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ABSTRACT
VALIDITY OF THE MANY-BODY APPROXIMATIONS

IN SPHERICAL NUCLEI

By

Shakir M. Mustafa

Reduced transition probabilities B(E2), and Spectro-
scopic factors Sj for stripping (d,p) reactions are calcu-
lated in the quasi-boson approximation (QBA), Random Phase
approximation (RPA), Tamm-Dancoff approximation (TDA), and
improved Random Phase approximation (IRPA). The effect of
the Pauli principle on the J=0 pairs is shown to be negli-
gible, while it is not for J#0 pairs. The effects of these
approximations on the B(E2) and Sj systematics are studied
by comparing the averages of the absolute deviations from
experimental values for each approximation. These studies
have been carried out for a large number of spherical nuclei.
The problem is formulated by using double-time Green's

function techniques.
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I. Introduction

In the fermi gas model of a nucleus, the forces between
pairs of nucleons are neglected, and the nucleus assumed to
be contained in a sphere of definite volume V with radius
R=roAl/3. While this degenerate gas model give a qualitatively
correct picture of the nucleus, actual numerical results for
the energy levels are far from accurate.

Progress in understanding the structure of the nucleus
began after the conception of the shell model of the nucleus
by Mayer, Haxel, Jensen and Suessls. The great successes of
the shell model, in which the nucleons are assumed to move
independently in a certain average potential, showed that the
main part of interaction between the nucleons can be reduced
to a spherically symetrical, self-consistent field acting on
all of them. The next important step was made by Bohr and

Mottelsonlz’13

who proposed the unified nuclear model, in
which an additional self-consistent part of the interaction
is extracted which is non-spherical and time dependent. With
this model it is possible to explain many of the regularities
in the low-lying nuclear levels in the language of collective
motions. The pairing-plus-multipole-multipole forces model
represents a further develoément of these models.

The accumulation of data on the transition rates in

even-even nuclei, from the first 2% state to the 0% ground

state shows enhancement by about a factor of 40 on the average
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over the single particle estimate, which can be explained by
assuming a collective motion of the nucleons. Before the
unified model was suggested by Bohr and Mottelson, it was
believed that the independent particle and the collective
models represented two opposite limits for nuclear physics.
The tendency of Fermi particles to pair was recognized

many years ago. This idea motivated Racah45

(1942) to introduce
the seniority coupling scheme. Since the J=0 pair is more
bounded than the J#0 pair, and also J=0 pairs behave like bosons,
which makes it possible for these pairs to be close to each
other, therefore the ground state of the system can have a
minimum energy if all particles are paired. These ideas led
Mayer (1950)42 to explain J=0 in the ground state of even-even
nuclei.

In 1956 Cooper43 showed that two fermions coupled to
J=0 form a bound state, and behave like bosons. This explained
why a fermion system (electrons) can exhibit superconductivity
and a boson system (He4) superfluidity. In 1957 Bardeen,
Cooper, and Schrieffer (BCS)44 used this idea in establishing
their remarkably successful theory of superconductivity.

In 1958 Bohr, Mottelson, and Pines introduced for the
first time this idea into nuclear physics to explain the
energy gap in the spectrum of even-even nuclei. The super-

conducting solution of the nuclear problem is characterized

by a depressed ground state energy and an energy gap in the



spectrum of quasi-particles. The BCS treatment of the pairing
part of the Hamiltonian provided a good approximation to the
real situation; the other part of the Hamiltonian which
contains the long range of the interaction can be expanded

in multipole-multipole interactions. This pairing plus
quadrupole approximation leads to a fairly good understanding
of the properties of the nucleus and its quadrupole vibrations.
The descriptions of various properties of the nucleus depends
upon the model for the nuclear force and the approximation
scheme. Several studies have been done for various approximations
used in nuclear physics. In most of these studies solvable
models were used. In these models N particles are assumed to
occupy single level j, and the single particle energy is taken
to be zero. These particles are assumed to interact via a
pairing interaction. For this kind of interaction the solvable
model turns out to give a fairly good description of this part
of interaction. This similarity between the degenerate system
and the actual systems will be pointed out, whenever it arises,
as we study the actual systems. In spite of this similarity,
different correlations have been neglected in such models,

and, therefore, a study of various many-body approximations

in actual systems might be worthwhile. The pairing-plus-
quadrupole model has been used successfully by KS for the
collective motion in spherical nuclei. In this study a phenome-

nological approach is used, in which the single particle



energies are taken from experiment, In this method the
nucleons in closed shells foym an enert core, and only

those nucleons outside this core are assumed to be active
nucleons occupying partially filled active orbitals as 1is
shown in figure (1), The effect of faraway orbits is assumed
to produce an effective charges and effective interaction,
This phenomenological treatment has the advantage of redusing
the dimensionality of the problem, and it makes it easy to
study the different approximations at once and systimatically
for a large number of nuclei. In this study I consider the
same spherical nuclel studied by KS and tabulate the average
deviations from experiment for each type of approximation,
The effect of the Paull principle is especially noticeable

in the random phase approximation, The quantities studied
here are the reduced transition probabilities, the spectroscopic
factors for the stripping (d,p) reactions on odd mass isotopes,
and the energles of the first exited J=0 states, which are
calculated in the QBA only, since the numerical calculations
showed that the Paull principle effect is negligible for this
part of the interaction, It might be important to notice

here that if one does not take the effective charges and
instead uses the real charges (ep=1, en=0), one needs to
include the faraway orbitals. This will give the same results
for the reduced transition probability but requires more

labor3u.



Figure 1. Schematic illustration of the shell-

model's basic act of truncation.
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II. ai1 Double-Time Green's Functions

Various many-body techniques have been applied in efforts
to treat the two-body residual interaction between the nucleons
in the outer shells of the nucleous, with these nucleons
assumed to move in a self-consistent field produced by the
core and to have single-particle energies €y determined to
fit the experimental data.

The Green's function method furnishes justifications
and physical insights into these methods; its physical meaning
emerges from the fact that 1t describes the propagation of
one or a few particles in a system of many particles., The
hierarchy of equations of motion for the Green's functions
provides an exact solution to the Hamiltonian for the problem
under consideration; the major approximatlion enters the
decoupling of these equations,

Following Zubarev6 we define double-time Green's functions

as follows:

G (t,t') =1 6(t,t")<[A(t),B(E")]> , (IT.1)

Gr(t,t') =-i 0(t,t")<[A(t),B(t")]> , (I1.2)

where A and B are two operators of the system at different

times, and

>
9(1’) ={é :<(0) ’



r and a stand for retarted and advanced Green's functions

respectively. The commutator

[A,B] AB-nBA ,

where

{-l Fermion

N = 141 Boson ,

its fourier transform with respect to time G(w) 1is given by

+ o0

= f dte

2T

G(w) iwt

G(T)

<< A(t)| B(t') >> . (II.3)
A higher order Green's function T(w)  defined by

F(w) = << C(t) A()| B(t")>>
can be reduced to the lower order G(W) by means of the RPA

decoupling procedures

T'(w) = <C(t)> <<A(t) |B(t')>>w= <C(t)> G(w).(II.4)

This approximation can be improved by evaluating <c(t)>
w
+
in the first 2 state (IRPA) instead of the ground state

(RPA) , The equation for G(w) 1s given by:

wG(w) - <[A(t)21",B(t)]>w + <<[A(t) ’H]I B(t')>>m ,

where H is the Hamiltonian, Similar equations can be obtained



for all higher order Green's functions from which a complete
set of coupled equations 1s obtained,

The time correlation functlons are

+-00

—. —-— '
Fapltst') =7/ J(w) ePPe i (t=t) g = ca(e)B(£") >,
(II1.5)
oo —iw(t-t")
FBA(t,t') = [ J(w)e dw = <B(t')A(t)>.
-00
where Jg(w) 1s the spectral function and g = 1 , K is the

KT
Boltzmenn constant, and T is the absolute temperature.

G(w + iy) - G(w - 1iYy)
eBw- n

J(w) = 1 P vy=0.

Exploiting the analytical property of G(w) 1in the complex

plane, we can write

+o
1 eBE

Glw = 5= / (fF-m a(m) S5 . (II.6)

In the nucleus the residual interactions are prevented from
destroying thc independent particle picture by the presence
of the energy gap in the spectrum of quasi-particles., Therefore

the spectral function J(w) can be writen as;

J(w) = I(wi) 6(w—wi) + I(—wi) 6(w+wi) .

Using the above expression for J(w) the expression for G(w)

takes the following form;
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Bw -Bw
_ 1 e - e - _
LG = g [ Tley) + Spp e ey 1

The Hesidues (Res.) of G(w) at the poles (w=twi) are given by

Bw.
Res.G(w) = Limit(w-wi)G(w)=§%(e L),
wERy wrey 6w (I1.8)
.. 1 i
Res.G(w) = lelt(w+wi)G(w)—7F(e -n)I(—wi).
(D:"'wi w"-wi

In many cases we need to evaluate the expectation values of the
product of two operators at the same time, Setting t=t',

equations 7 take the formss

+o0 ‘ +oo
<BA> = [ J(w)dw ’ <AB> = [ J(w)edew . (1I.9)

Eqns. 9, 10, and 11 then yield:

Res.G(w.,) Res.G(~-w.)

TFBAY = —g—— + ——p——
i i
(e -n) (e -n)
(I1.10)

_ Res.G(w;) Res.G(-w;)
1 _ i i
ﬁ'<AB> = ~Bow. + B, o

(1-ne 4 (l-ne )
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Taking the 1imit T * 0  (Since the thermal energy is very

small compaired to the nuclear energies) we obtain

<BA> = =2r Res.G(w)
n w==-w
i (II1.10)
<AB> = 427 Res.G(w)
w=+wi

If Green's function is written in the form G(w)= N/D(w),
then the eigen values are given by the poles in the Green's
function and the elgenvalue equation is given by D(wi) = 0.
Expanding D(w) around the pole ws , the residue of G(w)

at the pole is given by

N ’
Res.G(fl = —35TETT (IT.11)
WEZwg ow w=tw,

where

N= constant.

b1 Quasi-Particle Scheme (BCS approximation)

The elementary excitations in a system of non-interacting
(or independent) particles are simply desicribed by e(P)=p2/2m;
as the interaction is turned on, the propagation of a particle
in the system is affected by the presence of the other particles,
and as the particle moves it will push and pull other particles,
Thus the particle plus its surrounding environment will behave

like a new particle, characterized by a new normalized
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parameter m* (effective mass); the effect of the interaction

with other particles i1s all included in the new effective

mass, and the elementary excitations are now described by the
free-particle~like expression; e(p)=p2/2m* °

In this manner the original interacting particles are transformed
into independent quasi-particles, It is important to notice

here that the quasi-particle picture is based on a mathematical
device; 1ts main object 1s to keep the independent particle
plcture from being destroyed by the interaction. The independent
particle idea is very important for the Hartree-Fock treatment

of the nucleus in which the nucleons are described by independent
single particle wave functions,

The quasi-particles we face in nuclear physics are determined
by the short-range interactions (such as the pairing interaction),
and in this case the quasi-particle is just a mixture of particle
and hole near the Fermi surface, The transformation to a
quasi-particle description i1s effected by means of the Bogoliubov-

Valatin (B-V) transformation:

- - t = —a=(a, -
a, = u,c, S VaCuo , a_(a,ma) , —a=(a, ma),
(I1.12)
+ _ t _ a-m
a, = u,c, S v,C. ’ sa—( ) a
where az, a, are the quasi-particle creation and annihilation
operators, CZ' c, i are those for particles,

and o stands for (a,ma) y» and -a for (a,-ma), with a=Ja H
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the angular momentum, In order for this transformation to be
canonical (i.e., preserves the commutation relation), u, and
Vg must satisfy the following:
2 2
u + v, = 1; o (I1.13)
with this transformation the energies of the elementary

excitations or quasi-particles are given by:

2 .1/2

E, =[ (e-n)%+a% 172,
where €, is the independent-or single-particle energy, A

is the chemical potential (Fermi energy) and A 1is the energy
Zap,

The point is that the spectrum of elementary excitations
of the quasi-particles has an energy gap. This energy gap is
very important in determining the validity of the independent-
particle picture, The B-V transformation by itself is an exact
unitary transformation. The ma jor errors come from the neglect
of certain terms in the transformed Hamiltonian, which are
assumed to be small, in the approximation usually referred
to as the BCS approximation after Bardeen Cooper and Schrefer,
who introduced it in the theory of superconductivity., In this
approximation, the wave function is not an eigenfunction of
the number of particles operator, 1i.e.,

[H,N]#0,
with a resulting small effect on the energy eigenvalues of

the low=lying states, This can be seen from the exact solution
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of the pairing Hamiltonian in the j° degenerate system, i.e.

