CHECKING THE DESIGN OF A HIGHWAY BRIDGE

Thesis for the Degree of B. S. MICHIGAN STATE COLLEGE Roth R. Morris 1948 THESIS

0.1

SUPPLEMENTAL MATERIA

Checking the Design of a
Highway Bridge

A Thesis Submitted to

The Faculty of

MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE .

bу

Roth R. Morris

Candidate for the Degree of

Bachelor of Science

June 1948

6/11/48 5-

Acknowledgement

My grateful thanks to the following gentlemen for their help and guidance in the preparation of this thesis.

Professor Chester L. Allen

School of Engineering---Michigan State College
Professor Leonard A. Robert

School of Engineering---Michigan State College
Mr. Harold Cooper

Michigan State Highway Department

Bibliography

Specifications for Highway Bridge Design

by American Association for State Highway Officials

Specifications for the Design of Highway Bridges

by Michigan State Highway Department

Reinforced Concrete Design

by Southerland and Reese

Reinforced Concrete Design Handbook

by American Concrete Institute

Outline of Procedure

I. T-beam design

- A. Dead load
 - 1. Maximum shear
 - 2. Maximum moment
- B. Live load
 - 1. Load distribution through fill (one lane)
 - 2. Maximum moment
- C. Maximum moment (one lane)
- D. Live load
 - 1. Load distribution through fill (multiple lanes)
 - 2. Maximum moment (two lanes)
- E. Maximum moment (two lanes)
- F. Live load
 - 1. Maximum moment (three lanes)
- G. Maximum moment (three lanes)
- H. Shear
 - 1. Maximum live load shear
 - 2. Total shear (maximum)
- I. Allowable stresses
 - 1. Concrete compression
 - 2. Moment
 - 3. Shear
 - 4. Bond
 - 5. Stirrups
 - 6. Bent-up bars
- II. Abutment and Pile Design
 - A. Loading (Office practice M. S. H. D.)
 - 1. All loading conditions on abutments

II. Abutment and Pile Design (cont'd)

- B. Rankine's method
 - 1. Overturning, thrust and moment
 - 2. Stability, weight, and moment
 - 3. Case II, III, and IV.
- C. Piles (Main wall)
 - 1. Case II, III, and IV.
- D. Reinforcement (Main wall)
 - 1. Toe Case III
 - 2. Heel (Case IV)
 - 3. Heel (Case II)
- E. Reinforcement (Wall)
 - 1. All stresses
- F. Reinforcement (Wing wall)
- III. A.A.S.H.O. Specifications
- IV. M.S.H.D. Specifications
- V. Summary and Conclusions

INTRODUCTION

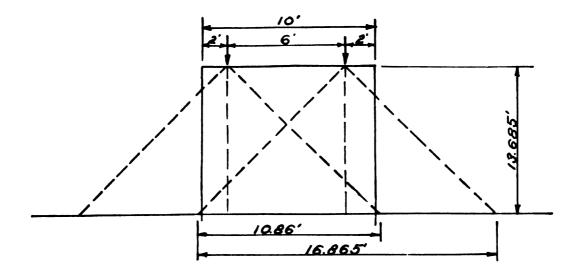
The purpose of this thesis is to check the design of a Michigan State highway bridge. Only the actual designed portions of the bridge will be considered and not the checking of a standard set up by the Michigan State Highway Department.

The structure design is completely of reinforced concrete, covered with thirteen feet of fill, a road slab, and railings. The superstructure is supported on reinforced concrete abutments, which in turn are supported by three rows of wood piles for each abutment. Borings taken at the site indicated that piles were required and due to clay, and non-supportable materials, the piles had to be driven to bed rock.

This bridge is located on Highway U. S. 41 over Carp River, approximately four miles west of Ishpeming Michigan, and was built in 1947. In considering the characteristics of Carp River, the Highway Department evidently saw fit to change the course of the river to meet a lesser cost of building the bridge.

T-BEAM DESIGN

The T-beam will be checked for the worst possible loading conditions and checked at points of maximum stress.


Maximum dead load shear:

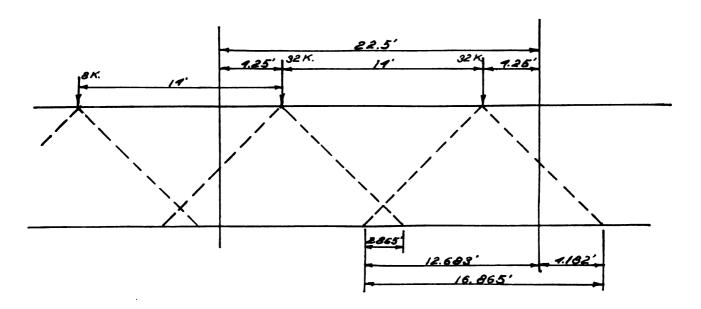
$$366,250 / 2 = 183,125$$
 lbs.

