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ABSTRACT

ANALYSIS OF TESTS FOR TWO FORMS OF SPECIFICATION ERROR
IN LINEAR REGRESSION ANALYSIS

By

Ronald L. Tracy

In this study two new specification error tests based on a Power
Series Expansion Model (POSEX) are developed. The first test is
designed to detect a misspecified conditional mean of the dependent
variable and the second to detect heteroskedastic disturbance terms.

Two versions of the test for a misspecified conditional mean are
presented. One of these versions is shown to yield the same results
as the procedures currently in use yet offers the advantage of being
easier to implement. The two versions of the test are then compared
on six misspecified models using a sample experiment. It was found
that both tests have an extremely high probability of correctly
rejecting the null hypothesis if the misspecified conditional mean
is caused by using the wrong functional form of either the regressand
or regressors. In contrast, when the specification error is caused
by omitting a variable, the power of the test is a function of the
relation between the omitted variable and those included in the model.

Four versions of the test for heteroskedastic disturbance terms

are presented. These four tests are then compared with various



Ronald L. Tracy
versions of Goldfeld § Quant's parametric and non-parametric test,
Glejser's test, Park's test, and Ramsey's test (BAMSET) by using a
sample experiment on ten heteroskedastic models. It was discovered
that when no information about the form of the heteroskedasticity is
available, the most powerful test is BAMSET with the observations
reordered by ranking the dependent variable. However, since this is
a non-constructive test, if heteroskedasticity is found, no corrective
procedure is suggested. Of the constructive tests, two versions of

the test formulated in this study were found to be the most powerful.
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CHAPTER I

INTRODUCTION AND REVIEW OF THE LITERATURE

I.1 Introduction

Linear regression analysis is one of many statistical procedures
that can be used to indicate a relationship among different variables.
This method requires specification of the variable whose conditional
mean is to be estimated (the dependent variable), of the variables that
affect the mean of the dependent variable (the independent variables),
and of the distribution of the umexplained variation (the disturbance
term).

One such regression model is

y=X8 +u (1.1)
where y is the n x 1 vector of observed dependent variables, X is the
n x k matrix of nonstochastic independent variables of rank k, B is the
k x 1 vector of parameters to be estimated, and u is the n x 1 vector
of disturbance terms.

If the method of least squares is employed to estimate the regres-
sion model in (1.1), the estimator for the parameter 8, §_= XxX'X)” X'y,
and the model's variance oz, ;2 = (y - Xé)'(x'- Xé)/(n-k) can be
obtained. If, however, the statistical properties of these estimators
are to be ascertained and tests of significance carried out, the

distribution of the disturbance terms must also be known. If, for
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example, the vector of disturbance terms has a normal distribution with
a mean of zero and a covariance matrix of ozl (hereafter denoted
N(@, UZI)), the resulting estimators are unbiased, efficient, and
consistent.

Difficulties arise when the disturbance term has a different
distribution than that which has been hypothesized. When an incorrect
assumption is made about the distribution of the disturbance term, a
specification error has been committed. It must be emphasized that a
specification error arises only because the exact distribution of the
disturbance term is incorrectly assumed, not because it is distributed
differently than required by the classical assumption (that
u - N(#, o°1)).

Typically there are two major types of specification error. The
first type concerns the distributional form of the disturbances and the
second deals with the parameters of that distribution. In the first
case, a specification error of incorrect distributional form is made
when the vector of disturbance terms u is actually distributed
differently than has been hypothesized. An example of this is if the
disturbance terms are assumed to be distributed normally whereas they
are actually distributed as log normal.

The second type of specification error is committed if an incorrect
assumption is made about the parameters that define the exact distribu-
tion of the disturbance terms. In the context of the classical
assumptions that u ~ N(@, oZI), where only two parameters are needed
to define the distribution completely, this second type of specification

error can be divided into three types.
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The first error arises when an incorrect assumption is made about
the population mean. Most commonly, this type of error occurs when the
expected value of the vector u is assumed to be zero instead of some
non-zero vector z.

The second error occurs when one makes an incorrect assumption
about the population variance. The most common form of this error
arises when it is incorrectly assumed that the variance of each disturb-
ance term is identical (homoskedastic) whereas the true variances would
compose a non-constant vector v (heteroskedastic).

The third and last error incurred involves the correlation between
the disturbance terms Upseesrlp. In its most common form, this error
occurs when it is assumed that the disturbance terms are independent of
one another whereas elements of the disturbance vector that are
adjacent are actually correlated (first order autocorrelation).

The purpose of this study is to examine, compare and prepare
statistical tests designed to help the researcher determine if a given
regression model is misspecified because the vector of disturbance
terms has an incorrectly specified mean or variance vector. The
remaining two forms of specification errors involving the disturbance
terms, incorrect distributional form,.and autocorrelation have been
studied in great detail by other authors. The reader is referred to
Shapiro, Wilk, § Chen [1968] and to Huang § Bolch for more information
on distributional form errors and to Kramer [1969], Berenblut & Webb
[1973], and Abrahamse § Louter [1971] for more information on

autoregressive errors.



Notation

When tests are examined to determine if a model has been misspec-

' ified, the null hypothesis (hereafter HO) is that no specification
error exists. This null hypothesis will be tested against two alterna-
tive hypotheses. The first alternative (hereafter Hl) is that the
disturbance terms have an incorrectly specified mean vector; the second
alternative (hereafter HZ) is that the disturbance terms have an
incorrectly specified variance vector.

To simplify the complexity of the statistical discussion, certain
notational conventions are used throughout this study. First, matrices
are always denoted by either upper case Greek or Latin letters. Second,
any Greek or Latin letter that is underscored denotes a column vector,
(e.g., y or 8). Third, any lower case Greek or Latin letter not
underscored represents a scalar. Fourth, parameters are denoted by
Greek letters, whereas random variables are represented by Latin letters.

An estimator of a parameter is signified by that parameter topped
by a symbol (for example, é, é, E, é, g are all estimators for g). In
a like mammer, the predictor of a random variable is denoted by a
symbol over that random variable. When the inverse of a matrix is
required, the symbol =~ immediately tolthe right of the matrix is used
(for example, the inverse of the matrix A is A'). The operator DIAG
denotes that the diagonal elements of the specified matrix are formed
into a colum vector. The operator E denotes the expected value
operator. A prime ' to the right of a vector or a matrix denotes the
transpose of that vector or matrix. The capital letter I denotes the

identity matrix while the vector i denotes a colum of ones.
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Some standard notation on tests will be reviewed as this notation
will be used extensively throughout this study. The probability of
incorrectly rejecting the null hypothesis (Hb) (type I error) is
denoted as alpha (a) or is referred to as the alpha level of the test.
The probability of incorrectly accepting the alternative hypothesis
(type II error) is denoted as beta (B). The probability of correctly
accepting the alternative hypothesis then becomes 1-8 and is referred

to as the power of the test.

Outline

Before the various testing procedures designed to detect an
incorrectly specified mean or variance vector are compared, a detailed
discussion of each specification error is given. This discussion is
followed by a review of the pertinent literature on different predictors
of the true disturbance terms, on various tests for detecting an
incorrectly specified mean vector, and on various tests for detecting
an incorrectly specified variance vector.

In the second chapter, a new test for each of the two forms of
specification error under discussion is described. Following a detailed
explanation of the new testing procedure, the test is applied to the
case of H) vs. H;, with careful attention paid to developing the exact
distribution theory. The new procedure is applied to testing Hb vs. H,
with special attention focused on certain aspects of the distribution
theory.

The third chapter begins with a restatement of the hypotheses
posed in Chapters I and II. A sampling experiment is presented that

compares the two new tests with the previously discussed tests for
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H, vs. Hy and H, vs. H,. Since all of the tests presented were
designed for particular situations, special attention is given to the
experimental design so that all tests can be compared fairly.

In Chapter IV, the experimental results are presented. Compari-
sons and contrasts between the various tests as well as between the
various models tested are made. The hypothesis presented in the
previous chapter are examined.

Finally, in Chapter V, a summary of the entire study is given.
This is followed by a discussion of the major conclusions of this study
and the inferences which can be drawn from them. Some suggestions for

further research are given.

1.2 Effects and Causes of a Misspecified Mean Vector

Assume that one hypothesizes the regression model

Yi=81+xi2 82"' ----- +xik Bk+ui,1=1,...n,

2 (1.2)
u ~ N(@, o7I).

If these assumptions are correct, model (1.2) would be the 'true' model;
that is, the model which generated each element of the vector of
dependent variables ;e The regression model would thus be correctly
specified and the resultant least squares estimators, é_and o » would
be unbiased, consistent, and efficient.

It is evident that if the hypothesized model had had a disturbance
term with a constant mean vector r = ri, it could be transformed into
an hypothesized model with a zero mean vector by subtracting the vector
r from the dependent variable y or by incorporating r into the constant
coefficient. Hence, it will be assumed from this point on, and without

loss of generality, that the disturbance term in the hypothesized model
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has a zero mean vector and that the alternate hypothesis (Hl) is that
of a non-zero, non-constant mean vector. Therefore, if u is actually
distributed as N(g,ozl), z being a non-constant mean vector, then the
model hypothesized in (1.2) is misspecified because of an incorrectly
specified mean vector. The effect of this specification error on the
least squares estimators é_and o can be demonstrated by examining the
effect of regressing the vector z on the matrix X. The resulting
regression model is

z=Xy +v, v -N(@, 021). (1.3)
Thus, the bias in the least squares estimators caused by the misspeci-
fication is seen to be

E(B) - 8=y and

E(6?) - o = E(y - X8)' (¥ - X8)/(n-K) - o = z' z/(n-K).

~

Hence, as a result of an incorrectly specified mean vector, 02
has an upward bias and hence always causes a loss in efficiency, which
in turn causes tests of significance to be unduly conservative. In
addition, the extent to which any parameter By is biased by the
misspecification is directly related to the correlation between the
corresponding independent variable X4 and the vector z. Further, the
constant vector will always be biased unless all the variation in z
can be explained by the other independent variables. If the vector z
is a constant vector, that is, z = zi where i is a column vector of
ones, only the constant term is biased and by the amount z. Similarly,
if z is a non-constant vector and uncorrelated with all the independent
variables, Xyseees Xy only the intercept term will be biased and by the
amount

z=13 zi/n.
i
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Since the estimators of g and 02 are affected by the error of a
non-zero mean vector, it must be determined under what circumstances
such an error can occur. One such circumstance is when the original
data is collected or transcribed incorrectly. Typically, it is assumed
that these errors are distributed normally and have an expected value
of zero. If this is not true, however, and, in fact, the data contains
an upward (downward) bias, only the intercept term and the variance are
affected since the bias will presumably be uncorrelated with the
independent variables in the model.

Another situation in which a non-zero mean occurs is when a
variable is omitted from the hypothesized model. This may occur if the
hypothesized model is given by (1.2),

y=Xe+u, u-N@, o’D),
whereas the true model (the model that actually generated the dependent
variable y) is

y=X8+Ws +e,e-N@, o1), (1.4)
where X, B and y are as previously defined, W is an n x m matrix of m
additional independent variables, and § is a colum vector (m elements
long) of additional parameters. The non-zero mean of u in this case
is equal to W§. Such an error can bé comnitted if there is no data
available on the variable(s) WyseooW, OF if the variable(s) are
erroneously excluded from the hypothesized model because the researcher
was not aware of their occurence in the true model. Note that the
omitted variables cannot be included in the model and have their
significance tested because the researcher is either unaware of their

occurence in the true model or camnot obtain the necessary data.
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One final way that a specification error due to a non-zero mean
vector can occur is when the incorrect functional form of the
regressors or regressand is used. Given the true model
Yi SY1 Y, ln(xiz) + ...+ Ykln(xik) * Vs, i=1,...,n,
v - NG, 021) (1.5)
and the hypothesized model, given in (1.2),
y = X8 +u,u-~N@, o’D),
it is obvious that the hypothesized model has been misspecified. The
independent variables have taken on the wrong functional form. As a
result, the vector u will have a mean given by
E(ui) =yt yzln(xiz) S S + Ykln(xik) - (81 * By Xgp *oeeens
By xik) #0,i=1,...,n.

Although the mean is non-zero, it may result in a relatively small bias
in each of the estimated parameters because of the high correlation
between the hypothesized independent variable and the true independent
variables.

It is interesting to note that a similar violation is caused when
the incorrect form of the regressand is used. (This error can also
cause the additional specification error of incorrect distributional
form.) 1If, for example, the true model is

exp(y)=Xy * V, ¥ - N8, o°1), (1.6)
whereas the hypothesized model is given by (1.2), then the hypothesized
model has been misspecified because the wrong functional form for the
dependent variables has been assumed. The mean of u would, in this

case, be
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E(u;) = Ely; - (8) * ByXjp % oon + B X))

= E(loge(yp * Xjp v+ wee F Xy vt Vy) -
(By + BpXjp + -0 *+ BXp)), i =1,...,m,
which in general is non-zero for any set of x's. Although this non-
zero value is different from that which occurs when the misspecification
is due to the incorrect functional form of the regressand, the relation-
ship is strikingly similar.

One final point is that though incorrectly including an independent
variable in a model is committing a specification error, this error does
not affect the mean of the disturbance term; hence, the model is not
misspecified because of a non-zero mean vector. This can be
demonstrated by hypothesizing the model

y=Xg +Ws +u, u-N@, oI), (1.7)
where y, X, B, W, and § are as previously defined, whereas the true
model is

y=X8+u, u-N@, D).

The expected value of the hypothesized model would be

E(y) =Xg + W0 =Xg
which is exactly the true model; thus, the only cost of this specifica-
tion error is a loss of efficiency in estimating the vector of parameters

E_and the variance 02.

1.3 Effects and Causes of a Misspecified Variance Vector

Given the model
y=Xg +u,u- N(g, OZI)’
it should be noted that a constant variance vector ozi_(=DIAG (oZI))

is assumed. This does not, however, imply that a specification error
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is made when a non-constant variance vector (v) is correctly
hypothesized. Rather, just as a method exists of transforming any
hypothesized model with a non-zero mean vector into a model with a zero
mean vector, a transformation exists that will change any model with a
hypothesized non-constant variance vector into a model with a constant
variance vector. One simply divides each observed dependent and
independent variable by the square root of the corresponding
hypothesized variance (v;). This transforms the model

y = X8 +u, u-~ N, o),
where DIAG (V) = v, into the model

Y; = 8 1+ By Xip * ovn * By Xip * W5 i=1,...,n, w ~ N(@, 021).

LA AL e

i i 1 i

Hence it can now be assumed without loss of generality that the hypothe-
sized model will always have a constant variance vector.

A regression model with constant variance (var(ui) = 02, i=1,...,n)
is said to be hamoskedastic. Since estimation using classical least
SqQuares requires the assumption that the E(ui) =0,i=1,...,n, a
homoskedastic model conforming to the classical assumptions has
E(ug) = oz, i=1,...,n. If the model violates this assumption, it is
said to be heteroskedastic (non-constant variance vector).

If a model suffers from heteroskedasticity, it is known that the
least squares estimators of 8, é, are unbiased and consistent but are
inefficient and asymptotically inefficient. Further, the least squares

®stimator of the variance of the model is inappropriate since
~ 1 ~ ~
E(c") = ;- EQx-XB)' (y - Xg)
- _1_ 2 - ' Yy ! 2
T nk (T Gi E(P_ XQX'X) X )E)) £ L Ui/n’

where 0% is the variance of the i'th disturbance term.
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Heteroskedasticity is generally believed to be a more serious

problem when cross-sectional data is used than when time-series data

is used. This belief is held because the magnitude of the dependent
variable over each observation differs, in general, much more in cross-
sectional data than in time-series data. This belief, however, is not
always justified. The dependent variable in time-series data can be
heteroskedastic if it covers a large number of years or if major

changes have occurred since its conception.

I.4 Review of Literature

The following section is divided into four parts. First, the
different types of residuals that are currently being used in testing
both alternative hypothesis H, vs. H) and Hj vs. H, are discussed.
Second, the testing procedures now being utilized for testing H, vs. H;
are discussed. Third, the different testing procedures now being used
to test H , Vs. H, are reviewed. Finally, previous sampling experiments

that have compared various tests for Hj vs. H, are discussed.

1.4.1 pifferent Residuals Being Used in Specification Error Test

If one could observe the vector of disturbances u, either hypothesis
Could be easily tested. For example, to test for a non-zero mean vector,
only a simple t test of ﬁ(=§ui) about zero is required. In a similar
vein, testing for a non-con;ta.nt variance can be done by stratifying
the Ui's and using an F test for equal variances. Unfortunately, how-
€Ver, since the disturbance terms are not observable, another testing
Procedure must be devised. The procedure that most often suggests

itself is to use some predictor of the vector u as a proxy for the

umobserved disturbance term.
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So far, three residuals have been used in the literature. The

first of these, which is both the easiest to compute and most frequently

used, is the residual obtained from ordinary least squares (hereafter

OoLs). It

Under Ho’

Var (u) =

is defined as
u=y- X
u is normally distributed with E(u) =y - X8 = 0 and
E(y - X8) (y - X8)'/(n - K)
Ely y' - XXX y y' -y y XXX + XX'X) ™ X'y yX(X'X)X")
E(I - XEX'X) X)) yy' (I-XX'X)XY)

ME(y y'M

MoZ IM= oM,

that is, u ~ N(#, oM).
The second technique utilized was developed by Theil [1965, 1968]

and Koerts [1967]. These residuals, denoted u*, are called the Best

Linear Unbiased Scalar-covariance (BLUS) predictors of the true disturb-

ance terms u. They are defined as

u* = A'y,

where A is an n x (n - k) dimensional matrix satisfying the conditions

a) A'X=0
b) A'A= In -k, and
c) AA' =M,

Under H, the u*'s are normally distributed with

E(h) = A'(EQ)
= A'E(u) = 0
VAR(u™) = E(A'yy' A)
= A' E(yy")A
= A'oPIA = oPT_,
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that is u* - N(@, oZIn_k). It is important to note that although this
orthonormalization process ensures that the u*'s are independent of one
another, it also limits the number of residuals to only (n-k) instead
of n.

The third technique was developed by Hedayat & Robson [1970]
and is called stepwise or recursive residuals, denoted by é The
basic idea of this method is to '"obtain (residuals) by a stepwise
fitting of the linear model to successively more observations' [Hedayat
and Robson, 1970, p. 1574]. The first step of the procedure is to
estimate the model using OLS and only k+1 observations. The least
squares residual that corresponds to the (k+1)'th observation becomes
the first stepwise residual, ﬁl' The next step is to reestimate the
model using k+2 observations. As before, the stepwise residual is the
one that corresponds to the last observation,((k+2) in this case), and
is denoted by ﬁz. As this process is continued, n-k independent step-
Wise residuals are generated, Gl’ - ’ﬁn-k'

These same n-k residuals can be cbtained with only a single matrix
inversion by using a recursive technique developed by Harvey §
Philljps [1973]. The first step of the procedure is to estimate the
M™odel using OLS and k+1 observations,‘ just as before, denoting the
®Stimate of the vector B as é(l)' The least squares residual that
COrresponds to the (k+1)'th observation becomes the first recursive
TeSidual, denoted by u;. The second step is to calculate a new estimate
of the vector 8. This is done by using the recursive formula (with
=2,

z - X', X. )X (y:-X'.B.
Eir = &g * 51550 % Oy % 5851

1+x X ) x
x5 K5a%5.07
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where (X'j_lxj_l)_ denotes the inverse matrix used to calculate é(j-l)’
and }% is the row vector that corresponds to the (k+j)'th observation.
To obtain the next inverse matrix O(jxj)_’ the recursive formula
X'. .X. ex! (X!LX. )T
X'5-1%5-0) x5 &5-1%5-0)

(XIX.) 7= (X! X, )+
_1 _1 e
373 j-173 T+ x5 (X 0 %

is used. These n-k residuals are distributed under Ho as N(@, rZIn_k),
where 1_2 is the associated variance. As in the case of the BLUS
residuals, the stepwise (recursive) residuals are independent and k

observations have been lost.

1.4.2 Present Procedures to Test for the Disturbance Terms Having a
Non-Zero Mean

The first test for Hy vs. H, was developed by Ramsey [1969] using
BLUS residuals, u*. Recall that u* = A'y where A'X = 0, A'A =1
and AA' = M. Ramsey hypothesized that if the disturbance terms had an
inCOrrectly specified non-zero mean vector, z, ''then the mean of the
i'th disturbance terms z; can be expressed as a linear function of the
Moments of ;'i’ the least squares estimator of the conditional mean of
Yi-"" [Ramsey, 1968, p. 66]. Stated formally,
Blap) =25 =ep * o1 Mo T2 Ma0 T3 Mis0 T () g
i=1,...,n, |
where m, 50 is the j'th moment about the origin of 91’ Given that BLUS
Tesiduals have the property that if E(u) = z # 0, then
E(u*) = E(A'Y) = A'E(Y) = A'E(u) = A'z,
he suggested pre-multiplying equation (1.8) by the matrix A'. This
Yielded the equation
E@*) = A'z = Alag + Alagmyq + Alay myq + Alag Mgg + Alay My + oo
(1.8")
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Removing the expected value operator from equation (1.8') and noting

that A'i = A'Xé = 0, Ramsey formulated the errors in variable model
R IO L RO (1.9)
where w ~ N(@, gZIn_k) under Ho. In this formulation

x*(i) = A'i(i) = A'{;'i,...,;'lil}. Given that under HO’ E(u*) # 0, it
follows that under HO, the E(az) = E(°‘3) = E(a4) = 0. Hence, an F-test
was proposed by Ramsey to test for the joint significance of Gys O35
and « 4 This procedure he named RESET (Regression Specification Error
Test).

The RESET procedure has been examined by Ramsey and Gilbert [1972]
using a monte carlo sampling procedure. Their results (as ammended by
unpublished results of this author) have indicated that just as
expected, under the null hypothesis, the test was not biased (the
Percent rejection corresponded to the o level); second that for the
alternative model examined, the power was close to 100 percent under
the alternative hypothesis of incorrect functional form; third that
the test had virtually no power under the alternative hypothesis of an
Omitted variable for the model examined (the reason for this result
¥ill be explained later).

Because BLUS residuals are utilized in this procedure, three
difficulties associated with those residuals are inherent in RESET.
First, since the A matrix is difficult to calculate, the u*'s are not
€asily computed. Secand, the BLUS procedure can be used to generate
only n-k residuals from the original observations. Third, because

there are only n-k residuals, in order to find a one to one correspond-
énce between the residuals and the n observations, the k observations

that are discarded in calculating the matrix A must be carefully noted.
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Since all of the problems just outlined are caused by the use of
BLUS residuals, Ramsey and Gilbert [1972] suggested substituting the
standard least squares residuals,
u=(I-X XX~ X')y-=My,
for the BLUS residuals in the RESET technique. With this substitution,

equation (1.9) becomes

GeMu=a x(z)w MO ~(4)

*azy +Ww=Qa+w (1.10)

where w ~ N(O,oZM).

This procedure, however, creates another problem. The standard
F-test used to test the hypothesis that ay = ay = ag = 0 breaks down
because of nonindependence between the numerator and denominator. To
show this nonindependence one can express the F statistic as a ratio of
quadratics in the disturbance terms u. The F-statistic in this
Particular case is

- U M'QQ'Q Q™) u/3
u'M-M'QQ'QY QM) u/(n-k-3)
where Q is defined implicitly as in equation (1.10).

Since
M'QQ'Q~ Q'M) (M-M' Q(Q'Q)” Q™) # 0,
it follows that the numerator and denominator are not independent as a
NeCessary and sufficient condition for their independence is that the
Product of the two quadratics be identically zero.
To correct for this non-independence, Ramsey § Schmidt [1974]
have suggested pre-multiplying equation (1.10) by the matrix M. This

results in:

A A ~(3 ~(4
Moo @ o 5 5 e - g e e

where M w ~ N(@, oZM). It is easily seen from the quadratic form that
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the F-statistic has a numerator and denominator which are independent.
Writing F once again as a ratio of quadratic forms one gets
u' (M-M'Q(Q'MQ)~ Q'M)u/ (n-k-3
Since independence of two quadratic forms is proven if their
product is identically zero and given that M is idempotent (that is,
MM=M) one obtains
(M'QQ'MQ) Q'M) (M-M'Q(Q'MQ) Q'M) = M'Q(Q'MQ) Q'M-M'Q(Q'MQ) QM = 0,
thus proving that the numerator and denominator are independent. All
the initial problems associated with the original formulation of the
RESET technique are thus rectified in this newly defined RESET test.
However, this procedure still requires the calculation of the well-
defined matrix M = (I - X (X'X)  X'). Although this is not a difficult
process, it is a time-consuming and cumbersome one. Moreover, it is
important to note that although the BLUS and OLS residuals are unbiased
predictors of the error vector u under Hy, they are biased under H,;
that is, though the expected value of the residual vector is equal to
the expected value of the disturbance term under the null hypothesis,
the two sets of expected values are unequal under H, . This can be
clearly shown by defining a general set of residuals é_= B u, where B
is a matrix with n colums. Under the alternatiﬁe hypothesis of non-
zero mean (E(u) = z # f), the expected value of the general set of
residuals is
E(u) =BE (u) =B z#z.
It can thus be inferred that with any test in which a predictor (such
as OLS or BLUS residuals) of the true disturbance term u is used, an

incorrect measure of the non-zero vector z is being employed. Hence,
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a procedure that is unbiased under both HO and Hl and where the

calculation of the matrix M is not required would be preferred.

1.4.3 Heteroskedasticity

There are two different types of tests for heteroskedasticity;
constructive tests and non-constructive tests. Simply stated, a non-
constructive test for heteroskedasticity enables one to test the null
hypothesis of homoskedasticity but does not help one to estimate the
individual variances if H0 is rejected. In contrast, a constructive
test not only enables one to test for Ho Vs. HZ’ but also provides an
estimate of °§’ i=1,...,n, (the variance of the i'th disturbance term);
if the null hypothesis is rejected. These estimates of the variance
can then be used to reestimate the model using Aiken's Generalized
Least Squares (hereafter GLS) technique. However, it should be noted
that since fewer assumptions about the form of the heteroskedasticity
are usually necessary to use non-constructive than constructive tests,

the former tend to be more widely applicable.

