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ABSTRACT

TEST OF POLE EXTRAPOLATION PROCEDURES
IN PP » A++ AT 6 GeV/c

By

John Douglas Mountz

The experimental apparatus in this thesis is
designed to detect one pion production at a beam momentum
of 6 GeV/c resulting from proton-proton collisions. Eighty
percent of the events have the PN7n+ final state. Thirty

percent of the events have the well known A++ (3,3)

1236
resonance-neutron final state. This resonance occurs at a
low M(P7+) and momentum transfer square. Assuming a one-
pion exchange model, this resonance is produced in this
reaction with a virtual pion in the initial state and a on-
shell pion in the final state. The same resonance occurs
in m+P elasti¢ scattering where the pion is on its mass
shell before and after the resonance is found. The goal of
this experiment is to test the accuracy of different models
and extrapolation polynomials which can be used to obtain
the on-shell cross section from the off-shell scattering

data. It is sufficient to use form factor models if one

wishes to extrapolate the total cross section. The models
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considered here are the Chew-Low model, the Diurr Pilkuhn
model, and the Benecke Durr model.

It is useful to test the validity of the extra-
polation process in this case because the on-shell data is
known to high accuracy. If the method proves successful
here, it will add credibility to cross sections obtained by
extrapolating initial virtual states to the unphysical
on-shell value where the on-shell data is not available,
such as m-m and 7m-K scattering,

This experiment provides 14 thousand A++ events in
their raw form. The processing and corrections necessary
to obtain an unbiased high quality A++ sample necessary for
the extrapolation is the subject of much of this thesis.
Due to the large number of events and the good quality of
corrections, this thesis represents the most exacting test
to date of the extrapolation technique for the cross
section.

The results indicate that the Benecke Diirr model
and the Duirr Pilkuhn model are indistinguishable for the
mass and t range considered here. The results also show
that an At + Bt2 polynomial fit to the "to" values cal-
culated using either of the above mentioned models will
reproduce the on-shell value if the curve is extrapolated
to the pole. The good fit requires no scale factors. If
the same fit technique is done without requiring the curve

to pass through the origin, the extrapolated cross section

at t=0 is consistent with zero within the limits of the error.
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CHAPTER I

INTRODUCTION

In 1959, G. F. Chew and F. E,. Lowl presented a
scheme for extrapolating physical cross sections using the
virtual states existing in hadronic matter as targets.
Their paper draws a connection between scattering data off
physical targets, which are on the mass shell, and un-
physical virtual targets. Physical targets existing in the
lab are said to be on-shell because their mass is related

to their energy and momentum by M2 = E2 - P2

and this mass
is a characteristic of the target. Virtual targets are
thought to be associated with real particles or Regge
Trajectories and have a negative M2 as defined above. 1In
the scattering region, the mass of the exchange particle is
also the momentum transfer squared from the target proton to

2

the neutron, denoted by t. The extrapolation scheme

mentioned above proposes to extend the scattering cross
section, measured as a function of t in the physical
region, into the unphysical positive t region. This extra-
polated cross section can be evaluated at t = Mz, where M
is the mass of the exchange particle, to obtain the on-

shell cross section.3' 4
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The reaction considered in this thesis is PP-+A++N.

++
A
Resonance

Beam P

T

Tar get
Neutron

Figure 1.1. One pion exchange diagram.

The one pion exchange diagram for this reaction is shown in
Figure 1.1. The beam particle is a proton and the virtual
target is an off-shell pion residing in the pion "cloud" of
the target proton. The beam proton collides with the
virtual pion and imparts a momentum transfer t necessary to
place the virtual pion on its mass shell. The final on-
shell proton and pion are then detected in the lab. This
process has a high cross section at low t and (P, m+) mass
due to the presence of the A++1236 resonance.5
The pole extrapolation technique is not necessary
to obtain cross section data in the reaction described
above. Experiments using pion beams colliding with protons
have been done.6 The same resonance occurs in m+P
scattering where the pion is on its mass shell before and
after the resonance is formed. The on-shell cross section
has been measured to high accuracy.7 It is useful to do a

pole extrapolation experiment using off-shell n-P scattering

data in order to check the validity of the extrapolation



process against the known correct results. If the method
proves successful here, it will add credibility to cross
sections obtained by extrapolating initial virtual states
to the unphysical on-shell value where the on-shell data are
not available, such as wn-m and 7n-K scattering.8

The experimental apparatus in this thesis was
designed to detect one pion production at a beam momentum
of 6 Gev/c resulting from pion-proton and proton-proton
collisions. The apparatus was built by the University of
Notre Dame in order to carry out pion-proton experiments.9
Subsequently, the experiment reported in this thesis on
proton-proton collisions was carried out as a University of
Notre Dame, Argonne National Laboratory, Michigan State
University collaboration. Wire spark chambers using
magnetostrictive wands were used to obtain the data.
Scintillators were positioned so that only data from a
certain event configuration would trigger the apparatus and
cause a spark. When a spark occurred, scalars automati-
cally digitized the location of the spark in the chamber
and a computer was used to write the scalar information
onto magnetic tape. The apparatus was triggered on events
having one beam track and two outgoing tracks. Typically
15 events were written on tape during each 400 m sec beam
burst. The experiment ran for 12 days at the Argonne
Z2.G.S. and 1.5 million triggers were recorded. The final
sample of 50,000 single pion production events were identi-

fied after reconstruction and event type fitting using
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the Michigan State University C.D.C. 6500 computer facility.
The processing and corrections necessary to obtain the
unbiased high quality A++ sample used in the extrapolation
is the subject of much of this thesis. Eighty percent of
the final events have the PNw+ final state. Thirty percent

of the events have the well known A++1236(3,3) resonance-

neutron final state. These 14,000 A++ events occur at low

pion-proton mass and low momentum transfer. Due to the
large number of events and the good quality of the cor-
rections, this thesis represents the most exacting test to
date of the cross section extrapolation technique.

The t dependence of the cross section at a given

10 The t distribution derives its

mass is complicated.
shape from a combined contribution of the PNwm vertex, the
pion propagator,z the PrA++ vertexll and dynamical form
factors associated with the interaction. An accurate
extrapolation of the data cannot be done unless the t
distribution is linearized by normalizing the data with
different models. It is sufficient to use form factor

models if one wishes to extrapolate the total cross

section. The models considered here are the Chew-Low

12 13

model,l the Diirr-Pilkuhn model,'? and Benecke-Diirr model.
The Chew-Low model considers only the kinematics of the

one pion exchange where the Diurr-Pilkuhn and Benecke-Durr
models introduce additional form factors to help linearize

the extrapolation curves.



CHAPTER II*

HARDWARE

The hardware for this experiment was constructed by
the University of Notre Dame and will not be described in
detail here.9

A proton beam of momentum 6 + .5% Gev/c was focused
and directed at a 6 inch long hydrogen target. The 20%
pion beam component was identified by a Cerenkov counter.
The counters used to trigger the apparatus are shown in
Figure 2.1. A trigger was defined as C BB, A(D>2) H Hy
where D>2 means two particles must hit the DE/DX counter
and Hiﬁj means two separate hodoscopes must fire. The
DE/DX counter was 1/8" thick pilot F scintillator. The
hodoscope array, shown in Figure 2.2, was designed using
Monte Carlo events of the type PN to have a high two
track acceptance. The gross features considered in the

Monte Carlo do not change when considering the reaction

PP+PNn .

*I am indebted to the University of Notre Dame for
providing the apparatus and supplying the information used
in this chapter.
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10

The chambers were wound at the University of Notre
Dame and have 48 wires/inch crossing magnetrostrictive
wands. If 5 kilovolts was applied to these wires shortly
after a charged particle passed through the chamber, a
breakdown would occur resulting in current flow in the
chamber wires. The acoustical pulses resulting in the
magnetostrictive ribbon were used to turn off scalers
activated by a common fudicial pulse and counting at the
rate of 20 MHZ. The scalar data for a given plane were
proportional to the spark coordinate in one dimension. The
total data from the 20 planes were read onto tape by the
Varian 620/i mini-computer. Figure 2.3-b shows the chamber
construction. Unambigous spacial location determination
for a two track final states demanded that some chambers
have non-orthoginal wire orientation. This is shown in

Figure 2.3-a.
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CHAPTER III

EVENT PROCESSING AND SELECTION

The experiment is divided into a roughly equal
number of positive magnetic field and negative magnetic
field triggers. A trigger is defined in terms of the
apparatus described in Chapter II as: Trigger = Blee'X
G D H, which means the beam counters have to count a
charged particle, the Cerenkov counter does not fire, the
anti-counter does not fire, the event occurs during the
gate, the DE/DX sees two particles and two separate
hodoscopes fire. There are typically 15 triggers per beam
burst which are recorded on tape by a Varian 620/i mini-
computer over the time span of 400 m sec.

Table 3.1 lists the total number of recorded and
processed triggers obtained during the 12 day run at the
Argonne Z.G.S.

Due to hardware problems discovered after the run,
460.95 K triggers were not analyzed. Also recorded are the

Blazc'i G = BAG count. The sum of available protons for

interaction from processed events is given in Table 3.2.

13
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Table 3.l1l.--Trigger Breakdown.

Positive Field Negative Field Total
Recorded 970 K 950 K 1929 K
Processed 509.25 K 958.80 K 1468.05K

One can calculate the ub/event by the relation ub/event =

1./(BAGpHNAL). This is also listed in Table 3.2.

Table 3.2.--BAG and ub/event.

Positive Field Negative Field Total
BAG 51.1 Meg 88.2 Meg 139.3 Meg
ub/event .03035 .01758 .01113

The 1468.05K good triggers were analyzed through
the filter program Crunch,14 which attempts to find two
tracks and put out the X-Y-Z positions at the chambers for
the event. The Michigan State University C.D.C. 6500 com-
puter was used for all event processing and analysis.
There were two separate analyses of the events. The first
was done with events having 3 sparks per plane in planes
9-20 and the second pass included events which had 4 sparks
in these planes. This effectively eliminates the need for
further over-flow corrections. The Crunch results are
givep in Table 3.3. The overall 17% survival rate of

triggers to Crunch out events is mostly due to the
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inability of Crunch to find two good final tracks. After
averaging several typical runs one can list the larger
failure classifications and their losses. This is given in

Appendix A.

Table 3.3.--Events Out of Crunch.

Positive Field Negative Field Total
Pass 1 84433 146018 230451
Pass 2 3962 1884 5846

Circe is a general multi-prong computer program

15, 16 For this

designed for a non-uniform magnetic field.
experiment it was altered17 to take the X-Y-Z values and
errors in these quantities for the input beam track and two
out-going tracks and return a curvature, dip and azimuth
angle for each track as well as the vertex and a 12 x 12
correlated error matrix. The definitions of the coordinate
system used in Circe is shown in Figure 3.1. The beam is
along the x direction and the origin of the coordinate
system is the geometric center of the magnet. Table 3.4
summarizes the events out of Circe.

Only 32% of the input Circe events fail. These
failures are listed in Appendix A with the cause of

failure.
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P4
y
A = Dip angle
¢ = Azimuth angle
¢ K =1/P

Figure 3.1. Coordinate system used in Circe.

Table 3.4.--Circe Output Events.

Positive Field Negative Field Total
Pass 1 60010 98812 158822
Pass 2 3181 1484 4666

Teuta18 attempts to fit the kinematic data for the
three output tracks from Circe to event types given with

their mark number in Table 3.5.

Table 3.5.--Teuta Fit Reactions.

Reaction Number Mark Number Reaction
la 4 PP-+PNn+
1b 104 PP-+1+NP
2 2 PP-+PPn°
3 PP-+A++N

4 1 PP-+PP




I

Reac
stricting t<

elastic scat

geometry of
fowd, The

8! reactiop




17

Reaction type 3 is a sub-class of la and 1lb re-

stricting t<0.3 Gev?

and 1.14<Mpﬂ+<1.42 Gev. Reaction 4 is
elastic scattering and can be shown to be impossible for the
geometry of this experiment. No fits of reaction 4 were
found. The confidence level distributions for the differ-
ent reactions is shown in Figure 8.1la-d.

If a reaction type fit has a confidence level less
than 10-5, the fit information is not recorded. Fits with

5 and .03 are failures but are

confidence levels between 10
recorded. All fit types greater than .03 are good fits and
the best confidence level of the good fits is taken as the
correct reaction type. It was found that nothing is gained
by requiring the usual factor of 2 or 3 between competing
event confidence levels so a simple best confidence level
selection rule is applied. The extent to which the best
confidence level does not correspond to the true reaction
type is the experimental ambiguity discussed in Chapter 8.4.
Appendix A summarizes the events which have no fit type
greater than 0.03 and are thus considered failures.

Teuta events with a confidence level >3% are con-
sidered good fits and are summarized in Table 3.6. The
events which survive the target cut, discussed in Appendix
A, are listed in Table 3.7. The last section of Table 3.7

resolves ambiguities by a simple best selection rule

described earlier.
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Table 3.6.--Teuta Fits CT>3%.

-

Positive Field Negative Field Total
Pass 1 18896 34105 53001
Pass 2 1180 621 1801

Table 3.7.--Good Teuta Events After Cuts.

Fit Mark Pass 1 Pass 2
2 5177 153
4 9859 277
2 + 4 2857 83
104 ‘8807 290
2 + 104 5731 132
4 + 104 15877 462
2 + 4 + 104 287 4
PNn+ 39325 11146
PPn° 9270 255
A++ 14283 402

Total 48595 1401
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In Chapter VIII it will be shown that a cleaner
sample of events can be obtained if one applies a Circe
standard deviation (S.D.) cut of 0.6 and scale up all Teuta
events by the same number to conserve events. The total
events before a S.D. cut, after a S.D. cut and with a S.D.
cut plus scaling are given in Table 3.8. The S.D. cut

correction factor is 1.29.

Table 3.8.--Final Events.

No. Cut Sol Cut =.6 Sol Cut + Scaling
Total Events 49996 38738 49996
PNn+ 40471 31908 41180
PPm° 9525 6830 8815
A++ 14685 12271 15837

The weighting program described in Chapter V uses
a model hodoscope array to eliminate orbited orientations
for two tracks which hit the same hodoscope or miss the
hodoscope array. This cut was also applied to the experi-
mental data for consistancy. This cut reduces by 270
events the A++ sample. This gives 12001 A++ events in the

final sample.
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CHAPTER 1V

ZERO VALUE AND BEAM MOMENTUM

4.1 Zero Value

The 20 spark chamber planes were surveyed into place
and the relative centers of the various planes were roughly
determined with respect to the beam tracks. The initial
values as determined by this survey are given in Table 4.1.
The zero value is the center to start distance in inches.

