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ABSTRACT 

MULTISCALE MODELING OF COMPOSITE LAMINATES WITH FREE EDGE EFFECTS 

By 

Christopher R. Cater 

Composite materials are complex structures comprised of several length scales. In 

composite laminates, the mechanical and thermal property mismatch between plies of varying 

orientations results in stress gradients at the free edges of the composites. These free edge 

stresses can cause initial micro-cracking during manufacture, and are a significant driver of 

delamination failure. While the phenomenon of free edge stresses have been studied extensively 

at the lamina level, less attention has been focused on the influence of the microstructure on 

initial cracking and development of progressive damage as a consequence of free edge stresses. 

This work aimed at revisiting the laminate free edge problem by developing a multiscale 

approach to investigate the effect of the interlaminar microstructure on free edge cracking. 

 First, a semi-concurrent multiscale modelling approach was developed within the 

commercial finite element software ABAQUS. An energetically consistent method for 

implementing free edge boundary conditions within a Computational Homogenization scheme 

was proposed to allow for micro-scale free edge analysis. The multiscale approach was 

demonstrated in 2D tests cases for randomly spaced representative volume elements of 

unidirectional lamina under tensile loading. 

 Second, a 3D multiscale analysis of a [25N/-25N/90N]S composite laminate, known for its 

vulnerability to free edge cracking, was performed using a two-scale approach: the meso-scale 

model captured the lamina stacking sequence and laminate loading conditions (mechanical and 

thermal) and the micro-scale model predicted the local matrix level stresses at the free edge. A 



 

 

 

one-way coupling between the meso- and micro-scales was enforced through a strain based 

localization rule, mapping meso-scale strains into displacement boundary conditions onto the 

micro-scale finite element model. The multiscale analysis procedure was used to investigate the 

local interlaminar microstructure. The results found that a matrix rich interlaminar interface 

exhibited the highest free edge stresses in the matrix constituent during thermal cooldown. The 

results from these investigations assisted in understanding the tendency for pre-cracks during 

manufacture to occur at ply boundaries at the free edge and the preferential orientation to the ply 

interfaces. Additionally, analysis of various 90/90 ply interfaces in the thicker N=3 laminate 

found that the free edge stresses were far more sensitive to the local interlaminar microstructure 

than the meso-scale stress/strain free edge gradients. The multiscale analysis helped explain the 

relative insensitivity of free edge pre-cracks to progressive damage during extensional loading 

observed in experiments. 

 Lastly, the multiscale analysis was extended to the interface between the -25 and 90 

degree plies in the [25N/-25N/90N]S laminate. A micro-model representing the dissimilar ply 

interface was developed, and the homogenized properties through linear perturbation steps were 

used to update the meso-scale analysis to model the interlaminar region as a unique material. The 

analysis of micro-scale free edge stresses found that significant matrix stresses only occurred at 

the fiber/matrix boundary at the 90 degree fibers. The highest stresses were located near the 

matrix rich interface for both thermal and mechanical loading conditions. The highest matrix 

stresses in the case of extensional loading of the laminate, however, were found at the interior of 

the micro-model dissimilar ply micro-model within the -25 degree fibers. 
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1. Introduction 

1.1  Composite Materials 

Beginning with its introduction to aerospace applications in the 1960’s [1], composites, 

particularly Carbon-Fiber-Reinforced Polymer (CFRP) composites, have seen significant growth 

in recent decades in industrial and consumer transportation, wind energy applications and 

sporting goods. These composite materials have the benefit of high specific strength and 

stiffness, as well as increased fatigue resistance  over traditional materials [2,3]. They are also 

hierarchical in nature, containing a variety of length scales which factor into the overall 

properties of the composite [4]. The various length scales associated with CFRP composites can 

be classified into the following: 

 Macro-scale: The length scale associated with the overall structure which contains the 

loading and boundary conditions of the global test and/or analysis. 

 Meso-scale: An intermediary scale associated with particular reinforcement architectures 

such as the layup configuration for laminated composites or the braid/weave pattern for 

textile based composites. 

 Micro-scale: The length scale associated with the fiber and matrix level constituents of a 

unidirectional (UD) lamina or an individual fiber tow. 

 

As can be seen in Figure 1.1, the micro-scale constituents, or their relative volume 

fractions, could be adjusted along with a chosen reinforcement architecture (laminated, woven, 

braided) to obtain a composite best fit for the intended application. A consequence of the 

hierarchical nature of CFRP composites, however, is an increased complexity in modeling due to 
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damage evolving at a variety of length scales [5,6]. Thus, a multiscale approach is required to 

address the problem. Additionally, the heterogeneity of CFRP composites, particularly laminated 

composites, introduces unique sources of failure associated with free edges, discussed in the 

section to follow for laminated composites. 

 

Figure 1.1: Diagram of the various length scales associated with a composite structure. 

 

1.2 Free Edge Effects in Composite Laminates 

The free edge problem in laminated composites refers to the stress gradients that develop 

at the intersection of the interface between unidirectional (UD) lamina of varying orientation and 

a free edge [7]. Figure 1.2 describes the state of interlaminar stresses which develop at the free 

edge of a composite laminate under uniaxial tension. The specific example shows a simple case 

of a [0/90]S laminate. The free edge stresses include an interlaminar shear stress shown in Detail 

A, as well as a through-thickness opening stress shown in Detail B. The source of these stresses 

is the mismatch in material properties at the interface and can arise during the application of 

mechanical and/or thermal loading [9]. These interlaminar stresses may play a crucial role in the 

determination of laminate strength and can be sources of delamination [7,10–13].  
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Figure 1.2: Free edge interlaminar stresses in a [0/90]s composite laminate subjected to uniaxial tension. The 

above example is a standard crossply laminate used for comparing various free edge analysis techniques. 

 

The free edge stresses have long been studied in available literature. These span from 

approximate closed-form solutions [7,14,15], to 2D generalized plane strain analysis using Finite 

Elements [9,16], and to advanced higher-order generalized laminate theories to capture the 

interlaminar stresses in a 2D domain space [17–25]. A more comprehensive review can be found 

by Mittelstedt and Becker [8]. Recent work has focused on developing three-dimensional models 

of the laminate free edge problem utilizing submodeling techniques [26] or new finite element 

approaches [27]. While the previous research has been successful in characterizing the nature of 

the free edge stresses with respect to changes in lamina orientation, geometry, and loading 

conditions, these analyses have been restricted to the meso-scale domain similar to the schematic 

of Figure 1.2. As previously mentioned, each lamina is considered to be a homogenous, 
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orthotropic structure where a discrete interface exists between the varying layers. The result of 

this material approximation is the singular nature of the through-thickness free edge stress fields. 

1.3 Free Edge and the Microstructure 

These free edge stresses are a phenomenon associated with the continuum, meso-scale 

based approach whereby a discrete interface exists at the lamina interface [8,16]. Although stress 

singularities are present when modeling at the meso-scale, the resolution of micro-scale features 

would reveal a very different stress state where singularities exist at the intersection of the free 

edge and the fiber-matrix interface [8]. Dustin and Pipes [29] compared the stress singularity 

associated with lamina interfaces at the free edge (meso-scale) to the stress singularity associated 

with fiber termination at the free edge (micro-scale), reporting that fiber termination may play a 

larger role in failure initiation. Furthermore, it was found that a crack-tip singularity at the free 

edge was roughly 1.5 times greater than that of the fiber termination, highlighting the importance 

of micro-cracks at the free edges. Fiber/matrix interface cracking were also found to be an 

initiating damage mechanism of inter-ply cracking in [+15/-15]S laminates [28]. Other micro-

scale features that influence damage initiation were found to be local matrix distribution at the 

lamina interfaces [28,30]. For example, interface thickness [28] as well as the uneven interfaces 

in quasi-unidirectional plies [30] were found to effect the local distribution of free edge stress 

concentrations. Additionally, inelastic strains developed at the lamina interfaces prior to failure 

and were a result of observable micro-cracking [30]. 

Dustin performed a thorough experimental investigation of free edge micro-cracking in 

[25N/-25N/90N]S IM7/8552 composite laminates which were highly susceptible to free edge 

stresses [31]. Numerous cracks were present after manufacturing and were measured and tracked 

during the application of extensional loading. For N=1, 3 and 5, it was found that cracks tended 



 

 

5 

to occur primarily at the interface of the unidirectional plies. As shown in Figure 1.3, micro-

cracks were observed between the 90/90 (green), -25/90 (yellow) and -25/+25 (red) interfaces in 

the N=5 laminate. From the experimental observations, it was concluded that the primary failure 

was typically delamination at the -25/90 interface initiated from transverse cracking in the 90 

degree plies. It was also reported that the majority of micro-cracks present did not play a 

significant role in the delamination failure of the composite and only large micro-cracks (greater 

than 50 fiber diameters) influenced laminate failure. A clear relationship, however, was found 

between the presence of cracks and the location of ply interfaces. Around 90% of cracks in the 

90-degree plies occurred within a distance of 30% of the laminate thickness from a ply interface. 

These 90/90 ply pre-cracks were generally larger than the cracks in the dissimilar ply boundary 

[31].  

 

Figure 1.3: Microscopic images of the free edge of a [255/-255/905]S with pre-cracks identified at the ply 

interfaces via color coding. Green regions indicated cracks at the 90/90 interface, red regions are cracks in the 

-25/25 interface, and the yellow regions are cracks at the -25/90 interface. The zoom inset shows an example 

of a micro-crack present in the 90° plies. Image reproduced from Dustin [31]. 
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Fiber/matrix interface cracking was also found to be an initiating damage mechanism in 

the inter-ply cracking of [+15/-15]S  carbon fiber laminates [28]. Other micro-scale features that 

influence damage initiation were found to be local matrix distribution at the lamina interfaces 

[28,30]. For example, interface thickness  was found to affect the local distribution of observed 

meso-scale displacement gradients at the free-edge [28,30]. Regions between plies with a smaller 

interface were also found to be more susceptible to micro-cracking during extensional loading. 

Additionally, inelastic strains developed at the lamina interfaces prior to failure and were a result 

of observable micro-cracking [30]. 

These largely experimental works have highlighted the presence of cracks at the free 

edge of composites and have suggested they play a role in free edge initiated damage.  The 

observations of cracking at the free edge of the [25N/-25N/90N]S laminates performed by Dustin 

[31] did not directly address questions regarding the nature of free edge cracking during 

manufacturing and subsequent extensional loading. This body of research is intended to 

reexamine the composite laminate free edge and develop a modeling methodology to answer the 

following questions: 

 What is the influence of the microstructure (local fiber volume fraction and 

fiber spacing) on free edge matrix cracking? 

  What causes the density of cracks to be found at interlaminar boundaries? 

 Why is progressive failure in the [25/-25/90]S laminate under extensional 

loading not affected by the pre-cracks formed during manufacture? 

 



 

 

7 

1.4 Objectives & Scope of Work 

This research revisits the problem of free edge effects in composite laminates using a 

combined multiscale modeling and computational micromechanics approach. The objective of 

this work is to develop analysis tools to further understand the influence of the local 

microstructure on free edge cracking and damage progression in composite laminates. First, a 

comprehensive review of multiscale modeling strategies and micro-scale free edge stress 

analysis is presented in Chapter 2. Second, an overview of semi-concurrent multiscale modeling 

and introduction to a proposed energetically consistent approach for implementing free edge 

boundary conditions at the microscale are discussed in Chapter 3. The implementation of a two-

dimensional, semi-concurrent analysis using the proposed free edge multiscale analysis in the 

commercial finite element software ABAQUS is given in Chapter 4, along with a validation test 

case. In Chapter 5, a three-dimensional multiscale free edge analysis is developed and used to 

study the micro-scale stresses on [25N/-25N/90N]S laminates under both thermal and mechanical 

loading. The analysis specifically explores the effect of the local interlaminar microstructure on 

the propensity for crack initiation. Chapter 6 extends the multiscale approach to the dissimilar 

ply interface between the -25° and 90° plies. Finally, a summary of this research and proposed 

future work are presented in Chapter 7.  
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2. Multiscale Modeling 

The hierarchical nature of composite will require multiscale modeling to understand the 

influence of the microstructure at the laminate free edge. A review of literature on the state of the 

art for multiscale modeling strategies and a summary of previous works modeling the 

microstructure at the free edge will be presented. At the end of this chapter, the proposed 

multiscale framework and modeling objectives will be outlined. 

2.1 Multiscale Modeling: State of the Art 

There are three major classifications to multiscale modeling as outlined by Belytschko 

and Song [32]. The three approaches are categorized according to the means by which the 

various length scales are linked. They are sequential, concurrent and semi-concurrent strategies, 

and are schematically diagramed in Figure 2.1. In the figure, local scale is represented by an 

RVE which characterizes the local heterogeneity of a material point [33,34]. A review of the 

three multiscale classifications is discussed. 

 

Figure 2.1: Schematic of multsicale classifications. 
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In a sequential approach, the micro-scale is modeled using an RVE, or unit cell, and is 

homogenized to determine the effective properties for use in a meso or macro-scale analysis. A 

large body of work exists for determining the effective properties (stiffness) of these composite 

structures through the use of analytical micromechanics [35–40] and other semi-analytical, 

numerical and finite element (FE) approaches [39,41–47]. Analytical methods of 

homogenization include the “rule of mixtures” mechanics of materials approach, the Self-

Consistent Field Method [36], Bounding Methods developed by Voigt and Reuss, and Semi-

empirical models employed by Halpin and Tsai[40]. A popular extension of the self-consistent 

methods is the well-known Mori-Tanaka homogenization [38]. These micromechanics models 

provide the necessary input to perform structural FE analysis based on the micro-scale properties 

using a “bottom-up” approach.  

More recently, numerical methods have been employed such as virtual testing which can 

provide macro-scale properties using finite element (FE) simulations of an appropriate RVE 

[43,48,49]. In these methods, information from the lower, micro-scale is lost after the 

homogenization. Similar methods can be utilized to homogenize meso-scale features into 

effective properties at the macro-scale [45]. These models, however, do not preserve micro-

structural information post-homogenization and only provide initial elastic properties. Although 

some methods can be used to recapture micro-stress fields [50,51], they do not provide a relation 

between evolving micro-scale fields and the macro-scale behavior.  

It should also be mentioned that extrapolating the homogenized response to non-linear 

regions or determining composite failure will rely heavily on experimental tests to characterize 

material failure. While a variety of failure criteria exist at the homogenized scale of the lamina, 

or even the full laminate, the World Wide Failure Exercises (WWFE) have shown that no 
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available models successfully capture unidirectional (UD) ply failure under complex multi-axial 

loading states or for multi-ply laminates [52,53]. 

The second classification of multiscale frameworks is concurrent modeling approaches. 

Concurrent models, shown schematically in Figure 2.1, consist of a body of work where 

“bottom-up” homogenization is combined with Direct Numerical Simulation (DNS). In this way, 

the microstructure is directly inserted into the macro or meso-scale problem through the use of 

transitional elements or well-defined kinematic relations between regions of varying element 

sizes or types [54]. Ghosh had developed sophisticated concurrent schemes using the Voronoi 

Cell Finite Element Method (VCFEM) at the finest scale [55,56]. Due to the direct coupling of 

discrete FE RVE’s with globally homogenized elements, this methodology requires both 

adaptive re-meshing algorithms as well as modified transitional elements to deal with the 

coupling of the scale interfaces [57].  

These methods present significant reduction in some computational cost with respect to 

DNS of transient analysis and/or component sized simulations but the increased complexity of 

the global stiffness matrices and strong scale coupling make it not suitable for large structural 

analyses [58]. Aside from being computationally expensive, concurrent models are similar to 

sequential approaches as they also do not provide a means of linking micro-scale behavior to 

macro-scale response. Thus, utilizing a concurrent approach beyond highly localized damage 

would require large regions of micro-structural refinement. 

The last classification in multiscale frameworks is semi-concurrent modeling. Semi-

concurrent modeling methods are schemes which rely on accessing information from the micro-

structural domain at each increment within the FE analysis [32]. Thus, the kinematic and 
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constitutive relations between the scales act as a material model to provide the global 

homogenized response. In comparison to the “bottom-up” approach, these semi-concurrent 

schemes allow for the retention of micro-structural information throughout the analysis, and the 

two lengths scales are weakly coupled throughout the analysis. First attempts to include 

micromechanics in the global response were done by coupling the RVE scale response to the 

global response analytically. For example, mathematical derivations for homogenization were 

developed by Bensoussan et al. from the asymptotic analysis of periodic structures [59]. In this 

so-coined asymptotic homogenization, influence functions – also referred to as elastic correctors 

or characterization functions in [41] - are formulated from a micro-structural boundary value 

problem (BVP) to provide the macroscopic constitutive tensor as well as the relations between 

macroscopic deformations to micro-structural stresses/strains.  

In addition to the asymptotic analysis, mean-field approaches, originally derived from 

Eshelby’s work on spherical inclusions [37], is another popular form of homogenization which 

determines the effective properties through localization tensors [60]. Similar to the influence 

functions of asymptotic homogenization, these localization tensors provide coupling between the 

two length scales and can accommodate for non-linear constitutive models at the micro scale 

such as plasticity or damage [61]. Transformation Field Analysis (TFA), on the other hand, is a 

modeling scheme which discretizes the RVE into finite sub-volumes for which pre-computed 

stress-concentrations tensors and transformation influence factors provide the micro/macro 

coupling [62]. The determination of the necessary tensors and influence factors are derived from 

an assumption of piece-wise uniform strains in each of the sub-volumes.  

Another semi-concurrent multiscale formulation is the Generalized Method of Cells 

(GMC) developed by Paley and Aboudi [39]. In the GMC, the repeating unit cell geometry of a 
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unique composite microstructure is simplified using rectangular sub-volumes. Traction and 

displacement continuity, in averaged sense, between these sub-cells along with periodic 

constraints are used to develop the kinematic and constitutive relation between the scales. The 

Generalized Method of Cells, like Transformation Field Analysis and Asymptotic 

Homogenization, is able to account for inelastic deformations of constituent materials and does 

so through the assumption of uniform eigenstrains, which represent inelastic strains in the 

subvolume [63]. These various semi-concurrent schemes have all been incorporated into 

structural FE simulations: the Generalized Method of Cells was incorporated into ABAQUS [5], 

a blend of TFA and Asytomptic Homogenization for finite element analysis was developed 

[64,65], TFA was used with the non-linear explicit finite element software LS-DYNA [62], and 

the Mori-Tanaka mean field homogenization has been implemented by the composite modeling 

software DIGIMAT-MF for use in various FE packages. This listing is not comprehensive and 

other FE implementations are contained in a multiscale modeling review [61].  

Lastly, another semi-concurrent modeling is the nested FE approach [66] for which the 

RVE response is solved using the finite element method. This varies from the previous methods 

which solve the micro-scale unit cell problem through analytical and/or semi-analytical 

solutions. The popular extension of this scheme is the so-called Computational Homogenization 

(CH) advocated by Geers and Kouznetsova [42,67]. 

Based on the review of multiscale modeling strategies, a semi-concurrent computational 

homogenization approach was selected as a general framework from which the free edge 

analysis will be developed. The semi-concurrent, computational homogenization model is chosen 

due to the following disadvantages in other schemes: 
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 Sequential methods lack microstructural information post-homogenization 

 Concurrent models are computationally expensive even in a 2D domain and the analysis 

of the composite laminate free edge at the microstructure requires a 3D approach 

 Concurrent models do not provide a constitutive relationship between the lower scale 

response and a macroscopic, homogenized response 

 Semi-analytic or asymptotic semi-concurrent models require strict periodic assumptions 

at the lower scales and will limit the applicability of results to the free edge problem 

 Utilizing a method other than FEA at the microscale requires additional work to 

incorporate micro-scale damage such as explicit modeling through cohesive zone 

modeling [68,69] or through the extended-Finite Element Method (XFEM) [32,70,71] 

As with any approach, even the semi-concurrent, computational homogenization is not 

free of limitations. There are restrictions which must be noted to the applicability of current 

computational homogenization schemes. The fundamental assumptions of computational 

homogenization are the separation of scales and the Hill-Mandel condition. Separation of scales 

requires, based on the “order” of homogenization, that the gradient of macroscopic values remain 

small over a unit cell. In first-order approximations, the macroscopic deformation gradient must 

remain virtually constant over the characteristic length scale of the RVE, while second order 

methods are capable of characterizing linear variances [72].  

The multiscale modeling approaches discussed previously, however, have not addressed 

the analysis of the microstructure at the free edge of a laminate outside of a 2D domain space. 

The next section covers recent modeling efforts which focus on the micro-scale analysis of free 

edge stresses within a laminate. 
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2.2 Modeling the Microscale Stresses at the Free Edge 

Recent modeling efforts on the microstructure and free edges of laminates have been 

found in the literature. They include numerical simulations of free edge stresses in single-fiber 

FE models under simplified transverse tensile loading and uniform temperature change [73] or a 

similar approach which investigated moisture absorption [74]. An inverse relationship between 

fiber volume fraction and the magnitude of fiber/matrix interface tractions approaching the free 

edge was found in [73]. These works [73,74] incorporated the micro-scale investigation as a 

standalone component, analyzing the stress fields around the fiber and matrix to a very specific 

and simplified set of loading and boundary conditions, and were not multiscale approaches by 

definition.  

Multi-fiber models have also been investigated near a free-edge by utilizing domain 

decomposition [56], a superposition method [75], and de-homogenization methods [50,51]. All 

models (both single fiber and multi-fiber RVE’s) were limited to the study of 90° lamina micro-

stresses. The influence of cracks on stress distribution in the midplane of [+-25/90]S composites 

highlighted the influence of idealized micro-cracks [51] and 3D penny micro-cracks [76] on 

failure initiation. In [37], the computed critical edge crack size correlated well with the 

experimental measured values. It was found that cracks situated in regions closer to dissimilar 

ply interfaces exhibited the highest stress concentration factors at the crack tip. 

All of the previously outlined modeling approaches were limited to the analysis of 90° 

plies at the micro-scale as a means to simplify the necessary boundary conditions. In the latter 

multi-RVE studies [51,76], crack front analysis was isolated to local regions within the RVE 

sufficiently far (1 fiber diameter) from the boundary to mitigate any errors in the de-

homogenization procedure. Thus, the modeling approaches were unable to investigate the nature 
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of crack growth at the interlaminar interface (between dissimilar plies); nor do they address the 

effect of microstructure on crack growth in off-angle lamina. All material models (matrix/fiber) 

were assumed linear elastic in both the single fiber and multi-fiber RVE models (the multi-fiber 

models investigated brittle carbon/epoxy systems dominated by fracture failure modes). 

2.3 Summary 

While free edge stress analyses have been performed for single and multi-fiber models, 

they have yet to investigate irregular fiber spacing and the effect of the local microstructure at 

the interlaminar region. The currently available methods in literature do not provide explanations 

for the occurrence of observed free cracking reviewed in Section 1.3 and Section 1.4 at 

interlaminar regions nor the minimal effect these cracks seem to have in progressive damage 

development. The next section will utilize a semi-concurrent framework for developing a 

multiscale framework to address these research questions. 
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3. Meso-to-Microscale Multiscale Framework 

The multiscale analysis of the free edge effects at the microscale in a composite laminate 

will require the establishment of a framework for linking the lamina, or meso-scale, with that of 

the individual fibers and matrix, or micro-scale. These next few sections will first cover the 

basics of the chosen semi-concurrent multiscale approach, discusses multiscale boundary 

condition issues with free edges at the micro-scale and proposes an algorithm for circumventing 

energy balance issues that arise.  

3.1. Semi-concurrent Approach 

The two main components in the semi-concurrent multiscale implementation are the 

localization and the homogenization rules. Localization refers to the passing of information from 

the homogenized global scale to local scale of the RVE. Conversely, homogenization refers to 

the determination of macroscopic quantities from the RVE, or the passing of information from 

RVE to the global integration point. In a deformation driven FE analysis, the localization rules 

provides the kinematic coupling from macroscopic to microscopic domains. Although the 

process can use the macroscopic strain at the selected integration point, the work that follows 

uses the macroscopic deformation gradient,   , as shown in Figure 3.1.  
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Figure 3.1: Overview of the semi-concurrent workflow and passing of information between the macroscale 

(global) and microscale (RVE/local). 

 

The macroscopic deformation gradient is then used to specify necessary boundary 

conditions for the RVE’s BVP. Standard procedures assume a volume average relationship 

between the deformation at the global scale and that of the RVE shown in Equation (3.1).  

   
  

 

  
    

 

  

    (3.1) 

The superscripts M and m represent macroscopic and microscopic quantities, 

respectively, F is the deformation gradient tensor, and    is the reference volume of the RVE. 

The way in which the macroscopic deformation gradient provides boundary conditions 

(displacements, or  ) on the RVE are provided in Equation (3.2),  

  
      

        
  (3.2) 

where   is the vector of reference configuration coordinates. The prescription of these 

displacements can be chosen for all nodes within the RVE, all nodes along the boundary, or 

restricted to the vertices in the case of periodicity. The homogenization procedure, which 
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provides the macroscopic stress as a function of microscopic stresses, also involves a volume 

averaging relationship and is provided in Equation (3.3).  

   
  

 

  
    

 

  

    (3.3) 

The stress is written using the first Piola-Kirchhoff stress tensor,  , for convention, as it 

is the work conjugate to the deformation gradient. A second part of the homogenization process 

is determining the instantaneous material Jacobian,  , shown in Figure3.1. 

