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ABSTRACT
APPROXIMATION FROM VARISOLVENT

AND UNISOLVENT FAMILIES WHOSE MEMBERS
HAVE RESTRICTED RANGES

By
J. Edward Tornga

We consider the questions of existence, charac-
terization, and uniqueness for the following approxi-
mating problem. Approximate in the uniform norm a
real valued function f € C(X), where X is a compact
set contained in the real closed interval [a,b], from
a subset of a certain family of continuous real
valued functions defined on [a,b]. The subset con-
sidered is the subset of the family lying between
two curves u and &, where u> 2 .

Our family is a varisolvent family in Chapter 1.
We also look at the constant error curve difficulty
in the characterization theorem for a varisolvent
family. In Chapter 2 we consider a family which is
unisolvent. Adding a Haar subspace condition to a
varisolvent family gives us strong uniqueness and
continuity of the best approximation operator theorems
in Chapter 3. Finally in Chapter 4 we consider con-

tinuous generalized weight function approximation



J. Edward Tornga

where local solvency of a varisolvent family is replaced
by property A.

Our theorems are the natural extension of the
theorems for the same problem considered by G. D. Taylor

for a linear family of functions.
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INTRODUCTION

Beginning with Tchebyshev (see pg. 224-227 of [5]
for specific details), the following problem was consid-
ered: approximate a continuous function f(x) on [a,b],
a,b real finite numbers, from a set of continuous linear
functions {P(A,x)} on [a,b] where A = (ay,...,a,) ¢ E_,
Euclidean n space, and the {P(A,x)} forms a Tchebyshev
set of degree n ' . That is, for P(A;,x) # P(A,x), both
belonging to {P(A,x)}, P(A].x) - P(A,x) can have at most
n - 1 zeros. By 1918 existence, uniqueness, and charac-
terization of the best approximation to f on [a,b] from
{P(A,x)} were determined.

In 1949 Motzkin [16] and in 1950 Tornheim [26],
extended this type of theory to a non-linear case. Their
approximating family was a set of unisolvent functions.
That is, a set of continuous functions {U(A,x)},

A= (a],...,an) € En’ of degree n such that given points
{x;: x; < x4,9» 1= 1,...,n} on [a,b] and real numbers
[yi]?=] , there exists a unique U(A,,x) belonging to
{U(A,x)} which interpolates the y, at the x,. Existence,

uniqueness, and characterization of the best approximation

+: all functions considered in this paper are real-
valued functions



were discussed.

Since many useful non-linear approximating families,
such as the rational and exponential functions were not
unisolvent, J. R. Rice [20] in 1961 weakened the hypoth-
eses of a unisolvent family to a locally unisolvent
family of continuous functions {F(A,x)} having variable
degree. Rice called this family a varisolvent family.
Exponentials and rationals as well as other non-linear
functions have been shown to be varisolvent families
(see table 7.1, page 40 of [20]). Questions of exist-
ence, uniqueness, and characterization of best approxi-
mations from a varisolvent family were examined by Rice.

In 1967 C. Dunham noticed that the proofs of

Tornheim's and Rice's characterization theorems for the
unisolvent and varisolvent families were incomplete.
The unisolvent characterization proof by Tornheim has
been completed (see R. Barrar and H. Loeb [1]), whereas
the varisolvent characterization proof is only partially
completed (see D. Braess [4] and R. Barrar and H. Loeb
[1]). By assuming additional conditions on the vari-
solvent family, however, the characterization theorem
has been completed. R. Barrar and H. Loeb [3] gave one
such additional condition. They assumed the existence
of a Haar subspace for éach member of the approximating
family in order to complete the proof (see Chapter 3).

G. D. Taylor [22], [23], and [24] among others,

has examined the situation of the first paragraph in a



more general setting along with certain restrictions on
the approximating family {P(A,x)}. 1In particular, the
problem was considered when the only acceptable approxi-
mations were members of {P(A,x)} whose ranges were
between two curves. Questions concerning existence,
uniqueness, and characterization of best approximations
were studied in this restricted setting.

In this paper, we will examine non-linear approxi-
mations in the restricted setting of Taylor. Restricted
varisolvent families will be considered in Chapter 1.

We will also look at the completeness of Rice's charac-
terization theorem when additional hypotheses are
assumed. Chapter 2 will consist of approximation by
unisolvent families in our restricted setting. A strong
uniqueness theorem and a continuity of the best approxi-
mation operator theorem will comprise Chapter 3. Our
last chapter, Chapter 4, will consider generalized
weight function approximation with property A in our
restricted setting.

Throughout the paper, we will of course assume that

our approximating families are non-empty.



CHAPTER I

APPROXIMATION FROM MEMBERS OF A
VARISOLVENT FAMILY HAVING RESTRICTED
RANGES

Section 1-1: Introduction and Definitions.

- i

Let En represent Euclidean n space. For Ai € En’

i

,....an1). Let R be the set of real

numbers. Let X be a compact subset of R with X< [a,b]

where a and b are finite and fix P a subset of En' Let

V be the set of functions {F(A,x): Px[a,b] = R} where

(1-1)

(1-2)

F(A,x) is continuous in the sense that, given
A0 e P, Xy € [a,b], and € > 0, there exists

a 8§ >0 such that A € P, x ¢[a,b] , and

”Ao - Al + |x - xol < & imply that

| F (Ao,xo) - F(A,x)| < € where HAo - Al =

max |a
1<i< n

0

i "l

F(A,x) is locally solvent of degree n(A),i.e.,
suppose we are given a set of points

S = {xj: a S Xy < Xpter< Xy S b} and an € > 0.

Then there exists a 6§ = §(S,F(A,x), €) > 0.
such that

ly; - F(Ruxy)] <6 j=1,...,m(A)
implies that there exists anF(A],x) e V
such that both

F(A1,xj) =Y j=1,...,m(A)



and
IF(A,x) - F(A{x)II < €
hold where
IF(A,x) - F(Ay.x)]l = max [F(A,x) - F(A{,x)|
xe[a,b

(1-3) F(A,x) has property Z of degree m(A) on [a,b],
i.e. for any F(A,,x) # F(A,x), F(A,,x) € V, we
have that F(A,,x) - F(A,x) has at most m(A) - 1
zeros on [a,b] (we assume m(A) = 1).

We will assume that m(A) is uniformly bounded for
all A € P and that X has more points (in number) than any
m(A) for A € P. It should be noted that the degrees of
two different members of V may not be the same.

The family of functions V defined above was called
a varisolvent family by J. R. Rice [20]. As was men-
tioned in the introduction to this paper, Rice considered
the questions of existence, uniqueness and characteriza-
tion of best approximations from a family V.

We will examine a generalization of Rice's work.
Suppose an additional assumption that only members of V
lying between two curves are to be used in the approxi-
mating problem. Do we then obtain comparable existence,
uniqueness and characterization results?

Let ,’f" be the subset of V where
(1-4) F(A,x) e X if 2(x) < F(A,x) < u(x) for all x ¢ X

where u(x) and 2(x) are defined below.

Thusﬁf is a subset of V bounded between two curves u(x)

and 2(x).



We will consider the existence, characterization,
and uniqueness of approximating a given real-valued
continuous functionf onXin the uniform norm by members
of )’t’ That is to say, can we determine an F(A,,x) e &
such that

IF(Agsx) = £Ox) = inf (IF(A,x) - F(x)lI: F(A,x) &}
where again (and for the entire paper),

NF(A,x) - f(x)|l = max |[F(A,x) - f(x)]|

xeX
First we require a few more definitions. Since we
want ||[F(A,x) - f(x)|| = K < = for some F(A,x) ¢ jf, we

must ensure that u does not assume the value - «® and 2
the value + . Also when u and % assume finite values,
we will wish to examine the distance, between u and
members of ﬁf, and between 2 and members of}F'. To ensure
the existence of maxima and minima (of u(x) - F(A,x) or
2(x) - F(A,x), F(A,x) eﬂ'), we require that u and % are
continuous on closed subsets of X. Therefore, let u and
2 be defined on X such tﬁat
(i) 2 may assume the value - =, but never + =,
(ii) u may assume the value + @, but never - =,
(1ii) X_z {x: &(x) = ==} and X .= {x: u(x) = + =}
are open subsets of X.
(iv) 2 is continuous on X - X__ and u is continuous
on X - X, o -
(v) 2 < u for all x ¢ X.
Note that (i) » (v) imply that
inf [u(x) - 2(x): x € X] = d > 0.



The reason for (v) will be discussed in the remark at
the end of Section 1-5.

J. R. Rice assumes that A # A, implies that
F(A,x) # F(A,,x). Instead of this, we will use R. B.
Barrar and H. L. Loeb's notation in [3]. Let N be
the maximal value of m(A) for A € P. A function
f ¢ c[a,b] (i.e. continuous on [a,b]) will be called
a normal point in C[a,b] if it has a best approximation
F(A,,x) which has the property that m(A,) = N. Note
that if F(A,x) €% and m(A,) = N, then F(A,x) itself
is a normal point in C [a,b]. We say that An is
equivalent to An' if F(An,x) = F(An',x). Also the
sequence [An} is equivalent to the sequence {An'} if
An is equivalent to An' for each n, We will require
this concépt of equivalence for Theorem 3-2,

The above definitions, unless specifically changed,
will apply throughout this paper.

Section 1-2: Existence of Best Approximations.

The existence of a best approximation to f on X
fromj{ is not assured from our definitions aboutj?’.
We will parallel the discussion on page 9 in [20] by
J. R. Rice to obtain one criterion for the existence
of a best approximation. On page 6 of [20], the
following theorem is given:

Let [fa} be a uniformly bounded infinite set of
functions continuous on [0,1] with property Z of fixed

degree. Then (fa] contains a pointwise convergent



subsequence.
Noting that the above theorem holds for our family
?t on [a,b] we have

Theorem 1-1: If the limit of every pointwise convergent

sequence of members of’?fbelong to;ﬁ', then a best approxi-
mation to f on X exists fromf.

Proof: There always exists a sequence {F(An,x)}ej?’

such that
Tim HF(An,x) - f(x)] = inf  JIF(A,x) - F(x)I
n-+o F(A,X)E

By taking subsequences, since m(A) is uniformly bounded,
there exists a subsequence [F(As,x)] of {F(A ,x)} with
property 7 of fixed degree such that

Tim ”F(As,x) - f(x)[| = inf [[F(A,x) - f(x)]
§+oo F A,x €

Applying the theorem of J. R. Rice mentioned in the
first paragraph gives a pointwise convergent subsequence

[F(At,x)} of {F(As,x)} such that

Tim llF(At,x) - f(x)l = inf JIF(A,x) - f(x)
t+o F(A,x)e

Therefore, by our hypothesis, the limit of this pointwise
convergent sequence belongs to)?’and we have a best approxi-
mation to f on x from}f.

As Rice mentions (page 9 [20]), if there is conver-
gence by functions 1n§'to functions not 1n?,'one usually
enlarges the famﬂyflto include these functions or some
type of equivalence is setlup between the limit function

(not iryﬂ’) and a function from ﬁf. As examples of this,



see pages 42-44 of [20] for exponential families and
pages 77-84 of [20] for rational families.

Section 1-3: Characterization of Best Approximations.

The standard Tchebyshev characterization of a
best approximation by the number of alternations of
the error curve (given by Rice [20] for the unrestricted
varisolvent approximating family) extends to our family;?:
defining alternations as G. D. Taylor does in [23].