To determine the actual zero values for the 20
planes with respect to the beam, data runs were taken at
the beginning, middle, and end of the experiment with the
magnet off and the trigger set for single beam tracks.

The data used for zero value are processed through
the same spacial reconstruction routine as real event
triggers. Only straight through tracks with exactly one
spark per plane are examined. The Y and Z views are
separately fitted to a straight line. The final zero value
ig the average fitted beam position in the chambers and is
given in Table 4.1. The widths and displacements of the
fitted beam position with respect to the surveyed zero

Values are shown for the 20 planes in Figure 4.1. These

20
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Table 4.1.--Initial and Final Zero Values.

Plane Initial Zero Value Final Zero Value
1 7.537 7.537
2 7.793 7.796
3 7.537 7.540
4 7.801 7.802
5 7.769 7.766
6 7.547 7.541
7 7.540 7.540
8 7.801 7.797
9 16.475 16.470

10 16.787 16.782
11 16.785 16.787
12 16.588 16.586
13 14.766 46.738
14 46.366 46.367
15 43.290 43.291
16 18.958 18.967
17 43,218 43,220
18 18.955 18.953
19 47.014 47.008

20 46.478 46.477
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distributions use the magnet-off data taken at the begin-
ning of the experiment. The other magnet-off data give

similar distributions.

4.2 Beam Momentum

The beam momentum was determined experimentally to
be 6.0 (+ 0.5%) Gev/c using a dipole magnet and a momentum
analysing slit.9 As a consistency check on the magnet
field fit and the beam momentum determination, single beam
tracks with the magnet on were tracked through the magnet
and the momentum width and center was determined. Appendix
B details the fitting program used to fit the beam tracks.
A Monte Carlo program was used to generate X-Y-Z values in
the 10 chambers to simulate beam tracks as a check of the

fitting program. The results of the fitting program are

listed along with the input values in Table 4.2.

Table 4.2.--Beam Fitting Program Test.

Input Track Output Track
P A ¢ P A ¢
Gev/c Rad Rad Gev/c Rad Rad
6.0 0. 0. 5.993 0.006 .000
6.0 .018 .024 6.010 .010 .020
2.0 -.03 -.08 1.999 .030 -.080

Only single perfect beam tracks were used when

fitting the data. Figure 4.2 shows a plot of the fitted
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beam momentum and angles. The beam momentum is seen to be
centered at 6 Gev/c with a width (FWHM) of 0.5 Gev/c.

This width is roughly consistant with error expected to
come from the wire spacing using planes 8 through 20.
These are the planes after the target.

As an additional check on chamber center values and
field-beam momentum values coupled with the possibility of
a chamber sag or rotation, the Y and Z fitted minus
measured coordinates were plotted for magnet on beam tracks.
For all planes, these values are centered on zero and have

a width of 0.002 inches.



CHAPTER V

ACCEPTANCE

5.1 Geometrical Acceptance

The apparatus as described in Chapter II is designed
to have no uncorrectable acceptance losses for reaction
number 3. The degree to which this is not true is the
subject of section 5.2. The apparatus does have a limited
acceptance for reaction numbers 1 and 2. This limited
acceptance arises from the wider angle and slower momentum
data which comes from 2 and 1 as compared to 3. By
designing the spectrometer length and field to be unbiased
only for 3, better resolution for this reaction can be
achieved.

| Not all events of type 3 can make a successful
trigger. Due to the rectangular shape of the magnet having
limits of *+44 inches in Y and +13.5 inches in Z, not all
events in the X-Z plane survive to the hodoscope. However,
the larger X-Y plane acceptance insures that wide angle
events are recorded in this orientation, and the losses
from the vertical orientation are related by a rotation

about the beam axis. A weighting program has been written

29
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to assign each event an acceptance weight equal to the
inverse of the probability of detecting the event.

The acceptance program assumes axial symmetry along
the X axis. Each of the two outgoing tracks is rotated
together about the X axis in 100 steps of 0.0628 radians
and the number of times both pass through the magnet and
hit the hodoscope is recorded. The acceptance is defined
as the hits divided by the total number of steps. The
magnet cuts made are Y = +44 inches and Z = +13.5 inches.
The hodoscope is defined as Y = + 44 inches and 2 = +18
inches. Also, since actual events require two or more
hodoscopes to fire, an event orientation is not counted as
a hit if both tracks hit the same hodoscope.

A typical event weighting process is pictured at
the hodoscope plane in Figure 5.1. The event shown has the
characteristics given in Table 5.1. The outer circle is
the pion and the inner the proton. The solid lines con-
necting the circles are various pion-proton relative

position on the circles.

Table 5.l1.--Typical Event Weighting Process.

PGev/c Arad ¢rad

Pion 1.46 .0076 .1208
Proton 4.39 .0298 -.0470
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The total number of hits for the event shown is 84, giving
an acceptance of 0.84 and a weight of 1.19.

Only events of reaction 3 are weighted. Appendix C
defines the four independent variables used throughout this
analysis. These are the invariant mass of the pn+ system,
the moment transfer squared from the target proton to the
neutron, and two A++ decay angles, the Jackson and Treiman-
Yang angles. Figure 5.2a-d shows these four variables

before and after weighting. The average weight is 2.35.

5.2 Zero Acceptance

It has been found that at 6 Gev/c incident proton
momentum, the apparatus described in Chapter II will have
zero acceptance for some events of reaction type 3 regard-
less of their orientation. This loss cannot be corrected
back by the normal weighting procedure described in the
previous section.

In order to understand the nature of the zero

acceptance region with respect to M, t, 0 , and ¢TY' a

Jac
four dimensional grid of data can be generated covering the
possible range of these variables. The function used to
map M - t - 6 - ¢ points to proton and pion tracks is
described in Appendix C. The acceptance for each event
type can be calculated. This investigation reveals there
is a bias against low Treiman-Yang angle for low mass and

the bias gets larger with increasing mass. It shows there

is a bias against low Jackson angle, especially at high
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mass. The bias gets larger at high mass, but does not have
a great dependence on momentum transfer. Appendix D
explains phyéically the cause of the zero acceptance
region. Figure 5.3a-b shows the three dimensional location
of the zero acceptance region as a function of 6, ¢ and
mass. The indentation in the lower right corner is where
the acceptance is zero. Figure 5.3a-b are at momentum
transfer squares = 0.04 Gev2 and 0.12 Gev2 respectively.

In order to correct for the zero acceptance exhibited
by the apparatus to certain data regions, Monte Carlo events
of the type PP+Pn+N were generated at 6 Gev/c. The Monte
Carlo program is described in Appendix E. The events in
the A++ region are tracked and weighted for acceptance as
described in section 1 of this chapter. Using a mass cut
of 1.36 Gev, 1580.7 tracked and weighted events are
obtained from an original Monto Carlo sample of 1756 events.
The zero acceptance correction in this mass range is 1.1109.
Events with the larger mass range up to 1.42 were also
investigated. Out of 2001 Monte Carlo events, 1752.3
tracked and weighted events result from the acceptance
correction. This gives a zero acceptance correction of
1.14. The zero acceptance correction is similar for data
with the mass cut-off at 1.36 and at 1.42 because, although
the higher mass does have a marked decrease in acceptance,
there are fewer events on which this has an effect. The
correction factor of 1.1109 was used for the pole extra-

polation analysis.



38

(a)

snTeA 3 ¥yl °oxaz sT aoueids

ayL
s3jutod

T (D) ~~—

*q 103 ghoo Z1°0 PuU® ® 03 2499 §0°0 ST
o® 9Yy3z aI3YM SINOOO0 UOTILIUIPUT

*sasso] @oue3dadoe 3TqR3IOIIIOD IARY aqnO aY3 SPFSUT
‘uothax @oue3zdsooe oxa8z 3ay3z Jo 30Td TeUOTSUAWIP 99IYJ

*q-eg°g @inbtg






derived
the inj
8 a
%o sca
Yonte |
for thy
parame

the ra

fitteg
Cirve

Cltve



40

The actual shape correction factors used were
derived in a manner which does not drastically depend on
the initial distribution. An efficiency curve was derived

as a function of the M, t, 6 and ¢TY variables in order

Jac’
to scale-up the distributions where it is necessary. The

Monte Carlo data were broken up into 10 bins of equal size

for the mass, t, © and ¢TY of the event and a four

parameter fit of the form A + BX + sz + Dx3 was made to

Jac’

the ratios of the ten bins before and after track-weighting.
Figure 5.4a-d shows the effect of multiplying the

fitted curve by the actual experimental data. The shaded

curve is the original uncorrected data, and the unshaded

curve is the final data corrected for the zero acceptance.
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CHAPTER VI

PION DECAY AND SECONDARY SCATTERING

6.1 Pion Decay

Pions resulting from the reaction PP+P7m+N will
travel approximately 116 inches before hitting the final
hodoscope. A decay of the type w++u+v will produce a muon
which can usually traverse the apparatus, but its momentum
may be sufficiently different from the pion to cause it to
be rejected by the fitting programs. The correction for
the pion decays will then be the fraction of pions which

decay and make a wrong fit. This is written as:

Fraction of Pions lost _ Decayed pions Bad fits (6-1)
due to decays Tracked events Decayed pions

A track decay program is written which uses Monte
Carlo PNn+ events as described in Appendix E. The pion is
tracked from the target to the hodoscope in approximately
four~-inch steps. The probability for decay in each step

size 1ls is then

-1ls - -
PDecay =1 - exp( /Lm) , where Lm = BC yTn (6-2)

44
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For a 2 Gev/c momentum pion, Lm is about 4400 inches. 1If
a random number generated between 0 and 1 is less then
PDecay' a muon is assumed to emerge isotropically in the
pion rest frame back to back with a neutrino, each with the
characteristic momentum of 30 Mev/c. The muon four momentum
is transformed back to the laboratory and allowed to con-
tinue tracking.

The various X-Y-Z positions for the proton and
muon can be recorded at the chamber positions. The two
outgoing tracks are then reconstructed and fit for event
types by Circe and Teuta and a fitting efficiency is
determined. These severely altered tracks take approxi-
mately 20 seconds each for Circe processing alone, and the
statistics on this analysis are restricted by computer
time. Table 6.1 summarizes the events generated in this
analysis. The total events generated was 15290, It was
found that 4.03% of all tracked events decay, while if a
A++ cut is made 4.66% of the events decay. Thisshigher
decay number results from the fact that the A++ cut
restricts the sample to only slow pions which have reduced
Y and Lne The final 12001 A++ events obtained from this
experiment can be tracked on the individual basis. This
gives an average decay probability of 4.56% for the pion
tracks.

Table 6.2 indicates the results of the Circe and

Teuta fitting program on the 100 tracked decayed events.
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Table 6.1.--Pion Decay Events.

Tracked Events

No A++ cut A++ cut
All Events 2508 1179
Decays 100 55

Of the 77 fits with a confidence level greater than 3%, 15
swap to Mark 2 and 21 swap to Mark 104. The combined pion

decay correction is (4.66) (T%%) = 2,75%.

Table 6.2--Pion Decay Track and Fit Results.

100 Decayed Events

97 Pass Circe

91 Pass Teuta (confidence level >10™°)
77 Pass Confidence level cut of 3%

41 Fit as PNn+

6.2 Electromagnetic Scattering

When a charged particle penetrates an absorber, it
may instantaneously experience electric fields as high as

l019

volts/mtr due to the nuclei of the atoms which make up
the absorber. For thick absorbers, the chances are good
that the charged particle will undergo a large number of
small-angle coulomb scatterings in a process called

"multiple scattering.” 1In addition the particle may under-

go a single relatively large angle scatter with a
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probability given by the Rutherford scattering formula.

The transition region from multiple scattering to single
scattering is known as a plural scattering because the
number of collisions is larger than 1 but not very large.

A precise formulation for the electromagnetic scattering in
the three physical domains described above has been used to
obtain the scattering angular distribptions for the second-
ary charged particles in this experiment.lg' 20, 21

The matter seen by the secondary particle can be
divided into three regions. The first region includes the
target, DE/DX and chambers 5 and 6 plus the associated air.
The second region includes chambers 7 and 8 plus air. The
last region only includes air. These regions and their
gssociated material are listed in Table 6.3. This material
can be summarized in Table 6.4. The x position of the
material is assumed to be concentrated at the weighted
average position of the material in the region.

The Monte Carlo program described in Appendix E is
used to generate good PN7m+ events. The two outgoing tracks
are tracked through the apparatus and are allowed to
elastically scatter in each of the three regions of matter.
The two final outgoing tracks have up to three scatters
apiece as they traverse the system. The various Y and Z
values at the spark chamber planes are recorded and the
event is processed by Circe and Teuta. The results of the

analysis of 200 Monte Carlo events are given in Table 6.5.
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Table 6.3.--Break-down of Secondary Matter

Region X Inches Description
-74.56 Hydrogen target=--3" hydrogen
-73.06 Hydrogen target wall and vacuum
window--,02" CH,
-70.0 DE/DX--1/8" CH,
' -70.0 50 mil tape with DE/DX
-66.4 Chamber Aclar--.03" CH,
-66.4 Al wires--,0072" effective width
for 2 chambers
-60.0 Air--26" nitrogen
-34.9 Chamber Aclar--.03" CH, for 2 chambers
2 -34.9 Al wires--.0072" effective width
for 2 chambers
-28. Air--45" Nitrogen
3 10. Air--45" Nitrogen
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Table 6.4.--Chemical Break-down of Material.

2
Region Average x Element z A g/cm2 nuclei Sm1023
H 1 1l .659 3.95
1l -71" C 6 12 .45 «225
Al 13 27 .0495 .011
N 7 14 .079 .0339
H 1l 1 .01 .06
2 ) -32" C 6 12 .0602 .0301
Al 13 27 .0495 .011
N 7 14 .137 .0587
3 10. N 7 14 .137 .0587

Table 6.5.--Coulomb Scattering Event Analysis.

200 Scattered Events

199 Pass Circe

199 Pass Teuta (confidence level >10°5)
199 Pass 3% confidence level cut

186 Fit as PNn+
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The thirteen lost events which pass Teuta consist
of 4 which fit as Mark 2 and 9 which fit as Mark 104. The
total events loss is 7%. It is known that the Monte Carlo
events with no modification will lead to a 4% ambiguity
swapping of events. The total loss due to the coulomb

scattering is taken to be the difference of 3%.

