NMR EXAMINATION OF CYCLIC DIALKOXY CARBONIUM IONS (1, 3-DIOXOLENIUM CATIONS)

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY DONALD ANDREW TOMALIA 1968

This is to certify that the

thesis entitled

NER EXAMINATION OF CYCLIC DIALKOXY CARBONIUM IONS (1,3-DIOXOLENIUM IONS)

presented by

Donald Andrew Tomalia

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Chemistry

Date May 8, 1968

0-169

ABSTRACT

NMR EXAMINATION OF CYCLIC DIALKOXY CARBONIUM IONS (1,3-DIOXOLENIUM IONS)

by Donald Andrew Tomalia

Members of the following four families of cyclic dialkoxy carbonium ions (1,3-dioxolenium cations) were prepared by allowing appropriate 2-bromoethyl esters to react with silver tetrafluoroborate according to the method of Meerwein:

- I. 2-Alkyl-1, 3-dioxolenium Cations
- II. 2,2'-Alkylene-1,3-dioxolenium Dications
- III. 2-Aryl-1,3-dioxolenium Cations
- IV. 2,2' and 2,2',2"-Aryl-1,3-dioxolenium Dications
 and Trications

Families II and IV represent new examples in this series.

An alternate method for the preparation of 2-alkyl-1,3-dioxolenium cations was discovered which involved the combination of 2-hydroxy, methoxy or acetoxyethyl esters with an excess of fluorosulfonic acid (FSO₃H). When FSO₃H was added to the ester, 1,3-dioxolenium cations were generated immediately as the major product. Addition of the esters to FSO₃H gave rise to only small amounts of 1,3-dioxolenium cations accompanied by a predominance of diprotonated ester species. The diprotonated species converted slowly but completely to 1,3-dioxolenium cations with time. Evidence is presented for the first example of protonation of the etheral oxygen in an ester.

A systematic nmr examination of these four families of cations in light sulfur dickide (-20°) or FSC₃H revealed that the equivalent protons of the dickolenium moiety could be used as a probe for assessing the

electron density in the dioxolenium ring as a function of the 2-substituent. A good qualitative correlation was obtained by comparing the chemical shifts of eleven 2-alkyl-1,3-dioxolenium cations.²

In a similar manner, a good quantitative correlation of proton-mmr chemical shifts with Hammett σ values was obtained for fifteen <u>meta</u> and <u>para</u>-substituted 2-aryl-1,3-dioxolenium cations. This represents the first quantitative correlation, by proton magnetic resonance, of charge densities in a carbonium ion system. From this relationship and the chemical shifts of the 2,2'-<u>m</u>-phenylene and 2,2'-<u>p</u>-phenylene-1,3-dioxolenium dications, Hammett σ values for the <u>meta</u> and <u>para</u> substituted dioxolenium moieties were found to be +0.84 and +0.97, respectively. The latter value is the largest positive σ value reported to date. Application of this Hammett σ relationship and the dioxolenium moiety probe for determining Hammett σ values for higher energy carbonium ions is described.

Nmr examination of 2,2'-alkylene-1,3-dioxolenium dications showed that charge repulsion could be assessed as the number (n) of methylene insulating groups was varied. Dications containing five or six methylene insulating groups reflected practically total loss of charge repulsion and exhibited nmr chemical shifts which were reminiscent of mono-2-alkyl-1,3-dioxolenium cations. By decreasing the number of methylene groups one found a smooth, monotonic increase in charge repulsion (as demonstrated by larger dioxolenium proton deshielding values). Deshielding was at a maximum for n = 1. Definitive evidence for the dication containing no insulating groups (i.e., n = 0) was not obtained.

An empirical relationship was conceived which correlated the nmr chemical shifts of the dioxolenium ring protons in these dications with

the number of methylene insulating groups (n) between the cationic centers (Equation 1). Alternatively, the chemical shifts of the alpha protons

$$\delta = 5.30 + \frac{1.60}{(n+1)^2}$$
 (1)

were related to the number of methylene groups (n) between the positive centers by the following equation:

$$\delta = 2.94 \left(1 + \frac{1}{n^2}\right)$$
 (2)

The latter equation could be applied to other dicarbonium ion systems (e.g. acyl dications), possessing alpha protons, by choosing suitable parameters.

REFERENCES

- 1. H. Meerwein, V. Hederich and K. Wunderlich, Arch. Pharm., 291, 541 (1958).
- 2. H. Hart and D. A. Tomalia, Tetrahedron Letters, 29, 3383 (1966).
- 3. D. A. Tomalia and H. Hart, ibid, 29, 3389 (1966).
- 4. H. Hart and D. A. Tomalia, ibid, 15, 1347 (1967).
- 5. G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc., 88, 3313 (1966).

NMR EXAMINATION OF CYCLIC DIALKOXY CARBONIUM IONS (1,3-DIOXOLENIUM CATIONS)

Ву

Donald Andrew Tomalia

A THESIS

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

1968

65154

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Professor Harold Hart for his constant interest and guidance throughout this investigation.

The author acknowledges indebtedness to The Dow Chemical Company and the Edgar C. Britton Research Laboratory for providing facilities and sponsorship of this work; special appreciation is extended to Drs. T. R. Norton and D. P. Sheetz for their inspiration and encouragement.

To the author's wife, Elizabeth, a special note of appreciation is made for her patience and understanding.

The author also wishes to thank Mr. J. E. Schmidt for his assistance in typing this manuscript.

TABLE OF CONTENTS

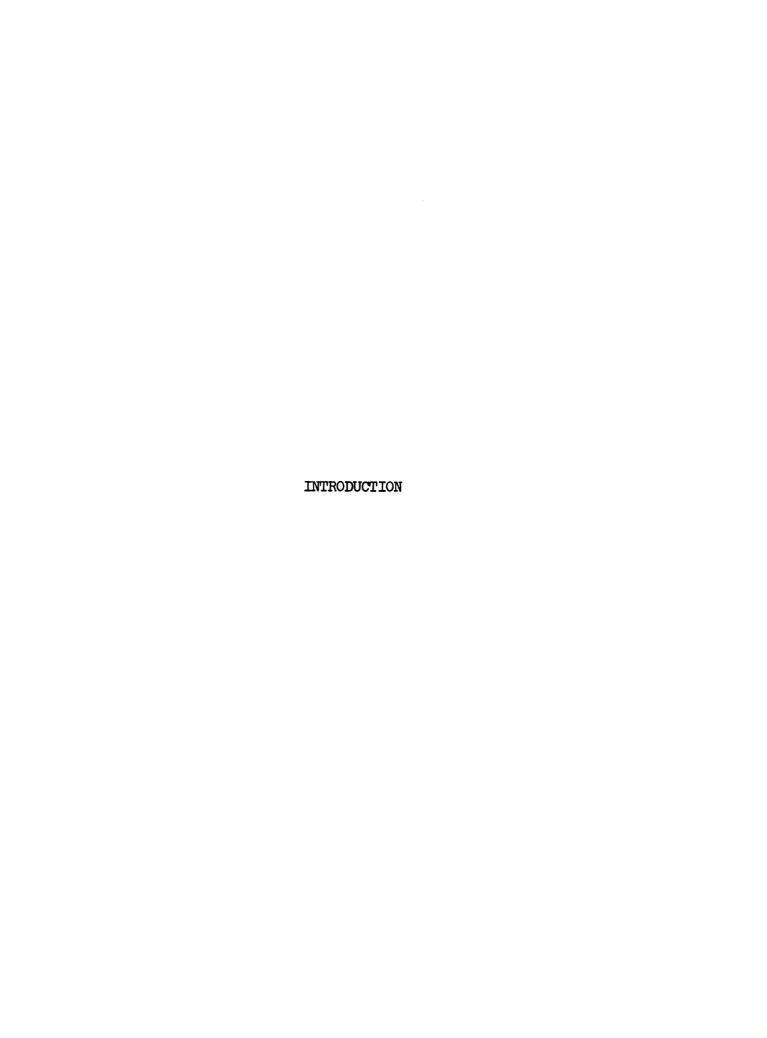
			Page
I.	INTRODU	OCTION	1
II.	HISTORI	CAL	5
III.	RESULTS		20
	A. 2-A	lkyl-1,3-dioxolenium Cations	21
	B. 2,2	-Alkylenebis-1,3-dioxolenium Dications	41
	C. 2-A	ryl-1,3-dioxolenium Cations	51
		and 2,2',2"-Aryl-1,3-dioxolenium Dications and cations	58
IV.	DISCUSS	ion	61
	A. 2-A	lkyl-1,3-dioxolenium Cations	62
	B. 2,2	e'-Alkylenebis-1,3-dioxolenium Dications	71
	•	ryl-1,3-dioxolenium Cations	74
		and 2,2',2"-Aryl-1,3-dioxolenium Dications and	•
		cations	76
٧.	EXPERIM	ENTAL	80
	A. Gen	eral	81
	1. 2. 3. 4. 5.	Melting Points	81 81 81 81 81
	B. Pre	cursors to 2-Alkyl-1,3-dioxolenium Cations	81
	4. 5. 6.	2-Bromoethyl Acetate 2-Bromoethyl Acrylate 2-Bromoethyl Methacrylate 2-Methoxyethyl Acetate 2-Hydroxyethyl Acetate 1,2-Diacetoxyethane 2-Bromoethyl-N,N-diethyl Carbamic Acid Ester 2-Bromoethyl Cyclopropanecarboxylate 3,3-Dimethylacrylyl Chloride 2-Bromoethyl-3,3-dimethylacrylate p-Methoxycinnamoyl Chloride 2-Bromoethyl-p-methoxycinnamate trans-2-Bromoethyl Crotonate	81 82 82 83 83 84 85 88 88 88 83 83 84 85

		Page
	14. trans-2-Bromoethyl Cinnamate	85
	15. 2-Bromoethyl Pivalate	86
	16. 2-Bromoethyl Cyclobutanecarboxylate	87
		•
C.	Precursors to 2-Aryl-1, 3-dioxolenium Cations	87
	1. 2-Bromoethyl p-Methoxybenzoate	87
	2. 2-Bromoethyl 3,4,5-Trimethoxybenzoate	88
	3. 2-Bromoethyl p-Methylbenzoate	88
	4. 2-Bromoethyl m-Methylbenzoate	89
	5. 2-Bromoethyl Benzoate	89
	6. 2-Bromoethyl p-Fluorobenzoate	90
	7. '2-Bromoethyl p-Chlorobenzoate	90
	8. 2-Chloroethyl m-Chlorobenzoate	91
	· · · · · · · · · · · · · · · · · · ·	91
	9. 2-Bromoethyl m-Bromobenzoate	-
	10. 2-Bromoethyl m-Fluorobenzoate	92
	11. 2-Bromoethyl 3,4-Dichlorobenzoate	92
	12. 2-Bromoethyl m-Trifluoromethylbenzoate	93
	13. 2-Bromoethyl p-Trifluoromethylbenzoate	94
	14. 2-Bromoethyl m-Nitrobenzoate	94
	15. 2-Bromoethyl p-Nitrobenzoate	95
	16. 2-Bromoethyl Isophthalate	95
	17. 2-Bromoethyl Terephthalate	96
	18. 2-Bromoethyl Trimesate	96
D.	Precursors to 2,2'-Alkylene-1,3-dioxolenium Dications.	97
ים.	ilectibols to 2,2 -Alayiche-(1,)-dioxoletium bications.	71
	1. Bis(2-bromoethyl) Oxalate	97
	2. Bis (2-bromoethyl) Malonate	98
	3. Bis (2-bromoethyl) Succinate	98
	4. Bis(2-bromoethyl) Glutarate	99
	5. Bis(2-bromoethyl) Adipate	99
	6. Bis(2-bromoethyl) Pimelate	100
	7. Bis(2-bromoethyl) Suberate	100
	1. DIB(2-DIOMOGENTY) Duberate	100
E.	2-Alkyl-1,3-dioxolenium Cations	101
	1. 2-(N, N-Diethylamino)-1, 3-dioxolenium	
	Tetrafluoroborate	101
	2. 2-(Cyclopropyl)-1,3-dioxolenium Tetrafluoroborate.	102
	3. 2-(2-Methylpropenyl)-1,3-dioxolenium	
	Tetrafluoroborate	102
	4. 2-(p-Methoxystyryl)-1,3-dioxolenium	
	Tetrafluoroborate	103
	5. trans-2-(Propenyl)-1,3-dioxolenium Tetra-	5
	fluoroborate	104
		105
		-
	7. '2-(t-Butyl)-1,3-dioxolenium Tetrafluoroborate	105
	8. 2-(Cyclobutyl)-1,3-dioxolenium Tetrafluoroborate	106
	9. 2-Methyl-1, 3-dioxolenium tetrafluoroborate	107
	10. 2-(Isopropenyl)-1,3-dioxolenium Cation	107

			Page
	11.	2-(Vinyl)-1,3-dioxolenium Cation	108 109
F.	2-Ar	yl-1,3-Dioxolenium Cations	109
	1.	2-(p-Methoxyphenyl)-1, 3-dioxolenium Tetra-	
	2.	fluoroborate	109
		Tetrafluoroborate	110
	3•	2-(p-Methylphenyl)-1,3-dioxolenium Tetra- fluoroborate	111
	4.	2-(m-Methylphenyl)-1,3-dioxolenium Tetra-	
	.	fluoroborate	111 112
	5. 6.	2-(Phenyl)-1, 3-dioxolenium Tetrafluoroborate 2-(p-Fluorophenyl)-1, 3-dioxolenium Tetra-	112
	_	fluoroborate	113
	7•	2-(p-Chlorophenyl)-1,3-dioxolenium Tetra- fluoroborate	113
	8.	2-(m-Chlorophenyl)-1,3-dioxolenium Tetra-	ربد
		fluoroborate	114
	9•	2-(m-Bromophenyl)-1,3-dioxolenium Tetra- fluoroborate	115
	10.,	<u> </u>	
		fluoroborate	115
	11.	2-(3,4-Dichlorophenyl)-1,3-dioxolenium Tetra- fluoroborate	116
	12.	2-(m-Trifluoromethylphenyl)-1,3-dioxolenium	
	10	Tetrafluoroborate	117
	13.	2-(p-Trifluoromethylphenyl)-1,3-dioxolenium Tetrafluoroborate	118
	14.	2-(m-Nitrophenyl)-1,3-dioxolenium Tetra-	0
	15.	fluoroborate	118
	±)•	fluoroborate	119
G.	2,2'	-Alkylene-1, 3-dioxolenium Dications	120
	,		
	1.	Attempted Synthesis of 2,2'-Bi-1,3-dioxolenium Dication	120
		Dication	
		(a) With Silver Tetrafluoroborate	120
	,	(b) With Silver Hexafluoroantimonate	120
	2.	, , , , , , , , , , , , , , , , , , , ,	
	3	fluoroborate	121
		fluoroborate	121
	4.	2,2'-Trimethylenebis-1,3-dioxolenium Tetra-	100
	5. ¹	fluoroborate	122
	-	fluoroborate	123

				rage
		6.	2,2'-Pentamethylenebis-1,3-dioxolenium	
			Tetrafluoroborate	123
		7•	2,2'-Hexamethylenebis-1,3-dioxolenium	
			Tetrafluoroborate	124
	77	0.01	and O Ol Ol Annal 1 2 decreal and am December and	
	н.	2,2	and 2,2',2"-Aryl-1,3-dioxolenium Dications and Trications	125
			iricacions	12)
		ı.	2,2'-m-Phenylenebis-1,3-dioxolenium Tetra-	
			fluoroborate	125
		2.	2,2'-p-Phenylenebis-1,3-dioxolenium Tetra-	
			fluoroborate	125
		3.	2,2',2"-Phenylenetris-1,3-dioxolenium Tetra-	
			fluoroborate	126
VI.	MIIC	ተ ው ለው ተ	MAGNETIC RESONANCE SPECTRA	127
V Τ •	NOC	TITHE	MAGNETIC RESONANCE SPECIAL	121
			Spectrum 1. 2-Bromoethyl-N, N-diethyl Carbamic	
			Acid Ester	128
			Spectrum 2. 2-Bromoethyl Cyclopropanecar-	
			boxylate	129
			Spectrum 3. 2-Bromoethyl-3,3-dimethylacrylate .	130
		•	Spectrum 4. <u>trans-2-Bromoethyl Crotonate</u>	131
		•	Spectrum 5. trans-2-Bromoethyl p-Methoxy-	120
			cinnamate	132 133
		:	Spectrum 7. 2-Bromoethyl Cyclobutanecarboxylate.	134
			Spectrum 8. 2-Bromoethyl Pivalate	135
			Spectrum 9. 2-Bromoethyl Acetate	136
			Spectrum 10. 2-Bromoethyl Methacrylate	137
			Spectrum 11. 2-Bromoethyl Acrylate	138
			Spectrum 12. Bis(2-bromoethyl) Oxalate	139
			Spectrum 13. Bis(2-bromoethyl) Malonate	140
			Spectrum 14. Bis(2-bromoethyl) Succinate	141 142
			Spectrum 15. Bis(2-bromoethyl) Glutarate Spectrum 16. Bis(2-bromoethyl) Adepate	143
			Spectrum 16. Bis(2-bromoethyl) Adepate Spectrum 17. Bis(2-bromoethyl) Pimelate	144
			Spectrum 18. Bis(2-bromoethyl) Suberate	145
			Spectrum 19. 2-Bromoethyl p-Methoxybenzoate	146
			Spectrum 20. 2-Bromoethyl 3,4,5-Trimethoxyben-	
		•	zoate	147
			Spectrum 21. 2-Bromoethyl p-Methylbenzoate	148
			Spectrum 22. 2-Bromoethyl m-Methylbenzoate	149
		•	Spectrum 23. 2-Bromoethyl Benzoate	150
			Spectrum 24. 2-Bromoethyl p-Fluorobenzoate	151
		•	Spectrum 25. 2-Bromoethyl p-Chlorobenzoate Spectrum 26. 2-Chloroethyl m-Chlorobenzoate	152 153
			Spectrum 27. 2-Bromoethyl m-Bromobenzoate	154
			Spectrum 28. 2-Bromoethyl m-Fluorobenzoate	155
			Spectrum 29. 2-Bromoethyl 3,4-Dichlorobenzoate.	156
			Spectrum 30. 2-Bromoethyl m-Trifluoromethyl-	
			benzoate	157

			Page
Spectrum	31.	2-Bromoethyl p-Trifluoromethyl-	
		benzoate	158
Spectrum	32.	2-Bromoethyl m-Nitrobenzoate	159
Spectrum	33•	2-Bromoethyl p-Nitrobenzoate	160
Spectrum	34.	2-Bromoethyl Isophthalate	161
Spectrum		2-Bromoethyl Terephthalate	162
Spectrum		2-Bromoethyl Trimesate	163
Spectrum	-	2-(N, N-Diethylamino)-1, 3-dioxolen-	
	- 0	ium Tetrafluoroborate	164
Spectrum	38.	2-(Cyclopropyl)-1,3-dioxolenium Tetrafluoroborate	165
Spectrum	39.	2-(2-Methylpropenyl)-1,3-dioxolen-	-07
Dpcc 01 cm	J) •	ium Tetrafluoroborate	166
Spectrum	40.	trans-2-(Propenyl)-1,3-Dioxolenium	
		Tetrafluoroborate	167
Spectrum	41.	2-(p-Methoxystyryl)-1, 3-dioxolenium	160
Spectrum	1.0	Tetrafluoroborate	168
spectrum	42.	2-(Styryl)-1,3-dioxolenium Tetra- fluoroborate	169
Spectrum	JiЗ	2-(Cyclobutyl)-1,3-dioxolenium	109
ppecorum	٠٠٠	Tetrafluoroborate	170
Spectrum	44.	2-(t-Butyl)-1,3-dioxolenium	110
DP CC CI CLL		Tetrafluoroborate	171
Spectrum	45.	2-(Methyl)-1, 3-dioxolenium	-,-
•		Tetrafluoroborate	172
Spectrum	46.	2-(Isopropenyl)-1,3-dioxolenium	
		Tetrafluoroborate	173
Spectrum	47.	2-(Vinyl)-1,3-dioxolenium	1
~ .	1.0	Tetrafluoroborate	174
Spectrum	48.	Bis (2-bromoethyl) Oxalate and Two	175
Spectrum	lia	Equivalents of AgSbF ₆	エリノ
precorum	マフ・	Tetrafluoroborate	176
Spectrum	50.	2,2'-Ethylenebis-1,3-dioxolenium	-,0
-F	,	Tetrafluoroborate	177
Spectrum	51.	2,2'-Trimethylenebis-1,3-dioxol-	-,,
_		enium Tetrafluoroborate	178
Spectrum	52.	2,2'-Tetramethylenebis-1,3-diox-	•
_		olenium Tetrafluoroborate	179
Spectrum	53•	2,2'-Pentamethylenebis-1,3-diox-	- 0-
~ .	-1	olenium Tetrafluoroborate	180
Spectrum	54.	2,2'-Hexamethylenebis-1,3-diox-	7 0 7
Cnootman	E E	olenium Tetrafluoroborate	181
Spectrum))·	2-(p-Methoxyphenyl)-1,3-dioxolen- ium Tetrafluoroborate	182
Spectrum	56.	2-(3,4,5-Trimethoxyphenyl)-1,3-	102
Spec of uni	<i>)</i> • • • • • • • • • • • • • • • • • • •	Dioxolenium Tetrafluoroborate	183
Spectrum	57.	2-(p-Methylphenyl)-1,3-dioxolen-	_0)
	<i>-</i> 1 -	ium Tetrafluoroborate	184
Spectrum	58.	2-(m-Methylphenyl)-1,3-dioxolen-	
_	-	ium Tetrafluoroborate	185


	Page
Spectrum 59. 2-(Phenyl)-1,3-Dioxoleniu	m
Tetrafluoroborate	
Spectrum 60. 2-(p-Fluorophenyl)-1,3-di	
Tetrafluoroborate	187
Spectrum 61. 2-(p-Chlorophenyl)-1,3-di	
Tetrafluoroborate	
Spectrum 62. 2-(m-Chlorophenyl)-1,3-di	
Tetrafluoroborate	
Spectrum 63. 2-(m-Bromophenyl)-1,3-dio	
Tetrafluoroborate	
Spectrum 64. 2-(m-Fluorophenyl)-1,3-di	
Tetrafluoroborate	
Spectrum 65. 2-(3,4-Dichlorophenyl)-1,	
lenium Tetrafluoroborat	
Spectrum 66. 2-(m-Trifluoromethylpheny	
dioxolenium Tetrafluoro	
Spectrum 67. 2-(p-Trifluoromethylpheny	
dioxolenium Tetrafluoro	
Spectrum 68. 2-(m-Nitrophenyl)-1,3-dio	
Tetrafluoroborate	
Spectrum 69. 2-(p-Nitrophenyl)-1,3-dio	
Tetrafluoroborate	_ / -
Spectrum 70. 2,2'-m-Phenylenebis-1,3-d	
Tetrafluoroborate	
Spectrum 71. 2,2'-p-Phenylenebis-1,3-d	
Tetrafluoroborate	_
Spectrum 72. 2,2',2"-Phenylenetris-1,3	
enium Tetrafluoroborate	199
VI. LITERATURE CITED	200

LIST OF TABLES

Table		Page
I	2-Alkyl-1,3-dioxolenium Tetrafluoroborates	22
II	2-Bromoethyl Alkyl Esters	24
III	Comparison of Proton Chemical Shifts (δ) of 2-Bromo- ethyl Alkyl Ester Precursors (CCl ₄) to 2-Alkyl- l,3-dioxolenium Cations	26
IV	2,2'-Alkylenebis-1,3-dioxolenium Dications	43
V	Bis(2-bromoethyl) Esters	46
VI	2-Aryl-1,3-dioxolenium Cations	52
VII	2-Bromoethyl Benzoates	54
VIII	Comparison of Proton Chemical Shifts (δ) of 2-Aryl-1,3-dioxolanes (CCl ₄) with 2-Aryl-1,3-dioxolenium Cations	55
IX	Comparison of Proton Chemical Shifts (δ) of 2-Bromo- ethyl Benzoate Precursors (CCl ₄) to 2-Aryl-1,3- dioxolenium Cations	57
x	Nmr Chemical Shifts for 2-Aryl-1,3-dioxolenium Multications in FSO ₃ H	59
XI	Comparison of Proton Chemical Shifts of 2-Substituents in Ester Precursors (CCl _h) with those in 2-Alkyl-1,3-dioxolenium Cations (FSO ₃ H)	66a

LIST OF FIGURES

Figure		Page
I	Reaction of 2-Hydroxyethyl Acetate with FSO ₃ H (Addition of Acid to Ester; Reaction Time = 45 Minutes)	29
II.	Reaction of 2-Hydroxyethyl Acetate with FSO ₃ H (Addition of Ester to Acid; Reaction Time = 7 Minutes)	30
III.	Reaction of 2-Acetoxyethyl Acetate with FSO ₃ H (Addition of Acid to Ester; Reaction Time = 65 Minutes)	32
IV.	Reaction of 2-Acetoxyethyl Acetate with FSO ₃ H (Addition of Ester to Acid; Reaction Time = 15 Minutes)	34
٧.	Reaction of 2-Methoxyethylacetate with FSO3H (Addition of Acid to Ester; Reaction Time = 40 Minutes)	37
VI.	Reaction of 2-Methoxyethyl Acetate with FSO ₃ H (Addition of Ester to Acid; Reaction Time = 10 Minutes)	40
VII.	2,2'-Alkylenebis-1,3-dioxolenium Dications in Order of Increased Shielding of Ring Protons	47
VIII.	Dioxolenium Ring Proton Chemical Shift vs. Number of Methylene Groups	49
IX.	2-Methylene Proton Chemical Shift vs. Number of Methylene Groups	49
х.	Dioxolenium Ring Proton Chemical Shift vs. Hammett σ (FSO3H)	57a
XI.	2-Substituted-1,3-dioxolenium Cation Families vs. nmr Chemical Shifts of the Ring Protons	63
XII.	2-Alkyl-1,3-dioxolenium Cations	64
XIII.	Deshielding Parameters ($\Delta\delta$) for Mono-, Di- and Tri-diox- olenium Cations (FSO ₃ H) Compared to their Ester Precursors (CCl ₄)	7 9

Carbonium ions have been proposed as fleeting intermediates in many organic reactions since the early work of Meerwein and Whitmore.2 Although the first example of a stable isolable carbonium ion was reported by Seel in 1943. kinetic and stereochemical evidence for their intervention in reactions was common. The first use of nmr spectroscopy as a means for characterizing carbonium ions was reported in 1958 by Doering and coworkers, 4 at which time nmr spectral evidence was presented for the heptamethylbenzenonium ion. Since that time, techniques developed primarily by Olah and Deno have made possible the direct observation of many of these transient intermediates by nmr spectroscopy. Early progress in this area of carbonium ion chemistry was reviewed in 1963 by Deno^{5a,b} and more recently by Olah. Since that time such a considerable volume of pertinent work has appeared in the literature that several texts have recently been published on the subject. 7a, b At the present, alkyl, 8a-e cycloalkyl, 9a-e benzyl, 10a-e alkynyl, 11a,b alkenyl, 12a-f oxo, 13a-g fluoro, 14a-c hydroxy, 15a,b alkoxy, 16a-d arylalkyl, 17a,b cations as well as bridged phenonium 18a-c and benzenonium 19a,b ions have been examined in some detail by nmr spectroscopy. These investigations have generally included attempts to qualitatively correlate proton chemical shifts with expected charge densities on the attached carbons. Although one successful quantitative correlation of fluorine nmr chemical shifts with stabilization energies has been reported for para-fluorine substituted triphenylmethyl cations, 20 in no instance has a quantitative correlation of charge densities with proton chemical shifts been demonstrated. In most cases the carbonium ion structures were simply not amenable to correlation with linear free energy parameters, such as Hammett σ values, but Olah has suggested that such a correlation might

be possible with the benzyl cation system. 10e

Conspicuously absent from the literature at the onset of our investigation was an nmr spectral examination of alkoxy carbonium ions.

Very recently Taft and Ramsey 21 reported spectral data for a number of acyclic dialkoxy and trialkoxy carbonium ions of the type shown below;

however, the cyclic dialkoxy carbonium ions (2-substituted-1,3-dioxolen-

ium cations) were considered of more interest for several reasons. A priori it was thought that the cyclic cation system might provide an interesting carbonium ion model, whereby the equivalent dioxolenium ring protons could be used as a probe for assessing charge delocalization or interaction with 2-substituents. It was also predicted that probe chemical shift deviations due to 2-substituent anisotropy effects would be at a minimum since the cyclic structure removes the probe protons from the immediate vicinity of the 2-substituent. Finally, using Meerwein's method one can introduce a wide variety of 2-substituents thus making possible a systematic and extensive investigation of charge density on the probe as a function of the 2-substituent.

The investigation reported, herein, describes a systematic nmr spectral examination of these 2-substituted-1,3-dioxolenium cations and presents three new synthetic routes to these systems. Nmr data for 2-(meta and para-substituted aryl)-1,3-dioxolenium cations provide the first example of a quantitative correlation of carbonium ion charge density

with proton nmr chemical shift as well as a unique and novel method for the determination of Hammett σ values for hydrolytically unstable moieties. Similarly a quantitative relationship between proton chemical shift and charge separation was demonstrated for 2,2'-alkylene-bis-1,3-dioxolenium dications by using derived equations.

The dioxolenium cations will be treated and presented as members of four distinct families of this series as described below:

I. 2-Alkyl-1, 3-dioxolenium Cations:

II. 2,2'-Alkylene-bis-1,3-dioxolenium Dications:

$$\begin{bmatrix} \begin{bmatrix} 0 \\ + \\ 0 \end{bmatrix} & (CH_2)_n & \begin{pmatrix} 0 \\ + \\ 0 \end{bmatrix} \end{bmatrix} 2X^{-1}$$

III. 2-Aryl-1, 3-dioxolenium Cations:

TV. 2,2' and 2,2',2"-Aryl-1,3-dioxolenium Dications and Trications:

2-Substituted-1,3-dioxolenium cations were first postulated by Winstein²³ in 1942 as transient intermediates to account for the exclusive formation of a <u>trans</u>-diacetate product from the reaction of <u>trans</u>-2-acetoxy-cyclohexyl bromide with silver acetate. Similarly the acid catalyzed

$$\begin{bmatrix}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

hydrolysis of cyclic ortho esters²⁴ was proposed to involve such a cationic intermediate yielding in this case a cis product.

$$\begin{array}{c|c}
 & \stackrel{\text{H}^+}{\longrightarrow} & \\
\hline
\text{CH}_3 \text{ OEt} & \\
\hline
\text{CH}_3 & \\
\hline
\text{CH$$

A survey of the literature makes it apparent that these cationic intermediates are involved in a wide variety of organic reactions. The numerous examples can be grouped in three general categories.

A. Displacement of a β-Substituent by Participation of a Carboxy Group

$$\begin{array}{c} 0 \\ R-C-O-CH_2-CH_2-X \end{array} \longrightarrow \begin{array}{c} -X \\ R-\begin{pmatrix} 0 \\ + \\ 0 \end{array} \end{array} \begin{array}{c} \underline{\text{nucleophile}} \end{array} \longrightarrow \begin{array}{c} \underline{\text{Products}} \end{array}$$

When X is halogen the reactions are usually metal-assisted and involve silver salts, organometallic reagents, or in some cases Lewis acids. When X is an ether, hydroxy, or ester function, however, the reactions are

generally acid-catalyzed, requiring protonation of the function or reaction with a Lewis acid before displacement. In special cases where the β -substituent is a labile group such as a tosylate or oxythallate, simple solvolysis presumably yields the transient 1,3-dioxolenium cations.

B. Acid-Catalyzed Hydrolysis of Cyclic Ortho Esters

$$\begin{array}{c|c}
RO & O & Z \\
R & O & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
R - O & \\
\hline
\end{array}$$

$$\begin{array}{c}
\text{nucleophile} \\
\end{array}$$
Products

Where Z is a protic or Lewis acid.

C. Oxidation of a Cyclic Acetal

$$\begin{bmatrix} 0 \\ 0 \\ R \end{bmatrix} \xrightarrow{H} X = \begin{bmatrix} 0 \\ + \\ 0 \end{bmatrix} \xrightarrow{\text{nucleophile}} \text{Products}$$
Where $X = Cl_2$, Br_2 or $BrCCl_3$.

Group A embraces the largest number and variety of reactions which are believed to proceed through 1,3-dioxolenium intermediates. In 1939, several years before Winstein's classical work on acetoxy neighboring group effects, Tipson²⁵ noted that treatment of an acetohalogenosugar with silver acetate in acetic acid, toluene or similar solvent resulted in the formation of a sugar acetate having the C-l and C-2-acetoxy groups in a trans relationship. Isbell²⁶ later pointed out that this result could be rationalized by the ability of the C-2 acetoxy group to participate only if it was trans to the halogen but not if it was cis. Winstein's subsequent work²³ clarified these early observations in the carbohydrate field and thus provided an explanation for many other acetoxy participation reactions; these have been reviewed by Pascu²⁷ and Lemieux.²⁸

Similarly, Prevost type reactions 29-33 are assumed to proceed through

cyclic cationic intermediates since trans products are obtained

exclusively. In these cases, initial addition of the halogen followed by reaction with one equivalent of the silver salt provides the 2-haloalkyl benzoate precursor to a 1,3-dioxolenium cation. Subsequent reaction of the second equivalent of silver salt generally yields a trans product.

More recently Winstein and coworkers³⁴ have provided compelling evidence for the above speculation by isolating the analogous 2-methyl-<u>cis</u>-4,5-tetramethylene-1,3-dioxolenium cation intermediate from the reaction of trans-2-acetoxycyclohexyl bromide with silver tetrafluoroborate.

Reactions of the salt with acetate ion under anhydrous conditions

paralleled the Prevost reaction in that the <u>trans</u>-diacetate was produced almost exclusively.

The above method for the preparation and isolation of 1,3-dioxolenium cations from silver tetrafluoroborate and 2-haloethyl esters was discovered by Meerwein and coworkers in 1958.²² Subsequent work by Meerwein³⁵ showed that Lewis acids such as BF₃ and SbCl₅ were also effective for the preparation of these cations.

Finally, another interesting example, which involves the reaction of a vicinal dihalide with a silver salt, was reported by Cope and coworkers. ³⁶ A 1,3-dioxolenium cation is believed to intercede and undergo a transannular reaction by a 1,5 hydride shift according to the mechanism shown below:

Whereas all evidence indicates that metal assisted reactions involve "hindside" participation of a carboxy group, evidence gathered thus far

for the acid-catalyzed cyclization of alcohols and esters to 1,3-dioxolenium cations indicates that "front-side" participation of the carboxy group occurs in these cases. This type of mechanism was first suggested by Winstein and Boschan in 1956³⁷ to explain the facile conversion of cis-2-acetoxycyclohexanol to trans-2-acetoxycyclohexyl chloride with concentrated HCl, a reaction for which the following path has been proposed:

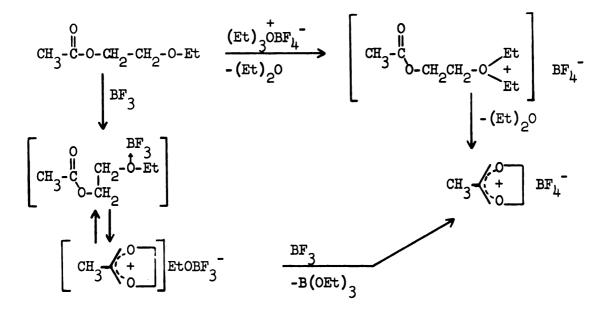
In contrast, the conversion of the <u>trans-2-acetoxycyclohexanol</u>, under the same conditions, proceeds with considerable difficulty.

Similarly, Pedersen has very recently shown³⁸ by nmr studies that <u>cis</u>-1,2-diacetoxycyclohexane undergoes complete conversion in 6-8 hours to the 2-methyl-1,3-dioxolenium cation in anhydrous hydrogen fluoride at room temperature. The trans-1,2-diacetoxycyclohexane, however, did not

undergo any reaction under these conditions even after several days.

