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ABSTRACT
THE SET OF GENERATING DOMAINS FOR CERTAIN MANIFOLDS
by Richard John Tondra

Let X be a topological space, A collection G* of non-
empty, connected topological spaces 1is called a set of
generating domains for X if each proper domain (open, con-
nected subset) of X is an open, monotone union of some
element g(D) of G*; that is, D = leDk where each D, 1is an
open set homeomorphic to g(D) and Dk c Dk+1 for all k € Z+.
The domain rank of X, denoted by DR(X), is the cardinal num-
ber of a set of generating domains for X that has a minimal
number of elements,

Let M? denote a connected n-manifold, n > 2. The prin-
cipal theorems characterize those manifolds which have the
smallest possible domain rank., Let us say that M has
Euclidean compact subsets if for each proper, compact subset
C of M? there is a homeomorphism h of the pair (C,C N 1)
into the pair (%Rn,%ﬁn), where 3R" = {x € Bnlxn >0}, In
chapter II it is shown that if M® = @, then DR(M®) = 1 if
and only if M® has Fuclidean compact subsets. If M2 ¥ d,
then it is shown in chapter III that DR(M®) = 2 if and only
Af M* has Euclidean compact subsets., Chapter IV gives a
characterization of those M® with M? an n-1 sphere that have
domain rank 3. In the final chapter are found results con-

cerning the domaln rank of spaces which are the open monotone
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union or the finite product of those manifolds considered in

chapters II through IV,
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CHAPTER I
INTRODUCTION

In [3], Morton Brown proved that any open monotone
union of an open n-cell is an open n-cell, This theslis is
concerned with a problem quite opposite to that considered
by Brown - proving the existence of certain n-manifolds from
which many non-homeomorphic spaces can be obtalned as open
monotone unions. In particular 1t i1s shown that there ex-
ists a connected n-manifold M" such that each open connected
subset of Euclidean n-space can be obtalned as an open mono-

tone union of Mn.
1l. Notational conventions

Let A, B, and X be sets. If A is a subset of X, then
this will be denoted by A c X; if A c X but A # X, then this
will be denoted by A £ X. If A # @ and A # X, then A 1is
called a proper subset of X. If A and B are subsets of X,
then A - B will denote the set theoretic difference of A
and B in X,

Let X be a topological space, A c X. IntyA, ClxA, and
FryA will denote the interior, closure, and frontier of A
in X respectively., The set A - IntxA will be denoted by
EdyA and 1s called the edge of A in X, Note that if
A = ClyA, then PryA = EdyA. When there 1s no possibility



of ambiguity, the subscript "X" will be omitted.

If X is a topologlical space, we will denote by H(X)
the set of all homeomorphisms of X onto itself. CH(X) will
denote the subset of H(X) consisting of all those homeomor-
phisms which are the identity on the complement of some
proper compact subset of X.

If X and Y are topological spaces, a homeomorphism of
X into Y will be called an embedding. If there i1s a ho-
meomorphism f of X onto Y, we will write X 2 ¥,

Let X and Y be disjoint topological spaces, and let
X + Y denote the disjoint union of X and Y with the weak
topology. Suppose that A c X is closed, A ¥ #, and that
f 1s a continuous function from A into Y. X Up X will de-
note the space obtained by attaching X to Y by f where
Pp ¢t X+Y~-X Uf Y 1is the identification.

The following notation will be used for certain sets
and topological spaces:

Z = {n|n i1s an integer};
zt = (n€ zln>0}; and
B" = {x|Xx = (X;,...,X), an n-tuple of real numbers,
n € z+j.
R® 1s assumed to have the topology determined by the Eu-
clidean metric d, on BR". The subsets
3" = {x € B"|x, 2 0};
E" = {x € B®|d,(x,0) < 1]};

E*r) = {x € R®|d,(x,0) < T, T a real number > 0} and
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st-l = (x ¢ R"|d,(x,0) = 1} are assumed to have the

subspace topology induced by the topology of R™.
2. Sets of generating domains

Throughout this section, X will denote a fixed non-

empty topological space.,

Definition 1.2.1 A non-empty set D € X is called a domain

of X if D is open and connected.

Definition 1.2.2 A non-empty set D* of subsets of X 1s

called a dominion of X if each element of D* is a proper

domain of X.

Definition 1.2,3 Let O c X be a non-empty open set. A
topological space g(0) is called a generator of O if there
exists a countable collection of sets {°k}kez+ such that
0 = k§1°k and such that for all k € 2%,

1) 0, © X is open and homeomorphic to g(0) and

11) Oy < Oy
If g(0) generates O, then 0 is called an open, homogeneous

monotone union of g(0).

Definition 1,2.4 Let K(X) = {D|D is a proper domain of X}
and suppose that K(X) ¥ #. A non-empty set B* of non-emp-
ty, connected topologlcal spaces 1s called a gset of gener-
ating domains for X, if for each D € K(X) there 1s some

B € B* such that B 1s a generator of D.
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If B* is a set of generating domains for X, then each
B € B* is homeomorphic to a proper domain of X. Therefore
a set of generating domains with a minimal number of ele-
ments can be found among the dominions of X. This consid-

eration leads to the following definition.

Definition 1.2.5 Suppose that K(X) # # and let G* = {B*|B*
is a dominion of X which i1s also a set of generating do-

mains for X}, The domain rank of X, denoted by DR(X), 1s

defined by DR(X) = g.l.b.{|B*||B* € G*} where |B*| denotes
the cardinal number of the set B*#., If DR(X) = 1, then X
is said to have a generating domain. If K(X) = ¢, we define
DR(X) = 0.

The following theorem is an immediate consequence of

the foregoing definitions,

Theorem 1.2.6 If Y c X is a domain of X, then DR(Y) is

less than or equal DR(X).
3. Collared manifolds

Definition 1.3.1 A topological space X is called an n-di-
mensional manifold, n € Z+, and 1s denoted by Mn, if X is a
separable metric space and for each x € X there 1s an open
neighborhood Uy of X such that Uy = BP or Uy & 38, A
O-dimensional manifold Mo 1s defined to be an at most

countable, descrete topological space.
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Definition 1.3.2 Let M® be an n-dimensional manifold,

n € z¥. The set ;n = {x € M?|x has an open neighborhood
homeomorphic to R"} 1s called the interior of M2, The set
M o= WP - gn is called the boundary of M'. If M =g

[M # g1, then ¥ 1s called a manifold without [with]
boundary. An n-manifold without boundary is called closed
if M? is compact; otherwise, M 1s called open.

Definition 1.3.3 A space X which is homeomorphlc to

o
En, En, or S" is called an n-cell, open n-cell, or n-sphere

respectively.

Definition 1.3.4 Let M® be an n-dimensional manifold,
n € zt. An (n-1)-manifold LBl c M is said to be col-
lared [bi-collared] in M" if there is an embedding h of
21 y r0,1) (P! x (-1,1)] into M" such that

1) h(x,0) = x for all x € L?1 angd

n-1

11) n(z™? x [0,1)) [A(L™" x (-1,1)] 1s open in M®,

Definition 1,3.5 Let Mn be an n-dimensional manifold with
boundary, n € zt. The n-manifold Mg - ﬁn x [0,1) U, "
where ¢ 3 MP x {0} -~ M 1s defined by ¢(x,0) = x for all

X € M? 15 called an abstract collaring of Mn.

M* and ﬁn x [0,1) will always be considered as embed-
ded in Mz in the usual way under the identification map
p ¢ M x [0,1) + M - mg.

Definition 1.3.6 Suppose that M and L” are n-manifolds,




é

n € z¥, such that L® # # and L™ c M". L” 1s called a rel-
ative M n-manifold if

1) L n " 4 g,

11) LB n ﬁn is an (n-l)-manifold, and

111) rin = 1" - IntLn is empty or an (n-l)-manifold.

Note that if L” 1s a relative M n-manifold, then the
boundary of (Ln n ﬁn) = boundary of rin. Also, since Ln is
an n-manifold contained in M, ri® = BAL® = L® - IntL” and
boundary EAL" = E4L” n MT.

Example. Let M° = 3R° and L® = [-1,1] x [0,1). Then L

2

is a relative M° 2-manifold with rL? = {-1} x [0,1) U

{1} x [0,1).

Definltion 1.3.7 Suppose that Mn, L? are n-manifolds,

n € z*, such that L® # # and L™ c ¥, L" 1s sald to be
collared in Mn if L% ¢ ;n or L” is a relative M* n-mani-
fold, and if there is an embedding h of the pair
(EaL® x [0,1),(EdL® n M) x [1

such that

,1)) into the pair (M%,M%)

1) h(x,0) = x for all x € EAL" and

11) h(E4L™ x [0,1)) n L™ = h(EAL® x {0}).
The set h(E4L™ x [0,1)) 1s called a collar of L in M" and
is denoted by oL". The set CL™ = L” U cL® 1s called a gol-

laring of Ln in Mn

Definition 1.3.8 Let n?, L, be n-manifolds, n € z*, such
n

that L, c M, 1 = 1,2, A homeomorphism h of Ly onto L, 1is



called a relative homeomorphism if h induces a homeomor-

phism of the pair (L?,L? n M?) onto the pair (Lg,Lg n Mg).

Lemma 1.3.9 Let M', L® be n-manifolds, n € z*, such that

1 i
L? is collared in M? and let CL? be a collaring of L? in
M?, 1 =1,2, If his a relative homeomorphism of L? onto
Lg, then h extends to a relative homeomorphism of CL? onto
n
CLZ'

Proof. Assume that EdLg # #; otherwise, the required

extension of h 1s h itself. Note that both L? and cL? are

closed in CL? and that L? n cL? = EdL?, i =1,2, Let

n - n n
£, ¢+ EdL; x [0,1) n? give a collar cLy of LI in n?,
n

1i=1,2, Ifyc€E °L1' then y = fi(x,t) for a unique pair

(x,t) € EdL? x [0,1), 1 = 1,2, Define g 3 cL: - ch by

g,(y) = g, (£ (x,t)) = fz(h(x).t): that 1is, gl(y) =

n -1 n
fz(hIEdLl,id)fl fy). Since h|EdL1 .
of (EAL],E4LY N M7) onto (EALy,EALy N M), & 1s a relative

homeomorphism of cL?

g.(y) = fz(h(y).o) = h(y). Define g by

h(y), v € L]
g(y) = .

induces a homeomorphism

onto ch. If y € EdL?, then

n
sl(y). y € cLy

Then g : cL® - cL®

1 2 is the required extension of h.

Definition 1,3.10 Let X be a metric space, A and B subsets
of X with A € B, Suppose that f and g are bounded contin-
uous functions from B into Rl such that f(a) < g(a) for all

a € A, The prism on A determined by f and g 18 denoted by
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P(f,g3A) and defined by P(f,g3A) = {(x,t) € X x BY|x € &
and f(x) <t < g(x)}. If f(a) < g(a) for all a € A, then

the topless prism on A determined by f and g, denoted by

TP(f,g3A), is defined by TP(f,g3A) = {(x,t) € X x Rl|x € A
and f(x) < t < g(x)}. If f(a) = ¢, ¢c a constant, for all
a € A, then ¢ will denote the function f. The graph of g
restricted to A will be denoted by G(g;A). Note that

G(gs3A) = P(g,g3A).

