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ABSTRACT
M-Groups and ﬂLGroups
By

Paul Francis Murphy

The purpose of this paper is to investigate group theoretic
properties of M-groups. Interest in this area has been renewed by
the work of Dade, Dornhoff and Seitz.

The idea in this paper is to consider solvable aroups which
have no section of a certain type. The study of these types of sections
is motivated by well known examples of groups which are not M-groups.
A group G is a D-group if and only if:

i) there are primes p, q, p # q, such that G is a (p,q) group.

ii) G contains a normal non-abelian p-Sylow subgroup P such that
Z(P) is cyclic and P/Z(P) is elementary abelian.

iii) a Sylow q-subgroup of G has order q and acts trivially on
Z(P) and non-trivially on P/Z(P).

A group G is an E-group if and only if:

i) for some prime p, G has a non-abelian, normal p-subgroup P
such that P/Z(Pg is elementary abelian and Z(P) is cyclic.

ii) G acts irreducibly on P/Z(P) and Z(P) < Z(G).
A group G is an R-group if and only if G is an E-gqroup, and G has a
non-linear, faithful, primitive, irreducible representation.

The main results of the paper are:

i) Theorem 2.6: If G is a finite solvable group such that no
section of G is a D-group, then G is an M-group.



Paul Francis Murphy
ii) Theorem 3.2: Let G be a finite solvable group. G is an
-group (i.e. every section of G is an M-group) if and only
if G has no section which is an R-group.
The sufficient condition of Dornhoff and Huppert does not imply
Theorem 2.6 and their condition is proved as a corollary to Theorem 3.2.

Since Theorem 3.2 is clearly not a purely group-theoretic character-

jzation, the final section of the paper considers a possible improvement.
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INTRODUCTION

In this paper, all arbitrary groups are finite and all repre-
sentations are over the field of complex numbers ¢. M-groups are
characterized in the following representation theoretic manner: G is
an M-group if and only if each irreducible representation of G is
induced from a one-dimensional representation of a subgroup of G. The
problem of proving a purely group-theoretic characterization of M-groups
is unsolved. Vaguely, M-groups are (by set inclusion) between the
class of solvable groups and the class of supersolvable groups.

This thesis is concerned with the problem of learning more about
the group theoretic properties of M-groups. In studying this problem,
we are led to the investigation of a subclass of the class of M-groups.
G is an‘ﬁ:group if and only if every section of G is an M-group. The
main idea of the thesis is that by requiring that a solvable group have
no section of a certain type, we can then conclude that the group is an
M-group. These certain types of sections are called D-groups and
E-groups. They are motivated by examples in Chapter 1 of solvable
groups which are not M-groups.

The organization of this thesis is as follows. The first chapter
and part of the second chapter are expository in nature and provide
the reader with most of the background needed to understand the results
of the paper, and the development of the problem. The remainder of

Chapter 2 is the statement and proof of a group theoretic sufficient



condition for a group to be an M-group; and an example to show that

this condition is not implied by the sufficient condition of Huppert [10],
and Dornhoff [4]. Chapter 3 contains a characterization of'ﬁlgroups,

from which we obtain the sufficient condition of Dornhoff as a corollary.
This indicates that this characterization may be useful in proving
further group theoretic sufficient conditions. Finally, because the
characterization of M-groups is not purely group theoretic, Chapter 4

investigates the possibility of improving the results of Chapter 3.



Chapter 1

Background from Representation Theory and Character Theory

Definition: A representation T, of a group G, is a homomorphism
of G into the group, GL(V), of nonsingular linear transformations of
some finite dimensional vector space V over {. The dimension of V

is the degree of the representation T, and V is called the representation

space of T.

Remark: For the purposes of this paper, we shall always assume
that the ground field is the field ¢ of compléx numbers.

Definition: A representation T of the group G, with representa-
tion space V, is irreducible if there are no proper subspaces V] of V,
such that V]T(g) = V] for all g € G.

Definition: a) The character x, afforded by the representation
T of G, is the function of G given by: x(a) = trace (T(g)) for g € G.
b) The kernel of x, ker x = {ge G|T(g) = I'} = {ge G[x(g) = n}
where n is the degree of T. x is a faithful character if and only if
ker x = 1. ¢) X is irreducible if and only if T is irreducible.
d) Degree of x = Degree of T; in notation deg x = deg T. e) X is a
linear character if and only if A is afforded by a one dimensional
representation. f) ]G is the character afforded by the representation

T that maps G onto 1 and ]G is called the principal character. gq) If

X is a character of G, and H is a subgroup of G, xIH is the restriction

of the function X to H. h) If x and ¢ are characters of a group G



and X = ¢ + ¥ , where ¥ is also a character of G, then ¢ is called
a constituent of x. If ¢ is irreducible, then ¢ is an irreducible
constituent of X.

Definition: Let H be a subgroup of G and let G=UJ Ho,. IfS
i=1
G

is a representation of H, we define the mapping S~ of G, where SG(g)ij

is the submatrix in the (i,j) position of SG(g):

. S(giggg]) if (g5 9 93]) e H
S (g)'ij = 1
0 if(g;99;) ¢H

G is a representation of G. S

G

It can be shown that S is called an

induced representation.

Definition: Let H be a subgroup of G and let G = (L) Hg. If
i=1
¢ is the character afforded by the representation S of H, then we

i ; . _d ¥(g) ifgeH .
define the function ¥ on G:v (g) = 0 ifgéH- Then the induced

m

character wG, afforded by SG, is defined: wG(g) = I wo(gigggl) for
i=1

g € G.