6.3 Strong Interaction Correction

Events of the type PP+Pn+N will be degraded due to
the strong interaction of the secondary proton or pion with
the nuclear matter present in the experimental apparatus
between the target and the final spark chamber. This
section will estimate the magnitude of the strong inter-
action loss using experimental results of proton and pion
scattering on hydrogen, carbon, aluminum, and nitrogen
nuclei.

The corrections which results from each of the
eight reactions above can be further divided into inelastic
and elastic contributions. Good events which produce
secondary inelastic strong interactions are entirely lost
in the target or charge cut in Circe or a missing mass
confidence level cut in Teuta. Elastic secondary strong
interactions are also lost due to the magnitude of the
scattering angle.

One can estimate the nuclear form factor by

-B|¢t|

F(A,t)=p , with B=R2/4h2. This is the small argument

expansion of the form factor expected for the diffraction
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by a spherical black body of radius R. The optical model

form is

2
) 2 J, (R/AVTET)
F®black body = VT4 (6-3)

Estimates of the B parameter were made using the experi-
mental data and using only the first diffraction peak. It
will be shown that the relatively low angle scatters in the
first peak are still too distorting on outgoing event
tracks to allow many events to be correctly fitted. P-P

elastic scattering at 5 gev is known to fall with a B

5, 22

parameter of about 8. The B parameter is about 90 for

carbon and 100 for aluminum.23“26

27

For pions on carbon the
B parameter is about 60. Elastic scatter events were
generated for protons and pions with a B of 10, 40, and 90
and the scattered events were processed by a Circe and

Teuta. Table 6.6 summarizes the results of this analysis.

Table 6.6.--Strong Elastic Scattering.

Conf.
Elast. Pass Pass Teuta lvl, Good
B Track Scat. Circe conf. 1lvl. >10"° >,03 PN7+

10 ) 50 48 35 17 7
40 P 50 50 45 38 10
90 P 50 50 46 43 15
10 L 50 47 34 20 8
40 n 50 50 42 29 9
90 L 50 50 46 26 18
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Although the rate for elastically scattered events
gets larger for the larger B characteristic of heavy nuclei,
it never gets above 30% for protons and 36% for pions. The
ratio of good PNw+ to the total good Teuta fits is always
one-third. This is what one would expect by chance fitting
of events among the three fit types PNw+, 7w+NP, and PPno.
Also the actual good PNn+ fits must all be reduced by 4%
which is the ambiant loss level of Monte Carlo events
having no induced spark chamber error. Because of the
reasons above and because the elastic scattering is approxi-

mately one-third28

of the total cross section for proton
and pions on larger nuclei such as aluminum and carbon, it
will be assumed that all elastic scatters are lost.

One must now obtain the total cross sections for P
nucleus or 7+ nucleus scattering where °T=°e1+°ine1'
Table 6.7 summarizes the data used to obtain the fits of
cross section to energy. The cross section reviews given
by reference 28 and 29 and data from reference 30 are used.
The probability for a strong interaction can then be

calculated on an event by event basis. The matter con-

sidered is summarized previously in Table 6.3 and 6.4, o

tot
3/3 31

increases as A and one can infer from the data above
the total P-nitrogen and w-nitrogen cross sections.
Table 6.8 summarizes the strong interaction correction

results.

o
!
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Table 6.7.--Elastic and Total Cross Sections for Protons
and Pions on Carbon and Aluminum.

Reac. E Gev O mb gel mb Reac. E Gev Op mb o¢el mb

P+C 1l 370+9 112+15 .442 366+33 128+26
2.2 36748 107+6 m+C 1.0 316 82
3.0 390 1.2 351+36 105+22
10. 344 100 2.86 28012 66.6+7
20.6 355+7

P+Al 2.2 739+24 236+17 T+Al .442 782+46 379+37
10.0 717 214 1.0 650 178
18.4 687+10 215+11 2.86 588+22

Table 6.8.--Strong Interaction Correction Factors.

Track Strong Interaction Loss
Proton .0377
Pion .0322
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CHAPTER VII

SPARK CHAMBER EFFICIENCY AND DE/DX LOSSES

7.1 Spark Chamber Efficiency

The efficiency will be calculated for the three
sections of the apparatus separately and a total efficiency
will be derived from these three sub-efficiencies.

Figure 7.1 shows the beam, magnet, and hodoscope sections

congisting of 4, 4, and 2 chambers respectively.

N

i dd
L

Chamber 2 34 7.8 9,10
Number ' ' 56 '

Figure 7.1. Spark chamber classification.

The filter program Crunch demands 3 or 4 chamber
firings per track for the beam and magnet sections and 1
or 2 chamber firings per track out of the possible 2

firings after the magnet. Appendix G details the spark

54
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chamber efficiency calculation. Table 7.1 gives the
results of the calculations for each section and the total

system.

Table 7.l1l.--Spark Chamber Efficiency.

Chamber Section Efficiency
Beam .995
Magnet .932
Hodoscope .987
Total .915

7.2 DE/DX Efficiency

32 takes into

The DE/DX efficiency calculation
account the Landau energy fluctuation of energy loss by a
particle through the scintillator, scintillator efficiency
and photon production spectrum, the light pipe efficiency
and the photo tube efficiency.

The Landau energy fluctuation curve for charged
particles in matter is a statistical phenomenon because the
collisions which result in the energy loss are independent
of each other. The energy loss distribution is not
symmetric but has a tail due to the infrequent collisions

which result in large energy transfer. The half width at

half maximum Ao of the low side of the curve is given
by33, 34
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_ 2 2
Ao = 2Cmec xb/B (7-1)

, where C is Euler's constant, m

e is the electron mass, x

is the material thickness in gm/cmz, and b and B are defined
in the references cited above. For a 6 Gev/c momentum
proton traversing 1/8" of the scintillator used in this
experiment the most probable energy loss is 0.48797 Mev with
4, = .0411 Mev.

The pilot F scintillator used in this experiment
has a conversion efficiency of 2.72% for energy loss to
light. The light emitted peaks at 4000 A° and has a FWHM
of about 200 A°. This light will propagate through the
scintillator and light pipe resulting with 4% of the
initial light arriving on the first photocathode of the
photo-multiplier. On the average this means that of the
most probable 489.7 Kev of energy’lost in the scintillator,
13.3 Kev are made into photons with an energy centered at
3.1 eV. With a light pipe-photo tube efficiency of 4%,
only 182 of the initial 4538 photons arrive at the photo-
cathode. The dispersion in this case due to photon sta-

tistics is 0.169 Mev.3>

When one compares the width due
to photon statistics with the 0.084 Mev width due to energy
loss fluctuations in the scintillator, it is clear that the
actual experimental width of the single track events is due
almost entirely to the photo tube-light pipe efficiency.

In practice one knows the experimental width and the

Landau width and derives the photo tube-light pipe
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efficiency to be consistant with these numbers. Summarized
in Table 7.2 are various specifications for a 6 Gev/c proton

track.

Table 7.2--DE/DX Counter Characteristics for 6 Gev/c Proton.

Hardware Data Physics Quantities
Average Wavelength 4225, A° Photon Energy 2.95 eV
Conversion Efficiency 0.0272 Number of Photons 4538, -
Probable Energy Loss 0.4897 Mev Landau Dispersion 0.0841
Landau Width 0.0411 Mev Photons at Cathode 182,
Scintillator-Light Photoelectrons 38,
Pipe Efficiency 0.04
Photo Tube Dispersion 0.1694
Photo Tube Quantum
Efficiency 0.21 Total Dispersion 0.1891
Applification Factor 0.49x106
Number of Stages 10

Figure 7.2 compares the differential experimental
discriminator curve, given by Table 7.3, to the calculation.
The experimental curve has a width of 1.6+0.1 disc units
and is centered at 2.95 disc units giving a ratio of width
to center of 0.542+0.035. The width to center ratio for
the calculated curve is 0.48. The width discrepancy is
comparable to the error and does not significantly effect
the overlap of singles to doubles.

Using the efficiency determined above, one can

calculate the pulse shape expected for a 4.5 Gev/c momentum



Figure 7.2.
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The triangles mark differential discriminator
curve points. These points are obtained by
taking differences between successive values

of the experimentally measured fraction of beam
tracks given in Table 7.3. The solid curve is
calculated as described in this chapter.
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Table 7.3.--Experimental Discriminator Curve.

Disc Disc
Setting Fraction of Beam Tracks Setting Differential

1 99.8 1.25 0.1
1.5 99.7 1.75 2.5
2. 97.2 2.25 12.5
2.5 84.7 2.75 22.9
3. 61.8 3.25 21.8
3.5 40 3.75 13.4
4. 26.6 4,25 7.0
4.5 19.6 4.75 3.7
5. 15.9 5.25 3.0
5.5 12.9 5.75 2.2
6. 10.7 6.25 2.1
6.5 8.6 6.75 2.5

7. 6.1
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proton and a 1.5 Gev/c momentum pion as are typically seen
in the experiment. This calculation yields the results in

Table 7.4.

Table 7.4.--DE/DX Counter Characteristics for Real Event Triggers.

Hardware Physics Quantities
Average Wavelength 4225, A° Photon Energy 2.948 ev
Conversion Efficiency 0.0272 Mev Number of Photons 9116.
Probable Energy Loss 0.9836 Mev Landau Dispersion 0.0593
Landau Length 0.0583 Mev Protons at Cathode 365.
Scintillator-Light Photoelectrons 77.

Pipe Efficiency 0.04

Photo Tube Dispersion 0.1192
Photo Tube Quantum

Efficiency 0.21 Total Dispersion 0.133
Amplification Factor 0.49x106
Number of Stages 10

Figure 7.3 shows the results of the calculation
along with the singles energy spectrum. Real events had
the discriminator set so that 10% of the singles are
counted. Integration under the doubles curve indicates

that 6% of the real events are lost at this setting.
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CHAPTER VIII

RESOLUTION AND AMBIGUITIES

8.1 Missing Mass

Early in the experimental data analysis it was
noticed that the confidence level for Teuta fit events was
shifted to be too high around 1 indicating x2 was too small
and the errors were too large. It was found that the con-
fidence level was flat after multiplying x2 by a factor of
7.2 which indicates that the errors are too large by a
factor of 2.68. Figure 8.la-d shows the confidence level
distributions of all events together, the PNm+, PP7°, and
A++ events after multiplying x? by 7.2. Since both fits
were one constraint fits, it was possible to multiply the
error matrix as a whole by a common factor since one con-
Straint fits have an error which can be written as a
function.of one variable only.

Figure 8.2a shows the 40471 neutron missing mass
fits using the CIRCE geometric fit and the track fit
information as provided by Teuta. A simple best selection

Criteria is made to determine the proper fit. Figure 8.2b

64
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shows the 9525 neutral pion missing mass fits obtained in

this experiment.

Figure 8.3a shows the error in missing mass squared
distribution for all 40471 PN7+ fits where the Circe error

matrix is made to be consistant with a flat confidence level

as in Figure 8.la-d. This error is calculated as described

in Appendix H. The pion-proton track ambiguity is resolved

using the Teuta confidence level criteria. Figure 8.3b
shows a Gaussian ideogram using these errors centered at

Mﬁ = 0.88 Gev®. The Gaussian ideogram width of 187 Mev
compares with the experimental neutron width of 197 Mev as

will be shown later.
Figure 8.4a shows the best Gaussian fit of the form

(M) = (Novm) exp[-(23e)" ] (8-1)

to the pion data with the mass constrained to be at the

Pion pass squared of an 0.019 Gevz. The error bars are

Statisgtical errors only. Figure 8.4b shows the best

Gaussgjan fit to the neutron data, shown by the error bars.
The £it results are summarized in Table 8.1. The widths

are@ the 1/e half widths.

8.2 Invariant Mass

The Breit-Wagner form used throughout this section

to analyse the experimental invariant mass distribution

is given by
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Table 8.1.--Results of Gaussian Fit to Missing Mass Plots.

Fit Type Variables M Fit-Gev I' Fit-Mev
Neutron M, T 0.908 199.
2
Neutron r xﬂq 186.
Pion M, T 0.0227 164.
Pion r M2 165.
L -3,
T (M) = (M-mN) T/ (8-2)

where "= ™M x(QRf lg-‘s)
L1+ (Qr)*])

Mo and Y are determined by fitting and R is the
A++ radius take as 4.0 Gev Y. Q is the momentum of the
proton in the A++ center of mass given by Q=R(MP,M1r,M) '
where M is the A++ mass, Mm is the pion mass, Mp is the pro-
ton mass and R is defined by equation (10-21). An estimate

of the S1/2 wave background was determined using bubble cham-

ber data in a wider mass range. The 3-body phase space is

Rsa d,P\o\g?t. 0\3?3 = J’___P_; Rta 8*3?3 1‘_2_ \B_q)

where R2 is the two body phase space term.

This gives

dRy _ b Ps')TL_Q (8-5)
J;fE; 3.5;3 Pq

where P3 is the A++ momentum in the over-all center of mass

and E3 is the center of mass energy. P, is given by
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P3=R(MN,M,E3), where MN is the neutron mass. The chain rule

gives

dRS - dRS ol3 (3"5)

——

™M dPy dMm .

This leads to the Lorentz invariant phase space given by

dRa :m"
- = LA S 2 ) -
dM E; ? (g-7)

A fit of the form or

(M) = o (M)+A (Phase Space)is
made to the bubble chamber data for 1.14 M<1.66 Gev and

t<.3 Gevz- The errors are assumed to be given by statistics
and a maximum likelyhood fit results in a xz/point of

1.08. The best fit parameters for the width Y, Mo and A

are given in Table 8.2.

Table 8.2--Bubble Chamber Background Estimates Fit Para-
meters.

=
"

1.245 Gev
Yy = 0.726 Gev

>
"

1.115 mb

The S wave contamination is estimated for the mass range

1.14<M<1.42 Gev as the following:

Fractional Contribution = £_§éphase Space) dM

S o (M)am

(8-8)
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This leads to a 4% non-delta background. The fit para-
meters Mo and Yy are not sensitive to the addition of the
phase space term. When the mass range is restricted to
M<1.42 Gev, the entire phase space term is too small to
give a meaningful fit. Figure 8.5 shows the bubble chamber
data along with the phase space curve, the Breit-Wigner
curve, and the sum of these. The data peak at 1.228 Gev

has a F.W.H.M, of 0.111 Gev as mentioned earlier. The

lower Breit-Wigner curve peaks at 1.228 Gev and has a
F.W.H.M. of 0.128 Gev. A simple Breit-Wigner fit to the
data without a phase space curve peaks at 1.226 Gev and its
F.W.H.M. is 0.129 Gev. The conclusion from this analysis
is that the 51/2 wave background has no appreciable effect
on the peak, width, or shape of the mass data.