Non-Constructive Tests

There are three different types of non-constructive tests employed
to test HO vs. HZ; they are an F-test, a likelihood ratio test, and a
non-parametric peak test.

GQP - The first test utilizing the F-test was designed by Goldfeld
& Quant [1965]. It can be used by a researcher who knows, or hypothe-
sizes, that the individual variances ci,...,cﬁ are monotonically
related to one of the variables, say Ej’ and that the error term is

normally distributed. The procedure is first to order the observations

of variable §j in increasing magnitude (decreasing magnitude if it is




20
hypothesized that X is inversely related to the variance) so that
xij < xkj where i < k. The remaining variables are reordered to
conform to this ordering. Second, the observations are separated into
two groups (denoted as group I and II, respectively) omitting the
central p,(%-< P < %-, observations. Each group will have
m = (n-p)/2 > k observations. Third, using OLS, the model is
estimated using each subset of the data. Fourth, the OLS estimate of
the variance of the disturbance term from the first group of data is
calculated and denoted as 1 while the variance from the second group
is calculated and denoted as Sy-

The ratio of these two independent, scaled, chi squared variables,
denoted by R, = 52/51’ defines a statistic that has an F distribution
with m-k and m-k degrees of freedom. Under HO of homoskedasticity,

Sq and S, have the same scaled chi squared distribution, whereas
under H, of heteroskedasticity of the form hypothesized, s; and s,
will have different scaled chi squared distributions.

There are, however, two difficulties with this procedure. First,
the technique requires knowledge (or at least an hypothesis) about
which single independent variable is causing the heteroskedasticity.
Although this knowledge is sometimes available, it usually is not.
Second, though it has been found that omitting the central p observa-
tions increased the power of this test, the technique should prove
less powerful (in correctly rejecting HO) than tests that do not
discard information. Finally, in the test's favor, it should be
mentioned that the distribution of Ry is independent of the values of
the regression coefficient and, under the null hypothesis, is

independent of the value of the variance of the disturbance term.
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THEIL - A similar test has been suggested by Theil [1965] using
BLUS residuals. He supgested that the (n-k) BLUS residuals be divided
into two equal groups of m observations after the central p,(%-< P < %J,
observations have been omitted. Denoting t; as the sum of squared
residuals from the first group and t, as the sum of squared residuals
from the second, the statistic R2 = ;%_ is calculated. It is
distributed as F with m and m degrees of freedom under the null
hypothesis. Under the alternative hypothesis that the heteroskedast-
icity is a function of the order of the observations (for example, a
function of time in time series data), R2 is distributed as scaled F
with m and m degrees of freedom.

The problem of the loss of information associated with the GQP
procedure is thus partially solved by using this procedure. If one
does not omit the central p observations in both tests, the F-statistic
using the GQP procedure has (n-2k)/2 and (n-2k)/2 degrees of freedom,
whereas with the Theil procedure, the F-statistic has (n-k)/2 and
(n-k)/2 degrees of freedom. The reason for this is that in order to
use the GQP procedure, one must calculate the residuals after the
observations have been divided into groups. By contrast, since the
BLUS residuals are independent of one another, they can be calculated
before the data is divided into groups. However, to use this
procedure effectively, one must still discard p observations. Finally,
it must be recalled that two problems are added because BLUS residuals
are used. First, it is difficult to calculate the vector u*. Second,
it is difficult to reorder the n-k residuals when some variable, say
X5 is related to the heteroskedastic disturbance terms u;,...,u,.

It can, however, be accomplished by carefully noting the k observations

'AI
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that are discarded in calculating the matrix A. Since the remaining
n-k observations correspond to the n-k BLUS residuals, reordering can
be done.

RECURSIVE-P - The final technique utilizing an F-statistic was
developed by Harvey § Phillips [1973]. 1In this technique the F-
statistic is defined in terms of recursive residuals. The prerequisite
for using this procedure, just as for the previous two procedures, is
that one have knowledge as to which variable, say Ej’ is monotonically
related to the heteroskedastic variances og, and that the disturbance
terms be normally distributed. If these prerequisites are met, the
test can be carried out. First the n-k recursive residuals are
calculated. Second, the first k observations of the vector X; are
discarded and the remaining n-k observations are reordered in increas-
ing magnitude (decreasing magnitude if Ej is inversely related to the
variances oi,...,oﬁ). Third, the n-k residuals are reordered to
conform to this new ordering. Fourth, the residuals are divided into
two equal groups of m observations, after the central p observations
(% >p > %) have been omitted. Finally, denoting t; and t, as the sum
of the squared residuals from group one and two respectively, the ratio
R3 = ;% is defined. This ratio has én F distribution with m and m
degrees of freedom under Hy» whereas under Hy, Ry is distributed as
scaled F with m and m degrees of freedom.

To use this test, like Theil's, it is not required that the
residuals be recalculated. Hence, k degrees of freedom are saved.
Also, even though the recursive residuals are easier to calculate and
reorder than the BLUS residuals, they are still not as easily

manipulated as the OLS residuals. Finally, since the BLUS residuals
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have the property of having the minimum variance for the class of
residuals which have a scalar covariance matrix, the BLUS procedure
will probably have more power against H, than will the recursive
residual technique.

BAMSET - In the next procedure, Bartlet's M statistic is used.
Developed by Ramsey [1969], the test, which he named BAMSET (Bartlet's
M Specification Error Test), requires use of BLUS residuals as did the
Theil procedure. This procedure involves first calculating the n-k
BLUS residuals and then separating the residuals into three mutually
exclusive and exhaustive groups of approximately equal size (sample
size n;, n, and ng respectively). Denoting S1» Sy and S5 as the sum
of squared residuals from groups one, two, and three respectively, one
can form a likelihood ratio test. The ratio used in the test is 2%,
defined as

- - (S_fjl/z (_5_5)12/2 = " R ss)%
! N2 n3 nprmptng
Since %* is a likelihood ratio, it is well known that -2 log, L* is
asymptotically distributed as XZ with, in this case, 2 degrees of
freedom. Under HO’ the values of S1s Sy and s; are found to be
statistically equal, whereas under H,, they are‘found to be
statistically different from one another.

As an alternative form of this same procedure, Ramsey & Gilbert
[1972] have suggested that OLS residuals instead of BLUS residuals be
used. They have, however, pointed out that since under HO the OLS
residuals are heteroskedastic and not independent (recall that
E(QQ') = aZM), the asymptotic distribution of the resulting ratio

cannot be determined.
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At this point, some remarks about this test must be made. First,
since the observations are not reordered, the three groups are a
function of the index i. Hence, the test should prove most powerful
against the alternative hypothesis when the heteroskedasticity is a
function of the observation number i. Nevertheless, this form of
heteroskedasticity was not what the test was specifically designed for.
Rather, it was designed as a general test to detect any form of
heteroskedasticity. Because in using this procedure, one makes no
assumption as to the form of the heteroskedasticity, it should be
expected that BAMSET will prove less powerful against H2 than tests
that utilize knowledge as to the form of the heteroskedasticity.
However, when knowledge as to the form of the heteroskedasticity does
not exist, the BAMSET test is the only one that can be used. To
increase the power when knowledge of the variable (say §j) that is
related to the heteroskedastic disturbances is known, it has been
suggested by Sutcliff [1972] that the residuals should be reordered
by the variable 5j before the grouping is made. Recall that this can
be done with BLUS residuals if one discards the observations of the
vector Ej that correspond to the observations omitted in calculating
the A matrix.

GQN - The last group of tests are two non-parametric tests. The
first of these was developed by Goldfeld § Quant [1965] for cases in
which no assumptions about the distribution of the disturbance term
can be made. However, this test still requires knowledge that a
variable, say Ej’ is monotonically related to the heteroskedastic
disturbance terms Up,..e5u . The procedure requires first that the

regression model be estimated using OLS. Second, the variable Ej is
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ordered by increasing magnitude (decreasing magnitude if Ej is inversely
related to the heteroskedastic disturbance terms) and the OLS residuals
are reordered to conform to this ordering. Third, the number of peaks
(a peak is defined as Iﬁj|<|ﬁj+1|) occurring in the reordered residuals
are counted. By using a table provided by Goldfeld & Quant [1967], the
cumlative probability that heteroskedasticity is present can be
determined. Under the null hypothesis, there will be a small number
of peaks, whereas under HZ’ the number will be large.

Some observations of this technique are in order. First, it has
been found [Goldfeld § Quant, 1967] that for small sample sizes,

n < 10, the procedure is biased because the OLS residuals are not
mutually independent. Second, just as with all the other tests
(including BAMSET with the reordering procedure), it is necessary to
know which variable is monotonically related to the heteroskedastic
disturbances. Third, given that OLS residuals are themselves hetero-
skedastic under HO’ it is surprising that for larger sample sizes,

n > 10, the test is not biased. Finally, while it would rarely be
inappropriate to use this test for heteroskedasticity, it should be
selected only when the disturbance terms are not distributed normally.
Since if the disturbance terms are ndrmally distributed, other tests
exist which prove more powerful at correctly rejecting the null
hypothesis.

RECURSIVE-N - The last non-constructive test to be discussed was
designed by Hedayat § Robson [1970]. With this non-parametric test,
the peak tables provided by Goldfeld § Quant are also used. This test
is exactly the same as the GQN test which was just reviewed with the

exception that recursive residuals are used instead of OLS residuals.
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This test offers the advantage of not being biased even for small
sample sizes because the n-k recursive residuals are mutually
independent.
It must once again be stressed, however, that this test, just as
the GQN test, is a non-parametfic test and hence should be used when

the distribution of the disturbance term is unknown.

Constructive Tests

As previously mentioned, constructive tests for heteroskedasticity
are most often viewed as being less general than non-constructive tests
because they usually require more precise a priori information about
the functional form of the heteroskedastic disturbances. For example,
some of the most popular assumptions about the functional form of

constructive tests are:

E@’) = o X (1.11a)
Ew, ) = o xij ) (1.11b)
Ew®) = o (a+b xﬁj) , (1.11c)
E(uiz) =o? (a+b xij)2 , (1.11d)
E@;?) = o’ B(y;) , and (1.11e)
Ew;%) = o? E(y;%), i1,...,n. (1.116)

Glejser [1969] divided these assumptions into two types of
heteroskedasticity, pure and mixed. Pure heteroskedasticity is

defined as E(uiz) = ozf(zi), i=1,...,n, where f(zi) represents a
function in same variable z; which passes through the origin, whereas
mixed heteroskedasticity is defined as E(;%) = o°(£(z;) + a),i=1,...,n,

that is, the heteroskedastic disturbance term has an intercept term.
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According to this convention, only equations (1.11a) and (1.11b)
represent pure heteroskedasticity.

Though the assumptions are more rigid, constructive tests do offer
two advantages over non-constructive tests. First, the relation
between a single independent variable and the disturbance term need
not be monotonic. Second, since in constructive tests an estimator of
the heteroskedastic variances (call it giz) is defined, the hetero-
skedasticity can be corrected either by dividing the model by &, and
reestimating using OLS or by reestimating the model using GLS
(generalized least squares) and employing the values of giz on the
diagonal of the estimated variance covariance matrix.

Three constructive tests, all formulated in terms of a basic
regression model, are described in this study. Ordinary least squares
estimators for the model's parameters are used in two of the tests,
while in the third maximum likelihood estimators are used. The
estimates obtained from all the tests are then tested either individu-
ally or in a group.

PARK - The first estimation technique (that has since been used
as a testing procedure) was developed by Park [1966]. Before that
time, it was assumed that if the variable X; were related to the
heteroskedastic disturbances, Upseeesls the relation was specified
by E(uiz) = 02 xij’ i=1l,...,n. In order to ease the restrictiveness
of this assumption, Park suggested that when Ej is known to be the
cause of the heteroskedasticity, it should be assumed that the

Ew;%) = o xijo i=1,..m. (1.12)
Park then posited that the value of o could be estimated by formulating

a regression model. By taking natural logs and removing the expected
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value operator, he obtained the model

1n ui2 =Inol+a Inx;; + In v;, i=l,....n, (1.13)

where A is distributed as x2 with one degree of freedom. Park then
suggested replacing the unobserved dependent variable 1ln ui2 by its
OLS predictor 1n ﬁiz. When this proxy is used, model (1.13) becomes
-2 2 .
In u,” = In ¢ + a 1In xij + In Wi i=1,...n, (1.1
where LA is distributed as scaled x2 with one degree of freedom where

the scaling factor is
2

E(wiyE(zwi) m o7 omgs
n = n-kOZ) (ﬂ) ’
T n

and where m, s is the i'th diagonal element of the matrix
M(=I - X(X'X)X'). Estimating the model using least squares, Park
obtained estimators of 1n 02 and o. These estimators would then enable
the researcher to correct the heteroskedastic model.

In carrying this technique one step further, others (for instance
Goldfeld § Quant [1972])have indicated that if one denotes ; as the
OLSestimate of o and 8& as the estimated standard error of ;, the

ratio Py could be defined as

3

R =
y

Q)|

a
This ratio is approximately distributed as student's t with n-2 degrees
of freedom. Under Ho, a = 0, whereas under l-I2 of the type hypothesized,
a # 0.

Three points must be made. First, this process still requires
knowledge of the single variable causing the heteroskedasticity. The
test does not, however, require that a monotonic relation exist between

the variable and the disturbance terms.
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Second, 1n ﬁiz is a biased predictor of 1ln uiz. Recalling that
E(g f_x') = oZM and denoting Iﬂi as the i'th row of the matrix M, one
finds that

En u,2) = E(nmw?) # Ean v

Third, it must be pointed out that when one estimates model (1.14)
by the method of least squares and assumes, as Park did, the classical
assumptions that the disturbance terms are distributed N(@, czl), four
specification errors are committed.

The first of these errors is that of incorrectly assuming a
normally distributed disturbance term (recall that the disturbance

terms are distributed as log e scaled x2

with one degree of freedom).
This error, however, does not affect the properties of the estimators
of the lnc2 or a, but rather affects the tests of significance (that
is a t-test or an F-test). Hence, the t-test proposed to test Hy vs.
H2 could be biased. It has been found by Srivastava [1958], however,
that a t-test is robust against considerable non-normality; therefore,
the procedure might prove reliable. This is especially true since the
disturbance terms are distributed as loge of a scaled )('2 with one
degree of freedom which is a two-tailed distribution.

The second specification error is that of a non-zero mean vector.
The expected value of the i'th element of this vector is

E(1n w;) = E(In m u) #0

where m‘i is the i'th row of the M matrix. Since w; is based on the
matrix M (=I - X(X'X)'X'), 1n (wi) is not independent of the variable
In (xi) and hence the estimate of o« will be biased. In addition, the
estimate of 1n 02 will be biased unless all of the non-zero variation

in In (w;) can be absorbed by the estimate of a.
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The third specification error is that of heteroskedasticity.

This error will cause the estimated variances to be biased and hence
make the estimators of 1n 02 and o inefficient. Therefore, the
proposed t-test will prove more conservative than it would otherwise
be. Also, it should be noted that since the dependent variable is
heteroskedastic under HO, the null hypothesis will be rejected by the
test a disproportionate number of times.

The last specification error is non-independence. Like the
misspecification of heteroskedasticity, non-independence causes the
estimated variance to be biased; hence, the estimators of 1n 02 and o
are inefficient and the t-test is unduly conservative. Worse yet,
however, is the fact that the non-independence in the disturbance
terms adversely affects the t-test procedure another way. If the
ratio calculated is to be distributed as student's t, the numerator
and denominator must be independent. Unfortunately, when the disturb-
ance terms are not independent, the numerator and denominator of this
ratio are not independent; thus, the t-test procedure must again be
questioned. Since there is no evidence that the t-statistic is robust
against non-independence, the question arises as to whether this
procedure is valid. The question isAconsidered-further on in this
study.

FIML - In this procedure, suggested by Rutemuller & Bowers [1968],
a likelihood ratio test is utilized. It has the advantage, unlike the
previous procedure, of having an asymptotic distribution theory that
is well defined.
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Given the heteroskedastic model

Yi S BL P By Xt eee B Xy VL, i=1,...,n, v ~ N(#, V) (1.15)

- —

where V = . » Rutemuller § Bowers proposed an

estimation method whereby CIREEER ’°n2 and Byse--sBy could be jointly

determined. They posited that if the variances were a function of
some variables 2150002y (typically these variables would be independent
variables from the model 1.15) whose exact functional form was known
(say £ (31,.. o gn)), the parameters in the function f(-) and parameters
B could be jointly determined.

Because Rutemuller § Bower's procedure requires knowledge about
the function f(:), it will be assumed, for illustrative purposes, that
f(-) is a quadratic in a single variable, that is

V) = o%(op * ayXig + o 123), i=1,. (1.16)

They then suggested transforming model (1.15) into the homoskedastic
model

Yi = B P BXyp b e BX vy,
2
\/:+a113+“213\/0+a T e2Xi;
i=1,...,n, (1.17)

where u ~ N(@, o I), under HO.
Since this model cannot be estimated using ordinary least squares,

they recommended using maximum likelihood. Setting up the likelihood

function
1 _ _ 2
L, = ;1 exp _%_ (y; - By = By Xjpeee B X51)
. + X.. + X..4

(1.18)
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they defined gf and gf as the estimators that maximize L;. Likewise,
they denoted Ly as the equation (1.18) when N and a, are constrained
to equal zero (this is equivalent to OLS estimation of model 1.15) and
defined ;0 and é_as the estimators that maximize L,. Finally, they
defined the likelihood ratio &' as

Being a likelihood ratio, -2 loge ot is asymptotically distributed as

x2 with, in this case, 2 degrees of freedom (the number of degrees of
freedom always equals the number of extra parameters included in Ll)’
Under the null hypothesis of homoskedasticity, the additional parameters
in model (1.17), oy and a,, are equal to zero and ay = 02 (the model's
variance), whereas under the alternative hypothesis of heteroskedasticity
of the form hypothesized, oy and @7 are not equal to zero. Therefore,
including the polynomial is found to increase the model's efficiency.

An alternative test formulation of this same test has been
suggested by Goldfeld § Quant [1972]. They hypothesized that the
estimators gT could be tested individually by using a t-test. This
procedure would, of course, enable an experimentor to differentiate
between pure and mixed heteroskedasticity. It must be realized, how-
ever, that since g? is only asymptotically distributed normally, the
test proposed would not have a student's t distribution; hence, the
test statistic would not be exact for small sample sizes. This revised
procedure might, nonetheless, pose only minimum difficulties under H,
since there is evidence [Srivastava, 1958] that a t-test is robust

against considerable non-normality.
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Two final points concerning this test must be made. First,
Rutemuller § Bowers suggested that if the exact functional form f(-)
is not known, one should use the regression model itself as a proxy
for the unknown function. This procedure would, using the likelihood
ratio test, result in -2 log_ &' being distributed as x* with k-1
degrees of freedom. Also, the t-test procedure (Goldfeld § Quant's
suggestion), although only an asymptotic test, might be useful in
determining which variable is causing the heteroskedastic disturbances.

Second, Rutemuller § Bowers' procedure, though well defined, tends
to be more difficult to implement than any other test for heterosked-
asticity. There are two reasons for this; first, a good maximum
likelihood (hill climbing) computer program is needed, and second,
since the estimation is accomplished through an iterative procedure,
the process is more costly and time consuming than are other testing
procedures.

GLEJSER - In this test, the last constructive test to be examined,
OLS is used to estimate the parameters in the heteroskedastic model.
The test, put forth by Glejser [1969], was designed to detect and
correct for heteroskedasticity that is a polynomial in some variable.
It should, however, be noted that pribr knowledge about the degree of
the polynomial and about the identity of the variable is required
before the test can be used.

For illustrative purposes, the form of the heteroskedasticity
will be postulated as

E@?) = of(a * agkij * asxij?)z, i=1,...,n. (1.19)

With the disturbance terms taking on this form, Glejser suggested that

a regression model be used so that s Gns and az can be estimated.



34
Using ﬁg as a proxy for ui2 and taking the positive square root of
equation (1.19), he formulated the model

;] = oy * agg; + asxgj) v., i=l,...,n, (1.20)

where Vis i=1,...,n, are distributed are scaled X with one degree of
freedom with the scale factor equal to ﬁﬁ;;gz where m. is the i'th
diagonal element of the matrix M. He then suggested estimating the
model using OLS. Finally, he suggested calculating a set of t ratios
(t2 and t3) defined as

a.

i .
t. = S~ i=2,3,

1 a
i

where &i is the OLS estimate of ay and o ;i is the OLS estimate of the
standard error of . Although he indicated that the exact distribution
of these ratios was unknown, he suggested that they might be approxi-
mately distributed as student's t (with n-3 degrees of freedom in this
case). Assuming that his suggestion is true, a standard t-test could
be performed. Under the null hypothesis of homoskedasticity, oy and ag
are each equal to zero and @ =0 (the standard deviation of the
disturbances), whereas under H2 of the form hypothesized, @, and a; are
different from zero.

Glejser's model and testing procedure also enabled him to
determine easily whether the heteroskedasticity was of the pure or of
the mixed variety. He suggested that if Ho was rejected, the type of
heteroskedasticity could be determined by testing the additional
hypothesis of whether ay is equal to zero (pure heteroskedasticity).
To test this hypothesis, a t ratio (similar to t, and ts above) would
be calculated and if it is again assumed that the ratio is approximately

distributed as student's t (with n-3 degrees of freedom in this case),

a standard t-test can be performed.
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A number of observations can now be made. First, it must be
remembered that one must have a priori knowledge about the degree of
the polynomial and about the identity of the variable causing the
heteroskedasticity in order to use the test. According to Glejser,
however, using the wrong degree of the polynomial presents little
difficulty as this error has only a small affect on the test's power.

Second, because Glejser uses a t-test in each coefficient to test
for Hy vs. H,, the correct a level is difficult to obtain. The reason
for this is that since the probability of a type I error in using
individual t-tests is the union of the probability of committing a
type I error in testing each coefficient, the correct alpha level is
difficult to obtain. However, when an F-test procedure is instead
used, this problem is circumvented since when more coefficients are
being tested for significance, the degrees of freedom are correctly
varied.

Third, since Iﬁil is used as the dependent variable, a biased
predictor of the heteroskedastic disturbance is being used. This is
easily perceived by once again recalling that E(ﬁhﬁ) = on, and m, . is

the i'th diagonal element of the M matrix,

E(ly;|) = voom; # E(lu; D), i=1,....n.

The fourth point is that just as with PARK's test, Glejser's
estimation of model (1.19) using OLS while assuming the classical
assumptions causes him to commit four specification errors. The first
error is that of a non-zero mean vector. In model (1.19), the expected

value of the i'th element of v is

E(Vi) = /miicz .
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Since this vector will probably be uncorrelated with x 3 and )iJz (=[xi§]) ,
only the constant term will be affected. Under Hy» its expected
value will be

n 2 1/2
E(al) zl (mii o) /n

i=
12,

o [(ny;) o+ @)Y /m

Because m.. < 1
ii
n-k

g > E(al) > =0 This bias will, of course, affect any test of

amdm11 Foeetmo = n-k, one can say that

significance on the constant term.

The second specification error is that of incorrectly assuming a
normally distributed disturbance term. As mentioned in the section on
Park's test, this will cause the tests of significance to be biased.
However, as previously mentioned becauseof Srivastava's [1958] findings
that the t-test is robust against considerable non-normality, this
specification error might cause only minor difficulties. It should,
however, be further noted since these disturbance terms are distributed
as scaled x with 1 degree of freedom which is only a one-tailed
distribution, it must be considered more 'mon-normal' than two-tailed
distributions. Hence, one should expect the Park testing procedure
(disturbance terms having a 2-tailed distribution) to be a more exact
test under Hy-

The third and fourth specification errors are those of heteroske-
dastic and nonindependent disturbance terms. As is true in the case of
the Park procedure, these errors cause considerable difficulty. First,
both errors will cause a loss of efficiency thus making both the t and
the F tests proposed too conservative. Second, the fact that the

dependent variable is heteroskedastic under Ho (recall OLS residuals,
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E(ﬁﬁ') = on)causes a disproportionate number of rejections under the
null hypothesis. Third, because the dependent variables are not
mutually independent, the t tests break down for lack of independence
between their numerators and denominators. Hence, the validity of

this testing procedure must be carefully checked.

Summary

All tests for heteroskedasticity require either some knowledge of
or an hypothesis regarding the form taken by the heteroskedastic
disturbances. The amount of information required differs drastically,
however, ranging from knowledge of a monotonic relationship to the
exact form of the relationship. Table 1 summarizes these assumptions,
indicates for which tests the assumptions of normality can be dropped,
and restates all the relevant observations.

As can be seen from Table 1, non-constructive tests offer the
advantage of not requiring as much a priori information as constructive
tests. The latter, however, have the advantage of providing a correc-
tive procedure for the problem of heteroskedasticity. What would be
optimal is a test which would combine the advantages of both sets of
tests. Since preliminary evidence exists [Glejser, 1969; Ramsey &
Gilbert, 1972] which indicates the exact functioﬁal form of the
heteroskedastic disturbance need not be specified for a constructive
test to detect the presence of heteroskedasticity, a very general
constructive test might be formed.

In addition, any such general test might very well not require
the specification of a single variable which is causing the disturbances

to be heteroskedastic. Rather, the test might only require that the



38
Table 1: Summary of Tests for Heteroskedasticity

Assumptions Concerning

Tests Heteroskedasticity Observations

112|3|4(5]|6(7 A|B(C|D|E|F|G|H

Nonconstructive

Constructive

cQP
THEIL

RECURSIVE-P
BAMSET X
GQN
RECURSIVE X x| x R

o o+ X
ke
tad
td
w

>+
+
>
= =
o w
~
o

PARK X X|x 0
FIML X X X x| |
GLEJSER X X X i

+ >

Applicable to test
Applicable, though not originally suggested

No assumptions according to original formulation.

