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ABSTRACT

APPROXIMATION FROM VARISOLVENT

AND UNISOLVENT FAMILIES WHOSE MEMBERS

HAVE RESTRICTED RANGES

By

J. Edward Tornga

We consider the questions of existence, charac-

terization, and uniqueness for the following approxi-

mating problem. Approximate in the uniform norm a

real valued function f e C(X), where X is a compact

set contained in the real closed interval [a,b], from

a subset of a certain family of continuous real

valued functions defined on [a,b]. The subset con-

sidered is the subset of the family lying between

two curves u and 2, where Ll> 2 .

Our family is a varisolvent family in Chapter l.

We also look at the constant error curve difficulty

in the characterization theorem for a varisolvent

family. In Chapter 2 we consider a family which is

unisolvent. Adding a Haar subspace condition to a

varisolvent family gives us strong uniqueness and

continuity of the best approximation operator theorems

in Chapter 3. Finally in Chapter 4 we consider con-

tinuous generalized weight function approximation



J. Edward Tornga

where local solvency of a varisolvent family is replaced

by property A.

Our theorems are the natural extension of the

theorems for the same problem considered by G. D. Taylor

for a linear family of functions.
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INTRODUCTION

Beginning with Tchebyshev (see pg. 224-227 of [5]

for specific details), the following problem was consid-

ered: approximate a continuous function f(x) on [a,b],

a,b real finite numbers, from a set of continuous linear

functions {P(A,x)} on [a,b] where A = (a1....,an)e: En,

Euclidean n space, and the {P(A,x)} formsa Tchebyshev

set of degree n I . That is. for P(A],x) t P(A,x), both

belonging to {P(A,x)}, P(A],x) - P(A,x) can have at most

n - 1 zeros. By 1918 existence, uniqueness, and charac-

terization of the best approximation to f on [a,b] from

{P(A,x)} were determined.

In 1949 Motzkin [16] and in 1950 Tornheim [26],

extended this type of theory to a non-linear case. Their

approximating family was a set of unisolvent functions.

That is. a set of continuous functions {U(A,x)},

A = (a1....,an)e: En’ of degree n such that given points

(xi: xi < x1+], i = 1,...,n} on [a,b] and real numbers

{y1}?=1 , there exists a unique U(A],x) belonging to

{U(A,x)} which interpolates the yi at the xi. Existence,

uniqueness, and characterization of the best approximation

 

i: all functions considered in this paper are real-

valued functions



were discussed.

Since many useful non-linear approximating families,

such as the rational and exponential functions were not

unisolvent, J. R. Rice [20] in 1961 weakened the hypoth-

eses of a unisolvent family to a locally uniSolvent

family of continuous functions {F(A,x)] having variable

degree. Rice called this family a varisolvent family.

Exponentials and rationals as well as other non-linear

functions have been shown to be varisolvent families

(see table 7.1, page 40 of [20]). Questions of exist-

ence, uniqueness, and characterization of best approxi-

mations from a varisolvent family were examined by Rice.

In 1967 C. Dunham noticed that the proofs of

Tornheim's and Rice's characterizationtheorems for the

unisolvent and varisolvent families were incomplete.

The unisolvent characterization proof by Tornheim has

been completed (see R. Barrar and H. Loeb [1]), whereas

the varisolvent characterization proof is only partially

completed (see D. Braess [4] and R. Barrar and H. Loeb

[1]). By assuming additional conditions on the vari-

solvent family, however, the characterization theorem

has been completed. R. Barrar and H. Loeb [3] gave one

such additional condition. They assumed the existence

of a Haar subspace for each member of the approximating

family in order to complete the proof (see Chapter 3).

G. D. Taylor [22], [23], and [24] among others,

has examined the situation of the first paragraph in a



more general setting along with certain restrictions on

the approximating family {P(A,x)}. In particular, the

problem was considered when the only acceptable approxi-

mations were members of {P(A,x)} whose ranges were

between two curves. Questions concerning existence,

uniqueness, and characterization of best approximations

were studied in this restricted setting.

In this paper, we will examine non-linear approxi-

mations in the restricted setting of Taylor. Restricted

varisolvent families will be considered in Chapter 1.

We wi11 also look at the completeness of Rice’s charac-

terization theorem when additional hypotheses are

assumed. Chapter 2 will consist of approximation by

unisolvent families in our restricted setting. A strong

uniqueness theorem and a continuity of the best approxi-

mation operator theorem will comprise Chapter 3. Our

last chapter, Chapter 4, will consider generalized

weight function approximation with property A in our

restricted setting.

Throughout the paper, we will of course assume that

our approximating families are non-empty.



CHAPTER I

APPROXIMATION FROM MEMBERS OF A

VARISOLVENT FAMILY HAVING RESTRICTED

RANGES

Section 1-1: Introduction and Definitions.

Let En represent Euclidean n space. For Ai 5 En.

let Ai = (aIi,a21,...,ani). Let R be the set of real

numbers. Let X be a compact subset of R with XC [a,b]

where a and b are finite and fix P a subset of En' Let

V be the set of functions {F(A,x): Px[a,b] ~ R} where

(1-1) F(A,x) is continuous in the sense that, given

A0 5 P, xo e [a,b], and 6 > 0, there exists

a 6 > 0 such that A e P, x e[a,b] , and

”A0 - A” + |x - xol < 6 imply that

IF (Ao,xo) - F(A,x)l <'e where HAO - A” =

max la.° - a. I

lSiS n 1 1

(1-2) F(A,x) is locally solvent of degree m(A),i.e.,

suppose we are given a set of points

S = {sz a S x1 < x2~-°< xm(A) S b} and an 6 > 0.

Then there exists a 6 = 6(S,F(A,x), E) > 0.

such that

lyj - F(A,xj)l < 5 j = l,...,m(A)

implies that there exists anF(A],x) e V

such that both

F(A1.xj) = yj j = 1.....m(A)



and

”F(A.X) - F(A].x)H < 6

hold where

”F(A,X) ' F(A19XIN = max lF(A,X) ' F(A19X)l

xe[a,b

(1-3) F(A,x) has property Z of degree m(A) on [a,b],

i.e. for any F(A*,x) ¢ F(A,x), F(A*,x) e V, we

have that F(A*,x) - F(A,x) has at most m(A) - 1

zeros on [a,b] (we assume m(A) 2 1).

We will assume that m(A) is uniformly bounded for

all A e P and that X has more points (in number) than any

m(A) for A e P. It should be noted that the degrees of

two different members of V may not be the same.

The family of functions V defined above was called

a varisolvent family by J. R. Rice [20]. As was men-

tioned in the introduction to this paper, Rice considered

the questions of existence, uniqueness and characteriza-

tion of best approximations from a family V.

We will examine a generalization of Rice's work.

Suppose an additional assumption that only members of V

lying between two curves are to be used in the approxi-

mating problem. Do we then obtain comparable existence,

uniqueness and characterization results?

Let ff’ be the subset of V where

(M) F(A,x) e 51’ if £(x) s F(A,x) s u(x) for all x e x

where u(x) and £(x) are defined below.

Thusfif is a subset of V bounded between two curves u(x)

and 2(x).



We will consider the existence, characterization,

and uniqueness of approximating a given real-valued

continuous function f onXin the uniform norm by members

of ft, That is to say, can we determine an F(A*,x) 23’

such that

"F(A..x) - f(x)» = inf (”F(A.x) - f(x)“: F(A,x) as!)

where again (and for the entire paper),

”F(A.x) - f(X)” = max |F(A.X) - f(Xll

xeX

First we require a few more definitions. Since we

want ”F(A,x) - f(x)” = K < .. for some F(A,x) efc’, we

must ensure that u does not assume the value - w and 2

the value + w. Also when u and 2 assume finite values,

we will wish to examine the distance, between u and

members of’éf, and between I and members offlf’. To ensure

the existence of maxima and minima (of u(x) - F(A,x) or

2(x) - F(A,x), F(A,x) cf), we require that u and 9. are

continuous on closed subsets of X. Therefore, let u and

t be defined on x such that

(i) I may assume the value - s, but never + w.

(ii) u may assume the value + a, but never - 0.

(iii) X_; {x: 2(x) = —m I and X+°= {xz u(x) = + coI

are open subsets of X.

(iv) 2 is continuous on x - X_co and u is continuous

on X - X+° .

(v) A < u for all x e X.

Note that (i) + (v) imply that

inf [u(x) - 2(x): x c X] = d > O.



The reason for (v) will be discussed in the remark at

the end of Section 1-5.

J. R. Rice assumes that A i A* implies that

F(A,x) s F(A*,x). Instead of this, we will use R. B.

Barrar and H. L. Loeb's notation in [3]. Let N be

the maximal value of m(A) for A e P. A function

f e c[a,b] (i.e. continuous on [a,b]) will be called

a normal point in C[a,b] if it has a best approximation

F(A*,x) which has the property that m(A*) = N. Note

that if F(A,x) an: and m(A,) = N, then F(A,x) itself

is a normal point in C [a,b]. We say that An-is

equivalent to An' if F(An,x) a F(An',x). Also the

sequence {An} is equivalent to the sequencevan'} if

An is equivalent to An' for each n. We will require

this concept of equivalence for Theorem 3-2.

The above definitions, unless specifically changed,

will apply throughout this paper.

Section 1-2: Existence of Best Approximations.
 

The existence of a best approximation to f on X

fromjf is not assured from our definitions about57’.

He will parallel the discussion on page 9 in [20] by

J. R. Rice to obtain one criterion for the existence

of a best approximation. On page 6 of [20], the

following theorem is given:

Let {fa} be a uniformly bounded infinite set of

functions continuous on [0,1] with property Z of fixed

degree. Then {fa} contains a pointwise convergent



subsequence.

Noting that the above theorem holds for our family

71’, on [a,b] we have

Theorem 1-1: If the limit of every pointwise convergent
 

sequence of members ofi4fbelong to;fi!, then a best approxi-

mation to f on X exists fromf.

Efigflii There always exists a sequence {F(An.x)Iefi7’

such that

lim ”F(An,x) - f(x)” = inf l (A,x) - f(x)”

n+m F(A,X)€

By taking subsequences, since m(A) is uniformly bounded,

there exists a subsequence {F(As,x)} of [F(An,x)} with

property 2 of fixed degree such that

lim “F(As,x) - f(x)” = inf ”F(A,x) - f(x)”
s+w F(A,x 5

Applying the theorem of J. R. Rice mentioned in the

first paragraph gives a pointwise convergent subsequence

{F(At,x)] of {F(As,x)] such that

lim ”F(At,x) - f(x)" = inf ”F(A,x) - f(x)”

t+m
F(A,X)E

Therefore, by our hypothesis, the limit of this pointwise

convergent sequence belongs to)?’and we have a best approxi-

mation to f on x fromfl’.

As Rice mentions (page 9 [20]), if there is conver-

gence by functions infi’to functions not infi’one usually

enlarges the familyfiito include these functions or some

type of equivalence is set up between the limit function

(not infi’) and a function from 9’. As examples of this,



see pages 42-44 of [20] for exponential families and

pages 77-84 of [20] for rational families.

Section 1-3: Characterization of Best Approximations.
 

The standard Tchebyshev characterization of a

best approximation by the number of alternations of

the error curve (given by Rice [20] for the unrestricted

varisolvent approximating family) extends to our familyl’f”,

defining alternations as G. D. Taylor does in [23].

A zero xO of g(x) e C [a,b] is said to be a simple

zero if g(x) changes sign at x and a double zero if
0

g(x) does not change sign at x0. Property 2 limits

the number of distinct zeros a member offii’may have.

He now wish to limit the number of simple and double

zeros a member offi’may have. The following Lemma 1-1

is Lemma 7.1 of [20] in our restricted setting.

Lemma l-l: Let F(A,x) 2,9’. Then for F(A*,x) ej?’

such that F(A*,x) ¥ F(A,x), we have that F(A*,x)-F(A,x)

can have at most m(A) - l zeros, counting a simple zero

once and a double zero twice.