3.2. Development of a Free Edge Multiscale Boundary Condition 

It has been noted in literature that the particular boundary conditions employed at the 

RVE level has a significant effect on both the effective properties of the computed homogenized 

response as well as the distribution of stresses/strains within the RVE [33,77]. This effect is 

especially important when non-linear constitutive models are utilized at the constituent level 

[78]. It was noted by van der Sluis that the three main boundary conditions employed in RVE 

analysis (uniform displacement, uniform traction and periodic) represented an upper bound, 

lower bound and mid-estimate, respectively, for the homogenized modulus [77]. A similar 

conclusion was obtained by Kaczmarczyk et al. even for second-order homogenization [79]. 

Inglis et al. found while including localization and damage in the RVE that the boundary 

conditions had little effect on the overall effective properties; the boundary conditions did in fact 

alter the distribution of stresses and localization within the RVE [78]. In addition, the work also 

investigated the Minimal Kinematic Boundary Conditions (MKBC) but found it to invoke a 

response identical to uniform traction boundary conditions [78]. 
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Although multiscale schemes have been moving into the realm of understanding 

heterogeneous material fracture [80–82], serious limitations of periodic assumptions have been 

addressed for the case of localized damage within these semi-concurrent schemes [83]. These 

deficiencies in standard periodic boundary conditions have developed into very recent research 

attempts to develop various “forms” of periodic constraints, such as the recent work of Coenen et 

al. [84]. Another recent work in semi-concurrent boundary conditions was explored by Larsson 

et al. who proposed a weak form of micro-periodicity on the RVE domain [85]. Nevertheless, 

these developments still do not address the issues of free edges. The next section discusses a 

proposed approach on developing a methodology for implementing non-periodic boundary 

conditions in a semi-concurrent scheme while preserving energy between the scales. Although 

the intended application of free edge boundary conditions is in a 3D domain, this proposed 

approach is first presented for a 2D plane strain problem. 

3.3. An energetically consistent approach 

All multiscale schemes are required to preserve the Hill-Mandel relation which states that 

the variation of work at the global scale must equal the volume average of the variation of work 

at the local scale. This relation is shown in Equation (3.4),  

            
  

 (3.4) 

where    is the variation of work and   and   are the macro and micro-scale specifiers, 

respectively. As a result of the Hill-Mandel relation, the kinematic and constitutive coupling 

between the macroscopic and microscopic domain are constrained to satisfy the averaging 

relations provided in equations (3.1) and (3.3). These two equations state the volume average of 
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the stress/strain field variables throughout the RVE are equal to the corresponding macroscopic 

variables. Given these averaging relations, it is a trivial calculation to show that the Hill-Mandel 

relation is satisfied, and these calculations are given for various types of RVE boundary 

conditions in the work by Kouznetsova [42]. Coenen et al. [84] enforced boundary conditions 

satisfying the strain averaging relations, then proved that the volume averaged microscopic stress 

tensor would in fact satisfy the work equivalence between the scales. Equation (3.5) below 

expresses the Hill-Mandel relation in terms of the individual deformation gradient and stress 

tensor. 

  

   
     

  
 

  
    

 

  

    
           (3.5) 

As was discussed in the work by Coenen et al. [84], the strain averaging relation (or 

alternatively, the deformation averaging relation) is satisfied when the contributions of the 

micro-fluctuation on the volume average are zero. A simplified form of this statement is shown 

in Equation (3.6), 

   
  

 

  
     

     
  

    
                 

    

 (3.6) 

which is derived from the right hand side of Equation (3.1) and using Equation (3.2). It should be 

noted that the strain averaging relation is being written with respect to the deformation gradient 

rather than the strain tensor, however the equations still hold. The following relation 

  
     

   
     (3.7) 



 

 

21 

describes the local, current coordinates   within the RVE as a function of the macroscopic 

deformation gradient and a function of the microfluctuation field, w, which is dependent on the 

microstructure. This superposition of a macroscale influence and the microfluctuation field is 

graphically represented in Figure 3.2. 

 

Figure 3.2: Schematic of the RVE deformation as a superposition of macroscale and microscale influences. 

The strain, or deformation, averaging relation will only hold if the last integral term in 

Equation (3.6) is equal to zero. It has been shown in literature that periodic boundary conditions 

satisfy this requirement. Non-periodic, non-uniform boundary conditions, however, will contain 

a microscale influence field which will not set the integral term in Equation (3.6) to be zero. The 

microscale influence field will be an unknown solution, dependent on the microstructure, thus 

the form of the macroscopic stress tensor cannot be solved analytically a-priori. Instead, it is 

assumed in this work that the volume average of the RVE stress field is a sufficient 

approximation, although there is no guarantee (due to the nature of the microfluctuation field) 

that it is consistent with Hill’s energetic conditions.  

In the first iteration of developing an energetically consistent stress tensor, an 

equivalence of elastic strain energy between the scales, as introduced by Hill [35], is directly 

enforced. First, the localization process is performed as in Figure 3.3 according to a given 

macroscopic quantity of deformation. It is assumed that  
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 all constituents behave elastically 

 the bond between the constituents may fail when certain criteria are met  

 the localization provides the desired state of stress/strain (based on macroscopic 

deformation) within the RVE resulting in a computed microscopic, elastic strain 

energy, shown by the blue box in Figure 3.3.  

 

Figure 3.3: Illustration of the localization process, which has deformed the RVE to produce a unique amount 

of elastic strain energy defined by the box on the right. 

It is desired to determine the macroscopic stress tensor required to ensure that the elastic 

strain energy at the global level matches that from the RVE. The formulation to follow assumes 

that the micro-constituents are linear elastic with cohesive interactions between the fibers and 

matrix (which may fail). Due to the presence of elastic softening from the failing/failed cohesive 

surfaces, the elastic strain energy at the macroscopic level will be computed according to the 

diagram in Figure 3.4(b), rather than the purely elastic case shown in Figure 3.4(a). The 2D plane 

strain problem, to which this work is currently focused, requires that the elastic strain energy is 

computed from the contributions of stress and strain in the three degrees of freedom in the two 

dimensional problem (1-1, 1-2, and 2-2 directions), shown in Figure 3.5. The condition of 

equivalent elastic strain energy between the scales enforces that the total energy shown in Figure 
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3.5 should be equal to that found during the localization process in Figure 3.3. Thus, this equality 

provides a constraint with which we can determine the form of the macroscopic stress update. 

Although there are an infinite number of stress tensors, given known values of deformation 

(strain) at the macroscopic level, that will satisfy the energy equivalence, it is hereby assumed 

that the macroscopic stress state can be approximated as being proportional to the volume 

average of the RVE stresses. 

 

Figure 3.4:Stress-strain diagrams highlighting the elastic strain energy for two non-linear material responses 

where (a) the material is purely elastic and (b) the material has non-linearity due to elastic softening. 

 

 

Figure 3.5: The total amount of elastic strain energy at the macroscopic level for the 2D plane strain problem 

is a summation of the elastic strain energy resulting from the three degrees of freedom. 
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This assumption of proportionality introduces a scaling parameter, z, which will be found 

by enforcing energy equivalence between the global and local scale. The computation of the 

macroscopic stress tensor will now be found using  

   
       

     
 

  
    

 

  

    

 

(3.8) 

where     is the macroscopic Cauchy stress tensor computed from volume averaging the 

microscale Cauchy stress tensors,   , in the RVE. The energy balance with respect to the elastic 

strain energy at the macro and micro scales can be written 

 

       
   

 

 
   
    

  
 

 
   
    

  
 

 
   
    

  

    
 

 
   
    

   
 

 
   
    

   
 

 
   
    

    

(3.9) 

where left hand side represents the elastic strain energy at the microlevel,        
 , from the RVE 

localization, while the right hand side represents the elastic strain energy computed using the 

volume averaged stresses. The z scalar parameter is then computed using 

  
        

 

    
    

      
    

      
    

   
 (3.10) 

as a function of the microscopic elastic strain energy, macroscopic strains, and volume averaged 

RVE stresses. This scalar parameter represents the energy based constitutive coupling between 

the microscopic and macroscopic scales. Although the current, elastic strain energy based 
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formulation restricts the fiber/matrix constituents to be linear elastic, a similar approach could be 

developed using the assumption in Equation (3.8) utilizing the external work. 
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4. Free Edge Boundary at the Microscale 

4.1 ABAQUS Semi-concurrent Implementation 

The semi-concurrent scheme as well as the proposed z-scalar methodology was 

implemented numerically utilizing Python scripting to invoke the nested FE solution within the 

commercial FE software ABAQUS. To reduce initial overhead in implementing the multiscale 

framework the current model was restricted to 2D, plane strain analysis. The iterative algorithm 

is presented below in Figure 4.1. At each incremental step in the analysis, the user defined 

material subroutine (UMAT) was utilized to perform the communication between Python and the 

ABAQUS solver. The left-hand side of Figure 4.1 highlights the localization process which 

involves the passing of the macroscopic deformation gradient from the UMAT to the custom 

Python script. The Python code modifies the boundary conditions to a unit-cell, or representative 

volume element, ABAQUS input file. The unit-cell job is submitted and is post-processed upon 

completion according to the right-hand side of Figure 4.1.  

 

Figure 4.1: Workflow of the semi-concurrent computational homogenization scheme. 
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As a test case for implementing non-periodic boundary conditions, a choice was made to 

implement boundary conditions equivalent to that shown in Figure 4.2(a). These test boundary 

conditions contains a free edge at one boundary, corresponding to a macro scale with similar 

boundaries. The symmetric edge at the left of the RVE was an approximation chosen, due to the 

lack of 1-2 shear deformations in the loading cases explored, to simplify the implementation 

within the semi-concurrent scheme. 

 

Figure 4.2: Schematic of (a) the test boundary conditions, which include the free edge, and (b) the standard 

periodic boundary conditions. Note: That P, F, S in the above diagram represent periodic, free and 

symmetric edge, respectively. 

  

The implementation of the free-edge boundary conditions results in a different set of 

localization rules than those used for periodic boundary conditions given as 

  
      

        
  (4.1) 

The localization in equation (4.1) is identical to that in (3.2) except that the microscale 

displacements are only prescribed on the vertices, v, of the RVE. Elsewhere, non-vertex nodes 

are constrained to obey periodicity according to the formulation of Van der Sluis et al. [77] and 

using *Equation keywords in ABAQUS. In the case of the boundary conditions shown in Figure 

1 
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4.2 (a), the localization shown in Equation (4.1) is prescribed for vertices 1 and 4. For vertices 2 

and 3, displacements are only prescribed in the 2-direction to account for the free-edge 

requirement which must remain traction free in the 1-direction. Additionally, all nodes lying on 

the symmetric edge (S*) are prescribed displacements in the 1-direction and left undefined in the 

2-direction. 

Once the unit-cell analysis was completed, the Python script would post-process the 

database according to the following steps listed in Figure 4.3. It should be noted that when 

periodic boundary conditions are employed, step 4 in Figure 4.3 is omitted, since it is unique to 

the z-scalar approach. 

 

 

Figure 4.3: Listing of the database post-processing steps performed in the custom Python script. 

Aside from the macroscopic stress tensor, the material Jacobian needs to be determined for 

the subsequent increment in the global FE analysis and is a required output of the UMAT within 

ABAQUS Standard. The construction of the Jacobian from the perturbation steps is summarized 

in Figure 4.4. For a given perturbation step, a component of strain is set to unity, while all others 

are set to zero. Thus, the resulting stresses computed as a result provide a given column in the 

Jacobian stiffness matrix. The stresses are computed using the same procedure as was done for 

1. Reads the EVOL, or current element volume for all elements 

2. Extracts the element stresses within the unit-cell RVE 

3. Computes the volume average of the stresses based on the EVOL 

values 

4. Using the volume averaged stresses and using Equation (10), z is 

calculated 

5. The macroscopic stress tensor is exported to an external “.csv” file 
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the macroscopic stress tensor, utilizing the scaling parameter when necessary (e.g. when non-

periodic localization is employed).  

 

Figure 4.4: The Jacobian matrix, J, is shown with the necessary uni-strain components for determining a 

particular column. The circled columns are computed via uni-strain perturbation steps where one of the 

three strain components are set to 1, and the remainder are zero. The condition for computing each column is 

labeled accordingly. The 33 component is determined externally. Symmetry of the Jacobian is assumed. 

The J33 component must be found externally using standard micromechanics, or basic 

homogenization techniques. Assuming the current 2D plane strain analysis of the RVE, minimal 

damage will accumulate in the fiber direction, thus this component could be approximated as 

constant through the entire 2D analysis. The remaining components in the JX3 column are 

obtained by assuming symmetry of the Jacobian. Once the Jacobian is computed and exported to 

a “.csv” file, the Python script is completed.  

The UMAT will then read in the macroscopic stress tensor and Jacobian which is input back 

into the ABAQUS simulation at the global scale. When periodic boundary conditions are 

employed, the perturbation steps are executed immediately after the stress analysis within the 
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same ABAQUS job. For the case of the test boundary conditions in Figure 4.2(a), the operation 

must be performed as a separate unit-cell job after the completion of the stress analysis. 

Additionally, the boundary conditions are modified to remove the free-edge and are shown in 

Figure 4.5. The right-hand side of the RVE is perturbed using Equation (4.1) for all nodes in both 

the 1- and 2-directions. The process for determining the Jacobian during the post-processing 

steps is listed in Figure 4.6 An overall summary of the discussed workflow with the Fortran 

subroutine and Python script are highlighted in Figure 4.7. 

 

 

Figure 4.5: Boundary conditions used for the perturbation steps during non-periodic analysis. The right-

hand-side BC, labeld U, represnts uniform displacement as prescribed using Equation (4.1). 

 

Figure 4.6: Steps for post-processing the Jacobian. 

6. Extract the nodal coordinates at the end of the localization step for all 

perturbed nodes 

7. Use Equation (14) to determine BC’s for the three perturbation steps 

Note: These steps are defined as linear perturbation steps in 

ABAQUS 

8. Generate the necessary input file job and submit (Perturb.inp) 

9. Compute the differential macroscopic stress tensor associated with each 

perturbation 

10. Build the Jacobian and export the resultant to an external “.csv” file 
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Figure 4.7:Schematic of the overall semi-concurrent scheme as impemented into ABAQUS for a single 

incremenet at a given macroscopic integration point. 
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4.2 2D Model Verification 

Verifying the implementation of the z-scalar approach required the determination of the 

efficacy of both the proposed Jacobian update method and energy preservation. For both test 

cases, multi-fiber RVE’s were required using both random placement and the implementation of 

cohesive surface definition between the fibers and matrix constituents. A tool for the generation 

of multi-fiber RVE generation is discussed, the implementation of cohesive interactions between 

the fiber/matrix within ABAQUS is presented, and finally the initial results of the verification 

study are offered. 

4.2.1 RVE Generation 

It has been found in literature that a fiber-matrix RVE must include a sufficient number 

of fibers for the macroscopic response (including micro-constituent plasticity and damage) to be 

independent of the random-fiber placement [48,49,86]. It was found that a fiber quantity greater 

than ~25-30 fibers was sufficient for obtaining constituent macroscopic responses for arbitrary 

fiber placement. Due to the significant pre-processing required to define fiber/matrix surfaces to 

be used for cohesive interfaces and complicated node-set numbering required to employ periodic 

boundary conditions, a custom Python script was developed to allow for future parametric 

studies. The custom Python script takes the following inputs: 

1. Number of fibers –or- an input file with fiber center locations 

2. Desired volume fraction 

3. Fiber/Matrix constitutive parameters 

4. On/Off flag for cohesive surfaces 

5. Cohesive surface parameters 

6. Fiber & matrix seed size 
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The scripting not only defines all necessary fiber/matrix surfaces for cohesive 

interactions, but also defines necessary node sets for applying periodic boundary conditions for 

use in the semi-concurrent CH modeling. The periodic boundary conditions are enforced in 

ABAQUS using the *Equation constraint keyword, which allows for the specification of node-

to-node linear constraint equations. By creating node sets for the periodic faces and sorting them 

according to their (x,y,z) coordinates, the number of specified *Equation keywords in the 

ABAQUS input file can be greatly reduced by specifying corresponding sets rather than 

individual nodes. 

Two methods for determining the random fiber placement were utilized: (1) traditional 

random fiber placement and (2) close-packed perturbation approach. Random fiber placement 

iteratively places fibers, checking for intersection, and prescribing a set number of attempts until 

failure. Requiring fibers to lie completely within the domain of the RVE, this method was found 

to only provide efficient results for fiber volume fractions under 50%. The initial result shown 

later in Section 4.2.3 utilizes this simple random placement of fibers. For the laminate studies of 

the intended [25/-25/90]S composite, higher fiber volume fractions were required to represent 

traditional laminate Vf’s (55-62%).  

To overcome the limitations of random placement, the following close-packed 

perturbation algorithm was proposed which also allowed fibers to exit the RVE edge as in Figure 

4.8(a). First, fibers were allowed to initially penetrate each other. Second, an iterative algorithm 

was developed to “push” the fibers apart using standard kinematic equations and a pseudo-force 

based on fiber proximity and amount of intersection. An example of a periodic RVE with 

intersecting fibers is shown in Figure 4.8(b). The pseudo-force, F, shown in Equation (4.1), is a 

function of the intersection distance between two fibers, shown in Figure 4.8(c) as d, and a scalar 
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parameter fscale, which modifies the amount of force per distance squared to achieve an efficient 

solution scheme. Both variables are adjusted accordingly until the desired RVE is achieved 

within a reasonable run time. 

a)  (b)  (c)  

Figure 4.8:Example of a randomly placed (a) 4-fiber RVE with fibers allowed to exit the boundary and (b) an 

RVE with fibers intersecting and exiting the boundary. (c) Definition of the intersection distance, d. 

 

            (4.1) 

Standard constant acceleration kinematics are employed, assuming no initial velocities 

for all fibers, and the solution procedure marches forward according to the tscale time increment 

as shown in Equation (4.2). S and S0 are the current and initial displacements, v is the velocity 

and a is the acceleration assumed for duration of the time increment. The code, written in 

Python, tracks fiber centers and will end iterations when zero forces are achieved inside the RVE 

(thus signaling no penetration between fibers). The workflow of the generator is shown in Figure 

4.9. 

              
 

 
           (4.2) 
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Figure 4.9:Workflow of the RVE generation script for high fiber volume fractions 

4.2.2 Cohesive Zone Modeling 

Cohesive zone modeling is an attractive numerical tool for fracture analyses when there 

exists a pre-determined crack path and no initial crack tip is present, such as in the case for 

fiber/matrix interface debonding. The development of cohesive zone modeling originated from 

the introduction of the Barenblatt–Dugdale Model which accounted for the plastic fracture 

process zone ahead of the crack tip. In CZM however, the stresses ahead of the crack tip (and 

consequently in the cohesive / fracture process zone) are modeled through a constitutive traction-

separation law [87]. Accordingly, two crack tips exist in the CZM model: (1) the physical crack 

tip for which the preceding crack faces are traction-free and (2) the mathematical crack tip where 

the cohesive zone begins. A sample, arbitrary traction separation law is highlighted in Figure 

4.10. Although a number of laws describing this constitutive cohesive behavior have been 

 Randomly place fibers with intersection 

 Compute forces 

 Increment in time (tscale) 

 Update displacements (using tscale , force and velocity vectors) 

 Update velocity vectors 

 Check if a fiber exists “outside RVE” 

 Delete it 

 Check if a fiber completely inside RVE 

now exits an edge 

 Create instances 

 Check if a fiber which was once a group 

of instances, is now the only instance 

 Check if forces are zero in system 

 If not, repeat from step 2 
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developed, it was found by Alfano [68] and Volokh [69] to have little effect on the overall 

macroscopic response of the model.  

 

Figure 4.10: Example traction-separation law (ABAQUS 6.11 Analysis User's Manual) 

 

Alfano concluded that bi-linear traction separation laws obtain accurate results for little 

computational cost and are therefore utilized in this work. ABAQUS v6.11 inherently has two 

methods for incorporating CZM into the FE model. The first is through cohesive elements 

(available as both 2D and 3D elements). Using cohesive elements is useful when the cohesive 

interface exists physically as a finite thickness layer, as with the modeling of adhesives. The 

cohesive elements are then constrained to the adjacent material using either the *Tie constraint or 

through coincident nodes on a merged mesh. The second method for CZM deployment is 

through the use of the *Cohesive Surface Behavior option in the Interaction Module of 

ABAQUS. This feature allows for essentially “zero-thickness” cohesive interfaces between 

contact surface pairs through the *Contact Pair option.  

In a bi-linear traction separation law like the one used in this study, the main parameters 

are the cohesive strength (    and the separation work (  ) –synonymous to the fracture energy. 
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The first determines the peak stress for which the cohesive tip is defined, and separation occurs, 

while the separation work determines the area under the curve of the associated law. The 

simplest criterion, implemented in this work, assumes a maximum stress failure criterion, 

defined as 

    
    

  
  

  
  
     (4.3) 

where    and    are the normal and shear tractions along the cohesive front and   
  and   

  are the 

corresponding cohesive strengths for the particular directions. 

As is the case with fiber/matrix debonding within a UD ply, the mode-mixity at the crack 

tip is undefined and changing as the crack propagates. One must then define the cohesive 

behavior’s initiation criterion as either uncoupled between Mode I and Mode II or coupled 

through a standard quadratic relationship. The mode-mixity of damage evolution must also be 

defined. Linear degradation evolution is assumed for the multi-fiber RVE used in the validation 

study, where the damage variable D is defined as 

  
  
 
   

      
  

  
       

 
   

  
 (4.4) 

where   
    corresponds to the maximum separation achieved in the simulation at the cohesive 

interface. 

A number of field variables are available for post-processing simulation results 

containing cohesive surfaces/elements. For example, the DMICRT represents the damage 

initiation criterion field variable and achieves a value of 1 when the element/surface has failed. 

The SDEG field variable represents the element or surface’s relative state of damage. A value of 
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1 represents a completely failed element and separated surface. Implementations of the cohesive 

elements within ABAQUS are shown in Figure 4.11(a) and Figure 4.11(b). 

a)  (b)  

Figure 4.11: Cohesive elements used in the (a) uniaxial tension simulation on a quarter fiber/matrix RVE and 

(b) on a Mode I delamination example 

4.2.3 Results and Conclusions 

The first step in verifying the modifications coded into the semi-concurrent scheme was to 

check the validity and robustness of the Jacobian updating procedure using the boundary 

conditions discussed in the previous section. This test was carried out by comparing computed 

elastic moduli (using Mathematica and the exported Jacobian matrices from Python) to those 

predicted from purely periodic boundary conditions. A number of test cases were examined 

including a homogeneous RVE, a single fiber RVE, and multi-fiber RVE. For the fiber/matrix 

RVE’s the fiber volume fraction was 45%. Table 4.1 presents a comparison of the reference 

periodic values with those computed using the proposed perturbation boundary conditions for the 

z-scalar approach. For all three test cases, the non-periodic perturbations provided reasonable 

estimations of the material constants. It should be noted, however, that the uniform displacement 

boundary conditions on the right-hand side of the RVE caused the elastic moduli to be slightly 

over-predictive in shear. 

 

(

a) 
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Table 4.1: Computed elastic constants for periodic and non-periodic perturbation steps. 

Material  

Constant 

Homogeneous Solid 

Single Fiber RVE 

(Em = 3.5 GPa,  

Ef = 22GPa) 

25-fiber RVE 

(Em = 3.5 GPa,  

Ef = 22GPa) 

Periodic 

Non-

Periodic Periodic Non-Periodic Periodic Non-Periodic 

Ex (GPa) 100.00 100.000 20.897 21.257 20.247 20.455 

Ey (GPa) 100.00 100.000 20.897 21.137 20.378 20.419 

vxy 0.300 0.300 0.294 0.295 0.330641 0.328911 

Gxy (GPa) 38.462 38.462 6.438 6.901 7.207075 7.363027 

 

The next step in the verification process was to confirm that the z-scalar method 

preserved energy between the global and local scales even when using non-periodic boundary 

conditions. A single, reduced-order quadrilateral element (CPE4R) at the global scale was placed 

under uniaxial tensile loading. The element’s integration point was coupled to a 25 multi-fiber 

RVE with fibers placed randomly within the boundary of the RVE. Both periodic as well as the 

non-periodic free edge boundary conditions were employed in two separate iterations and the 

global elements were stretched to 1% strain. As was assumed in the formulation of the z-scalar 

method, all constituents are linear-elastic, however, a cohesive interface following a bilinear 

traction separation exists between the fiber and matrix. The necessary parameters for the 

cohesive interface are the cohesive strength,      , and the critical displacement, dcrit. The 

cohesive strength defines the peak traction value in the traction-separation law, and the critical 

displacement specifies the traction-free separation distance. The cohesive parameters are chosen 
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to be representative of a relatively weak interface. The constituent and interface properties are 

provided in Table 4.2. 

Table 4.2: Constituent properties for the multi-fiber RVE verification study 

 E (GPa) v σcohe  (MPa) dcrit  (m) 

Fiber 22 0.3 -- -- 

Matrix 3.5 0.4 -- -- 

Interface 10E7 -- 50 0.005 

 

It was found during the verification studies that the ETOTAL, or total energy history 

variable, of the system was non-zero, a phenomenon that was indicative of incorrect energy 

computations. Figure 4.12 shows all the energy history variables output by ABAQUS. Further 

investigations revealed that the negative ETOTAL, highlighted by the dashed box in Figure 4.12, 

was a result of the contributions of the cohesive surface to the internal strain energy of the 

system. When using cohesive interactions rather than cohesive elements, the strain energy 

present in the separation of the fiber/matrix interface was not getting added to the total strain 

energy of the RVE system. Although the contribution of the cohesive interface to the strain 

energy of the system can be reduced by increasing the cohesive stiffness, even a sufficiently 

large value of 10E7 GPa had a measurable contribution as shown in Figure 4.12. Equation (4.5) 

shows the energy balance equations of relevant energy sources in the FE simulations. Due to the 

neglecting of cohesive strain energy, the        , and consequently the          , energy terms 

were being under reported resulting in a negative ETOTAL result. 
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Figure 4.12:Energy history variable outputs for the 16 fiber RVE under periodic boundary conditions subject 

to uniaxial tensile loading. 