Ev - E0

which 1s independent of N, Here Vv is the seniority no.,

= % v (2Q-v+2), (II.15)

¢ 1s the palr degeneracy, 9 1s the strength of the pairing

interaction, E, is the ground state energy; —{!d , The quantity

0
vz represents the average occupation number of the original
particles, which interact with a short-range interaction,

which mixes the particle and the hole, so that this distribution
has a diffuse Ferml surface in contrast to the situation for

independent particles, where the system has a sharp Fermi

surface,

ct The Pairing Interaction

After separation of the self-consistent part of the
interactions there remains some interactlion between the
particles; the so called "residual interaction". This residual
interaction is rather weak, but it plays an important role
in determining various nuclear properties. The pairing
interaction i1s one example of such a residual interaction,

In this interaction two particles occupy atates related by
time reversal, i.e.(a,m ) and (a,”m ) , are coupled to
angular momentum J=0, since the J=0 state is much more strongly
bound than the others, so that the neglect of J#0 states is
a good approximation for the palring interaction, The short

range forces play an important role in the formation of bound
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pairs provided that the interaction is attractive in a sufficiently
large neighborhood of the Fermi surface (coherent interaction).

To see this, first notice that the energy of a particle close

to the Ferml surface is eF=vF(p-pF) where Vg and Pp are

the velocity and the momentum at the Ferml surface respectivlyué°

Now the Schrodinger equation for two interacting particles,

(E-Ho)w = Vy
or v =(E-HO)-1V¢
where
HO = the kinetic energy,
and V the interaction energy, and E=-A 1s the binding
energy of the system, In the momentum representation the wave

function y(p) for the bound state can be written as

+o .
v(p)=- J ﬁz—:‘*_-\eﬂ(%r;w(p')dp', (II.16)

where g (p) 1s the eigenvalue of Ho . Let V= -g = constant
in a 1limited range of p. In this case Y(p) will be approximately

constant, therefore equation (II.16) reduces to

d _ :
9/ ey = L - (II.17)

For small values of g; A will be small too, and equation

(IT.,17) will have a solution if

r dp
e (p)

or for three-dimensional case
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24
IETE?
is very large to compensate for the small values of g.

Substituting the value of e(p) near the Fermi surface we get

?m. pgdp' B
0 VFp' = ® + Pp “Ppax.

where p' = p - Pr+ This shows that in the presence of the Fermi

sea even a very weak attraction will produce bound palrs near

the Fermi surface.

In superconductors the interaction transmlitted by the
phonons is coherent at the Fermi surface, and it produces the
phenomenon of superconductivity. In nuclei, however no one has
been able to prove the existence of such a coherent interaction.
However the following, experimental facts indicate the existence
of palring interaction;

1- All even-even nuclei have J=0 ground states,

2- The energy gap in the elementary excitations is equal to the
energy required to break a pailr of J=0,

3- In the odd nuclei the odd nucleon is weakly bound while it
is strongly bound in the neighboring even-even nuclei where
it is assumed to form part of a pair.

Therefore the experimental data on the odd-even mass difference

can provide good information about the palring strength g. One

can choose g to satisfy the gap equations and to fit the odd-
even mass difference at the same time., The odd-even mass

difference is given by:
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B(N+1) + B(N-1) - 2B(N) = 2E ,

where N 1s the odd mass no., B(N) is the binding energy of
N nucleons and E is the quasi-particle energy.

The short-range forces causes two particles which occupy
time reversed states to scatter each other twice from their
common orbit to another orbit where they still occupy time-
reversed states (a,m,) and (a,-m;); in this way they scatter
to all possible a-levels and hence cause the particle density
distribution to be spherical, while the long-range part of
the two-body interaction tends to align the nucleon orbitals
and produce a deformation. This competition between short
range and long range forces determines the nuclear shape.
the pairing interaction has to be smaller than the field
interaction in order for shell structure to exist, but as
we s8aw, only a small residual interaction is needed in order
to create bound palrs near the Ferml surface,

There exit two approaches to the palring interaction;
the first is the general BCS or Hartree-Fock-Bogoliubov
treatment in which the single-particle energies and wave
functions must include the effect of the residual interaction
for the valence nucleons as well as the core nucleons, and
€, is a solution of the general Hartree-Fock(HF) equations.
In this case the palring interaction includes J#0, and A

and A are not constants but rather they change with the
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excltation energy. The second approach ﬁhich is adopted in
this work, 1s the phenomenological approach in which the

single- particle energies, € and wave functions are assumed

o ’

to be known in advance., Where €_, 1s taken from experiment,

a
and the contibution to the pairing from J=0 palrs i1s taken to
be a constant, g; the contributions from J#0 are neglected as
they are assumed to be small. This method gives good results,
since the experimental values of €, 1include all the neglected

effects; also A and A& are taken to be constant and one

uses their ground states values which are solution of the BCS

equations:
o,
2/g = I — , Q. = b+l/2 ,
b Ep b
(IT.16)
eb—x
N = ZQb{l- - )
b b

where the pairing constant g is taken to fit the odd-even mass
differences, and N i1s the number of nucleons outside a closed
shell. The above equations are valid for neutrons and protons

seperatly.

ds The Hamlltonian

We can seperate the Hamlltonian to three parts as follow:s

H=H,+ H_+ H

0" p Q-0
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where Ho is the single particle Hamiltonian (kinetic energy)

and 18 given by
= srebcbct | (II.17a)

Hp is the pairing interaction and is given by

H =-7 ZZZgEs sBc€+ §+c56 g ' (IT.17b)

3 aBg
Where the matrix element of the short-range interaction is

assumed to be larger in the states coupled to J=0 i.e.

|<(ja)2J=o|v|(j8)2J=o>|>>|<(ja)2J¢o|v|(jB)zJ#0>|

and approximately given by
<o-a|V|g-g> = -g ,

and HQ-Q is the quadrupole-quadrupole interaction. This part
of the Hamiltonian which induces the collective vibrations is
assumed to have the following forms:

H = - %EZZEZZXE(-)UqE(ay)qE (g8)c5T cg c§c$

Q-0 aBYSEu

- $XPPIZEIZ(14R(np)) (-) PP (av)a? (86)
aBydu

pt nt p n

Ca cB CGCY ’ (II.17c)
where R(n,p), interchanges n and p in all the expressions
which follow it in the term where 1t appears. Following KS
and others, - NO0 palring interaction between neutron and proton
18 assumed,the effect of p-n palring is assumed to be important
in light nuclel, A<70, although its effect is not very well

understood. There exist no reliable method to treat such
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interactions; their effects can be shown to be incuded in the
experimental values of €y o and hence they are not included

in the Hamiltonian. The pairing part of the Hamiltonian is to
be dlagonallzed by means of the BCS approximation after
transforming to the quasi-particle scheme by means of the B-V
transformation which leads to a new Hamlltonian in terms of the
quasi-particle operators aaand a; . After the BCS approximations
the number of particles is no longer conserved and therefors

a chemical potential A has to be introduced as a Langrange
multipler, its value to be fixed by requiring that <N> give
the correct mean value of the number of particles. The inverse

to the B-V transformation is:

+ t
c=u.a + s
o a“o aVal-q
_ +
c=u,a + s v.a .
o ao aa -a

We define the senlority zero palr operators for quasi-particle

as follow :

(IT.18)

the number operator 1is;

N = % a+a
a m o o
o

Their commutation relations ares
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+ Na
[Aa’Ab] = Gab(l- ﬁf) ’
a
+ t
[N_,A ] = 28§_,A
a'"b ab"a ' (II.19)
[Na,Ab] =-26abAa .

In terms of these operators the pairing Hamiltonian takes the

form:

where

_ 2 o 4. 2
U= g[ZQava(ea A) gQava] g gQauava) '

H.= Z[(e —A)(uz-v2)+2gu v_( ZQ_u_v )]Na,

1, a a 'a a'a aa'a
a (II.20)
Hy= 12/ u_v_(e_-M)-g( I0u v, )vA_ (u2-v2)1(A] + A )
2 a -9 b b b b a''a a a a’ '’
Hoes.m79 Zgyg Qy (u A -V A )(ub b~ b b)+gEZ/ u v, {N (u 52
2.t 2.1t 2
“VpAL) (U A v A )N }-g Liu v, u v, N 'a N, -

ab

By minimizing the ground state energy U or equivalently

setting H2=0, we find the following results:

Q E_—-A
2/g =L g , N= I (1~ 5
a a

—
a a

where
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_ 11 2,,2,1/2
Ea—[(ea A) T+A7]
€E_-A

a
E )
a

, A =g igauava '

2_1,,._
V-—i'(l

2_,_ .2
a ’ ua—l Va .

Equations (II.21) are known as the BCS or the gap equations,
the first two of which have to be solved samiltaneusly for A
and A , In order for a superconducting solution to exist, the
pairing constant g must not be very small and the level
separations of the single particle energies must not be very
large. This does not means that no pairing correlation will
exist for small g, but rather that no advantages can be gained
by transforming to the quasi-particle picture. The ground

state energy of the system i1s given by

U'= Z[(e.-1)2Q _v3-gQ_vi]- 82 N (11.22)
- a2 a a’a 9ava'" g ! :
where N 1s the number of particles,

The new Hamiltonian takes the form:
H'-U = ZEN_+ H
aa

a
, )
whiere the term Hre

res.

s, 18 usually neglected in the BCS approximation,
as 1t is small compared to the dlagonal part of the transformed

H, where the dliagonal part represent independent quasi-particles
with the exciltation energles for seniority zero, J=0+ states

glven by w,=2E, , In this way one can construct n states,

where n 18 the number of levels in the major shell. One of these
states 1s a spurious state introduced by violating the conservation

of particle number., It is well-known that each time a conservation

Tule 18 violated a spurious excited state will appear.
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If the rest of the Hamiltonian is included, the number of
particles 1s again conserved, and the spurious state disappears.

The pairing Hamiltonian for both kind of particles is:

= Exnb g
-U ig[Ea o+ H o1 - (11.23)

After transformation to quasi-particles by the B-V transformation,
the quadrupole Hamiltonlan can be expressed in terms of the
following operators:

alabom) = % z (abJ|m m M)a at , a(abam) =(aT(abomy)?

.i.
B B
(II.24)
o b+mB +
A" (abdM)= £ X (-) (abJ|mamBM)aaa_B ,
a B

where (alemam M) 1s the Clebsch-Gordan coefficient. The

B
following recoupling formula will introduce terms in the

Hamiltonian which contains Racah coefficients W(abJc;LK)s

= II VQ Q W(ach LK)[a x(a
Kq
these terms are neglected as they are small compared to other

[(aaxaB)ﬁxa ]

B xa ) ]a;(II.25)

B

terms. The final result is

£

- - g 13 ML & & A8t

H= TE_N_ zzzzzz%a g (bd) g~ (ac) { (=) ' Up U2 A> (bd2-p)
a abcdug

abT (ac2u)+ —Ugd gc & (ba2u)ab (ac2u) + X - )“Ugd gc

XAE(bdZu)Ag(ac2u)+UEdV§c( )uA£+(bd2—u)A€o(ac2p)+ngU§c

xa5% (ba2u)ab (ac2y) -5 (-) 94725 uovgdvgc ﬁé(—)KW(bdac;zK)

251 (abkq)a® (cdkq) }- L~ TZIZE(1+R(pn))x™Pg™(bd)qP (ac)
10
abcdu

x{ (- )“l 0 uP a (bd2-u)Ap (ac2u) + U Up At (ba2u) AP (ac2u)

bd ac bd
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+(- )“l N yP AM (baz2pu) AP (ac2u) + (<) PutvP A (baz-u)

bd a bd " ac
o P 4 p e, d-a P
XA (acZu)+Vde ° (ba2u) AP (ac2u) -5 (-) povgdvac
<2z (-) X (bdac; 28) A™T (abkq) AP (cdkq) } (II.26)
Kq
where
£, £ €
Uab uavb+ ubVa ’
vE = uoub £,€
Vab™ YaUp~ Vavp

and x is the strength of the quadrupole force; its value is
to be fixed by fiting the energy of the first 2t state with
the experimental value, and

a-b

q(ab) =<a||a§r2Y2u||b> = (-)° “g(ba) , (I1.27)

is the non-dimentional matrix element, and a, is given by

m is the nucleon mass and We is the harmonic oscillator
frequency, and a,B8,8, and y are the harmonic oscillator
single-particle wave functions. Applying the Wigner-Eckart
theorem to g(aB) yields:

(b2a|mBMhma)

2. 2
q(aB) = (a] |aZr“yY, | |b) , J=2
v2a+l © 2u ’