£3221; Lemma 1-1 is just Lemma 7.1 of [20] with the

added condition of (1-4). Therefore F(A*,x) and

F(A,x), considered as unrestricted varisolvent functions,

satisfy Lemma 7.1 which implies that F(A*,x) - F(A,x)

can have at most m(A) - 1 zeros, counting a simple zero

once and a double zero twice. 1



10

Fix f(x) 5 C (x), and let F(A,x) e;¥’ be given.

Then we define, following Taylor [23],

x+1 = {x e x: f(x) - F(A,x) = ”f(t) - F(A,t)H}

X.] = {x e X: f(X) - F(A.X) = - ”f(t) - F(A.t)H}

x+2 = {x e x: F(A,x) = £(x)}

x_2 = {x e x: F(A,x) = u(x)}

xA = x+1 u x+2 u x_1 u x_2

The set XA is said to be the set of critical points of

f(x) - F(A,x) on X. As is done in [23], we will divide

our problem into two possibilities. Lemma 1-2 and

Example l-l below are from Taylor [24] and [22].
 

Lemma 1-2: (x u x+2) n (x._1 U X_2) # ¢
+T

 

implies that F(A,x) is a best approximation to f on

X from 5’.

Proof: Case 1: X+1 n X_1 % 6 implies

F(A,x) 5 f(x).

Case 2: X+1 n X2 # 6 or X_1 n X+2 s 0

implies that at some critical point, f is a distance

”f(x) - F(A,x)” above the curve u or below the curve 2.

Therefore any other member of6?’must be a greater or

equal distance from f at this critical point. There-

fore F(A,x) is a best approximation. Since

X n X_2 = o, the proof is complete.
+2
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Best approximations satisfying the hypothesis of

Lemma 1-2 need not be characterized by alternations

as in the case where (X+1 U X+2) n (X_] U X_2) = 6 .

The following example is one illustration of this fact.

2
Example l-l: Let f(x) = x on [-l,l] = x.

Letji = (F(A,x): F(A,x) = ax2 + bx + c, where

O 2 F(A,x) 2 -1]. Any member of?!

passing through 0 for x = - l and x = + 1 is a best

approximation.

The example above also shows that for

(X+] U x+2) n (x_] U x_2) # ¢ 9

a best approximation fromjgfmay not be unique.

For the remainder of this section we will consider

the case (X+1 U X+2) O (X_1 U X_2) = ¢

 

Definition: F(A,x) - f(x) is said to alternate K times
 

on X if there exist k + 1 critical points {xi} in X

where a S x1 < x2 --- < xk+1 S b and such that

x. e X_1 U X_2 implies x.1+] 8 X+1 U X

+2

OY‘

x. s X U X U X1 +1 +2 implies x.1+] 6 X_
l -2

for i = l,2,...,k

These k + 1 points are said to form an alternant of length k.
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A standard type Tchebyshev characterization is as

follows: Let X_2 = X+2 = 6 in the above definition.

Then g(x) is a best approximation to f on X if and only

if the error curve f - g alternates n times on X

(n depends upon the approximating family). As was

mentioned in the introduction to this paper, Tchebyshev

and his contemporaries examined a continuous linear

family of functions {F(A,x)} which formed a Tchebyshev

set. The above type of characterization of the best

approximation was discovered. In 1949 and 1950 Motzkin

and Tornheim noted the same type of characterization

theorem for their unisolvent families. In 1961

J. R. Rice exhibited a similar type of characterization

theorem for his more general non-linear family, the

varisolvent family.

In 1967 C. Dunham [6] noted that the characteriza-

tion proofs of Tornheim and Rice for unisolvent and

varisolvent families were incomplete. They both

neglected to consider the possibility of a constant

error curve (i.e. f - g E c). R. Barrar and H. Loeb [1]

showed that the constant error curve could not exist for

unisolvent families in Tornheim's proof (this was already

known since a characterization proof for unisolvent

families, different from Tornheim's existed - see

Novodvorskfi and Pinsker [18]). Barrar and Loeb in the

same paper also showed that for m(A) S 3, a constant

error curve could not exist for varisolvent families.
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D. Braess [4] has shown that if in an<3 neighborhood

of the best approximation from V (V is a varisolvent

family), all the members of V have the same degree as

the best approximation, then the best approximation

must alternate. Since the degree is an upper semi-

continuous function (see Theorem 2 of Rice [20]), it

then follows that best approximationsof maximal degree

must alternate. At this time, however, it is not known

in general whether a constant error curve for the best

approximation from a varisolvent family can exist.

By adding additional hypotheses, the possibility

of a constant error curve can be eliminated. As was

mentioned, a Haar condition can be added (see Chapter 3).

By using property A (see Chapter 4) in lieu of local

solvency, this difficulty can also be overcome. A

third possibility would be to assume that the varisolvent

family is extendable to a larger interval (see Corollary

3 of Theorem 1-2). A fourth might be to assume closure

offflfunder pointwise convergence (see Corollary 4

of Theorem l-2). An obvious fifth possibility would

be to assume that each member of V intersects f at some

point of X.

The proof of the next theorem follows the standard

approaches used by both Tornheim and Rice in their

characterization proofs.
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Theorem 1-2: Let f e C(X). F(A,x) 5.2F , and assume
 

(X+1 U X+2) n (X_1 U X_2) = 4 , where X is a compact

set contained in [a,b].

(1) If F(A,x) is a best approximation to f from/f!

and F(A,x) - f(x) i c, c a non-zero constant, then

F(A,x) - f(x) alternates at least m(A) times on X.

(2) If F(A,x) - f(x) alternates at least m(A) times

on X, then F(A,x) is a best approximation to f

from! on X .

Proof: (of (2)) Assume F(A,x) - f(x) alternates at

least m(A) times on X. Assume F(A,x) is not a best

approximation to f from.§{. Then there exists an

F(A*,x) inff’such that

”F(A*,X) ' f(X)” < ”F(A,X) ' f(X)”

.: ' = ..., + , . . , .Let [xJ J 1,2, m(A) l xJ < xJ+1 xJ e X} be an

alternant of length m(A) for

F(A,x) - f(x) on X. These must be distinct since

(X+1 U X+2) n (X_1 U X_2) = 6. Now at these critical

points we have

F(A*,Xj)'F(A,Xj) = (F(A*,xj)-f(xj))-(F(A,xj)-f(xj)).

He assert that F(A*,x) - F(A,x) has at least m (A),

zeros on [a,b], counting simple zeros once and double

zeros twice, which will contradict Lemma 1-1. We will

match a counting zero (a double zero has two counting

zeros, a simple zero one) to one and only one interval



x., .

(JXJ

As

Then F(

better

Case 1:

Case 2:

15

+1) for j = l,2,...,m(A) + l.

sume x1 5 X__1 U X__2 for F(A,x).

A*,x]) - F(A,xl) s 0 since F(A*,x) elf’ is a

approximation to f(x) than F(A,x).

F(A*,x1) - F(A,xI) = 0 . Associate the zero x1

with the interval (x],x2).

F(A*,x1) - F(A,xl) < 0. Two possibilities can

occur.

(a) F(A*,x2) - F(A,xz) 2 O for some x£e(x],x2).

Since F(A*,x) - F(A,x) is a continuous function

on [a,b], it has a zero on (x],x2) . Associate a

zero on (x],x2) with the interval (x],x2).

(b) F(A*,x) - F(A,x) < O for all x e (x],x2).

Since x2 6 X+1 U X+2 and F(A*,x) e.fif is a better

approximation than F(A,x), there exists a zero at

x2. Associate this zero with (x],x2).

We have associated a zero in [x],x2] with (x],x2). Now

x2 6 X+1 U X for F(A,x) and therefore
+2

F(A,,x2) - F(A,xz) 2 o.

If F(A*,x) - F(A,x) changes sign in (x2,x3), associate

a zero in (x2,x3) with (x2,x3). If not, consider cases.

Case 1: F(A*,x) - F(A,x) > O on (x2,x3).

Since x3 6 X_1 U X_2 for F(A,x), a zero exists



T6

at x3. Associate this zero with (x2,x3).

Case 2: F(A*,x) - F(A,x) < O on (x2,x3).

For a sufficiently small 6 > 0, two possibilities

can occur,

(a') F(A*,x) - F(A,x) 2 O on (x2 -6, x2)

in which case a zero exists at x2 which was not

associated with (x1,x2). Associate this zero

with (x2,x3).

(b') F(A*,x) - F(A,x) < O on (x2- 6, x2)

in which case a double zero exists at x2 that

was used at most once on (x1,x2). Associate an

unused counting zero at x2 with (x2,x3).

We have associated a zero in [x2,x3] with (x2,x3) which was

not associated with (x],x2).

Proceed in the same manner with the remaining inter-

vals (xj,xj+]), j = 3,4,...,m(A) as was done for (x2,x3).

For x1 5 X+1 U X+2 , the argument would be similar.

In either case, F(A*,x) - F(A,x) has at least m(A) zeros

on [a,b], counting double zeros twice and simple zeros

once. This is the desired contradiction of Lemma 1-1

and (2) of Theorem 1-2 is proved.

(of (1)) Assume F(A,x) is a best approximation

to f from? and F(A,x) - f(x) 9! c, c a non-zero constant.

Further assume that F(A,x) - f(x) alternates exactly

5 < m(A) times at the points
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5+] S b, xj e X}.{sz a S x1 < x2 < --- < x

(Note that it is possible for s to be zero here).

Case 1: Assume that a and b are not critical points

for every critical point set of (s + 1) points of

F(A,x) — f(x). (Note that a and/or b may not even

belong to X).‘

If a (or b) is not a critical point, select

a 61 > 0 such that a + 61 is less than the first

possible critical point (or (b - 6]) is greater than

the last possible critical point). For concreteness.

assume a is not a critical point. Determine a 6(60)

where 61 > 6 > 0, such that for some 60 > 0

(sufficiently small), we have

max {£(x) - f(x), - ”F(A,x) - f(x)H] + 60 <

F(A,x) - f(x) < min {u(x) - f(x), HF(A),x) - f(x)”I - 60

for all x e [a,a + 6] n X. This is possible by contin-

uity, compactness, and the fact that u(x) > £(x) on X.

Now, the facts of the previous sentence and

(X+1 U X+2) n (X_] U X_2) = 6

imply that we can select the following points

a = x0 < xm(A)-s < xm(A)-s+l < --- < xm(A) = b

which divide X into s + 1 subsets so that for 62 > 0

sufficiently small,

(a) F(A,x) - f(x) alternates exactly once on any two

adjacent subsets, but does not alternate on any
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one subset.

(b) If (X+1 U X+2) # 6 on a subset, then

F(A.x) - f(X) < min TU(X) - f(X). "F(A.x) - f(X)H}

- 6 for all x e (the subset O X)
2

If (X_1 U X_2) # 4 on a subset, then F(A,x)

- f(x) > max {2(x) - f(x), - "F(A,x) — f(x)”) + 52

for all x e (the subset n X)

(c) max {£(x) - f(X). - ”F(A.X) - f(X)Hl +62 < F(A,x)-f(x)

< min {u(x) - f(x), ”F(A,x) - f(x)N} - 62 for all

1points in the set {x , x ,...,x

m(A)-s m(A)-5+1 m(A)

Choose m(A) - s - 1 distinct points

{sz J = l,2,...,m(A) - s - 1, xj < xj+11 in [a,a + 5].

62 92
Let 6 = min( —7 ,1—5 ) > O and x' denote a point in X

above where “F(A,x) - f(x)" is assumed.

Since F(A,x) is varisolvent of degree m(A), there

exists an F(A*,x) efi’ where

(a) F(A*,xj) - F(A,xj) = 0 j = l,2,...,m(A) - 1

(b) [F(A*,x') - f(x')] < | F(A,x') - f(x') I, and

(C) ”F(A.X) - F(A*.x)H < 6

Now by Lemma 1-1. (a) and (b), max|F(A*,x) - f(x)]

< max|F(A,x) - f(x)| for all x e ([a + 6,b] n X)

while (c) implies max|F(A*,x) - f(x)] < maxlF(A,x) “f(XII
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for all x e [a,a + 6] n X. Therefore

“F(A*.X) - f(X)" < "F(A.X) - f(X)H

(for all x e X) and F(A*,x) 2,}? is a better approxi-

mation to f on X than F(A,x). This is a contradiction.

