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ABSTRACT

VALIDITY OF THE MANY-BODY APPROXIMATIONS

IN SPHERICAL NUCLEI

BY

Shakir M. Mustafa

Reduced transition probabilities B(E2), and Spectro-

scopic factors Sj for stripping (d,p) reactions are calcu-

lated in the quasi-boson approximation (QBA), Random Phase

approximation (RPA), Tamm-Dancoff approximation (TDA), and

improved Random Phase approximation (IRPA). The effect of

the Pauli principle on the J=O pairs is shown to be negli-

gible, while it is not for J#O pairs. The effects of these

approximations on the B(E2) and Sj systematics are studied

by comparing the averages of the absolute deviations from

experimental values for each approximation. These studies

have been carried out for a large number of spherical nuclei.

The problem is formulated by using double-time Green's

function techniques.
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I. Introduction
 

In the fermi gas model of a nucleus, the forces between

pairs of nucleons are neglected, and the nucleus assumed to

be contained in a sphere of definite volume V with radius

R=rOAl/3. While this degenerate gas model give a qualitatively

correct picture of the nucleus, actual numerical results for

the energy levels are far from accurate.

Progress in understanding the structure of the nucleus

began after the conception of the shell model of the nucleus

by Mayer, Haxel, Jensen and Suessls. The great successes of

the shell model, in which the nucleons are assumed to move

independently in a certain average potential, showed that the

main part of interaction between the nucleons can be reduced

to a spherically symetrical, self-consistent field acting on

all of them. The next important step was made by Bohr and

Mottelsonlz’l3 who proposed the unified nuclear model, in

which an additional self-consistent part of the interaction

is extracted which is non-spherical and time dependent. With

this model it is possible to explain many of the regularities

in the low-lying nuclear levels in the language of collective

motions. The pairing-plus-multipole-multipole forces model

represents a further development of these models.

The accumulation of data on the transition rates in

even-even nuclei, from the first 2+ state to the 0+ ground

state shows enhancement by about a factor of 40 on the average
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over the single particle estimate, which can be explained by

assuming a collective motion of the nucleons. Before the

unified model was suggested by Bohr and Mottelson, it was

believed that the independent particle and the collective

models represented two opposite limits for nuclear physics.

The tendency of Fermi particles to pair was rec0gnized

45 (1942) to introducemany years ago. This idea motivated Racah

the seniority coupling scheme. Since the J=0 pair is more

bounded than the J#O pair, and also J=0 pairs behave like bosons,

which makes it possible for these pairs to be close to each

other, therefore the ground state of the system can have a

minimum energy if all particles are paired. These ideas led

Mayer (1950)42 to explain J=0 in the ground state of even—even

nuclei.

In 1956 Cooper43 showed that two fermions coupled to

J=O form a bound state, and behave like bosons. This explained

why a fermion system (electrons) can exhibit superconductivity

and a boson system (He4) superfluidity. In 1957 Bardeen,

Cooper, and Schrieffer (BCS)44 used this idea in establishing

their remarkably successful theory of superconductivity.

In 1958 Bohr, Mottelson, and Pines introduced for the

first time this idea into nuclear physics to explain the

energy gap in the spectrum of even-even nuclei. The super-

conducting solution of the nuclear problem is characterized

by a depressed ground state energy and an energy gap in the



spectrum of quasi-particles. The BCS treatment of the pairing

part of the Hamiltonian provided a good approximation to the

real situation; the other part of the Hamiltonian which

contains the long range of the interaction can be expanded

in multipole-multipole interactions. This pairing plus

quadrupole approximation leads to a fairly good understanding

of the prOperties of the nucleus and its quadrupole vibrations.

The descriptions of various properties of the nucleus depends

upon the model for the nuclear force and the approximation

scheme. Several studies have been done for various approximations

used in nuclear physics. In most of these studies solvable

models were used. In these models N particles are assumed to

occupy single level j, and the single particle energy is taken

to be zero. These particles are assumed to interact via a

pairing interaction. For this kind of interaction the solvable

model turns out to give a fairly good description of this part

of interaction. This similarity between the degenerate system

and the actual systems will be pointed out, whenever it arises,

as we study the actual systems. In spite of this similarity,

different correlations have been neglected in such models,

and, therefore, a study of various many—body approximations

in actual systems might be worthwhile. The pairing-plus-

quadrupole model has been used successfully by KS for the

collective motion in spherical nuclei. In this study a phenome—

nological approach is used, in which the single particle



energies are taken from experiment. In this method the

nucleons in closed shells form an enert core, and only

those nucleons outside this core are assumed to be active

nucleons occupying partially filled active orbitals as is

shown in figure (1). The effect of faraway orbits is assumed

to produce an effective charges and effective interaction.

This phenomenological treatment has the advantage of redusing

the dimensionality of the problem, and it makes it easy to

study the different approximations at once and systimatically

for a large number of nuclei. In this study I consider the

same Spherical nuclei studied by KS and tabulate the average

deviations from experiment for each type of approximation.‘

The effect of the Pauli principle is eSpecially noticeable

in the random phase approximation. The quantities studied

here are the reduced transition probabilities, the spectroscOpic

factors for the stripping (d,p) reactions on odd mass isotopes,

and the energies of the first exited J=O states, which are

calculated in the QBA only, since the numerical calculations

showed that the Pauli principle effect is negligible for this

part of the interaction. It might be important to notice

here that if one does not take the effective charges and

instead uses the real charges (ep=1, en=0), one needs to

include the faraway orbitals. This will give the same results

for the reduced transition probability but requires more

labOI'Bu'o



Figure 1. Schematic illustration of the shell-

model's basic act of truncation.
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II. as Double-Time Green's Functions

Various many-body techniques have been applied in efforts

to treat the two-body residual interaction between the nucleons

in the outer shells of the nucleous, with these nucleons

assumed to move in a self-consistent field produced by the

core and to have single-particle energies Ea determined to

fit the eXperimental data.

The Green's function method furnishes justifications

and physical insights into these methods; its physical meaning

emerges from the fact that it describes the propagation of

one or a few particles in a system of many particles. The

hierarchy of equations of motion for the Green's functions

provides an exact solution to the Hamiltonian for the problem

under consideration; the major approximation enters the

decoupling of these equations.

Following Zubarev6 we define double-time Green's functions

as follows:

Ga(t,t') = i 8(t,t')<[A(t),B(t')]> , (II.l)

Gr(t.t') =-i B(t.t')<[A(t),B(t')]> r (11.2)

where A and B are two operators of the system at different

times, and

>

6(T) = {3 L3



r and a stand for retarted and advanced Green's functions

respectively. The commutator

[A.B] AB-nBA ,

where

= {-1 Fermion

n +1 Boson ,

its fourier transform with respect to time G(w) is given by:

+00

—l—f dTe
2N

in

G(w) G(T)

<< A(t)| B(t') >>w . (11.3)

A higher order Green's function P(w) defined by

F(w) = << C(t) A(t)| B(t')>>w ,

can be reduced to the lower order G(m) by means of the RPA

decoupling procedure:

T(w) = <C(t)>w <<A(t)|B(t')>>w= <C(t)>wG(w).(II.4)

This approximation can be improved by evaluating <C(t)>

+ m

in the first 2 state (IRPA) instead of the ground state

(RPA) . The equation for G(w) is given by:

mG(w) = <[A(t;%B(t)]>w + <<[A(t),H]| B(t')>>w I
 

where H is the Hamiltonian. Similar equations can be obtained



for all higher order Green's functions from which a complete

set of coupled equations is obtained.

The time correlation functions are

+w _. _ ,

FAB(t,t') = f J(w)e8we lw(t t )dw = <A(t)B(t')>,

(11.5)

+” -iw(t-t')
FBA(t,t') = f J(w)e dw = <B(t')A(t)>.

where J(w) is the spectral function and B = E%_. , K is the

Boltzmann constant, and T is the absolute temperature.

G(w + iy) - G(w - iy)

eBw_ I Y=O'J(w) = i

T'l

Exploiting the analytical property of G(w) in the complex

plane, we can write

+oo

cm) = —%—1; f (eBE-n) J(E)g—%. (11.6)

In the nucleus the residual interactions are prevented from

destroying the independent particle picture by the presence

of the energy gap in the spectrum of quasi-particles. Therefore

the Spectral function J(w) can be writen as;

J(w) = I(wi) (Hm-mi) + I(-wi) (Hawaii) .

Using the above expression for J(w) the expression for G(w)

takes the following form;
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8w -Bw
_ l e - e - _

- le’ - Er [ 5:5;3— 1(wi) + ‘aizgé’ I‘ mi) 1

The Residues (Res.) of G(w) at the poles (w=iwi) are given by

8w.

Res.G(m) = Limit(m-wi)c(w)=§%(e l-n)1(wi),

w=wi w+wi -Bw (11.8)

_ . . _1 i _
Res.G(w) — L1m1t(w+wi)G(w)—§?(e -n)I( mi).

w=-wi w+-wi

In many cases we need to evaluate the expectation values of the

product of two operators at the same time. Setting t=t',

equations 7 take the forms:

+00 ‘ +00

<BA> = f J(w)dw , <AB> = f J(w)edew . (11.9)

Eqns. 9. 10, and 11 then yield:

  

  

l Res.G(wi) Res.G(-wi)

2F<BA> = Bwi + 'Bwi ,

(e -n) (e -n)

(11.10)

, Res.G(w.) Res.G(-w.)

§FKAB> = -B:- + 8w.1

(l-ne 1) (l-ne 1)
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Taking the limit T + 0 (Since the thermal energy is very

small compaired to the nuclear energies) we obtain

<BA> = 1&1 Res.G(w)

n w=-w
i (II.10)

<AB> = +2n Res.G(w)

w=+wi

If Green's function is written in the form G(w)= N/D(w) ,

then the eigen values are given by the poles in the Green's

function and the eigenvalue equation is given by D(wi) = 0.

Expanding D(w) around the pole mi , the residue of G(w)

at the pole is given by

N I

Res.G(gl = IEBTETT
(II.11)

w—-wi 8w w=iwi

where

= constant.

b: Quasi-Particle Scheme (BCS approximation)

The elementary excitations in a system of non-interacting

(or independent) particles are simply desicribed by €(p)=p2/2m;

as the interaction is turned on, the propagation of a particle

in the system is affected by the presence of the other particles,

and as the particle moves it will push and pull other particles.

Thus the particle plus its surrounding environment will behave

like a new particle, characterized by a new normalized
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parameter m* (effective mass); the effect of the interaction

with other particles is all included in the new effective

mass, and the elementary excitations are now described by the

free-particle-like expression; s(p)=p2/2m* .

In this manner the original interacting particles are transformed

into independent quasi-particles. It is important to notice

here that the quasi-particle picture is based on a mathematical

device; its main object is to keep the independent particle

picture from being destroyed by the interaction. The independent

particle idea is very important for the Hartree—Fock treatment

of the nucleus in which the nucleons are described by independent

single particle wave functions.

The quasi-particles we face in nuclear physics are determined

by the short-range interactions (such as the pairing interaction),

and in this case the quasi-particle is just a mixture of particle

and hole near the Fermi surface. The transformation to a

quasi-particle description is effected by means of the Bogoliubov-

Valatin (B-V) transformation:

1.

= - s v E a m - E -maa uaca a ac~a , a ( , a) , a (a, a).

(II.12)

t a—

a+ = u c - s v c , s =(-) ma
a a a a -d a

where a:, aa are the quasi—particle creation and annihilation

Operators, cl, Ca ; are those for particles,

and a stands for (a,ma) , and -a for (a'-ma)’ with a=Ja ,
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the angular momentum. In order for this transformation to be

canonical (i.e. preserves the commutation relation), 11a and

va must satisfy the following:

2 2

a + Va = 1; - , (11.13)

with this transformation the energies of the elementary

excitations or quasi-particles are given by:

2 1/2

Ea =1 (ea-x)2+A 1 .

where ea is the independent-or single-particle energy, A

is the chemical potential (Fermi energy) and A is the energy

gap.

The point is that the Spectrum of elementary excitations

of the quasi-particles has an energy gap. This energy gap is

very important in determining the validity of the independent-

particle picture. The B-V transformation by itself is an exact

unitary transformation. The major errors come from the neglect

of certain terms in the transformed Hamiltonian, which are

assumed to be small, in the approximation usually referred

to as the BCS approximation after Bardeen Cooper and Schrefer,

who introduced it in the theory of superconductivity. In this

approximation, the wave function is not an eigenfunction of

the number of particles Operator, i.e..

[H,Nl 7‘0 .

'with a resulting small effect on the energy eigenvalues of

the low-lying states. This can be seen from the exact solution
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of the pairing Hamiltonian in the in degenerate system, i.e.

Ev - E0

which is independent of N. Here v is the seniority no..