Maximum dead load moment:

$$\mathbf{M} = 1/8 \text{ wl}^2$$

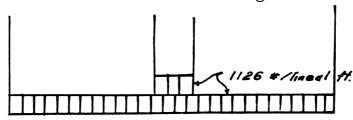
$$M = 1/8(366,250/22.5) (22.5)^2 = 1035 \text{ ft. kips}$$

Live load: (Assume H20 S16 loading)



Load distribution diagram for

two rear wheels


$$L = d + 3 = 13.865 + 3 = 16.865$$

M.S.H.D. Art. 45

Load Distribution Diagram for

Truck and Trailer H20 S16 Loading

Load Distribution: (One lane)

For each wheel

 $16,000/16.865^2$ _ 16,000/284.5 = 56.3 lbs. per sq. ft. Overlap for 10 ft. lane =

(2) (56.3) = 112.6 lbs. per sq. ft.

Uniform load

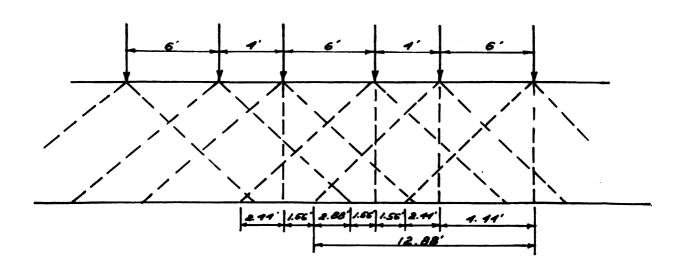
(112.6) (10) = 1126 lbs. per lineal ft.

Live Load Moment:

 $M = 1/8 \text{ wl}^2 + \text{Pl/4}$ $= 1/8 (1126) (22.5)^2 + (1126) (2.865) (22.5)/4$ = 89,300 ft. lbs.

Total dead load and live load moment:

$$89.3 + 1035 = 1124.3$$
 ft. kips


Maximum moment per beam for single lane loading:

$$M' = cM/N$$

M.S.H.D. Art. 43

$$M' = 1124.3/10/5.66 = 636 \text{ ft. kips}$$

Allowable 733 ft. kips

Multiple lane loading distribution diagram

From this diagram, three lanes will give the maximum loading regardless of any number of added lanes.

Load distribution: (two lanes)

Uniform load =

Overlap load =

$$(56.3)$$
 (4) (.88) = 198 lbs./lineal ft.

Total 1887 lbs./lineal ft.

Live load moment:

$$M = 1/8 \text{ wl}^2 + P1/4$$

 $M = 1/8 (1887) (22.5)^2 + (1887) (2.865) (22.5)/4$. = 119,400 + 30,400= 149.8 ft. kips Total = 149.8 + 1035 = 1184.8 ft. kips M' = cM/N= 1184.8/10/5.66 = 670 ft. kipsAllowable 733 ft. kips Load distribution: (three lanes) Uniform load = (56.3) (3) (10) = 1689 lbs./lineal ft. Overlap load = (56.3)(4)(.88) = 198(56.3) (4) (2.88) = 648 Total live load = 2535 lbs./lineal ft. $M = 1/8 \text{ wl}^2 + P1/4$ = $1/8 (2535) (225)^2 + (2535) (2.865) (22.5)/4$

= 201 ft. kips

Total = 201 + 1035 = 1236 ft. kips

M' = cM/N

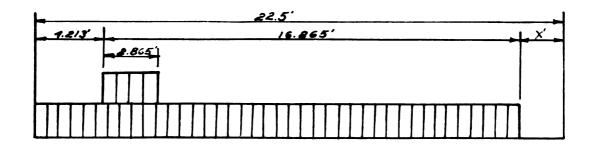
= 1236/10/5.66 (.90) = 630 ft. kips
Allowable 733 ft. kips

A.A.S.H.O. 3.2.9

Improbable coincident maximum loading for three lanes is ninty percent. Therefore, the maximum loading condition for this bridge is for two lane loading, or 670 ft. kips.

•

.

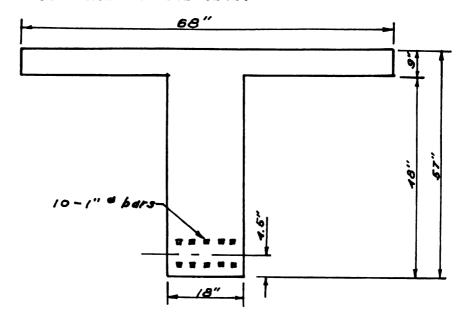

.

.

···

.