                                                     (4.5) 

As a consequence of the negative ETOTAL values, the computation of the z-scalar 

parameter in Equation (3.10) from the micro-structural strain energy had to be modified as in  

       
                 (4.6) 

The values         and        in Equation (4.6) were extracted from ABAQUS from the ALLE 

and ETOTAL history variables. 

The results of the z-scalar verification are presented in Figure 4.13, plotting the percent 

difference in external work computed by ABAQUS between the global and local scales for the 

two boundary conditions cases (periodic and non-periodic with a free edge). Both the global and 

local external work energies were found to be nearly identical for the two test cases, as seen from 

the relatively small values (<0.4%) in Figure 4.13. Coincidentally, the two test cases had similar 
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external work values regardless of the differences in applied boundary conditions on the level of 

the RVE. For the case of the non-periodic boundary conditions, the z-scalar was computed to be 

a value slightly less than unity. For example, at the last increment of the macroscale analysis 

(~1% strain) the z-scalar parameter was computed as 0.984. It was hypothesized that this small 

variation from unity was a function of the test boundary conditions and a lack of significant 

differences in the RVE response for the periodic and non-periodic BC’s. Since periodic boundary 

conditions have been proven to be energetically consistent, the close agreement between the 

macroscale periodic and non-periodic external work in Figure 4.13 would suggest that the 

implemented z-scalar parameter ensures similar consistency. Also, the small variations seen even 

with the periodic boundary conditions were hypothesized to be numerical construct within 

ABAQUS, rather than an imbalance of work between the two scales. 

 

 

Figure 4.13: Percent difference in external work between the macro and micro scale work for the 16 fiber 

RVE for periodic and non-periodic boundary conditions. 
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A case study was undertaken to show an application of the z-scalar energy based method. 

The 2D RVE used for the energy verifications and discussed in the previous sections was used in 

the following case study. The objective was to investigate the effects of a free edge boundary at 

the macroscopic level on the constitutive response provided by the RVE. The boundary 

conditions for the RVE were the test, free-edge boundary conditions proposed in Figure 4.2 (a). 

The RVE’s constituent properties were those reported in Table II. Again, damage was restricted 

to fiber/matrix debonding. Fibers were placed into the RVE using an iterative random placement 

script written in Python, for which the highest achievable fiber volume fraction was 45%. 

Macroscopic loading was uniaxial tension as in the diagram on Figure 4.13. Differences between 

periodic and non-periodic RVE boundary conditions were evaluated according to the 

macroscopic response (evaluated by plotting the elastic strain energy vs strain) as well as the 

elastic moduli (Ex, Ey). Previous research works [86,88] have shown that RVE size (number of 

fibers) affects the macroscopic response, and the appropriate RVE size is dependent on the 

constituent properties of the RVE. Other works have plotted the variance in macroscopic (stress-

strain) response over a variety of boundary conditions, none of which included a free-edge 

[84,85,89]. In this case study, the RVE size is varied from 4 fibers to 36 fibers with multiple 

iterations (3-4) of random fiber placement. 

Figure 4.14 plots the elastic strain energy versus macroscopic strain for the 4 fiber RVE, 

across several random placement iterations, as well as the comparisons between periodic and 

non-periodic (free) boundary conditions. The curves are labeled according to XPerY or XFreeY, 

where X is the RVE size and Y is the iteration number. Dotted points on the curves represent the 

periodic simulations, and solid curves represent those with the non-periodic boundary. The 

sudden plateaus seen at ~0.6% strain, or dip in the case of iterations 2 & 3, are a result of the 
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cohesive failure. The curves were as expected from trend seen in the elastic energy curve shown 

in Figure 15. 

 

Figure 4.14: Specific elastic strain energy vs macroscopic strain for the 4-fiber RVE. Dashed lines represent 

the periodic results, solid lines those of the free edge simulations, and the color coding corresponds to a given 

RVE iteration. 

Figures 4.15-4.17 plot the macroscopic stress in the loading (22) direction versus 

macroscopic strain. These plots provide the RVE’s macroscopic material response under the 

uniaxial tensile loading. For the four 4-fiber RVE test cases shown in Figure 4.14, only one 

iteration (case 3) had a significantly different response between the two BC’s. A similar 

observation can be made from Figure 4.14. Figure 4.15 also highlighted the significant variation 

in material behavior (cohesive failure) between the 4 different RVE iterations as a function of the 

random placement. Iterations 1 & 4 had significantly lower peak stress values (pre-cohesive 

failure) and a more drastic drop in stress before reloading. 
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Figure 4.15: Macroscopic (2-direction) stress vs strain for the 4-fiber RVE.  

Figure 4.16 shows the results from the 16 fiber test. The simulation for the 16Per3 test 

case terminated early due to convergence issues present after cohesive failure and is indicated on 

the figure. The first 16 fiber RVE iteration had a nearly identical macroscopic response between 

periodic and non-periodic, while the second iteration had significant softer post-peak response in 

the periodic BC case. For both of these iterations, the periodic response was “softer”, indicative 

of increased cohesive damage as a result of the constraint on the right-hand side of the RVE. The 

significant differences in iterations 1 and 2 between the periodic and non-periodic counterparts 

could be attributed to the RVE fiber placement with respect to the free-edge. The RVE for 

iteration 1, shown at the top left of Figure 14.6, had fewer fibers in the proximity of the right-

hand edge versus the RVE for iteration 2, shown at the bottom left of the figure. The periodic BC 

caused cohesive failure and separation at the fiber highlighted by the black arrow on Figure 4.16, 

whereas the free edge did not cause failure/separation. 
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Figure 4.16: Macroscopic (2-direction) stress vs strain for the 16-fiber RVE. 

The 36 fiber RVE results presented in Figure 17 highlighted two main points. First, as 

expected from literature, the variation in material macroscopic response decreased across the 

random fiber iterations. Second, the periodic boundary conditions suffered from numerical 

convergence issues resulting from premature failure in the cohesive surfaces, highlighted on the 

figure. This happened for two of the three periodic cases; however, the premature failure did not 

affect the material’s tensile strength as was with the premature failure of the 16Per3 case. The 

free-edge simulations, however, were able to reach the final macroscopic loading of 1% strain 

with no issues. Iteration 1, which completed to 1% for both BC’s, showed little differences in the 

macroscopic response. The similarity of periodic and non-periodic response for iteration 1 can 

again be attributed to the proximity of fibers to the right edge of the RVE.  
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Figure 4.17: Macroscopic (22 direction) stress vs strain for the 36-fiber RVE. 

Computation of the initial modulus (slope) from the periodic and non-periodic 

simulations in Figures 4.15-4.17 was performed for all cases to compare the influence of RVE 

size. There was an observed decrease in variation of the initial modulus with increasing RVE 

size. The initial modulus converged for the 36 fiber case was 6.7 GPa, and was slightly softer 

than the average modulus computed for the 4 and 16 fiber cases which ranged between 7.1 and 

6.8 GPa. 

4.3 Conclusions 

The results from this implementation of the free edge boundary condition within the 

semi-concurrent scheme pointed out several useful applications for the 3D study of the 

composite laminate. First, the influence of the free edge boundary condition on the overall strain 

energy preservation across the scales was minimal (i.e. the z-scalar value was small across the 

simulations, particularly prior to any damage development). Thus for a linearly elastic 3D 

multiscale analysis, the z-scalar method may not need to be implemented. Additionally, the RVE 
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size study showed that a sufficient number of fibers should be chosen to best represent the 

macroscopic, homogenized response since random microstructures will exhibit variability in 

their response when the RVE size is small. For future work in Chapters 5 and 6, the micro-scale 

analysis will be defined as the use of a “micro-model” rather than an RVE, since the finite size of 

the micro-model may not necessarily represent the global macroscopic behavior. 
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5. Free Edge Analysis of the Interlaminar Microstructure 

In order to understand the influence of the local microstructure on free edge cracking 

observed experimentally, a multiscale analysis was performed on the IM7/8552 [25/-25/90]S 

composite laminate. It employed a computational homogenization framework, as outlined in the 

previous chapter. To reduce the computational complexity associated with implementing the 

fully coupled, semi-concurrent approach in 3D, the laminate investigation was performed using 

only one-way localization. Boundary conditions similar to those employed in Chapter 4 were 

utilized to allow for a free edge at the micro-scale. A one-way, multiscale approach was 

sufficient in determining important characteristics of the nature of the fiber/matrix stresses prior 

to failure, which will assume the composite and its constituents are linear elastic. 

The multiscale analysis was used to address specific questions regarding the cause and 

influence of matrix cracks. Of particular interest was the influence of the local interlaminar 

microstructure on cracking during the manufacturing process, which was observed 

experimentally to occur at ply interfaces, the most susceptible being the 90°/90° ply interfaces. 

In addition, the multiscale modeling will be used to understand why initial pre-cracks did not 

influence damage development upon the application of mechanical loading. 

5.1 Overview 

In this work, the IM7/8552 laminated [25N/-25N/90N]S composite is modeled under both 

thermal and mechanical loading for N=1 and N=3 with similar dimensions to the specimens 

tested by Dustin (2012). The overall workflow of the multiscale approach is presented in Figure 

5.1 showing the relevant length scales of the composite laminate problem as discussed in the 

Introduction. The components of the multiscale approach are outlined next. 
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Figure 5.1: Workflow of the multiscale analysis of a composite laminate showing relevant length scales. The 

current approach utilizes meso-scale and micro-scale finite element models which are one-way coupled as 

shown by the dashed arrow. Deformations from the meso-scale are localized into boundary conditions on the 

micro-scale finite element model. 

The macro-scale of the laminate problem assumed to be one of a homogeneous, yet 

orthotropic material based on the effective properties of the laminated composite which 

undergoes both uniaxial tensile loads and a uniform temperature change to account for residual 

stresses. As a result of the homogeneous material definition and simple loading at the macro-

scale, the analysis would yield an expected uniform displacement gradient through the entirety of 

the macro-scale coupon. Due to the uniformity of displacements at the macro-scale, the finite 

element analysis begins with a sub-section slice model at the meso-scale as shown in Figure 5.1 

At the meso-scale, the RVE consists of individual unidirectional (UD) lamina assumed to 

be homogeneous and orthotropic. It is used to capture the stacking sequence of the IM7/8552 

composite laminate and the nature of the macroscopic loading, as shown in Figure 5.1. The 

meso-scale model would predict the deformation gradients present at the free edge at the 

homogeneous lamina level. The deformation results from the meso-scale model would then be 
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coupled to a micro-scale finite element model in order to determine the fiber/matrix level 

stresses. 

The micro-scale finite element model explicitly represents the carbon fibers in a random, 

periodic array in the 90° plies. Various micro-models will be utilized to simulate a change in 

microstructure at the ply interfaces and will be discussed in detail later. The displacement 

boundary conditions of the micro-scale model are determined via a coupling to the deformation 

of a given integration point in the meso-scale model. The direction of the coupling is shown by 

the dashed arrow in Figure 5.1. 

5.2 Scale Transitions 

5.2.1 Kinematic Coupling 

The one-way coupling is achieved through a kinematic relation between the meso- and 

micro- scale models. This kinematic relation was developed based on strain localization methods 

used for Computational Homogenization multiscale frameworks [42,90]. In this deformation 

driven finite element analysis, the strains at an integration point in the meso-scale model were 

used to determine the appropriate boundary conditions to apply onto the micro-scale finite 

element model.  

A localization rule to provide the kinematic, one-way coupling was developed to relate 

the strain components at the meso-scale to nodal displacements for the micro-scale model. A 

simple 2D example of this strain-displacement relation is shown in Figure 5.2. A relation in the 

form of Equation (1) was proposed, where the strain components are related to prescribe 

displacements onto the RVE. In this way, the meso-scale strains obtained from an element 

integration point would provide the necessary displacements for the micro-scale model. 
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Figure 5.2: The definition of normal and shear displacements prescribed on a 2D RVE. The black dotted line 

represents tensile deformation prescribed by extensions    and    while the red dotted line shows a simple 

shear deformation according to   . 

 

                     

         
(5.1) 

Since the analysis of the laminate free-edge stress is a geometrically nonlinear problem, 

the large-displacement formulation was selected in ABAQUS for the static stress analysis. As a 

result, the default strain outputs from ABAQUS were the logarithmic strain tensor components. 

Thus, the localization rules, relating the meso-scale strains to micro-scale nodal displacements 

had to be adjusted according to the definition of logarithmic strain in one dimension, 

 

        
 

  
  

(5.2) 

where      is the logarithmic strain, and   and    are the current and original length respectively. 

(Note: In the remainder of this paper, strain will always be reported using the logarithmic strain, 
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unless otherwise noted, and the superscript LOG will be dropped). The relation between 

extensional strains and applied displacement in the 2D example of Figure 4 is given by 

 

      
 

  
     

     
  

  

      
 

  
      

     
  

  

(5.3) 

The relation between the shear displacement,   , and logarithmic shear strain prescribes a 

logarithmic relation according to 

 

       
     

  
  

(5.4) 

where    is equal to twice the tensorial component of logarithmic shear strain outputted from 

ABAQUS. The form of Equation (5.4) can be interpreted as a modification of standard relations 

between shear strain and RVE displacement as presented by Sun and Vaidya [33]. For the simple 

shear deformation in Figure 5.2, the total length extending in the 2-direction is simply   . 

In summary, the strain-displacement relations shown in Equations (5.3) and (5.4) 

represent the kinematic relations which couple the meso- and micro-scale models. The strains 

were obtained from integration points in the meso-scale model and then the corresponding 

displacements were defined for the micro-scale model. The exact form of the kinematic relations 

used in three dimensions for the micro-scale model will be presented later. In the next section, a 

validation of the strain-based localization rules will be addressed.  
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5.2.2 Validation of Strain Based Localization 

First, a simple 2D, one element study was performed in order to determine the efficacy of 

using a strain-based approach in the localization between the meso and micro-scales. The 

workflow of this strain localization study is shown schematically in Figure 5.3. The variable 

LEXX represents the logarithmic strain output from ABAQUS in the XX direction (note: shear 

strain is outputted as double the tensorial component). Two test cases were run with the nodal 

displacements for each simulation shown in Table 5.1. The prescribed strains LEXX, outputted 

from an initial single element test, were compared to the resulting strains LEXX* after three 

separate localization rules were applied using either the deformation gradient in Equation ( 3.2) 

or the strain-based methods using Equations (5.3) and (5.4). 

 

Figure 5.3: Workflow of a 2D single element study to determine the efficacy of strain based localization 

methods. 



 

 

55 

Table 5.1: The four nodal displacements for the two prescribed test cases used in the single element 

localization test. The distance d is the length of edge AB of the square RVE shown in Figure 5.3. Nodes B and 

D in the single element were fully prescribed, node A was fixed and node C followed periodic constraints. 

Nodal 
Displacement 

Loading Case 

 Combined Shear & 
Tensile Loading 

Applied Shear 

  
  0.05*d 0.05*d 

  
  0.1*d -- 

  
  -- -- 

  
  0 0 

 
 

Figure 5.4 (a) and (b) compares the results of the three different localization methods 

against the originally prescribed strain. The results show that the deformation gradient method, 

as expected, was the most consistent in returning an element deformation where the computed 

strains were closest to the originally prescribed strain. The two alternative methods, however, 

were relatively close in both loading conditions. The strain based localization method varied 

significantly only in the case of the tensile direction loading case, where the normal components 

were over-predicted by 50%. It should be noted that these two components were relatively small 

in comparison to the larger shear component. Thus, the strain based localization methods proved 

to be a reliable tool in prescribing displacements where the deformation gradient is not readily 

available (in the case of using a built-in material model within ABAQUS). 
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(a)   

(b)  

Figure 5.4: Comparison of resulting strain LEXX* for a variety of localization rules against the prescribed 

strain LEXX for (a) combined loading and (b) an applied shear. 
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5.2.3. Micro-scale Boundary Conditions 

The boundary conditions enforced at the micro-scale are shown in the schematic of 

Figure 5.5, showing the assumed periodicity in the y and z directions and free edge in the 

negative x face. The left hand side of the micro-model, oriented to the interior (the positive x 

face), is prescribed a unique Periodic* boundary condition. On this face all nodes are prescribed 

a fixed displacement according to a periodic solution which is run prior to the free-edge analysis. 

The workflow of this process is shown in Figure 5.6.  

 

 

Figure 5.5: The applied boundary conditions for the free edge micro-scale analysis. The model is assumed 

periodic in the y and z directions. In the x-direction, the negative x face is assumed to be a free surface, while 

the positive x face is prescribed a unique Periodic* Dirichlet boundary conditions based on a periodic 

solution. The vertices of the micro-model are labeled A-D and O-R, which appear as superscripts in the 

displacement relations of Equations (8). 

In step 1 of Figure 5.6, a purely periodic micro-model analysis is first run based on the 

displacements determined from the meso-scale solution. Upon completion of the periodic 

analysis, the nodal displacements on the entire positive x face of the micro-model are extracted. 
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The positive x face is the interior facing portion of the cubic micro-model. These nodal 

displacements are then set as a Dirichlet boundary condition on the positive x face of a free edge 

micro-model analysis, as shown in Figure 5.5.  

 

Figure 5.6: Process flow for the application of the Periodic* BC. 

 

The nodal constraints used to prescribed periodic BC’s initially, as in step 1 of 7, are 

shown in Equations (5.5), 
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where the superscripts A through D and O through Q above correspond to the nodes specified in 

Figure 8. The localization rules, based on the 3D extension of Equations (5.3) and (5.4) are 

  
              

  
              

  
              

  
              

  
              

  
              

  
    

    
    

(5.6) 

 

where     corresponds to the logarithmic strain component of the corresponding meso-scale 

integration point. Nodes at the vertices of the micro-scale RVE are fully constrained, while the 

nodes on the faces are constrained to relative displacements based on periodicity. Once the 

periodic solution is completed, the displacements of all nodes on the positive x surface are 

obtained. The boundary conditions and prescribed displacement on the free edge micro-scale 

problem are reduced to 
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(5.7) 
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) 

where the x direction periodicity is removed and the displacement of node R, shown in Figure 

5.5, is left unspecified in the x-direction (creating a traction free boundary at the    surface). 

5.2 Meso-scale Model 

The meso-scale model of the [25N/-25N/90N]S laminate is shown in Figure 5.7 for the case 

of N=1. The width of all laminates investigated in this work was set to 25 mm and the thickness 

of each lamina was 0.1616 mm. The model is assumed to be periodic in the z-direction to 

drastically reduce the size of the meso-scale model to a “slice”. The depth of the model in the z-

direction was set to 0.018 mm. The periodic assumption is valid for regions sufficiently far from 

the gripped ends of the coupon. It should be noted that the entire 25 mm width of the meso-scale 

model for N=1 is not shown in Figure 5.7. 
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Figure 5.7: A portion of the meso-scale finite element model for the case of N=1 is shown. The meso-scale 

model is color coded to identify the unidirectionaly ply orientations. The meso-scale model is truncated in the 

figure. The micro-scale model associated with the midplane interface element is shown at the right. 

The meso-scale model consists of homogeneous, orthotropic unidirectional plies modeled 

using C8DRT brick elements. The lamina orientations are shown in Figure 5.7 by color coding, 

and the finite element mesh shown for the N=1 case. The density of the finite element mesh was 

chosen such that elements near the free edge were close in dimensions to that of the entire micro-

scale finite element model (0.018 mm x 0.018 mm x 0.018 mm). This requirement was strictly 

enforced at the areas of interest (e.g., the lamina boundaries) and was prescribed user-defined 

edge seeding throughout.  

The purpose of enforcing the meso-scale mesh density to be equal to the size of the 

micro-scale was to ensure that the kinematic coupling provided reasonable strain measures to be 

coupled to the micro-scale model. Due to the singular nature of the meso-scale stress/strain fields 

at the free edge, continued mesh refinement would result in higher strains in elements at the free 
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edge and near the lamina interfaces. Since these strains are then coupled into the displacements 

of a finite size micro-scale model, limiting the mesh density to the size of the micro-model 

ensures that unrealistically large meso-scale strains are not coupled down to the micro-scale 

finite element model. 

The same mesh density, laminate width and thickness were used for the N=3 meso-scale 

FE mesh as shown in Figure 5.7. The total laminate height is 4.848 mm. In the case of the N=3 

laminate, three different 90/90 ply interfaces are present. The three 90/90 ply interfaces are here 

on referred to as the midplane, second and third interface, beginning with the laminate midplane 

and proceeding in the positive y direction as shown in Figure 5.8. Again, it is enforced that an 

element exists exactly at the interface location, such that the micro-model results can be obtained 

from localizing the meso-scale strains at these interface elements. 

 

Figure 5.8: The meso-scale finite element model for the N=3 laminate. The meso-scale model is color coded to 

identify the unidirectionaly ply orientations. The meso-scale model is truncated in the figure. 
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5.3 Micro-scale Model 

In order to investigate the effect of the microstructure at the interface of 90/90 ply 

interfaces, a set of modified micro-models are developed with varying amounts of pure resin rich 

regions along the center line of the model. It was shown by Andrew and Garnich that there is an 

inverse relationship between the free edge fiber/matrix stresses (located at the dissimilar material 

interface and free edge) and local fiber volume fraction [73]. Thus, the original micro-model, 

shown previously in Figure 5.6, was modified by adding a layer of resin thereby increasing the 

micro-model’s size in the y-direction. This pure resin represents a finite thickness interlaminar 

region between neighboring plies, which can be identified in optical micrographs of the 

laminated composites [31]. 

Three different interlaminar micro-models are shown in Figure 5.9 (a)-(c) which have 

total fiber volume fractions of 55%, 48% and 44% respectively. They all consisted of an explicit 

finite element representation of 9 IM7 carbon fibers in the 8552 epoxy matrix. The fibers were 

randomly distributed, and the micro-model was assumed to be periodic in the y and z directions. 

The entire model consisted of C3D6T wedge elements with enhanced refinement approaching 

the model free edge. The two micro-models differ only by the spacing between the top 5 and 

lower 5 fiber instances, used to represent a realistic matrix-rich ply interface. The three different 

micro-models will be used to understand the effect of the local interlaminar microstructure on 

free edge micro-stresses. The same boundary conditions are used for all three micro-models. 
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(a)  (b)  (c)  

Figure 5.9: (a) 55% fiber volume fraction micro-model, (b) 48% fiber volume fraction micro-model 

and (b) 44% fiber volume fraction micro-model. 

 

5.4 Model Parameters 

At the meso-scale, the lamina properties are obtained by homogenizing the fiber and 

matrix mechanical and thermal properties with the respective fiber volume fraction and utilizing 

the MAC/GMC micromechanics software [91]. This homogenization procedure was repeated for 

the 55% fiber volume fraction of the overall composite, and also re-computed for the varying 

interlaminar elements which will have a locally reduced fiber volume fraction of 48% or 44% 

depending on the investigated interlaminar interface thickness. The properties utilized in this 

work are presented in Table 5.2. 
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Table 5.2: Constituent and homogenized lamina mechanical and thermal properties. The constituent 

properties were obtained from Dustin and Pipes [76], while the lamina properties were obtained using the 

MAC/GMC micromechanics software. 

  

EL, GPa ET, GPa νLT GLT, GPa GT, GPa 

αL 
(10-

6/°C) 

αT  
(10-

6/°C) 

Fiber IM7 276 19.5 0.27 70 5.74 -0.4 5.6 

Matrix 8552 4.67 -- 0.34 1.74 -- 50 50 

Matrix  

(Relaxed) 8552 3.51 -- 0.38 1.27 -- 50 50 

Lamina Vf = 55% 153.9 9.71 0.305 7.37 5.87 0.3 29.3 

Lamina  

(Relaxed) Vf = 55% 153.4 8.882 0.309 5.91 2.58 0.3 29.3 

Lamina Vf = 47% 134.4 9 0.303 5.87 2.85 0.3 29.3 

Lamina 
(Relaxed) Vf = 47% 133.8 7.67 0.32 4.6 2.3 0.3 29.3 

Lamina Vf = 44% 124.1 8.56 0.305 4.5 2.7 0.3 29.3 

Lamina 

(Relaxed) Vf=44% 123.4 7.24 0.325 4.12 2.1 0.3 29.3 

 

Since free-edge cracking was present prior the application of extensional loading, it was 

important to properly account for the residual stresses which could be present from thermal cool 

down during manufacturing. As with any thermoset composite, the neglect of viscoelastic effects 

has been reported to overestimate the residual stresses in the laminated composite by 20% [92]. 

It is typically assumed that there is a relaxation in the shear response of the thermoset resin, 

provided by shear relaxation tests [93]. Due to the unavailability of an orthotropic, viscoelastic 

material model in ABAQUS, a simpler method to account for the shear relaxation of the matrix 

is considered and is utilized to modify both the micro-scale matrix, and meso-scale homogenized 

lamina properties. 
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To account for relaxation of the matrix shear modulus, an “effective” matrix modulus is 

considered whereby a long-term relaxation of the matrix shear modulus is assumed. The long-

term relaxation of the matrix shear modulus is assumed to be 27% based on storage modulus 

plots presented by Miyano for the 8552 resin [94]. The resultant relaxed elastic properties for the 

matrix are obtained by reducing the shear modulus of the matrix, preserving the bulk modulus of 

the material, and computing the consistent Young’s modulus and Poisson’s ratio for isotropic 

elasticity. The relations for computing the relaxed Poisson’s ratio and Young’s modulus are 

shown in Equations (5.8) and (5.9), where K is the bulk modulus, G
 
is the shear modulus, E is 

the Young’s modulus and   is the Poisson’s ratio. The superscript R represents the relaxed 

property. 

