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ABSTRACT

THE INFLUENCE OF CONTROLLED DISTURBANCES

ON THE TRANSITION OF POISEUILLE FLOW

BY

Iftikhar Rahman Mufti

An experimental investigation has been done to

determine the transition of a plane Poiseuille flow

caused by disturbances of finite amplitudes and con-

trolled frequencies. Various non-linear theories which

have been developed in the study of finite amplitude

disturbances on the transition of a laminar flow are

lacking in experimental evidence. The present study

was undertaken to furnish the data necessary to support

these various non-linear theories. An attempt has been

made to draw neutral stability curves for different

amplitudes of disturbance in the cc-R plane. It has

been shown that an increase in the amplitude of the

disturbance results in a drop in the critical Reynolds

number.

Measurements of wave length of the disturbance

wave at different frequencies and different Reynolds

numbers have also been performed. It has been observed

that regardless of the amplitude and frequency of the
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disturbance, the wave speed bears a constant linear

relationship with the average speed of flow. In addi-

tion, a finite amplitude wave moves three times as fast

as the wave with an infinitesimally small amplitude.

All investigations have been conducted for a

plane Poiseuille flow. The experimental setup consists

of a 24 ft. long channel with an aspect ratio of 78. The

fluid used is air and the sinusoidal disturbances are

introduced by an electromagnetically driven vibrating

ribbon.
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NOMENCLATURE
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Complex wave speed

Ribbon current

Basic parallel flow velocity

Reynolds number

Components of velocity

pressure. Also used as a superscript.

Streamwise coordinate

Transverse coordinate

Coordinate normal to x1 and x3

Tension in the ribbon

x, y, and 2 components of the disturb-

ance velocity

Coordinate axes

time

Stream function

Amplitude function

Streamwise wave number

Transverse wave number

Iota

Frequency of the basic wave
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6 = axl + 3x3 + wt

Kronecker delta

Linear mass density of the ribbon
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Laplacian
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CHAPTER I

INTRODUCTION

When small disturbances are present in a stream,

they have a tendency either to grow or decay in magnitude

as they move along the stream. It was Osborn Reynolds

(1883) who for the first time recognized that the growth

or decay of a disturbance depends on whether the energy

is transferred to the disturbance by absorption of energy

from the basic flow or is extracted from the disturbance

by the damping action of viscosity.

The phenomenon of transition from a laminar flow

to a turbulent flow may involve the growth of infinitesi-

mally small disturbances to disturbances having large

amplitudes. Whether or not infinitesimally small amplitude

disturbances absorb energy from the mean flow field in a

channel is a linearized problem described by the famous

Orr-Sommerfeld equation (a linearized form of the combined

x- and y-component Navier-Stokes equations); but, as the

size of the disturbances grows larger, the mathematical

analysis necessary to predict the absorption of energy from

the mean flow becomes very difficult because of the non-

linear nature of the equations involved. Several attempts



have been made at obtaining analytical solutions to these

non-linear describing equations.

Noether (1921) worked on the non-linear problem of

plane Couette flow but considered non-linearity only to

the extent of Reynolds stress effect in the equation of

mean motion. The terms representing the generation of

harmonics of the fundamental disturbance were completely

ignored. Heisenberg (1924) considered equations similarA(kfidl“é#"Mf

to those used by Noether and included plane Poiseuillefflmrd’wfiéavw

h Hf czfi '1 ACHM'

flow also in his study. Neither of them, however, gave /V9/a@i¥thm

solutions to the equations developed. .3”:

Meksyn and Stuart (1951) gave an approximate

method to solve the non-linear equations of Noether and

Heisenberg for plane Poiseuille flow and developed an

approximate relation between the critical Reynolds number

and the amplitude of disturbance. They showed that as

the amplitude of disturbance increases, the critical

Reynolds number for instability drOps exhibiting thereby

a sub-critical equilibrium of the disturbance flow.

Stuart (1958) adOpted a different approach to

study the problem of instability of plane Poiseuille flow.

It was based on an energy balance between the rate at

which the energy is absorbed from the basic flow (due to

the Reynolds stresses) and the rate at which the dissi-

pation of energy of the disturbances takes place by the

action of viscosity. For a particular Reynolds number, he



assumed that the disturbance velocity has a shape similar

to the one given by the linearized theory but the amplitude

as an unspecified function of time. Using then the energy

balance equation,he showed that for a given wave number,

an unstable disturbance amplifies until it reaches an

equilibrium amplitude at Reynolds numbers above the

critical. Clearly,this contradicted his previous work

with Meksyn and so to resolve this basic question, Stuart

(1960) adopted still another approach based on Landau's

(1944) conjecture that the square of the amplitude (IAIZ)

of a finite disturbance behaves like the solution of the

equation

 . . . . 1.1

where "t" is the time and k1, k2 . . . are constants.

Using only the first two harmonics of the Fourier

expansion of the disturbance stream function, in con—

junction with Landau's equation (1.1) and the energy

balance equations, Stuart developed the following rela-

tionship for the change of the disturbance amplitude in

a plane Poiseuille flow:

d|A1|2 2 4
T— ZaciIAll + (kl + k2 + k3) |A1| 1.2



where ci represents the growth rate of the disturbance

obtained from linear theory and is assumed to be suffi-

ciently small. Stuart observed that the quantities kl,

k and k3 arise from the following three processes:
2

l. The distortion of the mean motion (k1)

2. The generation of the harmonic of the

fundamental (k2)

3. The distortion of the y-dependence of the

fundamental (k3)

k1 describes the flow of energy to the disturbance due to

distortion of the mean flow by the Reynolds stress, and

is negative. The flow of energy from the fundamental to

the second harmonic is described by k2 and according to

Stuart (1960a) it should be negative. The coefficient k3

represents the modification of the energy of the funda-

mental due to distortion of its y-shape. The constant k3

is large and positive at the critical point and makes the

sum (k1 + k2 + k3) positive. In other words, Stuart

showed that it is the distortion of the fundamental which

is responsible for the sub-critical instability, thus

proving the intuitive conclusion that an increase in the

amplitude of disturbance results in a drOp in the critical

Reynolds number.

Watson (1960) developed a perturbation expansion

of the non—linear, time-dependent Navier-Stokes equations

and solved it to determine the critical Reynolds number



for a plane Poiseuille flow subject to finite amplitude

disturbances. Even though his technique was different,

his conclusions matched with Stuart's regarding the sub-

critical instability of plane Poiseuille flow.