The error in invariant mass can be calculated
similar to the missing mass. Appendix H contains the
details of the transformation AM(p,n+) = T(Ki, Aki, Ai’
Aki, ¢i' A¢i) where Ki' Ai, and ¢i are the curvature, dip
angle, and azimuth angles for the beam, proton and pion
tracks, and AKi, AAi and A¢i are the errors in these
quantities. The precise behavior of this error in relation
to M(p,n+) is important in order to predict the ideal mass
curve from the experimental one. Appendix F describes how
the experimental mass distribution and the calculated
errors were used to obtain the corrected mass and width of

the resonance curve. Figure 8.6 shows the Breit-Wigner fit
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Figure 8.5. Breit-Wigner plus phase space fit to bubble
chamber data.

a. Phase space curve.
b. Breit-Wigner curve.

c. Sum of phase space and Breit-Wigner curve
fit to date.
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Figure 8.6. Breit-Wigner fit to experimental mass
distributions.
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to the actual data. The uncorrected and corrected mass

parameters are given in Table 8.3.

Table 8.3.--Mass Parameters for A++ (1236) Resonance.

F.W.H.M.-Gev Peak Position-Gev
Experimental 0.133 + 0.006 1.226 + 0.004 Gev
Corrected 0.126 + 0.006 1.266 + 0.004

For cross section purposes, one can get from the

experimental fit

Kin. Lim.

Jd (M) dm 1.42 = 1,476 (8-9)

h@rhres.
g (M)aMm

1.14
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8.3 Momentum Transfer Squared Resolution

The momentum transfer squared resolution can be
infered from the Teuta output errors. Appendix H outlines
the method of obtaining the momentum transfer squared
error from the Teuta output errors. Figure 8.7a-b shows a
plot of the error in t versus t where t is the negative
momentum transfer squared. Figure 8.7a has t bins pro-
portional to the experimental t distribution. Figure 8.7b
has the.curve normalized so W(t,E) is constant, where
W(t,E) is the probability of finding an error E at momentum
transfer squared t. To a good approximation, one can say
the error is 2% except at small t. This small error has an
insignificant effect on the shape of the momentum transfer

sgquared distribution.

8.4 Ambiguities

In order to simulate the experimental ambiguity
Problem, Monte Carlo events were generated as discribed in
Appendix E and are given a Gaussian error spread about their
central tracked values equal to the original input Circe
Production errors. This choice for the error parameter
Produces a )(2 distribution for Monte Carlo events out of
Circe €gual to the experimental event )(2 distribution
centered at 0.6. If no error is applied, this Monte Carlo

2 ..
X distrjipution is centered at 0.1.
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The circe output events with the induced error were
processed by Teuta and the fit confidence levels were
examined. All input events were known to be Mark 4.
Because of the ambiguity resulting from simulated errors
in the spark position in the chambers, not all Teuta fits
are Mark 4 when a best confidence level selection rule is
applied. The Monte Carlo analysis yields 5424 Teuta
events with confidence level greater than 10-5, 4968
events with confidence level greater than 3% and 4296
events pass a standard deviation cut for Circe reconstruction
of 0.6. The drop from 5424 Teuta events to 4968 events after
a 3% confidence level cut represents an 8% lost. This is
believed to be due to the Monte Carlo accuracy and will not
be used to support the notion that an 8% confidence level
correction is to be applied.

Out of the 4296 original PNn+ events, there were
1977 A++ events if all were interpreted as Mark 4 fits.

If a best confidence level selection rule is applied, as
was done with the experimental data, only 1233 A++ events
are obtained. This loss of A++ events is due to miscalling
the Mark 4 fits as Mark 104 and Mark 2 fits. These results
are summarized in Table 8.4.

The 1233 A++ events from the 4 + 104 category
come from interpreting Mark 4 fits as 4 and Mark 104 fits
as 104. The 470 A++ events under the 104 category are how
many of the original 1977 A++ events with the correct 4

interpretation are in the 104 category. The 25% ambiguity
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Table 8.4--4296 Mark 4-Teuta Fit Breakdown.

Mark Number PNT+ A++
4 2485 1107

4 + 104 3552 1233

2 744 400

104 1067 470

level of this experiment will have an effect on both the
cross section and distributions of physical quantities.

The dominate process which can change distribution
shapes is the ambiguity between Mark number 4 and 104. The
shape changes occurring from ambiguities between Mark 4
Plus 104 and Mark 2 events were studied and found to be
minimal. The total ambiguity related shape changes on the
POle extrapolation results were shown to be less than the
Statistical error in the data. The effect of event
ambiguity on the Mpt+, t, eJac, ¢TY' proton momentum and
Pion momentum distributions is shown in Figure 8.8a-f.
Figure 8.8a shows the spark chamber data mass distribution
Wnsghaded and the simulated ambigious Monte Carlo distri-
bution shaded. Both distributions have a smaller A++ peak
Angd have more events at high mass as compared to the bubble
Chamber data shown in Figure E.l-a.

The A++ peak was shown to be entirely due to fast

Protons and slow pions in the forward hemisphere. The
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unmodified Monte Carlo and bubble chamber data predict a
two to one dominance of fast protons to slow protons for
the entire PN7+ sample. The pions are predicted to have
the opposite momentum distributions. The actual momentum
distributions from the ambigious data, shown unshaded in
Figure 8.8e-f, show a dominance of slow protons and fast
pions. The effect of the ambiguity is to swap protons and
pions. Since originally most protons were fast, they turn i
into fast pions after being miscalled. When a mass plot is

made, these one time fast proton-low mass events are now

fast pion-high mass events. If a low mass A++ cut is made,

these events are eliminated from the sample. As mentioned

earlier, this swapping of protons and pions has almost no

- effect on shapes of interest in the A++ region, but has a

large effect on the over-all cross section.

The shape correction will be defined as

Correction Factor - pr-oSiinalyeighted ot Erents
A++ Events

All original 1977 A++ events, plus the 104 new A++ events
from the Mark 4+Mark 104 swapping, were weighted for
acceptance to make sure that if the swapping has any strong
kinematic dependence, these could be incorporated into the
final correction factor. No strong dependence was found.
The average weight factor for the 2081 events is found to

be 2.38 giving 4748.9 weighted events. If a A++ cut is
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applied using the Teuta confidence level criteria one gets

2924.8 A++ events. The mass, t, and eJa and ¢TY plots are

c
divided into 10 bins and the ratio of original A++ to be
fitted A++ is calculated for the 10 bins. The errors are
assumed to be statistical only and a four-parameter fit is
made to the ratios. Figure 8.9a-d shows the uncorrected

and corrected mass, t, © and ¢TY distributions normalized

Jac
to have equal areas.

The correction factor for the cross section is the
ratio of actual A++ in the Monte Carlo sample divided by
the number of A++ as determined by the experimental data
analysis. The Monte Carlo events are known to have 1977
A++ in the initial sample of PNm+ because the correct name
of all these tracks is known from the generation process.
The events are made to simulate the actual spark chamber
events and are processed in the same manner, and one ends
up with only 1233 A++ events. The correction factor is
then 1977/1233.

The correction factor above considers only event
losses resulting from Mark 4 events being misinterpreted as
Mark 104 or Mark 2 events. Monte Carlo studies were made
using Mark 104 and Mark 2 events and the fractional event
misinterpretation due to the ambiguity was shown to be
symmetric for all fit types. This means for example that
the fraction of Mark 4 miscalled as Mark 104 is equal to

the fraction of Mark 104 miscalled as Mark 4. The cross
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Figure 8.9. Distributions are plotted without ambiguity
correct efficiency (unshaded) and after
(shaded) the normalized correction is applied.
Figures 8.9a-d are the Mpm, t, © and ¢
respectively. Jagc TY



95

Za¥ (A39) 0330N0S JIISNHAL WNLNIWOW

0

1
LHOI3AM duMS AL1INDIBWY

(9)

00S

000t

00St

000¢

00SC

000€

00SE

000h

SIN3A3 40 J38WNN

0334N0S (Id‘d)SSHW
mm.ﬂ

I

1HII3M dUMS ALINITEWY

(P)

[

00h

008

0oct

0081

000¢

00he

008¢c

00cE

SIN3A3 3§00 J38WNN



96

31ONY 1d330 ONHA NUWI3A)

I

1

1HOT3M dYMS L1INJII8WY

(P)

0s¢

00S

0S¢

0001

0Sset

00S1

0SLl

000¢

SIN3A3 4O J38WNN

3TONY NOSNIUM 3INISOI

_”l

1HOI3M duMS A1INOT8WY

(2)

00€

008

006

0oci

00st

oosl

00t¢

00he

SIN3A3 40 J38WNN



97

section correction factor for Mark 2 miscalled as Mark 4 or
Mark 104 in the A++ region is 0.934. This will be discussed

morxe in Chapter IX.




CHAPTER IX

CROSS SECTION AND NORMALIZATION

The corrections from Chapters V-VIII can be
tabulated to give a cross section for the final sample.
The A++ cross section normalization factors are given in
Table 9.1.

Some of the errors derived above are purely sta-
tistical. Others have other factors folded in. The pion
decay error, for example, combines the 2% decay error with
a 16% Teuta fitting error. The strong interaction error
includes the error due to the posibility that for heavy
nuclei, all elastic scatters may not be lost in the
Production programs and includes also an average error in
the experimental cross section.

The ambiguity over-correct correction is the best
estimate of how many events are corrected twice, once due
to one of the first four items on the list and again in the
ambiguj ty weight correction.

The two zero acceptance corrections are due to the

lower acceptance for high mass. In the pole extrapolation,

98



Table 9.1.--A++ Cross Section Factors.

Correction Factor
Strong Scattering Proton 1.0377 + 0.0018
Strong Scattering Pion 1.0322 + 0.0017
Coulomb Scattering 1.03 + 0.0012
Pion Decay 1.0275 + 0.005
DE/DX Efficiency 1.06 + 0.005
Spark Chamber Efficiency 1,093
Forwards Backwards Symmetry 2.0
Confidence Level Cut 1.03 + 0.005
Acceptance = 0 M<1l,36 Gev 1.11 + 0.007
Acceptance = 0 M<1l.42 Gev 1.14 + 0.007
Circe Standard Deviation Cut 1.29
Ambiguity Weight 1.62 + 0.032
PPT° Correction 0.934 + 0.01
Ambiguity Overcorrect 0.96 + 0.005
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the data are cut at Mpn+<1l.36 Gev and the zero acceptance
correction for this data is 1.11. For the A++ cross
section, the mass cut is Mpn+<1.,42 Gev and so the larger
1.14 zero acceptance weight is used here. The Circe
standard deviation weight comes from the ratio given by

R = — Total Teuta Fits (9-1)
Teuta with Stan. Dev. <0.6

This cut was applied to the total 49996 good Teuta fits and
reduced it to 38738 as mentioned in Chapter III. The Mark 2
correction is obtained to account for the fraction of
PN+ events in the A++ region which fit as PPm°., A
pProgram using PP+PP7° data at 6.6 Gev/c36 similar to the
PNw+ Monte Carlo program was written to generate fake PP7°
events. Errors were induced in these events and it was
found that the loss ratio for PPm° is the same as PNT+.
This fact can be used to estimate the PN7+ events gained
from PPn° which tend to decrease the effect of events going
the other way. This requires a knowledge of the acceptance
of PNm+ and PPm° events by our apparatus and the cross
sections at P = 6 Gev/c. Table 9.2 list the acceptance for
PNT+ and ppw° as determined by comparing the actual bubble
chamber gata orbited through the magnet and the Monte Carlo
fake events generated at Pp = 6 Gev/c for each event class.
Also listed are the interpolated cross sections.>

Because of the simulated event ambiguity using

Monte Cax1o events, 400 events out of 1977 good PNm+ are
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Table 9.2.--Acceptance for PNn+ and PPn°.

PNm+ PPm°
Acceptance 0.0898 + .006 0.047 + .005
Cross Section
at 6 Gev/c 6.86 mb 2.8 mb

lost to PPn°. Combining this with the data in Table 9.2,
one calculates that 88 PP1° events should swap back
decreasing the swapping correction by 0.934.
The combination of all factors in Table 9.1 is
5.83. As listed in Chapter III, this experiment yields
12001 A++ events at a mb/event of 0.01113. This combined
Wi th the average geometry weight of 2.35 + .11 gives the
A++ cross section of 1.83 + 0.1 mb for t<0.3 Gev? and 1.14<
M<1,.42 Gev. Equation 8-9 gives the ratio of the Breit-
wigner fit events to the mass cut events as 1.476. This
leads to o(A++) = 2.702 ¥ 0.15 mb (9-2). This cross
Se ction can be seen plotted along with near by values” in
F3i gure 9.1.
The total PP»PN7+ cross section is presented here
Only for completeness. The error is large because the
©Xperiment has no way of determining the acceptance for the
©ntire class of PN+ events. An attempt was made to get
the acceptance by orbiting the bubble chamgér events
through the apparatus.22 Also Monte Carlo studies have

been made to determine the acceptance at 6.0 Gev/c. The
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Figure 9.1. A++ cross section at 6 Gev/c plotted with near
by values.
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PN7+ acceptance is given in Table 9.2. Other correction
factors that apply are identical to those in Table 9.1.

The changes are listed in Table 9.3.

Table 9.3--PNn+ Cross Section Factors.

Correction Factor
Swap Weight 1.209 + 0.024
Mark 2 Correction 0.956 + 0.01

There are 31908 PN+ after a Circe standard
dewviation cut of 0.6 and 41180 after the correction factor

of 1.2906 is applied. This gives
9pNT+ = 7.58 + 0.7 mb (9-3)

This cross section is plotted in Figure 9.2 along with near

by wvalues.’ The line is a fit to the data of the form o =

22

a(lplabl)b. The fit values previously known with a =

45.9 and b = -1.06 are used.
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Figure 9.2. PNm+ cross section. This experiment at 6 Gev/c
along with other values.
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CHAPTER X

ONE PION EXCHANGE

10.1 Kinematics

In 1959 G. F. Chew and F. E. Lowl presented a scheme
for analyzing experiments so that elementary cross sections
of constituents of complex targets can be obtained. They
argue that residues of poles known to exist in field theory
are related to measurable quantities in physical regions of
scattering and the value of the residues can be found by
extrapolating off-shell scattering data into the unphysical
region to the pole. The diagram considered here is shown

in Figure 10.1.