It is interesting that 3 β , 5 α -diacetoxy-6 β -fluorocholestane converts readily to the analogous six membered 1,3-dioxenium cation in perchloric acid even though the acetoxy groups have a <u>trans</u> relationship to each other. ³⁹

$$\begin{array}{c} \text{HClO}_{\underline{4}} \\ \text{Ac} \end{array}$$


The first spectral characterization of a 1,3-dioxolenium cation as an intermediate in a reaction was reported by Wilcox and Nealy in 1963. 40 They found that when benzoate esters of either cis or trans-1,2,3,4-tetramethylcyclobutene-3,4-diol were treated with 97% sulfuric acid or boron trifluoride these cationic species were generated and could be identified by nmr spectroscopy. Chemical proof of structure consisted of decomposing these cations in methanol and water to give an ortho ester and a cishydroxy benzoate, respectively. This criterion was employed earlier by Winstein and coworkers as a proof of structure. 23,24

1,3-Dioxolenium ion intermediates have been proposed in the Brønsted and Lewis acid-catalyzed ring opening of vicinal epoxides (cyclic ethers) bearing a neighboring trans-acetoxy group. 41,42 Coxon and coworkers 43 found that 3 β -acetoxy-4 α , 5 α -epoxycholestane gives a stable 3 β , 4 β -bridged ionic complex with BF3, which upon hydrolysis gave the corresponding diol.

$$\begin{array}{c}
 & \xrightarrow{\text{AcO}} \\
 & \xrightarrow{\text{AcO}} \\
 & \xrightarrow{\text{Normal Polymer of the polymer of the$$

Buchanan 41,44 has shown that a Brønsted acid can cause a similar transformation, presumably via the 1,3-dioxolenium cation as shown below:

In the case of acyclic ethers, Meerwein and coworkers³⁵ were able to prepare 2-methyl-1,3-dioxolenium tetrafluoroborate in good yield by the reaction of 2-ethoxyethyl acetate with either triethyloxonium tetrafluoroborate or BF₃ according to the following equations:

The latter reaction is extremely slow and generally requires 1/2-1 year for completion. Antimony pentachloride reacts in a similar but more rapid manner to give a 56% yield of the above cation as a hexachloroantimonate salt.

In special cases where labile groups are located β to a carboxy group, participation occurs readily under solvolytic conditions to give products derived from 1,3-dioxolenium cation intermediates. This aspect has been investigated in considerable detail by Winstein and coworkers. ^{23,45} They found that trans-2-acetoxycyclohexyl brosylate solvolyzes in acetic acid to trans-1,2-diacetoxycyclohexane, presumably via the 1,3-dioxolenium cation, several hundred times faster than does cis-2-acetoxycyclohexyl brosylate. The enhanced rate is undoubtedly due to anchimeric assistance by the acetoxy group in the trans isomer, whereas solvolysis of the cis isomer is governed by the rate at which the substrate loses brosylate ion, since anchimeric assistance is geometrically not possible.

More recently Schneider and Lang 46 examined the anchimeric effects of the benzoyloxy group in cis and trans-2-benzoyloxycyclohexyl tosylates in anhydrous acetic acid. The relative rates for the cis and trans isomer were foun to be 4.6×10^{-4} and 0.26 respectively, compared to cyclohexyl tosylate as 1.00.

Several olefin oxidations have been reported in the past decade which are best explained in terms of 1,3-dioxolenium ion intermediates. Brutcher and Vara 147 found that cyclopentadiene undergoes a facile oxidation with lead tetraacetate to give the trans diacetate in the presence of acetate anion, the cis hydroxyacetate in wet acetic acid and cis diacetate in anhydrous acetic acid. These authors interpret the above transformations according to the following reaction scheme:

Grinstead 48 postulated the intermediacy of 1,3-dioxolenium salts in the oxidation of olefins with thallium salts to hydroxyesters and diols. Later work by Winstein and Anderson 49 on the stereochemistry of this reaction in acetic acid supported this conjecture. These workers envisioned the reaction mechanism in the following manner:

In anhydrous acetic acid the diacetate was mainly <u>trans</u> (up to 88%), whereas in wet acetic acid the diacetate was primarily <u>cis</u> (up to 81%). The significant reversal of diacetate stereochemistry by water is considered to be a criterion for the intermediacy of a 1,3-dioxolenium cation.

Recent work reported by Olson⁵⁰ on the selenium dioxide oxidation of ethylene in acetic acid has implicated 1,3-dioxolenium cations as intermediates in these reactions.

Alkoxycarbonium ions have been suspected as intermediates in the acid-catalyzed hydrolysis of acetals, ketals and orthoesters for some time. 51

In the case of an orthoester a dialkoxycarbonium ion would be the expected intermediate. Under normal reaction conditions their isolation was

precluded in that nucleophilic species were usually present thus leading to their destruction. It was not until the pioneering work of Meerwein and coworkers that this speculation was soundly corroborated. In an extensive investigation which began in 1955⁵² Meerwein found that both acyclic²² and cyclic³⁵ dialkoxycarbonium ions could be prepared and isolated by treating appropriate orthoesters with an excess of a Lewis acid (BF₃, SbCl₅) or a Brønsted acid possessing weakly nucleophilic anions (i.e., H₂SO₄). An excess of these reagents was essential in order to complex any nucleophilic species which were generated in the reaction. By using only a catalytic amount of the acid reagents one merely observed ring opening to the corresponding 2-alkoxyethyl ester. These reactions led to the 1,3-dioxolenium cations in high yield (60-97%) unless electron

withdrawing groups are present in the 2 or 4 position. For example, BF₃ will not convert the following dioxolanes to the cations, but prefers to remain as a complex, and SbCl₅ transforms the 4-substituted dioxolane to the corresponding dialkoxycarbonium ion in only 21% yield.

According to recent work by Winstein, this was the method of choice for the preparation and isolation of 2-methyl-cis-4,5-tetramethylene-1,3-dioxolenium tetrafluoroborate.³⁴

1,3-Dioxolenium cations have been prepared and isolated in several instances by the oxidation of 2-substituted-1,3-dioxolanes. Meerwein⁵² first reported this general method in 1955 when he isolated the parent 1,3-dioxolenium tetrafluoroborate in 62% yield by the reaction of 1,3-dioxolane with trityl tetrafluoroborate. Meerwein provided subsequent variations⁵³

of this reaction by oxidizing 2-phenyl-1,3-dioxolane to the corresponding cation with triethyloxonium tetrafluoroborate and also with a mixture of ethyl bromide and silver tetrafluoroborate. In the latter case, a very

transient primary carbonium presumably affects the oxidation.

Dialkoxycarbonium ions have been implicated as intermediates in the

halogenation of acetals. Marvell and Joncich⁵⁴ found that the bromination of benzaldehyde diethylacetal with N-bromosuccinimide proceeded smoothly to give a bromine-free product which was identified as ethyl benzoate. It was conjectured that this product arose in the following manner:

Cyclic dialkoxycarbonium ions were suggested as transient intermediates in the chlorination and bromination of cyclic acetals. Cort and Pearson⁵⁵ found that the halogenation of 1,3-dioxolane with bromine or chlorine gave the corresponding 2-bromo- or 2-chloroethyl formate directly. Chlorination of trans-1,4,5,8-tetraoxadecalin yielded a mixture of bis-2-chloroethyl oxalate and 2,3-dioxo-1,4-dioxane. These products were believed to have resulted from a dication as shown below:

$$\begin{bmatrix}
0 & 0 & Cl_2 \\
0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 & 0 & Cl_2
\end{bmatrix}$$

Schmitz and coworkers proposed a 1,3-dioxolenium cation as an intermediate in the oxidation of 2-phenyl-cis-4,5-tetramethyl-1,3-dioxolane with N-bromosuccinimide. This conjecture was based on the fact that trans-2-bromoslkylbenzoate was obtained exclusively and would be the expected product from such a cationic intermediate, whereas a radical rearrangement might be expected to give a cis-trans mixture.

More recently Prugh and McCarthy postulated a radical rearrangement mechanism to account for the formation of 2-bromoethyl esters from the reaction of NBS and catalytic amounts of 2,2'-azobisisobutyronitrile (AIBN) with 2-substituted-1,3-dioxolanes. These authors could not provide a

plausible explanation, however, for the unusual ring opening aptitude of 2,4-disubstituted-1,3-dioxolanes under these conditions. 2-Phenyl-4-methyl-1,3-dioxolane gave a 92% yield of an isomer mixture of (A) and (B) with NBS and AIBN. The isomer ratio of A: B, however, was found to be 5: 1 and seemingly inconsistent with the proposed radical rearrangement

mechanism, which would require preferred rearrangement of a dialkoxybenzyl radical to a primary methylene radical rather than a secondary radical. In view of the evidence 56,57 supporting SN2-like ring opening reactions of 1,3-dioxolenium cations the above product distribution may be best rationalized via such a cationic intermediate.

A. 2-Alkyl-1, 3-Dioxolenium Cations:

The 2-alkyl-1,3-dioxolenium cations used in this investigation were prepared according to a modified version of the Meerwein method. 22 By allowing equimolar amounts of 2-bromoethyl esters and anhydrous silver tetrafluoroborate to react in methylene chloride at 25-30° for 1-5 hours, 1,3-dioxolenium tetrafluoroborates were generally obtained as nice white isolable salts in yields of 43-93% (see Table I). Interestingly, 2-(p-methoxystyryl)-1,3-dioxolenium tetrafluoroborate, which was brilliant canary yellow, was the only colored salt observed in this entire series and will be commented on later. It was necessary to use distilled or purified ester precursors for the cations or low yields and inferior products invariably resulted. Conversion of the esters to 1,3-dioxolenium cations was

$$\begin{array}{c} O \\ \parallel \\ C - O - CH_2 - CH_2 - Br \end{array} \xrightarrow{AgBF_{l_4}} \begin{array}{c} Alkyl - C - CH_2 - CH_2 - Br \\ CH_2Cl_2 \end{array} \xrightarrow{AgBr_{l_4}} \begin{array}{c} Alkyl - C - CH_2 - CH_2 - Br \\ CH_2Cl_2 \end{array}$$

unambiguously ascertained by observing the disappearance of the A_2X_2 nmr pattern characteristic for the esters and the formation of a sharp singlet for the equivalent ring methylene protons of the cations.

The 2-alkyl-1,3-dioxolenium tetrafluoroborates were generally soluble in methylene chloride with the exception of several which contained a double bond as part of the 2-substituent, [i.e., 2-vinyl, 2-isopropenyl, trans-2-propenyl, 2-styryl and 2-(p-methoxystyryl)].

All of the 2-alkyl cation salts were soluble in acetonitrile, liquid sulfur dioxide or fluorosulfonic acid. The last two solvents served as excellent media for nmr analysis of these cations.

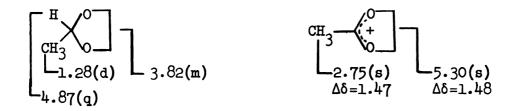
These salts were extremely moisture sensitive; several examples have been reported ⁵⁷ to undergo facile ring opening with water to produce

TABLE I
2-Alkyl-1,3-dioxolenium Tetrafluoroborates

	<u>R</u>	Mp, °C⋅	% Yield	Reaction Time, Hr.	Nmr Spectrum
1.	Et ₂ N-	53-54-5	69	ı	37
2.	\triangleright	124.5-126	66	2	38
3.	(CH ₃) ₂ C=CH-	61-62	65	2	39
4.	CH ₃ -O-CH=CH-	220-223	71	1	40
5.	CH ₃ -CH=CH-	150-152	79	1	41
6.	CH=CH-	178-179.5	67	1.75	42
7.	\Diamond	31-32	56	1	43
8.	(CH ₃) ₃ C-	151.5-152.5	72	2	44
	сн ₃ -	170-172	83	1	45
10.	CH ₂ =C-	155-156.5	81	2	46
ц.	CH ^S =CH-	151-152.5	43	4.5	47

2-hydroxyethyl esters. For this reason all operations were carried out in a glove box under scrupulously dry conditions. Under anhydrous storage con-

$$R \xrightarrow{\text{H}_2\text{O}} BF_{4} \xrightarrow{\text{H}_2\text{O}} R \xrightarrow{\text{C}-\text{O}-\text{CH}_2-\text{CH}_2-\text{OH}} + BF_{4}$$


ditions the purified salts appear to have long shelf lives (i.e., 2 years) whereas impure samples tend to deteriorate within several weeks to a dark, amorphous mass.

The ester precursors were readily prepared in yields of 25-87% by refluxing equivalent amounts of 2-bromoethanol with the appropriate acid chloride in carbon tetrachloride for 3-24 hours (see Table II). These 2-bromoethyl esters were generally obtained as distillable, colorless liquids or as crystallizable solids. The esters exhibited expected carbonyl absorptions in the 1700-1800cm⁻¹ region as well as giving appropriate elemental analyses and nmr spectra (see Spectra 1-11).

Nmr spectra of the cations were obtained both in liquid sulfur dioxide (-20°) and in fluorosulfonic acid (FSO₃H) (see Spectra 37-47). A downfield solvent shift of approximately 0.16 ppm was observed in going from FSO₃H to SO_2 . Tetramethylsilane (TMS) was used as the internal standard in sulfur dioxide; in FSO₃H, the reference was tetramethylammonium tetrafluoroborate (TMA·BF₄). The latter compound was assumed to have an absorption peak at -3.10 ppm downfield from tetramethylsilane, the value reported for this material in 100% H_2SO_4 . So Compared to several 2-alkyl-1,3-dioxolanes, the ring protons in the corresponding cations were generally shifted downfield 1.4 to 1.7 ppm in FSO₃H. For example 2-methyl-1,3-dioxolane had the following chemical shifts (δ) in CCl₄ compared to 2-methyl-1,3-dioxolenium tetrafluoroborate in FSO₃H:

TABLE II
2-Bromoethyl Alkyl Esters

<u>R</u>	Mp or Bp	% Yield	Reaction time, hr.	Nmr Spectrum
(Et) ₂ N-	77-79°/1.5mm	56	20	1
\triangleright	81-82°/10mm	87	5	2
(сн ₃) ₂ с= с н-	78-79° / 4mm	73	10	3
CH ₃ O-CH=CH-	50.5-51.5	84	3	4
CH ₃ -CH=CH-	114-115°/40mm	50	4	5
CH=CH-	44.5-46	62	24	6
\Diamond	79-80°/5mm	77	15	7
(CH ₃) ₃ C-	94-95°/34mm	25	10	8
сн ₃ -	160-161°/74 0m m	(Eastm	an Kodak)	9
CH ₂ =C-	46-49°/5mm	(Borde	n Company)	10
CH ₂ =CH-	52-53°/5mm	(Borde	n Company)	11

In Table III the proton chemical shifts of the 1,3-dioxolenium cations are listed in order of increased deshielding of the ring protons (c) and are compared to the methylene groups (a) and (b) in the corresponding ester precursors. In FSO₃H the $\Delta\delta$'s for (b) and (c) varied between 0.65-0.95 ppm, whereas in liquid sulfur dioxide $\Delta\delta$ varied between 0.95-1.13 ppm. The trend toward larger $\Delta\delta$'s in going from cation 1 \rightarrow cation 11 in FSO₃H suggests that the more shielded cations possess 2-substituents which are more effective for delocalization of positive charge and provides at least a qualitative basis for using the cation ring proton chemical shifts as an electron density probe. This criterion has been employed by Olah and Deno^{5a,b} in other carbonium ion systems and has been found to provide a quantitative relationship for the 2-aryl-1,3-dioxolenium ions, which will be discussed later.

Whereas 2-(p-methoxystyryl)-1,3-dioxolenium fluoroborate gave a brilliant yellow solution and a simple, explicable nmr spectrum in liquid sulfur dioxide, in FSO₃H the cation was immediately decolorized and gave a somewhat more complex spectrum. In the acid medium two groups of appropriate but displaced resonance signals were observed for the cation. This is interpreted as being due to partial protonation of the methoxy group to produce a mixture of the monocation and a dication. The chemical shifts of these two species are shown below:

3. <u>;</u>, ;, ٤.

TABLE III

Comparison of Proton Chemical Shifts (δ) of 2-Bromoethyl Alkyl Ester Precursors (CCl_{lμ}) to 2-Alkyl-1,3-Dioxolenium Cations

	to 2-Alky1-1, 3-Dioxofenium Cations							
	<u>R</u>	0 (b) (a) R-C-O-CH ₂ -CH ₂ Br			R-(c)' (c)' (c)'			
		(cc1 ₄)		(FSO ₃	H,25°)	(so ₂ ,	-20°)	
		<u>(a)</u>	<u>(b)</u>	<u>(c)</u>	Δδ	(c)'	Δδ	
1.	Et ₂ N-	3.53	4.33	4.98	0.65			
2.		3.50	4•35	5.17	0.82	5.38	1.03	
3.	(CH ₃) ₂ C=CH-	3.48	4.35	5.19	0.84			
4.	сн ₃ -о-Сн=сн-	3.52	4.44	5.22 (5.29)	0.78 *			
5.	CH ₃ -CH=CH-	3.52	4.40	5.23	0.83	5.38	0.98	
6.	-CH=CH-	3.53	4.46	5.25	0.79	5.41	0.95	
7.	\Diamond	3.49	4.36	5.29	0.93	5.45	1.09	
8.	(CH ₃) ₃ C-	3.50	4.35	5.30	0.95	5.48	1.13	
	CH ₃ -	3.50	4.35	5.30	0.95	5.44	1.09	
10.	CH ² =C- CH ³	3.54	4.43	5•34	0.91	5. 52	1.09	
11.	CH ^S =CH-	3.52	4.44	5.35	0.91	5.52	1.08	

^{*}Chemical shift for the methoxy protonated cation

In strong acids such as FSO_3H or $HSbF_6$, ketones and esters have been shown to be protonated to produce hydroxy carbonium ions 5a , 59 , 86 and hydroxy-alkoxy carbonium ions, 60 respectively. Protonation of ethylene carbonate in FSO_3H was expected to give 2-hydroxy-1,3-dioxolenium fluorosulfonate. It was surprising to find that the ring protons in this cation (δ = 5.26

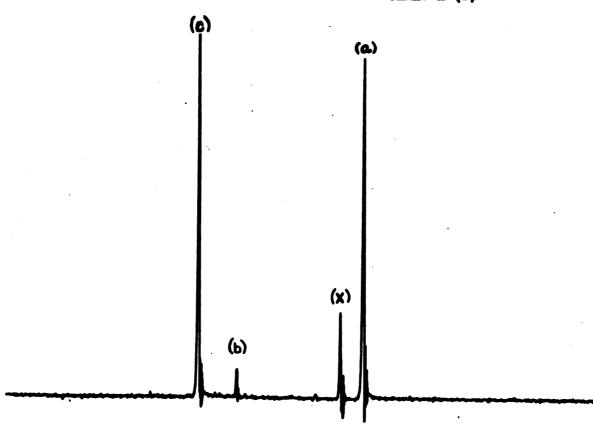
ppm singlet) were deshielded more than those in the cyclic dialkoxycarbonium ions 1-6 (Table III), even though one might expect considerable charge delocalization through the resonance structure shown above. A similar observation was reported by Taft and Ramsey 10,21 for the analogous acyclic series. They found that the methoxy protons were more deshielded in the trimethoxy cation than in the dimethoxy cation shown below. A good explanation for

$$CH_3$$
 CH_3
 CH_3

these observations is not immediately obvious, unless the ethylene carbonate is being protonated on the ether oxygens.

In this investigation, three new methods were discovered for the generation of simple 2-substituted-1,3-dioxolenium cations. It was found that treatment of either a 2-hydroxyethyl, 2-acetoxyethyl or 2-methoxyethyl ester with an excess of FSO₂H resulted in the formation of the dioxolenium

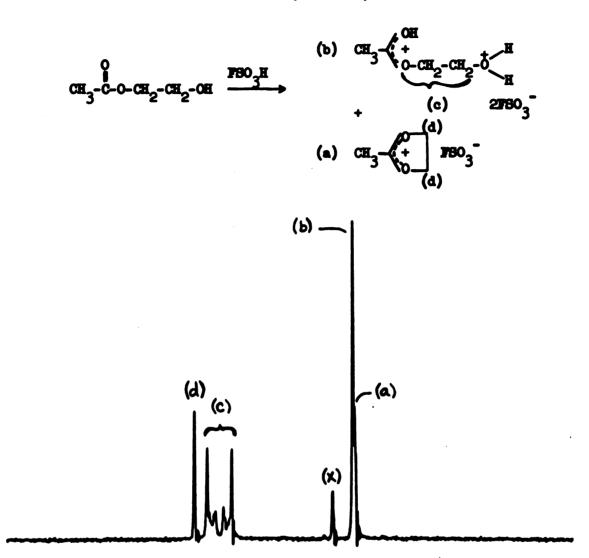
si si di di


\$

i

cation and associated protonated species, these depending on which precursor was used. It was further found that the mode of combination of these reactants was very important. Certain interesting protonated ester species could be generated in preference to the 1,3-dioxolenium cations by adding the ester to an excess of FSO₃H. These protonated ester species were gradually converted on standing (i.e. up to 5 months) to the corresponding 1,3-dioxolenium cations. In contrast, by adding the acid to the ester, the 1,3-dioxolenium cations were observed to form immediately as the major species present.

2-Hydroxyethyl esters were the best precursors to the cyclic cations. By adding FSO₃H to 2-hydroxyethyl acetate, 2-methyl-1,3-dioxolenium fluorosulfonate was generated almost quantitatively within 45 minutes (see Figure I). Reversing the order of addition (i.e. adding ester to acid) gave predominately the diprotonated ester (A) which was then gradually converted to the 1,3-dioxolenium cation upon standing at room temperature for several days (see Figure II). These transformations might be represented in the following manner:


Figure I. Reaction of 2-Hydroxyethyl Acetate with F80₃H (Addition of Acid to Ester; Reaction Time = 45 minutes)

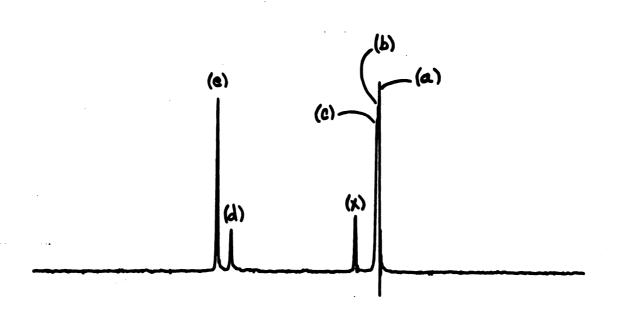
Assignments (8)

- x 3.10 (TMA·BF_h)
- a 2.75 (s)
- b 4.71 (s)
- c 5.31 (s)

Figure II. Reaction of 2-Hydroxyethyl Acetate with F80₃H (Addition of Ester to Acid; Reaction Time = 7 Minutes)

Assignments (8)

- x 3.10 (DA-BF_h)
- a 2.75 (s)
- b 2.77 (s)
- c 4.91 (q)
- d 5.31 (s)
 - (c+d):(a+b) = 4:3


2-Methyl-1,3-dioxolenium cation (Figure I) was identified unequivocally by comparison to an authentic sample which had been prepared according to the method of Meerwein. ²² The identity of the singlet at 4.71 ppm is not readily apparent at this time. It should be mentioned that this same singlet ($\delta = 4.72$ ppm) was observed in the conversion of 2-hydroxyethyl benzoate to 2-phenyl-1,3-dioxolenium fluorosulfonate.

2-Methyl-1,3-dioxolenium cation appeared as the minor product in Figure II with singlets at 2.75 and 5.31 ppm. The major product in Figure II was assigned the diprotonated structure (A). This assignment was consistent with the A_2B_2 pattern at 4.91 ppm and the singlet at 2.77 ppm. Olah reported a value of 2.75 ppm for the corresponding methyl group in protonated ethyl acetate.

The diprotonated species (A) may be longer lived than (B) because the carbonyl group is no longer effective as a nucleophile for backside displacement in this dicationic form. Protonated ester (B), however, can liberate water by intramolecular displacement <u>via</u> the carbonyl group to yield the cyclic cation. The facile conversion of (B) to the cyclic cation presumably precludes observation of (B) under these conditions. Dication (A) was observed to slowly convert to the cyclic cation. This presumably occurs <u>via</u> deprotonation to (B) (the equilibrium between (A) and (B) being overwhelmingly in favor of (A) in FSO₃H) followed by rapid intramolecular cyclization to the 1,3-dioxolenium cation.

By adding FSO₃H to 2-acetoxyethyl acetate, the ester was converted to 2-methyl-1,3-dioxolenium cation within 65 minutes at room temperature (see Figure III). The only other resonance bands extraneous to the cyclic cation were singlets located at 5.10, 2.77 and 2.73 ppm. The bands at 5.10 and 2.73 ppm were assigned to the symmetrical diprotonated diester (C). The

Figure III. Reaction of 2-Acetoxyethyl Acetate with F80₃H (Addition of Acid to Ester; Reaction Time = 65 Minutes)

Assignments (8)

- x 3.10 (TMA.BF4)
- a 2.73 (s)
- b 2.75 (s)
- c 2.77 (s)
- d 5.10 (s)
- e 5.31 (s)

downfield singlet (5.10) would be consistent with the symmetrical protonated dication and has a chemical shift close to that assigned for the A_2B_2 pattern (e.g. 4.91) believed to be due to the methylene protons in the diprotonated 2-hydroxyethyl acetate dication (Figure II). The singlet at 2.73 ppm was assigned to the methyl groups on the dication. The singlet at 2.77 ppm was assigned to protonated acetic acid and was enhanced by the addition of a small amount of acetic acid. The singlets at 5.10 and 2.73 ppm gradually disappeared as the solution remained at room temperature while bands at 5.31, 2.77 and 2.75 increased, eventually giving only three singlets which were unequivocally attributed to a mixture of 2-methyl-1,3-dioxolenium fluorosulfonate and protonated acetic acid. This transformation can be envisioned in the following manner:

A spectrum of the reaction mixture resulting from the addition of 2-acetoxyethyl acetate to FSO₃H (Figure IV) was most revealing. At a reaction time of 15 minutes (25°) only a <u>trace</u> of 2-methyl-1,3-dioxolenium fluorosulfornate had been formed (the amount of cyclic cation formed was a function of addition rate and efficiency of mixing). Resonance bands extraneous to the cyclic cation and protonated acetic acid were as follows; strong singlet at 5.12 ppm, multiplet at 4.93 (presumably a quartet) and a strong singlet at 2.79. The intense singlets at 5.12 ppm and ~2.79, according to our

Figure IV. Reaction of 2-Acetoxyethyl Acetate with FSO₃H (Addition of Ester to Acid; Reaction Time = 15 Minutes)

Assignments (8)

(d) ~2.79 (s)

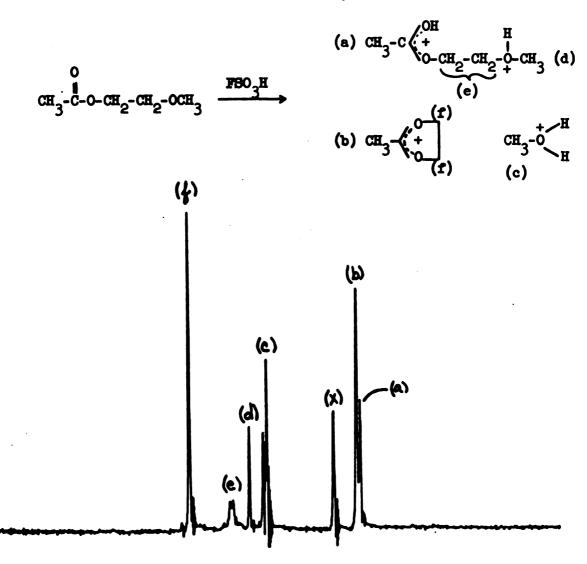
(a) ~2.75 (s)

- (e) 4.93 (q)
- (b) Between 2.75-2.79 (s)
- (f) 5.12 (s)
- (c) Between 2.75-2.79 (s)
- (g) 5.31 (s)

argument for Figure III, were assigned to the symmetrically diprotonated ester (C) whereas the partially masked quartet (A,B, pattern?) at 4.93 was

$$CH_3$$
 CH_2 CH_2 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3

assigned to the unsymmetrical diprotonated ester (D). Some assurance for this speculation was gained by noting that the ratio of (g + f + e): (a + b + c + d) was 4:3, thus giving a proton ratio which was consistent with our assignments for (C) and (D). As the mixture stood at room temperature, the singlet at 5.31 ppm due to the ring protons in the cyclic 1,3-dioxolenium cation increased with time, whereas the intensities of the singlet (5.12 ppm) and multiplet (4.93 ppm) decreased a commensurate amount. These changes in intensities were followed in one instance and are as shown below:


Reaction Time	Intensity (e + f) Intensity (g)
l hr.	3
2 days	1.69
6 days	1.15
7 days	1.11
9 days	0.89
5 months	0

After 5 months the conversion is complete and quantitative to the cyclic cation and protonated acetic acid. After that time the spectrum consists of only three singlets, located at 5.32, 2.84 and 2.76 ppm respectively.

These spectral data may be rationalized according to the following reaction scheme:

Conversion of 2-methoxyethyl acetate to the cyclic cation by addition of acid to the ester appeared to parallel the previous two examples, in that this mode of combining the reactants also gave the cyclic cation as the major product accompanied by minor amounts of associated protonated species (see Figure V). Resonance signals which were extraneous to those for the cyclic cation were as follows; multiplet at 4.67 ppm, singlet at 4.39 ppm, a multiplet at 4.25 ppm and a singlet at 2.70 ppm. By adding a small amount of methanol, the multiplet at 4.25 ppm was enhanced; thus this peak is assigned to protonated methanol. The signal at 4.67 ppm was assigned to the methylene protons in the diprotonated ester (E) whereas the singlets at 4.39 and 2.70 ppm were assigned to the ethereal and carbonyl methyl groups, respectively in the dication (E). Olah's work supports the assignment at 4.39 ppm in that he reports a 8 value of 4.39 ppm for the analogous methyl group in cation (F). Furthermore signals (e) and (d), Figure V, were present in a ratio of approximately 4: 3 which is consistent with

Figure V. Reaction of 2-Methoxyethyl Acetate with F803H (Addition of Acid to Ester; Reaction Time = 40 Minutes)

Assignments (8)

x 3.10 (TMA.BF)

a 2.70 (s)

b 2.75 (s)

c 4.25 (m)

d 4.39 (s)

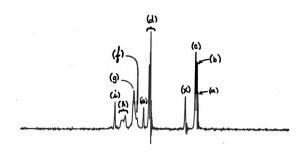
e 4.67 (m)

f 5.31 (s)

$$CH_3$$
 CH_2 CH_2 CH_2 CH_3 CH_3 CH_3 CH_2 CH_2 CH_3 CH_3

the dication structure (E). Conversion to the cyclic cation was slow and far from complete even after 9 days at room temperature. Protonation of this ester under these conditions is envisioned as proceeding in the following manner:

It should be noted that signals (e) and (d) might alternatively be assigned to the cyclic methyl oxonium cation shown above which could be formed by participation of the methoxy group with concurrent displacement of acetic acid.


The reaction mixture resulting from addition of 2-methoxyethyl acetate

to FSO₃H gave a considerably more complex spectrum (see Figure VI). 2-Methyl-1,3-dioxolenium cation and protonated methanol could be unequivo-cally identified as well as the diprotonated ester seen in Figure V. However, superimposed upon these signals were new resonance bands at 5.05 ppm (h) and at 4.72 ppm (g). The identity of these signals was not readily apparent. These latter two resonance bands appeared to be decreasing in intensity with time (25°) as the 1,3-dioxolenium cation signal (5.31 ppm) increased in intensity.

Intrigued with our success in cyclizing the forementioned acetate esters, it was thought that it might be possible to ionize 2-bromoethyl acetate in FSO₃H to produce 1,3-dioxolenium cations. Nmr analysis indicated that the ester merely underwent carbonyl protonation without loss of bromide ion. This was readily apparent by noting the large downfield shift

 $(\Delta \delta = 0.61 \text{ ppm})$ for the methylene protons attached to the ester oxygen and the carbonyl methyl group $(\Delta \delta = 0.70 \text{ ppm})$. Recent work by Olah and coworkers of supports these assignments in that carbonyl protonated ethyl acetate was reported to have similar chemical shifts in FSO₃H-SbF₆-SO₂ as shown below:

Figure VI. Reaction of 2-Methoxyethyl Acetate with FSO₃H (Addition of Ester to Acid; Reaction Time = 10 minutes)

Assignments (8)

x	3.10	(TMA·BF ₁₄)	f	4.68	(m)
a	2.71	(a)	g	4.72	(a)
ъ	2.74	(a)	h	5.05	(m)
c	2.78	(a)	1	5.30	(a)
đ	4.23	(m)			
е	4.41	(a)			

Finally an attempt was made to cyclize allyl acetate with FSO₃H. It was thought that if the olefin's double bond could be protonated in a Markownikoff manner a transient secondary carbonium ion might be generated which could cyclize by participation of the acetoxy group, leading to a 2,4-dimethyl-1,3-dioxolenium cation. Upon combining these reactants, an exothermic reaction ensued leading to a black tar. Nmr analysis of the FSO₃H decantate revealed only a singlet at 2.77 ppm which was identified as protonated acetic acid. It appears as though carbonyl protonation occurs initially, followed by cleavage to acetic acid and the allyl cation.

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{+}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$H^{-}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - O - CH_{2} - CH = CH_{2}$$

$$CH_{3} - C - CH = CH_{2}$$

$$CH_{3}$$

The latter species does not survive these conditions and converts to the black resin leaving protonated acetic acid as the only identifiable product.

B. 2,2'-Alkylenebis-1,3-Dioxolenium Dications

A recent investigation, by Olah and Comisarow, 13a of the reaction between dicarboxylic acid fluorides and antimony pentafluoride showed that alkylene dioxodicarbonium ions (acyl dications) were not formed unless the acyl groups were insulated by at least three methylene groups. It was

considered of interest to investigate the synthesis of a series of 2,2'-alkylenebis-1,3-dioxolenium dications in order to determine whether the charges might be brought closer together and to ascertain how sensitive the dioxolenium ring proton chemical shifts were to charge repulsion as the number of insulating methylene groups was varied.

The 2,2'-alkylenebis-1,3-dioxolenium dications, n=1-6, were prepared according to the method of Meerwein²² by allowing the appropriate bis-(2-bromoethyl) esters to react with two equivalents of anhydrous silver tetra-fluoroborate in methylene chloride. The dications were obtained in high yields either as mixtures with silver bromide or as isolable salts (see

$$\operatorname{Br-CH_2-CH_2-O-C(CH_2)}_n \overset{\circ}{\underset{c-O-CH_2-CH_2-Br}{\overset{\circ}{\operatorname{H}_2Cl_2}}} \overset{\circ}{\underset{c-O-CH_2-CH_2-Br}{\overset{\circ}{\operatorname{H}_2cl_2}}}} \overset$$

+ 2AgBr

Table IV). Several of the dications, where n = 2, 3 and 4, could not be isolated from the silver bromide due to their insolubility in common polar solvents such as methylene chloride, liquid sulfur dioxide or nitromethane. Interestingly, when n = 1, 5 or 6, the dications were isolable as white crystalline products by repeated extractions of the dication-AgBr mixtures with liquid sulfur dioxide. The dications (n=2,3,4) were, however, fairly soluble in FSO₃H and could be characterized by extracting the silver bromidedication mixtures with this acid. Satisfactory mmr spectra were obtained by scanning these extracts. (See Spectra 49-54).