Reynolds and Potter (1967) developed a formal

expansion method to analyze the non-linear development

of a 3-D wave in a plane flow and applied it to solve

plane Poiseuille and Couette flows. They concluded that

relatively weak but finite disturbances markedly reduce

the critical Reynolds number.

George and Hellum (1971) solved the non-linear

problem by direct numerical integration. Their basic

approach was the same as used by the earlier writers, namely

by expanding the disturbance stream function in a Fourier

series expansion and retaining only the first two harmon-

ics containing unknown coefficients which they defined

as being dependent on the stream-wise position in the

channel and upon time. They substituted this expression

for the disturbance stream function into the N.S. equations

expressed in terms of the disturbance stream function and

then set the collected coefficients of sine and cosine

terms of the respective frequencies equal to zero. This

way they obtained a system of coupled non-linear, partial

differential equations for the unknown harmonic components

and solved this system of equations using a finite dif-

ference technique to obtain the desired solutions. Their



conclusions were also similar to the one obtained by

earlier writers that the disturbances that are stable

according to linear theory become unstable with the

addition of finite amplitude effects.

J. P. Zahn et a1. (1974) solved the non-linear

problem of a Plane Poiseuille Flow by expanding the

equations describing the flow in Fourier series. They

obtained an infinite system of equations for the amplitudes,

which were functions of time and of the cross-stream

coordinate. The system was truncated after the second

harmonic and the resulting equations solved by a

finite difference method. They found out that for

Reynolds number below 2707, any initial disturbance

to the parabolic flow dies away and that for the

Reynolds number and the wave number for which the

linear theory predicts instability, an initial dis-

turbance of any amplitude gives a particular, steady,

finite amplitude solution.

Experimentally, the initial investigation of

linear stability theory for a flat plate boundary layer

was carried out by G. B. Schubaur and H. K. Skramstad

(1947). By inducing oscillations in a boundary layer,

they observed the small sinusoidal waves, Tollmein-

Schlicting waves, predicted by linear theory. The latter

stages of transition of a flat plate boundary layer was

examined by H. W. Emmons (1951) and G. B. Schubaur and



P. S. Klebanoff (1956). They observed that the amplified

waves became turbulent spots which moved downstream grow-

ing steadily in all directions.

Investigations on turbulent bursts in a rectangular

channel were conducted by G. C. Sherlin (1960). He

determined the growth and propagation speed of turbulent

slugs in a rectangular channel with an aspect ratio of 4.

The turbulence was induced by injecting a dye and the

Reynolds number (based on the average velocity and

hydraulic radius) were in the range of 600-2100.

Narayanan and Narayana (1968) extended Sherlin's

study for the growth of turbulent slugs and determined

that the intermittancy increased with increasing down-

stream positions at various Reynolds numbers. Their

transition,without any artificial disturbances for a

channel of aspect ratio 12,occurred at Reynolds number

3000.

Kao and Park (1970) investigated the stability of

Lnfinar flow in a rectangular channel with and without

artificial excitation. They found the critical Reynolds

number (based on average velocity and hydraulic mean

radius) as 2600. The fluid used by them was water.

Karnitz (1971) investigated the transition process

of flow between parallel plates. He correlated the initial

stage of the transition process to linear stability theory.

Using a high aspect ratio channel and air as the fluid,



he showed that as the velocity disturbance level in the

channel was decreased, the transition Reynolds number

increased monotonically. For a minimum disturbance

level, he obtained a critical Reynolds number of 6,700

for a laminar parabolic flow.

.Using the same facility as used by Karnitz,

Feliss (1973) studied the mechanism of the transition of

flow between parallel plates and obtained a critical

Reynolds number of 7,500. His extrapolated curve of

Critical Reynolds Number vs Intensity level appears to

verify the theoretical value of 7,700.



CHAPTER II

THEORETICAL FOUNDATIONS

Stability Theory for Parallel Shear Flows
 

The object of our study is to investigate transi-

tion of a parallel shear flow caused by disturbances of

finite amplitudes; thus, it is desirable to outline a general

theoretical development of the theory describing the insta-

bility of a fluid flow. This non-linear theory will be

formulated for the case of an incompressible fluid. The

approach followed is essentially the same as that of

Reynolds and Potter [1967].

In a two-dimensional linearized analysis, a funda-

mental assumption is that the perturbation stream function,

0, representing deviations of the flow field from the basic

steady, parallel laminar flow can be represented by har-

monic components, any one of which is of the form

w = 2 Re {¢(y) exp [id(x - Ct)]}

These harmonics do not interact and therefore their

behavior can be studied independently. If this form of the

stream function is substituted into the equations of motion

and all terms higher than the first order ignored (an



10

infinitesimal amplitude), one obtains the Orr-Sommerfeld

problem for the disturbance eigenfunction. It is

{(DZ—a2)2 - 1aR[(fi-C)(D2-a2) - Dzfillo = o (2.1)

¢ = D¢ = 0 at y = y1 and y2

where

yl and y2 locate the two boundaries of the flow,

D = a; and fi(y) is the basic parallel flow

velocity, and

R is the Reynolds number based on the average

speed of flow and distance between the

parallel plates.

The complex constant C = CI. + iCi and the wave number a

become the eigenvalues of the problem; Cr represents the

speed at which the wave propagates downstream and'Ci repre-

sents the rate at which the wave grows or decays with time.

A neutrally stable wave is of particular interest; it

occurs when C1 = 0. The eigenfunction ¢(y) defines the

relative amplitude of the wave.

In a non-linear stability analysis, the disturbances

are assumed to have a sufficiently large amplitude that

it is not possible to ignore altogether the terms of order

higher than one. This may produce three important effects

on the motion:



3.

To

11

The interaction of the basic wave with

itself may produce a mean "Reynolds

stress” which in turn distorts the mean

velocity field.

The amplitude of an unstable disturbance

may grow until the mean field again becomes

stable.

Non-linearity may modify the wave speed at

which instability occurs.

study these effects, an expansion method is

introduced and is presented below. The development is

quite general and covers both two- and three-dimensional

cases .

The non-dimensional forms of the basic equations

which must be satisfied are

Bu.

Continuity in = 0, and (2.2)

i

aui aui 3p 1 azui

Momentum FE- + u3. 5;; + 5;; - R §§§5§3 = 0 . (2.3)

Variables are normalized on suitable characteristic

lengths and velocities which remain constant in time.