C Mg 2a+1.1/2
[-g——]

but (bZaImBM m,)=(-) (ba2|m3-ma-M),

therefore

q(aB) =1— s g (ab2|m -m M) g (ab) . (II.28)
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The quadrupole P-N interaction has the effect of lowring

the energy of the 2t states; neglecting it will result

in increasing the energy due to the increased symmetry
energy which is associated with the independent polarization
of the neutrons and protons. The exact commutation relation
for the pair operators can be obtained by using the

recoupling formula (Egqn.II.25); the result is (Appen. B)

+ _ _(_yatb-J
(A (abam) ' (carq)] = “Smglox (acbpa™ () $aabpc!
+P (ab) P (cd) (=) 2TIHIHK oy TRFD ZTFIY
Lu
Kdb o)
X{aJL}(LKJquM)A(adLu)6cb , (II.29)
where
P(ab) = (1 - (-)2*P*Rr(ap)),

and R(ab) is the exchange operator; R(ab)w(ab)=w(ba).

e: Collective Operators

The collective vibrations can be described by means of

collective operators B and BT

IM M’ which obey the following

equations of motion

t _ _.aT _
[BJM,H] = ~wBjy [BJM,H] = WByy s (I1.30)

where w is the energy of the vibrational excited state.The

ground state wave function is defined by the set of equations

BJM|O> =0 (I1.31)
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The vacuum |0> just defined 18 different from the BCS
vacuum and is believed to be better than the BCS vacuum. The
excited state wave function of angular momentum J 1s given

bys
1.
Byyl0> = |aM> . (I1.32)

This collective operators can be expanded in terms of A(ab)

and A+(ab) with real coefficients;

t _ £ gt _ _yJ-M E 3
Bam~ 2Zﬁ§[“’(ab)A(abJM) (=) "0 %ap) 2 {abg-m) ] (11.33)
where
g - €
w(ab) - <O|A(abJM)'JM> ’
£ _ (_yJ-M
¢(ab) = =) <0|A(abJ M)IJM>
The amplitudes Y and ¢ are defined in Ref, 2. The
+
expression for BJM above 18 obtained as in Ref,2 with

the help of quasi-boson commutation relation; see Eqn, (III.1)
If the exact commutation relation had been used (see RPA

approximation, Sec. d )the result would be

1 £ A&t £ At

Biv™ 3 igg ag W iap) 2 (abam) ~ )7 ¢(ab) (abJg-m)] 7
where £ £ £ _

-f-
b ’ n; = <aja;> (I1.34)
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These quantities will be drived later on when we treat the

RPA approximation,

f1  The Reduced Transition Probability B(E2)

The ground state reduced transition probability B(E2) 1is
given bys

B(E2) = ZX|<0|Qzu|2+M>|2 , (II.35)

Mu

where Q2 1s the quadrupole operator, In terms of the

operators A(ab) and AY(ab) the quadrupole operator takes the

form: £
€f giab) 3 £t v, €
Q, = LI —— uz. (A +(=)"A ) (11.36)
2y abt 2/5 ag ab ' (ab2yu) (ab2-yu)

for ¥ = M = 0 equations II.35 and II.36 yeild:

- 1 £ 13 £ g 2
B(E2) = —y |IIZelqtablug (Wi v+ )1 (II.37)
4ao abg
where e, 1s the effective charge (e?sl. eizz). The above

result 1s obtained after appling the Wigner-Eckart theorem

to the matrix element q(ab) and using the definition (II.2u4)
for the operators A(ab) and A*(ab). Terms which contain the
scattering operators A°(ab) make zero contribution, since
these operators have non-vanishing matrix elements only
between states with definite numbers of particles 1n contrast
to A(ab) and AY(ab) which connect states with different

number of particles,
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III. The Approximation Methods

In the equation-of-motion methods, one calculates the

dynamical observables by calculating the appropriate
relationships, rather than calculating the absolute wave
functions. The most interesting quantities in any nuclear
system do not depend on a knowledge of the wave functions
themselves, but rather on certain relationships between
them. Thus the equation-of-motion methods reduce the labor
involved in calculating a certaln observable, as calculation
of the entire complicated wave function 1s not required by
these methods. To linearize the equations of motion one must
depend on some kind of approximation scheme. The
approximations QBA, TDA, and RPA which are studied in this
work all lead to linearized equations of motion, In
particular the equations of motion for the Green's functions
can be linearized (decoupled) by means of the above
approximations,

as The Quasi-Boson Approximation QBA

In this approximation a palr of particles (Fermions),
their angular momenta coupled to integral J, are treated as
bosons; this means the Pauli principle is neglected,
Therefore one expects QBA overestimates the number of
particles which participate in a certain collective states,
As a result of this approximation the enhancement predected

for the reduced transition probability B(E2), 18 larger than
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the single particle estimate. The effect of the Paulil
principle will be demonstrated in (III.d). The commutaticn

relations used in the QBA are:

[A(abJM)'AthKQ)] - 6JKan(Gacébd - (‘)a+b+J5ad bc) ’
[Aa,A;] = éab ,

[Na,Ag] = ZsabAZ , (III.1)
[N_,A ) =-28_,A .

For the first two relations to be valid to a good
approximation, N_ /R  must be small i.e, the number of
particles in level a must be smaller than the number of
available states, It 1s clear from the above commutation
relations that the different modes of the system are well

+ +
separated, 1.e. J=0 and J=2 modes are independent.

+
bs The First 0 , Seniority O State

The exited states for this mode of vibration are
usually described by the independent quasi-particle
Hamiltonlian where the excitation energies of the system are
given by u)=2Ea. If only the important part of Hres. is

included, a dispersion relation for these states can be

obtained., A pair 1s two nucleons with theilr angular momenta
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coupled to a resultant angular momentum J=0., The lowest
energy state of the system i1s that in which as many nucleons
as possible are paired. The number of unpailred nucleons 1is
referred to as the senlority of the state, Addition of extra
palrs to the system wlill not change the angular momentum or
the seniority of the state. Therefore seniority 0 states can
be generated by succesive applications of the pair operator
A% to the vacuum, and are given for the Jn configuraticn as

a
follow:

lo> = n=0 n=2 n=4 _________ 2Q0-2 n=2Q V=0

where n 18 the number of particles, and 2Q 1s the maximum
number of nucleons that can occupy the j-level. The
Hamiltonian for weakly interacting quasi-particles is given

bys (see egn. II.20)

2 2 2+t ‘
—vaAa)(ubAb-vbAb) . (IT1I.2)

. _ 2t
Hp—gEaNa gié/ﬂagb(uaAa
where other terms have been neglected, as they are assumed

to be small compared to the second terms in this Hamiltonian

Hé. We define the following Green's functions:

GO (w) = <<A_(&)|al(e)>> , =1,
(ITT.3)
62l w) = <<al (o) [af(en)>> .
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The quasi-boson commutation relations lead to the following

motion for G and GV (see app.G)

- 9/ (vi62,ulee)
(II1.4)
(422,065 1= S/ 260,26
T A
Now let
D, = i/ﬁg(ugcgb - vicgg) , (III.5a)
and
B, = E/ﬁg(vicgb - uiGgg) . (III.5b)

+
The equations for G(® ) and G (¥ ) then take the form:

gvQ u2 gv§d v2

G° (w)= 6ab - ._aap _ a_a g
ab 2m(w-2E])  (w=2E_) b Zw—ZEa) b '

-g/ﬁ_vz g/ﬁ_uz (I11.6)
T (w)yz —2a p _ 2 "aap |
ab (w+2Ea) b (w+2Ea) b
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Using the definitions of D and B. we can find two coupled

b b
equations for Db and B. ,namely:

2 w(ui-v )+2E (u:+vg)
1l/g Db=Cbub- 29 D

mN

(IT1.7)

2 -w(uz—v2)+2E (u4+v4)
1/g B =C, v2-1o_ —22 23, _5g a_a_aa a g

9 BpTCpVpTtia T 3P0y 2 .2 b °
a a w -4Ea

and by using tQ_/2E_=1/q9 ,
5 a a

the result can be written

2
an+bBb b b’

_ 2
bDb+de—vab ’
where

w +2wE (u -v ) -8E

(ITI.8)

2 2 2
a=1q, — “a%a
a (w - Ea)

Q’NDJ

2
8Ea

b=IQ
a a 2E (

2

2

a
2

w 4Ea)

)-8E

)

(ITII.9)
2 2 2 2
—2wE, (u -v a%aVa

d=ZQa 5
a 2Ea(w -4E

NN

Q-

_ b
and = 2T (e-2B)g °
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Figure 2. The first excited (J=0+ and seniority
zero) states in Sn isotopes plotted against the

active number of neutrons N.
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The poles in the Green's function are determined by the

solvability condition for the homogeneous equations; i.e.
ad=b (I11.10)

Substituting the above values of a,b, and 4 in equation

(II1.10) we get the following eigenvalue equation:

w2-4(A2+nanb)
rr Qagb 5 5 5 5 =0 , (ITI.11)
ab 4EaEb(w -4Ea)(m —4Eb)

where

ni= ei- A .

From the above eigenvalue equation we see that for each

w = + wy there exists another solution at Wiy and hence

Res G(w) is not zero.

W==Ww.
1

cs The Collective Motion

2
The I% Y-y force 1s decisive in producing the

collective 2* states, It has two effectss the first 1is to
introduces a dynamical correlation between the effectiv:
nucleons, and the second 1s to produce the effectlive charges.
Since its action is not limited to those effective orbits,
therefore neglecting the contributions from far away shells
1s assumed to be included in the effective charges. If one
trlies to use the real charges instead one must include the
far away orblits; this increases the dimensionality of the
problem, but leads to the same results 34 . The following

Green's functions are needed
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Gop (@)= <<A(ab)|A(ab) A
n+ _
G p, (w) <<A( b)lA(ab) ,
(I11.12)
pn = p
Gap (W)= <<A b)lA(ab) D’
Gpnf(w) <<A [A >>
(ab) (ab) "
Their equations of motion are:
n nt
<[A A 1> n n n n
n ,.n - (ab) """ (ab) _X
(w-Eab)Gab(w)— > I—dq(ab)Ua ﬁgq(cd)U
n+ n x"P 0 P
X(ch + ch) I——q(ab)U qu(cd)U
c
X(an+ + an )
0 n n n ot n
(m+Eab) ab(w)— ——q(ab)U ig q(cd)U (G cq t ch)
xop n n p
+ ——q(ab)U zzq(cd)u (c;Pn+ + 6B -
cd

Similar equations can be obtained for Ggg(w) and Gpn+(w)
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Now let

R" = IZqled)Ul, (Gog(w)+Gh ()

cd

rRPI= rZq (cd)Upd(G Tw)+Gpn(w)) .
cd

The equations of motion then take the forms

n nt n
<[A Ayl 1> qlab)u
_=n n _ (ab) """ (ab) _ ab n_n pn_gn
(w Eab)Gab(w)— o 10 (X'R™ + XF'RYTY)
q?ab)Un
(@+ED ) GOY ()= —5—22 (x"&™ + xPPRPT)
Q b) (IIT1.15)
gia uP
(w=EP )GED (w)= - ___TE_EE (xPPR™ + xPrRPT) ,
q?ab)Uab

(w+Ep )G Ym)- (xPPR" + xPgrPR)

These equations of motion are obtained with the help of bouscn
commutation relations. The first two equations reduce to the

following equation

n pn
RY(1 - 267 - E"RP" = P,

and the last two equations reduce to the following equation

pn p
RY EfP - (1 - LPypPh 2 o,
5
where Eab = Ea + Eb ’
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£2 g2 & n2 n
g(ab)U_, E g(ab)Uu
fbosy 3 ab gb , = nab , E2(p,n) . (III.15)
ab (Eab - w°) ﬂ(w-Eab)

The poles in the Green's function corresponding to the
collective motion are given by the condition for the

solvability of the homogeneous equations i.e.

n P xpn2

(1 3 £7)(1 g £) 55 ff 0 . (I1I.16)

Following KS the strength of the quadrupole-quadrupole
forces between neutrons, protons, and proton and neutron are

n
P = X, It xpn iv teken

taken to be equaly 1.e. X% = XP = X
to be different from the other and such that it is much
smaller than they are, then the system of neutrons and
protons tends to polarize independently causing or increase
in the energy of the 2+ state above the observed value; also
B(E2) is then not sensitive to xP?, Therefore xP? has to be
of the same size of x" and Xp. The eigenvalue equation for

xpn=o. seperates into two equations each for each kind of

nucleons 1i.e,

£2 £2 &
5 - gp 22 Tabtap '
X ap  (E52-42)

ab

and for X? = xP = XP® = X, we get
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£2

£2.8
I q(ab)UabEab

abk (EEZ -w?)

xXju

. (ITI.17)

The collective solution is that value of w which is smaller

than the minimum Eab‘ In the deformed region where X is lerze

no solution exists.,

To evaluate the amplitudes,p nd 4 we start as
ab) (ab)
followss
£ gt

- g
> = 2nRes.Gab(w)

4 (ap) * (ab) W=+,
1

Now

qu><Kq|A |0> (III.18)

ab)" (ab) (abJdM)

gt = £
<0|A A |o> = zI<0|A abJM)
Kq

Applying the Wigner-Eckart theorem we get

<xq|abl _Jo> = (QIKIOMG) ey yaEt yo)
(abJdM) JIRFT (abJ)
(0gk|oMg) = (-)7*M 2k+1 (k30 |-gMO)
8.8
(o) T e ()TN 9KOMg
/ZRFL
therefore
)23 87xk%mq £t
<kq|a% 0> = (- (K| [a7 | 10)
2 Tana) V2371 (abJ) ’
hence
<0|ab att ylo> = <0|a

JM)IJM><JM|A

(abJM) 2 (abaM (ab (a bJM)'o> ’
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now

£t _ £t _ .8
<IM[AT pgm) 10> = <[BgAiopnn 1> = Viap) -

Therefore we arrive to the following results

g2 _ 13
U] = 2mRes.G>, (w) ’
(ab) ab’ i,
1 (II1.19)
£2 __ 2T 3
®{ab) =7 7 ReS'Gab(zl_wi .