Case 2: Assume both a and b are critical points.

Replace [a,a + 6] by a similar interval

[xm(A)-s '6’ xm(A)-s]

where [sz j = O,m(A) - s,...,m(A)],6, 60, 62, and 6

are defined analogously to the previous construction.

For m(A) - s - 1 even, choose m(A) - s - 1 points

{sz xm(A)-s '6 s xl < x2 -" < xm(A)-s-l < xm(A)-s}

and determine anF(A*,x) iii! such that

(a') For x e {a,b}, x e x+1 u x+2 implies that

F(A*,x) - f(x) > F(A,x) - f(x), while x e x_1 u x_2

implies F(A*,x) - f(x) > F(A,x) - f(x).

(b') ”F(A*,x) - F(A,x)”< e, and F(A,xj) - F(A*,xj) = o

for j = l, 2, ... , m(A) - l.

The evenness of m(A) - s - l and our construction imply

that the two conditions in (a') are in reality only one

restriction on our varisolvent function, so that indeed,

an F(A*,x) e Jf’does exist. Then

”F(A*.X) - f(X)H < ”F(A.X) - f(x)”

which is a contradiction.
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For m(A) - s - 2 even, choose m(A) - s - 2 points

{sz xm(A)-s -6 < x2 < x3 --- < xm(A)-s-1 < xm(A)-S}

and determine an F(A*,x) e f’such that (a') and (b')

above hold and

(C') F(Asxj) ' F(A*sxj) = 0 j: 2,3,...,m(A) " I.

If F(A,x) - F(A*,x) has a zero in addition to those in

(c'),then (a') implies that this is a double zero,

which is impossible by Lemma l-l. Therefore

IIF(A..X) - f(x)” < llF(A.X) - f(X)”

which is a contradiction.

Now for all possibilities we have constructed a

better approximation to f than F(A,x). This contradicts

the fact that F(A,x) can alternate at most 5 < m(A)

times. Therefore (l)of Theorem 1-2 is proven. '

Section 1-4: The Constant Error Curve Condition in the
 

Characterization Theorem.

It would be very desirable to omit the condition of

the constant error curve in (l) of Theorem l-?. He would

then have an if and only if statement for the characteri-

zation of best approximations in terms of alternations.

This section will consist of corollaries to Theorem 1-2

where the constant error condition is eliminated. One

such case with the added hypothesis of a Haar subspace,

will be deferred until Chapter 3.
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R. Barrar and H. Loeb [1] have shown that for

m(A) S 3, a constant error curve for the best approxi-

mation cannot exist. With the addition of our condition

on the critical point sets, their reasoning applies

for our family,§f

Corollary 1: For m(A) S 3, the constant error curve
 

condition in (1) of Theorem 1-2 can be omitted.

Proof: For concreteness, assume that f(x) - F(A,x) E c > 0

(if c < O, a similar argument holds).

Assume m(A) = 1. Since (X+1 U X+2) n (X_1 U X_2) = 6,

max (u(x) - F(A,x))= 51 > 0. Then for 51 > E] > 0,

xeX

there exists a 61(61) > O and an F(A],x) c.5fl such

that (i) ”F(A,x) - F(A],x)H < G], (ii) F(A],x) doesn't

intersect F(A,x), and (iii) F(A],a) - F(A,a) = 61 > O,

a!
since,# is a varisolvent family. But then F(A],x) is a

better approximation to f from’flfthan F(A,x) which is a

contradiction.

Assume m(A) = Again since2.

(X+1 U X+2) n (X_1 U X_2) = 6, max (u(x) - F(A,x)) = $2 > O.

xeX

Then for $2 > 62 > 0, there exists a 62 (62) > 0 and

an F(A2,x) e ad’such that (i) ”F(A,x) - F(A2,x)H < 62,

and (ii) F(A ) - F(A,a) = 62 > O,F(A2,b) - F(A,b) = 62 >
2'3

O.
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Now, F(A2,x) - F(A,x) has at most one zero (m(A) = 2),

but (ii) implies that if a zero occurs, it is a double

zero or another simple zero exists. This is impossible,

therefore .F(A2,x) > F(A,x) for all x 5 [a,b] and by

construction, F(A2,x) is a better qpproximation to f

from.figihan F(A,x). This contradicts our hypothesis.

Assume m(A) = 3. There exists an 63 > O

constructed as above such that for 53 > 63 > 0, there

exists by solving a 63 (63) > O and an F(A3,x) eff

such that

(i) F(A3.a) = F(A,a), F<A3.b) = F(A,b).

a+b a+b _
T) - F(A, -"—2 ) - (5 , and(ii) F(A 3

3’

(iii) ”F(A3,x) - F(A,x)” < 63. Since F(A3,x) - F(A,x)

can have at most two zeros, and it has those at a and b,

by construction, it can have no other zeros and is a

non-constant error curve best approximation to f fromfiF'.

Applying (l) of Thoerem 1-2 says that we can find a

better approximation, since F(A3,x) - f(x) does not

alternate enough (m(A3) 2 3). This concludes the proof. '

D. Braess has shown that a constant error curve

for a varisolvent family V cannot occur under another

condition. His condition is that there be an 6 > 0

neighborhood of the best approximation F(A,x) e V, such

that any member of V lying entirely in this neighborhood
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has the same degree as F(A,x). J. R. Rice (pages 5 and

6 of [20]) showed that for F(A],x) e V, there existed

a 6 > 0 neighborhood of F(A],x), such that if F(A,x)

(belonging to V), was entirely in this neighborhood,

then m(A) 2 m(AI). Braess used both these results to

arrive at the following corollary (which is placed in

our setting).

Corollary 2: If F(A,x) is the best approximation to f
 

on X fromf’such that there existsno member of V (V is

the varisolvent family where if: V) with degree greater

than m(A) lying entirely in some 6 > O neighborhood

of F(A,x), then the constant error curve in (l) of

Theorem 1-2 can not occur.

One result, noted by Braess, is that if the best

approximation has maximal degree, (see Corollary 2

above), a constant error curve can not occur.

The following corollary is due to G. Meinardus

and G. D. Taylor (oral communication).

Corollary 3: If for each F(A,x) e ‘17: there exists an
 

extension [a],b]] of [a,b] (either - w < a] < a or a > b1 > b

- possibly both) and a varisolvent family V' on [a,b]

such that V'IEa b] = f! and for some F(A*,x) e V', we

have that F(A*,x) E F(A,x) on [a,b], we can then omit

the constant error curve condition in (l) of Theorem 1-2.
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Proof: As in the proof of Corollary 1, for concreteness,

assume f(x) - F(A,x) E c > 0 and F(A,x) is the best

approximation to f fromjfifon X. Then there exists an

s > 0 such that max (u(x) - F(A,x)) = 5 since

xeX

(X+1 U X+2) n (X_1 U X_2) = 6. Using our hypothesis, we

then have an F(A*,x) belonging to V' such that

F(A*,x) E F(A,x) on [a,b]. Select m(A*) - 1 distinct

points on [a],b]] which are not in [a,b]. Now by our

solvency condition, there exists an F(A1,x) e V' such

that F(A],x) equals F(A*,x) at the above m(A*) - 1

points and for some point in [a,b], F(A],x) - F(A*,x) = S/2.

Now v.l[a,b] =j'implies F(A],x) e f, . But by our

construction F(A],x) e}?’ is a better approximation

to f than F(A,x). This contradicts our hypothesis. ‘

The next corollary to Theorem 1-2 eliminates the

constant error curve whenJF'is closed under pointwise

convergence. This does not appear to be that strong a

condition, since some form of compactness on {1’ is

usually required to ensure existence of a best approxi-

mation (see Section 1-2).

We first require some preliminary results due to

C. B. Dunham [7].

Definition: A family G of functions is dense compact
 

on X, a compact space, if every bounded sequence of

elements of G has a subsequence converging pointwise on
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a dense subset Y of X to an element 9 of G and for

x t Y, lim inf g(y) S g(x) S lim sup g(y) for y c Y.

Note that if G c C(X), then the above inequality can

be omitted in the definition of dense compactness.

 

Lemma 1-3: Let G be dense compact. Let {fk} c C(X)

converge uniformly to f e C(X) and gk be a best approxi-

mation to fk. Then {9k} has a subsequence [9k I con-

verging pointwise on a dense subset of X to a best

approximation to f.

The theorem mentioned in the first paragraph of

Section 1-2 gives us a pointwise convergent sequence

for a bounded sequence of functions from fifli Therefore

,I

if we assume that,f is closed under pointwise convergence,

5f will be dense compact.

Corollary 4: If gris closed under pointwise convergence,
 

and the number of points of X is at least twice the

uniform bound of m(A), then the constant error curve

condition of (l) in Theorem 1-2 can be omitted.

Proof: For concreteness, assume f(x) - F(A,x) E c.> 0

(a similar argument holds of c < 0). Let

{x14 i =i,2,...,m(A)l and {yi: i =1,2,...,m(A) - 1]

be a set of points in X such that xi < yi < xi+1

Let 9n 5 C(X) be defined as follows,
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f(x) - c/n for x l,2,...,m(A)

ll

X .
.
a II

gn(X) = f(x) for x = yi i l,2,...,m(A) - 1

any continuous curve h(x) on X connecting

gn(x) at the xi's and yi's such that

f(x) 2 h(x) 2 f(x) - c/n on {xi, xi+]} for

i = l,2,...,m(A) - 1.

Now since gn is continuous on X, let F(An,x) be the

best approximation to gn on X from,fl{. If

"9,,(X) - F(An.X)H 2 C.

then F(A,x) is a best approximation to 9n and by con-

struction F(A,x) is not parallel to 9". Applying (2)

of Theorem 1-2 gives us a better approximation to gn

than F(A,x) (or F(An,x)). Therefore

119nm - F(An.x)u < c.

We assert that F(An,x) is not parallel to 9". Assume

it is, i.e. gn(x) - F(An,x) E C". We first note that if

cn = 0, by construction F(An,x) would be a better approxi-

mation to f than F(A,x). Therefore cn # 0. Next, assume

cn < 0. Then F(An,x) is above 9", but F(A,x) is within

c of 9". Therefore since F(A,x) S F(An,x), (gn is not

parallel to f), |F(An,x) - f(x)] S c. But F(An,x) is a
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best approximation to f which is not parallel to f on X.

Applying (2) of Theorem 1-2 gives us a better approxi-

mation to f fromfi’than F(An,x) (or F(A,x)). This is

not possible, hence cn > 0. We should further note

that |cn - cl < c/n, for if not by the construction of

9n and the fact that gn(x) - F(An,x) cn > O, F(An,x)

would be a better approximation to f than F(A,x). Now,

cn > 0 implies that f(x) > F(An,x) and

gn(x) > F(An,x). If F(A,x) and F(An,x) do not inter-

sect, then one is above the other and is a best approxi-

mation to both f and 9n° This is a contradiction since

one function cannot be parallel to both f and gn. There-

fore assume F(A,x) and F(An,x) do intersect. Then by

construction, at the xi, F(A,x) - F(An,x) 2 0 while at

the yi, F(A,x) - F(An,x) < 0 since cn < c. Now F(A,x)

and F(An,x) both being continuous on [a,b] implies that

F(A,x) - F(An,x) has at least m(A) zeros on [a,b] counting

double zeros twice and simple zeros once, because of our

construction. This contradicts Lemma 1-1. Therefore the

best approximation F(An,x) to 9n from fcannot be parallel

to 9".