In a linearized analysis of three-dimensional dis—

turbances, we would assume velocity perturbations of the

form

1.

u! = Gi(x2) exp [i(dxl + 8x3 + wt)] exp (at) (2.4)
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in which (to + ia) emerges as a (complex) eigenvalue. The

quantity exp (at) allows for growth of the disturbance

amplitude. The stability is determined by the sign of "a'.

In a non-linear analysis, we seek a solution in terms of

this basic wave and its harmonics. The following trans-

formation is very helpful in the analysis:

0 = dxl + 8x3 + mt; w = w(A)

A = A(t) (2.5)

Y = X2

a and B are streamwise (x1) and transverse (x3) wave

numbers and w is the frequency of the basic wave; A is

the wave amplitude.

In a two-dimensional case, the transformation to

0 - A - y space does not change the number of independent

variables, since in the original space the variables are

x1, x2 and t, but in a three-dimensional case, the number

of independent variables reduces from four to three.

In terms of new variables, equations (2.3) and

(2.2) become

Momentum

Bu. Bu. Bu.

dA 1 dw dA 1 1

‘5‘)? —3A + [w + (afit‘a’E’ + Otu1 4‘ Bual—ae + u2 ‘a'y""
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T i
fl
é
i

2 azui a ui

39

+

a)
: 1 2

’ fi [(0 + B

  
J(8%

Continuity
 

Bu2

5g-(au1 + Bu3) + 5§* = o (2.7)

Select a stream function w satisfying continuity.

Therefore we have

. 3W-..
——-— aul + Bu3. 5g — u2

Now multiply the ul-momentum equation by a, the

u -equation by B, and add to obtain an equation involving

3

only 0 and p. Then cross-differentiate the uZ-equation

and the combined ul- and u3-equations and add to get

 

 

d5 3; d3 dA fig 3; _ aw 3c

tT+ lw+dA‘ta—£’ + aylss 5'65?

2 2

By 39

where

2 2

C = __2_3w + K2 a g), and

Q
)

I
~
<

Q
2

a
>



 
,
l
l
l

1
‘
(
l
l
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For the particular case of plane Poiseuille flow,

the boundary conditions are

1‘1_M__ _
39 — 3y — 0 at y — i 1

With the previous transformations, the resultant equation

(2.8) is expressed in terms of one independent variable.

The transformations also allowed the eigenvalue w to appear

explicitly in the equation so that it can be expanded

along with w in the formal treatment.

We next expand the stream function (u) in terms of

its harmonic components as

w(A.y.e) = E w‘p’(A.y)eipe + I \i‘p)(A,y)éipe (2.9)
=0 p=0

Summation is carried over all positive integral values of

"p" and a tilde (~) denotes the complex conjugate. Sub-

stituting in equation (2.8) and separating coefficients

of like exponentials, we obtain an infinite set of coupled

non-linear partial differential equations for the harmonic

amplitudes. The coefficient of elpe gives*

 

*A special summation convention is used. If a

superscript occurs twice in one term, a summation is

implied, i.e.,

w(J)C(K-J) = w(0)§(K) + W(1)C(K-l) + , , , ,

The series is terminated if a negative exponent is encoun-

tered; i.e., if K = 2 in the example of this footnote, the

series would contain three terms.
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(p) (p-j)

911___32 :12. ea . (p) 1 3‘? .. (3)
dt 8A + [w + dA (t dtnlpz + 1+6p0 ( 3 [132 1

3? . . 3? ..~ . . - 32

+ By [1(P+J)Z(P+J)] +T ['IJZ(J)] - [1(p-J)‘i’(p J)1 -5-y—-

. . 2.10)

‘ (p+3) . ~(J) (
_ ..~(J) 32 _ . . (p+J) §3L___

[I]? ] --§§—-' [1(p+J)W ] 3y

2

_ -1— (—3— .— p2K2)Z(p) — o
R 3 2

Y

where

l for p = j

6 . = { , and

p] 0 for p # j

32

(——2“P

3y

Z(p) = 2K2), (p)

The boundary conditions necessary in the solution of

(2.10) are

WP) z 2192:.3y = 0 at y = y1 and y = y2

It is very difficult to solve this infinite set of

non-linear coupled equations. However, if the amplitude

of the wave is assumed small, it is possible to obtain a

solution as a power series in the amplitude A and thereby

obtain a sufficient decoupling that a sequential solution

is possible. If the amplitude is reduced so that it is
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infinitesimally small, the solution should represent the

Orr-Sommerfeld wave, and the solution for zero amplitude

should reduce to the basic laminar flow. Hence, O(A) terms

represent the Orr-Sommerfeld fundamental and 0(1) terms

the laminar flow. In non-linear interaction the terms

O(A2) involve the second harmonic (p = 2) and additional

mean terms (p = 0) generated, respectively, by a positive

and negative interaction of the fundamental with itself.

These in turn interact with the fundamental to produce

O(A3) terms containing the third harmonic (p = 3) and

strengthening the fundamental (p = 1). These considera-

tions suggest that we can seek a solution in the form

w‘P’(A.y) = A“¢‘p'n’(y) (2.11)

The double superscript summation convention introduced by

Reynolds and Potter[19] represents a sum over all

n 3 p. Hence, W(p) contains no terms of order less than

AP. This way we represent w(p) as a series expansion in

A and since we wish that the amplitude for infinitesimal A

behaves as in linear theory (exponentially), we assume

(2.12)

+ . o o = Ana(n)

(0)
Constants a(n) have to be determined in some manner; a

a(1)
is an eigenvalue of the linearized analysis; turns



17

out to be zero and a(2) forms the focus of interest in the

non-linear problem.

In case of a flow which is neutrally stable to dis-

(0) (2)
turbances of infinitesimal magnitude, a = 0 and a

determines whether or not a weak disturbance would grow or

decay.

Finally, we also represent w as a power series in

Aas

dw dA _ (0) (l) . . . = n (n)
w + ax-(t 3E) — b + Ab A b (2.13)

For an equilibrium motion where dA/dt = 0, b(n)

represents O(An) contribution to the frequency of motion.

b(o) will represent an eigenvalue of the linearized

l0(2)
theory, b(l) turns out to be zero, and repre-

sents change in the oscillation frequency due to the

effect of non—linearity.