A zero X, of g(x) ¢ C [a,b] is said to be a simple
zero if g(x) changes sign at x_ and a double zero if

o
g(x) does not change sign at X Property Z limits
the number of distinct zeros a member ofii’may have.
We now wish to 1imit the number of simple and double
zeros a member ofﬁ’may have. The following Lemma 1-1

is Lemma 7.1 of [20] in our restricted setting.

Lemma 1-1: Let F(A,x) 5,9,. Then for F(A,,x) ej?’

such that F(A,,x) # F(A,x), we have that F(A,,x)-F(A,x)
can have at most m(A) - 1 zeros, counting a simple zero

once and a double zero twice.

Proof: Lemma 1-1 is just Lemma 7.1 of [20] with the
added condition of (1-4). Therefore F(A,,x) and

F(A,x), considered as unrestricted varisolvent functions,
satisfy Lemma 7.1 which implies that F(A,,x) - F(A,x)

can have at most m(A) - 1 zeros, counting a simple zero

once and a double zero twice. (]
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Fix f(x) € C (X), and let F(A,x) ¢ 4 be given.
Then we define, following Taylor [23],

Xeq = Ix e X2 f(x) - F(A,x) = [If(t) - F(A,t)]}
X_q = {x e X: f(x) - F(A,x) = - [If(t) - F(A, )]}
Xep = {x € X: F(A,x) = 2(x)]}

X_p = Ix e X: F(A,x) = u(x)}

Xg = Xeq U X, UX_j U X,

The set XA is said to be the set of critical points of

f(x) - F(A,x) on X. As is done in [23], we will divide
our problem into two possibilities. Lemma 1-2 and

Example 1-1 below are from Taylor [24] and [22].

Lemma 1-2: (X+] U X+2) n (X_] U X-Z) Z ¢
implies that F(A,x) is a best approximation to f on

X from ﬁf.

Proof: (Case 1: X,y N X_4 # ¢ implies

+

F(A,x) = f(x).
Case 2: X,y N X, #¢ or X 3N X, # ¢

implies that at some critical point, f is a distance
If(x) - F(A,x)|| above the curve u or below the curve %.
Therefore any other member ofé?’must be a greater or
equal distance from f at this critical point. There-
fore F(A,x) is a best approximation. Since

X n X_2 = ¢, the proof is complete.

+2
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Best approximations satisfying the hypothesis of
Lemma 1-2 need not be characterized by alternations

as in the case where (X+] U X+2) n (X_] U X_2) = ¢ .
The following example is one illustration of this fact.

2

Example 1-1: Let f(x) = x“ on [-1,1] = X.

Letj{ = {F(A,x): F(A,x) = axZ + bx + c, where

0 =2 F(A,x) = - 1}. Any member ofﬂg
passing through 0 for x = - 1 and x = + 1 is a best

approximation.

The example above also shows that for

(Xeq U X,p) N (X UX_,) #6,

a best approximation from.ffmay not be unique.

For the remainder of this section we will consider

the case (X, U X,,) N (X_y UX_,) =29

Definition: F(A,x) - f(x) is said to alternate K times

on X if there exist k + 1 critical points {xi} in X

where a < Xp < Xp o0 < X+ < b and such that

x. € X U X

; -1 implies x,

i+] € X+] U X

-2 +2

or

x: € X U X

; +1 implies Xipq € X_] U X_2

+2 j

for i = 1,2,...,k

These k + 1 points are said to form an alternant of length k.
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A standard type Tchebyshev characterization is as

follows: Let X_, = X,», = ¢ in the above definition.

Then g(x) is a best approximation to f on X if and only
if the error curve f - g alternates n times on X

(n depends upon the approximating family). As was
mentioned in the introduction to this paper, Tchebyshev
and his contemporaries examined a continuous linear
family of functions {P(A,x)} which formed a Tchebyshev
set. The above type of characterization of the best
approximation was discovered. In 1949 and 1950 Motzkin
and Tornheim noted the same type of characterization
theorem for their unisolvent families. In 1961

J. R. Rice exhibited a similar type of characterization
theorem for his more general non-linear family, the
varisolvent family.

In 1967 C. Dunham [6] noted that the characteriza-
tion proofs of Tornheim and Rice for unisolvent and
varisolvent families were incomplete. They both
neglected to consider the possibility of a constant
error curve (i.e. f - g = c). R. Barrar and H. Loeb [1]
showed that the constant error curve could not exist for
unisolvent families in Tornheim's proof (this was already
known since a characterization proof for unisolvent
families, different from Tornheim's existed - see
Novodvorskii and Pinsker [18]). Barrar and Loeb in the
same paper also showed that for m(A) < 3, a constant

error curve could not exist for varisolvent families.
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D. Braess [4] Has shown that if in an € neighborhood
of the best approximation from V (V is a varisolvent
family), all the members of V have the same degree as
the best approximation, then the best approximation
must alternate. Since the degree is an upper semi-
continuous function (see Theorem 2 of Rice [20]), it
then follows that best approximationsof maximal degree
must alternate. At this time, however, it is not known
ih general whether a constant error curve for the best
approximation from a varisolvent family can exist.

By adding additional hypotheses, the possibility
of a constant error curve can be eliminated. As was
mentioned, a Haar condition can be added (see Chapter 3).
By using property A (see Chapter 4) in lieu of local
solvency, this difficulty can also be overcome. A
third possibility would be to assume that the varisolvent
family is extendable to a larger interval (see Corollary
3 of Theorem 1-2). A fourth might be to assume closure
offﬁ{under pointwise convergence (see Corollary 4
of Theorem 1-2). An obvious fifth possibility would
be to assume that each member of V intersects f at some
point of X.

The proof of the next theorem follows the standard
approaches used by both Tornheim and Rice in their

characterization proofs.
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Theorem 1-2: Let f e C(X). F(A,x) ¢ jf , and assume

(X+] U X+2) n (X_] §] X_z) = ¢ , where X is a compact
set contained in [a,b].

(1) If F(A,x) is a best approximation to f from,f,
and F(A,x) - f(x) # ¢, ¢ a non-zero constant, then
F(A,x) - f(x) alternates at least m(A) times on X.
(2) If F(A,x) - f(x) alternates at least m(A) times
on X, then F(A,x) is a best approximation to f

from 4on X.

Proof: (of (2)) Assume F(A,x) - f(x) alternates at
least m(A) times on X. Assume F(A,x) is not a best
approximation to f from ﬁ!. Then there exists an

F(Ausx) inff’such that

IF(Ae,x) = FOX)I < IF(A,x) - F(x)Il

Let [xj: j=1,2,...,m(A)+ 1, X5 < Xjups X5 € X} be an

alternant of length m(A) for
F(A,x) - f(x) on X. These must be distinct since

(X+] U x+2) n (x_] U X_z) = ¢. Now at these critical

points we have

F(A*,Xj)"F(A,XJ-) = (F(A*,Xj)"f(xj))‘(F(A,XJ)-f(XJ)).

We assert that F(A,,x) - F(A,x) has at least m (A),

zeros on [a,b)], counting simple zeros once and double
zeros twice, which will contradict Lemma 1-1. We will
match a counting zero (a double zero has two counting

zeros, a simple zero one) to one and only one interval
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(xj, xj+]) for j = 1,2,...,m(A) + 1.
Assume x; € X_; U X_, for F(A,x).
Then F(A,,x;) - F(A,x) < 0 since F(A,,x) ¢ ¢’ is a
better approximation to f(x) than F(A,x).
Case 1: F(A*,x]) - F(A,x]) = 0 . Associate the zero X1
with the interval (x;,x,).

Case 2: F(A*,x]) - F(A,x]) < 0. Two possibilities can
occur.

(a) F(Ausx,) - F(A,x,) 2 0 for some x,e(x;,x,).
Since F(A,,x) - F(A,x) is a continuous function
on [a,b], it has a zero on (x],xz) . Associate a
zero on (x],xz) with the interval (x],xz).
(b) F(A,,x) - F(A,x) <0 for all x ¢ (x],xz).
Since Xy € Xe1 U X+2 and F(A,,x) ¢ 5’ is a better
approximation than F(A,x), there exists a zero at
Xoe Associate this zero with (xl,xz).

We have associated a zero in [x],xz] with (x],xz). Now

Xo € Xyq U Xyp for F(A,x) and therefore

If F(A,,x) - F(A,x) changes sign in (xz,x3), associate

a zero in (xz,xs) with (xz,x3). If not, consider cases.

Since x5 € X_; U X_, for F(A,x), a zero exists



16

at X3 Associate this zero with (x2,x3).

Case 2: F(A,,x) - F(A,x) < 0 on (x5s%3).
For a sufficiently small § > 0, two possibilities
can occur,
(a') F(Ag sx) - F(A,x) 2 0 on (x2 -8, x2)
in which case a zero exists at Xy which was not

associated with (x1,x2). Associate this zero
with (xz,x3).
(b') F(A,sx) - F(A,x) < 0 on (xz- 5, xz)

in which case a double zero exists at X, that
was used at most once on (x],xz). Associate an

unused counting zero at Xo with (xz,x3).

We have associated a zero in [xz,x3] with (xz.x3) which was
not associated with (x],xz).
Proceed in the same manner with the remaining inter-

vals (xj,xj+]), j=3,4,...,m(A) as was done for (xz,x3).
For X € x+] U X+2 » the argument would be similar.

In either case, F(A,,x) - F(A,x) has at least m(A) zeros
on [a,b], counting double zeros twice and simple zeros
once. This is the desired contradiction of Lemma 1-1
and (2) of Theorem 1-2 1is proved.

(of (1)) Assume F(A,x) is a best approximation
to f fromsf'and F(A,x) - f(x) # ¢, ¢ a non-zero constant.
Further assume that F(A,x) - f(x) alternates exactly

s < m(A) times at the points
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< b, x, € XJ}.

{x.: a =< X] < Xp < === < Xy j

J
(Note that it is possible for s to be zero here).
Case 1: Assume that a and b are not critical points
for every critical point set of (s + 1) points of
F(A,x) - f(x). (Note that a and/or b may not even
belong to X).
If a (or b) is not a critical point, select

a 6] > 0 such that a + 61 is less than the first
possible critical point (or (b - 6]) is greater than

the last possible critical point). For concreteness,
assume a is not a critical point. Determine a 6(60)

where 6] > 8§ > 0, such that for some Eo >0

(sufficiently small), we have
max {2(x) - f(x), - IF(A,x) - f(x)I} + €, <

F(A,x) - f(x) < min {u(x) - f(x), IIF(A),x) - f(x)} - €,

for all x ¢ [a,a + 8] N X. This is possible by contin-
uity, compactness, and the fact that u(x) > 2(x) on X.
Now, the facts of the previous sentence and
(X+] U X+2) n (x_1 v X-Z) = ¢

imply that we can select the following points

a = x,< xm(A)-s < xm(A)-s+] < --- < xm(A) = b
which divide X into s + 1 subsets so that for 62 >0
sufficiently small,

(a) F(A,x) - f(x) alternates exactly once on any two

adjacent subsets, but does not alternate on any
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one subset.