Preparation of the dication containing no insulating methylene groups (n=0) between the dioxolenium rings is less straightforward. When bis-(2-bromoethyl) oxalate was allowed to react with AgBF_h or AgSbF₆, a silver

TABLE IV
2,2'-Alkylenebis-1,3-dioxolenium Dications

<u>n</u>	Mp, °	Yield,%	Reaction Time, hrs.	Nmr Spectrum
1	208-210	88	8.5	49
2	-	95 *	14	50
3	-	77*	3.0	51
4	-	80 *	2.5	52
5	173-175	88	2.5	53
6	198-200	91	2.5	54

^{*}Yield calculated for a mixture of the dication and AgBr

bromide precipitate appeared after several hours at 25-30°. However, the reaction was not clean and spectral analysis was obscured by a variety of

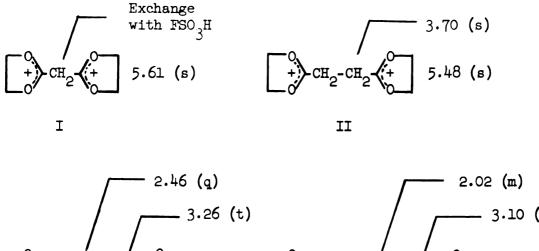
$$Br-CH_2-CH_2-O-C-C-O-CH_2-CH_2-Br \qquad \frac{2AgSbF_6}{CH_2Cl_2} \qquad \qquad \begin{array}{c} O \\ + \\ O \end{array} \qquad \begin{array}{c} O \\ + \\ O \end{array}$$

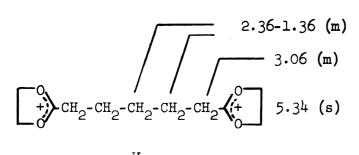
by-products. This was particularly true of the reaction with AgBF, which produced an intractable paste. The reaction with AgSbF was more promising, but still ambiguous. After a reaction time of 14 hours, a yellow gummy solid was obtained which was characterized by extracting with FSO3H and examining the resulting extract by mmr spectroscopy. The major resonance signals were a singlet at 5.70 ppm and a multiplet at 4.79-5.07 ppm in a ratio of ~2:3. After a reaction time of 51 hours the reaction product was again analyzed in the same manner. The same signals described above were predominant, accompanied by a weak singlet at 6.00 ppm (see Spectrum 48). It was interesting that the ratio of the singlet at 5.70 ppm and the multiplet at 4.79-5.07 ppm had changed to ~2.3:1 after this longer reaction time. The singlet at 5.70 ppm is certainly appropriate and characteristic for the dioxolenium ring protons, but one cannot be certain whether it is due to the monocation or dication. The multiplet is presumably not due to the bis-(2-bromoethyl) oxalate ester precursor which gave an A2X2 pattern at 4.87 and 3.64 ppm in FSO₂H.

Related dications containing no insulating groups between the positive centers have recently been postulated by Hoffmann 63,64 as elusive intermediates in the oxidation of tetramethoxyethylene to dimethyl oxalate.

Bis-(2-bromoethyl) ester precursors were prepared by refluxing the appropriate diacid chlorides with two equivalents of 2-bromoethanol in carbon tetrachloride for 6-25.5 hours (see Table V). Yields were 67-96% and the esters were high-boiling liquids or crystallizable solids. These esters exhibited expected nmr (see Spectra 12-18) and infrared spectra as well as giving suitable elemental analyses.

Fluorosulfonic acid was an excellent medium for obtaining nmr spectra of these dications. The spectra consisted of a characteristic sharp singlet for the equivalent dioxolenium ring protons as well as appropriate resonance signals for the 2-alkylene groups. In all cases integrations of these signals were consistent with the proposed dication structures.


These dications have been arranged in order of increased shielding of the ring protons in Figure VII. This order should reflect the relative amount of charge repulsion which results as the number of insulating methylene groups between the electron deficient centers is decreased. As expected, the magnitude of charge repulsion is inversely related to the number of insulating groups. When n = 6 (ion VI) charge repulsion is at a minimum, and the molecule contains two relatively independent, non-interacting cationic centers. This can be demonstrated by comparing the ring proton chemical shift of the dication (5.32 ppm) with that for the analogous monocation, 2-methyl-1,3-dioxolenium tetrafluoroborate, in which the ring protons have a chemical shift of 5.30 ppm. When n = 1 (ion I) charge repulsion is at a maximum. This is reflected not only by the large deshielding


TABLE V
Bis-2-(Bromoethyl) Esters

<u>n</u>	Mp or Bp, °	Yield, %	Reaction Time, hrs.	Nmr Spectrum
0	Мр 54.5-56	96	9	12
1	125-6/0.5mm	74	6	13
2	145-147/2mm	67	14	14
3	115-118/2.5mm	74	12	15
4	162-3/0.9mm	79	12	16
5	156 - 7/2mm	67	8	17
6	Mp 37-38	94	25.5	18

Figure VII

2,2'-Alkylenebis-1,3-dioxolenium Dications in order of Increased Shielding of Ring Protons

2.20-1.35 (m) 3.05 (m) + CH₂-CH

VI

of the ring protons but also by the fact that the insulating methylene protons are so acidic that they exchange readily with the FSO₃H solvent. The exchange probably occurs via the equilibrium shown below. It is

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\ \\ \end{array}$$

interesting that the methylene group in a 1,3-dihydroxydicarbonium ion reported recently by Brouwer⁵⁹ does not exchange very rapidly at -20° to +30° in an HF - SbF₅ medium. The nmr spectrum of this dication consists

of three singlets in a ratio of 1:1:3 which were assigned to the OH, CH_2 , and CH_2 groups, respectively.

Recent nmr studies by Dewar⁶⁵ and Frankel⁶⁶ have reopened the question concerning the roles of inductive and field effects in the transmission of charge in a molecule. These effects have been previously defined by Roberts.⁶⁷ The smooth monotonic curve that is obtained by plotting dioxolenium ring proton chemical shifts as a function of charge separation (n), (see Figure VIII) suggests that inductive effects predominate in this system. Successive polarization of σ bonds, as described by Branch and Calvin, ⁶⁸ accounts for the observed charge repulsions. The charge attenuation per bond in this system appears to be of approximately the same order as that described by these workers, i.e. $\frac{1}{2.8}$. Assuming this value, one would expect charge repulsion to nearly disappear when n = 5-6.

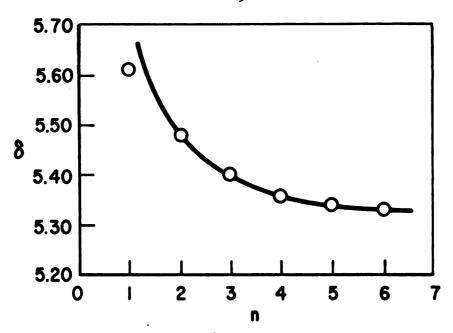


FIGURE VIII DIOXOLENIUM RING PROTON CHEMICAL SHIFT VS NUMBER OF METHYLENE GROUPS

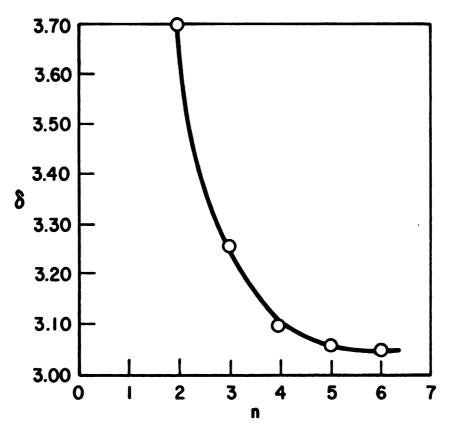


FIGURE IX 2-METHYLENE PROTON CHEMICAL SHIFT VS NUMBER OF METHYLENE GROUPS

This is indeed the case; dication VI, where n = 6, has approximately the same ring proton deshielding value as the monocation, 2-methyl-1,3-dioxolenium tetrafluoroborate.

Further examination of this system showed that these data are fit rather well by the empirically derived equation (1) where 5.30, the limiting value of δ when $n = \infty$, is identical with the chemical shift of the

$$\delta = 5.30 + \frac{1.60}{(n+1)^2}$$
 (1)

ring protons in the 2-methyl-1,3-dioxolenium monocation. When n is large, the molecule behaves as if there were no interaction between the cationic centers. Equation (1) obviously fails when n=0, but attempts to fit the data with an equation using n+1, n^2+1 , etc. in the denominator of the last term, with appropriate changes in the parameters, were unsuccessful.

The chemical shifts of the methylene protons between the cationic centers provide an even more sensitive probe of charge distribution in these dications. Figure IX shows a plot of the α -methylene proton chemical shifts as a function of n; these data are fit almost precisely by the equation. In Figures VIII and IX, the solid curves are drawn accord-

$$\delta = 2.94 \quad (1 + \frac{1}{n^2}) \quad (2)$$

ing to the equations, whereas the points are experimental.

Equation (2) suggests that the chemical shift of the α -methylene protons can be described as the sum of two terms, one of which is constant (i.e., the methylene is always adjacent to and a constant distance from one dioxolenium ring) and one of which varies inversely as the square of n, which may be proportional to the distance from the second cationic center.

An alternative, very simple way of correlating these data is also possible. Each methylene in ion II may be considered to be α to one

dioxolenium ring and β to the other. The chemical shift can be expressed as the sum of two parameters, $\delta_{\alpha}+\delta_{\beta}$. Values of these empirical constants which fit the data are: $\delta_{\alpha}=2.47$, $\delta_{\beta}=1.23$, $\delta_{\gamma}=0.79$, $\delta_{\delta}=0.63$, $\delta_{\varepsilon}=0.59$. The data of Figure VII provide only one independent check on the method, which happens to give a calculated δ that agrees exactly with the observed. However, this method has also been applied to analogous data reported by Olah and coworkers for bis-acylium ions. 13a The best parameters are $\delta_{\alpha}=3.60$, $\delta_{\beta}=1.67$, $\delta_{\gamma}=0.87$, $\delta_{\delta}=0.69$, $\delta_{\varepsilon}=0.53$, $\delta_{\zeta}=0.43$, $\delta_{\eta}=0.41$. Two examples of the closeness of fit are

where values in parentheses are calculated, and those below the formulas were observed by Clah and Comisarow. The parameters for bis-acylium ions are larger than those for bis-dioxolenium ions, due to less charge delocalization in the former.

C. 2-Aryl-1, 3-dioxolenium Cations:

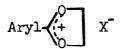

Using a modified version of Meerwein's method, ²² fifteen 2-(meta and para substituted aryl)-1,3-dioxolenium cations were prepared by reacting equimolar amounts of appropriate 2-bromoethyl esters with anhydrous silver tetrafluoroborate in methylene chloride. Stirring these reactants for 1-2 hours at 25-30° gave 55-96% yields of the white tetrafluoroborate salts (see Table VI). Precautions observed in the workup and storage of these cations were essentially the same as described for the 2-alkyl-1,3-dioxolenium cations. Separation of these cations from silver bromide was

TABLE VI
2-Aryl-1,3-Dioxolenium Cations

Aryl X

Aryl Substituent	Mp,°	Yield, %	Reaction Time, hr.	Nmr Spectrum
p-Methoxy	228-230	96	1	55
3,4,5-Trimethoxy	166-167.5	77	2	56
<u>p</u> -Methyl	207-209	81	1	57
<u>m</u> -Methyl	194-196	76	1	58
Phenyl	168-170	81	1	59
<u>p</u> -Fluoro	203-205	63	1	60
<u>p</u> -Chloro	235-237	82	1	61
<u>m</u> -Chloro	173-175	69	1	62
$\underline{\mathtt{m}} ext{-}\mathtt{Brom} ext{o}$	174.5-176	61	1	63
<u>m</u> -Fluoro	169-171	61	2	64
3,4-Dichloro	218-220	69	1	65
$\underline{\mathtt{m}} ext{-}\mathrm{Trifluoromethyl}$	135-137	72	1.5	66
p-Trifluoromethyl	188-189.5	6 3	4.5	67
m-Nitro	149-151.5	70	1.25	68
p-Nitro	209-211	55	2	69

TABLE VI
2-Aryl-1,3-Dioxolenium Cations

Aryl Substituent	Mp,°	Yield, %	Reaction Time, hr.	Nmr Spectrum
p-Methoxy	228-230	96	1	55
3,4,5-Trimethoxy	166-167.5	77	2	56
<u>p</u> -Methyl	207-209	81	1	57
$\underline{\mathtt{m}} extsf{-}Methyl$	194-196	76	1	58
Phenyl	168-170	81	1	59
<u>p</u> -Fluoro	203-205	63	1	60
p-Chloro	235-237	82	1	61
<u>m</u> -Chloro	173-175	69	1	62
<u>m</u> -Bromo	174.5-176	61	1	63
m-Fluoro	169-171	61	2	64
3,4-Dichloro	218-220	69	1	65
$\underline{\mathtt{m}} ext{-}\mathrm{Trifluoromethyl}$	135-137	72	1.5	66
p-Trifluoromethyl	188-189.5	63	4.5	67
<u>m</u> -Nitro	149-151.5	70	1.25	68
p-Nitro	209-211	55	2	6 9

somewhat different, however, since the 2-aryl-1,3-dioxolenium cations were virtually insoluble in methylene chloride. But, these cations were readily extracted with liquid sulfur dioxide or acetonitrile. Purification was generally effected by recrystallization from a mixture of acetonitrile and methylene chloride.

2-Bromoethyl benzoate precursors were prepared by refluxing equivalent amounts of 2-bromoethanol and the appropriate benzoyl chloride in carbon tetrachloride. Reaction times of 6-24 hours gave the esters as colorless high boiling liquids or crystallizable solids in yields of 25-85% (see Table VII). All of the esters gave appropriate infrared and nmr spectra (see Spectra 19-33) as well as suitable elemental analyses.

Nmr spectra of these cations were obtained in liquid sulfur dioxide (-20°) as well as in FSO₃H (25°). A characteristic cation spectrum consists of a sharp singlet for the equivalent dioxolenium ring methylene protons as well as appropriate downfield resonance signals for the corresponding aromatic nuclei (see Spectra 55-59).

Compared to the corresponding 2-aryl-1,3-dioxolanes in CCl_{4} , the cation ring protons were shifted downfield 1.48-1.62 ppm in FSO₃H and 1.58-1.76 ppm in liquid sulfur dioxide (see Table VIII). In Table VIII the chemical shifts of the dioxolenium cations are listed in order of increased deshielding of the ring protons (b) and are compared to the ring protons in the corresponding dioxolanes (a). An examination of the $\Delta\delta$'s between (a) and (b) in each of these solvents reveals no apparent trends as a function of the electron donating ability of the aromatic substituent. The lack of correlation for the $\Delta\delta$'s may be due to the geometry of the dioxolanes. The tetrahedral (sp³) geometry at the 2-carbon in the dioxolane ring may force the ring protons to experience considerable and varied anisotropy effects,

TABLE VII
2-Bromoethyl Benzoates

O Aryl-C-O-CH₂-CH₂-Br

Aryl Substituent	Mp or Bp, °	Yield, %	Reaction Time, hr.	Nmr Spectrum
p-Methoxy	141-2/3mm	7174	15	19
3,4,5-Trimethoxy	Mp 56-7	79	10	20
p-Methyl	116-7/4mm	71	12	21
<u>m</u> -Methyl	121 -2/3mm	81	12	22
Phenyl	96-7/2mm	6 9	15	23
p-Fluoro	Mp 41-42.5	41	12	24
p-Chloro	120 -1/ 0.9mm	68	12	25
<u>m</u> -Chloro*	88 -9/1.5mm	85	12	26
<u>m</u> -Bromo	118-9/2mm	66	13	27
<u>m</u> -Fluoro	99-100/3mm	65	24	28
3,4-Dichloro	124 -5/1mm	38	6	29
$\underline{\mathtt{m}} ext{-}\mathrm{Trifluoromethyl}$	93 -4/1.9mm	65	24	30
p-Trifluoromethyl	92 -3/3mm	72	9	31
<u>m</u> -Nitro	140-2/0.4mm	25	10	32
<u>p-</u> Nitro	Mp 49.5-51	50	9	33

^{*}These data are for 2-chloroethyl m-chlorobenzoate.

TABLE VIII

Comparison of Proton Chemical Shifts (δ) of 2-Aryl-1,3-dioxolanes (CCl_μ) with 2-Aryl-1,3-dioxolenium Cations

A:	· _		Aryl-(+	(b) X-	
	(ccl ₄)	(FSO ₃ H, 2	5°)	(BO ₂ , -2	0°)
Aryl Substituent	<u>(a)</u>	<u>(b)</u>	Δδ	<u>(b)</u>	Δδ
<u>p</u> -Methoxy	3. 83	5.33	1.50	5.48	1.65
Phenyl	3. 83	5.42	1.59	5.57	1.74
p-Fluoro	3.94	5.42	1.48	5.52	1.58
p-Chloro	3.90	5.43	1.53	5.60	1.70
3,4-Dichloro	3.95	5.47	1.52	5.6 3	1.68
p-Nitro	3.97	5.59	1.62	5.73	1.76

whereas in the dioxolenium cations the sp² geometry at that position minimizes this kind of exposure.

In Table IX the proton chemical shifts of aryl substituted cations are listed in order of increased deshielding of the ring protons (c) and are compared to the methylene groups (a) and (b) in the corresponding ester precursors. In FSO₃H the $\Delta\delta$'s for (b) and (c) varied between 0.81-0.92 ppm, whereas in liquid sulfur dioxide $\Delta\delta$ varied between 0.96-1.06 ppm. Once again, in each of these solvents it is apparent that there is a trend toward larger $\Delta\delta$'s in going from cation 1 \rightarrow cation 14. Qualitatively this trend seems to parallel the electron donating ability of the meta or para substituents on the aromatic nuclei and suggests the possible use of proton chemical shifts of the dioxolenium ring protons as a probe for assessing charge delocalization from the heterocyclic ring.

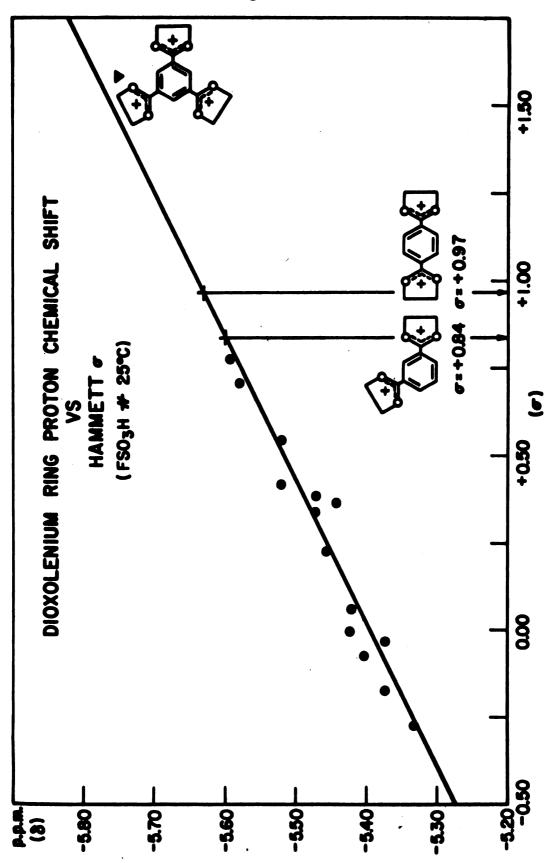

In order to test this speculation, chemical shifts of the dioxolenium ring were plotted against Hammett σ and σ^+ values for fifteen 2-(meta and para aryl)-1,3-dioxolenium extions and found to give relatively good linear correlations. A least squares treatment of the σ values as a function of the chemical shifts of the cation ring protons in FSO₃H gave a surprisingly good linear relationship, with a standard error = 0.022, correlation coefficient = 0.966 and ordinate intercept = 5.40 with σ = 0 (see Figure X). A similar treatment of σ^+ values ⁸¹ gave a somewhat less satisfactory correlation (standard error = 0.038, correlation coefficient = 0.940 and ordinate intercept = 5.42). Examination of Figure X shows that this procedure provides an acceptable quantitative correlation of the chemical shifts.

TABLE IX

Comparison of Proton Chemical Shifts (δ)
of 2-Bromoethyl Benzoate Precursors (CCl_μ)
to 2-Aryl-1,3-Dioxolenium Cations

	Ary		(b) (a) CH ₂ -CH ₂ -Br	Ar	yl-(+ 0	(c) X (c)	-
A		(ccı	_{.14})	(FSO ₃	н, 25°)	(so ₂ ,	-20°)
Aryl Substituent		<u>(a)</u>	<u>(b)</u>	<u>(c)</u>	Δδ	<u>(c)</u>	Δδ
p-Methoxy	1.	3.56	4.52	5.33	0.81	5.48	0.96
3,4,5-Trimethoxy	2.	3.60	4.55	5.37	0.82	5.53	0.98
p-Methyl	3•	3.57	4.53	5.37	0.84	5.53	1.02
<u>m</u> -Methyl	4.	3.57	4.54	5.40	0.86	5.56	1.02
Phenyl	5•	3.58	4.57	5.42	0.85	5.57	1.00
p-Fluoro	6.	3.61	4.60	5.42	0.82	5.52	0.92
p-Chloro	7.	3.60	4.57	5.43	0.86	5.60	1.03
<u>m</u> -Bromo	8.	3.61	4.59	5.47	0.88	5.63	1.04
<u>m</u> -Fluoro	9•	3.52	4.61	5.47	0.86	5.62	1.01
3,4-Dichloro	10.	3.60	4.61	5.47	0.86	5.63	1.02
<u>m</u> -Trifluoro	11.	3.63	4.64	5.52	0.88	5.58	1.04
<u>p</u> -Trifluoro	12.	3.64	4.65	5.52	0.87	5.68	1.03
<u>m</u> -Nitro	13.	3.72	4.70	5.58	0.88	5.70	1.00
p-Nitro	14.	3.68	4.67	5.59	0.92	5.7 3	1.06

Figure X

D. 2,2' and 2,2',2"-Aryl-1,3-Dioxolenium Dications and Trications

When di- and trisubstituted 2-bromoethyl aryl esters were treated with equivalent amounts of silver tetrafluoroborate in the usual manner, several interesting 1,3-dioxolenium dications and a trication were obtained. 2-Bromoethyl isophthalate and 2-bromoethyl terephthalate gave the corresponding meta and para dications, respectively. Similarly, 2-bromoethyl

trimesate led to the symmetrical trication. The multications were insoluble

in methylene chloride, liquid sulfur dioxide and thionyl chloride and could be isolated only as mixtures with silver bromide. Identification of these cations was possible, however, by extracting the AgBr-multication mixtures with FSO_3H and filtering through a sintered glass funnel. Satisfactory nmr spectra were obtained by scanning these filtrates. The characteristic A_2X_2 pattern observed for the ester precursors (see Spectra 34-36) were absent in the spectra of the ions, which contained only highly deshielded singlets for the equivalent dioxolenium ring protons accompanied by appropriate

resonance signals for the aromatic nuclei (see Spectra 70-72). Chemical shifts of the dioxolenium ring protons were in the expected order as shown in Table X. The electron deficiency of the polycations is reflected not only by the highly deshielded protons of the dioxolenium rings, but also by the low field positions of the aromatic protons.

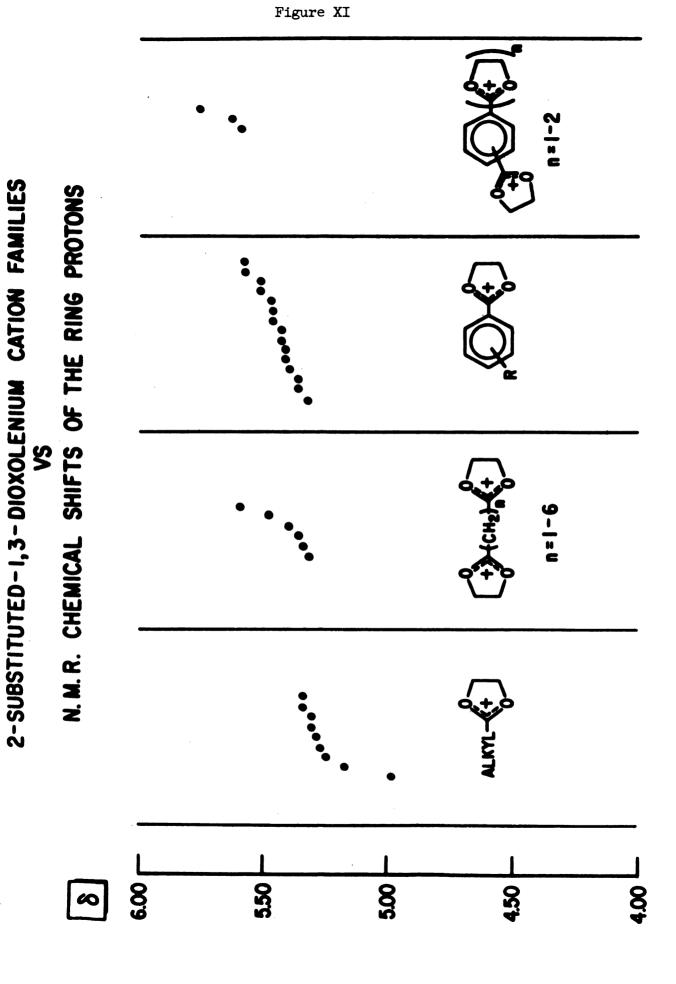
TABLE X

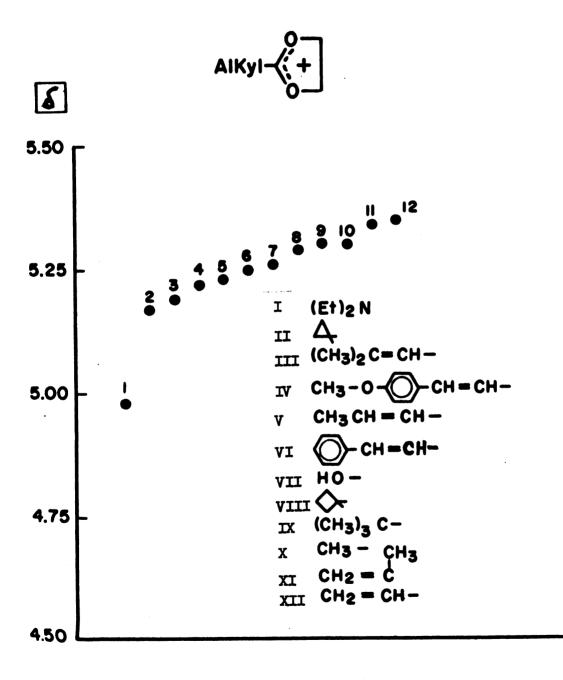
Nmr Chemical Shifts for 2-Aryl-1,3-Dioxolenium

Multications in FSO₃H

<u>Cation</u>	Dioxolenium Ring Protons	Aromatic Protons
2X-	5.60 (s)	8.03 to 9.26 (m)
0 + + 2X	5.63 (s)	8.72 (s)
3x ⁻	5•77 (s)	9.58 (s)

These multications serve as excellent models for demonstrating the use of 1,3-dioxolenium ring protons as electron density probes to determine the Hammett σ values of hydrolytically unstable moieties. For example, in the meta-substituted dication one can assume that one of the dioxolenium rings is the probe whereas the other ring is the meta substituent. By extrapolating the Hammett plot for the fifteen meta and para substituted cations (Figure X) until it intersects with the nmr chemical shift for the meta-dication one can obtain a σ value for the 1,3-dioxolenium moiety as a meta substituent. The σ value was found to be +0.84. A similar treatment of the para-substituted dication gave a σ value for the 1,3-dioxolenium moiety, as a para substituent of +0.97. This latter value is the largest positive para σ value thus far reported.


The symmetrical trication provided an excellent model for checking both the accuracy of the determined meta Hammett σ value for the 1,3-dioxolenium ring and the reliability of the linear plot of the fifteen monocations as a function of their σ substituent constants. Using the additivity principle described by Jaffe⁶⁹ for multiple meta or para substituted benzenes, it was predicted from the determined meta σ value $(2 \times 0.84 = +1.68)$ that the trication dioxolenium ring protons should have a chemical shift (5) of 5.80 ppm. This value was obtained by intersecting the extrapolated Hammett correlation plot with a line perpendicular to the abscissa at σ = +1.68. The observed chemical shift for the heterocyclic ring protons of the trication was 5.77 ppm and is designated ∇ on the plot in Figure X. This is in excellent agreement with the predicted value and soundly corroborates the entire correlation.


The four families of cations which we have examined in the 1,3-dioxolenium ion series can be divided into distinct and distinguishable groups according to the chemical shifts of the ring protons (Figure XI). The chemical shift gradient varies from the most shielded member of the 2-alkyl-1,3-dioxolenium family (i.e. 2-diethylamino-1,3-dioxolenium ion) where δ = 4.98 ppm to the most deshielded member of the aryl multication family (i.e. 2,2',2"-phenylenetris-1,3-dioxolenium trication) where δ = 5.77 ppm. Ignoring anisotropy effects of the 2-substituents, this gradient appears to represent, to the first approximation, the relative order of ground state energies of these alkoxycarbonium ions. In accordance with this hypothesis, the relative order of members of families as well as the order of the families can be rationalized in terms of resonance or inductive interaction of the cation with its 2-substituents. These aspects will be considered in detail according to family.

2-Alkyl-1,3-Dioxolenium Cations:

As shown in Figure XI the 2-alkyl-1,3-dioxolenium cation family is the most shielded group in the series. If one examines the chemical shifts for members of this family (Figure XII) it is apparent that cation I is a special case and should perhaps be thought of as a member of still another cation family which consists of cations containing heteroatoms as 2-substituents. Cation I is presumably the most stabilized member of this entire series due to its ability to delocalize charge from the ring to the nitrogen atom and is perhaps best represented as an immonium ion.

FIGURE XII

It is not known whether one can as a rule expect this kind of stabilization in analogous systems containing oxygen or sulfur as a 2-substituent. In the case of 2-hydroxy substituted cation (VII), relatively little delocalization of charge from the ring was noted compared to the 2-alkyl substituted cations. Cation (VII) was more deshielded than five of the ten 2-alkyl substituted cations examined in Figure XII. This suggests that the hydroxy oxygen atom contributes very little to delocalization of charge and parallels similar observations made by Taft and Ramsey²¹ on analogous acyclic systems. This anomaly may be due to protonation of the ether

oxygens of the ester whereby charge delocalization would not be possible. This mode of ester protonation has not yet been observed. 60,70

2-Cyclopropyl-1,3-dioxolenium ion (II), Figure XII, was the most shielded example of this family where the substituent was entirely hydrocarbon. Similarly in Table XI it can be seen that both the α and β -hydrogens of the cyclopropyl groups are deshielded substantially. This demonstrates a large amount of delocalization of charge into the cyclopropane ring. This enhanced delocalization is probably due to interaction of the cyclopropane "bent bonds" with the vacant p-orbital of the cyclic dialkoxy carbonium ion as shown below. This kind of interaction has been invoked by

Hart 71 , 01ah 72 and 0 Deno 73 to account for the unusual stability of other related cyclopropyl carbonium ion systems. Subsequent work by Schleyer 74 and Richey 75 has provided further evidence for the nature of this interaction, which is thought to be best represented by the bisected conformation shown above. It is interesting that the other small ring system in this family, 2-cyclobutyl cation (VIII), was not stabilized much more than the 2-methyl or 2-t-butyl cations, X and IX respectively. Similarly, Table XI shows that relatively little delocalization of charge to the cyclobutane ring has occurred since the α and β protons are deshielded only slightly.

It is generally accepted that in hydrocarbon systems, allylic and methylallylic carbonium ions possess enhanced stability compared to saturated systems because of their ability to delocalize charge. 12f,76 This delocalization has been proposed by Simonetta and Heilbronner 77 to occur

by means of $1,3-\pi$ interactions between the terminal centers. Valence bond treatment in this manner gave the following charge distribution. Hirst

and Linnett⁷⁸ preferred to invoke the tradional resonance argument and by a simple Hückel treatment of the two odd alternant terminal allyl cations, suggest that the positive charge should reside predominately on the terminal carbon atoms. Large deshielding of the methine proton ($\Delta\delta$ = 4.12 ppm) and the methyl group ($\Delta\delta$ = 2.38 ppm) was observed in the allyl and

Comparison of Proton Chemical Shifts of 2-Substituents in Ester Precursors (CCl₄) with those in 2-Alkyll, 3-dioxolenium Cations (FSO₃H)

2-Substituent Ester Cation Δδ (Et)₂-N-I a. 1.13(t) 0.19 a. 1.32 b. 3.27(q) b. 3.59 0.32 II a. 0.73-1.20(m) a. 1.75-2.07(m)0.70 b. 2.10-2.53(m) b. 1.40-1.89(m) 0.47 $(CH_3)_2C=CH-$ III a. 2.03(d) a. 2.37(d) 0.34 b. 6.27(m) 0.61 b. 5.66 (m) IV a. 3.80(s)a. 4.02(s)0.22 b. 6.23(d) c. 6.83(d) c. * d. 7.43(d) d. * e. 7.60(d) CH₃-CH=CHa. 2.27(d) a. 1.92(d) 0.35 ٧ b. 6.44(d) b. 5.82(d) 0.62 1.21 c. 7.01(m)c. 8.22(m)VI -CH=CHa. 6.37(d) a. 6.86(d) 0.49 b. 7.42(m) b. 7.64(m) 0.22 c. 7.66(d) c. 8.59(d)0.93 VIII a. 2.14(m) a. 2.35(m)0.21 b. 3.12(q) b. 3.66(q) 0.54 IX $(CH_3)_3C$ a. 1.20(s) a. 1.50 0.30 X a. 2.06(s)0.69 CH3a. 2.75 XI a. 1.96(s)a. 2.15(s) 0.19 b. 6.85(a) 0.98 b. 5.87(d)

a. 5.68-5.99(m)

b. 6.12-6.65(m)

CH₂=CH-

XII

^{*}Spectrum too complex to analyze

methylallyl cations, respectively. This led $Olah^{12f}$ to suggest that 1,3- π interactions contribute strongly to the delocalization of charge.