Substituting equations (2.11)-(2.13) in equation

(2.10) and collecting terms of various orders, we obtain

(p;n).
an infinite set of equations for ¢ The coefficient

(n)
of A yields:

1+6

ma(n-m)z(p;m) + b(n-m)ipz(p:m) + l [D¢(p-j;n-m)[ijz(j;m)]

p0

+ D$(jzn-m) (p+j;m)] + D¢(p+j’n'm)[-ij§(j’m)]
[i(P+j)Z

(2.14)

- [i(p-j)¢(p-j‘n'm)lDZ‘j’m) - {-ij$(j’n'm)lnz(9+j’m)
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102- ti(p+j)¢‘p+j‘“'m) ”‘j’m’] - %'(DZ'P2K2)Z(p;n) = o

where

_ d

D - as: and

z(pm) = (D2 _ p2K2)¢(p;n)

We can now collect the terms involving ¢(p;n). The basic

laminar flow fi(y) is related to ¢(0;0)' the O(AO) contri-

bution to the zeroeth harmonic, by

- _ 2 (0:0) _ 2 ~(030)u _ 5 13¢ _ 5 13¢ (2.15)

(0:0)
When the terms involving o are represented in

terms of E, equation (2.14) may be written as

(“'l’cspl + l+§n (2.16) L ¢(p;n) = idC
pn

6pj is the Kronecker delta and the operator Lpn is

expressed as

_- _. g (0) (0) - 2 _ 2 2 _ 2—
Lpn — 1p[( 1 p a + b + au)(D p K ) a(D u)]

(2.17)

- % (D2 - p2K2)2, and

iaC(n) = [a(n) + ib(n)] (2.18)

The remaining quantities in equation (2.16) are
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G = (D2 - K2)¢(l;l) (2.19)

._ _ [n-m] . [n-m] 2_ 2 2 [pzml
Hpn - (ma + 1pb )(D p K )4) + Fpn and (2.20)

Fpn == -(n¢[P‘j’“‘m])(ijtoz-j2K21¢[j’m])

-(n$[j’“’m])(i(p+j)[Dz-(p+j)2K21¢[P+j’m])

‘-(D¢[p+j’""m])(-ij[DZ-12K215[j’m])

(2.21)

+ (i (p-j)<b[p-j m-ml) (DIDZ-jZKzl <1>[j :ml)

-+(—ij $[j;n-ml)(D[D2_(p+j)2K2]¢[p+j;m])

-+[i(p+j)¢[p+j‘“'m])(DIDZ-jZK2]$[j’m])

The boundary conditions become

¢[p;n] = D¢[p;nl = 0 aty=yl andy=y2

The bracketed superscripts demand that the quanti-

ties in the brackets to the right of the semicolon be

greater than or equal to one. When these conditions are

applied with p = 0, the total mean flow will be held con-

stant. For p = n = 1, the right-hand side of equation

(2.16) is zero, resulting in the Orr-Sommerfeld equation,

%(D2-K2)2}¢(1;1)=0 (2.22)
{(a(0)+ib(0)+idfi)(D2-K2) - id(Dzfi) -
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with boundary conditions

(1:1) (1:1)
¢ = D¢ = 0 at y = y1 and y = y2.

For a two-dimensional motion, where K = a, equa-

tion (2.22) reduces to the Orr-Sommerfeld problem with

ac = -b(o) + ia(o). Thus, if C(a,K,R) = C(o) is the

eigenvalue from the linear analysis,

b(0) = -aCr and a(0) = dc. (2.23)

¢(1:1)
The shape of the eigenfunction is fixed by

equation (2.22), but its amplitude remains arbitrary. If

we define A in some particular manner, this definition

(1:1)
will fix the amplitude of o apart from a constant

modulus of unity. Alternately, if we arbitrarily normalize

¢(l;l)

a plane Poiseuille flow problem, the latter choice is more

in some manner, this will define A implicitly. In

convenient.

For a plane Poiseuille flow, the mean velocity

.profile is

(1 - yz) (2.24)C
I

M

N
H
»

The evenness of this profile and of the operators

in equation (2.22) allows the eigenfunctions to be separa—

ted into families of even and odd functions. If we use

the normalizing conditions
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¢(l;1)(0) = 1 for even modes

(2.25)

and D¢(l;l)(0) = l for odd modes

we can solve equation (2.22) for the eigenfunction ¢(l;l)

and the eigenvalue C. The solution of equation (2.22) has

been achieved by many investigators; the most comprehen-

sive study was made by C. C. Lin [10]. The primary

results of interest are presented in a plot of wave number

versus Reynolds number, shown in Figure 2.1. The neutral

stability curve has a minimum Reynolds number, usually

referred to as the critical Reynolds number, of 7,700 at

a wave number of 1.02.

(1’1) is known, we can move on to the higher

(1:1)

Once ¢

order problem. Substituting ¢ on the right-hand side

of equation (2.16) through quantities given in equations

(2.19)-(2.21), we can calculate the right-hand sides of

these equations when the right-hand side contains either

(072) or ¢(2’2). The equation then becomes an inhomoge-¢

neous linear equation for both of these functions. We can

further continue our calculations for n = 3, etc., pro-

(n)
vided the constants C can be determined along the way.

Reynolds and Potter [1967] have suggested a method

to determine the eigenvalues C(n) for small magnitudes of

Ci. According to this method, we first have to determine

the adjoint function ¢ from the adjoint problem
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{ia(fifc(o))(Dz-K2) + 21a(Dfi)D - %(D2-K2)2}¢ = o (2.26)

4 = D4 = 0 at y = y1 and y = y2

(11)
Once the adjoint function 0 has been found, C

may be found from the equation

 

[y2 H @dy
1n

-iac(n'1) = a(n) + ib‘n) = y; (2.27)

I 2 G¢dy

y1

where the functions "G" and "Hln" are given by equations

(pm)
(2.19) and (2.20). The eigenfunctions ¢ can then be

determined from equation (2.16).

A very important conclusion which results from the

(n)
above analysis is that the constants C vanish for odd n

and the functions Hpn and ¢(p;n) vanish if (p + n) is odd.

Using numerical techniques, Reynolds and Potter

have solved the non-linear problem for the case of a plane

Poiseuille flow. Their starting point is the determination

of eigenvalues from the solution of the Orr—Sommerfeld

problem. These values are then used in the subsequent

numerical integration of the higher order differential

equations. For the determination of higher order eigen-

values C(n), an iterative scheme has been developed by
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them. For further details about this method, see their

publication [19].