Any linear function of the independent variables.

The disturbances are monotonically related to a single known variable.
The disturbances are monotonically related to the order in which

the observations are taken.

The disturbances are a function in some power of a known variable.
The disturbances are a quadratic in some known variable.

The exact form taken by the heteroskedastic disturbances is known.

Normality of disturbance terms not required (nonparametric test).
Exact test.

Asymptotically exact test.

Testing procedure is_not exact because OLS residuals are used.
Biased estimate of of is used in test.

Time consuming alternative procedure.

Discarded p observations resulting in loss of information.
Residuals used : 0-OLS, R-Recursive, B-BLUS, N-None.
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variable(s) causing the heteroskedasticity are present in the model.
The test itself might then approximate the correct functional form
taken by those variables if the disturbance terms are in fact
heteroskedastic. Such a procedure would not require the vast amount
of information now needed and hence would be of tremendous use to the
average researcher.

One final point must be made. Although there is often a lack of
knowledge about which variable is causing the heteroskedasticity in a
specific situation, none of the currently available testing procedures
is designed to deal with such a situation. Unfortunately, researchers
have incorrectly devised a way to circumvent the problem. When the
cause of the suspected heteroskedasticity is not known, it is not
uncommon for the researcher to select some test and to use this test
with first one independent variable, then another and another until
the test indicates the presence of heteroskedasticity. It cannot be
emphasized enough that this technique is entirely incorrect. First,
this ad hoc technique actually violates the assumption that the vari-
able causing the heteroskedastic disturbances is known. However, more
importantly, this technique usually will lead to an incorrect
conclusion.

To illustrate this, one could take the example of the hypothesized
model

Y=Bp* B T BT
u ~ N(@, V), where V indicates an unknown variance-covariance matrix,
and where x; and x, are mutually independent vectors. Having no

preconceived hypothesis as to the cause of the suspected heteroskedastic

disturbances, the researcher decides to use one of the standard tests
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for heteroskedasticity to determine which variable is causing the
problem. Carefully setting the probability of incorrectly rejecting
the null hypothesis (type I error) of homoskedasticity at .05 (=a
level), the researcher is ready to begin testing HO Vs. HZ‘ Using
the test, first with X, and then with X5 the researcher concludes

that the heteroskedasticity is caused by variable x, and that the

X
probability of type I error is .05. Using this procedure has led the
researcher, as it usually does, to an incorrect conclusion. The
probability of type I error occurring is the probability of its
occurring when X, was tested plus the probability of its occurring

when X, was tested minus the probability of its occurring in both of

the tests. Hence,

Pr (Type I)

Pr (Type I_ + Type I_ )
eS| %

Pr (Type le) + Pr (Type Ixz) - Pr (Type 15152)

.05 + .05 - .0025

.0975

(The independence of x, and X, was assumed so that the calculation of
the intersection would be possible.) Therefore, if one wants to have
a probability of type I error equal tb .05, the a level for each test
must be set at about .025. Hence, if a hamoskedastic model had 20
independent variables and each were tested to ascertain whether or not

it was causing heteroskedasticity, the probability of incorrectly

rejecting H0 would be very, very high.

I1.4.4 Studies Comparing Tests for Heteroskedasticity

Since there are nine tests designed to detect heteroskedasticity,

a researcher is faced with a difficult choice as to which test he should
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use in any particular situation. As has already been mentioned, the
amount of apriori information possessed by the researcher determines to
some extent which test(s) he can use. However, in many cases after
this first elimination process has been gone through, there still
remain a number of different tests from which to choose. The researcher
must thus use another criterion on which to base his test decision.
That criterion might be that the most desirable test is the one which
has the highest probability of correctly rejecting Hy (power) given a
specified alpha level (the probability of incorrectly rejecting HO) A
In five studies, this criterion has been used to compare various tests
for heteroskedasticity with one another. Since, however, no two
regression models are exactly alike, no comparative study can furnish
the researcher with the complete solution appropriate to his particular
problem. In these studies, however, the various tests have been
compared under different conditions, that is, with different sample
sizes, alpha levels, and forms of heteroskedasticity. By making
conclusions regarding the performance of specific tests under general
categories of conditions, the experimentors proposed to establish
certain broad criteria for the researcher to use in choosing a test
for his particular situation.

There are two basic types of study that compare tests for
heteroskedasticity. The first and most common type of study uses a
sampling experiment. In such an experiment, the probability of
correctly rejecting H0 (the test's power) is determined through the

use of a repetitive sampling process. This procedure is analogous to

181:111 another criterion might be the robustness of the remaining
tests to other specification errors. However, only the robustness of
the BAMSET test has been analyzed [Ramsey § Gilbert, 1972], and hence
such a criterion cannot be made.
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determining the probability of selecting a blue ball out of a box with
three blue balls and two red balls by repeatedly selecting a ball out
of the box, recording its color, and returning it before the next ball
is drawn. The probability of drawing a blue ball would then be the
ratio of

number of times a blue ball was selected
number of times the experiment was repeated

To use this procedure in discriminating among the various tests for
heteroskedasticity, the person conducting the experiment (hereafter
referred to as the experimentor to differentiate him from the researcher
who will use his findings) formulates a regression model, such as

E(yi) =+ BX; i=1l,...,n, (1.21)
where the value of the vector x and the value of the parameters o and 8
have been previously specified by the experimentor. Model (1.21) is
used to generate the expected value of a vector of dependent variables
E(y). Next, the experimentor specifies a population from which to
select randomly the disturbances Vs i=1l,...,n. Since the experimentor
wants the regression model to be heteroskedastic, he specifies that
Vi i=1,...,n are independently and identically distributed as
N(O0, G)Z(i) » where °)2ci denotes that the i'th population variance is
related in some way, specified by the experimentof, to the i'th
observation of the independent variable x. The experimentor then
selects n random observations from this population. Defining

y; = E (v;) *+ vy, i=1,...,n
he generates n observations of independent variables y;,...,y.
Following this, he applies each of the tests for heteroskedasticity

that is to be compared to this vector of observed dependent variables,
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Y- The experimentor next randomly selects another sample of n observa-
tions of vy from the specified population and again calculates Yi
Once again he applies all the tests to the new vector of independent
variables, y. Repeating this procedure N times, he can determine the
power of each test by calculating the ratio of

(number of times that tﬁe test rejected HD). Given that the alpha

level of all these tests is the same, the test with the greatest power
would be selected as being the best test to use given heteroskedasticity
of the form hypothesized.

The difficulty with this procedure is that, of course, the power
that is calculated for each test is often dependent on the specific
model which the experimentor formulated and on the values of x and
o and B which he chose. Even more importantly, this procedure requires
a very large number of replications so that the probability of choosing
an unrepresentative set of samples is very low.

An alternative way of calculating a test's power and a way that
eliminates the repetitive sampling procedure has been suggested by
Imhof [1961]. This method requires that the disturbance terms be
independently and identically distributed as normal with a specified
mean and variance. Also, it requiresveither the specification of the
distribution from which the values of the vector x can be drawn or for
the values of the vector x to be exactly specified. After the
experimentor has satisfied these conditions, the exact probability of
correctly accepting HZ is calculated for each test by computing the
probability that each quadratic form will occur.

Although this procedure eliminates the need to sample repeatedly

from the population of the disturbance terms and hence the possibility
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of drawing a sample that is biased (that is, that the sample could have
been drawn from a distribution other than the one specified), it still
requires that a sample be drawn for the vector x. Also, this technique
camnot be applied to all the tests reviewed, but rather only to those
tests that define a statistic that can be expressed as a convolusion
of independent quadratic forms in normal variables. Only three of the
tests presented meet this requirement.

Of the five studies comparing the various tests for heteroske-
dasticity,a sampling procedure is used in four while the direct
calculation of the power by Imhof's method is used in the fifth.
Unfortunately, in only one of these five studies are more than three
tests compared. Each of these studies will be reviewed in the
chronological order in which they were undertaken. This section will
then conclude with a series of remarks which can be applied to all of
the comparative studies.

Goldfeld § Quant I - The first comparative study was undertaken

by Goldfeld § Quant in 1965. In that study, they compared the two
tests for heteroskedasticity which they had developed (referred to in
this study as GQP and GQN) by using a sampling experiment. In this
experiment they generated their dependent variables y. by the
regression model

Y; = ot o X5t Uy, i=1,...,n, (1.22)

where the disturbance terms u, were independently and identically
distributed as N(0, 1). The xi's were drawn fram a uniform distribu-
tion with a mean My and a standard deviation of Oye They used their
two tests to discriminate between the null hypothesis that the

dependent variables were generated by the model
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i
= —_+ Ui, 1= 1,...,n,
versus the alternative hypothesis that they were generated by the
model

. = a. + a, X. + U. is= ee.,N.
Vi 0 171 1 1, on

Since the true model was the alternative hypothesis, it followed that
the null hypothesis should be rejected. To compare their two tests
for a variety of situations, Goldfeld § Quant generated the dependent
variable using model (1.22) and two different sample sizes, n = 30 and
n = 60. They also used 15 different combinations of values for My and
O For each sample of the x's, 100 replications of the experiment
were made. In addition, since a central number of observations are
omitted in the GQP procedures, each hypothesis was tested by using
the GQP procedure five times. No observations were omitted the first
time, but four additional observations were omitted each subsequent
time the test was used. The power of each test was then calculated
for each experiment.

Goldfeld & Quant's results indicated that the power of both of

)

their tests increased as the sample size increased and as the ratio
o .

of ;E-increased. They also found that the power of their parametric
X

test (GQP) increased and then decreased as an increasing number of

central observations were omitted; they concluded that the optimum
number of observations to omit, p, was between one-third and one-
quarter of the sample size. Finally, as one would expect, it was
found that the nonparametric test (GQN) had less power than the
parametric test (GQP) for any particular experiment. However, it was

(0]

also observed that as the ratio Gé-increased, the nonparametric test's
X

power increased relative to the parametric test's.
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Glejser - The next study was reported in 1969 by Glejser. After
proposing a new test for heteroskedasticity (referred to in this study
as GLEJSER), he felt that a comparison should be made between his test
and the popular parametric test of Goldfeld § Quant. To make the
comparisons he used a sampling experiment.
In his experiment, a vector of dependent variables was generated

by the model

y; = By * By X; *us £(x.), i=1,...,n, (1.23)

where the ui's were independently and identically distributed as
N(0, 1). In his study, eight functional forms, f(:)'s, were used to
generate the heteroskedastic disturbances. The values of Xx; were
chosen from three different normal distributions with a mean of 50 and
standard deviation of 5, 10, and 30 respectively. Finally, each model
was tested using three different sample sizes; they were n = 20, 30 and
60. Thus, 72 cases (8 x 3 x 3) were studied by Glejser. 100 replica-
tions of each case were used to determine the power of each test under
the various alternative forms of heteroskedasticity.

Since Glejser's test is a constructive test for heteroskedasticity,
Glejser had to specify the functional form taken by the heteroskedastic
disturbance. He decided to hypothesize that the heteroskedasticity was

1

a linear function of either xi/z and x; or x'l/2 and x ~ depending on

whether f(xi) is a function of a power in x, or in %; respectively.
Of course, he pointed out that generally, in practice, this information
would not be known.

After thus specifying the functional form used in his test,

Glejser was able to test the significance of each of the estimated

parameters by using a two-tailed t-test. Since, however, Glejser's
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testing procedure is not exact, he found that in using a two-tailed
t-test on a homoskedastic model, a nominal alpha level (= probability
of type I error) of 11% was needed to reject the null hypothesis 5% of
the time. Hence all 72 cases were examined using his test with a
naminal alpha level of 11% so that the probability of type I error
would be .0S.

After Glejser completed his study, he made some observations
about his findings. First he concluded that generally, his test
compared favorably with the parametric test of Goldfeld § Quant's.

He also concurred with Goldfeld § Quant's findings that the power of
both tests increased with sample size. Next, he discovered that his
test could not detect the presence of mixed heteroskedasticity when it
in fact existed. Finally, he found that because his two regressors

(x; and xi/z or xil and xil/z) were highly correlated, the test's
power was generally unaffected by using just a single regressor.

Ramsey § Gilbert - The third study is similar to that of Goldfeld

& Quant's in that the experimentors, Ramsey § Gilbert [1972], compared
two of their own tests with one another. They compared the BAMSET
procedure using first BLUS and then OLS residuals under the null
hypothesis and under the alternative hypothesis of heteroskedasticity.
A sampling experiment was used to compare the two procedures.
To generate the vector of dependent variables under the alternative

hypothesis, the model

y; = 1.0+ 2.0 x5, -.8 x;) + u, Yi/25, i = 1,...,n, (1.24)
where the ui's are independently and identically distributed as
N(0, 1), was used. Ten values of X and X, were obtained from a table

of random numbers. These ten numbers were then replicated two, three,
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and five times to generate sample sizes of n = 20, 30 and 50
respectively. In a basically similar way, a homoskedastic model was
generated. Realizing that a sample of disturbance terms, unrepresenta-
tive of the population from which they were drawn, would adversely
affect the results, Ramsey § Gilbert replicated each experiment 1000
times.

Two surprising results were obtained. First, since it is well
known that OLS residuals are heteroskedastic under the null hypothesis,
Ramsey & Gilbert were surprised to find that with the BAMSET procedure
the residuals were found to be homoskedastic. This meant that the
percentage of times that Hy was incorrectly rejected corresponded to
the alpha level. Secondly, they were surprised to find that when the
alternative hypothesis was correct, using OLS residuals in the BAMSET
procedure always proved more powerful than when the procedure was
applied using BLUS residuals. They offered no explanation for either
of these results. A possible explanation for both of these findings
will, however, be offered by this author later on in this study.

Goldfeld § Quant II - The final comparative study using the

sampling experiment approach was again conducted by Goldfeld § Quant
[1972]. This is, to date, the most éxtensive comparison of tests for
heteroskedasticity made. Goldfeld & Quant compared four different
tests for heteroskedasticity (PARK, GLEJSER, GQP, and FIML).

They generated the vector of dependent variables by using the
model

2
Y; = 2+ 2 X; +ug vat+b X; ¢ x;, i=1,...,n,

where the ui's are independently and identically distributed as

N(0, 1). The parameters a, b, and c are given various combinations of
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values (7 combinations in all); the xi's are independently distributed
as either uniform or log normal. (All seven combinations of values a,
b, and c were tested using the uniformally distributed xi's while only
two cases were examined using the log normally distributed xi's.)

All nine cases were then compared using three sample sizes n = 30, 60
and 90. Finally, each experiment, 21 in all, was replicated either

50 or 100 times.

After carrying out this elaborate study, Goldfeld § Quant drew
three major conclusions. First, they concluded that the FIML method
appeared ''to be the most powerful test for detecting heteroskedasticity."
[Goldfeld & Quant, 1972, p. 118]. Tangentially, they found that their
suggested asymptotic t-test on the coefficients obtained from the FIML
technique was inferior to the likelihood ratio test originally posed
by Rutemuller & Bowers. This result, they asserted, was due to the
high intercorrelation between the parameters b and c.

Goldfeld § Quant's second conclusion was that the power of each
test increased with the number of observations; in this finding, they
concurred with all previous experimentors. Finally, using four
different tests, they were able to substantiate Glejser's finding
that mixed heteroskedasticity is moré difficult to detect than pure
homoskedasticity.

Harvey § Phillips - In the final study, Harvey & Phillips

compared the three exact tests for heteroskedasticity (GQP, THEIL, and
RECURSIVE-P). Rather than use a sampling experiment, they calculated
the probability of correctly accepting the alternative hypothesis of
heteroskedasticity by the method suggested by Imhof. That is, they

calculated the probability of the quadratic form's occurring.
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Harvey & Phillips compared the three tests for two types of

heteroskedasticity. They assumed that the variances of the disturbance

2 2, _ 2.2 .
xij or else E(ui ) =0 xij' Noting

that these variances critically depend on the distribution of X5 they

assumed that X5 would take on four distributional forms. They first

terms u, were either E(uiz) =g

assumed the _Jgj 's were distributed normally, then log normally,
uniformly and finally equally spaced. They then made their comparisons
using three sample sizes of (n=) 10, 20, or 30 observations, in either
2, 3, or 4 regressors and omitting varying numbers of central
observations.

In computing the powers of the different rests under varying
situations, they observed that Imhof's method seemed erratic in the
widely varying amounts of time that it took for the different calcula-
tions. When the study was fully completed, however, they were never-
theless able to make a number of observations. First, as expected, it
was found that the power of all three testing procedures increased
with the number of sample observations (n), and decreased with the
number of regressors (k). Second, they were able to substantiate
Goldfeld & Quant's findings that omitting a number of central
observations increases the power of the testing procedure. In conjunc-
tion with this, they also observed that the number seemed to differ
depending on the distribution of the ’ij 's. However, since omitting
any number within the vicinity of the optimum number resulted in very
little loss of power, they felt that the difference due to the
distribution of the -’Sj 's could be ignored. Third, they found
virtually no difference in power among the three tests though the
THEIL test (using BLUS residuals) usually out-performed the RECURSIVE-P
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test (using recursive residuals). Finally, and most interestingly,
they found that the power of all their tests varied considerably with
the distribution of the gj's with the highest power typically occurring
when the §j's were distributed log normally and the lowest power when

they were distributed uniformally.

A number of observations can be made on the comparative studies
undertaken to date. First, with the single exception of Ramsey §
Gilbert's study, all of the sampling experiments used a small number
of replications (50 or 100). By using such a small number, the
probability of drawing an unrepresentative sample is much higher than
it would be if a much larger number of replications were made. This
is especially true for Goldfeld § Quant's most comprehensive study
[1972] as they occasionally repeated the experiment only 50 times.

Second, the point has been made by Goldfeld § Quant [1972, p. 90]
that the power of the BAMSET procedure, reported by Ramsey § Gilbert,
was calculated using a form of heteroskedasticity that the test could
best detect. Although this is true, and was mistakenly not pointed
out by Ramsey § Gilbert, Goldfeld & Quant's point is equally valid
when applied to each of the other comparative studies. For example,
though Glejser used seven different heteroskedastic models when the
heteroskedasticity was generated by x;; instead of STE the knowledge
he incorporated into this test likewise changed. Similarly, in
Goldfeld § Quant's own two studies, the power of the different tests
is reported as if the researcher knew the variable that is causing
the disturbance terms to be heteroskedastic. Finally, Harvey &
Phillips' study makes the identical assumption. What must be shown

is what the power of each of the different tests is when the wrong
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variable is thought to be causing the heteroskedastic disturbances and
when the wrong functional form is used.

Third, the preliminary findings given by Harvey & Phillips
indicated that the distribution of the variable causing the hetero-
skedastic disturbances affects the power of various testing procedures
requires further study. It could well be that the power of the tests
is affected not so much by thé distributional forms of the dependent
variable as by the parameters that exactly specified the range of
those variables.

Finally, all of the testing procedures should be compared, unless
they can be shown equivalent, under the same conditions. In this way,
firmer conclusions can hopefully be drawn as to which test should be

used, given a particular situation.

I.5 Summary
In this chapter of the study, a vast amount of information on the

occurrence of a non-zero mean vector and heteroskedasticity in the
regression model has been drawn together. In an attempt to clarify
these two problems, a detailed discussion was given as to when and how
both difficulties arise and what the effects will be. To further
illuminate this area, an in depth review of the tests that have been
proposed, and are now being used to detect each error, was given.
Finally, different attempts at comparing the various tests for
heteroskedasticity were presented.

It is apparent that though a tremendous amount of effort has been
put forth to test for the presence of these two specification errors,

further attempts must be made. Two such attempts might be a more
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general test for heteroskedasticity and a simpler formulation of the
test for a non-zero mean vector. It is hoped this study will

contribute to this goal.



CHAPTER I1I
A NEW APPROACH

In this chapter two new specification error tests will be
presented. Both of these tests are based on the ability of a Power
Series Expansion Model to estimate the conditional mean of the
dependent variable. The first of these tests is used to discriminate
between the null hypothesis of a zero mean vector for the disturbances
and the alternative hypothesis of a non-zero mean vector. Similarly,
the second test is used to discriminate between the null hypothesis
of homoskedasticity (constant variance vector) and the alternative
hypothesis of heteroskedasticity (non-constant variance vector).

Both tests are being proposed in response to the objections raised
earlier in this study with the current testing procedures.

Because of the central importance of a Power Series Expansion
Model to both testing procedures, the concept of a Power Series
Expansion model will be introduced fifst. After this discussion,
the test designed to determine if the disturbance terms have a non-
zero mean will be presented. This will be followed by a discussion

of the second testing procedure, a test for heteroskedasticity.

II.1 Estimation Using a Power Series Expansion Model

In this section, the concept of a Power Series Expansion (POSEX)
model will be introduced. It will be derived from both a univariate
54
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and multivariate Taylor series expansion. The similarities between
this model and Ramsey's RESET model will then be shown. Finally, an
instrument will be suggested to replace the cumbersome expansion

terms that appear in any multivariate POSEX model.

II.1.1 Development of a Power Series Expansion Model

A Power Series Expansion (POSEX) model is an expansion of the
hypothesized model in powers of the independent variables. This
model is applicable in those situations in which the conditional
mean is an analytic function in the independent variables. Suppose
the regression model is given by

Y; = f(xi) +u,, E(ui) = 0. (2.1

Consider first using a Taylor series expansion in the variable x to
approximate the conditional mean expressed by the function f(x). In
this case, the function f(x) is approximated by

£(x) = f(a) + £'(a) (x-a) + £'(@) (x-a)2 + £''(a) (x-a)> + ...,

21 31 2.2)

where £ (n) denotes the n'th derivative of the function f(-) and a is
chosen for the ease of calculating f(a) and so that the function is
continuous between a and x. If, for example, the function f(:) were
unknown, but n values of x and f(x) were observed, the POSEX model
would be

2 h
BO+lei+szxi+...+thi+ui,

e

Y; ¢ f(xi) + u;
i=1,...,n (z.3)
where a = 0, f(i) 0

8; and B(ui) = 0. This model will yield a

good approximation if f(x) can be expressed by a low series expansion.
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Estimating this model by the method of least squares, one would

obtain unbiased estimators of the true coefficients. That is,

3 = (j) i =
B(8) = £ J.gog , 3 =0,...,h,

where f(j)(O) is the j'th derivative of the function f(.) evaluated
at zero, and j! is j factorial. Hence, given any value Xg» an
estimate of f (xo), is

;'0 = éo + él Xy * éz x(zJ + ...+ Ezk xg = f(;co).
Although ;'0 is an unbiased predictor of f (xo), the variance of this
predictor will increase to the extent to which Xq lies outside the
observed sample points XpseeesX .

Unfortunately, though this procedure is quite simple, it is not
always applicable. Often, the function which is to be approximated
is not a function in a single variable but rather is multivariate.
To analyze the multivariate case is conceptually no different from

analyzing the single variate case. The Taylor series expansion of

the m variate function f (xl, . ,xm) is written as

£(x)50e0X) = £(a,.0003y) + [(x)-u)) gfc—l+ e+ (xoa) 52";] £
3

1 k
T [(xl-al) 333(;+ oo * (xm-am) 5—)%-;] fa11 am+ cees

where 53(— represents the partial derivative operator with respect to

Xj’ and fa a denotes the evaluation of the function f(-) after
1. e m
the partial derivatives have been taken at the points ay...an.

Expanding this Taylor series (for the bivariate case, that is, m = 2),

one obtains
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- 3fa, a -
f(xl, x2) f(al, az) + a1 2 (x1 al) +
X
1
fa) a3 2’2 a )
‘Tﬁ;_(kz'aﬂ e (xgp et e
Bxl
azfal a,
Txg ox, G120 T3 ¢
2
2%f,
1232, 2
T (XZ 3.2) + ...
2

Reformulating this expansion into a POSEX model, as was done in

the single variate case (model 2.3), one obtains the model

Yy = £(X5p0 X50) * Uy = By * By 90 X431 * By01 Xi2 t

2 2

B2,20 i1 * 82,11 i1 Xi2 * Ba02 Xi2 t vt
h h-1 1

Bpho Xi1 * Bh, (-1 X1 Xzt et

1 _h-1 h .
Bh’l(h_l) zxil xiz + Bh,Oh xiZ + ui, 1—1,...,n (2.4)

- 2fa) a _ _ _ )
Where 8 3y = TTAGL , 8y = 8 = 0, £(0, 0) = g and E(uy) = 0.
1 72

Unfortunately, there are (h+l)(h+2)/2 = t parameters to be estimated
in the above model. Hence, unless one has more observations than
parameters (n > t), the procedure breaks down.

One possible solution to this problem is to assume that

o £ olf » g o
=T =b. o * When this assumption is made, the implication
axy ax) I axt ax
1772 1772
2

is that 8, 50 = by 87 10» 82,11 = P2 81,10 81,012 2d that

- 2 . . . .
82,02 = b2 81’01. Using this assumption and denoting 81y @S 81’10,

312 as 61’01 and a; as bi’ one can transform model (2.4) into
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yi = £(xggs Xp5) ¥ Uy = By ¥ Byp X4y * By X5yt

2 h
ap (Byp Xjp * Byp Xjp)7 *+ ve +op (Byy Xyp + Byp Xyo) ¢+

u.

i 1=1,...,n. (2.59)

This POSEX model now has only h+2 parameters to estimate in the
bivariate case and only h+m in the m-variate case.