The following lemma is a summation of the remarks

found on page 556 of [13].

Lemma 1,3.,11 Let X be a metric space, A c B c X, and let

f1, f2 be bounded continuous functions from B into pl such
that f1(a) < fz2(a) for all a € A. Suppose that g) and g,
are continuous functions from A into Rl such that
1) fl(a) < gi(a) < fz(a) for all a € A, 1 = 1,2,
11) fl(a) = gl(a) if and only if fl(a) = gz(a), and
111) fz(a) - gl(a) if and only if fz(a) = sz(a).
Then there is a homeomorphism h[f;,f,;g,,8,] of P(fy,f,34)
onto itself such that
iv) h[fl,fzggl,gzj(a,t) = (a,t) for all
(a,t) € (G(fy3A) U G(f,354)) and
v) for each a € A, h[flgfzggl,gzj carries the seg-
“ment P(fl,gl;a) linearly onto the segment
P(fl,gz;a) and the segment P(gl,fzga) linearly
onto the segment P(gz,fz;a).



The following rather complicated lemma is used to
establish the existence of certain nice collarings of a

collared manifold.

Lemma 1,3.12 Let X be a metrlc space such that there is an

embedding of X into Rn for some n € Z+. Assume that X is
embedded in R" and that A is a proper subset of X such that
1) A is locally compact,
i1) ClyA is compact and C = C1yA - A is elther empty
or closed in X and hence compact,
111) there is an embedding h of A x [0,1) into X such
that h(a,0) = a for all a € A.
Then there 1s a continuous function f : Cle - [0,%) such
that f(x) = 0 if and only if x € C and the following hold:
iv) there is an embedding hl of P(O,f;Cle) into X
such that hl(y,O) =y for all y € Cle and
hl(x) = h(x) for all x € P(0,f;A) and
v) Af G 1s open in X, A c G, then there is a homeo-
morphism g of hl(P(O,f;CIXA)) onto itself such
that g(h,(TP(0,3f;A))) c G and g restricted to
hl(G(O;Cle) U G(f;Cle)) is the identity.
Proof. Let d be the Euclidean metric on R“; then d|X
is a metric equivalent to the metric of X. For r € (0,%),
D # 4, and D c B®, let B(D,r) = {x ¢ B"|d(x,D) < r}. Then
ClgnB = {X ¢ Bnld(x,D) < r}, where B = B(D,r).
Suppose that C ¥ §. Define A = (X ¢ 01xA|d(x,c) > 1

and for k ¢ Z+, k > 2, define
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Ay = {x € C1,A|1/(k+1) < d(x,C) < 1/k]. Then Cloy afe A
and therefore Fk = ClA_Ak = AN ClcleAk = ClcleAk for
k 2 2. Thus F 1s compact and we have that
A= Ua =au (kgzpk)' Let d* be the metric on
ClyA x Bl defined by a*((x,t),(y,u)) = a(x,y) + |t - ul.
Since F, 1s compact for (k-1) € Z+, there 1s a real number
ays 0 < & < %, such that if x € Fy, then
d(h(x,0),h(x,t)) < 1/k for 0 < t < a,. Therefore it is
possible to construct a sequence {bk}kez+ of real numbers
such that 0 < b ) < b < % and b1 < 8y, for all k € z*,
and 1im by = 0. Define g : A = [0,3) by g (x) = b 1f
X € A_. Then if r € B!, the set L(r) = {x € Algy(x) < 1)
equals A or kg;Ak for some (p-1) € z¥. Therefore L(r) is
closed in A and thus 81 i1s lower semi-continuous and posi-
tive on A, It follows from a theorem due to Dowker (see
page 170 of [9])) that there is a continuous function
g, + A~ [0,2) such that 0 < g,(a) < g;(a) for all a € A.

Define f Cle - [0,1) by

a) f(x) = 2 for all x € ClyA if C = g and

0, xeC
b) f(x) -{ }rrc#rd.
mln(d(x,c),gz(x)), X €A

Since C is compact, f(x) = 0 if and only if x € C, If
C =g, then f is clearly continuous. Suppose that C # £.
If x € A, then f 1is continuous at x since A 1s open in

ClyA and f|A is clearly contimous. Suppose that x € C and
that € > 0, Let y € Cle such that d(y,x) < €, Then
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I£(y) - £(x)| = |[f(y)] = £(y) < d(y,C) < d(y,x) < €,
Therefore f is continuous at x and hence on Cle.

Define hy P(O,f;Cle) - X by

X, X €C
hl(xﬁt) = { } .
h(x,t), (x,t) € P(0,f;A)

If C = #, hy is certainly continuous. Suppose that C # 4.
Since C is compact, P(0,fjClyA) - C x {0} = P(0,f3A) is
open in P(O,f;Cle) and therefore h1 is continuous at
points (x,t) € P(0,f3;A). Suppose that ¢ € C and that

0<€<hbD Choose k¥ € 2t such that 1/k < %€. Then

20
U(c,€) = ((B(c,1/x) N Cle) X [O,bk)) n P(O,f;Cle) is
an open neighborhood of (¢,0) in P(O,f;CIXA). Suppose
that (y,t) € U(c,€). Since d(y,C) < d(y,c), ¥ € AJ for
some J > k > 2, Therefore d(hl(c,o),hl(y,t)) <
d(hy(e,0),h, (7,0)) + d(hy(¥y,0),hy (¥,t)) < d(e,y) + 1/§ <
1/k + 1/)J < 2/k < €, Therefore hy 1s continuous at (c,0).
Since h ¢+ A x [0,1) - X 1s an embedding and h(a,0) = a
for all a € A, C n h(A x [0,1)) = #. Therefore h, is in-
Jective. Since X is Hausdorff and P(O,f;Cle) is compact,
hy 1s an embedding.

Now suppose that G 1s open in X and that A ¢ G. Since
Cis compact or C =@, G - C = Gy 1s open in X and A c Gy,
Let P = P(O,f;CIXA), and define G, = Gy N hl(P) and
F, = (X = Gy) N h(P). Then hI'(G,) = G4 is open in P,

hl(P,) =P - G, = Py, A x {0} € Gy, and C x {0} c Py,

3
Let f4 1 ClyA - Rl be defined by £3(x) = d*((x,0),F5).
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Then f3 is continuous and f3(x) = 0 if and only if x € C,
Let g, = min(fB,%f): then g, 1s continuous. Furthermore,
if0<tx< gl(y) where y € A, then (y,t) € G3. Since
gl(y) = 0 if and only if x € C, it follows from 1.3.11
that there is a homeomorphism g, = h[O,f;%f,gl] of P onto
1tself such that g,|(G(03C14A) U G(f;C14A)) = 1d and g,
carries P(0,3f;x) linearly onto P(O,gl;x) for all x € ClyA.

Therefore g,(TP(0,3f;A)) € G,. Define g : h,(P) - hy(P)

30
by g = hlgzhil. Then g 1s & homeomorphism of

h, (P(0,f;C1,A)) onto itself such that g(hl(TP(O,%f;A)))
is contained in G, and such that g restricted to

hl(G(O;Cle) U G(f;Cle)) 1s the identity.

Now suppose that M® is an n-manifold with boundary,
nezt, 1r ﬁn is not compact, then let X be the one point
compactification of Mn, otherwise, let X = Mn. In either
case X can be embedded in BP for some p € z'. cConsider X
as embedded in RP and note that 1) M® is locally compact;

11) ClxMn is compact and C = Cl M - Mn is compact or emp-

X
ty; and 1i11) as a consequence of theorem 2 of [4], there 1s
an embedding h of M® x [0,1) into X such that h(x,0) = x
for all x € ﬁn. Using 3.1.11 and 3.1.12, we can easily

establish the following well known results,

Corollary 1.3.13 Suppose that M  is an n-manifold with

boundary, n € Z'. Then there is an embedding h of
M x [0,1] into M? such that h(x,0) = x for all x € M?
and h(M® x [0,1]) 1s closed in M°,
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Corollary 1.3.14 Suppose that M is an n-manifold with
boundary, n € Z+. Then an abstract collaring Mg of Mn is

o
homeomorphic to M,

Definition 1.3.15 Suppose that L™ is collared in M. A

collaring CL” of L in M 1s called a tapered collaring

with support F, if given an open set G, Ln cGCc Mn, then

there is a homeomorphism h of M* onto itself such that
n
1) L < h(cL™) € G and
11) h(x) = x for all x € (L U (M* - F)).

Theorem 1.3.16 If L™ 1is collared in M', then L” has a

tapered collaring CLn in Mn. Furthermore, if the closure
of EdLn in Mn i1s compact, then the support of CLn may be
chosen to be compact.

Proof. Let L” be collared in M* and let A = EdMnLn.
We may assume that A ¥ @, since otherwise cL? = Ln. If
CLynA is compact, then set X = M"; otherwise, let X be the
one point compactification of Mn. In any case X can be
embedded in RP for some p € Z+. Consider X and all sub-
spaces of X as embedded in Rp. We note that 1) A is local-

1y compact; 1i) Cl,A is compact and C = Cle - A is either

X
empty or compact (see p. 245 of [9]); and 1i1) there is an
embedding h of A x [0,1) into X such that h(a,0) = a for
all a € A, Thus there is a continuous function

f s ClyA -~ [0,%2) such that f(x) = 0 if and only if x € C

and iv) and v) of 1.3.12 hold. Suppose that G is open in
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M? and that L™ © G. Since M is locally compact, M" is em-
bedded as an open subset in X and thus G is open in X and

A C G, Let hl
that hl(y,o) = y for all y € ClyA and such that hl(x) =

be an embedding of P(O,f;Cle) into X such

h(x) for all x € P(0,f3;A). Then there is a homeomorphism
g of hl(P(O,f;Cle)) onto itself such that
g(hl(TP(O,%f;A))) C G and g restricted to

hl(G(O;Cle) U G(f;Cle)) is the identity. Let F =
hy(P(0,3C14A)) N M. Then F is closed in M' and FrynF =
hl(G(O;CIXA) U G(f;Cle)) N M?., Therefore g extends to a
homeomorphism &1 of Mn onto itself such that gl(x) =X
for all x € (Ln V] (Mn - F)). The required tapered collar-
ing CL” of L™ 1s obtalned by setting CL” =

L® U hy (TP(0,3£34)) = L U h(TP(0,3f3B4,;nL™)). If ClynA
1s compact, then clearly F is compact and the theorem l1s

established.,

Corollary 1,.,3.17 If L® is collared in Mp and G 1s an open
set such that L" € g © Mn, then L" is collared in G. Also,
if Ln 1s collared in M® and the pair (Mn,ﬁn) is contained
in the pair (Qn,én), then LP 1s collared in Q".

The following lemmas lead to a theorem which gives
sufficient conditions for Ln to be collared in Mn.