   
      

         
 

(5.8) 

               (5.9) 

In the simulation of the composite laminates in this work, the residual stresses are 

computed at both the lamina and micro-scale utilizing the relaxed lamina properties. Accounting 

for the matrix relaxation will ensure that the local matrix stresses at the free edge during the 

manufacturing phase are not overestimated in the current analysis. When mechanical extension 

of the composite laminate is considered, however, the instantaneous (unrelaxed) properties for 

both the lamina and matrix are utilized.  

When the size of the interlaminar thickness is considered in the finite element 

simulations, the local element at the meso-scale which represents the 90/90 ply interface will use 

the appropriate lamina level properties. For example, when the interface is assumed to have a 

local fiber volume fraction of 44%, the properties listed in Table 1 for the given fiber volume 
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fraction are assigned to the row of elements at the ply interface. Thus, the influence of increased 

resin at the interlaminar interface is both accounted for by utilizing the appropriate micro-model 

and adjusting the meso-scale lamina properties to reflect the reduced elastic properties of the 

interface. 

 

5.5 Finite Element Results 

Three separate investigations were performed in this work and the results are presented 

and discussed for each one separately. The first investigation studied the effect of the 

interlaminar thickness by modeling the N=1 laminate whereby the 90/90 ply interfaces is 

examined using the three different micro-models which vary in the size of the pure resin rich 

interface. In this first study, the laminate experiences only the thermal loading from manufacture. 

The second investigation examines the effect of the meso-scale free edge deformations on the 

local micro-scale stresses and compares that effect to the influence of the interlaminar thickness. 

In this second study, the N=3 composite laminate will be examined under thermal loading at all 

three unique 90/90 ply interfaces. The 55% and 48% micro-models will be used to compare the 

influence of meso-scale strains versus interlaminar thickness. The third investigation will re-

examine the N=3 composite laminate as in the second investigation; however, the loading on the 

laminate will be purely mechanical extension in the z-direction. In all cases, the simulation 

results will be used to understand to Dustin’s experimental observations on the laminate [31]. 

5.5.1 Effect of the Interlaminar Thickness during Thermal Cooldown 

Investigation I looked at the effect of interlaminar thickness on the development of the 

residual free edge stresses at the 90/90 ply interface of the N=1 composite laminate. A thermal 
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loading of ΔT -150°C was applied to the IM7-8552 laminate, and the resulting meso-scale 

strains were localized onto the micro-model. The three interface micro-models were considered, 

which varied in the proportion of pure resin regions located at the center of the micro-model. The 

elements at the 90/90 ply interface at the meso-scale were updated to account for the reduced 

fiber volume fraction in the case of the 48% and 44% fiber volume fraction interface micro-

models.  

Figure 5.10 plots the free edge stresses at the lamina level in the y-direction, which 

represents the peeling stresses in the laminate. As expected, the highest concentration of free 

edge peeling stresses are located at the dissimilar ply interface, however, in this study the 

midplane 90/90 ply interface will be examined. Figure 5.10 also shows the logarithmic strains of 

the meso-scale element at the 90/90 ply interface for all three micro-models. Note that the strains 

change due to the differing mechanical properties across the three different interlaminar 

thicknesses examined. These strains will be used to localize the micro-model for the 55%, 48% 

and 44% fiber volume fraction models. At the micro-scale, not only are the applied 

displacements given by the meso-scale strains prescribed, but also the thermal cooldown 

boundary condition where the temperature is assumed to change uniformly at both the meso- and 

micro-scales. 
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Figure 5.10: The contour results (units of MPa) are shown for the residual free edge stresses in the y-direction 

for the N=1 laminate and 55% Vf micro-model. The logarthmic strain components extraced from the 

midplane 90/90 interface element are shown on the right for all three interlaminar thicknesses. Due to the 

thermal contraction, the strains are negative, however the stresses are positive in the laminate. The 1, 2 and 3 

component directions correspond to the global x, y and z directions. 

With the aim of comparing the three individual interface micro-models, contour plots 

were generated which highlighted in red the elements whose maximum principal stress had 

exceeded the reported matrix tensile strength of 99 MPa. Figure 5.11 shows an example of this 

contour plot of maximum principal stress for the 55% fiber volume fraction micro-model. The 

face shown in the negative x direction is at the laminate free edge and fibers were removed for 

clarity. Figure 5.11 demonstrates the localized nature of the free edge matrix stresses, which 

takes on high values above the matrix tensile strength at the interface of the fiber and matrix at 

the free edge.  
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Figure 5.11: The contour results are shown for the residual free edge maximum principal stresses in the 

matrix elements (fibers are hidden) for the 55% micro-model. Elements whose maximum principal stresses 

have exceeded 99MPa are highlighted in red. 

 
These localized free edge matrix stresses seen in Figure 5.11 tend to be located at the 

edges of the fiber the fiber matrix interface. The localized nature of the highest matrix stresses is 

a result of the singularity present at the free edge due to the material discontinuity [29,73]. In 

addition, the location of the highest maximum principal stresses at the free edge occurred near 

matrix rich regions. For example, regions with proximic fibers tended to exhibit fewer red 

elements versus regions with greater fiber spacing. The location of the highest matrix stresses 

were on the edges of the fibers facing the z-direction.  

Figure 5.12 compares the results for all three interface micro-models with the free edge 

face shown. The increase in interlaminar thickness due to the additional resin in the 48% micro-

model resulted in a 45% increase in the highest reported maximum principal stress value. In 

addition to the increased maximum value, the number of elements which have exceeded the 



 

 

71 

threshold stress of 99 MPa increased significantly between the 55% and 48% micro-models. In 

the 48% micro-model, the critical matrix elements nearly encompass the entire boundary of the 

fiber at the free edge. A similar contour plot to the 48% was predicted for the 44% micro-model 

case; however, the highest maximum principal stress was reported slightly lower at 252 MPa. 

The results in Figure 5.13 highlight the impact of additional resin in the interlaminar micro-

model to simulate increased interface thickness. There is a clear increase in the highest free edge 

stresses in the matrix that is localized at the fiber/matrix boundary. It is not clear from the three 

test cases examined in this work if additional resin would result in continued increases in matrix 

free edge stresses. Additional micro-models with varying interlaminar thicknesses would be 

required to determine whether a threshold exists whereby increasing matrix would continue to 

cause increased matrix free edge stresses. 

 

Figure 5.12: The contour results are shown for the residual free edge maximum principal stresses in the 

matrix elements (fibers are hidden) for all three interface micro-models. Elements whose maximum principal 

stresses have exceeded 99MPa are highlighted in red. The face of the micro-model shown is at the free edge of 

the laminate. 
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Full contour plots of the maximum principal stress for all three micro-models are shown 

in Figure 5.13. These contour plots emphasize the general stress relaxation that occurs in the 

matrix at the free edge away from fibers, shown by the concentration of blue regions at the free 

edge face. As expected, it is only in localized regions near the fiber/matrix boundary that the 

highest matrix stresses are concentrated. There was also an observed general increase in the 

maximum principal stresses of the matrix comparing the contours of the 55% Vf micro-model 

and the 48% micro-model. This was likely due to the difference in meso-scale strains localized 

for the two interlaminar micro-models (seen in Figure 5.10). 

 

 
Figure 5.13: Contour plots are shown for the residual free edge maximum principal stresses in the matrix 

elements (fibers are hidden) for all three interface micro-models. The contour legend is shown (units of Pa). 

The contour plots utilize an upper and lower limit, set at 99MPa and 0 MPa, respectively, to capture the 

variation of maximum principal stresses within the entire micro-model. Values above or below the specified 

limits are colored red or blue, respectively. The face of the micro-model shown is at the free edge of the 

laminate. 

Figure 5.14 shows the contour plot for the 48% fiber volume fraction micro-model with 

an increase in the threshold stress for which matrix elements are highlighted in red. The 
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threshold stress is set to 182 MPa, to identify the elements whose maximum principal stresses 

have exceed the highest value reported for the 55% micro-model. The concentrations of red 

elements in Figure 5.14 show a preference for fiber boundaries facing the resin-rich interlaminar 

region at the center of the micro-model. These locations of highest maximum principal stresses 

are in contrast with the orientation of the highest regions in the 55% micro-model in Figure 5.12.  

 

 

Figure 5.14: The contour results are shown for the residual free edge maximum principal stresses in the 

matrix elements (fibers are hidden) for the 48% micro-model. Elements whose maximum principal stresses 

have exceeded 182MPa are highlighted in red. 

From the results in Investigation 1, three important observations were made. First, it was 

found that the highest free edge matrix stresses were observed at the fiber-matrix boundary in 

resin rich regions. Second, the introduction of pure resin into the interlaminar interface micro-

models resulted in an increase in the free edge matrix stresses. Third, the highest matrix stresses 

in the 48% and 44% micro-models were oriented facing the resin-rich sections of the micro-

models.  
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These three observations imply that free-edge cracking is likely to occur at the ply 

interfaces where the composite laminate is likely to see increased resin rich regions. This result 

was observed by Dustin for all cases of N=1, 3 and 5 at the 90/90 ply interfaces [31]. The 

simulation confirms that there is a higher propensity for cracking near ply interfaces with a 

distinguishable matrix interface, than at the interior of a lamina. 

 Additionally, the orientation of the highest matrix stresses which face the resin-rich 

interface is supported by the experimental observations of crack orientation. The majority of 

cracks observed by Dustin at the 90/90 ply interfaces were predominantly oriented in the z-

direction. The contour plots in Figure 14 imply that the greatest propensity for crack imitation is 

likely to occur along the fiber/matrix boundary in-line with the ply interface. 

5.5.2 Influence of Meso-Scale Strains on Free Edge Micro-stresses 

Investigation II explores the sensitivity of the local free edge micro-scale stresses to the 

meso-scale strains at various 90/90 ply interfaces in the N=3 composite laminate. The three 

interlaminar 90/90 ply interfaces, labeled midplane, second and third interface are explored at the 

micro-scale. In this investigation, the residual stresses during thermal cool down are again 

considered to be the meso-scale loading. 

Both the 55% and 48% fiber volume fraction micro-models are compared at all three 

locations in order to compare the influence of the interlaminar thickness versus that of the meso-

scale strains which vary as the ply interface location changes. Figure 5.14 graphs the logarithmic 

strain components at all three interfaces, labeled as Midplane, Second and Third, and 

corresponding to the interfaces identified on 5.8. The identifier Thick is appended to the lamina 
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models whereby the interface has the increased matrix regions, corresponding to the 48% fiber 

volume fraction micro-model. 

 

Figure 5.14: The logarithmic strain components at the meso-scale for the N=3 laminate at the three 90/90 ply 

interfaces. The 1, 2 and 3 component directions correspond to the global x, y and z directions. 

 
The strain components in Figure 5.14 indicate an increase in the through-thickness 

peeling strain, labeled LE2, as one moves from the midplane interface to the interface closest to 

the dissimilar -25/90 interface. There is also an increase in the interlaminar shear strains (LE23) 

as one proceeds closer to the dissimilar ply interface. Additionally, the reduced elastic properties 

of the 48% Vf lamina at the interface causes an increase in the meso-scale strains, as shown by 

comparing the interface elements to their respective Thick counterparts.  

All 6 of these micro-models, representing the three different 90/90 ply interfaces and two 

different interlaminar thicknesses are compared similar to the procedure done for investigation 

one. Thus, the three different ply interface strains from the meso-scale are localized into 
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boundary conditions onto the corresponding interlaminar micro-model. The thermal cooldown, 

along with the boundary displacements are prescribed onto the finite element micro-model. 

The contour plots for all three ply interface locations for the 55% fiber volume fraction 

micro-model interface are shown in Figure 5.15. All three locations ply interface locations 

exhibit minimal change between the three locations, despite the increase in meso-scale strains as 

the interfaces approach the -25/90 dissimilar ply interfaces. For example, the increase in highest 

reported maximum principal stress between the Midplane interface, and that of the Third is only 

a fraction of a percent. In addition, the introduction of interlaminar shear strains at the meso-

scale has little influence to the orientation of the highest matrix stresses, which are located at the 

fiber boundary facing the z-direction. The full color contour plots shown in Figure 5.16 show a 

similar result to those of the 55% Vf micro-model from Investigation I (Figure 5.13). 

 

Figure 5.15: The contour results are shown for the residual free edge maximum principal stresses in the 

matrix elements (fibers are hidden) for all three ply interfaces for the 55% fiber volume fraction micro-

model. Elements whose maximum principal stresses have exceeded 99MPa are highlighted in red. The face of 

the micro-model shown is at the free edge of the laminate. 
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Figure 5.16: Contour plots are shown for the residual free edge maximum principal stresses in the matrix 

elements (fibers are hidden) for the 55% Vf micro-model at the three 90/90 pl interfaces. The contour legend 

is shown (units of Pa). The contour plots utilize an upper and lower limit, set at 99MPa and 0 MPa, 

respectively, to capture the variation of maximum principal stresses within the entire micro-model. Values 

above or below the specified limits are colored red or blue, respectively. The face of the micro-model shown is 

at the free edge of the laminate. 

The threshold stress contour plots for the 48% micro-model are shown in Figure 5.17 for 

the three interface locations. Even for the thick interlaminar interface micro-model, there was 

negligible change in the contours and highest maximum principal stress values between the three 

90/90 ply interface locations. The locations of the highest matrix stresses in these micro-models 

are oriented facing the resin rich region of the micro-model. 
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Figure 5.17: The contour results are shown for the residual free edge maximum principal stresses in the 

matrix elements (fibers are hidden) for all three ply interfaces for the 48% fiber volume fraction micro-

model. Elements whose maximum principal stresses have exceeded 99MPa are highlighted in red. The face of 

the micro-model shown is at the free edge of the laminate. 

The results from this second investigation highlight the importance of local 

microstructural variation in the micro-models. The insignificant changes in free edge stresses 

between the varying ply interface locations suggests that the variation in meso-scale free edge 

strain play only a small role in causing free edge cracking. The large difference in matrix free 

edge stresses between the 55% and 48% micro-models suggest that the local resin rich layers 

between lamina are a stronger driver for cracking due to residual stresses. 

These results support the experimental observations seen by Dustin in the N=3 and N=5 

laminates where 90/90 ply cracking was seen dispersed through the thickness of the laminate 

[31]. For example, even the N=5 laminate had observed free edge cracking at the midplane 

interface. The numerical analysis from this investigation suggest that cracking, as a result of high 

free edge matrix stresses, is likely to occur at the location of resin rich interfaces. These cracks 
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will tend to oriented with the z-axis and are equally likely at the Midplane or the Third interface 

closest to the dissimilar ply interface. 

5.5.3 Effect of Pure Mechanical Loading 

Investigation III repeats the study of the three ply interfaces of the N=3 laminate, 

however, the applied loading to the laminate is a mechanical extension in the z-direction with no 

thermal cool down. The purpose for isolating only the mechanical contribution to free edge 

micro-stresses to those obtained from the thermal cool down is to distinguish the influence of the 

laminate extension on further cracking of the free edge cracks observed during manufacture. A 

mechanical extension of 0.1% to 0.3% strain is applied to the meso-scale finite element model in 

the z-direction. Subsequently, the resulting meso-scale strains at the various 90/90 ply interface 

elements are localized onto their respective micro-models. 

Figure 5.18 graphs the logarithmic strain components for the three different locations and 

two different interface micro-models. As with Investigation 2, the Thick identifier specifies the 

use of the 48% micro-model. One can observe the expected increase in free edge meso-scale 

strains approaching the dissimilar -25/90 ply interface. As with the thermal loading, the 

mechanical loading also exhibits an increase in meso-scale strains between the 55% fiber volume 

fraction interface and the 48% fiber volume fraction interface. 
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Figure 5.18: The logarithmic strain components at the meso-scale for the N=3 laminate at the three 90/90 ply 

interfaces as a result of a mechanical extension of 0.1% strain. The 1, 2 and 3 component directions 

correspond to the global x, y and z directions. 

Figure 5.19 plots the maximum principal stress of the matrix elements for the 55% micro-

model at the three various 90°/90° ply interfaces at an applied extensional strain of 0.3%. Again, 

red elements indicate integration points whose maximum principal stress has exceed 99 MPa, the 

tensile strength of the matrix. There are two interesting results in the contour plots of Figure 

5.19. First, there is also a noticeable decrease in the highest reported maximum principal stress 

across the three micro-models moving from the midplane to the third interface.  This maximum 

value is reported at the same location in all three micro-models: at the interior, away from the 

free-edge between two proximic fibers. Second, although the number of highlighted matrix 

elements at the free edge increase slightly approaching the dissimilar ply interface (reading the 

plots left to right), the overall number goes down, due to decreasing elements at the interior of 

the micro-model. 
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Figure 5.19: The contour results are shown for the free edge maximum principal stresses as a result of a 0.3% 

mechanical extension in the z-direction for the 55% interface micro-model. Elements whose maximum 

principal stresses have exceeded 99MPa are highlighted in red. The face of the micro-model shown is at the 

free edge of the laminate 

 
Although the contour plots in Figure 5.19 show some elements at the free edge which 

have exceed the threshold value, regions of significantly higher matrix stresses are found 

between proximic fibers. These regions extend through the entire x-axis of micro-model, 

indicating matrix failure due to these localized stresses would likely results in significant failure 

in the micro-model. These regions of high matrix stresses between proximic fibers are orientated 

perpendicular to the z-direction, indicating a propensity for transverse ply cracking. This 

contrasts with the highly localized stresses seen only at the free-edge in the case of thermal 

loading, which were preferentially aligned with the ply interface.  

Figure 5.20 shows a contour plot for the maximum principal stress for all three interfaces 

and the 55% Vf micro-model Although the maximum principal stress at the free edges are 

decreasing when moving from the Midplane to the Third interface, there are regions at the 
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interior of the micro-model between proximic fibers where the matrix stresses are increasing. An 

example of this region is shown by the black arrow on the Third interface micro-model. The 

increase in matrix stresses in this region is likely due to the increasing interlaminar shear strains 

at the meso-scale. 

 

Figure 5.20: Contour plots are shown for the free edge maximum principal stresses in the matrix elements 

(fibers are hidden) for the 55% Vf micro-model at the three 90/90 pl interfaces. The contour legend is shown 

(units of Pa). The contour plots utilize an upper and lower limit, set at 99MPa and 0 MPa, respectively, to 

capture the variation of maximum principal stresses within the entire micro-model. Values above or below 

the specified limits are colored red or blue, respectively. The face of the micro-model shown is at the free edge 

of the laminate. 

Figure 5.21 shows the maximum principal stress contours for the thicker interlaminar 

interface micro-models (48% Vf) at the three 90/90 ply interfaces. For all three interface 

locations, there is only a slight increase in the number of elements whose maximum principal 

stresses have exceeded the matrix tensile strength as one progresses from the midplane to the 

third 90/90 ply interface. In addition, there is also an increase in the highest reported maximum 

principal stress. 
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There are two noticeable differences when comparing these contour results to those in 

Figure 19 for the 55% micro-model. First, the highest maximum principal stress values are much 

lower than their counterparts in Figure 5.19. The free edge matrix stresses at the fiber boundaries 

also increase slightly as one approaches the dissimilar ply interface. Additionally, the thick 

interface micro-models indicate that there is no longer a strong concentration of matrix stresses 

likely to indicate transverse matrix cracking as there was in the 55% interface micro-model. The 

concentration of the pure resin in the thick interface micro-model seems to have reduced the 

stress even between the proximic fibers. 

 

Figure 5.21: The contour results are shown for the free edge maximum principal stresses as a result of a 0.3% 

mechanical extension in the z-direction for the 48% interface micro-model. Elements whose maximum 

principal stresses have exceeded 99MPa are highlighted in red. The face of the micro-model shown is at the 

free edge of the laminate 

Based on the results from this investigation, a number of conclusions can be inferred on 

the influence of extensional loading of the composite laminate on the local free edge micro-

stresses in the 90 ply interfaces. First, the results from the 55% micro-model suggest that the 



 

 

84 

global extensional loading will drive primarily transverse ply cracking, rather than the localized 

edge cracks seen in the case of the thermal loading. The maximum values of these high stress 

regions between proximic fibers tended to decrease as the interlaminar shear stresses increased 

approaching the dissimilar ply interface. Second, the results from the 48% micro-model showed 

an overall decrease in the matrix maximum principal stresses, particularly in the zone between 

proximic fibers which was critical in the 55% model. Additionally, at all three ply interface 

locations the highest matrix maximum principal stresses at the free edge were about 25% lower 

than their counterpart in the 55% micro-model. The contour plots in Figure 5.22 for the 48% Vf 

micro-model show that the increasing interlaminar shear stresses at the Third interface does 

cause increased matrix stresses between proximic fibers, although there is minimal increase in 

the free edge matrix stresses. 

 

Figure 5.22: The contour results are shown for the free edge maximum principal stresses (MPa) as a result of 

a 0.3% mechanical extension in the z-direction for the 48% interface micro-model. 

Based on these results, the numerical analysis supports the notion that the free edge 

cracking caused by the thermal cool down may not be a critical damage source in this particular 

composite laminate. This conclusion is supported by Dustin’s experimental observations which 
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saw nearly all of the free edge micro-cracks present after manufacture play no role in damage 

initiation and evolution of the transverse ply cracks. The initial conclusion based on the 

experimental evidence pointed to a critical crack size which needed to be met. The simulations, 

on the other hand, suggest the initial free edge micro-cracks would not be susceptible to 

continued growth for the following reasons: (1) the thermal loading which drove the initial 

cracks was much more sensitive to the local free edge microstructure and created potentially 

shallow cracking, and (2) the increased interlaminar thickness between plies, which played a role 

in initiating free edge micro-cracks, actually reduced the propensity for transverse cracks. Thus, 

the location of damage initiation during extensional loading for transverse ply cracking is likely 

to originate in a region which did not experience initial free edge micro-cracking. 

 

5.6. Discussion 

The results from investigation one indicated that matrix rich interfaces caused 

significantly higher free edge matrix stresses localized at the fiber matrix boundary and located 

adjacent to the matrix rich regions. This observation explains the prevalence of micro-cracking 

during manufacturing at the interlaminar interface. In addition, the orientations of the highest 

stresses along the fiber/matrix boundary indicate a propensity for matrix cracking aligned with 

the interface. While there was a correlation between increased matrix rich regions and higher 

matrix stresses, there were minimal differences between the 48% and 44% micro-models 

indicating a possible threshold by which increasing matrix at the interface no longer increases the 

free edge stresses. 

Investigation two, which looked at the thicker N=3 laminate, found that the micro-scale 

stresses were relatively unchanged even when the meso-scale strains at each of the three 
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investigated 90/90 ply interfaces were different. The increasing meso-scale interlaminar shear 

strains observed closer to the -25/90 interface changed the maximum reported principal stress 

values by only a few percent. This trend was true for both the 55% and 48% micro-models. The 

results of this analysis help to understand the occurrence of matrix cracking at all 90/90 

interlaminar interfaces regardless of location in the experiments. It was found that the 

interlaminar micro-structure (i.e., local matrix density) played a more importantly role than the 

level of meso-scale strain variation with respect to interface location. 

The results from the third investigation determined that the influence of the interlaminar 

micro-structure differed significantly in the case of a purely mechanical loading. The matrix 

elements which exceeded the threshold maximum principal stress in the 58% micro-model were 

located between proximic fibers and indicated a propensity for transverse cracking. The 

introduction of a thick matrix interface between the 90 plies in the 48% micro-model caused 

significant relaxation in the maximum principal stresses in the micro-model, resulting in only 

limited regions at the free edge and fiber/matrix boundary exceeding the threshold stress. This 

investigation suggests an explanation as to why the micro-cracks observed after manufacturing 

did not play a critical role in failure and damage development. The cracking caused by thermal 

cooldown were located at different micro-structural regions (e.g. the ply interfaces) which were 

not critical to the development of transverse matrix cracks. In addition, the orientations of the 

cracks from the thermal cooldown were along the interface, in contrast to the progressive 

development of transverse matrix cracks observed during the mechanical loading. 
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6. Free Edge Analysis of the Dissimilar Ply Microstructure 

Based on the results from Chapter 5, the next step in understanding the influence of the 

micro-cracks at the free edge during the manufacturing process and subsequent mechanical 

extension is to explore the interlaminar -25°/90° ply interface. As mentioned in Chapter 1, this 

interlaminar interface is the location of the critical delamination which results in composite 

failure. This chapter builds on the framework utilized in Chapter 5 and extends the investigation 

into the -25°/90° interface. The effect of interlaminar thickness at the ply boundary will be 

explored under both thermal and mechanical loading.  

6.1 Model Development 

Two assumptions were made for the interlaminar micro-models at the dissimilar 

interface. First, the model was assumed to continue to be periodic in the x and z directions. 

Second, since the interlaminar micro-models exist at the dissimilar ply boundary, they represent 

a unique material whose properties are a blend of the two ply orientations. These two 

assumptions will be outlined in greater detail in what follows. 