Maximum Live Load Shear:



Live load shear = 2530 lbs./ft. of abutment

Dead load shear = 18312 lbs./ft. of abutment

Total L.L. shear = 20,842 lbs./ft of abutment

Check T-beam for allowable stresses:

Allowable unit stress for Grade B concrete:

$$n = 30,000/fc' = 30,000/3,000 = 10$$

$$fc = 1,200 p.s.i.$$

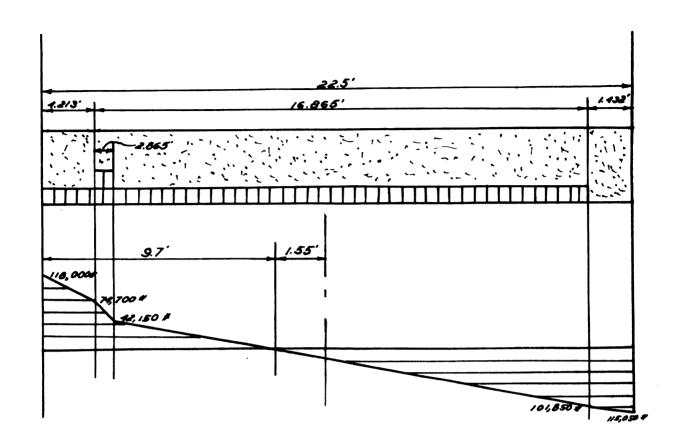
$$kd = 2nd As + bt^2$$

$$2n As + 2bt$$

kd =
$$\frac{(2)(10)(52.5)(10) + (68)(9)^2}{(2)(10)(10) + (2)(68)(9)}$$

$$z = \frac{3kd - 2t}{2kd - t} \frac{(t)}{(3)}$$

$$z = \frac{(3)(11.25) - (2)(9)}{(2)(11.25) - 9}$$


$$= 3.64 in.$$

$$jd = d - z$$

fc =
$$Mkd/bt$$
 (kd - $1/2$ t)jd

Allowable 1200 p.s.i.

M.S.H.D. Table 1

Shear diagram

Computations for shear diagram:

```
V = 20,842 (5.66) = 118,000 lbs.
4.213 (10,287) = 43,300
2.865 (10,287) = 29,500
2.865 (1067) = 3,050
14 (10,287) = 144,000
1.432 (9220) = 13,200
Total
               = 233,050 lbs.
118,000
                                       115,050
                   144,000
                                       118,000
233,050
                    42,150
 43,300
                   13,200
115,050
x/101,850 = 14/144,000
x = 9.9 ft.
```

••

•

•

Stirrups: (M.S.H.D. 51)

Maximum v' = 135 - 60 = 75 p.s.i.

S = 11.25 - 1.55 = 9.7 ft.

d = 52.5 in.

fv = 18,000 p.s.i.

fc' = 3,000 p.s.i.

1/2 in. round U-stirrups used

From diagram 17 (Reinforced Concrete Design Hand Book)
for fv = 18,000 and 1/2 in. round U-stirrups:

Avfv = 7,200

Maximum 1/s = (max. v') b/Avfv

= 75 (18)/72,000

= .187

N = number of stirrups = 6S (max. 1/s)

= 6 (9.7) (.187) = 10.9 stirrups

Index = 1.5S/max.(1/s)

= 1.5 (9.7)/.187

= 80 use 76

Spacing from diagram 17

4 at 6 in.

3 at 8 in.

5 at 12 in.

ll used in plans

As the stirrups take all the diagonal tension, it is not necessary to check the bent up bars. However, the bent up bars do take some of the tension, therefore, less stirrups are needed.

ABUTMENT DESIGN

Loading: (Office practice M.S.H.D.)

Superstructure dead load:

Total concrete = 205 cu. yds.

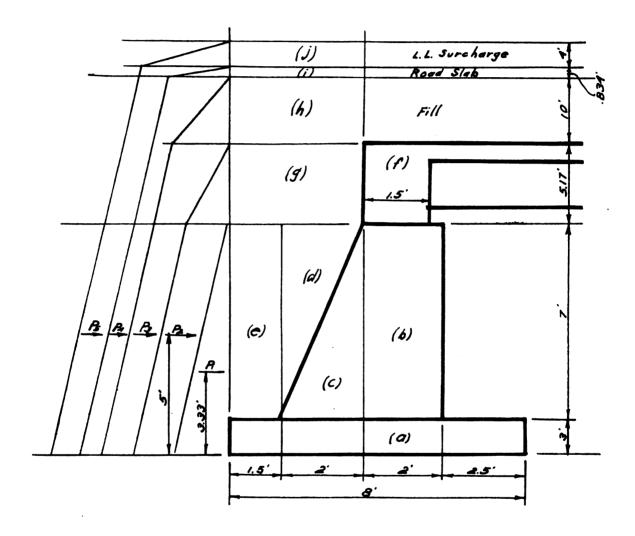
205 (27) 150 = 830,000 lbs.

830,000/2 (1/98.5) = 4,220 lbs./ft. of abutment

Dead load above superstructure:

Earth fill = 10(24)100 = 24,000 lbs.