A summary of pertinent constants needed for the

evaluation of C(Z) for two-dimensional disturbances in a

plane Poiseuille flow are shown in Table 2.1. At the

critical point on the neutral stability curve, a(2) is

positive (+ 19.7) indicating that the finite disturbances

actually grow at the critical Reynolds number for a plane

Poiseuille flow.

(2)
Stuart [26] considered a to be comprised of

three components, kl’ k2 and k3, given by the equation

(2) -
2a — k1 + k2 + k3 (2.28)

Stuart has shown that "k1" describes the change of the flow

of energy to the disturbance due to distortion of mean flow

by the Reynolds stresses and is negative; "k2" which

represents the flow of energy from the fundamental to

the second harmonic is also negative, while "k3" represents

the modification of the energy of the fundamental due to

distortion of its y-shape. In Table 2.1, the values of

kl, k2 and k3 are also listed. k1 and k2 are both nega-

tive while k3 is large and positive at the critical

point indicating that the distortion of the fundamental

is responsible for the unstable flow at the critical

point of linear theory (see Figure 2.1).
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More recently, George and Hellums [4] have per-

formed a comparative study of critical curves obtained by

various writers. These curves are adjusted to correspond to

a common basis of amplitude and Reynolds number and are

shown in Figure 2.2. Characteristic length and velocity are

the channel half height and maximum velocity, respectively.

Ribbon Oscillations
 

We wish to insert controlled amplitude and fre-

quency disturbances into the flow at particular locations.

A thin ribbon,stretched across the channel and driven

electromagnetically, was chosen to provide such distur-

bances. In the analytical models, sinusoidal disturbances

are assumed; thus a sinusoidal, or nearly sinusoidal,

disturbance is desired in the experimental situation.

For an electromagnetically driven ribbon, the

equation describing the amplitude of ribbon fluctuations

is(see Figure 2.3),

2 2

2—%—= g-§-%-+ EE cos wt (2.29)

at 82 p

y(0) = y(L) = 0

where p = linear mass density of the ribbon,

B = magnetic flux density,

ribbon current with circular frequency w,I cos wt

and

T = ribbon tension
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Assuming k = w/p7T, a standing wave solution of this

equation is

y = is sinl(kL) [sin (kz) + sin {k(L - 2)}

p (2.30)

 

- Sin (kL)] Cos wt

For resonance,

k = 2%; n = i l, H
-

N O O (2.31)

9
‘

Ribbon
 

   
RIBBON DEFLECTION FIG. 2.3

From equation (2.30), the maximum ribbon deflection

occurring at the midspan is

kL

_ IB 1 COS '2’

y ' 2 kL
(D 0 C05 —2

 

For a hard drawn copper ribbon of cross-section 3/16" x

0.0051", density = 0.322 lb/cu in, length = 18" and ten-

sion = 18 lbs, the resonant frequency is calculated to be

132 Hz. This figure has been confirmed by the experiment.



CHAPTER III

EXPERIMENTAL SETUP

The Flow System
 

The air channel built for the present study is

24 feet long, 35 inches wide with a constant gap width of

1/2 inch. It consists of two parallel plates, both being

hydraulically smooth. The bottom plate is made up of

three rolled and polished aluminum sections which are

sealed at the joints and polished smooth. The t0p plate

isaiseries of three acrylic (plexiglass) sections sealed

and polished at their joints. The side walls are aluminum

strips 1/2" x 1/2" in cross-section and 24 feet long.

Thirteen supporting members consisting of aluminum

bars 1" X 1" x 48" are fastened at intervals of 23" across

the width of the top plate. Their purpose is to hold the

top and bottom plates a constant distance apart of 1/2".

The top plate can be adjusted up and down by manipulating

bolts in these supporting members. The gap between the

plates is accurate to 0.500 t 0.010 inches.

The entrance region of the air channel consists

of a settling chamber 1 foot by 3 feet in cross-section

and approximately 5 feet long followed by a 6-foot long

streamlined contraction which reduces the l-foot dimension

27
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to the 1/2" gap between the plates. At the exit end of

the channel, there is a plenum chamber 8 feet by 5 feet by

4 feet with an exhaust fan assembly attached to it. This

draws the air through the assembly resulting in a vacuum

at all points in the channel. The details of the flow

system are shown in Figures 3.1 and 3.2.

The settling chamber filters out any dust particles

from the air before it enters the channel but primarily

removes residual large-scale motions from the air, pro-

viding a straight, uniform flow. It consists of a fiber-

glass filter, two honeycomb straw sections completely

filled with straws 8-1/4 inches long and 1/4 inch in

diameter and a series of 5 screens, 7 inches apart, with

mesh sizes of 40, 40, 80, 100 and 120, respectively. The

contracting region, beginning 7 inches following the 120

mesh screen, is constructed of sheet metal, wood and

fiberglass and is a cantilever-cantilever curve on top and

bottom giving zero curvature at both ends of the contrac-

tion. The lower part of the contracting region is a

strong matrix of wood and fiberglass covered with sheet

metal and the upper part is made of fiberglass polished

with a paint.

Measurements
 

Three hot wire probes were placed inside the chan-

nel at three different locations, all in the zone of fully

developed flow as shown in Figure 3.3. The first probe was
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placed at mid-height of the channel and about 2 inches upstream

of the ribbon. This probe recorded the maximum flow speed in

the channel. The distance of the second probe from the base

plate was the same as that of the ribbon. It was placed at 2—1/2

inches downstream of the ribbon and recorded the amplitude

and frequency of disturbance in the flow at that location.

The distance 2-1/2 inches was selected on the basis of

observations of the form of the disturbance wave on the

oscilloscope. It was observed that at closer distances,

the shape of the disturbance wave was distorted and non-

sinusoidal. The third probe was placed 27 inches down-

stream from the ribbon. The output signal from this probe

indicated the growth or decay of the disturbance wave.

The complete set of equipment used to collect the

data consisted of the following:

(a) Three Disa Type 55D05 constant tempera-

ture hot-wire anemometers.

(b) One Disa Type 55D10 linearizer.

(c) One Disa 530 DC Voltmeter.

(d) One Disa 55A60 Calibration unit.