First, the maintenance of periodicity in the x and z directions required the determination 

of a suitable size for the micro-model to ensure periodic fibers despite the off-angle orientation 

of the -25° fibers with respect to the orientation of the micro-model, which is still fixed in the 

standard x-y-z coordinate system established in Chapter 5 for this laminate problem. It was 

assumed that the size of the -25°/90° micro-model will be based on the size used in the previous 

analysis for the 90°/90° interface (0.018 mm). The -25° fibers are rotated 65° about the y axis 

when compared to the original fiber direction of the 90° fibers. This rotation causes a change in 

the required size in the z and x directions, referred to as the length and width, respectively. 
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Equations (6.1) and (6.2) outline the simple relations between the original length ( ), original 

width ( ), revised dimensions    and   , and the angle of rotation ( ) about the y axis. 

   
 

      
 

(6.1) 

   
 

      
 

(6.2) 

The final dimensions of the micro-model are a length of 0.0426 mm and width of 0.0198 

mm, based on the original dimensions of a cubic 0.018 mm micro-model. Since the rotation of 

the fibers is only about the y-axis, there are no changes necessary to the y axis. The height of the 

micro-models are fixed to double the original dimensions to account for the two layers of lamina 

represented (-25° and 90°). An example of the micro-model is shown in Figure 6.1. 

 

Figure 6.1 Micro-scale model for the dissimilar ply interface showing the fiber (green) and matrix (white) 

geometries. 
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Second, the interlaminar micro-models representing the dissimilar ply interface are 

homogenized to provide material properties for the meso-scale analysis of the laminate. Thus, 

the continuum elements at the meso-scale representing the dissimilar interface will be assigned 

material properties different from those of the remainder of the laminate. These meso-scale 

material properties will be determined through homogenization of the dissimilar ply micro-

models discussed later in this section. It should be noted that a similar approach was taken in 

Chapter 5.  

6.1.1 Meso-scale Model 

The [253/-253/903]S laminate was used due to the higher mesh refinement for the fixed 

element size. Figure 6.2 presents the a cut-out of the meso-scale model, emphasizing the unique 

region (green) between the -25° and 90° lamina which was assigned as a second material. The 

remainder of the laminate was assumed to maintain the IM7/8552 composite lamina properties at 

the fiber volume fraction of 55% used in the previous Chapter. The properties of the interlaminar 

material were determined through a homogenization process and are discussed in Section 6.1.4. 

The dimensions of the interlaminar region were fixed to the micro-model size. The boundary 

conditions employed at the meso-scale are identical to those enforced during the 90°/90° 

interface studies in the previous chapter. 
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Figure 6.2 Meso-scale model for the dissimilar ply interface analysis. The color coding represents the two 

different material definitions used for the standard unidirectional lamina (beige) and the interface (-25/90) 

material (green).  

 

6.1.2. Micro-scale Model 

Two different micro-models were used to examine the influence of the interlaminar 

matrix region between the -25° and 90° fibers on free edge microscale stresses. The first model, 

hereon referenced as the Regular interface, had an interlaminar matrix region of 2.7 μm inserted 

between the -25° and 90° fibers. This represented a 15% increase in the total micro-model 

height. The second micro-model, referred to as the Thick interface, had an interlaminar region of 

4.5 μm inserted between the ply fibers, resulting in a 25% increase in the overall micro-model 

height. Figure 6.3 shows the two micro-models of varying interlaminar thicknesses. 
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(a)  (b)  

Figure 6.3: Micro-models for the -25/90 interlaminar (a) Regular interface and (b) Thick interface. The 

micro-model is oriented so that the free edge is facing out of the page. 

The periodicity of the micro-model was enforced by restricting fibers from intersecting 

the top and bottom boundaries. Similar fiber spacing was assumed between the -25° fibers as 

was used in the 90° fiber micro-models from Chapter 5. By utilizing a similar fiber distribution, 

the influence of orientation of fibers between the lamina will have a larger role in differences in 

local micro-scale stresses between the 90° fibers and those of the -25° fibers. With the updated 

micro-model dimensions computed from Equations (6.1) and (6.2), the dissimilar ply micro-

model remains periodic in the x and z directions as shown in Figure 6.4. The images of the 

periodic faces appear as mirrored reflections, however, they are periodic when properly oriented 

(facing away from each other) with their respective x or z axis. An advantage of utilizing 

periodic boundary conditions in the z direction is that there is no need for sacrificial domains 

within the micro-model in the z direction. This is in comparison to de-homogenization methods 

[50] which required the extraction of micro-scale information at a minimum distance of 1 fiber 

diameter from the entire micro-model boundary due to the improper application of micro-scale 

boundary conditions. In this work, however, the same care has to be taken in the y-direction. 
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Since the top and bottom faces are modeled ideally as periodic, micro-scale stresses at these 

boundaries within 1 fiber diameter of the top/bottom of the micro-model may not be valid. 

 

 

Figure 6.4: The x and z faces of the Regular disimilar interface micro-model, highlighting the periodic in the 

x and z direction. The opposing faces will appear as mirror images due to reflection, however, they are 

periodic when faced in the proper orientation. 

An unintended consequence of the -25°/90° finite element micro-model was the 

complexity in preserving mesh congruence with respect to nodes on periodic faces. Rather than 

using wedge elements as in the 90°/90° interlaminar micro-models, successful meshing of the 

complex fiber matrix shapes in the dissimilar ply micro-model required the use of C3D4T 

tetrahedral elements in ABAQUS. The finite element mesh is shown in Figure 6.5. As a result of 
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the free-form mesh generation, there was no guarantee that opposing faces, although having 

periodic geometries, would have periodic meshes (e.g. one-to-one node periodic node 

correspondence). The next section outlines modifications to the implementation of periodic 

boundary conditions used to circumvent the issue of non-periodic node sets. 

 

 

Figure 6.5: The Regular interface micro-model with the C3D4T tetrahedral elements. The free-form mesh 

resulted in irregular spacing of nodes on periodic faces (i.e. different node locations and number of nodes on 

corresponding periodic faces) 

 

6.1.3 Periodic Boundary Conditions Implementation 

Rather than using direct linear constraint equations to enforce periodicity directly 

between the nodes on periodic faces, a surface-to-surface constraint was employed to overcome 

the non-congruence of node sets. Figure 6.6 diagrams the surface-to-surface constraints used to 
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enforce periodicity. Figure 6.6 (a) provides an example where nodes on the positive x face 

(shown in blue) do not have one-to-one correspondence to the nodes on the negative x face 

(shown in red). As such, linear constraint equations prescribed directly to these node sets would 

fail due to the mismatch in location and number of nodes. Ideally, one would prefer to have a 

periodic set of nodes, as shown in Figure 6.6 (b) in green. 

(a)  

(b)  

Figure 6.6: (a) An example of non-periodic nodes on the negative and positive x faces. A surface is defined 

using the red nodes on the negative x face, shown in purple. (b) An example of periodic nodes on the negative 

and postive x face. A surface is defined using the green nodes on the negative x face, shown in yellow. The red 

nodes in (a) represent the actual nodes on the micro-model face, while the green nodes in (b) represent 

duplicate nodes generated to create a periodic set to blue nodes. The blue and green nodes are prescribed 

periodic constraints, while the two surfaces (yellow and purple) are tied using surface-to-surface constraints. 
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To overcome the non-periodic node sets shown in Figure 6.6 (a), the following steps were 

performed. First, a surface was defined using the nodes on the negative x face as shown in purple 

in Figure 6.6 (a). Next, a duplicate set of nodes are defined on the negative x face by copying the 

blue nodes, shown in Figure 6.6 (b), and translating them to the negative x face as seen by the 

green nodes. Then, another surface is defined based on the green nodes as shown by the yellow 

surface in Figure 6.6 (b). The two surfaces are then constrained via a *Tie surface-to-surface 

constraint within ABAQUS. Lastly, the blue and green nodes, which are periodic, are 

constrained using the same linear constraint equations prescribed in previous analyses to enforce 

periodic boundary conditions. The resulting effect is a surface based periodic constraint between 

the blue nodes and red nodes both shown in Figure 6.6 (a). A similar process was performed to 

apply periodicity in the y and z directions of the micro-model.  

6.1.4 Homogenized Properties of the Dissimilar Ply Interface 

The meso-scale material properties of the -25°/90° interlaminar interface to be used in the 

laminate analysis were obtained through homogenization via perturbation steps. Standard 

periodic boundary conditions were employed in the x, y and z directions via the method 

discussed in the previous section. The model was perturbed in the 6 material directions as 

outlined in Figure 6.7. The three independent nodes are used to define the perturbation steps. The 

assigned nodes and prescribed displacements are outlined and labeled in the figure. Uniaxial 

strain loading was enforced by prescribing a displacement in one of the six listed directions 

(corresponding to a material direction) and fixing all other DOF’s on the remaining independent 

nodes. 
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Figure 6.7: Schematic of the six degrees of freedeom shown as possible displacements by red dashed arrows. 

The displacements are prescribed for the three independent nodes in the micro-model shown in green. 

A similar methodology was employed by Yuan and Fish [95] to determine the material 

Jacobian. In this work, the material stiffness matrix was obtained directly through six linear 

perturbation steps. The perturbation in the 11 direction is shown in Figure 6.8 through the 

application of unit strain in the 11 direction and holding all other strains to zero. The localization 

rules from Equations (5.6) were used to determine the appropriate displacements. During this 

perturbation step, a column of the material stiffness matrix (highlighted in Figure 6.8) would be 

determined. Each entry in the column corresponds to a component of the resultant volume 

averaged stresses of the micro-model, shown in the left hand side of the equation.  



 

 

97 

 

Figure 6.8: An example of the determination of the material stiffness matrix through unit, uni-strain 

perturbation steps. In the above example, unit-strain is applied in the 11 direction and all other strains are 

prescribed to be zero. The resulting volume averaged stresses of the micro-model, shown at the left hand side, 

are the necessary entries of a column of the stiffness matrix, highlighted above.  

The computation of the macroscopic stress of the micro-model was done for each 

perturbation step. Rather than computing the volume averaged stress directly through all 

elements within the micro-model, the surface integral form using Green’s Theorem was used as 

in Equation (6.1), where    is the microscopic tractions along the outer boundary S of the micro-

model and   is the current position vector. The application of periodic boundary conditions 

reduces the calculation of the surface integral in Equation (6.1) to the discrete summation shown 

in Equation (6.2), where    is the nodal force vector on the independent nodes of the micro-

model. 

   
  

 

  
    

    
 

  
   

      (6.1) 

   
 

  
   

   
 

         

 (6.2) 
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The resultant force at each node of the four nodes (A,O, P and R) was extracted for each 

perturbation step. After using the vector calculations in Equation (6.2), corresponding off-

diagonal terms representing the tension-shear coupling of the elastic stiffness matrix were 

averaged together to enforce symmetry (e.g. the 11-23 entry in the 6x6 matrix would be averaged 

with the 23-11 entry). The computed Jacobian, or stiffness matrix, in units of MPa is shown in 

Table 6.1 in its final symmetric form. This stiffness matrix was inputted directly into ABAQUS 

using the *Elastic material keyword in conjunction with the Type=Anisotropic parameter. 

Table 6.1: The symmetric material stiffness matrix for the -25/90 micro-model in units of MPa 

 

11 22 33 12 23 13 

11 9.68E+04 7.34E+03 1.67E+04 2.83E+01 4.65E+02 8.30E+00 

22 7.34E+03 1.26E+04 6.86E+03 3.34E+01 1.73E+02 2.50E+01 

33 1.67E+04 6.86E+03 5.48E+04 6.65E+00 1.95E+04 1.08E+01 

12 2.83E+01 3.34E+01 6.65E+00 3.17E+03 9.72E+00 3.44E+02 

13 4.65E+02 1.73E+02 1.95E+04 9.72E+00 1.28E+04 8.61E+00 

23 8.30E+00 2.50E+01 1.08E+01 3.44E+02 8.61E+00 2.97E+03 

 

In addition to the material stiffness matrix, the anisotropic thermal expansion coefficients 

had to be determined for the micro-model. A single linear perturbation steps was utilized for the 

determination of the six thermal expansion coefficients. A temperature loading of 1° C was 

applied to the micro-model with assumed fully periodic boundary conditions. The nodes A, P 

and R were left unconstrained in the 6 DOF’s highlighted in Figure 6.7. The resulting nodal 

displacements from nodes A, P and R were extracted from the thermal perturbation step, and the 
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localization rules of Equations (5.6) were used to determine the thermal expansion coefficients 

through the determination of the resulting six strain components. The thermal expansion 

coefficients for the six strain components are shown in Table 6.2.  

Table 6.2: The anisotropic thermal expansion coefficients 

Thermal Expansion 

Coefficient 
10

-6
/°C 

    1.983 

    50.1 

    4.0 

    0.457 

    21.5 

    -0.457 

 

6.2 Finite Element Results 

Two separate investigations were conducted on the -25/90 dissimilar ply micro-models. 

The first looked at the effect of thermal loading on the local micro-scale stresses, similar to that 

performed in Chapter 5 for the 90/90 interlaminar micro-models. The second investigation 

looked specifically at the effect of mechanical loading due to the tensile loading of the laminate 

in the global z direction. Although the mechanical extension in the real composite would be 

applied in combination to the residual thermal loads from manufacturing, the two loads were 

again separated intentionally. It was seen in Chapter 5, that the local interlaminar micro-structure 

had different influences on free edge stresses for the two loading scenarios. The goal here was to 

investigate: 1) the effect of the thermal cooldown on the generation of pre-cracks observed 

experimentally, and 2) the propensity for crack initiation (progressive damage) during the 

extensional loading of the laminate. 
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6.2.1 Dissimilar Ply Interface (-25/90) during Thermal Cooldown 

A thermal loading of -155°C was applied to the N=3 laminate (discussed in Section 6.11) 

with no mechanical restrictions on the laminate contraction in the x, y or z directions. A stress 

contour plot of the normal stresses (y-direction stresses) from the meso-scale analysis is shown 

in Figure 6.9 (a). The contour plot matches well with that from the N=3 laminate used in Section 

5.5.2, with a variation of only 7% for the maximum reported normal stress value. The difference 

in reported stress was due to the different discretization at the dissimilar interface in the current 

analysis. The similar contour values between the two meso-scale analyses demonstrated that the 

current method for using a second material for elements at the interface did not drastically 

change the overall laminate solution. 

 

Figure 6.9: a) A stress contour plot (units of MPa) of the normal (y-stress) for the dissimilar ply interface 

model under thermal load of -155° C is shown, where a cut-out of the right-hand side (X
-
) of the laminate free 

edge is shown. b)The logarithmic strain components extracted from the dissimilar interface element are 

shown. Note that the anisotropic nature of the dissimilar ply interface causes strains in all three shearing 

material directions. 
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The meso-scale strains of the dissimilar ply element, shown in Figure 6.9 (b), contained 

significant interlaminar shear strains. This differed from what was observed at the 90/90 ply 

interfaces, where only LE23 shear strains were present. Not only are the LE23 strains over 25% 

greater at this dissimilar ply interface than they were at the closest 90/90 ply interface to the -

25/90 interface, but the LE13 strains are nearly double those of the LE23 strains. 

The results from the micro-scale analysis are shown in Figure 6.10 (a) and (b), which plot 

the maximum principal stress contours for the two different ply interface thicknesses. The 

highest reported value is indicated on both the Regular interface and Thick interface micro-

models and coincides with similar locations on a 90° fiber at the dissimilar ply interface. The 

highest maximum principal stress for the Regular interface micro-model was 184 MPa, while the 

Thick interface micro-model’s maximum value was 195 MPa. Thus, similarly to the 90/90 ply 

interface, the dissimilar ply interface also exhibits increasing free edge matrix stresses with 

increasing matrix rich regions between lamina. 

It was also observed in Figure 6.10, for both interface micro-models, that the maximum 

principal stresses in the matrix only exceeded 99 MPa at the 90° degree fibers. The lack of 

significant free edge stresses at the -25° fibers indicate that the orientation of the fiber relative to 

the free edge has a strong effect on the micro-scale free edge stresses. The -25° orientation of the 

fibers would change the material property mismatch between the anisotropic fiber and isotropic 

matrix at the free edge. For this particular composite laminate, the 90° fibers were the most 

critical for the development of high matrix stresses at the free edge to cause pre-cracking. In the 

experimental literature, pre-cracks were only observed for these laminates on the 90° fibers as 

well. In addition, the cracks originating at this interlaminar interface were much shorter than 

those that developed at the 90/90 interface. This difference in average crack length between the 
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two types of ply interfaces was likely due to the lack of high free edge stresses near -25° fibers 

which may have inhibited the development of longer cracks at the -25/90 interface. 

 

Figure 6.10: Stress contour plot of maximum principal stress (Pa) for the two dissimilar ply interface micro-

models. The location of the highest maximum principal stress is indicated by a black arrow. The highest 

maximum principal stresses occured at the 90° fiber boundary facing the ply interface. It should be noted 

that only around the 90° fibers did the matrix maximum principal stress exceed the 99MPa tensile strength of 

the matrix. 
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6.2.2 Dissimilar Ply Interface (-25/90) during Mechanical Loading 

The composite laminate was prescribed an extensional load in tension in the z-direction 

up to 0.3% strain. It should be noted that the actual composite failure strain was 0.6% strain, and 

progressive damage (matrix cracking) was observed in the experiments prior to 0.3% strain [31]. 

No thermal load was prescribed in this investigation. 

The meso-scale results are shown in Figure 6.11, displaying both the contour plots of the 

normal peeling stresses (in the y-direction) as well as the individual strain components at the 

dissimilar ply interface element. Comparing these strain components to those at the 90/90 ply 

interfaces (Figure 5.18), there is a noticeable increase in the strains in both the y-direction and 

interlaminar shear. The LE23 shear strain, for example, was over three times that of the applied 

extensional strain in the z-direction. In addition, the strain in the y-direction (LE2) was nearly 

50% higher than the applied z-direction strain. 

 

Figure 6.11: a) A stress contour plot (units of MPa) of the normal (y-stress) for the dissimilar ply interface 

model under 0.3% strain tensile extension in z-direction, where a cut-out of the right-hand side (X
-
) of the 

laminate free edge is shown. b)The logarithmic strain components extracted from the dissimilar interface 

element are shown. 
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The results of the micro-scale analysis are shown in Figures 6.12 (a) and (b) as contour 

plots of the maximum principal stress. The location of the highest reported maximum principal 

stress is highlighted via a black arrow. The highest maximum principal stress was found to be 

located at the interior of the micro-model, not at the free edge. For both interface micro-models 

the highest matrix maximum principal stresses were found between proximic -25° fibers. In the 

case of the Regular interface, the highest maximum principal stress was 291 MPa, whereas the 

highest reported maximum principal stress at the free edge was significantly lower at 184 MPa. 

A similar gap was found between the two similar values in the Thick interface model, whose 

highest reported value of 284 MPa was higher than the largest free edge maximum principal 

stress at 182 MPa. 

Similar trends can be observed in Figures 6.12 (a) and (b) to those seen in the mechanical 

loading case of the 90/90 ply interfaces. The free edge matrix stress concentrations are relatively 

localized to a small region at the free edge, whereas high matrix stresses have developed between 

proximic fibers through the width of the micro-model (x-direction). These stresses are likely to 

cause progressive matrix cracking, however, it should be noted that the stresses between the 90° 

fibers are not as severe as those between the -25° fibers. Thus, although the pre-cracks during 

manufacture tended to occur at the 90° fiber boundary (as seen in Section 6.2.1), progressive 

cracking at the dissimilar ply interface during the extensional loading is much more likely to 

occur within the -25° ply. 

Another similar trend found at the dissimilar ply interface was a reduction of matrix 

stresses with the addition of a thicker matrix-rich region. The Thick interface micro-model was 

found to have lower maximum reported values than that of the Regular interface model. In the 
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stress contour plots, the free edge stress concentrations along the boundary of the 90° fibers are 

more pronounced in the Regular interface model. 

 

Figure 6.12: Stress contour plot of maximum principal stress (Pa) for the two dissimilar ply interface micro-

models. The location of the highest maximum principal stress is indicated by a black arrow. The highest 

reported values were found to be located at the interior of the micro-model between proximic -25° fibers. 
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6.3 Discussion 

The results from the first investigation found that the pre-cracking during thermal 

cooldown would only manifest at the 90° fiber boundaries, and was likely to occur facing the 

interlaminar region. The matrix regions surrounding the -25° fibers did not exhibit strong 

concentrations of free edge stresses and was likely due to the reduced mismatch in material 

stiffness and thermal properties between the fiber and matrix at the free edge as a result of the -

25° orientation. These results correlated well with the experimental observations, which saw pre-

cracking only occurring only on the face of the 90° fibers. In addition, the observance of minimal 

free edge stresses at the -25° ply provides an understanding to why previous experimental work 

by Dustin [31] found the dissimilar ply interface had shorter crack lengths as compared to the 

90/90 ply interface. As with the 90/90 ply interface, the increased matrix thickness between the 

plies caused an increase in the free edge matrix stresses at the dissimilar ply interface. 

The study of the dissimilar ply interface under mechanical loading only provided 

understanding into why progressive cracking was not typically observed to originate the 

dissimilar ply interface. First, the highest reported maximum principal stresses were not found at 

the free edge or between proximic 90° fibers, as was the case for the 90/90 interface micro-

models. Instead, the highest propensity for matrix cracking was between proximic -25° fibers at 

the interior of the micro-model. These -25° ply cracks may be the initiator of delamination when 

no transverse cracking was observed as the initiator. Second, the location of the highest matrix 

stresses between the 90° fibers in the dissimilar interface micro-model differed from that of the 

90/90 ply interfaces. Due to the high interlaminar shear stresses at the -25/90 interface, the 

highest matrix stresses between proximic 90° fibers occurred in an orientation that would align 
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the crack in with the z-direction (note that the 90/90 interfaces would have caused transverse 

cracks).  
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7. Conclusions and Future Work 

7.1 Free edges in a semi-concurrent scheme 

In this work, a semi-concurrent approach was developed with the inclusion of a free edge 

at the micro-scale. A method was proposed to preserve elastic strain energy across the scales 

despite the non-periodic boundary conditions in order to maintain a coupled kinematic and 

constitutive coupling between the macro and micro-scales. The implementation into ABAQUS 

was demonstrated for a simple 2D representative volume element with cohesive damage between 

the fiber and matrix under a simple macroscopic tensile load. The results found that a 

comparison between the periodic and free edge results varied significantly with RVE size. A 

medium size (16 fiber micro-model) tended to have the largest variation due to premature failing 

of cohesive surfaces in the periodic analysis. The study found that the free edge tended to 

decrease damage development due to local relaxation at the free edge boundary condition. The 

study also highlighted that prior to damage development, the response of the two different 

boundary conditions (purely periodic or free edge) were very similar, with minimal differences 

in the overall elastic energy. Thus, for the 3D elastic analysis of the full composite laminate, the 

implementation of the z-scalar approach for energy preservation across the scales may not be 

necessary. 

7.2 Multiscale analysis of the 90/90 ply interface 

The one-way 3D multiscale analysis was critical in providing understanding of the 

influence of the local microstructure in the creation of pre-cracks during manufacture as well as 

understanding the role of the pre-cracks for damage development. It was found that the matrix 

rich region between 90° plies caused a dramatic increase in the free edge stresses at the boundary 

of the 90° fibers facing the interlaminar region during thermal cooldown. These free edge 
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residual stresses are the likely cause of pre-cracks found in the experimental literature. The effect 

of the matrix-rich interlaminar interface helped to explain the higher propensity of pre-cracks to 

form near the 90/90 ply interfaces rather than within a given lamina. 

By examining the thicker N=3 laminate, it was found that the meso-scale strain gradient 

(which varied along different 90/90 ply interfaces) played a minimal role in altering the free edge 

matrix stresses. Thus, pre-cracks were likely to form at any 90/90 ply interface, and not only at 

the interfaces that experience the highest meso-scale free edge deformations. Again, cracking 

was experimentally seen at all 90/90 interfaces and not just those situated closest to the 

dissimilar ply interface.  

Under extensional loading, the interlaminar microstructure played a significantly 

different role. Increased matrix content at the interlaminar interface decreased both the free edge 

stresses in the matrix as well as the matrix stresses at the interior of the micro-model. Thus, 

transverse cracking (oriented parallel to the load) was likely to occur at regions that aren’t 

susceptible to the pre-cracking during thermal cooldown. This helps to explain why the pre-

cracks during manufacture did not influence the development of progressive damage, since the 

transverse cracks would likely develop in areas away from the interlaminar interface. 

7.3 Multiscale analysis of the -25/90 interface 

The analysis of the dissimilar ply interface found that the strong concentration of free 

edge stresses in the matrix only occurred at the boundary of the 90° fiber. The orientation of the  

-25° decreased the mismatch in material stiffness and thermal properties between the fiber and 

matrix and did not contribute to the development of high free edge matrix stresses even with the 

thicker interlaminar interface. This phenomenon of pre-cracking only at the 90° fiber surface 

facing the interlaminar region was observed experimentally. In addition, the results from the 
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mechanical loading investigation found that the highest stresses at the dissimilar ply interface did 

not occur at the free edge or between 90° fibers. The highest propensity for matrix failure at the  

-25/90 interface was at the interior of the model between proximic -25° fibers. This cracking may 

not have been observed as readily as the transverse cracks in the 90° plies, and could explain 

why visible damage tended to occur in the 90 plies before reaching the dissimilar ply interface. 

The orientation of the highest matrix stresses in the 90 ply region of the -25/90 interface were 

found between 90° fibers aligned with the z-direction, which differed from the 90/90 interfaces 

which saw the highest matrix stresses aligned parallel to the z-direction. This could help explain 

the occurrence of transverse cracking occurring in the 90 plies before progressing to the 

dissimilar ply boundary. 