To find Res.GWw), we solve for R® and RP® i.e.

- XP
n 1 Sf
S X,n
1- Z(f +£P)
o éprn
RP"= .

1- %(fn+fp)

Substituting these values of R™ and RP" in equations
(ITI.15) we get n2 n2

(1 + 6_.) q(ab)U,,,
n _ ab X ~
Gab(w)— o - ) X, .n_ .p. ° (III1.20)

2w(w—Eab) lOﬂ(w—Eab) 1- g(f +£*)
Now n2 n2

q(ab)U
Res. ng(w) = n 3b 9,.Nn, P !
w=tmi ZN(M-Eab) sa(f +£%) m=iwi

where Wy is the solution of the eigenvalue equation,
and from now on we will use tw instead of tw, . The

results are:
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n2 n2

n
Res.G, (w)
ab q(ab)u 3 _
teyp o ab__ rsp(w)]L (III.21)
- 2
n i4nw(w+Eab) £
Res.G, (w)
ab
-w
where £2 £E2 ¢
g qg(ab)U_, E
Plw) = II —p ag gb
ab (Eab - w)
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d: Random Phase Approximation (RPA)

Linearizing the equations of motion by means of the RPA

1s much better than linearizing it by means of QEA., In QBA

extra terms in the commutation relation have been neglected

on the assumption that they are small., They consist of terms
like a§+ag . If these terms are included, higher order

Green's functions will be generated which have the form
r%w) <<ang Ent IAE+ pS
8" (ab) (ab) !
these can be reduced to lower order Green's functions by

means of the RPA:

£
I'(w)= <a£+ g gb(w) . (III.22)

The extra terms in the equation of motion of a Green's

function are simlilar to the original terms obtained in QBA

€+ g > After collecting

except for a multiplicative factor <ag
terms we get a set of equations similar to equations (IIT.15)
except that now the right hand side is multiplied by

(1-n -ny ), where nf =<a§ § and where the average 1is
taken in the ground state., This can be improved by evaluating

n in the first 2t state which leads to the improved random

1
phase approximation (IRPA). In this approximation the effect
of the Paull principle is included; therefore this method

will predict a smaller number of particles is participating

in any collective motion than is predicted by QBA,., This has
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an effect on the theoretical prediction of the enhancement
over the single particle estimate for the reduced transition
probability from the 2+ state to the ground state.

The relations needed here are (see Appendix D )

<a§+ag> = ng GaB
(III.23)
3 gt _ _(_yatb _E__ &
<[A7.p) rBlap)] > =(8,c8pa™ () $,a%bc) (102 np)

The quantity n, represents the quasi-particle average which
gt £E

can be calculated (as in Appendix Ea ) from <AT.p)2(ab) >

After applying the Hartree-Fock factorization to the product

of four operators the result 1s

. 1 £2 = 1 III.24
na= N, g ¢(ab)Dab ’ Dav™ T7 Sab g ( )

The amplitudes w;ﬁb) and ¢2§b) for this approximation will
be given by

£2 £2 E2 E2 .
‘ b) U .

1b(ab)} = alab) abazb 5 | Plo)] L , (IT1.25)
&2 2w(w ¥ E2)

¢(ab) ab

where £2 £2 £ &
& a(ab)U B p2ap

P(w)=22 ’
2 2,2
a g &
%ab = 1 - Na™My ’
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£2 £2
N = II¢ D .
e} ab (ab) "ab
In IRPA we need to evaluate n;£=<2|a§+a§|2 > which is

obtained from <2|A%;b)A%ab)|2 > .The results are (Appencix-Ea)

g2 E2 PN =
EL0 {ap) ** (ap)) 177E) *¢ (ap) Papy

W &
fa = N3 £2 £2 ’
NG T* ﬁ(w(ab)+¢(ab))Dab

(I11.26)

where

82 _ £2 £2 & £2
No - gg[(w(ab)+¢(ab))aab +¢(ab)]Dab *

The validity of QBA depends on the smallness of n, - Asg

an example, the values of n, are listed in table 1. for

a
202 124
Hg and Sn « The values of n, are plotted againest

(ea‘x) in Figures 3(a,b). For comparison with particle

2
distribution v , the later is plotted in Figures 3(c,d)
a
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Table 1.

The values of n; for Sn124 and ngoz isotopes.

114202 a | hg,p f9,2 113,20 P3sp f5,5 Py,
n! | .011 .015 .007 .171 .319 .29
a | dg5,5 99,2 S1s2 P11, 43,
124
Sn
n! .05 J122 173 .347 .309
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Figure 3. The values of n; and vi are plotted

124 2C2

against (sa - A) for Sn in (b,d) and for Hg

in (a,c).
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If the exact commutation relations are used for the J=0
pairs the equations of motion of Green's function will
contain a factor (1-Na/9a) on the right hand side. This
factor will comes in as a result of the RPA decoupling
(see appendix G). To examin the validity of the QBA in
the pairing part of the Hamiltonian, we need to calculate
N =<a;a&>. This can be done (see appendix E) by applying

a

the Hartree-Fock factorizationa to <AZA$:5 the result

is given by:

l<A+A‘ > . (II1I.27)
a 2 "aa
110

As an example the values of Na/Qa for Sn are listecd

in table 2 .

Table 2 .
110 .
The values of Nj and Nj/Qj for Sn isotope.
J ds /5 972 S1/2 h1/2 d3 5
N, 1.50x1072]1.10x10"2|0.36x10"2]0.50x10"20.26:20"%
-2 -2 -2 -2 -2
N;/2[0.50x107°|0.28x107%|0.36x107|0.08x107%|0.13x1¢

Similar results are obtained for the rest which indicatce
that QBA is a very good approximation for J=0 Hamiltonian.
This also shows that J=0 pairs are strongly bound, there-
fore they behave mor like Bosons. Similar calculations

for J=2 pairs show that QBA is less valid.
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es Tamm-Dancoff Approximation (TDA)

This method of linearizing the equations of motion can
be classified as a higher order phase approximation. In this
approximation the Hamiltonian is diagonalized in the sp=ace
spanned by a limited number of shell model states, It
underestimates the reduced transition probabilities for the
low=-1ying collective states. For this approximation the

collective operator

T+ _ TE gt
By = 1/2 ggg Y(ab)2{ab) ! (III.28)

where T refers to TDA and

£
%(ap)y = 0

.

The exclited state | J=2 > 1s therefore given by
_ STt
|oM> = BJM|o> .

Thus we obtain Tamm-Dancoff results if we set ¢%ab)=0 or

equivalently G*t=0 in the previous formulas (Eqns, III.15),
since the solution w=+w, for the eligenvalue equation is
assoclated with at and the negative solution with A in the
expression for B+1n the KPA., In this approximation one daes
not expect the resulting elgenvalue equation to admit

negative solutions which implies Res., GT=O. Hence setting

Gt=0 we get
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n nt n
(w=ED,)GL 7 (w) = “Pap) Py 17 qrtab)Ua‘b(x“R'+x“pR' )
ab’ “ab 27 10 n np’ '
‘ qRab) uP

_=P npT _ ab np_,., P
(w Eab)Gab (w)= ) (X R_+X Rﬁp)'
where

n n nT

) —

Rn = EZq(cd)Uchcd(w) ’
cd

' p p npT

Rnp_ ZZq(cd)Uchcd (w)

cd

From the first equation we get (for x"= xP = xP? =x )

R oo E(-p7x)
T 1-pPx-p"x

and from the second equation we get

Py
& = _bPxrF '

NP 1 p™x-bPx

where
£2 £2
q(ab)Uu
bE = zz.__g___ig ,
ab (Eab-w)
n n
Pt o= q(ab)Uab
n
n(w-Eab)

n
Solving for G b( w ) we get
a
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n2 n2
T () 1+8 .y, _ Xa(ab)Uyy, i 1 ’
ab* T n _.n . n,_.p
2n(w-Eab) 107 (w Eab) 1-b ' X-bX
therefore n2 n2
q(ab)Uab 1

Res.Ggg(+w)= — 5 3 [ZPETw)]- '
m(w-Eg )< &
nT _
Res.Gab(—w)— o,

where £2 £2

ET g(ab)u
P(w)= LI ag i

.
ab (w Eab)

Therefore

£2 £2
2g(ab)Uu ET
£ET2  _ ab -1
Viam = — [ZP(w)] ~ .

3
(w-Eab) g

The expression for B(E2) 1s the same as before except now we
use w%gb)instead of w%ab)and put ¢%ab)=0 .

The eigenvalue equation corresponding to the collective
motions, for this case is given by

1- " + P )x =0,

substituting for b we get the following results:

£2 g2

10 q(ab) Uy,
X = IXL ——ET————— .

abg Eab- w

From this eigenvalue equation we see that the negative values
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nT
of w are not solutions. Therefore Res,G(-w)= 0 , niey

implies that 4%,p)=0.The difference between this TDA and RPA
1s thlss the collective operator Bt is expanded in terms of
A+ only in TDA, which 1s equivalent to expanding the wesve
function of a certain excited state in terms of two quasi-
particles states only neglecting the two quasi-hole states,
while these two quasi-hole states are included in RPA where
the two kinds of states are treated symetrically. Thus the
negative solutions are associated with the operator A(ab)
while the positive solutions are associated with the operator

A+(ab) .
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Table 3. B(E2+0) values in units of 10-48cm4, calculated
for each approximation and compared with the
experimental results (the last column). These
results are calculated for the parameters given
in tables 11-14.

wexp. Isotope A QBA RPA IRPA TDA Exp.

1.450 28Ni30 58 .033 .021 .012 .014 .C72

1.333 28Ni32 60 .064 .039 .023 .025 .091

1.172 28Ni34 62 .096 .054 .032 .032 .083

1.340 28Ni36 64 .094 .056 .031 .034 .087

0.992 30Zn34 64 .636 .439 .332 .158 .170

1.039 30Zn36 66 .604 .418 .311 .159 . 145

1.078 302n38 68 .551 .381 .278 .154 .125

1.040 32Ge38 70 .665 .456 .329 .189 .172

0.835 32Ge40 72 .864 .529 .377 .199 .230

0.596 32Ge42 74 1.092 .638 .463 .194 .317

0.563 32Ged4 76 1.010 .765 .507 .184 .263

0.635 34Se40 74 1.213 .617 .436 217 .210

0.559 34s5e42 76 1.225 .680 .489 .210 .480

0.614 345e44 78 .970 .689 .494 .098 . 385

0.666 34Se46 80 .804 .613 .465 .188 .283

0.655 34Se48 82 .811 .551 .421 .189 .213

0.450 36Kr42 78 1.440 .750 .492 .202 .10

0.618 36Kr44 80 .900 .666 .468 .189 .340

0.777 36Kr46 82 .638 .499 .398 .177 .180

0.880 36Kr48 84 .545 .408 .331 .178 .150

1.078 38s5r4s8 86 .337 .283 .266 .135

1.836 38sr50 88 .313 .262 .160 .185 .130

2.180 40Zr50 90 .110 .098 .056 . 080

0.934 40Zr52 92 .165 .151 .179 .071 .790

0.920 40z2r54 94 .295 .255 .234 .113 .790

0.871 42Mo52 94 .208 .160 .139 .087 .270

0.778 42Mo54 96 .379 .273 .214 .129 .300

0.787 42Mo56 98 .565 .382 .291 171 .27C

0.536 42Mo58 100 1.125 .653 .495 .212 .610

0.833 44Ru52 96 .250 .157 .106 .105 .250

0.660 44Rub54 98 .476 .262 .195 .146 .480

0.540 44Ru56 100 .807 .397 .327 .183 .570

0.475 44Rub58 102 1.150 .599 .474 .215 .730

0.556 46Pd458 104 .866 .479 .370 .202 .550

0.512 46Pde60 106 1.077 .620 .473 .225 .650

0.434 46Pd62 108 1.400 .794 .586 .244 .7490

0.374 46pPd64 110 1.730 .960 .671 .258 .360




Table 3. (Continued)
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wexp. Isotope A QBA RPA IRPA TDA Exp.
0.633 48Cd58 106 .631 .379 .275 .168 .470
0.633 48Cde60 108 .718 .453 .332 .187 .540
0.658 48Cd62 110 .752 .497 .370 .200 .500
0.617 48Cde64 112 .853 .555 .413 .211 .540
0.558 48Cd66 114 .976 .605 .444 .217 .580
0.513 48Cde68 116 1.060 .622 .452 .219 .600
0.562 52Te68 120 1.162 .752 .564 .269 .550
0.564 52Te70 122 1.080 .702 .530 .264 .650
0.603 52Te72 124 .921 .617 .466 .253 .390
0.667 52Te74 126 .736 .516 .386 .236 .530
0.743 52Te76 128 .554 .407 295 .211 410
0.840 52Te78 130 .395 .306 .214 .181 . 340
0.441 54Xe74 128 1.610 .929 .730 .339