Close examination of related allylic carbonium ions III, V, VI and XI in the dioxolenium series reveals the following trends; hydrogens on the double bond α to the positive center are deshielded from their ester

$$(\Delta \delta = 0.34) \xrightarrow{\text{CH}_3} \text{C} = \bigoplus_{\text{CH}_3} \text{H} (\Delta \delta = 0.61) \qquad (\Delta \delta = 0.35) \text{CH}_3 \text{C} = C \xrightarrow{\text{H}} (\Delta \delta = 0.62)$$

$$(\Delta \delta = 0.22) \text{M} \text{C} = C \xrightarrow{\text{H}} (\Delta \delta = 0.49)$$

$$(\Delta \delta = 0.93) \text{H} \text{C} = C \xrightarrow{\text{H}} (\Delta \delta = 0.49)$$

$$(\Delta \delta = 0.93) \text{H} \text{C} = C \xrightarrow{\text{H}_3} (\Delta \delta = 0.19)$$

$$(\Delta \delta = 0.93) \text{H} \text{C} = C \xrightarrow{\text{H}_3} (\Delta \delta = 0.19)$$

$$(\Delta \delta = 0.93) \text{H} \text{C} = C \xrightarrow{\text{H}_3} (\Delta \delta = 0.19)$$

precursors $\Delta\delta=0.49-0.62$ ppm (e.g. III,V,VI). The α methyl group, in XI, was deshielded somewhat less, $\Delta\delta=0.19$ ppm. It is especially noteworthy that protons cis or trans β to the positive center are highly deshielded and are shifted from 0.93-1.21 ppm downfield from their esters (e.g. see V, VI and XI). These protons are deshielded approximately twice as much as their α counterparts. Similarly cis and trans β methyl groups (e.g. III and V) are deshielded 0.34-0.35 ppm from their esters. Again this is about twice as much as is observed for an α methyl group (e.g. XI). If one assumes these deshielding values reflect charge densities and are not due to anisotropy effects, it is tempting to compare these values to the charge densities calculated by Simonetta and Heilbronner⁷⁷ for the 1,3- π interaction model. From this model it is predicted, according to the following calculation, that approximately 73% of the charge resides on the

% Positive Charge on Terminal Carbons in 1,3-
$$\pi$$
 Interaction Model = $\frac{(2)(0.367)}{(2)(0.367)+(0.266)}$ 10² = $\frac{739}{2}$

terminal carbons and 27% on the internal carbon. Using deshielding values ($\Delta\delta$) for the α and β -proton probes in Cation V it is calculated, as shown below, that approximately 80% of the charge is on the terminal carbon and \sim 20% on the internal carbon. Similar treatment of the values for α and β

% Positive Charge on Terminal Carbons in Cation V
$$= \frac{2(\Delta\delta \text{ for } \beta-H)}{2(\Delta\delta \text{ for } \beta-H)+(\Delta\delta \text{ for } \alpha-H)} \cdot 10^2 = \frac{(2)(1.21)}{(2)(1.21)+(0.62)} \cdot 10^2 = \frac{80\%}{2}$$

protons in cation VI predicts the same values. Using the $\Delta\delta$ value for the

% Positive Charge on Terminal Carbons in Cation VI =
$$\frac{(2)(0.93)}{(2)(0.93)+(0.49)}$$
 10² = 80%

 α -methyl group in cation XI and the $\Delta\delta$ value for the β -methyl groups in either cation III or V one obtains almost the same value for charge delocalization in these cations. A comparison of these crude delocalization

% Positive Charge on Terminal Carbons in Cations III, V and XI =
$$\frac{(2)(0.35)}{(2)(0.35)+(0.19)}10^2 = \frac{79\%}{100}$$

data to the value obtained from the Simonetta-Heilbronner model provides supporting evidence for such $1,3-\pi$ interactions in the vinyl, propenyl, isopropenyl and styryl-1,3-dioxolenium cations. This interaction might be represented as follows:

In view of the possibility of this kind of delocalization it was rather surprising to find that the dioxolenium ring protons in the 2-vinyl and 2-isopropenyl-1,3-dioxolenium cations were deshielded from saturated systems such as 2-methyl and 2-t-butyl cations (see Figure XII). However, when the unsaturated substituent contains a terminal group which is capable of stabilizing positive charge, the cations such as III, IV, V and VI appear to resume their predicted ability to delocalize charge from the dioxolenium ring. According to the deshielding of the dioxolenium ring protons the unsaturated cations fall in the following order:

In order to rationalize the relative order of these cations one must consider the dual oxonium-carbomism ion character of these systems. The anomalous order of the two unsaturated cations XI and XII may reflect the high order of their oxonium ion character (b); such structures would be stabil-

$$\begin{array}{cccc}
R & & & & \\
+ & & & \\
0 & & & \\
(a) & & & \\
\end{array}$$
(b)

ized by conjugation with the carbon-carbon double bond. The higher

electronegativity of the sp² hydridized carbon substituent and the predominate oxonium ion character of XI and XII may account for the fact that the ring protons in these cations are more deshielded than in the saturated cations VIII-X.

In the case of the terminal substituted unsaturated cations III, IV, V and VI more interaction of the double bond with the positive charge occurs since the cation resulting from allylic type resonance can be stabilized by methyl or phenyl groups.

R-CH=CH=
$$\stackrel{\textcircled{}}{\leftarrow}$$
 R-CH-CH= $\stackrel{\textcircled{}}{\leftarrow}$; R=CH₃, \emptyset or p-CH₃-O- \emptyset -

Alternatively and in keeping with the postulated 1,3- π interactions described above, the 2-vinyl and 2-isopropenyl-1,3-dioxolenium cations may possess comparable carbonium ion character but merely be distinguished from the terminal substituted unsaturated systems by their inability to delocalize charge from the 1,3- π interaction site which of course involves the dioxolenium ring and essentially amounts to back donation of positive charge; see (a). Because of this, charge may not actually be removed from the dioxolenium ring in the classical sense as shown by (b) and lead to

ground state energies for XI and XII which are fortuitously higher than those for the methyl (X) and <u>t</u>-butyl (IX) cations. In the case of the terminal substituted unsaturated systems, decreases in ground state energies of the cations may result by their ability to delocalize charge from

the 1,3- π interaction site. In the case of the terminal methyl substituted cations V and $\dot{\text{III}}$ it may reflect more efficient neutralization of charge in a 1,3- π interaction situation and would be in keeping with the Simonetta-Heilbronner model which predicts highest charge density at the terminal position.

In either case increased stability of the cations is noted when conventional carbonium ion stabilizing groups are substituted in the terminal position of the allylic group. Cation stability responds not only to the kind of group but also to the number of such groups substituted. For example two terminal methyl groups stabilize the cation somewhat better than one. Likewise a p-methoxyphenyl terminal group gives enhanced stability compared to a phenyl group. In fact, strong interaction of the paramethoxy group with the cationic center in the p-methoxystyryl-1,3-dioxolenium ion may account for why this cation is a brilliant canary yellow, and is the only colored cation observed in this entire series. In a classical sense this interaction may be represented in the following manner:

$$CH_3O$$
 $CH=CH$ CH_3O CH_3O CH_3O

2,2'-Alkylenebis-1,3-Dioxolenium Dications:

Ring proton chemical shifts for members of this family where n=5 or 6 ($\delta=5.32-5.34$) do not differ much from the saturated members of the monocation ($\delta=5.30$) family. This clearly indicates that these dications are relieved of charge repulsion interactions and probably have ground state energies which are quite similar to the monocations. Decreasing the number of insulating groups between the positive centers dramatically increases charge repulsion, especially when n=1 or 2. This is well illustrated in

Figures VIII and IX. In fact when n=1 the charge repulsion is so great that the α protons are acidic and exchange readily in acid solution. Exchange by means of the monocation shown below provides relief from these

repulsion interactions. Although exchange of α protons was not observed for n=2-6 in fluorosulfonic acid, the acidity of these protons probably increases as n decreases from $6 \rightarrow 2$. This may account for the unusual sensitivity that the α protons display when utilized as a probe (see Figure IX).

This dication system provides a unique model for examining the effects of charge repulsion as a function of separation and nmr spectroscopy provides an excellent tool for assessing these parameters. Using the empirically derived equation (2), presented in the Results section, it is possible

$$\delta = 2.94 \left(1 + \frac{1}{n^2}\right)$$

to obtain an excellent correlation of α -proton chemical shifts with charge separation both in our system as well as Olah's bisacylium dication series. 13a Examination of this equation reveals its similarity to the well known Coulomb law 79 which defines the force between two charges as follows:

Force =
$$\frac{\text{(Charge) (Charge)'}}{\text{(Dielectric Constant) (distance)}^2} = \frac{QQ'}{Kn^2}$$

By simple mathematical operations on these two equations it is possible to derive an equation which will allow the calculation of repulsion forces in these dication systems by merely knowing the chemical shift of the α-protons

and the dielectric constant of the medium separating the charges. The derivation is as follows:

Dividing empirical equation by 2.94 gives:

$$\frac{\delta}{2.94} = 1 + \frac{1}{n^2} \tag{1}$$

Solving for $\frac{1}{n^2}$, one obtains:

$$\frac{1}{n^2} = \frac{\delta}{2.94} - 1 \tag{2}$$

The Coulomb equation is reduced to a more simple form with the following assumptions:

The dication charges are equal, therefore:

$$F = \frac{Q^2}{\kappa_n^2} \tag{3}$$

Multiplying equation (3) by $\frac{K}{Q^2}$:

$$\frac{FK}{Q^2} = \frac{1}{n^2} \tag{4}$$

Equating $\frac{1}{n^2}$ in equations (2) and (4) one obtains:

$$\frac{FK}{0^2} = \frac{\delta}{2.94} - 1 \tag{5}$$

Solving for F one obtains an equation for calculating the repulsion forces in these dications which only requires knowledge of the chemical shift of the α -protons, magnitude of the charge and the dielectric constant of the medium separating the charges. The equation is as follows:

Repulsion =
$$\frac{Q^2}{K} \left(\frac{\delta}{2.94} - 1 \right)$$
 (6)

This treatment should be applicable to other dicarbonium ion series such as those reported by Olah and coworkers. 13a,80 Such an examination could

provide further insight as to the relative ground state energies of these dicarbonium ion systems.

2-Aryl-1, 3-Dioxolenium Cations:

As shown in the Results section, 2-(meta and para substituted) aryllo,3-dioxolenium ions exhibit a very good linear free energy relationship in their nmr correlation with Hammett σ values. In view of the possible carbonium ion character of the dioxolenium ring, it was at first surprising that Brown σ^+ values so gave a much poorer correlation. However, hydrolysis studies on p-substituted methyl orthobenzoates also show a better correlation with Hammett σ values than with σ^+ values. These reactions have since been shown to involve related acyclic dialkoxy carbonium ions. These observations suggest that resonance interactions between electronsupplying substituents and the electron deficient 1,3-dioxolenium moiety are not strong. This may indicate that the oxonium form (c) is an important

contributor to the resonance hybrid (a).

Nevertheless, delocalization of charge to the <u>para</u> position of the phenyl ring is apparent if one examines the relative amounts of deshielding of the <u>meta</u> and <u>para-methoxy</u> groups in the 3,4,5-trimethoxy phenyl-1,3-dioxolenium cation compared to their ester precursor. In 2-(bromoethyl)-3,4,5-trimethoxybenzoate the <u>meta-methoxy</u> group is exhibited as a singlet at 3.87 ppm and the <u>para</u> is found at 3.81 ppm (see Spectrum 20). At nmr spectrum of the corresponding cation in liquid SO₂ reveals that the downfield order of the para and meta chemical shifts is reversed and the para

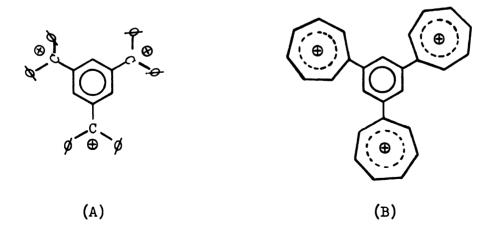
now shows a chemical shift at 4.05 ppm ($\Delta\delta$ = 0.24), whereas the <u>meta</u> is found at 3.94 ppm ($\Delta\delta$ = 0.07). This apparent <u>para</u> methoxy interaction is also corroborated by the fact that the <u>p-methoxyphenyl-l,3-dioxolenium</u> cation is not protonated and only the <u>meta-methoxy</u> groups in the trimethoxy cation exhibit any tendency to be protonated (i.e., produce polycations).

A comparison of the <u>meta</u> and <u>para-methylphenyl-1,3-dioxolenium cations</u> shows the same trend, but less dramatically. The <u>meta-methyl</u> cation is deshielded 0.10 ppm, whereas the <u>para-methyl</u> cation is shifted 0.16 ppm downfield compared to their respective ester precursors.

Since the chemical shifts (δ 's) of the dioxolenium ring are directly related to Hammett σ values, they should also be proportional to $\log \frac{k}{k_o}$. This relationship should allow prediction of ring opening reaction rate

$$\delta \propto \sigma = \rho \log \frac{k}{k_0}$$

constants for any of the members of this family by merely knowing the & for the particular member and the ring opening reaction rate for the 2-phenyll,3-dioxolenium cation for a specific set of conditions.


In the Results section it was shown how this linear free energy correlation was used to obtain Hammett δ values for the dioxolenium ring. Determination of these values by usual methods would be very difficult if not impossible because of the solvolytic instability of the dioxolenium moiety. In view of the ease with which the dioxolenium ring can be synthesized this technique could be used to determine Hammett σ values for even higher energy carbonium ions by merely synthesizing a suitable model which contained the carbonium ion site either meta or para to the dioxolenium ring probe. For example, a model for determining the σ values for the oxocarbonium ion

moiety could be synthesized in the following manner:

Volz⁸² has reported the facile conversion of aroyl chlorides to oxocarbonium ions with SbCl₅ whereas Meerwein³⁵ has observed that 2-chloroethyl benzoates cyclize readily to the 1,3-dioxolenium cation. By merely determining the δ for this dication, the σ value for -C=0 could be obtained by referring to Figure X.

2,2' and 2,2',2"-Aryl-1,3-dioxolenium Dications and Trications:

This family is the most deshielded group in this series and is of particular interest in that it allows one the opportunity to examine in a systematic manner the intramolecular interaction of multiple charge in a closed conjugated polyene system. The trication described herein is the first reported example in the literature. 83 More recently Volz 84 succeeded in synthesizing trication (A) whereas Murray and Kaplan reported the preparation of tricarbonium ion (B). In each case substantial delocalization into the

central aromatic nucleus was observed accompanied by strong charge repulsion interactions.

In order to gain further insight to the question of whether the cyclic dialkoxy exchanium ion moiety (dioxolenium ring) possesses predominately carbonium or oxonium ion character, analogous phenyl substituted mono-, diand tri-dioxolenium cations (see Figure XIII) were examined by nmr spectroscopy. The chemical shifts for the dioxolenium ring protons were in the predicted order one might expect for both accumulation as well as location of charge on the central aromatic ring. The relative order of deshielding:

In the case of the <u>meta-dication</u> (II), delocalization of charge into the aromatic nucleus can lead to three non-equivalent contributors to the resonance hybrid, where positive charges can be separated by at least one to three carbon atoms. Interaction of the <u>para-dication</u> with the aromatic nucleus results in only two non-equivalent contributors, where in one case

the positive charges are on adjacent carbons. From these classical resonance representations it is apparent that, based on charge interaction, III should have a higher ground state energy than II. Similar delocalization of charge in the trication, III, can lead to only one contributor as shown

below:

The greater accumulated formal charge in the trication undoubtedly gives this cation the highest ground state energy of the entire series.

As shown in Figure XIII the deshielding parameters ($\Delta\delta$) for the aromatic nuclei in each case parallel the relative ground state energies predicted for the members of this family and are consistent with the conjectured delocalization and charge interactions described above.

FIGURE XIII

Deshielding Parameters (Δδ) for Mono-,
Di- and Tri-Dioxolenium Cations (FSO₃H) Compared
to their Ester Precursors (CCl₄)

$$\Delta \delta = 0.30$$
 $\delta = 5.42$ ppm

Ι

II

III

VI

A. General

- 1. <u>Melting Points</u>: Melting points were measured on a Thomas-Hoover melting point apparatus and are uncorrected unless otherwise specified.
- 2. <u>Microanalyses</u>: Elemental analyses were carried out by Mr. L. E. Swim, Analytical Laboratories, The Dow Chemical Company, Midland, Michigan.
- 3. Nuclear Magnetic Resonance Spectra: Spectra were scanned on a Varian Model A-60 instrument using either tetramethylsilane or tetramethylammonium tetrafluoroborate, as specified, for an internal standard. The chemical shift for tetramethylammonium tetrafluoroborate was taken as 3.10 ppm. All chemical shifts are reported as 8 values in ppm.
- 4. <u>Infrared Spectra</u>: Infrared spectra were recorded on a Perkin-Elmer Model 337 spectrometer either on NaCl or KBr plates, as indicated.
- 5. Solvents: Anhydrous methylene chloride and acetonitrile were prepared by distilling these solvents from phosphorous pentoxide; they were then stored over silica gel (Grace Chemical Company). Anhydrous diethyl ether (Mallinckrodt) was used as it was received without further treatment.
- 6. <u>Miscellaneous</u>: All recrystallizations and manipulations of the moisture sensitive cations were carried out in a Labconco dry box containing several (6 x 12 in.) beds of phosphorous pentoxide. Bottled cation samples were always stored in a desiccator over anhydrous calcium chloride.

B. Precursors to 2-Alkyl-1, 3-dioxolenium Cations

- 1. 2-Bromoethyl Acetate: This material was obtained from the Eastman Kodak Company. Redistillation through a 1/2 x 21" Vigreux column gave a colorless liquid, bp 160-161° (Nmr: Spectrum 9).
- 2. 2-Bromoethyl Acrylate: This compound was obtained from the Bordon Chemical Company as a tan liquid. Using N, N-diphenyl phenylene

diamine (DPPD) as an inhibitor, both in the distillation pot and receiver, this product was redistilled through a $1/2 \times 21$ " Vigreux column to give a colorless liquid, bp $52-53^{\circ}/5$ mm (Nmr: Spectrum 11).

- 3. 2-Bromoethyl Methacrylate: This was obtained from the Borden Chemical Company. This material was redistilled (inhibited with DPPD) through a 1/2 x 21" Vigreux column to give a colorless liquid, bp 46-49°/2.7 mm. (Nmr: Spectrum 10).
- 4. 2-Methoxyethyl Acetate: This material was obtained from the Eastman Kodak Company. Redistillation through a 1/2 x 21" Vigreux column yielded a colorless, sweet smelling liquid boiling at 141-143°.
- 5. 2-Hydroxyethyl Acetate: This material was obtained from the Eastman Kodak Company. It was redistilled through a 1/2 x 12" Vigreux column. A colorless fraction boiling at 185-188° was collected.
- 6. 1,2-Diacetoxyethane: This material was obtained from the Eastman Kodak Company and was redistilled through a 1/2 x 12" Vigreux column. A colorless fraction boiling at 190-192° was collected.
- 7. Preparation of 2-Bromoethyl-N,N-Diethyl Carbamic Acid Ester:
 N,N-Diethylcarbamoyl chloride (Eastman, 27.12 g, 0.2 mole) and 2-bromoethanol (25 g, 0.2 mole) were combined with 50 ml of carbon tetrachloride and refluxed for 20 hours. Solvent was removed from the dark brown reaction mixture with a rotating evaporator (Büchi). The amber liquid residue was distilled through a 1/2 x 21" Vigreux to give a major colorless fraction boiling at 77-79°/1.5 mm. The product weighed 25.3 g (56%).

Anal: Calculated for C7H₁₄BrNO₂: C, 37.5; H, 6.30; N, 6.25. Found: C, 37.8; H, 6.15; N, 6.04.

Infrared: $\gamma_{C=0}$, 1713 cm⁻¹ (s), (neat).

Nmr: Spectrum 1.

8. Preparation of 2-Bromoethyl Cyclopropanecarboxylate: Cyclopropanecarbonyl chloride (Aldrich, 20.9 g, 0.2 mole) in 25 ml of carbon tetrachloride was charged into a 250 ml three-necked flask equipped with a condenser, stirrer and addition funnel. A solution of 2-bromoethanol (Eastman) in 25 ml of carbon tetrachloride was added with stirring, dropwise over a period of 30 minutes. A slight exothermic reaction was noted during the addition. Continued stirring while under reflux for five hours produced an amber reaction mixture. Removal of the solvent on a Büchi rotating evaporator gave a tan liquid residue which was distilled through a 1/2 x 21" Vigreux column. A major colorless fraction boiling at 81-82°/10 mm was collected as the product. Wt. 33.5 g (87%).

Anal: Calculated for $C_6H_9BrO_2$: C, 37.3; H, 4.70. Found: C, 37.4; H, 4.87.

Infrared: $\gamma_{C=0}^{\gamma}$, 1738 cm⁻¹ (s), (neat).

Nmr: Spectrum 2.

- 9. Preparation of 3,3-Dimethylacrylyl Chloride: Into a 500 ml, three-necked round-bottomed flask equipped with a stirrer, condenser and addition funnel was charged 100 g (1.0 mole) of 3,3-dimethylacrylic acid (Aldrich). Thionyl chloride (357 g, 3.0 moles) was added dropwise with stirring, producing at first an endothermic reaction followed by an exothermic reaction which was maintained at 40° during the rest of the addition. After completing the addition the reaction mixture was refluxed for 4 hours, then distilled. The product came over as a light tan liquid (bp 77-80°/105 mm) which weighed 64 g (54%).
- 10. Preparation of 2-Bromoethyl-3,3-Dimethylacrylate: 2-Bromoethanol (Eastman, 24.9 g, 0.2 mole) was added to a solution of 3,3-dimethylacrylyl chloride (23.7 g, 0.2 mole) in 75 ml of carbon tetrachloride

contained in a 250-ml round-bottomed flask equipped with a reflux condenser. The reaction mixture was refluxed for 10 hours, after which the solvent was removed on a rotating evaporator (Büchi). Distillation of the tan liquid residue gave 38.9 g of a sweet-smelling colorless liquid boiling at 68-73°/5 mm. Redistillation of this fraction through a 1/2 x 21" Vigreux column yielded 30.1 g (73%) of product boiling at 78-79°/4 mm.

Anal: Calculated for C7H₁₁BrO₂: C, 40.6; H, 5.36; Br, 38.6. Found: C, 40.7; H, 5.20; Br, 38.8.

 $\underline{\text{Infrared}} : \sum_{C=O}^{\gamma}, 1724 \text{ (s)}; \sum_{C=C}^{\gamma}, 1659 \text{ cm}^{-1} \text{ (m) (neat)}.$

Nmr: Spectrum 3.

- ll. Preparation of p-Methoxycinnamoyl Chloride: p-Methoxycinnamic acid (Aldrich, 50 g, 0.28 mole) was stirred in a 500-ml, three-necked round-bottomed flask equipped with a condenser and addition funnel as 200 g (1.68 mole) of thionyl chloride was added dropwise over a period of 30 minutes. The reaction was not exothermic. The reaction mixture was then refluxed, while stirring for 1 hour. Excess thionyl chloride was removed on a rotating evaporator (Büchi), leaving a dark brown oily residue. Upon transferring this residue it suddenly solidified into a yellow-amber mass which weighed 54.3 g (100%) and melted at 48-51°. This material was used without further purification for preparation of the ester.
- Preparation of 2-Bromoethyl p-Methoxycinnamate: 2-Bromoethanol (Eastman, 35 g, 0.28 mole), was added to a solution of p-methoxycinnamoyl chloride (54 g, 0.28 mole) in 50 ml of carbon tetrachloride contained in a 250 ml flask equipped with a reflux condenser. The reaction mixture was refluxed for 3 hours after which the solvent was removed on a rotating evaporator (Büchi), leaving an amber colored oil. This oil was distilled

through 1/2 x 12" Vigreux column giving a major cut boiling at 150-180°/
1 mm. The distillate solidified into a white mass, mp 47-51°, which
weighed 66.8 g (84%). Recrystallization from petroleum ether (30-60°)
gave white crystals melting at 50-51.5°.

Anal: Calculated for C₁₂H₁₃BrO₃: C, 50.5; H, 4.59. Found: C, 50.5; H, 4.43.

Infrared: $\gamma_{C=0}$, 1728 cm⁻¹ (Fluorolube).

Nmr: Spectrum 5.

13. Preparation of 2-Bromoethyl Crotonate: 2-Bromoethanol (40.25 g, 0.5 mole) was added over a period of 5-10 minutes to 52 g (0.5 mole) of crotonyl chloride which was being stirred in a 250 ml three-necked flask equipped with a condenser, stirrer and addition funnel. After the addition was complete, an exothermic reaction set in and was accompanied by the evolution of copious amounts of hydrogen chloride. The tan reaction mixture was maintained at reflux, while stirring for 4 hours. During that time the mixture became dark brown. The crude product was distilled through a 1/2 x 21" Vigreux column giving a colorless, major fraction boiling at 110-117°/39 mm which weighed 49.5 g. This material was redistilled to give a colorless, major fraction boiling at 118-119°/40 mm.

Anal: Calculated for $C_6H_9BrO_2$: C, 37.3; H, 4.70. Found: C, 37.3; H, 4.57.

Infrared: $\gamma_{C=0}$, 1735 cm⁻¹; $\gamma_{C=C}$, 1668 cm⁻¹ (neat).

Nmr: Spectrum 4.

14. Preparation of 2-Bromoethyl Cinnamate: Cinnamoyl chloride (Eastman, 49.9 g, 0.3 mole) and 2-bromoethanol were combined with 75 ml of carbon tetrachloride in a 250 ml round-bottomed flask equipped with a reflux condenser. The reaction mixture was refluxed for 24 hours and

the solvent was removed on a Büchi rotating evaporator to give a viscous, tan liquid residue. Distillation of this material through a 1/2 x 12" Vigreux column yielded a major fraction boiling at 120-123°/2 mm which was very prone to solidify in the condenser and receiver. The crude, white solid product (49.5 g, 62%) melted at 41-45° and was very soluble in diethyl ether, acetone and carbon tetrachloride. Recrystallization from diethyl ether using a Dry Ice®-methylene chloride cooling bath produced nice white needles melting at 43-46°. The melting point was improved to 44.5-46° by placing the product in a vacuum desiccator over paraffin shavings and evacuating to 2 mm.

Anal: Calculated for $C_{11}H_{11}BrO_2$: C, 51.8; H, 4.35. Found: C, 52.1; H, 4.63.

Infrared: $\chi_{C=0}^{\gamma}$, 1719 cm⁻¹ (Fluorolube).

Nmr: Spectrum 6.

15. Preparation of 2-Bromoethyl Pivalate: Pivaloyl chloride (Eastman, 36.18 g, 0.3 mole) and 2-bromoethanol (37.5 g, 0.3 mole) were combined with 50 ml of carbon tetrachloride in a 250 ml round-bottomed flask equipped with a reflux condenser. The reaction mixture was refluxed for 10 hours after which the solvent was removed on a Büchi rotating evaporator to yield a light yellow oil residue. This crude product was distilled through a 1/2 x 12" Vigreux column to give a fraction boiling at 75-85°/33 mm which was found by nmr spectroscopy to be predominately the desired product. Redistillation through a 1/2 x 21" Vigreux column gave 15.6 g (25%) of colorless product boiling at 94-95°/34 mm.

Anal: Calculated for ${}^{C}_{7}{}^{H}_{13}{}^{BrO}_{2}$: C, 40.2; H, 6.27. Found: C, C, 40.0; H, 6.18.

Infrared: $\gamma_{C=0}^{\gamma}$, 1738 cm⁻¹ (neat).

Nmr: Spectrum 8

16. Preparation of 2-Bromoethyl Cyclobutanecarboxylate: A solution of cyclobutanecarbonyl chloride (Kaplop Labs, 26.9 g, 0.2 mole) in 25 ml of carbon tetrachloride was charged into a 250 ml three-necked flask equipped with a stirrer, condenser, and addition funnel. A solution of 2-bromoethanol (Eastman) (25 g, 0.2 mole) in 25 ml of carbon tetrachloride was added dropwise with stirring over a period of 20 minutes. The reaction mixture was stirred while refluxing for 15 hours. Removal of the solvent on a Büchi rotating evaporator gave a sweet-smelling liquid residue which was distilled through a 1/2 x 21" Vigreux column. A water white product boiling at 79-80°/5 mm was obtained (31.3 g, 77%).

Anal: Calculated for C7H₁₁BrO₂: C, 40.6; H, 5.36. Found: C, 40.4; H, 5.27.

Infrared: $\Sigma_{=0}^{\gamma}$, 1740 cm⁻¹ (neat)

Nmr: Spectrum 7

C. Precursors to 2-Aryl-1, 3-dioxolenium Cations:

1. Preparation of 2-Bromoethyl p-Methoxybenzoate: p-Methoxybenzoyl chloride (Aldrich, 51.2 g, 0.3 mole) and 2-bromoethanol (37.5 g, 0.3 mole) were combined in 50 ml of carbon tetrachloride and refluxed for 15 hours. When the mixture was cooled to room temperature, some white crystalline material fell out of solution and was filtered off and identified as 4-methoxybenzoic acid. Solvent was removed from the syrupy filtrate on a rotating evaporator leaving a dark brown, viscous residue which was distilled through a 1/2 x 21" Vigreux column. A major fraction came over at 109-110°/3 mm (39.1 g, 44%).

<u>Anal</u>: Calculated for $C_{10}H_{11}BrO_3$: C, 46.4; H, 4.28. Found: C, 46.4; H, 4.35.

 $\underline{\underline{Infrared}}: \sum_{c=0}^{\gamma}, 1722 \text{ cm}^{-1} \text{ (neat)}$

Nmr: Spectrum 19

2. Preparation of 2-Bromoethyl 3,4,5-Trimethoxybenzoate: 3,4,5-trimethoxybenzoyl chloride (Aldrich, 69.2 g, 0.3 mole) and 2-bromoethanol (37.5 g, 0.3 mole) were combined in 50 ml of carbon tetrachloride and the orange-red reaction mixture was refluxed for 10 hours. Solvent was removed on a rotating evaporator to give an amber oil that slowly solidified into an off-white mass. Recrystallization of this crude material from n-hexane gave a white fluffy material melting at 56.5-59° (75.95 g,79%).

Recrystallization from diethyl ether gave white crystals melting at 56-57°.

Anal: Calculated for $C_{12}H_{15}O_5Br$: C, 45.2; H, 4.74. Found: C, 45.5; H, 4.93.

$$\underline{\text{Infrared}} : \sum_{j=0}^{\gamma}, 1715 \text{ cm}^{-1} \text{ (Fluorolube)}$$

Nmr: Spectrum 20

3. Preparation of 2-Bromoethyl p-Methylbenzoate: p-Methylbenzoyl chloride (Aldrich, 35.7 g, 0.2 mole) and 2-bromoethanol (25.0 g, 0.2 mole) were combined with 40 ml of carbon tetrachloride and refluxed for 12 hours. The solvent was removed on a rotating evaporator leaving an amber colored liquid residue. Fractionation of this residue through a 1/2 x 21" Vigreux column gave a colorless major cut boiling at 116-117°/4 mm (35.1 g, 71%).

Anal: Calculated for C₁₀H₁₁BrO₂: C, 49.4; H, 4.56. Found: C, 49.6; H, 4.69.

Infrared:
$$\gamma_{C=0}$$
, 1725 cm⁻¹ (neat)

4. Preparation of 2-Bromoethyl m-Methylbenzoate: m-Methylbenzoyl chloride (Research Organic Company, 31.1 g, 0.2 mole) and 2-bromoethanol (25 g, 0.2 mole) were combined in 30 ml of carbon tetrachloride and refluxed for 12 hours. Removal of the solvent on a rotating evaporator and distillation of the liquid residue gave a colorless major fraction boiling at 115-116°/2 mm (39.85 g, 81%).

Anal: Calculated for C₁₀H₁₁BrO₂: C, 49.4; H, 4.56. Found: C, 49.3; H, 4.44.

 $\underline{\text{Infrared}}: \quad \sum_{c=0}^{\gamma}, 1730 \text{ cm}^{-1} \text{ (neat)}$

Nmr: Spectrum 22

5. Preparation of 2-Bromoethyl Benzoate:

(a) Benzoyl chloride (Heyden Chemical Company, 28.2 g, 0.2 mole) and 2-bromoethanol (25 g, 0.2 mole) were combined in 50 ml of carbon tetrachloride contained in a 250 ml three-necked flask equipped with a condenser and stirrer. The reaction mixture was maintained at reflux while stirring for 19 hours. Solvent was removed on a rotating evaporator (Büchi) yielding a light amber oil which weighed 44.5 g (97%). This crude product was distilled through a 1/2 x 21" Vigreux column giving a major cut of colorless product boiling at 96-97°/2 mm which weighed 31.4 g (69%).

Anal: Calculated for $C_9H_9BrO_2$: C, 47.2; H, 3.96. Found: C, 47.2; H, 4.09.

 $\underline{\text{Infrared}} : \sum_{c=0}^{\gamma}, 1731 \text{ cm}^{-1} \text{ (neat)}.$

Nmr: Spectrum 23

(b) Approximately 300 mg of 2-phenyl-1,3-dioxolane were dissolved in 1 ml of bromotrichloromethane (Dow) contained in an nmr tube.

This sample was immersed in a constant temperature bath maintained at 18°

and irradiated with a sunlamp (General Electric, lamp to sample distance = 3") for 3 hours. After this time the sample was then scanned on an nmr spectrometer and found to be quantitatively converted to 2-bromoethyl benzoate. The spectra for this sample were found to be identical in every respect to the infrared and nmr spectra obtained for the authentic product obtained according to method (a).

6. Preparation of 2-Bromoethyl p-Fluorobenzoate: p-Fluorobenzoyl chloride (Aldrich, 31.8 g, 0.2 mole) and 2-bromoethanol (25 g, 0.2 mole) were combined in 40 ml of carbon tetrachloride to give a light yellow, homogenous reaction mixture. This was refluxed for 12 hours, after which the solvent was removed on a rotating evaporator (Büchi). Distillation of the liquid residue through a 1/2 x 12" Vigreux column gave a major fraction boiling 95-100°/2 mm. Upon standing this distillate crystallized to an off-white solid, mp 38-43°. Redistillation of this crude product gave 20.22 g (41%) of purified material which melted at 41-42.5°.

<u>Anal</u>: Calculated for C₉H₈BrFO₂: C, 43.8; H, 3.26. Found: C, 44.0; H, 3.38.

Infrared: $\chi_{c=0}^{\gamma}$, 1720 cm⁻¹ (Fluorolube)

Nmr: Spectrum 24

7. Preparation of 2-Bromoethyl p-Chlorobenzoate: Into a 250 ml round-bottomed flask equipped with a reflux condenser was charged 52.5 g (0.3 mole) of p-chlorobenzoyl chloride (Hooker Chemical) and 37.5 g (0.3 mole) of 2-bromoethanol. While being stirred with a magnetic stirrer, the reaction mixture was heated at 100-125° for 12 hours. During this time the slightly viscous reaction mixture turned dark brown. After the mixture was filtered to remove some suspended solid material, the filtrate was distilled through a 1/2 x 21" Vigreux column to give a major colorless

fraction coming over at 120-121°/0.9 mm or 99-100°/0.2 mm which was prone to crystallize in the condenser and receiver (33.3 g, 68%, mp 28-32°). This product was recrystallized from diethyl ether, using a Dry Ice®-methylene chloride cooling bath, to give a fine white powder, mp 32.5-33.5°.

Anal: Calculated for C₉H₈BrClO₂: C, 41.0; H, 3.06. Found: C, 41.3; H, 3.16.

Infrared: $\chi_{c=0}^{\gamma}$, 1732 cm⁻¹ (neat)

Nmr: Spectrum 25

8. Preparation of 2-Chloroethyl m-Chlorobenzoate: m-Chlorobenzoyl chloride (Hooker Chemical Company, 52.5 g, 0.3 mole) and 2-chloroethanol (24.15 g, 0.3 mole) were combined in a 150 ml round-bottomed flask equipped with a reflux condenser. The reaction mixture was stirred with a magnetic stirrer as the temperature was gradually increased. At a temperature of 85-100°, the evolution of hydrogen chloride was detected. The temperature of the reaction mixture was maintained at 100-110°, with stirring, for 12 hours. Distillation of this material through a 1/2 x 21" Vigreux column gave a water-white, major fraction boiling at 88-89°/1.5 mm. The product weighed 55.5 g (85%).

Anal: Calculated for C₉H₈Cl₂O₂: C, 49.3; H, 3.68. Found: C, 49.2; H, 3.86.

Infrared: $\chi_{C=0}^{\gamma}$, 1730 cm⁻¹ (neat)

Nmr: Spectrum 26

9. Preparation of 2-Bromoethyl m-Bromobenzoate: m-Bromobenzoyl chloride (Eastman, 43.9 g, 0.20 mole) and 2-bromoethanol (25 g, 0.20 mole) were combined in 50 ml of carbon tetrachloride and refluxed for 13 hours. Solvent was removed at reduced pressure on a rotating evaporator (Büchi)

leaving an amber liquid residue which weighed 58.9 g (96%). This crude material was distilled through a $1/2 \times 12$ " Vigreux column giving a major cut (colorless) which boiled at $113-120^{\circ}/2 \text{ mm}$ and weighed 40.75 g (66%). This fraction was redistilled to give an analytically pure sample which boiled at $118-119^{\circ}/2 \text{ mm}$.

Anal: Calculated for $C_9H_8Br_2O_2$: C, 35.1; H, 2.62. Found: C, 35.2; H, 2.52.

Infrared: $\gamma_{C=0}$, 1738 cm⁻¹ (neat)

Nmr: Spectrum 27

chloride (Columbia, 11.9 g, 0.075 mole) and 2-bromoethanol (9.4 g, 0.075 mole) were combined in 15 ml of carbon tetrachloride contained in a 50 ml round-bottomed flask equipped with a reflux condenser. The reaction mixture was refluxed for 18 hours during which time it darkened. Solvent was removed from the mixture on a rotating evaporator (Büchi) to yield a dark brown oily residue. This material was distilled through a 1/2 x 12" Vigreux column to give a major cut boiling at 89.5-90°/2 mm (14.3 g, 77%).

Anal: Calculated for $C_9H_8BrO_2F$: C, 43.8; H, 3.26. Found: C, 43.6; H, 3.17.

