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ABSTRACT

THEORY AND MODELING OF

NONEQUILIBRIUM ELECTRON-MOLECULE

INTERACTION IN HYDROGEN

By

Terrence Joseph Morin

Calculations of kinetic rate coefficients for ionization of ground

state H2, dissociation by transition to the first triplet state and one

quantum excitation from the vibrational ground state in a high frequency,

bounded electrical discharge are made based on a solution of the Boltzmann

transport equation. Experimental cross-sections for specific vibrational

and electronic transitions are used to specify the collision operator

and then the Boltzmann equation is solved by the method of a spherical

harmonic expansion. The distribution functions and associated inelastic

excitation rate coefficients are calculated for a range of electric

field strength, pressure and discharge geometry. The electric field

strengths at breakdown are also calculated and the calculated values

reproduce experimental results. Calculated average electron energies

are linear in the electric field strength to pressure ratio. Also

developed are means to analyze Langmuir double probe results to determine

the average electron energy in laboratory discharges.
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INTRODUCTION

The energetic non-equilibrium environment of a low pressure gas

discharge is characterized by nonlinear kinetic and transport phenomena

and multiple channel energy transfer. It is this multichannel transfer

feature that is often exploited in the application of gas discharge

technology. For example, molecules of a diatomic gas may be excited

to non-equilibrium distributions over rotational, vibrational and

electronic states, including dissociation through several pathways.

Atomic recombination processes may involve three collision partners.

It is therefore of fundamental importance that the relative roles of

each of the energy transfer mechanisms be determined. Equally important

is the identification of the principal determinants of the product

species and energy distributions.

In analysis of energy transfer in a weakly ionized pure diatomic

gas the two fluid model is a useful conceptual framework within which

to develop a calculational approach. The two fluid model, as an

idealization of the transport phenomena in a stream of weakly ionized

“heavy molecules" (hereafter referred to as the background gas), se-

parates the gas stream into a background component, molecules and

ions, and an electron gas component. Collisional and radiative inter-

action of each fluid with the other and with the environment is de-

scribed in appropriate terms in the single component linear momentum

and energy balance equations and/or appropriate collision integrals of

the Boltzmann equation. Radiative transfer excluded, intracomponent



transfer in the electron gas is by long range coulombic interaction.

Intercomponent electron-background collisional energy transfer mech-

anisms may be divided into elastic, superelastic and inelastic. For

weakly ionized gases, electron-ion scattering is generally neglected.

Intracomponent transfer in the background gas is by short range elastic

and inelastic cpllisions. For the electron gas, energy transfer with

the environment is through the external electric field and boundary

effects. Boundary effects and radiative transfer are the mechanisms

for interaction between the background gas and environment.

Once the form of the kinetic expressions and coefficients are

specified the balance equations may be solved to give information

concerning energy transfer in a gas discharge.

Of specific interest are answers to the following questions.

a) How do individual energy transfer rates, e.g.

rotational, vibrational, electronic excitation

rates, depend on each other and what dependence

do they exhibit on observable system variables

e.g. gas pressure, electric field strength?

b) What experiments, experimental techniques or

applications are suggested?

In progressing toward satisfactory resolution of these issues

several tasks are undertaken. First, the possible collision processes

are discussed and evaluated in light of their role as energy transfer

pathways. Important collision processes are selected on this basis

and calculational approaches are reviewed.

Second, the Boltzmann equation, with the collision terms previously

determined, is solved and inelastic collision rates are calculated for



the case of a high frequency bounded discharge in H2.

These individual collision rate coefficients may then be used in

a macroscopic model which includes relaxation and transport processes.

Model performance may be used to analyze the potential of a high fre-

quency bounded discharge in Hz to couple energy to the rotational,

vibrational, electronic or translational reservoirs.



TRANSFER IN THE ELECTRON GAS

A, Review of collision processes

1. Electron-electron interaction

Electron pair interactions are generally divided into binary close

encounters and distant coulomb encounters. The close encounters are

those collisional processes which occur within the strong interaction

radius*, a distance much less than the interelectron distance. The

long range coulomb encounters are those interactions which occur within

a Debye radius**, and although are often modeled as binary encounters

they involve many electrons and ions. Both types of electron pair

interactions are randomizing processes. That is, an initially mono—

energetic electron beam is which these pair interactions take place

will, in the course of time, be characterized by a distribution of

electron energies. For any initial distribution, the influence of

the pair interactions is to "Maxwellianize" the distribution of

energies. So the electron energy distribution in a discharge dominated

by electron pair interaction would be close to a Maxwellian distribution.

For low density plasmas, where the strong interaction distance

is much less than the interelectron distance, the close encounters

may be neglected. The role of far encounters is determined by the

 

*

The strong interaction radius is equal to the distance from the electron

at which the interaction energy is twice the value of the electron kinetic

energy.

**

The Debye radius is equal to the distance from the electron at which the

interaction energy and kinetic energy are equal



magnitude of the electron particle density and the transport cross-

section. Simple expressions for the transport cross-section may be

derived with the assumption of a central coulomb potential. For small

deflection encounters the quantum mechanical and classical approaches

give identical results. Far encounters are predominantly characterized

by small deflections and this feature is often exploited in solution

of the Boltzmann equation describing particle transport in the electron

gas. The integrand of the collision operator is expanded in terms of

(Ac/e) and the Fokker-Planck equation results if no other collisional

processes are included.

Hazeltine (l939) was one of the first to examine the relative

significance of electron pair far encounters and electron-background

elastic scattering. Assuming a shielded Coulomb potential Hazeltine

derives the electron pair interaction differential cross-section from

quantum-mechanical considerations. He then determines the energy dis-

tribution functions corresponding to two extreme cases.

l) Electron pair interactions are dominant. The derived

cross-section is used.

2) Electron-neutral elastic scattering is dominated. A

velocity independenttransport cross-section is assumed.

For the first case a Maxwellian electron energy distribution

results; for the second case a Druyvestuyn distribution results. So

it may be expected that the transition from case two to case one is

accompanied by a "Maxwellianization" of the distribution function.

Hazeltine then presents criteria for determining when exclusion of

electron pair interactions is a justified simplification of the

collision operator. For N2 or Ne the assumption in case two of a



velocity independent transport cross-section is realistic. For H2 and

He and characteristic electron energies above lev the transport cross—

section is inversely related to electron energy resulting in a constant

elastic collision frequency. The distribution function is Maxwellian

rather than the Druyvestuyn and so no real change in the distribution

is effected by the transition from case two to case one. Hazeltine's

analysis does not include inelastic collision processes. Dreicer

(l96D) and more recently, Rockwood (l974) have investigated the relative

roles of electron-neutral elastic, inelastic scattering and electron-

electron coulomb interaction. Both Dreicer and Rockwood are concerned

with d.c. gas discharges and both report a numerical solution of the

Boltzmann equation. Dreicer concludes that the evolution of the dis-

tribution function from that characteristic of a Lorentizian gas to

the equilibrium distribution occurs roughly over four orders of mag-

6 _ 10'4)

nitude of the ionization fraction (10- .The distribution

function is relatively insensitive to the electron density and strongly

non-Maxwellian, indicating that the inelastic collision processes are

dominant. Rockwood does a similar analysis for the effect of electron

pair interaction and electron-ion interaction in Hg, COZ/Nz/He and CO/N2

mixtures. Rockwood takes into consideration electron-neutral elastic

and inelastic scattering and coulomb interactions, described by the

Fokker-Planck equation. For atomic gases Rockwood concludes that

electron pair interaction effects alter the distribution function to

the largest extent when E/N and/or 5 is small. If furthermore, there

is a low-energy region free of inelastic cross-sections, then electron-

electron interaction can alter transport phenomena.

For molecular gas discharges where there are large inelastic cross-sections



below the first ionization potential Rockwood concludes that electron

pair interactions are quite ineffective in maintaining a Maxwellian

distribution.

For low electron density discharges in molecular gases like

H2, N2, C0 the contribution of electron pair interaction to energy

transport may be justifiably neglected.

2. Electron-background interaction

Like intracomponent transfer in the electron gas, intercomponent

transfer between electron gas and background gas may be separated

into several regimes. Close encounters of electrons with neutral

atomic and molecular species may be classed as elastic, inelastic or

superelastic. For singly charged molecular and atomic ions the

electron and ion densities are approximately equal in the bulk dis-

charge and so for weakly ionized discharges the coulomb interaction

between electrons and ionic species would not significantly effect

intercomponent energy transfer. A third mechanism for intercomponent

energy transfer is ion-electron recombination in the bulk discharge

and at boundaries.

The relative significance of collisional transfer by elastic,

inelastic or superlastic collisions depends on the magnitude of the

total cross-sections for each process. Swarm experiments using the

method of Ramsauer (1921) have been applied to the determination of

the total cross-section of H2 toward slow electrons. The coarse

structure of the cross-section is representative of electron-neutral

elastic scattering and indicates that below 1 ev the cross-section is

velocity independent; above 1 ev it is inversely proportional to

electron velocity. The same is true of atomic hydrogen.' The differential



cross-section for H2 in slow electrons has been measured by Shyn and

Sharp (1981) and the total collision frequency may be calculated from

the cross-section in the following way.

v(V) N v o(v)

where:

v(V) total collision frequency

v s electron velocity

N a scattering center density

0(V) a collision cross-section (Fig. 1)

So for elastic electron-H,H2 scattering the collision frequency

is electron velocity independent above 1. ev.

The fine structure of the total cross-section gives some informa-

tion concerning cross-sections for collisional excitation of rotational

and vibrational states. Detailed calculated cross-sections were obtained

by Engelhardt and Phelps (1963) by assuming trial forms for the inelastic

cross-sections, solving the Boltzman equation and then comparing the ex-

perimental and the calculated diffusion coefficient, electron mobility

and ionization frequency. The method is repeated until acceptable agree-

ment is obtained. Cross-sections for v = O + v = l and v = 0 + v = 2

direct impact vibrational excitation have been measured by Schultz (1964)

Figure 2).