(e) One Disa 55D35 RMS Voltmeter with RMS

and RMS squared outputs allowing readings

of intensity.

(f) Two TSI 1657 high and low pass filters.

(9) One Quan-Tech 304T wave analyzer with

RMS voltage versus frequency output pro-

viding a sweep between 0 to 6500 Hz.

(h) One Hewlett-Packard Model 130A double

sweep oscilloscope.
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(1) One Tektronix 564B fast writing storage

oscilloscope coupled with a Tektronix

C-40 camera providing a visual and hard

copy display.

(j) One Hewlett-Packard low frequency function

generator.

(k) One Hewlett-Packard high frequency oscil-

lator.

(1) One Hewlett-Packard Model 5754A Electronic

Frequency counter.

(m) One TSI Model 1060 RMS Voltmeter.

(n) One Varian Associates Model F80, X-Y

recorder.

(0) One McIntosh Model MC2300 Power Amplifier.

(p) One Kistler Servo Accelerometer Model 305T

with range 50 9 maximum.

Magnets

Controlled disturbances were introduced by a thin

ribbon vibrating in the channel near the lower wall. The

ribbon was placed in a magnetic field and the vibrations

were caused by passing an alternating current through it.

A magnetic field was provided by a series of horseshoe

permanent magnets placed above the ribbon outside the -

channel. Permanent magnets were preferred over electro-

magnets because of their lighter weight and easy maneuver-

ability. To cause the same effect as that of a high-

powered electromagnet as regards the amplitude of ribbon

vibrations, higher amplitude current was passed through

the ribbon. Intensity of the magnetic field at the ribbon

location was 480 gauss.
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Ribbon

A 3/16" wide by 0.0051" thick ribbon made of hard

drawn copper was used. Hard drawn c0pper is very strong

in tension (tensile strength = 48,000 psi) and yet is a

very good conductor of electricity. The use of narrower

ribbons was discarded because they produce disturbances

that were too small. The possibility of using a round

wire was completely ruled out because the disturbances

from the eddying wake from the vibrating wire were non-

sinusoidal and not controllable.

At first a ribbon length equivalent to the full

width of the channel was tried. However, at relatively

low speeds, the ribbon would flop back and forth. To

avoid the fluttering phenomenon either the tension must

be increased or the effective length of the ribbon must

be reduced. The ribbon could not resist the high tensions

required, thus two intermediate supports of 18 inches

apart were provided inside the channel.

The ribbon was stretched between two ends of a

brass yoke shown in Figure 3.3. The tension in the ribbon

was adjusted prior to insertion into the channel. The

yoke and ribbon assembly was then transferred to the test

section of the channel.

Sinusoidal A.C. excitation to the ribbon was pro-

vided by the schematic shown in Figure 3.4. A sinusoidal

signal of chosen frequency from a Hewlet-Packard Function



32

Generator was first amplified by a. McIntosh MC2300 Power

Amplifier and then fed to the ribbon.

Hot-Wire Instrumentation
 

Disa probes, Models 55Pll and 55R01, with Sum

platinum coated tungsten wire, were used throughout the

experiment. Initially, significant drift was noticed at

the output signal of the anemometers. This drift was due

to one or both of the following reasons:

(1) Oxidation of the probe wire: Oxidation which

occurs over a period of time causes the wire prOperties to

change, resulting in output drift. When this occurs the

wire should be changed.

(2) Weak batteries: Another cause of the peculiar

behavior of the anemometers was the change in the 9 volt

batteries contained in the instrument with use. This is

particularly noticed if the equipment has to be kept under

prolonged experimentation. The use of external 12 volt

wet batteries is much more desirable than the internal dry

12 volt batteries that supply current to the hot wire.

An overheating ratio of 1.8 was used for the probe

wires.

The anemometer schematic is shown in Figure 3.5.



CHAPTER IV

RESULTS AND DISCUSSION

Introduction
 

The object of the present study was to investigate

transition of a plane Poiseuille flow caused by distur-

bances of finite amplitudes and controlled frequencies. in)

do this we intended to map neutral stability curves, for

different amplitudes of disturbance, in the a-R plane and

thus to verify predictions of various non-linear theories

regarding the change in the transition Reynolds number with

a change in the amplitude of disturbance.

The theoretical work on non-linear stability of a

plane Poiseuille flow with which comparison will be made

has been done for the case of a fully developed flow; and

in order to render an appropriate comparison between the

theoretical and experimental investigations, the tests were

performed in the region of fully develOped flow between two

parallel plates.

The first step in the experiment was, therefore,

to examine the velocity profile at the test section. This

was done for a set of Reynolds numbers. It was observed

that for the working range of flow speeds, the profiles

were parabolic at the test section. One of these

33
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profiles is shown in Figure 4.1. Small deviations

from an actual parabola could be due to the following

reasons:

(i) a slight tilt of the probe wire with the

horizontal.

(ii) the probe, not being exactly parallel

with the direction of flow.

(iii) the position of the probe in the channel

being in slight error with the assumed

position.

The fact that the theoretical velocity profile is para-

bolic follows from the solution of steady state Navier-

Stokes' equations with no-slip condition at the solid

boundaries.

Growing, Neutrally Stable and the

Damping Modes
 

Depending upon the flow speed, the frequency, and

the amplitude, a disturbance may grow, be neutrally stable,

or decay as it travels along the flow. In a linearized

analysis, the amplitude of disturbance is assumed infin-

itesimally small and a formal solution of the Orr-

Sommerfeld equation with suitable boundary conditions

gives a relationship between the Reynolds number and the

wave number for which the growing, the damping, or the

neutrally stable states of the disturbance can be antici-

pated. C. C. Lin [10] solved the linearized case for a

plane Poiseuille flow and determined that the most unsta-

ble infinitesimally small amplitude disturbance behaves as
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neutrally stable for a minimum Reynolds number of 7100.

This figure of 7100 was later revised by L. H. Thomas [27]

to 7,700.

In a non-linear case, the disturbances have a finite

amplitude and, unlike the linear theory, various harmonics

are free to interact. Therefore, the simplifications

adOpted for the linear case cannot be used. The resulting

equations are an infinite set of coupled non-linear differ-

ential equations. An approximate solution of these equa-

tions is possible only if we assume the Ci component of

the complex wave speed as being very small in magnitude.

The conditions of growth or decay of the disturbance follow

from the value of Ci as being positive or negative.