Definition: A monomial matrix is a square matrix with exactly

one non-zero entry in each row and column. A permutation matrix is a
monomial matrix with the non-zero entries equal to 1.
Definition: A representation T of a group G is called a monomial

(permutation) representation if T maps G into a group of monomial

(permutation) matrices.

Definition: Let T be a permutation representation of a group G
and let V be the representation space of T. T(G) permutes the basis
elements of V over §. If T(G) acts transitively on the basis of V,

we say T is a transitive permutation representation.




Remark: Let M be the group of all n x n monomial matrices over
¢, and let D be the subgroup of M consisting of all the diagonal matrices.
Then, DA M, M = DSn and DN Sn = I, where Sn is the group of all n x n
permutation matrices. See Ore [13]. If M] is a subgroup of M and if
n is the natural homomorphism of M onto Sn, then we say n(M]) is the
group of permutation matrices associated with M]. Thus, if T is a
monomial representation of G of degree n, we call n°T the associated

permutation representation of T, since nT(G) is a group of permutation

matrices.

Definition: A monomial representation T of the group G is
transitive if the associated permutation representation of T is transi-
tive.

Definition: Two representations T and T', are equivalent
if there exists a non-singular matrix S with entries in ¢ such that
s"17(g) s = T'(g) for all g € G.

The following is an important characterization of equivalent
representations. (See Feit [5], page 12)

Theorem 1.1: Two representations T, T' of the group G which
afford characters ¢, ¢' respectively are equivalent if and only if
¢ =9'.

Definition: A group G is an M-group if and only if every
irreducible representation of G is equivalent to a monomial representation.

The next theorem and corollary yield a representation theoretic
characterization of M-groups. (For proofs, see Scott [15] page 364.)

Theorem 1.2: A representation T of a group G is equivalent

to a transitive monomial representation if and only if T is induced



from a one-dimensional representation S of some subgroup H of G.

Corollary 1.2.1: A group G is an M-group if and only if every

irreducible representation T of G is induced from a one-dimensional
representation S of some subgroup H of G.

Corollary 1.2.1 is often used as the definition of M-group, as
in Huppert [9].

Definition: If ¢ and y are characters of a group G, then we

define the inner product ( , )g : (¢, ¥). = —T%T— z ¢(a)u(g).

Calculations using this inner product are verygsgeful when work-
ing with induced characters. Two results that indicate this are:

1) If x is an irreducible character of G, then (x,w)G equals
the number of times that x appears as an irreducible constituent
of any character V¥ of G.

2) Frobenius Reciprocity Law: If H is a subgroup of the

group G and Z is a character of H; X, a character of G, then
(Ko By = (X 5 T

The problem of finding a group theoretic characterization of
M-groups is unsolved. In the next chapter, some of the difficulties
that arise in working with the class of M-groups will be mentioned.
Several mathematicians have proved sufficient conditions for a group
G to be an M-group. The following condition is the only necessary
condition for M-groups and gives us the only information that we
have about an arbitrary M-group.

Theorem 1.3: (Taketa [18]) Every M-group is solvable.

Because of the importance of this theorem, we include its proof.

First we extract two elementary but useful facts found in the proof



and write them as lemmas.
Lemma 1.3.1: If H is a non-trivial subgroup of G, then H
is not contained in the kernel of some irreducible character of G.
Proof: See Feit [5] for definition and properties of the right
regular representation of G.
Lemma 1.3.2: If X is a linear character of a subaroup H of
the group G, then

ker 2 = Core (ker 1) = N y'](ker Ay
yeG
G

m
Proof: Let G = |_J Hx, and Tet g € ker A"
i=1
If S is a representation of H which affords A, then (SG(g))ij =
-1y _)1ifi=3 -1 :
S(xi 9% ) = { 0 if i,ﬂkj - It follows that x,gx; e ker 1, for all i,

1<i<m Thus ge x;](ker A)x;.

i=1
Now let y be an arbitrary element in G. Since y = hxk for some

k, 1 <k <m, and since ker X 4 H,

y'](ker Ny = x;]h'](ker A)h Xy = x;](ker A)xk.

Therefore {f}‘x;](ker A)xi =N y'](ker A)y and g € Core(ker 2).
yeG

On the other hand, if g € Core(ker 1),

B(q) = 2 x (] . _ .6 -1
(g) = .leo(xi gxi) =m= x(1) since (xi g xi) e ker A.
'|=

Thus g € ker AG.

Proof of Theorem 1.3: Let G be an M-group which is not solvable.

Then 1 # 61 = 6U*1) ¢or some i. By Lemma 1.3.1, let T be an
irreducible representation of minimal degree such that G(i) £ ker T, and

let x be the character afforded by T.



Since G is an M-group, X = AG where A is a linear character of

some subgroup H of G. Thus deg x = |G:H| . Let u-= 1y = lGl . By
H

Frobenius Reciprocity, (]G, uG)G = (IH, u)H = 1. Therefore ]G is an

irreducible constituent of uG. Since deg uG = |G:H| , deg ¢ < deg uG =

G Hence G(i) < ker z,

for all irreducible constituents ¢ of uG, so G(i) < ker uG.

uG

deg x , for any irreducible constituent ¢ of u
By Lemma 1.3.2, ker = Core(ker u). Since u = s Core(ker u) =
Core(H) and 6(i) < H. Since ali) - G(i+]), a() <H'. Since H' is
contained in the kernel of any linear character of H, G(i) < ker A,
Finally, since 6(1246 and G(i) < ker A, then G(i) < Core (ker 1) =

ker AG

= ker X. However this contradicts our choice of ¥.
Solvability is certainly not a sufficient condition for a group
G to be an M-group, as is illustrated by the followinag examples. The
two examples are given in detail, since they will be used to motivate
ideas in later chapters.