Since it is not parallel, Theorem 1-2 says that

F(An,x) - gn(x) alternates at least m(An) times on X. A

further property of our construction is that there exists
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a point x' c X such that F(An,x') - F(A,x‘) < O (or at x',

F(An,x) is below F(A,x)). For, if not, F(An,x) would be

a best approximation to f which is not parallel to f.

Again apply (2) of Theorem 1-2 to arrive at a contradiction.

We now have for each 9", n > 1, a non-parallel best

approximation from 5?: F(An,x) which has a point of X

below F(A,x). By construction gn tends uniformly to f

as n goes to w . Since we have assumed thatjg’is

dense compact (see the paragraph immediately preceeding

Corollary 4), Lemma 1-3 may be applied to give us some

subsequence of [F(An,x)]co converging pointwise to a

n=l

best approximation F(A*,x) of f fromj?’. Each member of

this pointwise convergent (sub) sequence alternates at

least once on X and at one critical point is below

F(A,x). Therefore a cluster point of critical points

of the pointwise convergent sequence exists, which is

on F(A,x). Likewise a cluster point of the form

X_1 U X_2 exists since each best approximation in the

sequence alternates at least once. Therefore since the

limiting function F(A*,x) is a continuous function (it

belongs to;§’by our closure hypothesis), it must alter-

nate at least once on X. Then F(A*,x) must alternate

m(A*) times on X or we could apply (2) of Theorem l-2

to obtain a contradiction. But

HF<A,.x) — f(x)“ = ”F(A,x) - f(x)“

and F(A,x) is parallel to f. Therefore F(A*,x) - F(A,x)



29

has at least m(A*) zeros (counting double zeros twice)

on [a,b] which contradicts Lemma 1-1. This contradicts

the fact that F(A,x) is parallel to f. I

Although Corollary 4 is a nice theoretical result,

it may not be useful practically. We required in the

proof that since each member of the pointwise converging

subsequence alternated at least once, the limit function

also alternated at least once. If we employed dense

compactness only, and our approximating class was not

a subset of C(X), it would be possible that convergence

on a dense subset would be to the original parallel

approximating function F(A,x). This would not give us

our desired contradiction. Unfortunately, for exponential

and rational families, in order to obtain closure under

pointwise convergence, functions are added which may not

be continuous, even though they agree with a continuous

function on a dense subset of X. Rice [20] in Chapter 8

for exponential families and Chapter 9 for generalized

rational families makes an identification in that if a

subsequence converges to an element which is a dis-

continuous best approximation, the closure of the con-

tinuous portion of the best approximation then becomes

a continuous best approximation. So,a1though his

best approximations are all continuous, his approximating

families are enlarged to include discontinuous functions

which are pointwise convergent limits of sequences from
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the family. Therefore this enlarged family is not really

a continuous family, only a dense compact one.

The continuity theorems of the best Tchebyschev

operators which I have seen will not overcome this problem.

C. B. Dunham's [7] theorem says that the pointwise con-

vergence on a dense subset is actually uniform convergenCe,

while R. H. Barrar and H. Loeb's theorem in Chapter 4

has the additional Haar condition included, which elimi-

nates the possibility of a constant error curve.

The theorem of de la Vallee Poussin applies forfiF’

as well as for the unrestricted varisolvent case (see

Rice [20] page 12).

Theorem 1-3: For F(A,x) ejg’ if F(A,x) - f(x) = 6 (x)

assumes the values Xi = 6 (xi) at m(A) + 1 points

 

X.<X1 i+l on X such that sgn 1i = - sgn Xi+1 , then

minlkil s inf [F(A,.x) - f(x)" s "F(A,x) 4- f(x)”
F(A*,x)c

Proof: The right hand inequality is trivially true.

Assuming the left is false implies that there exists an

F(A1,x) 555' such that F(A,x) - F(A],x) has at least

m(A) zeros on [a,b] which contradicts Lemma 1-1. I

Section 1-5: Uniqueness of Best Approximations.
 

When (X+1 U X+2) n (X-_1 U X_2) # 6 , Example l-l

has shown that the best approximation to f fromfif'need
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not be unique. Therefore we will consider the case

when (X+1 U X+2) n (X_1 U X_2) = 6.

Theorem 1-4: If (X+1 U X+2) n (X_1 U X_2) = 6 and
 

the best approximation F(A,x) to f on X froij'does not

have a constant error curve, then F(A,x) is the unique

best approximation to f fromjfi’.

firggj; Changing the first '<' in the proof of (2) of

Theorem 1-2 to-‘S' and repeating this altered proof

of (2) of Theorem 1-2 gives us uniqueness of the best

approximation.* 1

If the best approximation F(A,x) to f on X from; has

a constant error curve where

(x+1 u x+2) n (x_1 u x_2) = 6 ,

any other best approximation must also have a constant

error curve. If another best approximation F(A*,x)

were not parallel to f, part (1) of Theorem 1-2 would

apply to say that F(A*,x) - f(x) alternates at least

m(A*) times on X. Then F(A,x) - F(A*,x) has at least

m(A*) zeros contradicting Lemma 1-1. We therefore have

the following corollary to Theorem 1-4.

Corollary 1: If (X+1 U X+2) n (X-1 U X_2) = 6 and

the best approximation F(A,x) to f on X from‘ffhas a

constant error curve, then at most one other best
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approximation F(A*,x) to f exists and F(A*,x) E F(A,x) + c,

where c is a non-zero constant.

Even when (X+1 U X+2) n (X_1 U X_2) = 6 and the

best approximation F(A,x) to f on X fromj'has a constant

error curve, F(A,x) may be unique, since the nature of

the functions f, u, and 2 on X may prohibit another best

approximation. The following are some obvious cases

where the best approximation, having constant error

curve and (X+1 U X+2) n (X_1 U X_2) = 6 , is unique

(a) if there exists an x'e X such that f(x') 2 u(x')

or £(x') 2 f(x')

(b) if when u(x) > f(x) > £(x) for all x c X,

minimin(u(x) -f(x)), min(f(x) -£(x))} < ”F(A,x) -f(x)H

xeX xeX

Remark: An open question which I plan to look at later,

is whether the previous sections can be generalized to

the point where u(x) = 2(x) at a finite number of points

(see G. D. Taylor [24] for the linear case and

K. Taylor [25] for rational families). R. Barrar and

A. Loeb [2] examined the question of approximating a

function f from a varisolvent family which interpolates

f at a finite number of points. Extending G. D. Taylor's

paper to our setting would give us interpolation and

restricted range approximation at the same time.

The non-linear case of h(x) S u(x) appears, however,
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to require much stronger hypotheses. First, a certain

amount of differentiability for functions of ,TflHs needed

at the points where u(x) = £(x) in order to generalize

Taylor's paper. Although part (2) of theorem 1-2 can

be shown to be true, in part (1) a difficulty occurs

in constructing a better approximating function from 5;?

around the points where u(x) = 2(x). It appears that

more than this added differentiability is necessary

to obtain (1) of Theorem 1-2. We could assume a

uniform bound on a certain order derivative of members

of ¢where u(x) = 2(x). This would remove the

difficulty around the points u(x) = £(x) and allow

us to complete part (1) of Theorem 1-2.



CHAPTER 2

APPROXIMATION FROM MEMBERS OF A

UNISOLVENT FAMILY HAVING RESTRICTED RANGES

Section 2-1: Introduction and Definitions.

Let U be the set of functions

{G(A,x)z P x [a,b] + R} which satisfy (2-1) and

(2-2) below.

(2-1) G(A,x) is a continuous function on [a,b].

(2-2) Given the set (xi: a S x1 < x2 ---< xn S b]

of n distinct points and n arbitrary real

numbers {inL1 , then there exists a unique

G(A*,x)c_U such that G(A*,xi) = y, for

i = l,2,...,n.

U is called a unisolvent family of degree n 0n [a,b].

As in Chapter 1, we will generalize our problem

to where we consideronly members of U between our two

curves 2 and u. That is to say, our family of approxi-

mating functionsd' is a subset of U such that for

G(A,x) e,AF ,

(2-3) u(x) 2 G(A,x) 2 £(x).

We will look at existence, characterization, and unique-

ness of approximating a given real-valued continuous

function f on X in the uniform norm with members of! .

34
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We should first note that each family xy'is also

a family g’of Chapter 1 (i.e., G(A,x) being unisolvent

of degree n implies G(A,x) is varisolvent of degree n).

Each member of J is continuous, satisfies property Z

of fixed degree n, and is between the curves u and t .

Each member of 49 is locally solvent by its solvency

property ((2-2)), and Theorem 5, page 460 of Tornheim

[26].

We will at times call,& a restricted unisolvent

family, even though,d’, itself, may not be a unisolvent

family.

Section 2-2: Existence, Characterization, and
 

Uniqueness of Best Approximations.

Although we do not have existence of best approxi-

mations from a varisolvent family, for.d9 (our subset

of a unisolvent family), best approximations always

exist. Tornheim's Theorem 7 [26] gives existence of

best approximations for a unisolvent family. Since X

is compact and our 2 and u are sufficiently nice the

argument of Theorem 7 applies for our restricted family

5 as well. We include it here for completeness.

Theorem 2-1: There exists a best approximation to f
 

on X fromfl .

Proof: There exists a sequence {G(An,x)} in AV such that

lim llG(An.x) - f(X)” = inf ”G(A.X) - f(XHI .
n+w G(A,x)c
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Choose n distinct points x],x2,...,xn in X. By

unisolvency, there exists a one to one correspondence

between the functions G(A,x) of,” and the set of

values y],...,yn taken by the functions G(A,x) at

x‘,...,xn. Let G(An’xi) = yni' Then there is a sub-

sequence G(An ,xi) of G(An’xi) for which yn i

j j

is convergent for i = l,2,...,n converging to yi'.

By the nature of u and 2 , £(x) S yn . S u(x) implies
J1

h(x) S yi' s u(x). Let G(A*,xi) = yi'. Then by

Tornheim's Theorem 5, page 460 in [26], G(An ,x)

J

converges uniformly to G(A*,x) on X C [a,b]. But again

2(x) S G(An ,x) S u(x) for all x c X implies

£(x) S G(A*,x) S u(x) for all x c X. Therefore

G(A*,x) e,AV and is a best approximation to f on X

fromAfi . '

i For the characterization of best approximations

from AV , we must consider, as in Chapter 1, the place-

ment of critical points. The following lemma is

Lemma 1-2 for 47, since,&? is also a family‘jf’from

Chapter 1.

Lemma 2-1: For G(A,x) e ,1 . if (x+1 u x+2) n (x_1 u x_2) if 6,

then G(A,x) is a best approximation to f on X fromIA? .
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Therefore we need only consider the case when

(X+1 U X+2) n (X_1 U X_2) = 6.

Theorem 1-2 and Corollary 4 to Theorem l-2 apply ford?

(considered as an jzrfamily of Chapter 1). However

we can combine these two results for,A9 if we note

that xg'is closed under pointwise convergence. Theorem 5

of Tornheim [26] tells us that pointwise convergence

gives us uniform convergence and by our selection of X,

u, and t , uniform convergence gives us the closure

of 19 . This argument is essentially that of Theorem 2-1

and gives us

Theorem 2-2: Let G(A,x) e 49', (X+1 U X+2) O (X_] U X_2) = ¢

and assume that X contains at least 2n points. Then

G(A,x) is a best approximation to f on X if and only if

G(A,x) - f(x) alternates n times on X.

R. Barrar and H. Loeb [26] proved Theorem 2-2 for

an unrestricted unisolvent family omitting the fact that

X must contain at least 2n points (we of course always

assume X contains at least n points). Their proof

extends directly to our setting.

Theorem 2-3: Let G(A,x) c AV and (X+]U X+2) n (X_1 U X_2) = 6.

Then G(A,x) is a best approximation to f on X if and only

if G(A,x) - f(x) alternates n times on X.
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3529:: We need only show that a constant error curve

for the best approximation can not occur, since

Theorem 1-2 applies (.AV being an jV’family). We will

show that a constant error curve can not exist for any n

(the degree of the unisolvent family U) by induction

on n.