Experimentally,this condition is investigated from the out-

put signal of probe 3 shown in Figure 3.3. If the dis-

turbance introduced by the ribbon is damped, the output

from probe 3 seen on the oscillosc0pe screen will not indi-

cate any substantial disturbance in the flow. A growing

mode will indicate turbulence, and a neutrally stable mode

will show a state of impending burst. This technique was

employed to determine the state of neutral stability for

disturbances of varying amplitudes and frequencies.

Figure 4.2 shows the various stages in which a wave having

a growing mode amplifies itself as it travels down the

stream. Higher harmonics grow in amplitude and distort

the shape of the wave; the eventual stage is turbulence

where all frequencies dominate the flow.
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According to the non-linear theory, if the speed of

the flow is held constant, an increase in the wave number

is associated with a monotonic decrease followed by a mono-

tonic increase in the amplitude of a neutrally stable dis-

turbance. This was examined experimentally. Figures 4.3

to 4.8 show the relationship between the intensity of dis-

turbance (which is related to the amplitude of disturbance)

introduced by a neutrally stable wave, and the wave number,

for various Reynolds numbers. According to these figures,

there seems to be no defined pattern in which the inten-

sity of disturbance varies with the wave number. Thus,

the theoretical relationship between these two variables

appears to be contradicted by the experiment.

To probe further, the cause of this contradic-

tion, a set of frequency spectra for a disturbance wave

haVing a growing mode was taken at various x-locations

downstream of the ribbon. Some results of these obser-

vations are shown in Figures 4.9 to 4.12. The manner in

which the various harmonics of the disturbance wave change

their magnitude does not follow any set rule. Higher har-

monics grow larger as the wave travels downstream. In

Figure 4.11, second harmonic contains even more energy

than the fundamental. This behavior of the disturbance

wave suggests that:

1. It is not always the fundamental harmonic

which triggers turbulence.
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2. It is not correct to assume the disturbance

wave of finite amplitude to be composed of

the basic Orr-Sommerfeld wave and its

Fourier components.

To comment on point (1), if energy is transferred

to the second harmonic, it may be the one to trigger

turbulence and not the fundamental.

To comment on point (2), let us consider a basic

property of a Fourier sequence. A Fourier sequence is

uniformly convergent unless there are some discontinuities

in the function which it represents. In non-linear

stability analysis, the Fourier series representing the

flow field are considered highly convergent. This is how

the series is truncated after the second harmonic with all

harmonics higher than the second completely ignored in the

analysis. This is in contradiction to the results shown

in Figures 4.9 to 4.12. Here, the harmonics higher than

the second contain substantial amounts of energy and can-

not be ignored. Figure 4.11 shows a situation where the

second harmonic is even more important than the fundamental

in bringing about the state of turbulence. This suggests

that:

1. Harmonics higher than the second are not

negligible

2. The use of Fourier series in the representa-

tion of the disturbance flow field may not,

after all, be an acceptable step.

Figure 4.13 represents neutral stability curves

for various amplitudes of disturbance in the a-R plane.
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Observations were extended to disturbances having very high

frequencies. A study of this figure suggests that there

is hardly any relationship between the theoretical and

experimental curves (see Figure 2.1 for theoretical

curves). Nevertheless, one thing is confirmed; that is,

as the amplitude of disturbance increases, the critical

Reynolds number (or the minimum Reynolds number), which

corresponds to the initial burst, decreases. The idea

that all zones above and below the well-defined theoretical
 

neutral stability loop (Figure 2.1) in the a-R plane are

stable seems invalid. There are instabilities in the flow

field where theory predicts none.

Measurements of Wave-Length
 

The wave speed is an important parameter of this

study and is determined by measuring the wavelength of

the disturbance. This was done for various frequencies

of disturbance at different speeds of channel flow.

A double sweep oscilloscope was used for measuring

the wave length. The input to the ribbon from the fre-

quency oscillator was connected to the X—terminals of the

oscillosc0pe and the output from the wire was connected

to the Y-terminals. A stationary Lissajous figure consist-

ing of a single closed loop was obtained since the fre-

quencies of both the input and the output were the same.

As the distance between the ribbon and the hotwire was
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changed, this figure changed from a straight line to an

ellipse, then to a circle, again to an ellipse, and

finally to a straight line inclined 90° to the first

straight line. This indicated that the phase between the

input to the ribbon and output from the wire had changed

by 180° and that the change in the spacing between the

ribbon and the wire was half the wave length. Figure 4.14

shows different stages of Lissajous figures as seen on

the oscilloscope screen.

The wave speed was then calculated by multiplying

the wave length by the frequency of oscillations. Figure

4.15 shows a plot between the normalized wave speed and

the frequency of disturbances. Normalization has been

done with reference to the average speed of flow. Two

important conclusions can be drawn from Figure 4.15.

U

1. —E%X§ is invariant with respect to

frequency of disturbances.

2. The speed of a wave with finite amplitude

is 1.2 times the average speed of flow.

This is approximately 3 times the speed

of a wave with infinitesimally small

amplitude as predicted by linearized theory.

Amplitude of Imposed Disturbance

Versus Depth

 

 

Figure 4.16 shows the amplitude distribution

(measured in terms of percent intensity of fluctuations

J ,2
u

I}

 x 100) over the lower half of the channel. At a
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constant channel speed, the experiment was repeated for

different frequencies of disturbance. Measurements of

intensity of fluctuations were conducted at the location

x = 2 1/2" and z = +3 (see Figure 4.17 for reference

coordinates). It was observed that the intensity of the

disturbance remains maximum in the vicinity of the "critical

* Ineaplane Poiseuille flow between the two parallellayer."

plates,there are two critical layers symmetrically located

on either side of the central core. In Figures 4.18 and

4.19,it is demonstrated that even though the location of

the induced disturbance nay be near the lower or the

upper plate, the intensity of the disturbance grows to a

maximum as we move towards the critical layer. This

behavior of the finite amplitude disturbances matches

with the behavior of infinitesimally small magnitude

disturbances of the linearized theory and Lin's statement

(1958) "that for disturbances in a parallel flow, all the

harmonic components simultaneously become important around

the critical layer" is verified.