0.538 54Xe76 130 1.165 .736 .566 .314 .480
0.668 54Xe78 132 .797 .550 .405 .281 .320
0.850 54Xe80 134 .497 .375 .255 .238 .300
1.320 54Xe82 136 .164 .154 .073 .143

0.464 56Ba76 132 1.750 1.040 .800 .390 .730
0.605 56Ba78 134 1.179 .783 .578 .356

0.818 56Ba80 136 .732 .542 .371 .313

1.426 56Ba82 138 .218 .205 .122 .185 .300
1.257 50Sn62 112 .328 .249 .168 .135 .180
1.299 50Sn64 114 .351 .267 .179 .145 .200
1.293 50Sn66 116 .364 .275 .181 .149 .210
1.230 50Sn68 118 357 .268 .178 .145 .230
1.171 50Sn70 120 .333 .250 .169 .138 .220
1.140 50Sn72 122 .294 .225 .152 .127 .250
1.131 50Sn74 124 .240 .188 .127 .111 .210
0.790 58Ce80 138 .954 .702 .488 .368

1.596 58Ce82 140 .279 .267 .111 .242 .280
0.650 58Ce84 142 1.250 .872 .652 .400 .290
1.570 60Nd82 142 .170 .166 .193 .150 .340
0.695 60Nd84 144 1.283 .965 .761 .426 .440
0.453 60Nd86 146 2.300 1.590 1.260 .493 .84°0
0.747 62Sm84 146 1.270 1.018 .858 .436

0.551 62Sm86 148 1.990 1.540 1.271 .502 .290
0.334 62Sm88 150 3.810 2.820 1.977 .574 1.320
0.637 64Gd86 150 1.870 1.570 1.304 .515

0.155 760s112 188 10.550 5.210 3.640 .910 2.82C0
0.187 760s114 190 8.270 4,480 3.270 .885 2.550
0.329 78Ptll6 194 3.000 2.180 1.790 .701 1.940
0.356 78Pt118 196 2.470 1.790 1.430 .656 1.270
0.408 78Pt120 198 1.820 1.360 1.042 .592 1.350
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Table 3. (COntinued)

wexp. Isotope A QBA RPA IRPA TDA Exp.
0.426 80Hgllé 196 1.290 1.047 .952 .469
0.412 80Hgll18 198 1.270 .983 .820 .458 1.130
0.368 80Hgl120 200 1.312 .948 722 .442 .850
0.439 80Hgl22 202 .854 .657 .447 .376 .590
0.430 80Hgl24 204 .621 .482 .297 .297
0.960 82Pbl20 202 . 267 .239 .151 .186
0.899 82Pbl22 204 .193 .175 .087 .148 170
0.803 82Pbl24 206 .081 .077 .025 .072 .130
48

Table 4. B(E2) values in units of 10~ cm4, are listed for

each one of the approximations QBA, RPA, IRPA and TDA. The

2 48cm4, are listed in the

experimental B(E2) in units of e“10~
last column. These values are calculated for the paramzters

given in tables 15-20.

Isotope A QBA RPA IRPA TDA Exp.
28N1i30 58 .114 .066 .041 .037 .072
28Ni32 60 .130 .082 .054 .042 .091
28Ni34 62 .146 .087 .057 .044 U883
28N1i36 64 112 .070 .043 .039 .337
30Zn34 64 .682 .452 .343 .068 170
30Zn36 66 .622 .414 .308 .165 .145
30Zn38 68 .496 .336 .249 .145 125
32Ge38 70 .619 .433 .321 <177 .172
32Ge40 72 .910 «515 .360 .200 .230
32Ged2 74 .997 .686 .480 .082 .317
32Ge4d4 76 .872 .946 .562 .169 L2563
34Se40 74 1.290 .617 .436 .221 .210
345e42 76 1.149 .752 .522 .201 .480
34Se44 78 .857 .746 .531 .184 .385
34Se46 80 .698 .592 .467 .174 .283

34Se48 82 .667 = .457 .351 173 .213
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Table 4. (Continued)

Isotope A QBA RPA IRPA TDA Exp.
36Kr42 78 1.404 1.010 .571 .202 510
36Kr44 80 .814 .719 .511 .179 . 340
36Kr46 82 .547 .460 .388 .161 .180
36Kr48 84 .444 . 347 .294 .151 .150
38Sr48 86 .302 .265 .288 .125
38Sr50 88 .313 .262 .160 .185 .130
40zr50 90 .227 .203 .120 .156
40Zr52 92 .256 . 245 .312 .103 .790
40zr54 94 .403 .369 .356 .146 .790
42Mo52 94 .289 .254 .270 .112 .270
42Mo54 96 .497 .410 .350 .157 . 200
42Mo56 98 .741 .529 .405 .207 .270
42Mo58 100 1.351 .802 .600 .242 .610
44Rub52 96 .306 .232 .210 .117 .250
44Ru54 98 .580 .398 .325 .165 .480
44Ru56 100 .992 .568 .456 .206 .70
44Ru58 102 1.340 .734 .578 .236 .730
46Pd58 104 .975 .560 .438 .213 .50
46Pd60 106 1.167 .677 .525 .233 .€50
46Pd62 108 1.478 .835 .628 .250 .740
46Pd64 110 1.788 .998 .704 .262 .860
48Cds58 106 .673 .408 .300 .170 .470
48Cd60 108 .747 .467 .345 .186 .£40
48Cdo62 110 .772 .503 .375 .198 .5C0
48Cd64 112 .866 .562 .417 .208 .240
48Cd66 114 .974 .614 .450 .215 .580
43Cd68 116 1.030 .627 .457 .216 .CCO
505n62 112 .328 .249 .170 .134 .180
50Sn64 114 .358 .272 .182 .146 .20C
50Enéo6 116 .371 .282 .186 .152 .210
508n63 118 .365 .277 .185 .149 .230
508n70 120 .343 .260 .176 .142 .220
508n72 122 .306 .233 .157 .132 .250
505n74 124 .257 .198 .132 .116 .210
52Te68 120 1.210 .800 .598 .280 .259
52Te70 122 1.140 .753 .567 .275 .650
52Te72 124 .975 .663 .500 .264 .390
52Te74 126 .782 .555 .413 .247 2320
52Te76 128 .596 .443 .323 .223 .410
52Te78 130 .405 .323 .228 .189 .340
54Xe74 128 1.720 l.010 .782 .356
54Xe76 130 1.230 .794 .604 .329 .4380
54Xe78 132 .788 .569 .426 .284 .320
54Xe80 134 .411 .326 .227 .209
54Xe82 136 .164 .154 .073 .143
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Table 4. (Continued)

Isotope A QBA RPA IRPA TDA Lxp.
56Ba76 132 1.830 1.117 .851 .406 .7390
56Ba78 134 1.130 .799 .608 .353
56Ba80 136 .561 .447 .344 .260
56Ba82 138 .218 .205 122 .185 .300
58Ce80 138 .682 .557 467 .292
58Ce82 140 279 267 111 .242 «360
58Ce84 142 .934 .754 .628 .338 .520
60Nd82 142 .170 .166 .193 .150 .340
60Nd84 144 .898 772 .710 .343 .440
60Nd86 146 1.840 1.500 1.192 .452 .540
62Nd88 146 .804 .727 .764 .327
62Nd90 148 1.500 1.300 1.150 .443 .690
62Nd92 150 3.195 2.730 1.980 .550 1.320
64Gd84 150 1.270 1.177 1.156 .426
760s112 188 11.360 5.320 3.670 .960 2.800
760s114 190 8.980 4.681 3.340 .938 2.550
78Pt116 194 3.530 2.480 1.960 .761 1.5940
78Pt118 196 2.920 2.070 1.630 .714 4.27¢0
78Pt120 198 2.173 1.600 1.230 .648 1.350
80Hgll6 196 1.580 1.254 1.115 .521
80Hgl18 198 1.530 1.166 .975 «5C2 1.130
80Hgl120 200 1.552 1.105 .861 .4706 .350
80Hgl22 202 1.008 .761 .543 .402 .590
80Hgl24 204 .742 .561 .370 .319
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Table 5 .

The average of the absolute deviations from the

experimental B(E2) values for the corresponding approx.

The Approximations| QBA RPA IRPA TDA B (E2)SXP:

avVv.
|6B(E2)|av. .68 .28 .157 .286  .537
| SB(E2) |
_ av. ,100 127%  53% 29% 53%
B(E2) SXP-
av.

These deviations are for B(E2) given in table 4.

Table ¢ .

The average of the absolute deviations from the exp-

erimental B(E2) values for the corresponding approx.

The Approximations QBA RPA IRPA TDA B(Ez)izp.
|6B(E2) |, .611  .254 .178 .287  .527
|6B(E2)|av
exp. <100 115% 50%  36%  54%
B(E2) " "

These deviations are for B(E2) given in table 3.
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IV, Deuteron Stripping Beaction

This reaction i1s considered to be a very importaent tool
in nuclear structure studies. It provides good information
about the single particle energies in the residual nucl>us
A+1, their relative positions, and their wvariations with the
mass number A, The spectroscopic factors for these rescticns
provide direct information about the occupations number vz.
Cohen and Price (1960) performed experiments with (d,r) srd
(d,t) on Sn isotopes; they measured Ug and Va directly, from
which they obtained good information about the unpertaired
cingle particle energiles.

The spectroscopic factors of the single perticle
transfer reaction represent the probablility of thre appec=rence
of the single particle state in the target nuclear wave
function. Therefore one expects this probabllity to decreases
when the effect of the Paull principle is included, The
spectroscopic factors provide a good basis for compari.cns
between experimental results and the predictions of nuclear
models,

The cross section for this reaction can be written as

follows

do 2Jf+l
& T 2g g L S8

where Jf and J1 are the spin of the residual nucleus ard
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target respectively, and ¢(2,Q,0) is the single particle
cross section, which is a function of the orbital angular
momentum ¢ ,the Q -value of the reaction and the proton argzle
8 + The quantity Sz’ is the specroscopic factor which is a

sum of overlap integrals; it 1s defined as follows

S,= L S. ’
2 y=gs172 3
wvhere
S. = |<aM|(F,3)) JM>|2 ’
j 14 o ’

and |gM > 1s the wave function for the even-even nucleus=
( the wave function of the excited state in the residuil
nucleus), and |(jJO),JM> is the wave function of the
ground state of the odd target coupled to the free neutrcn
wave function, and is given bys

. . nt
| (30) ,dM> = LI (jJOJ|mMOM)ij|J M >,

o o
mMo

where|JOM6:> is the wave function of the target, which cin

be expanded in terms of the seniority one and three states as

follows
J J
+ O, s + _t
IJ M = C Oa |0>+Z L C.,(23'0 |0m'M )B, a., ll0> ’
oo Jo JOMO 5'm j o o' 72v j'm
Jo
where |0> 1s the quasi-particle vacuum. The coeffients Cj
J O

and Cj? can be obtained by diagonalizing the Hamiltonian

H in the space of one quasi-particles with zero and cne



phonon. These amplitudes are tabulated in KS . The particle
nt
operator ij can be expressed in terms of quasi-particle

operators by means of B-V transformation

Straightforward calculations (see Appendix F ) yeild the

following result for SJ

J J
- n, o, ,n _ . h, o 2
sj Iuijow(on) vjcj /(2Jo+l)/5| .

This formula is similar to that obtained by Yoshida and

Sorensen except for the amplitude WE?J) the value of which
depends on the approximatio used. The phase of wsz) is
J

chosen to agree with that of CjO (see Appendix F).
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Table 7 .