= % v(2a-v+2), (11.15)

9 is the pair degeneracy. g is the strength of the pairing

interaction, E is the ground state energy;'4Kl . The quantity
0

v: represents the average occupation number of the original

particles, which interact with a short-range interaction,

which mixes the particle and the hole, so that this distribution

has a diffuse Fermi surface in contrast to the situation for

independent particles, where the system has a sharp Fermi

surface.

0: The Pairing Interaction
 

After separation of the self-consistent part of the

interactions there remains some interaction between the

particles; the so called "residual interaction". This residual

interaction is rather weak, but it plays an important role

in determining various nuclear prOperties. The pairing

interaction is one example of such a residual interaction.

In this interaction two particles occupy atates related by

time reversal, i.e.(a.ma) and (a,-ma) . are coupled to

angular momentum J=O, since the J=O state is much more strongly

bound than the others, so that the neglect of J¢O states is

a good approximation for the pairing interaction. The short

range forces play an important role in the formation of bound
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pairs provided that the interaction is attractive in a sufficiently

large neighborhood of the Fermi surface (coherent interaction).

To see this, first notice that the energy of a particle close

to the Fermi surface is eF=VF(p-pF) where VF and PF are

a

the velocity and the momentum at the Fermi surface respectivly 6.

Now the Schrodinger equation for two interacting particles,

(E-H0)w = Vt

or w =(E-HO)-1VW

where

30:: the kinetic energy,

and V the interaction energy, amd E=-A is the binding

energy of the system. In the momentum representation the wave

function,(pufi for the bound state can be written as

 

+oo

< V '>

W(P)=- f Eieig‘) ¢(p')dp', (II.16)

whereE;Qfi is the eigenvalue of Ho . Let V: -g = constant

in a limited range of p. In this case W(p) will be approximately

constant, therefore equation (II.16) reduces to

d = .17“FEET 1 . (11 )

For small values of g; A will be small too, and equation

(11.17) will have a solution if

QL

elp)

or for three-dimensional case

I
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2a
IE???

is very large to compensate for the small values of g.

Substituting the value of €(p) near the Fermi surface we get

im. pgdp' -

0 VFp' — m ’ pm.:pmax

where p' = p - pF. This shows that in the presence of the Fermi

sea even a very weak attraction will produce bound pairs near

the Fermi surface.

In superconductors the interaction transmitted by the

phonons is coherent at the Fermi surface, and it produces the

phenomenon of superconductivity. In nuclei. however no one has

been able to prove the existence of such a coherent interaction.

However the following, experimental facts indicate the existence

of pairing interaction;

1- All even-even nuclei have J=O ground states.

2- The energy gap in the elementary excitations is equal to the

energy required to break a pair of J=O.

3- In the odd nuclei the odd nucleon is weakly bound while it

is strongly bound in the neighboring even-even nuclei where

it is assumed to form part of a pair.

Therefore the experimental data on the odd-even mass difference

can provide good information about the pairing strength g. One

can choose g to satisfy the gap equations and to fit the odd-

even mass difference at the same time. The odd-even mass

difference is given by:



l7

B(N+1) + B(N-l) - 2B(N) = 2%} ,

where N is the odd mass no., B(N) is the binding energy of

N nucleons and E is the quasi-particle energy.

The short-range forces causes two particles which occupy

time reversed states to scatter each other twice from their

common orbit to another orbit where they still occupy time-

reversed states (a.ma) and (a.-m&): in this way they scatter

to all possible a-levels and hence cause the particle density

distribution to be Spherical, while the long-range part of

the two-body interaction tends to align the nucleon orbitals

and produce a deformation. This competition between short

range and long range forces determines the nuclear shape.

the pairing interaction has to be smaller than the field

interaction in order for shell structure to exist, but as

we saw, only a small residual interaction is needed in order

to create bound pairs near the Fermi surface.

There exit two approaches to the pairing interaction;

the first is the general BCS or Hartree-Fock-Bogoliubov

treatment in which the single-particle energies and wave

functions must include the effect of the residual interaction

for the valence nucleons as well as the core nucleons, and

ed is a solution of the general Hartree-Fock(HF) equations.

In this case the pairing interaction includes J¥0, and A

and A are not constants but rather they change with the
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excitation energy. The second approach which is ad0pted in

this work. is the phenomenological approach in which the

single- particle energies, ea . and wave functions are assumed

to be known in advance. Where Ed is taken from experiment,

and the contibution to the pairing from J=O pairs is taken to

be a constant, g; the contributions from Jio are neglected as

they are assumed to be small. This method gives good results,

since the experimental values of E}, include all the neglected

effects; also A» and 1) are taken to be constant and one

uses their ground states values which are solution of the BCS

 

equations:

9b
2/g=z—— , Q =b+l/2 I

b Eb b

(II.16)

e —l

N = zab{1— g } ,

b b

where the pairing constant g is taken to fit the odd-even mass

differences, and N is the number of nucleons outside a closed

shell. The above equations are valid for neutrons and protons

seperatly.

d: The Hamiltonian

We can seperate the Hamiltonian to three parts as follow:

H = + +H0 Hp HQ-Q
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where H0 is the single particle Hamiltonian (kinetic energy)

and is given by:

= Ziegcg+cg , (II.17a)

Hp is the pairing interaction and is given by:

__ l 5 5+ 5+ 5 E
Hp — I ggég SaSBCa C-dc-BCB , (II-17b)

Where the matrix element of the short-range interaction is

assumed to be larger in the states coupled to J=O i.e.

. 2 -. 2 -. .
i<(3a) J=0|V|(JB) J=0>|>>|<(JG)ZJ#OIV|(38)2J#0>l .

and approximately given by:

<a-alVIB—B> 2 -g ,

and Hq_Q is the quadrupole-quadrupole interaction. This part

of the Hamiltonian which induces the collective vibrations is

assumed to have the following form:

HQ-Q = - %ZZZZZZXE(-)qu(aY)qgu(Bd)c§+cg CECE

asyégu

— %Xpnzzzzz(l+R(np))(-)“q§(a1)qfu(85)

aByéu

ch+cn+cpcn , (II.17c)

a B 6 y

where H(n,p). interchanges n and p in all the expressions

which follow it in the term where it appears. Following KS

and others,* no pairing interaction between neutron and proton

is assumed,the effect of p-n pairing is assumed to be important

in light nuclei. A<70. although its effect is not very well

understood. There exist no reliable method to treat such



20

interactions; their effects can be shown to be incuded in the

experimental values of Ed , and hence they are not included

in the Hamiltonian. The pairing part of the Hamiltonian is to

be diagonalized by means of the BCS approximation after

transforming to the quasi-particle scheme by means of the B-V

transformation which leads to a new Hamiltonian in terms of the

quasi-particle Operators aaand.a; . After the BCS approximations

the number of particles is no longer conserved and therefore

a chemical potential A has to be introduced as a Langrange

multipier. its value to be fixed by requiring that <N> give

the correct mean value of the number of particles. The inverse

to the B-V transformation is:

+_ t
c — u a + s v a ,
a a a a a -a

_ t
c — u a + s v a .
a a a a a -a

We define the seniority zero pair operators for quasi-particle

as follow 3

_ l i i

Aa— saga-a ’
Vfla ma>0

(II.18)

_ t i.

Aa- (Aa) I

a In ad.

0.

Their commutation relations are:
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T _ _ a

a

t t
[N ,A ] = 26 A ,

a b ab a (II.19)

[Na'Ab] =-26abAa .

In terms of these Operators the pairing Hamiltonian takes the

form:

H +H = U + H + H + H = H:

P P
O l 2 res.

where

_ 2 _ _ 4 _ 2

U- :[ZQava(€a A) gflava] g( :Qauava) r

_ _ 2_ 2
H1— :Hsa l)(ua va)+2guava( Zflauava)]Na,

a (11.20)

H = 2(2/9auaav (s a-l) ( za v)/a (u2-V2)](A+ + A )
2 a g b bu Vb a a a a a '

__ 2A
Hres — g :é/aaab (u:A:-v:Aa)(ubAb-vbAb)+gZZ/%uava {Na (ubAb

2 t 2 t 2

-vbAb)+(ubAb-vbAb)Na }-~g ZEuavaubvbNaNb .

ab

By minimizing the ground state energy U or equivalently

setting H2=O, we find the following results:

Qa 68-1

2/9 = X E— , N = ZQa(l- )

a

 

I

E
a a a

where
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_ _ 2 2 1/2 _
Ea-[(ea A) +A ] , A —g :Qauava ,

e -A
2_ l _ a 2_ _ 2

va- 7(1 Ea ) , ua—l va .

Equations (11.21) are known as the BCS or the gap equations,

the first two of which have to be solved samiltaneusly for A

and A . In order for a superconducting solution to exist, the

pairing constant g must not be very small and the level

separations of the single particle energies must not be very

large. This does not means that no pairing correlation will

exist for small g. but rather that no advantages can be gained

by transforming to the quasi-particle picture. The ground

state energy of the system is given by:

U'= Z[(e -l)29 v2- 9 v4]— 93 +AN (II 22)
a a a a g a a g ’ ‘

where N is the number of particles.

The new Hamiltonian takes the form:

H'-U = 2E N + H
aa

a

. .

wnere the term are

res.

s. is usually neglected in the BCS approximation,

as it is small compared to the diagonal part of the transformed

H, where the diagonal part represent independent quasi-particles

with the excitation energies for seniority zero, J=O+ states

given by wa=23a . In this way one can construct n states,

where n is the number of levels in the major shell. One of these

states is a Spurious state introduced by violating the conservation

of particle number. It is well-known that each time a conservation

rule is violated a spurious excited state will appear.
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If the rest of the Hamiltonian is included, the number of

particles is again conserved, and the spurious state disappears.

The pairing Hamiltonian for both kind of particles is:

._ _ E E E
H U — :élsawa + Hres.] . (11.23)

After transformation to quasi-particles by the B-V transformation.

the quadrupole Hamiltonian can be expressed in terms of the

following operators:

AiabJM)= 2 (alem m M)a+a+ A(abJM) =[A+(abJM)]+
1;le a8 (18’

I

B

(11.24)

0 b+m8 .1.

A (abJM)= %a%B(-) (alemamBM)aaa_B .

where (alemam M) is the Clebsch-Gordan coefficient. The
8

following recoupling formula will introduce terms in the

Hamiltonian which contains Racah coefficients W(ach;LK):

L J _ . K J.
[(adxa8)uxay]M - :3 VQKQLW(ach,LK)[aaX(aBXay)q]M,(II.25)

these terms are neglected as they are small compared to other

terms. The final result is

E
_ - E E _ ml, 5 E 5* _

H— zsawa ZZZXZZ%5 q (bd)q (ac){( ) 4 UdeacA (bd2 u)

a abcdug

XA€+(ac2u)+ %UE UE A€+(bd2u)A€(ac2u)+ %(-)UUE Ug

bd ac bd ac

XAg(bd2u)A€(ac2u)+Ug vE (-)“A§+
50 E 5

bd ac (bd2-u)A (ac2u)+V Uac
bd

XAEO(bd2u)A€(ac2u)—5(-)d—ad vg vg zz(-)KW(bdac;2K)
uo bd ac Kq

at E 1 up n p
XA (aqu)A (chq)}- I— £Z££2(1+R(pn))x q (bd)q (ac)

abcdu

xH-H‘lun up An+(bd2-u)Ap+(ac2u)+ in“ up An+(bd2u)Ap(ac2u)
4 bd ac 2 bd ac
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+(- )“W4UEaU§An(bd2u)Ap(ac2u)+(--)“Ubdv§CAn(bdZ-u)

XApO (ac2u)+VdegcAnW(bd2u)Ap(ac2u)-5(-)d-sovgdvgc

X22(-)KW(bdac;2K)An+(aqu)Ap(chq)} , (II.26)

Kq

Where Ugb= ugvg+ ugvg ,

V=§b )1qu Viv]? ,

and X is the strength of the quadrupole force; its value is

to be fixed by fiting the energy of the first 2+ state with

the experimental value, and

a-b

q(ab) =<a||a§r2Y2u||b> : (—) q(ba) , (II.27)

is the non-dimentional matrix element, and a0 is given by

m is the nucleon mass and mo is the harmonic oscillator

frequency, and a,B,6, and y are the harmonic oscillator

single-particle wave functions. Applying the Wigner-Eckart

theorem to q(aB) yields:

(b2almBMmma)

 

q(ae) = (allazr2y Ilb) , J=2

/2a112“

2 1 1 2
but (b2almBM ma)=(- )Cusla+ 1 / (baZImB-ma-M),

therefore

q(aB) =71—s M(ab2|m-mBM)q(ab) . (II.28)
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The quadrupole P-N interaction has the effect of lowring

the energy of the 2+ states; neglecting it will result

in increasing the energy due to the increased symmetry

energy which is associated with the independent polarization

of the neutrons and protons. The exact commutation relation

for the pair Operators can be obtained by using the

recoupling formula (Eqn.II.25); the result is (Appen. B)