Figure 4.20 shows the amplitude distribution along

the depth of the channel when the disturbance is introduced

at the mid-height of the channel. Unlike the critical

layer, the middle layer is highly stable and therefore, as

long as the disturbance does not have a very high initial

 

*The critical layer was defined by C. C. Lin to

be the layer on either of the points where Cr = U as pre-

dicted by linear theory. For channel flow this occurs at

y/h = i 0.9.
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amplitude, it is damped before it enters the sensitive

zones of the critical layers.

Transition Reynolds Number
 

Figure 4.21 shows a plot of percentage intensity of

disturbance versus the transition Reynolds number. The

intensity of disturbance was measured at a constant loca-

tion (x = 2.5"; y = —0.l4" and z = +3”) where the x, y, z

coordinate system is shown in Figure 4.17. Disturbances

of varying frequency were introduced by the ribbon.

Figure 4.21 demonstrates that as the Reynolds number is

decreased, higher amplitude disturbances are required to

bring about transition.

Effect of Ribbon Size and Supports
 

In order to determine the effect of the ribbon size

and its intermediate supports on the data, two separate

sets of observations were taken, one with the original rib-

bon replaced by another ribbon ofeadifferent cross-section

and the second with the intermediate supports (shown in

Figure 3.3) replaced by two 3" long aerofoil supports. Fig-

ure 4.22 shows a plot of the RMS value<1fthe output voltage

from probe 2 (Figure 3.3) versus frequency of disturbance

for a constant speed of the channel flow. For both ribbons ,

the RMS corresponds to the neutrally stable modes.

Sharp similarity between the two curves suggests

that the ribbon size does not affect the behavior of the

disturbance wave. The reason foraniearlier transition in
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the case of a wider ribbon could be due to the greater

amount of circulation introduced into the flow by the

wider ribbon.

Table 4.1 shows the RMS of the output voltage from

probe 2 for two different types of intermediate supports.

Here again, the channel speed was held constant and the

RMS was measured for neutrally stable modes. The type

of intermediate supports has little effect on the

experiment.

TABLE 4.1.—-R.M.S. Output With Bar and Aerofoil Supports.

 

  

 

Bar Supports Aerofoil Supports

Frequency (HZ) RMS Frequency (HZ) RMS

100 .023 100 .026

120 .0225 120 .022

200 .013 200 .0165

250 .0046 250 .0067

300 .0034 300 .0068

350 .00115 350 .0036

400 .00205 400 .0024

 

Measurement of v'-component of the

Disturbance Velocity

 

 

Theoretically, for a symmetrical velocity profile

like that of a plane Poiseuille flow, the v'-component of

the disturbance velocity at the middle height (y = 0) of

the channel should be zero. This was examined experi—

mentally by using an x-probe. The average speed of flow

in the channel was maintained constant at 18 fps (Reynolds
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number = 4687), and a disturbance with a growing mode and

having a frequency of 200 Hz was introduced by the ribbon.

Observations were taken at different x and 2 locations

shown in Table 4.2. Note that in this instance, a slight

decay occurs in the value of u' between 2.5" and 4" before

it finally grows.

TABLE 4.2.--u' and v' Components of the Disturbance Flow.

 

x (inches) 2 (inches)

 

(Distance Lateral

downstream distance u' (fps) v' (fps)

of the from the

ribbon centerline

of the

channel

2 . 5 " +3 1 . 22 negligibly Stall

+2 1 . 2 8 negligibly small

+1 1 . 26 negligibly small

0 l . l 5 negligibly small

-1 l . 23 negligibly small

-2 l . 2 6 negligibly small

-3 l . 3 2 negligibly snall

4" +3 0.83 1.35 x 10‘5

+2 0.78 4.06 x 10 4

+1 0 . 7 5 negligibly snall

0 0 . 6 9 negligibly small

-1 0 . 77 negligibly small

-2 0 . 81 negligibly 303.11

-3 0 . 6 8 negligibly small

 

the disturbance velocity is negligibly small.

It is evident from the results that the v'-component of
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Conclusions
 

The following conclusions are drawn from the

present study:

1. Marked differences between the shapes of the

theoretical neutral stability curve for finite amplitude

disturbances shown in Figure 2.1 and the experimental

curves shown in Figure 3.1 studied in conjunction with

frequency spectra shown in Figures 4.9 to 4.12 suggest

that the imposed disturbances become three-dimensional

downstream of the point at which they are introduced.

Therefore, in order to investigate theoretically a flow

containing finite amplitude disturbances, we should con-

sider three-dimensional disturbances in place of two-

dimensional ones.

2. The transition Reynolds number which cor-

responds to the state of an impending burst (also called

the critical Reynolds number) decreases as the ampli—

tude of the disturbance is increased.

3. It is not necessarily the fundamental fre-

quency introduced into the flow which triggers turbulence,

as is obvious from Figures 4.9 to 4.12. Energy may be

transferred to higher harmonics which then grow and cause

transition.

4. The speed of a wave with a finite amplitude

is 1.2 times the average speed of flow. This is approxi-

mately three times the speed of a wave with an infinitesi-

mally small amplitude as predicted by linearized theory.
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5. Regardless of the location where a disturbance

is introduced in a plane Poiseuille flow, the amplitude

of the disturbance is maximum in the vicinity of the

"critical layer" near each wall.

Suggestions for Future Research
 

One way to interpret three-dimensionality of the

disturbance wave could be due to an interaction of the

induced disturbance with the noise inherent in the flow.

Two steps are recommended in this regard:

l. Precise measurements of w'-component of

the disturbance at various locations in

the flow field.

2. Reduce the noise level of the channel

flow to a minimum and repeat the whole set

of data to examine whether or not the three-

dimensionality of the disturbance wave

still persists.

Another useful study would be to investigate

transition caused by finite amplitude disturbances in the

entrance region and to relate it with the findings of the

linearized analysis.

In the present study we could not determine the

contribution of sound generated by the vibrating ribbon

in the measured amplitude of the disturbance. If the

sound effect could be sifted out from the effect of

mechanical vibrations of the ribbon, we may possibly get

to the causes of three-dimensional behavior of the dis-

turbance wave. Even though it would not be possible to
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superimpose one effect on to the other due to their

non-linear nature, it may be a step forward in this

type of research.
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PHOTOGRAPH OF THE CHANNEL FIG.3.2
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STAGES OF GROWTH OF WAVE MOVING IN THE

DIRECTION OF FLOW FIG. 4.2
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NEUTRAL STABILITY CURVES FIG.4.I3
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LISSAJOUS FIGURES FIG-4J4
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