7.4 Future work 

The current multiscale framework was successful in providing qualitative understanding 

of the influence of the local microstructure on the propensity for damage development at the free 

edge. The next step in this research is to extend the elastic multiscale analysis to model damage 

initiation and development to quantitatively assess the efficacy of the approach in predicting 

actual effective crack length sizes. The implementation of damage and non-linearity at the micro-

scale will require the use of the proposed scale coupling for use with the free edge boundary 

conditions at the micro-scale. By utilizing the scale coupling, a quantitative analysis of the effect 

of free edge cracking on damage development could provide a homogenized response for meso- 

or macro-scale analysis that includes the effect of the microstructural free edge for use in other 

multiscale simulations. Other future work should also explore more complex loading 

configurations for the composite laminate, which may be difficult to test experimentally, and 

investigate the effect of the laminate free edge microstructure. 
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A.1 UMAT subroutine for semi-concurrent scheme 

C     UMAT SUBROUTINE FOR COARSE SCALE MATERIALS by CHRIS CATER 2011 

C 

      SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1     RPL,DDSDDT,DRPLDE,DRPLDT, 

     2     STRAN,DSTRAN,TTIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3     NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4     CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC) 

C 

      USE IFPORT 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

C 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1     DDSDDE(NTENS,NTENS), 

     2     DDSDDT(NTENS),DRPLDE(NTENS), 

     3     STRAN(NTENS),DSTRAN(NTENS),TTIME(2),PREDEF(1),DPRED(1), 

     4     PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3) 

C 

 

      INTEGER i,j 

      INTEGER*4 com1 

      DOUBLE Precision STRANT(8), CONT(6,6), STRESSAVG(4) 

       

C ********************************************** 

C     Output information to the MSG file 

C      This includes NTENS, step number, and increment number. 

      WRITE (UNIT=7, FMT=*) 'NTENS is ', NTENS 

      WRITE (UNIT=7, FMT=*) 'KSTEP is ',KSTEP 

      WRITE (UNIT=7, FMT=*) 'KINC is ',KINC 

      WRITE (UNIT=7, FMT=*) (TTIME(i),i=1,2) 

C 

C     Ouput the Deformation Gradient (DFGRD1) 

C      to the message file for easy checking. 

C 

      WRITE (UNIT = 7, FMT = *) 'Strains are ' 

      WRITE (UNIT = 7, FMT = *) (DSTRAN(i),i=1,4) 

      WRITE (UNIT = 7, FMT = *) 'FTENS is ' 

      DO i=1,3 

        WRITE (UNIT = 7, FMT = *) (DFGRD1(i,j),j=1,3) 

      END DO 

C 

C     Write the deformation gradient to output CSV file 

C 

        OPEN (UNIT = 32, FILE='/mnt/home/caterchr/ftens.csv') 

        DO i = 1,3 

          WRITE (UNIT = 32, FMT=100) (DFGRD1(i,j),j=1,3) 

        END DO 

 100    FORMAT (E22.10,',',E22.10,',',E22.10) 

        CLOSE(32) 

         

C     Write the strain total to output CSV file 

C 
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        DO i=1,4 

           STRANT(i)=STRAN(i) + DSTRAN(i) 

        END DO 

        OPEN (UNIT = 33, FILE='/mnt/home/caterchr/strant.csv') 

        WRITE (UNIT = 33, FMT=101) (STRANT(j),j=1,4) 

 101    FORMAT (E22.10) 

        CLOSE(33) 

C 

C 

C ********************************************** 

C     Write the increment number and element number to ext file 

C 

C        CALL system('del increm.csv') 

        OPEN (UNIT = 40, FILE = '/mnt/home/caterchr/increm.csv') 

        WRITE (UNIT = 40,FMT=200) KINC,NOEL 

 200    FORMAT (I5,',',I5) 

        CLOSE(40) 

C 

C 

C ********************************************** 

C     Call the Python script to intiate the UNIT CELL BVP 

C 

c        com1=SYSTEMQQ('ls -la') 

        com1=SYSTEMQQ('/mnt/home/caterchr/Execute.bat') 

C 

C 

C ********************************************** 

C     Read the constitutive tensor from CSV file 

C 

        OPEN (Unit = 33, FILE = '/mnt/home/caterchr/contTensor.csv') 

        DO i = 1,4 

          READ (Unit = 33, FMT=*) (CONT(i,j),j=1,4) 

        END DO 

        CLOSE(33) 

C 

C 

C ********************************************** 

C     Read the macroscopic stress tensor from CSV file 

C 

        OPEN (UNIT=34, FILE = '/mnt/home/caterchr/Stress.csv') 

        READ (Unit=34, FMT = *) (STRESSAVG(i), i=1,4) 

        CLOSE(34) 

C 

C 

C ********************************************** 

C     Set STRESS and DDSDDE arrays accordingly 

C 

        DO i = 1,4 

         STRESS(i) = STRESSAVG(i) 

        END DO 

        DO j = 1,4 

          DO i = 1,4 

            DDSDDE(i,j) = CONT(i,j) 

          END DO 

        END DO 

C 

C     Output the Stress and Jacobian tensors to 
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C     the message file for debugging 

C 

      WRITE (UNIT = 7, FMT = *) 'Stresses are ' 

      WRITE (UNIT = 7, FMT = *) (STRESS(i),i=1,4) 

      WRITE (UNIT = 7, FMT = *) 'Jacobian elements are ' 

      DO i = 1,4 

       WRITE (UNIT = 7, FMT = *) (DDSDDE(i,j),j=1,4) 

      END DO 

       

      RETURN 

      END 
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A.2 Python Script for RVE Generation 

# Script for Random Fiber Placement 

# Christopher Cater, Michigan State Unversity 2012 

#     Date of last modification: 3/1/2013 

 

# Code Notes 

#  The code is split into two parts. 

#       1) Determine fiber locations, allowing some interpenetration of 

fibers 

#       2) Perturb the fibers until the is no interpenetration 

 

#Import necesary modules 

import csv #For reading/writing CSV files 

from math import pi 

from math import pow 

from math import cos 

from math import sin 

from numpy import zeros 

from numpy import array 

import random 

 

 

############# CODE INPUT ############################################# 

numFibers =  16# Total number of fibers 

volFraction = .62 # Volume fraction target with set number of fibers 

RVEsize = 8 #Length Per Edge 

penTol = .2 #Intial tolerance for penetration as a fraction of fiber radius 

 

#Placeholder for current x and y coordinates 

xcord = 0.0 

ycord = 0.0 

 

#Fiber radius (based on square array and desired volume fraction) 

fibRadius = round(pow(((volFraction*RVEsize**2)/(pi*numFibers)),.5),2) 

 

############# DEFINE FUNCTIONS ####################################### 

 

#Define Functions 

def xCoord(node): 

    return centerCoords[node-1][0] 

def yCoord(node): 

    return centerCoords[node-1][1] 

def distance(node1,node2): 

    tmp = pow((xCoord(node1)-xCoord(node2))**2+(yCoord(node1)-

yCoord(node2))**2,.5) 

    return tmp 

def distanceCoords(x1,y1,x2,y2): 

    tmp = pow((x1-x2)**2+(y1-y2)**2,.5) 

    return tmp 

def unitVector(node1,node2): 

    mag = distance(node1,node2) 

    z = [(xCoord(node1)-xCoord(node2))/mag,(yCoord(node1)-yCoord(node2))/mag] 

    return z 

def multVector(vector,scalar): 

    for i in range(0,len(vector)): 
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        vector[i] = scalar*vector[i] 

    return vector 

 

def inList(a,b): 

    inListFlag = 0 

    for row in b: 

        if a==row: 

            inListFlag=1 

    if inListFlag==1: 

        return True 

    else: 

        return False 

 

def deleteRow(a,b): 

    tempHolder=[] 

    for i in range(0,len(a)): 

        if i!=b: 

            tempHolder.append(a[i]) 

    return tempHolder 

 

#Check if a fiber exists outside of the RVE 

# Tests all edges in one test defined below: 

def outsideRVE(fiber): 

    if (xCoord(fiber)>(RVEsize+fibRadius) or xCoord(fiber)<-fibRadius 

        or yCoord(fiber)>(RVEsize+fibRadius) or yCoord(fiber)<-fibRadius): 

        return True 

    else: 

        return False 

 

def checkNonZero(array): 

    rows = len(array) 

    columns = len(array[0]) 

    testZero = 0 

    for i in range(0,rows): 

        for j in range(0,columns): 

            if array[i][j]!=0: 

                testZero=1 

    if testZero==1: 

        return True 

    elif testZero==0: 

        return False 

 

def checkNonZeroVector(vector): 

    columns = len(vector) 

    testZero = 0 

    for i in range(0,columns): 

        if vector[i]!=0: 

            testZero=1 

    if testZero==1: 

        return True 

    elif testZero==0: 

        return False 

 

############# DETERMINE FIBER PLACEMENTS (INITIAL) ################### 

#Begin iterations 

#Set iteration parameters 

instVector = zeros([numFibers,4]) 
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fiberLink=[1] 

fiberNumber = 2 

iteration = 1 

numPenFibers = 0 #Placeholder for intial number of instances of penetrating 

fibers 

#First Fiber (completely within RVE) 

centerCoords = [[random.uniform(0+fibRadius*1.1,RVEsize-fibRadius*1.1), 

                random.uniform(0+fibRadius*1.1,RVEsize-fibRadius*1.1)]] 

#Loop based on fiber number 

while fiberNumber < (numFibers)+1: 

    #Generate random fiber 

    xcord = random.uniform(0+fibRadius*.1,RVEsize-fibRadius*.1) 

    ycord = random.uniform(0+fibRadius*.1,RVEsize-fibRadius*.1) 

    #Test for clearance within tolerance other fibers 

    flag = 0 

    #Debug output 

    testNumber = 0 

    for i in range(1,len(centerCoords)+1): 

        test = distanceCoords(xcord,ycord,xCoord(i),yCoord(i)) 

        testNumber = testNumber+1 

        if test > ((1-penTol)*fibRadius*2.005): 

            if test < 2*fibRadius: 

                numPenFibers=numPenFibers+1 

            flag = flag+0 

        elif test<=((1-penTol)*fibRadius*2.005): 

            flag = flag+1 

    if flag==0: 

        #Test for fiber on RVE edge 

        toAdd = [[xcord,ycord]] 

        instFlag=[0,0,0,0] 

        # TOP 

        if ycord > RVEsize-fibRadius: 

            xtemp = xcord 

            ytemp = ycord-RVEsize 

            toAdd.append([xtemp,ytemp]) 

            instFlag[0]=1 

        # BOTTOM 

        if ycord < fibRadius: 

            xtemp = xcord 

            ytemp = ycord+RVEsize 

            toAdd.append([xtemp,ytemp]) 

            instFlag[1]=1 

        # LEFT 

        if xcord < fibRadius: 

            xtemp = xcord+RVEsize 

            ytemp = ycord 

            toAdd.append([xtemp,ytemp]) 

            instFlag[2]=1 

            #If already exiting on top, add on bottom right 

            if instFlag[0]==1: 

                toAdd.append([xtemp,ytemp-RVEsize]) 

            #If already exiting on bottom, add on top right 

            elif instFlag[1]==1: 

                toAdd.append([xtemp,ytemp+RVEsize]) 

        # RIGHT 

        if xcord > RVEsize-fibRadius: 

            xtemp = xcord-RVEsize 
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            ytemp = ycord 

            toAdd.append([xtemp,ytemp]) 

            instFlag[3]=1 

            #If already exiting on top, add on bottom left 

            if instFlag[0]==1: 

                toAdd.append([xtemp,ytemp-RVEsize]) 

            #If already exiting on bottom, add on top left 

            elif instFlag[1]==1: 

                toAdd.append([xtemp,ytemp+RVEsize]) 

        # Check any added fibers for penetration 

        for nodes in toAdd: 

            for rows in centerCoords: 

                test = distanceCoords(nodes[0],nodes[1],rows[0],rows[1]) 

                if test > ((1-penTol)*fibRadius*2.005): 

                    if test < 2*fibRadius: 

                        numPenFibers=numPenFibers+1 

                    flag = flag+0 

                elif test<=((1-penTol)*fibRadius*2.005): 

                    flag = flag+1 

    if flag == 0: 

        instVector[fiberNumber-1]=instFlag 

        for row in toAdd: 

            centerCoords.append(row) 

            fiberLink.append(fiberNumber) 

        print 'Fiber Number: ', fiberNumber 

        fiberNumber = fiberNumber+1 

        print 'Number of iterations: ', iteration 

        print 'Number of tests: ', testNumber 

        iteration = 1 

    else: 

        iteration = iteration+1 

    if iteration > 5000: 

        print 'Max iterations exceeded' 

        break 

 

print fiberLink 

print centerCoords 

print instVector 

 

 

oldarrayCenterCoords=array(centerCoords) 

 

#Output array to CSV file 

writeFile = open('randomFiber.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(oldarrayCenterCoords) 

writeFile.close() 

################# PERTURB FIBER PLACEMENTS ########################### 

 

# The perturbation of the fiber locations will be a function of two 

# unique parameters. The first relates the force with the displacement 

# between the two fibers. Currently, that relationship will be a 

# a scalar value which multiples the square of the distance. Cut-off 

# distance will be equal to the fiber diameter. The second parameter 

# is the size of the time increment. This time parameter determines 

# the amount of time passing between each perturbation of the RVE. 

# NOTE: Unit-mass is assumed in order to determine F=ma 
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#Parameters: 1) force scale, 2) time scale 

fscale =100 

tscale = .001 

time = 0.0 #Current time  

ttime = 100.0 #Time for stop 

oldtime=0 

 

#Define functions for computing the forces 

def Force(node1,node2): 

    forceScalar = fscale*(distance(node1,node2)-2.1*fibRadius)**2 

    if distance(node1,node2)<(2.1*fibRadius): 

        forceTemp = multVector(unitVector(node1,node2),forceScalar) 

    else: 

        forceTemp = [0,0] 

    return forceTemp 

def SumForce(vector): 

    rows = len(vector) 

    columns = len(vector[0]) 

    holder = 0 

    for i in range(0,rows): 

        for j in range(0,columns): 

            holder = holder+vector[i][j] 

    return holder 

                         

#Create Force vector and velocity vector to store 

forceVect = zeros([numFibers,2]) 

veloVect = zeros([numFibers,2]) 

 

#Build initial force vector 

for i in range(1,len(centerCoords)+1): 

    for j in range(1,len(centerCoords)+1): 

        if i!=j: 

            for k in range(0,2): 

                forceVect[fiberLink[i-1]-1][k] = forceVect[fiberLink[i-1]-

1][k]+Force(i,j)[k] 

oldForceVect=forceVect 

 

#Begin iteration 

while checkNonZero(oldForceVect): 

    #Update the force vectors 

    forceVect = zeros([numFibers,2]) 

    #print instVector 

    #print fiberLink 

    for i in range(1,len(centerCoords)+1): 

        for j in range(1,len(centerCoords)+1): 

            if i!=j: 

                for k in range(0,2): 

                   # print i,j,k 

                    forceVect[fiberLink[i-1]-1][k] = forceVect[fiberLink[i-

1]-1][k]+Force(i,j)[k] 

         #           forceVect[fiberLink[i-1]-1][k] = 1 

    #Compute the resulting displacements (1 increment) 

    #print forceVect 

    # newDisp = origDisp + vel*time + 1/2*a*time^2 

    for i in range(1,len(centerCoords)+1): 

        for j in range(0,2): 
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            centerCoords[i-1][j] = centerCoords[i-1][j] +( 

                + veloVect[fiberLink[i-1]-1][j]*tscale+forceVect[fiberLink[i-

1]-1][j]*tscale**2) 

    #Update velocity vector 

    for i in range(1, len(centerCoords)+1): 

        for j in range(0,2): 

            if forceVect[fiberLink[i-1]-1][j]==0: 

                veloVect[fiberLink[i-1]-1][j] = .5*veloVect[fiberLink[i-1]-

1][j] 

            else: 

                veloVect[fiberLink[i-1]-1][j] = veloVect[fiberLink[i-1]-

1][j]+( 

                    forceVect[fiberLink[i-1]-1][j]*tscale) 

#Check if a fiber which was once completely inside the RVE 

# now exits an edge. If so, create the instances 

# add the coordinates to the master coordinates 

# list, modify the fiberLink and instVector vectors. Also, 

# check if a fiber is now the only instance, although there 

# is "1" flag in the instVector slot (meaning it's instances 

# have been deleted) 

    holdTemp2 = 0 

    for i in range(1,numFibers+1): 

        #print 'i is ',i 

        ind = fiberLink.index(i) 

        #print 'ind is ',ind 

        xcord = xCoord(ind+1) 

        ycord = yCoord(ind+1) 

        instFlag=0 

        toAdd=[] 

        # TOP 

        if instVector[i-1][0]==0: 

            if ycord > (RVEsize-fibRadius): 

                xtemp = xcord 

                ytemp = ycord-RVEsize 

                toAdd.append([xtemp,ytemp]) 

                instVector[i-1][0]==1 

                instFlag=1 

                #If already exiting on left, add on bottom right 

                if instVector[i-1][2]==1: 

                    toAdd.append([xtemp+RVEsize,ytemp]) 

                #If already exiting on right, add on bottom left 

                elif instVector[i-1][3]==1: 

                    toAdd.append([xtemp-RVEsize,ytemp]) 

        # BOTTOM 

        if instVector[i-1][1]==0: 

            if ycord < fibRadius: 

                xtemp = xcord 

                ytemp = ycord+RVEsize 

                toAdd.append([xtemp,ytemp]) 

                instVector[i-1][1]==1 

                instFlag=1 

                #If already exiting on left, add on top right 

                if instVector[i-1][2]==1: 

                    toAdd.append([xtemp+RVEsize,ytemp]) 

                #If already exiting on right, add on top left 

                elif instVector[i-1][3]==1: 

                    toAdd.append([xtemp-RVEsize,ytemp]) 
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        # LEFT 

        if instVector[i-1][2]==0: 

            if xcord < fibRadius: 

                xtemp = xcord+RVEsize 

                ytemp = ycord 

                toAdd.append([xtemp,ytemp]) 

                instVector[i-1][2]==1 

                instFlag=1 

                #If already exiting on top, add on bottom right 

                if instVector[i-1][0]==1: 

                    toAdd.append([xtemp,ytemp-RVEsize]) 

                #If already exiting on bottom, add on top right 

                elif instVector[i-1][1]==1: 

                    toAdd.append([xtemp,ytemp+RVEsize]) 

        # RIGHT 

        if instVector[i-1][3]==0: 

            if xcord > (RVEsize-fibRadius): 

                xtemp = xcord-RVEsize 

                ytemp = ycord 

                toAdd.append([xtemp,ytemp]) 

                instVector[i-1][3]=1 

                instFlag=1 

                #If already exiting on top, add on bottom left 

                if instVector[i-1][0]==1: 

                    toAdd.append([xtemp,ytemp-RVEsize]) 

                #If already exiting on bottom, add on top left 

                elif instVector[i-1][1]==1: 

                    toAdd.append([xtemp,ytemp+RVEsize]) 

        if instFlag != 0: 

            #print centerCoords[0:i] 

            #print centerCoords[i:] 

            centerCoords=centerCoords[0:ind+1]+toAdd+centerCoords[ind+1:] 

            holdTemp2=1 

            print toAdd 

            instVector[i-1]=1                 

            temp = fiberLink[0:ind+1] 

            print centerCoords 

            if len(toAdd)>=1: 

                for j in range(0,len(toAdd)): 

                    temp.append(i) 

            print 'Added ',len(toAdd),' instances to fiber ',i, ' at index 

',ind 

            fiberLink = temp+fiberLink[ind+1:] 

            print fiberLink 

# Time condition to end the "While" perturbation loop 

    oldtime = oldtime+tscale 

    time=time+tscale 

    if oldtime >= 0.5: 

        oldtime=0 

        openName = 'randomFiber_'+str(time)+'.csv' 

        writeFile = open(openName,'wb') 

        writer=csv.writer(writeFile) 

        arrayCenterCoords=array(centerCoords) 

        writer.writerows(arrayCenterCoords) 

        writeFile.close() 

    print time 

    #if holdTemp2==1: 
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        #print centerCoords 

    oldForceVect=forceVect 

    if time >= ttime: 

        break 

 

#   If a fiber is outside the RVE the following is done: 

#       1) The row is deleted from centerCoords 

#       2) The row is deleted from fiberLink 

print centerCoords 

holdTemp=0 

for i in range(1,len(centerCoords)+1): 

    if outsideRVE(i-holdTemp): 

        centerCoords=deleteRow(centerCoords,i-1-holdTemp) 

        print 'deleting ',(i-1-holdTemp), ' for fiber ',fiberLink[i-1-

holdTemp] 

        fiberLink=deleteRow(fiberLink,i-1-holdTemp) 

    #        #print fiberLink 

    #        #print centerCoords 

        holdTemp = holdTemp+1 

    #        #print centerCoords 

 

arrayCenterCoords=array(centerCoords) 

 

#Output array to CSV file 

writeFile = open('randomFiber1.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(arrayCenterCoords) 

writeFile.close() 

 

 

  



 

 

123 

A.3 Python Script for standard computational homogenization 

# HEADING 

# DEVELOPED BY CHRISTOPHER REYNALDO CATER AT MICHIGAN 

# STATE UNIVERSITY 

 

## Computational homogenization script for periodic 

## boundary conditions. 

 

# Removed deletion of unit-cell databases 

 

## Input File Name for Unit-cell below: 

inputFile='Modified-input-36Fibers-Periodic.inp' 

 

#------------------------------------------------- 

# IMPORT PYTHON MODULES 

#------------------------------------------------- 

from sys import path 

import csv #For reading/writing CSV files 

import subprocess 

from odbAccess import * 

from job import * 

path.append('C:\Programs\Abaqus\Custom\Python24\Lib\site-packages') 

from os import remove, rename 

from numpy import zeros 

from numpy import linalg 

from numpy import where 

 

#------------------------------------------------- 

# IMPORT COARSE SCALE INFO 

#------------------------------------------------- 

 

## Important: Adjust the file names and paths accordingly 

incremImport = open('increm.csv','rb') 

incremReader = csv.reader(incremImport) 

increm = incremReader.next() 

for i in range(0,len(increm)): 

    increm[i]=int(increm[i]) 

     

incremImport.close() 

 

ftens = zeros([3,3]) 

ftensImport = open('ftens.csv','rb') 

ftensReader = csv.reader(ftensImport) 

for i in range(0,3): 

    ftens[i] = ftensReader.next() 

ftensImport.close() 

 

#------------------------------------------------- 

# IMPORT UNIT CELL BOUNDARY NODE INFORMATION 

#------------------------------------------------- 

 

boundImport = open('boundNodes.csv','rb') 

boundReader = csv.reader(boundImport) 

boundNodes = [] 

for row in boundReader: 
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    boundNodes.append(row) 

     

boundImport.close() 

 

numBoundNodes = len(boundNodes) 

 

for i in range(0,len(boundNodes)): #Convert string to float 

    for j in range(0,len(boundNodes[0])): 

        boundNodes[i][j] = float(boundNodes[i][j]) 

 

#------------------------------------------------- 

# Calculate Boundary Displacements 

#------------------------------------------------- 

 

# Define a useful function COLUMN for extracting 

# the column of a particular matrix. 

 

def column(matrix,i): 

    return [row[i] for row in matrix] 

 

# ------------------------------------------------ 

 

dispBoundNodes = zeros([numBoundNodes,3]) 

 

for i in range(0,numBoundNodes): 

    for j in range(0,3): 

        hold = 0 

        for p in range(0,3): 

            hold = hold + ftens[j][p]*boundNodes[i][p+1] 

        dispBoundNodes[i][j]=hold-boundNodes[i][j+1] 

 

 

#------------------------------------------------- 

# MODIFY MODEL, WRITE JOB INPUT, & SUBMIT JOB 

#------------------------------------------------- 

 

#-------- 

# Create a container for the corner nodes: Contained in the 

# first four elements of the boundNodes array 

# 

cornerNodes=[int(boundNodes[0][0]),int(boundNodes[1][0]), 

             int(boundNodes[2][0]),int(boundNodes[3][0])] 

# 

#-------- 

 

element = increm[1] 

curIncrem = increm[0] 

oldIncrem = curIncrem - 1 

jobName = "".join(['UnitCellComplete',str(element),'-',str(curIncrem)]) 

oldJobName = "".join(['UnitCellComplete',str(element),'-',str(oldIncrem)]) 

delJobName = "".join(['UnitCellComplete',str(element),'-',str(oldIncrem-1)]) 

 

# Define the boundSect which contains the boundary conditions for the 

#  analysis steps - this is irrespective of whether or not one is using 

#  restart input files 
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boundSect = "".join(['** BOUNDARY CONDITIONS\r\n**\r\n*Boundary\r\nMatrix-

1.LL,1,1\r\n', 

                     'Matrix-1.LL,2,2\r\nMatrix-1.LR,1,1,', 

                     str(dispBoundNodes[1][0]),'\r\nMatrix-1.LR, 2, 2, ', 

                     str(dispBoundNodes[1][1]),'\r\nMatrix-1.UL, 1, 1, ', 

                     str(dispBoundNodes[2][0]),'\r\nMatrix-1.UL, 2, 2, ', 

                     str(dispBoundNodes[2][1]),'\r\nMatrix-1.UR, 1, 1, ', 

                     str(dispBoundNodes[3][0]),'\r\nMatrix-1.UR, 2, 2, ', 

                     str(dispBoundNodes[3][1]),'\r\n**\r\n**\r\n']) 

 