24,000/2 = 12,000 lbs./ft. of abutment


Concrete road slab

.834 (24) 150 = 1,500 lbs./ft. of abutment

Live load = 2,530 lbs./ft. of abutment

Live load surcharge = 4 (100)

= 400 lbs./ft. of abutment

Rankine's method:

```
pl = 1/3 (100) (10) = 333 lbs./ft.<sup>2</sup>
    p2 = 1/3 (100) (5.17)
                            = 172
    p3 = 1/3 (100) (10)
                            = 333
    p4 = 1/3 (150) (.834) = 42
    p5 = 1/3 (100) (4)
                            = 133
Overturning
                          Thrust
                                              Moment
   = 333 (10/2) =
                          1666 (3.33)
                                              5,550
  = 172 (10) =
P2
                          1720 (5)
                                             8,600
                                             16,665
P3 = 333 (10) =
                          3333 (5)
  = 42 (10) =
                          420 (5)
P4
P5
   = 133 (10) =
                          1333 (5)
                                        M_{0.2} = 39,580 ft. lbs.
Stability
                          Weight
                                             Moment
(a) 3 (11) 150
                          4950 (5.5)
                                              27,200
(b) 2 (7) 150
                          2100(2.25) =
                                              4,730
(c) 2/2 (7) 150
                          1050 (5.16) =
                                              5,410
(d) 2/2 (7) 100
                          700 (5.83) =
                                              4,080
(e) 1.5(7)(100) =
                          1050 (7.25) =
                                              7,610
(g) 5.17 (3.5) 100=
                          1800 (6.25) =
                                             11,250
(h)
    10 (3.5) 100 =
                          3500 (6.25)
                                      =
                                             21,900
(i)
    .634 (3.5)150 =
                         440(6.25) =
                                             2.730
           Wl
                         15,590 lbs. M_{sl} = 84,910 ft. lbs.
(f) D. L. superstructure 4220
     Earth fill
                         12000
     Road slab
                          1500
     Total D.L.
                                       Ms4 = 151
(j)
    L. L. surcharge
                          1400 (6.25)
```

c = 1/3 (Rankine coeff.) (Office Practice)

$$W2 = 34,710 \text{ lbs.} \text{ Ms2} = 160,160$$

L. L. $= 2.530 (3.75) = 9,500$
 $W3 = 35,840 \text{ Ms3} = 160,910$

Case I: No superstructure load or L. L. surcharge

Msl = 84,910

Mol =
$$32.915$$
 Rl = 51.995 = 3.33 ft.

M1 = 51,995

Case II: Superstructure D. L. and L. L. surcharge

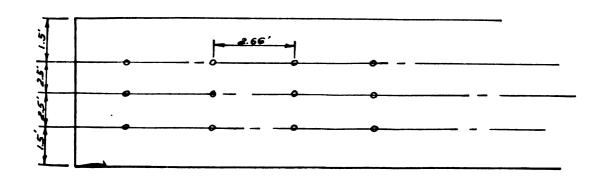
$$Ms2 = 160,160$$

Mo2 =
$$39,580$$
 R2 = $120,580$ = 3.62 ft.

M2 = 120,580

Case III: - Superst. D. L. and L. L. No L. L. surcharge

Ms3 = 160,910


Mo3 =
$$32.915$$
 R3 = 127.995 = 3.57 ft.

M3 = 127,995

Case IV: Superst. D.L. No L. L. or horizontal earth thrust

$$R4 = 160,160 = 4.62 \text{ ft.}$$

ABUTHENT DESIGN (PILES)

Piles: (Main Wall)

Maximum abutment load W3 = 35,840 lbs./ft.

Piles / ft. = 35,840 = 897

Bearing capacity of Piles = 20 Ton = 40,000 lbs.

1/.897 = L/6

L = 6.7 ft.

L/2 = 3.35 ft.

This spacing assumes C.G. of piles and location of the resultant are coincident. This condition rarely exists, therefore, reduce spacing. From plans L/2 has been reduced from 3.35 ft. to 2.66 ft.

C.G. of Piles: (L= 5.33 ft.)

Back = 6.5(2) = 13

Middle = 4(2) = 8

Front = 1.5(2) = 3

Total = 24

24/6piles = 4 ft. resultant

I (Moment of inertia) = Ad^2

Back = $2(2.5)^2$ = 12.5

Middle = $2(0)^2 = 0$

Front = $2(2.5)^2 = 12.5$

I = 25

Load on Pile = $\frac{P}{A} \pm \frac{Mc}{I}$

Case II.

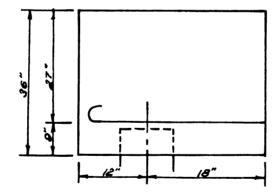
30,800 + 7,040 = 37,840lbs. (front row)

30,800 - 7,040 = 23,760lbs. (back row)

Case III.