Example 1.1: Let Q =(x,y|x4 = y4 =1, x2 = yz, y']xy = x’t) .
the quaternion group of order 8, and let ¢ € Aut Q = S,, with lo] = 3.
o is defined on Q: o(x) =y, oly) = xy, o(xy) = x.

Now consider G = Q <o), the relative holomorph of G and <o) .
The only elements of Q fixed by @) are 1 and x2. Thus x2 = Z2(Q) = Z2(G).
G/Q is abelian, so G' < Q.

If |G'] =2, G' = Z(G) and G/Z(G) is abelian, so G is nilpotent,
which implies G = Qx <o), a contradiction.
If |G'| =4, G"' =¢x) or<y> orxyD . However, none of

these groups is normal in G, since o permutes x, y, and xy, a contradiction.

Therefore |G'| = 8 and G' = Q. Hence G has 3 linear characters.



G/Z(G) contains no element of order 6, since 0 permutes x, y, and xy,
s0 G/Z(G) Y A,.

Therefore G has irreducible characters of degree 1, 1, 1, 3.
Since the sum of the squares of the irreducible characters of G is 24,
the degrees of the remaining characters must be 2. However G' = Q
implies that G has no subgroup of index 2. Thus G is not an M-group.

Before proceeding to Example 1.2, we introduce the following
concepts.

Definition: If H4 G and S is a representation of H which
affords the character ¢ , then we define the following:

a) For a fixed g € G, Sg, the conjugate representation is

defined: S9(h) = S(g'lhg) for any h € H. The conjugate character

¢J is the character afforded by s9.
b) The inertial gqroup of ¢ , I(¢) is defined: I(¢) =

{gea |¢g = ¢}. Since ¢ is constant on conjugacy classes of H,
H < I(¢) <G.

The following results are due to Clifford [2], and are essential
in working with induced representations.

Theorem 1.4: Let H 4 G, and x be an irreducible character of
G. Then le = k(o + ¢gz + 70+ ¢gt) where ¢ is an irreducible character
of H, and { ¢gi, 1 <1<t} is acomplete set of conjugate characters of
¢ and k is a positive integer.

Theorem 1.5: Let H 4 G and let x be an irreducible character
of G. Let ¢ be an irreducible constituent of XIH and let ¢ be an
irreducible constituent of x|1(¢) such that ¢ 5-C|H . Then x = ;G.

Theorem 1.6: Let H 4 G and |G:H| = p, a prime. If ¢ is an
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irreducible character of H and I(¢) = G, then there is an irreducible
character x of G such that XIH = ¢.

Finally, we use the following result about extraspecial p-groups.
(Feit [5], page 128).

Theorem 1.7: If P is an extraspecial p-group of order p3

, then
every non-linear character'of P has degree p.

Example 1.2: Let P be an extraspecial p-group of order p3 and
exponent p, with p, an odd prime, such that p + 1 is divisible by an
PadfP =, 2l = [ysz] = 1, [xy1 = 2

SL(2,p) is the group of outer automorphisms of P which fix Z(P), (Winter

odd prime, q. P = <x.y,2|><P =y

[19]). Since |SL(2,p)| = p(p-1)(p+1), P has an automorphism,c , of order
q which fixes Z(P). o acts non-trivially on P/Z(P), an elementary
abelian group of order pz, (Gorenstein [7], page 178).

Every non-zero element of P/Z(P) generates a one dimensional
subspace of P/Z(P), but p-1 elements generate the same one dimensional
subspace. Thus there are E:}l = p + 1 one dimensional subspaces of
P/Z(P). SL(2,p) acts transitively on the one-dimensional subspaces of
P/Z(P).

Let K be the subgroup of SL(2,p) which fixes a one dimensional
subspace of P/Z(P). Since SL(2,p) acts transitively on the one-
dimensional subspaces, |SL(2,p):K| = p+1, the number of such subspaces.
Since |o| 'p+1, o ¢ K, i.e., 0 fixes no one dimensional subspace of
P/Z(P).

Now consider the group, G = P<0) , |G| = p3q. Since |P'| = p,
P has p2 linear characters. By Theorem 1.7, the remaining irreducible

characters of G have degree p, and there are (p-1) such characters



N

since |P| = p3 = pz(l)2 + (p-l)(p)z. Let v be a non-linear irreducible
character of P. Since P4 G, and lG:P| = q, a prime, using Theorems 1.5
and 1.6, either

a) wG is irreducible, or

b) X|p = ¥ for some irreducible character X, of G.

Suppose G is an M-group.

If a) holds, G has a irreducible character of degree pq, namely
wG. Since G is an M-group, there is a subgroup, H of G and a linear char-
acter A of H such that A6 = Y&, since IH| = p?, Z(P) = Z(6) < H and
[W8(z)] = | AG(Z)I = pq for each z € Z(G). Therefore ng IWG(Q)l'Z
p(pq)2 > |6]. This contradicts the assumption that v is irreducible.