Infrared: $\gamma_{C=0}$, 1736 cm⁻¹ (neat)

Nmr: Spectrum 28

ll. Preparation of 2-Bromoethyl 3,4-Dichlorobenzoate: 3,4-Dichlorobenzoyl chloride (Heyden, 62.9 g, 0.3 mole) and 2-bromoethanol (37.5 g, 0.3 mole) were combined in 50 ml of carbon tetrachloride and refluxed for 6 hours. The reaction mixture was cooled to ice temperature and filtered free of some suspended solid material. Solvent was removed on a

rotating evaporator (Büchi) to give a liquid residue (80.5 g) which was distilled through a 1/2 x 21" Vigreux column. The distillate came over as a mixture of a colorless liquid and a white solid, bp 120-125°/1 mm. The distillate solidified to a white mass in the receiver, mp 46-49°. Recrystallization from a mixture of n-hexane and diethyl ether using a Dry Ice®-methylene chloride cooling bath, gave a white crystalline product, mp 48-49.5°.

Anal: Calculated for $C_9H_7BrCl_2O_2$: C, 36.3; H, 2.37. Found: C, 36.1; H, 2.30.

Infrared: $\chi_{c=0}^{\gamma}$, 1737 cm⁻¹ (Fluorolube)

Nmr: Spectrum 29

12. Preparation of 2-Bromoethyl m-Trifluoromethylbenzoate: m-Trifluoromethylbenzoyl chloride (Columbia, 10.4 g, 0.05 mole) and 2-bromoethanol (6.25 g, 0.05 mole) was combined with 15 ml of carbon tetrachloride in a 50 ml round-bottomed flask equipped with reflux condenser. The
reaction mixture was refluxed for 24 hours after which the solvent was
removed on a rotating evaporator (Büchi). A dark brown residual oil was
obtained and fractionated through a 1/2 x 12" Vigreux column. A major cut,
boiling at 82-88°/2 mm was collected and redistilled to give 9.65 g (65%)
of a colorless product boiling at 87-88°/2 mm.

<u>Anal</u>: Calculated for C₁₀H₈BrF₃O₂: C, 40.3; H, 3.04; Br, 26.8. Found: C, 40.6; H, 2.95; Br, 26.6.

Infrared: $\chi_{C=0}^{\gamma}$, 1736 cm⁻¹ (neat)

13. Preparation of 2-Bromoethyl p-Trifluoromethylbenzoate: p-Trifluoromethylbenzoyl chloride (Columbia, 10.4 g, 0.05 mole) and 2-bromoethanol (6.25 g, 0.05 mole) were combined with 30 ml of carbon tetrachloride in a 50 ml round-bottomed flask equipped with a reflux condenser.

The reactants were refluxed for 9 hours and the solvent was then removed on a rotating evaporator (Büchi) to leave an amber liquid residue. Distillation of this material through a 1/2 x 12" Vigreux column gave a major fraction boiling at 86-87°/1.5 mm (10.7 g, 72%).

Anal: Calculated for $C_{10}H_8BrF_3O_2$: C, 40.4; H, 2.71. Found: C, 40.5; H, 2.97.

Infrared: $\gamma_{C=0}$, 1740 cm⁻¹ (neat)

Nmr: Spectrum 31

14. Preparation of 2-Bromoethyl m-Nitrobenzoate: m-Nitrobenzoyl chloride (Eastman, 55.7 g, 0.3 mole) and 2-bromoethanol (37.5 g, 0.3 mole) were combined in 50 ml of carbon tetrachloride to give a deep red reaction mixture which was refluxed for 10 hours. When the mixture was cooled to room temperature, a red-yellow solid fell out of solution and was filtered. Solvent was removed from the filtrate on a rotating evaporator (Büchi) to give a viscous yellow-red liquid residue. The liquid was fractionated through a 1/2 x 21" Vigreux column. A cut boiling at 130-135°/2.5 mm was identified as the desired ester by nmr spectroscopy. Redistillation of this crude product gave a major fraction at 133-135°/2.5 mm (20.75 g, 25%).

Anal: Calculated for $C_9H_8BrNO_4$: C, 39.4; H, 2.94. Found: C, 39.7; H, 2.78.

Infrared: $\gamma_{C=0}$, 1735 cm⁻¹ (neat)

chloride (Eastman, 55.68 g, 0.30 mole) and 2-bromoethanol (37.5 g, 0.30 mole) were combined in 50 ml of carbon tetrachloride and refluxed for 9 hours. The gray reaction mixture was cooled to room temperature and filtered free of some suspended solid material which was identified as 4-nitrobenzoic acid. Solvent was removed from the filtrate on a rotating evaporator (Büchi) to yield a gray solid product melting at 50-53° (46.45 g, 50%). Recrystallization from diethyl ether, using a Dry Ice®-methylene chloride cooling bath, gave a white powdery product melting at 49.5-51°.

Anal: Calculated for C₉H₈BrNO₄: C, 39.4; H, 2.94. Found: C, 39.6; H, 3.07.

Infrared: $\chi_{=0}^{\gamma}$, 1730 cm⁻¹ (Fluorolube)

Nmr: Spectrum 33

16. Preparation of 2-Bromoethyl Isophthalate: Isophthaloyl chloride (Eastman, 60.9 g, 0.3 mole) and 2-bromoethanol (75.0 g, 0.6 mole) were combined with 50 ml of carbon tetrachloride and refluxed for 19 hours. After the mixture was cooled to room temperature, some white solid crystallized out of solution and was filtered. It was identified as isophthalic acid. Solvent was removed from the filtrate on a rotating evaporator (Buchi) to yield a tan oily residue. This residue partially crystallized after standing in a stoppered flask for several days and was filtered, and washed with 20 ml of cold ether. The crude tan solid product weighed 45.13 g (39%) and melted at 50-56°. Recrystallization from a mixture of n-hexane and diethyl ether gave a nice white powder which melted at 51-54°. The melting point was improved to 54-56° by placing the material in a vacuum desiccator over paraffin shavings and evacuating to 2 mm.

Anal: Calculated for $C_{12}H_{12}Br_2O_4$: C, 37.9; H, 3.18. Found: C, 38.1; H, 3.19.

Infrared: $\gamma_{C=0}$, 1730 cm⁻¹ (Fluorolube)

Nmr: Spectrum 34

17. Preparation of 2-Bromoethyl Terephthalate: Terephthaloyl chloride (Eastman, 60.9 g, 0.3 mole) and 2-bromoethanol (75 g, 0.6 mole) were combined in 50 ml of carbon tetrachloride and refluxed for 5 hours. While the reaction mixture was being filtered to remove a small amount of suspended solid material, it solidified to a gray slushy mass. After it was cooled in an ice bath, the crude gray diester was filtered and found to weigh 80.9 g (71%), mp 90-94°. Several recrystallizations from diethyl ether gave a fluffy white product melting at 95-96°.

Anal: Calculated for C₁₂H₁₂Br₂O₄: C, 37.9; H, 3.18; Br, 42.1. Found: C, 38.0; H, 3.11; Br, 41.7.

Infrared: $\chi_{c=0}^{\gamma}$, 1733 cm⁻¹ (Fluorolube)

Nmr: Spectrum 35

18. Preparation of Tris(2-bromoethyl) Trimesate: Trimesoyl chloride (Frinton Labs, 26.55 g, 0.1 mole) and 2-bromoethanol (37.5 g, 0.3 moles) were combined in 50 ml of carbon tetrachloride. The homogeneous reaction mixture was refluxed for 12 hours, after which the solvent was removed at reduced pressure on a rotating evaporator (Büchi). A viscous, tan oil remained which could not be induced to crystallize. An attempt to distill this material at a pot temperature of 175° at 2 mm was unsuccessful. A small amount of volatile material was collected, but the main portion would not distill under these conditions. The above treatment converted the material into a dark brown syrup which was soluble in diethyl ether and carbon tetrachloride but not in n-hexane. Adding

n-hexane to an ether solution of the syrup gave a white crystalline material which weighed 35.7 g (67%) and melted at 86-91°. Recrystallization from diethyl ether (Dry Ice[®]-methylene chloride cooling bath) gave glittering white crystals melting at 94.5-96.5°. The melting point was increased to 95.5-96.5° by placing the material in a vacuum desiccator over paraffin shavings and evacuating to 5 mm.

Anal: Calculated for $C_{15}H_{15}Br_3O_6$: C, 33.9; H, 2.85. Found: C, 33.7; H, 2.61. Infrared: $\gamma_{C=0}^{\gamma}$, 1745 cm⁻¹ (Fluorolube)

Nmr: Spectrum 36

D. Precursors to 2,2'-Alkylene-1,3-dioxolenium Dications

1. Preparation of Bis(2-bromoethyl) Oxalate: A solution of oxalyl chloride (Eastman, 25 g, 0.20 mole) in 50 ml of carbon tetrachloride was added dropwise with stirring over a period of 30 minutes to a solution of 2-bromoethanol (49.3 g, 0.39 mole) in 50 ml of carbon tetrachloride. The reaction was not exothermic. While being stirred the reaction mixture was refluxed for 9 hours, after which the solvent was removed on a rotating evaporator (Büchi). A viscous oily residue remained. Allowing this oil to stand in the hood draft caused some crystals to form on the walls of the evaporating dish. When these crystals were added to the oil and scratched, crystallization to a mass of gray platelets occurred. This crude material was recrystallized once from n-hexane to give 58.1 g (96%) of a glittering white crystalline product which melted at 54.5-56°. Cort and Pearson⁵⁵ reported a melting point of 55-55.5°.

Anal: Calculated for $C_6H_8Br_2O_4$: C, 23.7; H, 2.65. Found: C, 23.9; H, 2.65.

Infrared: $\gamma_{C=0}$, 1770, 1745 cm⁻¹ (Fluorolube)

2. Preparation of Bis-(2-bromoethyl) Malonate: 2-Bromoethanol (50 g, 0.4 mole) in 75 ml of carbon tetrachloride was added dropwise to a stirred solution of malonyl chloride (28.2 g, 0.2 mole) in 75 ml of carbon tetrachloride over a period of 30 minutes. A moderately exothermic reaction was observed. The reaction mixture was then refluxed, with stirring, for 6 hours, after which the solvent was removed at reduced pressure on a rotating evaporator (Büchi). The dark brown, viscous residue was distilled through a 1/2 x 12" Vigreux column giving a major colorless fraction boiling at 125-126°/0.5 mm and weighing 47 g (74%).

Anal: Calculated for $C_7H_{10}Br_2O_4$: C, 26.4; H, 3.17. Found: C, 26.4; H, 3.13.

Infrared: $\sum_{c=0}^{\gamma}$, 1761 cm⁻¹ (neat)

Nmr: Spectrum 13

3. Preparation of Bis(2-bromoethyl) Succinate: Succinyl chloride (Eastman, 26.5 g, 0.17 mole) and 2-bromoethanol (42.5 g, 0.34 mole) were combined in 75 ml of carbon tetrachloride and refluxed for 14 hours. Solvent was removed at reduced pressure on a rotating evaporator (Büchi) leaving a tan liquid residue which weighed 55.2 g (97%). The crude ester was taken up in 50 ml of carbon tetrachloride and washed with 125 ml of a saturated solution of sodium bicarbonate. The aqueous phase was extracted with carbon tetrachloride (2 x 25 ml). The combined extracts were washed with water (2 x 100 ml) and dried over anhydrous calcium sulfate. Solvent was removed at reduced pressure on a rotating evaporator (Büchi), leaving a nearly colorless liquid residue which weighed 37.8 g (67%). This material was distilled through a 1/2 x 12" Vigreux column, yielding a colorless, major fraction which boiled at 145-147°/2 mm and

weighed 27.3 g (48%).

Anal: Calculated for C₈H₁₂Br₂O₄: C, 28.9; H, 3.64. Found: C, 29.2; H, 3.92.

Infrared: $\gamma_{c=0}$, 1740 cm⁻¹ (neat)

Nmr: Spectrum 14

4. Preparation of Bis-(2-bromoethyl) Glutarate: Glutaryl chloride (Aldrich, 33.8 g, 0.2 mole) and 2-bromoethanol (50.0 g, 0.4 mole) were combined in 75 ml of carbon tetrachloride and refluxed for 12 hours. Solvent was removed on a rotating evaporator (Büchi). The residue was distilled through a 1/2 x 12" Vigreux column and collected as a fraction boiling at 113-123°/2.5 mm. Weight of the crude product was 51.2 g (74%). Redistillation of the crude product gave an analytical sample boiling at 115-118°/2.5 mm.

Anal: Calculated for $C_9H_{14}Br_2O_4$: C, 31.2; H, 4.08. Found: C, 31.3; H, 3.85.

Infrared: $\sum_{c=0}^{\gamma}$, 1749 cm⁻¹ (neat)

Nmr: Spectrum 15

5. Preparation of Bis-(2-bromoethyl) Adipate: 2-Bromoethanol (50 g, 0.4 mole) in 50 ml of carbon tetrachloride was added dropwise to a stirred solution of adipyl chloride (36.6 g, 0.2 mole) in 50 ml of the same solvent over a period of 30 minutes. A slight rise in temperature was noted (to 35°). The reaction mixture was stirred while at reflux for 17 hours, after which the solvent was removed at reduced pressure on a rotating evaporator (Buchi). A light tan liquid residue was obtained which weighed 70 g (97%). This residue was distilled through a 1/2 x 12" Vigreux column, giving a colorless major fraction which boiled at 162-163°/0.9 mm and

weighed 52.80 g (73%).

<u>Anal</u>: Calculated for C₁₀H₁₆Br₂O₄: C, 33.4; H, 4.48. Found: C, 33.3; H, 4.48.

Infrared: $\gamma_{C=0}$, 1749 cm⁻¹ (neat)

Nmr: Spectrum 16

6. Preparation of Bis(2-bromoethyl) Pimelate: Pimelyl chloride (Frinton Labs, 19.7 g, 0.10 mole) and 2-bromoethanol (12.5 g, 0.10 mole) were combined in 75 ml of carbon tetrachloride and refluxed for 8 hours. Solvent was removed on a rotating evaporator, to give a dark brown oil weighing 35.7 g (95%). This crude product was distilled through a 1/2 x 12" Vigreux column, yielding a light tan liquid as a major fraction which weighed 25.0 g (67%) and boiled at 150-159°/2 mm. This material was redistilled to give a pure product which boiled at 156-159°/2 mm.

Anal: Calculated for $C_{11}H_{18}Br_2O_4$: C, 35.3; H, 4.85. Found: C, 35.5; H, 4.86.

Infrared: $\chi_{=0}^{\gamma}$, 1750 cm⁻¹ (neat)

Nmr: Spectrum 17

7. Preparation of Bis(2-bromoethyl) Suberate: Suberyl chloride (Frinton Labs, 21.1 g, 0.10 mole) and 2-bromoethanol (24.9 g, 0.20 mole) were combined in 75 ml of carbon tetrachloride. A vigorous reaction accompanied by a copious evolution of HCl was observed shortly after addition. The reaction mixture was refluxed for 25 hours, after which the solvent was removed at reduced pressure on a rotating evaporator (Büchi). A heavy, tan liquid residue remained and crystallized into a tan solid upon standing overnight at room temperature. The crude product weighed 26.4 g (94%) and melted at 31-35°. Recrystallization from

n-hexane gave glittering white plates which melted at $37-38^{\circ}$.

<u>Anal</u>: Calculated for $C_{12}H_{20}Br_2O_4$: C, 37.1; H, 5.19. Found: C, 37.3; H, 5.21.

Infrared: $\gamma_{C=0}$, 1750 cm⁻¹ (Fluorolube)

Nmr: Spectrum 18

E. 2-Alkyl-1,3-dioxolenium Cations:

1. Preparation of 2-(N, N-Diethylamino)-1, 3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2bromoethyl N, N-diethylcarbamate (1.96 g, 0.01 mole) in 20 ml of dry methylene chloride. An exothermic reaction sufficient to cause the solvent to reflux slightly was observed and was accompanied by the formation of a yellow precipitate. The reaction mixture was stirred at 25-30° for l hour after which the insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 1.64 g (88%, assuming it is only silver bromide). Reduction of the filtrate to one-half its original volume and addition of diethyl ether caused a colorless oil (lower phase) to separate. This layer could not be induced to crystallize until it was cooled in a Dry Ice®-methylene chloride cooling bath and scratched. After some effort, a white crystalline material formed and was filtered. It weighed 1.6 g (69%), mp 46-51°. Recrystallization of this crude material from methylene chloride (Dry Ice® cooling) yielded fine white crystals melting at 53-54.5°.

Anal: Calculated for $C_7H_{14}NO_2 \cdot BF_4$: C, 36.4; H, 6.11. Found: C, 36.4; H, 6.29.

Preparation of 2-(Cyclopropyl)-1, 3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl cyclopropanecarboxylate (1.93 g, 0.01 mole) in 20 ml of dry methylene chloride. An immediate precipitation of a yellow cream-colored solid accompanied the slightly exothermic reaction. After the reaction mixture was stirred for 2 hours at 25-30° with a magnetic stirrer, the suspended solid was filtered and washed with methylene chloride (2 x 10 ml). The yellow-gray filter cake weighed 3.30 g (85%, assuming it consists of cation and silver bromide). Reducing the filtrate to half the original volume and adding 10 ml of diethyl ether gave 0.05 g (2.5%) of the cation salt as a white crystalline product which melted at 123-125.5°. The above filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and then washed with liquid sulfur dioxide (2 x 5 ml). A yellow-gray filter cake of silver bromide remained which weighed 1.55 g (83%). Evaporation of the filtrate yielded 1.25 g (63%) of a white crystalline product. This material was recrystallized from a mixture of acetonitrile and methylene chloride (Dry Ice ®-methylene chloride cooling bath) to give fine white crystals melting at 124.5-126°.

Anal: Calculated for C₆H₉O₂·BF₄: C, 36.0; H, 4.54. Found: C, 35.8; H, 4.34.

Nmr: Spectrum 38

3. Preparation of 2-(2-Methylpropenyl)-1,3-dioxolenium Tetrafluoro-borate: Anhydrous powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl 3,3-dimethylacrylate (2.07 g, 0.01 mole) in 20 ml of dry methylene chloride while under anhydrous conditions. The reaction was mildly exothermic and accompanied

by the formation of a cream-yellow precipitate. The reaction mixture was allowed to stir for 2 hours at 25-30°. After this time the precipitate was filtered and washed with methylene chloride (2 x 10 ml). The filtrate was reduced to dryness leaving a slushy gray solid. This residue was dissolved in 5-10 ml of methylene chloride and filtered. Anhydrous diethyl ether was added; this caused the product to precipitate. The crude product was filtered and found to weigh 1.4 g (65%), mp 57-61°. Recrystallization from a mixture of diethyl ether and methylene chloride (Dry Ice® cooling) gave a fine white crystalline product melting at 61-62°.

Anal: Calculated for $C_7H_{11}O_2 \cdot BF_4$: C, 39.3; H, 5.18. Found: C, 39.0; H, 5.03.

Nmr: Spectrum 39

4. Preparation of 2-(p-Methoxystyryl)-1,3-dioxolenium Tetrafluoroborate: 2-Bromoethyl 4-methoxycinnamate (2.85 g, 0.01 mole) in 20 ml of methylene chloride was charged into a 50 ml erlemmeyer flask equipped with a magnetic stirrer. In a dry box, (1.93 g, 0.01 mole) of powdered silver tetrafluoroborate (Alfa Inorg) was added in one portion to the stirred ester solution. A precipitate formed immediately and the solution became a brilliant canary yellow. The reaction mixture was stirred for 1 hour at 25-30°, after which the yellow precipitate was filtered (3.4 g, 71% assuming it consists of the cation and silver bromide). Trituration of the precipitate with 10 ml of liquid sulfur dioxide followed by filtration and washing the filter cake with liquid sulfur dioxide (2 x 10 ml) left a cream-colored filter cake of silver bromide (1.65 g) and a brilliant yellow filtrate. Evaporation of the sulfur dioxide yielded a yellow solid which weighed 2.08 g (71%). This material turned dark at ~130-140° and decomposed at 185-195°. Recrystallization from a mixture of acetonitrile

and methylene chloride using a Dry Ice[®]-methylene chloride bath, gave a brilliant yellow powder which darkened at ~210° and decomposed to a black resin at 220-223°. This product gave a canary yellow solution in liquid sulfur dioxide, methylene chloride or acetonitrile but was rapidly decolorized in FSO₃H or water.

Anal: Calculated for $C_{12}H_{13}O_3 \cdot BF_4$: C, 49.5; H, 4.30. Found: C, 49.5; H, 4.45.

Nmr: Spectrum 41

5. Preparation of trans-2-(Propenyl)-1, 3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2bromoethyl crotonate (1.93 g, 0.01 mole) in 20 ml of anhydrous methylene chloride. A yellow precipitate formed shortly after the addition. The reaction mixture was stirred for 1 hour at 25-30° after which time the insoluble material was filtered and washed with methylene chloride (2 x 10 ml). The yellow-gray filter cake weighed 3.38 g. This represents a yield of 87%, assuming it consists of cation salt and silver bromide. This filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed twice with 5-ml portions of this solvent. The silver bromide remaining on the filter weighed 1.38 g (94%). Reducing the filtrate to dryness gave 1.58 g (79%) of a fine crystalline material melting at 140-147°. Recrystallization from a mixture of acetonitrile and methylene chloride gave an analytical sample of glittering white crystals melting at 150-152°.

Anal: Calculated for $C_6H_9O_2$ ·BF₄: C, 36.0; H, 4.54. Found: C, 36.3; H, 4.41.

6. Preparation of 2-(Styryl)-1,3-dioxolenium Tetrafluoroborate:
Powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl cinnamate (2.65 g,0.01 mole) in 20 ml of methylene chloride under anhydrous conditions. The reaction mixture was stirred for 1.75 hours, filtered, then washed with methylene chloride (2 x 10 ml). The yellow gray filter cake weighed 3.2 g (77%, assuming it consists of silver bromide and cation salt). This filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed twice with 5 ml portions of the solvent. A filter cake of silver bromide remained which weighed 1.7 g (92%). The sulfur dioxide filtrate was reduced to dryness, to yield 1.45 g (67%) of an off-white solid product which melted at 173-176°. Recrystallization of this crude material from a mixture of acetonitrile and methylene chloride (Dry Ice[®] cooling) gave glittering white crystals which melted at 178-179.5°.

Anal: Calculated for $C_{11}H_{11}O_{2} \cdot BF_{4}$: C, 50.4; H, 4.23. Found: C, 50.1; H, 4.34.

Nmr: Spectrum 42

7. Preparation of 2-(t-Butyl)-1,3-Dioxolenium Tetrafluoroborate:
Under anhydrous conditions powdered silver tetrafluoroborate (Alfa Inorganic, 1.93 g, 0.01 mole), was added in one portion to a solution of 2-bromoethyl pivalate (2.09 g, 0.01 mole) and 15 ml of anhydrous methylene chloride contained in a 50 ml erlenmeyer flask equipped with a magnetic stirrer. An immediate exothermic reaction was observed accompanied by the formation of light yellow precipitate. The flask was stoppered and the reaction mixture was stirred for 2 hours at 25-30°. After the silver bromide was filtered and washed with methylene chloride (2 x 10 ml), the filter cake

weighed 1.8 g (96% of theory for AgBr). When the filtrate was cooled, some product crystallized out, but addition of a small amount of diethyl ether caused more complete crystallization. The product was filtered as a white fluffy solid melting at 148-151° (1.55 g, 72%). An analytical sample was obtained by dissolving the product in a 5:1 methylene chloride:acetonitrile mixture and adding a small amount of diethyl ether. Cooling in a Dry Ice® bath gave fine white needles, melting at 151.5-152.5°.

Anal: Calculated for $C_7H_{13}O_2 \cdot BF_4$: C, 38.9; H, 6.07. Found: C, 38.9; H, 6.12.

Nmr: Spectrum 44

8. Preparation of 2-(Cyclobutyl)-1, 3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (Alfa Inorganic, 1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl cyclobutanecarboxylate (2.07 g, 0.01 mole) in 15 ml of anhydrous methylene chloride. Although the immediate formation of a light yellow precipitate was observed, the reaction did not appear to be exothermic. The reaction mixture was stirred for 1 hour at 25-30°. The suspended silver bromide was filtered and washed twice with 10-ml portions of methylene chloride. The weight of filter cake was 1.85 g (99%). The colorless filtrate was reduced to 1/2 its original volume under reduced pressure and then anhydrous diethyl ether was added until a colorless oil separated from the solution. The two-phase system was cooled in a Dry Ice®methylene chloride bath and scratched. After some effort, the oil finally crystallized to a white fluffy solid which was filtered, washed with 10 ml of ether and found to weigh 1.20 g (56%), mp 28-31°. Recrystallization from a mixture of methylene chloride and diethyl ether (Dry Ice® cooling)

gave a white powdery product which melted at 31-32°.

Anal: Calculated for $C_{7}H_{11}O_{2} \cdot BF_{4}$: C, 39.3; H, 5.18. Found: C, 39.4; H, 5.11.

Nmr: Spectrum 43

9. Preparation of 2-(Methyl)-1,3-dioxolenium Tetrafluoroborate: In a dry box, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl acetate (1.67 g, 0.01 mole) in 20 ml of methylene chloride. A yellow precipitate formed shortly after the addition. After the reaction mixture was allowed to stir for 1 hour, the insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.45 g (96%, assuming it consists of cation salt and silver bromide). This filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered, and washed twice with 5 ml portions of this solvent. The silver bromide left on the filter weighed 1.85 g (99%). Reduction of the filtrate to dryness gave 1.45 g (83%) of a white powdery material which melted at 148-157°. Recrystallization from a mixture of acetonitrile and methylene chloride (Dry Ice® cooling) gave glittering fine white crystals melting at 170-172°. Meerwein²² reported a melting point of 164-166°.

Anal: Calculated for $C_{4}H_{7}O_{2}\cdot BF_{4}$: C, 27.6; H, 4.06. Found: C, 27.7; H, 3.80.

Nmr: Spectrum 45

10. <u>Preparation of 2-(Isopropenyl)-1,3-dioxolenium Tetrafluoroborate</u>:
Under anhydrous conditions, powdered silver tetrafluoroborate (Alfa Inorganic, 1.93 g. 0.01 mole), was added in one portion to a stirred solution of 2-bromoethyl methacrylate (1.93 g, 0.01 mole) in 15 ml of dry methylene chloride contained in a 50 ml erlenmeyer flask. An immediate, mild

exothermic reaction accompanied by the formation of a light yellow precipitate was observed. The reaction mixture was allowed to stir with a magnetic stirrer (25-30°) for 2 hours. The insoluble material was then filtered from the red-brown solution (3.5 g). The insoluble material was suspended in 15 ml of liquid sulfur dioxide, filtered, and then washed twice with 10-ml portions of liquid sulfur dioxide. The red-brown filtrate was evaporated to dryness under reduced pressure leaving a brown solid residue. This residue was slurried in 20 ml of anhydrous diethyl ether, filtered and then washed with ether (2 x 20 ml). The tan solid product weighed 1.45 g (81%) and melted at 150-153°. Recrystallization from a mixture of acetonitrile and methylene chloride, using a Dry Ice[®]-methylene chloride cooling bath, gave fine white crystals, mp 155-156.5°.

Anal: Calculated for $C_6H_9O_2$ BF₄: C, 36.1; H, 4.54. Found: C, 36.2; H, 4.28.

Nmr: Spectrum 46

11. Preparation of 2-(Vinyl)-1,3-dioxolenium Tetrafluoroborate:

Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl acrylate (1.79 g, 0.01 mole) in 20 ml of dry methylene chloride. A yellow creamy precipitate formed immediately. The reaction mixture was stirred for 4.5 hours at 25-30° after which the insoluble material was filtered and washed twice with 10 ml-portions of methylene chloride. This precipitate weighed 2.70 g (73%, assuming it consists of cation salt and silver bromide). The filter cake was slurried in 10 ml of liquid sulfur dioxide, followed by washing twice with 10-ml portions of the same solvent. A filter cake of silver bromide remained which weighed 1.45 g (78%). Reducing the filtrate to dryness gave a dark, brown sticky residue which

was slurried in anhydrous diethyl ether and filtered. The crude product weighed 0.8 g (43%). Recrystallization from a mixture of acetonitrile and methylene chloride (Dry Ice[®] cooling) gave a fine white powder which melted at 151-152.5°.

Anal: Calculated for C₅H₇O₂·BF₄: C, 32.3; H, 3.80. Found: C, 32.5; H, 3.90.

Nmr: Spectrum 47

12. Preparation of 2-(Hydroxy)-1,3-dioxolenium Fluorosulfonate:
Ethylene carbonate (Eastman, 4 drops) was added to an nmr tube containing approximately 1 ml of fluorosulfonic acid (Allied) and a small amount of tetramethylammonium tetrafluoroborate. The addition was slightly exothermic but the sample did not change noticeably in appearance. The nmr spectrum, which was scanned 2.5 hours after the addition, consisted of only a sharp singlet at 5.26 ppm.

F. 2-Aryl-1, 3-dioxolenium Cations:

1. Preparation of 2-(p-Methoxyphenyl)-1,3-dioxolenium Tetrafluoro-borate: 2-Bromoethyl 4-methoxybenzoate (2.95 g, 0.01 mole) in 20 ml of anhydrous methylene chloride was charged into a 50 ml erlenmeyer flask equipped with a magnetic stirrer. Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to the stirred ester solution. A yellow-cream colored precipitate formed immediately. After the reaction mixture was allowed to stir at 25-30° for 1 hour, the precipitate was filtered and found to weigh 3.95 g (81%, assuming it consists of cation salt and silver bromide). The filter cake was slurried in 10 ml of liquid sulfur dioxide and filtered, then further

washed twice with 5-ml portions of liquid sulfur dioxide. The weight of the silver bromide filter cake was 1.7 g (91%). Evaporation of the filtrate gave 2.0 g (96%) of white powdery product which melted at 221-224°. Recrystallization from acetonitrile using a Dry Ice®-methylene chloride cooling bath gave glittering white crystals melting at 228-230° (decomposition to a black melt).

Anal: Calculated for $C_{10}H_{11}O_3 \cdot BF_4$: C, 45.2; H, 4.17. Found: C, 45.3; H, 4.18.

Nmr: Spectrum 55

2. Preparation of 2-(3,4,5-Trimethoxyphenyl)-1,3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution
of 2-bromoethyl 3,4,5-trimethoxybenzoate (3.19 g, 0.01 mole) in 30 ml of
methylene chloride. The addition produced a mildly exothermic reaction
and a yellow precipitate. After the reaction mixture was stirred at
25-30° for 2 hours, the precipitate was filtered and washed with methylene
chloride (2 x 10 ml). The gray-yellow filter cake of silver bromide
weighed 1.7 g (91%). Evaporation of the filtrate gave 2.5 g (77%) of
a white crystalline product, mp 158-165°. Recrystallization from a
mixture of acetonitrile and methylene chloride (Dry Ice® cooling) yielded
silky white needles which melted at 166-167.5°.

Anal: Calculated for C₁₂H₁₅O₅·BF₄: C, 44.2; H, 4.64. Found: C, 44.3; H, 4.65.

3. Preparation of 2-(p-Methylphenyl)-1,3-dioxolenium Tetrafluoroborate: 2-Bromoethyl 4-methylbenzoate (2.67 g, 0.01 mole) in 20 ml of dry methylene chloride was charged into a 50 ml erlenmeyer flask equipped with a magnetic stirrer. In a dry box, powdered silver tetrafluoroborate (Alfa, 1.93 g, 0.01 mole) was added in one portion. A yellow-cream colored precipitate appeared shortly after the addition. The reaction mixture was stirred for 1 hour at 25-30° after which the precipitate was filtered. The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered, then washed with liquid sulfur dioxide (2 x 5 ml). The silver bromide filter cake weighed 1.7 g (91%). Evaporation of the filtrate gave 2.20 g (81%) of a white powder which melted at 203-206°. Recrystallization from acetonitrile using a Dry Ice®-methylene chloride cooling bath gave a white crystalline material melting at 207-209° (decomposition to a brown melt).

Anal: Calculated for $C_{10}H_{11}O_{2} \cdot BF_{4}$: C, 48.0; H, 4.44. Found: C, 48.2; H, 4.34.

Nmr: Spectrum 57

4. Preparation of 2-(m-Methylphenyl)-1,3-dioxolenium Tetrafluoro-borate: 2-Bromoethyl 3-methylbenzoate (2.44 g, 0.01 mole) in 20 ml of anhydrous methylene chloride was charged into a 50 ml erlemmeyer flask equipped with a magnetic stirrer. Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to the stirred ester. A yellow cream-colored precipitate formed almost immediately. The reaction mixture was allowed to stir for 1 hour at 25-30°, then filtered. The filter cake was washed twice with 10-ml portions of methylene chloride and found to weigh 3.65 g (84%, assuming it consists of cation salt and silver bromide). Reducing the volume of the filtrate and cooling gave 0.2 g (8%) of the cation salt which melted at 183-187° (dec).

The above filter cake was slurried in 10 ml of liquid sulfur dioxide and filtered, then washed twice with 5-ml portions of liquid sulfur dioxide. The silver bromide filter cake weighed 1.7 g (91%) whereas 1.7 g (68%) of product was obtained upon evaporation of the filtrate. Total yield 1.9 g (76%), mp 187-190°. Recrystallization of the crude material from a mixture of acetonitrile and methylene chloride (Dry Ice®-methylene chloride cooling bath) gave a white crystalline product melting at 194-196°.

Anal: Calculated for $C_{10}H_{11}O_{2} \cdot BF_{4}$: C, 48.0; H, 4.44. Found: C, 48.0; H, 4.58.

Nmr: Spectrum 58

5. Preparation of 2-(Phenyl)-1,3-dioxolenium Tetrafluoroborate:
Powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one
portion to a stirred solution of 2-bromoethyl benzoate (2.29 g, 0.01 mole)
in 20 ml of dry methylene chloride under anhydrous conditions. A yellowgray precipitate formed shortly after the addition. After the reaction
mixture was allowed to stir for 1 hour at 25-30°, the insoluble material
was filtered and washed with methylene chloride (2 x 10 ml). The filter
cake was then slurried in 10 ml of liquid sulfur dioxide, filtered, and
washed with two 5-ml portions of this solvent. A residue of silver bromide
remained on the filter and weighed 1.75 g (94%). Evaporation of the filtrate yielded 1.9 g (81%) of a white powdery product which melted at 160166°. Recrystallization of this material from a mixture of acetonitrile
and methylene chloride (Dry Ice® cooling) gave glittering white crystals
melting with decomposition at 168-170°. Meerwein reported a decomposition
temperature of 166°. 22

Anal: Calculated for C9H9O2·BF4: C, 45.8; H, 3.84. Found: C, 45.8; H, 3.97.

6. Preparation of 2-(p-Fluorophenyl)-1, 3-dioxolenium Tetrafluoroborate: 2-Bromoethyl 4-fluorobenzoate (2.47 g, 0.01 mole) in 20 ml of anhydrous methylene chloride, was charged into an erlenmeyer flask (50 ml) equipped with a magnetic stirrer. In a dry box, silver tetrafluoroborate (Alfa Inorg, 1.93 g, 0.01 mole) was added in one portion to the stirred ester solution. A yellow-white precipitate formed immediately. The reaction mixture was allowed to stir at 25-30° for 1.0 hour, then filtered. After the filter cake was washed with 2 x10-ml portions of methylene chloride the filter cake weighed 3.55 g (81%, based on the assumption that the precipitate consists of cation salt and silver bromide). This filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of liquid sulfur dioxide. The AgBr residue weighed 1.55 g (83%). Evaporation of the filtrate gave 1.6 g (63%) of the white crystalline cation salt which decomposed to a black melt at 195-200°. Recrystallization from a mixture of acetonitrile and methylene chloride (using Dry Ice®-methylene chloride as a cooling bath) gave a white crystalline product which decomposed to a black melt at 203-205°.

Anal: Calculated for $C_9H_8FO_2 \cdot BF_4$: C, 42.6; H, 3.17. Found: C, 42.5; H, 3.23.