P 0 " s
. N g

[ ]

T

{ ]
p b . 3N

Figure 10.1. One pion exchange (OPE) diagram for PP-+Pm+N.
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The cross section 0 is the transition probability
per unit flux of incident particles where the flux is the
product of the particle densities, 4EaEb, and the relative

velocity v. One can write37

- T

.é_._?°‘ = (aml \ ) s o g g )
A'l;..l’?,a’ z YEL E v (-T)7 3 [ AT A A A zala—‘:-\h—‘.’ (10-1)

If the initial state is denoted by |a>=|a,b> and
the final state is denoted by |B8> = |1, 2, 3> then |M]| is

) 2|<B|T|a>l2. In this calculation one needs to write the
a B
2

cross section in terms of M12' eJac, ¢TY' S and t where
2 _ u u, 2 - y u, 2 - uo_ U, 2
eJac and ¢TY are defined in Appendix C.

In this chapter, the four-vector P" of a particle
is related to its three-vector B and energy E by p¥ =
(E,iﬁ). One can define K" = Plu + qu and note Mlg

2 _ > .
and also E_E Vv = MblPal. One can multiply the

KYk"= K

integral of equation (10-1) times 1, where
1= W M A M 4 S 2 2 2
O (FTeR oK) ATK ALK M) A, Gio-a)

and substitute K" = Plu + qu to get

' S‘A’ﬂ A £

=3 M M
AR TNEATE A€,2€, 1€y (x®eh-R5-R) -

W)

Clle™ v - k) d'k IR SUML) AN, (10-3)
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One can define Ko by KM = (Ko,iﬁ) which implies K2 = K 2 _

o
22 .
K”. One can write

Sk\\z"M:‘_) = S [(\kof,l KM )\Ko =V K"ﬂn.)] “o‘q)

oo

Also remembering 4>dx § (ax) = 1/a, one obtains after

integrating over Ko

P =4 4
e (LRAREE (WL e s o
do = 1N, \?‘\\n‘)s S 18, 2E, 2€3 S (x* Py - -F )o

W SR k) R aMn /(2 Teme)  Lio-s)

where Ko = Mlg + ﬁz is implicitely implied in the two

remaining § functions in this expression.
It is useful to consider now only the two body

phase space term

3%, 437 W |
i\ze‘ 151 5%t k) o)
\ 2

contained in equation (10-5).
The integral over d3P2 can easily be done, and the

remaining integral can be done by recalling

39) o dx = Fuxe)/ 9' (1) L0-)

where g(xo) = 0.

Equation 10-6 can now be integrated to give
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Qdna
q M (1o-¢)

where Q refers to the proton momentum in the A++ center of

mass. Equation (10-5) now becomes

32 3
do - _ ) d Kd fa'! O) j
4 ML IRL Caw)™ S 9 (KSR“p-p, )|~\1 am', %r\—ﬁ' Buo 1)
where 4 15 has been replaced by E,. The remaining

variables of integration in equation (10-9) can be evalu-
ated in the over-all center of mass. One can concentrate

on the two body phase space integral

83“3

s 3 k\« N A —PA) (10-10)

This integral has exactly the same form as equation (10-6)
except it is missing a factor of ZEA in the denominator.

Equation (10-10) can be integrated to give

10-11)
s ‘

where P is lg + 2| or |P3| in the over-all center of mass

->
P
> 2 2
and EA is Jﬁﬁ + P2 + M12‘

Combining equation (10-9) and (10-11) gives

- d P AR (o=
4o = ST’ M2 dqdn, SJ—‘ \M (0-12)
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One can expand t in the center of mass as given earlier in

this chapter as

t"\"\:*“'\\zz. ~2LELEL * 2|P\|Pal cos & (10 -13)

and it follows that

d= (1o —=14)
)-\Pa\ icos -

One can write37

P = My l|Pal
v S

(1o—15)

Combining equations (10-12), (10-14), and (10-15),

and integrating (10-12) over all angles but cos 6 gives

do | Wl
dModt 128 (my p) (2 T)°

(1o— 1)

10.2 Vertex Contributions Without
~ Form Factors

If one considers for the moment the particles in
Figure 10.1 to have no spins, the invariant amplitude f§|2
will be a function of five independent energies37 sij =
(Pi + Pj)2 (i, 3y =1, 2, 3, 4, 5). When 1 and 2 are known
to produce a resonance, one can assume a plausable form

for T as
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G . (
"M;.;_ 'l'.\\v\n_ \0 \'])

T‘—' To ‘\‘Tksq\'a’ th,M;\q) S1a

TO describes the background term which when integrated by
itself becomes the phase space term for the reaction. The
term is neglected here because in Chapter 8.2 the phase
space was observed to be 4%. The Breit-Wigner term and the
coupling constant G in equation (10-17) will be replaced by
the on-shell cross section.

When spins are taken into consideration, one gets
additional t dependence. The amplitude for pseudo-scalar

exchange for a spin 1/2 to spin 3/2 baryon is

ulu(?\ﬂ G’pnl_\. N M)“\P..) (10-18)

where v is a vector required for the expression to be

Lorent z invariant. One can let v = Pa and one can write

the gpin 3/2 vector ﬁklz (Plz) as3'8

M‘i(?n) L£ C‘l ()

A 0
B LR ¥y ¢t Pw) +J% “‘t Aa) B4 ¢ (Pn)
AL N ) X (10-14)
o -1
(CTRICRE AN CREY P R A

ap

- -\
A 1911) “ t“ &?ﬂ-)
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*
where € )‘(Plz) is the spin 1 spinor and u>‘ (Plz) is the
spin 1/2 spinor.

The vertex factor can be averaged over initial

spins and summed over final spins to give]‘1

G-APT\ Qﬁtk\/(mﬂ*mn&‘.t \\0‘20)

APT1m is the coupling constant for the p-n-A vertex and is
related to the on-shell cross section o(M). Qt is the off-
sShell pion and proton momentum in the A++ center of mass.

One can define the function R(Ml' Mz, M) as

- _ 2 2 O\
R(M, M, M) = JU™ (MM, TM*-tme-m] /am
(1o-21)
R(Ml’ M,, M) is the momentum of the two particles of mass
Ml and Mz in their center of mass with a center of mass

energy of M. Q, in equation (10-20) can be written as

t

Qg = P\(Ma,'\‘.,?’\\;) (10-22)

In order to incorporate the resonance part of the
transition matrix properly, it is necessary to relate the
Off-gshell scattering to the on-shell scattering. Following

39 one can calculate the ratio of off-shell cross

Jackson
Section to the on-shell cross section with a real pion in

the cross channel. This leads to a form factor



114

c_X_g:_ - Q: &MG*M\‘L)‘L -t -\
A% Q- L (Ma+rm)-A" ]

(to-23)

Q is defined using equation (10-22) as
Q=R (Mo, ™, M) Gio-24)

Notice that as t+u2, the ratio is unity, but in the physical
sScattering region, the ratio is greater than unity and
increases with increasing t.

The lower vertex of the amplitude in Figure 10.1
can be calculated using Feyman rules neglecting for now the
form factors. The helicity amplitudes associated with the

lower vertex can be calculated from

T -> (Sa\ h = T

PoNT > 53))33 naMa;k?,)‘&sM;.,Lm (10 -25)
One can write the helicity amplitudes explicitely in the
center of mass for scattering along the x axis in the x-z

Plane. Equation (10-25) can be reduced to Tp~*Nm = G'pl\ﬂ‘

N

\/(M-b-M3)2-t. Neglecting the proton-neutron mass difference

divesg

Toawn = G’NnJ\t\ (10-26)
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Gzp"N/4n is taken for the charged pion coupling as 29.2

One can combine the phase space factors, lower

vertex factors and upper vertex factors along with the

2, 40, 41

appropriate normalizations. to give

d'o - QMn. (’jL lel 2 Tin,) g (Ma»\,_t‘t

aﬁhlvhl a“ﬂﬂbP* i ttﬁu) Q (M@ﬂhdFM.(m;xD

Considering the 1-2 or proton-pion system to be the
A++ resonance, Q is the on-shell momentum of the pion in
the A++ rest frame and Qt is the momentum when the pion is
off-shell. Mb and Ma are the proton mass and Pa is the 1lab
momentum of the beam. T is the momentum transfer square
for the target-neutron system and O(Mlz) is the on-shell
cross section for m+-P elastic scattering. The expression
before the curly brackets is the Chew-Low1 pole expression
and the curly brackets come from the spin sum of the A++

production vertex.

10.3 Durr-Pilkuhn Corrections

Durr and Pilkuhnlz utilized a technique well known

to Nuclear Physics42 to arrive at a vertex correction which
takes into account the lack of the angular momentum barrier
for r<Ro, where r is the distance of the pion to the baryon
and R° is the interactive radius of the baryon. One can
substitute for r<Ro a complex radial symmetric potential.
One can obtain the transmission coefficient as the ratio of

incident intensity to reflected intensity by equating the



116

first derivatives of the inside and outside solution of the
nonrelativistic radial Schrodinger equation at r = R. The

transmission coefficient is

SL. kL - &‘0"20)

t, (x) =
- K3\_'5‘1.)7.*'&‘5‘\."’h\.)?.

where AL and S. are the real and imaginary parts of the

L
logarithmic derivative of the outgoing spherical wave and
9 and hL are the real and imaginary parts of the logarith-
mic derivative of the total radial wave in the outside

region. The usual penetration factor can be given as

vL = SL(KR)/kR. (10-29)

The reaction cross section can be written as

o_x,t. = ‘%‘TQ:&U\) toeix) ., (o-30)

If the energy is not high we have k<<K; then the derivatives
from the total radial solution are proportional to KR which
is larger than the kR from the outgoing wave derivative and

results in
tL(x) = KR = k/K VL‘ (10-31)

One can see that the penetration factor is proportional to
the reaction cross section for a given K and k. The

penetration factor for L = 1 is Vl(x) = I—:—;7 .
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The form factors used by Durr and Pilkuhn for

L =1 are

[ \+ R*Q"
F\t) = K L+ R Qe (w-32)

The parameters R, Q, and Qt have the same meaning for

both the PnA++ and the PnN vertex. R is the radius of

the A++ or nucleon. Q. is the momentum of a pion of mass
square t in the A++ or neutron center of mass and Q is the
same quantity taken on-shell. The expression for Qt and

Q were taken for the A++ vertex in equation (10-22) and
(10-24) in terms of equation (10-21). If one is considering
the P1N vertex then the values for the on-shell momentum are
q = R(Mb,u,M3), where Mb is the proton mass, u is the pion
mass, M3 is the neutron mass and R is defined by equation

(10-21). q2 in this case is negative. One also gets

q, = R(Mb' t, M3). The radius are taken from WOlf3 as

RN 1 1

2.66 Gev — and Ry, = 4.0 Gev ~.

10.4 Benecke and Durr Corrections
13

In 1967 Benecke and Durr~~ (B.D.) derived form
factors which can be used for a resonance vertex to account
for finite extension of the strong interacting matter.
Consider the upper vertex of Figure 10.1 where the reaction
T off + P*m on + P occurs. Figure 10.2 illustrates the

exchange graph considered by Benecke and Durr.
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[ ]
Figure 10.2. Exchange graph of scalar particle with mass X.

One can write the jth partial wave projection of

the Bethe-Salpeter equation with the above form as gj =
gjo + Agj Kj, where gjo is the Born term and Kj is the jt

partial wave projection of the propagator for the loop

h

integral indicated by the arrow in Figure 10.2 One can see
the a schematic solution43 of the equation is gj = gjo/(l-
AKj) where if one considers this as describing a resonance
propagating in the S-channel then the vertex coupling is
that of the Born approximation type and the denominator can
be made to look like (sz - i Mj Fj - 9).

In practice the form factors arise by obtaining
the imaginary part of the denominator of the approximated
solution. The penetration factor can be identified by
comparison of this width term to the non-relativistic width
to give vj(x) = l/2x2 Qj(l + 1/2x2), where Qj are the
Legendre functions of the second kind. For a p-wave

resonance, one obtains
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| %1:11 2 -
Vi) = 30| ax® I (47 +1) q (10-33)

It will be noted that these penetration factors go to 0 as
x+® unlike the Durr Pilkuhn penetration factors which
approach 1 as x+*», Also the form above will give a complex
number when the argument of the log becomes negative. This
does occur for non-resonance decays like P-»m + N when the
pion is considered on-shell.

One can write the Benecke Durr form factors for

the A++ vertex as

- Vi (ReRp) -
Fan t® Vi3 Re) (10-34)

where Qt and Q are the off and on-shell pion momentums in
the A++ center of mass given by equations (10-22) and
(10-24) and the Ry is obtained from Wolf to be RA =

2.2 Gev 1.3

10.5 CQErectgg Cross Section and
Pole Extrapolation

The double differential cross section was written
(equation 10-27) in the Born approximation in the absence
of form factors as

* a2 L 3 . T
e = TR ey YoM G el

a0 % _\qon
aM,, at T AW MEPE AT j2sn)
(10 -35)
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gz(t) is an addition form factor fitted to the data. One
obtains for g(t) = (C - uz) / (C - t) a value for C of
2.3 Gevz.3 The Ml2 above is the mass of the resonance in
Gev and °(M12) is the on-shell mass value at M12'

The Durr-Pilkuhn model modifies the vertex factors

to give

LIRP X
N R{‘ Q"z (10 -36)
|+ Ry D

and

z z \i-‘\b(l
QQ_*.‘.O'M "’&%- — = 2 (to-317
(Q () Q | + Rg Q% )
The Benecke Durr cross section can be obtained for

the resonance vertex by the following substitution:

T <
Qe aim) = of B) Vl8Re -
(3 ' () VaeRa) 0738

where

1)( +\
Vi (x) = 2 Im (4xt+) -\‘l (10-39)

The pole extrapolation can be illustrated by using
the pole equation and the various off-shell effects are
substituted as described above. At the pole, the cross

. 4
section becomes
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1
de . ! Cpun L¥)
dMdt A M: P: ytt (e-ad

2 Ml Q TM,;) (10-Yo)

and one can write for the quantity "to"

a k3 )2
« o = N/s ph (G Pc\ “‘“&*-_M ) (\D""”)
famdr M) a Goyq

To evaluate "to" one can divide the experimental off-shell
scattering data into bins of mass and t. N is the number of
events in a particular bin and S is the ub/events in the
experiment; s = 0.00001113 mb/event as given in Chapter III.
The expression fdMdt is taken over the portion of
the M - t bin experimentally accessible after kinematical
restrictions like tmin effects are considered. The average
of the factors on the right hand side of equation (10-41)
are used to represent "to" at the average t and M point of
the interval. The extrapolation form factors can be
incorporated into the above expression to give a smoother
off-shell dependence for the data. Various extrapolation
polynomials are used for the Chew-Low formula given above
or with the Durr Pilkuhn and Benecke Dirr corrections.
Figures 10.3a-f shows the "to" points and fitted curve for
polynomials of the type at and at + bt2 for the Chew-Low,
Dirr Pilkuhn and Benecke Durr off-shell correction factors.