If b) holds, then since G is an M-group, G contains a subgroup

H of order p2

q, since deg X = p. If S is a Sylow p-subgroup of H,
Sd4 Hsincep >q. Since €92 < Hand Sq P, S4 G. Therefore
S/Z(P) 4 G/Z(P). Since S/Z(P) < P/Z(P), © fixes a one dimensional
subspace of P/Z(P), a contradiction. Therefore G = P (02 is not

an M-group.



Chapter II

M-Groups

This chapter is partly expository and is designed to show how
the results of this thesis fit in with the current knowledge of M-groups.
The literature on M-groups is rather limited and new results have been
infrequent. The recent work of Dade provides a partial explanation.
(See Huppert [9], page 583 for proofs).

Theorem 2.1: (Dade) If G is an M-group and C is a cyclic
group of prime order, then the regular wreath product G ﬂ# C is an
M-group.

Corollary 2.1.1: (Dade) Every solvable group can be embedded

in an M-group.
Example 2.1: If G = Qo) , as in Example 1.1 and |C| = |G/Q]| = 3,
then G < Q ’y C. (See Huppert [9], page 98). By Theorem 2.1, Q " C s
an M-group which contains a subgroup Q <o) , which is not an M-group.
Example 2.2: (Dornhoff [4]) The group in this example is also
an M-group which contains Q€o> ., Let Q, Q] be two quaternion groups of
order 8, and let QQ] be their central product of order 32. Let o be
an automorphism of order 3, such that Qo = qQ, Q? = Q], o non-trivial on
both Q and Q]; 0 is described in Example 1.1. Then the relative holomorph
G = QQ, <o) is an M-group, and Q {o) < G.
The results of Dade give us an idea of the size of the class of

M-groups, and further provide us with examples of M-groups, which have

12
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subgroups which are not M-groups. It is not known whether a normal
subgroup of an M-group is an M-group, but there is the following theorem.
Theorem 2.2: (Dornhoff [4]). If G is an M-group and H is a normal
Hall subgroup of G, then H is an M-group.
We now move to a consideration of sufficient conditions, and
introduce the needed terminology.

Definition: A section of a group G is a homomorphic image of

a subgroup H of G.

Definition: Let H, be the quaternion group of order 8 and let
Hp, for p an odd prime, be the extraspecial p-group of order p3 and
exponent p. Then a group G is Hp-free if G has no section isomorphic
to Hp.

Definition: An irreducible representation T of a group G, with
representation space V, is imprimitive if V = V] ] V2 ® oo 0 Vr where
V., 1 <i < r, are subspaces of V and r > 1, and each ViT(g) = Vj for
1<j<randged@.

An irreducible representation is primitive if it is not imprimitive.
An irreducible character X is primitive if it is afforded by an irreduc-
ible primitive representation.

Definition: G is a primitive linear group, if and only if G has

a faithful, primitive, non-linear, irreducible representation. Thus,

for the purposes of this paper, all primitive linear groups are over C.
Theorem 2.3: (Curtis-Reiner [3], pp. 346-48). Let T be an

irreducible representation of a group G. T is primitive if and only if

T is not induced from any irreducible representation S of a subgroup H of G.

Definition: A group G is an A-group if G is solvable and every
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Sylow p-subgroup of G is abelian for all p| |G| .

In the following theorem, Huppert aeneralized the sufficient
conditions of [t0 [11], and Zassenhaus [21].

Theorem 2.4: (Huppert [10]). If a solvable group G has a normal
subgroup N, such that G/N is supersolvable, and N is an A-group, then G
is an M-group.

In particular, all supersolvable groups, and all A-groups are
M-groups. Theorem 2.4 is implied by the following theorem of Dornhoff.
However, Seitz and Wright [17], showed that the two theorems are actually
equivalent.

Theorem 2.5: (Dornhoff [4]). If a solvable group G has a
normal subgroup N such that G/N is supersolvable, and the Sylow p-subgroups
of N are Hp-free for each prime p, then G is an M-group.

We will present a proof of Theorem 2.5 in Chapter 3, as a corollary
to another result. Now we present a collection of lemmas which are often
used in this paper. Specifically, they will be used in the proof of
the next theorem. Proofs of known results are presented when it is
thought that the proof is different than existing proofs. For con-
venience, we will call a faithful, primitive, non-linear irreducible

representation (character) a restrained representation (character). Thus,

for example, G is a primitive linear group if and only if G has a re-
strained representation.
Lemma 2.6.1: (Blichfeldt [1]). If G is a primitive linear
group, then all normal abelian subgroups of G are contained in Z(G).
Proof: Let H be a normal, abelian subgroup of G, and let g be

g g
a restrained character of G. By Theorem 1.4, ;IH = k(o+¢ 2+---+¢ t).
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If 1(%) 4 6, by Theorem 1.5, ¢ = ¢P where y is an irreducible constituent
of c|1(¢), such that ¢ < wIH, a contradiction.

So I(¢) = G. This implies CIH = k¢. Since H is abelian, ¢ is
linear and z(1) = k. Therefore clH = ¢(1)¢, and for all h € H,
z(h) = z(1)w,w € ¢. If T is a representation of G that affords z, T(h)
is a scalar matrix for each h € H. Thus T(H) < Z(T(G)). Since T is
faithful, H < Z(G).

Lemma 2.6.2: (Feit [5], page 46). If H <K <G, and 6 is a
character of H, then (GK)G = eG.