Note, however, that although model (2.5) involves very few
parameters,to obtain estimates of those parameters,one must use a
non-linear estimation process. To surmount this inconvenience one
could use a two-stage procedure. The first stage would specify the
linear combination of the xi's to be used for each term that is of
the form (311 Xgq *oeee * By xik)j’ where j is greater than one.
This first stage would provide an instrument for the non-linear
terms so that a non-linear estimation technique is not needed. The
second stage could then provide estimates of the h+2 parameters (in
the bivariate case). When this procedure is used, the model to be
estimated in the second stage would be (once again for the bivariate
case)

fx.,, x:,) = By * Byy Xiq * Byo Xip * a q? + ...+ a qh +u,,

i1’ 7iz 0 11 71 12 7i2 17 h i i

i=1,...,n, ' (2.6)
where qg represents a linear combination of the xi's raised to the
j'th power. It might be mentioned, however, that this simplified
POSEX model could instead be formulated as

f(xil, xiz) = Bp* o193 * % qg ety q? +uy, i=1,...,n.

2.7)
by using the linear combination of the xi's specified in the first

stage for the linear as well as the non-linear terms involving the xi's.
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However, this formulation was rejected. Although both models (2.6)
and (2.7) are simplified versions of the more complicated POSEX

model (2.5), model (2.6) was chosen since it maintained more of the

essence of model (2.5) than did model (2.7).

II.1.2 Similarities to Ramsey's RESET Model

This model (2.6) is strikingly similar to the model Ramsey [1966]
used in his RESET test to determine if the disturbance term has a
non-zero mean. Recall that Ramsey felt that if the vector of disturb-
ance terms in model (2.1) were hypothesized to be distributed as
N(P, oZI), whereas they were actually distributed as N(z, 021) then
the mean vector z could be expressed as a linear function in the
moments about the origin of i The equation he suggested was

E(w) =z = ag + oy i+ oy i(Z) + g i(3) *+ oy ;'(4) + ...

(2.8)
where i(j) = {;{,...,Ag}l. Premultiplying equation (2.8) by the
matrix A' (recall that BLUS residuals u* = A'y), limiting the expan-
sion to four terms, and removing the expected value operator, he
obtained

= Aty = Az = oy Ay D s a ag ) g Ay ey

(2.9)
where w ~ N(8, oZIn_k) under HO. This model is a power series
expansion in the OLS predictor of the dependent variable, i That
is, ;’i is the H in model (2.6).

To show still more clearly the similarities between Ramsey's
model (2.9) and the POSEX model (2.6) Ramsey's model (2.9) will be
reformulated using the POSEX technique. When model (2.1) is rewritten

as
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U; S Y3 By T By Xy T oeee T By Xipo i=1,...,n,

it is clear that the disturbance terms u, are a function of the
dependent variable Yi and the hypothesized independent variables
 SPERERFE S0 Under the null hypothesis that model (2.1) generated
the dependent variable Yy the yi's are a linear function of
Xjq0e o9 X o hence, the ui's can be written as a linear function
in the variables Xiqoeee s Xy However, under the alternative
hypothesis that the E(u) = z = 0, the yi's may be any (generally
non-linear) function of both the k variables X590 009 X5 that the
researcher hypothesized in model (2.1) and of a set of m variables
ZiyseesZin that the researcher mistakenly did not hypothesize as
being part of model (2.1). Hence, the vector u must be written as
a non-linear function both of the k hypothesized variables
XpoeeesXy and of the m erroneously excluded variables ZyseeZpe

Because the m variables Ziqsee o2y, AT erroneously excluded
from the hypothesized model (2.1), they cannot be identified. Hence,
the ui's must be approximated by a function in the variables
ST EERER This function in  STERRERR W if it is analytic, can
itself be approximated by a power series expansion mode in P ERRERR S
This series of two approximations yields the POSEX model

+ LI +

1100 %) T 8ot Byp Xig * Bik Xik

2
X;q* e ¥ B1k xik) S
h .
o (311 Xiq % oeee * By xik) * Vs, i=1,...,n
where E(vi) = 0, which is a k variate extension of the bivariate

model posed in equation (2.5). Once again this model requires a non-

linear estimation process to estimate the h+k parameters. To solve
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this estimation problem Ramsey suggested using §1 as an instrumental
- . j
variable for each term that is of the form (B11 X9+ oees By xik) ,
where j is greater than one. The variable y; was chosen since it
provided a linear combination of P ERREFE I based on the relation
between the dependent variable Yi and the independent variables
XipseeesXgye
When this instrument is used, the model becomes
. ~2
U =8 * B X1 T B Xy oYyt

Ah .
a Yyt Vg, 1= 1,...,n, (2.10)

where Vis i=1,...,n, are independently and identically distributed as
N(O, 02) under HO. Multiplying model (2.10) by A', one derives the
model

E* = A'E= ay A'X(Z) + a3 A'X(S) + oy on(4) + W, (2.11)

where w ~ N(@, °ZIn—k) under HO and h is set equal to 4. Hence,
Ramsey's model (2.9) has been obtained by using a POSEX model

formulation.

I11.1.3 A Suggested Instrument

In using the method of instrumental variables to simplify the
POSEX model so that the linear estimation techniques can be used, the
researcher must choose an instrument which is highly correlated with
the term that it is replacing. However, unless the correlation
between the two variables is exactly one, using the instrument
reduces the accuracy of the approximation. Hence, since the vector i
used by Ramsey is

-~

L= 8% B Xyt et B X =X,

~
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if the vector of estimated parameters is not a multiple of the vector
of parameters {611,...,61k}', that occur in the expansion term
(811_)5_1 + ...+ Blk§k)(j)’ then using the instrument iﬁj) will reduce
the accurate of the POSEX model.

As an alternative to using the instrument i) one could choose
(6151 + ...+ ekzk), which is another linear combination of
Xpseee0Xys which might, in general, be more highly correlated with
the term (8;; X; *+ ... *+ By X ). Since correlation is a measure of
how two groups of variables vary with respect to one another, the
coefficients S ERRETL" should be chosen by examining the variance
within each of the vectors XpseeesXye However, the variance within a
vector is not the only important characteristic to be taken into
consideration. The coefficients e,..-€ must also reflect the scale
of each of the vectors XyseeesXye For example, if the sample
variances of each vector are identical, the vector that has the
smaller elements (the smallest mean) should be given more weight.
The rationale for this might not be immediately apparent, but an
example will clarify the point. Three observations are drawn from
two populations resulting in the samples (990, 1000, 1010) and
(10, 20, 30). The sample variance ié 100 in both cases. However,
the variance of 100 results in a 2% variation (=T%%5 + 100) in the
sample points in the first sample and a 100% variation (=%% * 100)
in the sample points in the second sample. Hence, since the
variation in a variable, not the variance of a variable, is the
important characteristic, the coefficients €)...€ must be chosen
by a method that takes into account both the variance and the mean

of each vector of independent variables.
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One such technique is the method of principal ccmponents.2 To
use this technique, one first forms the k x k matrix of squares and

cross-productions (zZ) from the vectors x,,...,X,, that is

1
X
L= ( ) () -+ %)

Xx
Second, one finds the eigenvalues and eigenvectors of the matrix I.
Selecting the largest of these eigenvalues and denoting the eigenvector
€\
associated with that eigenvalue as . , one can define the vector
f
p (the first principal component of the matrix X) as
P=e X3 * ... *e X.
This vector p is calculated in such a way that whichever vector
Xy9ee0 0¥y has the most variation (reflecting both mean and variance)
has the largest coefficient. The one with the second most variation
has the second largest coefficient, etc.
Finally, this vector possesses the statistical property of
being the best linear predictor of the vectors Xyseee s Xy This is
easily shown by noting that no other}normalized,'linear combination
of the variables Xyseee Xy has a greater variance than does the
vector p. Therefore, no other normalized, linear combination of the
x's contains as much of the variability that is in the vectors

X0 esXy than does the vector p. Hence, no other combination can

2It was first suggested that principal component analysis be
used in conjunction with Ramsey's RESET test by Professor Dudley
Wallace. His suggestion is greatly appreciated.
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predict the vectors XyseeesX better than the vector p. This is not
to say, however, that the coefficients €15e+ € have any greater
probability of equalling the parameters Byqse+e 2Bk (parameters from
the term to be replaced) than did the estimates él""’ék (the
estimates used to calculate Ramsey's instrument i). It only says
that given no knowledge as to the vector {611,...,61k}' no vector of
weights {wl,...,wk}' = W will produce a vector X w that contains
more variation than does the vector X e = p. Therefore, since the
unknown variability of the dependent variable is what is trying to
be captured, no other vector can do a better job than the vector p.

Hence, if a POSEX model is used to approximate an analytic
multivariate function, no single instrumental variable should, in
general, provide as good an approximation as that obtained by using
the vector p. However, since the vector p is more difficult to
calculate than the vector i, any decision as to which should, in
general, be used becomes more difficult. A sampling experiment will
be conducted later in this study to provide some insight into what-
ever trade-offs might exist between the two instruments. It is,
however, evident that a POSEX model can be formulated to approximate,
to varying degrees of accuracy, any aﬁalytic univariate or multi-
variate function. Hence, besides providing the foundation for the
two specification error tests which will be next presented in this
study, one hopes that this technique might be adapted to further

uses by other researchers.
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II.2 POSEX Test for a Non-zero Mean

If one hypothesizes the model

Y; =8 ¢ By Xgop + o * By Xip * Us, i=1l,...,n, (2.12)

where it is supposed that the vector of disturbance terms
u= (ul,... ,un)' is distributed as N(@, 021), the null hypothesis of
a zero mean vector is that the E(u) = # whereas the alternative
hypothesis is that the E(u) = z # #. This formulation is used in
three tests which have been developed to test for the null versus the
alternative hypothesis (recall the tests developed by Ramsey, Ramsey
& Gilbert, and Ramsey § Schmidt referred to earlier). However, the
hypothesis space can be similarly divided by yet another criterion.
Rewriting model (2.12) in matrix notation, one obtains
y=Xg+u, u~N@, o°I) (2.13)

where y and u are (n x 1) colum vectors, g is a (k x 1) colum
vector, and X is an (n x k) matrix of rank k. If X is independent
of u, y is distributed as u with a mean of Xg; that is, y is
distributed as N(X8, 021). Given this formulation, the hypothesis
space can be divided exactly as before by basing the division on the
mean of the vector y. The null hypothesis then would be that the
E(y) = X8 (referred to in this section as Hy), instead of E(u) = 0,
and the alternative hypothesis would be E(y) # X8 instead of E(u) # 0.

Using this formulation of the hypothesis space is convenient
since the y's, unlike the u's, are observable. This procedure
totally eliminates the need to select a predictor for the disturbance
terms. Using this formulation of the hypothesis space, a POSEX model
will be developed which will estimate the conditional mean of the

dependent variables Yiree+sYp
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11.2.1 Formulating the POSEX Model and Testing Procedure

Under the null hypothesis, the y's are generated by model (2.13),
whereas under the alternative hypothesis, the y's are generated
either by some other function (non-linear) of the hypothesized
variables XpseeesXy OF by some function (maybe linear) of the
hypothesized variables XyseeesXp and of the erroneously excluded
variables Zyse o2y Hence, under HO’ wXis a simple linear function
of XpseeesX while under Hl’ y is some unknown function of Xpsee Xy
and ZyseeeaZp Under Hl’ depending on the number of omitted
variables m (> 0) and on their relation to XpseeesX (the necessary
relation will be investigated later in this section), the vector y
can be approximated by the variables Xyse e X Also, under Hl, the
unknown function can be approximated by formulating a POSEX model in
the variables XpoeeesXye Using the POSEX technique, which was
previously described and illustrated in model (2.5), one formulates
the model

Y= EQeeaX) $US By Y By X ¥l ¥

Bix Xy * % 9(2) + aq 3(3) +a, 3(4) +u (2.149)
where E(u) = 0, and where a four-term expansion is used (same as in
Ramsey's RESET model). Because two instruments have been proposed
as the vector g, i (the OLS predictor of y) by Ramsey and p (the
first principal component of the matrix X) by Wallace, both instruments
in turn will be used. Later on in this study, they will be compared
to determine which provides the better instrument.

Model (2.14) must now be examined under HO so that a test for
discriminating between Hy and H, can be formulated. Under Hy that

model (2.13) generated and dependent variable y, model (2.14) becomes
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(2) (3) 4)
E(X)=Bl+62£2+...+6k)_(k+0-ﬂ +0.9- +0'ﬂ

X +Q- 0
Hence, to test the null hypothesis that (2.13) generated the vector

Y, one only need test the hypothesis that a = 0. If the

27 %7 %
parameters a,, oz and o 4 are found to be jointly equal to zero, Hy
is not rejected, whereas if )y Gz and o 4 are found to be jointly
different from zero, H, is rejected. This hypothesis is easily
tested by using an F-test for the included variables 9(2), 3(3), and
q™® [Goldberger, 1964, pp. 174-175].

The procedure is to estimate model (2.13) and model (2.14) by
the method of least squares. Denoting il and iz as the OLS
predictors of the vector y from model (2.13) and model (2.14)
respectively and ﬁ as the OLS residuals from model (2.14), one

calculates the ratio

- Ar A
(Xz Y, " 11 Y (n -k - 3
u'u

This statistic is distributed as F with 3 and n-k-3 degrees of freedom

under Hjbecause the ratio can be rewritten in terms of two independent
quadratics in the normally distributed disturbance term u.

In examining the F statistic under the alternative hypothesis
an interesting observation can be made. Denoting w; as the portion
of the 'true' model that remains unexplained by the hypothesized

model, the quadratic ratic becomes

@ +w)Q (w+w
@+whQ W+wW
where u is the disturbance term and Q; and Q, are the appropriate

quadrations. Since this is a ratio of two non-central xz's, this
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ratio can be greater than or less than one. Therefore, a two-tailed
F-test should be used.

A well defined test statistic has been developed using this
formulation. Hence, no matter what the sample size, the distribution
of the statistic is known. Also, unlike Ramsey's and Ramsey §
Schmidt's test procedures,with this formulation, the use of predictors
of the disturbance term u and the calculation of the matrix M or A'
are avoided. Therefore, if a researcher uses the new formulation of
setting up a POSEX model to explain the vector y, he avoids both of
the difficulties associated with Ramsey's and Ramsey § Schmidt's
testing procedures. Finally, it has been pointed out that the
appropriate test is a two tailed F test and not a one tailed test

as was mistakenly used by the previous authors.

I1.2.2 Comparison With Previous Testing Procedures

It is interesting to note that formulating a POSEX model to
improve the estimate of the conditional mean of y can, under certain
conditions, be shown equivalent to Ramsey's and Ramsey & Schmidt's
testing procedures which determine whether a disturbance term has a
non-zero mean. Of course, as has previously been shown, the
hypothesis space can be equivalently divided by 5etting up the null
and alternative hypotheses in terms of the vector of disturbance
terms u or vector of dependent variables y.

Assume that the hypothesized model is

Y=Bp v By Xpt oo + B X tu=Xg+u

where u is assumed to be distributed N(f, oZI) under Hy- Setting up

a POSEX model to estimate the conditional mean of y, and using y
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(the OLS predictor of y obtained after the hypothesized model is estimated

as the instrument, one obtains
) . . ~(2)  ~(3) ~(4)
L=Bn PP Xt e B et oY toagy YooY tW,
~(2) ~(3) ~(4)
=XB *+a,y toagy toay +W, (2.15)

where w is assumed to be distributed N(@, oZI) under Ho.

If model (2.15) is premultiplied by the matrix A' (recall that
the BLUS residual vector u* = A'y, where A'X = 0, A'A =1 , and
AA' = M = (I-X(X'X) X')),the model becomes

. . , ,~(2) ~(3) ~(4) ,
Ay =u* = A' Xg + A'y °‘2+AX “3+AX a4+Ag

~(2) ~(3) -(4)
=Yy ayt+ty agty a4+A'y_ (2.16)

where A'w is distributed as N(#, czln_k) under HO and where

ayOl i(j.) Model (2.16) is the model in which Ramsey tested

ay = az =a, =0 and hence obtained his RESET test for the disturbance
term u's having a non-zero mean.

Likewise, if model (2.15) is premultiplied by the matrix M
(recall that the OLS residual vector é =My = (I-X(X'X) X")y), the

model becomes
~ ~(2) ~(3) ~(4)
My=u=Mg+M a)+My az+My a, +M
= Mi(zzz + Mi(sgs + Mi(“l Mw ' (2.17)

where Mw is distributed N(f, oZM) under HO. Model (2.17) is Ramsey
& Schmidt's model whereby they were able to test for the disturbance
term u's having a non-zero mean by testing if @y = 0z T o, = 0.
Hence, since Ramsey's and Ramsey § Schmidt's models can be
obtained from the POSEX model by premultiplying the POSEX model by
either the matrix A' or the matrix M, respectively, all three models

are mathematically equivalent. Furthermore, since all three tests
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use an F-test to determine if the parameters @y, O and @, are
different from zero, all three tests are likewise mathematically
equivalent. Therefore, since neither of the previously reviewed
tests offer any advantage over formulating a POSEX model and yet
both offer the disadvantage of compelling the researcher to calculate
either the matrix A' or the matrix M, there is no apparent reason to

use either Ramsey's or Ramsey § Schmidt's testing procedure.

I1.2.3 Examination of the New Testing Procedure Under H,

As has been mentioned, two basic errors can cause the vector of
disturbance terms u to have a non-zero mean; likewise, the same two
basic errors can cause the vector of dependent variables y to have a
conditional mean other than X8. The first error occurs when the
wrong functional form of the regressors or regressand is used in
the hypothesized model. The second error occurs when a number of
relevant independent variables are omitted in the hypothesized model.

The new testing procedure will be examined under both these errors.

Incorrect Functional Form of Either the Regressors or Regressand

If a researcher hypothesizes model (2.12) whereas the dependent

variable y is actually generated by fhe model
y = f(El”"’Ek) +v (2.18)

where v is distributed as N(P, oZI) and f(+) is some function other
than the one hypothesized in model (2.12), a specification error has
been conmitted. Note that although this specification error is
caused by incorrectly hypothesizing the functional form of the
regressors, a similar error can be caused by incorrectly hypothesizing
the functional form of the regressand (see section I.2). Hence, only

the former error will be examined in this study.
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Therefore, when a researcher hypothesizes model (2.12) while the
dependent variable actually has been generated by model (2.18), the
specification error which has been committed is usually that of
incorrectly specifying the functional form of either the regressors
or regressand. If the researcher suspects this error, he may want to
examine whether a POSEX model would better explain the conditional
mean of y than would model (2.12). If the POSEX model does better
explain the conditional mean of y, the researcher knows that model
(2.12) was misspecified. The POSEX model that the researcher would

formulate is
(2) (3 (4)
811+312£2+...181k)_(_k+a29_ *azq tay g +W

XB + Qu + W (2.19)

Y

where w was assumed to be distributed N(g, oZI) and where q is used
to represent either the instrument i (OLS predictor of y obtained
after estimation of model (2.12)) or the instrument p (the first
principal component of the matrix X). If the estimate of a is
statistically different from zero, the null hypothesis that model
(2.12) generated the vector y will be correctly rejected.

The probability of this test's correctly rejecting Hy depends
largely on the function f(.) and on fhe instrument q chosen. First,
as previously stated, f(-) must be analytic, since a non-analytic
function cannot be expressed as a power series expansion. Second,
since the POSEX model proposed involves a four term expansion, one
must be able to approximate f(.) using only a four term expansion in

the variables XpseeesX 3 If £(-) can only be approximated using

3A1though four terms has been suggested in this study, any

mmber of terms may be used. There is, however, a trade off since
adding more terms changes the number of degrees of freedom involved
in the proposed test.
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more than a four term expansion in Xps-e9Xps the POSEX model which
is given in the equation (2.19) will provide a poor approximation;
hence the testing procedure suggested will prove unreliable. However,
since most of the standard non-linear functions are analytic, and
since a good approximation of most standard analytic functions can
be obtained using as few as two or three expansion terms (for example,
the exponential, logorithmic, and sinosoidal functions are all
approximated in three or fewer expansion terms [Thomas, 1966]), these
conditions should generally cause no difficulty.

Finally, the probability of correctly rejecting HO will also
vary in accordance with the correlation between the instrument q and
the expansion terms which it replaces. That is, since q is an
instrument (representing either i, the OLS predictor of y obtained
from the hypothesized model, or p, the first principal component of
the matrix X), this statement simply means that the test's power
varies with the quality of the instrument used.

In summary, if a model is misspecified because the functional
form of XyseeesXy is incorrectly hypothesized, the power of the
suggested test depends on two factors. The first factor, the
functional form of f(*) which generaf.es the vector y, does not
generally cause difficulties. The reason for this is that the
functional forms of f(.) generally thought probable are both
analytic and easily approximated by using a power series expansion
(two examples are the exponential function and the logorithmic
function). The other factor responsible for causing a loss in the
test's power is the instrument chosen to replace the expansion terms.

It is felt by this investigator that the first principal component p
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will, however, in general, provide a reliable instrument for the
expansion terms. It must be recalled, nevertheless, that the OLS
predictor of y, i, has been successfully used as an instrument for
the expansion terms by Ramsey. This instrument has the advantage
of being more easily obtained than p. This investigator feels,
however, that iwill, in general, be less highly correlated with
the expansion terms than will p, and hence be less reliable. Any
final conclusion as to which of the two instruments is the more
reliable must of course be postponed until they are actual compared

in a sampling experiment.

Omitted Variables

Assume that once again a researcher hypothesizes model (2.12)

X=Bl+82£2+"'+Bk§k+u=xs+l—l’

where it is assumed that u ~ N(g, 021), whereas the model that
actually generated the dependent variable y is

y=Xg+zg 8+ ...z s +v=Xpg+zs+y, (2.20)

where v ~ N(@, 021). Model (2.12) is misspecified because m
independent variables, ZyseeesZps have been omitted. If the
researcher suspects that he has inadvertently omitted some variables,
he can formulate a POSEX model to explain the conditional mean of y.
If, in a statistical sense, the POSEX model explains the conditional
mean of y better than does model (2.12), the indication is that the
model (2.12) is misspecified.

In the POSEX model which the researcher would use to explain
the condition mean of y, the variables X15e0esX would be used in

the expansion. It must be remembered that the researcher suspects



74
that he may have erroneously omitted some variables; however, he does
not know the identity of the variables which he may have omitted.

The POSEX model thus formulated would be

R P R VT R AR A

X8+Qu+uw (2.21)
where w is assumed to distributed N(§, ozI) and where q represents
either the instrument i_or the instrument p. If the estimates of o
are found to be statistically different from zero, the model
hypothesized as generating the vector y (model (2.12)) is found to
be misspecified.

Needless to say, the probability of this test's correctly
rejecting HO depends on the relationship between the variables
erroneously omitted and the instruments used in place of the expansion
terms. Since the idea that the power of the test depends on the
instrument chosen has already been discussed, further elaboration is
not needed here. Rather, this section will focus on how the test's
power is affected by the characteristics of the variables omitted.

In order that the analysis which follows will not be unnecessarily
complicated, it will be assumed that only one variable is omitted
erroneously from the hypothesized model (2.12). Assume that the
model which actually generated the vector of dependent variables y is

y= 31 + 32 52 + ...+ Bk Ek + 8 Z+V
SxB+z6 v (2.22)
where v ~ N(@, 021), and z is a non-stochastic vector.

Since model (2.22) and model (2.21), used to test whether the

null hypothesis is misspecified, differ only in their second terms,
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the second model's ability to discriminate between Hy (o = 0) and
Hl (¢ # 0) is directly related to the proportion of the vector z
that lies in the space spanned by the matrix Q. Although this
cursory observation is somewhat illuminating, a more indepth analysis
is required.

Since the instrument q (either p or i) is a function of
XpseesXys the omitted variable can be characterized as one of three
types, depending on the omitted variable's relation to the variables
Xpoe e oXye The first type of omitted variable is highly correlated
with the variables X)5eeesXps the next type is uncorrelated with them,
and the final type is moderately correlated with them.

To simplify the analysis of each type of omitted variable, all
of the variables X15eee Xy and z will be orthogonalized. This linear
transformation yields the k + 1 vectors 31500585 3y corresponding
respectively to the vectors Xx;,...,X;, z. Thus, the vector a,  ;
contains only that part of the vector z which is not already
explained by the variables x;,...,X, . The three cases of z to be
analyzed, having either high, low, or medium correlation with
XpseeesX will correspond directly to the vector LI containing
either little, a great deal, or moderate amounts of additional
information.

The reason for this inverse relation between the amount of
information contained in the vector a, and the correlation between
z and XyoeeeaXy is that the latter measures the amount of linear
relation between z and X;,...,X; while the former contains the amount
of information remaining after any linear relation has been removed.

For example, when the vector z is highly correlated with XpseeeaXy
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(that is, a large portion of the information embodied in z is also
contained in 5—”"’§k)’ and the linear information is removed
through orthogonalization, the vector LI will contain very little
information. Hence, high correlation between z and Xpseee0Xy will
imply very little additional information in the vector A

Finally, before each type of omitted variable is analyzed in
turn, it is important to stress that only the linear relation between
z and X;,...,X has been eliminated. Hence, there is no implication

that vector a4 is independent of the vectors 81500053y, but only

that 3, 1s uncorrelated with the vectors 81500058y-

Omitted Variable Highly Correlated with the Matrix X

In the case of this type of omitted variable, if z were correctly
added to the hypothesized model (2.12), the model would be highly
multicolinear. When the variable z, however, is erroneously omitted,
efficiency will be lost, but the loss will be small. Unfortunately,
though, there is always a cost involved when a specification error is
made. In this case, the estimates of the parameters Bl,...,Bk, in
the hypothesized model (2.12) will be biased. As previously mentioned,
the amount of the bias associated with each estimate depends on the
correlation between the variable associated with.that parameters and
the variable z.

If a POSEX model is used to determine whether model (2.12) is
misspecified when the omitted variable z is highly correlated with
the variables X150 e Xy the probability that the POSEX model will
better explain the conditional mean of y is very small. The reason

for this is that so little information is left in the vector a4
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that even if it were explained by the POSEX model, it still may not
provide a statistical improvement over the hypothesized model.