Cross sections for dissociation of molecular hydrogen by direct elec-

tron impact excitation of ground state H2 to the lowest triplet state

have been measured by Corrigan (1965) (Fig. 3). The total ionization

cross-section has been measured by Rapp and Englander-Golden (1965) (Fig.4).

Energy transfer by superelastic collisions i.e. from background to

electrons, in weakly ionized H2 is not significant in comparison with

inelastic transfer, i.e. to rotational, vibrational or electronic energy,

for two reasons. First the characteristic energy of the electron gas is much
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greater than that of the background, and secondly because of the very

low concentration of metastable species.

Energy transfer by electron-ion recombination is a density depen-

dent process and the bulk phase recombination is generally neglected

in weakly ionized discharges.

3. Interaction with environment

While bulk phase electron-ion recombination is not a significant

energy transport mechanism in weakly ionized discharges the electron-ion

recombination at surfaces is a dominant electron capture process and

an important mechanism for energy transfer to the boundary of the dis-

charge. Transport of electrons to the boundary is generally diffusive

in the absence of an external magnetic field or collective large scale

plasma oscillations. The diffusion of electrons is retarded by the

sheath potential and so the electrons escaping to the boundary are

characterized by energies above the sheath potential.

B. -Review of methods to calculate energy transfer rates from electron

to background gas.

Both transport theory and calculational approaches for electrons

in a weakly ionized gas are based on the Boltzmann equation, which

describes the electron distribution function in configuration and

velocity space.

3
I
>
T
I

3f 2 — o -

at (r’Y’t) V Vr New)
A A

. Yv f(r,v,t) + S(f(r,v.t))

The time rate of change of the distribution of electrons in phase

space is equal to the sum of three terms. The first term is the

particle "source" term due to electron motion. The second term is the
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source term due to applied and induced forces. The third term is the

Boltzmann collision operator and is the particle source due to binary

encounters between electron pairs, electron-neutral, and electron-ion

pairs.

For electrons in a weakly ionized gas the Lorentz force relation

is assumed.

Generally, there is no external magnetic field and so the Boltzmann

equation may be written.

0
)

 :(r,v,t) = -vr - vf(r, v, t) + vv ef— f(r,v,t) + S[T(r,v,t)]
- . . . . . m . . . .O

)

For binary encounters between electrons and particles possessing

internal structure the Boltzmann collision operator may be represented

in terms of the electron distribution function, particle distribution

function, F, differential cross sections for each type of encounter,

and relative velocities.

Ej'vgf [f( rv ”Fj’hf’i'é’t) - f(r.y3,t) Fj(r,y2.t)]

., 3

'Y1 ' Y2l 0; ('Y1'Yzl’e) de v2

The term 0% (|v] -v2|, e) is the differential cross--section for a

binary encounter of an electron and a particle of internal state j

resulting in an electron and a particle of internal state j’. Solution

of the Boltzmann equation in this form requires knowledge of the
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differential cross-section for each encounter, the distribution

functions of the neutral and ion gases and an assumption concerning

the relationship between point sources and electric field strength.

Such detailed differential cross-section data is not available for

even simple systems. For weakly ionized gases the neutral species

distribution function is often assumed to be the product of a maxwellian

velocity distribution and a Boltzmann distribution over each internal

degree of freedom.

Methods for explicit calculation of the electron distribution

function and electron-neutral energy transfer rates may be divided in

two groups. The first method involves assumption of a semi-empirical

parameterized distribution. Energy balance relations are then written

in terms of the distribution parameters, temperature for example, in-

stead of the distribution itself. This method is used in conventional

discharge theory and as the basis for some plasma diagnostic techniques.

The second method is that of direct solution of the Boltzmann equation,

for which there are several approaches.

1. Assumption of a parameterized distribution

The most oftenly assumed velocity distribution is of the form

f (e) = a] exp(-aze)

and is the maxwellian distribution. This distribution function is the

dominant term in a series solution of the Boltzmann equation for at

least three special cases.

(i) Time independent, spatially homogeneous plasma, no

external forces (exact solution given by maxwellian

distribution)



(ii) Time independent, spatially homogenous plasma, Lorentz

force, elastic electron-neutral interaction with cross-

section inversely proportional to electron velocity,

superelastic and inelastic interaction neglected.

(iii) Time independent, spatially homogeneous plasma, Lorentz

force, electron pair encounters only with cross-section

independent of electron velocity.

The assumed distribution is applied in discharge afterglows by

analogy to case (i); in weakly ionized inert gas discharges by analogy

to case (ii); in high electron density discharges by analogy to case

(iii). The application made of this distribution is far wider than

the limited scope defined by these three cases. The Maxwellian dis-

tribution forms the basis of much of conventional gas discharge analysis

including the work of VonEngel (1965) on the relationship between

electron density, discharge geometry and average electron energys the

work of Bell (1970, 1972, 1973) on calculation of dissociative excita-

tion rates in H2 and 02, and development of energy and momentum balance

equations in terms of an electron "temperature".

The electric probe technique, introduced by Langmuir (1924), is

often used to measure electron density and average energy by relating

these variables to the current-voltage characteristic curve of the

probe measurement. The relationship so developed assumes a Maxwellian

velocity distribution, thus restricting application of the probe tech-

nique to the special cases mentioned above. For other applications

the theory should consider the effect of non-Maxwellian velocity

distributions. (See Appendix B).

The probe technique may also be applied in some discharges to

determine the electron velocity distribution from the current-voltage

characteristic curve. Boyd and Twiddy (1959, 1960) have applied this
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technique in the low pressure (1 - 13 Pa) positive column of d.c.

discharges in hydrogen and argon. They report a bimodal distribution

for electrons in hydrogen and a closely Druyvestuyn distribution for

argon; both are strongly non—Maxwellian. In view of these experimental

indications the assumption of a Maxwellian velocity distribution in a

weakly ionized discharge is suspect at best.

The Druyvestuyn distribution is another often assumed solution of

the Boltzmann equation and is of the form

f(5) = a] exp(-a252)

The Druyvestuyn distribution is the dominant term of a series

solution of the Boltzmann equation for the case of a time independent,

spatially homogeneous d.c. discharge in which elastic electron-neutral

collisions are dominant and have a velocity independent cross-section.

This assumption of a velocity independent cross-section results in

the characteristic "depleted tail" of the Druyvestuyn distribution.

Ionization rates calculated from the Maxwellian and Druyvestuyn

distributions greatly differ.

Other assumed distributions are the composite Maxwellian-Druyvestuyn

of Haseltine (1939) and the two and three electron group models of

Vriens (1973, 1974, 1977). Haseltine examines the relative role of

electron pair interaction and electron-neutral elastic scattering

assuming a velocity independent cross-section for the elastic process

and a derived cross-section for the coulomb interaction. The composite

Maxwellian-Druyvestuyn distribution, of the form

f(e) = a3 exp(-(o252 + 0.38))
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is used to describe the continuous transition of the distribution from

Maxwellian to Druyvestuyn as the dominant energy transfer mechanism

shifted from coulonb interaction to electron-neutral elastic scattering.

Haseltine does not consider the effect of inelastic collision processes

in the analysis, restricting application of the work to gases which do

not have significant inelastic cross-sections in the energy range below

the first ionization potential. The composite distribution also results

from a series solution of the Boltzmann equation for the case of a

spatially homogeneous a.c. discharge in which elastic electron-neutral

scattering is dominant and is characterized by a velocity independent

cross-section.

The assumed distribution functions for the two and three electron

group models of Vriens are characterized by two and three electron

temperatures, respectively. A Maxwellian distribution is assumed

over each of several subsets of the entire energy range and each range

is characterized by a temperature. Balance equations for each group

of electrons are written in terms of electron temperatures and densities.

Application of the technique has been made to Ar, Cs-Ar and Hg-Ar

discharges.

2. Direct solution

Three general approaches are taken in direct solution of the

Boltzmann equation and Table 1 gives a summary of previous calculations

of electron distribution functions in H2. Each approach involves some

degree of simplification as will be pointed out in the discussion to

follow.
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(a) Expansion in spherical harmonics

The expansion of the distribution function in spherical harmonics

may be thought of as a perturbation expansion in which an isotropic

distribution is the reduced term of the expansion. The higher order

terms are increasingly anisotropic. For a close to isotropic distri-

bution the series converges rapidly.

Without further assumptions the velocity distrilution is expanded

in spherical harmonics in velocity space by substitution of the follow-

ing series expansion.

f (r,v,t) = Z fk(r,v,t) Pk(cose)

Legendre polynomials'
1
3

7
? A

n O U
)

(
D

V

I
l
l

C
D

1
1
1

angle between v and z

The first few terms are -

2

fv(fsy,t) = f0(r,v,t) + f3(r,v,t) cose + %-f2(r,v,t) [3 cose-l]

Substitution of the infinite series into the Boltzmann equation

yields an infinite set of coupled integro partial differential equations

of a finite number of terms. The first three equations are given below.

(See Appendix A).
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Expansion of the terms in the collision operator results in the

following form for Sk'

Sk = 2 g, dvz ('onjJ(|v2-V3I,Q) 1V2'V31 {fk(r,y’,t) Fj,(f,y’.t)

V2 p

Pk(COSB) - Fj(rsYst) fk(r,Y’t)}

Now it is assumed that the randomizing effect of collisional

processes results in a close to isotropic velocity distribution, so

that the entire distribution may be approximated by the first two or

three terms.