Lemma 1,3,18 Let X be a topological space. There is a

homeomorphism h of X x ([-1,0] x [0,1)) onto

X x ([-1,1) x [0,1)) such that h restricted to
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(X x {-1} x [0,1) U X x [-1,0] x {0}) is the identity and
h carries X x {0} x [0,1) homeomorphically onto
X x [0,1) x {0].

Proof. There exists a homeomorphism g of
(-1,0) x [0,1) onto [-1,1) x [0,1) such that g restricted
to ({-1} x [0,1) U [-1,0] x {0}) is the identity and g car-
ries {0} x [0,1) homeomorphically onto [0,1) x {0}. The
map h ¢ X x ([-1,0] x [0,1)) - X x ([-1,1) x [0,1)) given
by h(x,y) = (x,g(y)), X € X, ¥y € ([-1,0] x [0,1)) 1s the

required homeomorphism.

Lemma 1.3.19 Let L™ be a relative M" manifold, n > 2, such

that rL® = EAL" # #. Then there is an embedding h of the
pair (EAL™ x [0,1),(EaL® n M) x [0,1)) into (M?,M*) such
that

1) h(EdL" x [0,1)) c L™ and

11) h(x,0) = x for all x € E4L".

Proof. Let L" be a relative M" n-manifold, n > 2,
such that EAL® # #. Let E° L = EaL®, If B! = @, then
since EP1 ¢ in’ the result follows easily from 1.3.13.
Now suppose that én-l # @ and let Qn'l =1"n ﬁn. Then
EP-L1 = @®L, 1t follows from 1.3.13 that there is an em-
bedding g : E*"L x [-1,0] = E*! such that
gl(én'l x [-1,0]) 18 closed in En-1 and gl(x,o) = x for all
x € én-l. Also there is an embedding g, @ gl [0,1) ~

Q"1 such that g,(x,0) = x for all x € E*1 = *7L,

Pn-l

Let

= "1 U g,(#! x [0,1)). Note that since
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° _ l
-1
P71, It follows from 1.3.13 that there is an embedding

x [-1,0]) = F is closed in E*™", F is closed in
g3 of P"™" x [0,1) into L” such that g3(x,0) = x for all
x € ™1 and g5(P-1 x [0,1)) N L™ = g5(P*"1 x {0}).
Let f be a homeomorphism of én41 x ([-1,0] x [0,1)) onto
én;l x ([-1,1) x [0,1)) with the properties given in

1.3.18. Define g : E% % x [-1,1) = L™ by

g1(x,t), t € [-1,0]
g(x,t) = { }

go(x,t), t € [0,1)
Define a homeomorphism hy of (g1 (énll x [-1,0])) x [0,1)
onto (g(E™! x [-1,1))) x [0,1) by hy = (g,1d)f(g7l,1d),
where id is the identity map on [0,1). Note that hi(y,t) =
(yo,t) if 1) y € gl(én:l x {-1}) or 11) if t = 0. Let
F = B g1 (EL x (-1,0]) and Fp = gg (E™T x [-1,0]).
Then Fy and F, are closed in E°™ and Fy N Fp = F3 =
gl(ﬁn;l x {-1}) which is also closed in 21, Dpefine
ho gl (0,1) - Pn"l x [0,1) by

(x,t), x € Py |
h2(x’t) = °
hl(x,t), x € Fz
n-1
Then h, is a homeomorphism onto P x [0,1), and h = g3hp

1s the required embedding of
(EaL™ x [0,1), (Ea™ n M) x [0,1)) into (M, MP).

Remark., Note that it follows from 1.3.13 or 1.3.19 that
a collaring CLn of L® in Mn 1s an open subset of Mo,

Theorem 1.3.20 Let L” and M* be n-manifolds, n > 2, such
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that LP 1s closed in M. Then L" is collared in M* if
1) L® c M and P = M@ - Int IP is an n-manifold or
11) L” 18 a relative M" n-manifold, EdL" ¥ ¢, and
P" = M? - Int L is a relative n-manifold.
Proof. If 1) holds, then EAL® c P" and the result
follows from 1.3.13. If 1i) holds, then EAL" = FriP =
FrP" = EdP". Since EdL" = EdP”, the result follows by
applying 1.3.19 to P",

Suppose that X = (X1y...,Xp.7) € E* 1, n » 2. Define

- =1
£ : ED 1. Rl by setting f(x) = (1 - ;Elxﬁ)i. Then f is
continuous and f(x) = 0 Af and only if x € sh=2, FPor each

1l

t € [0,1] define fy ¢ En"1 = R by fi(x) = tf(x).

Definition 1.3.21 Let %RT = {x € B®|x; > 0}, n > 2, For
each t € [0,1] define BY(t) = P(0,fy;E""L), #B(t) =
B°(t) n 8%, and BJ1(¢) = 38%(t) n #&].

Figure 1.1
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Theorem 1.3.,22 Let s, t € [0,1] such that 0 < s < t < 1,

Then there 1s a homeomorphism h(s,t) of Bn(l) onto itself
such that
1) h(s,t)|B*(1) = 1d,
i1) h(s,t) carries B?(t) onto Bn(s),

111) g(s,t) = h(s,t)|3B"(1) is a homeomorphism of
187(1) onto itself and g(s,t)] B?'l(l) is a
homeomorphism of Bg-l(l) onto itself,

iv) g(s,t) carries #B"(t) onto %Bn(s).
Proof. This is an immediate consequence of 1l.3.1ll.
Remark. Note that for any s, t € (0,1), P(fs,f;En-l) is
homeomorphic to p(o,rt;En'l) and that B"(1) = ET N 3R".

4, Piecewise linear manifolds

The terminology that will be used for simplicial com-
plexes 1s essentlially that used by Zeeman in [15], but is
modified to agree with the terminology used by Hudson and
Zeeman in [11].

By an n-simplex tn, 0 < n, is meant the convex hull of
n+l linearly independent points (vertices) {vJ}J:o in Bp,

n < p. By an r-face tr of tn’ denoted by tr < tn, is meant
the convex hull of r+l distinct points of {VJ}JEO.

A simplicial complex K of Bp, p21l, 1s an at most

countable collection of simplexes of Bp

such that 1) if
t € K, then all faces of t are in K, 11) if s, t € K, then

s Nt is a common face of s and t, and ii1i1) each vertex of
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K is the face of at most a finite number of elements of K.

L 1s called a subcomplex of K 1f L is a simplicial complex

and L ¢ XK, If t, is an n-simplex, n > 0, let t, =

{s|ls < t,} and én+1 = {s]s < thels S # tpyqle If s, t are
simplexes in Rp, then s and t are sald to be joinable 1if
the union of their vertices forms a linearly independent
set of points in Bp. If s and t are Jjoinable, then the
Join of s and t, denoted by st, is defined to be the sim-
plex spanned by the union of their vertices. For t € K,
the set st(t,K) = {s € K|t < s} 1s called the star of t in
K; the subcomplex 1lk(t,K) = {s € K|s is joinable to t and
st € K} 1s called the link of t in K.

Let K be a simplicial complex in RP. The polyhedron
determined by K, denoted by |K|, is the set |Kk| = tht with
the weak topology determined by the simplexes of K. A com-
plex K' is called a subdivision of K if |K'| = |K| and each

simplex of K' is contalned in some simplex of K.
Let K and L be simplicial complexes in R" and RP
respectively. A continuous function f : IKI - |L| is

called simplicial if f(s) € L for all s € K; £ is called

plecewise linear, denoted by PL, if there are subdivislons

K' of K and L' of L such that £ : |k*| - |L*| 1s simplicial.
If g 1s a homeomorphism of |L| onto X and h is a homeomor-
phism of |K| onto ¥, then f ¢ X =~ Y is called piecewise
linear if h™lfg is a PL map of |L| into |K]|.

Henceforth, PL will be used for the term plecewise
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Definition 1.4.1 Let t, be an n-simplex, n > 0, and K a

complex in RP. |K| is called a combinatorial n-cell, if

there is a PL homeomorphism f of |T,| onto |K|. [K| 1is

called a combinatorial n-sphere, if there is a PIL homeomor-

phism f of |£n+l| onto |K]|.

Definition 1.4.2 An n-manifold M, n > 0, 1s called a PL

n-manifold if there is a homeomorphism f of |K| onto m?

where K 1s a complex in Rp, and such that if n > 1, then
|1x(v,K)| 1s a combinatorial (n-1l)-cell or a combinatorial
(n-1)-sphere for all vertices v of K. The pair (K,f) is

called a PL triangulation of M,

It 1is a well known fact that if (K,f) is a PL triangu-
lation of M?, then any subdivision K' of K yields a PL tri-
angulation (K',f) of M?, Also if M" is an open subset of
R® or 3R®, then there is a complex K of B" such that (K,1d)

glves a PL triangulation of M" where id is the identity map.

Definition 1.4.3 Let Mn be a PL n-manifold with PL triangu-

lation (K,f). An m-manifold Lm, 0 <m<n, which is embed-
ded as a subset of M 1is called PL AQ.!E 1f there i1s a sub-
division K' of K and a subcomplex L' of K' such that
(L*,f||L*|) 1s a PL triangulation of f(|L'|) = L®. Note
that 1f L™ 1s PL in M®, then L™ is necessarily closed in M7,

A manifold L™ embedded in Mn may be a PL m-manifold,
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but may not be PL in M'. For example, let (K,id) be a PL

2, where K 1s a simplicial complex in Bz

1

triangulation of R

and id is the identity map. Then S

1 ys not PL in R>.

is a PL 1-manifold,
but S

Theorem 1.4.,4 Let M', n > 2, be a PL n-manifold and let LP

[0} .
be a PL n-manifold in M*. If 1) Ll c M or 11) L2 N M =
Qn-l

M.

is a PL (n-l)-manifold in Mn, then L 1is collared in

Proof. This result 1s easily established and the
method of proof is only outlined. The first step 1s to use
the method employed in the proof of lemma 17 of chapter 3
of [15) to show that M" - Int ynL"” is a PL n-manifold in
M. If 11) holds, then 1) applied to @ F c M® and
Q"1 c " shows that both L and M® - IntynL” are relative
M® n-manifolds. Since L® is closed in M’, the fact that LP

is collared in M® follows from 1.3.20.

Lemma 1,4.5 Let M* be a connected n-manifold, n > 2, and

ccMa proper compact subset., Then there exists a domain
D © M® such that C € D and C1D is a proper compact subset
of Mn. Furthermore, if C C ;n’ then D may be chosen so
that C1D < ;n.

Proof. This is easily established. Let x € M" - C.
Then M" - x 1s a connected n-manifold and the result fol-
lows from the fact that Mn - X 1s connected, locally con-
nected, and locally compact. Note that the result is not

true for n = 1,
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If K is a simplicial complex, let Sd.K, j € Z' denote

J
the Jjth barycentric subdivision of K.