SQ values, are listed for each one of the approxim-

ations QBA, RPA, IRPA and TDA. The experimental Sl'

are listed in column 7.

L Reaction OBA |RPA |IRPA|TDA Exp. JO
1 | ni®l(a,p)ni®% |0.47/0.32|0.18(0.37|0.26%.04 |32
1| zn®7(a,p)2zn%% |0.25/0.20]0.19]0.21]0.11+.02 |5/2”
1 | se’”(a,p)se’® 0.07/0.07]0.08|0.08[0.029+.005 |1/2”
2 | ze?t(a,p)zr? |1.64[0.72]0.36|1.44|1.33:.2 |5/2%
2 | M0?°(d,p)Mo°® |0.87]0.27]0.40|0.70{0.30%.05 |5/2%
02 .

2 |ral®l (4, p)rut®%0.13(0.20(0.18|0.16]0.032+.008|5/2

06 +

2 |pat®%(a,p)pat®®|0.18]0.20]0.23]0.20|0.068%.03 |[5/2

2 |sn't>(4,p)sntt®|0.18(0.14]0.11]0.16]0.10.015 |1/2

118

2 |sntt7(4,p)sntt80.19/0.14(0.12[0.17]0.16+.025 |1/2+

20 .

2 |sntt?(a,p)snt?%|0.16]0.13]0.11|0.14|0.06%.01 |1/2

2 |rel?®(a,p)re’?®(0.07(0.07|0.07|0.07]0.027£.004|1/2"

2 |Ba'3°(a,p)Bat3®|0.01]0.01]0.02]/0.01|0.32¢.04 |[3/2
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Table 8.

B(E2) wvalues in units of 10-48cm4 from KS.

Isotope B(Ez)theor. B(Ez)exp.
28N130 0.017 0.072
23N132 0.051 0.091
28Ni34 0.100 0.083
28Ni36 0.092 0.087
30Zn34 0.264 0.170
30Zn36 0.245 0.145
30Zn38 0.164 0.125
32Ge38 0.458 0.172
32Ge40 0.476 0.230
32Ged?2 0.609 0.317
32Gedd 0.729 0.263
32Gedb6 0.451

34Se40 0.696 0.210
34Se4d?2 0.919 0.480
34Sed4 0.770 0.385
34Sed6 0.594 0.283
34sSe4ds8 0.327 0.213
36Kr42 1.784 0.510
36Kr44 0.812 0.340
36Kr4d6 0.550 0.180
36Kr48 0.313 0.150
38Sr48 0.205

38Sr50 0.143 0.130
40Z2r50 0.141

40Z2r52 0.080

402154 0.216° 0.730
42Mo52 0.166 0.270
42Mo54 0.360 0.300
42Mo56 0.683 0.270
42Mo58 0.915 0.610
44Rub52 0.279 0.250
44Ru54 0.563 0.480
44Rub56 0.947 0.570

44Ru58 1.424 0.730
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Table 8. (Continued)

Isotope B(Ez)theor. B(Ez)exp.
46Pd58 1.006 0.550
4GPd460 1.261 0.650
46Pd62 1.603 0.740
46Pdo4 2.009 0.860
48Cds8 0.447 0.470
48Cd60 0.571 0.540
48Cde62 0.687 0.500
48Cde64 0.758 0.540
48Cd66 0.799 0.580
48Cd638 0.809 0.600
50Sn62 0.350 0.180
505n64 0.381 0.200
50Sn66 0.399 0.210
50Sn68 0.414 0.230
50Sn70 0.416 0.220
50Sn72 0.365 0.250
50Sn74 0.273 0.210
52Te638 1.183 0.550
52Te70 1.307 0.650
52Te72 1.080 0.390
52Te74 0.729 0.530
52Te76 0.468 0.410
52Te78 0.289 0.340
54Xe74 1.654

54%Xe76 1.174 0.480
54Xe78 0.592 0.320
54Xe80 0.344

54Xe82 0.198

56Ba76 1.814 0.730
56Ba78 0.929

56Ba80 0.509

56Bag82 0.294 0.300
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Table 8. (Continued)

Isotope B(Ez)theor. B(Ez)exp.
58Ce80 0.631

58Ce82 0.392 0.360
58Ce84 0.828 0.590
60Nd82 0.361 0.340
60Nd84 0.908 0.440
60Nd86 2.101 0.840
62Sm84 0.900

62Sm86 2.189 0.890
62Sm88 4,000 1.320
64Gds84 0.974

64Gd86 1.872

760s112 11.800 2.800
760s114 9.300 2.550
78Ptll6 5.200 1.940
78Pt118 4.086 1.270
78Pt120 3.060 1.350
80Hgllé6 1.250

80Hglls8 1.355 1.130
80Hgl20 0.982 0.850
80Hgl22 0.749 0.590
80Hg124 0.461

8§2Pbl18 0.337

82Pb120 0.280

82Pbl22 0.216 0.170

82Pblz4 0.101 0.130
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Table 9.
The values of SQ from ref. 19.
. m
w L Reaction Stheor. Sexp. JO
1.18 1 ni®l(a,p)ni®? 0.320 0.26%.04 3/2”
1.08 1 zn°7(a,p)zn®®  o0.210 o0.11:.02 5/2”

0.62 1 se’’(d,p)se’®  0.070 0.029:.005 1/2”

0.94 2 zrol(a,p)zr®?  1.500 1.330%.2- 5/2F

0.81 2 Mo’>(d,p)Mo°®  0.680 0.30:.05 5/2%

0.48 2 rut%t(a,p)rut®®  0.11  0.032:.008 5,27

0.52 2 pat9%(a,p)pat®® o0.14  0.068:.03 5,27
116

0.18 6.10+.015 1/27

118 .19 0.16+.025 12t

1.30 2 snt'®(a,p)sn

1.22 2 Snll7(d,p)Sn
20

1.17 2 sn*!?(4,p)snl 0.15 0.06%.01 1/2
0.69 2 Tet??(a,p)Tel?®  0.06  0.027:.004 172"
0.83 2 Bat3°(a,p)Bat3® 0.02  0.32:.04 3/2%
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V. Numerical Results

In this study we considered the same spherical nuclei
studied by KS, the single particle energies are those glven
in References 1 and 10i the values of 3% and 7% are
extrapolated from KS (rough estimate) and then used in
iterations  to satisfy the BCS equations (gap equaticn).
These values of A& and p® are the values which miniriz: the
eround state energy, and their dependence on the excitation
energies 1s assumed to be small and is neglected. The raluaes
of the theoretical B(E2) are calculated for two sets cf
sinxle particle energiess the first set are those givern in
'S, the second set are those glven in Reference 1¢ . TFr:

following A-dependences are useds:

ag = 10.746x10°1a72/3

’

ej(A)=ej(AO)(AO/A)1/3+aj(AO/A)1/3[1—(A/AO)1/3]+ch(Z,N).

If both 3j=tl1l/2 are present in the major shell, ¥ is

given by

- )~ L
%pv1/2= " (Eg 120" €41 /0 B 3T

_ g+1
G127 (Eg 12 B =€ 11 /o (R ) o -

If only one of them is present, then Gj i1s given by:
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_ 18
“o+1/27 ;573 ’
O
. _ 7 +1)
9-1/2 ““;;773 ’

where Asj(Z,N) is a special shift in the single particle
enerxy, and A 1s the mass number. The numerical cslculations
of Bi2Z) and SJ were performed on the CDC 6500 comvatar -t
Mic:hizan State University. The energles of the 2+ states ere
thie experimental values taken from the table of isotop=s
(Ref.48 ). The results for B(E2) are listed in Tables 3t
for each approximation. In table 7 the values cf Sp are
listed, while the averages of the absolute deviations fromw
experimental values |<513(Ez)|av for B(E2)are tabulated slcrg
with the corresponding averages of the experlimental values of

eX[) .

B(E2) in tables 5&6 . The quantities [B(E2)}_  and B(E2)ere
av

defined as follows

1 N th. exp.
|$B(E2) | = § iElIBiEZ) - B, (E2) | ,
exp. 4 N exp
B(E2)= N B(E2) ,
av i=1 i
th exp

where B(E2), and B(E2) are the theoretical and experi.catal
values of B(E2) respectively, and N is the total numbe: of
cases. The values of g are those given in KS and in Re..

10, where those values are taken to fit the experimental

P
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odd-even mass differences. To convey an idea of the
dependence of A and A on the number of particles; these
values are plotted against the number of particles for

Sn in figure 4. From tables 5 and 6 it is clear that
(for this set of parameters) the IRPA gives the best
result, while TDA does not differ much from RPA as far as
the absolute diviations from experiment are concerned.
Indeed the TDA underestimates the B(E2), on the other
hand the RPA overestimates it; therefore, including the
Pauli principle in TDA will increase the deviations from
experimental values. In this work the Pauli principle is
not included for TDA. 1In Figure 4 the quantities A and A
are plotted against the neutron number for Sn isotopes.
We have to know the N-dependence of X and A in order to

obtain new values by extrapolation.
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Figure 4. The parameters An and A, are plotted

acainst the mass number A for Sn isotopes.
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Appendix A
Useful Relationships
_ (_yatb+d+e - )
%Y (abc| mamBmY)(cdeImymamn) = (-) S%A/(Zc+l)(29+l)
x {ggg}(agelmamxmn)(bngmBmamx) , (a1)
where {abc} is the six j-symbol.
+b-J W
(abd |m m M) = (-2 (abJ | -m_-m,-M) (A2)
- (-)a+b_J(baJ|mBmaM) (A3
a-m .
= /(2J+1) /(2b+1) (-) a(anlma-M—mB) (n4) j
b+mB
= Y (23+1) /(2a+1) (-) (JbaI-MmB—ma) (AS)

= /{23+1)/(2b+1) (-) a(JabIM—mamB) (A6)

b+mB
= V/(2J3+1)/(2a+1) (-) (bJaI—mBMma) (A7)

] ]
%a%s(alemamBM)(abJ lmamBM )= 855" Sy (A2)

1
B'M ) = Gm m 'GMM' (AS)

3 (abJ]mamBM)(abJ]ma'm
oo

In the following commutation relations the collectiva

operator B is given by:

IM
_ Ak L J-M £t e
By = iég g {w(ab) (abam) ~ ()7 ¢ (apyPlapay } (1O
£t 3 g
(BomrAicdrq) ] = GJKGqu(cd) (ro)
€ - £ N
[BJM'A(chq)] - dJKGMq( ¢(cd) (»12)
ot _ £ L
(B M'A(chq)] - GJKGMq( ) d’(cd) (AL
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LR — £ -
[Bymr2icarg)! =" Saxdmg Y{ca) (ALd)
2
¢
+ gt J=-M " (ab) £ -
[Bi,, a2 1 = E(-) (abJ|m_m M) a (Al3)
JM B o “Eb o B o
toE ¥{ab) t
_ 5y . (ab) ,
[Byyr 25 ] = § N (abJ|mamBM) a, (Als)
ab
(al a ]l = % &6 (acJd|m m_M) al =56 (bcJ|m,m Myan
(abJdM) ' vy %a cb oy o fg-ca v 7R

(A17)

Appendix B

. t
The Exact Evaluation of [A(abJM)’A(Cqu)]

Starting from the definition of the operators A(abJM)

and AtabJM)’ we can write the commutation relation for

these operators as follow

.1.

(A apam) 2

(cdkq) ) = %a§egy§6(abJ1 m moM) (cdK [m mq)

X[aaaB,adaY],
by using the fermion commutation relations;

.1.
{aa

jagl =6, + {al,ag} = {ag,a,} = 0
we arrive to

T _
(2 (abam) "B (cdrq)! = %a%sﬁyﬁé

(abJ|mamBM)(chlmyqu){*(3aY5H5
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) + 6 aTa -8

1-
ay B8 B

+ +
a - Geyaaa6 + GBGaaaY} (B1)

as? Y

ai(a,ma).
Let us call the first two terms in (Bl) by T;

T =1 -{(abJ|mm M)(abKlm meq) §
Ma™g

x (baKIm m q)$

acSpa (abJImamBM)

ad bc}

and by using relations (A3,A8) we get

__ _ a+b
T = GMqGJK(Gacabd (- g

ad bc) *
The last four terms can be writen in a compact form by

using interchange operator R(ab) which is defined by

R(@b) ¥ (15)= Y(ba)
Its effect on the Clebsch-Gordan coefficients is to

multiply them by a phase factor i.e.

a+b-J

R(ab)(alemamBM)=(baJImBmaM)=(-) (abJ[mamBM).