Table 10.1 shows a summary of the x2 for these fits and

also for fits of the type at + bt2 + Ct3. The column marked

Fac is a multiplication factor used to scale all experimental
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Table 10.1l.--Chi-Square and Multiplier for at, at + bt2 and at + bt2 +
cT3 fits.

Fit Type 1 2 3 4 5 6 7 8 Fac X

DP - AT 10. 12, 26. 10. 9. 12. 25. 31. .98 60.
BD - AT 9. 8. l6. 5. 16. 21. 42. 45. 1.07 57.
CL - AT 83. 114. 189. 160. 89. 68. 65. 4l. .68 241.

DP - AT + 8. 8. 15. 5. 8. 9. 15. 17. .999 15,
BT?

BD - AT + 8. 8. 15. 5. 8. 9. 15. 16. 1.002 13.
BT?2

CL - AT + 7. 7. 13. 7. 8. 6. 14. 15. .998 129.6
BT2

DP - AT + 2. 7. 14, 5. 8. 3. 15, 1l4. .95 25.
BT2 + cT3

BD - AT + 2. 7. 14. S. 8. 3. 15. 14. .96 23.4
BT2 + CT3

CL - AT + 3. 6. 12. 6. 8. 3. 1l4. 14. .99 58.4
BT2 + CT3
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points equally. Because of the uncertainty on the total
cross section it was felt that a shape comparison using a
scale factor to minimize the xz between the extrapolated
on-shell cross section and experimental on-shell cross
section would be most revealing. The factor listed is the
ratio of the actual scale factor to the known experimental
correction factor given in Chapter IX. If this number
deviates from 1 by no more than the 6% cross section error,
the fit results should be regarded as valid as they stand.
Only two sets of extrapolation curves have factors outside
this 6% error; the B.D. -at and the C.L. -at fits. This
would indicate that the linear extrapolation is not good
even for the Benecke Durr model. This table indicates that
the D.P. -at + bt2 and the B.D. -at + bt2 fit types are the
best. Not only are their multiplicative scale factors
almost one, but their x2 are smallest for the extrapolated
on-shell cross section values. Figure 10.4a-f shows the
extrapolated on-shell values obtained from extending the

fitted curves to t = u2 plotted as error bars. The curve

7

is the on-shell data. Again one can see the excellent

agreement between the B.D. at + bt2 and D.P. at + bt2

extrapolation results and the on-shell cross section.
One can use the models to predict the off-shell

scattering when the on-shell results are known. Figure

10.5a-d show the Durr Pilkuhn curves (solid lines) with the

off-shell data (error bars). The four distributions a-d
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are the mass of the P-1+ system, the momentum transfer

squared and the A++ decay angles eJa and ¢TY respectively.

Cc

The experimental mass and t curves are reproduced
fairly well by the off-shell t dependence given by the
Durr-Pilkuhn form factor model. The Durr Pilkuhn OPE
curves shown in Figures 10.5c-d do not follow the data
points. Form factor models which modify the individual

helicity amplitudes and density matrix elements can also be

44-46

used to predict the decay angular distributions. The

47 for example, gives predictions which

46

absorbtion model,
are in good agreement with experiment.
The three polynomial extrapolations terms used
above all require explicitely that the "to" curve is zero
at t = 0. Several schemes have been proposed to account for
the possible deviation of the O0.P.E. differential cross
section from 0 at t = 0. It has been proposed that48
conspiracy could occur between the pion Regge pole and an
opposite parity pole. The idea is that in reactions
between particles with spins, kinematic constraints require
certain helicity amplitudes to vanish at t = 0. For a
single Regge pole in that t channel, these constraints
force some amplitudes to vanish when they are factorized.
Conspiracy is when a set of Regge poles conspire to satisfy
the constraints collectively instead of each being zero.

Conspiracy can give effects similar to damping corrections

in absorption models.



Figure 10.4.
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Chew Low extrapolated on-shell mass
cross section and on-shell data.

Durr Pilkuhn extrapolated and on-shell
mass data.

Benecke Durr extrapolated and on-
shell mass data.
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Figure 10.5.
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do/dM experiment and Dirr Pilkuhn
prediction.

do/dt experiment and Durr Pilkuhn
prediction.

do/dcos® experiment and Durr Pilkuhn
. .Jac
prediction.

do/d¢,,., experiment and Durr Pilkuhn
prediction.
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It is found useful to eliminate the t in the
numerator which arises naturally in the limit t+u2 in the
Double-Regge-Pole model (D.R.P.).49 The diagram is shown

in Figure 10.6. One can define S = (P, + P,)” and

P Tt N

R/QP | av\Dz
P P

Figure 10.6. Double-Regge-Pole Model.

S pnt+ = (q1 + g )2. The application of the D.R.P. model
assumes an explicate 3 body final state so quasi-two-body
states should be removed. It is necessary to have JSpn+'=

M(P7+)>2.0 Gev. One obtains good results by allowing

2 49

t>u®. Even if one extends the analysis to low M(P'n+),22

one can still get reasonable fits using appropriate modifi-
cations of the t factor from O.P.E. Reggeized pion exchange

give good results to decay curves for the P-m+ when the t

factor is modified as described above.44

The modifications necessary to have do/dt not pass

through 0 at t = 0 arise naturally from an absorption

mode1.45' 46

Out.47 This model considers several spin states and applies

A general absorption model has been worked

absorbtive corrections on the angular momentum decomposi-
tion of the individual Born term helicity amplitudes in

the standard S-channel helicity frame.
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The absorption can be represented for the helicity

flip term as

-k absorbtion o~ M’
2
+- MR 1 -MTR
and the non-flip term is

3. 1n\ Yaln)

(‘k) . absoLtigg___) .&:i)_’___— CLS,'!;) where
t-Mq My

n is the net helicity flip. This model provides a good

A (5,4)+ B {S‘{)

approximation to the decay distribution of the A++ in

46

PP+NA++. A simpler absorption model has been used to

extrapolate in t and obtain the on-shell n-m density matrix

elements.a' 50

The absorption corrections can be used to
account for the descrepancy between the data and O.P.E.
model curves.

As mentioned above, many models can account for
do/dt # 0 at t = 0. The absorption model predictions agree

fairly well with experiments at lower energies.51

Figure
10.7a-c shows the extrapolation curves for "to" for the
Chew Low, Durr Pilkuhn, and Benecke Durr models with a fit
parameterization of the a + bt + ct2 type.

The + sign in the lower left hand corner indicates
the position of the origin (t,"to") = (0,0). The results
of these fits are summarized in Table 10.2 along with
results from a linear fit. It is clear that the linear
fits not constrained to pass through the origin do not

reproduce the on-shell values with a good x2. Also the
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scale factors are not in good agreement with 1, with the
exception of the Durr Pilkuhn model. The Chew-Low model

requires the data to be scaled up by a factor of 4,

Table 10.2.--Chi-Square and Multiplier for A + BT and A + BT + CT2

Fits.
Fit Type 1 2 3 4 5 6 7 8 Fac x2
DP - A + BT 5. 11l. 21. 9. 9. 5. 14. 23. .96 57.
BD - A + BT 7. 8. 1leo. 5. 14. 5. 19. 31. 1.18 67.

CL - A+ BT 30. 64. 88. 74. 33. 42, 41. 25. .26 20.

DP-A+BT 5. 8. 15. 4. 7. 4. 13. 17. 1.034 10.5
+ CT2

BD-A+BT 5. 8. 16. 4. 7. 4. 13. 16. 1.03 10.8
+ CT2

CL - A + BT 5. 7. 12. 7. 6. 3. 14. 15. 1.005 13.6
+ CT2

In all three models if one allows the parabolic fit
for the extrapolation, a good x2 is achieved and the scale
factors are consistant with one within the limits of the
cross section error.

Figure 10.8a-c shows the extrapolated on-shell
cross sections as error bars using quadratic extrapolation
curves not constrained to pass through the origin. The
error bars are larger than those shown in Figure 10.4
because both ends of the extrapolation curve are free to
move. The smaller errors in Figure 10.4 are obtained

because the fit curve was constrained to pivot around the



Figure 10.8.

a.
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C.L. extrapolated cross section at t =
Mm2 and on-shell curve for a + bt + ct2
extrapolation curve.

D.P. extrapolated cross section using same
criteria as above.

B.D. extrapolated cross section using same
criteria as above.
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origin. The freedom of the extrapolated value was severaly
restricted because the origin is close to the pion mass
squared. The solid curve is the experimental on-shell cross
section. Figure 10.9a-c is the extrapolation cross sections
evaluated at t = 0 for the three models. The O.P.E. with
form factors would predict zero because the spin amplitude
must go to zero in the forward direction. The quadratic

fit extrapolated to t = 0 gives a cross section that is

free from increasing or decreasing trends and is in general
consistant with zero. However, even the absorption model
predicts this cross section to differ only slightly from

zero at these energies.51
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Figure 10.9. a. C.L. extrapolated cross section at t = 0

: for a + bt + ct2 extrapolation curve.
The straight line at o(t = 0) = 0 is the
unmodified O.P.E. prediction.

b. D.P. extrapolated cross section at t = 0
using same criteria as above.
c. B.D. extrapolated cross section at t = 0

using same criteria as above.
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CHAPTER XI

SUMMARY AND CONCLUSIONS

This thesis reports on the analysis of one pion
production reactions resulting from proton-proton scattering
at 6.0 Gev/c. The final data sample includes 40,000 events
with the PNn+ final state and 10,000 events with the PPmn°
final state. The PNn+ sample includes 14,000 events having
the A++1236(3,3) resonance-neutron final state. This
resonance is defined by restricting 1.14<MP“+<1.42 Gev and
simultaneously demanding that the target proton-neutron
momentum transfer be less than 0.3 Gevz.

The PNn+ sample has a neutron width of 186 Mev and
the PP7° has a pion width of 165 Mev. The mass resolution
for the Pn+ is 5 Mev in the peak and the momentum trans-
fer per cent resolution is 2%, except at small t. The
cross section for PP»PNn+ at 6 Gev/c is estimated to be
o (PNw+) = 7.58+0.7 mb.

The 14,000 A++ events were corrected for their
limited acceptance in the spectrometer. A Monte Carlo

program was written to correct for hardware-induced

160
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scattering and various hardware efficiency losses. The
A++ sample has a corrected F.W.H.M. of 126 + 4 Mev. The
cross section for PP+A++N is obtained using a Breit-Wigner
fit to the mass distribution and gives o (PP*A++N) =
2.702 + 0.15 mb.

The one pion exchange model was used to interpret
the final data with the A++ neutron final state. The

exchange diagram for this process is shown in Figure 1l1l.1.

D I\ P
Ui
P N

Figure 11.1. One pion exchange diagram for PP*A++N,

The upper vertex in the figure was interpreted in this
experiment as m-P elastic scattering, where initially the
pion is off its mass shell, or virtual, and is a real pion
after the resonance decays. A pole extrapolation was
carried out for different mass bins using the scattering

data. The quantity to (M) was calculated using

on-shell
off-shell negative t value bins of the data, and the data
points thus obtained were fit and extrapolated as a
function of t to the positive unphysical t region. The
extrapolated value at the pion mass squared was compared to
the known on-shell cross sections.-7
At é fixed mass, the actual scattering data are

complicated as a function of t. The extrapolation of t to
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positive values can be done reliable only if the data are
normalized using the expected pole cross section and off-
shell corrections. The pole term contains vertex factors
from the upper and lower vertex in Figure 11.1 and a
contribution from the pion propagator. The off-shell
corrections are due to spin effects of the A++(3,3)
resonance formation and dynamical form factors which result
from the finite spacial extension of the particles involved
in this process.

Three models are compared in this thesis. The
Chew-Low (C.L.) model1 is an unmodified one pion exchange

model without form factors. The Durr-Pilkuhn (D.P.) mode112

and the Benecke-Dirr (B.D.) model13

introduce dynamical
form factors which consider the nucleon and A++ as having a
finite extension in space. The form factors damp out high
t or low partial waves in the cross section. The diffici-
ences of each model can be readily seen from the linear bt
fits to the calculted "to" values presented in Chapter X.
If the theory had the correct off-shell t dependence, the
"to" points calculated using the off-shell data normalized
by the theoretically calculated values should be a straight
line with the slope parameter b = oON(M). The Chew-Low
"to" points are seen to be fit poorly by a linear curve.

As is well known, the calculated cross section is too high

at higher t values. The Durr-Pilkuhn and Benecke-Durr

normalized points are nearly linear, but some deviation from
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linearity is evident at high t. The linear plots indicate
that the calculated cross section is under damped at high t
below the mass peak and over damped at high t above the
mass peak.

The pole extrapolation values of the on-shell
cross section as a function of mass is presented for
linear, quadratic and cubic curves fit to the normalized
off-shell data points. The non-linear fits are used to
obtain good fits throughout the t range and are used
because none of the three models assumed here fit the data
exactly, as was shown above. The quadratic curve fits to
data normalized by the Durr-Pilkuhn or Benecke-Diirr model
have been extrapolated to the pion pole and the cross
section results are in good agreement with the experimental
on-shell values. No normalization factors are necessary to
obtain this good agreement.

The one pion exchange model demands that the cross
section as a function of t pass through 0 at t = 0. This
is because the pseudo-scalar pion exchange vertex contri-
bution from the lower vertex in Figure 11l.1 is non-zero
only for the spin flip amplitude. This spin flip amplitude

goes to 0 at t = 0. Regge pole models with conspiracy48

or absorption models45

do not require the cross section to
be zero at t = 0.
The scattering data has been extrapolated to t = 0

in this analysis. Again, the normalization factors are
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calculated using the Chew-Low, Durr-Pilkuhn, and Benecke-
Durr models. The data normalized by the Diirr-Pilkuhn and
Benecke-Durr model calculations give good fits using
quadratic curves of the A + Bt + Ct2 form. The extra-
polated cross sections at t = 0 are consistant with zero.
At this energy and with the statistics of this experiment,
one cannot differentiate between the absorption model and

the form factor models predictions at t = 0.51
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APPENDIX A

EVENT PROCESSING FAILURES

Table A.l lists the cause and percentage of Crunch

failure events.

Table A.l.--Crunch Losses.