The two term approximation is known as the Lorentz approximation

and is much used. The validity of the assumption concerning the number

of terms retained is verified a_posteriori by comparison of the mag-
 

nitude of the terms. Ginzburg and Gurevich (1960) and Ferrari (1975,

1977) have presented various criteria for determining the range of

applicability of the Lorentz approximation. That of Ginzburg t a1.,

is rather general. Ferrari however develops an a_posteriori technique
 

which makes use of the ratio of the sum of the inelastic collision
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frequencies to the elastic collision frequency (5]) and the ratio of

the sum of the effective inelastic collision frequencies to the effec-

tive elastic collision frequency (n3). Ferrari draws on equivalence

between the expansion in spherical harmonics and a perturbation expan-

sion in powers of £3, n]. For 53, n1 of the same order of magnitude

as (m/M), the Lorentz approximation is valid. For 53, n1 of the same

order of magnitude as (m/M)% the three term approximation is necessary

for an accurate solution. For 53, n1 of order unity, use of another

approach is required as no approximation using a small number of terms

is valid.

Morse _t__l. (1935) introduced the approximate method of Lorentz,

originally developed for electron conduction in metals, to transport

theory of electrons in d.c. electric discharges. Elastic scattering

of electrons in a background of stationary neutral gas molecules was

considered for a spatially homogeneous weakly ionized gas. A velocity

independent transport cross-section was assumed and the resulting dis-

1. used a transporttribution was that of Druyvestuyn. Had Morse gt

cross-section inversely proportional to velocity a Maxwellian distri-

bution would have resulted. Such a cross-section is representative

of low atomic weight gases such as H2, He. Although the velocity

averaged transport coefficients do not differ greatly from the

Maxwellian to the Druyvestuyn distributions, the fraction of electrons

having energies associated with the high energy tail are significantly

different. The excitation and ionization rates calculated from a

Maxwellian distribution are many times greater than those from a

Druyvestuyn distribution. Holstein (1946) extends the work of Morse

and reformulates the problem to include the effect of inelastic collision
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processes.

Holstein derives the integrodifferential Boltzmann equation for

the most general case of a time dependent, spatially inhomogeneous

plasma in which elastic and inelastic scattering occurs. He assumes

the Lorentz approximation and also assumes two simple models for

collision processes. The cross-section for elastic transfer is velocity

independent and the total inelastic cross-section is velocity indepen-

dent above a threshhold and equal to zero below it. No application to

a specific gas species is made in Holstein's analysis.

McDonald and Brown (1949) apply a similar approach to hydrogen.

Empirical inelastic excitation efficiencies, taken from the experimental

work of Ramien (1931), are used to model the ionization and unspecified

excitation processes. Individual excitation processes are not examined.

The ionization frequency and diffusion coefficient of electrons in

hydrogen are calculated from the derived distribution function and

compared with experimental results.

The results of the analysis predict breakdown electric fields in

good agreement with experimental results. Allis and Brown (1952) derive

a simpler solution to the problem addressed by MacDonald and Brown by

neglect of the electron free diffusion term with respect to inelastic

transfer in the high energy region of the distribution function. The

result of Allis and Brown accurately predicts breakdown fields in

hydrogen over a wider range in pressure than does the result of

MacDonald and Brown. The work of Rose and Brown (1955) generalizes

the two earlier works to include the effect of space charge. In all

three works inelastic processes below 8.9 ev are neglected and the

inelastic processes in the energy range 8.9 - 16. ev are described by
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a single excitation frequency calculated from the work of Ramien. The

works also share the maximum energy loss assumption in common. This

assumption models electron-molecule collisions as events in which

electrons transfer all of their kinetic energy to the molecular partner.

This assumption significantly alters the form of the collision term in

the Boltzmann equation. All electrons which transfer kinetic energy

to a gas molecule through collision then reappear at the origin in

energy space.

The three works also neglect electron pair interactions. Dreicer

(1960) examines the intermediate case of the strongly (n/N > .01) but

not completely ionized hydrogen d.c. discharge. His treatment of

inelastic collision terms in the Boltzmann equation is like that of

MacDonald and Brown. The d.c. unbounded discharge is also modeled by

Frost and Phelps (1962) and Engelhardt and Phelps (1963).

In developing a set of inelastic excitation cross-sections Frost

and Phelps obtain a solution of the Boltzmann equation for the two

term approximation. In an iterative procedure, an assumed set of

cross-sections is included in the Boltzmann collision operator and the

isotropic portion of the distribution function is calculated from

which the electron diffusion coefficient and mobility are calculated.

These calculated values are compared with experimental values of the

coefficients. Assumed cross-sections are varied until good agreement

over a wide range of d.c. electric field strength and neutral gas

pressure is made.

Cross-sections of single and multi-quantum vibrational excitation

in H2 were not available at the time Frost and Phelps (FP) and

Engelhardt and Phelps (EP) developed their results. Schultz (1964)
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compares experimental cross-sections with those calculated by FP, EP

and finds major disagreement both in threshold energy and the energy

at which a maximum in cross-section occurs. EP predict a threshold

of 0.53 ev and a maximum at 4.35 ev. Schultz measured a cross-section

for (v=0) + (v=1) with threshold of 1.0 ev and a maximum at 2.0 ev.

Over the low energy range of 0-10 ev the predicted cross-section is

much larger than the measured one. This would indicate that a larger

than expected vibrational excitation cross-section is required in

order to obtain good agreement between calculated and measured transport

coefficients. Allis and Brown (1952) note however, that if vibrational

excitation cross-sections are included in the calculation of breakdown

field strength, agreement cannot be obtained between calculated and

measured values.

A more recent approach to the problem is that of Allis and Haus

(1974), who introduce simplified models of inelastic collision processes

and obtain a closed form analysis of the electron distribution in C0,

C02 and a C02;N2 mixture. From examination of the Boltzmann equation

Allis and Haus identify the electron fluxes in energy space that result

from the applied field and from the inelastic collision processes. The

collision operators for each of the inelastic processes are written in

terms of excitation frequencies. If (n) collision processes are in-

cluded, the approach results in an algebraic relation for the distri-

bution function given in terms of (n+1) constants. Application of

the normalization condition reduces the number of constants by one.

Other assumptions and/or relations are necessary to uniquely specify the

electron distribution. Unlike other workers Allis and Haus use the resulting
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distribution function to calculate kinetic constants for inelastic

processes other than ionization.

Recent work by Garscadden and Bailey (1981) studies the effect

of non-equilibrium populations of vibrationally excited H2 on the rate

of dissociative attachment in d.c. unbounded discharges.

(b) Perturbation expansion

In a weakly ionized gas the intercollisional energy transfer from

electric field to electron and the ratio of electron mean free path to

characteristic length are small. Bernstein (1969) takes direct ad-

vantage of this in constructing a perturbation expansion of the Boltzmann

equation in terms of these small parameters. In expanding the collision

operator Bernstein includes only electron-neutral elastic encounters

but comments on extension of the technique to include inelastic electron-

neutral encounters and electron-electron encounters.

Van de Water (1976) extends the work of Bernstein to the case of

an instationary (M>>l), inhomogeneous neutral gas but assumes close to

local thermodynamic equilibrium between the neutral gas and electron

gas and only electron-neutral elastic encounters. No application of

the technique is made to a specific neutral species.

(c) Direct numerical simulation

Baraff and Buchsbaum (1963) solve the Boltzmann equation for an

unbounded electron gas in hydrogen, taking into account vibrational

and electronic excitation. No assumption regarding angular dependence

is made and the distribution function is given as a function of electron

energy and angle with respect to the field orientation. The result of

their analysis is an upper bound on the effective electric field strength
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to gas pressure ratio. Baraff and Buchsbaum (88) show that above

this bound the distribution function is sufficiently anisotropic that

the Lorentz approximation cannot represent it. This poses no problem

for most cases of interest in weakly ionized gases. EP report that

the upper bound of BB corresponds to a situation in which upwards of

l % of the input energy is tranferred through ionization processes.

There is a major problem with the analysis of 88 however, the cross-

sections used are those calculated by EP using the Lorentz approximation.

As noted by EP, the calculated set of cross-sections is not unique.

They should therefore not be used in an evaluation of the Lorentz approx-

imation. The work of BB is an analysis then of the Lorentz approximation

.gng the degenerate set of collision cross-sections calculated by EP.

88 do not calculate values for the individual, distribution averaged

excitation frequencies.

Rockwood (1974) presents a numerical solution of the Boltzmann

equation for an electron gas in both mercury and molecular gas

mixtures. Coulomb interactions are included and the calculated dis-

tribution function, drift velocity and transport coefficients are

given for fractional ionizations below .001. The major results of

Rockwood's work have been discussed earlier.

3. Summary of Approaches

An evaluation of the four approaches taken in analysis of gas

discharges is based on the following questions.

(a) How much of the physics of the discharge is retained?

(b) How applicable is the result? Is the range of applicability

determined a priori?



27

(c) What information is required for the analysis and what

information is generated?

(d) Is the approach computationally flexible?

The basic question in mind as these approaches are evaluated is,

"Will it describe how individual energy transfer rates (rotational,

vibrational, electronic, elastic excitation andCE-excitation rates)

depend on each other and the dependence they exhibit on observable

system variables (gas pressure, external field strength)"? None of

the works reviewed provide an answer to this fundamental question for

high frequency self-sustained discharges in a bounded region.

The assumption of a solution is the simplest approach. The physics

of the problem is imposed by the solution assumed rather than extracted

from a consideration of the important collisional processes. To the

extent that there exists strong correspondence between the physics

of the assumed solution and that of the problem, the approach may be

said to retain the essential character of the problem. Generally

though, the range of physical circumstances in which this strong cor-

respondence exists cannot be determined g_prigri. The range of appli-

cability may then be determined either "intuitively" or on the basis

of a more accurate analysis. Often the value of the more accurate

analysis lies in defining those regions where simpler models are

sufficient (Dang and Steinberg, 1980). Computationally, all three

popular assumed solutions are simple and flexible. Only physical

constants for the particular species of interest are required. No

information concerning the boundary or collisional processes is required.