Therefore to keep the terms containing Clebsch-Goxrdn:

a+b-J

coefficients unchanged the operator (-) R(ak) ov:.

be used. Let the last four terms be T which can be writzn

as follow:

+
a Ad..,

=-P(ab)P(cd)£ Z 2 Z (abJ mm M) (cdKk mm q)§ v82a2s

Mo, B Y ms
where

a+b-J

P(ab)=(1-(-) R(ab))
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Now by applying relations (A3,A5,Al) we get the following

d+m
5 (bdK|mgmq) (abJ|m mM) = (=) § (=) 3YAHTHK R Ty 7 (2o+ D)
8

d+m
§ d+J+K
X%B(delq—m mg) (bad|mem M) = (-) (-)a* g5/ 2R X

/2Ty (592} (LRI |ugM) (adL |m -m,1) ,

L
hence T become

a+d+J+K Kdb

T'=-P (ab) P (cd) (-) aJL
d+m

(=)

EE/(2K+1)(2L+1) { } (LKJ | ughM)

8

-i.
x%a%d (adlea-mau)aaaG

Now set Mmg>=Mgs and since d and hence mg are half integers;

d-m d+m(S

(=) P==(~) ,

therefore T' will have the following form:

T'= P(ab)P(cd) (-) I gy TRy LAY (5303 (nka | e
0
A(adKu)Gcb f
where
o d+m6
Mlaaw R i (adtimgmgnala g,
Finally we get:
_ _ (_yatb-J
[A(abJM)’A(chq)] B 6ManK(Gacabd (=) Gadsbc)
+P (ab) P (cd) (-) 3+d+JI+K E5/T2ZRFD) (23 D) (X923 (kI | uam)
7 (B2)

A(adLu)Gcb *
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Appendix C

The reduced matrix element g(ab)

The reduced matrix element of the nondimensional

quadrupole transition operator is given by

[ | __a-b
glab) = (N & a||p?y.||Nab) = £ — /57za7Iy
. ViT
)
x (a2b|1/2 0 1/2)2 R, (c1)
where
- /R 4 _

Rug = 0fRa(p)RB(p)p dpo , o=(NR) , B=(N 2 ),

p= ar = (mwo/h)l/zr

Ro(p) is the radial part of the Harmonic oscilator
wave function, m; is the nucleon mass , Wy is the
oscilator frequency and N is the principal quantum
number of the harmonic oscilator wave function, such

that the energy is hwo(N+3/2). The radial integrals

R are given in Table 10.

oB
Table 10. The radial integrals RaB
) L
N L RaB
' 3
N ') : N+-é'
N2 ) 5L (N+2+221) (N-2+121) ]

1
2
1 1
N+2 g2 ST(N+L+1£2) (N+2+322) ]2
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Table 10. (Continued)

I
N 2+2 -[(N+2+2%1) (N-2+1F1) ]2
1
Nt2 932 FL(N-2£2) (N-2+2£2)12
Appendix D

) +
Evaluation 0f<[A(abJM)'A(chq)]>

Using the following vacum expectation value

t =
<aiaj> = niGij ’ (D1)
we get
t =
<[A(abJM),A(chq)]>- %a%B%Yés(alemamBM)(chImYqu)
+ + + T
X{Gaydsd - 6a6687 -<(GaYaGaB-GaaayaB-éBYaGaa+GBGayaa)>}

and by using relations(A3,A8) we get

a+b-J § .8, )

§ (8 ad bc

+ —3 - -
<I2 (apam) 2 (cdrq) 1> = Saxémg Cacdba™ ()

x(l-na-nb) (D2)

Appendix E

]
a: Evaluation of na and na

To evaluate na we start with
+ _ 2 _
“Aab)P(ab)” = %ap) = glg2§3g4(alemlm2M)(abJ|m3m4M)

x<5252aéa&> . (E1)
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where

a=(a,m;) , B=(b,m,) , o'=(a,my) , B'=(bm,) .

Applying the usual factorizations to the product of four
operators and using Egn. (D1l) ,we get

Tt t + + +
<a a a' a '> <a a '><a, a'!>=-<a a ><a a '> .,

BB BB B B

= nanbaa&GBB - nanbdaéésa (E2)

Substituting(E2)in(El) and using relations(A3,A8) we get

.f.

2a
A(ab)A(ab)

> =n_n (1-(1)2%_) , (-)?%=-1

Gab
therefore ;

n (E3)

.2
a™= ®(ab)Pab
where

1
D = T L]
ab l+6ab
In RPA the amplitudes ¢(ab) are given by
2 q%ab>U§bu§b
Ot ab) = 221z ptw))
2w(w+Eab) £

52€€
qEéab)Uab ab ab

(EEZ 2)2

-1

where

P%w)—

where

aab=l—na—nb.

Since o, appears in both the denominator and nominator
of ¢(ab)' the later is less sensetive to the choice of b’
therefore it is a very good approximations to set aab=l in
evaluating n_. If b is included, n, can be calculated by

iterations.
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Now let

No= i na= g ng o,

then

N%= II n_n_ = II ¢2 ,
° .p @ b ab (ab) Dab
therefore

1

_ 2
"a N @b Pab (E4)

' ¥
To evaluate n_  we need to evaluate <2|A(abJM)A(abJM)I2>’

where
|2> = B;|0> ,
B, = L35I (y, AT -6, A, )
2 2 (ab) " (ab) (ab) " (ab)’ °

ba
Using the following commutation relations:

ey '
[BZv’BZv - dvv ’

and relations (All,Al12,Al13,Al14), we get

.{.

<2| A (apgm)® (abam)

_ 2 2 2
12> = (Vap) ¥ (ap) ) %ap™? (ab)

]
ng /Dab .
Following the same procedure in evaluating n, we get

' Z«‘P ) (1-n )+¢ )D
nb= (ab) (ab) (ab) , (E5)

No + I (w(ab)+¢(ab))Dab
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where N5 is given by (E4), and

Ny = ig ((w(ab)+¢(ab))aab+¢(ab))D .

b: The Collective Operators

The collective operator B+ can be expanded in terms

JM
of A+

(abJM) and A(abJM) with real coeffecients
Tl T .\ J-M
Pom igtxabJA(abJM) (=37 "YapsP (abamy !

From the definetions of w(ab) and ¢( ab) we get

¥ (ap) =012 (apgmy 12> =<OHA(abJM)'BJM]IO>
= 2xabJaab '
similarly

% (ab) “%¥abs%ap °

.'.

Therefore the expression for BJM in RPA takes the

following form

F1 1 ¥ _
Biv™ 3 zz ¥ (ab) 2 (abam) =% (ab) ® (abam) 1 °

JM b aab
c: Evaluation of N_/Q
a’"a

Using similar procedure that used in evaluating n,

i.e.
t t_+
<BA> = ﬁ_ ga&a' 0Sa 1 83 g3q1351>
>
where 0

a=(a,ma) ’ a'=(a,mu') ’ Qa= a+l/2
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Now applying the factorizations (E2) and (Dl) we get

afa > =2 2n2
a a

___t
Qa §a>0 a ’ Na-<aaaa> *

Using the following

% >0l = Qa
a
we get
,
Na/Qa = /<A;Aa>/2ﬂz (E6)

d: The Factorization

In the Hartree-Fock method; it is assumed that the
ground state may be represented by an independent
particle state vector such that the average in that state
of products of single particlé operators takes the form

+ + __t + _..t +
<cac8c8.ca.>—<caca ><chB'> <c c8'><cha

o 1>

+<°Z°;><°B'Ca'>‘ (E7)

This expression differs from (E2) in the presence of the
last term, which is zero unless the particles participate
in pairing interaction.

In the quasi-particles scheme the interacting particles
transformed to independent quasi-particles by means of
B-V transformations, where the pairing interaction bectween
the original particles is now absorbed by the quasi-particle

enerqgy; Ea . Therefore the product of four quasi-particles
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operators takes the following form

T __.t + t
<a aBaB,aa,>-<aaa ><aBaB,> <a a8'><a8aa'>' (E8)
where the third term which describes the pairing sets

equal to zero.

Appendix F

The Sj for (d,p) stripping on

odd mass target

The quantity Sj is defined by

: 2
8y = |<JM|(]JO),JM>| ,
where
|am> = B | 0>
JM !

| (33,),9M> = ﬁ i(jJ J|mM M)C IJOMO> ,

where JoMo 1s the wave function of the target wgich
can be expanded in terms of seniority one and three states;

1.

+ t .
J M Jj m'B

Jo, .
[o> + 3z & Cj.(j'ZJolm'vMo)a.. 5, 10>

J M > =C
l JO Jl R}

where |0> is the quasi-particle vacume~. The coefficierts
c’° can be obtained by diagonalizing the Hamiltonian ir
the space of one quasi-particle with zero, one, and twc

phonons , these coefficients are tabulated by KS. The

single particle creation operator C;m can be expressec
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in terms of quasi-particle operators a;m and ajm by
means of B-V transformations;

o +
ij = ujajm + Sjvjaj—m

Now for J=2 we get

<2](33,),2> Jo

+ j+Jo o
. < . >=(- . ., | 0>
Ca0U5<2|A (55, [0>=(=) V330212 509 |
+ (-)3+J°vjcg°/(§33$IT7§ + v /5T23571)

_j'+JOJ° R e jaz N
LICT T via e (g2t

X

the last result is obtained with the help of relations
(A1,A10-Al13). The first two terms in the last Eqn. reduce

LI ] 3 3
to CJouj (335) after using the following results

_ + )
2R 55 5 105=<01[By B 55 1110>= ¥ 55,

O —
<2|A(Joj)|0>— 0
where

__a-bl
(ab)= ()" "Vlap)

a-b

Yiapy= ()7 "sgn(a2p[1/2 0 1/2)¥ )

where the phase of wng) is that of Cgo.'Neglecting the
last term in (Fl) as it is small compared to the other

terms, we get

Jo 2
S.= .C ', - v.C. 2Jq+ F2
3 luj Jow(JJo) chJ V(23o+1) /5| (F2)
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Appendix G

a: Calculation of ng

The Green's function ng provide the solution to the
pairing part of the Hamiltonian with small residual
interaction and hence describes the behaviour of the Of
seniority zero states in even-even nucleus. If the exact
commutation relations of Aa and A; are used, the following

commutation relations are obtained:

N N
' _ - 2 2 -_c - 2.2 . _c T
[AC,HP] = 2ECAc g{é/gcﬂbubuc(l Qc)Ab gVQchucvb(l Qc)Ab
N N
—s/aawivial (1- Sy+n/a T vivia (1- <5)}.
ca aca Q a’'caca Q
a c a. c
Nc
Let (1= &=) =L
) c
collecting similar terms we get:
[A ,H'] = 2E A - g/@u’L_ /G (u’A, -vial)
c'Hp cPe c¥cle [ bbb D
2 2 2t
gVchc i/ﬂa(vaAa-uaAa)Lc . (Gl)
Similarly
T 2 2 2.+
' —x - -
[AC,Hp] = ZECAC gVchch g#ﬂb(ubAb vbAb)
2 2 2+
g/chc ﬁ/ﬂa(vaAa uaAa)Lc (G2)

Substituting (G2) in the equations of motion for Go(w)

we get equatins (III.4), where Lc set equal to one.
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Table 11.