Lemma 2.6.3: Let x be an irreducible character of the group G
and Tet H < ker x < G with H4 G. Let x' be the character of G/H

G/H G

associated with x(i.e. x'(Hg) = x(g))y if x' = A*"/", then x = 17,

(where X' is a character of some subgroup K/H of G/H and ) is the
associated character of K).

m m
Proof: Let G =U Kgi. Then G/H =U (K/H)Hgi.
i=1 i=1

m ] - ]
28(g) =_Z,Ao(g}]991) =.Z]A0(Hgi]991) =, G/H
= 1=

i=1

(Ha).

A 8M(Hg) = x (Hg) = x(g). Therefore x(a) = 2%(q).

Lemma 2.6.4: If G is a primitive linear group, then Z(G) is
cyclic.

Proof: Let T be a restrained representation of G. T(Z(G)) is
a subgroup of the group of scalar matrices, whose entries are from the
cyclic group of nth roots of unity where n is the exponent of G. Thus
T(Z(G)) is a subgroup of a cyclic group, and thus is cyclic. Since T

is faithful, Z(G) is cyclic.
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Lemma 2.6.5: Let G be a solvable, primitive linear group. Then
G has a normal, non-abelian p-subgroup P such that P/Z(P) is elementary
abelian and |P'| = p.

Proof: Let M/Z(G) be a minimal normal subgroup of G/Z(G). By
Lemma 2.6.1, M is non-abelian and therefore M/Z(G) is elementary abelian
of order p", r > 1. If (|M/Z(G)| ,|Z(G)|) = 1, M = AZ = A x Z, where A
is an elementary abelian subgroup of M of order pr; this implies M is
abelian, a contradiction. Therefore p ||Z(G)]| .

Let P be a Sylow p-subgroup of M, and let Z(G) = (PN Z(G)) x Z,.
Clearly (PN 2(G)) < Z(P). [M| = p" |2(6)], [P| = p" |PN Z(G)| and
|Z] = PN Z(G)||Z]|. We have Z; 4 M and PZ, <M. By the above,
|PZ]| = |M| . Therefore M = PZ, = P x Z; and P char M 4 G, so P4 G.
Hence Z(P) 4 G, and since Z(P) is abelian Z(P) < Z(G), by Lemma 2.6.1.
Hence Z(P) = Z(G)N P. Since M = PZ(G), P/Z(P) = P/Z(G)nP = PZ(G)/Z(G) =
Z(P) and

A"

M/Z(G). Therefore P/Z(P) is elementary abelian. Hence P'

A

P' is cyclic since P' < Z(P) < Z(G), which is cyclic by Lemma 2.6.4.

P e Z(P) and 1 = [xp,y] = [x,y]P. (See Huppert

Hence for x, y e P , X
[9], page 253). Since P' is cyclic, | P'| = p.

After considering Examples 1.1 and 1.2, we are led to the following
class of groups.

Definition: A group G is a D-group if it satisfies the following
properties:

1) there are primes p, q, p # q such that G is a (p,q) group.

2) G contains a normal non-abelian p-Sylow subgroup P such

that Z(P) is cyclic and P/Z(P) is elementary abelian.
3) A Sylow g-subgroup of G has order q and acts trivially on

Z(P) and non-trivially on P/Z(P).
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Definition: A group G is a Do-group if no section of G is a
D-group.

Lemma 2.6.6: Subgroups and factor groups of Do—groups are Do-groups.

Proof: Obvious.

Theorem 2.6: A solvable Do—group is an M-group.

Proof: Let G be a minimal counterexample and let C be an irre-
ducible non-monomial character of G. By Lemma 2.6.6, every subaroup and
factor group of G satisfy the hypothesis of the theorem. Therefore
every proper subgroup and factor group of G is an M-group. Using this
fact and Lemmas 2.6.2 and 2.6.3, ¢ is a restrained character, and G is
a primitive linear group.

By Lemma 2.6.5, G has a normal, non-abelian subgroup P such that
P/Z(P) is elementary abelian and Z(P) < Z(G).

Now let H be the centralizer of P/Z(P) in G. Suppose H # G.

Then, there exists y € (G-H) such that Hy has prime order q. Suppose

q % p. Consider {y)> P/<y9> . Notice that we can choose y so that

pT lyl . 1fp| lyl , i.e. lyl = pan, then since (Hy)q = H, (Hy)pa $ H.
Hence ypa € G-H and (H yp )q = H. So we can use ypa if needed. Since

Z(P) < Z(G) and yq € H, yq stabilizes the normal series 149 Z(P)<4 P.
Since (| y9 1, p) = 1, y? centralizes P (see Gorenstein [7], page 178).
Thus <y%> 4 <y> P and <y> P/ <y9> is a D-group. This contradicts
the hypothesis of the theorem, so G/H is a p-group.

Thus, H contains a Sylow q-subgroup of G for each q $ p. Thus for
any such q, there is a Sylow q-subgroup, Sq of G such that Sq centralizes
P/Z(P). Therefore Sq stablizes the normal series 1 4 Z(P)4 P and as
above, S_ < C.(P). Since this is true for any q $ p, 6/Cg(P) is a

q
p-group.
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We now assert that CICG(P) is reducible. Let T be a representation
of G which affords ¢. If T is irreducible on CG(P), then T(P)
centralizes the irreducible set T(CG(P)). By Schur's Lemma (Feit [5],
page 5), T(P) consists of scalar matrices. Since T is faithful, P < Z(G),
a contradiction.