 

i _ _ _ _ a+b-J

[A(abJM)’A(chq)] _ 6MqGJKwachd ( ) Gadébc)

+p(ab)p(cd)(-)a+d+J+K zz/T2K+1)(2L+1)

Lu

de o

X{aJL}(LKJquM)A(adLu)GCb , (11.29)

where

P(ab) = (1 - (—)a+b+JR(ab)),

and R(ab) is the exchange Operator; R(ab)w(ab)=w(ba)'

e: Collective Operators
 

The collective vibrations can be described by means of

collective operators BJM and 83M, which obey the following

equations of motion

[B+ H] = -wB+ [B H] = wB (11.30)
JM' JM ’ JM’ JM ’

where w is the energy of the vibrational excited state.The

ground state wave function is defined by the set of equations

BJMIO> = 0 (11.31)
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The vacuum IO> just defined is different from the BCS

vacuum and is believed to be better than the BCS vacuum. The

excited state wave function of angular momentum J is given

by:

3+ l0> = lJM> (11 32)
JM ' °

This collective Operators can be expanded in terms of A(ab)

and A+(ab) with real coefficients;

T = l a 5+ _ _ J-M a a
BJM 2::§[w(ab)A(abJM) ( ) ¢(ab)A(abJ-M)] (11°33)

where

E . _ E

w(ab) ‘ <OIA(abJM)|JM> '

J-M 1‘

¢§ab) = (-) <OIAEabJ_M)IJM>

The amplitudes w and ¢ are defined in Ref. 2. The

+

eXpression for BJM above is obtained as in Ref.2 with

the help of quasi-boson commutation relation; see Eqn.(III.1)

If the exact commutation relation had been used (see EPA

approximation, Sec. d )the result would be

+ _ 1 ._1_ g g+ _ _ J-M g g

BJM- 2 ii: a5 [w(ab)A(abJM) ( ) ¢(ab)A(abJ-M)]

ab

I

_ T

ab - 1- na- nb ’ ni _ (aiai> . (11°34)
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These quantities will be drived later on when we treat the

RPA approximation.

f: The Reduced Transition Prgbability B(E2)

The ground state reduced transition probability B(E2) is

given by:

B(E2) = ZZI<O|02 I2+M>I2 , (11.35)

Mu u

where Q2“ is the quadrupole operator. In terms of the

Operators A(ab) and Af(ab) the quadrupole operator takes the

 

forms

ef giab) a 5+ u a
Q = 212 u (A +(-) A _ ) , (11.36)
2H abg 2/§ a: ab (aqu) (ab2 u)

for U = M = 0 equations 11.35 and 11.36 yeild:

_ l E E E a 2
B(EZ) — “‘Z |zzzefq§ab)uab(w(ab)+¢(ab))| , (11.37)

4aO abg

where ef is the effective charge (egzl. e:=2). The above

result is obtained after appling the Wigner-Eckart theorem

to the matrix element q(ab) and using the definition (II.2U)

for the operators A(ab) and A+(ab). Terms which contain the

scattering Operators A°(ab) make zero contribution. since

these operators have non-vanishing matrix elements only

between states with definite numbers of particles in contrast

to A(ab) and A+(ab) which connect states with different

number of particles.
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III. The Approximation Methods
 

In the equation-of-motion methods, one calculates the

dynamical observables by calculating the appropriate

relationships, rather than calculating the absolute wave

functions. The most interesting quantities in any nuclear

system do not depend on a knowledge of the wave functions

themselves, but rather on certain relationships between

them. Thus the equation-of-motion methods reduce the labor

involved in calculating a certain observable, as calculation

of the entire complicated wave function is not required by

these methods. To linearize the equations of motion one must

depend on some kind of approximation scheme. The

approximations QBA, TDA, and EPA which are studied in this

work all lead to linearized equations of motion. In

particular the equations of motion for the Green's functions

can be linearized (decoupled) by means of the above

approximations.

a: The Quasi-Boson ApproximatioanBA

In this approximation a pair of particles (Fermions),

their angular momenta coupled to integral J, are treated as

bosons; this means the Pauli principle is neglected.

Therefore one expects QBA overestimates the number of

particles which participate in a certain collective states.

As a result of this approximation the enhancement predected

for the reduced transition probability B(EZ), is larger than
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the single particle estimate. The effect of the Pauli

principle will be demonstrated in (III.d). The commutation

relations used in the QBA are:

+ a+b+J

[A(abJM)'A(chq)] = 6JKanMacabd - (-) Gadébc) ’

”r _
[AalAa] —' 6ab I

(111.1)

+ _ +

[Na’Ab] _ 26abAa ’

[Na’Ab] =-26abAa .

For the first two relations to be valid to a good

approximation. Né/Qa_‘must be small i.e. the number of

particles in level a must be smaller than the number of

available states. It is clear from the above commutation

relations that the different modes of the system are well

+ +

separated, i.e. J20 and J=2 modes are independent.

b: The First 0+. Seniority 0 State

The exited states for this mode of vibration are

usually described by the independent quasi-particle

Hamiltonian where the excitation energies of the system are

given by u>=2Ea. If only the important part of fires is

included. a diSpersion relation for these states can be

obtained. A pair is two nucleons with their angular momenta
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coupled to a resultant angular momentum J=0. The lowest

energy state of the system is that in which as many nucleons

as possible are paired. The number of unpaired nucleons is

referred to as the seniority of the state. Addition of extra

pairs to the system will not change the angular momentum or

the seniority of the state. Therefore seniority 0 states can

be generated by succesive applications of the pair Operator

A+ to the vacuum, and are given for the 3n configuration as

a

follow:

 

where n is the number of particles, and 29 is the maximum

number of nucleons that can occupy the J-level. The

Hamiltonian for weakly interacting quasi-particles is given

by: (see eqn. 11.20)

2 T 2 2 2 +
'= - - - . I.‘.2Hp :EaNa gigVQaQb(uaAa VaAa)(ubAb vbAb) (II )

where other terms have been neglected, as they are assumed

to be small compared to the second terms in this Hamiltonian

Hg. We define the following Green's functions:

0 _ T _

Gab(w) - ((Aa‘t)|Ab(t')>$ , n - 1 .

(111.3)

0+ _ + T .

Gab(w) — <<Aa(t)|Ab(t )>5 .
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The quasi-boson commutation relations lead to the following

motion for G and 6+ (see app.G)

6ab
0 —

(“'ZEa)Gab(w)"7F’

r—-2 F" 2 O 2 OT

- g Rana: Qc(chcb Vchb)

'- g/Qavil/QC(VZGO -uZGO+),

C

0 ob c cb

(III.4)

wastes-vies;

-g/fi;u§g/5;<v§GZb-u262£>-

Now let

Db = :/§;(u:G:b - viGgg) , (III.5a)

and

Bb = é/S:(V:G:b - ugGgg) . (III.5b)

+

The equations for GUJD ) and G (w ) then take the form:

r—-2 r—-2

Go (w): Gab _ g Qaua D _ g Qava B

ab 2n(w-2EaY iw-ZEa) b (w-ZEa) b ’

 

-g/n‘v2 g/fi—uz (111.6)

aaD aa01 _ _ _______

Gab(w)_ (axisgy‘ b (w+2Ea)Bb °
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Using the definitions of D and B we can find two coupled
b b

equations for Db and B. ,namelyc

2 w(u:-v )+2E:(u:+V:)

l/g Db=Cbub— :Qa D
 

4Ewuiv

- 29a

a —4ES
I
N
!
”

(III.7)

2 -w(u2-v2)+2E (u4+v4)

1/ B =c v2-29 ——E———E-D -29 a a a a a B9 b b b a 2 2Db a 2 2 b '
w - a a w -4Ea

 

and by using ZQa/ZEa=l/g .

a

the result can be written

2
an+bBb=Cbub ,

_ 2
bDb+de-vab ,

where

w +2wEa (u:-va2)--8E

a=ZQ

a 2

a (w -

(III.8)

2u2v2

auava
 

2
4Ea)

8E

W
M
N
D
J

2

b=£9a a

a ZEa (

2

 

uv2

uva

2 E2 '
w - 4Ea)

2 2 V2 (111.9)

)-8EauaVa

)

-2wE (112 -V

d=zna a 2a

a 2Ea(w -4E

 

W
N
Q
J
N

/§_
_ b

and Cb_ 2n(w-23b)g
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Figure 2. The first excited (J=0+ and seniority

zero) states in Sn isotopes plotted against the

active number of neutrons N.  
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The poles in the Green's function are determined by the

solvability condition for the homogeneous equations; i.e.

ad=b (111.10)

Substituting the above values of a,b, and d in equation

(111.10) we get the following eigenvalue equation:

m2-4(A2+nanb)

EX QaQb 2 2 2 2 = O , (111.11)

ab 4EaEb(w -4Ea)(w -4Eb)

 

where

ni= sit A .

From the above eigenvalue equation we see that for each

w = + wi there exists another solution at -wi , and hence

Res G(w) is not zero.

(U'=-U).

l

c: The Collective Motion

The 1% Yap force is decisive in producing the

collective 2... states. It has two effects: the first is to

introduces a dynamical correlation between the effective

nucleons, and the second is to produce the effective charges.

Since its action is not limited to those effective orbits,

therefore neglecting the contributions from far away shells

is assumed to be included in the effective charges. If one

tries to use the real charges instead one must include the

far away orbits; this increases the dimensionality Of the

problem. but leads to the same results34 . The following

Green's functions are needed
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b(w)= <<A(ab)lA(ab)>>w '

n1

b(w)= <<A(ab)|A(ab) d '

(111.12)

Gpn(w)= «AI:ab)|A(ab)>$ ,

Gpn+ p

(w):<<A(ab)'A<ab) 6 °

Their equations of motion are:

n n+
<[A A ]> n n n n

n __ (ab)’ (ab) ‘_ X
(w-Eab)§b(w)— 2“ I—6q(ab)Uab :§q(cd)U;

n+ n an n b 22 (pd)U:dX(ch + ch)- -——q(a )Ugdeq c

X(G2p+ + an )

Xn n n n Gn+ n

(w+Eab) Gab(w)= ——q(ab)U;big q(cd)UCd (Gcd + ch)

np n n p p +

+ §Tfiq(ab)uab Z§q(cd)UCd(epn + c3) .

0

Similar equations can be obtained for G§:(w) and Gpn+(w).
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Now let

n_ n n+ n
R _ zZqicd)Ucd(ch(w)+ch(w)) ,

cd

Rpm: Zqu(cd)U§d(Ggg(w)+Ggg(w)) .

Cd

The equations of motion then take the form:

 

 

 

n n1 n

<[A ,A 1> q?ab)U

(w-Egb)ng(w)= (as; (ab) - 10 ab (ann + xanPn)

n

q?ab)U
+

(w+E:b)G:b(w)= 10 ab (XnRn + xanpn) ,

(111.15)

p pn qQab)U§b pn n p pn
(w-Eab)Gab(w)= - 10 (X R + X R ) ,

qQab)Up

(w+E§b)G§21w)= 10 ab (xann + prpn) 

These equations of motion are obtained with the help of buscn

commutation relations. The first two equations reduce to the

following equation

n pn
n §_fn) _ X

R (l - fann - Fn
5 I

and the last two equations reduce to the following equation

F“ P

R“ 55—? - (1 — 1&1")an = o ,
5

where Bab = Ea + Eb ,
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52 52 E n2 n

q(ab)U E q(ab)U

f€=zz g2 ab 3b , F“: nab , 52(p,n) . (111.15)

ab (Eab - w ) “(w—Bab)

The poles in the Green's function corresponding to the

collective motion are given by the condition for the

solvability of the homogeneous equations i.e.

Xan

25

22’: Xp(1 - 5 fn)(l - g—fp) — fnfp = o . (111.16)

Following K8 the strength of the quadrupole-quadrupole

forces between neutrons. protons. and proton and neutron are

taken to be equal: i.e. xn a xp a xpn s x. If xpn is taken

to be different from the other and such that it is much

smaller than they are. then the system of neutrons and

protons tends to polarize independently causing or increase

in the energy of the 2+ state above the observed value: also

B(E2) is then not sensitive to xpn. Therefore xpn has to be

Of the same size of Xn and Xp. The eigenvalue equation for

xpn=0. seperates into two equations each for each kind of

nucleons i.e.

£2 £2 E

2 = 22 q(ab)UabEab

X €2_ 2 ’

ab (Bab w )

 

and for Xn a Xp = xpn = X. we get



39

£2

EZE E

= 222 q(ak‘))UabEab

abE (Biz-u)2 )

x
u
n

 . (111.17)

The collective solution is that value of in which is smaller

than the minimum Eab' In the deformed region where X is large

no solution exists.