Finally, even though the testing technique being suggested does
not offer a very high probability of correctly rejecting Hy when the
omitted variable is highly correlated with the included variables
Xys+«+sX), the cost of such an error is low. A small loss in
efficiency will occur and biased estimates of ByseeesBy will be
obtained. However, even if the omitted variable z had been correctly
included, the model would have been multicollinear; hence, the matrix
X'X would be ill-conditioned, so that the estimates of ByseresBy and
02 (the model's variance) have relatively large standard errors and
the estimates are very sensitive to small perterbations in the values
of the regressors. Therefore, the incorrect omission of the variable
z is relatively inconsequential even though the omission cannot be

detected by the POSEX test.

Omitted Variable Uncorrelated with the Matrix X

In the case of this type of omitted variable, the vector z is
virtually identical to the vector 3,1+ When the variable z, which
is uncorrelated with X790 2 Xy is erroneously omitted, two
difficulties arise. First, since z is uncorrelated with Xpseee X
only the constant term él will be biased. The amount of the bias
will equal z = _2 zi/n; hence, the expected value of the estimator
81 will be E(51;=: By * z. Also, since none of the variation embodied
in z is used to explain the conditional mean of y, the hypothesized
model (2.12) will be inefficient.

If a POSEX model were able to explain the conditional mean of

y better than the hypothesized model (2.12), one of two things could
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occur. First, if the vector z is independent of as well as
uncorrelated with the vectors X150 Xy the POSEX model will have
virtually no power. The reason for this is that since z is
independent of Xpoe o0 Xs and as q is a linear combination of
5}(,) .+»X;, the vector z is independent of the vector q as well as of
2

(3) (4)
9,9, and q . Hence, in the POSEX model (2.21), since the vector

Z is independent of the vectors X150 Xy, g(%)g(é)g(‘i) the POSEX
model adds nothing to the hypothesized model.

In the second case, however, the POSEX model will improve upon
the hypothesized model if z is not independent of XpoeeesXye
Generally, however, in economic data, if the variable z is
uncorrelated with the variables XpseeesXys it is also independent
of Xpseoe Xy Hence, the analysis of this case will be postponed
until the next section.

Therefore, when z is uncorrelated with the variables X;,...,X,
the POSEX model again proves to be of little use in detecting the
error. However, once again, some consolation can be taken in the

fact that when an uncorrelated variable is omitted, only the constant

term and the estimate of the variance will be biased.

Omitted Variable Somewhat Correlated With the Matrix X

In the last case, which is the most common, the vector z is
neither uncorrelated nor highly correlated with the vectors XpseeeoXyo
Hence, in this case, because z is correlated with X ee Xy
the estimates of Bys---,By are biased, however, since z is not highly
correlated with XpseeesXys the estimators of Byse«+sBy are not

efficient. Therefore, this type of omitted variable can cause all of
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the estimators in the hypothesized model, él" .. ’ék’ ;2 (model's
variance) to be biased.

This most troublesome type of omitted variable, however, is the
case where a POSEX model might better (in a statistical sense)
estimate the conditional mean of Yi than did the hypothesized model.
In this case, unlike that in which z was highly correlated with
Xps+++5Xy, the vector ay ., still contains some information; hence, a
POSEX model can improve on the hypothesized model by estimating the
variation in the vector a,,,. Also, unlike the case in which z was
uncorrelated with XpseeesX (and hence maybe independent), I is
not necessarily independent of the vectors Xpsee Xy either squared,
cubed, or quadrupled. Therefore, the ability of the POSEX model
(2.21) to provide a better estimate of the conditional mean of y
than did the hypothesized model (2.12) depends on how great a
portion of z and hence a,,, lies in the space spanned by 9(2,) g(:’:) and

g(‘}) First, since q is a linear combination of the vectors X;,...,X;

then g(z,)g(?)and'g(‘l‘)ire functions of the vectors xy,...,X; squared,
cubed, and quadrupled, respectively.

In addition, since only the linear relation between the vectors
Xp5-++»X and the vector z has been removed from the vector z
(resulting in the vector 9‘-](4-1) , it is not unreasonable to expect that
g(z,) 3(3,’ and g(4r)night be able to explain still more of the variation
given in the vector a,,,. The reason for this is the point that has
been stressed over and over again; since only the linear relation
between the vector z and the vectors x,,...,X, has already been
explained by the hypothesized model (resulting in the vector 3k+1) ,

there is no reason to assume that a relation between §k+1(or z) and
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2 2 3 3 4 4
the vectors 51(,?..,§k(,)or 51(,?..,&(,)01’ 51(,?..,5_](( c)ioes not
3) (4)

exist. If such a relation does exist, given that g(f)g(, and q  are
combinations of these vectors, the variation in the vector 34
might be better explained. If the POSEX model provides a better
estimate of the conditional mean of y because it uses part of the
variation in the vector LI then the estimate of the vector of
parameters o will be statistically different from zero. Hence,
model (2.12) will be found to be misspecified because the POSEX
model better explained the conditional mean of y.

Even though it at first appeared as if the third type of omitted
variable would cause the most difficulties, it has been demonstrated
that a POSEX model can be used more effectively in this case than in
the other cases. Of course, the probability of correctly rejecting
Hy depends heavily on that portion of z which is spanned by the
VeCtors Xy,...,Xp squared, cubed, and quadrupled.

It has been shown that the probability of correctly rejecting
Hy, when a variable z has been omitted by using an F-test and a POSEX
model most certainly depends on the relationship between the variables
XyseeesXy and variable z. It appears as if the power of the
procedure is the highest when z is moderately correlated with the
hypothesized variables Xpse oo s Xy If z is uncorrelated with the
hypothesized variables, z is most probably independent of them and
hence independent of any linear combination of them. If z is too
highly correlated with x;,...,X, then little improvement in
explaining the conditional mean of y can be ascertained by using

a POSEX model.
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11.2.4 Summary

In this section, a new testing procedure for determining whether
a model has been misspecified has been obtained. It is shown to be
equivalent to two current testing procedures, but is also shown to
offer the advantage of being more easily formulated and carried out.

When the new test was examined under both common causes of the
specification error, it was suggested that the test would be more
powerful when an instrument highly correlated with the non-linear
term is used. In addition, it was discovered that when the errof is
caused by incorrectly formulating the functional form of either the
regressors or regressand, the power of the test increases if the
correct function is analytic and can be approximated easily. Also,
finally, when the error is caused by omitting a variable from the
hypothesized model, the power is related to the correlation between
the omitted variable and the hypothesized variables, the highest
power being obtained when the correlation was moderate.

I1.3 POSEX Test to Determine if the Disturbance Terms Are
Heteroskedastic

Given the hypothesized model

Y=B ¥ 8, Xt ot B X tu=Xg+u (2.23)

where all the vectors are n x 1 and where u is assumed to be
distributed N(g, 021), a number of tests exist that will compare the
null hypothesis (Ho) of homoskedasticity with the alternative
hypothesis (HZ) of heteroskedasticity. All of these tests, however,
require a great deal of a priori information regarding the variable,
presumably X100 Xy that is related to the heteroskedastic

disturbances. Since, however, a POSEX model can approximate any
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analytic function, it is possible to use a general POSEX model to
estimate the variance of each of the n disturbance terms. A test can
be developed which will determine whether the POSEX model is better
able to explain the conditional variance of the vector of disturbance
terms u.

Under the null hypothesis of homoskedasticity, no group of
variables (or model) will be able to explain the constant variance of
the disturbance terms. Hence, if a model is able to explain the
variances of the disturbance terms, the variances are not homoskedastic
and the null hypothesis should thus be rejected.

Finally, since a model to explain the variances is used as the
basis of the proposed test, this test will be a constructive test.
That is, in the case in which the null hypothesis of homoskedasticity
in model (2.23) is rejected, a procedure will be offered which will
enable the researcher to transform model (2.23) into a homoskedastic
model.

Before the model and test are developed, however, an estimator
of the unobserved variance of Up,- .. 50, TSt be selected. The POSEX
model will then be developed. Next, it will be shown how the POSEX
model can be used to reestimate the parameters in the hypothesized
model. Also, it will be demonstrated how a priori information can
be included in the POSEX model. Finally, a number of different ways
of estimating the POSEX model will be suggested. Included with each
of these suggestions will be a test to determine if the disturbance

terms are either homoskedastic or heteroskedastic.
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I1.3.1 Estimators of the Variance of U,

Unfortunately, the variance of each disturbance term, oi,. .o ,oz,

n
is not observable. Hence, a number of estimators of c:i,...,c:rlz1 have
been obtained. Denoting ﬁi as the i'th least squares residual
obtained from model (2.23), the first estimate of cg used (by Park

and by Glejser, by Goldfeld § Quant, and by Ramsey § Gilbert) was
"2

u.“. Unfortunately, under the null hypofhesis of homoskedasticity,

E(uu') = oZI, the least squares residuals are heteroskedastic,
E({EA') = on = oZ(I-X(X'X)_X'). Hence, since the diagonal terms

of E(é é‘) are E(éiz), one finds that the expected value of the n

estimates, ulz,...,un‘2 are ozmll,...,czmm, where m, is the i'th

diagonal of the matrix M. Therefore, ui2 is a biased estimate of

2
o] even under HO.

Under the alternative hypothesis that model (2.27) is

2

heteroskedastic, however, the estimates ﬁi become weighted averages

of the true variances. Since the diagonal elements of the matrix
é' are {112, . ,sz, this weighting scheme is most clearly
demonstrated by taking the expected value of the matrix uu' under

the alternative hypothesis that the

2
o] [}
E(w') = =V.
[ 'orzl

One finds that
DIAG [E(m')]

DIAG [E(Muw'M)]
DIAG [ME(uu')M]

DIAG [MVM]
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Since M is symmetric (mi 3 = mJ. i), the j'th diagonal element becomes

n
z m?i ci. Hence, if one defines M(Z)as being the squared elements
i=1

of the matrix M (i.e., {mijz}), then

pIAG EG') = M® p1ag [v] = m(P (od,nald. (2.20)
Therefore, since under HZ’ each estimate 1;12,. . .,ﬁnz is a
weighted sum of oi,. .o ’0121; {112,. .. ,&nz are biased estimates
2 2
12° %,

. 2 2
Hence, since Uy seeesUy

of o
are biased estimates of ci,. .. ,0121 under
both Ho and Hy, it is perplexing to account for the findings of
Goldfeld § Quant (using their non-parametric test) and Ramsey &
Gilbert (using the BAMSET procedure with OLS residuals) . They found,
by using sampling procedures, that the probability of type I error
corresponded to what was theoretically expected and that the
probability of type II error was modest. Of course, the results
could have been due to the specific models used and hence to the
structure of the matrix X. However, this investigator does not find

this explanation at all adequate. Rather a theorem based on the
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matrix M, will be stated and proven (in Appendix A), and another
explanation offered in place of the one just mentioned. (In addition,
three interesting corollaries to this theorem are also stated and
proven in Appendix A but will not be used in this study.)
Theorem: Regardless of how the vectors x s sXy are obtained

(stochastic or non-stochastic) the diagonal elements of the matrix
M will have a maximum squared variation of %%E{%% < g-, where squared
variation of tireeenty is defined as z(ti - E)Z/n-l.

This theorem provides a vehicle for understanding the findings
of Goldfeld & Quant and of Ramsey § Gilbert. They both observed that
under HO, when OLS estimates of ci,...,oﬁ were used to test Ho versus
HZ’ the probability of type I error corresponded to the nominal alpha
level at which the test was used. This finding implied that the OLS

estimates were homoskedastic under HO. It has, however, always been

assumed that the matrix M has unequal diagonal elements since

E(ﬁi) = ozmii, i=1,...,n. Hence the implication that the estimates
ulz,...,u.n2 were homoskedastic seemed difficult to accept; however,

the theorem proven in this study provides a plausible explanation
for this finding.

It indicates that regardless of how the variables are chosen,
the maximum squared variation of the diagonal elements of M is never
greater than —%%— . Therefore as n » = the squared variation + zero
regardless of the matrix X. Further, even with small sample sizes,
the variation is minimal if the number of parameters is small. Hence,
although OLS residuals may not be homoskedastic when the disturbance
terms are homoskedastic, they may appear to be, especially if n is

large or k is small.
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As previously mentioned, their second finding was that under Hy,
the probability of type II error was reasonably small. This implied

that the OLS estimates are heteroskedastic even though each estimator

is a weighted sum of each true variance, oi,...,oﬁ. The>type I1
error which was found is consistent with the theorem and corolaries
proven in this study. Even though each of the terms, aiz,i=1,...,n,
is a weighted sum of o%,...,oﬁ, the weights are such that the
greatest weight given &i is that associated with o%. This is evident

if one recalls that

"2y _ 2 2 2 2 2 2
E(ui) - mil 01 + ees t mii Gi + LICINY + min On- (2‘25)
Since, however, mgl L mgn =myy < 1, because M is idempotent,
the portion of the weight given to each variance is
2 2 2
M1 Mii Min (2.26)
Ir g e ’TI—T 9 s HT . .
ii ii ii

Since this series consists only of positive numbers which sum to one,

and since the mean of the diagonal elements of Ehe matrix M is Bﬁk ,
the series in equation (2.26) is dominated by ﬁli-= m ;e Therefore,
ii

the weighting scheme given in equation (2.25) favors the term oi.
Hence, when the variances c%,...,oﬁ are unequal (heteroskedastic),
the estimates ﬁi,...,&n are also unequal. Therefore, the finding
of Goldfeld § Quant and of Ramsey & Gilbert that the OLS estimates

are heteroskedastic when 012,...,02

L are unequal is correct. As a

2

result, even though ulz,...,un2 are biased estimators for o%,...,cn

under both H, and Hy; under Hy they are generally homoskedastic while

under H, they are generally heteroskedastic.
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One final difficulty regarding the OLS estimators of oi,...,cﬁ

A N

still exists. Since Upse.e,l are not mutually independent,
612,...,an2 are not mutually independent. This lack of independence,
it will be recalled, caused certain difficulties in Glejser's and
Park's testing procedures.

In large part to solve this problem of independence, Ramsey
[1969] suggested another estimator. Since the BLUS residuals,
u{,...,u;_k are mutually independent, he suggested that the n-k
mutually independent estimates uiz,...,uﬁ_i be used to test model
(2.23).

These estimates also have the desirable property of being

unbiased under HO' When it is recalled that u* = A'u, where A' is

chosen such that A'X = 0, A'A = In—k’ AA' = M, and that the

%2
1

DIAG [E(A'wu' A)]

diagonal elements of u*u*' are u ,...,uﬁz, it follows that

DIAG [E(u*u*')

n

DIAG (A' o2IA)

DIAG (o2 A'A)

2
DIAG (o° T, _4)

n
/‘\
Q
N N
—~————

°  nk
However, under HZ’ ul*z,...,un*2 are biased estimators of
o%,...,oi. In fact, given that
o% g
E(uu') = . =V,
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it is found that

DIAG [E(u*u*')] = DIAG [E(A'u u'A)]

= DIAG [A'VA]
Apqeeerenn aj,
= DIAG . .
_El,n-k’ n-k,n
P; 02. a o2
11 "1 In n
= DIAG
a o2 a 2
“n-k 1°1°%1-k n °n
2 2 2
817 97 * oeennn *al.
= DIAG
a2 02 + a2 0
n-k1l°71 n-k n n
if A(Z) is defined as {aijz}.
Hence, under Hz, the squared BLUS residuals are a weighted sum
. 2 2 . 2 2
of the true unobserved variances O seves0 - The weights a9 »ee0sqyp s

which are associated with each squared residual tiz, sum to one since
A'A = In—k' However, unlike the squared OLS residuals, none of these
weights is dominant. Hence, no squared BLUS residual actually
estimates any one of the variances ci,...,oﬁ. Therefore, under HZ’
it is conceivable for the squared BLUS residuals to be homoskedastic.
Ramsey § Gilbert's observation that the BAMSET procedure used
with OLS residuals was more powerful against H, than was the same
procedure using BLUS residuals can now be explained. Since the
squared BLUS residuals, under H,, are each an apparently equally

weighted sum of the true variances c%,...,oz the extent of the

n’
heteroskedasticity is masked. Consequently, OLS estimates of

ci,...,oﬁ are, under HZ’ more heteroskedastic than are the BLUS
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estimates of Oi""’oi' Therefore, the BAMSET procedure can more

easily detect heteroskedasticity when OLS estimates are used.
Although the OLS estimates of oi,...,oi are less biased, under
H,, than are the BLUS estimates, they are still biased. To offer a
solution for this problem, Rao [1970] and Chew [1970] independently
developed Minimum Norm Quadratic Estimators (MINQUE). Given that
M(Z) is defined as {mijz}, both Rao and Chew suggested that when M(z)
is non-singular, the MINQUE estimator ;2 can be defined. The vector
of estimators éz is defined as GWZ)_'DIAG(ééf), where éhis the vector
of OLS residuals. These estimators are unbiased under Hy and H,.
This will first be shown under HZ' As stated before (2.24), under
H,,

E(u') = V = and E[DIAG(u u')] = M® DIAG(u u').

Hence, one obtains

E®) = (M) E[DIAG@ u')]
= o5~ %) EQIAG (u u"))
02
: 1
= DIAG (E(uu')) = (E )
o

The estimator é? can similarly be shown to be unbiased under Hy by
2

L

just replacing oi,...,oi by the constant variance o~.

Although this procedure offers unbiased estimates of oi,...,oi

under Ho and HZ’ it does have three drawbacks. First, the n

2

o are not independent. This is obvious since n

estimates 8%,...,3
estimates are obtained by using a linear transformation of the OLS

residuals which have a rank of only (n-k). Second, though the
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MINQU estimators are unbiased under HO and HZ’ they also may be nega-

tive. To solve this problem, Rao § Subrahaniam [1971] have suggested

that when oi is negative, either a small number or a different

2

estimate of 0§ be used in place of 5?. Although this is a solution

to the problem of negative estimates, the resulting estimates are now
neither unbiased (under H0 or Hz) nor MINQU. Hence, this investigator
feels that the cost of correcting the neéative MINQU estimates 1is
greater than the cost of leaving the estimates negative.

The third problem with this procedure is that M(Z) is not always
non-singular. Mallela [1972] has, however, found a necessary and

sufficient condition for the matrix M(z) to be non-singular.

The last set of estimates of the variances oi,...,ci are

obtained from studentized residuals. Define the i'th studentized
residual is ﬁi = ﬁi/fmii , wWhere ﬁi is the i'th OLS residual
obtained after estimation of model (2.23) and where mii(#O) is again

the i'th diagonal element of the matrix M. The studentized estimator

of the variance of the i'th disturbance term cg, og is defined as

&% = ﬁiz; this estimate is unbiased under Ho. When m. is defined as

the i'th colum of the matrix M and it is recalled that migi =M,

because M is idempotent, one obtains

20 nen 2
E(o%) = E(u;%)
a2
= E(ui/m;5)
1 ~
= — E(u)
- 1 1
= Emjuu'm)
11
ol L
ii
21 2 M5 _ 2
Tom. BT T
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Also, since the i'th studentized estimate can be written in quadratic

form in the normally distributed disturbance terms u,

~N
(g
N

. —i
ii ii

[
=]

L |
=u'"m.m —u=u'QqQ.
u'mmo-u=u'lQu

8? is distributed as XZ with one (=trace Qi) degree of freedom.

However, there are two problems with the studentized estimates

of ui,...,oi. First, the n estimates oi,...,oﬁ are not distributed

independently. Since 8% can be expressed as a quadratic form in the

normally distributed disturbance terms, &% is independently

distributed of 8§(i#j) if and only if the products of the two

quadratics are identically zero. Hence, if Qin # 0, &2 is not

independently distributed of o,

=1 oo m
Qin m, M oM, mg

<2
J
M 7T
1
mii mJJ
m..

= m—%-m. m. % 0.
ii i)

1

Therefore, éi and 8? (i#j) are not independently distributed of one

another.

Second, just as with the OLS estimator, the studentized

estimates are biased under H,. However, also, just as with the OLS

estimates, the weighting scheme is such that the expected value of

the i'th studentized estimate is

2 2
20 M1 2 2 M4
E(05) = == oy + ... + 0, —+ ...
i m 4 1 i mii
The weights are:
2 2 2
M1 M4 Min

- ] oo 0 ’ - ’ . e 0 ’
P m.. m. .
mll 11 11

2
m.
_in 2 (2.27)
m. . n

11
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Since, as before, the sum of th%se weights, which are all positive,

ii n-k

is one, and the i'th weight oo =My has an expected value of -
ii
the i'th weight dominates the series. Thus, if the variances

oi,...,cﬁ are unequal (heteroskedastic), the estimates ci,...,éﬁ

will be unequal, though not unbiased.

Four estimates of the variances of the n disturbance terms have
been suggested. They all have some disadvantages. The MINQU
estimates are the only ones unbiased under both HO and H,. The OLS
and studentized estimates are similar to one another, except that
the studentized estimates are unbiased under HO whereas the OLS
estimates are only homoskedastic. The BLUS estimates are the only
ones that are mutually independent.

This investigator has decided to use either studentized or
MINQU estimates because they are both unbiased under HO. BLUS
estimates of oi,...,oﬁ were not chosen, though they are unbiased
under HO’ because of the bias that they contain under H,. Finally,
OLS estimates were not chosen because they have no apparent

advantage over studentized estimates.

I11.3.2 The POSEX Model

As has been previously mentioned, either some assumption or

a priori knowledge about the heteroskedastic error terms is necessary

2

n to be estimated. If estimation were

for all the variances oi,...,o
to be attempted without such knowledge or assumptions, the estimation
process would break down. The researcher would be attempting to
estimate n + k parameters (Bl,..., By oi,...,oﬁ) with only n

observations. Obviously, if one has a choice, it is more desirable
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to incorporate a priori knowledge about the variances ci,...,oﬁ than
make assumptions that may or may not be correct. However, it is not
unusual for a researcher to be confronted with a model that is
suspected of being heteroskedastic although no knowledge is available
as to which variable is causing the heteroskedasticity. In this case,
some assumption is necessary if estimation is to be made.

Present methods of estimation require that one make an assump-
tion about the variable(s) that are causing the disturbances to be
heteroskedastic and about the functional form that these variables
take on. In contrast, if a POSEX model can be used, many of these
assumptions can be dropped since a POSEX model estimates any
analytic function in a known set of variables. Hence, in using a
POSEX model, the only assumption necessary, if no knowledge exists,
is that the heteroskedastic disturbances be an analytic function of
the independent variables specified in the model. In developing a
test based on the POSEX model, this assumption is less restrictive
than any constructive or non-constructive (with one exception) test
now being used. Of course, if knowledge does exist, the POSEX
model should be changed to reflect that knowledge. This process
will be examined later in this section.

In order to develop a POSEX model without much a priori
information, one must assume that the variances are some analytic
function of the independent variables from the hypothesized model
(2.23), XpseeesXye The variance of the i'th disturbance term can
be written as

E@d) = 0% £(x;1,...5Xyy)s i=1,...,0. (2.28)
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When this assumption is used, the POSEX model must approximate
the analytic function f(*) in a four term power series expansion.
The equation formulated would be
2, _ 2 2
E(E)—O' f()—('l’.‘.")sl()-811+812 £2+ ...+81k£k+

(2) (3) 4

ay 477 +az g7 o, g (2.29)

where q denotes either the instrument i_(OLS predictor of y obtained
after estimating model (2.23)) of p (the first principal component of

the matrix X). Finally, when the expected value operator is removed

2

and either the studentized estimates &i,...,én

"2 =2

01,...,0n

oi,...,oﬁ, equation (2.29) becomes

or the MINQU estimates

are used as the instrument for the unobserved variances

02 _ 2 3 4
o5 = (Byy * Byp Xyp % eee By Xyt 9 G5 o3 95 * g 93)%s
i=1,...,n,

32, and where

where 3? denotes either the vector é? or the vector
Wyse.. W, are identically distributed as XZ with one degree of
freedom under Hy. Note that the disturbance term is not added onto
equation (2.29) but is multiplied by the model. Recalling that under
Ho, gi,...,gi are each distributed as scaled xz with one degree of
freedom, model (2.29) is used to estimate the scale factors.

Under HO that E(uiz) = 02 for i=1,...,n, only 811 will be
significantly different from zero. The null hypothesis of

hamoskedasticity will be accepted if

B1g = +or TR T

*3
whereas if any of the estimates are statistically different from zero,

then Hy will be rejected.



95

Under H, that E(u;%) = 02£(x;,...,X;}), for i=l,...,n, the
coefficients 612,.. . ’Blk’ @)y Gz, and oy should be jointly different
from zero. Of course, the probability that the estimates will be
statistically different from zero depends on a number of factors.
Three factors have been mentioned previously; they are whether the
instrument g is correlated with the expansion terms it replaces;
whether f(.) is analytic; and whether f(-) is approximated by a low
order expansion. One other factor which will influence the
probability that the coefficients will be statistically equal to

zero is how well the estimators 6_2 or 22 approximate the unobserved

2 2

variances, O sees0p.

11.3.3 Estimation of the POSEX Model and Testing for Heteroskedasticity

The conditional variance of the i'th disturbance term is given
by the POSEX model

02 _ 2 3 4
op = (Byy * Byp Xyp *oeer A Xyp v o itz d; tog )W

i=1,...,n, (2.30)
where LI i=1,...,n, are identically distributed as )(2 with one degree
of freedom under HO’ The parameters 811’ 812,..., Blk’ Gy Oz and oy
must now be estimated to determine if heteroskedasticity of the

form hypothesized, is present.

Maximum Likelihood Estimation

The first estimation procedure to suggest itself is maximum
likelihood. However, since the disturbance terms, LIE i=1,...,n,
are identically distributed as x2 with one degree of freedom, under

Hy» this procedure breaks down. The reason for this is that a x2
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distribution with one degree of freedom is an unbounded function;

thus, no maximum exists.