For n = 1, Corollary 1 of Theorem 1-2 applies and

a constant error curve for the best approximation from

a restricted unisolvent family of degree 1 can not occur.

Assume that a constant error curve can not occur

for restricted unisolvent families of degree n S k - 1.

Letfl* be a restricted unisolvent family of degree k.

Let G (A*,x) be the best approximation to f on

X c [a,b] from 49‘*. Assume without loss of generality

that f(x) - G(A*,x) E c > O on X. Let

A

At: {G(A,x) e A! *= G(A.x1> = G(A..x,)

where x1 = max {x} I.

xeX

If x < b, the behavior of a member of; or 1* on (x],b]
T

will not affect its norm with f on X. Therefore let

.A A
A 4

.A

g=fl'[a,x]] . Then forO<€<x1-a./5

is a restricted unisolvent family of degree k — l on

[a,x1 - e]. Let G6 (A,x) be the best approximation to

A

A

f on X (1 [a,x1 - 6] .from J . By induction and

Tornheim's results,f(x) - GG (A,x) alternates at least



39

once on X O [a,x1 - 6]. If we let

“6” = max |¢(x)|.

E xc[a,x]-€

then for 6 S 60,

”f(X) ' 66(A,X)”€ S ”f(X) ' G€(A,X)”€ < C

o
A

(since G(A*,x) c i ). Hence by a compactness argument

using Tornheim's Theorem 5, we may assume

A

1' G A, - G A, = o613! H e( X) ( X)“0

A A A

where G(A,x) c 15' . ‘The claim is that G(A,x) is

also a best approximation to f on X from 3*. If this

were false, there would exist an x2 5 [a,x1) such that

A

[f(xz) - G(A,x2)| > c. But for small 6, x2 2 [a,x],-€]

which implies that

|f(x) - G€(A,x)| < c.

Taking the limit as 6 + w gives us a contradiction.

A

But by the nature of G(A,x),

A

f(X) ' G(A,X) ¥ C] 9

c1 a constant. Corollary 1 of Theorem 1-4 then gives us

a contradiction.

Therefore constant error curve best approximations

can not occur from restricted unisolvent families. |

Example 1-1 shows that the best approximation to f
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on X from a need not be unique when

(x+1 u x+2) n (x_1 u x_2) # 6.

But when (X+1 U X+2) n (X_1 U X_2) = 6, we have

Theorem 2-4: (X+1 U X+2) O (X_1 U X_2) = 6 implies

there exists a unique best approximation to f on X

from A .

Proof: The proof follows directly from Theorem 2—3

using the standard uniqueness argument. I



CHAPTER 3

APPROXIMATION FROM MEMBERS OF A VARISOLVENT

FAMILY HAVING RESTRICTED RANGES WITH THE

ADDITIONAL HYPOTHESIS OF A HAAR SUBSPACE

EXISTING FOR EACH MEMBER OF THE FAMILY

Section 3-1: Introduction and Definitions.
 

In this chapter we will give §T’(of Chapter 1) an

additional hypothesis, namely a Haar subspace. This

will eliminate the constant error curve condition in

the characterization theorem for}?’ and allow us to

give strong unicity and continuity of the best approxi-

mation operator theorems. R. Barrar and H. Loeb [3]

did this for an unrestricted family. We will gener-

alize their paper to our setting.

We first require some definitions. Let P be an

open subset of En. Let 27* be the family of functions

{F(A,x)z Px[a,b] + R]

where,for A = (3],...,an) c P, each éfiiflell for
Bai

i = l,2,...,n as well as F(A,x) is continuous in A

and x.

Definition: Let 91’92""’9n be a set of continuous
 

functions on [a,b]. Then {9i}?=l generates a Haar

41
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subspace of dimension n if 91’92"°"9n forms a lin-

early independent set of functions and the only linear

combination of 91’92"'°’9n having n or more zeros is

the zero function. (For more information on Haar systems

see [5], [9] and [13]). The Haar subspace condition

that we will use is

 

w aFA. "
(3—1) For F(A,x) 5 4g? * ’ {’ 3:1 X) i = T

generates a Haar subspace (Haar system) of

dimension m(A).

We further require that for F(A,x) c /gV *‘, F(A,x) has

property 2 of degree m(A). Property Z (from Chapter 1)

for members of/fl“ is

(1-3)' F(A,x) cg * will have property 2 of degree

m(A) on [a,b], i.e., for any

F(A*sX) f F(A,x), F(A*.x) 8/5’* , we have

that F(A*,x) - F(A,x) has at most m(A) - 1

zeros on [a,b] (m(A) 2 1).

Again as in the previous chapters, our approximating

family fi7’* will be the subset of ,5? * lying between

the two curves t and u (defined in Chapter 1).

Our family j§’* differs from,5flpof Chapter 1 in that

we have replaced local solvency (or 1-2)) by the Haar

subspace condition (3-1). That (3-1) is at least as

strong a condition as (1-2) will be shown by Lemma 3-1
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where we find that members of fr!” satisfy (1-2).

R. Barrar and H. Loeb [3] note that exponential and

rational families satisfy this Haar subspace condition

(or (3-1)).

The next two lemmas are found in [3]. They apply

for A!" . We include their proofs for completeness.

.Lemma 3-1: Let A, = (a]*,...,a *) and m(A*) = q.
 

n

Further, let x]....,xq be distinct points in X such

that

F(A,“ X1.) = C1. 1:1,2,...,q

Then for sufficiently small 6 > 0, there exists a

6(6) > 0 such that the equations

(1) F(A,xi) =31. i=1,2,...,q

where lci - Gil S 6 have a solution A = (a],...,an) e P

where a, = a1* for n 2 i 2 q + l and

(2) ”A - 4*" S G

 

Proof: Let f1.(a],...,aq , C1,...,Cq) a

'k *

F(a],...,aq, aq+],...,angxi) ‘ Ci

a F(A*,x)

for i = l,2,...,q. Since the i = l,2,...,q

a a.1

form a Haar subspace, for 6(6) > O sufficiently small

(or |c - Gil S 6), we may apply the implicit function
i

theorem to the f, system of equations in order to solve
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for a],...,aq (where Ci = 3i for i = l,2,...,q).

The implicit function theorem can be invoked since the

Haar subspace implies that the Jacobian of the trans-

formation is non-zero. Therefore there exist

i = 1,...,q which solve the system

*

,Xi) -30 =0 T=I,...,q

*

F(a]....,a ,aq+],...,an 1

q

*

where la. - ai Is 6 for i = l,2,...,q. Since P is open,
1

6 and consequently 6 can both be taken small enough to

ensure that A = (a],...,an) c P. This proves the lemma.‘

For the next lemma we should recall the definition

of a nOrmal point of,gy *. F(A*,x) 5.5? * is called a

normal point if m(A*) = N = maximal value of m(A) for

A c P.

Lemma 3-2: For Lemma 3-1, F(A*,x) being a normal point
 

implies that there is a unique F(A,x) satisfying (1) of

Lemma 3-1.

Egggf: Since for each A c P, m(A) S N = m(A*), it

follows that if both F(A,x) and F(A],x) satisfy (1),

they agree at N points. (l-3)‘ then implies that

F(A,x) a F(A],x). ‘

We are now ready to state and prove the lemma which

will assure that a constant error curve for the best

approximation from55(* can not occur. It is Lemma 3
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of [3], modified for our setting. Before we state and

prove the lemma, however, we should note that Lemma 3—1

implies that the members of'a8’* are locally solvent

(or satisfy (1-2) ). Therefore the results for 5?’

apply for j?’* (since A?’* is a varisolvent family V

of Chapter 1).

Lemma 3-3: If F(A*,x) e ,Zr; is a best approximation
 

to f on X from j§’* such that

(x+1 u x+2) n (x_1 u x_2) = 6 ,

then a constant error curve cannot exist.

Proof: Without loss of generality, assume

F(A*,x) - f(x) 5 c > 0 on X. Now a Haar subspace always

has a strictly negative function (see [9]). Therefore

2

there exist scalars fail] such that

 

2

2') a. a F(A1;x)

 

  

i l 1 a a < 0‘
i

Let A = (a],a2,...,a£,0,0,...) 5 En'

Then 1

O > E a. a F(A*,x)

i=1 ‘ ** =
a a,

f: a a F(A”: + my) I ,__ d F(AL+ tA,x) l
._ 1 *

1-1 6(ai + t ai) t=O dt t=O

for all x c [a,b]. By the mean value theorem, for
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sufficiently small t, we have that

F(A, + t A, x) < F(A*,x)

for all x 5 [a,b]. Now F(A*,x) is continuous with respect

to A, and P is open. Therefore there exists a

t > t > 0 such that
l

”F(A, + t A,x) - f(X)H < ”F(A*.X) - f(X)H.

Because (X+1 U X+2) n (X_1 U X_2) = 6 , t can also be

chosen so small that F(A* + t A,x) c fi4¥z since

f(x) < F(A* + t A,x) < F(A*,x)

for t sufficiently small. I

Combining Lemma 3-3 and Theorem l-2, we have

Theorem 3-1: Let F(A,x) e j?’* satisfy
 

(x+1 U x+2) n (x_1 U x_2) = 6 .

Then F(A,x) is a best approximation to f on X from,§#,*

if and only if F(A,x) - f(x) alternates at least m(A)

times on X.

Uniqueness of best approximating functions from

55’* for

(x u x+2) n (x_] u x_2) = 6
+1

follows from Lemma 3-3 and the fact that members of

j§{* are members ofjgf.
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We will now reproduce Theorem 2 of [3] in our

setting since it will be necessary in the proofs of the

next section.

5f,

Theorem 3-2: Let F(A*,x) 8 2T * be a best approxi-
 

mation to f on X where

(X+1 U X+2) n (X_] U X_2) = 6

and F(A*,x) is normal. Let the sequence

{F(Asooi. F(As.x) e A“

be such that

lim ”F(As.x) - f(x)” = ”F(A..x) - f(x)”
S+w

and assume

(3-2) for 6 > 0, there exists an M(€) > 0 such that

for all s > M and all

x c X, £(x) - 6 S F(As,x) S u(x) + 6

then we can find a sequence {Ap'l C P such that

lim ”A, - A 'H = o,

p... P

where the sequence {Ap'} is equivalent to a subsequence

of the {AS}, and the last n - N (recall that m(A*) = N)

components of each Ap' agree with the corresponding

components of A* .

O on X.Proof: Without loss of generality, assume f(x)

Let {xiz a S x1 < x2 < ... < XN+1’ xi 5 X} be a
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critical point set for F(A*,x). Let {F(Ap,x)} be a

subsequence of (F(As,x)} which converges at these

critical points. Call the limits at these N + 1 points

F(xj). Now by (3-2) and the assumption that ”F(As,x)H

tends to ”F(A*.x)N.

(3-3) max (2(x3).- "F(A,.X)H) S F(xj)

5 min (U(Xj)s "F(A*9X)N)g

We wish to show that F(xj) = F(A*,xj) for

j = l,2,...,N + 1. If this is true, Lemma 3-1 and

Lemma 3-2 imply that a sequence {Ap'} equivalent to a

subsequence of [AS] can be found such that

lim "A* - Ap'H = o

p+m

and the last n - N components of each Ap' agree with the

corresponding components of A*, proving the theorem.

Assume for concreteness that x] e X_1 U X_2 .

Also assume that F(xj) r F(A*,xj) for some xj. There-

fore let F(xN+1) # F(A*,xN+]) (the method will apply

for any other xj). Let c = lF(A,,xN+1) - F(xN+])| > 0.

By means of a construction we will apply the unrestricted

form of Lemma l-l and arrive at a contradiction. Let

a = 1S?;N+l [|F(A*,xj) - F(xj)|: F(A*,xj) # F(xj)}.

We will construct-a function F(A,x) belonging to 137*
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from our local solvency property in the following way.