Case IV.

$$33,310 (5.33) \pm 33,310 (5.33) (2.5) (.62)$$


$$29,600 + 11,000 = 40,600$$
 lbs. (back row)

ABUTMENT DESIGN

Reinforcement: (Main Wall)

M.S.H.D. office practice uses a minimum of 3/4 in. round bars at 2 ft. centers.

Toe Toe: Case III. (AASHO. 3.7.3)

Pile load = 39,880 lbs. (spacing 2.66 ft.) Load/ft. of wall = $\frac{39,880}{2.66}$ = 14,950 lbs.

Less weight of concrete

Moment =
$$14,950 (1)$$
 - $1,150 (1.25)$ = $13,512$
Shear = $13,800$ lbs.

As = M/fsjd
=
$$\frac{13.512 (12)}{18,000 (.867) 27}$$
 = .385 in²

Use 3/4 in. round at 1 ft. centers

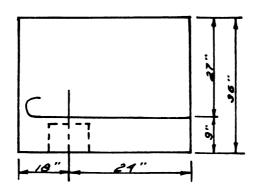
As = .44 in.
2
 ϵ_0 = 2.4 in.

$$p = \frac{.44}{12(27)} = .00136$$

$$k = \sqrt{2pn + (pn)^2} - pn$$

$$j = 1 - k/3 = .949$$

fs =
$$\frac{13.512 (12)}{.44 (.949) (27)}$$
 = 14,400 p.s.i.


fc =
$$\frac{14,400 (.152)}{8.48}$$
 = 258 p.s.i.

$$v = \frac{13,800}{12(.949)27} = 45 \text{ p.s.i.}$$

$$u = \frac{13,800}{2.4(.949)} = 225 \text{ p.s.i.}$$

Special anchorage provided.

Heel: Case IV.

Pile load = 40,600 lbs. (spacing 2.66 ft.)

Load/ft. of wall = 40,600/2.66 = 14,100 lbs.

Less flange and dead loads above

$$3(2.5)150 = 1125$$

$$(a) = 700$$

$$(c) = 1050$$

$$(a) = 1800$$

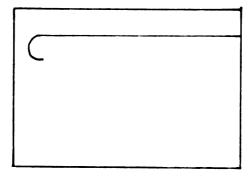
$$(h) = 3500$$

$$(i) = 440$$

Total = 8615 lbs.

Total pile load = 5,485 lbs.

Moment = 14,100 (24) - 8615 (21)


= 101,000 in. lbs.

Shear = 5.485 lbs.

As the values of moment and shear are much less than those of Case III. it is safe to assume all stresses are within the allowable for Case IV.

Reinforcement: (Main Wall)

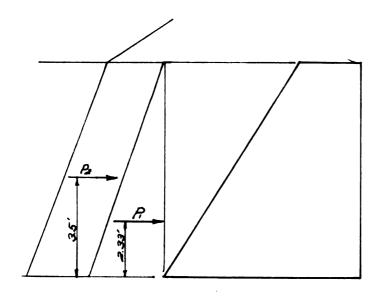
Heel: Case II. (Top steel)

Pile load = 23,760 lbs.

Load/ft. of wall = 23,760/2.66 = 8950 lbs.

Less 8615

Shear 345 lbs.


Moment = 8,950 (24) — 8615 (21)

= 34,000 in. lbs. upward

no top steel needed.

ABUTMENT DESIGN

Reinforcement: (Wall)

$$p_1 = 1/3$$
 (100) $7 = 233 \# / \text{ft}^2$
 $P_1 = 7/2$ (233) = 1166#

$$p_1 = 233$$

$$p_2 = 172$$

$$p_3 = 333$$

$$p_4 = 42$$

$$p_5 = 133$$

$$P_2 = 172 (7) = 1204 X 3.5 = 4220$$

$$P_3 = 333$$
 (7) = 2331 X 3.5 = 8150

$$P_4 = 42$$
 (7) = 294 X 3.5 = 1030

$$P_5 = 133$$
 (7) = 931 X 3.5 = 3260

At base

As =
$$\frac{19.170 \times 12}{18,000 (.876) 45}$$
 = .328 in² /ft.

As =
$$\frac{19,170}{18,000}$$
 $\frac{x}{(.8.7)}$ $\frac{12}{33}$ = .447 in² /ft.

Area used
$$\frac{130 \text{ bars}}{130 \text{ ft.}} = 1-3/4$$
 bar/ft.

Area
$$3/4$$
" bar = 44 in²

$$p = As \over bd = .44 = .000815$$

$$k = .136$$

fs =
$$\frac{19,170 \text{ X } 12}{.44 \text{ (.955)}}$$
 = 12,300 #/in²

$$fc = \frac{12,300 \text{ X} \cdot 136}{8.64} = 194 \#/\text{in}^2$$

$$v = \frac{5836}{12 \times .955 \times .45} = 11.9 \#/in^2$$

$$u = 5836 = 56.5 \#/in^2$$

P = 3 v h (h/2)
= 1/3 (100) (7) (7/2)
= 516 v

$$\Gamma_h$$
 = 516 X 2/ $\sqrt{5}$ = 720 $\frac{1}{3}$
Ho: = 720 X 7/2 = 17:0 ft. 1bs.
Is = $\frac{1700 \times 12}{15,000 \times .5.7 \times 45}$ = .629 sq. in.