Estimation Using Ordinary Least Squares

The second method to suggest itself is the method of least
squares. Denoting the estimates of the parameters as 811,..., Blk’
ays Oz and @, One finds that under HO’

- _ 2
E (811) =0

E(8;,) = ... = E(B)}) = E(a,) = E(az) = E(z,) = 0,
whereas under HZ’ the expected value of the estimates of BlZ""’Bik
Ay g, and a, are jointly non-zero. The E(éll) under H, depends on
whether heteroskedasticity is mixed, E(éll)#o, or whether the
heteroskedasticity is pure, E(§11)=0. Because the hypothesis space
is divided depending on whether 812""’81k’ Gy Ggy and a, are
different from zero or not, an F test for the included variables
XoseeesXys 9?, g?, and gé is suggested.

However, two difficulties exist with the suggested F test. The
first difficulty is that the dependent variables 8%,...,83 are each
distributed as 02 x2 with one degree of freedom under HO’ Hence,
the statistic calculated by using the F test procedure is a ratio of
quadratic forms in non-normally distributed variables. Therefore,
the statistic is not distributed as F. Research carried out by
Donaldson [1968], however, indicates that an F distribution appears
to be robust against non-normality. He discovered, by using a
sampling experiment, that statistics which are a ratio of quadratics
in variables distributed as either log normal or exponential

(Pearson type III distributions) are approximately distributed as an
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F distribution. This finding was true for sample sizes greater than
4. Of course, the approximation became less and less accurate the
farther out on the tails the comparison was made. Since a distribu-
tion with one degree of freedom is a Pearson type III distribution,
it would not be surprising if the statistic calculated using the
F test procedure were approximately distributed as F.

Second, since neither dependent variable (MINQU estimates or
studentized estimates of oi,...,cﬁ) is composed of elements that are
mutually independent, the disturbance terms Wy,-..,W  are not mutually
independent. Once again, Donaldson's findings can cast same light on
the problem. He discovered that non-independence between the
mmerator and denominator of his quadratic forms helped to explain
why the statistics, which he calculated using variables distributed
other than normal, were distributed as F. To apply Donaldsom's
findings to the current situation, it should be noted that the

(0] [0}
n non-independent estimates, ci,...,oﬁ

can theoretically be
expressed as n-k independent estimates by some linear transformation
of the n estimates. Denoting this transformation by the (n-k) x n
matrix B, the (n-k) independent estimates ;i,...,;ﬁ_k are defined
as ;? =B E?. Using this formulation, the statistic calculated by
using the F test process can be expressed as a quadratic in n-k
independently distributed variables ;i,...,;ﬁ_k. However, when so
expressed, the quadratic forms are no longer independent. Hence,
the findings of Donaldsom are now applicable. Given those findings,
the lack of independence between WyseoosWp might enhance the
robustness of the statistic, defined by the F test procedure, to

non-normality.
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Therefore, even though unbiased estimates of the parameters in
model (2.31) can be obtained using ordinary least squares (regardless
of the fact that the disturbance terms are distributed asymmetrically),
the normal tests of significance break down. However, given the
findings of Donaldson, the statistics calculated might still be

distributed approximately as F.

Indirect Maximum Likelihood Estimation

The final estimation procedure suggested circumvents the problem
that the disturbance terms, wl,...,wh's, are not mutually independent.
This is accomplished by formulating a model which uses both the k
parameters Bl,...,ek and k + 3 parameters, 811,...,81k, @y, Oz and

oy The model to be estimated is:

Y. X X, .
TJL: 61 3:_"'- 82 +_12.+ eeas + Bk#’+ ui, 1=1,.oo,n’ (2.31)
(o (o O. 0.

1 1 1 1

where Upse..,U are independently and identically distributed

N(0, o°I), under Hy» and where

- 2 3 7
i -\/g;l B Xyp e B ikt o2 9 T3 t %9y -

To estimate this model, a maximm likelihood procedure must be used.

Q+

The maximum of the likelihood function L, under H,, is
defined as LZ’
L. = 1 — o 1/2 u, 2
2 . Va2 o. 1
i=1 i
where ;i is as defined above and uy is obtained from model (2.31).

The estimates of the parameters that maximize L, will be denoted as

él""’ék’ éll""’élk’ &2, &3, and &4. Under Hy,
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612 = ... = Blk =0, =0y =a, = 0 whereas under HZ,
BygseesByys 9ps Oz and a, are jointly non-zero.

To test the hypothesis of HO Vs. HZ’ a likelihood ratio
statistic can be used. Under HO that the variances are hamoskedastic,

the maximum of the likelihood function L is defined as L

1 2
Yi T By T By XypueeesBy X5y

_ 1
Ly = 4=1Vn o2 &P(-7 2

()

0:

=3

If one then defines the likelihood ratio statistic % as

=

0

;=20

2

’

it follows that -2 loge 2 is distributed as XZ with k + 2 degrees of
freedom.

This testing procedure is basically the one suggested by
Rutemuller § Bower. However, a POSEX model is used to explain the
variance rather than a model composed of the independent variables
XqseeerXyo This last estimation and testing procedure does not
contain any of the problems which were associated with the previous
two procedures. However, this estimation procedure is more easily

implemented in theory than in practice.

11I1.3.4 Further Observations on the POSEX Procedure

POSEX Model and a Reestimation Procedure

If it is found that the estimate of the parameters Bygseer By
ay, Oz and oy in the model (2.30) are statistically different from
zero, H0 is rejected. Since model (2.30) estimates the conditional

mean of 0%,...,oﬁ, n estimates of oi,...,oﬁ can be obtained. The
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estimates, denoted as oi,...,oﬁ can be used to reestimate model (2.30)
and thereby increase the efficiency of the estimates of the regression
parameters. Two methods of reestimation exist. The first method is

to transform model (2.23) into the model

y. X. X.
rl—=81}—-+ 2A12+...+ek .S (2.32)
o oi o 0§ 1

where u;, i=1,...,n are assumed to be independently and identically
distributed N(O, 021). Ordinary least squares can be used to
reestimate model (2.32).

The second method is to use Aiken's Method of Generalized Least

Squares. Using this method and denoting

;i ]
Q= ‘.
*n2
R

the new estimator for 8,

_§=(X'QRI”X'G'X.
These two methods will yield identical estimates of the parameters
ByseeesBy and 02.

However, it should be pointed out that since éf,...,éﬁ are
estimates, it is possible for them to be negative. If this is the
case, model (2.32) cannot be used to reestimate model (2.23) unless
the negative estimate is removed. This investigator suggests using
the absolute value of the estimate when the estimate is negative;
when this is done, the magnitude of the estimate variance remains
the same and the square root can be taken. However, when this is

done the estimates ByseeesBy and 02 will no longer be identical to

those obtained by the method of Generalized Least Squares.
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Incorporating a priori Information into the POSEX Model

Depending on the a priori knowledge about the heteroskedastic
disturbances, the POSEX model (2.30) can be varied in many ways.
Three different types of a priori information will be presented
here. First, a set of m(> 1) variables ZyseeerZy is thought to be
included with the variables XqeeesX in the unknown analytic
function, f(-). Second, only a set of mfz_l) variables ZyreeerZy
is thought to be in the unknown function, f(-). Third, only a set
of m(> 1) variables ZyseeesZy is known to be causing the hetero-
skedastic disturbances in some known way.

In the first case, the POSEX model could be formulated to

include the variables ZyreeaZye This would change model (2.30) to

02 _
o7 = (Byy * Byp Xjp * eor F By X 8y Zyp t et
2 3 4
Gm Zim+ oy qi+ az qi+a4 qi) Wy (2.33)

where Wpsee.,W are each distributed as XZ with one degree of
freedom under Hp, and where the instrument a3 is a linear combination
of z,,...,z, as well as X;,...,X..

In the second case, the POSEX model could be formulated to
include the variables 2590+ +924n but not to inc;ude Xsq00 009X g
Hence, the POSEX model would be

02 _ 2 3 4
o; = (zil §p % eov ¥ 2o 8.0t 0 Qi tagqrtay qi) Wy (2.34)

where Wysee.,W, are identically distributed as x2 with one degree
of freedom under Hy, and where q; is a linear combination of the
variables Zi1s0 e 924n and not the variables X5qsee o Xgye

i
In the third case, a POSEX model will not be formed since the

exact functional form involving the variables 23502 is known.
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To illustrate this, it will be assumed that the function involving
the variables 21502y is a quadratic of the second degree. The
model to be examined would be:

02 _ 2 2
oy = (611 Zig e F 8z 621 2t eee 8 Zim) Lf

(2.35)
where Wyseoo, W are identically distributed as x2 with one degree
of freedom under Hy- If m is large, the squared terms could be
replaced by an instrument; however, if the knowledge embodied in
model (2.35) is correct, introducing the instrument will reduce the
probability that the model will be able to estimate the
heteroskedastic disturbances.

Similarities Between the POSEX Procedure and Other Constructive
Testing Procedures

Using the POSEX model building technique presented in this
study, any of the current constructive testing procedures can be
deduced. To illustrate this contention, assume that it is known
that a single variable 5j in the form of a second degree quadratic
is causing the heteroskedasticity. Using this information, Glejser's
model can be obtained. If the model is estimated using OLS and
either a t or F test issued to test if the coefficients are
statistically significant from zero, Glejser's testing procedure
has been obtained. Similarly, Rutemuller § Bower's model and
Park's model can be deduced using the concept of a POSEX model,

a priori information, and the different estimation procedures

suggested. Thus, using the POSEX formulation and a priori knowledge
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as to the heteroskedastic disturbances, one can deduce all of the

constructive testing procedures.

1I1.3.5 Summary

In this section, a POSEX model was suggested to explain the
variance of the disturbance terms when heteroskedasticity is
presumed present. It was required only that the unobserved
variances ci,...,oﬁ be a function of the independent variables
from the hypothesized model.

Since the variances oi,...,ci are unobserved, four different
estimators of the variances were discussed. It was shown that
although squared OLS estimates are biased, they are, nevertheless,
homoskedastic under very non-restrictive conditions. Two estimators
were then chosen to estimate the unobserved variances.

Two possible ways in which to estimate the POSEX model were
suggested. A testing procedure for distinguishing between Hy and

H2 was associated with each of these estimation procedures.

Finally, some extensions of the POSEX procedure were suggested.



CHAPTER III
HYPOTHESES AND EXPERIMENTAL DLSIGN

A large number of hypotheses have been made in the two previous
chapters of this study. Unfortunately, since there are an infinite
number of different models that can be specified, none of these
hypotheses can, in general, be proven correct. Rather, each hypothesis
must be carefully examined using a very carefully selected subset of
model specifications. If an hypothesis is not refuted in the models
chosen, it will then be assumed that it can be generalized as being
valid for other similarly specified models. However, as the new
models differ more and more from the models that were chosen for
examination, the probability that the generalization will be invalid
increases. In contrast, it should be noted that if an hypothesis is
shown invalid for the models specified, the hypothesis has been proven
invalid in general.

Another difficulty still remains in testing the hypotheses made
in this study. Since all of the hypotheses concern various test
statistics, a method must be found whereby the probability of type I
and II errors can be determined for each test. However, since the
distribution of most of the test statistics discussed in this study
is not known, a sampling experiment, similar to others that have

been discussed, will be used to analyze the various statistics.

104
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This chapter will be divided into two sections. First, all of
the hypotheses made in this study will be restated and briefly
explained. Second, a sampling experiment will be presented that
examines various tests for a misspecified mean and heteroskedastic

disturbance term.

III.1 Hypotheses

It is most convenient to divide these hypotheses into two groups.
The first group contains hypotheses that are applicable to tests for a
misspecified conditional mean. The second group comprises those

hypotheses that are applicable to tests for heteroskedastic disturbance

terms.

III1.1.1 Misspecified Conditional Mean

Five broad hypotheses are made in this study regarding tests
designed to determine if a model has a misspecified conditional mean.
Since the reasoning behind each hypothesis has been previously given,
each of the five hypotheses will only be stated in this section of
the study.

1. Under the null hypothesis, Ramsey's test, Ramsey & Schmidt's test,
and the proposed test will each have a probability of type I error
equal to the alpha level at which each test is conducted.

2. When a variable is omitted from the hypothesized model, the
probability that Ramsey's test, Ramsey § Schmidt's test and the
proposed test will each correctly reject Hy will increase as the
correlation between the omitted variable and the included variables
increases. At some point, however, this trend will reverse itself
and as the correlation increases past this point, the probability

of correctly rejecting Hy will decrease.
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When the wrong functional form of either the regressors or
regressand is used, the power of all three tests will be an
increasing function of two factors. The first factor is whether
the correct functional form is analytic. The second factor,

which only becomes important if the function is analytic, is the
accuracy with which a Taylor expansion in four terms can approx-
imate the correct function.

Under the alternative hypothesis that the conditional mean of the
vector y is misspecified, the power of all three testing procedures
will be an increasing function of the number of sample observations
(n).

Under the alternative hypotheses of a misspecified conditional
mean, the power of the proposed test will be greater than the power
of either Ramsey's test or Ramsey § Schmidt's test.

I11.1.2 Heteroskedastic Disturbance Terms

Ten broad hypotheses are made in this study regarding tests

designed to determine if an hypothesized model is heteroskedastic.

Since, as before, the reasoning behind each hypothesis has been

previously given, each of the ten hypotheses will only be stated in

this section of the study.

1.

Under H0 of hamoskedasticity, the only tests that will have a
probability of type I error equal to the alpha level will be those
tests that define a statistic whose exact distributional form is
known. However, all other tests will have a probability of type I
error approximately equal to the alpha level at which those tests
are examined. Furthermore, that approximation will become

increasingly accurate as the alpha level increases.
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The probability of any test's correctly rejecting Hy will be an
increasing function of the amount of correct a priori information
available.
The power of all the tests for heteroskedasticity will increase as
the number of sample observations (n) increases.
The power of the various tests for heteroskedasticity will, in
general, be independent of the distributional form of the variable
causing the disturbances to be heteroskedastic.
The tests for heteroskedasticity will not display an increased
probability of type I error when the independent variables are not
drawn from a fixed distribution even though this choice of
independent variables insures that the diagonal elements of
fhe matrix M are not equal.
The power of the POSEX model and testing procedures to defermine
if a model is heteroskedastic will be a decreasing function of the
number of terms needed by a Taylor series expansion to approximate
the functional form (taken by the disturbance terms) to some level
of accuracy.
The power of the POSEX model and testing procedures will be, in
general, increased if the instrument p (first.principal component
of the matrix X) is used for the expansion terms versus the
instrument i_(the OLS predictor of y).
The power of the POSEX model and testing procedures will, in
general, be increased when é? (MINQU estimates of g?) is used as
the predictor of g? versus when é? (studentized estimates of g?)

is used.



108
9. The BAMSET tests with OLS residuals will have a higher probability
of correctly rejecting H0 than the same tests using BLUS residuals.
10. If the same amount of a priori information is incorporated into
all of the testing procedures, the POSEX model and tests will have

the highest probability of correctly rejecting HO.

ITII.2 Sampling Experiment

In order to test these hypotheses, the probability of type I and
type II errors must be calculated under various model specifications.
Because the finite distribution of most of the test statistics is not
known, these probabilities are most easily calculated by using a
sampling experiment. Hence, in the first part of this section, a
general sampling experiment will be outlined. Each of the following
two parts of this section will, in turn, be concerned with using this
experiment to examine various alternative tests for either a misspeci-
fied conditional mean of the vector y or heteroskedastic disturbance
terms. Both of these parts will have the same format. First, each of
the alternative hypotheses to be generated will be discussed with their
relationships to one another expressly pointed out. Next, the various
tests to be examined under the null and various alternative hypotheses
will be selected with special attention paid to justifying this
selection. After these two parts, a final summary of the experiment

and of all the models that are examined will be given.

II1.2.1 General Design of the Sampling Experiment

In conducting this experiment, the basic procedure will be to
test if a model that is hypothesized to estimate the conditional mean

of a sample of variables, YyreesYpe is misspecified because either the
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conditional mean has been misspecified or the disturbance terms are
heteroskedastic. This procedure will be repeated on 1000 independently
drawn samples of first 30, then 60, and finally 90 dependent variables,
Yyreee oYy (n = 30, 60 or 90). The percentage of times that each
specification error test rejects HO’ that the hypothesized model is
correctly specified, will then be recorded for nominal alpha levels of
.01, .05, and .10. The first four sample moments of each test
statistic will also be calculated. In this way, by defining 17
different populations of dependent variables from which the 1000
samples of M ERRED AT (n = 30, 60 or 90) are chosen, the testing
procedures under examination can be compared.

Each of the seventeen populations is defined by specifying the
conditional mean of the dependent variable and by adding on a disturbance
term that has a mean of zero and a specified variance. These population
definitions will be referred to as the 'true' models. Sixteen of these
"true' models are specified differently than is the hypothesized model.
Hence, it can be observed how the power of the various testing
procedures varies under different specification errors. These sixteen
models will be explained and examined, in turn, later in this section
of the study.

At this point, only the first 'true' model will be examined. It
is

Y = 50 + Sxil + Sxiz *us, i=1,...,n (3.1)
where Up,...5U, are independently and identically distributed as
N(0, 2500). The variables X115+ 00Xy aTE independently drawn from a
uniform distribution with end points of 0 and 100 (mean of 50 and

population variance of 833.33). In contrast, variables, X190 eesXos
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are independently drawn from a log normal distribution with a mean of
20.327 and population variance of 413.197. The population parameters
of the second variable guarantee that the Pr (0 < X4, < 100) > .99
for i = 1,...,n. Hence, with a probability of .99, both variables
cover the range, 0 to 100. Since, however, the two variables come
from two different independent populations, they are independent of
one another. One drawing of 90 observations was made for each of the
two variables. These observations are divided into 3 groups of 30
observations each. Hence, when n = 30, the first group will be used;
when n = 60, the first and second are used; and when n = 90, all
three are used. All 90 of these observations together with various
sample statistics for either n = 30, or 60, or 90 are given in
Appendix B.

The conditional mean of the dependent variables obtained from all

seventeen 'true' models will be estimated using the hypothesized model

Vi

=8y * ByX5p t BXin * Vi, i=1,...,n. (3.2)
where Vise-.sVy are assumed to be independently and identically
distributed as N(O, 02). Hence, when the 'true' model is model (3.1),
the hypothesized model will be a correctly specified model. In this
way, the probability of type I error can be calculated for each of the
tests examined. Similarly, since each of the specification error tests
is also used when the hypothesized model (3.2) is misspecified, the
probability of type II error can be calculated.

Only one difference exists in the basic procedure just outlined
when any of the sixteen remaining 'true' models are used. When the

'true' model has a conditional mean other than that specified by the

hypothesized model, only tests for a misspecified conditional mean
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will be examined. Likewise, when the 'true' model generates dependent
variables that are heteroskedastic, only tests for heteroskedasticity
will be examined. Although in using this procedure, the interrelation
between the various specification errors is not brought out (a study by
Ramsey § Gilbert, 1972, does make this comparison), this procedure was
necessary to save computer time and money.

Finally, in order to simplify the discussion of the sixteen
remaining models, three new variables will be defined. They will be
denoted by the vectors x;, X,, and X, respectively. The variables
XygseeesXy3 will be drawn from a normal population with a mean of 50
and a variance of 400. These population parameters ensure with a
probability of .99 that Xygsee+sX 3 will lie in the range of 0 to 100.
Once the sampling is made, the observations X]gs-+»X, 3 aT€ never
redrawn. Since X3 is drawn from a population independent of the
populations from which x; and x, are drawn, X; is independent of both
X; and Xx,.

The second set of variables Xqg0eee9Xg0 is a sum of the first

three variables. The i'th observation of Xy is defined by

X;4 = 5-428 log, x;; *+ 7.71 log, X;, + 3(xj5 = 50). (3.3
20

This variable is defined in such a way as to have a moderate correla-

tion with either x; or X,

Note that X140 2 Xn4 will also be
correlated with various powers of either X1p9ee+9Xpg OF XppoeesXp o
The third and final additional variable, X1gseesX 5o is defined

to be highly correlated with either x; or x,. The i'th observation

of x¢, defined in terms of x,, Xx,, and xz is

5428 x.q + 771 X;, + 3(x;5 - 50) .

20

Xjs = 1 (3.4)
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The E(xis) is 42.81 and the variance of X;c is 500.148. The population
correlation coefficient between x. and X;» and between x¢ and x, is .70.
Also, because of the way X is defined, the coefficient of determina-
tion obtained by regressing x¢ on x; and x, is 0.98.

A listing of all three variables appears in Appendix B. Also,
in Appendix B, corresponding to the sample sizes of 30, 60, and 90 are
the sample means, variance covariance matrix and correlation matrix of

the variables, x;, X,, Xz, X; and Xc.

II1.2.2 Sampling Experiment to Examine Tests that Discriminate Between
H0 Versus Hl
Of the sixteen remaining 'true' models (that is, the models that

actually generate the dependent variable) to be used in this experiment,
six were generated so that the hypothesized model (3.2) will misspecify
the conditional mean of the dependent variable. These six 'true'

models are divided into two categories. The first category consists

of three models designed so that the hypothesized model (3.2)
mistakenly omits a relevant variable. The second category, consisting
of the remaining three models, is designed so that either the
regressors or the regressand of the hypothesized model has the wrong

functional form. These two groups of models will be discussed in turn.

Variable Omitted from the Hypothesized Model

To generate a population of dependent variables that omits a
relevant variable from the hypothesized model (3.2), a model

Y; = 8p* By x5t By Xip * BSZi tu, is= 1,...,u, (3.5)

where Ups...,U are independently and identically distributed as

N(O, 02), is used. In using this 'true' model, both sets of variables
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X172+ 9 X1 and Xypsee+sX,y are defined as before. In each of the
three 'true' models that use this basic form, a different set of
variables Zyseees2y 1s used.
These different variables are the variables Xz5 X4 and X. that

5
were previously defined. The three 'true' models will then be

y; = 50 + Sxil + SxiZ + le3 *u, i=1,...,n, (3.5a)
y; = 50 + Sxil + lez + 5x14 *us, i=1,...,n, and (3.5b)
Yi = 50 + Sxil + 5x12 + Sxis *u,, i=1,...,n, (3.5¢)

where in each model Up,...,u, are independently and identically
distributed as N(0, 2500).

These three models (3.5a), (3.5b), and (3.5c) each generates a
dependent variable that causes the hypothesized model to be misspecified
because of an omitted variable. However, the omitted variables are
related to the included variables in different ways. The first omitted
variable is independent of the included variables, the second is
moderately correlated with the included variables, and the third is

highly correlated with the included variables. Hence, a relation

between correlation and the power of the various tests can be obtained.

Incorrect Functional Form of the Hypothesized Model

Three models are designed to cause the hypothesized model to be
miéspecified because an incorrect functional form is used. The models
are designed so that the correct functional forms are increasingly
difficult to approximate with a four-term Taylor series expansion.

The three 'true' models will be defined as:
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Yy = exp (2 + .05xil + .05xi2 + 2ui), i=1,...,n, (3.6a)

y; = el‘0 x%io x}éo eui, i=1,...,n, and (3.6b)
-2 .

y; = exp (-(-.25 + .02xil - .OSxiz + .Sui) ), i=1,...,n,

(3.6¢)
where in each model Up,...,u are independently and identically
distributed as N(0, 1), and Xqq9e 009X and X1+ ++,X , are as
previously defined.

Because model (3.6a) is an exponential model, it will be the most
accurately approximated (of the three models) by a Taylor series expan-
sion. The second model (3.6b) is analytic; however, since it is a
multiplicative function, it is less accurately approximated than model
(3.6a). Finally, since in the neighborhood of zero the last function
is discontinuous,model 7 is a non-analytic function in X9 and X:
and hence cannot be approximated using a Taylor Series expansion.

Note that each of these three models is written such that the
hypothesized model has the incorrect functional form of the regressors.
However, the first two of these models can be reformulated so that the

hypothesized models will have the incorrect functional form of the

regressand. Written in this way, the two models become

log, y; = 2+ .05x;; + .05x;, + 2u;, i = 1,...,n, and (3.6a)

loge Yi 1+ xi + Xiz + ui’ i = 1’..‘,n, (3o6b)

1

where in each case Upseeesl

L, are independently and identically

distributed as N(0, 1). Since an incorrect functional form of the
regressand can equivalently be expressed as an incorrect functional
form of the regressors, only one of the errors need be examined in

this study.
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The three models (3.6a), (3.6b), and (3.6c) each causes the
hypothesized model (3.2) to be misspecified because of an incorrect
functional form. However, the functional forms are chosen so that
they are not approximated equally accurately by a Taylor series
expansion in four terms. Hence, a relation can be determined between
the power of the various tests and the degree of accuracy by which a
Taylor series expansion of four terms can approximate the 'true'

functional form.

The Tests Compared

Three testing procedures (Ramsey's test, Ramsey § Gilbert's test
and Ramsey § Schmidt's test) have been used in the literature to
determine if the conditional mean of the disturbance terms has been
misspecified. The distributions of two of the resulting test
statistics are known (Ramsey's statistic and Ramsey § Schmidt's
statistic), while the distribution of the third is unknown. Hence,
since Ramsey § Gilbert's testing procedure offers no advantage over the
other two tests and offers the disadvantage of defining a test statistic
that has an unknown distribution, their test will not be examined in
this study.

Using a POSEX model, two additional tests Bave been developed.

They both determine if the conditional mean of the dependent variable

has been misspecified. The two tests differ, however, in the instrument
used to replace the expansion terms in the POSEX model. In one version,

the vector p (obtained from the first principal component of the matrix X) is
used as the instrument, while in the other version, the vector iv(the

OLS predictor of the dependent variable y) is used.
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This implies that four tests should be examined in this study.
However, it should be recalled that Ramsey's and Ramsey § Schmidt's
models and tests have been shown to be mathematically equivalent to
using a POSEX model and test with the instrument i, Hence, only one
of the three tests should be used. Because it is mathematically easier
to formulate and calculate the test statistic, the POSEX test, with
the instrument y, has been chosen. Thefefore, the hypothesized model
will be tested for a misspecified conditional mean of the dependent
variable only by using both POSEX testing procedures.