For 0 < E < c/2, there exists a 6 sufficiently small

where O < 6 < min (a,€) and an A c P such that (by

Lemma 3-1),

(3-4) F(A*,xj) + (-1)j+‘(6/2) where

F(A*,xj) # F(xj)

(a) F(A,xj) =

F(A*,xj) + (-l)j(6/2) where

F(A*,Xj) = F(Xj)

for j = l,2,...,N

and

(b) ”F(A.X) - F(A..x)H S 6 < c/2

We will consider only p so large that

(3-5) [F(Ap,xj) - F(xj)| S 6/4 j = l,2,...,N + 1

Now we have constructed F(A,x) so that F(A,x) - F(Ap,x)

changes sign at the xj , j = l,2,...,N.

i.e.,

(3’6) 59" (F(Asxj) ' F(Ap’xj) ) =

- sgn (F(A,xj_]) -F(Ap,xj_]) ) for j = 2,...,N
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To see this, for concreteness assume that j = k and

xk e X+1 U X+2 where

F(xk) = F(A*,xk).

Then by our construction

F(xk) = F(A*.xk) = F(A.xj) + 6/2

Since

IF(Xk) ' F(Ap’xk)l S 6/4

we have

F(Ap’xk) > F(A,xk)

There ex1st two cases for xk+1

Case 1: F(xk+]) = F(A*,xk+]) . By (3-4) (a) we have

F(A,xk+]) = F(A*,xk+]) + 6/2 > F(xk+]) + 6/4 or

F(Ap’xk+l) < F(Asxk+1)

Case 2: F(xk+]) # F(A*,xk+]) . By (3-4) (a)

we have

F(A*,xk+]) = F(A,xk+1) + 6/2 .

But F(A*,xk+]) - F(xk+]) 2 a implies that

F(A*,xk+]) e a + F(xk+]) 2 a + F(xk+]).

Then F(xk+]) + 6/2 S F(Asxk+]) or

F(Ap,xk+]) < F(A,xk+])
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Therefore

sgn (F(Asxk) -F(Ap9xk) ) = T sgn (F(Asxk+]) ‘F(Apsxk+]) )

when xk c X U X+2 and F(xk) = F(A*,xk).
+1

If xk c X_1 U X_2 or F(xk) # F(A*,xk), the argument

is similar.

Now (3-6) holds for j = 2,...,N. But it also

holds for j = N + l by (3-3), (3-4)(b) and (3-5). But

F(A,x) and F(Ap,x) both belong to .fl* and by the

unrestricted form of Lemma l-l,

F(A,X) ' F(Apsx) ¥ 0! (F(Ast+]) % F(Apst+]))s

can have at most N - l zeros on [a,b], since

N = max m(A) for A e P. (3-6) contradicts this and

therefore

F(A*,x = F(x
n+1) n+1)

This is the desired result.

Section 3-2: Strong Unicity and Continuity of the Best
 

Approximation Operator Theorems.

In this section we will extend Theorems 3 and 4 of

[3] to our setting

Theorem 3-3: If F(A*,x) is a best approximation to f
 

on X from .T *,

(x+1 u x+2) n (x_] u x_2) = 6 ,

and F(A*,x) is normal, then there exists an a > O
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a”?
such that for each F(A,x) e,'f * ,

”f(X) - F(A.X)H 2 ”f(X) - F(A*.X)H+ a” F(A.X) - F(A*.X)H

fl

Proof: Assume f ¢‘/7 * . If Theorem 3-3 is false, a

6%?
sequence {F(An,x)} C,z‘ * and a sequence {an} , an > O

can be found such that lim an = 0 so that

new

F(An,x) s: F(A*,x)

and such that

(3-7) ”f(X) - F(An.X)H = “f(X) - F(A*’X)N +

an ”F(An.x) - F(A..X)H

We claim {HF(An,x)”} is bounded.

Consider

(3-8) ”F(A..X) - F(An.X)H - ”f(X) - F(A..X)H S

”f(X) - F(A.,X)N + an ”F(A*,X) - F(An.x)H

which is true by

”F(A..x) - F(An.X)H - ”f(X) - F(A*,X)H S

”F(A.,X) - F(An.X)) - (f(x) - F(A.,X))H =

”f(x) - F(An.x)H

and (3-7). Now

”F(A*sx) - F(Ansx)” f 0

since F(An,x) S F(A*,x). Divide both sides of

(3-8) by ”F(A*,x) — F(An,x)H. We have
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l - ”f(X) - F(A..x)H ”f(X) - F(A,.x)H

”F(A*,X) " F(AnaxH' “F(A*,X) ' F(Ansx)N I'l

  

If (”F(An,x)Hl is not bounded, then 1 s an as

n +w , since ”f(x) - F(A*,x)H is bounded, which is a

contradiction. Therefore assume (”F(An,x)N} is bounded.

Then by (3-7),

(3-9) iim ”f(x) - F(An.x)H = ”f(x) - F(A,.x)H.
n+oo

Apply Theorem 3-2 to (3-9), i.e., there exists a

sequence {Bk} c P converging to A* where the sequence

is equivalent to a subsequence of {An} and the last

n - N components of each Bk agree with the corresponding

components of A*. We should note two things. First

F(Bk,x) c 9’* since F(An,x) c ff’h Second

(3-7) remains valid for {Bk}

Lat -1 if x e x_ u x
1 -2

C(X) =

1 if x e x+1 u x+2

By the assumption that (X+1 U X+2) O (X_1 U X_2) = ¢ 9

o is well defined. Now, we wish to show that

(3-10) ak ”F(Bk,x) - F(A*,x)H 2

max C(X) (F(A*,x))- F(Bk,x)

chA

'k
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We have that (3-7) is valid for {Bk} .

Therefore

ak ”F(Bksx) -F(A*,X)” = ”F(X) 'F(Bksx)” ' ”f(X) 'F(-A*9X)”

Now ak ”F(Bk,x) - F(A*,x)H > 0 for each k since

F(A*,x) is the best approximation to f from 5#'* and

F(Bk,x) 6

Case 1:

Case 2:

Case 3:

r9 .

tT *. We now con51der cases

Let x] c XA* such that F(A*,x]) = 2(x1)

(i.e., 0(x1) = l) . Then since

,4

F(Bkax) 5 ’r *9 F(Bksx1) ‘ F(A*,X]) 2 0

or 0(x1) (F(A*,x]) - F(Bk,x])) S 0

Let x c X such that F(A*,x]) = u(x1)
l A,r

(l-e-s G(x1) = - l) . Then since

F(Bkox) 6)! * 9 F(Bk’xT) ' F(A*,X-l) S 0

or o(x1)(F(A*.x]) - F(Bk.x]) S 0

Let x1 9 XA* such that

f(xT) -F(A*,X-l) = : ”f(X) -F(A*,X)” °

Then

ak ”F(Bksx) ' F(A*9X)N =

”f(x) -F(Bk.x)u - ”f(x) -F(A..x>u

G(x1) (f(x'l) 'F(Bksx])) "' ”f(X) “F(A*,X)”

I
V

0(X17 (f(X1) ‘F(Bk,X]) ‘ G(X])(f(x]) "F(A*9X]))

G(X1) (F(A*,X]) 'F(Bk,X]))
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We therefore have that for all x1 6 XA ,

*

ak ”F(Bk,X) ' F(A*,X)”

2 am) (F(A..x,) - F(Bk.x]))

Therefore,

ak “F(Bksx) ' F(A*,X)”

2 max C(X) (F(A*,x) - F(Bk,x))

xeXA

*

or (3-10) is shown to be true.

We now wish to show that there exists a y > 0

such that for all k,

(3-11) max {C(X) (F(A*,x) - F(Bk.X))} 2 YHBk- A*N

chA

*

Assume (3-11) is false. Then there exists a sequence

of positive {Yk} such that Yk tends to O and a

subsequence of {Bk} such that

(3-12) max 0(x) (F(A*,X) - F(Bk.x))

chA* “A* _ Bk”
 

S yk

By the mean value theorem for large k,

3F(Ak(x),x) (ai*- bki)

1 3G1 NA* ' B

i
i
t
m
z

(3-13) max 0(x)

xeXA i

*

 
 

ku

where Bk = (bkl""’bkn) , N = m(A*) and Ak(x) c P

is on the line between Bk and A, (k large enough and P
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A*-B
 

open says that Ak(x) e P). Set ck = k

”A1: - Bk”

Since ”ck” = l for all k, and we are on a compact set,

we have a convergent subsequence (which we will not

relabel) where this subsequence c converges to

k

c = (c1...,cn) and ”c” = 1. Using this subsequence

in (3-13) and taking limits, we have

N

(3-14) max C(X) 2 Ci §£153451- S O

chA* i=1 aai

N aFA x
Now 2 Ci is a non-zero function because

i=1 3ai

of linear independence and the fact that ”c“ = 1

By (3-14) and Theorem 3-1,

8F(A*,x)

 

Bai

has at least N zeros which contradicts our Haar sub-

space hypothesis. Therefore (3-11) is proven.

When we combine (3-10) and(3-ll), we have that

(3'15) (1k ”F(Bksx) " F(A*,X)” 2 Y ”Bk ' A~k”

But since Bk + A* , by the mean value theorem, there

is a D > 0 such that for sufficiently large k,

(3'16) ”F(Bksx) ' F(A*,X)” S D "Bk " Ag.”
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From (3-15) and (3-16) we have that

I,ak 2 D > 0

which says that ak + 0 is impossible. This contradicts

our original assumption that the theorem was false. '

It is obvious that F(A,x) must belong to ,9f* and

not just to A9* in TheOrem 3-3 as the following example

shows.

Example 3-1: Let X = [-l,l], f(x) = x2, u(x) = x2 + l/4.
 

£(x) = - l and {F(A,x): F(A,x) = ax + b} = 65y* .

Then F(A*,x) E 1/4 is the best approximation to f(x)

on X fromthS, but for F(A],x) 2 1/2 6 ,JV * , we have

that

”f(X) ‘F(A]sx)ll i N f(X) -F(A*,X)” + Y ”F(A*9X) 'F(A]9X)N

for y > 0 since 1/2 2 3/4 + v . l/4 for y > O.

The last theorem of this chapter is a Continuity

of the best approximation operator theorem. For A9'* ,

the theorem is Theorem 4 of [3]. The proof is based on

the strong uniqueness theorem and compactness. Their

proof applies in our setting and we have the following

theorem.

Theorem 3-4: Let F(A*,x) be a best approximation to f
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on X from J?’* such that F(A*,x) is normal and

(x+1 u x+2) n (x_1 u x_2) = 6 .

Then,

(1) There exists a y > 0 such that ”f(x) - g(x)H< y

implies g has a best approximation on X from’fifg ,

say F(Ag,x)

(2) There exists a A > 0 such that for all g(x) of

(1) above which have a best approximation

F(Agsx)s ”F(A*,X) ' F(Ag,X)"

S l ”9(X) - f(X)”

Theorem 3-4 is a local continuity theorem. (1) of

Theorem 3-4 says that 9 must be sufficiently close to f

to apply the theorem. As an example of a global con-

tinuity theorem, see C. Dunham [7]. C. Dunham's

theorem, however, assumes that pointwise convergence

is uniform convergence (see the paragraphs following

Corollary 3 of Theorem 1-2)



CHAPTER 4

GENERALIZED WEIGHT FUNCTION APPROXIMATION

WITH PROPERTY A AND RESTRICTION BETWEEN

THE CURVES u AND 2 WHERE u > 2

Section 4-1: Introduction and Definitions
 

D. Moursund [14], D. Moursund and G. D. Taylor [15],

G. D. Taylor [22], I. Ninomiya [17], L. Wuytack [27],

and C. Dunham [8] among others looked at a general-

ized weight function for an approximating family of

functions. G. D. Taylor [22] examined a generalized

weight function for polynomials in our restricted

setting, while C. Dunham did likewise except that his

approximating family was non-linear in a non-restricted

setting. In this chapter we will combine these last

two papers and look at a generalized weight function

for a class of non-linear functions bounded between the

curves u and 2 .

Our generalized weight function will not be the

least restrictive generalized weight function (see [14]).