To evaluate the amplitudes 1p< b)and ¢( we start as

a ab)

follows:

E 51 = E
(A(ab)A(ab)> 2nRes.Gab£:lw.

1

Now '

_ E
<0|AEab) A(ab)|0> _ §§<0|A(abJM)|Kq><Kq|A%:bJM)I0> (111.18)

Applying the Wigner-Eckart theorem we get

 

5+ _ (OJKIOMq)

<quA |0> - (KIIAEJr IIO) .
(abJM) m (abJ)

(OJKIOMq) = (-)J+M 2K+l (i<.10|--qx(\;10)(S

= <-)J‘*M/’—"2K+1[<-)J‘MM 1 ,
/2EII

therefore

g+ 2J JK5M 5+

<KqA l0> — (—) ——3(KIIA IIO) ,
I abJM) /23:T (abJ)

hence

(OIAE Ag+ |0> = <OIA%HbJM)IJM><JMIA
( abJM) (abJM) abJM)l0 '
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HOW

+ _ 5+ _ E

abJM)l0> — <[BJ’I‘WabJND]> _ w(ab) '

Therefore we arrive to the following results

<JMIA%

£2 . E
w = 2nRes.G (w) ,

(ab) ab w=+w.

1 (111.19)

£2 __ 2n 5

To find Res.G«n), we solve for Rn and an i.e.

 

_ E P

n 1 5f

R = X n

1- §(f +19)

Rp = . 

1- §(fn+fp)

  

 

Substituting these values of Rn and an in equations

(III.lS) we get n2 n2

(1 + 5 ) q(ab)Uab
n _ ab X A

Gab(w)— n - n 2 X n p . (111.20)

2v(w-Eab) lOv(w—Eab) l- §(f +f )

Now n2 n2

q(ab)U

Res. G:b(w) = n :b 3 n p I

w=iwi 2v(w-Eab) 35(f +f ) w=iwi

where mi is the solution of the eigenvalue equation,

and from now on we will use 1m instead of twi. The

results are:
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n n2 n2

Res.Gab($; q(ab)Uab E -1

} = n 2 [2P(w)] , (111.21)

n i4nw<leab) E

Res.G (w)
ab

-w

where 52 £2 E

E q(ab)U E
P(w) = 22 ab ab

ab (E£2 - w2)2

ab
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d: Random Phase Approximation LBPAL

Linearizing the equations of motion by means of the EPA

is much better than linearizing it by means of QBA. In QBA

extra terms in the commutation relation have been neglected

on the assumption that they are small. They consist of terms

like a§+a§ . If these terms are included, higher order

Green's functions will be generated which have the form

a
_ 5+ E E

F(m)—<<aa aBA(

these can be reduced to lower order Green's functions by

means of the EPA:

E

F(w)=<a§+a§>G§b(w) . (111.22)

The extra terms in the equation of motion of a Green's

function are similar to the original terms obtained in QBA

except for a multiplicative factor <a§+agiz.After collecting

terms we get a set of equations similar to equations (III.15)

except that now the right hand side is multiplied by

(1-na 'nb ). Where nf:=<ag+ag>1 and where the average is

taken in the ground state. This can be improved by evaluating

n in the first 2+ state which leads to the improved random
1

phase approximation (IRPA). In this approximation the effect

of the Pauli principle is included; therefore this method

will predict a smaller number of particles is participating

in any collective motion than is predicted by QBA. This has
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an effect on the theoretical prediction of the enhancement

over the single particle estimate for the reduced transition

probability from the 2... state to the ground state.

The relations needed here are (see Appendix D )

<a§+a€> = n: 6GB

(111.23)

E £1 _ _ _ a+b €_ 5

<[A(ab)'A(ab)]:>-(6ac6bd ( ) sadabc)(lna nb)

The quantity na represents the quasi-particle average which

can be calculated (as in Appendix Ea ) from <A%:bb) AEabl>’

After applying the Hartree-Fock factorization to the product

of four Operators the result is

E_ 1 52 = 1 111.24
na* E;— g Cp(ab)Dab ’ Dab T_:_€;; ' ( )

The amplitudes ¢(:b) and ¢(§b) for this approximation will

be given by

 

 

£2 52 £2 52 g

w(ab)} = q(ab)Uabaab 2 [ Piw)]l . (111.25)

¢Z£:) 2w(w + E:b)

a

where £2 £2 5 E

.5 q(ab)U E a

P(w)=ZZ 2 a: 3b ab I

b(w - E )
a ab

5 E E

dab = l - na-nb r
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£2 £2

N0 = :é¢(ab)Dab '

In IRPA we need to evaluate n

AC .- _ .
obtained from <2IA(ab)A (ab)|2=>.The results are (Appen01x Ed)

.5- 5+ E
a —<2|aa aa|2> which is

52 £2 _ a :2
g E[W(ab)+¢(ab))(l nb)+¢(ab)]Dab

na = .5 £2 £2 '

N0 + 2(w(ab) +¢(ab))Dab

(111.26)

where

.52 _ £2 52 .5 52

No ‘ :§[(¢(ab)+¢(ab))aabW+¢(ab)]D °

The validity of QBA depends on the smallness of na . As

an example. the values of n are listed in table 1. for
a

202 12h
Hg and Sn . The values of na are plotted againest

(8 'A) in Figures 3(a.b). For comparison with particle

a

2

distribution v , the later is plotted in Figures 3(c,d)

a



45

Table l.

The values of n; for Sn124 and H9202 isotopes.

 

 

 

 

Hg202 a h9/2 f7/2 l13/2 p3/2 f5/2 p1/2

n; .011 .015 .007 .171 .319 .296

a d5/2 g7/2 ‘31/2 h11/2 d3/2
124

Sn

n; .05 .122 .173 .347 .309  
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Figure 3. The values of n; and v: are plotted

124

against <6. - A) for Sn in <b.d) and for H.20«

in (a,c).
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If the exact commutation relations are used for the J=0

pairs the equations of motion of Green's function will

contain a factor (l-Na/Qa) on the right hand side. This

factor will comes in as a result of the RPA decoupling

(see appendix G). To examin the validity of the QBA in

the pairing part of the Hamiltonian, we need to calculate

Na=<a:a&>. This can be done (see appendix E) by applying

the Hartree-Fock factorizationa to <AaAé25 the result

is given by:

N2 = £<A
a

fA‘> . (III.27)

2 a a

110
As an example the values of Na/Qa for Sn are listed

in table 2 .

 

 

 

 

Table 2 .

110 .
The values of Nj and Nj/Qj for Sn lSOtOpe.

3 d5/2 g7/2 S1/2 h11/2 d3/2

Nj 1.50x10'2 1.10><1o"2 0.36x10‘2 0.50x10'2 0.26x10-2

-2 2 2 zr—fiflfl:i
Nj/cj 0.50x10 0.28x10 0.36x10 0.08x10 0.13x10 ‘

      
 

Similar results are obtained for the rest which indicate

that QBA is a very good approximation for J=0 Hamiltonian.

This also shows that J=0 pairs are strongly bound, there—

fore they behave mor like Bosons. Similar calculations

for J=2 pairs show that QBA is less valid.
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ea Tamm-Dancoff Approximation (TBA)

This method of linearizing the equations of motion can

 

be classified as a higher order phase approximation. In this

approximation the Hamiltonian is diagonalized in the Space

spanned by a limited number of shell model states. It

underestimates the reduced transition probabilities for the

low-lying collective states. For this approximation the

collective operator

T1 _ TE 51

BJM " 1/2 222 w(ab)A(ab) 5 (III.28)
abg

where T refers to TDA and

E _

The excited state [J=2 > is therefore given by

_ T1
|JM> — BJMI 0>

Thus we obtain Tamm-Dancoff results if we set ¢§ab)=o cn:

equivalently G+=O in the previous formulas (Eqns. 111.15).

since the solution (mngi for the eigenvalue equation is

associated with A+ and the negative solution with 2K in the

expression for Iliin the EPA. In this approximation one does

not expect the resulting eigenvalue equation to admit

negative solutions which implies Res. GT=O. Hence setting

G+=O we get
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n n+ n
>

(w-En )GnT(w)= <[A(ab)’A(ab)] _ qQab)Uab(XnR.+xnpR, )

ab ab 2w l0 n np '

' qQabmp
_ p in _ _ ab np . p .

(w Eab)Gab (w)— 10 (X Rn+x Rnp)’

where

n n nT

I = ‘

I P P DPT

Rnp— :§q(0d)Uchcd (w) .

From the first equation we get (for Xn: Xp = xpn 2X )

 

R, _ Fn(1-bnx)

n 1-bpx-bnx

and from the second equation we get

prFn

Rnp = n p ’
l-b X-b X

where

52 £2

q(ab)U

bg = 22 ——E———39- ,

ab (Bab-w)

n n

Fn = q(ab)Uab

n
“(w-Bab)

n

Solving for G b( w ) we get

a



51

 
 

n2 n2

GnT(m)— 1+6ab _ Xq(ab)Uab l ,

ab — _ n _ n 2 _ n _ p

2n(w Bab) 10n(w Eab) l b X b X

therefore n2 n2

q(ab)Uab l
E _

n 2121310)] .Res.G:§(+w)=

“(w-Bab) E

 

T

where 52 52

ET q(ab)U

P(w)= 22 E a? .

ab (w-Eab)

Therefore

12 £2

2q(ab)U ET _

— 3b (21mm 1 .
_ E

(w Eab) E

gT2

w(ab)

 

The eXpression for B(E2) is the same as before except now we

use (03:10) instead of wfiab) and put ¢€(ab)=0 .

The eigenvalue equation correSponding to the collective

motions, for this case is given by:

1- (bn + bp )x = 0 ,

substituting for b we get the following results:

E2 E2

10 q(ab)Uab

abg Eab- m

From this eigenvalue equation we see that the negative values
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nT

of 0) are not solutions. Therefore Bes.G('w)= 0 ' ‘Which

implies that ¢Eab)=ojrhe difference between this TDA and EPA

is this: the collective operator 3* is expanded in terms of

A+ only in TDA, which is equivalent to expanding the wave

function of a certain excited state in terms of two quasi-

particles states only neglecting the two quasi-hole states,

while these two quasi-hole states are included in RPA where

the two kinds of states are treated symetrically. Thus the

negative solutions are associated with the Operator A(ab)

while the positive solutions are associated with the operator

A+(ab).
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Table 3. B(E2+0) values in units of 10-48cm4, calculated

for each approximation and compared with the

experimental results (the last column). These

results are calculated for the parameters given

in tables 11-14.

wexp. Isotope A QBA RPA IRPA TDA Exp.

1.450 28Ni30 58 .033 .021 .012 .014 .072

1.333 28Ni32 60 .064 .039 .023 .025 .091

1.172 28N134 62 .096 .054 .032 .032 .083

1.340 ‘ 28Ni36 64 .094 .056 .031 .034 .087

0.992 302n34 64 .636 .439 .332 .158 .170

1.039 30Zn36 66 .604 .418 .311 .159 .145

1.078 30Zn38 68 .551 .381 .278 .154 .125

1.040 32Ge38 70 .665 .456 .329 .189 .172

0.835 326e40 72 .864 .529 .377 .199 .230

0.596 32Ge42 74 1.092 .638 .463 .194 .317

0.563 32Ge44 76 1.010* .765 .507 .184 .263

0.635 34Se40 74 1.213 .617 .436 .217 .210

0.559 34Se42 76 1.225 .680 .489 .210 .480

0.614 34Se44 78 .970 .689 .494 .098 .385

0.666 34Se46 80 .804 .613 .465 .188 .283

0.655 34Se48 82 .811 .551 .421 .189 .213

0.450 36Kr42 78 1.440 .750 .492 .202 .510

0.618 36Kr44 80 .900 .666 .468 .189 .340

0.777 36Kr46 82 .638 .499 .398 .177 .180

0.880 36Kr48 84 .545 .408 .331 .178 .150

1.078 388r48 86 .337 .283 .266 .135

1.836 38Sr50 88 .313 .262 .160 .185 .130

2.180 40Zr50 90 .110 .098 .056 .080

0.934 40Zr52 92 .165 .151 .179 .071 .790

0.920 4OZr54 94 .295 .255 .234 .113 .790

0.871 42M052 94 .208 .160 .139 .087 .270

0.778 42M054 96 .379 .273 .214 .129 .300

0.787 42M056 98 .565 .382 .291 .171 .270

0.536 42M058 100 1.125 .653 .495 .212 .610

0.833 44Ru52 96 .250 .157 .106 .105 .250

0.660 44Ru54 98 .476 .262 .195 .146 .480

0.540 44Ru56 100 .807 .397 .327 .183 .570

0.475 44Ru58 102 1.150 .599 .474 .215 .730

0.556 46Pd58 104 .866 .479 .370 .202 .550

0.512 46Pd60 106 1.077 .620 .473 .225 .650

0.434 46Pd62 108 1.400 .794 .586 .244 .740

0.374 46Pd64 110 1.730 .960 .671 .258 .860

 

 



Table 3.(Continued)
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wexp. Isotope A QBA RPA IRPA TDA Exp.