(b) If (x+] u X+2) # ¢ on a subset, then

F(A,x) - f(x) < min {u(x) - f(x), IF(A,x) - f(x)I}

- §, for all x € (the subset N X)

2
If (X_] U X_2) # ¢ on a subset, then F(A,x)

- f(x) > max {2(x) - f(x), - IF(A,x) - f(x)]} + P

for all x € (the subset N X)
(c) max {2(x) - f(x), - NF(A,x) - F(x)} +6, < F(A,x)-f(x)

< min {u(x) - f(x), IF(A,x) - f(x)|I} - §, for all

}

points in the set {x . X e s X
m(A)-s m(A)-s+1 m(A)

Choose m(A) - s - 1 distinct points

{xj: j=1,2,...,m(A) - s -1, X5 < xj+1} in [a,a + ¢§].

S, &
Let € = min( < 5 ) > 0 and x' denote a point in X

above where [[F(A,x) - f(x)]| is assumed.

Since F(A,x) is varisolvent of degree m(A), there
exists an F(A,,x) e}ﬁ’ where
(a) F(A*,xj) - F(A.xj) =0 j=1,2,...,m(A) -1
(b) |F(Ae,x') - f(x')] < | F(A,x') - f(x') |, and
(c) NIF(A,x) - F(Awx)Il < €

Now by Lemma 1-1, (a) and (b), max|F(A,,x) - f(x)|
< max|F(A,x) - f(x)| for all x € ([a + &,b] N X)
while (c) implies max|F(A,,x) - f(x)| < max|F(A,x) -f(x)]
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for all x € [a,a + §] N X. Therefore
IF(Agsx) = F(x)l < IIF(A,x) - F(x)II
(for a1l x € X) and F(A,,x) ¢ ﬁ('is a better approxi-
mation to f on X than F(A,x). This is a contradiction.
Case 2: Assume both a and b are critical points.

Replace [a,a + 8] by a similar interval
[xn(a)-s =5 *m(a)-s]
where [xj: j =0,m(A) - s,...,m(A)},q, €, 85, and €
are defined analogously to the previous construction.
For m(A) - s - 1 even, choose m(A) - s - 1 points
xji Xp(ay-s =8 < Xy < X3 === < Xpay_s.1 < Xp(a)-s!

and determine anF(A,,x) Si;! such that

(a') For x € {a,b}, x € Xe7 U X,, fimplies that
F(A,,x) - f(x) > F(A,x) - f(x), while x ¢ X_q U X_p
implies F(A,,x) - f(x) > F(A,x) - f(x).

(b') [IF(A,,x) - F(A,x)||< €, and F(A,xj) - F(A*,xj) =0

for j =1, 2, ... , m(A) - 1.
The evenness of m(A) - s - 1 and our construction imply
that the two conditions in (a') are in reality only one
restriction on our varisolvent function, so that indeed,
an F(A,,x) € }f’does exist. Then
IF(Aesx) = F(x)l < [IF(A,x) - F(x)I

which is a contradiction.
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For m(A) - s - 2 even, choose m(A) - s - 2 points

(50 Xp(ay-s =8 < Xp < X3 === < Xpeay o < Xpep)-s)
and determine an F(A,,x) € }?'such that (a') and (b')
above hold and

(c') F(A,xj) - F(A*,xj) =0 j=2,3,...,m(A) - 1.

If F(A,x) - F(A,,x) has a zero in addition to those in
(c'),then (a') implies that this is a double zero,
which is impossible by Lemma 1-1. Therefore
IF(Aesx) = F(x)ll < IIF(A,x) - F(x)Il

which is a contradiction.

Now for all possibilities we have constructed a
better approximation to f than F(A,x). This contradicts
the fact that F(A,x) can alternate at most s < m(A)

times. Therefore (1)of Theorem 1-2 is proven, ‘

Section 1-4: The Constant Error Curve Condition in the

Characterization Theorem.

It would be very desirable to omit the condition of
the constant error curve in (1) of Theorem 1-?. We would
then have an if and only if statement for the characteri-
zation of best approximations in terms of alternations.
This section will consist of corollaries to Theorem 1-2
where the constant error condition is eliminated. One
such case with the added hypothesis of a Haar subspace,

will be deferred until Chapter 3.
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R. Barrar and H. Loeb [1] have shown that for
m(A) < 3, a constant error curve for the best approxi-
mation cannot exist. With the addition of our condition
on the critical point sets, their reasoning applies

for our fami1y‘ﬁf

Corollary 1: For m(A) < 3, the constant error curve

condition in (1) of Theorem 1-2 can be omitted.

Proof: For concreteness, assume that f(x) - F(A,x) = c¢c >0

(if c < 0, a similar argument holds).
Assume m(A) = 1. Since (X+1 U X+2) n (X_] 0] X_z) = ¢,

max (u(x) - F(A,x))= sy > 0. Then for s, > 61 >0,
xeX

there exists a 6](61) >0 and an F(A],x)e:}¥(such
that (i) ||F(A,x) - F(A],x)H < €, (i) F(A],x) doesn't

intersect F(A,x), and (iii) F(A].a) - F(A,a) = 6] >0,

sinceﬁfis a varisolvent family. But then F(A],x) is a

better approximation to f from,ﬁ’than F(A,x) which is a
contradiction.

Assume m(A) = 2. Again since
(X+1 U X+2) n (x_] U x_2) = ¢, T:; (u(x) - F(A,x)) = s, > 0.
Then for S, > 62 > 0, there exists a 8, (62) >0 and
an F(Az,x) € ﬁg’such that (i) ||F(A,x) - F(Az,x)H < €,,

and (ii) F(Az,a) - F(A,a) = 6, > O,F(Az,b) - F(A,b) = 6, > 0.
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Now, F(Az,x) - F(A,x) has at most one zero (m(A) = 2),

but (ii) implies that if a zero occurs, it js a double
zero or another simple zero exists. This is impossible,
therefore .F(Az,x) > F(A,x) for all x € [a,b] and by

construction, F(Az,x) is a better gpproximation to f

from,ﬁ{than F(A,x). This contradicts our hypothesis.

Assume m(A) = 3. There exists an §3 >0

constructed as above such that for s3 > €3 > 0, there
exists by solving a é, (63) > 0 and an F(A3,x) eﬁF’
such that

(1) F(A3,a) = F(A,a), F(A;3,b) = F(A,b),

(1) F(Ay 3Py - F(a, BR) = 5, , and

(iii) ”F(A3,x) - F(A, )| < €;. Since F(A3,x) - F(A,x)

can have at most two zeros, and it has those at a and b,
by construction, it can have no other zeros and is a
non-constant error curve best approximation to f fromjf(.
Applying (1) of Thoerem 1-2 says that we can find a
better approximation, since F(A3,x) - f(x) does not

alternate enough (m(A3) 2 3). This concludes the proof. |

D. Braess has shown that a constant error curve
for a varisolvent family V cannot occur under another
condition. His condition is that there be an € > 0
neighborhood of the best approximation F(A,x) € V, such

that any member of V 1ying entirely in this neighborhood
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has the same degree as F(A,x). J. R. Rice (pages 5 and
6 of [20]) showed that for F(A],x) e V, there existed
a 6 > 0 neighborhood of F(A],x), such that if F(A,x)

(belonging to V), was entirely in this neighborhood,
then m(A) = m(Al). Braess used both these results to
arrive at the following corollary (which is placed in

our setting).

Corollary 2: If F(A,x) is the best approximation to f

on X frmnifsuch that there existsno member of V (V is
the varisolvent family where f"c V) with degree greater
than m(A) lying entirely in some € > 0 neighborhood

of F(A,x), then the constant error curve in (1) of
Theorem 1-2 can not occur.

One result, noted by Braess, is that if the best
approximation has maximal degree, (see Corollary 2
above), a constant error curve can not occur.

The following corollary is due to G. Meinardus

and G. D. Taylor (oral communication).

Corollary 3: If for each F(A,x) € ,f< there exists an

< aoreo>b, >b>b

extension [a],b]] of [a,b] (either - = < a, ]

- possibly both) and a varisolvent family V' on [a,b]

such that V'l[a b] = ﬁ! and for some F(A,,x) € V', we

have that F(A,,x) = F(A,x) on [a,b], we can then omit

the constant error curve condition in (1) of Theorem 1-2.
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Proof: As in the proof of Corollary 1, for concreteness,
assume f(x) - F(A,x) = ¢ > 0 and F(A,x) is the best
approximation to f fromjffon X. Then there exists an

s > 0 such that max (u(x) - F(A,x)) = s since
xeX

(x+.l U x+2) n (X_] U X_z) = ¢. Using our hypothesis, we
then have an F(A,,x) belonging to V' such that

F(Ay,x) = F(A,x) on [a,b]. Select m(A,) - 1 distinct
points on [a1,b]] which are not in [a,b]. Now by our

solvency condition, there exists an F(A],x) e V' such
that F(A],x) equals F(A,,x) at the above m(A,) - 1

points and for some point in [a,b], F(A],x) - F(A,,x) = S/2.
Now V'I[a,b] =§-’1‘mp'l'ies F(A;,x) € f' . But by our
construction F(A],x) e;ff is a better approximation

to f than F(A,x). This contradicts our hypothesis. [

The next corollary to Theorem 1-2 eliminates the
constant error curve whenj?'is closed under pointwise
convergence. This does not appear to be that strong a
condition, since some form of compactness on‘ﬁf is
usually required to ensure existence of a best approxi-
mation (see Section 1-2).

We first require some preliminary results due to

C. B. Dunham [7].

Definition: A family G of functions is dense compact

on X, a compact space, if every bounded sequence of

elements of G has a subsequence converging pointwise on
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a dense subset Y of X to an element g of G and for

x £ Y, 1im inf g(y) < g(x) < 1im sup g(y) for y ¢ V.

Note that if G < C(X), then the above inequality can

be omitted in the definition of dense compactness.

Lemma 1-3: Let G be dense compact. Let {fk} e C(X)

converge uniformly to f ¢ C(X) and g, be a best approxi-
mation to f, . Then {gk} has a subsequence [gkj} con-
verging pointwise on a dense subset of X to a best
approximation to f.

The theorem mentioned in the first paragraph of
Section 1-2 gives us a pointwise convergent sequence
for a bounded sequence of functions from,ﬁﬂ( Therefore

P 4

if we assume that & is closed under pointwise convergence,

5f will be dense compact.

Corollary 4: Ifﬁfis closed under pointwise convergence,

and the number of points of X is at least twice the
uniform bound of m(A), then the constant error curve

condition of (1) in Theorem 1-2 can be omitted.

Proof: For concreteness, assume f(x) - F(A,x) = ¢ >0
(a similar argument holds of ¢ < 0). Let

{xi: i=1,2,...,m(A)} and {yi: i=1,2,...,m(A) - 1}

be a set of points in X such that X; <Y < X549

Let 9, € C(X) be defined as follows,
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[}
>
—

n

f(x) - ¢/n for x 1,2,...,m(A)

g,(x) = f(x) for x 1,2,...,m(A) -1

"

<
-

-

1]

any continuous curve h(x) on X connecting

gn(x) at the xi's and yi's such that

f(x) = h(x) = f(x) - ¢c/n on [xi, X;41} for

i=1,2,...,m(A) - 1.

Now since 9, is continuous on X, let F(An,x) be the

best approximation to g on X from,}f. If

g, (x) - F(A .x)I = ¢,
then F(A,x) is a best approximation to 9, and by con-

struction F(A,x) is not parallel to 9, Applying (2)
of Theorem 1-2 gives us a better approximation to 9,

than F(A,x) (or F(An,x)). Therefore

llg, (x) = F(A x)Il < c.