A function W(x,y) mapping W X R into R will be called

a generalized weight function if

(4-1) (i) sgn W(x,y) = sgn y

(ii) W is continuous

59
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(iii) for each x e X, W is a strictly monotone

increasing function of y with

lim|W(X.y)| = °°

lyl-mo

For our family’9!(of Chapter 1), we say that

F(A*,x) 59’ is a best generalized approximation to f

with respect to W and 9’if

sup |W[x,f(x) - F(A*,x)]| S

xeX

. w s ' sF(AT:)efl’()S(:X l [x f(X) F(A X)]l )

Our first observation is that if W(x,y) = y, our

problem is the problem of Chapter 1. Even if W(x,y) # y

we will show that a form of Chapter 1 applies for our

generalized approximation with respect to W and Er.

We now require a theorem of D. Moursund and

G. D. Taylor [15].

Theorem 4-1: If W is continuous and F(A,x) is vari-
 

solvent (of degree m(A)), then W is varisolvent (of

degree m(A)).

We also require a slightly altered definition of

alternation. (see [22]).

Definition: For F(A,X)!SJ??, we define sgn*(f(x)-F(A,x)) by

u(x)

£(x)

 

-1 if F(A,x)

sgn* (f(xi) -F(A,xi)) = N 1 if F(A,x)

sgn(f(x) -F(A,x))otherwise



61

Definition: For F(A,x) c j?’, the error curve

W [x.f(X) - F(A,x)]

 

is said to alternate n + 1 times on X if there exist

n + 2 points x1 < x2 < ... < xn+2 in X such that

sgn* (f(xl) T F(Asxi)) T T sgn* (f(XT+T) T F(Asxi+])) s

i = 1,2, ... , n + l

and at least one of the following conditions is satisfied

by each xi:

(1) INEXT’f(XI) T F(Aaxi)]l T

max |W[x,f(x) - F(A,x)]l

xeX

(ii) F(A.x,.) m1.)

(iii) F(A,xi) u(xi)

As before,the xi are called critical points. An xi is

a positive critical point if

sgn* (f(xi) - F(A,xil) I
I

_
I

and a negative critical point if

sgn* (f(xi) T F(A,X1)) -1

Using Theorem 4-1 and our revised definition of

alternation we could develop the results of Chapter 1.

Rather than this however, we will examine a perhaps

more general problem.

J. R. Rice has shown (page 18 of [20]) that the

weakest hypothesis with property Z and continuity which
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will ensure a Tchebyshev type of characterization theorem

is property A (defined below). The difference between

the above conditions and varisolvency is essentially the

solvency condition (not considering the constant error

curve possibility). On page 22 of [20], Rice gives two

examples of families satisfying property A which are not

(varisolvent. It has not been shown yet whether varisol-

vency implies property A because of the constant error

curve difficulty.

We will consider generalized weight function approxi-

mation using a family in our restricted setting, where

the family has property A in place of local solvency.

First, a theorem comparable to Theorem 4-1 will be given

for a family with property A (instead of local solvency).

We will then examine the questions of existence, unique-

ness and characterization for our (property A) family

with respect to W.

Let (g : be the family of functions

{F*(A.x)= P x [a,b] + R}

where each F*(A,x) 6,19 : satisfies (l-l), property 2

(or (1-3))s and property A. Our approximating family

55’* “g * . . .
1 will be the subset of 1 satisfying (1-4) (i.e.,

*

members of AV 1 lying between the curves u and t ).

As for our familylgf, F*(A,x) e §FP:' is a best gen-

*

eralized approximation to f with respect to W and jg’] if
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(4-2) sup IW[x.f(X) -F*(a.X)]| S

xeX

inf (sup |W[x.f(X) -F*(B.x)]|) = e

F*(B,x)cfiF: XEX

We will use our new definition of alternation for ?‘1 .

Thus there remains only the definition of property A.

Definition: F*(A,x) has property A of degree m(A) if
 

for any integer m < m(A),

any sequence {x1,...,xm} with

a = x0 < x1 < --- < xm+1 = b

any sign 0 , and any real 6 with

O < E < min {xj+1 - xj: j = O,...,m},

*

there exists an F*(B,x) 6 ’5] such that

HF*(A.x) -F*(B.X)H < 6

sgn (F*(Asx) -F*(B.X)) = 0 for a S x < x1 - E

c (-l)J for xi + 6 < x < xj+1 - E

o(-l)m forxm+€<xsb

For m = O,

sgn (F*(A,x) -F*(B,x) = a

Section 4-2: Existence of Best Approximations.
 

Before we consider the existence question we will

give the analog of Theorem 4-1 in our setting (with

property A).
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*

Theorem 4-2: If W is continuous and F*(A,x) c ,5! 1 s
 

then W has property Z and property A of degree m(A).

Erggj; (The proof parallels that of Theorem 4-1 in

[15]). The proof that W has property 2 of degree m(A)

can be found in [15] (it doesn't depend on property A).

We now show that W has property A of degree m(A).

= b, and 6Let k < m(A), a = x < x1 < --- < xk
0 +1

such that 0 < E < min {xj+] - xj: j = O,...,k} be

given as well as any sign 0. Since F*(A,x) has property

A of degree m(A), there exists an 6] > O and

F*(B,x) c ,éf : such that

”F*(A.x) -F*(B.x)H =

”[f(x) -F*(A.X)] - [f(X) -F*(B,x)] H < 61

where sgn (F*(A,x) -F*(B,x))= a for a S x < x1 - 6]

o (-l)J for xi + 61 < x < x3],1 - E]

a (-1)m for xm + €1< x S b

Now E < 6 can be chosen sufficiently small so that1

by the continuity of W,

“W TX.f(X) -F*(A.X)] - NEX.f(X) - F*(B.X)]H <'e

But since sgn W(x,y) = sgn y,

sgn (“[X.f(X) -F*(A.X)l - N [X.f(X) -F*(B.X)]) =

o for a S x < x1 - E

- j -c ( l) for xi + E < x < xj+1 6

o (-l)m for xm + E < x g b
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Therefore W has property A of degree m(A). If W had

property A of degree m(A) + l, we would have a

contradiction of property 2. This concludes the proof.‘

We now consider the existence question. Our

discussion will parallel that of Chapter 1. We first

note that existence of best approximations is not

assured under ordinary approximation, and therefore

will not be assured under generalized approximation.

An example of the above non-existence of a best

approximation is as follows.

Example: Let P = [ala is rational] AV; = [F*(A,x) = a},

and f be defined by f(x) = J2 . Then a best approxi-

*

mation to f from ,5] does not exist. (see page 22

of [20]).

Therefore, as in Chapter 1, in this section we will

. r'*. .
add the hypothe51s that /x 1 15 closed under p01nt-

wise convergence. This will allow us to obtain

existence of a best approximation.

For the e defined in (4-2), let

(4-3) lim sup |W[x,f(x) -F*(Ai,x)]| = e

i+w xeX

Our existence question will be answered in the affir-

*

mative if we can find an F*(Ar,x) E: d] such that

sup! th.f(x) - F*(Ar.x)] i = e
xeX
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Now, since m(A) is bounded for all A, we can find a

subsequence of {F*(Ai,x)} of fixed degree such that

(4-3) holds (we will not relabel). Applying Theorem

7.2 of Rice [20] to our subsequence {F*(Ai,x)}

satisfying (4-3) gives us a pointwise convergent sub-

sequence satisfying (4-3). But our closure assumption

* a

on )T 1 then gives us that there eXists an

which is the pointwise limit of the
. r“

F (AS’X) EX]

pointwise convergent subsequence satsifying (4.3).

We must therefore have that

sup |W[x,f(x) -F*(As,x)]| =

xeX

max|W[x,f(x) -F*(As,x)]| = e < w

xeX

since W is continuous on a compact set. Therefore

F*(As.x) is a best approximation to f with respect to

(’1'

W and gt 1. We have just proved the following theorem.

Theorem 4-3: For a generalized weight function W,
 

there exists a best generalized approximation to f on

. ,1'*
X with respect to W andJ 1.

Section 4-3: Uniqueness and Characterization of Best
 

Approximations.

Our first observation is that Examplel-land Lemmal-2

apply in our setting so that we need consider only the
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= 6 . For thecase where (X U X+2) n (X._1 U X
+1 -2)

remainder of this section we therefore assume that

(x+1 u x+2) n (x_1 u x_2) = 6.

Uniqueness will follow directly from the character-

ization theorem in the usual manner (see the proof

of Theorem 1-4 ).

For the characterization theorem we require a

lemma which C. Dunham [8] gives without proof for the

unrestricted setting. For completeness we will give

a proof of the lemma in our setting.

Lemma 4-1: For F*(A,x) e :5! : , F*(A,x) -F*(B,x)
 

can have at most m(A) - l zeros, counting double zeros

twice, for F*(A,x) S F*(B,x) e j?! :

Proof: The proof will consist of constructing an

F*(C,x) 2: fl 1; such that F*(C,x) -F*(A,x) can have

as many distinct zeros as F*(B,x) -F*(A,x) has zeros,

counting double zeros twice. If xj is a double zero

of F*(B,x) -F*(A,x) such that F*(B,x) > F*(A,x)

in a small neighborhood of Xj (not including xj of course),

F*(C,x) will be constructed close enough to F*(B,x)

where F*(B,x) > F*(C,x) in the neighborhood of xj.

This will ensure two distinct zeros of F*(C,x) -F*(A,x)
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associated only with xj i.e.,

FT( '3) X)

FTCCJX)

Flex

For F*(B,x) < F*(A,x) in a neighborhood of a double zero,

F*(C,x) will be above F*(B,x) in a manner analogous

to the above. Each simple zero of F*(B,x) -F*(A,x)

will also have a zero of F*(C,x) -F*(A,x) associated

only with it. We now proceed with the construction.

Let {xi}? be the set of zeros of F*(A,x) -F*(B,x).

Let

p = min max |F*(B,x) -F*(A,x)| > O

0S1Sk xe[xi,xi+]

xi<xi+1

where x0 = a and Xk+1 = b

and

a = min Ix - x.| > 0. Select an
OSiSk 1+1 1

xi<"i 1

appropriate 6 > 0 such that a/2 > 6 > O and
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0/4 > E > 0. We then construct a set of points

9.

{Xi'Iiz1 ,2 S k in the following way.

Case 1: Let x1 be a double zero (a = x0 = x1 or

xk = xk+1 = b implies a simple zero). Select an x]'

such that x0 + E < x]' < x1 - 6 (i.e., x]' is between

x0 and x1 and an 6 distance away from both). Proceed

to the first simple zero after x](if it exists) and

select xz' as follows, i.e. if x5 is the first simple

zero after x],x2' is selected such that

' -Xs-l + 6 < x2 < xS 6

Proceed to the next zero, xs+]. Select x3' where

xS + 6 < x ' < x + E. If x is a simple zero,
3 5+1 s+l

proceed to x5+2 and do the same for x5+2 as for xs+1.

If x is a double zero, proceed to the next simple
s+1

zero after xs+1 as in selecting xz'. Continue through

all the zeros of F*(A,x) -F*(B,x).

Case 2: Let x1 be a simple zero where x1 = x0.

Proceed to x2. If x2 is a double zero, proceed as in

Case 1. If x is a simple zero, proceed as if for x]
2

in Case 3 below.

Case 3: Let x1 be a simple zero where x1 # x0. Let

x1 be such that x0 + E < x1 < x1 - 6. Let xz' be
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such that x1 + E < x2' < x2 - E (naturally only if x2

exists). If x2 is simple proceed and repeat for x3.

If x2 is double, proceed as if x2 is the double zero

x in Case 1 above.
s+l

Letxd be the first double zero. Suppose, for

concreteness, that near xj, F*(B,x) > F*(A,x).

Select a in property A below so that

sgn (F*(B,xd) -F*(C.xd)) = + 1

(If no double zero exists, property 2 proves the lemma).