0.633 48Cd58 106 .631 .379 .275 .168 .470

0.633 48Cd60 108 .718 .453 .332 .187 .540

0.658 48Cd62 110 .752 .497 .370 .200 .500

0.617 48Cd64 112 .853 .555 .413 .211 .540

0.558 48Cd66 114 .976 .605 .444 .217 .580

0.513 48Cd68 116 1.060 .622 .452 .219 .600

0.562 52Te68 120 1.162 .752 .564 .269 .550

0.564 52Te70 122 1.080 .702 .530 .264 .650

0.603 52Te72 124 .921 .617 .466 .253 .390

0.667 52Te74 126 .736 .516 .386 .236 .530

0.743 52Te76 128 .554 .407 .295 .211 .410

0.840 52Te78 130 .395 .306 .214 .181 .340

0.441 54Xe74 128 1.610 .929 .730 .339

0.538 54Xe76 130 1.165 .736 .566 .314 .480

0.668 54Xe78 132 .797 .550 .405 .281 .320

0.850 54Xe80 134 .497 .375 .255 .238 .300

1.320 54Xe82 136 .164 .154 .073 .143

0.464 56Ba76 132 1.7507 1.040 .800 .390 .730

0.605 56Ba78 134 1.179 .783 .578 .356

0.818 56Ba80 136 .732 .542 .371 .313

1.426 56Ba82 138 .218 .205 .122 .185 .300

1.257 508n62 112 .328 .249 .168 .135 .180

1.299 SOSn64 114 .351 .267 .179 .145 .200

1.293 SOSn66 116 .364 .275 .181 .149 .210

1.230 SOSn68 118 .357 .268 .178 .145 .230

1.171 SOSn70 120 .333 .250 .169 .138 220

1.140 508n72 122 .294 .225 .152 .127 .250

1.131 508n74 124 .240 .188 .127 .111 .210

0.790 58Ce80 138 .954 .702 .488 .368

1.596 58Ce82 140 .279 .267 .111 .242 360

0.650 58Ce84 142 1.250 .872 .652 .400 590

1.570 60Nd82 142 .170 .166 .193 .150 340

0.695 60Nd84 144 1.283 .965 .761 .426 440

0.453 60Nd86 146 2.300 1.590 1.260 .493 840

0.747 628m84 146 1.270 1.018 .858 .436

0.551 628m86 148 1.990 1.540 1.271 .502 890

0.334 628m88 150 3.810 2.820 1.977 .574 1 320

0.637 64Gd86 150 1.870 1.570 1.304 .515

0.155 7605112 188 10.550 5.210 3.640 .910 2.800

0.187 7605114 190 8.270 4.480 3.270 .885 2.550

0.329 78Pt116 194 3.000 2.180 1.790 .701 1.940

0.356 78Pt118 196 2.470 1.790 1.430 .656 1.270

0.408 78Pt120 198 1.820 1.360 1.042 .592 1.350
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Table 3.(C0ntinued)

 

 

w Isotope A QBA RPA IRPA TDA Exp.

 

 

 

exp

0.426 80Hg116 196 1.290 1.047 .952 .469

0.412 80H9118 198 1.270 .983 .820 .458 1.130

0.368 80H9120 200 1.312 .948 .722 .442 .850

0.439 80Hgl22 202 .854 .657 .447 .376 .590

0.430 80Hg124 204 .621 .482 .297 .297

0.960 82Pb120 202 .267 .239 .151 .186

0.899 82Pb122 204 .193 .175 .087 .148 .170

0.803 82Pb124 206 .081 .077 .025 .072 .130

48
Table 4. B(E2) values in units of 10- cm4, are listed for

each one of the approximations QBA, RPA, IRPA and TDA. The

experimental B(E2) in units of e210-48cm4, are listed in the

last column. These values are calculated for the parameters

given in tables 15-20.

 

 

 

Isotope A QBA RPA IRPA TDA Exp.

28Ni30 58 .114 .066 .041 .037 .072

28N132 60 .130 .082 .054 .042 .091

28Ni34 62 .146 .087 .057 .044 .383

28Ni36 64 .112 .070 .043 .039 .337

302n34 64 .682 .452 .343 .068 .170

30Zn36 66 .622 .414 .308 .165 .145

3OZn38 68 .496 .336 .249 .145 .125

3ZGe38 70 .619 .433 .321 .177 .172

3ZGe40 72 .910 .515 .360 .200 .230

32Ge42 74 .997 .686 .480 .082 .317

32Ge44 76 .872 .946 .562 .169 .263

34Se40 74 1.290 .617 .436 .221 .210

34Se42 76 1.149 .752 .522 .201 .480

34Se44 78 .857 .746 .531 .184 .385

34Se46 80 .698 .592 .467 .174 .283

34Se48 82 .667 ' .457 .351 .173 .213
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Table 4.(Continued)

 

 

 

Isotope A QBA RPA IRPA TDA Exp.

36Kr42 78 1.404 1.010 .571 .202 .510

36Kr44 80 .814 .719 .511 .179 .340

36Kr46 82 .547 .460 .388 .161 .180

36Kr48 84 .444 .347 .294 .151 .150

388r48 86 .302 .265 .288 .125

388r50 88 .313 .262 .160 .185 .130

4OZr50 90 .227 .203 .120 .156

40Zr52 92 .256 .245 .312 .103 .790

4OZr54 94 .403 .369 .356 .146 .790

42M052 94 .289 .254 .270 .112 .270

42M054 96 .497 .410 .350 .157 .300

42M056 98 .741 .529 .405 .207 .270

42M058 100 1.351 .802 .600 .242 .610

44Ru52 96 .306 .232 .210 .117 .250

44Ru54 98 .580 .398 .325 .165 .480

44Ru56 100 .992 .568 .456 .206 .570

44Ru58 102 1.340 .734 .578 .236 .730

46Pd58 104 .975 .560 .438 .213 55

46Pd60 106 1.167 .677 .525 .233 .650

46Pd62 108 1.478 .835 .628 .250 .740

46Pd64 110 1.788 .998 .704 .262 .860

48Cd58 106 .673 .408 .300 .170 .470

48Cd60 108 .747 .467 .345 .186 .540

48Cd62 110 .772 .503 .375 .198 .500

48Cd64 112 .866 .562 .417 .208 .540

48Cd66 114 .974 .614 .450 .215 .580

48Cd68 116 1.030 .627 .457 .216 .600

508n62 112 .328 .249 .170 .134 .180

SOSn64 114 .358 .272 .182 .146 .200

508n66 116 .371 .282 .186 .152 .210

508n68 118 .365 .277 .185 .149 .230

50Sn70 120 .343 .260 .176 .142 .220

508n72 122 .306 .233 .157 .132 .250

508n74 124 .257 .198 .132 .116 .210

52Te68 120 1.210 .800 .598 .280 .550

52Te70 122 1.140 .753 .567 .275 .650

52Te72 124 .975 .663 .500 .264 .390

52Te74 126 .782 .555 .413 .247 .530

52Te76 128 .596 .443 .323 .223 .410

52Te78 130 .405 .323 .228 .189 .340

54Xe74 128 1.720 1.010 .782 .356

54Xe76 130 1.230 .794 .604 .329 .480

54Xe78 132 .788 .569 .426 .284 .320

54Xe80 134 .411 .326 .227 .209

54Xe82 136 .164 .154 .073 .143
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Table 4.(Continued)

 

 

 

Isotope A QBA RPA IRPA TDA Exp.

56Ba76 132 1.830 1.117 .851 .406 .730

56Ba78 134 1.130 .799 .608 .353

56Ba80 136 .561 .447 .344 .260

56Ba82 138 .218 .205 .122 .185 300

58Ce80 138 .682 .557 .467 .292

58Ce82 140 .279 .267 .111 .242 .360

58Ce84 142 .934 .754 .628 .338 :90

60Nd82 142 .170 .166 .193 .150 .340

60Nd84 144 .898 .772 .710 .343 440

60Nd86 146 1.840 1.500 1.192 .452 .840

62Nd88 146 .804 .727 .764 .327

62Nd90 148 1.500 1.300 1.150 .443 890

62Nd92 150 3.195 2.730 1.980 .550 1.320

64Gd84 150 1.270 1.177 1.156 .426

7605112 188 11.360 5.320 3.670 .960 2.800

7605114 190 8.980 4.681 3.340 .938 2.550

78Pt116 194 3.530 2.480 1.960 .761 1.940

78Pt118 196 2.920 2.070 1.630 .714 1.270

78Pt120 198 2.173 1.600 1.230 .648 1.350

80Hg116 196 1.580 1.254 1.115 .521

80Hg118 198 1.530 1.166 .975 .502 1 130

80Hg120 200 1.552 1.105 .861 .476 850

80Hg122 202 1.008 .761 .543 .402 590

80Hg124 204 .742 .561 .370 .319

 

 - .. c.--
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Table 5 .

The average of the absolute deviations from the

experimental B(E2) values for the corresponding approx.

 

 

 

 

The Approximations QBA RPA IRPA TDA B(E2)::p.

léB<E2)lav .68 .28 .157 .286 .537

l6B(E2)|av. x100 127% 53% 29% 53%

av.  
 

These deviations are for B(E2) given in table 4.

Table 6 .

The average of the absolute deviations from the exP-

erimental B(E2) values for the corresponding approx.

 

 

 

 

The Approximations QBA RPA IRPA TDA B(E2)::P-

léB(E2)|av .611 .254 .178 .287 .527

|08(EZ)|av

ex ° x100 115% 50% 36% 54%

B(E2) a5°  
 

These deviations are for B(E2) given in table 3.
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IV. Deuteron Stripping Reaction

This reaction is considered to be a very important tool

in nuclear structure studies. It provides good information

about the single particle energies in the residual nucleus

A+1, their relative positions, and their variations with the

mass number A. The spectroscOpic factors for these reactions

provide direct information about the occupations number v:.

Cohen and Price (1960) performed experiments with (d.p) and

(d,t) on Sn isotopes; they measured ua, and v8 directly, from

which they obtained good information about the unpertuihed

single particle energies.

The Spectroscopic factors of the single particle

transfer reaction represent the probability of the appearance

of the single particle state in the target nuclear wave

function. Therefore one eXpects this probability to decreases

when the effect of the Pauli principle is included. The

spectroscopic factors provide a good basis for comparisons

between experimental results and the predictions of nuclear

models.

The cross section for this reaction can be written as

follows

d0 2Jf+1

80 = 2Ji¥1 i 52¢(2'Q'9) ’

where Jf and J1 are the Spin of the residual nucleus and
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target reSpectively, and.¢(2,Q,6) is the single particle

cross section. which is a function of the orbital angular

momentumzqthe cg-value of the reaction and the proton angle

a . The quantity 31' is the specroscopic factor which is a

sum of overlap integrals; it is defined as follows

5 = z s. ,

2 j=£:l/2 3

where

s = |<JM|(j J ) JM>|2 ,j I O I

and JM:> is the wave function for the even-even nucleus

( the wave function of the excited state in the residual

nucleus), and |(jJO),JM> is the wave function of the

ground state of the odd target coupled to the free neutron

wave function, and is given by:

'
. n+

|(3JO).JM>’ = 22 (jJOJlmMOM)ij|J M >.,
o 0

mM
0

where|JOMé:> is the wave function of the target, which cin

be expanded in terms of the seniority one and three states as

follows

J
o O . 1‘ 1‘

O O O|0>+§.§,Cj'(ZJ'Jolom'Mo)B2vaj'm'|O> ,

Q

where |0> is the quasi-particle vacuum. The coeffients CJ
J

O

and Cj? can be obtained by diagonalizing the Hamiltonian

H in the Space of one quasi-particles with zero and one



phonon. These amplitudes are tabulated in KS . The particle

n+

]m can be expressed in terms of quasi-particleOperator C

Operators by means of B-V transformation

n+ n n+ n n

C. = u. a. + s.v.a. .

3m 3 3m 3 J J‘m

Straightforward calculations (see Appendix F ) yeild the

following result for SJ

 = l n Jo ,n
J

S u.C w .

3 J0 (3J0) J

n o 2

— ij. /(2Jo+l)/5| .
j

This formula is similar to that obtained by Yoshida and

Sorensen except for the amplitude wng) the value of which

depends on the approximatio used. The phase of ijJ) is

chosen to agree with that of C].0 (see Appendix F).
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Table 7 .

S values, are listed for each onez of the approxim-

 

 

 

       

ations QBA, RPA, IRPA and TDA. The experimental SR’

are listed in column 7.