Each assumed solution, of course, generates the distribution function

for the electron gas. Transport and kinetic coefficients may be derived

from velocity averages of the distribution function and appropriate



28

cross-sections.

In most cases of interest in weakly ionized discharges, where the

range of applicability of the assumed distribution is unknown, the

assumption of a distribution function is at best, an empirical approach.

For those approaches in which direct solution of the Boltzmann

equation is required, the physics of the problem is reflected in for-

mulation of the collision integral and in the boundary effects. As

can be seen from the review of previous work for hydrogen discharges

the treatment of the collision integral is varied and sometimes curious.

The spherical harmonic expansion, perturbation methods and direct num-

erical simulation all admit more rigorous formulation of the collision

integral for binary point collisions than is generally done.

For the spherical harmonic expansion the range of applicability

is determined by comparison of relative order of magnitude of the terms

retained in the expansion to those neglected. Comparison of |f0| and

|f3| would give an estimate of the range of applicability for the

Lorentz approximation. Although this is an g_posteriori approach it
 

does not require a more complex analysis (i.e. three term expansion)

to provide the bounds.

The variable range over which a perturbation expansion may be

applied is determined by the number and type of perturbation variables

as well as by the local behavior of the function.

The spherical harmonic expansion may be thought of as a perturba-

tion expansion in which the reduced term is the isotropic distribution.

As referred to earlier Ferrari has demonstrated an equivalence between

a perturbation expansion in mass ratios and the expansion in spherical

harmonics. For the perturbation expansion the reduced term is usually
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the Maxwellian distribution and so it inherently preserves less infor-

mation about the collision processes than does the reduced term of the

expansion in spherical harmonics.

The range of applicability of a strictly numerical approach is

generally only limited by the stability and convergence properties of

the numerical technique.

For all three approaches which involve direct solution of the

Boltzmann equation, collision cross-sections for dominant collisional

processes are required. In the case of molecular hydrogen, experimental

cross-sections exist for one quantum vibrational excitation, dissocia-

tive excitation via b32: and ionization. If boundary effects are con-

sidered then some information concerning the geometry and boundary

conditions is required.

For computational flexibility the assumed solution approach is

most flexible and the numerical and pertubation schemes the least

flexible.

The two term expansion in terms of Legendre polynomials (special

case of spherical harmonics) is the basis of the approach taken in this

analysis of a high frequency, self-sustained bounded discharge in H2.

The following factors support this choice.

1) The reduced term is isotropic though non-equilibrium and

retains more information concerning collision and boundary

effects than a perturbation scheme.

2) A_posteriori calculation of the range of applicability is

possible.

3) It is computationally more flexible than either a pertur-

bation or numerical scheme.
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C. Development of Model
 

The Boltzmann equation, derivable from application of balance

principles to electrons in phase space, may be written as following.

 
(r,v,t) + v - v f(r,v,t) + F - v f(r,v,t) = S(r,v,t)

The two tasks involved in obtaining a solution are to specify the

form of the collision integral and to expand the equation in spherical

harmonics and collect terms.

First note that for non-equilibrium plasmas the average electron

energy is generally much larger than the average background gas energy.

So in developing the collision integral the assumption is made that

the background gas molecules are stationary with respect to the electrons.

Four basic collision processes are considered: elastic transfer between

electrons and molecules, one quantum vibrational excitation, dissocia-

tion of the diatomic species via excitation to a repulsive electronic

state and single step ionization.

Consider an element in velocity space, d9, in which electrons are

entering and exiting through point collisions with the stationary back-

ground. The rate at which electrons are removed from the volume element

by a type-j collision may be stated in the following integral.

R' = N(r,t)g v oj(v,e) f(v,e,¢,t,r) d9

Q

where

N(r,t) background density

ajfve) = cross-section for collision of type-j

2
d0 v sine da do dv



The rate of appearance of electrons in the volume element by

collision of an electron with velocity v’ with a background molecule

is also given in terms of an integral.

R+ = N(r,t) I v’ oj(v’,e’) f(v’,e’,¢’,t,r) d9

Q

So the net rate of change of the electron density may be written

as the difference of these two terms.

dQ’: f1 ’ I ’ 2 I ’ .—

R N(r,t)r {V Oj(V ,6 ) f(V :6 3¢ star) (d9

9

“VOj(V,t) f(v,e,¢,t,r)} do

First, note that (do’/dn) = (v’zdv’/v2dv). For point collisions

the relationship between v’ and v is defined by momentum and energy

conservation considerations. For elastic collisions:

<

l
l

’ WIN-1,111) (1 - cose)]

So the collision integral becomes:
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.4

= v I ’ I ’ I

R N(r,t) II “73 Gel” :6 ) f(v ,6 9‘1) star)

Q

'VO91(V,6) f(V,B,¢,t,Y‘)} d9

. . . . . 2
For 1nelast1c collisions where some d1screte energy loss, vj ,

of the electron is involved v’2 = v2 + vjz.

EIY.’=_v_

dv v’

dQ’ _ _v:

(dn ) - v

and the integral becomes:

,2

R = N(r,t) {Ly-V" 0:](V’9e’) f(V’,6’,¢’,t,Y‘)

f2

- VO{(V,B) f(v,e,¢,t,r)} dQ

This rate of appearance is velocity averaged, but a velocity

dependent source term is the desired quantity. So we let R = )5 4nv2dv.

Q

So for elastic collisions

 

N(r,t) { 4

_ A v, ’ ’ I I

$91 - 4h {“‘3" (fie-3(V ,6 I f(V 96 s¢stsr)

6,1 V

T V Oe](vse)f(vses¢stso)} dw



Where dm = sine de da

And for inelastic collisions the source term has the form:

 

“ v’ , .
5.1 = 4n { {T 03(V 98) f(V ses¢stsr)

9,¢

-v 03(v,e) f(v,6,¢,t,r)} dw

Now we take advantage of the property of elastic collisions that

|v’-v| is small. The distribution function is expanded in a Taylor

series about v.

4

v came) f(wy) + 51564 0930.6)
,4 , 3 ,

v 063(v ,9, f(v ,Y)

man (vev)

.33 4

2(v
+ % a cap/,9) f(v,y)) (V’-V)2 +

.V

The first two terms of this expansion are substituted for the

integrand in the integral for Sel' So the integral for Sel becomes

 

S 3 ‘ ~ g, 13- gv-(v4 oe3(ve) f(v,y)) (v’-v) dw

 

N(r,t) ‘l m 3 4

2 4“ 35- fi-(l-cose)-SV (v 091(v,6) f(Vsy11 dw
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- _~_ m_ _

e1 - 4n 2 av p1 f((I C059) Oe3(Vs6) f(V,y) dw}

9a¢

This result is the same as that used in the work of Holstein,

Allis and others. It is in the development of the inelastic source

terms that this analysis differs from others.

The complete form of the collision integral is the sum of the

integrals for the four collision processes considered. With the

collision term specified it remains to approximate the distribution

function by an expansion in spherical harmonics, that is:

f(v,e,¢,t,r) = z Pk(cose) fk(v,r,t)
A k=0 A

Substitution of the expansion and utilization of addition theorems

and orthogonality properties of the Legendre polynomials yields an

ordered, infinite set of equations. This ordered set is further divided

by expansion of each fk(v,r,t) in a Fourier series in time, that is:
A

fk(V,r,t) = Z fk£(v,r) exp(j£wt).

In both expansions the series is truncated after the second term. The

series expansion is then reduced to the form:

f(v,e,¢,t,r) = fg(v,r) + f;(v,r) exp(jwt) + cose{f30(v,r)

A

+ f1(v.r)1exp(jwt)
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The time dependent isotropic term, f0], is discarded as being

physically unreasonable. By construction, the isotropic portion of

the distribution function is not disturbed by the electric field so

one would not expect an induced time dependence.

The three remaining equations may be written as follows.

0_ o

v on ’ §1

2eE afoo 3

J“1’1 “T7117 §1

E
v 0 ea 1 a 21 _ o

§Yf1‘§’rfi‘;267(vfi)'so

Before the equations are simplified further, the series expansion is

substituted in the collision integrals to give the following expressions.

(See Appendix A for details)

0 m l a 3 O
S =——-——[Vyf]

O,e3 M V2 3V 0

0 _ O

§1 ‘ “'Yfi

1 _ 1

§1 ‘ 'Yfi

O

The form of S will be developed later.
0,in
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The collision expressions are substituted into the previous set

of differential equations and an uncoupled set of three differential

equations results after some rearrangement.

The differential equations for the f30, f31 terms are given in

terms of the lead term.

 

 

2 I I2 2 3f 0

31 r 0 3 m2(yz+w2) V2 av av M v2 av 0

0 _

' S0,in - 0

l _ _ y_ 0

f1 - y ero

f 0

3 _ 12E? 3 0

.1 — m(¥ +w ) av

where:

|E| E r.m.s. E field magnitude

m E electron mass

M 2 background gas mass

1 E collision frequency for momentum transfer, constant

with respect to v

$001.n E collision integrals for inelastic process with f=f00

For convenience the independent variable is changed from velocity

to energy. Let 8 = g mvz/e.
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o
sf 2 2 2 2 2

a», a (53/2 o 3 + 3m (1 + ) 4/2 a (53/23. 0) Aw» 1 8V 2f 0

Be as MEZe 36 O EZYZ Ar 0

Note that the r.m.s. value of the electric field has been replaced

by the peak value. For a type - j collision the collision integral

may be written as: (See Appendix A for details)

(6+6- )
0 _ , 32 0 _ P 0

SO,j — N(r,t) { 5% oj(c+cj2) f0 (5+5j2) ezoj(€) f0 (8)}

where: €j2 2 energy transfer in collision.