We assert that F(An,x) is not parallel to 9,- Assume

it is, i.e. gn(x) - F(An,x) =c.. We first note that if

Cp = 0, by construction E(An,x) would be a better approxi-

mation to f than F(A,x). Therefore ch # 0. Next, assume

¢, < 0. Then F(An,x) is above g,» but F(A,x) is within

c of 9, Therefore since F(A,x) # F(An,x), (gn is not

parallel to f), IF(An,x) - f(x)] = c. But F(An,x) is a
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best approximation to f which is not parallel to f on X.
Applying (2) of Theorem 1-2 gives us a better approxi-
mation to f fromﬁ,than F(An,x) (or F(A,x)). This is
not possible, hence Ch > 0. We should further note

that |cn - ¢c| <c/n, for if not by the construction of

m

9, and the fact that gn(x) - F(An,x) c, >0, F(An,x)

would be a better approximation to f than F(A,x). Now,

c, > 0 implies that f(x) > F(An,x) and
gn(x) > F(An,x). If F(A,x) and F(An,x) do not inter-

sect, then one is above the other and is a best approxi-
mation to both f and I This is a contradiction since
one function cannot be parallel to both f and 9, There-
fore assume F(A,x) and F(An,x) do intersect. Then by

construction, at the X3 F(A,x) - F(An,x) > 0 while at
the Yi» F(A,x) - F(An,x) < 0 since c, < c. Now F(A,x)
and F(An,x) both being continuous on [a,b] implies that
F(A,x) - F(An,x) has at least m(A) zeros on [a,b] counting

double zeros twice and simple zeros once, because of our
construction. This contradicts Lemma 1-1. Therefore the
best approximation F(An,x) to 9, from‘ﬁ!cannot be parallel
to 9,

Since it is not parallel, Theorem 1-2 says that

F(An,x) - gn(x) alternates at least m(An) times on X. A

further property of our construction is that there exists
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a point x' € X such that F(An,x') - F(A,x') <0 (or at x',

F(An,x) is below F(A,x)). For, if not, F(An,x) would be

a best approximation to f which is not parallel to f.

Again apply (2) of Theorem 1-2 to arrive at a contradiction.
We now have for each 9ys M > 1, a non-parallel best

approximation from jd: F(An,x) which has a point of X

below F(A,x). By construction 9 tends uniformly to f

as n goes to ® . Since we have assumed that,f’is

dense compact (see the paragraph immediately preceeding

Corollary 4), Lemma 1-3 may be applied to give us some

subsequence of {F(An,x)}° converging pointwise to a
n=1

best approximation F(A,,x) of f from;?’. Each member of
this pointwise convergent (sub) sequence alternates at
least once on X and at one critical point is below
F(A,x). Therefore a cluster point of critical points

of the pointwise convergent sequence exists, which is

on F(A,x). Likewise a cluster point of the form

X_] u X_2 exists since each best approximation in the

sequence alternates at least once. Therefore since the
limiting function F(A,,x) is a continuous function (it
belongs to;?’by our closure hypothesis), it must alter-
nate at least once on X. Then F(A,,x) must alternate
m(A,) times on X or we could apply (2) of Theorem 1-2

to obtain a contradiction. But
IF(Ae,x) = F(x)I| = IIF(A,x) - f(x)]l

and F(A,x) is parallel to f. Therefore F(A,,x) - F(A,x)
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has at least m(A,) zeros (counting double zeros twice)

on [a,b] which contradicts Lemma 1-1. This contradicts

the fact that F(A,x) is parallel to f. s

Although Corollary 4 is a nice theoretical result,
it may not be useful practically. We required in the
proof that since each member of the pointwise converging
subsequence alternated at least once, the 1imit function
also alternated at least once. If we employed dense
compactness only, and our approximating class was not
a subset of C(X), it would be possible that convergence
on a dense subset would be to the original parallel
approximating function F(A,x). This would not give us
our desired contradiction. Unfortunately, for exponential
and rational families, in order to obtain closure under
pointwise convergence, functions are added which may not
be continuous, even though they agree with a continuous
function on a dense subset of X. Rice [20] in Chapter 8
for exponential families and Chapter 9 for generalized
rational families makes an identification in that 1f a
subsequence converges to an element which is a dis-
continuous best approximation, the closure of the con-
tinuous portion of the best approximation then becomes
a continuous best approximation. So,although his
best approximations are all continuous, his approximating
families are enlarged to include discontinuous functions

which are pointwise convergent limits of sequences from
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the family. Therefore this enlarged family is not really
a continuous family, only a dense compact one.

The continuity theorems of the best Tchebyschev
operators which I have seen will not overcome this problem.
C. B. Dunham's [7] theorem says that the pointwise con-
vergence on a dense subset is actually uniform convérgence,
while R. H. Barrar and H. Loeb's theorem in Chapter 4
has the additional Haar condition included, which elimi-
nates the possibility of a constant error curve.

The theorem of de la Vallee Poussin applies forﬁf’
as well as for the unrestricted varisolvent case (see

Rice [20] page 12).

Theorem 1-3: For F(A,x) eJﬂ, if F(A,x) - f(x) = ¢ (x)

assumes the values xi = ¢ (xi) at m(A) + 1 points

X. < X

j j¢1 On X such that sgn li = - sgn X1+1 » then

min|A,| = inf [F(A .x) - f(x)]l < [[F(A,x) - f(x)l
F(A,sX)€

Proof: The right hand inequality is trivially true.
Assuming the left is false implies that there exists an
F(A],x) ejﬁ( such that F(A,x) - F(A1,x) has at least

m(A) zeros on [a,b] which contradicts Lemma 1-1. {

Section 1-5: Uniqueness of Best Approximations.

When (X,q U X,,) N (X_y UX_,) #¢ , Example 1-1

7

has shown that the best approximation to f from’# need
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not be unique. Therefore we will consider the case

when (X+].U X+2) n (X_1 u X_z) = ¢.

Theorem 1-4: If (X+] V] X+2) n (x_] U] X_z) = ¢ and

the best approximation F(A,x) to f on X from ‘% does not
have a constant error curve, then F(A,x) is the unique

best approximation to f fromj?’.

Proof: Changing the first '<' in the proof of (2) of
Theorem 1-2 to '<' and repeating this altered proof
of (2) of Theorem 1-2 gives us uniqueness of the best
approximation. [ |
If the best approximation F(A,x) to f on X fromj’p' has
a constant error curve where

(Xyq U X)) DX UX_,) =0,
any other best approximation must also have a constant
error curve. If another best approximation F(A,,x)
were not parallel to f, part (1) of Theorem 1-2 would
apply to say that F(A,,x) - f(x) alternates at least
m(A,) times on X. Then F(A,x) - F(A,,x) has at least
m(A,) zeros contradicting Lemma 1-1. We therefore have

the following corollary to Theorem 1-4.

Corollary 1: If (X+] V] x+2) n (X_.l U X_z) = ¢ and

the best approximation F(A,x) to f on X from?"has a

constant error curve, then at most one other best
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approximation F(A,,x) to f exists and F(A,,x) = F(A,x) + c,

where ¢ is a non-zero constant.

Even when (X, U X,5) N (X_; U X_5) = ¢ and the

best approximation F(A,x) to f on X from}f'has a constant
error curve, F(A,x) may be unique, since the nature of
the functions f, u, and 2 on X may prohibit another best
approximation. The following are some obvious cases
where the best approximation, having constant error

curve and (X+] 1] X+2) n (X_] v X_z) = ¢ , is unique

(a) if there exists an x'e X such that f(x') = u(x')
or 2(x') = f(x')
(b) if when u(x) > f(x) > 2(x) for all x € X,

min{min(u(x) -f(x)), min(f(x) -2(x))} < IIF(A,x) -f(x)Il
xeX xeX

Remark: An open question which I plan to look at later,
is whether the previous sections can be generalized to
the point where u(x) = 2(x) at a finite number of points
(see G. D. Taylor [24] for the linear case and

K. Taylor [25] for rational families). R. Barrar and

A. Loeb [2] examined the question of approximating a
function f from a varisolvent family which interpolates

f at a finite number of points. Extending G. D. Taylor's
paper to our setting would give us interpolation and
restricted range approximation at the same time.

The non-linear case of 2£(x) < u(x) appears, however,
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to require much stronger hypotheses. First, a certain
amount of differentiability for functions of )?{%s needed
at the points where u(x) = 2(x) in order to generalize
Taylor's paper. Although part (2) of theorem 1-2 can

be shown to be true, in part (1) a difficulty occurs

in constructing a better approximating function from 5#’
around the points where u(x) = 2(x). It appears that
more than this added differentiability is necessary

to obtain (1) of Theorem 1-2. We could assume a

uniform bound on a certain order derivative of members
of 9’where u(x) = 2(x). This would remove the
difficulty around the points u(x) = 2(x) and allow

us to complete part (1) of Theorem 1-2.



CHAPTER 2

APPROXIMATION FROM MEMBERS OF A
UNISOLVENT FAMILY HAVING RESTRICTED RANGES

Section 2-1: Introduction and Definitions.

Let U be the set of functions
{G(A,x): P x [a,b] + R} which satisfy (2-1) and
(2-2) below.
(2-1) G(A,x) is a continuous function on [a,b].

(2-2) Given the set [xi: asxy<xy---<x < b}

of n distinct points and n arbitrary real

numbers [yi}?=] , then there exists a unique
G(A,,x)e U such that G(A*,xi) =y for

i=1,2,...,N.

U is called a unisolvent family of degree n on [a,b].

As in Chapter 1, we will generalize our problem
to where we consider only members of U between our two
curves 2 and u. That is to say, our family of approxi-
mating functionsl is a subset of U such that for
G(A,x) e &,
(2-3) wu(x) =2 G(A,x) = 2(x).
We will look at existence, characterization, and unique-
ness of approximating a given real-valued continuous

function f on X in the uniform norm with members of‘ﬁ .

34
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We should first note that each family & is also
a family ﬁﬂ,of Chapter 1 (i.e., G(A,x) being unisolvent
of degree n implies G(A,x) is varisolvent of degree n).
Each member of A’ is continuous, satisfies property Z
of fixed degree n, and is between the curves u and 2 .
Each member of .4/ is locally solvent by its solvency
property ((2-2)), and Theorem 5, page 460 of Tornheim
[26].

We will at times cal]xﬁ a restricted unisolvent
family, even though,Aﬁ, itself, may not be a unisolvent
family.

Section 2-2: Existence, Characterization, and

Uniqueness of Best Approximations.

Although we do not have existence of best approxi-
mations from a varisolvent family, for Aﬁ (our subset
of a unisolvent family), best approximations always
exist. Tornheim's Theorem 7 [26] gives existence of
best approximations for a unisolvent family. Since X
is compact and our £ and u are sufficiently nice the
argument of Theorem 7 applies for our restricted family

ﬂ as well. We include it here for completeness.

Theorem 2-1: There exists a best approximation to f

on X from 4 .

Proof: There exists a sequence [G(An,x)} in & such that

Vim [I6(A ,x) = f(x)Il = inf [[6G(A,x) - f(x)] .
n-»e G(A,x)e
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Choose n distinct points X1sXpseoesXy in X. By
unisolvency, there exists a one to one correspondence
between the functions G(A,x) of & and the set of
values Yis--es¥, taken by the functions G(A,x) at

XqsenosX o Let G(An’xi) = Y- Then there is a sub-

sequence G(An ,xi) of G(An’xi) for which Yo i
J J

is convergent for i = 1,2,...,n converging to yi'.