Failure Code Reason for Failure Percent of Input Ev.
1 Less than 2 Y tracks 26%
downstream
3 Less than 2 Z tracks 7.5%
downstream
8 Vertex too far from 6.2%

target; <2 useful

10 No potential U-V or Y¥Y-2 6.2%
pair after magnet

15 No Y-2 or U-V pairs 3.6%
after 1 track removed

30 Event has same Y or Z 27%
view in chamber 7 and 8

Total = 76.5%
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The other 6.5% of losses are distributed among the
other failures codes, but can be related to the inability
of Crunch to find two good tracks. In order for a beam
track to fake a good event, it only needs to throw a second
particle into the DE/DX, which can occur in a variety of
ways, and then also hit two hodoscopes. Occurrences such
as "hodoscope splash" or slow electrons after the magnet
can cause two hodoscopes to trigger. A study of Crunch
loss indiéates they are mostly just beam tracks.

The Circe failures are given in Table A.2,

As one can see 90% of the Circe failures have one
or two negative tracks. There are many reactions with high
cross sections at this energy which would cause these
triggers. Table A.3 lists three such reactions.>

Teuta failures are multi-pion events and have a low
confidence level when forced to fit one of the single pion

reactions. Table A.4 summarizes these failures. A study

revealed low momentum distributions for tracks 1 and 2

which would be consistant with the phase space production
predicted for the multi-pion events as suggested in
Table A.5.

Two cuts must be imposed on events which pass Teuta
to further limit contamination. First the pass 2 runs
which had hardware problems must be eliminated. Also a
target cut must be applied to the entire sample. The
target cut is taken to be the limits of the physical target

plus the half-width of the fitted errors in x and R =
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Table A.2.--Circe Failures.

Failure Code Reason for Failure Pass 1 Pass 2 Cut
0 x2 increases or needs 5011 58
>8 iterations
8 Both tracks negative 3874 27
10 One track positive, 60326 1070
other negative
91 >15" from target 1903 18
92 Momentum track 2< 42 0
50 Mev
93 Condition 91 + 92 6 0
94 Momentum track 3<50 243 6
Mev
95 Condition 94 + 91 24 1
96 Condition 94 + 92 3 0
97 Condition 91 + 92 + 94 6 0
99 Varied beam momentum 191 0
Total 71629 1180
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Table A.3.--Reactions Leading to 90% of Circe Failures.

Reaction Cross Section mb
PP->PP1r+7- 3.3
PP+PN7n+n+m~ 3.1
PP-+»PPT+Tm-1° 2.4

Table A.4.--Teuta Events Confidence Level <.03.

Positive Field Negative Field Total Total

<107% 1075<c<.03 <1072 107°<c<.03 <10”° 107°<c<.03  <.03

Pass 1 33703 7411 53465 11242 87168 18653 105821

Pass 2 1606 396 666 197 2272 598 2865

Table A.5.--Teuta Failure Event Types.

Reaction Cross Section mb
PP-+PNT+T7° ~4 mb
PP-+NNnw+7+ ~ +5 mb
PP+PPn°n° ~1 mb

PP-+PNT+7n°m° ~2 mb
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/Yz + Zz. Figures A.la-b show the event lost to the target
cut for x and R respectively. Notice the loss is almost

entirely from the x location of the vertex.
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APPENDIX B

BEAM MOMENTUM FITTING PROGRAM52

A typical view from above the experimental apparatus

is shown in Figure B.la where the x represents measured

spark positions and the line signifies an orbited track.

(a) (b)
SCM
|1 0% Y
——
A
Chamber 78
Number 58 ' S0 X

Figure B.1l. Experimental apparatus after target (a) and
coordinate system (b).

The track has three parameters, the curvature K =
%, A and ¢, shown in Figure B.lb. Denoting the deviations

of the measured and orbited track by di, the fit procedure

is to minimize x2 = zdiz by varying the three tracks

parameters K, A and ¢, denoted collectively as B. One gets

\0)
(o) 3
di=di v 2 A(’;\%;“\) (8 -)

P
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adi (0) . . .
(55; will be denoted by Dlx. The superscript (0)
refers to the quantity evaluated using the intitial estimate
for the three parameters K(O), x(o), ¢(0) = BA(O) and ABA =
BA - BA(O) is to be solved for as the correction term that

will minimize xz. One can expand XZ above using the

Einstein summation notation.

X" = did; = A:’A: + lbﬁzbiad? +a8,Diat, Diu (8-2)

Now set
3 x* ° O: )
r = 0= 2Dixdy +aAD;¢Diaah, (8-3
Py
Denote y“‘:'- 1D;1d§ (3-4)
and Gﬂ\: 20ix Dia & e; . \8-5)
We find
-\
a, = -zv Gy Y, (B-¢)

One recalls for this 3 x 3 case

3K
y= XJ.M (_._)_Jﬂ(o) (B-7)

=
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The sum is over all chamber y and z spark position.

Also one gets

.\ (0) N .\\o RCE
REI RN EE
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APPENDIX C

TRANSFORMATION FROM M, t, eJac' ¢TY

> >
TO P AND

One must work in the over-all center of mass in
order to relate the neutron and outgoing A++ to the initial
beam and target protons. The scattering kinematics are

outlined in Figure C.1.

AAY =

é?CM

R

z R

Figure C.1l. The reaction PP+A++N in over-all center of
mass.
The particle labels used above denote the 3-
momentum of the particle. Two assumptions must be made in

going from the four-variables M, t, © and ¢TY to the six

Jac
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variables 5 and %. These are a result of the symmetry of
the problem and can be added without loss of generality.
The first one is that the reaction has axial symmetry about

the beam axis and so all scatterings can be assumed in the

X-Y plane leaving P Z - PAZ = 0. This means in the lab

N
22 A .
one has P” =-1". Also one can assume the beam is along the

X axis.
One can write M T+ and t in terms of the variables

P
defined in Figure C.1l as

Mpre =J (PRem¥)* (c-1)

and
£= (R -R) = (pF-f0)T (e-2)

Pu

and 1% above are defined as P" = (Ep, iP) and 19 =
(En' i%). Also one has PAu = (EA, iﬁA) and pbu = (Eb'

u and P u. One can

iﬁb) and similar definitions for PT N

expand t defined above to give
2 %
t= MA *Mb ‘IEAEb M 1\95“?3\ Cos e'cm ° \ C "'3)

This expression can be solved to give the center of mass

scattering angle in terms of M, and t

cos &, =LE-Mp-Mna5E ) A21R1P)), L c-4)
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One can define

R km\) W\-...!‘\) ='\/Y. \“'mi)t' M:-]U“*ms)t' m@’-n kC.“S')

which can be used to get the beam momentum |Pb| and the
A++ momentum lPAI in the center of mass. If the total

energy in the center of mass is JS) then

R = RU’\\,,MV,E) (C-b)
and

1P| = Ry Mpqe,I5). (e=T)

So far, the mass of the A++ and the momentum
transfer have served to determine the direction the
resonance will travel away from the origin in the over-all
center of mass. Now it is necessary to transform all center
of mass vectors into the A++ center of mass and make use of
the decay angle information.

In the A++ center of mass, Figure C.2 shows the

relevent decay gquantities.
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?NNormol ;?;\\~[::;>\\\\\\
Normal
T

Figure C.2. 6 and ¢ defined in A++ center of mass.
Jac TY

One defines

cose. = »-f (c-8)

Sin q>_rY = ?3"‘( %“%)‘&?a “_?) (c-10)
| Pex (Fr xB)|| By « B
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First one can make use of the Jackson angle. One
can find the component of the decay proton parallel to the

beam as shown in Figure C.3, given by

Py

RN  cos &g, . (c-W)

Figure C.3. Beam and decay proton in A++ center of mass.

R is the momentum of the proton and pion in A++ decay

center of mass given by

R= R (Mp Mx, Mpqt) (c-12)

and ﬁB is the unit vector given by ﬁB = Py/|P,| evaluated

in the A++ center of mass.




183

The components of proton momentum perpendicular to
the beam involves the Treiman-Yang angle.
Figure C.4 shows Figure C.2 from above and illus-

trates the angle between the planes.

=

% ENL 3
V%
P .

Figure C.4. Projected view of planes described in
Figure C.2.

\%

The vectors shown above are defined in terms of

known vectors as below:

Prx P |
N=.?1'4_- (c-13)
| Pr <P

R’ = WB *ﬂ; (C."'\"\)

Ng = ?’; (C-1s)

(C-16)
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By definition, the Treiman-Yang angle is the angle

between the two planes and is given in terms of the newly

defined vectors as

cos ¢ =_l\’\‘--‘;\',_ (c-11)
Swn Gry = Ny (c-18)

<>
The vectors K and ﬁl form a perpendicular system

and one can find the perpendicular component of the decay

proton from Figure C.5,

N >"’ﬁ

Momentum of A++ decay products perpendicular

Figure C.5.
to beam proton in A++ center of mass.

where

T = RN smbry ~Keos 0ry) L€ -19)

> 3
and so B= PL+rP, =

- -
R (N, S\V\¢T‘ - cos QT‘ 1'-\:3 ¢L0S O'J-‘“) (C"JO)
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and

n=-F (ce-21)

Both the ¥ and Pu four vectors can be transformed

into the lab to give the desired decay vectors.
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GJac AND ¢TY BIASES

A typical event, as viewed in the A++ center of

mass, is shown below. The beam is along the x axis in the

lab.
Target XA Cer Decay Proton
Proton '
\ s
\ /7
\\ 7/
\ /,
\ 7/
\ Jac, “
\ ”
\ s’ Plane of Target
‘1/.7 Proton ond Neutron
Y \ [/
< N
\
Beam N
\\
Neutroh, .

Figure D.l. PP+*PNT+ event in P-m1+ center of mass.
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For simplification, one can consider the beam
direction as forward in the spectrometer, and the neutron
to be at a large angle or backwards in the lab. The pion
is the track which is most sensitive to acceptance and has
in most cases the widest angle and is the slowest. The
acceptance will be high if the pion is forward and fast,
and low if the pion is wide angled or slow. The forward
speed of the pion is smallest if the decay proton is in
line with the target proton. In order to get the decay
proton to the lab, one just does a Lorentz boost in the
direction opposite the target proton. By lining the decay
proton up in the A++ cm, one gets a fast proton in the lab.
This gives a slow wide angle pion. From this one can see
that if there are certain decay angles which have zero
acceptance, this effect will be larger for a high mass A++
than one of low mass. Typically in the A++ center of mass,
the proton and pion come off back to back with a momentum
of 200 Mev/c. At higher momentum, a backwards pion in the
A++ cm would correspond to a slower or wider angle pion in
the lab.

In the A++ center of mass, the beam proton, which

defines the zero for 6 and the target proton, which

Jac’
defines the way back to the lab, are in general not in

opposite directions. As momentum transfer increases, so
does this off-set angle. If the Jackson angle happens to

equal this off-set angle, the target and decay protons can

still be anti-parallel and a minimum acceptance will occur.

N
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This line-up will be precise only if the Treiman-Yang

angle is zero, as will be discussed later. For t close to
zero, where this beam proton and target proton are almost
opposite in the A++ cm, then eJac equal zero is the situ-
ation which makes the pion slowest. Also, for eJac close
to zero, a 360° rotation for ¢TY does little to disrupt the
alignment because it is just making a tight small circle
about the target proton. Monte Carlo studies show there

is a zero acceptance at eJac = 0 for all ¢TY'

As t increases, and the angle between the target
proton and the beam proton becomes less anti-parallel, it
becomes necessary for the Jackson angle to become larger in
order that the pion comes off directly backwards in the
laboratory. This backwards pion condition requires a
coincidence between the planes of the target proton and the
neutron. This is the place where ¢TY = 0. Monte Carlo
studies reveal that as one goes to high momentum transfer,

the Jackson angle where the acceptance is zero increases

slowly, and the zero acceptance occurs only if ¢TY = 0.
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APPENDIX E

MONTE CARLO EVENT GENERATION

An event of the type PP+Pn+N can be completely
specified by four quantities. The most useful for this
study are the mass of Pm+, momentum transfer squared from
the target proton to the neutron, and the outgoing scatter
angles of decay for the P or w+ in the Pn+ center of mass,
935ackson 2nd ¢Treiman-Yang‘ The bubble chamber data was
used to generate these distributions because it is thought
to have no strong biases. In fact, the bubble chamber data
agrees within statistics with the present experimental data
once a A++ cut is made.

The bubble chamber mass distribution is scaled down
from the 6.6 Gev/c beam momentum kinematic boundary to the
6.0 Gev/c boundary. The bubble chamber mass, t, 6 and

Jac

¢TY distributions are converted into event generation

probabilities by an integral transform.
If F(x) is any of the above distributions defined

between: X, and X events can be generated in accordance

L u’
with this distribution by first generating a number W such

189
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X
that W is a random number between 0 and IuF(x)dx. Then one

XL
must generate an event of value x where x is the solution

to W(X) = }f{uF(x)dx.

Th:se events can be transformed first to the over-
all center of mass where the neutron and (P-7+) vectors are
found using M(Pn+) and t, then in the (P-1+) center of mass
where the pion and the proton vectors are found from
M(Pn+), eJac and ¢TY' It is known that only (P-m+) com-
binations associated with the beam projectile will trigger
the apparatus so only beam vertex P-m+ events are produced.
Appendix C gives the details of the above transformation.
Once the four vectors for the event are back in the
laboratory, the two outgoing tracks are rotated randomly
about the beam axis in order to resupply the event with a
symmetric degree of freedom not obtainable from the basic
four variables which describe the event. Figure E.la-d
shows the initial bubble chamber distribution shaded, and
final distributions derived from the Monte Carlo event

generation described above unshaded.



191

* (pepeysun)
wexboad uorzexsausb Jo FITNSAI OSY3 BIR YOTITYM SUOTINGTIIISTP
OTaIe) 93UOW PUB (papeys) S3UaAd Iaqueyd aTqqng TeuTtbtao

‘p-e°1°3 @anbta




192

Zxx (A39) Q033HNDS ¥IJISNHEL WNLNIWOW
2 @1 91 hr o2zt 1 8 9 K2

8 9
TN )

7/ 7 )
/)
7 i S -
\M_.\\ I/
N
AR/ A/

J )

R T T Gl
R
ANUAN TR LN SNV MR RB NN 3 kN D

002
osz
00c
7
7
\“ 0se
7
] ] 1 ] 1 1 ] 1 L | oon

gl60 6N13Y ONY DT36] 3LINOW

(9)

ﬁ.