Since G/CG(P) is a p-group, we can form the normal series:

G=Hy2Hy 2o 20y 2 Hiy

for 0 <k <n. For some i, 0 < i <n, A is irreducible and %] H is
i i+]

reducible.
92 gt
By Theorem 1.4, C|H = k(¢+d “+ec+¢ ). If I(¢) % G,
i+
by Theorem 1.5, ¢ = wﬁ where ¥ is an irreducible character of I(¢) such
that ¢ < le » a contradiction.
i+
If I(¢) = G, then we consider the irreducible character CIH of Hi’
i

and we see CIH = (CIH )IH . So we can consider the irreducible
] i+l

i+l
character clHi being restricted to the normal subgroup Hi+1 of index

p in H,. Since IG(¢) = G, IH1(¢) = H;. By Theorem 1.6, (C|H1)|H1+] = ¢,
a contradiction since (c)lHi+1 is reducible.

The only remaining possibility is that G = H = CG(P/Z(P)). There-
fore a Hall p'-subgroup K of G centralizes P/Z(P) and Z(P), so as before,
K j_CG(P) and G/CG(P) is a p-group. We have just shown that this case
leads to a contradiction, and the theorem is proved.

It might be asked whether it is possible to extend Theorem 2.6 to
a result of the form of Theorem 2.5 i.e.: If G is solvable and N4 G
such that G/N is supersolvable and N is a Do-group, then G is an M-group.
The answer is negative since 0 {o)of Example 2.1 satisfies the hypothesis,

but is not an M-group.
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We now require some concepts from the theory of formations in
order to describe the results of Seitz [16]. We shall apply these
results as well as our Theorem 2.6 to an example.

Definition: A class F of finite groups is a formation if:

1) Ge fimph‘es 6° € F for all epimorphic images 6% of G.

2) G/Ny, G/N, € 5F implies G/N; N N, eF .

Definition: A formation F is saturated if G/#(G) € 'F implies
Ge7F.

Definition: For every prime p, let ¥ (p) be a formation. A

class F of groups is called a locally defined formation, defined by

F(p), if ‘F consists of those groups G having the following properties:

N e { lel itF () -4

2) if H/K is a chief factor of G such that p| | H/K |, then

6/C4(H/K) € F (p), where C.(H/K) = {a ¢ 6|h9K = hK for
allheH ={geG| [H, g Je K1

Remark: If ‘¥ is a saturated formation of solvable groups and

contains every nilpotent group, then G € ¥ if and only if G/Z(G) ¢ ¥ .
This fact follows from the theorem of Lubeseder [12], that a saturated
formation of solvable groups is locally defined. Classes of groups,

X, where G € X if and only if G/Z(G) € X are used in the work of Seitz,
and saturated formations which contain every nilpotent group provide
examples of such classes.

The classg’ of supersolvable groups is a saturated formation
which is locally defined as follows: for all p,d(p) consists of all
abelian groups with exponent dividing p-1. (See Huppert [9], paae 712,
Hilfsatz 8.3).
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With this background, we now proceed to the sufficient condition
of Seitz [16], which implies Theorem 2.5.

Definition: Let& be the union of all classes of solvable
groups X such that X is subgroup closed, X is closed under homomorphisms,
X consists of M-groups, G/Z(G) is in X if and only if G is in X.

Theorem 2.7: (Seitz [16]). Let G be a solvable group such that
NdGand G/N ¢C . Suppose the p-Sylow subgroups of N are Hp-free for
each prime p. Then G is an M-group.

Corollary 2.7.1: (Seitz [16]). Let F be a saturated formation

containing all nilpotent groups, and let F be subgroup closed and consist
only of M-groups. If G/N is in F, and the p-Sylow subgroups of N
are Hp-free for all primes p, then G is an M-group.

Let ‘f=J » the formation of supersolvable groups, and we have
Theorem 2.5. In the process of obtaining this generalization, Seitz
has introduced conditions which are not purely group theoretic; specifi-
cally, the condition on & that G ¢ & implies that G/Z(G) is an M-group
if and only if G is an M-group.

Proposition 2.8: (Seitz [16]). There exists a saturated form-

ation :'Fsuch that Jc..‘f:fis subgroup closed,ycontains every nilpotent
group and \'7’ containsfonly M-groups.
The formation exhibited in this proposition is locally defined
as follows:
a) For p odd, F (p) is the class of abelian groups with
exponent dividing p-1.

b) ,‘7-"(2) is the class of elementary abelian 7-groups.
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Theorem 2.9: (Dornhoff [4]). If P is a non-abelian 2-group with
an automorphism o, of odd order n, acting without fixed points on
P/#(P), P has a quaternion section.

Theorem 2.9 will be used in the following example which gives
groups which satisfy the hypothesis of Theorem 2.6 but not of Theorem 2.5.

Definition: A Suzuki 2-group is a non-abelian 2-group, with more
than one involution, having a cyclic group of automorphism which permutes
its involutions transitively.

2n where

Example 2.3: Let P be a Suzuki 2-group of order 2
(2"-1) > 3 is a Mersenne prime. As described in Higman [8], P has the
following properties:

a) P has (2"-1) involutions and P has an automorphism a which

permutes the involution of P cyclically; |a| = 2"-1

b) z(P) =P' = 2(P) = #(P); | Z(P) | = 2"

c) P has exponent 4.