2 Reaction QBA RPA IRPA TDA Exp. J:

1 Ni6l(d,p)Ni62 0.47 0.32 0.18 0.37 0.26:.04 3/2'

1 Zn67(d,p)Zn68 0.25 0.20 0.19 0.21 0.11:.02 5/2‘

1 8e77(d,p)8e78 0.07 0.07 0.08 0.08 0.029:.005 1/2“

2 Zr91(d,p)Zr92 1.64 0.72 0.36 1.44 1.33:.2 5/2+

2 M095(d,p)M096 0.87 0.27 0.40 0.70 0.30:.05 5/2+

2 RulOl(d,p)Ru102 0.13 0.20 0.18 0.16 0.032t.008 5/2+

2 Pd105(d,p)Ple6 0.18 0.20 0.23 0.20 0.068i.03 5/2

2 Snlls(d,p)Snll6 0.18 0.14 0.11 0.16 0.10:.015 1/2+

2 Snll7(d,p)Sn118 0.19 0.14 0.12 0.17 0.16:.025 1/2+

2 Sn119(d,p)Sn120 0.16 0.13 0.11 0.14 0.06:.01 1/2'

2 T8125(d,p)Te126 0.07 0.07 0.07 0.07 0.027:.004 1/2

2 Bal35(d,p)Bal36 0.01 0.01 0.02 0.01 0.32:.04 3/2+
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Table 8.

. . -48 4

B(E2) values in units of 10 cm from KS.

Isotope B(E2)theor. B(E2)exp.

28Ni30 0.017 0.072

28N132 0.051 0.091

28Ni34 0.100 0.083

28Ni36 0.092 0.087

302n34 0.264 0.170

30Zn36 0.245 0.145

3OZn38 0.164 0.125

32Ge38 0.458 0.172

32Ge40 0.476 0.230

326e42 0.609 0.317

3ZGe44 0.729 0.263

326e46 0.451

34Se40 0.696 0.210

34Se42 0.919 0.480

34Se44 0.770 0.385

34Se46 0.594 0.283

34Se48 0.327 0.213

36Kr42 1.784 0.510

36Kr44 0.812 0.340

36Kr46 0.550 0.180

36Kr48 0.313 0.150

38Sr48 0.205

388r50 0.143 0.130

4OZr30 0.141

4OZr52 0.080

4OZr54 0.216} 0'790

42M052 0.166 0.270

42M054 0.360 0.300

42M056 0.683 0.270

42M058 0.915 0.610

44Ru52 0.279 0.250

44Ru54 0.563 0.480

44Ru56 0.947 0.570

44Ru58 1.424 0.730
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Table 8.(Continued)

 

 

 

Isotope B(E2)theor. B(E2)exp.

46Pd58 1.006 0.550

46Pd60 1.261 0.650

46Pd62 1.603 0.740

46Pd64 2.009 0.860

48Cd58 0.447 0.470

48Cd60 0.571 0.540

48Cd62 0.687 0.500

48Cd64 0.758 0.540

48Cd66 0.799 0.580

48Cd68 0.809 0.600

508n62 0.350 0.180

508n64 0.381 0.200

505n66 0.399 0.210

508n68 0.414 0.230

508n70 0.416 0.220

508n72 0.365 0.250

508n74 0.273 0.210

52Te68 1.183 0.550

52Te70 1.307 0.650

52Te72 1.080 0.390

52Te74 0.729 0.530

52Te76 0.468 0.410

52Te78 0.289 0.340

54Xe74 1.654

54Xe76 1.174 0.480

54Xe78 0.592 0.320

54Xe80 0.344

54Xe82 0.198

56Ba76 1.814 0.730

56Ba78 0.929

56Ba80 0.509

56Ba82 0.294 0.300
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Table 8.(Continued)

 

 

 

Isotope B(E2)theor. B(E2)exp.

58Ce80 0.631

58Ce82 0.392 0.360

58Ce84 0.828 0.590

60Nd82 0.361 0.340

60Nd84 0.908 0.440

60Nd86 2.101 0.840

62Sm84 0.900

628m86 2.189 0.890

625m88 4.000 1.320

64Gd84 0.974

64Gd86 1.872

7605112 11.800 2.800

760s114 9.300 2.550

78Pt116 5.200 1.940

78Pt118 4.086 1.270

78Pt120 3.060 1.350

80Hg116 1.250

80Hg118 1.355 1.130

80Hg120 0.982 0.850

80Hg122 0.749 0.590

80Hng4 0.461

82Pb118 0.337

82Pb120 0.280

829b122 0.216 0.170

82Pb124 0.101 0.130

 



The values of S
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Table 9.

2
from ref. 19.

 

 

 

m 2 Reaction Stheor. Sexp. JO

1.18 1 Ni61(d,p)Ni62 0.320 0.26:.04 3/2

1.08 1 Zn67(d,p)Zn68 0.210 0.11:.02 5/2

0.62 1 8e77(d,p)8e78 0.070 0.029:.005 1/2

0.94 2 Zr91(d,p)Zr92 1.500 1.330:.2v 5/2+

0.81 2 M095(d,p)M096 0.680 0.30:.05 5/2+

0.48 2 Ru101(d,p)Ru102 0.11 0.032:.008 5/2+

0.52 2 Pd105(d,p)Pd106 0.14 0.068:.03 5/2+

1.30 2 Snlls(d,p)8nll6 0.18 0.10:.015 1/2I

1.22 2 Snll7(d,p)Sn118 0.19 0.16:.025 1/2+

1.17 2 Snllg(d,p)Sn120 0.15 0,061.01 1/2+

0.69 2 Te125(d,p)Te126 0.06 0.027:.004 1/2‘

0.83 2 Ba135(d,p)Bal36 0.02 0.32:.04 3/2+
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V. Numerical Results

In this study we considered the same spherical nuclei

studied by KS, the single particle energies are those given

in References 1 and 105the values of x5 and Ag are

extrapolated from KS (rough estimate) and then used in

iterations to satisfy the BCS equations (gap equation).

These values of Ag and Ag are the values which minimize the

ground state energy, and their dependence on the excitation

energies is assumed to be small and is neglected. The values

of the theoretical B(E2) are calculated for two sets of

single particle energies: the first set are those given in

K8, the second set are those given in Reference 10 , Th:

following A—dependences are used:

a: = 10.746x1051A'2/3
I

- 1/3 1/3 1/3
€j(A)—€j(AO)(AO/A) +aj(AO/A) [1-(A/AO) ]+A€j(Z,N).

If both j=£il/2 are present in the major shell, aj is

given by

__ _ 2

O‘2+1/2‘ (Ex-1/2(Ao) E:2+1/2(Ao))2'225'1' '

_ 2+1

al-l/2_(€£-l/Z(AO)-€£+l/2(AO))EE:T_— '

If only one of them is present, then aj is given by:
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_ _ 72

O‘2+1/2" X273 '

o

a = 7( +1)

2-1/2 ““ng73 '

where A€j(Z,N) is a Special shift in the single particle

energy, and A is the mass number. The numerical calculations

of B(EZ) and SJ were performed on the CDC 6500 computer at

Michigan State University. The energies of the 2+ states are

the experimental values taken from the table of isotopes

(Ref.48 ). The results for B(E2) are listed in Tables 384

for each approximation. In table 7 the values of 82 are

listed, while the averages of the absolute deviations from

experimental values [53(Ez)|av for B(Ez)are tabulated along

with the corresponding averages of the experimental values of

exp .

and B(E2)ere

av

B(E2) in tables 5&6 . The quantities |B(E2)1av

defined as follows

1 N th. exp.

|0B(E2)|av= fi»i:lIBiE2) - Bi(E2)l .

exp. 1 N exp

av i=1 i

th exp

where B(E2), and B(E2) are the theoretical and experimental

values of B(Ez) respectively, and N is the total numbe: of

cases. The values of g are those given in KS and in Ref.

10, where those values are taken to fit the eXperimental
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odd-even mass differences. To convey an idea of the

dependence of A and A on the number of particles; these

values are plotted against the number of particles for

Sn in figure 4. From tables 5 and 6 it is clear that

(for this set of parameters) the IRPA gives the best

result, while TDA does not differ much from RPA as far as

the absolute diviations from experiment are concerned.

Indeed the TDA underestimates the B(E2), on the other

hand the RPA overestimates it; therefore, including the

Pauli principle in TDA will increase the deviations from

experimental values. In this work the Pauli principle is

not included for TDA. In Figure 4 the quantities A and A

are plotted against the neutron number for Sn isot0pes.

We have to know the N—dependence of A and A in order to

obtain new values by extrapolation.
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Figure 4. The parameters 0n and An are plotted

against the mass number A for Sn isotOpes.
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Appendix A
 

Useful Relationships

 

 

 

 

éy (abcl mamBmY )(cdelmHm5m ) = (-)a+b+d+eg%A/(2c+1)(2g+1)-

X {32;}(agelmamxmn)(bngmBmamA) , (Al)

abc . . .
where {d g} 18 the 51X j-symbol.

+b-J ..
(abJImamBM) = (-)a (abJI-ma-mB—M) (a2)

= (-)a+b-J(baJ|mBmaM) (A3;

a-ma

= /(2J+1)/(2b+11(-) (anIma-M—ms) (A4)

b+mB

= 7(2J+1)/12a+1)(-) (Jbal-MmB-ma) (A5)

a—m

= /(2J+1)/(2b+1)(-) “(JabIM-mams) (A6)

b+mB

= /(2J+1)/(2a+1T(-) (bJaI-mBMma) (A7)

%Q%B(abJ|mamBM)(abJ ImamBM )= GJJ'GMM' (A3)

§ (alemamBM)(abJIma'mB'M ) = Smama'GMM' (A9)

 

In the following commutation relations the collective

operator B is given by:
JM

BJM ‘ 2::206b—{w(ab)A (abJM) ( ) ¢(ab) (abJM)} (“1“)

6+ _ g
[BJM’A(chq)] ‘ GJKdqu(cd) (”‘~)

5 _ E . 4

[BJM’A(chq)] - 5JK6Mq( )J M(Mod) (”14)

i 5+ __ 5 ,~

[BJM'A(chq)] _ 6JK6Mq( )J M(Mod) (AL }
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I E __ E --

[BJM'A(chq)] ‘ 6JK6Mq w(cd) (014)
g .

¢
+ 5+ _ _ J—M (ab) 5 _

[BJM’ aB ] — :( ) -;€———(abJ|mamBM)aa (A13)

ab

+ 6 w? b) +_ a
,.

[BJM' aB ] - £'—g——-(abJ|mamBM) ad (A16)

0 a
ab

1.. .f.

8

.. 1. __ ‘0’"

[A(abJM)' ay] — §adcb(achmamyM) a0 %Bdca(ch|m myu,a

(A17)

Appendix B
 

. T

The Exact Evaluation of [A(abJM)’A(chq)]

Starting from the definition of the operators A

.1.

(abJM)

these operators as follow

(abJM)

and A , we can write the commutation relation for

+
_

.

[A(abJM)'A(chq)] — $0§B%Y%6(ale mamBM)(CdKlem5q)

X[aaa8,a5ay],

by using the fermion commutation relations;

f _ f + _ _

{aa'aB} ’6a8 r {aa'aB} - {aaraB} * 0

we arrive to

.f.

[A(abJM)'A(CdKQ)] = %a%s§y%a(alemamBM)(CdKlemaq){'(ScY
SBS

 

 

l
j
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T f +
) + 6 a a - 606a a 0 a a5 + 6

.1»

9Y B 6 B Y BY 9 a a } (El)86 a Y

aE(a,ma).

Let us call the first two terms in (B1) by T;

T = m 2 -{(abJ|mamBM)(abKImm

0m8

X (baKImBm

Bq)0aC6bd- (abJImamBM)

aq)6ad5bc}'

and by using relations (A3,A8) we get

__ _ )a+b-

T — SMqGJK(6ac5bd ( gadabc) '

The last four terms can be writen in a compact form by

using interchange operator R(ab) which is defined by

R(ab)"’(a16)= 1"(1661) .

Its effect on the Clebsch-Gordan coefficients is to

multiply them by a phase factor i.e.

a+b-J

R(ab)(alemamBM)=(baJImBmaM)=(-) (abJImamgM).

Therefore to keep the terms containing Clebsch—Gordan

+ — . .
a b JR(aL.-) 171-9.. "1coefficients unchanged the operator (—)

be used. Let the last four terms be T' which can be writen

as follow:

T =—P(ab)P(cd)Z Z Z Z (abJ m m M)(ch m m q)0 Y8a+a6,

ma“8Ym0 a

where

P<ab)=(1-(-)a+b’JR(ab))
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Now by applying relations (A3,A5,Al) we get the following

d+m

% (bdKImBqu)(abJ|mamBM) = (-) 6(-)a+d+J+K/T2k+1)/(2b+1)

B
d+m

<8 <1 J+K
X%B(deIq-m6m8)(baJImBmaM) = (-) (—)a+ + £§7722:1)x

 

de
/ZZL+1){aJL}(LKJ|qu)(adlea-mdu),

l

hence T become  
a+d+J+K  de

T =-P(ab)P(cd)(-) EE/(2K+1)(2L+1) {aJL}(LKJquM)

d+m5 1.