This form may be used for one quantum vibrational excitation,

dissociation through electronic excitation and ionization. Assuming

that all ionizing collisions result in a singly ionized molecule with

ejection of a new, low energy free electron, a different type of collision

term is required for the electron flux in energy space due to production

of free electrons by such collisions.

0 _ 8 0

S0,10n ‘ N(f’t) E Oion(€) fo (E’f)

From balance principles and the assumption of single ionization

we require that the net rate of production of free electrons be equal

to the net ionization frequency. This requirement determines the value

of °ion(€)' These collision terms are substituted into the differential
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equation for the lead term of the series expansion to give the following

equation.

2 f O-l/ 0 -11E , a (€3/Zafo)+a E 2-3—1-(e3/2f00)+a “Zr 0

—_- -—.—— 1Be BE 2

+ a 5‘3 N(f’t) I? { (6+6j2) °j(€+€j2) f00(5+512’f)

- c oj(e) f00(c,r)}

+ c Oion (e) foo (EIFII = 0
A

0
Two conditions apply on the behavior of f0 in energy space.

(1) foo (0,r) is bounded, foo (c,r) s o, for e s m

2’6». ch0 .

The second condition is a normalization condition and results

from the definition of the distribution function.

Taking the first moment of the distribution results in:

f a2 8 V foo dc + a3({ N e o. (E) foo dc

I
I

0

10h

°°32 °° 0
a2 Vr2 f c / foo dc = —a3N f s 0100(8) f0 de

0

Now the right hand side is proportional to the ionization frequency

and the integral on the left hand side is the product of the average

energy and the electron density.
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a,v n(r)

0122172110”) =-31 A , vi=Nvo

“ 29 2

(“m“)

2 0‘3"1’“ ) 0‘3 2 m a
v n(r) = - __ 2e».;a‘ = 31m) (5)

A 012 E (F) 2

V, —

=--6—n(r) ;D=296

A 3ym

2 1 1 vi
v n(r) = --—— n(r) ;-—— = -——
. . A2 . A2 0

So f00(g,r) may be written as the product of a function f00(e)

and n(r) where the following condition on f00(e) applies.
A

Therefore we may write the spatial divergence, v2 f00(e,r) as

--%5 f00 (6) n(r). The electron density may be factored out of the

A
A

other terms to give an ordinary differential equation in energy space.

 

O
-L' d 3/2 df (E)

2-—- s: O -43 d 3/2 0 1 0
dc ( dc ) + 01.35 —de (6 f0 (6)) - 012 (11—2) efo (e)

+ a cul/2 N(r t) [Z {(e+c ) 0 (6+8 ) f 0(c+e ) - co (e)f 0(8)}
3 .’ j j2 j j2 O j2 j 0

0 _
+ co (6) f (e)] - O
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The value of (l/Az) is not variable but is related to physical

boundary conditions and geometry through solution of the diffusion

equation.

Solution of the diffusion equation is given in Appendix D.

This last ordinary differential equation is the starting point

for many of the previous workers. Engelhardt, Frost and Phelps neglect

the diffusion and ionization terms in their iterative fitting of cross-

sections to transport coefficients. If the entire equation is multiplied

through by 65 dc and integrated and the diffusion and ionization terms

neglected, the following results:

0df

E

fO 0 _
-3/2

d8 + a] f0 _ - Q3N(r,t) 6 g E {(El Ejz) Uj(E+€j2) 0

 

o
(ma-2)

- coj(c) f00(€)} dc

In the work of Allis and Haus the right hand side is approximated

in terms of constants which correspond roughly to excitation frequencies.

So a first order differential equation results, whose solution has N + 1

undetermined constants where N is the number of inelastic processes

considered. One of the constants is determined from the normalization

condition but the others must be determined by imposition of additional

conditions on the solution. If the inelastic processes are neglected

the solution is Maxwellian, with f00 = C3 exp(-a3e).

In the series of papers by Allis et al, the expression for the

collision terms is replaced by the following expression:
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L

,3 111,3; 1: (- ezo.(e) f001e11 + q 5(0) 1003.)]
. j J

Where 6(0) 2 Dirac delta distribution

q s electron flux in energy space due to collisions

in which electrons lose all their energy and

reappear at e = 0.

Allis._t.al. consider dissociative excitation aid ionization but

not vibrational excitation. A single cross-section, combining the

effects of dissociation and ionization, is obtained from the work of

Ramien. Therefore, separate excitation frequencies for dissociation

and ionization were not reported and indeed, could not be calculated

from this cross-section.

In order to specify the differential equation for the lead term

of the series expansion, the form of the cross-section must be specified

and the relationship between f00(e+€j2) and f00(e) must be specified

or approximated.

In hydrogen the cross-sections for one quantum vibrational

excitation and dissociative excitation, available from experiment,

rise sharply beyond a threshold, peak very near to the threshold and

then fall of at least as quickly as the total cross-section. For these

two collision processes then a suitable model for the cross-section is

given by:
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Where oj a proportional to the peak value of oj(e)

S(c-cji) 2 unit step function

ej3 2 threshold energy for j-type collision.

The cross-section for production of positive molecular ions in hydrogen

is also available from experiment. Above a threshold at 16 ev the

cross-section is almost linear in electron velocity out to 80 ev. A

suitable model for this cross-section is given by:

-L
= 2 - -

o.(e) o. e (6 £13) S(e 83])

The form of f00(€+€j2) is approximated by a three term Taylor

expansion and the series is substituted into the collision terms. The

resulting equation is of the form:

  

dzfoo dfoo 0

(aO€+bO) dez + (a]c+ 63) de + (a26+bz) f0 = 0

(1 E 2

= i ’ ._.i.2_
a0 1 + N(r,t) Y 01 2

2 2 2

b = 11(§.t)a3 {0, Ev§_+ . fxg_ _ o’ flg_ (E _8 3}

o y v 2 x 2 i 2 11 12

a3
a] = OL-I + 01 €1211(r,t) T

r,t)a3

bl = 3/2 + {0v Ev2 + 0x E3x2 0i 812 (£11 E:12”
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N(r,t)a .

a2 = (01‘01) ' O‘2

_ .3 N(r,t) 0‘3 {o , ,

b2 ‘ 2 a] + . '17 30” + (0 'Cv) + (0 -ox)

-"—7: 5:. +075.

1 11 1
+ 0.5.

12 1 11}

The primes identify cross—sections corresponding to net production

at 5 due to a j-type collision taking place at e + e32.

Because each cross-section has a discontinuity at its threshold,

the domain is sectioned into regions which differ in that the coefficinets

of the differential equation change. The general solution is of the

form:

0

a1
Where h = - §——-

a0

$1, ¢2 3

a :

C =

g :

Mlc.8,kl =

f 0(E) = exp(he) {1]Mla.c,€1 + ¢2 EI-C M[a-c+l, 2-c,E]}

 

1 _ 2

' 2a0 /a1 ‘ 4aoaz

 

coefficients to be determined from conditions

imposed on solution space

2
[boh + b h + b2] / [Zach + a3]

1

2

[aObl ' albO] / ao

 

b

(5+ 0/a0) «a 2 - 4 a
1 032 / a0

confluent hypergeometric function.
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The domain is sectioned into seven intervals described in the

following table.

Table 2. Subregions of energy domain

 

 

Interval Left Endpoint Right Endpoint

O 0’ 6ion

1 8ion 511'512’ Exi-EXZ

2 E11'612 Ev1 ’Ev2

3 Ev1.8v2 8v1

4 8v1 exl

5 8x1 811

6 531 m

 

The particular solution is constructed by applying the boundedness

condition on f00(e) at8 = 0 and then equating the values of f00(e) and

d f00(e)/d€ at the endpoints. The second constant is determined from

the normalization condition for f00(e).

In the interval [0, e. ] there are no inelastic effects and it

1on

can be shown that the second term of the general solution is inversely

proportional to g%. Requiring f00(0) to be bounded requires that ¢02

be set to zero. All the other values of ¢j]’ ¢j2 may be calculated

now in terms of ¢0]. Finally, :101 may be calculated with the nor-

malization condition.

From the resulting expression for the distribution function the

l

electron-neutral binary diffusion coefficient, electron mobility, and
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velocity averaged collision frequencies for inelastic collisions may

be calculated.

The diffusion coefficient may be calculated from the expression

for the electron flux in terms of the anisotropic portion of the dis-

tribution function and a constitutive model.

For an electric field oriented parallel with 2, we have for J - z

A

A

co 11

ne v cos6 = I 2g I, v cos B (f0(v,r) + cos 6 f3(v,r))

O 0

v2 sin 6 d8 d6 dv

Noting that f30(v,r) = f30(v) ne = - v/Y d(nfo%/dz we arrive

at the familiar expression for the diffusion coefficient of a dilute

gas.

2e‘E

3ym

 

where

average energy of electron gas(
'
1

I
I
I

‘ electron-neutral collision frequency.
.
<

l
l
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For a Maxwellian distribution 2? = 3 kT/2e and D = kT/ym.

From the anisotropic time dependent term f3](v,r), the time

dependent velocity term may be calculated and thus the electron

mobility may be calculated.

When the average fluctuating velocity is calculated the following

form results for the electron mobility.

The inelastic collision excitation frequencies may be calculated

in the usual manner.

11'

I 63(v) f00(v,r) v2 sin 6 d8 d9 dv

O

37' =1

2n

f
00

M
8

In a discharge the diffusion mode shifts from free diffusion at break-

down toward ambipolar diffusion at steady state operation. The ambi-

polar diffusion coefficient is also calculated from the average energy

of the electron gas.