By the nature of u and 2 , 2(x) <y < u(x) implies

n.i
J

2(x) < y;' s u(x). Let G(A*,xi) = y;'. Then by

Tornheim's Theorem 5, page 460 in [26], G(An »X)
J

converges uniformly to G(A,,x) on X < [a,b]. But again

2(x) < G(An ,X) < u(x) for all x € X implies
J

2(x) <= G(A,,x) < u(x) for all x € X. Therefore

G(A,sx) e‘AV and is a best approximation to f on X

froml . [l

For the characterization of best approximations
from ‘0 » we must consider, as in Chapter 1, the place-
ment of critical points. The following lemma is
Lemma 1-2 for &, since & is also a family ﬁ"from
Chapter 1.

Lemma 2-1: For G(A,x) € /3? s if (X+] U X+2) n (X_] U X_z) # 0,
then G(A,x) is a best approximation to f on X from 4 .
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Therefore we need only consider the case when

(Xeq U X,p) N (X UX_,) = o.

Theorem 1-2 and Corollary 4 to Theorem 1-2 apply for/!y
(considered as an :z'family of Chapter 1). However

we can combine these two results for,;’ if we note

that Aﬂ is closed under pointwise convergence. Theorem 5
of Tornheim [26] tells us that pointwise convergence
gives us uniform convergence and by our selection of X,
u, and £ , uniform convergence gives us the closure

of &# . This argument is essentially that of Theorem 2-1

and gives us

Theorem 2-2: Let G(A,x) ¢ & , (X4q U Xpo) N (X UX_5) =9

and assume that X contains at least 2n points. Then
G(A,x) is a best approximation to f on X if and only if

G(A,x) - f(x) alternates n times on X.

R. Barrar and H. Loeb [26] proved Theorem 2-2 for
an unrestricted unisolvent family omitting the fact that
X must contain at least 2n points (we of course always
assume X contains at least n points). Their proof

extends directly to our setting.

Theorem 2-3: Let G(A,x) € & and (X, U X,,) N (X_; U X_,) = ¢.

Then G(A,x) is a best approximation to f on X if and only
if G(A,x) - f(x) alternates n times on X.
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Proof: We need only show that a constant error curve
for the best approximation can not occur, since

Theorem 1-2 applies (,Af being an j?’family). We will
show that a constant error curve can not exist for any n
(the degree of the unisolvent family U) by induction

on n.

For n = 1, Corollary 1 of Theorem 1-2 applies and

a constant error curve for the best approximation from

a restricted unisolvent family of degree 1 can not occur.
Assume that a constant error curve can not occur

for restricted unisolvent families of degree n < k - 1.

Let A * be a restricted unisolvent family of degree k.

Let G (A,,x) be the best approximation to f on

X c [a,b] from & *. Assume without loss of generality

that f(x) - G(A,,x) = c >0 on X. Let
A

A - (6(ax) e H* GlAx) = GlA,.x))

where x, = max {x} }.
xe X

If Xy < b, the behavior of a member of‘ or #* on (x],b]

will not affect its norm with f on X. Therefore let
A A
A A

A
ﬁ=,&'[a,x]] . Then for0<e<x]-a,/ﬁ

is a restricted unisolvent family of degree k - 1 on

[a,x1 - ¢]. Let G6 (A,x) be the best approximation to

2

f on XN [a,x] - €] from %4 . By induction and

Tornheim's results,f(x) - GG (A,x) alternates at least
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once on X N [a,x] - €]. If we let

el = max |6 (x) ],
€ xe[a,x]-e

then for € < Eo’

”f(x) = GE(A’X)HEO < ”f(X) = GE(A’X)”E <¢cC
A
(since G(A,,x) ¢ M ). Hence by a compactness argument

using Tornheim's Theorem 5, we may assume

A
1im ”GG(A,x) - G(A,x)ll0 = 0
€-+0

A A A
where G(A,x) ¢ & . The claim is that G(A,x) is
also a best approximation to f on X from Ay *. If this

were false, there would exist an X, € [a,x]) such that

A
lf(xz) - G(A,x2)| > ¢c. But for small €, X, € [a,x1,-€]

which implies that
| f(x) - GE(A,x)I < c.

Taking the limit as € - » gives us a contradiction.
A
But by the nature of G(A,x) .,
A
f(x) - G(A,x) # Cy

c, a constant. Corollary 1 of Theorem 1-4 then gives us

a contradiction.
Therefore constant error curve best approximations

can not occur from restricted unisolvent families. ]

Example 1-1 shows that the best approximation to f




40

on X from ﬂ need not be unique when
(Xyq U Xy0) N (X_q UX_,) # o,

But when (X, U X,,) N (X, UX _,) = ¢, we have
+1 +2 -1 -2

Theorem 2-4: (X, , U Xep) N (X_; U X_,) = ¢ implies

there exists a unique best approximation to f on X

from ,& .

Proof: The proof follows directly from Theorem 2-3

using the standard uniqueness argument. {



CHAPTER 3

APPROXIMATION FROM MEMBERS OF A VARISOLVENT
FAMILY HAVING RESTRICTED RANGES WITH THE
ADDITIONAL HYPOTHESIS OF A HAAR SUBSPACE

EXISTING FOR EACH MEMBER OF THE FAMILY

Section 3-1: Introduction and Definitions.

In this chapter we will give f?’(of Chapter 1) an
additional hypothesis, namely a Haar subspace. This
will eliminate the constant error curve condition in
the characterization theorem forj?’ and allow us to
give strong unicity and continuity of the best approxi-
mation operator theorems. R. Barrar and H. Loeb [3]
did this for an unrestricted family. We will gener-
alize their paper to our setting.

We first require some definitions. Let P be an

open subset of En. Let ‘g*'be the family of functions
{F(A,x): Px[a,b] » R}
where for A = (a],...,an) e P, each 3F(A,x) for

aai

i =1,2,...,n as well as F(A,x) is continuous in A

and X.

Definition: Let 97:9p5--+59, be a set of continuous

functions on [a,b]. Then {gi]?=] generates a Haar

41
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subspace of dimension n if 99955+ --59, forms a lin-

early independent set of functions and the only linear
combination of 913955 --59, having n or more zeros is

the zero function. (For more information on Haar systems

see [5], [9] and [13]). The Haar subspace condition
that we will use is

(3-1) For F(A,x) € 4§? * {é—fiﬂlil—} "
i=1

8a1

generates a Haar subspace (Haar system) of
dimension m(A).
We further require that for F(A,x) e‘/éy * _ F(A,x) has
property Z of degree m(A). Property Z (from Chapter 1)
for members of #* is
(1-3)' F(A,x) 5149 * will have property Z of degree
m(A) on [a,b], i.e., for any
F(A,,x) # F(A,x), F(A,,x) 64;7* , we have
that F(A,,x) - F(A,x) has at most m(A) - 1
zeros on [a,b] (m(A) = 1).
Again as in the previous chapters, our approximating
family j;’* will be the subset of ,d? * lying between
the two curves 2 and u (defined in Chapter 1).
Our family ;?’* differs from,ﬁﬁpof Chapter 1 in that
we have replaced local solvency (or 1-2)) by the Haar
subspace condition (3-1). That (3-1) is at least as

strong a condition as (1-2) will be shown by Lemma 3-1
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where we find that members of j?’* satisfy (1-2).
R. Barrar and H. Loeb [3] note that exponential and
rational families satisfy this Haar subspace condition
(or (3-1)).

The next two lemmas are found in [3]. They apply

for M * . We include their proofs for completeness.

Lemma 3-1: Let A, = (a]*,...,an*) and m(A,) = q.

Further, let x],...,xq be distinct points in X such
that

F(A,, xi) = C, i=1,2,...,q

i
Then for sufficiently small € > 0, there exists a

5(€) > 0 such that the equations

(1) F(A,x;) = €, i=1,2,....q
where lci - Gil < 8§ have a solution A = (a],....an) e P
where a; = ai* forn24i 2q + 1 and

(2) lla - A*|| <€

Proof: Let fi(a]....,aq R c],...,cq) =
* *
F(a],...,aq, aq+],...,an,xi) - Ci
d F(A,,x)
for i = 1,2,...,9. Since the _— i=1,2,...,9
d a,;

j

form a Haar subspace, for 6(€) > 0 sufficiently small

(or Jc, - eil < §), we may apply the implicit function

i

theorem to the fi system of equations in order to solve
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A : -
for apseeadg (where c; = c, for i 1,2,...,9).

The implicit function theorem can be invoked since the
Haar subspace implies that the Jacobian of the trans-
formation is non-zero. Therefore there exist

i=1,...,9 which solve the system

1"
* * A .
F(a]’--.,aq,aq_'_]’.-.’an’x,i) 'Ci =0 1 =1,...,q
*
where Iai - a, |< € for i = 1,2,...,q9. Since P is open,

€ and consequently & can both be taken small enough to

ensure that A = (a;,...,a ) € P. This proves the lemma.{

For the next lemma we should recall the definition
of a normal point ofl *  F(A,,x) e/ * ijs called a
normal point if m(A,) = N = maximal value of m(A) for

A e P.

Lemma 3-2: For Lemma 3-1, F(A,,x) being a normal point
implies that there is a unique F(A,x) satisfying (1) of

Lemma 3-1.

Proof: Since for each A ¢ P, m(A) < N = m(A,), it

follows that if both F(A,x) and F(A1,x) satisfy (1),

they agree at N points. (1-3)' then implies that

F(A,x) = F(A],x). I
We are now ready to state and prove the lemma which

will assure that a constant error curve for the best

approximation fromﬁ?’* can not occur. It is Lemma 3
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of [3], modified for our setting. Before we state and
prove the lemma, however, we should note that Lemma 3-1
implies that the members of ,3/* are locally solvent

(or satisfy (1-2) ). Therefore the results for ﬁ?’
apply for ;ﬂ'* (since Ay * ijs a varisolvent family V

of Chapter 1).

Lemma 3-3: If F(A,,x) ¢ _Z?% is a best approximation
to f on X from jf’* such that

(Xep U X,0) N (X3 UX_,) =9,

then a constant error curve cannot exist.

Proof: Without loss of generality, assume
F(A,,x) - f(x) = c >0 on X. Now a Haar subspace always
has a strictly negative function (see [9]). Therefore

there exist scalars {ai}] such that

Let A = (a],az,...,az,o,o,...) e E_.

n
Then 2
0> E a-i ) F(A*,X) _
=1 3 a, )
i
L
I a d F(A¥7+ tA,x) | - d F(A, + tA,x) |
i=1 a(a; + t ai) =0 dt £=0

for all x ¢ [a,b]. By the mean value theorem, for
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sufficiently small t, we have that

F(A, + t A, x) < F(A,,x) A
for all x ¢ [a,b]. Now F(A,,x) is continuolLs with respect
to A, and P is open. Therefore there exists a

t] >t >0 such that
IF(A, + t A,x) = f(x)I[ < IF(A,,x) - f(x)I.
Because (X+] V] X+2) n (X_] U X_2) = ¢ , t can also be
chosen so small that F(A, + t A,x) € ﬁgl; since
f(x) < F(A, + t A,x) < F(A,,x)

for t sufficiently small. ]
Combining Lemma 3-3 and Theorem 1-2, we have

Theorem 3-1: Let F(A,x) ¢ }5’* satisfy

(Xpq U Xyp) N (X U X_,) =6 .