X% % (-) (adleOL-m(51.:)a0ta6 .

a 6

Now set m5+-m(S , and since d and hence m6 are half integers; F

d-m(S d+m(S

(’) ='("') I

therefore T. will have the following form:

 

 

T': P(ab)P(cd)(-)a+d+J+K £5/12K+I)72L+17 {§§:}(LKJIVQM)

O

x A(adKu)6cb f

where

0 d+m(S

_ _ T

A(adLu)-%a%6( ) (adLImamau)aaa_5,

-6£(d,-m6) .

Finally we get:

 

+ — _ _ _ a+b-J

[A(abJM)'A(chq)] — 6MqGJKwacébd ( ) sadébc)

a+d+J+K de

+P(ab)P(cd)(-) £§/(2K+1)(2L+1) {aJL}(LKJquM)

o q

x A(adLu)5cb ' (BL)
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Appendix C

 

The reduced matrix element q(ab)

The reduced matrix element of the nondimensional

quadrupole transition operator is given by

a-b

q(ab) = (w'2'a||pzyz|lu2b) = LZL——— /572§IIT

.771?

2+2
1..

x (a2bI1/2 0 1/2)—il§L——— RmE3 (c1)

where

_°° 4 2 :II

Rafi — 0fRa(0)RB(p)p do , a—(Nl) . B—(N.£ ).

p= aor = (moo/h)l/2r

Ra(p) is the radial part of the Harmonic oscilator

wave function, m; is the nucleon mass , 1 mo is the

oscilator frequency and N is the principal quantum

number of the harmonic oscilator wave function, such

that the energy is hwo(N+3/2). The radial integrals

R are given in Table 10.

 

 

 

08

Table 10. The radial integrals R08

I I

N 1 RGB

‘ 3
N 2 . N+§

1 .1.
N12 2 -§[(N+2+2:1)(N-2+l:1)]2

1

Ni2 2:2 %{(N+2+122)(N+£+312)]2
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Table 10.(Continued)

 

 

1

N 212 -[(N+£+2:1)(N-£+1¥1)]2

1

Nt2 2:2 %{(N-£iZ)(N-£+222)]2

 

Appendix D

Evaluation of<[A f

(abJM)’1"(chq)]>

Using the following vacum expectation value

<aTa.> = n.6.. , (D1)
1 j l 13

we get

I _

<[A(abJM)’A(chq)]>- §a582Y§5(alemamBM)(CdKleméq)

+ + + +
x{60y586 - éaéésy -<(GayadaB-GaGayaB-éByaéad+6Bdayaa)>}

and by using relations(A3,A8) we get

a+b-J 0 6 )

<[ + _ 6 (5 ad bcA(abJM)'A(chq)]> — GJK Mq acébd-(-)

x(1-na-nb) (D2)

Appendix E
 

I

a: Evaluation of na and na

To evaluate na we start with

1.

_ 2 _
(A(ab)A(ab)> — ¢(ab) — § § § % (alemlmZM)(abJ|m3m4M)

l 2 3 4

><<a+a+a'a'> . (El)
0 B 8 a
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where

a=(aIml) I B=(blm2) I a'=(alm3) I B'=(brm4) 0

Applying the usual factorizations to the product of four

operators and using Eqn.(Dl),we get

T T _ T T T T

<aaaBaBaa'> — <aaaé><aBaB>-<aaa8><a8aa>

= n.r1 6 '0 - n r1 6 '0 (E2)

a b dd 88 a b 08 Ba  
Substituting(E2)in(E1) and using relations(A3,A8) we get

T _ _ _ a _ 2a__

(A(ab)A(ab)> _ nanb(l ( ) Gab) ’ ( ) h 1

therefore }

“anb= C15cm)"ab (E3)

where

1
D :.__.__.___

ab 1+0ab

In RPA the amplitudes ¢(ab) are given by

2 2

2 qfitmuabmab

c) = [z Pit»):
(ab) 2

2w(w+Eab) 2

a5

q§ab)UabE€EabOLab

ab 52 w2 2

(Bab-w )

-1
 

where

P§w)=2 

where

ab=l-na-nb'

Since dab appears in both the denominator and nominator

0:

of ¢(ab)' the later 18 less sensetive to the ch01ce of cab,

therefore it is a very good approximations to set aab=1 in

evaluating na. If cab is included, na can be calculated by

iterations.
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Now let

N = Z n = Z n ,

o a a b b

then

2 2

N = 22 n n = 22 0 D ,
o ab a b ab (ab) ab

therefore

1 2

a NO b (ab) ab

' T
To evaluate na we need to evaluate <2lA(abJM)A(abJM)|2>’

where

|2> = BEIO> ,

1.

1

(ab)A(ab) ' ¢(ab)A(ab)) °
B = — 22 (w

2 2.ba

Using the following commutation relations:

I. _ :

[BZV'BZV — avv '

and relations (A11,A12,Al3,Al4), we get

1..

(2| A(abJM)A(abJM)

_ 2 2 2

l2) ‘ (w(ab)+¢(ab))aab+¢(ab))

I I

Following the same procedure in evaluating na we get

2 2 2

' §«‘p(ab) + ¢(ab)) (Ll-ma) + ¢(ab) )Dab

n = I 2 2 I (E5)

N0 + Z (w(ab)+¢(ab))Dab

 

b

a
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where na is given by (E4), and

N'2= 22
O

2 2 2

ab ((w(ab)+¢(ab))aab+¢(ab))Dab °

b: The Collective Operators

The collective operator Bf can be expanded in terms
JM

+ ' o o

of A(abJM) and A(abJM) With real coeffe01ents

T _ T _ _ J-M

BJM ‘ XX[XabJA(abJM) ( ) yabJA(abJM)] '
ab

From the definetions of w(ab) and ¢(ab) we get

.'-

w(ab)=<0|A(abJM)|2> =<o|[A(abJM)’BJM]IO>

= 2XabJaab '

similarly

¢(ab) =2yabJaab '

1.

Therefore the expressron for BJM in RPA takes the

following form

T 1 l T

BJM= 2 g: 5;; [w(ab)A(abJM)-¢(ab)A(abJM)] °

c: Evaluation of N /9
a a

Using similar procedure that used in evaluating na

i.e.

T _ 1 T T

<AaAa> _ ng'mafid. Sasa'<aaa-da-a'aa'>

>0

where

a=(a,ma) , d'=(a,ma') , 0a: a+1/2
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Now applying the factorizations (E2) and (D1) we get

T _ 1 2

(AaAa> ‘ 0;— §a>02Na '

.1.

N =<a a > .

a a 0

Using the following

 

% >0l = Qa

01.

we get

_ ’ T ‘2
Na/Qa — '/<AaAa>/ma (E6)

d: The Factorization

In the Hartree-Fock method; it is assumed that the

ground state may be represented by an independent

particle state vector such that the average in that state

of products of single particle operators takes the form

<cgcgc8.ca.>=<c+c ><c+c >-<c+c ><cg

0:0: BB' 08'

+<C+C+

0:8

Ca,>’

><CB'Ca'>' (E7)

This expression differs from (E2) in the presence of the

last term, which is zero unless the particles participate

in pairing interaction.

In the quasi-particles scheme the interacting particles

transformed to independent quasi-particles by means of

B—V transformations, where the pairing interaction between

the original particles is now absorbed by the quasi—particle

energy; Ea . Therefore the product of four quasi—particles
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Operators takes the following form

T T T T T
<aca a8,aa.>=<aaaa..><a+a >-<a a ><a aa,>, (E8)

8 B 8' a B' B

where the third term which describes the pairing sets

equal to zero.

Appendix F
 

The Sj for (d,p) stripping on

odd mass target

The quantity Sj is defined by

. 2
sj = I<JMI(]JO),JM>|

where

|JM> = 8+ |0>
JM '

I(jJO),JM> = $0i(onJImMOM)CJ.m|J0M0> ,

where JOMO is the wave function of the target ngch

can be expanded in terms of seniority one and three states;

0> + 2 z 2 Cq?(j'2Jo |m 0M0 )aT. e+_i0>
' j'm'V J j "m 20

.1.

IJcMo > = CJoaJOMO

where |0> is the quasi-particle vacume~. The coefficients

qu can be obtained by diagonalizing the Hamiltonian in

the space Of one quasi-particle with zero, one, and two

phonons , these coefficients are tabulated by KS. The

single particle creation Operator Cgm can be expressed
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in terms of quasi-particle Operators agm and ajm by

means Of B-V transformations;

CT = u.aT + s.v.a.

3m Jlfln 3 J J‘m

Now for J=2 we get

 . T j+JO
<2 2> .<2 . >- — .|(3JO), c u [A(JJO)I0_ ( ) VJC

0

Jo 3 <2|A .)|0>
J0 (J0)

+ (-)J+J0ijgO/T233¥TT75 + vj/5T2igfif7

j a 2

j' w(ia)w(j''a){j''Jo 2}

X z z(--)j W+J°c

j a

(Fl)

the last result is Obtained with the help of relations

(A1,A10-A13). The first two terms in the last Eqn. reduce

to after using the following results

CJoujw(on)

<2|A 0>=<0|[B2,A

(jJO)l (WHO Mao)

<2|A(JOj)|0>= 0

where

w(ab)=)ab¢(ab)

wTab)= -(-)a-bsgn(aZbI1/2 0 1/2)w(ab)

where the phase of w('ab) is that of ego . Neglecting the

last term in (F1) as it is small compared to the other

terms, we get

 

Sj=lufl00(jJO ) - vjcg°/(2Jo+1)/5|2 (F2)
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Appendix G
 

. o
a. Calculation of Gab

The Green's function Gib provide the solution to the

pairing part of the Hamiltonian with small residual

interaction and hence describes the behaviour of the 0f

 
seniority zero states in even-even nucleus. If the exact

commutation relations of Aa and A: are used, the following

commutation relations are obtained:

N N

I ._ _ 2 2 ___C. _ 2 2 _ ”-2 T

[A0,Hp] — ZECAC g{§/Qcabubuc(l QC)Ab g/Qcabucvb(1 ac)Ab

N N

-Z/§2'_S2"u2v2A+(l- £)+2/s2""?2"v2v2A (1- —-9-)}.
c a a c a Q a c a c a Q

a c a‘ c

N

Let (1- ME) = L

We C ’

collecting similar terms we get:

[A H'] = 2E A - g/Q u2L Z/Q (u2A -v2 T)
c’ p c c c c c.b b b b bAb

2 2 2 +
g/chc :Vfla(vaAa uaAa)LC . (61)

Similarly

1’ 2 2 2 +
' —- - _

[Ac’Hp] — ZECAC g/QCVCLC é/Qb(ubAb vbAb)

2 2 2 T
g/chc i/Qa(vaAa uaAa)Lc (G2)

Substituting (G2) in the equations of motion for Go(w)

we get equatins (III.4), where LC set equal to one.
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Table 11.

Proton levels 29 <Z <39,Ao=90

  

 

Gn=24/A

Neutron levels 31<N<49,AO=58

 
 

 

 

 

f7/2 f5/2 p3/2 P142_ g9/2 f7/2 p3/2 f5/2 p1/2 99/2

-4.6 -.6 0 1.8 2.8 -4.0 0 0 3.0 4.0

AE7/2—A85/2-.ll(N-40)

Isotope A AP AP An An

28Ni30 58 -0.980 1.190

28Ni32 60 -0.420 1.475

28Ni34 62 0.142 1.537

28Ni36 64 0.752 1.420

3OZn34 64 -1.697 1.209 0.212 1.718

30Zn36 66 -1.526 1.187 0.835 1.543

3OZn38 68 -1.361 1.167 1.712 1.236

326e38 70 -0.797 1.388 1.688 1.134

32Ge40 72 -0.663 '1.370 2.650 1.248

3ZGe42 74 -o.532 1.351 3.248 1.309

32Ge44 76 -o.405 1.329 3.714 1.264

32Ge46 78 -0.282 1.305 4.108 1.116

34Se40 74 —0.149 1.406 2.644 1.182

34Se42 76 -0.039 1.391 3.233 1.255

34Se44 78 0.073 1.375 3.689 1.219

34Se46 80 0.185 1.355 4.074 1.074

34Se48 82 0.299 1.333 4.414 0.812

36Kr42 78 0.480 1.306 3.219 1.204

36Kr44 80 0.572 1.301 3.666 1.177

36Kr46 82 0.670 1.295 4.042 1.047

36Kr48 84 0.772 1.289 4.374 0.788

388r48 86 1.317 1.194 4.336 0.766

388r50 88 1.386 1.211
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Table 12.