Nmr: Spectrum 60

7. Preparation of 2-(p-Chlorophenyl)-1,3-dioxolenium Tetrafluoro-borate: Under anhydrous conditions, anhydrous powdered silver tetrafluoro-borate (1.93 g, 0.01 mole) was added in one portion with stirring to a solution of 2-bromoethyl p-chlorobenzoate (2.19 g, 0.01 mole) in 20 ml of dry methylene chloride. A yellow-white precipitate appeared immediately after the addition. The reaction mixture was stirred with a magnetic stirrer for l'hour at 25-30°, then filtered and washed twice with 10-ml

portions of methylene chloride. This yellow-gray filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and then washed twice again with 5-ml portions of liquid sulfur dioxide. The filter cake of silver bromide weighed 1.35 g (72%). Evaporation of the sulfur dioxide filtrate yielded 1.85 g (82%) of a gray powdery product which melted at 175-185°. Recrystallization of this crude material from a mixture of acetonitrile and methylene chloride gave fine white crystals melting at 235-237° (decomposition to a black melt).

Anal: Calculated for C₉H₈ClO₂·BF₄: C, 40.0; H, 2.98. Found: C, 40.2; H, 3.16.

Nmr: Spectrum 61

Preparation of 2-(m-Chlorophenyl)-1, 3-dioxolenium Tetrafluoroborate: 2-Chloroethyl m-chlorobenzoate (2.19 g, 0.01 mole) was charged into a 50 ml erlenmeyer flask containing 20 ml of dry methylene chloride and equipped with a magnetic stirrer. Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to the ester solution. The reaction mixture was stirred at 25-30° for 1 hour during which time a considerable amount of white precipitate fell out of solution. This precipitate was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 2.7 g (66%, assuming it consists of silver bromide and cation salt). Reduction of the filtrate to dryness under reduced pressure yielded 0.4 g (18%) of the cation salt as a white powder melting at 158-164°. The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of the same solvent. A silver chloride filter cake weighing 1.20 g (81%) was obtained. Evaporation of the sulfur dioxide yielded a white powdery product weighing 1.55 g (69%) and melting at 168-171°. Recrystallization

from a mixture of acetonitrile and methylene chloride (Dry Ice® cooling) gave silky, white plates which decomposed to a brown melt at 173-175°.

Anal: Calculated for $C_9H_8ClO_2 \cdot BF_4$: C, 40.0; H, 2.98. Found: C, 40.0; H, 2.97.

Nmr: Spectrum 62.

9. Preparation of 2-(m-Bromophenyl)-1,3-dioxolenium Tetrafluoroborate:
Powdered, anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added
in one portion to a stirred solution of 2-bromoethyl m-bromobenzoate (3.08 g, 0.01 mole) in 20 ml of dry methylene chloride under anhydrous conditions. A yellow-white precipitate appeared shortly after the addition and during the hour that the reaction mixture was allowed to stir at 25-30°.

The insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.95 g (79%, assuming it consists of cation salt and silver bromide). This insoluble material was then slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of the same solvent. The silver bromide filter cake weighed 1.75 g(94%). Evaporation of the filtrate yielded 1.92 g (61%) of a white solid, mp 168-175°. Recrystallization from a mixture of methylene chloride and acetonitrile (Dry Ice®-cooling bath) gave fine white crystals, mp 174.5-176°.

Anal: Calculated for $C_9H_8BrO_2 \cdot BF_4$: C, 34.3; H, 2.56. Found: C, 34.4; H, 2.51.

Nmr: Spectrum 63

10. Preparation of 2-(m-Fluorophenyl)-1,3-dioxolenium Tetrafluoroborate: Powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-(bromoethyl) m-fluorobenzoate (2.47 g, 0.01 mole) in 20 ml of methylene chloride under anhydrous

conditions. The reaction mixture was allowed to stir for 2 hours at 25-30° during which time a substantial amount of yellow-gray precipitate formed. This insoluble material was filtered, washed with methylene chloride (2 x 10 ml), and found to weigh 3.87 g (88%, assuming it consisted of silver bromide and cation salt). Reducing the filtrate to half the original volume gave 0.1 g of the cation salt which melted at 153-160°. The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered, then washed twice with 5 ml of this solvent. The weight of the silver bromide filter cake was 1.65 g (88%). Solvent was removed from the filtrate to yield 1.55 g (61%) of a white crystalline product melting at 158-165°. Recrystallization from a mixture of acetonitrile and methylene chloride (Dry Ice® cooling) gave a fine white crystalline product which melted at 169-171°.

Anal: Calculated for $C_9H_8O_2F \cdot BF_4$: C, 42.6; H, 3.17. Found: C, 42.5; H, 3.28.

Nmr: Spectrum 64

11. Preparation of 2-(3,4-Dichlorophenyl)-1,3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution
of 2-(bromoethyl) 3,4-dichlorobenzoate (2.1 g, 0.01 mole) in 20 ml of dry
methylene chloride. A creamy yellow precipitate formed almost immediately.

After the reaction mixture was stirred at 25-30° for 1 hour the insoluble
material was filtered and washed with methylene chloride (2 x 10 ml). The
solid weighed 2.80 g (69%, assuming it consists of silver bromide and
cation salt). The filter cake was slurried in 10 ml of liquid sulfur
dioxide, then washed with two 5-ml portions of liquid sulfur dioxide,
leaving a silver bromide residue on the filter of 1.2 g (64%). Evaporation

of the filtrate gave 1.5 g (69%) of a white powdery material which melted at 200-208°. Recrystallization from acetonitrile (Dry Ice® cooling bath) yielded fine white crystals which decomposed to a black melt at 218-220°.

Anal: Calculated for C₉H₇Cl₂O₂·BF₄: C, 35.5; H, 2.32. Found: C, 35.6; H, 2.51.

Nmr: Spectrum 65

Preparation of 2-(m-Trifluoromethylphenyl)-1, 3-dioxolenium Tetrafluoroborate: In a dry box, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl m-trifluoromethylbenzoate (2.97 g, 0.01 mole) in 20 ml of anhydrous methylene chloride. The reaction mixture was allowed to stir for 1.5 hours at 25-30°, during which time a substantial amount of yellowgray precipitate formed. The insoluble material was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 3.77 g (77%, assuming it consists of cation salt and silver bromide). Reducing the filtrate to 1/3 original volume and cooling yielded 0.2 g (7%) of the cation salt. The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of this solvent. A yellow-gray filter cake of silver bromide was obtained which weighed 1.75 g (94%). Evaporation of the filtrate to dryness yielded a white fluffy solid which weighed 2.05 (68%) and melted at 129-134°. The total crude yield was 2.25 g (72%). Recrystallization from a mixture of acetonitrile, methylene chloride and diethyl ether gave a white fluffy product which melted at 135-137°.

Anal: Calculated for $C_{10}^{H}8_{3}^{F}0_{2}^{\cdot}B_{4}^{F}$: C, 39.5; H, 2.65. Found: C, 39.7; H, 2.76.

Tetrafluoroborate: Powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl p-trifluoromethylbenzoate (2.97 g, 0.01 mole) in 20 ml of anhydrous methylene chloride. The reaction mixture was allowed to stir for 4.5 hours at 25-30°, during which time a substantial amount of yellow-gray precipitate formed. The insoluble material was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 3.47 g (71%, assuming it consists of cation salt and silver bromide). The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of this solvent. A yellow-gray filter cake of silver bromide was obtained which weighed 1.55 g (83%). Evaporation of the filtrate to dryness yielded a white solid which weighed 1.89 g (63%) and melted at 178-183°. Recrystallization from a mixture of acetonitrile, methylene chloride and diethyl ether gave a fine white powder which melted at 188-189.5°.

Anal: Calculated for $C_{10}H_8F_3O_2 \cdot BF_4$: C, 39.5; H, 2.65. Found: C, 39.3; H, 2.74.

Nmr: Spectrum 67

Preparation of 2-(m-Nitrophenyl)-1,3-dioxolenium Tetrafluoro-borate: Under anhydrous conditions, powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-(bromoethyl) m-nitrobenzoate (2.74 g, 0.01 mole) in 20 ml of dry methylene chloride. The reaction mixture was stirred with a magnetic stirrer for 1.25 hours. A gray-yellow precipitate which formed during this time was filtered and found to weigh 3.75 g (80%, assuming it consists of silver bromide and cation salt). This material was slurried in 10 ml of liquid

sulfur dioxide, filtered and washed with two 5-ml portions of the solvent. A filter cake of silver bromide was obtained which weighed 1.65 g (87%). The filtrate was reduced to dryness to yield 1.97 g (70%) of a light yellow product melting at 145-149°. Recrystallization from a mixture of acetonitrile and methylene chloride (Dry Ice® cooling) gave white crystals melting at 149-151.5°.

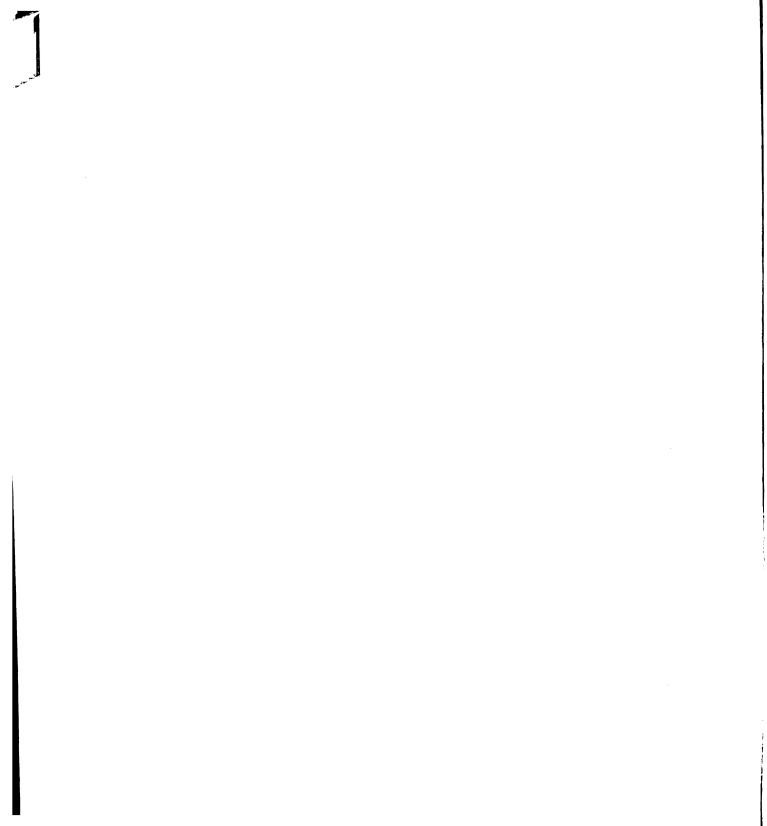
Anal: Calculated for $C_9H_8NO_4 \cdot BF_4$: C, 38.5; H, 2.87. Found: C, 38.2; H, 2.93:

Nmr: Spectrum 68

borate: Powdered silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of 2-bromoethyl p-nitrobenzoate (3.17 g, 0.01 mole) under anhydrous conditions in a dry box. The reaction mixture was stirred for 2 hours after which the insoluble material was filtered and washed with methylene chloride (2 x 10 ml). The yellow-gray filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered, then washed with two 5-ml portions of liquid sulfur dioxide. A filter cake of silver bromide remained which weighed 1.20 g (64%). The sulfur dioxide filtrate was evaporated to dryness to give 1.75 g (55%) of tan, slightly clingy product which melted at 201-204°. This material was recrystallized from a mixture of acetonitrile and methylene chloride, using a Dry Ice®-methylene chloride cooling bath, to yield a cream-colored product which melted at 209-211° (decomposition to a black melt).

Anal: Calculated for $C_9H_8NO_4$: C, 38.5; H, 2.87. Found: C, 38.6; H, 3.15.

G. 2,2'-Alkylene-1,3-dioxolenium Dications


- 1. Attempted Preparation of Bis-2,2'-dioxolenium Dication:
- (a) With Silver Tetrafluoroborate:

Under anhydrous conditions, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of bis-2-bromoethyl oxalate (1.52 g, 0.005 mole) in 25 ml of dry methylene chloride. A creamy-yellow, clingy precipitate appeared with 2-3 minutes after the addition. After being stirred for 40 minutes at 25-30°, the reaction mixture had transformed into a gray-yellow, gummy mass. Stirring was continued under these conditions for a total of 2 hours. The solvent was decanted and found to fume profusely when exposed to the atmosphere.

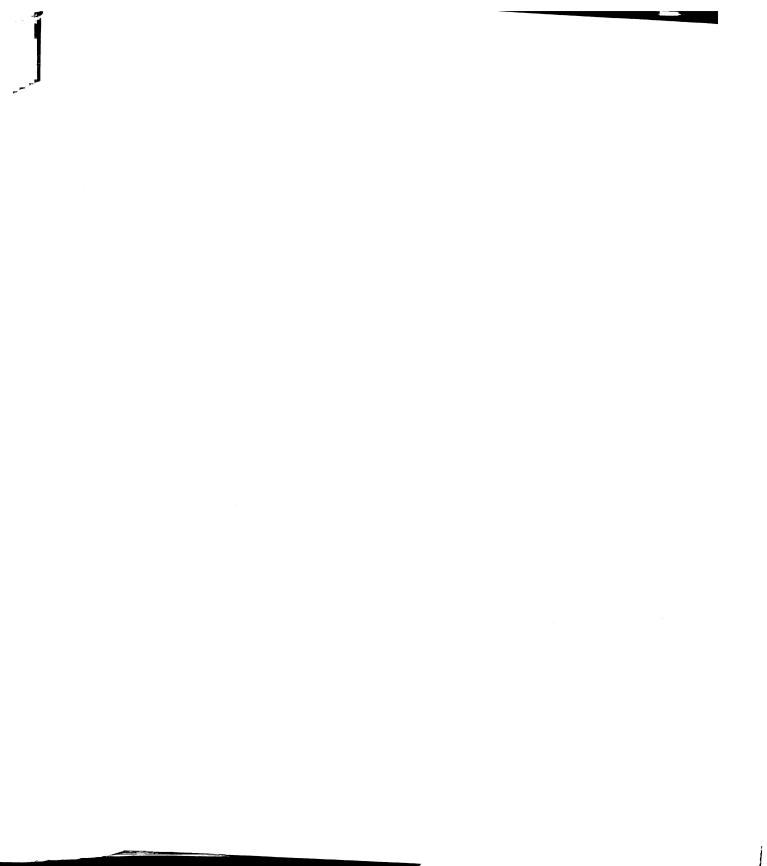
Nmr analysis showed that it contained only small amounts of unconverted ester. (The fuming suggested the presence of fluoroboric acid or boron trifluoride.) The residue from the above decantate was a stringy, gummy, intractable paste which resisted further workup.

(b) With Silver Hexafluoroantimonate:

Under anhydrous conditions, 1.72 g (0.005 mole) of silver hexafluoroantimonate (Alfa) were added in one portion to a stirred solution of bis2-bromoethyl oxalate (0.77 g, 0.0025 mole) in 25 ml of dry methylene
chloride. The reaction mixture was then allowed to stir at 25-30°. During the first 3 hours, a substantial amount of a nice yellow precipitate
appeared. After stirring under these conditions for 12 hours, the insoluble material transformed into a gummy, cream colored mass. The reaction
mixture was stirred under these conditions for a total of 51 hours. Solvent was removed from the insoluble mass, washed with two 10-ml portions
of methylene chloride and then dried. The gummy mass was slurried in \sim 4
ml of FSO₃H and filtered through a sintered glass funnel. Nmr analysis

of the amber colored filtrate gave a spectrum which consisted of a multiplet at 4.79-5.07 ppm, a strong singlet at 5.70 ppm and a weak singlet at 6.00 ppm. The multiplet and strong singlet were present in a ratio of ~2.1:1. (See Nmr Spectrum 48).

Preparation of 2,2'-Methylenebis-1,3-dioxolenium Tetrafluoroborate: Powdered, anhydrous silver tetrafluoroborate (3.86 g, 0.02 mole) was added in one portion to a solution of bis-2-bromoethyl malonate (3.18 g, 0.01 mole) in 25 ml of dry methylene chloride under anhydrous conditions. The reaction mixture was allowed to stir for 8.5 hours at 25-30°, during which time a considerable amount of gray-white precipitate was formed. This insoluble material was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 6.2 g (88% assuming it consists of silver bromide and dication salt). An nmr spectrum of this dication was obtained by slurrying approximately 800 mg of the above filter cake in 3 ml of FSO₂H. The slurry was filtered through a sintered glass funnel and the filtrate was scanned. Alternatively, the filter cake was extracted with three 10-ml portions of liquid sulfur dioxide. Solvent was evaporated from the combined extracts to give a cream colored solid, mp 204-208°. Recrystallization from a mixture of methylene chloride and acetonitrile gave cream colored crystals melting at 208-210°.


Nmr: Spectrum 49

3. Preparation of 2,2'-Ethylenebis-1,3-dioxolenium Tetrafluoro-borate: Under anhydrous conditions, powdered silver tetrafluoroborate (3.86 g, 0.02 mole) was added in one portion to a solution of bis(2-bromoethyl) succinate (4.05 g, 0.01 mole) in 20 ml of dry methylene chloride. A yellow, curdy precipitate formed immediately after the addition. The reaction mixture was stirred for 14 hours at 25-30°, during which time

substantially more precipitate was formed. The light yellow-gray material was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 7.4 g (95%, assuming it consisted of cation salt and silver bromide). This precipitate was slurried in 10 ml of liquid sulfur dioxide and filtered. The filtrate yielded only a small amount of unconverted ester upon evaporation. The dication salt did not appear to be soluble in liquid sulfur dioxide. Nmr samples of the dication were prepared by slurrying a small amount (~500 mg) of the above precipitate in 2-3 ml of fluorosulfonic acid (Allied Chemical Company), followed by filtration through a sintered glass funnel. The filtrate was analyzed by nmr spectroscopy using tetramethylammonium tetrafluoroborate as the internal standard.

Nmr: Spectrum 50

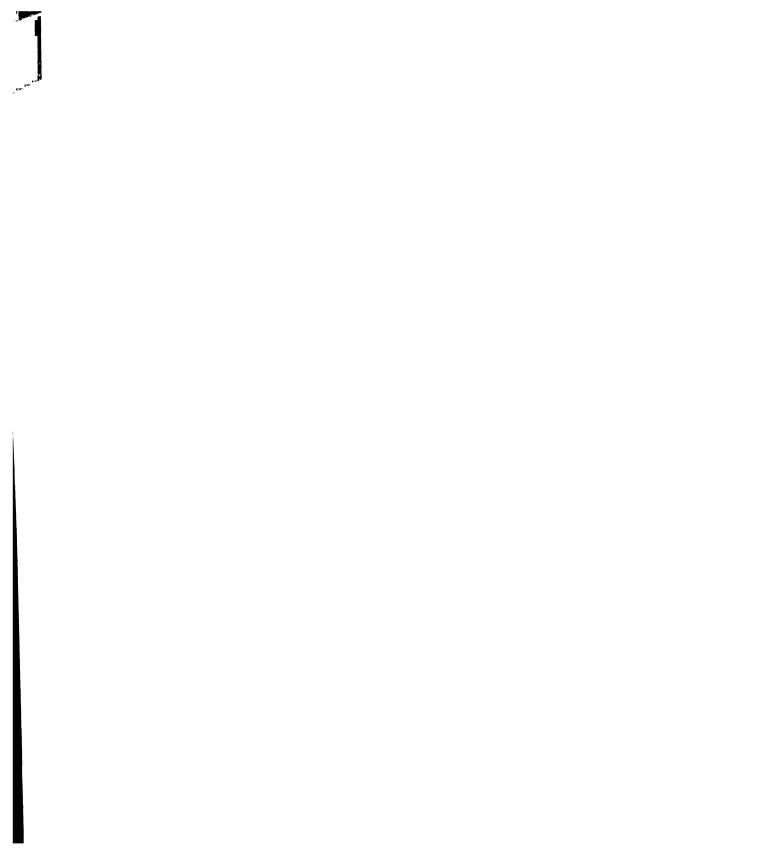
4. Preparation of 2,2'-Trimethylenebis-1,3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred
solution of bis-2-bromoethyl glutarate (1.73 g, 0.005 mole) in 20 ml of
dry methylene chloride. The reaction mixture was stirred at 25-30° for 3
hours during which time a substantial amount of gray-yellow precipitate was
formed. This insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.50 g (96%, assuming it consists of
silver bromide and dication salt). The filter cake was slurried in 10 ml
of liquid sulfur dioxide, filtered and then washed with two 10-ml portions
of the same solvent. The dication salt was only slightly soluble in
liquid sulfur dioxide and remained in the filter cake which now weighed
2.78 g (77%, assuming it consists of silver bromide and dication salt).
Removal of sulfur dioxide from the filtrate yielded a small amount of white,

tacky unworkable gum. An nmr spectrum of this dication was obtained by slurrying approximately 800 mg of the above filter cake in 3 ml of FSO₃H. The slurry was filtered through a sintered glass funnel and the filtrate was scanned.

Nmr: Spectrum 51

5. Preparation of 2,2'-Tetramethylenebis-1,3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of bis-2-bromoethyl adipate (1.8 g, 0.005 mole) in 20 ml of dry methylene chloride. The reaction mixture was stirred at 25-30° for 2.5 hours during which time a substantial amount of gray-yellow precipitate was formed. This insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.68 g (99%, assuming it consists of silver bromide and dication salt). The filter cake was slurried in 10 ml of liquid sulfur dioxide, filtered and then washed with two 10-ml portions of the same solvent. The filter cake now weighed 3.00 g (80%, assuming it consists of silver bromide and dication salt). Reducing the filtrate to dryness gave 0.5 g of a white, sticky paste which was not further characterized. An nmr spectrum of this dication was obtained by slurrying approximately 800 mg of the above filter cake in 3 ml of FSO_3H . The slurry was filtered through a sintered glass funnel and the filtrate was scanned.

Nmr: Spectrum 52


6. Preparation of 2,2'-Pentamethylenebis-1,3-dioxolenium Tetrafluoroborate: Powdered, anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a solution of bis-2-bromoethyl pimelate (1.87 g, 0.005 mole) in 25 ml of dry methylene chloride under anhydrous

conditions. A light yellow precipitate formed shortly after the addition and during the 2.5 hours that the reaction mixture was allowed to stir at 25-30°. The precipitate was filtered, washed with two 10-ml portions of methylene chloride and found to weigh 3.55 g (93%, assuming it consists of silver bromide and dication salt). This insoluble material was slurried in 10 ml of liquid sulfur dioxide, filtered and washed twice with 10-ml portions of the same solvent. The silver bromide filter cake weighed 1.65 g (88%). Upon reducing the filtrate to dryness, 1.70 g (88%) of a white solid was obtained which melted at 158-164°. Several recrystallizations from a mixture of acetonitrile and methylene chloride (Dry Ice® cooling) gave fine, glittering white crystals which melted at 173-175°.

Anal: Calculated for $C_{11}H_{18}O_4 \cdot B_2F_8$: C, 34.1; H, 4.68. Found: C, 34.2; H, 4.91.

Nmr: Spectrum 53

7. Preparation of 2,2'-Hexamethylenebis-1,3-dioxolenium Tetra-fluoroborate: Under anhydrous conditions, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a solution of bis-2-bromoethyl suberate (1.94 g, 0.005 mole) in 20 ml of dry methylene chloride. A light yellow precipitate formed shortly after the addition and during the 2.5 hours that the reaction mixture was allowed to stir at 25-30°. The precipitate was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.78 g (98%, assuming it consists of silver bromide and dication salt). This material was then slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of the same solvent. The silver bromide filter cake weighed 1.80 g (96%). Evaporation of the filtrate gave 1.82 g (91%) of an off-white solid which

melted at 175-185°. Several recrystallizations from a mixture of acetonitrile and methylene chloride (Dry Ice[®] cooling) gave fine, glittering white crystals which melted at 198-200° (amber colored melt).

Anal: Calculated for $C_{12}H_{20}O_4 \cdot B_2F_8$: C, 35.9; H, 5.02. Found: C, 35.9; H, 4.97.

Nmr: Spectrum 54

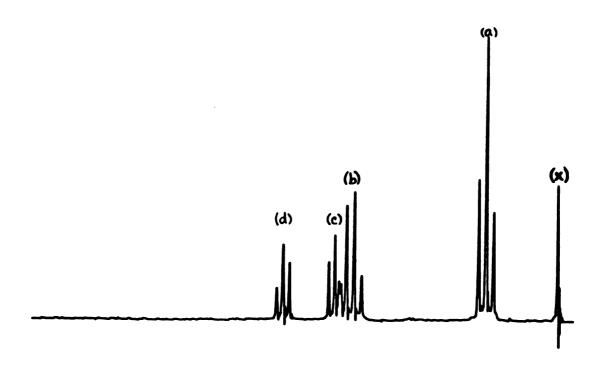
H. 2,2' and 2,2',2"-Aryl-1,3-dioxolenium Dications and Trications

1. Preparation of 2,2'-m-Phenylenebis-1,3-dioxolenium Tetrafluoroborate: Under anhydrous conditions, powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a solution of 2-bromoethyl isophthalate (1.90 g, 0.005 mole) in 20 ml of dry methylene chloride. A yellow precipitate formed shortly after the addition. The reaction mixture was stirred for 3 hours and then allowed to stand overnight at 25-30°. The gray precipitate was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.60 g (94%, assuming it consists of silver bromide and dication salt). This material was then slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of the same solvent. The dication salt was virtually insoluble in this solvent. An nmr spectrum of this dication was obtained by slurrying approximately 800 mg of the above filter cake in 3 ml of FSO₃H. The slurry was filtered through a sintered glass funnel and the filtrate was scanned.

Nmr: Spectrum 70

2. Preparation of 2,2'-p-Phenylenebis-1,3-dioxolenium Tetrafluoroborate: Powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole)
was added in one portion to a stirred solution of 2-bromoethyl terephthalate
(1.90 g, 0.005 mole) in 20 ml of dry methylene chloride under anhydrous

conditions. A yellow precipitate formed shortly after the addition. The reaction mixture was stirred for 1 hour and then allowed to stand for 31 hours at 25-30°. A substantial amount of precipitate formed during that time. This insoluble material was filtered, washed with methylene chloride (2 x 10 ml) and found to weigh 3.6 g (94%, assuming it consists of silver bromide and dication salt). The filter cake was slurried in 10 ml of liquid sulfur dioxide and filtered. The dication salt was virtually insoluble in this solvent. An nmr spectrum of this dication was obtained by slurrying approximately 1 g of the above filter cake in ~5 ml of FSO₃H. The slurry was filtered through a sintered glass funnel and the filtrate was scanned.


Nmr: Spectrum 71

3. Preparation of 2,2',2"-Phenylenetris-1,3-dioxolenium Tetra-fluoroborate: Powdered anhydrous silver tetrafluoroborate (1.93 g, 0.01 mole) was added in one portion to a stirred solution of tris(2-bromoethyl) trimesate (1.77 g, 0.0033 mole) in 20 ml of dry methylene chloride under anhydrous conditions. The reaction mixture was allowed to stir for 16 hours at 25-30°, during which time a substantial amount of gray precipitate was formed. This insoluble material was filtered, washed with two 10-ml portions of dry methylene chloride and found to weigh 3.29 g (89%, assuming it consists of silver bromide and trication salt). This material was then slurried in 10 ml of liquid sulfur dioxide, filtered and washed with two 5-ml portions of the same solvent. The trication salt was virtually insoluble in this solvent. An nmr spectrum of this trication was obtained by slurrying approximately 800 mg of the above filter cake in 3 ml of FSO₃H. The slurry was filtered through a sintered glass funnel and the filtrate was scanned.

Nmr: Spectrum 72

VI. NUCLEAR MAGNETIC RESONANCE SPECTRA

Spectrum 1. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-N,N-Diethylcarbamic Acid Ester (CCl_h)

x 0.00 (TMS)

a 1.13 (t); $J_{ab} = 7.0 \text{ cps}$

ъ 3.27 (q)

c 3.53 (t); $J_{cd} = 6.0 \text{ cps}$

d 4.33 (t)

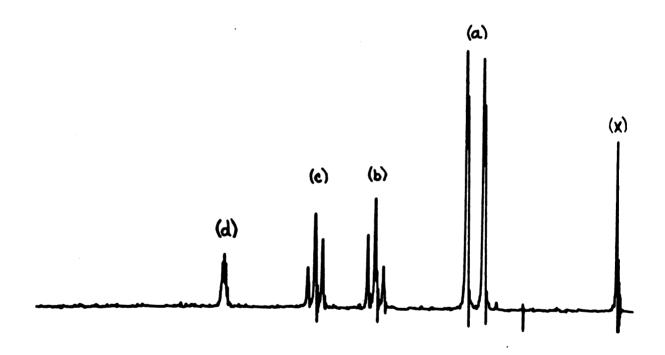
a:(b+c):d = 3:3:1

Spectrum 2. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Cyclopropane Carboxylate (CCl₁₄)

(a)
$$\begin{cases} & 0 & \text{(d) (c)} \\ & & \text{C-O-CH}_2\text{-CH}_2\text{-Br} \\ & & \text{(b)} \end{cases}$$

x 0.00 (TMS)

a 0.73-1.20 (m)


b 1.40-1.89 (m)

c 3.50 (t); $J_{cd} = 6.5$ cps

d 4.35 (t)

a:b:c:d = 4:1:2:2

Spectrum 3. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-3,3-Dimethylacrylate (CCl₁)

x 0.00 (TMS)

a 2.03 (d); $J_{ad} = 15.0$ cps


b 3.48 (t); $J_{bc} = 6.0 \text{ cps}$

c 4.35 (t)

d 5.66 (m)

a:b:c:d = 6:2:2:1

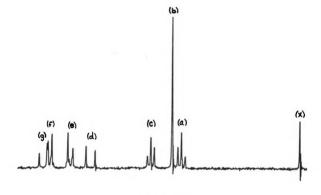
Spectrum 4. Nuclear Magnetic Resonance Spectrum of trans-2-Bromoethyl Crotonate (CCl_h)

x 0.00 (TMS)

a 1.86, 1.98 (d); j = 1.5 cps

b 2.15 (d) 14.9% cis isomer

c 3.52 (t); $J_{cd} = 6.0 \text{ cps}$


a 4.40 (t)

e 5.70, 5.95 (d)

f 6.68-7.34 (m)

a:c:d:e:f = 3:2:2:1:1

Spectrum 5. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-methoxycinnamate (CCl,)

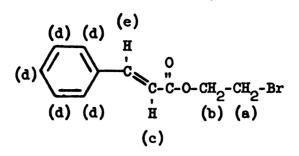
0.00 (TMS)

3.52 (t); Jac 6.5

3.80 (a)

4.44 (t); J_{ca} 6.5

6.23 (d); J_{dg} 16.2


e 6.83 (d); Jef 8.9

7.43 (d); J_{fe} 8.9 f

7.60 (d); J_{ed} 16.2

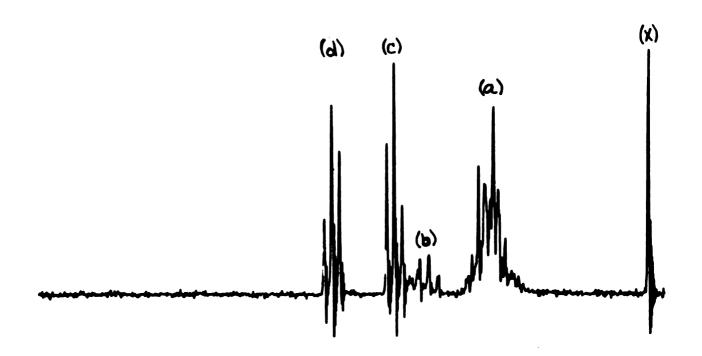
a:b:c:d:e:(f+g) = 2:3:2:1:2:3

Spectrum 6. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Cinnamate (CClh)

0.00 (TMS)

3.53 (t); J_{ab} = 6.0 cps 4.46 (t)

6.37 (d); $J_{ce} = 16.2 \text{ cps}$


7.42 (m) đ

7.66 (a)

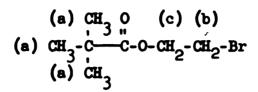
a:b:c:(d+e) = 2:2:1:6

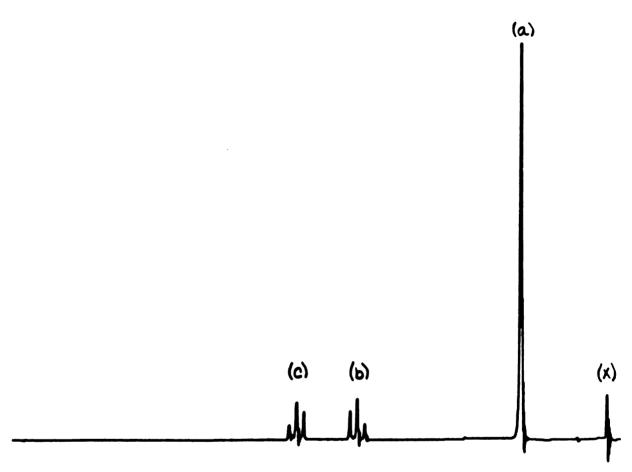
Spectrum 7. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Cyclobutylcarboxylate (CCl_h)

(a)
$$\begin{cases} 0 & \text{(d) (c)} \\ \text{"C-O-CH}_2\text{-CH}_2\text{-Br} \\ \text{(b)} \end{cases}$$

x 0.00 (TMS)

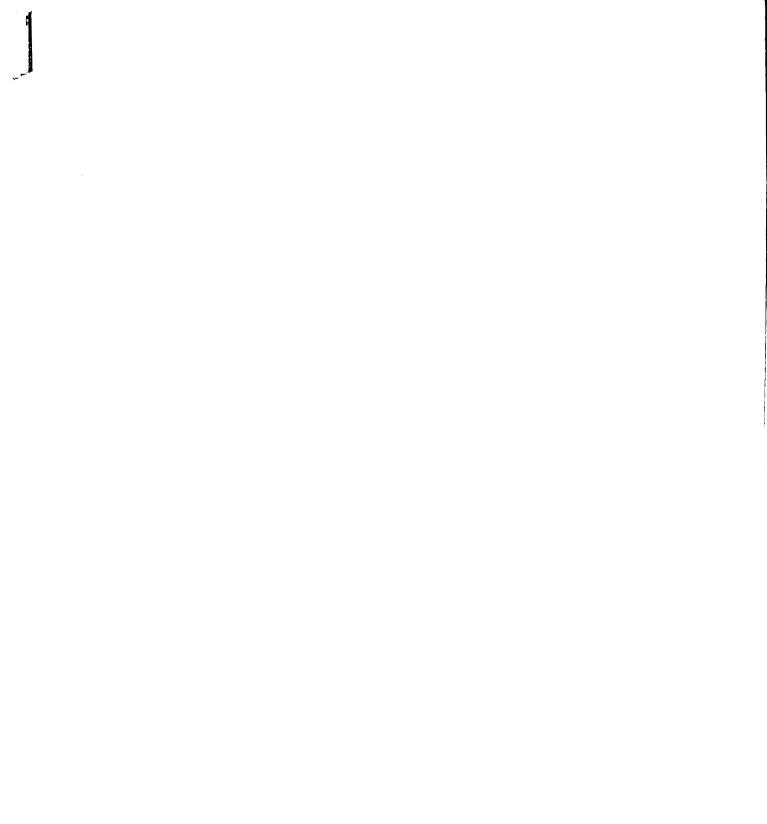
a 2.14 (m)