Then F(A,x) is a best approximation to f on X from 5??*
if and only if F(A,x) - f(x) alternates at least m(A)
times on X.
Uniqueness of best approximating functions from
:;’* for
(Xyq U X,0) N (X5 UX_,) =

follows from Lemma 3-3 and the fact that members of

jﬁf* are members of;ff.
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We will now reproduce Theorem 2 of [3] in our
setting since it will be necessary in the proofs of the

next section.

Theorem 3-2: Let F(A,,x) ¢ 5?’; be a best approxi-

mation to f on X where

(Xpq U X,p) N (X_JUX_,) =9
and F(A,,x) is normal. Let the sequence

{F(Assx)}' F(AS,X) € /g *
be such that

1im [[F(A ,x) = F(x)| = IF(Ag,x) - F(x)l

S >0

and assume

(3-2) for € > 0, there exists an M(€) > 0 such that
for all s > M and all
x e X, 2(x) - € < F(As,x) < u(x) + €

then we can find a sequence {Ap'} c P such that

Tim |A, - A 'l =0,
poe P

where the sequence [Ap'} is equivalent to a subsequence
of the [AS}, and the last n - N (recall that m(A,) = N)

components of each Ap' agree with the corresponding

components of A,

1]

Proof: Without loss of generality, assume f(x) 0 on X.

Let {xi: 3 S X; <Xy < .ol < Xyyqs Xy o€ X} be a
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critical point set for F(A,,x). Let {F(Ap,x)} be a

subsequence of {F(As,x)} which converges at these
critical points. Call the limits at these N + 1 points
F(xj). Now by (3-2) and the assumption that HF(As,x)H

tends to [|[F(A,,x),

(3-3) max (2(xy), - IF(A,,x)) < Fxy)
< min (U(XJ). ”F(A*,X)”).

We wish to show that F(xj) = F(A*,xj) for

J=1,2,...,+ 1. 1If this is true, Lemma 3-1 and
Lemma 3-2 imply that a sequence {Ap'} equivalent to a

subsequence of [As] can be found such that

Tim ||A, - Ap'H =0

p+o

and the last n - N components of each Ap' agree with the

corresponding components of A,, proving the theorem.
Assume for concreteness that x;, e X_; U X_, .

Also assume that F(xj) # F(A*,xj) for some X There-

fore let F(xN+1) # F(A*.xN+]) (the method will apply

for any other xj). Let ¢ = IF(A*,xN+1) - F(XN+])| > 0.

By means of a construction we will apply the unrestricted

form of Lemma 1-1 and arrive at a contradiction. Let

a = ]s?;n+] [IF(A*.xj) - F(xj)I: F(A*,xj) # F(xj)].

We will construct a function F(A,x) belonging to ‘Ag*
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from our local solvency property in the following way.
For 0 < € < ¢c/2, there exists a § sufficiently small

where 0 < § < min (a,€) and an A ¢ P such that (by

Lemma 3-1),

(3-4) F(Aaaxg) + (-1)3*1(s/2) where
F(A*,xj) # F(xj)

(a) F(A,xj) =

F(Ayoxy) + (-1)9(s/2)  where

F(A*,Xj) = F(Xj)

for j = 1,2,...,N

and

(b) IIF(A,x) - F(Ag,x)ll < € < c/2

We will consider only p so large that
(3-5) IF(Ap,xj) - F(xj)l < §/4 J=1,2,...,N %1

Now we have constructed F(A,x) so that F(A,x) - F(Ap,x)

changes sign at the X5 » J=1,2,...,N.
i.e.,

(3'6) sgn (F(A9Xj) = F(Ap’xj) ) =

- sgn (F(A,xj_]) -F(Ap,xj_]) ) for j = 2,...,N
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To see this, for concreteness assume that j = k and

X € X+] U X+2 where
F(xk) = F(A*,xk).

Then by our construction

Fix) = F(Awax) = FA,x;) + 6/2

Since
|F(xk) - F(Ap,xk)l < &/4
we have
F(A X ) > F(A,x)
There exist two cases for Xp+1
Case 1: F(xk+1) = F(A*,xk+]) . By (3-4) (a) we have

F(A,xk+]) = F(A*,xk+]) + 8/2 > F(xk+]) + §/4 or

F(Ap,xk+]) < F(A % 4q)

Case 2: F(x,,q) # F(Aysx 4q) . By (3-4) (a)

we have

F(A,,X = F(A,x ) + 8/2 .

k+1) K+1

But F(A*,xk+]) - F(xk+1) 2 a implies that
F(A*,xk+]) 2 a+ F(x ) 268+ F(xk+]).

Then F(xk+]) + 6/2 < F(A,xk+]) or

F(Ap,xk+]) < F(A,xk+])
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Therefore

sgn (F(A,x,) -F(Ap,xk) ) = - sgn (F(A,x,4q) —F(Ap,xk+]) )
when x, € X, ; U X, and F(xk) = F(A*,xk).

If x, e X3 UX_, or F(x,) # F(Ay,x, ), the argument
is similar.

Now (3-6) holds for j = 2,...,N. But it also
holds for j = N + 1 by (3-3), (3-4)(b) and (3-5). But
F(A,x) and F(Ap,x) both belong to /A{* and by the

unrestricted form of Lemma 1-1,
F(A,X) - F(Ap,X) £ 0, (F(A’XN+]) 7l F(Apst+]))’
can have at most N - 1 zeros on [a,b], since

N = max m(A) for A e P. (3-6) contradicts this and
therefore

F(A,,X = F(x

N+1) N+1)

This is the desired result.

Section 3-2: Strong Unicity and Continuity of the Best

Approximation Operator Theorems.
In this section we will extend Theorems 3 and 4 of
[3] to our setting
Theorem 3-3: If F(A,,x) is a best approximation to f

on X from A4 *,

(Xpq U X0) N (X3 UX_,) =9,

and F(A,,x) is normal, then there exists an a > 0
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such that for each F(A,x) e,é?P* .
1F(x) - FOA ) = If(x) - F(A.x)lI+ all F(A,x) - F(A,,x)ll

/

Proof: Assume f ¢ 7 * . If Theorem 3-3 is false, a
e

sequence {F(An,x)} c% * and a sequence {qn} s o >0

can be found such that 1lim an = 0 so that

n-+>o

F(A sx) # F(Ay,x)
and such that
(3-7) [If(x) = F(ALX = IF(x) - F(Apx)] +
a IF(A.x) = F(A.x)]
We claim {|IF(A_,x)Il} is bounded.
Consider
(3-8)  [[F(Aw,x) = F(AL - IF(x) - F(Ax)I <
IF(x) = FAGX)I + o IF(ALX) = F(A Lx)Il
which is true by
F(AL,x) = FOA L) = IIfF(x) - F(Ax)I <
IF(Awsx) = F(A X)) = (F(x) - F(ALx)) =
IE(x) - FA_ L)

and (3-7). Now
”F(A*,X) = F(An,X)” #0
since F(An,x) # F(A,,x). Divide both sides of

(3-8) by |IF(A,,x) - F(A.x)I[.  We have
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1 - [[f(x) - F(Aex) 1f(x) = F(A.,x)Il
IF(A.sx) - F(A )l IF(Aysx) = F(A )l "

If {”F(An,x)H] is not bounded, then 1 < o  as

n »» , since |[f(x) - F(A,,x)| is bounded, which is a
contradiction. Therefore assume {”F(An,x)”} is bounded.
Then by (3-7),

(3-9) Tim [If(x) = F(A LX) = [1F(x) - F(A,x)l.

n-—>o

Apply Theorem 3-2 to (3-9), i.e., there exists a

sequence {Bk} < P converging to A, where the sequence

is equivalent to a subsequence of {An} and the last

n - N components of each Bk agree with the corresponding
components of A,. We should note two things. First
F(Bk,x) € ?’* since F(An,x) € /’r"*. Second

(3-7) remains valid for {B,}

Let -1 ifxe XU X,
o(x) =

1 if x € X+] U X+2

By the assumption that (X,; U X,,) N (X_; U X_,) = ¢,

g is well defined. Now, we wish to show that

(3'10) ak ”F(Bkax) = F(A*,X)” 2

max o(x) (F(Ag,x))- F(Bk,x)
xeXA

*
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We have that (3-7) is valid for [Bk} )

Therefore

ak ”F(Bk,X) -F(A*,X)” = ”F(X) 'F(Bk,X)” = ”f(X) ‘F(‘A*,X)”
Now a, ”F(Bk,x) - F(A,,x)|[ > 0 for each k since

F(A,,x) is the best approximation to f from ﬁ?'* and
v

F(Bk,x) e A *. We now consider cases

Case 1: Let x, e X such that F(A,,x;) = 2(x,)
~ase | 1 A, 1 1

(i.e., o(x1) = 1) . Then since
ot
F(Bk,X) e A *, F(Bk’x'l) - F(A*’x]) >0

or a(xy) (F(Ausxy) - F(B,,x;)) <0

Case 2: Let x, € X such that F(A,,x;) = u(x,)
~ase ¢ 1 A, ] 1
(i.e., c(x]) = - 1) . Then since
F(B, +x) ef * o F(Byaxy) - F(A,,xy) <0

or Q'(X-')(F(A*,X]) - F(Bk,X]) <0

Case 3: Let x, e X such that
R 1 A,

f(x]) -F(A*,X]) = i ”f(x) °F(A*,X)” .
Then
ak ”F(Bkax) = F(A*aX)” =

IF(x) -F(B,x)ll = NF(x) -F(Ax)Il
O'(X-l) (f()(-,) 'F(Bksx])) = ”f(X) -F(A*,X)”

v

o(xy) (F0xy) ~F(B,,x;) = alx;)(F(xq) =F(Au.x;))

G(X]) (F(A*,X]) -F(Bk ,X]))
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We therefore have that for all Xy € XA s

*

ak ”F(Bk,X) - F(A*,X)”

2 G(Xl) (F(A*,X]) = F(Bk’x]))
Therefore,
ak ”F(Bksx) = F(A*,X)”

> max o(x) (F(A,,x) - F(Bk,x))

xeXA*

or (3-10) is shown to be true.
We now wish to show that there exists a y >0

such that for all k,

(3-]]) max {U(X) (F(A*,X) = F(Bkax))} 2 Y”Bk' A*”
xeXA

*
Assume (3-11) is false. Then there exists a sequence

of positive (yk} such that vy, tends to 0 and a

subsequence of {Bk} such that

(3-12) max o(x) (F(Assx) - F(By,x))
xeXA* ”A* _ Bk”

< Yk

By the mean value theorem for large k,

(3-13) max g(x) : aF(:k(x),x) (ai ” bki)
[}

xeXp, ‘ i IAs - Bl

n M=

where Bk = (bk]""’bkn) » N =m(A,) and Ak(x) e P

is on the line between Bk and A, (k large enough and P
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open says that A (x) e P). Set ¢, = Ae - By
”A* - Bk”
Since ”ck” = 1 for all k, and we are on a compact set,

we have a convergent subsequence (which we will not

relabel) where this subsequence c, converges to

k
c = (C1""cn) and Jlc]l = 1. Using this subsequence

in (3-13) and taking limits, we have

N
(3-14) max o(x) T ¢ 3F(Ay,x) <0

xe X i=1 oa.
A, i
N oF (A, ,X
Now z Cs is a non-zero function because
i=1 aai
of linear independence and the fact that [c]] = 1

By (3-14) and Theorem 3-1,

N
L, ¢ 3F(A,,x)

aai

has at least N zeros which contradicts our Haar sub-

space hypothesis. Therefore (3-11) is proven.