_ 2e 6

A 3ym
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E :
-

(
D
1 (
D

m 1
1
1

average energy of electron gas

ion mass3
I

I
l
l

0. Discussion of the form of the distribution function

The form of the derived distribution function may be explored by

examining its behavior near several regions.

First, consider the case of an unbounded plasma in which elastic

interaction is the dominant mechanism for energy exchange. The derived

distribution function collapses to the Maxwellian distribution, as we

would intuitively expect. The average energy for this distribution is

given as:

 

12+62

In the derivation of the distribution function it is assumed that

the total collision cross-section is inversely proportional to electron

velocity. If the distribution function is derived assuming that the

total cross-section is constant with respect to electron velocity the

following distribution results.

/4
B 8 3 a B

(—l§g-) exp {- -§-(ez'7%-+ w e + —-

_ E E

f(e) - B
2

r(3/2) U{‘:'%r /.§l 1

2

 



where B]

82
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2e/mt2

3m2/Me

mean free path for electron-neutral elastic

encounter

gamma function

parabolic cylinder function

This distribution was derived assuming that elastic interaction

dominate energy exchange between electron gas and background gas. This

distribution is similar to that of Druyvestuyn. If we set the driving

frequency, w, to zero, the distribution function becomes exactly that

of Druyvestuyn.

(ETE2J

The average energy for this distribution is given as:

2
(LI

2 .______

U{l, 9E-/82/s31

 

For the case where w = O, the average energy is given by:

— : T5/4 (iii/2'

e0,0 r13/4I B382
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E. Calculations and Results
 

The assumed forms of the inelastic collision cross-sections were

fit to experimental values (see Fig. 2-4). The following cross-sections

resulted.

_ -21 -% 2

ov(e) - 8.485(10 ) c - S(c-Z.) m /S

ox(e) = 2.647(10’20) 5‘2 - 5(6-9.) mZ/s

- -1/21)
o.(e) = 1.9 (10 e a (5-16.) - 5(5-16.) m2/s

where S(e-EO) 2 unit step function.

The remaining cross-section to be specified is that corresponding

to the electrons introduced near a = 0 from ionization of Hz. This

cross-section must be determined through iterative calculation. A

value of the cross-section is estimated, the distribution function

is calculated and the ionization frequency is calculated. From the

ionization frequency the value of the cross-section is calculated and

then compared with the estimate.

Iterative calculation is also required to determine the electric

field strength for a given geometry and pressure. The diffusion length

calculated from integral properties of the distribution function must

match that calculated from the geometry of the discharge. The relation

between the diffusion length and geometry is determined from a solution

of the diffusion-reaction equation.

The results of the calculations are summarized in several sets

of figures. The computational procedures are given in Appendix E.
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Figure 5 illustrates the relationship between effective electric

field strength, background pressure and geometry at the breakdown con-

dition. Experimental data for a wide range of frequency, geometry and

pressure are also plotted. The calculated points represent a narrow

selection of pressure (100-600 N/mz), geometry (A = .0013-.0002 m) and

frequency (y/w = 1). All pressures are normalized to 300 K.

For gas discharges of interest the mass transfer rate of electrons

is bounded above by free diffusion and bounded below by ambipolar

diffusion. With increasing electron number density the discharge shifts

from the free diffusion regime to the ambipolar regime. Accompanying

this drop in the effective diffusion coefficient is a drop in the

effective electric field from its breakdown value.

Figure 6 illustrates the change in the distribution averaged

electron energy as the ratio of effective electric field to pressure

shifts from its breakdown value to the ambipolar limit. The average

electron energy is useful in calculating the electron diffusion co-

efficient and in estimating the energy transfer rates for elastic

binary enounters.

In Figures 7 through 9 plots of sample electron energy distribu-

tion functions are given. The three calculated distribution functions

correspond to the ambipolar limit (Ee/p = 75), breakdown (Ee/p = 175)

and an intermediate value (Ee/p = 125). Each calculated distribution

is accompanied by two other plotted distributions. One is the

Maxwellian distribution resulting from a solution of the Boltzmann

equation with inelastic encounters not included. The second is a

Maxwellian distribution of the same average energy as the calculated

distribution. The first is a solution of the Boltzmann equation, the
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1000
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Figure 5. Comparison of calculated and experimental

breakdown field strengths for 2.47 GHz
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E/p = 75 - 175 m c“ .
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second is a Maxwellian curve fit. This distinction is important.

Figure l0 presents the ratio of calculated inelastic collision

frequencies to the frequency for momentum transfer as a function of

the ratio of effective electric field strength to gas pressure. The

calculated inelastic collision frequencies are compared with inelastic

collision frequencies calculated from a Maxwellian distribution at

the same average energy.

F. Discussion
 

Experimental measurements of breakdown field strength as a function

of gas pressure and field frequency for a given geometry have been made

by Githens (l940), MacDonald and Brown (1949) and MacDonald, Gaskell

and Gitterman (l963). The experimental measurements are made for a

range of pressure (13. - l3,300. Pa), diffusion length (5.(l0'4) -

.Ol5l m), and frequency (.5 — l0 GHz).

These experimental results are plotted in Figure 5 and are re-

presented by the cross-hatched band. Predicted breakdown field y§_

gas pressure is also plotted in Figure 5. The plot illustrates

several points to be made.

First, the predicted breakdown fields are in close agreement with

experimental results over the range of values included. The range of

discharge conditions considered is, loo-600 Pa, A = 2.(lO-4) - l.3(lO'3),

(y/w) = l. (The value of the ratio of the elastic collision frequency

to angular field frequency is fixed at l. because breakdown fields are

at a minimum at this value).

This agreement bears on the conclusion of Allis and Brown (l952)

that such agreement cannot be obtained if vibrational excitation of
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Figure l0. Calculated collision efficiencies for

vibrational and elec ronic excitation

for E/p = 75 - l75m ~c‘].
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H2 (ground state) by electrons is included in the analysis.

Two features of the analysis done by Allis and Brown which may

explain their conclusion are the maximum energy loss assumption and

the cross-sections used in the calculations. In formulation of the

collision terms of the Boltzmann equation Allis and Brown assumed that

electrons transfer all their kinetic energy to the gas. This assumption

reduces the collision term significantly, and the result of the assump-

tion is to greatly increase the rate of energy transfer from the electron

to the background gas. Second, the cross-section for ionization of H2

used in the calculation of Allis and Brown is roughly twice the experi-

mental values of Rapp and Englander-Golden. These two features would

result in over-estimation of dissociation and ionization rates and so

it is not surprising that the collision terms for vibrational excitation

of the diatomic molecules were excluded in order to fit the predicted

breakdown fields to the experimental values.

The cross-sections used by Allis and Brown were obtained from the

work of Ramien. Since the work of Allis and Brown, more accurate and

detailed experimental total cross-sections have become available.

Figure 6 illustrates the dependence of the distribution averaged

electron energy on the ratio of effective electric field to gas pressure.

The relationship is linear over a wide range of (Ee/p). This functional

dependence is in marked contrast to the Maxwellian distribution, in

which the average energy is proportional to the square of (Ee/p).

Experimental results of Varnerin and Brown (1950) at (Ee/p) <75. also

exhibit a linear relationship between E and (Ee/p).

The next three figures (Figures 7, 8, 9) illustrate the progression

from the breakdown condition to the ambipolar limit. In each of the
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three figures the maximum of the Maxwellian distribution corresponding

to the same value of (Ee/p) is far off scale. The Maxwellian distri-

bution corresponding to the same value of (Ee/p) is the solution of

the Boltzmann equation under the assumption that energy transfer from

the electron gas takes place only by elastic interaction of the electron

and background gas. In this sense then, the distribution is strongly

non-Maxwellian over the range of (Ee/p) of interest here.

As expected, the distribution function falls off rapidly as the

electric field strength drops from its maximum at breakdown to a min-

imum at the ambipolar limit.

As a solution to the Boltzmann equation the Maxwellian distribution

function is clearly unsuitable. However, the simple closed form expres-

sion for the Maxwellian distribution is attractive and useful in analysis

of experimental results (e.g. Langmuir probe data) and calculation of

excitation rate coefficients. In each of the three figures the calcu-

lated distribution function is compared with a Maxwellian "curve fit".

The Maxwellian distribution is of the same average energy as the cal-

culated distribution function. In all three figures this Maxwellian

curve fit falls off more rapidly than the calculated distribution. All

plotted distribtuions are normalized.

Rarely is the distribution function used directly in analysis of

experimental results. More often it is a few integral properties of

the distribution that are of interest (e.g. diffusion coefficient,

rate coefficients for excitation processes). Figure l0 is a comparison

of rate coefficients for (0) + (l) vibrational excitation, dissociation

and ionization calculated from the two distribution functions. The

rate coefficients are plotted as ratios of the excitation frequency to
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the total collision frequency for momentum transfer.

The rate coefficients for (O) + (l) vibrational excitation cal-

culated from the two distributions are close in magnitude near break-

down and diverge slowly near the ambipolar limit. The difference

between the two curves does not exceed l0% over the range of (Ee/p)

considered. So for gas discharges in hydrogen with average energies

between 5 and 20 ev, a curve fit Maxwellian distribution gives values

of the (0) + (l) vibrational excitation rate coefficient comparable to

those calculated from a full solution of the Boltzmann eqUation.

Such close agreement is not obtained for dissociation and ioniza-

tion rate coefficients. So, once an average electron energy is determined,

the vibrational excitation rate may be calculated from a Maxwellian curve

fit. To determine the rates of dissociation and ionization, the value

of (Ee/p) is read from the plot of E v§_(Ee/p) and the solution to the

Boltzmann equation corresponding to this (Ee/p) is determined and used

to calculate the rate coefficients. The average energy of the electron

gas may be calculated from Langmuir double probe data by the technique

illustrated in Appendix B.
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CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions
 

1. Solution of the Boltzmann equation for a bounded plasma by

a spherical harmonic expansion, in which electron-molecule

energy transfer takes place by (O) + (l) vibrational excita-

tion, excitation of the first repulsive triplet state of H2

and ionization of ground state H2, results in breakdown

electric fields which reproduce experimental values.