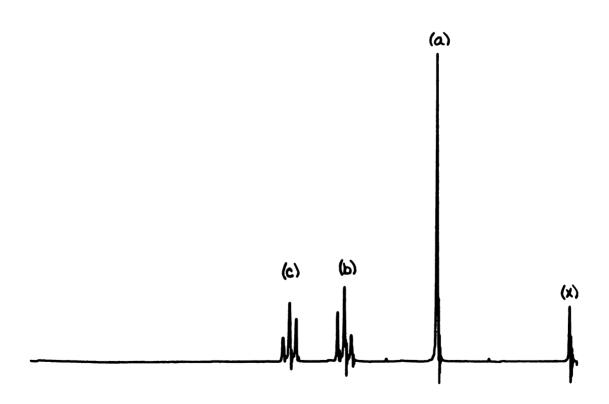

b 3.12 (m)


c 3.49 (t); $J_{cd} = 6.0 \text{ cps}$

d 4.36 (t)

a:b:c:d = 3:1:2:2


Spectrum 8. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Pivalate (CCl_h)

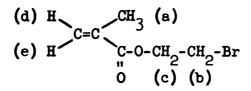


b 3.50 (t);
$$J_{bc} = 6.0 \text{ cps}$$

$$a:b:c = 9:2:2$$

Spectrum 9. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Acetate (CCl_h)

x 0.00 (TMS)


a 2.06 (s)


b 3.50 (t); $J_{bc} = 6.0 \text{ cps}$

c 4.35 (t)

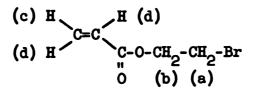
a:b:c = 3:2:2

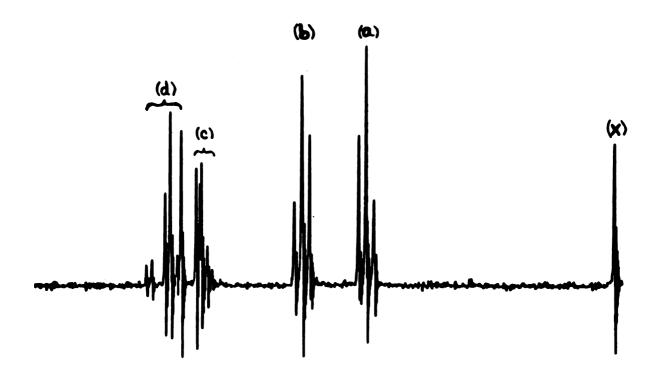
Spectrum 10. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Methacrylate (CCl),

x 0.00 (TMS)

a 1.96 (s)

b 3.54 (t); $J_{bc} = 6.0$ cps


c 4.43 (t)


d 5.61 (m)

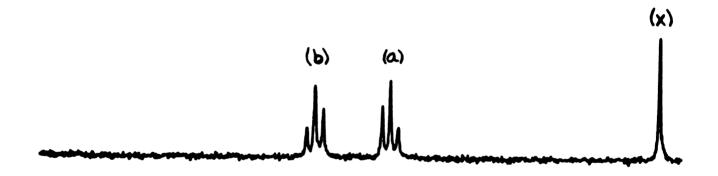
e 6.13 (s)

a:b:c:e:d = 3:2:2:1:1

Spectrum 11. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Acrylate (CCl₁)

x .0.00 (TMS)

a 3.52 (t); J_{ab} = 6.0 cps

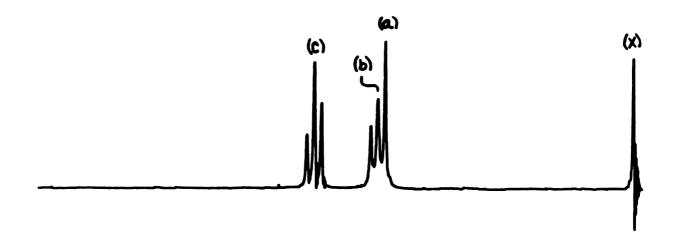

b 4.44 (t)

c 5.68-5.99 (m)

d 6.12-6.65 (m)

a:b:c:d = 2:2:1:2

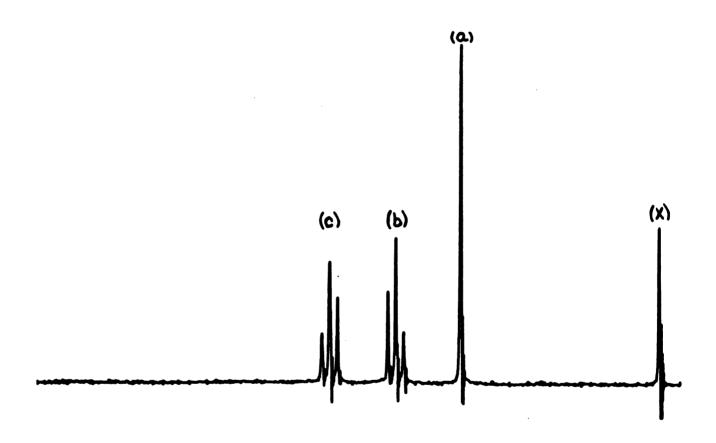
Spectrum 12. Nuclear Magnetic Resonance Spectrum of Bis-2-bromoethyl Oxalate (CCl₄)


x 0.00 (TMS)

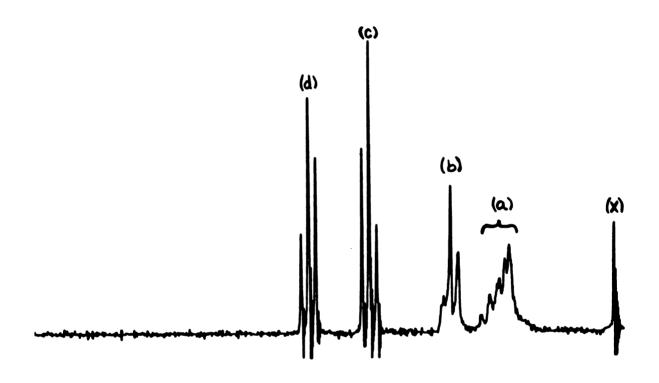
a 3.59 (t); $J_{ab} = 6.2 \text{ cps}$

b 4.59 (t)

a:b = 1:1


Spectrum 13. Nuclear Magnetic Resonance Spectrum of Bis(2-bromoethyl) Malonate (CCl₁)

b 3.54 (t);
$$J_{bc} = 6.0 \text{ cps}$$


$$(a+b):c = 3:2$$

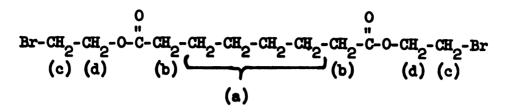
Spectrum 14. Nuclear Magnetic Resonance Spectrum of Bis(2-bromoethyl) Succinate (CCl_h)

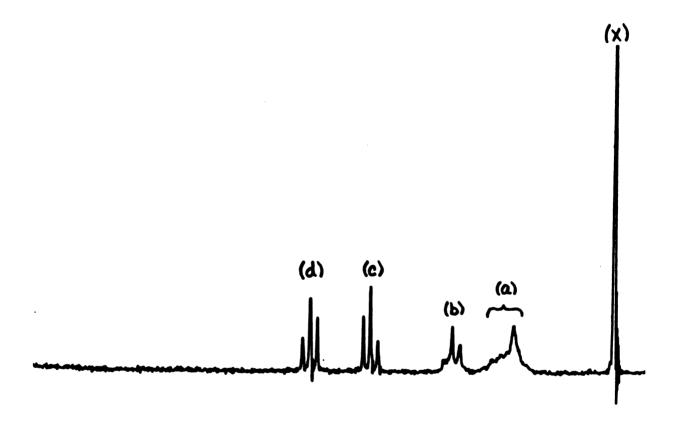
b 3.52 (t);
$$J_{bc} = 6.0 \text{ cps}$$

Spectrum 17. Nuclear Magnetic Resonance Spectrum of Bis (2-bromoethyl) Pimelate (CCl_h)

x 0.00 (TMS)

a 1.09-2.00 (m)


b 2.06-2.54 (m)


c 3.49 (t); $J_{cd} = 6.0 \text{ cps}$

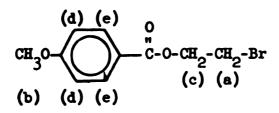
d 4.35 (t)

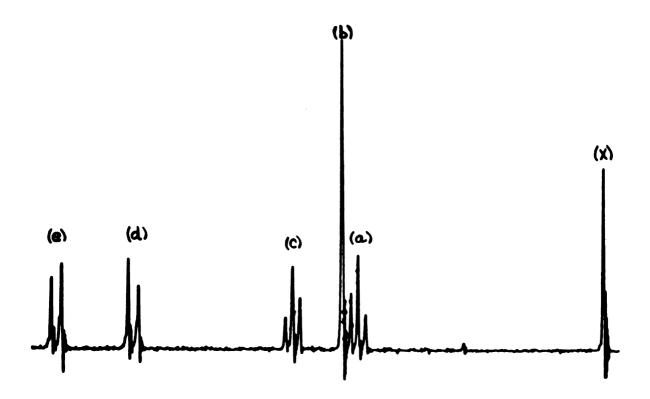
a:b:c:d = 3:2:2:2

Spectrum 18. Nuclear Magnetic Resonance Spectrum of Bis (2-bromoethyl) Suberate

x 0.00 (TMS)

a 1.45 (m)


b 2.32 (t); $J_{ba} = 6.5 \text{ cps}$


c 3.49 (t); $J_{cd} = 6.0 \text{ cps}$

d 4.35 (t)

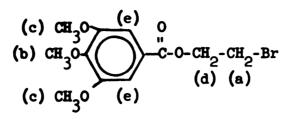
a:b:c:d = 2:1:1:1

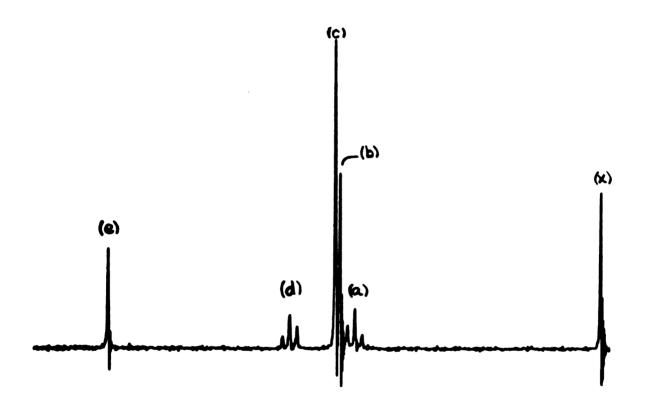
Spectrum 19. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-methox/benzoate (CCl_h)

x 0.00 (TMS)

a 3.56 (t); $J_{ac} = 6.0 \text{ cps}$

b 3.79 (s)


c 4.52 (t)


d 6.84 (d); $J_{de} = 8.7$ cps

e 7.93 (e)

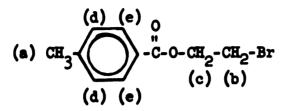
a:b:c:d:e = 2:3:2:2:2

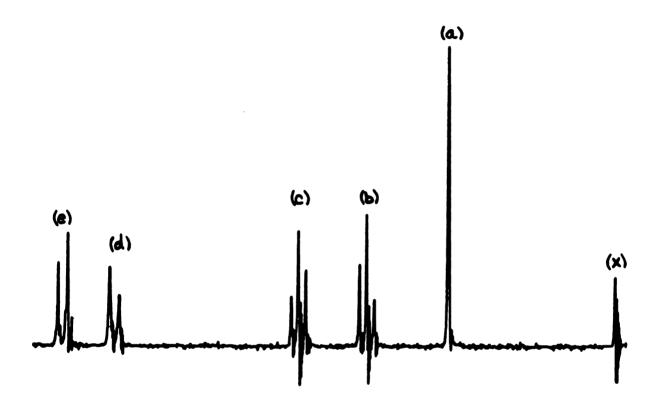
Spectrum 20. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-3,4,5-trimethoxybenzoate (CCl_h)

x 0.00 (TMS)

a 3.60 (t); $J_{ad} = 6.0 \text{ cps}$

b 3.81 (s)


c 3.87 (s)


d 4.55 (t)

e 7.19 (s)

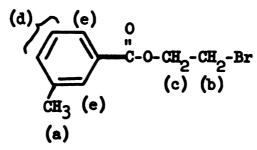
a:b:c:d:e = 2:3:6:2:2

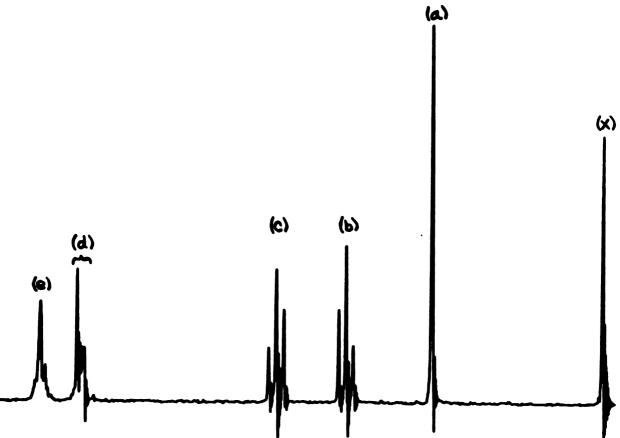
Spectrum 21. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-methylbenzoate (CCl_h)

x 0.00 (1948)

a 2.39 (s)

b 3.57 (t); $J_{bc} = 6.0 \text{ cps}$


c 4.53 (t)


d 7.17 (d); J_{de} = 8.0 cps

e 7.89 (d)

a:b:c:d:e: = 3:2:2:2:2

Spectrum 22. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-m-methylbenzoate (CCl₁₄)

x 0.00 (TMS)

a 2.37 (s)

b 3.57 (t); $J_{bc} = 6.0 \text{ cps}$

c 4.54 (t)

d 7.20-7.44 (m)

e 7.82 (s)

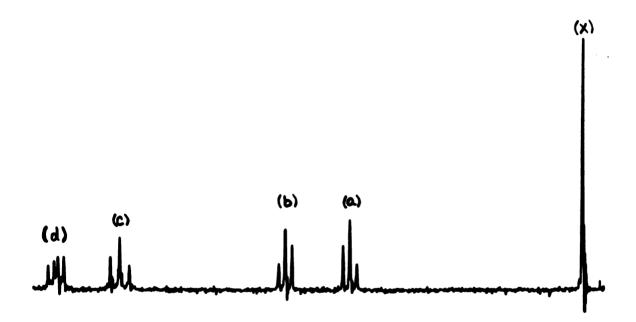
a:b:c:d:e = 3:2:2:2:2

Spectrum 23. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Benzoate (CCl_h)

(c)
$$\begin{cases} (d) & 0 \\ "C-O-CH_2-CH_2-Br \\ (b) & (a) \end{cases}$$

x 0.00 (TMS)

a 3.58 (t); $J_{ab} = 6.0 \text{ cps}$


b 4.57 (t)

c 7.40 (m)

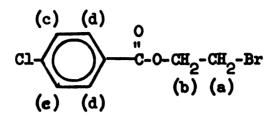
d 8.02 (m)

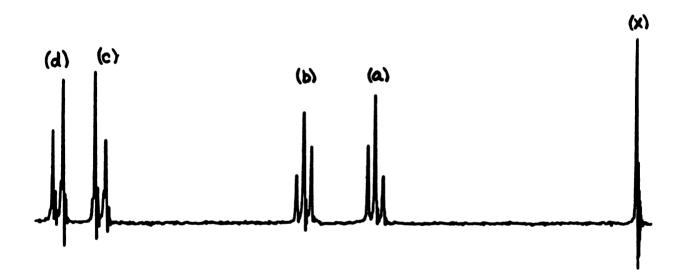
a:b:c:d = 2:2:3:2

Spectrum 24. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-fluorobenzoate (CCl_h)

x 0.00 (TMS)

a 3.61 (t); $J_{ab} = 6.0 \text{ cps}$


b 4.60 (t)


c 7.12 (m)

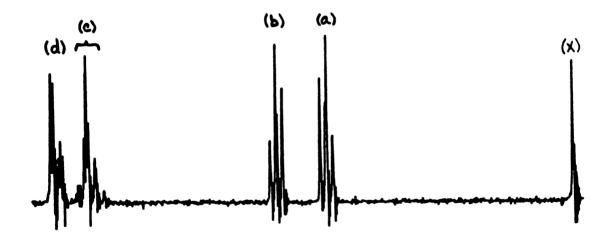
d 8.08 (m)

a:b:c:d = 1:1:1:1

Spectrum 25. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-chlorobenzoate (CCl_h)

x 0.00 (TMS)

a 3.60 (t); $J_{ab} = 6.0 \text{ cps}$


b 4.57 (t)

c 7.36 (d); $J_{cd} = 8.5$ cps

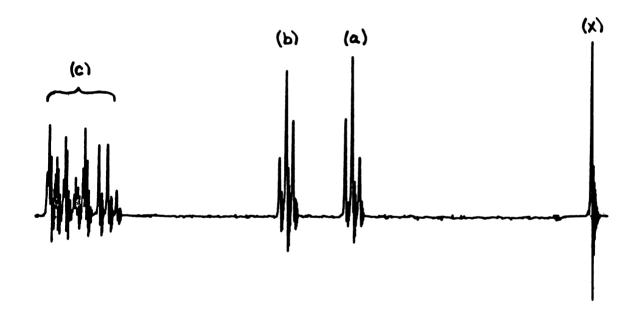
a 7.94 (a)

a:b:c:d = 1:1:1:1

Spectrum 26. Nuclear Magnetic Resonance Spectrum of 2-Chloroethyl-m-chlorobenzoate (CCl_h)

x 0.00 (TMS)

a 3.78 (t); $J_{ab} = 5.5 \text{ cps}$


b 4.54 (t)

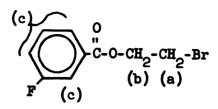
c 7.40 (m)

d 7.88 (m)

a:b:c:d = 1:1:1:1

Spectrum 27. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-m-bromobenzoate (CCl_h)

x 0.00 (TMS)


a 3.61 (t); $J_{ab} = 6.0 \text{ cps}$

b 4.59 (t)

c 7.12-8.19 (m)

a:b:c = 1:1:2

Spectrum 28. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-m-fluorobenzoate (CCl₄)

x 0.00 (TMS)

a 3.52 (t); $J_{ab} = 6.0 \text{ cps}$

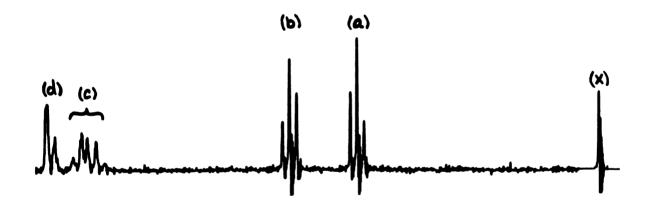
b 4.61 (t)

c 7.03-7.95 (m)

a:b:c = 1:1:2

Spectrum 29. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-3,4-Dichlorobenzoate (CCl_h)

x 0.00 (TMS)


a 3.60 (t); $J_{ab} = 6.0 \text{ cps}$

b 4.61 (t)

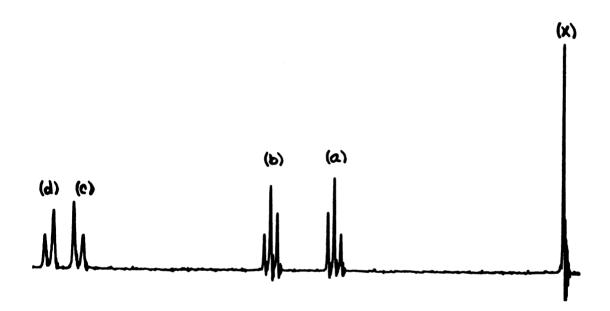
c 7.40-8.17 (m)

a:b:c = 2:2:3

Spectrum 30. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-m-trifluoromethylbenzoate (CCl_h)

x 0.00 (TMS)

a 3.63 (t); $J_{ab} = 6.0 \text{ cps}$


b 4.64 (t)

c 7.84-8.03 (m)

d 8.11-8.36 (m)

a:b:c:d = 1:1:1:1

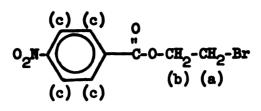
Spectrum 31. Nuclear Magnetic Spectrum of 2-Bromoethylp-trifluoromethylbenzoate (CCl₁)

c
$$7.66$$
 (d); J = 8.6 cps

a:b:c:d = 1:1:1:1

a 3.72 (t); Jab = 6.0 cps

b 4.70 (t)

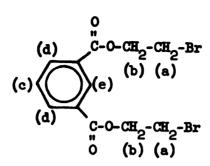

c 7.68 (t); J = 7.5 cps

d 8.36 (m)

e 8.70 (m)

a:b:c:d:e = 2:2:1:2:1

Spectrum 33. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl-p-nitrobenzoate (CCl_h)



a 3.68 (t);
$$J_{ab} = 6.0 \text{ cps}$$

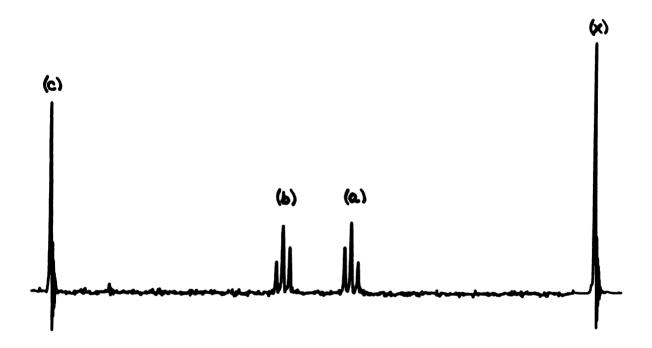
a:b:c = 1:1:2

Spectrum 34. Muclear Magnetic Resonance Spectrum of 2-Bromoethyl Isophthalate (CCl_k)

x 0.00 (TMS)

a 3.64 (t); $J_{ab} = 6.0 \text{ cps}$

b 4.63 (t)


c 7.52 (m)

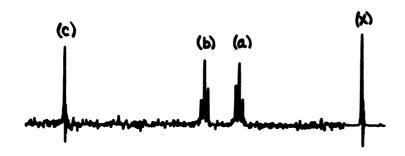
d 8.24 (m)

e 8.66 (m)

a:b:c:d:e = 4:4:2:1:1

Spectrum 35. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Terephthalate (CCl_h)

x 0.00 (TMS)


a 3.67 (t); $J_{ab} = 6.0 \text{ cps}$

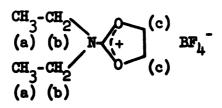
b 4.68 (t)

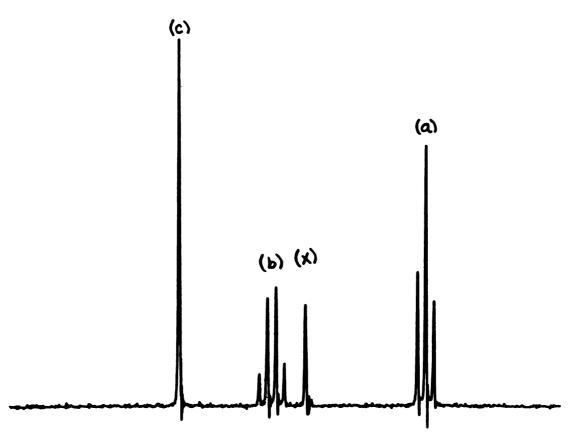
c 8.15 (s)

a:b:c = 1:1:1

Spectrum 36. Nuclear Magnetic Resonance Spectrum of 2-Bromoethyl Trimesate (CCl_h)

x 0.00 (TMB)


a 3.70 (t); $J_{ab} = 6.0$ cps

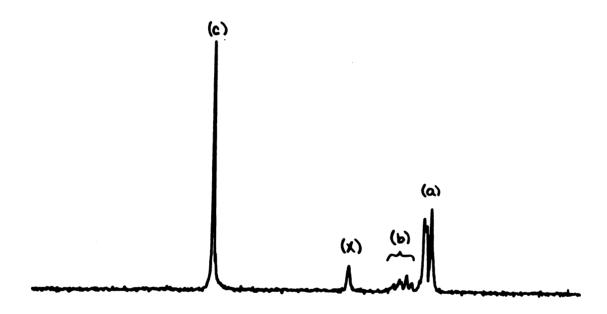

b 4.73 (t)

c 8.91 (s)

a:b:c = 2:2:1

Spectrum 37. Nuclear Magnetic Resonance Spectrum of 2-(N,N-Diethylamino)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

x 3.10 (TMA·BF₁₄)


a 1.32 (t); J_{ab} = 7.5 cps

ъ 3.59 (q)

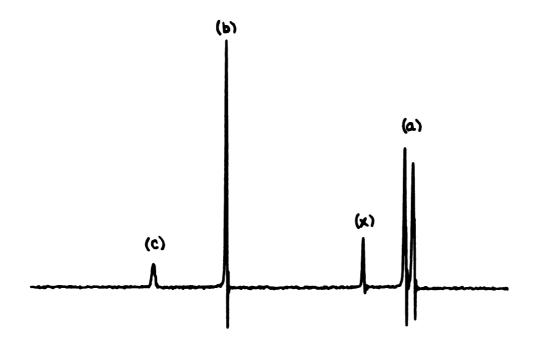
c 4.98 (s)

a:b:c = 3:2:2

Spectrum 38. Nuclear Magnetic Resonance Spectrum of 2-(Cyclopropyl)-1, 3-dioxolenium Tetrafluoroborate (FSO3H)

x 3.10 (TMA·BF₁₄)

a 1.75-2.07 (m)

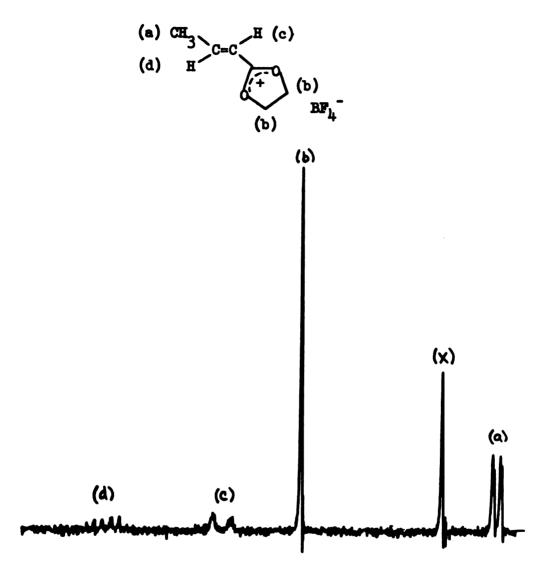

b 2.10-2.53 (m)

c 5.17 (s)

a:b:c = 4:1:4

Spectrum 39. Nuclear Magnetic Resonance Spectrum of 2-(2-Methylpropenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

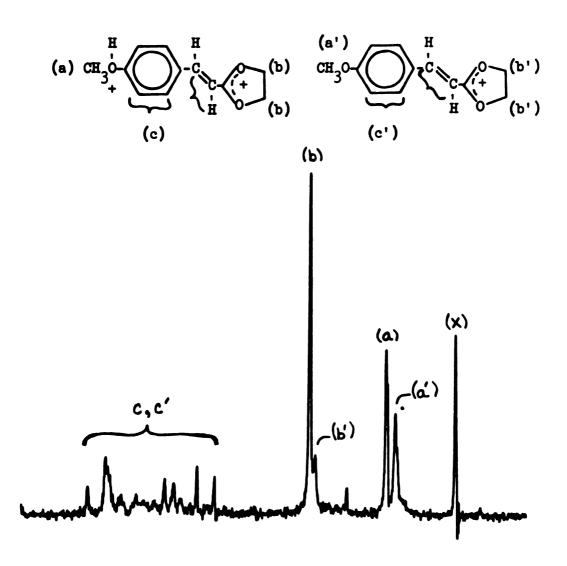
(a)
$$\begin{cases} CH_3 & C=C \\ CH_3 & C=C \end{cases}$$
(b)
$$(b) & BF_4$$



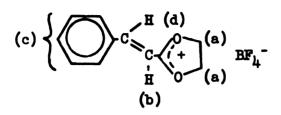
a 2.37 (d);
$$J_{ac} = 7.5$$
 cps

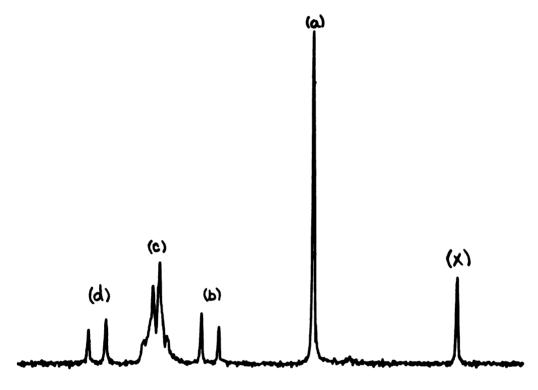
b 5.19 (s)

$$a:b:c = 6:4:1$$


Spectrum 40. Nuclear Magnetic Resonance Spectrum of trans-2-(Propenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

- x 3.10 (TMA·BF_h)
- a 2.27 (d); J = 7.0 cps; J = 1.5 cps
- b 5.23 (s)
- c 6.44 (m)
- d 8.22 (m)


a:b:c:d = 3:4:1:1

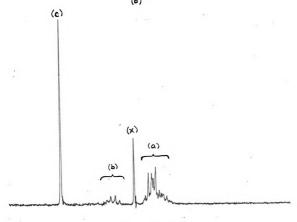

Spectrum 41. Nuclear Magnetic Resonance Spectrum of 2-(p-Methoxystyrl)-1,3-dioxolenium Tetrafluoroborate (~20% in FSO₃H)

	I		II
x	O.OO (TMA·BF _{li})	x	0.00 (TMA·BF ₁₄)
a	4.15 (s)	a'	4.02 (s)
ъ	5.29 (s)	b'	5.22 (s)
c,c'	6.74-8.67 (m)	c, c'	6.74-8.67 (m)

Spectrum 42. Nuclear Magnetic Resonance Spectrum of 2-(Styrl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

x 3.10 (TMA·BF₁₄)

a 5.25 (s)


b 6.86 (d); $J_{bd} = 16.0 \text{ cps}$

c 7.35-7.93 (m)

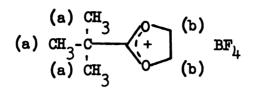
a 8.59 (a)

a:b:c:d = 4:1:5:1

Spectrum 43. Nuclear Magnetic Resonance Spectrum of 2-(Cyclobuty1)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

Assignments (δ)

x 3.10 (TMA.BF₁)

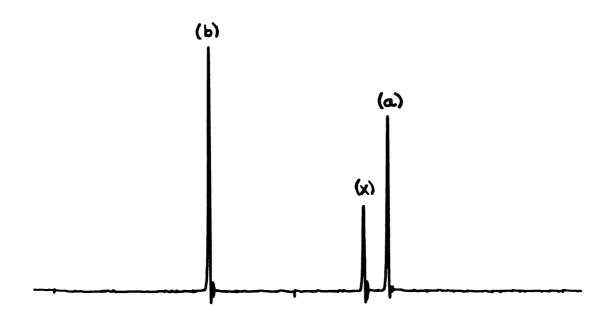

a 1.86-2.83 (m)

3.42-3.89 (q)

c 5.29 (s)

a:b:c = 6:1:4

Spectrum 44. Nuclear Magnetic Resonance Spectrum of 2-(t-Butyl)-1,3-dioxolenium Tetrafluoro-borate (FSO₃H)


x 3.10 (TMA·BF₄)

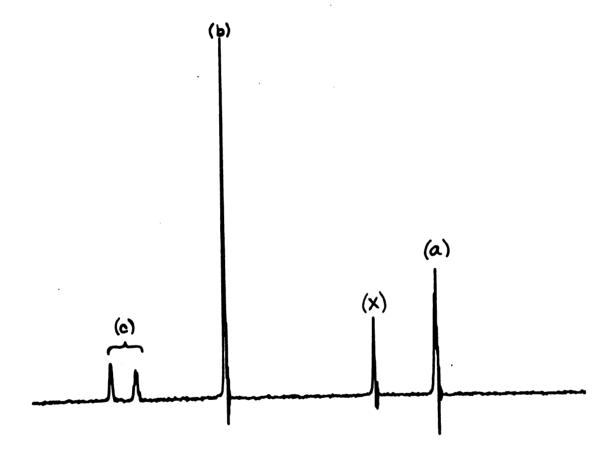
a 1.50 (s)

b 5.30 (s)

a:b = 9:4

Spectrum 45. Nuclear Magnetic Resonance Spectrum of 2-(Methyl)-1,3-dioxolenium Tetrafluoro-borate (FSO₃H)

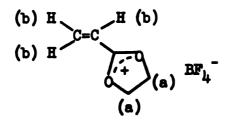
x 3.10 (TMA·BF₄)

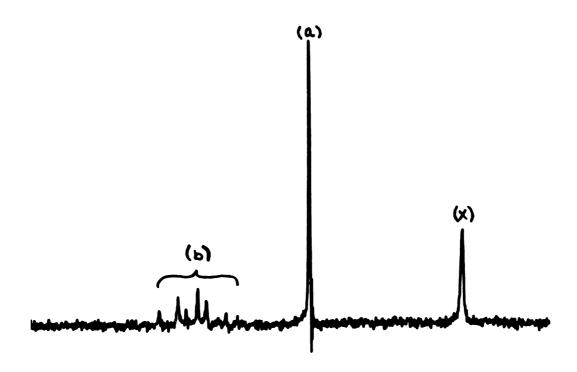

a 2.75 (s)

b 5.30 (s)

a:b = 3:4

Spectrum 46. Nuclear Magnetic Resonance Spectrum of 2-Isopropenyl-1, 3-dioxolenium Tetra-fluoroborate (FSO₃H)

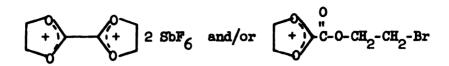

$$(c) \left\{ \begin{array}{c} H \\ C = C \\ \end{array} \right\} \left(\begin{array}{c} CH_3 \\ (a) \\ \end{array} \right)$$

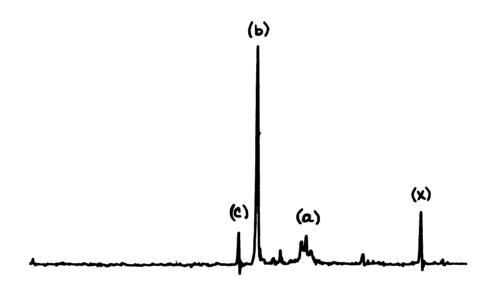


- x 3.10 (TMA·BF_h)
- a 2.15 (s)
- b 5.34 (s)
- c 6.85 (d)

a:b:c = 3:4:2

Spectrum 47. Nuclear Magnetic Resonance Spectrum of 2-(Vinyl)-1, 3-dioxolenium Tetrafluoro-borate (FSO₃H)


x 3.10 (TMA·BF₁₄)

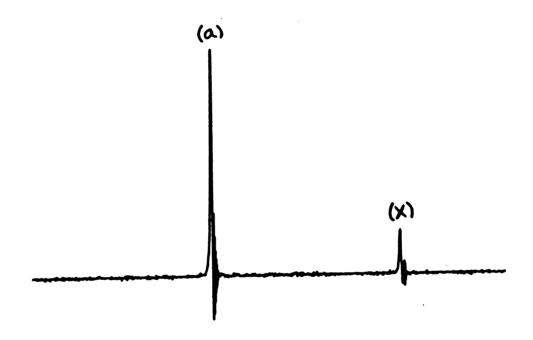

a 5.35 (s)

b 6.28-7.57 (m)

a:b = 2:1

Spectrum 48. Nuclear Magnetic Spectrum of Product From Bis(2-bromoethyl) Oxalate and Two Equivalents of AgSbF₆ (FSO₃H)

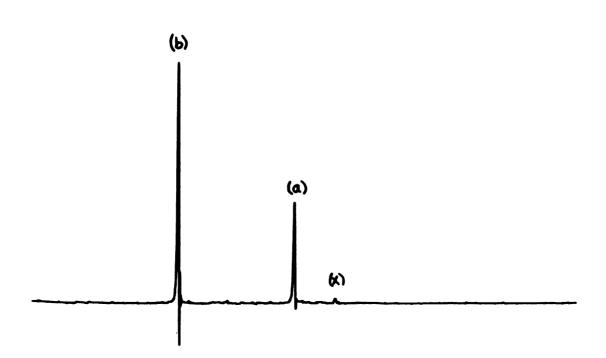
x 3.10 (TMA'BF₁₁)


a 4.79-5.07 (m)

b 5.70 (s)

c 6.00 (s)