(+I1d°d)338N0S SSHW
. . 1°¢e

A

N

T
NN
I

NN

| 1 | | 1

Y160 WN13Y ONY 071383 3LINOW

(D)

SL

oSt

S¢¢

00€E

SIN3A3

SLE

0Sh

S¢S

009



193

319N ONUA-NUWI 331
o8l 0

7

4

! \\\ 1

g1d0 YN138 ONY 07953 3LINOW

(P)

0st

00€

0Sh

00Ss

SIN3A3

0S¢

006

0S0oT

00ct

371ONY NOSNIHr 3INISQI

A

SONNANN

N\

5160 18N138 ONY 01353 3JINOW

(9)

00€

009

006

0oct

00ST

oo8f

oore

00he

SIN3A3



APPENDIX F

RESONANCE MASS AND WIDTH CORRECTIONS DUE

TO EXPERIMENTAL ERRORS



APPENDIX F

RESONANCE MASS AND WIDTH CORRECTIONS DUE

TO EXPERIMENTAL ERRORS

Figure F.la-b shows the invariant mass and the

calculated error in this quantity. Figure F.l-b has the
probability of finding the error E at mass M normalized so
that the area under the probability surface at fixed M is
constant,

In order to see the effects of the error on a given
mass distribution, one must first select the mass, then
look up the probability for a given error P(E,M) from the
mass-error distribution. One gets the new mass distri-
bution by a Gaussian smear of width E at the fixed M of

probability P(E,M). This can be expressed as
M-MY*
g-(n‘)':SE.P(E,Y‘\)zxp‘_-\ = )} (F-1)
subject to the restriction that SdAM'o(M') = 1. The actual

error at the resonance peak of 1.230 Gev is 5 Mev. The

error at the half maximum points are 3 Mev at M = 1.176 Gev
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and 6 Mev at M = 1,298 Gev resulting in a width error of
8 Mev. This is summarized in Table F.l. The column marked
data gets its peak and width directly from the data, and not
from the Breit-Wigner fit to the data. The fit does not

have precisely the right shape.

Table F.l. Peak and Width of M(P,nm+) With Resolution

Errors.
Data Breit Wigner Fit
Peak (Mev) 1226. + 5. 1226. + 5.
Width (Mev) 122, + 8. 133, + 8.

The average error increases from 1 to 6 Mev between the
masses of 1.14 to 1.26 Gev. Above 1.26 Gev the error is
approximately constant at 6 Mev.

In order to study the effect of the experimental
errors on the mass distribution, the events are smeared and
fit by a Breit-Wigner curve. The Breit-Wigner form used is

given by

r _
G-QM) = (M"Mt)l*' \"7'_| where

M= MYLQRY

(F-2)
{ | + \QRﬂ

M is the mass of the P-n+ system and Q is the proton
momentum in the P-m+ center of mass. R is the A++ radius
and Mo and Yy are varied in the fit. The fit parameters are

summarized in Table F.2.
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Table F.2.--Breit-Wigner Fits to Unsmeared and Smeared Data.

r Peak (Gev) FWHM (Gev) 2 .
Fit e Mo Y (MO) X~ /Point
(Gev) (Gev) (Gev?) Exp Fit Exp Fit
Unsmeared 1.246 .753 .179 1.226 1.226 .122  .133 2.
Smeared 1.247 .766 .182 1.227 1.226 .130 .135 1.5

As expected the peak is insensitive to the error
but the width is directly related to the errors. Table F.3
gives the corrected mass parameters after the effects of
experimental error have been removed. The row marked
fitted used smeared and unsmeared fitted parameters to
predict the correct mass parameters, while the row marked
experimental uses parameters obtained from the actual mass
distributions.

Table F.3.--Parameter for Predicted Fitted and Experimental
Mass and Distribution.

Mo Y FWHM Peak
(Gev) (Gev) (Gev) (Gev)
Fitted 1.245 .740 .131 1.225

Experimental 1.224 .700 .126 1.226




APPENDIX G

SPARK CHAMBER EFFICIENCY




APPENDIX G

SPARK CHAMBER EFFICIENCY

The spark chamber efficiency calculation will be

given in detail only for the magnet section chambers. The

rest are calculated similarly. Denote by O where N is

5 - 8 the probability that chamber N misses 1 track and BN

the probability of missing both tracks. Let EN = oy + BN
be the probability that chamber N does not see either
th

track. The probability that the N chamber sees both

tracks is 1 - Eg and the probability for a perfect event in

the magnet section, abbreviated by P4 - 4 is then

P\.\-\\: %k\"e'\) (C"_\)

\=S

and is symbolized bijtxq: . The probability of firing 4

chambers on one side and 3 on the other is symbolized by

= 4

-+

q?
-+
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and is denoted by P and is given by

3-4
8 8
Pia= T o T\ Gi-8j), (e-2)
=5 i;f
JT N

The probability P33 for both tracks to misfire in one

chamber is

8 8
%.3\same chamber) = 2_ B, T\Sk\‘eo ((7‘3)
s i
J#

and the combined probability for P4_3+P3_3 where the P3‘_3

case has one chamber miss for both tracks is

® 8
Ei‘3+P3—3K same chamber ) .-32 E-‘;,[ES_\\- Ej) \G‘"‘-l)
\=§ 3‘*.‘

since Ei = o, + Bi' Another type of 3-3 event can occur

i

when different chambers miss a track as shown below.

L 1 4
L J v L]

1 3
] 1

P}a(different chambers) = * - - - + -

=

J

-
-

The entire term can be expressed as
7 ) 8
3 — 1 . . \,.g' G_.-
P,_,(different chambers)= /7y z«. Z. A; TK\‘SK w), (¢-%)
1= J=i#l Kei
w#Jy

The factor of 1/2 is necessary because the expression above
includes events where one track fires 4 chambers and the

other fires only 2 chambers, symbolized by
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-
-
L

-
T

These types of events will not pass the filter program.

The total probability of getting an event is P4-4 + P4_3 +

(same chamber) + P (different chambers) =

P33 3-3

7 B 8
TR A R TR EYELN

"2 i*S  Jzin
J#i wel
we; (6-e)

8 ® B
T (\-€4) + 2 E; W\~
.‘-"-5 les J=S

-

As one can see from the magnet chamber event
probability calculation,care must be taken to be sure
certain event classes are not counted twice. With this
observation made and the notation established, the results
for the other sections will be summarized in Tables G.l and

G.2.

Table G.l.--Beam Chambers.

Condition Abbreviation Symbol Probability

l*
All 4 hit P, +H++ Tt (V-€4)
1=\

% Y4
1 miss P, —H—+ - z E; _T;.U"ej)
iay 1} gl
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Table G.2.--Hodoscope Chambers.

EE R — z S e 1 g ——%-tn

Condition Abbreviation Symbol Probability

\o
All fire P T (V’E')
22 r‘ \
i=q

10 lo
:-i' ﬂr_-+ Z_o('\ N &\"Ej)

One miss Pyy :j .
One side i2q 979

L A

to 1o

Two miss Py [+ ] Z B; M (\-€5)
Same chamber =9 J=9

AT 2N
Iteration

If one knew oy and Bi for the chambers, one could
put them into the formulas above and get an efficiency.
The individual chamber efficiencies are coupled to the over
all efficiency and the solutions must be obtained simultane-
ously.

In the magnet section, the first approximation to
oy and B, is just Ni(l)/N and Ni(z)/N respectively, where N
is the total number of firings for the chambers and Ni(l)
and Ni(2) are the single and double misfires respectively
in chamber i. However, Bi estimated this way would be too
low because of the constraint that at least three firings
must occur per track in the magnet chamber region. In
reality, B, estimated as above is the probability that one
chamber does not fire and all three others do fire. An

exact expression for B, is the sum of the probability that
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chamber i miss two tracks and is seen plus the probability
that chamber i miss two tracks and is not seen. Similar

statements can be said for o and Ei to give

Niw)/NT +P7 s, (&-7)

oi = NN * P s, (& 8)

(2)

Bi = Ni Nyt Piws. (¢-1q)

where P? N.S. is the probability for N sparks in chamber i
to be missing and the event not to be seen. Table G.3 will

summarize the probability of the ith magnet chamber missing
4

two track and the event not be seen. The notation } (1-Ey)
i-3

will be used to mean ] (1-E,).
k=

k#i
k#J

Table G.3.--Probability for i-ti-ll Magnet Chamber to Miss Two

Tracks of a Missing Event.

Symbol Term
¥ *
R + e+ $- - B. sz.“\l‘E“)
— -+ _‘_"__ B‘ Z:-E Z*g 1‘.““ l.)
I =
o e it_B ‘i; EE_;*L

R e
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The sum of the above terms is Pi N.S. which can be written

as BiF(aj,Bj) j#i. Similarly one could write out terms for
Pi and P? N.S. and obtain the efficiency by solving the four

simultaneous equations below.

Eray = Pt lai Bi) * Py (4i,81) * P33 (i, 8i)  (&-10)

m
e N N Pl sl ;) (6w

) \2) Q
B\ = N /NT'l' ﬁ\ N-S.\"‘J,B:’) kG’"\Z)

Nt = No/ E a0 o (&-13)

In practice it is possible to iterate the equations which
rapidly converge to give an efficiency. Similar equations
can be written down for the beam and hodoscope chambers and
the final apparatus efficiency is taken as the product

E = E_E E

App B"Mag ~Hod®
The data N _, N‘O), Ngl) and st) are obtained for
o i i i
the most of the input data which makes Teuta fit confidence
levels greater than .03 and is present in the final summary
tape. The results of the counting of total firings, one

firing and no firings are listed for 42427 Teuta fit events

in Table G.4a-c respectively.
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Table G.4a.--Beam Chambers.

Chambers Sparks Misses a
1 41273 1154 .027
2 40787 1640 .039
3 42016 411 .0096
4 40859 1568 .037

Table G.4b.--Magnet Chambers.

Chamber 2 Sparks 1 Spark No Spark a B
5 32531 9322 574 .219 .014
6 36620 5682 125 .136 .0030
7 34027 8284 116 .195 .0027
8 40912 1504 11 .035 .00025

Table G.4c.--Hodoscope Chambers.

Chamber 2 Sparks 1 Spark No Spark a B
9 37271 5060 96 .119 .002
10 37021 5388 18 .127 .0004

The total efficiency is then the product of the three sub-

efficiencies.
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ERROR CALCULATION

Missing mass

We can calculate the error in the missing mass for
the reaction PP-»P7n+N or PPn°® as below. A diagram and a

coordinate system for the reaction is given in Figure H.1l.

(A

-
v X

Missing Mass

Figure H.l.--Notation and coordinate system used in this
appendix.

We can write

3 . . - M
(M r’\)2-7- (Pg+ PPy P:)I = (€ 3’51‘51'53)1 - Z (Pe rR' -P, "’;)L (H-1)

Substitute
P* = PeosA cos ¢
PY = Pcos A3 @ (W-2)
P*= PsinA

206
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gives

kS
(MM)’. = 3M, ¢ M;- t2EyE, -2 Eg E, -~2E3E3 -2 Ex E2 “E4E3 +EaEy
£ 2P P [ cos ApcosAa cos( By -4,) *simdg Sin Aa]

- 1?1.93 [_cbs)'a. Cos A3 Cos k(b;-(bg ¥ S\V\-A‘LS\V\)"]

¥ 1?3?3[_&“ A3 coS Ap Cos Ubs'bl) *SmAzSnAg ] \\'\‘3)

If one defines Z2(i) = (-1,1,1) and considers the beam as

track 1, one can write

a L §
a%ll‘i. = 2w BG)LP; P_;L!m)i Cos A c.os((b;-(bj)-c.os);s'maﬂ
*Thtin2p Py.[‘"\’"u cos Ax cos ( ¢; -$x) "OOSMS»\)«:_‘
AMm’ Lk -u)
2 0; Tty 20 P; Y_Coskicos Ajcos\ ;- ¢3)]
g taa 2P Ps\—_e_os}\'.c.os'h. sin ( ¢; "‘P;)]
(4-5)
Also define
®i.j = goskgcos,\scosk'};‘@j)*sm)i SmAy (H-6)

where i, j and k are defined cyclicly as 1, 2, 3; 2, 3, 1;

or 3, 1 and 2. Using equation H-6 one can write

T
dMM - 2P (e+ ‘51'58)*1716,:2?393 (W-7)

d P, Ey
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2.9
3{_\3 - E_:. (-€,-Mp +€3) 2R ® ~ 27,0, (H-8)
E S
LS
;:\: = 2——;% (-€, -My*et) ‘1P1®'_3 + 2&@13 &H‘ﬁ)
3

The error in missing mass squared can be written as

2 . o \J. \/* _
(Evror)” = 2 Ei3ViVy  (W=10)
\.J)
where Eij is the symmetrized error matrix of Circe and

V= MM AMT MM, NN} AN Iy’ arn M’ dmm® [y
3P, "IN 2, O 3Ax 30z APy 323 aq>,

Invariant Mass

This error involves just two tracks. The notation

is shown in Figure H.2,.

P

@ Track 2
Track 3

T

Figure H.2. Notation used in calculating invariant mass
error.

Using the decay and coordinate system as shown above we get
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Mz = EN (0 ve XY - (oYso Vo(p® ‘1“1
put = \E2tE3) (Pl +P]) - (o) +P}) -( P +Py) (H-0)

Px"" Ptos)ﬂ.osq’, P1=Pt—os)ts'ln¢),9;= PsmA (H-13)

gives

kN v 3 1
M Pt M P tMR+2E,E5-2P, Py [cos A acosAzcos(P,-gy)+SnAz Sm);—]
(H-14)

One can calculate the vector

z L S
V = oM Pﬂ: d V\zm*, 2 Mlgn’, ) n‘m" Ment M pa’ (W-1s)
3 P‘;_ a>z, Qib-,, 6?3 3)3 a¢3

and get

(Error)? = Z & ‘j Vi VJ (H- \6)
i)

where Eij is the 6 x 6 error matrix for the 6 guantities

involved.

Momentum Transfer Squared

The errors in this are calculated similar to the

missing mass errors. The notation is defined in Figure H.3.

P Proton
Beam Pl /P2
L3 pion

Figure H.3. Notation used in calculating momentum transfer
squared error.

"'Pu

v
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All the results from the missing mass calculations apply

except for the following:

£ = (MM) -Mp = 2Mp(E, —E2-€3)  (H-1)

3t - MM - MmoaP -\

IR ° P, M? €\ ( ®)

At = IMMT | Mp 2P -

5s. Ser v —Ef;_ (- 19)

35_% = 3';\‘,!1_" + Mp 2P (H -20)
3 3 €a ’