GP-26/A Gn—23/A

Proton levels 37<Z<49,AO=90 Neutron levels 51<N<75,AO:120

f5/2 p3/2 p1/2 g9/2 d5/2 g7/2 S1/2 h11/2 1312

0 .6 1.8 3.4 0 .8 1.3 2.5 2.8

A69/2——.055(N-50) Ae7/2-.14(50-Z)

Isotope A AP AP An An

4OZr50 90 2.241 0.827

40Zr52 92 2.169 0.843 -0.481 0.71

40Zr54 94 2.096 0.860 -0.044 0.907

42M052 94 2.745 0.951 -0.476 0.709

42M054 96 2.638 0.948 -0.054 0.909

42M056 98 2.533 0.947 0.426 1.049

42M058 100 2.429 0.947 0.862 1.220

44Ru52 96 3.138 0.964 -0.477 0.707

44Ru54 98 3.021 0.954 -0.073 0.915

44Ru56 100 2.906 0.945 0.368 1.062

44Ru58 102 2.791 0.937 0.772 1.215

46Pd58 104 3.098 0.842 0.668 1.208

46Pd60 106 2.978 0.833 0.993 1.306

46Pd62 108 2.859 0.825 1.288 1.364

46Pd64 110 2.741 0.819 1.566 1.389

48Cd58 106 3.373 0.640 0.552 1.197

48Cd60 108 3.247 0.632 0.866 1.272

48Cd62 110 3.123 0.625 1.163 1.312

48Cd64 112 3.000 0.619 1.451 1.324

48Cd66 114 2.878 0.613 1.733 1.316

48Cd68 116 2.757 0.607 2.006 1.293

508n62 112 1.030 1.252

SOSn64 114 1.333 1.247

508n66 116 1.640 l.'31

SOSn68 118 1.938 1.214

SOSn70 120 2.210 1.190

508n72 122 2.457 1.14

508n74 124 2.683 1.075
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Table 13.

Gp=23/A Gn=23/A

Proton levels 51<Z<82,AO=207 Neutron levels 68<N<81,AO=120

g7/2 d5/2 h11/2 d3/2 S1/2 d5/2 g7/2 S1/2 E11/2 d3/2__

0 .8 2.1 2.6 2.95 o .8 1.3 2.5 2.8

Isotope A Ap AP An An

52Te68 120 -0.287 0.615 1.930 1.185

52Te70 122 -0.280 0.602 2.201 1.164

521672 124 -0.273 0.589 2.445 1.123

52Te74 126 -0.266 0.577 2.667 1.055

52Te76 128 -0.260 0.565 2.873 0.938

52Te78 130 —0.254 0.554 3.066 0.808

54Xe74 128 -0.026 0.754 2.652 1.036

54Xe76 130 -0.023 0.738 2.855 0.937

54Xe78 132 -0.020 0.723 3.045 0.795

54Xe80 134 -0.018 0.707 3.224 0.531

54Xe82 136 -0.015 0.693

56Ba76 132 0.221 0.829 2.837 0.921

56Ba78 134 0.222 0.811 3.024 0.782

56Ba80 136 0.222 0.793 3.201 0.572

56Ba82 138 0.222 0.775

58Ce80 138 0.473 0.831 3.179 0.563

Table 14.

Gp=23/A Gn=22/A

Proton levels 51<Z<82,Ao=207 Neutron levels 83<N<125,A02207

g7/2 d5/2 h11/2 d3/2 S1/2 h9/2 f7/2 113/2 P3/2 f5/2 p1/2

0 .8 2.1 2.6 2.95 -.9 0 .72 1.45 1.78 2.35

Isotope A AP AP An An

58Ce82 140 0.472 0.812

58Ce84 142 0.471 0.793 —1.512 0.614

60Nd82 142 0.737 0.815

60Nd84 144 0.735 0.796 -1.498 0.603

60Nd86 146 0.733 0.777 -1.293 0.812

628m84 146 1.025 0.770 -1.483 0.592
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IsotOpe A AP AP An An

628m86 148 1.021 0.750 -1.281 0.797

62Sm88 150 1.018 0.731 -1.078 0.928

64Gd84 148 1.373 0.744 -1.470 0.582

64Gd86 150 1.371 0.722 -1.269 0.783

7605112 188 2.640 0.539 1.201 0.898

7605114 190 2.629 0.533 1.380 0.835

78Pt116 194 2.798 0.435 1.555 0.755

78Pt118 196 2.786 0.430 1.735 0.680

78Pt120 198 2.773 0.425 1.910 0.592

80Hgll6 196 2.987 0.305 1.548 0.746

80Hg118 198 2.973 0.300 1.726 0.672

80Hg120 200 2.960 0.296 1.900 0.585

80Hg122 202 2.947 0.291 2.072 0.468

80Hng4 204 2.934 0.287 2.280 0.294

82Pb116 198 1.541 0.737

82Pb118 200 1.718 0.664

82Pb120 202 1.890 0.578

82Pb122 204 2.060 0.462

82Pb124 206 2.268 0.289
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Table 15.

Gp=24/A Gn=23/A

Proton levels 20<Z<50,AO=90 Neutron levels 20<N<50,AO=58

f7/2 f5/2 p3/2 p1L2 g9/2 f7/2 p3/2 f5/2 p1/2 g9/2

-3.5 .5 0 1.8 2.8 -4.0 0 0 3.0 4.0

As7/2=A85/2=-.11(N-40),20<Z<38 A89/2=-.055(Z-40)

A69/2=-.055(Z-40),38<Z<50

Isotope A AP Ap An An

28Ni30 58 -1.015 1.500

28Ni32 60 -0.345 1.645

28Ni34 62 0.246 1.597

28Ni36 64 0.843 1.371

3OZn34 64 -0.552 1.466 0.227 1.538

30Zn36 66 -0.574 1.382 0.806 1.319

3OZn38 68 -0.604 1.309 1.795 0.723

32Ge38 70 0.021 1.550 1.749 0.670

3ZGe40 72 -0.063 1.485 2.975 0.953

32Ge42 74 -0.156 1.421 3.647 1.112

32Ge44 76 -0.257 1.357 4.109 1.126

32Ge46 78 -0.366 1.290 4.489 1.016

34Se40 74 0.458 1.567 2.897 0.938

34Se42 76 0.341 1.490 3.537 1.088

34Se44 78 0.219 1.412 3.985 1.101

34Se46 80 0.093 1.333 4.355 0.993

34Se48 82 -0.034 1.251 4.681 0.753

36Kr42 78 0.836 1.460 3.428 1.068

36Kr44 80 0.707 1.359 3.862 1.077

36Kr46 82 0.576 1.257 4.223 0.971

36Kr48 84 0.445 1.156 4.541 0.737

388r48 86 1.405 1.267 4.402 0.722

38Sr50 88 1.389 1.214

40Zr50 90 1.912 1.172
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Table 16.

Gp=24/A Gn=23/A

Proton levels 37<Z<49,Ao=90 Neutron levels 50<N<78,AO=120

f7/2 f5/2 p3/2 p1/2 g942 d5/2 g7/2 S1/2 h11/2 3342

-3.5 .5 O 1.8 2.8 0 .8 2.0 2.5 2.8

Ae7/2=A65/2=-.11(N-40),20<Z<38 Ae7/2=.14(48-Z),Z<48

A69/2=-.055(Z—40),38<Z<50 Ae7/2=-.1,Z=48

Ae7/2=Aell/2=.15(50-Z),Z>50

Ael/2=-.2,Z=50

Ae3/2=.05(50-Z),Z>50

Isotope A AP AP An An

4OZr54 94 1.893 1.078 -0.041 0.910

42M052 94 2.270 1.137 -0.481 0.713

42M054 96 2.258 1.100 -0.060 0.917

42M056 98 2.248 1.065 0.414 1.063

42M058 100 2.238 1.031 0.839 1.235

44Ru52 96 2.543 1.087 -0.489 0.714

44Ru54 98 2.526 1.056 -0.091 0.929

44Ru56 100 2.510 1.027 0.334 1.078

44Ru58 102 2.494 0.999 0.726 1.221

46Pd58 104 2.698 0.887 0.600 1.205

46Pd60 106 2.677 0.865 0.929 1.287

46Pd62 108 2.658 0.845 1.237 1.334

46Pd64 110 2.639 0.826 1.532 1.355

48Cd58 106 2.869 0.668 0.416 1.187

48Cd60 108 2.844 0.653 0.734 1.231

48Cd62 110 2.820 0.639 1.056 1.245

48Cd64 112 2.797 0.625 1.386 1.246

48Cd66 114 2.775 0.612 1.708 1.249

48Cd68 116 2.753 0.599 2.002 1.247

508n62 112 1.083 1.237

508n64 114 1.395 1.241

508n66 116 1.702 1.240

508n68 118 1.987 1.233

SOSn70 120 2.247 1.209

508n72 122 2.485 1.162

505n74 124 2.705 1.088
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Table 17.

Gp=23/A Gn=23/A

Proton levels 50<Z<76,A0=207 Neutron levels 50<N<78,AO=120

g d h d s

7/2 5/2 11/2 3/2 1/2 Same as in Table

0 .8 2.1 2.6 2.95

Isotope A AP AP An An

52Te68 120 -0.287 0.615 1.775 1.217

52Te70 122 -0.280 0.602 2.028 1.195

52Te72 124 -0,273 0.589 2.260 1.148

52Te74 126 -0.266 0.577 2.475 1.073

52Te76 128 -0.260 0.565 2.677 0.965

54Xe74 128 -0.026 0.754 2.237 1.047

54Xe76 130 -0.023 0.738 2.442 0.938

56Ba76 132 0.221 0.829 2.216 0.903

Tab1e18 .

Gp=23/A Gn=23/A

Proton levels 50<Z<76,A0=207 Neutron levels 78<N<82,AO=139

Same as in Table g7/2 d5/2 h11/2 S1/2 d3/2

-1.2 0 .8 1.33 1.6

Isotope A AP AP 1n An

52Te78 130 -0.254 0.554 1.762 0.785

54Xe78 132 -0.020 0.723 1.747 0.772

54Xe80 134 -0.018 0.707 1.961 0.557

54Xe82 136 -0.015 0.693

56Ba78 134 0.222 0.811 1.732 0.760

56Ba80 136 0.222 0.793 1.943 0.548

56Ba82 138 0.222 0.775

58Ce80 138 0.473 0.831 1.926 0.540

58Ce82 140 0.472 0.812

60Nd82 142 0.737 0.815
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Table 19.

G =23 Ap /

Proton levels 50<Z<76,AO=207

Gn=23/A

Neutron levels 82<N<90,Ao=l4l

Same as in Table f7/2 p3/2 h9/2 f5/2 p1/2 113/2
 

 
 

 

 

 

 
 

 

 
  

 

 
 

 

 

0 .83 1.55 1.88 2.25 2.8

Isotope A AP AP An An

60Nd84 144 0.735 0.796 -0.381 0.525

60Nd86 146 0.733 0.777 -0.128 0.6t8

628m84 146 1.025 0.770 -0.370 0.516

625m86 148 1.021 0.750 -0.120 0.676

628m88 150 1.018 0.731 0.155 0.767

64Gd84 148 1.373 0.744 —0.359 0.508

64Gd86 150 1.371 0.722 -0.112 0.665

Table 20.

Gp=25/A Gn=23/A

Proton levels 76<Z<82,AO=207 Neutron levels 112<N<126,AO=207

g7/2 d5/2 h11/2 d3/2 S1/2 h9/2 f7/2 l13/2 p3/2 f5/2 p1/2

0 1.81 2.14 3.13 3.48 -l.09 0 .7 1.45 1.77 2.34

Aell/2=.5, Ae7/2=-.l A513/2=.2 (except for Z=82)

Isotope A A A 1 4

P p n n

7605112 188 3.194 0.636 1.303 0.972

7605114 190 3.182 0.629 1.473 0.916

78Pt116 194 3.342 0.512 1.634 0.838

78Pt118 196 3.328 0.506 1.800 0.758

78Pt120 198 3.315 0.501 1.966 0.659

80Hg116 196 3.533 0.352 1.627 0.828

80Hg118 198 3.518 0.347 1.791 0.749

80Hg120 200 3.504 0.342 1.955 0.652

80H9122 202 3.489 0.338 2.122 0.524

80Hg124 204 3.475 0.333 2.316 0.345

82Pb116 198 1.543 0.783

82Pb118 200 1.723 0.707

82Pb120 202 1.899 0.616

82Pb122 204 2.073 0.495

82Pb124 206 2.279 0.319
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