Consider the relative holomorph, G = P<a» . Since o acts
fixed-point-free on the involutions of P and exp P = 4, o acts fixed-
point-free on P. (i.e., if pe P, |p] =4 and a(p) = p, then

2 , a contradiction since p2 is an involution.) The property

a(p?) = p
of being fixed-point-free is preserved under homomorphic images, so
a acts fixed-point-free on P/® (P). (See Gorenstein [7], page 335).
By Theorem 2.9 P is not Hp-free. Also 14 #(P)q P4 G is a chief
series for G, since| #(P)| =| P/&(P)| = 2" and |a|] = 2"-1, a prime.
Any proper subgroup P], normal in G, contains an involution and thus
contains Z(P). So P is minimal in G with the property that G/P is

supersolvable. Since P is not Hp-free, Theorem 2.5 does not apply.
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Suppose G has a section H/K, which is a D-group. Then we can
assume {a) < H; so K is fixed by o . If K $ 1, K contains an involution
and Z(P) < K. Since o acts cyclically on P/Z(P), K = Z(P) or K = P.

But since H/K is a (p,q) group, K = Z(P) and H = G. However P <a) /Z(P)
has an abelian p-Sylow group and is not a D-group. Thus K = 1. Thus H
has a normal non-abelian p-Sylow subgroup P"such that Z(P) is cyclic and
H acts trivially on Z(ﬁ). This implies o fixes the involution in 2(P),

a contradiction. So G is a Do-group. Thus Theorem 2.6 implies that G.
is an M-group.

In the case n = 3, Seitz [16] shows that G belongs to the
formation described in Proposition 2.8, and thus by Corollary 2.7.1,

G is an M-group. Although it appears possible to exhibit a formation
like that of Proposition 2.8 for the cases where (2"-1) is any Mersenne

prime, Theorem 2.6 is easier to apply.



Chapter III

~
M-Groups

Definition: A group G is an ﬁlgroup if and only if every section
of G is an M-group.

In the previous chapter, we considered the following type of
theorem:

If G satisfies hypothesis (H), then G is an M-group. For each
such theorem, the following hold:

1) every subgroup S of G satisfies (H).

2) every homomorphic image, G/K, of G satisfies (H).

1) and 2) imply that every homomorphic image of every subgroup of G
satisfies H, so every section of G satisfies H. Therefore, since

we proved G is an M-group if G satisfies (H), then every section of G
is an M-group. Thus each sufficient condition in the previous chapter,
is actually a sufficient condition for G to be an‘ﬁ:group.

In this chapter, we will prove the same type of theorem:

If G satisfies (H), (where (H) is a hypothesis satisfied by all
sections of G), then every section of G has property W.

The following reasoning will be used. Let G be a minimal counter-
example. Since every proper section of G satisfies (H), every proper
section has property W. Therefore only G itself does not have property
W. Then, we will show that this leads to a contradiction.

Theorem 3.1: G is anlﬁ-group if and only if no section of G has

a restrained character.

23
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P~

Proof: Certainly, if G is an M-group, every non-linear irreducible
character of every section of G is induced from a linear character.

On the other hand, let G be a minimal counterexample, i.e. no
section of G has a restrained character and G is not an‘ﬁ:group. Using
the reasoning described above, G itself is not an M-group. There is
a non-monomial irreducible character, ¢z, of G. Since every proper
section of G is an M-group, we can use Lemmas 2.6.2 and 2.6.3 to show
that ¢ is a restrained character of G, a contradiction.

Defintiion: A finite solvable group G is called an E-group if
the following hold:

1) For some prime p, G has a non-abelian, normal, p-subgroup P

such that P/Z(P) is elementary abelian.

2) G acts irreducibly on P/Z(P) and Z(P) < Z(G); Z(P) is cyclic.

Definition: An E-group which has a restrained character is
called an R-group.

Definition: A solvable group G is called an Eo-group (respectively
Ro-group) if and only if G has no section isomorphic to an E-group
(respectively R-group).

Theorem 3.2: Let G be a finite solvable group. G is an'ﬁ;group
if and only if G is an Ro-group.

Proof: If G is an ﬁ-group, clearly G is an Ro-group by Theorem 3.1.

On the other hand, let G be a minimal counterexample such that G
is an Ro-group, and G is not an ;Lgroup. Thus G itself is not an
M-group. Let ¢z be a non-monomial irreducible character of G. By the
method of Theorem 3.1, z is a restrained character of G and G is a
primitive linear group, and G has a normal non-abelian p-subgroup P,

such that P/Z(P) is elementary abelian, and Z(P) < Z(G). Also Z(G)
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contains all normal abelian subgroups of G.
If G acts irreducibly on P/Z(P), then G is an R-group, a contra-
diction. Thus G acts reducibly on P/Z(P) and irreducibly on some

subgroup P]/Z(P) $ 1 of P/Z(P). Thus P]/Z(P) 4 G6/Z(P), so P, 4 G.

1
If P] is abelian, P] < 2(6), and P].i Z(P), a contradiction. So
P]/Z(P) is elementary abelian of order p°, s > 1. Z(P]) 4 G implies
Z(P,) < Z2(6). Since Z(P) < Z(Py) <Py <P, Z(P) = Z(P,).

Thus G acts irreducibly on P]/Z(P]) where P.l is non-abelian,
and Z(P]) < Z(G). Therefore G is an R-group, a contradiction.

Theorem 3.3: (Rigby [14]). If G is a solvable primitive linear
group, and P is a normal non-abelian p-subgroup in G, then P is not
Hp-free.

Using this result of Rigby, we now prove Theorem 2.5 as a

corollary to Theorem 3.2.

Corollary 3.2.1: If a solvable group G has a normal subgroup N

such that G/N is supersolvable, and the Sylow p-subgroups of N are
Hp-free for each prime p, then G is an Ro-group (i.e. an FLgroup).