G_=24/a
p-24/

Proton levels 29 <2Z <39,Ao=90

Gn=24/A

Neutron levels 31<N<49,AO=58

£7/2 fss,2 P3sa Pisa 99,2 | £7/2 P3sa f5,2 Prsa 992
-4.6 -.6 0 1.8 2.8 | -4.0 o0 0 3.0 4.0
A€7/2—A€5/2—.11(N-40)

Isotope A Ap Ap An An
28N1i30 58 -0.980 1.190
28Ni32 60 ~0.420 1.475
28Ni34 62 0.142 1.537
28Ni36 64 0.752 1.420
30zn34 64 -1.697 1.209 0.212 1.718
302n36 66 -1.526 1.187 0.835 1.543
30zn38 68 ~1.361 1.167 1.712 1.236
32Ge38 70 ~0.797 1.388 1.688 1.134
32Ge40 72 ~0.663 1.370 2.650 1.248
32Ged 2 74 -0.532 1.351 3.248 1.309
32Ge44 76 -0.405 1.329 3.714 1.264
32Ged6 78 -0.282 1.305 4.108 1.116
34540 74 -0.149 1.406 2.644 1.182
345e42 76 -0.039 1.391 3.233 1.255
345e44 78 0.073 1.375 3.689 1.219
34Sc46 80 0.185 1.355 4.074 1.074
345e48 82 0.299 1.333 4.414 0.812
36Kr42 78 0.480 1.306 3.219 1.204
36Kr44 80 0.572 1.301 3.666 1.177
36Kr46 82 0.670 1.295 4.042 1.047
36Kr48 84 0.772 1.289 4.374 0.788
385r48 86 1.317 1.194 4.336 0.766
38Sr50 88 1.386 1.211
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Table 12,
Gp-26/A Gn—23/A
Proton levels 37<Z<49,Ao=90 Neutron levels 51<N<75,AO:120

f5,2 P3s2 P1sa 99,2 dss2 9772 S172 P12 Y302

0 .6 1.8 3.4 0 .8 1.3 2.5 2.8

Aeg/z——.OSS(N—SO) Ae7/2-.14(50-z)
Isotope A Ap Ap An A,
40zx50 90 2.241 0.827
402Z2r52 92 2.169 0.843 -0.481 0.714
40Zr54 94 2.096 0.860 -0.044 0.207
42Mo52 94 2.745 0.951 -0.476 0.709
42Mo54 96 2.638 0.948 -0.054 0.909
42M056 98 2.533 0.947 0.426 1.049
42Mo58 100 2.429 0.947 0.862 1.220
44Ru52 96 3.138 0.964 -0.477 0.707
44Rub54 98 3.021 0.954 -0.073 0.215
44Rub56 100 2.906 0.945 0.368 1.062
44Ru58 102 2.791 0.937 0.772 1.215
46Pd58 104 3.098 0.842 0.668 1.208
46Pd6o0 106 2.978 0.833 0.993 1.306
46Pd62 108 2.859 0.825 1.288 1.364
46Pd64 110 2.741 0.819 1.566 1.389
48Cdas8 106 3.373 0.640 0.552 1.197
48Cde60 108 3.247 0.632 0.866 1.272
48Cd62 110 3.123 0.625 1.163 1.312
48Cde4 112 3.000 0.619 1.451 1.324
48Cde66 114 2.878 0.613 1.733 1.316
48Cde68 116 2.757 0.607 2.006 1,293
508n62 112 1.030 1.252
505Sn64 114 1.333 1.247
508n66 116 1.640 1.231
50Sn68 118 1.938 1.214
50Sn70 120 2,210 1.1290
508Sn72 122 2.457 1.146
50Sn74 124 2.683 1.775
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Table 13.
G,=23/A G =23/A
Proton levels 51<Z<82,Ao=207 Neutron levels 68<N<81,AO=120
9772 9ss2 P12 9372 S172 9502 9972 S1/2 M2 93,2

0 .8 2.1 2.6 2.95 0 .8 1.3 2.5 2.8
Isotope A Ap Ap An An
52Te68 120 -0.287 0.615 1.930 1.185
52Te70 122 -0.280 0.602 2.201 1.164
52Te72 124 -0.273 0.589 2.445 1.123
52Te74 126 -0.266 0.577 2.667 1.055
52Te76 128 -0.260 0.565 2.873 0.928
52Te78 130 -0.254 0.554 3.066 0.808
54Xe74 128 -0.026 0.754 2.652 1.036
54Xe76 130 -0.023 0.738 2.855 0.937
54Xe78 132 -0.020 0.723 3.045 0.795
54Xe80 134 -0.018 0.707 3.224 0.531
54Xe82 136 -0.015 0.693

56Ba76 132 0.221 0.829 2.837 0.921
56Ba78 134 0.222 0.811 3.024 0.782
56Ba80 136 0.222 0.793 3.201 0.572
56Ba82 138 0.222 0.775

58Ce80 138 0.473 0.831 3.179 0.563

Table 14,
Gp=23/A G =22/

Proton levels 51<Z<82,Ao=207

Neutron levels 83<N<l25,A02207

97,2 95,2 P11/2 9372 S1/2|Mes2 £9,2 13,2 P3s2 f5,0 P1go
0 .8 2.1 2.6 2.95|-.9 0 .72 1.45 1.78 2.35
Isotope A Ap Ap An An
58Ce82 140 0.472 0.812
58Ce84 142 0.471 0.793 ~1.512 0.614
60NA82 142 0.737 0.815
60Nd84 144 0.735 0.796 ~1.498 0.603
60Nd86 146 0.733 0.777 -1.293 0.812
625m84 146 1.025 0.770 ~1.483 0.592
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Table 14. (Continued)

Isotope A Ap Ap An An
62Sm86 1438 1.021 0.750 -1.281 0.797
62Sm88 150 1.018 0.731 -1.078 0.9238
64Gd84 148 1.373 0.744 -1.470 0.582
64Gd86 150 1.371 0.722 -1.269 0.783
760s112 188 2.640 0.539 1.201 0.898
760s114 190 2.629 0.533 1.380 0.835
78Pt116 194 2.798 0.435 1.555 0.755
78Pt118 196 2.786 0.430 1.735 0.680
78Pt120 198 2.773 0.425 1.910 0.592
80Hgll6 196 2.987 0.305 1.548 0.746
80Hg118 198 2.973 0.300 1.726 0.672
80Hg120 200 2.960 0.296 1.900 0.585
80Hgl22 202 2.947 0.291 2.072 0.468
80Hgl24 204 2.934 0.287 2.280 0.294
82Pbl1l6 198 1.541 0.737
82Pbl18 200 1.718 0.664
82Pb120 202 1.890 0.578
82Pbl22 204 2.060 0.462

82Pbl24 206 2.268 0.289




G _=24/A
p-24/

89

Table 15,

Proton levels 20<Z<50,Ao=90

Gn=23/A

Neutron levels 20<N<50,AO=58

£7/2 fs5,2 P3s2 P1s2 9972 (£7,2 P3sa f5,2 P12 99,0
-3.5 .5 0 1.8 2.8 |-4.0 0 0 3.0 4.0
bey sp=beg ==+ 11 (N-40) ,20<2<38 |Aey =~ 055 (2-40)

Beg ,p=-+055 (2-40) , 38<2<50

Isotope A Ap Ap An An
28N1i30 58 -1.015 1.500
28Ni32 60 -0.345 1.645
28Ni34 62 0.246 1.597
28N136 64 0.843 1.371
30zn34 64 -0.552 1.466 0.227 1.538
302n36 66 -0.574 1.382 0.806 1.319
302n38 68 -0.604 1.309 1.795 0.723
32Ge38 70 0.021 1.550 1.749 0.670
32Ge40 72 ~0.063 1.485 2.975 0.953
32Ged?2 74 -0.156 1.421 3.647 1.112
32Ged4 76 -0.257 1.357 4.109 1.126
32Ge46 78 -0.366 1.290 4.489 1.016
345040 74 0.458 1.567 2.897 0.938
345642 76 0.341 1.490 3.537 1.088
345644 78 0.219 1.412 3.985 1.101
345e46 80 0.093 1.333 4.355 0.993
345048 82 ~0.034 1.251 4.681 0.753
36Kr4?2 78 0.836 1.460 3.428 1.068
36Kr4d 80 0.707 1.359 3.862 1.077
36Krd6 82 0.576 1.257 4.223 0.971
36Krds 84 0.445 1.156 4.541 0.737
385148 86 1.405 1.267 4.402 0.722
38550 88 1.389 1.214

407r50 90 1.912 1.172

VRTRERDT
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Table 16.
Gp=24/A Gn=23/A
Proton levels 37<Z<49,A°=90 Neutron levels 50<N<78,Ao=120

£7,2 f5,2 P3s2 P1s2 99,2 (95,2 97,2 S1s2 D112 93,0
-3.5 .5 0 1.8 2.8 0 .8 2.0 2.5 2.8
As7/2=Aes/2=-.ll(N-40),20<Z<38 Ae7/2=.14(48-2),z<48
A59/2=-.055(Z-40),38<z<50 Ae7/2=-.l,z=48

Ae7/2=Aell/2=.15(50—Z),z>50

A€1/2=--2’Z=50
Isotope A Ap Ap An An
40Zr52 92 1.902 1.124 -0.480 0.71¢6
40Zr54 94 1.893 1.078 -0.041 0.910
42Mo52 94 2.270 1.137 -0.481 0.713
42Mo54 96 2.258 1.100 -0.060 0.917
42Mo56 98 2.248 1.065 0.414 1.0063
42Mo58 100 2.238 1.031 0.839 1.235
44Ru52 96 2.543 1.087 -0.489 0.714
44Ru54 98 2.526 1.056 -0.091 0.929
44Ru56 100 2.510 1.027 0.334 1.07¢
44RuS58 102 2.494 0.999 0.726 1.221
46pPd58 104 2.698 0.887 0.600 1.205
46Pd60 106 2.677 0.865 0.929 1.287
46Pd62 108 2.658 0.845 1.237 1.324
46Pd64 110 2.639 0.826 1.532 1.355
48Cds8 106 2.869 0.668 0.416 1.187
48Cde60 108 2.844 0.653 0.734 1.231
48Cd62 110 2.820 0.639 1.056 1.245
48Cde64 112 2.797 0.625 1.386 1.246
48Cd66 114 2.775 0.612 1.708 1.249
48Cd68 116 2.753 0.599 2.002 1.247
50Sn62 112 1.083 1.237
505Sn64 114 1.395 1.241
505Sn66 116 1.702 1.240
50Sn68 118 1.987 1.233
50Sn70 120 2.247 1.209
50Sn72 122 2.485 1.162
50Sn74 124 2.705 1.088

“_'".“
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Table 17,
Gp=23/A Gn=23/A

Proton levels 50<Z<76,A0=207 Neutron levels 50<N<78,AO=120

g d h d s
7/2 5/2 11/2 3/2 1/2 Same as in Table
0 .8 2.1 2.6 2.95
Isotope A Ap Ap An An
52Te68 120 -0.287 0.615 1.775 1.217
52Te70 122 -0.280 0.602 2.028 1.195
52Te72 124 =-0.273 0.589 2.260 1.148
52Te74 126 -0.266 0.577 2.475 1.073
52Te76 128 -0.260 0.565 2.677 0.965
54Xe74 128 -0.026 0.754 2.237 1.047
54Xe76 130 -0.023 0.738 2.442 0.938
56Ba76 132 0.221 0.829 2.216 0.903
Tablel8 .
Gp=23/A Gn=23/A
Proton levels 50<Z<76,AO=207 Neutron levels 78<N<82,Ao=l39
Same as in Table g7/2 d5/2 h11/2 s1/2 d3/2
—1-2 0 48 1-33 106
Isotope A Ap Ap An An
52Te78 130 -0.254 0.554 1.762 0.785
54Xe78 132 -0.020 0.723 1.747 0.772
54Xe80 134 -0.018 0.707 1.961 0.557
54Xe82 136 -0.015 0.693
56Ba78 134 0.222 0.811 1.732 0.760
56Ba80 136 0.222 0.793 1.943 0.548
56Ba82 138 0.222 0.775
58Ce80 138 0.473 0.831 1.926 0.540
58Ce82 140 0.472 0.812

60Nd82 142 0.737 0.815
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Table 19.

Gp=23/A Gn=23/A

Proton levels 50<Z<76,Ao=207 Neutron levels 82<N<90,Ao=l41

Same as in Table £7/2 P3s2 Pos2 £5,3 P12 113/7
0 .83 1.55 1.88 2.25 2.8

Isotope A Ap Ap An An
58Ce84 142 0.471 0.793 -0.392 0.554
60Nd84 144 0.735 0.796 -0.381 0.575
60Nd86 146 0.733 0.777 -0.128 0.6u8
62Sm84 146 1.025 0.770 -0.370 0.516
62Sm86 148 1.021 0.750 -0.1290 0.67¢
625m88 150 1.018 0.731 0.155 0.7¢7
64Gd84 148 1.373 0.744 -0.359 0.5C8
64Gd86 150 1.371 0.722 -0.112 0.6€5
Table 20.
Gp=25/A Gn=23/A
Proton levels 76<Z<82,Ao=207 Neutron levels 112<N<126,AO=2O7
97,2 95,2 D112 93,2 S1/2|M9/2 £7,2 11372 P3sn f5,0 Pryo

0 1.81 2.14 3.13 3.48|-1.09 O o7 1.45 1.77 2.34

A€11/2=’5' Ae7/2=—.1 Ae13/2=.2 (except for Z=82)
Isotope A A A A

P P n n
760s112 188 3.194 0.636 1.303 0.972
760s114 190 3.182 0.629 1.473 0.916
78Ptllé6 194 3.342 0.512 1.634 0.838
78Pt118 196 3.328 0.506 1.800 0.758
78Pt120 198 3.315 0.501 1.966 0.659
80Hgll6 196 3.533 0.352 1.627 0.823
80Hgll8 198 3.518 0.347 1.791 0.749
80Hgl120 200 3.504 0.342 1.955 0.652
80Hgl22 202 3.489 0.338 2.122 0.524
80Hgl24 204 3.475 0.333 2.316 0.345
82Pbll6 198 1.543 0.783
82Pbl18 200 1.723 0.707
82Pbl20 202 1.899 0.616
82Pbl22 204 2.073 0.495

82Pbl24 206 2.279 0.319
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