1-3/4" bor erea .44 sg. in. is sufficient.

SPECIFICATIONS

American Association for State Highway Officials
3.2.1.— Loads.

Structures shall be proportioned for the following loads and forces.

- (a) Dead load.
- (b) Live load.
- (c) Impact
- (d) Wind load
- (e) Other forces when they exist, as follows:

 Longitudinal force, centrifugal force, thermal
 forces, earth pressure, buoyancy, shrinkage
 stresses, rib shortening, erection stresses, ice
 and current pressure, and earthquake stresses.

Upon the stress sheets a diagram or notation of the assumed live loads shall be shown and the stresses due to the various loads shall be shown separately.

3.2.2. — Dead Load.

The dead load shall consist of the weight of the structure complete, including the roadway, sidewalks, and car tracks, pipes, conduits, cables and other public utility scrvices.

The following weights are to be used in computing the dead load:

	weight	per	cu.	ft. (lbs)
Steel or cast steel				490
Cast iron				450
Aluminum elloys				175

Timber (trested or untreated)	50
Concrete, plain or reinforced	150
Compacted sand, earth, gravel or b llast	120
Loose sand, earth and gravel	
Macadam or gravel, rolled	
Pavement, other than wood block	150

3.2.3. — Live Load.

The live load shall consist of the weight of the applied moving load of vehicles, cars and pedestrians.

3.2.5.— Highway Loadings.

(a) General

The highway live loadings on the roadway of bridges or incidental structures shall consist of standard trucks or of lane loads which are equivalent to truck trains. Two systems of loading are provided, the H loadings and the H-S loadings, the corresponding H-S loadings being heavier than the H loadings.

(f) For truck highways, or for other highways which carry, or which may carry, heavy truck traffic, the minimum live load shall be the H 15 - S 12 designated herein.

3.2.6. Traffic Lanes:

The lone loadings or standard trucks shall be assumed to occupy traffic lanes, each having a width of 10 feet corresponding to the standard truck clearance width. Within the curb-to-curb width of the roadway the traffic lanes shall be assumed to occupy and position

which will produce the naxumum stress, but which will not involve ov rlapping of adjacent lanes, nor place the center of the lane less than 5 feet from the roadway race of the curb.

3.2.7.— The wheel spacing, weight distribution, and clearance of the standerd H and H-S trucks shall be as shown
in figs.l and 2 and corresponding lane loads shall be
as shown in figs. 3 and 4.

Each lane loading shall consist of a uniform load per linear foot of traffic lane combined with a single concentrated load (or two concentrated loads in the case of continous spans,) H loading, so placed on the span as to produce maximum stress. The concentrated load shall be considered as uniformly distributed a cross the lane on a line normal to the center line of the lane. For the computations of moments and shears, different concentrated loads shall be used as indicated. The lighter concentrated loads shall be used when the stresses are primarily bending stresses and the h eavier cincentrated loads shall be used when the stresses are primarily shearing stresses.

- 3.2.8. Application of Loadings.
 - (a) Traffic Lane Units.

In computing stresses, each 10-foot traffic lane loading, or single standard truck loading shall be considered as a unit, occurying 10 feet of width. Fractional lane widths or fractional trucks shall not be considered.

(b) Number and Position, Traffic Lane Units

The number and position of loaded lanes, whether lane loading or truck loading, shall be such as to produce maximum stresses, subject to the reduction specified in article 3.2.9.

(d) Loading for maximum stress

The type of loading, whether lane loading or truck loading, to be used, and whether the spans be single or continuous, shall be the loading which produces the maximum stress. The moment and shear tables given in Appendix A show which loading controls for simple spans. The axle spacing for H-S trucks shall be varied between the specified limits to produce maximum stresses.

3.2.9. Reduction in Load Intensity

Where maximum stresses are produced in any member by loading any number of traffic lanes simultaneously, the following percentages of the resultant live load stresses shall be used in view of improbable coincident maximum loading:

One or two lanes 100%
Three lanes 90%
Four lanes or more 75%

The position and number of loaded lanes used shall be such as to produce maximum stresses in all cases.

The reduction in intensity of floor beam loads shall be such as to produce maximum stresses in all cases, using the width of roadway which must be loaded to produce maximum stresses in the floor beam.

3.2.12. Impact

Impact shall not be applied to items in group $B_{\scriptscriptstyle{\bullet}}$ Group B

- (a) Substructures, including abutments, retaining walls, piers, piling and other parts of structures subject to static loads.
- (b) Foundation pressure.
- (c) Timber structures.

