4505E-7 0 .46276 6202

14 133403 4811 l 1 0 0 1.33403 4842      
 

Table 3.3
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Remark 3.4:

(1) Example 2 was chosen to demonstrate the

accurate execution of the homotopy

algorithm. As we started from the ith

eigenpair of D, we arrived at the ith

eigenpair of A for each i = l,2,...,14.

There was no FAILURE at all in the checking

process.

(2) The average number of STEPS is 2.4286

and the average number of L-SYSTEMS is

5.5714, to find one eigenpair of A. Thus

we need to solve an average of 2.2941 linear

systems in each STEP. This is typical of

our homotopy algorithm. ***

Example 3: The following example is from [8. page 125].

-7 I]

l

H
O
\
l
4

Let A = '. 0 '.

  
That is, ai = 8«-i (i = l,2,...,8).
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and

0(A) = {-1.125441522005, .253805837119,

.947534612211, 1.789326378193,

2.130221682144, 2.961274130561,

3.043336908165, 4.000000000000,

4.008304183180, 5.038725869439.

5.039166155057, 6.210673621807.

6.210683778125. 7.746194162881.

7.746194203123}.

We tried to locate the biggest eigenvalue of A by

using homotopy methods starting from the initial matrix

F71
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The biggest eigenvalue of D is 7.745281240174

and the corresponding eigenvector is (.7779570546743,

.579791948271. .233949463778, .062465125788. 0.....0)T.

We chose the error tolerance E = lE-—4, and

corrected eigenpair until Hij 2,6-“ = lE-t8 if

t < l, and HyjH 2,1E-+10 if t = 1. However the

second largest eigenvalue of A agrees the largest

eigenvalue of A up to 7 decimal places. Hence we may

expect some failures in correction checking.

Indeed 7 failures in correction checking were

observed until the homot0py algorithm located the

largest eigenvalue of A. Even if the homotopy algorithm

could locate the largest eigenvalue of A, many failures

made it inefficient.

Remark 3.5: Many failures in correction checking

114(1) and l15occurred due to the fact that (l) are

very close. Hence if A has very close algorithm in

this thesis can be inefficient. Hence we need to

develop another homotopy algorithm for the case in

which A has very close eigenvalues. This will be

one of the further research topics.
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§3.2: Comparison With EISPACK

In this section we consider Example 1 with the

choice of D as the initial matrix. We also found

3

all the eigenpairs of A in Example 1 with n = 20,

40,80 by using IMTQLZ subroutine in EISPACK.

IMTQL2 determines the eigenvalues and eigenvectors

of a symmetric tridiagonal matrix. IMTQLZ uses the

implicit QL method to compute the eigenvalues and

accumulates the QL transformations to compute

eigenvectors [9].

 

 

 

 

 

 

 

 

 

 

 

          
 

(a) Execution Time

We obtained the following results:

1 2 3 4 5 6 7

(sec) (sec) Egp’ Egg. log Egg 109 Egg, EEC

n Hn En Hn En 2 Hn 2 En n‘Hn

10 .000375* .004 -— -——— -—-— -——- 1.0667

20 .00075* .026 '-- 6.5000 -—— 2.7004 1.7333

40 .0015* .196 -- 7.5385 -—- 2.9143 3.2667

80 .003 1.226 -- 6.2551 -- 2.6450 -5.1083

160 .006 7.993 2.0000 6.5196 1 2.7048 8.3260

320 .011 54.988 1.8333 6.8795 .8744 2.7823 15.6216

640 .024 ———- 2.1818 ——— 1.1255 ‘-- ——-

1280 .047 -- 1.9583 -—- .9696 '-— '--

Table .4
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Notation 3.2

Hn: The execution time in seconds to find the first

eigenpair of n x n matrix in Example 1 by

the homotopy algorithm with the initial

matrix D3.

The execution time in seconds to find allm

eigenpairs of the n x n matrix in Example

1 by using IMTQLZ.

Remark 3.6:

(1) In Column 1 * means estimated time.

(n = 10,20,40, actual measurement of Hn

is not reliable since Hn is too short).

(2) In Column 2, E640 and E1280 become

too long (that is, too expensive).

(3) Column 7 shows that if n 2 20, the

homotopy algorithm is better than EISPACK

even with one CPU; As n gets bigger the

homotopy algorithm becomes increasingly better.

(b) Computational Complexity

Column 5 in Table 3.4 shows that the complexity

of following one eigenvalue curve is 0(n). Hence

the complexity of finding all eigenpairs of a matrix

by the homotopy algorithm is 0(n2) by assuming

that each eigenvalue curve has more or less the same
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conditioning, which is true in this Example [Remark 3.2].

Therefore, if we adopt parallel processing the com-

plexity of the homotopy algorithm is better than

0(n2). If we assume that there are n parallel pro-

cessors, then the complexity becomes 0(n).

However column 6 in Table 3.4 shows that the

complexity of IMTQLZ is worse than 0(n2'6).

Remark 3.7: The discussions in (a) and (b) are

not general assertions. They are based on Example 1.

Hence the discussions in (a) and (b) are true for

matrices which have good eigenvalue separations. ***

(c) Storage Consideration

In IMTQLZ, Z is a real two dimensional variable

with row dimension at least n and column dimension

at least n. If the eigenvectors of the symmetric

tridiagonal matrix are desired, then on input, Z

contains the identity matrix of order n, and on

output the orthonormal eigenvectors of this tridiagonal

matrix. Hence to use IMTQLZ, at least nz-storage is

needed [9]. For the homotopy algorithm storage needed

equals only a few multiples of n. According to our

program the storage requirement of the homotopy

algorithm is around 20n.
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