.a:b:c = 5:12:1

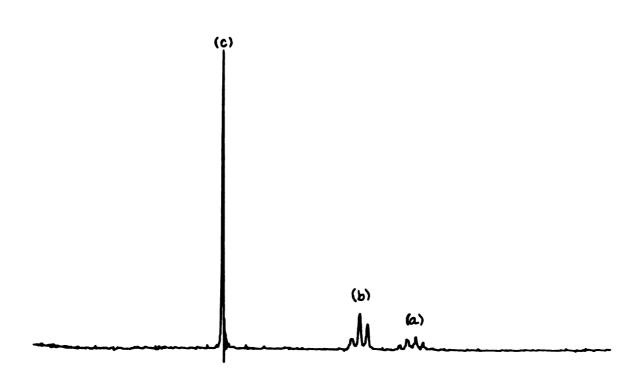

Spectrum 49. Nuclear Magnetic Resonance Spectrum of 2,2'-Methylenebis-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

Assignments (δ)

- x 3.10 (TMA'BF₁₄)
- a 5.61 (s)
- * Exchanges with FSO3H

Spectrum 50. Nuclear Magnetic Resonance Spectrum of 2,2'-Ethylenebis-1,3-dioxolenium Tetra-fluoroborate (FSO₃H)

Assignments (δ)

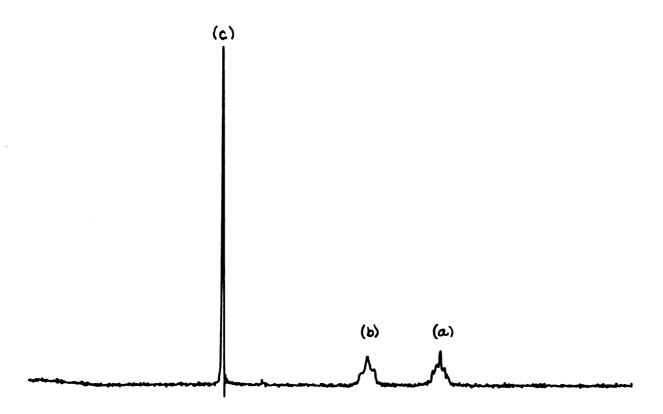

x 3.10 (TMA·BF₁)

a 3.70 (s)

ъ 5.48 (в)

a:b = 1:2

Spectrum 51. Nuclear Magnetic Resonance Spectrum of 2,2'-Trimethylenebis-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

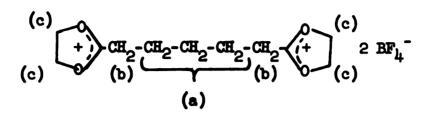


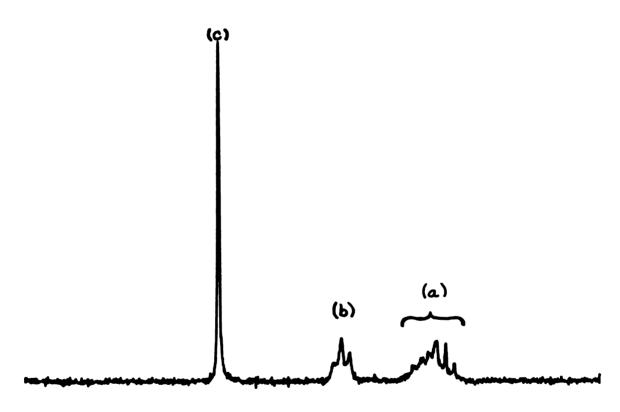
Assignments (δ)

- a 2.46 (q)
- b 3.26 (t)
- c 5.40 (s)

a:b:c = 1:2:4

Spectrum 52. Nuclear Magnetic Resonance Spectrum of 2,2'-Tetramethylbis-1,3-dioxolenium Tetrafluoroborate (FSO₃H)


a 2.02 (m)

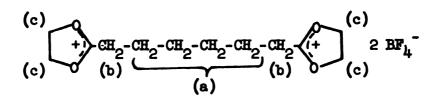

b 3.10 (m)

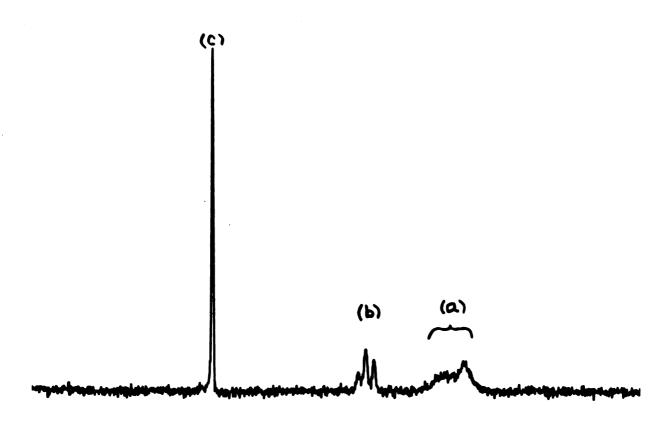
c 5.36 (s)

a:b:c = 1:1:2

Spectrum 53. Nuclear Magnetic Resonance Spectrum of 2,2'-Pentamethylenebis-1,3-dioxolenium Tetrafluoroborate (FSO₃H), (TMA·BF₁₄ Internal Standard)

Assignments (δ)

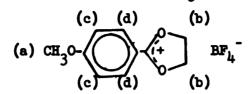

a 1.36-2.36 (m)

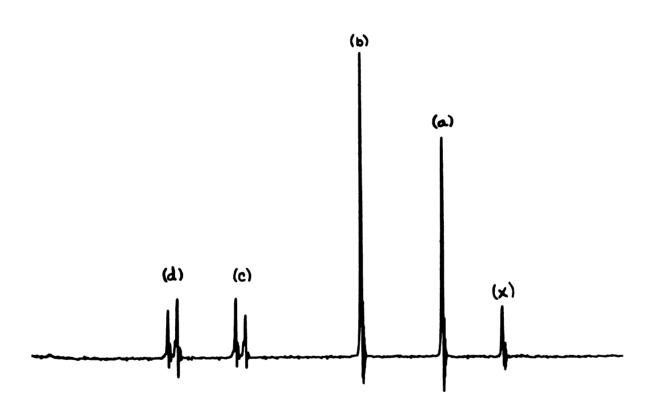

b 3.06 (m)

c 5.34.(s)

a:b:c = 3:2:4

Spectrum 54. Nuclear Magnetic Resonance Spectrum of 2,2'-Hexamethylenebis-1,3-dioxolenium Tetrafluoroborate (FSO₃H), (TMA·BF₁₄ Internal Standard)




Assignments (δ)

- a 1.35-2.20 (m)
- b 3.05 (m)
- c 5.32 (s)

a:b:c = 2:1:2

Spectrum 55. Nuclear Magnetic Resonance Spectrum of 2-(p-Methoxyphenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

x 3.10 (TMA·BF₁)

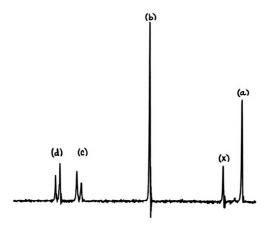
a 4.08 (s)

b 5.33 (s)

c 7.26 (d); $J_{cd} = 9.2 \text{ cps}$

a 8.31 (a)

a:b:c:d = 3:4:2:2


Spectrum 56. Nuclear Magnetic Resonance Spectrum of 2-(3,4,5-Trimethoxyphenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

(a)
$$CH_3O$$
 (d) (c) (a) CH_3O (d) (c) (e) CH_3O (d) (e) CH_3O (e) CH_3O (e) CH_3O (f) CH_3O (f)

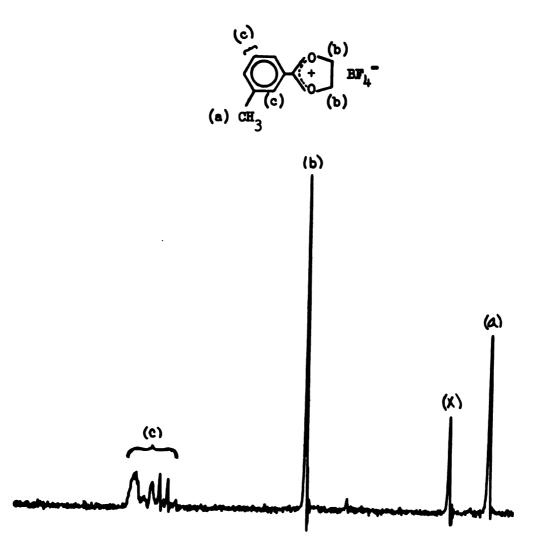
$$(a,a',a'' + b,b',b''):(c+c'+c''):(d,d',d'') = \sim9:4:2$$

Spectrum 57. Nuclear Magnetic Resonance Spectrum of 2-(p-Methylphenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₂H)

Assignments (δ)

x 3.10 (TMA.BF,)

a 2.55 (s)


b 5.37 (s)

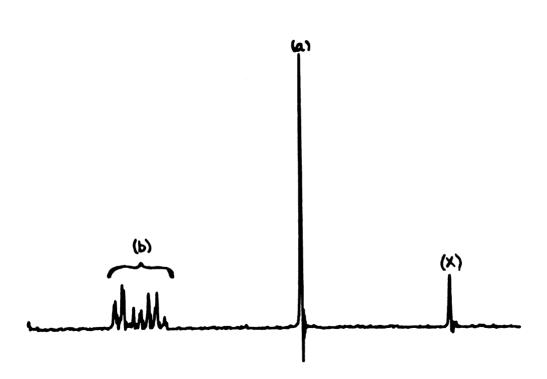
c 7.55 (d); J_{cd} = 8.5 cps

d 8.20 (d)

a:b:c:d = 3:4:2:2

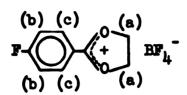
Spectrum 58. Muclear Magnetic Resonance Spectrum of 2-(m-Methylphenyl)-1,3-dioxolenium Tetrafluoroborate (FSO_H)

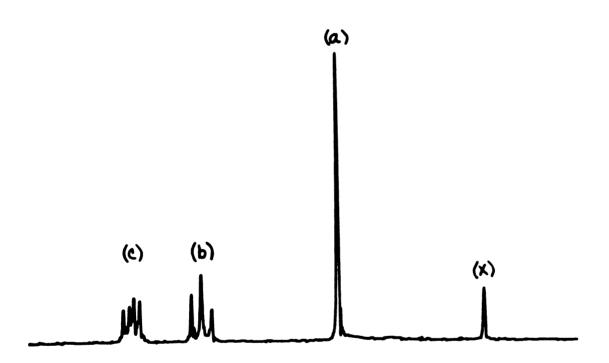
x 3.10 (TMA·BF_L)


a 2.47 (s)

b 5.40 (s)

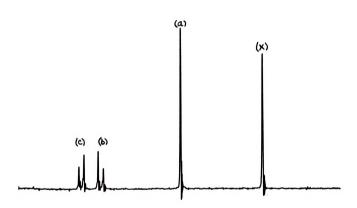
c 7.55 - 8.47 (m)


a:b:c = 3:4:4


Spectrum 59. Muclear Magnetic Resonance Spectrum of 2-(Phenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

$$a:b = 4:5$$

Spectrum 60. Muclear Magnetic Resonance Spectrum of 2-(p-Fluorophenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)



- x 3.10 (TMA·BF₁₄)
- a 5.42 (s)
- b 7.42 (t)
- c 8.41 (q)

a:b:c = 2:1:1

Spectrum 61. Nuclear Magnetic Resonance Spectrum of 2-(p-Chlorophenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

(b) (c) (a)
$$BF_{l_4}^-$$

x 3.10 (TMA.BF_h)

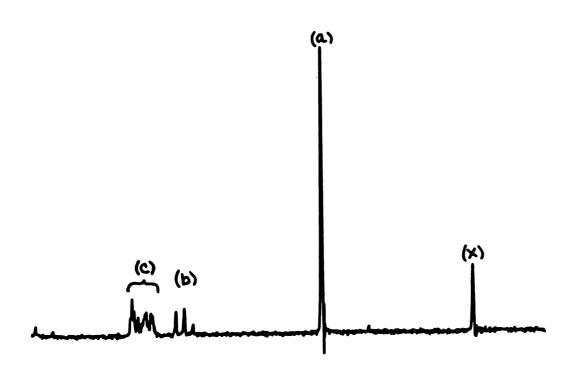
a 5.43 (s)

b 7.71 (a)

c 8.25 (d)

a:b:c = 2:1:1

Spectrum 62. Nuclear Magnetic Resonance Spectrum of 2-(m-Chlorophenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)


x 3.10 (TMA.BF_h)

a 5.44 (s)

b 7.52 - 8.32 (m)

a:b = 1:1

Spectrum 63. Nuclear Magnetic Resonance Spectrum of 2-(m-Bromophenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

x 3.10 (TMA·BF₁₄)

a 5.47 (s)

b 7.62 (t)

c 8.04-8.49 (m)

a:b:c = 4:1:3

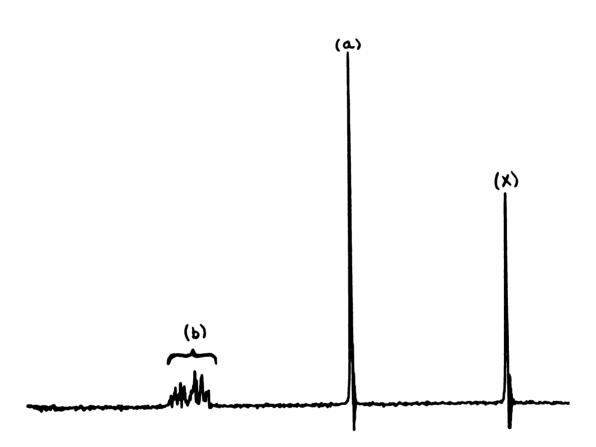
Spectrum 64. Muclear Magnetic Resonance Spectrum of 2-(m-Fluorophenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

$$(b)$$

$$(a)$$

$$(b)$$

$$(a)$$

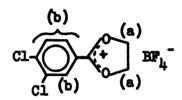

$$(a)$$

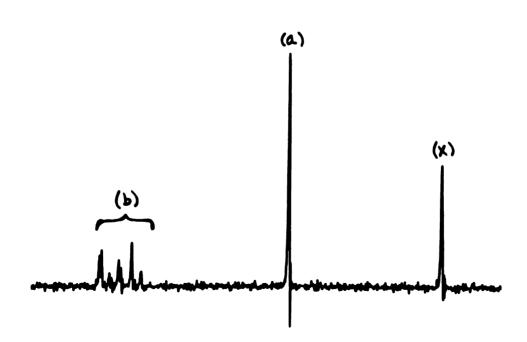
$$(a)$$

$$(a)$$

$$(a)$$

$$(b)$$

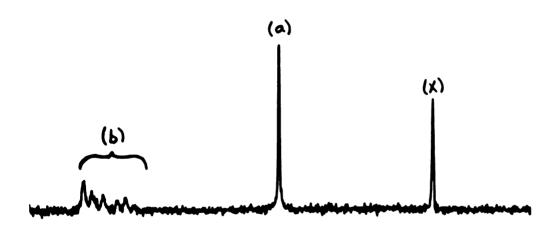

x 3.10 (TMA·BF₁₄)


a 5.47 (s)

ъ 7.63-8.27 (m)

a:b = 1:1

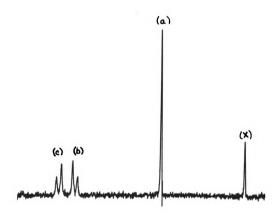
Spectrum 65. Nuclear Magnetic Resonance Spectrum of 2-(3,4-Dichlorophenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)


x 3.10 (TMA·BF_h)

a 5.47 (s)

b 7.73 - 8.43 (m)

a:b = 4:3


Spectrum 66. Nuclear Magnetic Resonance Spectrum of 2-(m-Trifluoromethylphenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

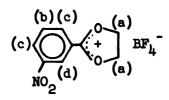
Assignments (8)

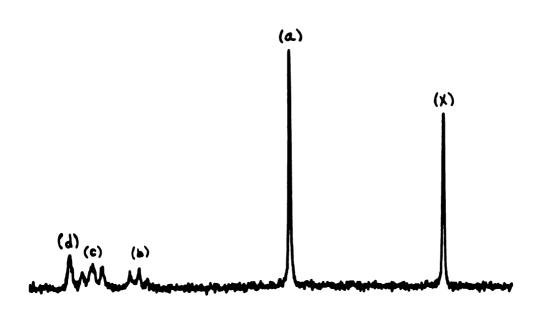
$$a:b = 1:1$$

Spectrum 67. Nuclear Magnetic Resonance Spectrum of 2-(p-Trifluoromethylphenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

Assignments (δ)

x 3.10 (TMA.BF,)

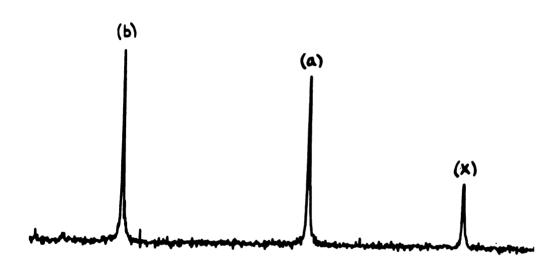

a 5.52 (a)


b 8.01 (d); $J_{bc} = 8.2 \text{ cps}$

e 8.47 (a)

a:b:c = 2:1:1

Spectrum 68. Nuclear Magnetic Resonance Spectrum of 2-(m-Nitrophenyl)-1, 3-dioxolenium Tetrafluoroborate (FSO₃H)

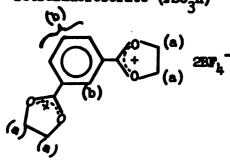


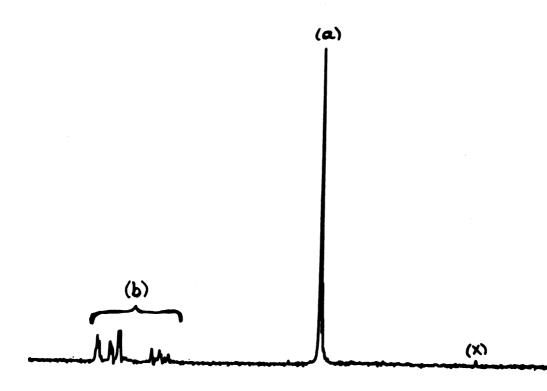
Assignments (δ)

- x 3.10 (TMA·BF₁₄)
- a 5.58 (s)
- b 8.07 (t)
- c 8.80 (t)
- d 9.17 (s)
 - a:b:c:d = 4:1:2:1

Spectrum 69. Muclear Magnetic Resonance Spectrum of 2-(p-Nitrophenyl)-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

Assignments (8)

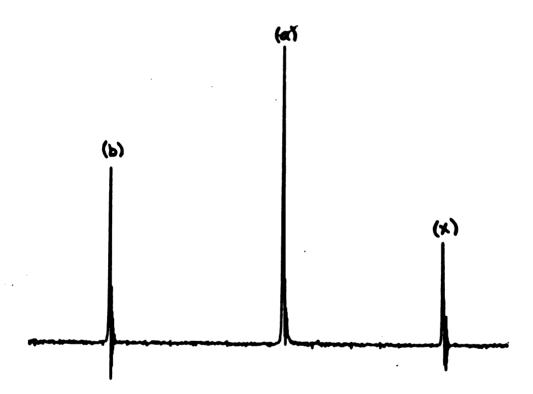

x 3.10 (TMA.BF4)


a 5.59 (s)

b 8.58 (s)

a:b = 1:1

Spectrum 70. Nuclear Magnetic Resonance Spectrum of 2,2'-m-Phenylenebis-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

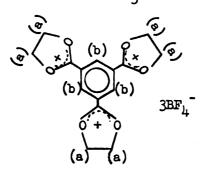


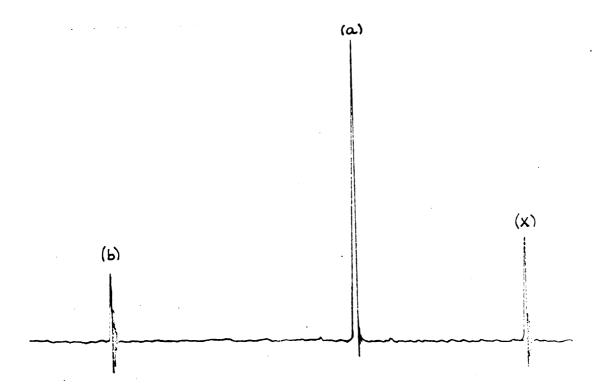
Assignments (8)

- x 3.10 (TMA.EF4)
- a 5.60 (s)
- b 8.03 9.26 (m)

a:b = 2:1

Spectrum 71. Nuclear Magnetic Resonance Spectrum of 2,2'-p-Phenylenebis-1,3-dioxolenium Tetrafluoroborate (FSO_H)




Assignments (8)

- x 3.10 (TMA.BF_h)
- a 5.63 (s)
- b 8.62 (s)

a:b = 2:1

Spectrum 72. Nuclear Magnetic Resonance Spectrum of 2,2',2"-Phenylenetris-1,3-dioxolenium Tetrafluoroborate (FSO₃H)

Assignments (δ)

- x 3.10 (TMA.BF₄)
- a 5.77 (s)
- ъ 9.58 (в)

a:b = 4:1

VI. LITERATURE CITED

- 1. H. Meerwein and van Emster, Ber., 53, 1815 (1920).
- 2. F. C. Whitmore, J. Am. Chem. Soc., 54, 3274 (1932).
- 3. F. Seel, Z. anorg. allg. Chem., 250, 331 (1943).
- 4. W. von E. Doering, M. Saunders, H. G. Boyton, H. W. Earhart, E. F. Wadley, W. R. Edwards and G. Laber, Tetrahedron, 4, 178 (1958).
- 5. (a) N. C. Deno, in "Progress in Physical Organic Chemistry," Vol II, p 127, S. G. Cohn, A. Streitwieser, Jr., and R. W. Taft, eds. Interscience div., John Wiley & Sons, Inc., New York (1964).
 - (b) N. C. Deno, Chem. Eng. News, 42, 88 (1964).
- 6. G. A. Olah, Chem. Eng. News, 45, 76 (1967).
- 7. (a) G. A. Olah and P.v.R. Schleyer, eds. "Carbonium Ions," Interscience Div., John Wiley & Sons, Inc., New York (1967).
 - (b) D. Bethell and V. Gold, "Carbonium Ions," Academic Press, New York and London (1967).
- 8. (a) G. A. Olah, J. M. Bollinger, C. A. Cupas and J. Lukas, J. Am. Chem. Soc., 89, 2692 (1967).
 - (b) G. A. Olah, M. B. Comisarow, C. A. Cupas and C. A. Pittman, Jr., ibid, 87, 2997 (1965).
 - (c) G. A. Olah and J. Lukas, ibid, 89, 2997 (1965).
 - (d) N. C. Deno, D. B. Boyd, J. D. Hodge, C. U. Pittman, Jr., and J. O. Turner, ibid, 86, 1745 (1964).
 - (e) G. A. Olah, E. B. Baker, J. C. Evans, W. S. Tolgyeai, S. J. McIntyre and I. J. Bastien, ibid, 86, 1360 (1964).
- 9. (a) N. C. Deno, L. S. Liu, J. O. Turner, D. N. Lincoln and R. E. Fruit, Jr., J. Am. Chem. Soc., <u>87</u>, 3000 (1965).
 - (b) N. C. Deno, H. G. Richey, Jr., J. S. Liu, D. N. Lincoln and J. O. Turner, ibid, 4533 (1965).
 - (c) H. G. Richey, Jr. and R. K. Lustgarten, ibid, 88, 3136 (1966).
 - (d) H. G. Richey, Jr. and J. W. Richey, ibid, 88, 4971 (1966).
 - (e) G. A. Olah, J. M. Bollinger, C. A. Cupas and J. Lukas, ibid, 89, 2692 (1967).
- 10. (a) G. A. Olah and M. B. Comisarow, J. Am. Chem. Soc., 89, 1027 (1967).
 - (b) G. A. Olah, E. Namanworth and M. B. Comisarow, ibid, 89, 711 (1967).
 - (c) D. G. Farnum, J. Am. Chem. Soc., 89, 2970 (1967).
 - (d) G. A. Olah, ibid, 86, 932, 1265 ($\overline{1964}$).
 - (e) G. A. Olah, M. B. Comisarow and C. A. Cupas, ibid, <u>88</u>, 361 (1966).
- 11. (a) H. G. Richey, Jr., J. C. Philips and L. E. Rennick, J. Am. Chem. Soc., 87, 1381 (1965).
 - (b) H. G. Richey, Jr., L. E. Rennick, A. S. Kushna, J. M. Richey and J. C. Philips, ibid, 87, 4017 (1965).
- 12. (a) N. C. Deno, C. U. Pittman, Jr. and J. O. Turner, J. Am. Chem. Soc., 87, 2153 (1965).

- (b) G. A. Olah, C. U. Pittman, Jr. and T. S. Sorensen, ibid, 88, 2331 (1966).
- (c) N. C. Deno, N. Friedman, J. D. Hodge and J. J. Houser, ibid, 85, 2991, 2995, 2998 (1963).
- (d) N. C. Deno, J. J. Houser, ibid, 86, 1741 (1964).
- (e) N. C. Deno and C. U. Pittman, Jr., ibid, 86, 1744, 1871 (1964).
- (f) G. A. Olah and M. B. Comisarow, ibid, 86, 5682 (1964).
- 13. (a) G. A: Olah and M. B. Comisarow, J. Am. Chem. Soc., 88, 3313 (1966).
 - (b) G. A. Olah and M. B. Comisarow, ibid, 88, 4442 (1966).
 - (c) G. A. Olah, N. Friedman, J. M. Bollinger and J. Lukas, ibid, 88, 5328 (1966).
 - (d) G. A. Olah and M. B. Comisarow, ibid, 89, 2694 (1967).
 - (e) G. A. Olah, and A. M. White, ibid, 89, 3591, 4752, 7072 (1967).
 - (f) G. A. Olah, W. S. Tolgyesi, S. J. Kuhn, M. E. Moffatt, I. J. Bastien and E. B. Baker, ibid, 85, 1328 (1963).
 - (g) N. C. Deno, C. U. Pittman, Jr. and M. J. Wisotsky, ibid, 86, 4370 (1964).
- 14. (a) G. A. Olah, C. A. Cupas and M. B. Comisarow, J. Am. Chem. Soc., 88, 362 (1966).
 - (b) G. A. Olah and C. U. Pittman, Jr., ibid, 88, 3310 (1966).
 - (c) G. A. Olah, R. C. Chambers and M. B. Comisarow, ibid, 89, 3586 (1967).
- 15. (a) D. M. Brouwer, Chem. Comm., 515 (1967).
 - (b) G. A. Olah and J. M. Bollinger, J. Am. Chem. Soc., <u>89</u>, 3582, 3586 (1967).
- 16. (a) G. A. Olah and J. M. Bollinger, J. Am. Chem. Soc., 89, 2993, 4744 (1967).
 - (b) F. M. Beringer and S. A. Galton, J. Org. Chem., 32, 2630 (1967).
 - (c) S. Kabuss, Angew. Chem. Internat. Edit., 5, 675, 896 (1966).
 - (d) K. Dimroth and P. Heinrich, ibid, 5, 677 (1966).
- 17. (a) G. A. Olah and C. U. Pittman, Jr., J. Am. Chem. Soc., <u>87</u>, 3507 (1965).
 - (b) G. A. Olah, C. U. Pittman, Jr., E. Namonworth and M. B. Comisarow, ibid; 87, 5571 (1966).
- 18. (a) G. A. Olah, M. B. Comisarow, E. Namonworth and B. Ramsey, J. Am. Chem. Soc., 89, 5259 (1967).
 - (b) M. Brookhart, F. A. L. Anet and S. Winstein, ibid, 88, 5657, 5659 (1966).
 - (c) L. Eberson and S. Winstein, ibid, <u>87</u>, 3506 (1965).
- 19. (a) G. A. Olah, J. Am. Chem. Soc., 87, 1103 (1965).
 - (b) G. A. Olah and T. E. Kiovsky, ibid, 89, 5692 (1967).
- 20. R. W. Taft and L. D. McKeever, ibid, 87, 2489 (1965).
- 21. B. C. Ramsey and R. W. Taft, ibid, 88, 3058 (1966).

- 22. H. Meerwein, V. Hederich and K. Wunderlich, Arch. Pharm., 291, 541 (1958).
- 23. S. Winstein, Hess & Buckles, J. Am. Chem. Soc., 64, 2780, 2787, 2796 (1942).
- 24. S. Winstein and R. E. Buckles, J. Am. Chem. Soc., 65, 613 (1943).
- 25. R. S. Tipson, J. Biol. Chem., 130, 55 (1939).
- 26. H. S. Isbell, Ann. Rev. Biochem., 9, 65 (1940).
- 27. W. W. Pigman and M. L. Wolfram, "Advances in Carbohydrate Chemistry,"
 Academic Press Inc., Publishers, New York, N.Y. Vol I, p 77 (1945).
- 28. Ibid, Vol IX, p 2 (1954).
- 29. C. Prevost, Compt. rend., 196, 1129 (1933).
- 30. C. Prevost and J. Wiemann, Compt, rend., 204, 700 (1937).
- 31. R. B. Woodward and F. V. Brutcher, Jr., J. Am. Chem. Soc., <u>80</u>, 209 (1958).
- 32. G. E. McCasland and E. C. Horswill, J. Am. Chem. Soc., 76, 1654 (1954).
- 33. C. A. Bunton and M. D. Carr, J. Chem. Soc., 770 (1963).
- 34. C. B. Anderson, E. C. Friedrich and S. Winstein, Tetrahedron Letters, 29, 2037 (1963).
- 35. H. Meerwein, K. Bodenbenner, P. Borner, F. Kunert and K. Wunderlich, Ann, 632, 38 (1960).
- 36. Cope and Wood, J. Am. Chem. Soc., 79, 3885 (1957).
- 37. S. Winstein and R. Boschan, J. Am. Chem. Soc., 78, 4921 (1956).
- 38. C. Pedersen, Tetrahedron Letters, 6, 511 (1967).
- 39. M. J. Coppen, M. P. Hartshorn and D. N. Kirk, J. Chem. Soc. (c), 576 (1966).
- 40. C. F. Wilcox, Jr. and D. I. Neally, J. Org. Chem., 28, 3446 (1963).
- 41. J. G. Buchanan, J. Chem. Soc., 2511 (1958).
- 42. S. Julia and J. P. Lavaux, Bull. Soc. Chim. Fr., 1238 (1963).
- 43. J. M. Coxon, M. P. Hartshorn and D. N. Kirk, Tetrahedron Letters, 20, 2547 (1964).
- 44. J. G. Buchanan and R. Fletcher, J. Chem. Soc., 1926 (1966).

- 45. S. Winstein, Grunwald and Ingraham, J. Am. Chem. Soc., 70, 821 (1948).
- 46. G. Schneider and L. K. Lang, Chem. Comm., 13 (1967).
- 47. F. V. Brutcher, Jr., F. J. Vara, J. Am. Chem. Soc., 78, 5695 (1956).
- 48. R. R. Grinstead, J. Org. Chem., 26, 238 (1961).
- 49. C. B. Anderson and S. Winstein, J. Org. Chem., 28, 605 (1963).
- 50. D. H. Olson, Tetrahedron Letters, 19, 2053 (1966).
- 51. E. H. Cordes, in "Progress in Physical Organic Chemistry," Vol IV, S. C. Cohen, A. Streitwieser, Jr. and R. W. Taft, Editors, Interscience div., John Wiley & Sons, Inc., New York (1966).
- 52. H. Meerwein, Angew. Chem., 67, 374 (1955).
- 53. H. Meerwein, V. Hederick, H. Morschel and K. Wunderlich, Ann., 635, 1 (1960).
- 54. E. N. Marvell and M. J. Joncich, J. Am. Chem. Soc., 73, 973 (1951).
- 55. L. A. Cort and R. G. Pearson, J. Chem. Soc., 1682 (1960).
- 56. (a) A. Rieche, E. Schmitz, W. Schade and E. Beyer, Ber., 24, 2926 (1961).
 - (b) J. D. Prugh and W. C. McCarthy, Tetrahedron Letters, 13, 1351 (1966).
- 57. S. Hunig, Angew. Chem., <u>76</u>, 400 (1964); Angew. Chem. Internat. Edit., <u>3</u>, 548 (1964).
- 58. N. C. Deno, H. C. Richey, Jr., N. Friedman, J. D. Hodge, J. J. Houser, and C. U. Pittman, Jr., J. Am. Chem. Soc., 85, 2991 (1963).
- 59. D. M. Brouwer, Chem. Comm., 515 (1967).
- 60. G. A. Olah, D. H. O'Brien and A. M. White, J. Am. Chem. Soc., <u>89</u>, 5694 (1967).
- 61. G. A. Olah and D. H. O'Brien, ibid., <u>89</u>, 1725 (1967).
- 62. G. A. Olah, J. Sommer, and E. Namanworth, ibid., <u>89</u>, 3576 (1967).
- 63. R. W. Hoffmann, Ang. Chemi intern. Edit., 4, 977 (1965).
- 64. R. W. Hoffmann and J. Schneider, Ber., 100, 3689 (1967).
- 65. M. J. S. Dewar and A. P. Marchand, J. Am. Chem. Soc., 88, 354 (1966).
- 66. G. Frankel and J. P. Kim, ibid., 88, 4203 (1966).

- 67. J. D. Roberts and W. T. Moreland, Jr., ibid., 75, 2168 (1953).
- 68. C. E. K. Branch and M. Calvin, "The Theory of Organic Chemistry," Prentice-Hall, Inc., New York, N.Y. 1941, pp 216-220.
- 69. H. H. Jaffe, Chem. Revs., 53, 191 (1953).
- 70. R. Stewart and K. Yates, J. Am. Chem. Soc., 82, 4059 (1960).
- 71. H. Hart and P. A. Law, ibid., 86, 1957 (1964).
- 72. C. U. Pittman, Jr., and G. A. Olah, ibid, 87, 2998, 5123 (1965).
- 73. N. Deno, H. G. Richey, Jr., J. S. Liu, J. D. Hodge, J. J. Houser and M. J. Wisotsky, ibid, 84, 2016 (1962).
- 74. P. von R. Schleyer and G. W. Van Dine, ibid, 88, 2322 (1966).
- 75. H. G. Richey, Jr. and J. M. Richey, ibid, 88, 4971 (1966).
- 76. N. C. Deno, et.al., ibid, 85, 2991, 2995, 2998 (1963); 86, 1871 (1964).
- 77. M. Simonetta and E. Heilbronner, Theoret. Chim. Acta. (Berlin), 2, 228 (1964).
- 78. D. M. Hirst and J. W. Limmett, J. Chem. Soc., 1035 (1962).
- 79. R. L. Weber, M. W. White and K. V. Manning, "College Physics," McGraw-Hill Book Co., New York-Toronto-London, 2nd Ed., p. 385 (1952).
- 80. J. M. Bollinger, C. A. Cupas, K. J. Friday, M. L. Woolfe and G. A. Olah, J. Am. Chem. Soc., 89, 157 (1967).
- 81. H. C. Brown and Y. Okamoto, ibid, 80, 4979 (1958).
- 82. H. Volz and M. J. Volz deLecea, Tetrahedron Letters, 38, 3413 (1965).
- 83. H. Hart and D. A. Tomalia, ibid, 15, 1347 (1967).
- 84. H. Volz and M. J. Volz de Lecea, ibid, 39, 4683 (1966).
- 85. R. W. Murray and M. L. Kaplan, ibid, 14, 1307 (1967).
- 86. G. A. Olah and A. M. White, J. Am. Chem. Soc., 90, 1884 (1968).