Theorem 1.4.6 Let M®, n > 2,be a connected, PL n-manifold

with triangulation (K,f), D a domain of M?, and C a proper
compact subset of D, Then there 1s a compact, connected,
PL n-manifold L" in M® such that
1) ¢ © Int L" ¢ L® ¢ D, L” # D,
11) L? = f(|L|) where L is a subcomplex of SdJ(K),
j ez,
111) L c ﬁn if C ;n, and
1v) 1" n M = LP n D 1s a PL (n-1)-manifold in M
ircn M 44,

Proof. Since K 1s locally finite, it may be assumed
that M 1s embedded in some RP as a closed subset and that
M* = |K|. It follows from 1.4.5 that there is a compact,
connected set C1 such that C c IntMnC1
Since n > 2, it may be assumed that D # M, Let

©C ©D, C # D.

0 <é€c<a(c,,M - D) and @ = {x € Mnld(x,cl) < €}, where
d 1s the Euclidean metric on RP restricted to M®. Note
that Q € D and that if Cc N &n = #, then € may be chosen so
that Q © ;n. The existence of L” 1s now established using
the terminology and results of [11].

If J 1s a simplicial complex, and X < |J|, let
N(X,J) = {s € J|ls<t, t N X # @}, Let L, = N(C,,K). Since
C1 is compact, L1 1s a finite simpliclal complex with

C1 © Intmn|Ly|. Therefore there is a q € 2zt such that if
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L = N(Cl’quLl)’ then for all J 2 q

1) mesh SdJL1 < €/4 and

11) N(|L|,5d,L) = N(|L|,SdJK) andIN(ILl,SdJLl)IC Q.
Suppose that C N » # #§. Then there is an n-simplex t, € L
such that t, has an (n-1)-face th1 © ﬁn. Let b be the
barycenter of tn-l’ There exists an n-simplex tﬁ € SdzL
such that b € t§, t; N M? = t! . 1s an (n-1)-face of t,
and |Tt| c Intyy|T,|. IfCn M #8, let R =
Sd,L - {t!,t! ) and S = é;_l; ifcnM =g, let B = sd,L
and S = #. In either case, |R| is link collapsible on |S|.
Furthermore, if C N M2 % g, then || n M? 1s 1link collaps-
ible on |s| n M = |££_1|. Let J = N(|R| - |s|,8d,,K).
Then J is a subcomplex of N(|L|,qu+4Ll) and thus |J| < Q.
From theorem 1 of [11] it follows that |J|is a compact,
connected PL n-manifold in M such that |J| N M* = # 1f
cnM =g, and |J| 0 ¥ 1s a PL (n-1)-manifold in M* if
CNMgg, IfCN M =g, let L™ = |J|; otherwise, let

P =JUSd,E! and set L = |P|. If 1t is the case that

2
cn ﬁn # @, then C c IntMnLn c1® c Q an@ L? is a compact,
connected PL n-manifold in M" such that Ln n ﬁn is a PL
(n-1)-manifold in M. Since P and J are subcomplexes

of Sd K, L” satisfles 11) through iv). Since n > 2, in
the proof we have assumed that D # M?. Thus since Mp is

connected and L is compact, L® # D and 1) is also satis-

fied.,



CHAPTER II

CONNECTED MANIFOLDS
WHICH HAVE A GENERATING DOMAIN

In this chapter we will give a characterization of
those connected manifolds which have domain rank 1. It is

clear that such a manifold must be without boundary.
l., Characterization

Definition 2.1.1 An n-manifold M', n > 1, is sald to have

Euclidean compact subsets 1f for each proper compact set

C € M?, there is a homeomorphism h of the pair (C, C N M7)
into the pair (%Rn,%ﬁn).

For n > 1, let (T,1d) be a fixed PL triangulation of
R", where T 1s a simplicial complex in B such that |T| =
Rn and 1d denotes the identity map. Throughout the remain-
der of this work, it will be assumed that Bn has this fixed

PL triangulation.

Definition 2.1.2 Let (T,1d) be the given fixed PL triangu-

lation of Rn, n > 1. The set M(T) = {L|L 1s a subcomplex
of some Sd; T and |L| is a compact, connected, PL n-manifold

in B"} 1s called the set of regular submanifolds of T.

If L € M(T), then L is a finite simplicial complex in

24
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R". Therefore it is easily seen that M(T) is a countably

infinite set.

Theorem 2.1.3 Let Mn, n > 2, be a connected, non-compact

n-manifold without boundary such that Mn has Euclidean
compact subsets. There exists a sequence {ME}E;l of com-
pact, connected n-manifolds such that
1) M is collared in M%, k € 27,
i1) there is an Ly € M(T) and a relative homeomor-
phism hy of |Iy| onto M, k € Z7,

111) M} C IntMg ., k € zt, and

iv) M = ﬁ .
k=1

Proof. Since M? is a non-compact, connected n-manl-
fold, there exists a sequence {Fk};;l of non-empty compact
subsets of M® such that Fy 1s a proper subset of Fk+1 for
all k € Z+ and M = kgle. We now obtain the sequence
{Mﬁ};;l by recursive construction.

a) Suppose that k = 2. Since M has Euclidean compact
subsets and M = g, 1t follows from 1l.4.,5 that there is a
proper domain H2 of Mn with F2 C H, and a relative homeo-
morphism f, of Hy onto a domain fz(Hz) of Rn. As a conse-

quence of 1.4,6, there is an L, € M(T) such that fz(Fz) c

2
-1

Intpn|Ly| © |Ly| © £5(Hp). Define hy = £37||Ly| and set

n

M, = h2(|L2|)- Since |L2| is collared in R and f2 is a

relative homeomorphism of Hz-into Rn, it follows that h, 1s

a relative homeomorphism of |L,| onto Mg, and that Mg is

collared in M'. Now there exists an n-cell Co c Intgn|Ls|
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n
such that C = |Ly| where Ly € M(T). Let hy = hy||L;| and
set M? = hl(lLll). Then hl is a relative homeomorphism of
|L,| onto M?, M? is collared in M, and M? c Intmnng.

b) Suppose that k > 2 and that a finite sequence
{M?}g;i of compact, connected n-manifolds has been con-
structed such that

v) 1) and 11) are satisfied, 1 < J < k-1,
vi) Fy © In’cMnMn, 1<) <k-1, and

vii) 111) is satisfied, 1 < J < k-2,

Let Ck = Fk U Mﬁ_lg then Ck is compact and Ck ¥* Mn. Again,
it follows from 1.4.5 that there is a proper domain B of
Mn with Ck c Hk and a relative homeomorphism fk of Hk onto
a domain fy (H.) of R". By 1.4.6 there is a complex L, €
M(T) such that £, (Cy) € IntpnlL|l < |Ly| © £y (B). Define
-1
he = £ ||, | and set M7 = h (|L,|). Then h, 1s a relative
homeomorphism of lLkl onto M;, nﬁ 1s collared in M°, and
Mﬁ_l = Intmnmﬁ. It 18 clear that the finite sequence of
n. k

compact, connected n-manifolds {MJ}Jal satisfles the recur-
sive hypothesis for k+l. Therefore 1t is possible to con-
struct a sequence {Mﬁ]ﬁ,l of compact, connected n-manifolds

with properties i) through iv).

Lemma 2.1.,4 Let (T,1d) be the given fixed PL triangulation

of B%, n >2, and let {LJ]§;1 be an enumeration of M(T).

n n
There exists a domain D1 of B such that if G 1s an open
set and ILJ| C G for some J € Z+, then there is a homeomor-

n
phism h of R onto itself which is the identity outside a
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proper compact set and ILJ| c h(D?) c G,

Proof. Let (K,1d) be a fixed PL triangulation of
Q = {x¢€ Rnlxl > 0}, where |K| = Q" and 1d is the identity
map., For each J € Z+, let c(3j) = {x € Bnlxl =1/3} and for

1,3 € 27,1 < 3, let s1(J,1) = {x € RY|1/) < x, < 1/1]).

1

Set 9 = (1,0,...5,0) and choose an (n-l)-simplex tn—l c Cc(1)
o

such that q € |t,_3l. Let t, be the n-simplex which is the

convex hull of p U |t _;|, where p = (0,...,0). For each

+
J €2, let E, = t; N S1(J+1,J). Then for all J € 2", E;

is a PL n-celi in Qn and in Rn.

We now begin the construction of D?. For each J € Z+,
there exists a PL homeomorphism 1J of R" onto itself which
1s the identity outside a proper compact set such that
1,(lLyl) = M © Int By, Note that Mj is a PL n-manifold
in both R” and Q. Let I" be the unit n-cube, and set
A= {x¢€ Inlxn = 0} and B = {x € Inlxn = 1}, By recursive
construction a sequence {f,}]_ of embeddings of I” into
Rn can easily be congtructed such that

a) {fJ(In)]”=1 1s a disjoint collection of PL n-cells

in Bn and Qn;

b) for all § € z°, £,(I") < Intgn(E; U Eyp);

¢) for all j € 2", £,(1") N Ey = EY 1s a PL n-cell in

B" and Q7, and £4(I") N Eyyy = FYy 1s a PL n-cell in
Rn and Qn;
d) for all J € z%, £,(I") N C(3+1) 1s a PL (n-1)-cell

in B” and Q
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e) for all j € z%, fJ(In) n M? = £4(A) is a PL

(n-1)-cell in R" and Qn, fJ(A) c ﬁn; and
£) for all 3 € z', fJ(In) n n§+1 = £,(B) 1s a PL

(n-1)-cell in BR® and Q°, £,(B) © M?+1.

Figure 2.1

Let M* = (ngmg) U (ngfJ(In)). It is easily seen
that M" is a PL n-manifold in Q". It follows from 1.4.4
that M" is collared in Q  and hence from 1.3.17 that M 1is
collared in R®. Since Can(EanMp) = EdBnMn U p is compact,
we can choose a tapered collaring D? of mp in Rn such that
the support of D? is compact. Now suppose that J € Z+ and
that G is open in B, |L;] ¢ G c B". Let G; = 1,(G); then

Gy 1s open in Rn and M? c Gl' Define

1 gs J=1
PJ "{ J-1 -1 .} ’
J l(I ) U (q 1 q) ’=FJ 1 u ( UlE )9 J>1

Py = £5(1") U (0,080 U =B U (8,,08) Up, ana

3 =j+1q

N? = R" - Int_, M,. Since |L;| = |Ly| for some x > 1,

BRn™g
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we may assume that jJ > 1. Then N? is a PL n-manifold in
R" and Pi and Pi are PL n-cells in Ng and Rn. Furthermore

Qﬁ = Pﬁ - (boundary of EdNnPﬁ) is a collared relative N?

n-manifold and Can(EdN?QJ) - E:deQ‘1 (boundary of

EdN?Pﬁ) = N“P n Nn n-l' x = 1,2, where S?'l =
J
n-1

boundary of fJ_l(B) and 82

= boundary of fJ(A).

g,(B%(1))

Figure 2.2

Therefore it follows from 1.3.12 and the remark following
1.3.22 that there exist embeddings 8 and 8, of Bn(l) into
N? such that

a) g (B'(1)) n &,(B%(1)) = g3

®) g (B2(0)) = B 0 M) = P 0 N, k= 1,25

c) g (8%(1)) n M = g, (8%(0)), k = 1,25 and

Q) g (B°(3) = P, k = 1,2.
Note that M" c H? U Pl V) P2. Now since Gl is open and

J J
8x(BR(0)) € G5 k = 1,2, there is a t € (0,3) such that

g (B(t)) € Gy, k = 1,2, Define g : B" = B” by

s {x, x ¢ 81 (8°(1)) U g,(8"(1)) }
g(x) = .
geh(t, el (x), x € g (B7(1)), k = 1,2
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Then g 1s a homeomorphism of Bn onto itself which 1s the
identity outside a proper compact setj that is g € CH(Bn).