#THE NEXT SECTION OF CODE IS CONDITIONALLY BASED ON THE INCREMEMENT NUMBER 

# For curIncrem==1, the standard input file is modified 

 

if curIncrem==1: 

# Read in the Unit Cell input file 

# Remove the Boundary Conditions Section and 

#  insert the disBoundNodes conditions 

# Submit the corresponding job in Abaqus 

    inputRead = open(inputFile,'rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    firstSect = whole[0:indOne] 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    secondSect = whole[indTwo:] 

    whole = "".join([firstSect,boundSect,secondSect]) 

 

# For curIncrem=2, the restart input file is modified 

 

if curIncrem==2: 

# Read in the Unit Cell restart file. 

# Modify the Restart section to contain an updated incremement number 

    inputRead = open('RestartCompPeriodic.inp','rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    indThree = whole.find('*Restart') 

    indFour = whole.find('** STEP: Analysis') 

    firstSect = whole[0:indThree] 

    secondSect = whole[indFour:indOne] 

    thirdSect = whole[indTwo:] 

    insert = "".join(['**\n**\n*Restart, READ, STEP=',str(oldIncrem),'\n', 

                     '**\n**\n']) 

    whole = "".join([firstSect,insert,secondSect,boundSect,thirdSect]) 

 

# For curIncrem>3, all n-2 job files are deleted and the restart file is 

modified 

 

elif curIncrem>=3: 

# Perform operations similar to procedure in Increm=2, however also    

# Delete job files from increment n-2, where n is current increment 

#    extDelete = 

['.com','.dat','.mdl','.msg','.odb','.prt','.res','.sta','.stt'] 

    extDelete = ['.com','.dat','.mdl','.msg','.prt','.res','.sta','.stt'] 

    for ext in extDelete: 

        subprocess.call("".join(['del ',delJobName,ext]),shell=True) 
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    inputRead = open('RestartCompPeriodic.inp','rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    indThree = whole.find('*Restart') 

    indFour = whole.find('** STEP: Analysis') 

    firstSect = whole[0:indThree] 

    secondSect = whole[indFour:indOne] 

    thirdSect = whole[indTwo:] 

    insert = "".join(['**\n**\n*Restart, READ, STEP=',str(oldIncrem), 

                     '\n**\n**\n'])     

    whole = "".join([firstSect,insert,secondSect,boundSect,thirdSect]) 

 

 

#Note: This section of code to follow is introduced to combat issues with 

# Abaqus errors during the "initialization" step (zero strain). Thus the 

# Analysis step section will be removed in what follows. 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    indOne = whole.find('** STEP: Analysis') 

    indTwo = whole.find('** STEP: OneOne') 

    firstSect = whole[0:indOne] 

    secondSect = whole[indTwo:] 

    whole = "".join([firstSect,secondSect]) 

# End of this section of code to counter the errors in the initialization. 

 

                      

#### PERTURBATION STEP DEFINITIONS 

perturb=.01 

 

# Modify the OneOne perturbation boundary conditions 

indOne = whole.find('** STEP: OneOne') 

indTwo = whole.find('*Static',indOne) 

indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = "".join(['*Static\r\n** BOUNDARY 

CONDITIONS\r\n**\r\n*Boundary\r\nMatrix-1.LL,1,1\r\n', 

                     'Matrix-1.LL,2,2\r\nMatrix-1.LR,1,1,', 

                     str(dispBoundNodes[1][0]+ 

                         (boundNodes[1][1]+dispBoundNodes[1][0])*perturb), 

                     '\r\nMatrix-1.LR , 2 , 2, ',str(dispBoundNodes[1][1]), 

                     '\r\nMatrix-1.UL, 1, 1, ',str(dispBoundNodes[2][0]), 

                     '\r\nMatrix-1.UL, 2, 2, ',str(dispBoundNodes[2][1]), 

                     '\r\nMatrix-1.UR, 1, 1, ', 

                     str(dispBoundNodes[3][0]+ 

                         (boundNodes[3][1]+dispBoundNodes[3][0])*perturb), 

                     '\r\nMatrix-1.UR, 2, 2, ',str(dispBoundNodes[3][1]), 

                     '\r\n**\r\n**\r\n']) 

whole= "".join([firstSect,boundSect,secondSect]) 

 

                      

# Modify the TwoTwo perturbation boundary conditions 

indOne = whole.find('** STEP: TwoTwo') 

indTwo = whole.find('*Static',indOne) 
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indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = "".join(['*Static\r\n** BOUNDARY 

CONDITIONS\r\n**\r\n*Boundary\r\nMatrix-1.LL,1,1\r\n', 

                     'Matrix-1.LL,2,2\r\nMatrix-1.LR,1,1,', 

                     str(dispBoundNodes[1][0]), 

                     '\r\nMatrix-1.LR , 2 , 2, ', 

                     str(dispBoundNodes[1][1]),'\r\nMatrix-1.UL , 1, 1, ', 

                     str(dispBoundNodes[2][0]),'\r\nMatrix-1.UL, 2, 2, ', 

                     str(dispBoundNodes[2][1]+ 

                         (boundNodes[2][2]+dispBoundNodes[2][1])*perturb), 

                     '\r\nMatrix-1.UR, 1, 1, ', 

                     str(dispBoundNodes[3][0]),'\r\nMatrix-1.UR, 2, 2, ', 

                     str(dispBoundNodes[3][1]+ 

                         

(boundNodes[3][2]+dispBoundNodes[3][1])*perturb),'\r\n**\r\n**\r\n']) 

whole= "".join([firstSect,boundSect,secondSect]) 

 

                      

# Modify the OneTwo perturbation boundary conditions 

indOne = whole.find('** STEP: OneTwo') 

indTwo = whole.find('*Static',indOne) 

indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = "".join(['*Static\r\n** BOUNDARY 

CONDITIONS\r\n**\r\n*Boundary\r\nMatrix-1.LL,1,1\r\n', 

                     'Matrix-1.LL,2,2\r\nMatrix-1.LR,1,1,', 

                     str(dispBoundNodes[1][0]), 

                     '\r\nMatrix-1.LR , 2 , 2, ', 

                     str(dispBoundNodes[1][1]),'\r\nMatrix-1.UL , 1, 1, ', 

                     str(dispBoundNodes[2][0]+ 

                         (boundNodes[2][2]+dispBoundNodes[2][1])*perturb), 

                     '\r\nMatrix-1.UL, 2, 2, ', 

                     str(dispBoundNodes[2][1]),'\r\nMatrix-1.UR, 1, 1, ', 

                     str(dispBoundNodes[3][0]+ 

                         (boundNodes[3][2]+dispBoundNodes[3][1])*perturb), 

                     '\r\nMatrix-1.UR, 2, 2, ', 

                     str(dispBoundNodes[3][1]),'\r\n**\r\n**\r\n']) 

whole= "".join([firstSect,boundSect,secondSect]) 

inputWrite = open("".join([jobName,'.inp']),'wb') 

inputWrite.write(whole) 

inputWrite.close() 

 

if curIncrem>=2: 

    submitString = "".join(['abaqus job=',jobName,' oldjob=',oldJobName,' 

int']) 

else: 

    submitString = "".join(['abaqus job=',jobName,' int']) 

subprocess.call(submitString,shell=True) 

 

 

#------------------------------------------------- 

# Calculate Macroscopic Stress 

#------------------------------------------------- 
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#First open the output database 

odbName = "".join([jobName,'.odb']) 

odb = openOdb(odbName) 

 

#The following "if" statement below checks to see if the displacemets 

# specified for all BC's are zero. In that case the analysis step 

# is skipped and a zero stress tensor will automatically be outputted. 

 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    avgStress = zeros(4) 

 

 

else: 

    # Import element stresses from ODB 

    odbStress = odb.steps['Analysis'].frames[-1].fieldOutputs['S'] 

    numElem = len(odbStress.values) 

    stressValues = zeros([numElem,4]) 

    for i in range(0,numElem): 

        for j in range(0,4): 

            stressValues[i][j] = odbStress.values[i].data[j] 

             

# Extract element areas from the Analysis step 

    odbArea = odb.steps['Analysis'].frames[-1].fieldOutputs['EVOL'] 

    elemArea = zeros(numElem) 

    for i in range(0,numElem): 

        elemArea[i] = odbArea.values[i].data 

 

# Calculate total area 

    totalArea = 0 

    for i in range(0,numElem): 

        totalArea = elemArea[i]+totalArea 

 

# Define & Calculate Volume Average (For 2-D it is an Area Average) 

    def dotproduct(a,b): 

        if len(a)==len(b): 

            hold=0 

            for i in range(0,len(a)): 

                hold = a[i]*b[i]+hold 

        else: 

            raise ValueError('Vectors do not have matching dimensions') 

        return hold 

 

    avgStress = zeros(4) 

    for i in range(0,4): 

        z = dotproduct(column(stressValues,i),elemArea) 

        avgStress[i] = z/totalArea 

 

# Export the 'avgStress' array to CSV file 

writeFile = open('Stress.csv','w') 

writer = csv.writer(writeFile) 

writer.writerow(avgStress) 

writeFile.close() 

 

#------------------------------------------------- 

# Calculate Constitutive Tangent Operator 
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#------------------------------------------------- 

 

# It is important to note that when the non-linear geometry flag 

# is active that ABAQUS expects the constitutive tensor to be of 

# the form C = dtau/depsilon where tau is the Kirkhoff stress tensor 

 

# Thus, the cauchy stresses output from the perturbation steps must be 

# converted by multiplying by J = detF 

 

detF = linalg.det(ftens) 

 

# Import element stresses from ODB 

# NOTE: There are three arrays; one for each direction (11,22,12) 

odbStressOneOne = odb.steps['OneOne'].frames[-1].fieldOutputs['S'] 

 

 

# In case the Analysis step is skipped (during initialization), the num 

# elem variabl needs to be defined 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    numElem = len(odbStressOneOne.values) 

    # Set stressValues tensor to zero (if there was no analysis) 

    stressValues = zeros([numElem,4]) 

 

 

oneOnestress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        oneOnestress[i][j] = odbStressOneOne.values[i].data[j] 

 

odbStressTwoTwo = odb.steps['TwoTwo'].frames[-1].fieldOutputs['S'] 

twoTwostress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        twoTwostress[i][j] = odbStressTwoTwo.values[i].data[j] 

 

odbStressOneTwo = odb.steps['OneTwo'].frames[-1].fieldOutputs['S'] 

oneTwostress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        oneTwostress[i][j] = odbStressOneTwo.values[i].data[j] 

 

# Volume average the data and output the homogenized constitutive tensor 

 

# If this is an intialization step, the element areas need to be extraced 

here 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

# Extract element areas from the Analysis step  

    odbArea = odb.steps['OneOne'].frames[-1].fieldOutputs['EVOL'] 

    elemArea = zeros(numElem) 

    for i in range(0,numElem): 

        elemArea[i] = odbArea.values[i].data 

 

# Calculate total area 
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    totalArea = 0 

    for i in range(0,numElem): 

        totalArea = elemArea[i]+totalArea 

         

contTensor = zeros([4,4]) 

 

for j in range(0,4): 

    for i in range(0,numElem): 

        contTensor[j][0] = contTensor[j][0] + 

elemArea[i]*(oneOnestress[i][j]-stressValues[i][j]) 

        contTensor[j][1] = contTensor[j][1] + 

elemArea[i]*(twoTwostress[i][j]-stressValues[i][j]) 

        contTensor[j][3] = contTensor[j][3] + 

elemArea[i]*(oneTwostress[i][j]-stressValues[i][j]) 

 

for i in range(0,4): 

    for j in range(0,4): 

        contTensor[i][j] = (1/totalArea)*detF*contTensor[i][j]*(1/perturb) 

contTensor[2][2] = 1 

 

for j in range(0,4): 

    contTensor[j][2] = contTensor[2][j] 

contTensor[2][2]=51.6294665 

 

symContTensor = zeros([4,4]) 

 

for i in range(0,4): 

    for j in range(0,4): 

        symContTensor[i][j] = .5*(contTensor[j][i]+contTensor[i][j]) 

 

# Export the 'symTensor' array to CSV file 

writeFile = open('contTensor.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(symContTensor) 

writeFile.close() 

 

# Export the 'symTensor' array to CSV file 

#   For post-processing 

contName="".join([jobName,'ContTensor.csv']) 

writeFile = open(contName,'wb') 

writer = csv.writer(writeFile) 

writer.writerows(symContTensor) 

writeFile.close() 

 

tauStress = zeros(4) 

for i in range(0,4): 

    tauStress[i] = detF*avgStress[i] 

 

# Export the 'tauStress' array to CSV file 

writeFile = open('StressTau.csv','w') 

writer = csv.writer(writeFile) 

writer.writerow(tauStress) 

writeFile.close() 

 

z = [detF] 

 

writeFile = open('detF.csv','w') 
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writer = csv.writer(writeFile) 

writer.writerow(z) 

writeFile.close() 
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A.4 Python Script for z-scalar approach within ABAQUS 

################################################ 

# HEADING 

 

## Computational homogenization script for periodic 

## boundary conditions. 

 

# Original Author: Christopher Cater 

#Last Modified: 10-30-2012 

#Changes: Modified script to include the non-periodic 

#         boundary conditions and perturbation restart 

 

#Note: 12-12-2012 

# The odb deletion was suppressed to allow for post- 

# processing of all unit cell ODB's. 

 

# Also, the scalar variable is modified to allow for 

# incorporation of the cohesive strain energy 

 

################################################## 

############### BEGIN CODE ####################### 

################################################## 

 

#USER INPUT# 

#Input File name (Unit-cell) 

fileInput='Modified-input-36Fibers.inp' 

 

#------------------------------------------------- 

# IMPORT PYTHON MODULES 

#------------------------------------------------- 

from sys import path 

import csv #For reading/writing CSV files 

import subprocess 

from odbAccess import * 

from job import * 

path.append('/opt/software/NumPy/1.6.1--GCC-4.4.5/lib/python2.7/site-

packages') 

from os import remove, rename 

from numpy import zeros 

from numpy import linalg 

 

#------------------------------------------------- 

# IMPORT COARSE SCALE INFO 

#------------------------------------------------- 

 

## Important: Adjust the file names and paths accordingly 

incremImport = open('increm.csv','rb') 

incremReader = csv.reader(incremImport) 

increm = incremReader.next() 

for i in range(0,len(increm)): 

    increm[i]=int(increm[i]) 

     

incremImport.close() 

 

# Import the Deformation Gradient 
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ftens = zeros([3,3]) 

ftensImport = open('ftens.csv','rb') 

ftensReader = csv.reader(ftensImport) 

for i in range(0,3): 

    ftens[i] = ftensReader.next() 

ftensImport.close() 

 

# Import the macroscopic strain (total) 

 

strant = zeros([4,1]) 

strantImport = open('strant.csv','rb') 

strantReader = csv.reader(strantImport) 

for i in range(0,4): 

    strant[i] = strantReader.next() 

strantImport.close() 

 

#------------------------------------------------- 

# IMPORT UNIT CELL BOUNDARY NODE INFORMATION 

#------------------------------------------------- 

 

#Imports boundary node list, nodes on the left, right, 

# bottom and top edges to apply the BC's effectively. 

boundImport = open('boundNodes.csv','rb') 

boundReader = csv.reader(boundImport) 

boundNodes = [] 

for row in boundReader: 

    boundNodes.append(row)  

boundImport.close() 

 

leftImport = open('leftNodes.csv','rb') 

leftReader = csv.reader(leftImport) 

leftNodesAll = [] 

for row in leftReader: 

    leftNodesAll.append(row) #"All" means it includes the corner nodes 

leftImport.close() 

 

rightImport = open('rightNodes.csv','rb') 

rightReader = csv.reader(rightImport) 

rightNodes = [] 

for row in rightReader: 

    rightNodes.append(row)  

rightImport.close() 

 

bottomImport = open('bottomNodes.csv','rb') 

bottomReader = csv.reader(bottomImport) 

bottomNodes = [] 

for row in bottomReader: 

    bottomNodes.append(row)  

bottomImport.close() 

 

topImport = open('topNodes.csv','rb') 

topReader = csv.reader(topImport) 

topNodes = [] 

for row in topReader: 

    topNodes.append(row)  

topImport.close() 
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numBoundNodes = len(boundNodes) 

numLeftNodes = len(leftNodesAll) 

numRightNodes = len(rightNodes) 

numTopNodes = len(topNodes) 

numBottomNodes = len(bottomNodes) 

 

leftNodes = zeros([numLeftNodes,4]) 

 

for i in range(0,len(boundNodes)): #Convert string to float 

    for j in range(0,len(boundNodes[0])): 

        boundNodes[i][j] = float(boundNodes[i][j]) 

 

for i in range(0,len(leftNodes)): #Convert string to float 

    for j in range(0,len(leftNodes[0])): 

        leftNodes[i][j] = float(leftNodesAll[i][j]) 

for i in range(0,len(rightNodes)): #Convert string to float 

    for j in range(0,len(rightNodes[0])): 

        rightNodes[i][j] = float(rightNodes[i][j]) 

 

for i in range(0,len(bottomNodes)): #Convert string to float 

    for j in range(0,len(bottomNodes[0])): 

        bottomNodes[i][j] = float(bottomNodes[i][j]) 

 

for i in range(0,len(topNodes)): #Convert string to float 

    for j in range(0,len(topNodes[0])): 

        topNodes[i][j] = float(topNodes[i][j]) 

 

writeFile = open('leftNodesExport.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(leftNodes) 

writeFile.close() 

 

#------------------------------------------------- 

# Define a usefule column function 

#------------------------------------------------- 

 

# Define a useful function COLUMN for extracting 

# the column of a particular matrix. 

 

def column(matrix,i): 

    return [row[i] for row in matrix] 

 

#------------------------------------------------- 

# Calculate Boundary Displacements 

#------------------------------------------------- 

 

dispBoundNodes = zeros([numBoundNodes,3]) 

 

for i in range(0,numBoundNodes): 

    for j in range(0,3): 

        hold = 0 

        for p in range(0,3): 

            hold = hold + ftens[j][p]*boundNodes[i][p+1] 

        dispBoundNodes[i][j]=hold-boundNodes[i][j+1] 

 

#------------------------------------------------- 

# MODIFY MODEL, WRITE JOB INPUT, & SUBMIT JOB 



 

 

135 

#------------------------------------------------- 

 

#-------- 

# ATTENTION::::INPUT NEEDED!!!!!!! 

# 

# What nodes are in LowerLeft, LowerRight, and TopLeft? 

# 

cornerNodes=[int(boundNodes[0][0]),int(boundNodes[1][0]), 

             int(boundNodes[2][0]),int(boundNodes[3][0])] 

# 

#-------- 

 

element = increm[1] 

curIncrem = increm[0] 

oldIncrem = curIncrem - 1 

jobName = "".join(['UnitCellComplete',str(element),'-',str(curIncrem)]) 

oldJobName = "".join(['UnitCellComplete',str(element),'-',str(oldIncrem)]) 

delJobName = "".join(['UnitCellComplete',str(element),'-',str(oldIncrem-1)]) 

 

# Create the Insert for the Analysis Step (Boundary Conditions) 

boundSect = '** BOUNDARY CONDITIONS\r\n**\r\n*Boundary\r\n'  

for i in range(0,numBoundNodes): 

    if boundNodes[i][0] in cornerNodes: 

        if boundNodes[i][0] in column(rightNodes,0): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(2),', ',str(2),', ', 

                                str(dispBoundNodes[i][1]), '\r\n']) 

        else: 

            for j in range(0,2): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(j+1),', ',str(j+1),', ', 

                                str(dispBoundNodes[i][j]), '\r\n']) 

    elif boundNodes[i][0] in column(leftNodes,0): 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(1),', ',str(1),', ', 

                            str(dispBoundNodes[i][0]), '\r\n']) 

 

#Note: This section of code to follow is introduced to combat issues with 

# Abaqus errors during the "initialization" step (zero strain). Thus the 

# Analysis step section will be removed in what follows. 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    # End of this section of code to counter the errors in the 

initialization. 

    inputRead = open(fileInput,'rb') 

    whole = inputRead.read() 

    indOne = whole.find('** STEP: Analysis')     

    insertNoAnalysis = whole[0:indOne] 

    inputRead.close() 

 

# Read in the Unit Cell input file 

# Remove the Boundary Conditions Section and 

#  insert the disBoundNodes conditions 
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# Submit the corresponding job in Abaqus 

elif curIncrem==1: 

    inputRead = open(fileInput,'rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    firstSect = whole[0:indOne] 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    secondSect = whole[indTwo:] 

    whole = "".join([firstSect,boundSect,secondSect]) 

    inputWrite = open("".join([jobName,'.inp']),'wb') 

    inputWrite.write(whole) 

    inputWrite.close() 

 

 

# For curIncrem=2, the restart input file is modified 

 

elif curIncrem==2: 

# Read in the Unit Cell restart file. 

# Modify the Restart section to contain an updated incremement number 

    inputRead = open('Restart.inp','rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    indThree = whole.find('*Restart') 

    indFour = whole.find('** STEP: Analysis') 

    firstSect = whole[0:indThree] 

    secondSect = whole[indFour:indOne] 

    thirdSect = whole[indTwo:] 

    insert = "".join(['**\n**\n*Restart, READ, STEP=',str(oldIncrem),'\n', 

                     '**\n**\n']) 

    whole = "".join([firstSect,insert,secondSect,boundSect,thirdSect]) 

 

# For curIncrem>3, all n-2 job files are deleted and the restart file is 

modified 

 

elif curIncrem>=3: 

# Perform operations similar to procedure in Increm=2, however also    

# Delete job files from increment n-2, where n is current increment 

#    extDelete = 

['.com','.dat','.mdl','.msg','.odb','.prt','.res','.sta','.stt'] 

#      The above is commented so as to output the .odb for all steps 

    extDelete = ['.com','.dat','.mdl','.msg','.prt','.res','.sta','.stt'] 

    for ext in extDelete: 

        subprocess.call("".join(['rm -f ',delJobName,ext]),shell=True) 

    inputRead = open('Restart.inp','rb') 

    whole = inputRead.read() 

    inputRead.close() 

    indOne = whole.find('** BOUNDARY CONDITIONS') 

    indTwo = whole.find('** OUTPUT REQUESTS') 

    indThree = whole.find('*Restart') 

    indFour = whole.find('** STEP: Analysis') 

    firstSect = whole[0:indThree] 

    secondSect = whole[indFour:indOne] 

    thirdSect = whole[indTwo:] 

    insert = "".join(['**\n**\n*Restart, READ, STEP=',str(oldIncrem), 
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                     '\n**\n**\n'])     

    whole = "".join([firstSect,insert,secondSect,boundSect,thirdSect]) 

 

# Submit Job only if  

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    placeholder='place' 

else: 

    inputWrite = open("".join([jobName,'.inp']),'wb') 

    inputWrite.write(whole) 

    inputWrite.close() 

    if curIncrem>=2: 

        submitString = "".join(['abaqus job=',jobName,' oldjob=',oldJobName,' 

int']) 

    else: 

        submitString = "".join(['abaqus job=',jobName,' int']) 

    subprocess.call(submitString,shell=True) 

 

 

#------------------------------------------------- 

# Calculate Macroscopic Stress 

#------------------------------------------------- 

 

 

 

#The following "if" statement below checks to see if the displacemets 

# specified for all BC's are zero. In that case the analysis step 

# is skipped and a zero stress tensor will automatically be outputted. 

 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    avgStress = zeros(4) 

    dispFree = zeros([len(rightNodes),3])  #empty placeholder array 

    for i in range(0,len(rightNodes)): #Remainder of right side nodes 

        dispFree[i][0] = rightNodes[i][0] 

    dispSymm = zeros([len(leftNodes+2),3]) 

     

    for i in range(0,len(leftNodes)): 

        dispSymm[i][0]=leftNodes[i][0] 

 

    writeFile = open('Stress.csv','wb') 

    writer = csv.writer(writeFile) 

    writer.writerow(avgStress) 

    writeFile.close() 

    zscale = 0 #Set to zero temporarily 

    maEnergy=0 #Set to zero temporarily 

    ucEnergy=0 #Set to zero temporarily 

     

#First open the output database 

 

else: 

    odbName = "".join([jobName,'.odb']) 

    odb = openOdb(odbName) 

# Import element stresses from ODB 

    odbStress = odb.steps['Analysis'].frames[-1].fieldOutputs['S'] 
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    numElem = len(odbStress.values) 

    stressValues = zeros([numElem,4]) 

    for i in range(0,numElem): 

        for j in range(0,4): 

            stressValues[i][j] = odbStress.values[i].data[j] 

             

# Extract element areas from the Analysis step 

    odbArea = odb.steps['Analysis'].frames[-1].fieldOutputs['EVOL'] 

    elemArea = zeros(numElem) 

    for i in range(0,numElem): 

        elemArea[i] = odbArea.values[i].data 

 

# Calculate total area 

    totalArea = 0 

    for i in range(0,numElem): 

        totalArea = elemArea[i]+totalArea 

 

# Define & Calculate Volume Average (For 2-D it is an Area Average) 

    def dotproduct(a,b): 

        if len(a)==len(b): 

            hold=0 

            for i in range(0,len(a)): 

                hold = a[i]*b[i]+hold 

        else: 

            raise ValueError('Vectors do not have matching dimensions') 

        return hold 

 

    avgStress = zeros(4) 

    for i in range(0,4): 

        z = dotproduct(column(stressValues,i),elemArea) 

        avgStress[i] = z/totalArea 

 

 

# Extract the internal strain energy of the system 

    ucEnergy = odb.steps['Analysis'].historyRegions[ 

        'Assembly ASSEMBLY'].historyOutputs['ALLSE'].data[-1][1] 