I11.2.3 Sampling Experiment to Examine Tests that Discriminate Between

H0 VS. HZ'

Ten 'true' models remain to be defined. All of these models are

used to examine the different tests designed to determine if an
hypothesized model is heteroskedastic. Hence, each of these 'true'
models is designed so that the hypothesized model will be misspecified
because it was incorrectly assumed to be homoskedastic. Since in each
of the models the heteroskedastic disturbance terms are generated in a
different way, a relation can be found between the power of the various
tests and the form taken by the heteroskedastic disturbance terms.
These ten models can be divided into three .groups. In the first
group, the heteroskedastic disturbance terms are a simple function of
one variable. In the second group, the disturbance terms are a non-
linear function of one variable. Finally, in the third group, the
disturbance terms are a function of a variable whose mean and variance

is conditional on some other variable.
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Heteroskedastic Disturbance Terms are a Simple Function of One Variable

Six 'true' models are generated which have the disturbance term
as a function of a single variable. All of these models are of the

form

y; = 50 + Sxi1 + Sxi2 *z;ug, i=1,...,n, (3.7)

where Up,...,u are independently and identically distributed as N (0,1)
and Xyp000 09X and X1ps+++sX 5 AT as previously defined. The
variable z; represents one of six variables that will cause the
\hypothesized model (3.2) to be heteroskedastic. These six variables
will be chosen for their relationship to the hypothesized model.

In the first two models, the variables used for z; are X and
X9 respectively. Since both of these variables are included in the
hypothesized model, the heteroskedastic disturbances (generated by the
first two 'true' models) are a function of a variable that the
researcher can identify. However, the variables differ from one
another since they are drawn from different distributions.

The third and fourth 'true' models are generated when either the
variable X;g OF the variable x, , is used as Z;- Recall that X;3 is
drawn from a normal population that is independent of X591 OF X555
whereas Xi4 is generated so that it is partially correlated with X5q
and Xsoe Hence, while the first two models generate heteroskedastic
disturbances that are a function of a variable that the researcher can
identify, the third and fourth models generate disturbances that are
either independent of those known variables or are only partially
correlated with them.

In the fifth model, z; will be replaced with a function of the

index i. The particular function is lggiil-. Although this particular
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variable will be (like xis) independent of Xsq and X599 it represents
the type of variance that increases over time. Note, however, that
normally when the heteroskedasticity is generated by a function of
time, the independent variables are also highly correlated with a time
index. Since in this case, i is independent of X:q and X5 this
particular form of heteroskedasticity will be a more difficult type
to detect than the normal type. Rather,.the model generated using
X4 conforms to the more typical occurence of the variance's increas-
ing over time since it is partially correlated with Xiq and Xsoe

The sixth and last model of the group replaces z; with E(yi).
This form of heteroskedasticity has been suggested by Theil [1951].

The population correlation coefficient between E(yi) and Xy is .817

1
while between E(yi) and X0 it is .576.

All six of these models correspond to various types of heteroske-
dasticity. The first two represent heteroskedastic disturbances caused
by a variable included in the hypothesized model. The third represents
heteroskedastic disturbances that are generated independently of the
model's variables, while the fourth represents disturbances that are
partially correlated with those variables. The fifth represents
disturbances that are related to some indexing scheme that cannot be
identified. Finally, the sixth represents the case where the
heteroskedastic disturbances are generated by the dependent variable.

Heteroskedastic Disturbances that are a Non-Linear Function of One
Variable

Two of the 'true' models to be generated have heteroskedastic
disturbances that involve a non-linear function. Both of these models

are of the form
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y; = 50 + Sxi1 + Sxi2 + f(zi)ui, i=1,...,n, (3.8)

where Up,--.,u are independently and identically distributed as
N(0 , 1) and X11000 09X and X1gse+sXpo have been previously‘defined.
The function and variable f(zi) represent two different non-linear
functions in a variable denoted as z5. The two functions, both
analytic, can be approximated using a Taylor series expansion with
different degrees of accuracy. |

The first analytic function, f(zi), has been suggested by Goldfeld
G Quant [1972]. It is a second degree quadratic in the variable X5q-
This function can be quite accurately approximated with a Taylor series

expansion of just two terms. The function will be

. 3. 29172

(500 + 10xi il .

1
The function f(zi) to be used in the second model is also an
analytic function; hence it can be approximated with a Taylor series
expansion. However, this approximation requires more expansion terms
in the Taylor series to achieve the same accuracy as is achieved with
the first function. The function is
75 + 50 SIN E(y;).

Heteroskedastic Disturbances that are a Function of a Variable with a
Non-Constant Mean

This last group of 'true' models are quite different from any of
the previously defined models. First a new variable, denoted as the
vector X, must be generated. The i'th observation of this variable
is drawn from a uniform distribution with end points of 0 and 1.5i
(population mean of .75i and variance of .1878i2). Since each

observation is drawn from a population with a different mean and
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variance, the vector Xg has a non-constant mean. The sample drawn
appears in Appendix B together with various sample statistics.
The first model generated with the variable X160+ X6 is
Y; = 50 + Sxi6 + 5xi2 *u,, i=1,...,n (3.9)
where Up,...,U, are independently and identically distributed as
N(0, 2500). In contrast, the other 'true' model in this group is

generated with a non-constant variance. It is

Y; = 50 + Sx16 + Sxiz * X;6 Uso i=1,...,n, (3.10)

where Ups... U are independently and identically distributed as
N(0, 1).

In testing both of these models, the hypothesized model is

Yi = Bp * BiXj * BoXin t Vs i=1,...,n, (3.11)

where ViseeesVy is assumed to be independently and identically
distributed as N(O, 02). Hence, model (3.11) is correctly specified
when model (3.9) is generated and is incorrectly specified when model
(3.10) is generated.

Both of these 'true' models represent forms of models previously
examined; a homoskedastic model and a heteroskedastic model in an
identifiable variable. However, since the variable X560 is used in
both of these models, there is a significant difference between these
two models and any of the previously generated models. In the case of
these two models, one of the independent variables is drawn from a
population with non-constant mean and variance. Under the null
hypothesis this will cause the diagonal elements of the matrix M
to be more unequal than previously and hence cause the OLS residuals

to be more heteroskedastic than previously. However, if the theorem
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proven in this study is correct, the OLS residuals should still appear

to be homoskedastic under Hy» and heteroskedastic only under H,.

Tests Examined that Discriminate Between H, and H,

One final decision must still be made before the experiment is
examined; that is, which of the tests for heteroskedasticity reviewed
and suggested is to be used to test if either of the two hypothesized
models (3.2 and 3.11) is misspecified.

A total of nine tests are currently being used in the literature
to discriminate between Hy and H,. They have been denoted in this
study as GQP, THEIL, RECURSIVE-P, GQN, RECURSIVE-N, BAMSET, PARK,
GLEJSER, and FIML. However, all of the tests do not have to be
examined if the findings of Harvey & Phillips are referred to. It
should be recalled that they found that the tests denoted as GQP,
THEIL and RECURSIVE-P (recall that these test procedures were identical
except for the predictors of c%,...,oﬁ used) had virtually identical
power under a large number of alternative hypotheses. Hence, there
seems to be no reason to compare the three tests again. Consequently,
only the more commonly used test, GQP, will be examined in this
experiment. Similarly, since the two testing procedures GQN and
RECURSIVE-N are identical except for the prediction of °i""’°§ that
are used, only the more widely accepted procedure, GQN will be used
in this experiment.

However, in contrast, since Ramsey & Gilbert [1972] found
indications that the BAMSET testing procedure can be used even more
successfully with OLS than with BLUS residuals, this procedure will be

examined using both sets of residuals. The two tests will be
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differentiated by suffixing BAMSET with O for OLS residuals and T for
BLUS residuals (developed by Theil). Hence, seven of the current
testing procedures will be examined in this experiment.

In this study, two different testing procedures have been
suggested to discriminate between Ho versus HZ’ Both of these
procedures used a POSEX model to explain the unobserved variances
o%,...,cﬁ. However, because the model could be estimated in two
different ways, two different testing procedures were suggested. It
should be recalled that when the POSEX model was estimated with OLS,
an F-test was suggested to test H0 versus HZ’ whereas, when full
information maximum likelihood (FIML) was used to estimate the model,
a likelihood ratio test was suggested. These two tests bring the
number of tests to be examined in this study to nine.

When these tests were used in a cursory examination, it was
discovered that the theoretically expected results were not being
obtained with some of the tests. All of these tests were formulated
with models that were estimated using a maximum likelihood procedure.
Since estimation by maximum likelihood requires an iteration convergence
procedure, it was found that the theoretically expected results could
only be obtained by increasing the nhmber of iterations. This result
was not entirely unexpected since Rutemuller § Bowers [1968] found
they needed 15 iterations to converge using the FIML technique.
However, since in this experiment the hypothesized model is examined
for heteroskedasticity 33,000 times (11 different populations of
dependent variables are estimated with 3 different sample sizes and
each is replicated 1000 times - 11 x 3 x 1000), increasing the number

iterations needed for each examination becomes very costly. For
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example, it was found in the preliminary study that the 2 tests that
use iterative estimation (FIML, POSEX using FIML) required 6 times the
amount of computer time than the 6 tests that do not use iterative
estimation. Hence, it was decided that neither of the tests which use
a maximum likelihood procedure would be examined in this experiment.

The information lost by not examining these two tests could prove
to be very small. One of the tests that was dropped from the experiment
was based on the POSEX model. However, since one test still remains
that is based on the POSEX model, the POSEX procedure can still be
carefully examined.

The second test that was dropped is the procedure developed by
Rutemuller § Bower [1968] and denoted as FIML in this study. Much
evidence already exists on this technique. For example, Goldfeld §
Quant [1972] discovered that when the correct form of the heterosked-
asticity was known, the FIML testing procedure had a higher probability
of correctly rejecting HO than any other test. In contrast, they also
found that when the form of the heteroskedasticity was not known, the
FIML testing procedure seemed to lose this advantage. Therefore,
since the FIML testing technique takes much more computer time than
other testing procedures (in the preiiminary examination it took 15
times as long as the other tests) yet offers no gain in power when the
form of the heteroskedasticity is not known, it appears as if the test
has a comparative disadvantage to other tests when a priori information
does not exist. Hence, since in this experiment it is assumed that no
a priori information exists as to the form of the heteroskedasticity,
very little information will be lost by dropping the FIML testing

technique.



124

Seven tests remain to be examined in this experiment. Since it
is assumed that no a priori information exists as to the form of the
heteroskedastic disturbances, many versions of the different tests are
used. In the four non-constructive tests (BAMSETT, BAMSETO, GQP, and
GQN), for example, the observations can be reordered by a variable
that is suspected of causing the heteroskedasticity. Since, however,
no information is available, each of the.tests will be reordered in
turn by using one of the independent variables of the hypothesized
model or by using y (the OLS predictor of y). In addition to these
three versions, each of the tests will also be used without reordering.
In this way, four different assumptions as to the form of the hetero-
skedasticity are being made. These different tests will be designated
by suffixing the test's name with the variable that was used for
reordering or by N for no reordering. Thus GQP becomes GQPX1 if the
test is reordered by the vector Xx;; GQPX2 if reordered by x,; GQPY
if reordered by y; and GQPN if no reordering occurs.

Likewise, in the two constructive tests (PARK and GLEJSER) that
are currently used in the literature, assumptions will also have to
be made. Since no information exists as to the form of the hetero-
skedasticity, it will be assumed in Pérk's test (denoted as PARK) that
the disturbances are of the form

2 a 2
E(ui) =2, 0%,

Since the variable 25 is unknown, this variable will be assumed to be,
in turn, one of the independent variables of the hypothesized set or
}i (the OLS predictor of yi). These three versions will be denoted as
PARKX1 (PARKX6 when X is used instead of 51), PARKX2, and PARKY.
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In Glejser's test (denoted as GLEJSER) it will be assumed that the
heteroskedastic disturbances are of the form

E(ui) = (Bp * By 25 * B z%)z o2,
Since once again z; is not known, it will be assumed, in turn, that
z; is one of the independent variables in the hypothesized model or
91 (the OLS predictor of yi). Each of these different versions will
be denoted as GLEJSERX1 (GLEJSERX6 when._)g6 is used in the hypothesized
model instead of 51), GLEJSERX2, and GLEJSERY. The estimated
coefficients El and éz will be tested for significance using an
F-test as was suggested earlier in this study.

These assumptions together with the assumption necessary for the
non-constructive tests expand these six tests into 22 tests. It is
important to note that the 'true' models were designed so that each
of the aséumptions made in the 22 tests would be exactly correct in
at least one instance. In this way it can be determined how the
power of each of these tests varies when a correct versus an incorrect
assumption is made as to the form of heteroskedasticity.

Although it has been shown how assumptions can be incorporated
into a POSEX model, in using the model in this experiment it will only
be assumed that the heteroskedastic disturbances are a function of the
independent variables in the hypothesized model. Hence, when the
model is hypothesized to be a function of x; and x, the POSEX model

designed to test for heteroskedasticity becames

o2 @ @ @
S TE TN TEhH T4 Y3l Tl T D

(3.12)
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where §? is a predictor of oi,...,cﬁ, q is an instrument for the
expansion terms and v is assumed to be distributed as N (P, 021). A
similar model could, of course, be formulated when the hypothesized
model is a function of x, and x,. Since OLS is being used to estimate
this model (3.12), an F-test will be used to determine if the para-
meters Bll’ 812, Yos Y3 and Y, are significantly different from zero.
This test will be denoted as POSEXH1 to indicate that it is a POSEX
model designed to test heteroskedasticity and estimated using OLS
(the first of the two estimation procedures earlier suggested).

Since it has been suggested that either i.(the OLS predictor of
y) or p (which uses the first principle component of the matrix X) to be
used as the instruments for the expansion terms, each will be used in turn
To differentiate between the two instruments, the acronym POSEXH1 will
be suffixed by Y if i_is used as the instrument or P if p is used.
Similarly, since it has been suggested that either é? (studentized
predictors of oi,...,oﬁ) or é? (MINQU predictors of °i"“’°ﬁ) be used
as the dependent variable in model (3.12), each will be used in turn.
As before, to differentiate between their use, either an S (studentized)
or M (MINQU) will suffix the acronyms POSEXH1P and POSEXH1Y. In this
way, four versions of the POSEX testAdesigned for heteroskedasticity
and estimated using OLS (POSEXH1) will be examined. They will be
denoted as

POSEXHIPS - POSEXH1 using the instrument p and studentized

predictor,
POSEXH1PM - POSEXH1 using the instrument p and MINQU predictors,
POSEXHILYS - POSEXH1 using the instrument i.and studentized

predictors,
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POSEXHIYM - POSEXHl using the instrument i_and'MINQUE predictors.

Hence, 26 different versions of the 7 different tests are to be
examined in this experiment. Through the use of the different versions
of each test, it will be possible to determine the relationship between
the power of each test and the version of each test used. This will
be especially enlightening when the different versions of each test
are the result of different assumptions as to the form of the

heteroskedasticity.

I1I1.2.4 Summary

In this section, a sampling experiment has been designed to
examine tests that determine if a model has a misspecified conditional
mean or has heteroskedastic disturbance terms. The basic procedure
used in the experiment was then presented: First, a population of
dependent variables is defined. Second, a sample consisting of n (set
first at 30, then at 60 and finally at 90) observations, is drawn from
this population. Third, the hypothesized model is estimated with the
first sample of n observations. Fourth, specified tests are used to
determine if the hypothesized model is misspecified and the results
are recorded. By repeating this process 1000 times, one can determine
the percentage of times that a given test indicafes that a model is
misspecified. This percentage then corresponds to either the probabil-
ity of type I error (if the hypothesized model is correctly specified)
or the power of the test (if the hypothesized model is misspecified).

In the second and third parts of this section, 17 different
populations of dependent variables are defined. The models that

generate each of these populations are summarized in Table 2 below.
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TABLE 2: Models that Generate the Dependent Variable

Dependent Variable

1 Yi = 50 + Sxil + SxiZ + 50ui
2 y; =50+ SXjp * SXy, ¢t SX;g + S0u,
3 Yi = 50 + Sxil + Sxi2 + Sxi4 + 50u,
4 y; =50+ Sxi1 + Sxiz + 5xis + S0u,
5 y; =exp (2 + -05x,, *+ .05x;, + 2u.)
- 1.0 1.0 1.0 u;
6 Yi =€ Xy Xjp et
= - -2
7 y; = exp(-(-.25 + 02x4q - .05x,, + .Sui) )
8 Y; T 50 + Sxil + SXiZ * XY
9 y; =50+ SXj1 * 5X5, * X; Uy
10 Y = 50 + 5*11 + Sxiz + xiSui
11 Y; < 50 + Sxi1 + 5xiz XUy
12 Yi = 50 + 5x59 + 5x;, + E(y;)uy
_ 100i
13 y; = 50+ Sxil + Sxi2 4 i
= 2 ,1/2
15 y; = 50 + 5x;; + 5x;, + (75 + 50 Sin(E(y;)))y
16 Yi = 50 + 5xi6 + Sxiz + 50ui
17 Yi = 50 % Sxye + SXyp * XyeY

Up,...,U, are independently and identically distributed as N(0, 1).
The variables Xy, X,, Xz, X4, X, and X are listed in Appendix B

together with the relevant sample statistics.
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The conditional mean of the dependent variables generated by the
17 models will be estimated using two hypothesized models. The first
15 populations of dependent variables will be estimated using the
hypothesized model

Yi T Bg * By X1t ByXt Vis i=1,...,n, (3.13)

where Visee.,V, are assumed to be independently and identically
distributed as N (0, 02). The conditional mean of the remaining two
populations of dependent variables will be estimated using the
hypothesized model

Yi = Bp * Bl Xy * By X5 * Vo i=1,...,n (3.14)

where Viseee,V, are again assumed to be independently and identically
distributed as N (0, 02).

Each of these hypothesized models will be tested to see if it is
misspecified. The hypothesized model used for the first 7 populations
of dependent variables will be tested for a misspecified conditional
mean. The first population should prove to be the only set of dependent
variables that is correctly specified. Two tests will be used to
determine this. The first is denoted as POSEXMP (POSEX test for a
misspecified conditional mean using the vector p as the instrument)
and the second as POSEXMY (same test as before except that the vector
i.is used as the instrument). The hypothesized models used for the
remaining 10 populations of dependent variables, together with the
population defined by model 1, will be tested for heteroskedastic
disturbance terms. The first and fifteenth populations should prove
to be the only sets of dependent variables that are correctly specified.
This will be done by using the 26 different tests which are listed in
Table C1 (the first table in Appendix C).



CHAPTER IV

RESULTS OF SAMPLING EXPERIMENT
AND OBSERVATIONS ON THE MAINTAINED HYPOTHESES

In this chapter, the results of the sampling experiment outlined
in the last chapter will be given. These results consist of reporting
the estimated parameters of the hypothesized model, examining the
percentage of times the various tests reject the null hypothesis
(power), comparing and contrasting the experimental results between
models in the same group, and commenting on the hypotheses stated in
the previous chapter.

To facilitate the discussion of these results, the two hypo-
thésized models will be restated and the groupings of the six 'true'
models reviewed. For models 1 through 15, the hypothesized model is

Yi = Bg*t By X5t By XtV i=1,...,n, (4.1)
while for models 16 and 17, the hypothesized model is

Yi = Bp* BgXig* By Xyt Vg i 1,...,n. (4.2)
In both cases, it is assumed that Vi i=1,...,n,'are independently
and identically distributed as N (@, oz) and that n is equal to first
30, next 60, then 90. The 'true' models were divided into six groups
for convenience. They were (1) a model that corresponded to the
hypothesized model (4.1), (2) models that included a variable not in
model (4.1), (3) models that had a different functional form than

130
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(4.1), (4) models that were heteroskedastic due to a simple function
of one variable, (5) models that were heteroskedastic due to a non-
linear function of one variable, and (6) models that included a
variable which had a conditional mean. Each of these six groups of
models will be discussed in one of the three sections of this chapter.
The first section will consider the correctly specified model (model
1); the second, the models with a misspecified conditional mean; and
the third, models that are heteroskedastic. In analyzing the results
of the experiment on each group of models, the estimates of the
parameters of the hypothesized model are given first. Following this
are the results of the specification error tests applied to each of
the models within the group and a summary of these results.

So as to avoid needless repetition, some standardized notation
will be introduced at this time. 1000 estimates of the parameters
80, 61 (86), 82 and 02 are obtained for each of the seventeen models.
For each of these models, the arithmetic average of the estimates of
each of the four parameters is denoted as B,, B; (8¢), B, and 3.
The variance of each of the estimates of Bys Bp (66) and o) is denoted
by V(8y), V(8)), (V(8¢)), V(8,). These variances are calculated
using the standard algorithm,

1000
Ve) = I (8; - B)5/999.
i=1

Also, since the hypothesized model is estimated using OLS, an estimate
of the variance of 80’ él (56) and éz is obtained for each of the 1000
times the model is estimated. The average of each of these estimated
variances is denoted as e (éo), 5% (él) (52(86)) and 3% (éz)

respectively. In addition, and F statistic is calculated to determine
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if the hypothesized model explains the conditional mean of
n

Yio i=1,...,n better than does the sample mean y = & yi/n. The
i=1

average of these F statistics for each of the seventeen models is

denoted as F.

IV.1 Hypothesized Model is Correctly Specified

The first group of models consists only of one model. In this
case, the hypothesized model is correctly specified. The 'true'

model is

yi = 50.0 + S.Oxil + S.Oxi2 + SOui, i=1,...,n, (4.3)

where Up,--.,u are distributed independently and identically as

N(0, 1). The estimates of the parameters of the hypothesized model
are shown in Table 3 for samples of 30, 60, and 90. It is evident
from this table that the estimated parameters become increasingly
accurate as the sample size increases from 30 to 90. This is
especially true for the estimate of the variance of the disturbance
term. It should also be noted that the estimated variance of each of
the parameters (32(81)) decreases as sample size increases, that is,
there is a gain in efficiency with increasing sample size. This gain
in efficiency is also cleaf from the fact that the sample variance of
each parameter CV(Bi)) decreases as the sample size increases.
Finally, it should be stressed that the estimated variance of the
estimates of each of the parameters is extremely close to the sample
variance of each of the parameters. In addition, with only one
exception (sample size 90, parameter 80), the difference between the
estimated variance and sample variance becomes smaller as the sample

size increases.
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Twenty-eight specification error tests were applied to model 1.
Two of these tests were designed to detect a misspecified conditional
mean while the other twenty-six were designed to detect heteroskedastic
disturbance terms. The results of these tests appear graphically in
Figure 1. The actual number of times out of 1000 that a test rejected
Hy appears in Appendix C with the relevant test statistics.

Figure 1 is designed to enable the reader to make a general
comparison of the various tests among the three sample sizes and
among the three alpha levels; it is not meant to be used for determin-
ing specific percentages of rejection. If the reader wants this
specific sort of information, he should use the tables in Appendix C.
In Figure 1, the test acronyms appear on the left side of the page
(a 1list of these acronyms appears in Appendix C). These are grouped
in terms of the knowledge utilized in each of the tests. First are
the POSEX tests, which require limited knowledge. These are followed
by tests assuming that Xy is causing the heteroskedasticity, next by
tests assuming Xos then by those assuming y, and last by those assum-
ing the order of observations. Each test has three lines associated
with it. Each of the three lines indicates one of the three different
sample sizes used, the upper line representing 30, the middle line
60, and the lower line 90. The length of the line up to the first
letter (o for sample size 30, x for sample size 60, and m for sample
size 90) represents the percentage of times the test rejected the
null hypothesis at the .01 alpha level. The length of the line up
to the second and third letters represents the percentage
of times the test rejected Hy at the .05 and .10 alpha levels

respectively (the line is continuous, the starting point for



Test
POSEXMY
POSEXMP
POSEXH1PS
POSEXH1YS
POSEXHIYM
POSEXH1PM
BAMSETTX1
BAMSETOX1
GLEJSERX1
PARKX1
GQPX1
GQNX1
BAMSETTX2
BAMSETOX2
GLEJSERX2
PARKX2
GQPX2
GQNX2
BAMSETTY
BAMSETOY
GLEJSERY
PARKY
GQPY

GQNY
BAMSETIN
BAMSETON
GQPN

GQNN

FIGURE 1:
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each of the 3 percentage levels being the same). The results shown
in Figure 1 can now be analyzed.

Since the hypothesized model is correctly specified, the
estimated alpha level (the percentage of times each test was observed
to reject HO) should correspond to the nominal alpha level at which
the test was made. Hence, the first o, x, and m for each test should
be approximately aligned with the 1% rejection level; the second
0, X, and m with the 5% rejection level; and the third o, x, and'm
with the 10% rejection level.

Both tests for a misspecified conditional mean (POSEXMY and
POSEXMP) conform to these criteria. The largest deviation from the
expected result occurs with the test POSEXMP at the .10 alpha level.
In this case, the percentage of rejections is approximately 11%, a
deviation of 1% from the expected result.

The results for the tests for heteroskedasticity are much more
varied. In order to analyze the results, it is useful to set up a
confidence interval about each of the nominal alpha levels. In doing
this, one presumes that the nominal alpha levels are correct so that
the probability of a rejection is known. Using the binomial distribu-
tion, one obtains the standard deviation of the number of rejections
at each nominal alpha level. The standard deviation is 3 for the .01
alpha level, 7 for the .05 and 9.5 for the .10. Since a binomial is
approximated by a normal distribution, + 2 standard deviations from
the nominal alpha level will be used as a95% confidence interval.