Furthermore g(Mn) Cc G, and glM? = 1d. Let G2 = g'l(Gl);

1

then G, is open and Mn c G Since D? i1s a tapered collar-

2 2°
ing of Mp with compact support, there is a homeomorphism

hy € CH(R") such that h)|M" = 1d and h;(D]) €G,. Let

20
h = lslghl. Then h € CH(R") and |LJ| c h(D?) c G; and the

proof is complete.

Henceforth Dg will always denote the tapered collar-
ing of M defined in the proof of the last lemma.

Theorem 2,1,5 Let Mn, n > 2, be a connected, non-compact
n-manifold without boundary such that Mn has Euclidean
compact subsets. Then Dg is a generator of Mn.

Proof. As a consequence of 2.1.3 there 1s a sequence
{M;};_l of compact, connected n-manifolds such that 1) Hﬁ
1s collared in M', k € z*; 11) there is an L, € M(T) and a
relative homeomorphism hy of |L,| onto M, k € z%5 111)

u; c Int"§+1’ k € z*; and iv) M = kglnﬁ' It follows from
1.3.17 that there is a collaring CM, of M in IntM . and
a collaring Cc|L, | of |L | in B". From 2.1.4 it follows
that there is a homeomorphism fk € CH(R™) such that

lL, | £, (D]) ccliyls and from 1.3.9 1t follows that there
is a relative homeomorphism hi of C|Lk| onto CME which is
an extension of h . Then for all k € Z°,

M; c hﬁ(fk(D§)) c IntM§+1. Therefore D? generates M-,
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Theorem 2.1.6 Let M', n > 2, be a connected n-manifold
without boundary. Then M? has a generating domain if and
only if M* has Euclidean compact subsets.,

Proof. Suppose that M? has a generating domain D,
and let K c M” be a proper compact subset and x € m - K.
Since n > 2, G, = M' - X 1s a domain of M', Since D is a
generating domain for Mp, there 1s a domain Dl’ with
K c Dl c Gl’ and a homeomorphism fl of D onto Dl‘ Since
M? is an n-manifold, there is a proper domain G2 of M* and
a homeomorphism g of %Bn - %ﬁn onto Gz. Since D also gen-
erates Gz, there 1s a domain D2 c G, and a homeomorphism
f, of D onto D,. Let f = g lr, 7",
homeomorphism of (K,#) into (3R", ﬁn), and thus M" has

2
Then f|K induces a

Euclidean compact subsets.,

Now suppose that M? has Euclidean compact subsets.
If D is a proper domain of Mn, then D 1s a connected, non-
compact n-manifold without boundary which has Euclidean
compact subsets, It follows from 2.1.5 that D? generates

D. Since D was arbitrary, D? is a generating domain for

.

Corollary 2.1,7 Suppose that Mn, n>2, is a closed con-
nected n-manifold, Then Mn has a generating domain if and
only if Mn is an n-sphere.

Proof. If M is an n-sphere, then clearly M® has a
generating domain., Now suppose that M has a generating

domain. Let B" be an n-cell in Hn such that én is bi-col-
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lared in Mn. Since Mn has Euclidean compact subsets, it
follows from 1.4.5 that there is an embedding h of L? =

M* - IntB” into S® such that h(L®) = h(B") 1is a bi-collared
(n-1)-sphere. Since Frsnh(Ln) = h(én), it follows from [2]
that h(L") and 1" are n-cells. Therefore M" is an

n-sphere.,

Although each open connected subset of s has D? for
a generating domaln, it is not true that every connected
n-manifold with a generating domain is homeomorphic to a
domain of Sn. Examples of such manifolds are considered in

(12].

2. Compact, connected n-manifolds with

W 4 ¢ and DR(M®) = 1

Theorem 2.2.1 Let Mn, n 2 2, be a compact, connected

n-manifold such that M® # ¢ and DB(;n) =1, Then M® can be
embedded in Rn such that ﬁn is bi-collared in Rn.

Proof. Let Mg = M7 x [0,1) U, M” be an abstract col-
laring of Mn. It follows from 1.3.14 that Mg has a genera-
ting domain. Since Mt c ME is a proper compact subset and
M2 s bi-collared in Mg, it follows from 2,1.6 and 1.4.5

that Mn can be embedded in Rn in the required manner.

Definition 2.2.2 Let {B )0, a4 € Z', be a disjoint col-
lection of n-cells contained in S, n > 2, such that BE,

1l <k <gq, 1s bi-collared in Sn. A space X which 1s homeo-
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morphic to st - (kngE) i1s called a punctured n-sphere
(with q holes). A space X which is homeomorphic to

s? - (kQIIntBﬁ) is called a compact punctured n-sphere
(with q holes).

The following result follows immediately from 2.2.1,
2.1.7, and the fact that a l-sphere i1s the only closed

l-manifold with domailn rank 1.

Corollary 2.2.3 Let Mn, n > 2, be a compact, connected

. o
n-manifold such that M® # # and DR(M?) = 1. If DR(C) =1
for all comporents C of ﬁn, then M" is a compact, punctured

n-sphere.



CHAPTER III

CONNECTED MANIFOLDS WITH BOUNDARY
WHICH HAVE DOMAIN RANK 2

Because of invariance of domain in manifolds, it is
clear that an n-manifold M with boundary has DR(M%) > 2,
In this chapter we give a characterization of those connec-

ted n-manifolds with boundary that have domain rank 2.
1. Characterization

For n > 1, let (Tl,ld) be a fixed PL triangulation of
%Bn, where T, 1s a simplicial complex of R" such that
|Ty| = 3R™ and 1d denotes the identity map. Throughout the
remainder of this work, it will be assumed that 3R" has

this fixed PL triangulation.

Definition 3,1.1 Let (Tl,id) be the given fixed PL trian-
gulation of %R, n 2 1. The set R(T,) = {L|L is a subcom-
plex of some 54, T, |L] 1s a compact, connected PL n-mani-
fold in %Bn which 1s a relative 3R" n-manifold, and L] n
38" 1s a PL (n-1)-manifold in 3R"} is called the set of

regular, relative submanifolds of T,

Note that R(Tl) is a countably infinite set.

Theorem 3,1.2 Let Mn,n > 2, be a connected, non-compact

34




35

n-manifold with boundary such that Mn has Euclidean compact
subsets. There exists a sequence {M;};=l of compact, con-
nected, relative M’ n-manifolds such that
1) Mﬁ is collared in M%, k € Z+;
11) there is an L, € R(T;) and a relative homeomor-
phism h, of |Ly| onto M., k € Z';

111) M c IntMl,, k € Z'; and

1v) o =0y

Proof. Since M" is a non-compact, connected n-mani-
fold with boundary, there exlists a sequence {Fi};=l of non-
empty compact subsets of M* such that F, © P4y and F n
M £ g for all k € z*; and M* = U/F, . We now obtaln the
sequence {Mﬁfzzl by recursive construction.

a) Suppose that k =2, Since M? has Euclidean compact
subsets and ﬁn ¥ @, 1t follows from 1.4.5 that there is a
proper domain H2 of M with F2 c H and a relative homeo-
morphism f2 of H2 onto a domailn fz(Hz) of %Rn; that 1is, f2
induces a homeomorphism of the pair (Hz, H, n ﬁn) into the
pair (38", iR")., As a consequence of 1.4.6, there is an
L, € R(T;) such that £,(Fp) < Intyp |Lyl < |1yl = £5(8,).
Define hy = £, IIL | and set mn = h,(|L,]). since |L,| 1s
collared in 3R and f2 is a relative homeomorphism of H,
into 3R, 1t follows that h, 1s a relative homeomorphism of
|L2| onto Mg, and that Mg is a relative M  n-manifold which

is collared in Mp. Now there exists an n-cell Cn c

IntypnlL,| such that ¢® = |Lq| and |1 | N 38" 1s a PL
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n
(n-1)-cell in 3R, where L; € B(T;). Let h; = hy||L,;| and
set M? = hy(|Ly]). Then h) is a relative homeomorphism of
IL,| onto M}, M2 1s a relative M n-manifold which is col-
lared in Mn, and M?

b) Suppose that k > 2 and that a finite sequence

c IntmnMg.

k-1
{Mg}J=1 of compact, connected, relative M* n-manifolds has
been constructed such that
v) 1) and 11) are satisfied, 1 < J < k-1;
n

vi) FJ c IntmnMJ, 1<) <k-1l; and

vii) 111) is satisfied, 1 < J £ k=2.
Let C,_ = F, U M 1; then C, 1s compact, C, N M" # #, and
Ck # M*., Since M" has Euclidean compact subsets, it fol-
lows from 1.4.5 that there is a proper domain Hk of M* with
Ck c Hk and a relative homeomorphism fk of Hk onto a domain
fk(Hk) of 3R". By 1.4.6 there is a complex L, € B(Tl) such
thit £,.(C,) € IntypnlL, | < L, | © £ (). Define n =
f; ||Lk| and set Mﬁ = hk(ILkI). Then h, 1s a relative
homeomorphism of ILkI onto ME, Mﬁ 1s a relative M n-mani-
fold which is collared in M', and Mo, < Inty,Mi. It is
n

clear that the finlte sequence {Mj}jil
ted, relative Mn n-manifolds satisflies the recursive hypo-

of compact, connec-

thesis for k+l. Therefore it is possible to construct a
sequence {M;}§=l of compact, connected, relative M" n-mani-

folds with properties i) through iv).

Lemma 3.,1.3 Let T, be the given fixed PL triangulation of

1
3R", n > 2, end let {LJ];;I be an enumeration of R(T)).
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There exists a domain Dg of %R", Dg

G is an open set and |LJ| C G for some j € 2', then there

n %R™ # @, such that if

is a homeomorphism h of %Rn onto itself which is the iden-
tity outside a proper compact set and ILJ| c h(Dg) c G.
Proof. Let (K,1d) be a fixed PL triangulation of
Q' = (x € %Bnlxl > 0} where |K| = Q" and 1d 1s the identity
map. For each J € Z+, let c(j) = {x € %Rnlxl =1/3} and
for i, J € z+, 1 < 3, let s1(J,1) = {x € 3R%|1/) < x, < 1/1}.
Set q = (1,0,...,0) and choose an (n-1)-simplex t 6, © c(1)
such ghat toq N %ﬁn =t, > 1s an (n-2)-face of t,_; and
a € |t ,l. Let t be the n-simplex which is the convex
hull of {p} U |Eh_1|. where p = (0y...50). For each jJ € Z+,
let E, = t_N sl(J+1,)). Then for all J € zt, E, is a PL

J

n-cell in 3R" and Q'3 and E, N 3R® is a PL (n-1)-cell in

J
1R" and Q7.