When we combine (3-10) and (3-11), we have that
(3']5) Gk ”F(Bk,X) = F(A*,X)” 2y ”Bk = A*”
But since Bk + A, , by the mean value theorem, there

isabD>0 such that for sufficiently large k,

(3']6) ”F(Bk,X) = F(A*,X)" <D ”Bk = A*”
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From (3-15) and (3-16) we have that
h
a = 4> 0
which says that e > 0 is impossible. This contradicts

our original assumption that the theorem was false. 1

It is obvious that F(A,x) must belong to ,9?* and
not just to A4* in Theorem 3-3 as the following example

shows.

Example 3-1: Let X = [-1,1], f(x) = x2, u(x) = x2 + 1/4,

2(x) = -1 and {F(A,x): F(A,x) = ax + b} = M
Then F(A,,x) = 1/4 is the best approximation to f(x)

on X from j’*, but for F(A;,x) = 1/2 ¢ & * | we have
that

”f(X) °F(A-|,X)” # ” f(X) -F(A*,X)” + v ”F(A*,X) 'F(A] ,X)”
for vy > 0 since 1/2 ¢ 3/4 + y « 1/4 for y > 0.

The last theorem of this chapter is a continuity
of the best approximation operator theorem. For A}V* s
the theorem is Theorem 4 of [3]. The proof is based on
the strong uniqueness theorem and compactness. Their
proof applies in our setting and we have the following

theorem.

Theorem 3-4: Let F(A,,x) be a best approximation to f
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on X from J?’* such that F(A,,x) 1is normal and
(Xpq U X0) N (X UX_,) =9 .
Then,

(1) There exists a y > 0 such that [[f(x) - g(x)ll< v

implies g has a best approximation on X from‘ﬁfa s
say F(Ag.x)

(2) There exists a A > 0 such that for all g(x) of

(1) above which have a best approximation
F(Ag,x), lF(A,,x) - F(Ag,x)H
<A flg(x) - f(x)l

Theorem 3-4 is a local continuity theorem. (1) of
Theorem 3-4 says that g must be sufficiently close to f
to apply the theorem. As an example of a global con-
tinuity theorem, see C. Dunham [7]. C. Dunham's
theorem, however, assumes that pointwise convergence
is uniform convergence (see the paragraphs following

Corollary 3 of Theorem 1-2)



CHAPTER 4

GENERALIZED WEIGHT FUNCTION APPROXIMATION
WITH PROPERTY A AND RESTRICTION BETWEEN
THE CURVES u AND 2 WHERE u > 2

Section 4-1: Introduction and Definitions

D. Moursund [14], D. Moursund and G. D. Taylor [15],
G. D. Taylor [22], I. Ninomiya [17], L. Wuytack [27],
and C. Dunham [8] among others looked at a general-
ized weight function for an approximating family of
functions. G. D. Taylor [22] examined a generalized
weight function for polynomials in our restricted
setting, while C. Dunham did likewise except that his
approximating family was non-linear in a non-restricted
setting. In this chapter we will combine these last
two papers and look at a generalized weight function
for a class of non-linear functions bounded between the
curves u and 2 .

Our generalized weight function will not be the
least restrictive generalized weight function (see [14]).
A function W(x,y) mapping W X R into R will be called
a generalized weight function if
(4-1) (i) sgn W(x,y) = sgny

(ii) W is continuous

59
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(iii) for each x € X, W is a strictly monotone
increasing function of y with
Tim|[W(x,y)| = =
|y|+oo
For our family,gy(of Chapter 1), we say that
F(A,,x) s:f?p is a best generalized approximation to f
with respect to W and j?’ if

sup |W[x,f(x) - F(A,,x)]| =
xeX

i w ’ = s
F(ATI)e_ﬂ!(igg |W[x,f(x) - F(A,x)]] )

Our first observation is that if W(x,y) = y, our
problem is the problem of Chapter 1. Even if W(x,y) #y
we Will show that a form of Chapter 1 applies for our
generalized approximation with respect to W and ﬁFP.

We now require a theorem of D. Moursund and

G. D. Taylor [15].

Theorem 4-1: If W is continuous and F(A,x) is vari-

solvent (of degree m(A)), then W is varisolvent (of

degree m(A)).

We also require a slightly altered definition of

alternation. (see [22]).

Definition: For F(A,x) ejff, we define sgn*(f(x)-F(A,x)) by
-1 if F(A,x) u(x)

2(x)

]

sgn* (f(x;) -F(A,x;)) = 1 if F(A,x)
sgn(f(x) -F(A,x))otherwise
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o

Definition: For F(A,x) ¢ % , the error curve

W [X,f(X) = F(A,X)]

is said to alternate n + 1 times on X if there exist

in X such that

n + 2 points Xy < Xo < ... < Xo42
i=1,2, «.c. o, n + 1

and at least one of the following conditions is satisfied

by each X5t

(i) |N[xi’f(xi) = F(A,Xi)]l =

max |W[x,f(x) - F(A,x)]]
xeX

(1) F(A,x;) = 2(x;)

(iidi) F(A,xi) = u(xi)

As before,the x; are called critical points. An X ; is

a positive critical point if

sgn* (f(x;) - F(A,x;))

I
—

and a negative critical point if

Sgn* (f(xi) = F(Asxi))

-1

Using Theorem 4-1 and our revised definition of
alternation we could develop the results of Chapter 1.
Rather than this however, we will examine a perhaps
more general problem.

J. R. Rice has shown (page 18 of [20]) that the

weakest hypothesis with property Z and continuity which
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will ensure a Tchebyshev type of characterization theorem
is property A (defined below). The difference between
the above conditions and varisolvency is essentially the
solvency condition (not considering the constant error
curve possibility). On page 22 of [20], Rice gives two
examples of families satisfying property A which are not
varisolvent. It has not been shown yet whether varisol-
vency implies property A because of the constant error
curve difficulty.

We will consider generalized weight function approxi-
mation using a family in our restricted setting, where
the family has property A in place of local solvency.
First, a theqrem comparable to Theorem 4-1 will be given
for a family with property A (instead of local solvency).
We will then examine the questions of existence, unique-
ness and characterization for our (property A) family
with respect to W.

%*
Let 44 1 be the family of functions

{F*(A,x): P x [a,b] » R}
where each F*(A,x) ¢ & ; satisfies (1-1), property Z

(or (1-3)), and property A. Our approximating family
* %*
ﬁ 1 will be the subset ofJ 1 satisfying (1-4) (i.e.,

*
members of ‘a'l lying between the curves u and 2 ).

As for our fami]yj, F*(A,x) € ;’f’: is a best gen-
eralized approximation to f with respect to W and f?’; if
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(4-2) sup |W[x,f(x) -F*(a,x)]| =
xeX

inf (sup |W[x,f(x) -F*(B,x)]|) = e
F*(B,x)ecf']' xeX

We will use our new definition of alternation for/ﬁf?.

Thus there remains only the definition of property A.

Definition: F*(A,x) has property A of degree m(A) if
for any integer m < m(A),
any sequence {x],...,xm} with

a = Xy < Xy <--- < X = b

m+1

any sign o , and any real € with

0 < € <min {xj+] - x50 j=20,...,m},

*
there exists an F*(B,x) € ﬂ] such that

”F*(A,X) 'F*(B,X)” < €

3

sgn (F*(A,x) -F*(B,x)) = o for a < x < Xq - €

o} (-1)j for xj + € < x < xj+] - €

o (-1)™ for Xxp * €< x<b

For m = 0,

sgn (F*(A,x) -F*(B,x) = o

Section 4-2: Existence of Best Approximations.

Before we consider the existence question we will
give the analog of Theorem 4-1 in our setting (with

property A).
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*

Theorem 4-2: If W is continuous and F*(A,x) ¢ Y. 4 ]

then W has property Z and property A of degree m(A).

Proof: (The proof parallels that of Theorem 4-1 in

[15]). The proof that W has property Z of degree m(A)

can be found in [15] (it doesn't depend on property A).
We now show that W has property A of degree m(A).

Let k < m(A), a = x. < Xy < === < Xp,q = b, and €

0

such that 0 < € < min {xj+] - x5i o= 0,...,k} be

given as well as any sign o. Since F*(A,x) has property
A of degree m(A), there exists an €, >0 and

F*(B,x) € /éf ; such that
[F*(A,x) -F*(B,x)| =

ICF(x) -F*(A,x)] - [f(x) -F*(B,x)] | < €,

where sgn (F*(A,x) -F*(B,x))= o for a < x < Xy - €

o (-1)j for X; * € < x < X541 - €,

m
o (-1) for x  + €]< X <b
Now E] < € can be chosen sufficiently small so that
by the continuity of W,

W [x,f(x) -F*(A,x)] - Wlx,f(x) - F*(B,x)]| < ¢

But since sgn W(x,y) = sgn y,
sgn (W[X,f(X) 'F*(A9X)J - W [X,f(X) ‘F*(B,X)]) =

o for a < x < x] - €

-1)3J B}
c (-1)Y for xj + €< x < xj+] €

o (-1)" for Xp * €E<x<b
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Therefore W has property A of degree m(A). If W had
property A of degree m(A) + 1, we would have a

contradiction of property Z. This concludes the proof.l

We now consider the existence question. Our
discussion will parallel that of Chapter 1. We first
note that existence of best approximations is not
assured under ordinary approximation, and therefore
will not be assured under generalized approximation.
An example of the above non-existence of a best

approximation is as follows.

Example: Let P = {a]a is rationall Ay; = {F*(A,x) = a},

and f be defined by f(x) = /2 . Then a best approxi-

*
mation to f from ”51 does not exist. (see page 22

of [20]).

Therefore, as in Chapter 1, in this section we will
. g . .
add the hypothesis that A 1 1s closed under point-
wise convergence. This will allow us to obtain
existence of a best approximation.
For the e defined in (4-2), let

(4-3) lim sup [W[x,f(x) -F*(A.,x)]| = e
i+ xeX

Our existence question will be answered in the affir-
*
mative if we can find an F*(Ar,x) € 5{1 such that

sup| W[x,f(x) - F*(Ar,x)] | = e
xe X
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Now, since m(A) is bounded for all A, we can find a

subsequence of {F*(Ai,x)} of fixed degree such that

(4-3) holds (we will not relabel). Applying Theorem
7.2 of Rice [20] to our subsequence [F*(Ai,x)}

satisfying (4-3) gives us a pointwise convergent sub-

sequence satisfying (4-3). But our closure assumption
*
on A 1 then gives us that there exists an

which is the pointwise limit of the

Fr(Ag.x) ¢ F )

pointwise convergent subsequence satsifying (4.3).

We must therefore have that

sup |W[x,f(x) 'F*(AS,X)]| =
xeX

max |[Wlx,f(x) -F*(A ,x)]| = e < =
xeX

since W is continuous on a compact set. Therefore

F*(As,x) is a best approximation to f with respect to

*
W and 5{ 1 We have just proved the following theorem.

Theorem 4-3: For a generalized weight function W,

there exists a best generalized approximation to f on

. f( *
X with respect to W and ’f 1

Section 4-3: Uniqueness and Characterization of Best
Approximations.

Qur first observation is that Examplel-land Lemmal-2

apply in our setting so that we need consider only the
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case where (X+1 ] X+2) n (X_] V] X_2) = ¢ . For the

remainder of this section we therefore assume that
(X+] U X+2) n (X_] U X_z) = ¢.