 

    ucCohesEnergy = odb.steps['Analysis'].historyRegions['Assembly ASSEMBLY' 

        ].historyOutputs['ETOTAL'].data[-1][1] 

    #Note that this energy will be negative 

 

# Compute the macroscopic internal strain energy 

    maEnergy = 0 

    for i in range(0,4): 

        maEnergy = maEnergy + .5*strant[i]*avgStress[i]*totalArea 

 

# Compute the z-scaling parameter 

    zscale = (ucEnergy-ucCohesEnergy)/maEnergy #minus signs accounts for 

negative etotal 

 

# Determine "true" energy based stressed tensor 

    trueStress = zeros(4) 

    for i in range(0,4): 

        trueStress[i] = avgStress[i]*zscale 

 

# Export the 'trueStress' array to CSV file 

    writeFile = open('Stress.csv','wb') 
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    writer = csv.writer(writeFile) 

    writer.writerow(trueStress) 

    writeFile.close() 

 

##### STEPS TO EXTRACT THE NODAL DISP ###### 

    # This requires defining "regions" for left and right node sets 

 

# Extract the displacements at free-edge 

#   These are the displacements at the end of the 'Analysis' 

 

    nodalDisp = odb.steps['Analysis'].frames[-1].fieldOutputs['U'] 

    left = odb.rootAssembly.instances['MATRIX-1'].nodeSets['LEFTEDGESET'] 

    right = odb.rootAssembly.instances['MATRIX-1'].nodeSets['RIGHTEDGESET'] 

    leftDisp = nodalDisp.getSubset(region=left) 

    rightDisp = nodalDisp.getSubset(region=right) 

    dispFree = zeros([len(rightNodes),3])  #empty placeholder array 

 

# Need to define the corner nodes separately from the 

#  free edge nodes since the corner nodes don't exist 

#  rightNodes array (they are in the boundNodes array) 

   

    for i in range(0,len(rightNodes)): #right side nodes 

        for j in range(0,3): 

            if j==0: 

                dispFree[i][j] = int(right.nodes[i].label) 

            elif j>0: 

                dispFree[i][j] = rightDisp.values[i].data[j-1] 

         

# Extract the displacements at symmetric-edge 

#   These are the displacements at the end of the 'Analysis' 

#      These are necessary for the shear perturbation step 

 

    dispSymm = zeros([len(left.nodes),3]) 

 

    for i in range(0,len(left.nodes)): 

        for j in range(0,3): 

            if j==0: 

                dispSymm[i][j]= int(left.nodes[i].label) 

            elif j>0: 

                dispSymm[i][j] = leftDisp.values[i].data[j-1] 

 

 

#Close the ODB 

    odb.close() 

 

#------------------------------------------------- 

# Modify Restart File for the Perturbation Steps 

#------------------------------------------------- 

 

############ IMPORTANT ############### 

# Specify Perturbation Amount (small number ~10^-6) 

perturb=.01 

###################################### 

 

# Open the Perturb.inp restart file 

#  & Insert the proper *Restart keyword entries 

inputRead = open('Perturb.inp','rb') 
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whole = inputRead.read() 

indThree = whole.find('*Restart') 

indFour = whole.find('** STEP: OneOne') 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    whole = "".join([insertNoAnalysis,whole[indFour:]]) 

     

     

else: 

    insert = "".join(['**\n**\n*Restart, READ, STEP=',str(curIncrem),'\n', 

                      '**\n**\n']) 

    firstSect = whole[0:indThree] 

    secondSect = whole[indFour:] 

    whole = "".join([firstSect,insert,secondSect]) 

 

# Modify the OneOne perturbation boundary conditions 

indOne = whole.find('** STEP: OneOne') 

indTwo = whole.find('*Static',indOne) 

indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = '*Static\r\n** BOUNDARY CONDITIONS\r\n**\r\n*Boundary\r\n'  

for i in range(0,numBoundNodes): 

    if boundNodes[i][0] in column(leftNodes,0): #Symmetric Edge 

        if boundNodes[i][0] in cornerNodes: #Corner Nodes 

            for j in range(0,1): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(j+1),', ',str(j+1),', ', 

                                str(dispBoundNodes[i][j]+(boundNodes[i][j+1]+ 

                                                          

dispBoundNodes[i][j]) 

                                    *perturb), 

                                '\r\n']) 

            for j in range(1,2): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(j+1),', ',str(j+1),', ', 

                                str(dispBoundNodes[i][j]), 

                                 '\r\n']) 

        else:  

            boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(1),', ',str(1),', ', 

                                str(dispBoundNodes[i][0]), 

                                '\r\n']) 

    elif boundNodes[i][0] in column(rightNodes,0): #Free Edge 

        index = column(dispFree,0).index(boundNodes[i][0]) 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(1),', ',str(1),', ', 

                            str(dispFree[index][1]+(boundNodes[i][1]+ 

                                                    

dispFree[index][1])*perturb), 

                            '\r\n']) 



 

 

141 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(2),', ',str(2),', ', 

                            str(dispFree[index][2]), 

                            '\r\n'])        

 

whole= "".join([firstSect,boundSect,secondSect]) 

                      

# Modify the TwoTwo perturbation boundary conditions 

indOne = whole.find('** STEP: TwoTwo') 

indTwo = whole.find('*Static',indOne) 

indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = '*Static\r\n** BOUNDARY CONDITIONS\r\n**\r\n*Boundary\r\n'  

for i in range(0,numBoundNodes): 

    if boundNodes[i][0] in column(leftNodes,0):  #Symmetric Edge 

        if boundNodes[i][0] in cornerNodes: #Corner Nodes 

            for j in range(0,1): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(j+1),', ',str(j+1),', ', 

                                str(dispBoundNodes[i][j]), 

                                '\r\n']) 

            for j in range(1,2): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(j+1),', ',str(j+1),', ', 

                                str(dispBoundNodes[i][j]+(boundNodes[i][j+1]+ 

                                                          

dispBoundNodes[i][j]) 

                                    *perturb),'\r\n']) 

        else: 

            boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(1),', ',str(1),', ', 

                                str(dispBoundNodes[i][0]), 

                                '\r\n']) 

    elif boundNodes[i][0] in column(rightNodes,0): #Free Edge 

        index = column(dispFree,0).index(boundNodes[i][0]) 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(1),', ',str(1),', ', 

                            str(dispFree[index][1]), 

                            '\r\n']) 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(2),', ',str(2),', ', 

                            str(dispFree[index][2]+(boundNodes[i][2]+ 

                                                    

dispFree[index][2])*perturb), 

                            '\r\n'])     

 

whole= "".join([firstSect,boundSect,secondSect]) 

                      

# Modify the OneTwo perturbation boundary conditions 

indOne = whole.find('** STEP: OneTwo') 



 

 

142 

indTwo = whole.find('*Static',indOne) 

indThree = whole.find('** OUTPUT REQUESTS',indOne) 

firstSect = whole[0:indTwo] 

secondSect = whole[indThree:] 

boundSect = '*Static\r\n** BOUNDARY CONDITIONS\r\n**\r\n*Boundary\r\n'  

for i in range(0,numBoundNodes): 

    print 'i is ', i 

    if boundNodes[i][0] in column(leftNodes,0): 

        print 'node number is ', boundNodes[i][0] 

        if boundNodes[i][0] in cornerNodes: 

            for j in range(0,1): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                    str(j+1),', ',str(j+1),', ', 

                                    

str(dispBoundNodes[i][j]+(dispBoundNodes[i][j+1] 

                                                          

+boundNodes[i][j+2])*perturb), 

                                '\r\n']) 

            for j in range(1,2): 

                boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                    str(j+1),', ',str(j+1),', ', 

                                    str(dispBoundNodes[i][j]), 

                                    '\r\n']) 

        else: 

            index = column(dispSymm,0).index(boundNodes[i][0]) 

            boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(1),', ',str(1),', ', 

                                

str(dispBoundNodes[i][0]+(boundNodes[i][2]+dispSymm[index][2]) 

                                    *perturb), 

                                '\r\n']) 

            boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                                str(2),', ',str(2),', ', 

                                str(dispSymm[index][2]), 

                                '\r\n']) 

    elif boundNodes[i][0] in column(rightNodes,0): #Free Edge 

        index = column(dispFree,0).index(boundNodes[i][0]) 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(1),', ',str(1),', ', 

                            

str(dispFree[index][1]+(boundNodes[i][2]+dispFree[index][2]) 

                                *perturb), 

                            '\r\n']) 

        boundSect = "".join([boundSect,'MATRIX-

1.',str(int(boundNodes[i][0])),', ', 

                            str(2),', ',str(2),', ', 

                            str(dispFree[index][2]), 

                            '\r\n']) 

 

whole= "".join([firstSect,boundSect,secondSect]) 

 

#Write Final Perturb.inp Input File & 
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inputWrite = open("".join(['Perturb-Mod.inp']),'wb') 

inputWrite.write(whole) 

inputWrite.close() 

 

#SUBMIT THE PERTURBATION JOB 

 

submitString = "".join(['abaqus job=Perturb-Mod oldjob=',jobName,' int']) 

subprocess.call(submitString,shell=True) 

 

 

#------------------------------------------------- 

# Calculate Constitutive Tangent Operator 

#------------------------------------------------- 

 

# Open the Perturbation output database 

 

odb = openOdb('Perturb-Mod.odb') 

 

 

# Import element stresses from ODB 

# NOTE: There are three arrays; one for each direction (11,22,12) 

odbStressOneOne = odb.steps['OneOne'].frames[-1].fieldOutputs['S'] 

 

# In case the Analysis step is skipped (during initialization), the num 

# elem variable needs to be defined 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 

    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

    numElem = len(odbStressOneOne.values) 

 

# Import element stresses from ODB 

# NOTE: There are three arrays; one for each direction (11,22,12) 

odbStressOneOne = odb.steps['OneOne'].frames[-1].fieldOutputs['S'] 

 

oneOnestress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        oneOnestress[i][j] = odbStressOneOne.values[i].data[j] 

 

odbStressTwoTwo = odb.steps['TwoTwo'].frames[-1].fieldOutputs['S'] 

twoTwostress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        twoTwostress[i][j] = odbStressTwoTwo.values[i].data[j] 

 

odbStressOneTwo = odb.steps['OneTwo'].frames[-1].fieldOutputs['S'] 

oneTwostress = zeros([numElem,4]) 

for i in range(0,numElem): 

    for j in range(0,4): 

        oneTwostress[i][j] = odbStressOneTwo.values[i].data[j] 

 

# Volume average the data and output the homogenized constitutive tensor 

 

# If this is an intialization step, the element areas need to be extraced 

here 

if (float(dispBoundNodes[1][0])==0.0 and float(dispBoundNodes[1][1])==0.0 
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    and float(dispBoundNodes[2][0])==0.0 and 

float(dispBoundNodes[2][1]==0.0)): 

# Extract element areas from the OneOne step  

    odbArea = odb.steps['OneOne'].frames[-1].fieldOutputs['EVOL'] 

    elemArea = zeros(numElem) 

    for i in range(0,numElem): 

        elemArea[i] = odbArea.values[i].data 

 

# Calculate total area 

    totalArea = 0 

    for i in range(0,numElem): 

        totalArea = elemArea[i]+totalArea 

         

# Set stressValues tensor to zero (if there was no analysis) 

    stressValues = zeros([numElem,4]) 

    trueStress = zeros(4) 

         

contTensor = zeros([4,4]) 

testContTensor = zeros([4,4]) 

 

for j in range(0,4): 

    for i in range(0,numElem): 

        contTensor[j][0] = contTensor[j][0] + 

elemArea[i]*(oneOnestress[i][j]-stressValues[i][j]) 

        contTensor[j][1] = contTensor[j][1] + 

elemArea[i]*(twoTwostress[i][j]-stressValues[i][j]) 

        contTensor[j][3] = contTensor[j][3] + 

elemArea[i]*(oneTwostress[i][j]-stressValues[i][j]) 

 

 

# Test Code for variation in computing the contstitutive tensor 

#       Here the stresses will be averaged first before subtracting 

#       the streses from the analysis step. 

#       -Previously it was done using element by element differences 

 

for j in range(0,4): 

    for i in range(0,numElem): 

        testContTensor[j][0] = testContTensor[j][0] + 

elemArea[i]*(oneOnestress[i][j]) 

        testContTensor[j][1] = testContTensor[j][1] + 

elemArea[i]*(twoTwostress[i][j]) 

        testContTensor[j][3] = testContTensor[j][3] + 

elemArea[i]*(oneTwostress[i][j]) 

 

 

for i in range(0,4): 

    for j in range(0,4): 

        contTensor[i][j] = (1/totalArea)*contTensor[i][j]*(1/perturb)*zscale 

        testContTensor[i][j] = (1/totalArea)*testContTensor[i][j]*(1/perturb) 

    testContTensor[i][0] = testContTensor[i][0]*zscale-trueStress[i] 

    testContTensor[i][1] = testContTensor[i][1]*zscale-trueStress[i] 

    testContTensor[i][3] = testContTensor[i][3]*zscale-trueStress[i] 

for j in range(0,4): 

    contTensor[j][2] = contTensor[2][j] 

    testContTensor[j][2] = testContTensor[2][j] 

contTensor[2][2] =11707248018.4 

testContTensor[2][2] = 11707248018.4 
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symContTensor = zeros([4,4]) 

symTestContTensor = zeros([4,4]) 

 

for i in range(0,4): 

    for j in range(0,4): 

        symTestContTensor[i][j] = 

.5*(testContTensor[i][j]+testContTensor[j][i]) 

        symContTensor[i][j] = .5*(contTensor[i][j]+contTensor[j][i]) 

             

# Export the 'testContTensor' array to CSV file 

writeFile = open('testContTensor.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(testContTensor) 

writeFile.close() 

 

# Export the 'contTensor' array to CSV file for post-processing 

previousfile="".join([jobName,'ContTenstor.csv']) 

writeFile = open(previousfile,'wb') 

writer = csv.writer(writeFile) 

writer.writerows(symContTensor) 

writeFile.close() 

 

# Export the 'symContTensor' array to CSV file 

writeFile = open('contTensor.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerows(symContTensor) 

writeFile.close() 

 

tauStress = zeros(4) 

for i in range(0,4): 

    tauStress[i] = linalg.det(ftens)*avgStress[i] 

 

# Export the 'tauStress' array to CSV file 

writeFile = open('StressTau.csv','wb') 

writer = csv.writer(writeFile) 

writer.writerow(tauStress) 

writeFile.close() 

 

#Output for debugging: 

debug = "".join(['AvgStress is  ',str(avgStress),'\n The z parameter is ', 

str(zscale), 

         '\n The UC energy is  ',str(ucEnergy),'\n The ma Energy is 

',str(maEnergy), 

                 '\n Total Area is ',str(totalArea), 'Disp Free Nodes 

',str(dispFree)]) 

writeFile = open('Debug.txt','wb') 

writeFile.write(debug) 

writeFile.close() 
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A.5 3D Periodic linear constraint equations for the micro-scale model 

This section is segmented into two columns for brevity.  

 

** EQUATION KEYWORDS 

** BUR 

*Equation 

3 

BUR, 2, 1. 

BUL, 2, -1. 

BLR, 2, -1. 

*Equation 

3 

BUR, 1, 1. 

BUL, 1, -1. 

BLR, 1, -1. 

*Equation 

3 

BUR, 3, 1. 

BUL, 3, -1. 

BLR, 3, -1. 

*Equation 

3 

FLR, 1, 1. 

FLL, 1, -1. 

BLR, 1, -1. 

*Equation 

3 

FLR, 2, 1. 

FLL, 2, -1. 

BLR, 2, -1. 

*Equation 

3 

FLR, 3, 1. 

FLL, 3, -1. 

BLR, 3, -1. 

*Equation 

4 

FUR, 1, 1. 

FLL, 1, -1. 

BUL, 1, -1. 

BLR, 1, -1. 

*Equation 

4 

FUR, 2, 1. 

FLL, 2, -1. 

BUL, 2, -1. 

BLR, 2, -1. 

*Equation 

4 

FUR, 3, 1. 

FLL, 3, -1. 

BUL, 3, -1. 

BLR, 3, -1. 

** 

** Constraint for the Periodic 

Faces 

** FRONT/BACK 

*Equation 

3 

Thick_1_All-1.Back, 1, -1. 

Thick_1_All-1.copyBack, 1, 1. 

FLL, 1, -1.  

*Equation 

3 

Thick_1_All-1.Back, 2, -1. 

Thick_1_All-1.copyBack, 2, 1. 

FLL, 2, -1.  

*Equation 

3 

Thick_1_All-1.Back, 3, -1. 

Thick_1_All-1.copyBack, 3, 1. 

FLL, 3, -1.  

** TOP/BOTTOM 

*Equation 

3 

Thick_1_All-1.Bottom, 1, -1. 

Thick_1_All-1.copyBottom, 1, 1. 

BUL, 1, -1.  

*Equation 

3 

Thick_1_All-1.Bottom, 2, -1. 

Thick_1_All-1.copyBottom, 2, 1. 

BUL, 2, -1.  

*Equation 

3 

Thick_1_All-1.Bottom, 3, -1. 

Thick_1_All-1.copyBottom, 3, 1. 

BUL, 3, -1.  

** 

** Front/Bottom Edges 

**FB1 

*Equation 

3 

BLower, 1, -1. 

BUpper, 1, 1. 

BUL, 1, -1.  

*Equation 

3 

BLower, 2, -1. 

BUpper, 2, 1. 

BUL, 2, -1. 

*Equation 

3 

BLower, 3, -1. 

BUpper, 3, 1. 

BUL, 3, -1.  
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** 

**FB2 

*Equation 

3 

BUpper, 1, -1. 

FUpper, 1, 1. 

FLL, 1, -1.  

*Equation 

3 

BUpper, 2, -1. 

FUpper, 2, 1. 

FLL, 2, -1.  

*Equation 

3 

BUpper, 3, -1. 

FUpper, 3, 1. 

FLL, 3, -1.  

** 

**FB3 

*Equation 

3 

FUpper, 1, 1. 

FLower, 1, -1. 

BUL, 1, -1.  

*Equation 

3 

FUpper, 2, 1. 

FLower, 2, -1. 

BUL, 2, -1. 

*Equation 

3 

FUpper, 3, 1. 

FLower, 3, -1. 

BUL, 3, -1. 

** 

** 

** Top/Bottom Edges 

**TB3 

*Equation 

3 

RUpper, 1, 1. 

RLower, 1, -1. 

BUL, 1, -1. 

*Equation 

3 

RUpper, 2, 1. 

RLower, 2, -1. 

BUL, 2, -1. 

*Equation 

3 

RUpper, 3, 1. 

RLower, 3, -1. 

BUL, 3, -1. 

** 

** 

*Equation 

3 

FRight, 1, 1. 

BRight, 1, -1. 

FLL, 1, -1. 

*Equation 

3 

FRight, 2, 1. 

BRight, 2, -1. 

FLL, 2, -1. 

*Equation 

3 

FRight, 3, 1. 

BRight, 3, -1. 

FLL, 3, -1. 
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A.6 3D Free edge analysis linear constraint equations 

This section is segmented into two columns for brevity. 

 

 

** EQUATION KEYWORDS 

** BUR 

*Equation 

3 

BUR, 2, 1. 

BUL, 2, -1. 

BLR, 2, -1. 

*Equation 

3 

BUR, 1, 1. 

BUL, 1, -1. 

BLR, 1, -1. 

*Equation 

3 

BUR, 3, 1. 

BUL, 3, -1. 

BLR, 3, -1. 

*Equation 

3 

FUL, 1, 1. 

FLL, 1, -1. 

BUL, 1, -1. 

*Equation 

3 

FUL, 2, 1. 

FLL, 2, -1. 

BUL, 2, -1. 

*Equation 

3 

FUL, 3, 1. 

FLL, 3, -1. 

BUL, 3, -1. 

*Equation 

3 

FLR, 1, 1. 

FLL, 1, -1. 

BLR, 1, -1. 

*Equation 

3 

FLR, 2, 1. 

FLL, 2, -1. 

BLR, 2, -1. 

*Equation 

3 

FLR, 3, 1. 

FLL, 3, -1. 

BLR, 3, -1. 

*Equation 

4 

FUR, 1, 1. 

FLL, 1, -1. 

BUL, 1, -1. 

BLR, 1, -1. 

*Equation 

4 

FUR, 2, 1. 

FLL, 2, -1. 

BUL, 2, -1. 

BLR, 2, -1. 

*Equation 

4 

FUR, 3, 1. 

FLL, 3, -1. 

BUL, 3, -1. 

BLR, 3, -1. 

** 

** Constraint for the Periodic 

Faces 

** FRONT/BACK 

*Equation 

3 

Thick_1_All-1.Back, 1, -1. 

Thick_1_All-1.copyBack, 1, 1. 

FLL, 1, -1.  

*Equation 

3 

Thick_1_All-1.Back, 2, -1. 

Thick_1_All-1.copyBack, 2, 1. 

FLL, 2, -1.  

*Equation 

3 

Thick_1_All-1.Back, 3, -1. 

Thick_1_All-1.copyBack, 3, 1. 

FLL, 3, -1.  

** TOP/BOTTOM 

*Equation 

3 

Thick_1_All-1.Bottom, 1, -1. 

Thick_1_All-1.copyBottom, 1, 1. 

BUL, 1, -1.  

*Equation 

3 

Thick_1_All-1.Bottom, 2, -1. 

Thick_1_All-1.copyBottom, 2, 1. 

BUL, 2, -1.  

*Equation 

3 

Thick_1_All-1.Bottom, 3, -1. 

Thick_1_All-1.copyBottom, 3, 1. 

BUL, 3, -1.  

** LEFT/RIGHT 

*Equation 
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3 

Thick_1_All-1.Left, 1, -1. 

Thick_1_All-1.copyLeft, 1, 1. 

BLR, 1, -1.  

*Equation 

3 

Thick_1_All-1.Left, 2, -1. 

Thick_1_All-1.copyLeft, 2, 1. 

BLR, 2, -1. 

*Equation 

3 

Thick_1_All-1.Left, 3, -1. 

Thick_1_All-1.copyLeft, 3, 1. 

BLR, 3, -1. 

** 

** Front/Bottom Edges 

**FB1 

*Equation 

3 

BLower, 1, -1. 

BUpper, 1, 1. 

BUL, 1, -1.  

*Equation 

3 

BLower, 2, -1. 

BUpper, 2, 1. 

BUL, 2, -1. 

*Equation 

3 

BLower, 3, -1. 

BUpper, 3, 1. 

BUL, 3, -1.  

** 

**FB2 

*Equation 

3 

BUpper, 1, -1. 

FUpper, 1, 1. 

FLL, 1, -1.  

*Equation 

3 

BUpper, 2, -1. 

FUpper, 2, 1. 

FLL, 2, -1.  

*Equation 

3 

BUpper, 3, -1. 

FUpper, 3, 1. 

FLL, 3, -1.  

** 

**FB3 

*Equation 

3 

FUpper, 1, 1. 

FLower, 1, -1. 

BUL, 1, -1.  

*Equation 

3 

FUpper, 2, 1. 

FLower, 2, -1. 

BUL, 2, -1. 

*Equation 

3 

FUpper, 3, 1. 

FLower, 3, -1. 

BUL, 3, -1. 

** 

** 

** Top/Bottom Edges 

**TB1 

*Equation 

3 

LLower, 1, -1. 

LUpper, 1, 1. 

BUL, 1, -1. 

*Equation 

3 

LLower, 2, -1. 

LUpper, 2, 1. 

BUL, 2, -1. 

*Equation 

3 

LLower, 3, -1. 

LUpper, 3, 1. 

BUL, 3, -1. 

** 

**TB2 

*Equation 

3 

LUpper, 1, -1. 

RUpper, 1, 1. 

BLR, 1, -1. 

*Equation 

3 

LUpper, 2, -1. 

RUpper, 2, 1. 

BLR, 2, -1. 

*Equation 

3 

LUpper, 3, -1. 

RUpper, 3, 1. 

BLR, 3, -1. 

** 

** 

**TB3 

*Equation 

3 

RUpper, 1, 1. 

RLower, 1, -1. 

BUL, 1, -1. 

*Equation 

3 

RUpper, 2, 1. 

RLower, 2, -1. 
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BUL, 2, -1. 

*Equation 

3 

RUpper, 3, 1. 

RLower, 3, -1. 

BUL, 3, -1. 

** 

** 

** Left/Right Edges 

** LR1 

*Equation 

3 

BLeft, 1, -1. 

FLeft, 1,  1. 

FLL, 1, -1. 

*Equation 

3 

BLeft, 2, -1. 

FLeft, 2,  1. 

FLL, 2, -1. 

*Equation 

3 

BLeft, 3, -1. 

FLeft, 3,  1. 

FLL, 3, -1. 

** 

** LR2 

*Equation 

3 

FLeft, 1, -1. 

FRight, 1,  1. 

BLR, 1, -1. 

*Equation 

3 

FLeft, 2, -1. 

FRight, 2,  1. 

BLR, 2, -1. 

*Equation 

3 

FLeft, 3, -1. 

FRight, 3,  1. 

BLR, 3, -1. 

** 

** LR1 

*Equation 

3 

FRight, 1,  1. 

BRight, 1, -1. 

FLL, 1, -1. 

*Equation 

3 

FRight, 2,  1. 

BRight, 2, -1. 

FLL, 2, -1. 

*Equation 

3 

FRight, 3,  1. 

BRight, 3, -1. 

FLL, 3, -1. 
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