We now begin the construction of Do. Por each J € Z+,

2‘

there exists a PL homeomorphism 1, € CH(3R") such that

J
c

lJ(lLJ|) - M? Int%RnEJ‘ Note that M? is a PL, relative

3R" n-manifold and also a PL, relative Q° n-manifold. Let

n

I be the unit n-cube, A = {x € Inlxn =0}, B= {x € 17

x = 1}, and C = {x € In|xn_1 = 0}. By recursive construc-

tion a sequence {f of embeddings of I" into %R" can

o0
J}J=1
easlly be constructed such that

a) {fJ(In)}E;l is a disjoint collection of PL n-cells
in 3R" and Q®;

b) for all J € Z+, fJ(In) n %ﬁn = fJ(C) is a PL (n-1)-



d)

e)

r)

g)

h)
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cell in #R™ and Q";
for all j € z', fJ(In) C Intyp () U Ey o)
for all j§ € Z', fJ(In) N E, = E, 1s a PL n-cell in

J J

= F' 1s a PL n-cell

3™ and Q", and fJ(In) N Eyn /

in 3R" and Q";
for all § € zt, Bt n 38" = EY' s a PL (n-1)-cell in

J
38" and Q®, and Pt N iR" = P{'1s a PL (n-1)-cell in
3R" anad Q";

for all j € z%, fJ(In) N c(j+l) = E?-l 1s a PL
(n-1)-cell in 38" and @7, and E§™' 0 48" = E]~2 1s
a PL (n-2)-cell in #R" and Q".

for all j € z', fJ(In) n M? = £,(A) 1s a PL (n-1)-
cell 1n 8" and Q7, f,(4) © Ed%RnMn, and £,(A) N
3" 1s a PL (n-2)-cell in #R" and Q";

for all j € z', £4(1%) N M, = £,(B) 1s a PL

341

n n
(n-1)-cell in #8" and Q7, f,(B) < Edy M) ;. and

fJ(B) n %ﬁn is a PL (n-2)-cell in %Rn and Qn.

———_"——__/—1—_.

, F3
iﬁﬁf)r17?ﬁ_hdm.p;¥£¢‘

?
F3

Figure 3.1




39

Let M = ( u M) U ( u f, (I")). Then 1t is easily
seen that M~ 1s a PL n-manifold in Q@ and that M® n Q®
M* n 38" is a PL (n-1)-manifold in Q®. Therefore it fol-
lows from 1.4.4 that M is collared in Qn and hence from
1.3.17 that M" is collared in 3R". Since Cl%Rn(Ed%RnMn) =
Ed%RnMn U p 1s compact, we can choose a tapered collaring
Dg of M* in %Bn such that the support of Dg is compact.
Now suppose that G is open in 3R", Lyl €6 < 3R". Let
Gy = 1,(G); then G) 1is open in 1p" and M? C Gy. Define

g, 3 =

1 ?

Py = - -1

J '{f3_1<1“> o Q@E) =P U CUE), 3> )

q=l"q J-1 q=1 q
2 -'
PJ f(I)U(UJ+lE)Up-JU(UJ+1Eq)Upsand
n= -
N} 3R1 Int%RnM?.
Since |Ll| = |L, | for some k > 1, we may assume that j > 1.

Then N? 1s a PL n-manifold in 3R" and N? is a relative %R"

n-manifold. Furthermore, Qk = Pk - (E4 nPk N Ed nNn) is a
3TN L S IR 3: L
collared, relative Nn n-manifold and

k

Cl Ed = Ed ) 4
y(BoyQ)) - By = Byt
fore it follows from 1.3.12 and the remark following 1.3.22

) - Edyn n Ed%RnN?, k = 1,2, There-
that there exist embeddings g; and g, of (#B"(1) ,Bg'l(l))
into (Nn,N? n 38™) such that

a) g (387(1)) N &,(387(1)) = #;

n k _ oK - .

b) & (3B7(0)) = Py N M? =P N Ed%RnN?, K = 1,2;

¢) g (387(1)) n M} = g, (38%(0)), Xk = 1,2; and

1) g (38%(3)) = PY, k = 1,2,
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Figure 3.2

Note that M* c n? U Pﬁ u Pi. Since G, is open in #R" and
gk(éB“(o)) C© Gy, k = 1,2, there is a t € (0,3) such that
gc(387(t)) © Gy, k = 1,2. Define £ : 38" ~ 38" by
x, x ¢ g (387(1)) U g,(387(2))
£(x) = { ge(t,Heg(x), x € g (387N | .
8,8(t,3)831(x), x € g,(387(2))
Then f € CH(3R") such that f£(M*) c Gy and r|n? = id. Let
5 = f-l(Gl); then G, is open and .l G,. Since Dg is a
tapered collaring of M with compact support, there is a
homeomorphism hy € CH(3R") such that hy|M® = 1d and
hl(Dg) CG,. Let h= 131fh1. Then h is a homeomorphism
of %Bn onto itself which is the identity outside a proper

compact set and lel c h(Dg) c G.

Henceforth Dg will always denote that tapered collaring
of Hn defined in the proof of the last lemma.

Theorem 3.1.4 Let Mn, n > 2, be a connected, non-compact
n-manifold with boundary such that Mn has Euclidean compact

subsets. Then Dg is a generator of Mn.



41

Proof. As a consequence of 3.1.2, there i1s a sequence
{"§T§=1 of compact, connected, relative M' n-manifolds such
that 1) Mﬁ is collared in M%, k € Z+; 11) there is an
L, € R(Tl) and a relative homeomorphism hk of ILkI onto

+ + ®
M, k € 275 111) nﬁcmtv{{’ﬂ, x € z¥; and 1iv) ankgl .
It follows from 1,.3.17 that there is a collaring CME of Mﬁ
in IntME+l and a collaring C|L,| of |Lk| in #R®. Prom
3.1.3 it follows that there is a homeomorphism fk € CH(%Rn)
such that |L | < fk(ng) cc|L,|, and from 1.3.9 1t follows
that there is a relative homeomorphism h! of CILkl onto
CME which 1s an extension of hk‘ Then for all k € Z+,
Hﬁ c hi(fk(Dg)) c IntM§+1. Therefore Dg generates M since

M = kglhl'((fk(Dg)) and ht(f, (D3)) is open in W%, k € z*,

Theorem 3.1.5 Let M, n 2 2, be a connected n-manifold
with boundary. Then DR(M") =2 if and only if M" has
Euclidean compact subsets,

Proof. Suppose that DR(M®) = 2 and that {D;,D,} 15 &
set of generating domains for M®. Since DR(M") = 2 and
ﬁn # #, we may assume that D, 1s an n-manifold without
boundary and that D, 1s an n-manifold with boundary. Let
K c M be a proper compact set, If X € ﬁn, then K U x = K,
1s still a proper compact set., Let y € M - Kl and set
G, = M? - y. Since n 2 2y Gy 1s a domain of M* such that
Gy N ﬁn ¥ #§. Therefore D, must generate G, and thus there
is a domain Hl’ Kl c H1 c Gl’ and a homeomorphism fl of the

pair (D,,D,) onto (E),H) N M) = (H ,H; N G;). Since
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M® # @, there is a homeomorphism g of the pair (3R",3R")

onto the pair (G,,G, N M) where G, is a proper domain of

2
Mn. Since Do must also generate Gz, there 1s a domain

H, € G, and a homeomorphism f, of (D2,D2) onto (H2,H2 n Mn).

-1
1 L]
(K,K N M) into (3R",3R"). Thus M" has Euclidean compact

2
-1
Let f =g f2f

Then f|(K,K N ﬁn) gives an embedding of
subsets.

Now suppose that Mn has Euclidean compact subsets. If
D 1s a proper domain of Mn, then D is a connected, non-
compact, n-manifold which has Euclidean compact subsets.
If 5 = @, then it follows from 2,1l.5 that Dg generates D.
If ﬁ # #, 1t follows from 3.1.4 that D® generates D. There-

2
fore DR(M®) = 2.

Bemark. It follows easily from the last theorem that if an
n-manifold Mn, n > 2, with boundary has DR(Mn) = 2, then

each component of M is an open (n-l)-manifold.
2. Some special manifolds of domain rank 2

Definition 3.2.1 Let Mn, n > 2, be an n-manifold such that
o .
M* £ 8P and M I B""1, Then M® 1s called a K-R manifold.

Theorem 3.2.2 If M" is a K-R manifold, then DR(M?) = 2,

Proof. Suppose that M" is a K-R manifold, n # 3. Then
1t follows from [7] that M = 3B™ and thus DR(M®) = 2. Now
suppose that n = 3 and let (L',f') be a PL triangulation of
Mo (the existence of such a triangulation follows from
[1]). As remarked in [8], it is possible to extend (L',f')
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to a PL triangulation (L,f) of an abstract collaring
M2 = ¥ x [0,1) u_ M of ¥. Let M, ¥ x [0,1), and M3 be

identified with thelr respective embeddings under the iden-

tification p ﬁB x [0,1) + M3 - MZ. Suppose that K 1s a

compact set, K C MB. Since (L,f)If'l(I.‘I3 x [0,1)) gives a
PL triangulation of ﬁB x [0,1) 2 %RB, there exists a PL 3-

cell D° in MZ such that D3 c M3 x [0,1), D> N M3 is a PL

. (o]
2-cell D? in m3, and k n M c D?. Let 57 denote the
3
c’
in the 3-sphere Sz. Since D3 is PL in Mg, 53 is a bi-col-

l-point compactification of M and consider MZ as embedded

lared 2-sphere in 83. Therefore S% - IntS;D3 i1s thus a 3-

cell B2 and B2 = DJ. FPurthermore, K C B> and K N M° =

(] [ ] o [ ] L]
K n B3, sSince K N B3 c D? c B3, there is a point x € B> - K

such that K c B3 - X, Therefore, there 1s an embedding h
of (K,K N M3) = (K,K N B3) into (B’ - x, boundary(B> - x)).
Since B? - x = %BB, M2 has Euclidean compact subsets and it
now follows from 3.1.5 that DR(MB) = 2,

n
Definition 3.2.3 Let M 4, n > 2, be an n-manifold such that

o .
. E B" and Mn has two components, both of which are homeo-

morphic to Rn-l, then M" 1s called a pseudo n-slab, If M"

1

1s homeomorphic to R™ " x [0,1], then M® is called an

n-slab,

Theorem 3.2.4 If M’ 1s a pseudo 3-slab, then DR(M’) = 2,

Proof. Suppose that M3 i1s a pseudo 3-slab and that Ri

and B5 are the components of M, Let (L',f') be a PL tri-
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angulation of M3. It is possible to extend (L',f') to a PL

triangulation (L,f) of an abstract collaring M3 =

2 2 2
3 of MB. Consider MB,RI,RZ,RI x [0,1), and

x [0,1) as embedded in HZ

W x [0,1) U_ M
2

"2 %, 1,2

p s M x[0,1) + ¥ = N. Note that (L,f)|t™ (8BS x [0,1))

under the identification

2 T .3
gives a PL triangulation of R_ x [0,1) = 2R°, k = 1,2. Let

K c M3 be a compact set. There exist PL 3=-cells D3 in MB,

2
3 N Bz = D, is a PL 2-cell in

such that D3 c B x [0,1), Dy 1 1

MZ, and K N Hf c D2 for £+ = 1,2, Let Si be the l-point
compactification of Mc and consider MZ as embedded in the
3-sphere Sf = M3 U p. Since K1 =K U Di U Dg is compact in
2 2 RB, there is a PL 3-cell B3 in M3 such that Kl =
IntMgBB. Therefore we may assume that Si has a PL triangu-

2 2
lation (J,g) obtained by extending (L ,f||L|) where |L2| =

- 2
by l(BB) and L 1s a subcomplex of some subdivision of L.