Uniqueness will follow directly from the character-
ization theorem in the usual manner (see the proof
of Theorem 1-4 ).

For the characterization theorem we require a
lemma which C. Dunham [8] gives without proof for the
unrestricted setting. For completeness we will give

a proof of the lemma in our setting.

Lemma 4-1: For F*(A,x) € ;Ef ; , F*(A,x) -F*(B,x)

can have at most m(A) - 1 zeros, counting double zeros
*

twice, for F*(A,x) # F*(B,x) € ;"1' ] -

Proof: The proof will consist of constructing an

F*(C,x) € /éf ; such that F*(C,x) -F*(A,x) can have

as many distinct zeros as F*(B,x) -F*(A,x) has zeros,

counting double zeros twice. If xj is a double zero

of F*(B,x) -F*(A,x) such that F*(B,x) > F*(A,x)

in a small neighborhood of xj (not including xj of course),
F*(C,x) will be constructed close enough to F*(B,x)

where F*(B,x) > F*(C,x) 1in the neighborhood of X

This will ensure two distinct zeros of F*(C,x) -F*(A,x)
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associated only with xj i.e.,

For F*(B,x) < F*(A,x) in a neighborhood of a double zero,
F*(C,x) will be above F*(B,x) in a manner analogous

to the above. Each simple zero of F*(B,x) -F*(A,x)

will also have a zero of F*(C,x) -F*(A,x) associated

only with it. We now proceed with the construction.

Let [xi]§ be the set of zeros of F*(A,x) -F*(B,x).

Let
P = min max |F*(B,x) -F*(A,x)| > 0
0<i<k xe[xi,xi+]]
X3<X4 41
where X, = a and X1 = b
and
a = min | X . - x.| > 0. Select an
0sisk A
X§<Xi41

appropriate € > 0 such that a/2 > € > 0 and
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p/4 > € > 0. We then construct a set of points
[xi'}._] ,2 <k in the following way.

Case 1: Let X1 be a double zero (a = Xy = Xq or

= b implies a simple zero). Select an x]'

such that Xo * € < x]' <Xy - € (i.e., x]' is between

Xo and X1 and an € distance away from both). Proceed

to the first simple zero after x](if it exists) and

select xz' as follows, ij.e. if X is the first simple

zero after x],xz' is selected such that

]
Xg_1 t €< x,' <x. - €
Proceed to the next zero, Xo41® Select x3' where
X + € < X3' < Xoyq + €. If Xc41 s a simple zero,

proceed to X 42 and do the same for Xs4p @S for Xo41"

If x is a double zero, proceed to the next simple

s+1

zero after X pq @s in selecting x2'. Continue through

all the zeros of F*(A,x) -F*(B,x).

Case 2: Let X1 be a simple zero where Xy = X,

Proceed to Xo. If Xy is a double zero, proceed as in

Case 1. If x, is a simple zero, proceed as if for X4

2
in Case 3 below.

Case 3: Let x, be a simple zero where x, # x Let

0"

] ) ]
X3 be such that Xo + € < xq' < Xy - €. Let Xo be
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such that x; + €< x2' < x, - € (naturally only if X,
exists). If X, is simple proceed and repeat for X3
If Xo is double, proceed as if X5 is the double zero

Xgp1 1M Case 1 above.

Let X q be the first double zero. Suppose, for

concreteness, that near X5 F*(B,x) > F*(A,x).

Select o in property A below so that
sgn (F*(B,x,) -F*(C,xd)) =+ 1
(If no double zero exists, property Z proves the lemma).

Now, for the points [xi']-f

i=1 and our € > 0, there

exists (by property A) an F*(C,x) such that

sgn (F*(B,x) -F*(C,x)) = o for a < x < x,' - €

Y . -
o (-1)Y for xj + € < x < X541 €

o (-1)2 for x, + € < x <b

where ||F*(B,x) -F*(C,x)|]| < €.

Now by our construction, F*(C,x) -F*(A,x) has as
many simple zeros as F*(B,x) -F*(A,x) has zeros,
counting double zeros twice. Applying property Z proves
the lemma. |

The statement and proof of the characterization
theorem which now follows parallels that of Taylor [22]

for the linear case.
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Theorem 4-4: For a generalized weight function

W and F*(A,x) ¢ ;”Ff; where
(Xyq U X,p) N (X_j UX_,) =96,

F*(A,x) is a best generalized approximation to f with

respect to W andigf : if and only if

Wlx,f(x) -F*(A,x)]
alternates at least m(A) times . (Remember that

57(: # ¢ by assumption).

Proof: Assume W[x,f(x) -F*(A,x)] alternates at least

m(A) times on X. Assume for concreteness that it

alternates exactly m(A) times. Assume there exists an

F*(B,x) € ;ﬁ( T such that

max |W[x,f(x) -F*(B,x)]| <
xeX

max |W[x,f(x) -F*(A,x)]| = o*
xeX

Let [xi: X; < X549} be a critical point set of

m(A) + 1 points in X for W[x,f(x) -F*(A,x)]. Without
loss of generality, assume

sgn* (f(x;) - F*(A,x;)) = (-1)Y for i = 1,2,....m(A) + 1.

Therefore for i odd, w[xi,f(xi) -F*(A,xi)]= - p* or

F*(A,xi) = u(xi), and for i even,

W Dx;,f(x;) -F*(A,x;)] = o*
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or F*(A,x;) = &(x;) since (X, U X,,) N (X3 UX_5) = ¢.

By the monotone property of W (when needed), we have

that (-1)171 (F*(A,x;) -F*(B,x;)) = 0 for i = 1,2,...,m(A)+1.

Therefore F*(A,x) -F*(B,x) has at least m(A) zeros,
which contradicts Lemma 4-1. Therefore if
Wlx,f(x) -F*(A,x)]
alternates m(A) times on X, F*¥(A,x) is a best generalized

. oA *
approximation to f with respect to W and % ]

*
Assume F*(A,x) € ;ﬁ’ ) is a best generalized approxi-

A *

mation to f with respect to W and }r'] which alternates
k < m(A) times on X. Let Yy < ¥y =77 < ¥ be a
critical point set of X for W[x,f(x) -F*(A,x)]. Fix i,
1 < i <k and suppose Y; is a positive critical point.
Let y' = sup {y: y € X with y; <y < Yis and y is a

positive critical point} and let

n o 3 . 4
y" = inf {y: y € X with Yi TY S ¥in

and y is a negative critical point}. Since
(Xyq U X0) N (X UX,) =6,

X is compact, and all functions involved are continuous,
we have that y' is a positive critical point, y" a
negative critical point, y' < y", and y ¢ (y',y") implies
y is not a critical point. If X N(y',y") # ¢, pick

an x, in this intersection. Then at X
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(i) p = Iw[xi’f(xi) 'F*(A’xi)ll < p*

where p* -p =s > 0
. * _
(i) l(xi) s < F (A,xi) < u(xi) s;» Where

s > Si >0

Now by continuity, there exists an Ei > 0 such that on

[x, - €,

; g0 X5 ¥ Gi]’ 2 (x) + 51/2 < F*(A,x) < u(x) - si/2

and |[W[x,f(x) - F*(A,x)]] < p* - 51/2 for all
x € XN [Xi - €, x5 Ei].
1 + n
2
Then there exists an Ei > 0, since y' < y" such that

If XN (y',y") = ¢, let x; =

X n [Xi - € x. + €.] = ¢. Construct X and Ei in

i?> 79 j

a similar manner for each i = 1,2,...,k, letting

x, = inf {y: y e X} and Xps1 = SUP {y: y e X}

Let €X = min {e.} > 0 and sk = min [si/Z] > 0. Then

1<isk | 1<i <k

k
for x _e U (XN [x, - Ek, X, + Ek]) , we have
P =7 1 1

- * * k
that lw[xp, f(xp) = F (A,xp)]l < p* - s,

and z(xo) + sk < F*(A,xp) < u(xp) - sk. Now, by

k
construction {X N [xi’xi+1]}i=o is a set of k + 1

intervals in X each of which contains no alternations
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and such that W[x,f(x) -F*(A,x)] alternates exactly
once on any two intervals. Each X N [Xi’xi+1] s
i =0,...,k contains a critical point, namely Yieq
and no critical point of an opposite sign. Without
loss of generality assume Yq is a positive critical
point. Then there exists a 6] > 0 such that

Wlx,f(x) -F*(A,x)] >-p* + 6] and F*(A,x) < u(x) - 6]

for all x ¢ X N [xo,x]], since X is compact and all

functions involved are continuous and u(x) > 2(x).
Now since W is a continuous and strictly monotone

function of f(x) -F*(B,x) for F*(B,x) € ;ﬂf; , there
exists an 0 < G] < min (sk, 6]/2) so small that if
| F*(A,x) -F*(A],x)l < € and f(x) -F*(A,x)>

f(x) -F*(A],x) for all x € X N [xo,x1], then
(4'4) IW[X,f(X) -F*(A,X)] -W[x,f(x) -F*(A],X)]I < Sk/3 ’

WEx,F(x) -F*(A;,x)] > - o* + sK/3 , and
F*(A],x) < u(x) - E] for all x € X N [xo,x]].
Repeat this process, i.e., on X N [x],xz], there exists

a 62 > 0 such that F*(A,x) > 2(x) + 62 and

Wix,f(x) -F*(A,x)] < p* - §, for all x e X N [x],xz].

Then there exists an 0< 62 < min (sk, 62/2 ) so small
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so that if |F*(A,x) -F*(Az,x)l <€, and
f(x) -F*(A,x) < f(x) -F*(A,,x) for all x e X N [xy,x,],
we have

(4-5) JWDx,f(x) -F*(A,x)1-W[x,F(x) -F*(A,,x)]| s s5/3

Wlx,f(x) -F*(Az,x)] < p* - sk/3 , and
F*(Az,x) > o(x) - €, for all x e X N [x],xz].

Continue with X N [xz,x3] etc.

Let € = min {€,/2 , €,/2,..., €./2} > 0.
Let € = min (GQ,Ek) . Now apply property

Ato {x,....x ), k<m(A) with € >0 and o =-1.
. *
Therefore there exists an F*(A ,x) € ;ﬂe] such that

IF*(A.x) -F*(A . x)Il < €
and

sgn (F*(A,x) -F*(As,x))= -1 on Xg S X < Xq - €

(-1)J+] on X + €< x < X541 " €

_ k+1
= (-1) on x, + € < X < X4,

By construction, property A and strict monotonicity give

us that F*(As,x) is a better approximation on the

intervals X N [xi + €, X4y -€] i =0,1,...,k , and

(4-4) and (4-5) along with our selected € > 0 give us
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that |W[x,f(x) -F*(As,x)]l < p* and

2(x) =< F*(As,x) < u(x) on XN [Xi - €,x, + €]

j

for i = 1,2,...,k. Therefore

max |W[x,f(x) -F*(A_,x)]|
xeX

< max |W[x,f(x) - F*(A,x)]| = p*
xeX

which is a contradiction. Therefore the best generalized
approximation F*(A,x) must alternate at least m(A) times
and the theorem is proven.

Uniqueness follows directly from the first part of
the proof of Theorem 4-4 where the first '<' is replaced

by 'S'

Theorem 4-5: The best approximation of Theorem 4-4

is unique.

Remark: It should be noted that a generalized weight
function can be thought of as a transformation.

E. H. Kaufman, Jr. and G. G. Belford in [10] and [11]
have examined unisolvent and varisolvent families from

this approach.
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