3.2.13. — Longitudinal Forces:

Provision shall be made for the effect of a longitudinal force of 5% of the live load in all lanes, using lane loads, with concentrated foad for moment, and no impact. The reductions in load intensity of article 3.2.9. shall apply. This force shall be considered as acting four feet above the floor. The force assumed is based on all traffic headed in the same direction.

3.2.19. — Earth Pressure

Structures designed to retain fills shall be proportioned to withstand pressure as given by Rankine's formula: provided, however, that no structure shall be designed for less than an equivalent fluid pressure of 30 lbs./cu. ft.

When highway traffic can come within a distance from the top of the structure equal to one/half its height, the pressure shall have added to it a live load surcharge pressure equal to not less than two feet of earth.

Where an adequately designed reinforced concrete approach slab supported at one end by the bridge is provided, no live load surcharge need be considered.

3.7.2. Standard Notations.

(a) Rectangular beams

f_s = tensile unit stress in longitudinal reinforcement

E_s = Modulus of elasticity of steel

E_c = Modulus of elasticity of concrete

 $n = E_S/E_c$

M = bending moment

As = effective cross-sectional area

b = width of beam

d = effective depth

k = ratio of depth of N.A. to effective depth d

j = ratio of lever arm of resisting couple to
 depth d

jd = d - z = arm of resisting couple

p = ratio of effective area of tension
 reinforcement to effective area of concrete
 in beam = A_s/bd

(b) T-beams

b = width of flange

b' = width of stem

t = thickness of flange

(c) Beams reinforced by compression
z = Depth from compression surface of beam to
resultant of compressive stresses.

(d) Shear, Bond and Web Reinforcement

V = total shear

V' = external shear on any section after deducting that carried by concrete

v = shearing unit stress

u = bond stress per unit of area of surface of bar

o = perimeter of bar

o = sum of perimeters of bars in one set

 A_V = total area of web reinforcement in tension within a distance, a, of the total area of all bars bent up in any one plane.

 f_v = tensile unit stress in web reinforcement 3.7.3.— Design Formulas

(a) Rectangular beams

Position of neutral axis

$$k = \sqrt{2pn + (pn)^2} - pn$$

Arm of resisting couple = 1 - k/3

Compressive unit stress in extreme fiber of concrete

$$f_c = 2M/jkbd^2 = 2pf_s/k$$

tensile unit stress in longitudinal reinforcement

$$f_s = M/Asjd = M/pjbd^2$$

(b) Flexure of reinforced concrete T-beams

for rectangular beams and slabs.

Computations of flexure in reinforced concrete

T-beams shall be based on the following formulas:

For neutral axis in the flange, use the formulas

For neutral axis below the flange, the following

formulas neglect the compression in the stem:

$$kd = \frac{2ndAs + bt^2}{2nAs + 2bt}$$

$$jd = d - z$$

$$z = \frac{3kd - 2t}{2kd - t} (\frac{t}{3})$$

$$f_c = Mkd/bt(kd - 1/2t)jd$$

$$f_S = M/Asjd$$

(c) Shear, Bond and Web Reinforcement

Diagonal tension and shear in reinforced concrete

beams shall be calculated by the following formulas:

$$v = V/bjd$$

$$f_{\mathbf{v}} = \mathbf{v} \cdot \mathbf{s} / \mathbf{A}_{\mathbf{v}} \mathbf{j} \mathbf{d}$$

$$u = V/\xi_0 jd$$

3.7.4. Span Lengths

For the analysis of all rigid frames, the span lengths shall be taken as the distance between the centers of bearings at the top of the footings.

4.5.1. Bar Reinforcement

All bars shall be of the deformed type unless otherwise specified.

SPECIFICATIONS

Michigan State Highway Department

10 Classification of Bridges:

Bridges carring highway traffic shall be classified as follows:

Class AA Bridges for specially heavy traffic units in cities and other locations where passage of such loads is frequent.

29 Dead Load:

The dead load shall consist of the actual weight of all materials and construction comprising the completed structure and wupported thereby.

The following weights of materials may be used in estimating dead load:

Material Concrete (plain or reinforced) Loose sand and earth Weight in lbs. per cubic ft. 150

31 Roadway Live Loads:

Class AA Bridges -----H20 Loading

43 Longitudinal Beams ---Stringers:

The bending moment carried by each interior beam or stringer shall be taken not less than that determined by the following formulae:

M= Bending moment for one traffic lane.

N = Width of Traffic Lane (not to exceed 10 ft.)
devided by spacing of beams.

C = Coefficient = 1 for concrete.

M' Bending moment on one beam or stringer.

45 Distribution of Concentrated Loads Through Fill:

Concentrated loads on concrete pavement may be assumed as uniformly distributed over an area below the pavement which lateral and longitudinal dimensions are given by the following formula:

L = d + 3 where

L = Lateral or longitudinal distribution in ft.

d = Depth of fill below pavement to plane of distribution.