Proof: Let G be a minimal counterexample. By our previous
discussion, and the fact that all proper sections of G satisfy the
hypothesis, G is itself an R-group. Therefore, G has a normal, non-
abelian subgroup P, such that Z(P) < Z(G) and G acts irreducibly on
P/Z(P). Also G is a primitive linear group.

Since (PN N) Z(P) 4 G and G acts irreducibly on P/Z(P),
(P N) Z(P) = Z(P) or (PN N) Z(P) = P.

Suppose (PN N) Z(P) = P. Since P is non-abelian, PN N is

non-abelian. Since PN N QA G, PN N is described in Theorem 3.3,
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and PN N is not Hp-free. Since PN N < S , a Sylow p-subgroup of N,

Sp is not Hp-free, a contradiction. i
Therefore (PN N) Z(P) = Z(P), so PN N < Z(P), and since
[(P,N] < Z(P), N acts trivially on P/Z(P). Therefore G/N acts irreducibly
on P/Z(P). Also G/N acts irreducibly on K = [ PN/N / Z(P)N/N ].
If this is not the case, there is P,, with Z(P) ;_P] ;_P, such that
Z(P)N/N 4 P]N/N 4 PN/N 4 G/N is a normal series. Thus Z(P)N 4 P]N dPNA G
is a normal series. Let Py € P]. Then for g € G g']p]g = p]*n € P]N, since
P,N QG and q-]p]g =peP since PdIG. Thus p]*n =pand ne PNN < Z(P).
So g']p]g = zp]*, and G fixes P1/Z(P) ;_P/Z(P), a contradiction since
G acts irreducibly on P/Z(P).
Now K - PN/Z(P)N - P/Z(P), since PN N < Z(P); and since G/N acts
irreducibly on K, K is a chief factor of G/N which is not cyclic,

contradicting the hypothesis that G/N is supersolvable. This is the

final contradiction, and therefore G is an Ro-group.

Corollary 3.2.2: If G is a solvable Eo-group, then G is an
?Lgroup.

Proof: An Eo-group is an Ro-group.

In the characterization of‘ﬁlgroups in Theorem 3.2, it was
necessary to use representation-theoretic conditions. In striving for
a purely group theoretic characterization, we are interested in the

converse of Corollary 3.2.2.



Chapter 1V

Possible Improvement of Results

In this very short chapter, we indicate progress made in studying
the question of whether the converse of Corollary 3.2.2 is true.

Theorem 4.1: (Rigby [14]). If P is a p-group such that Z(P)
is cyclic, and P/Z(P) is elementary abelian, a basis of P mod Z(P) can
be chosen, say Xqa¥ys" " s XYy such that [xi,yi] =c, [i=1,2,*",h]
where P' = c), and all other pairs of basis elements commute.

Theorem 4.2: (Rigby [14]). Let P be a p-group such that Z(P)
is cyclic and P/Z(P) is elementary abelian. Then P has (pz) faithful

h, where |Z(P) | = Z and

irreducible representations of degree p
p: 2(p) | = p?N.
Theorem 4.3: (Gallagher [6]). If N is a normal Hall subgroup
of a group G, and ¢ is an irreducible character of N such that I(z) = G,
then there is an irreducible character of G such that X|N = C.
Theorem 4.4: (Winter [20])(Seitz [16]). Let H be a subaroup of
G, and let A be a linear character of H such that A® is irreducible. If
A is an abelian normal subgroup of G, then there exists a subgroup H]
of G such that A < H, and H, has a linear character ¢ such that CG =8,
Theorem 4.5: Let G be an M-group, and assume G is also an
E-group. Then in the notation of the definition of E-group, p| |G:P| .
Proof: Let P be the normal non-abelian p-subgroup described

in the definition of E-group, and suppose pf |G:P]| .

27
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By Theorem 4.2, P has an irreducible character z of degree ph

where |P:Z(P)| = p2". For y e Z(P), z(y) ZOT = p2", so

I oy) TV = e = Pl = T z(x) TOXT. Thus z(x) = 0
yeZ(P) xeP

for x e(P-Z(P)). Since Z(P) < Z(6), 1(z) = G. Since p{ 16:P| ,
Theorem 4.3 implies ¢ =X|P for some irreducible character X of G. Since
G is an M-group, X = A8 where A is a linear character of a subaroup H

h

of G with |G:H | = p. Consider P, =H P. By Theorem 4.4, Z(P) < H

since Z(P) 4 G. Thus Z(P) < P]. Since P is a normal Sylow p-subgroup
of G and since | P:Z(P)| = p2" and | G:H | = p", then Z(P) 5P 5P
and G = PH. Since P 4 G, and P/Z(P) is elementary abelian, P]'d H and
P] 4 P. Thus P]4 G, contradicting the hypothesis that G is an E-group
which acts irreducibly on P/Z(P). Therefore x is not monomial and G

is not an M-group, a contradiction. Therefore p' |G:P| .

Corollary 4.5.1: If L is an‘ﬁ;group, and L has a section G, which

is an E-group, then in the sense of the definition of E-group, p| |G:P| .
Example 4.1: The group G = QQ] o) in Example 2.2 is an
example of an E-group which is an M-group.
Z(G) = Z(QQ]) = 7(Q) and Q4 G. G acts irreducibly on Q/Z(Q)
since a cyclically permutes the involutions in Q/Z(Q). Also Q/Z(Q)
is elementary abelian. Thus G is an E-group.
Since G is not an‘ﬁlgroup, the converse of Corollary 4.2.2 is

still possible.
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