Calculated electron distribution functions are strongly non-

Maxwellian.

Vibrational excitation rates may be reasonably predicted

from a Maxwellian "curve fit" using an experimental value

for the average energy. Excitation rate coefficients for

electronic excitations (e.g. dissociation, ionization) cannot

be calculated via this approach.

The average energy of the electron gas should depend in a

linear fashion on the value of (Eé/p). This manner of

dependence is consistent with experimental results.

A method is developed to determine the average electron

energy from Langmuir double probe data.

B. Recommendations

Model development

(a) Cross-sections for electronic excitation of atomic

hydrogen (e.g. excitations with resulting transitions giving

Lyman, Balmer lines, ionization) are on the order of naoz in
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the energy range l. - lOO. ev. Electron-atom interaction

should be included in the analysis. From an energy efficiency

point of view, the presence of radiative transitions is dis-

couraging. However, the presence of such transitions gives

the experimenter a tremendous diagnostic advantage.

(b) Plasmas are fertile environments for propagation of

fluctuations and a host of unstable phenomenon. The model

response to perturbations in initial or boundary conditions

begs to be considered. Penrose (1960) derived stability

criteria for a uniform non-Maxwellian plasma based on the

Vlasov equation (collisionless Boltzmann equation). Exten-

sion of the criteria to a uniform non-Maxwellian plasma

described by a solution of the Boltzmann equation would be

very useful.

Laboratory experiments

(a) Interpretation of Langmuir probe results is highly

dependent on the velocity distribution assumed. From the

electron distributions calculated here, the probe charac-

teristic curves could be analyzed to give the average energy

of the distribution and possibly the electron number density.
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APPENDIX A

Derivation of the Boltzmann Equation

and Expansion in Spherical Harmonics

Consider a fixed volume element in phase space. Now apply the

usual balance principle to the electron gas which fills the volume

element.

Rate of accumulation Net flux across Net flux across

of electrons in volume = boundary in + boundary in

element in phase space position space velocity space

Collisional

source rate

Specify the volume element in phase space by specifying an element

in position space (R3) and in velocity space.

V V

.8. 3 3 _ _({ 2 3

at A ) ”1"?“de * (TR'YQHT’Y’tNI‘dY

R V V AR

- I f ("v ' Vv) FU’V’t) dZV d3?“ + ) S(r,v,t) d3v d3r

Av
V

VR R vv

Noting that Vv = a and making use of the divergence theorem:

62
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8F . 3 3 _

{II—+3” VF+YV éF-S} der-O

VR vv

A

And as our volume element was arbitrarity chosen:

3F
__ . . a - :
at + Yr vF + Yv .F S O

For cases in which there is no external magnetic field, we may

write the following for electrons.

3F e _

'Bt + Y .r F ' 5‘? V F - S

where: e 5 electronic charge

m z electron mass

E 3 external electric field

Expansion of Boltzmmn equation (see also Cherrirgton (l979)).

The Boltzmann equation may be written as:

21“. e =

at + Y Yf - m E va 5

Let f(v,r,t) = 2 P (cose) f (v,r,t)
A A _ K K A

k-O

Let E = E0 exp(jwt) 2. So v - E = v E cos a.
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Substituting the expansion, we have,

First note that the Pk's are not functions of time. To simplify the

second term note that the Legendre polynomials in velocity space are

independent of position, and also that the electric field has only one

component.

v v 2 P f = 2 P (v -v f )

. okk 0k~ k

00 afk

=8PkVCOSG'é'z—

To simplify the third term note that fk is a function of v only

and that Pk is a function of a only.

 

 

. afk . 1 . 3Pk(cos e)

Yv Pk fk = Y Pk a?" - ? v'fk 51” 6 3(cos e)

afk 1 2 aPk (cos 6)

E - Vv Pk fk = E cos 6 Pk 3V—- + E V’fk Sln e a(cos 67-

Now to simplify the notation let x = cos 6.

m 3f 3f 3f 3P
l

’3 [Pk'é—t-K+P ”“a‘E'fiExpkWLfiEVIkP‘XPaL ‘51

Now using addition theorems and recursion relations for Legendre

polynomials:



65

:[P ilk.vf'SIk—i—‘P +——"—P 1-9§[(fl-:—:k)L—+‘P 1
0 k at v32 2k+I Pk+I 2k+I k-I m 3V 2k+l Pk+l

k k+l _

57* v k) 2k+l Pk-i“ '
 

Note also that the Legendre polynomials are orthogonal. So we multiply

through by Pj and integrate over a and o.

2n

Note that: I {sz (cos 9) sin e do do = 2:1]

0

 

Pk (cos a) Pj (cos 6) sin e de d¢ = 0, jfk

271

I
0 O

V
‘
I
I

The final result:

 
  

31+ v [ afk-l + k+l 3fk+l1 _ _e_E_ [ k vk-l L (L

at 2k-l 32 2k+3 32 m 2k-l av k-l”

V

 

1T .

_eE [k+l I (vk+2f )1 = 2k+l Pk 5 Sin 6 d8 do

m 2k+3 vk+2 8v fk+l 4n

0 0

So that first three equations may be written:

Znn

__Q 1__-2E_1_g_ 2 ____1_ .
at+3az 3m V28v(V13) 4“I{Ssm6de d¢

O O
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21th

of af 3f 3f
_1 ___q .2___Z._§_E___Q§l_i3 .3.”
at V 32 + V 5 32 In [av + 5 v3 av (V f2) 4 5 cos a

0

Sln e do do

af 3f 3f f
____2 §_J__3___§_§£Zi_l .3.-]__?_4

at +V[3az+7az] m[3vav(v)+7v4av(Vf3)]

Znn

=-§% r, f S P2 (cos 6) sin 9 dB d¢

0 0

From the Lorentz approximation we assume that f2, f3... are

negligible with respect to f1, f2. So the equations become:

Znn

3f Bf

0 v l e E l a 2 _ ;L_ .

35"“‘3'3‘2—“3‘57'37‘Vfi’ ' 4n )(Smede‘m

0 0

2111T

3f 8f 8f

___1 0 eE 0 _§_ '
at Vaz mav -4WI[Scosesmeded¢

0 0

Now we require expansions of the collision integral.
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In general we may write:

it 2n Tl’

- flail .LL ,, . °° . . 9g;
Sk,j - 4w fdcbkakose)41f I“) {Voj(V))3fk Pk(dw

o 0 0 o 0

- v oj(v) x f P } sin e de
0 k k

To carry out the first integration we must relate the P; to Pk

using an addition theorem for Legendre polynomials. From this we obtain:

n

S . = -l— )' d¢ g N {v’ o.(v’) fk(v’) Pk(cos e) (ggi) - v oj(v)fk(v)}

0

sin 6 do

To calculate S0 el’ the first term of the integrand is approximated

using a two term Taylor series expansion.

2n n

s - J— do N i—E’l {v4(fl) (l-cos e) o (v) f } sin e de
O,el 4n v2 av M el 0

o o

_ .1. .8. 4m

SO,el ' N 2 av {V (M) °e1(V) In}

To calculate S1 el’ the collision term corresponding to the second

term of the expansion we again make use of the fact that v’ + v and

assume o(v’) = 0(V), f(v’) = f(v) and (dw’ldw) = l.
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2n n

51,9] = ‘i% {' do I N v 0(V) f](v) (l-cose) sin e de

0 0

2n n

— - N v f1(v) {EE' (’do ) (l-cos e) 0(V) sin e de}

0 0

- N v o(v) f](v)

-y f](v) where y = N v o(j) collision frequency

To calculate Sk j for inelastic collisions note that in general

 

 

Pk1 = Pk i.e. small scattering angle.

2n n 2n n

= 2k+l . l .
Sk,j 4“ [do[ Pk(cos 6) SW! 8 dB 4“ do I S'ln 6 dB

0 0 0 0

{v’ o-(v’) 2f ’ P (91L) - v o (v) if P}
J k k dw j k k

2'”

1T . ’ ’ ’ w,

Sk J = HJ'ofP(cos e)51n e deN{v °j(v ) f0(v ) (2E7)

O 0

- v °j(v) f0}

’ ’ ’ 9.9.: .. ° =
S = N {v °j(v ) f0(v (dw ) v °j(v) f0} if k 0

k,j

0 if k > O
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Now with the collision integrals specified it remains to deal with

the time dependence of the distribution. We have assumed an electric

field of the form EO exp(jwt) and make the further assumption that the

anisotropic term of the distribution function may be decomposed into

the sum of a time independent and time dependent term i.e. two term

Fourier series.

1 + f]] exp(jwt)

3f] 1

53" f] 3w 8XP(Jwt)

Recall also that:

 

of of

__01__l-2§__L_§_2 -Ji4m =

at + 3 32 3m v2 av (V f1) N v2 av (V (M) °e(V) f0) S0,in

31+vaf-.e_E_i:g=- f

at 32 n1 av Y 1

If the assumed decomposition is substituted into the two relations,

terms of like time dependence are equated, and the complex portion

neglected the following equations result.

2 2

'V ”0 -gEZe..21___L_a_[v2?fe]_(m)i_a_[v3f] 5
3y 3 2 3 2 2 2 2 av av M 2 av o 0,in

2 m (Y +w ) -V
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Now the coordinate transformation is made from velocity to energy

space and the r.m.s. electric field strength is replaced by the peak

field strength.



APPENDIX B

Derivation of characteristic curves for probe measurements

in Maxwellian and nonMaxwellian electron gases.