When the areas thus determined for adjacent concentrated loads overlap, the pressured on overlapping portions shall be taken as the combined pressure from each such load.

- Allowable Unit Stress in 1bs. per sq. in. Shear: Without special anchorage of longitudinal steel v_c = 0.02 f c
- 57 Requirements for T-beams:
 - (a) In T-beam construction, the slab shall be built as an integral part of the beam and care shall be taken to secure effective and adequate bond and shear resistance at the junction of beam and slab.
 - (b) The effective flange width to be used in the design of symmetrical T-beams shall not exceed one-fourth the span length of the beam, and its overhanging width on either side of the web shall not exceed eight times the thickness of the slab nor one-half the distance to the next beam.
 - (c) For beams having a flange on one side only,

the effective over-hanging flange width shall not excees one-twelfth of the span length of the beam, nor six times the thickness of the slab, nor one-half the clear distance to the next beam.

- (d) Where the principal slab reinforcement if parallel to the beams, transverse reinforcement for negative bending moments, shall be provided in the top of the slab in the amount of not less than 0.3% of the sectional area of the slab, and shall extend across the beam into the slab not less than two-thirds of the width of the effective overhang.
- (e) The flange of the slab shall not be considered as effective in computing the shear and diagonal tension resistance of T-beams.

Table I

Allowable Unit Stresses (in lbs. per sq. in.) for various strengths of Concrete where $n = \frac{30,000}{f^2c}$

f'c = 3,000

n = 10

Flexure:

Extreme unit stress in compression 1200

Shear:

Beams with properly designed web reinforcement

Without special anchorage longitudinal

steel, v = 180

With special anchorage longitudinal

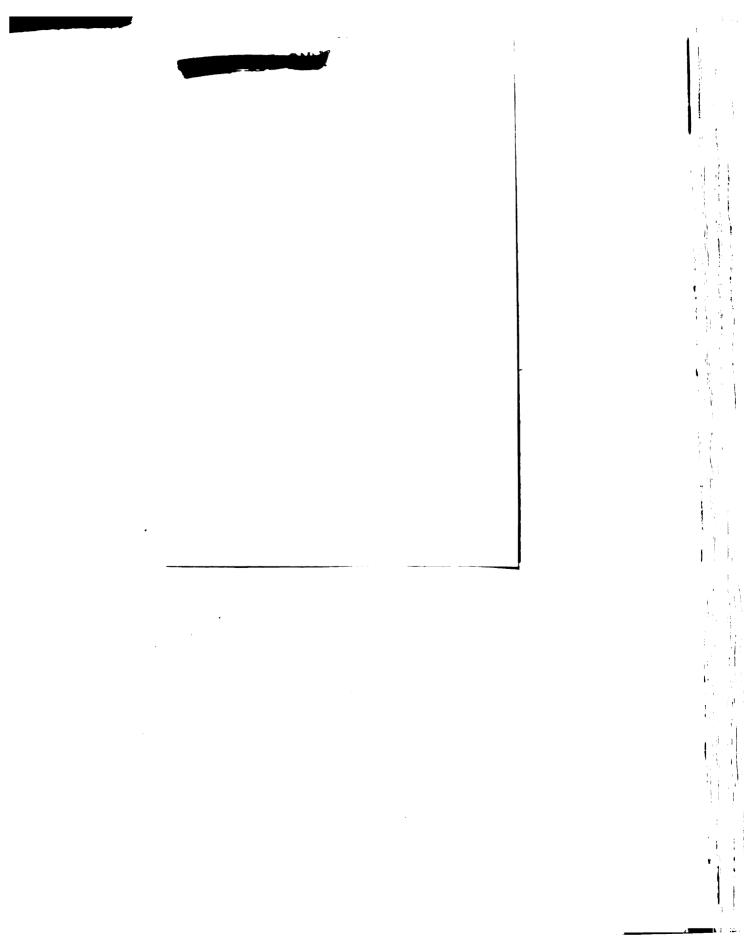
steel, v = 270

Footings with special anchorage 90

Bond:

In beams and slabs and one way footings

deformed bars M = 150


Note: Where special anchorage is provided these values may be doubled.

Summary and Conclusions

The specific summaries have been covered in detail at the conclusion of each section by the comparison of actual stress values with the allowable values included in the specifications. Throughout the analysis of this bridge, it is apparent that all the requirements of the specifications are well within the allowable limits. In many cases the Michigan State Highway Department has set up standards whereby more steel has been added than is really necessary for safety.

As the purpose of this thesis is to check the designed portions of the bridge, there has been no detail concerning the standards set up by the Michigan State Highway Department, for beauty or the necessary requirements, other than those which actually prove the bridge stable and safe.

Results show that the T-beams, abutments, and pilings have been designed by analysis, while the rest of the bridge has been designed to meet standard specifications.