Now, for the points {xi'}.f1 1 and our 6 > 0, there

exists (by property A) an F*(C,x) such that

sgn (F*(B,x) -F*(C,x)) = a for a S x < x]' - E

I_ _ J - _
- 0 ( l) for xj + 6 < x < xj+1 6

o(-l)£forx£+€<be

where ”F*(B,x) -F*(C,x)H < 6.

Now by our construction, F*(C,x) -F*(A,x) has as

many simple zeros as F*(B,x) -F*(A,x) has zeros,

counting double zeros twice. Applying property Z proves

the lemma. I

The statement and proof of the characterization

theorem which now follows parallels that of Taylor [22]

for the linear case.
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Theorem 4-4: For a generalized weight function
 

W and F*(A,x) c ff: where

(x+1 u x+2) n (x_1 u x_2) = 6 ,

F*(A,x) is a best generalized approximation to f with

*

respect to W and 5f 1 if and only if

W[x,f(X) -F*(A.X)]

alternates at least m(A) times . (Remember that

Q11?! 6 by assumption).

Proof: Assume W[x,f(x) -F*(A,x)] alternates at least

m(A) times on X. Assume for concreteness that it

alternates exactly m(A) times. Assume there exists an

F*(B,x) c 19": such that

max (W[x,f(x) -F*(B,x)]| <

xeX

max |W[x,f(x) -F*(A.X)]| = 0*

xeX

Let {x1: x1 < xi+1] be a critical p01nt set of

m(A) + 1 points in X for W[x,f(x) —F*(A,x)]. Without

loss of generality, assume

sgn* (f(xi) - F*(A,x1)) = (-1)1 for i = l,2,...,m(A) + 1.

Therefore for 1 odd, W[x1,f(x1) -F*(A,x1)]= - 0* or

F*(A,xi) = u(xi), and for i even,

W [x1.f(x1) -F*(A.x1)] = 0*
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or F*(A,xi) = 2(x1) since (X+1 U X+2) O (X_1 U X_2) = 6.

By the monotone property of W (when needed), we have

that {-1)i+1 (F*(A,xi) -F*(B,x1)) 2 o for i = l,2,...,m(A)+l.

Therefore F*(A,x) -F*(B,x) has at least m(A) zeros,

which contradicts Lemma 4-1. Therefore if

W[x,f(x) -F*(A,x)]

alternates m(A) times on X, F*(A,x) is a best generalized

. a" *

approximation to f with respect to W and )1 1.

,4 * . . .
Assume F*(A,x) c I” 1 1S a best generalized approx1-

*

mation to f with respect to W and :141 which alternates

k < m(A) times on X. Let y1 < yz --- < yk+l be a

critical point set of X for W[x,f(x) -F*(A,x)]. Fix i,

l S i S k and suppose yi is a positive critical point.

Let y' = sup (y: y c X with yi S y S y1+1 and y is a

positive critical point} and let

yn = inf {y: y E X With yi S y S Yi+1

and y is a negative critical point}. Since

(x+1 u x+2) n (X_1 u x_2) = 6 ,

X is compact, and all functions involved are continuous,

we have that y' is a positive critical point, y" a

negative critical point, y' < y", and y c (y',y") implies

y is not a critical point. If X O(y',y") # 6, pick

an x1 in this intersection. Then at x1,
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(i) p T lexi’f(xi) TF*(ArX1)]| < 0*

where p* -p = s > 0

(ii) 2(x1) + Si < F*(A,xi) < u(xi) - 51, where

s > 51 > 0

Now by continuity, there exists an 61 > 0 such that on

[x. — G.1 1, x1 + 61], h(x) + 51/2 < F*(A,x) < u(x) - 51/2

and |W[x,f(x) - F*(A,x)]l < p* - 51/2 for all

x. + 6.].

 

If X n (y',y") = (I) ’ Tat xi = D' +yn)

2

Then there exists an 61 > 0, since y' < y" such that

X O [x1 - 61, x1 + 61] = 6. Construct x1 and 61 in

a similar manner for each i = l,2,...,k, letting

x0 = inf Ty: y c X} and xk+1 = sup Iy: y e X}

Let 6k = min (61} > O and sk = min {51/2} > 0. Then

TSiSk lSiSk

k

for x c U (X O [x. - 6k, x. + 6k]) , we have

P i=1 1 I

that |W[xp, f(xp) = F*(A,xp)]l < p* - sk ,

k
and £(xD) + s < F*(A,xp) < u(xp) - sk. Now,by

k

construction {X O [x1,x1+1]}i=0 15 a set of k + 1

intervals in X each of which contains no alternations
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and such that W[x,f(x) -F*(A,x)] alternates exactly

once on any two intervals. Each X O [x1,x1+1] ,

i = O,...,k contains a critical point, namely y1+1

and no critical point of an opposite sign. Without

loss of generality assume y1 is a positive critical

point. Then there exists a 61 > 0 such that

W[x,f(x) -F*(A,x)] >-p* + 61 and F*(A,x) < u(x) - 61

for all x c X O [xo,x1], since X is compact and all

functions involved are continuous and u(x) > £(x).

Now since W is a continuous and strictly monotone

function of f(x) -F*(B,x) for F*(B,x) c :9}: , there

exists an 0 < 61 < min (sk, 61/2) so small that if

[F*(A,x) -F*(A1,x)| < 6 and f(x) -F*(A,x)>

f(x) -F*(A1,x) for all x c X O [x0,x1], then

(4-4) (W[x,f(X) -F*(A.X)] -W[x.f(X) -F*(A1.x)]l S sk/3 .

W[x,f(x) -F*(A1,x)] > - p* + sk/3 , and

F*(A19X) S u(x) - 61 for all x c X O [x0,x1].

Repeat this process, i.e., on X O [x1,x2], there exists

a 62 > 0 such that F*(A,x) > £(x) + 62 and

W[x,f(x) -F*(A,x)] < p* - 62 for all x c X O [x1,x2].

Then there exists an O<:€2 < min (sk, 62/2 ) so small
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so that if |F*(A,x) -F*(A2,x)l < 62 and

f(x) -F*(A,x) < f(x) -F*(A2,x) for all x c X O [x1,x2],

we have

(4-5) thx.f(x) -F*(A.x)]-WLx.f(x) -F*(A2.X)]I s sk/s ,

W[x,f(x) -F*(A2,x)] < p* - sk/3 , and

F*(A2,x) 2 £(x) - 62 for all x c X O [x1,x2].

Continue with X O [x2,x3] etc.

Let ER = min {61/2 , 62/2,..., ek/2} > 0.

Let 6 = min (€1,6k) . Now apply property

A to {x1,...,xk} , k < m(A) with e > o and 0 = - 1.

Th f th ' t F*(A ) 579* h th tere ore ere EXlS S an S,X E 1 SUC a

”F*(A,x) -F*(AS.X)H < G

and

sgn (F*(A,x) -F*(As,x))= -l on xo S x < x1 - E

(-l)J+] on Xj + E < x < Xj+1 - E

_ k+l
- (-l) on xk + E < x S xk+1

By construction, property A and strict monotonicity give

us that F*(As,x) is a better approximation on the

intervals X O [x1 + E, x1+1 -6] i = 0,1, ..,k , and

(4-4) and (4-5) along with our selected 6 > 0 give us
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that (W[x,f(x) -F*(As,x)]| < p* and

£(x) S F*(As,x) S u(x) on X O [x1 - €,x. + E].1

for i = l,2,...,k. Therefore

max [W[x,f(x) -F*(AS.X)]|

xeX

< max |W[x,f(x) - F*(A,x)]l = 0*

XeX

which is a contradiction. Therefore the best generalized

approximation F*(A,x) must alternate at least m(A) times

and the theorem is proven.

Uniqueness follows directly from the first part of

the proof of Theorem 4-4 where the first '<' is replaced

by ISI

Theorem 4-5: The best approximation of Theorem 4-4
 

is unique.

Remark: It shduld be noted that a generalized weight

function can be thought of as a transformation.

E. H. Kaufman, Jr. and G. G. Belford in [10] and [11]

have examined unisolvent and varisolvent families from

this approach.



BIBLIOGRAPHY



10.

11.

12.

R.

D.

E.

C.

S.

E.

H.

BIBLIOGRAPHY

Barrar and H. Loeb, On N-Parameter and Unisolvent

Families, J. Approx. Theory 1 (1968), 180-181.

, Best Non-linear Approximation with Inter-

polation, Arch. Rat. Mech. Anal. 33 (1969),231-

237.

, On the Continuity of the Non-linear

Tschebyscheff Operator, Pacific Journal (to ap-

pear .

Braess, On Varisolvency and Alternation.

W. Cheney, Introduction to Approximation Theory,

McGraw-Hill, New York, 1966.

Dunham, Necessity of Alteration, Canadian Math.

Bull. 10 (1968), 743-744.

, Existence and Continuity of the Chebyshev

Operator, Siam Review 10 (1968), 444-446.

, Chebyshev Approximation with Respect to a

Weight Function, J. Approx. Theory 2 (1969),

223-232.

Karlin and W. J. Studden, Tchebyscheff Systems:

With Applications in AnaTysTs and Statistics,

Interscience, New York, 1966.

H. Kaufman, Jr. and G. G. Belford, Transforma-

tions of Families of Approximating Functions,

J. Approx. Theory (to appear).

, A Generalization of the Varisolvency and

Unisolvency Properties.

L. Loeb, D. G. Moursund, L. L. Schumaker, and

G. D. Taylor, Uniform Generalized Weight Func-

tion Polynomial Approximation with Interpola-

tion, Siam J. Numer. Anal. 6 (1969), 284-293.

77



13.

14.

15.

T6.

17.

18.

19.

20.

21.

22.

23.

24.

25.

78

G. Meinardus, Approximation von Funktionen und

D.

T.

H O

m
(
D

ihre numerische Behandlung, Springer-Verlag,

Berlin, 1964.

D. G. Moursund, Chebyschev Approximation Using a

G.

S.

R.

Generalized Weight Function, Siam J. Numer.

Anal. 3 (1966), 435-450.

Moursund and G. D. Taylor, Uniform Rational

Approximation Using a Generalized Weight Func-

tion, Siam J. Numer. Anal. 5 (1968), 882-889.

Motzkin, Approximation by Curves of a Uni-

solvent Family, Bull. Amer. Math. Soc. 55

(1949), 789-793.

Ninomiya, Generalized Rational Chebyshev Ap-

proximation.

Novodvorskii and I. Pinsker, On a Process of

Equalization of Maxima, Usp. Mat. Nauk 6 (1951),

174-181.

Rice, The_Approximation of Functions, Vol. 1:

Linear Theory, Addison-Wesley, Reading, Mass.
 

, The Approximation of Functions, Vol.2:

Advanced Topics, Addison-Wesley, Reading, Mass.,
 

L.

D.

1969.

Schumaker and G. D. Taylor, On Approximation

by Polynomials Having Restricted Ranges II,

Siam J. Numer. Anal. 6 (1969), 31-36.

Taylor, On Approximation by Polynomials Having

Restricted Ranges, Siam J. Numer. Anal. 5

(1968), 258-268.

, Approximation by Functions Having Restricted

Ranges III, J. Math. Anal. Applic. 27 (1969),

241-248.

, Approximation by Functions Having Restricted

Ranges: Equality Case, Num. Math. 14 (1969),

71-78.

K. Taylor, Contributions to the Theory of Restrict-

ed Polynomial and Rational Approximation,

Doctoral thesis, Michigan State University, 1970.



26.

27.

28.

29.

L. To

79

rnheim, On N-Parameter Families of Functions

and Associated Convex Functions, Trans. Amer.

Math. Soc. 69 (1950), 457-467.

L. Wuytack, The Existence of a Solution in Constrain-

ed Rational Approximation Problems, SIMON

STEVIN 43 (1969-1970), 83-99.

, Some Remarks on a Paper of D. G. Moursund,

Siam J. Numer. Anal. 7 (1970), 233-237.

, Kolmogoroff's Criterion for Constrained

Rational Approximation.



TA

”'lllifilllllilllfllll[11111311111161111'Es  