3 3 3 3 3 2 2
Let F% =K U D2, F2 =K U Dy, D3 =8, - IntB , S1 = R1 U p,
and 82 = Bg Up. Foril=1,2, Az = B3 - IntDz is a PL 3-
3 3 - &2 2 3 2

annulus in S1 Sin;e F1 n D1 c D1 c D1 = D1 n S1 and

1 B3 ¥ 7, A] - D1 lies in some component of Ag - Fi’

i1 =1,2, Therefore there exist PL 3-cells Bz in 83
B3 c A7 - P, such that B} N DJ and B n B3 are PL 2-cells

in S3 i1 =1,2, PFurthermore, we can construct B% and Bg
so that B% n Bg = @, Therefore it follows from the results
of chapter 3 of [15], that E% =pj uBuU Dg u Bl UDJ 1s
a PL 3-cell in 83, Let EJ = S7 - IntEJ; then EJ 1s & PL

3 such that K< E3, KN M =K N E3 and

3-cell in S1 29
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K N EJ # EJ. Let x € Eg - K and set L° = Eg - X. Then

there is an embedding h of (K,K N M3) = (K,K N Eg) into

37T 3

(L3,L3). Since L° = %Rj, M’ has Euclidean compact subsets

and 1t follows from 3.1.5 that DR(MB) = 2,

In contrast to 3.2.2 we have the following theorem about

pseudo n-slabs.

Theorem 3.2.5 Let M’y n > 4, be a pseudo n-slab, Then M°
is an n-slab if and only if DR(M') = 2,

Proof. 1If M* is an n-slab, then there is an embedding
h of (Mn,ﬁn) into (%Rn,%ﬁn) and thus DR(M") = 2,

Now suppose that DH(Mn) = 2, Let Mg =

M x (0,1) Ug M? be an abstract collaring of M®. Since

Mg L R?, we may assume that Mn = RO, M? ¢ R® and that the

components Ri and Rg of Mn are bi- collared, closed subsets

of B'. For n > 0, let SO = {x € Bn+1| |xk| Then

Rn+1

Sg i1s a combinatorial n-sphere in s and the suspenslon

of Sg in Rn+2 may be taken to be sﬁ*l. We now employ the

technique which Greathouse used to prove the theorem of

[10]. Let S® = R® U {p} be the l-point compactification of

1
B® and let si~" = 8?1 U {p}, 1 = 1,2. It follows from the
corollary to theorem 2 of [6] that Sn'l is bi-collared in

i

S? for 1 = 1,2, Therefore we may assume that S = So,

P = (0’010,0,1’0), S;l-l = Sg-l’ and that Sg-l lies in the

northern hemisphere of 88 with S?'l n 32-1 = {p}. Let B%!

be a combinatorial (n-1)-cell such that BR~1 c sg‘l and
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°n-1

p € B . Let r be the south pole of Sg, q the midpoint of

the line segment Joining p to r in Sg, L the 1line segment
Joining p to q in Sjj, and Bg, Bg the cones (n-cells) in Sg
with base B! and cone points q, r respectively. Let
Sg'l = (Slzi_l'1 U ég) - gn-l. Then Sg'l is a bi-collared
(n-1)-sphere in Sg and Sg'l n Sg-l =@, Let u € Rg'l and
v € Rﬁ-l - B®1, fThen there exists an embedding £ s I — M°
such that £f(0) = u, f(1) = v, and £(0,1) C ;n. Since
DR(M?) = 2, it follows from 3.1.5 and 1.4.5 that there is a
proper domain G C Mn, f(I) € G, and an embedding h of
(G,G‘ﬂ M?) into (38",3R"). Therefore there exists and n-
cell F© ¢ M® such that F* N S?"l is an (n-1)-cell, i = 2,3,
Thus A" = N" U Bj is an n-annulus. From this point the
proof proceeds exactly as the proof of the theorem of [10]
to show that M® is an n-slab; and thus the remainder of the

proof will be omitted.



CHAPTER IV

MANIFOLDS WITH COMPACT BOUNDARY
WHICH HAVE DOMAIN RANK 3

It is clear that if M° is an n-manifold with boundary,
n 2 2, such that some component of Mn is compact, then
DR(M") 2 3. In this chapter we will characterize those n-

manifolds with compact boundary which have domain rank 3.

l. A generator for a certain dominion

of a compact, punctured n-sphere

Definition 4.1.1 A homeomorphism h of S onto itself is

called strictly stable if h is the identity on a non-empty

open set., A homeomorphism h of s® onto 1tself is called
stable if h is the product of a finite number of strictly
stable homeomorphisms of s®. sH(S™) will denote the group

of stable homeomorphisms of Sn.

Lemma 4.1.2 Let {Bﬁ}ﬁgl be a finite disjoint collection of

n-cells contained in Sn, n > 2, such that ﬁi 1s bi-collared
n

in S, 1 <k <q. Suppose that Mn 1s a connected n-mani-

fold, M c Sn, and that h, and h2 are stable homeomorphisms

1
(o]
n n
of S© onto itself such that kngk c Inthi(Mp) = hi(Mn),
1 = 1,2, Then hl(Mn) - X

Proof, Let h = h2h1

n oq n n
1 n n n
and L = hl(M ) Then h € SH(S )

47
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and U, B’ c IntL” N Inth(L"). It suffices to show that
(L") - .8 Inth(B]) 1s homeomorphic to h(L®) - 3 IntE].

For each k, 1 <k < q, let Cx € IntB;. Since n > 2 and h
1s a homeomorphism, there exists a disjoint collection
(D)) of n-cells contained in Inth(L") such that D is
b-collared in S and {e,} U {h(c,)} c Int D, 1 <k < q.
Therefore there exists a homeomorphism 8 of Sn onto itself

q n
kglIntDk) = id and gy (h(ck)) = ck,
l1<k<q. Forl <k <aq, let Uk be a neighborhood of Cys

cy € Uy © IntBE and let Vi be a neighborhood of h(ck),

n
h(ck) € Vk c Inth(Bk) such that gl(Vk) c Uk' Since

{n(E])}, 2, is a disjoint collection of n-cells with bi-

such that gll(Sn -

collared boundaries, there is a disjoint collection {Cﬁ}kgl

of n-cells contained in Inth(Ln) and a collection of embed-

n

k’

£, (E"(3)) = h(B,), and £, (0) = h(c,), 1 <k < q, where
k k - =

q n n n
dings {fk}k=l of E into S such that fk(E ) =C

EN(%) = {x € Enld(x,o) < #}. Therefore there exists a
homeomorphism g, of s onto itself such that 8, restricted
to (s - kglIntCE) = id, and such that for 1 < k < q,
gz(h(ck)) - h(ck) and gz(h(BE)) C V.. Then g = g8, 1s a
stable homeomorphism of Sn, glh(Ln) i1s a homeomorphism of
h(Ln) onto 1tself; and g(h(BE)) c IntB; for 1 <k < q.
Since éﬁ 1s a bi-collared (n-l)-sphere in Sn, it follows
from 9.1 of [5] that B; - Intg(h(B;)) is an n-annulus,

1 <k <q. Since {BE}Qil 1s a disjoint collection of n-

cells with bi-collared boundaries contained in Inth(Ln),
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there is a homeomorphism f € SH(Sn) which carries
h(Ln) - kgllnt(B;) homeomorphically onto
n n n n,, T
n(L?) - B Intg(n(B)). since n(L") - 8 Inte(n(g))) 2
n(L®) - kgllnt(Bﬁ) and glh(Ln) is a homeomorphism of n(L")
n n T n n
onto 1tself, h(L") - 8 IntB] & n(L™) - kQllnth(Bk) and the

desired result is established.

Theorem 4,1,3 Let Mn be a compact, punctured n-sphere with

qQ holes, n > 2, There is a proper domaln D C Mn, ﬁn c D,
such that if G is a proper domain of Mn, ﬁn c Gy, then D
generates G,

Proof, Let p be the north pole of s™. Without loss

o
of generality we may assume that Mn = Sn - kngE' where

{B;}kzl 1s a finite disjoint collection of n-cells with
o
bi-collared boundaries, and that p € Mn = IntsnMn. We will

consider R® = |T| as embedded in S® as the subspace

n

S” = {p} under an embedding e.

Let G be a proper domain of Mﬁ, Mn C G, Since G is a
proper domain, there exlists a g € SH(Sn) and an x € Mn -G

qQ n
such that g(x) = p and gl(kngk) = 1d. Let G, = g(G) and
q n n
set G2 =Gy U (kngk). Then G2 is a domain of R, It fol-

lows from 1.4.6 and 2.1.4 that there is an h € SH(Sn) which
is the identity in a neighborhood of p, such that

Q n n n 8 n
kY1By © h(Dl). Let D = h(Dl) - k=1IntBk; then D is a pro-
per domain of Mn, M c D. Since G2 1s a domain of Rn, it
follows from 1.4.6, 2.1.4, and the fact that R* has a PL

triangulation (T,e), that there is a sequence {fj}?=l of
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elements of SH(S™) such that
1) for all j € 27, £, 1s the identity in a neighbor-
hood UJ of p3;

11) for all J € z*, J;B; © £,(D)) € £,,,(D]) €G3

111) G, = U; J(Dl)
For all § € Z', define g, = g7 f;h7". Then (g,)%, 1s a
sequence of stable homeomorphisms such that for all
j € Z+, kngE c gJ(h(D§)) c gj+l(h(D?)), and such that
¢ = 0 (gy(n(o])) - 3 mtB)). It follows from 4.1.2 tat
for all J € z', gJ(h(Dg)) 3 L IntB; = h(Dl) - QllntBE =D

and thus D generates G.
2. Characterization

Lemma 4.2,1 Let Mn, n > 2, be a connected n-manifold with

boundary such that DR(Mn) = 3, If ﬁn has a compact compo-
nent, then ﬁn is an (n-l)-sphere.