Consider a plane probe in an electron gas:

_

electron __ Probe at potential

gas v with respect to plasma.

  
Figure ll. Sketch of a planar probe in an electron gas.

The flux of electrons to the probe due to electrons with velocity

between v and v + dv is given by:

(13'

l
l

3

>
< N 4
>

:
1

<

ne v cos 6 4nV2 f(v) dv

*

For each v, only electrons of e < e are energetic enough to reach

the probe.

%
Let a = - 2eV/m. 50 v cos 9* = a
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oo 6*

J = He J 4nV2 f(v) ; cos a 2n sin e de dv

¢% 0

w cos 6*

j = 8me j, v3 f(v) r (- cos a) d(cos e) dv

1’

a? l

(
.
4
.

l
l

- 81me ( v3 f(v) [% c052 a]?OS 6* dv

L
; I
I

I

A :
1

3

R

<

(
A
)

q
,

A

<

V 0
"

N
F l

—
—
l

L
u
—
l

C
1
.

<

Now the electron flux to the probe is available in terms of certain

integral properties of the distribution function.

Case l: Maxwellian distribution

20 2/3

f(8) = 1 e

5

1E
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The integration results in the following expression for electron

flux:

. _ we a _

ln J - ln [4 ne (53:5) ] 01V

This is the usual result exploited in interpretation of Langmuir

probe data. The slope of ln j v§_v gives a] which is directly related

to the average energy of the electron gas.

Case 2: D.C. Druyvestuyn distribtuion

  

 

8182 3/4
2<———2) _ B 8

f(6) = E exp ( 122 82)

r(3/4) 2E

B B

Let a0 = —l*%

2E

So then:

on 3/4
0 l 2 V n

J = 4nn (——J [ exp(-a v ) --— %§— erfc («a V)]

Case 3: A.C. Druyvestuyn distribution

2 4

B B B B B m 8 w

l 2 l 2 2 2

(-——-)3/4 (-—) 2 (-—)e - -—- 1

 

f(E) 2

r(3/2) u {1. 9%-
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For ease of notation, let:

   

 

 

B182 Bzwz 82w4

3 = 2 ; b = 2 , C = 2

f(E) = L26)3/4 EXR [' 382 ' b6 ' C]

F(3/2) U {1,2/E}

2me (5%)1/2 (2a)3/4 1 2

J = [Ea-exp [- (av + bv + c)]

F(3/2) U {1,2/5}

EXP ['12_§§£lq erfc[v/E'+ 5%1 - %-/%-exp [‘ib :ac)]”9.1

4a/ a

erfc [vva + J11]

/a_

If b = c = 0, this expression reduces to that for the d.c. Druyvestuyn

distribution, as expected.

 



APPENDIX C

Derivation of Maxwellian and Druyvestuyn distribution functions.

Maxwellian
 

Assume that elastic interactions dominate and that the collision

frequency for momentum transfer is constant with respect to electron

energy. Then the Boltzmann equation becomes:

€-%-§% (63/2'35) + a e-% Ji-(EB/Zf) = 0

c
5

('§% (53/2.§:) dc + a1‘ Ji-(e3/2f) d8 = 0

a
»
A

m

v

u c] exp (- 015)

From the normalization condition we have:

00

C.l exp(-o]s) 6% dc = l.

0
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3/2
201 2

- l _ . - .351. .7..qu
f(e) - exp( Gig) . a] - Me ( £2 )

Ti

'2 = 53/2 f(e) d

0

— 20‘13/2 3/9 r
e = __ e ‘ exp (~a]e) de

/ n O

F

-' = _§_.

6 20:1

Druyvestuyn
 

Assume that elastic interactions dominate and that the total

elastic cross-section is constant with respect to electron energy.

NoLet 2 v

= v/t

where: 2 2 mean free path

The Boltzmann equation takes the form:

:5 a 62 of 3m2 1 2._ _}+——./2—g—€.{. f} = o

-'e + wziz 35 M22E e
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B 6

8f l 2 2e

+B(-—+w)f=0; 83——
e 2 E2 l "122

_ 2
82 : 3 m /Me

82 628] 2

f(8) = f(O) exp {-7 ( 2 + u) 6)}

F

From normalization condition, we have that:

B B . B, 2 4

(_J_2_g_)J/4 exp {_ —§_( B-IE + 0028 + fi)}

_ E E 2 ',l

“5) ’ 2 a
\ u w ' 2

E l

where: U(a,B) 2 parabolic cylinder function

The average energy is given by:

§(E2)’2 U{2.9-2— E-2—}

E - 2 82



APPENDIX D

A solution of the diffusion-reaction equation.

 

D vzn + vi" = O ; n (boundary) = 0

§fl. , = » =

Y"=O --_-___- __ 8r! (r 092) O

r’ = R - - --. 

_afl ’ ’-|.-_ =

32’ (r ’ z - 2) 0

-
-
’
-
-
'
-

-
-
-
-
-
-

2 - .12.. = Li. =.2;
Let A " Vi , Y‘ R 9 Z L

l.Ji.( 229 (592 EED.+ (5)2 n _ 0

r Br Br L 8‘2 A
2

Assume that n(r,z) = Z aA(r) sz)

A

$0: 2

l a Bax R2 3b). _R_2

E“ 3?” bx T?) (E) ax 2 +(A) axbx) ' 0
32

gg_ _ _ 29. = , =z bx 3r (r-O) - 0 z ax 32 (z a) 0

z aA (r=l) bx = 0 z aA bA(z=0) = 0
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2
3 b

Let ‘7); - -X2n bX°

32

So the equation becomes

 

l a A R 2 .3 2 2 _

bxi(757(rar) ((7)7(L)An)ax)‘0

2

d a da

A X R 2 R 2 2 _

r drz + a;—- + r( (Ki - (:9 An ) 3A - 0

Applying boundary conditions, the solutions to the two ordinary

differential equations are given by:

bA (z) = c1 sin (Anz) A = nn n = l,2,3...

aA (r) = c2 J0(anr) an zeroes of do

A,”

where on is related to An and geometry by:

2 (R)2 _ (goz nznz

Only the lowest order eigenmodes are of physical interest here,

SO:
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n(r,z) = N sin (n2) J r)
0 0(0‘1

From the relation between the cylinder geometry and the diffusion

length, A, the value of (D/Vi) for which a nontrivial solution of the

diffusion-reaction equation exists may be determined.



APPENDIX E

Calculational procedure for average energy, breakdown field and

inelastic collision rate coefficients.

Given:

fo°(e) = exp(he) {¢1M[a.c.c] + ¢2 cl’c MEa-c+1. 2-c.c]}

and the values of h, a, c, c as functions of E, p, w, A, cross-sections

given on page 43. o1 and o2 are undetermined constants.

1. Specify the gas pressure, electric field angular frequency,

diffusion length, collision cross-sections.

2. Estimate a value for the breakdown electric field strength.

Experimental values may be a good place to begin.

3. Estimate a value for the electron flux due to ionization, Oion’

4. Calculate h, a, c using relations on pages 42-43. Also cal-

culate the coefficients in the relation between c and 5.

These values of h, a, c and coefficients in 2 will vary from

region to region in the energy domain (Table 2). Seven sets

of values for h, a, c and §(€) will result.

5. Take the first derivative of fo°(e) with respect to c. This

may be done explicitly.

Note that fo° and dfo°/de may be written in the following way for

each region--j.
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Ajl, A32, 831, sz are constants depending on h, a, c, 2(21) and

€10

As noted on page 44, in the first energy region the initial

condition on fo°(0) requires that $02 0.

The procedure to calculate the ¢j1, ¢j2 is outlined here for

values of oll, olz.

 

The first boundary occurs at e = sion (2 .1 ev):

f°o(€i0n) = $01 A01 = ¢11 A11 + ¢12 A12

3:0 (510“) =-¢o1 301 = ¢11 311 + ¢12 812

\_-Y—" \"““v——""

region region

0 1

These two equations may be rewritten as:

¢11 A11 A12 ‘1 A01

= $01

¢12 B11 312 Bo1

So now oll, ¢12 are given in terms of ¢01 and some constants

depending on h, a, c, c( and e. This procedure may be repeated
sion) ion’

at each boundary to give fo°(e) in terms of functions of h, a, c, C(e),

e and the undetermined constant ool.

f0°(E) = ¢o1 90 (E)

J €g fo°(€) d6 = $01 I 8% 900(8) d8

0 0

But the left hand side is unity by normalization, so:

00

(¢5)-1 = J 8% 90°(6) d8

0
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The integrations are carried out numerically by a modified

Simpson's quadrature. So now the distribution function is given in

terms of h, a, c, ;(e) and c.

6. Calculate the rate coefficient for ionization as follows:

oo

1’

Vi = J Vi(€) f0°(e) 62 de

0

From this, calculate the electron flux due to ionization

by equating the rate of ionization to the rate of electron

production by ionization (vi = Oion)'

7. Compare the calculated rate to the estimated rate of electron

production by ionization. If the two agree within acceptable

limits, then calculate the average energy and diffusion

length.

00
(
A
)

; E'= J fo°(c) 62 dc

0

_ ZeE
2 .-

A 3mvvi

 

If the two rates do not agree then return to step 3.

8. Does the calculated diffusion length, A, match that specified

in step 1? If no, return to step 2. If yes, calculate the

remaining inelastic rate coefficients by the following

integral.

00

L

Vj = { vj(€) fo°(e) 52 dc

The electric field strength at breakdown, average energy

and inelastic rate coefficients resulting from these cal-

culations are given in Figs. 5, 6, 10. Sample distribution

functions are plotted in Fig. 7-9. These figures are plots

la 0 .

of fo°(e) ca, the density function, rather than f0 (5) itself.
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