Proof, Suppose that C is a compact component of ﬁn.
Let {Dl’DZ’Dj} be a set of generating domains for M. We

may assume that D. is an n-manifold without boundary, that

1l
D2 is an n-manifold with boundary such that all components
of 52 are open (n-l)-manifolds, and that D3 is an n-mani-
fold with boundary such that C c 53. Suppose that M2 #C
and let x € ﬁn - C, Since Mn is a connected n-manifold,
there exists an embedding f : I = M such that £(0) € C,
f(1) = x, and £(0,1) ;n. Since n > 2, 1t follows from
1.4.5 that there is a proper domain H1 such that

f(I) ucc Hl‘ Also it follows from 1.3.13 that there is a



51

proper domain H, of M" such that H, N M® = c. Since

C c H1 n Hz, D3 must generate both Hl and H2, which is im-
possible, Therefore C = ﬁn. Suppose that x € C, then
DR(M - X) = 2 and 1f n > 2 1t follows that DR(C) = 1.
Since C 1s a closed (n-l)-manifold, 2.1.7 shows that
cLs™lirn>2 1fna=2, thenc = s, since S* is the

only closed, connected l-manifold.

Definition 4.2.2 Let J = [-1,1] and set SA" =

Jn - (0yeee90)y, n > 2, A space X which is homeomorphic to

SAn is called an n-semi-annulus.

Definition 4.2.3 Let M, n > 2, be an n-manifold such that

M is an (n-1)-sphere. Mn is sald to have seml-annular
n
compact subsets if for each proper compact subset K c M,
(] n o
there 1s an embedding h of (K, K N M") into (SA ,SA").

Let (T,,1d) be a fixed PL triangulation of SA” where
|T,| = sA™ and 1d 1s the identity map.

Definition 4.2.4 Let T, be the given fixed PL triangula-

2
tion of SAF, n > 2, The set S(Tz) = {L|L is a subcomplex

of some SdkT2 and ILI is a compact, connected, PL n-mani-
fold in SA™ with SA® c |L|} 1s called the set of regular,

boundary submanifolds of T

2.

n
Theorem 4,2,5 Let M , n > 2, be a connected, non-compact
n-manifold such that Mn has semi-annular compact subsets.

There exists a sequence {ME};;I of compact, connected n-



52

manifolds such that
1) M} 1s collared in M, ¥' c M C M, k € zt;
11) there is an L, € S(TZ) and a relative homeomor-
phism h_ of |Lk| onto Mﬁ;
+
111) ME c IntM§+l, k € 273 and
1v) M® = _U. M2,
k=1 Me
Proof. The method of proof is similar to that of
2.1.3 and 3.1.2 and will be omitted.

Lemma 4.2.6 Let (T2,1d) be the given fixed PL triangula-

tion of sA", n > 2, and let {L be an enumeration of

}”
J =1 .
S(T,). There exists a domain Dg of sA®, saA® c Dg, such that
if G is an open set and ILJ' c G for some j € 21, then there
is a homeomorphism h of (Dn,ﬁg) into (SAn,SAp) such that

n

L c h(D c G.

Il < nod)

Proof. This is an immediate consequence of 4.1.3,

Henceforth Dg will always denote the domain of SAR

referred to in the last lemma,.

Theorem 4.2,7 Let Mn, n > 2, be a connected, non-compact

n-manifold such that M® has semi-annular compact subsets.
Then Dg is a generator of M1,

Proof. The result follows directly from 4.2.5 and
4,2,6, The method of proof is similar to that used in the
proof of 3.1.4 and the details of the proof will be omitted.

Theorem 4,2.8 Let M?, n > 2, be a connected n-manifold

with M £ s71  then DR(M®) = 3 if and only if M® has
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semi-annular compact subsets.

Proof. Suppose that DR(M') = 3 and that {D,,D,,D;} 1s
a set of generating domains for M*. Since DR(Mn) = 3 and
M is an (n-1)-sphere, we may assume that D, 1s an n-mani-

fold without boundary, D, is an n-manifold with boundary

2
such that each component of D, is an open (n-1)-manifold,

T n-=1

and D, 1s an n-manifold with D3 = S . Now suppose that

3

Kc M is a proper compact subset; then K U M = K1 is also

a proper compact subset., Let x € Mn - K1 and set

G1 = Mn - X, Sincen » 2, G, 1s a proper domain of M* with

1

Mn C Gl' Since D, must generate Gl there is a domain Hl’

3

K, © H1 C G and a homeomorphism f. of (D3,53) onto

1
(Hy,HB) N M") = (H,M"). It follows from 1.3.13 that there

is a domain G, of M and a homeomorphism g of (SAp,SAp) s

- -1
(st x r0,1),s"

x {0}) onto (GZ’GZ N M) = (Gz,nn).
Since D3 must also generate 62 there 1s a domain Hz,

of (D3,ﬁ3) onto
1

H2 c G2 and a homeomorphism f2

. [ - —1
(Hy,H, N M%) = (Hz,Mn). Let f = g f,f]". Then

. 2 .
£l (k,k N M*) glves an embedding of (K,K N M?) into
(SAP,SAF) and thus M" has semi-annular compact subsets.

Now suppose that Mn has semi-annular compact subsets,
and that G is a proper domain of Mn. If ﬁn c G, then it
follows from 4.2.7 that Dg generates G, If G N M. 4 g,

G n M £ ﬁn, then since G has Euclidean compact subsets, it
follows from 3.1.4 that D:

G N M= @, then since G has Euclidean compact subsets, it

generates G. Finally if
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follows from 2.1.5 that Dg generates G. Therefore
{D?,DS,D%} 1s a minimal set of generating domains for M2

and thus DR(M®) = 3.

Corollary 4.2.9 Let M', n > 2, be a compact, connected

n-manifold with boundary. Then DR(M®) = 3 if and only if
M? is an n-cell.

Proof. If M? is an n-cell, then M" has semi-annular
compact subsets and by 4.2.8 DR(M") = 3. If DR(M!?) = 3,
then it follows from 4,2.1 that M® £ sP-1, Since DR(M®) = 3
and M* I Sn'l, DB(;n) = 1, Therefore it follows from 2.2.3
that M" is a compact punctured n-sphere with 1 hole and

consequently theorem 5 of [2] shows that M® is an n-cell.

Corollary 4.2.10 Let M?, n » 2, be a connected n-manifold

such that M? & -1, 1f Da(;n) = 1, then DR(M') = 3.

Proof. Let M = N x [0,1) U_ M? be an abstract col-
laring of M" and consider M® and M as embedded in M2° Let
K be a proper compact subset of M}, Then K, =K U M ig
also a proper compact subset of M?, Since DR(Mg) =
DR(;n) = 1, there is an embedding h of K, into R® such that
h(ﬁn) is a bl-collared (n-l)-sphere in R®. Since M" is con-

nected, K. 1s not an n-cell and thus there is an embedding

1
g of (h(Kl),h(Mn)) into (SA™,SA"). Therefore M! has semi-

annular compact subsets and so DR(M") = 3.



CHAPTER V
MONOTONE UNIONS AND PRODUCTS

Definition 5.1.1 Let C* be a collection of non-empty
topological spaces., A topological space X is sald to be
- -]
an open monotone union of C#* if X =k21Xk where
1) for all x € zt, xk is open in X and Xk is homeo-

morphic to some element C, € C%*, and

k
+

i1) for all kx € Z7, xk c Xk+1.

X is sald to be an open, homogeneous monotone union of C#¥*

i1f X is an open monotone union of C* and for all k € Z+,
X = X

Theorem 5.1.2 Let C* be a collection of connected n-mani-

folds, n > 2, such that elther

Qe

1) for all C € C*, C = @ and DR(C) = 1;

¥ # and DR(C) = 2; or

I s0-1 .04 DR(C) = 3.

Qe

i11) for all C € C#*,

Qe

111) for all C € C*,
Let X be an open monotone union of C*, Then X 1s a connec-
ted n-manifold such that
iv) 1f 1) holds, then X = # and DR(X) = 1;
v) if 11) holds, then X # # and DR(X) = 2; and
vi) if 111) holds, then x £ g1 ana DR(X) = 3.
Proof. Let X be an open monotone union of C*, It

1s clear that X is a connected n-manifold such that if 1)

55
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holds, then X = @#; 1f 11) holds, then X # #; and if 111)
holds, then i z Sn'l. The result now follows easily from

the characterizations given in 2.1.6, 3.1.5, and 4.2.8,

Throughout the rest of this chapter the boundary of an
n-manifold M" will be denoted either by bd(M?) or M.

Theorem 5.1.3 Let M?, MK be connected n and k manifolds

respectively such that Mn, MX have Buclidean compact sub-
sets, and M 1s not compact. If elther k > 2 or M! is not
compact, then M2 x ﬁk has Eucllidean compact subsets,

Proof. Let C be a proper compact set in M2 x MS and
let 124 and Py be the projections onto M and MK respec-
tively. Define C1 = pi(c), 1 =1,2, Then
C < py(C) x py(C).

a) Suppose that k > 2. If M® is compact, then it fol-
lows from the remark after 3.1.5 that M = # and thus
¥d I SN, Therefore either c, Z s% or there is an embedding
h, of (Cy,Cy N M) into (%Rn,%ﬁn). Since M€ is not compact,

, N ) into (38Y,3R%).

there is an embedding h2 of (CZ’C
z Sn and that h1 1s a homeomorphism

1=
of C, onto s®. Then f : C, xC, ~ s® x 3R¥ defined by

f(xl,xz) = (hl(xl),hz(xz)) induces an embedding h of the

1) Suppose that C

pair (Cl X C2,01 X C2 n bd(Mp X Mk)) into the pair
(s™ x 3B¥,bd(s® x 3RK)). Since k > 2, s® x BX"L can be
embedded in R™¥~1l, and hence there is an embedding g of

(s? x 3RK,bd(s™ x 3RX)) into (3RPHK,3RP*K), Therefore
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gf|(c,c N bd(M* x M¢)) gives an embedding of
(c,c N ba(M x M5)) into (3R, 3R*) and thus M x M has
Euclidean compact subsets,

i1) Suppose that C, is not an n-sphere. Then C, ¥ M0,
C, # ¥ and there are embeddings h of (C;,C; N M%) into
(38%,3R") and h, of (C,,C, N M%) into (3BX,3R"). Define
h:Cp xC, = 38" x 3B by h(xy,x,) = (b (x)),h,(x,)).
Since 3R" x #gK T %Rn+k, h induces an embedding g of
(C,C N bd (M x MK)) into (ZR™HE,3RP*K), fTherefore M? x MK
has Euclidean compact subsets.

b) If M? is not compact, then an argument similar to
that glven in 1i) above shows that M® x Mk has Euclidean

compact subsets.

Corollary 5.1.4 Let {Mi(k)}ggl be a finite collection of

connected h(k)-manifolds such that for 1 < k < q,

prOv2(K)) o 1,
h(k)

t, th -1,

compact, en DR(kilmk ) 1

If for some Jj, 1 < J < q, M?(J) is not

Proof. This follows immediately from 5.1.3.
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