When this procedure is followed, the tests whose estimated alpha
levels lie outside the confidence intervals with the most regularity

are the POSEX tests for heteroskedasticity and both of Goldfeld &
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Quant's testing procedures. Of these, the tests that lie the furthest
from the nominal alpha levels are POSEXH1YM, POSEXH1PM and GQPN. With
all three tests, the estimated alpha levels average over 10 standard
deviations away from the nominal alpha levels. This difference is
large enough to cast serious doubts on the tests' validity.
Interestingly, the GQPN test procedure (Goldfeld § Quant's Parametric
test with no reordering) displays the greatest amount of divergence
from thé expected result. This is surprising since the test defines

a statistic with a known distribution and hence the estimated alpha
level should approximate the nominal alpha level at which the test

was made.

For samples of 60 and 90, the estimated alpha levels of the
remaining two POSEX tests are within 2 standard deviations of the .10
nominal alpha level. However, as the nominal alpha level decreases
to .05 and to .01, the number of standard deviations between the
estimated alpha level and the nominal alpha level increases. This
result, glthough unfortunate, was not unexpected since the testing
procedure used defines a test statistic that is only approximately
distributed as F. It was also known [Donaldson, 1968] that this
approximation becomes less accurate‘the farther out on the tail the
comparison is made.

In contrast, estimates for two of the three tests based on
Glejser's method are not within a 95% confidence region for a nominal
alpha level of .10, while for the lower nominal alpha levels, the
estimates are within the region. Since Glejser indicated that a nominal
alpha level of .11 should be used to obtain a 5% rejection level, it

is surprising that a relatively high degree of accuracy is obtained
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when a nominal alpha level of .05 is used. No explanation can be
given for this result although it should be pointed out that while
Glejser used a t test on each included variable, an F test on the
joint effect of the variables was used in this study.

The estimates of the alpha levels of the BAMSET tests (eight of
them) were never more than three standard deviations from the nominal
alpha levels used. Since half of the eight tests were defined using
OLS residuals and the other half using Theil's BLUS residuals, this
agreement between the estimated and nominal alpha levels confirms the
findings of Ramsey § Gilbert [1971] that the test can be used with
either set of residuals.

In contrast, it is extremely surprising that the estimates of
the alpha levels obtained for both the Goldfeld § Quant parametric
and non-parametric testing procedures were so frequently outside of
the 95% confidence interval about each alpha level (44 out of 72
times). Since both of these procedures define a statistic with a
known distribution, it was expected that these results would always
lie within the confidence limit.

Equally surprising is the small number of times the three Park
testing procedures lay outside of tﬁe confidence regions (1 out of 27
times). The estimated alpha levels diverged from the nominal alpha
levels less frequently in this test than did any other test examined.
Since the statistic is only approximately distributed as t, this
accuracy was unexpected. However, as previously mentioned, it was
anticipated that the estimated alpha levels in the PARK procedure
would agree with the nominal alpha levels more frequently than would

the estimates obtained from using the GLEJSER procedure.
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The only general comment that can be made applies to the sample
size used in each test. It appears that as the sample size increases,
the percentage of rejections generally approaches the alpha level at
which the test was made. However, there were exceptions even to this,
most notably POSEXH1PM, POSEXH1YM, GLEJSERY2, and GQPY.

In general, it appears that if the three tests that lie the
furthest outside of the confidence interval are discarded (POSEXH1PM,
POSEXH1YM, and GQPN), the overall results are reasonable. When the
sample size is small and the alpha level is large, the estimates of
the alpha levels obtained by using Goldfeld § Quant's testing
procedures lie the furthest outside a 95% confidence interval about
.10. However, as the sample size increases, the difference between
the nominal and estimated alpha levels decreases. At the lowest alpha
level examined, .01, the estimates of the alpha level obtained using
the POSEX procedures lie the furthest from the nominal alpha level of
.01. The nearest agreement between the nominal and estimated alpha
levels were obtained by using either the PARK or BAMSET testing

procedures.

IV.2 Hypothesized Models with a Misspecified Conditional Mean

Two of the model groups are examined in thié section; the group
that includes a variable not in the hypothesized model and the group
that has a different functional form than the hypothesized model.
After each of these groups has been analyzed, the section will end
with a discussion of the hypotheses made in Chapter III that pertain

to tests for a misspecified conditional mean.
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IV.2.1 Misspecified Conditional Mean Due to an Omitted Variable

There are three hypothesized models that omit a relevant variable.
In each case, the 'tfue' model is
Yi = 50.0 + S.Oxil + 5.0xiZ + 5.Ozi + SOui, i=1,...,n,
(4.4)
where Ups..-,l, are independently distributed as N(0, 1) and z;
denotes the variable omitted from the hypothesized model (4.1). It
should be recalled, however, that the three models differ in the degree
of correlation between the variable omitted from the hypothesized
model and the variables included in the hypothesized model. In the
first case, the omitted variable is independent of the included
variables (drawn from an independent normal distribution with a mean
of 50 and variance of 400); in the second case, it is moderately

correlated with each included variable (xi4 is defined as

= 3(x.,-50)
Xi4 = 5.428 loge X9 * 7.711 loge X;o ¥ ;3 ,

i=1,...,n);
and in the third, it is highly correlated (.7) with each included
variable (xis is defined as

X = (5428 X *+ .T7L X, + 3("%3'503 ,

i=1l,...,n,
hence the coefficient of determination between X;c and both X5 and
X9 is .98). The estimates of the parameters of the hypothesized
models are shown in Table 4 for each of the three sample sizes.

It is obvious from Table 4 that the estimates of Bo» Bl’ By and

02 obtained do not correspond to the parameters in the 'true' model

(4.4). The reason for this is that when an hypothesized model that
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omits a relevant variable is estimated, the estimates of BO’ Bl’ By
and 02 obtained include that part of the omitted variable that each
of the variables explains. A detailed discussion of this identifica-
tion problem is given in section I.2 of this study. Since, however,
the population correlation between the omitted variable and the
included variable is known in models 2 and 4, the expected values

of B> 61, g2 and 02 can be obtained. These are given in Table 5

below.

TABLE 5: Expected Value of Bys By By and 02 in Models 2 § 4

Parameter Model 2 Model 4
E(BO) 300 50.0
E(Bl) 5 7.7140
E(Bz) 5 8.855
E(02) 12500 2725

The estimates in Table 4 are very close to these expected values. In
addition, generally as the sample size increases, the estimates
converge on these expected values (two exceptions are Eb for sample
size 30, which is extremely close to begin with, and Ei for sample
size 90).

Unfortunately, the expected values for the parameters in the
hypothesized model cannot be calculated for model 3 because the
amount of Xiq and X5 in X:4 is not known. However, since in
model 2 the omitted variable is independent of the included variables
while in model 4 it is highly correlated with the included variables,
the estimated parameters for model 3, being moderately correlated,

should lie between those of model 2 and model 4. This observation

is confirmed by the results shown in Table 4. Moreover, since the
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correlation between X, and Xy is always greater than that between
X and Xy the estimates of By (associated with 52) differs from 5.0
(the true value of B, and B,) more than the estimate of By
(associated with x,).

All three of the models were tested for a misspecified conditional
mean by using the POSEXMY and POSEXMP tests. The results are shown
in Table 6.

In model 2, since the omitted variable is independent of the
included variables, the test is expected to have very little power.
This expectation is confirmed in the test results for model 2 in
Table 6. It should, however, be noted that for a sample size of 30,
the POSEXMP test, and, for sample size 90, the POSEXMY test rejected
the null hypothesis much too infrequently (this is especially obvious
at the 10% o level). Since these low rejections are not observed for
each sample size, however, it does not appear as if the tests are
biased.

In model 3 the test results also confirmed earlier expectations.
It appears that if the omitted variable has non-linear components of
the included variable, the test shows substantial power. This is
especially true for sample sizes of 60 and 90. It should also be
noted that the POSEXMP test shows a marked power advantage over the
POSEXMY test.

The test results on the last model in this group (model 4) also
provided the expected results. Since the omitted variable is highly
correlated with the included variables, very little of the omitted
variable is not explained by the hypothesized model; hence, the tests

for a misspecified model should have very little power. In fact, all
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TABLE 6: Percentage of Rejections of Models
With an Omitted Variable
Sample Size 30 60 90
o (100%) Level 1% 5% 10% 1% 5% 10% 1% 5% 10%
Test
Model 2
POSEXMY 0.8 3.1 8.6 1.9 7.6 15.6 0.1 0.7 1.7
POSEXMP 0.4 1.2 1.7 1.0 7.3 15.5 0.3 3.2 6.9
Model 3
POSEXMY 1.5 6.3 12.2 19.9 44.7 54.9 45.6 68.0 80.5
POSEXMP 2.2 10.0 17.5 30.2 55.5 66.8 62.6 81.4 90.6
Model 4
POSEXMY 0.5 4.3 9.4 0.8 5.3 9.9 0.6 4.1 9.7
POSEXMP 0.4 5.3 9.9 0.8 3.9 8.8 1.1 4.6 10.6
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of the test results for model 4 in Table 6 are within 2 standard
deviations of the nominal alpha level used for the test. Thus, the

test showed no gain in power over testing a correctly specified

model.

IV.2.2 Misspecified Conditional Mean Due to an Incorrect Functional
Form

There are three hypothesized models that have the wrong functional

form. The 'true' models are:

model 5 Y; = exp(2 + .OSxil + .05x, ¢+ 2ui), (4.5)
1.0 1.0 1.0 _u;
model 6 y; = e X X, e, and (4.6)
= -(- - -2
model 7 Y; = exp(-(-.25 + .02xil .05xiz + .Sui) ) (4.7)

These 'true' models, it should be recalled, differ in the degree of
accuracy with which the correct functional form can be approximated
using a four-term Taylor series expansion.

The estimates of the parameters of the hypothesized models are
shown in Table 7 for each of the three sample sizes. It is
immediately obvious that the estimates given in the table do not
correspond to the parameters given in models (4.5), (4.6) and (4.7).
This is due to an identification problem caused by using the wrong
functional form.

Each of the three models was tested for a misspecified
conditional mean by using the POSEXMY and POSEXMP tests. The results
are given in Table 8. Generally, the results are as expected. There
was a marked increase in power in both models 5 and 6 as the sample
size was increased from 30 to 60. In contrast, the power stayed

relatively constant as the sample size was increased from 60 to 90.
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TABLE 8: Percentage of Rejections of Models that have an
Incorrect Functional Form

Sample Size 30 60 90
o (100%) Level 1% 5% 10% 1% 5% 10% 1% 5% 10%
Test
Model 5
POSEXMY 2.5 7.9 12.9 85.4 89.1 90.9 66.7 72.3 77.9
POSEXMP 13.8 21.1 25.3 90.5 93.0 94.5 92.3 93.9 95.2
Model 6
POSEXMY 1.5 5.7 12.3 39.8 51.4 57.6 34.2 43.8 52.6
POSEXMP 8.6 14.5 20.6 55.6 66.1 70.7 51.7 61.3 69.7
Model 7
POSEXMY 1.6 5.2 9.8 4.8 19.1 29.7 1.0 4.9 10.0
POSEXMP 16.7 33.6 41.0 43.3 55.5 60.5 16.3 23.8 29.3
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It thus appears as if the power function rises very quickly with
respect to sample size and flattens out soon thereafter. Also, in
models S and 6, it should be noted that the test POSEXMP was more
powerful than POSEXMY for every sample size and alpha level examined.

Although there was generally a decrease in power going from
models 5 to 6 to 7, the decrease in going from 6 to 7 was not as
marked as expected when the POSEXMP was used. This was especially
true for a sample size of 30 where the power actually increased
substantially. Since model 7 is a non-analytic function (the
function is not continuous) in the neighborhood of 0.0 and since a
Taylor series expansion is not able to approximate a non-analytic
function, it was expected that the percentage of rejections would corre-
spond to the alpha level at which the test was made. These expected
results were obtained for sample size of 30 and 90 when the POSEXMY
test was used but were never obtained when the POSEXMP test was used.

IV.2.3 Examination of Hypotheses on Tests Designed to Detect a
Misspecified Conditional Mean

Five hypotheses were stated in section III.1 relating to tests
designed to detect a misspecified conditional mean vector. Observa-
tions on each of these hypotheses will be stated in turn.

Hypothesis 1 - In both the POSEXMY (equivalent to Ramsey's and

Ramsey § Schmidt's) and POSEXMP tests, the estimated alpha levels
were within 2 standard deviations (95% confidence region) of the
nominal levels at which the tests were made, as illustrated in
Figure 1.

Hypothesis 2 - It was also observed, as hypothesized, that the

power of each test increased as the correlation between the amitted
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variable and the included variable would increase. However, it was
also observed that this power function would decrease (as hypothesized)
when the correlation increased past some point. Unfortunately, since
only three points are observed on the power function, a more precise
statement cannot be made.

Hypothesis 3 - The third hypothesis was not completely verified

by the experiment although it was observed that the power of both
tests to detect the misspecified model decreased from model 5 to
model 6, and to a lesser extent, to model 7. (Recall that a four-
term Taylor series expansion became less accurate at approximating
the correct functional form of the model as the model numbers
increased from 5 to 7.) The reason that this acceptance is only
partial is that for the POSEXMP test for sample size 30, the power
calculated in model 7 is greater than that in either model 5 or 6;
this finding is contrary to the hypothesis since model 7 is a
non-analytic function.

Hypothesis 4 - It was also observed that the power of both tests

did not always increase as the sample size increased from 30 to 60 to
90 observations. Rather, the power increased as hypothesized only
when the misspecified model either had an omitted variable with
medium correlation or when the correct functional form was easily
approximated by a Taylor series expansion. That is, when the theory
behind the POSEX tests indicates that the tests would have little
power, the power is not increased by increasing the sample size.

Hypothesis 5 - The last hypothesis was maintained for every

alpha level, sample size, and model examined. It was continually

observed that the POSEXMP test was more powerful than the POSEXMY
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test was more powerful than the POSEXMY test (recall that this is
equivalent to Ramsey's and Ramsey § Schmidt's test). However, it
should be pointed out that some might find the POSEXMY test more

appealing because of its simplicity.

Summary

Hence, while the first, second, and fifth maintained hypotheses
were conclusively supported, the experimental results did not
campletely substantiate the third and fourth hypotheses. However,
the findings did indicate that the fourth hypothesis was true in
certain important cases and that the third hypothesis seemed always

to be true for large sample sizes.

IV.3 Hypothesized Models with Heteroskedastic Disturbance Terms

The remaining three model groups are analyzed in this section;
the group of models that are heteroskedastic due to a simple function
of one variable, the group that is heteroskedastic due to a non-linear
function of one variable, and the group that includes a variable with
a conditional mean. As before, after each group of models has been
analyzed, a discussion of the hypotheses made in Section III.1 that

pertain to tests for a misspecified conditional mean will be given.

IV.3.1 Heteroskedasticity due to a Simple Function of One Variable

There are six hypothesized models that are heteroskedastic
because the disturbance terms are multiplied by a single variable.
In each case, the 'true' model is

y; = 50.0 + 5.0xi1 + 5.Ox2 *z.u,, i=1,...,n. (4.8)

However, the variable z; differs for each model; it is Xiq in model 8,
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X;, in model 9, X4z in model 10, X4 in model 11, E(yi) in model 12,
and 100i/n in model 13. Because of these differences, the six models
differ in the form of heteroskedasticity and the relation between the
disturbance terms and the included variables in the model. The
estimate of the parameters of the hypothesized model is shown in
Table 9 for each of the sample sizes examined.

In every case, the estimates of BO; B> and B, are statistically
equal to the true values of the parameters. Of the divergences from
the true values, the greatest is about 11% and occurs in model 12 for
sample size 90. This unbiasedness is even more evident if model 12 is
discarded since the largest bias in the remaining models is less than
2%. It should also be noted that in all but one case (Eé, model 9),
the bias in parameters By and By becomes smaller (or shows a negligible
increase) as the sample size increases from 30 to 60 to 90. This
does not appear to be true for BO. This result, however, is not
entirely surprising since the estimates of the intercept terms have
such large variances associated with them.

Next, it should be noted that the estimated variance of all the
parameters and the sample variance of the parameters decreases as the
sample size increases; that is, theré is an increase in efficiency as
the sample size increases. Also, it should be noted that with a few
exceptions (most notably By in model 12 and in model 9), the average
estimates of the variance of each parameter (E’(éi)) are extremely
close to the observed variance in the parameter estimates (V(éi)).

The last estimated parameter to be examined is the variance of
the disturbance term z;u,. If the averages of the estimates of the

variance (52) for the different sample sizes are simply compared,



TABLE 9: Estimation of Simple Heteroskedastic Models
Sample Space 30 60 90
Parameters 0 1 2 0 1 2 0 1 2
Model 8
Bi 49.722 4.983 5.038 50.273 4.986 5.002 50.410 4.990 4.996
52(8i) 916.19 .1414 1.130 266.68 .0702 .1106 193.30 .0481 .0531
V(B;) 380.05 .1683 .7760 152.32 .0869 .1804 80.994 .0546 .0667
a2,p 3596.9 109.90 3420.6 359.45 3670.5 572.22
Model 9
Bi 50.120 4.995 5.008 50.442 4.997 4.982 50.762 4.996 4.975
52(8;) 103.94 .0160 .1282 57.971 .0152 .0240 61.047 .0152 .0167
V(i) 84.734 .0129. .3322 88.003 .0120 .3856 86.915 .0085 .1941
a2 F 408.06 987.59 743.56 1924.2 1159.2 2076.4
Model 10
Bi 49.174 4.989 5.055 49.666 4.997 5.007 50.032 4.997 5.000
o2(8;) 869.12 .1341 1.072 257.872 .0679 .1069 167.811 .0418 .0462
v(éi) 915.01 .1495 1.229 236.115 .0689 .0572 162.448 .0415 .0450
o2, F 3412.1 76.51 3307.6 368.21 3186.5 656.24
Model 11
Bi 49.710 4.990 5.034 49.923 4.995 5.002 50.313 4.995 4.995
32(8i) 452.25 .0690 .5570 134.88 .0355 .0559 94.109 .0234 .0258
V(B;) 329.62 .0670 .6424 114.82 .0341 .0886 68.273 .0192 .0457
52,F 1775.5 213.35 1730.1 695.42 1787.0 1159.7
Mcdel 12
Bi 48.649 4.881 5.275 53.323 4,908 4.925 55.775 4.929 4.854
G2(8i) 46735. 7.721 57.64  14929. 3.930 6.190 11798. 2.936 3.244
V(B;) 24684. 7.777 58.99 17756. 4.267 28.97 8445.2 2.653 12.80
52,f 183478 2.080 191486 9.151 224025 11.578
Model 13
B 49.615 4.985 5.061 49.585 5.003 5.005 50.240 4.994 4.996
52(8;) 894.64 .1380 1.103 264.72 .0696 .1098 178.26 .0443 .0490
V(gi) 789.46 .1269 .8713 254.92 .0621 .1227 155.50 .0415 .0652
52,F 3512.3 75.591 3395.4 363.75 3385.0 620.86

152
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extremely misleading information will result. This becomes evident
if one notes that for any model and sample size, the variance of the
disturbance term is
= . 2 _ 2.2, _ 2 2
Var(ziui) = E(ziu.i E(ziui)) = E(zi uy ) = E(zi ) E(ui )
2

E(zi) = Var(zi) + (Mean(zi))2

since the E(ui2)=1 and where Mean and Var denote the sample mean and
variance of z,. Hence, the variance of the disturbance term depends
on the sample of zy used. The expected variance of the disturbance
term for each model and sample size appears in Table 10. Whereas the

TABLE 10: Variance of Disturbance Terms
In Simple Heteroskedastic Models

Sample Size 30 60 90

Model 8 3677.922 3516.607 3694.970
Model 9 432.890 978.705 1334.608
Model 10 3055.475 2936.759 3204.806
Model 11 1810.687 1764.628 1806.472
Model 12 188204.8 205926.9 229139.5
Model 13 3530.487 3431.250 3398.457

superficial examination of the estimated variances in Table 9 could
lead one to conclude that the estimate of the variance was biased
(especially model 9), one now finds that the estimates are unbiased
with the.divergencies from the true values generally decreasing
slightly as the sample size increases.

Next, each of the six models was tested to determine if the
disturbance terms are heteroskedastic. The results for each model
appear on a separate figure and will be examined in turn. The reader
is referred to section IV.1 for a basic explanation of all the

following figures.
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The test results for model 8 appear in Figure 2. In this model,
the heteroskedasticity is caused by the variable x,. The most obvious
result which can be inferred from Figure 2 is that the group of tests
that assume that x, is causing the disturbances to be heteroskedastic
together with those tests that did not reorder the observations have
comparatively little power. Noteworthy for their slight differences
are the BAMSET tests when the observatibns have been reordered by X.
Also strikingly obvious is the fact that the tests with the greatest
power are those that assume (correctly) that the heteroskedasticity is
caused by X;- Next most powerful are the tests that use the predicted
value of y which are closely followed by the POSEX tests. The
difference in power among these tests appears to be very small for a
sample size of 90 and increases as the sample size decreases.

Generally, the results are as expected. Since the POSEX tests
require less a priori information, it was expected that they would
have less power than the tests which correctly assumed that X, was
causing the disturbances to be heteroskedastic. One rather surprising
finding is the extremely good results obtained by the tests that
assumed that the predicted values of y were causing the heteroskedas-
ticity. Another somewhat surprising result was how well the BAMSET
tests did when the observations were incorrectly reordered by x,.

The results for the next model, appearing in Figure 3, are
unfortunately not as definitive. The heteroskedasticity is caused by
X, in this model. Unsurprisingly, the most powerful tests overall
seem to be those that assumed that the variable x, was causing the
disturbance terms to be heteroskedastic. Although these tests as

well as all the others seem to show a marked loss in power for a
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sample size of 30, the power loss does seem to be less for this
group of tests. The next most powerful set of tests seem to be the
POSEX tests. This superiority over the remaining tests is most
evident for sample size 60 and, to a slightly lesser degree, for
sample size 30. The tests that reordered the observations by using
the predicted values of y did comparatively worse, particularly for
sample size 30, in correctly rejecting fhe null hypothesis in this
model than they did in the previous model. Surprisingly, the tests
that did not reorder the observations showed a considerable increase
in power over that displayed in the previous model. Similarly, the
Goldfeld § Quant and BAMSET tests that reorder the observation; by
the wrong variable (51 in this case) showed a marked increase in
power over the last model.

In both models, the tests that correctly assume the variable
which is causing the heteroskedasticity seem to display the greatest
power. However, since a test that incorrectly assumes that the
variable causing the heteroskedasticity has low power, the tests
that display the greatest overall power are the POSEX tests. Never-
theless, these are closely followed by the BAMSET tests that reorder
the observations by the predicted value of y.

In contrast to the overall excellent results obtained in the
last model, the results of Model 10, appearing in Figure 4, are
extremely poor. It should be stressed that this was expected since
the variable causing the heteroskedasticity is independent of the
variables in the hypothesized model. One surprising result is the
slight power advantage displayed by all of the BAMSET tests. Equally
notable was the tremendous power displayed by the GQPN. However,
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since the alpha level under Ho could not be determined, this result
loses much of its significance. For all of the tests it was
suspected that the percentage of rejections would correspond to the
alpha level at which the tests were made.

The results of model 11, appearing in Figure 5, were even more
consistent with the expected results than those obtained from the
previous model. Recall that in this model the variable causing this
model to be heteroskedastic is a weighted sum of non-linear functions
of x;, X,, and X;, two of which are variables in the hypothesized
model. With the exception of the tests that did not reorder the
observations, all of the tests displayed extremely similar power.
Nevertheless, the GQP tests seem to show a slight overall advantage
closely followed by the POSEX tests, BAMSET tests, GLEJSER and PARK
tests.

The results of model 12 are given in Figure 6. In this model,
the E(y) is causing the disturbances to be heteroskedastic. The tests
that assumed X, was causing the heteroskedasticity seem to display
the greatest power. Next most powerful are the tests that assume i
is causing the problems which are closely followed by the POSEX tests.
This ranking is most evident if one makes the comparison with a
sample size of 30; at the other two sample sizes, 60 and 90, the
differences appear to be negligible. Although the E(y) is composed
both of X and Xx,, it appears as if the tests that rank X3 display
an advantage because the mean and variance of x, is less than those
of x,.

In the last model examined in this section, the variable causing

the disturbances to be heteroskedastic is 100i/n, where i is the
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observation number and n is the number of observations. The results
of this model appear in Figure 7. Since the variance of the disturb-
ance term increases with the observation mumber, it was not surprising
that the most powerful tests were those that did not reorder the
observations. Once again, however, the other BAMSET tests displayed
a much greater power than was expected. This is true to a lesser
degree with respect to the GQP tests and the POSEX tests. Also,
unlike most other models, only a small increase in the power was
observed in all the tests as sample size increased from 30 to 90.

The results of this group of models seem to indicate that if the
variable that is causing the heteroskedastic disturbance is known, the
test used should reflect this knowledge. Under these conditions, the
GQP test seems to be the most powerful followed closely by the BAMSET
tests and the GLEJSER and PARK tests. Although the latter two are not
as powerful, they have the advantage of being constructive tests. If,
however, knowledge about the variable causing the problem is unknown,
it appears that the tests with the greatest power are BAMSET tests
with the observations reordered by the predicted value of y. This
is followed by GQPY, the POSEX tests, GLEJSERY and PARKY. The last
three tests have the advantage of being constructive tests. Three
surprising results were observed in this group of models. First was
the generally high power displayed by the BAMSET tests. Second was
the typically large gain in power observed as the sample size was
increased from 30 to 60 observations. Third was the unexpectedly
high power displayed when tests based on the E(y) were used when the

correct knowledge was unavailable.
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IV.3.2 Heteroskedasticity Due to a Non-linear Function

Two models are examined which are heteroskedastic because the
disturbance terms are multiplied by a non-linear function of a single
variable. The basic model is given in equation (4.8); however, in

this group of models, z; is a non-linear function. In model 14, the
2 )1/2
il
15, the disturbance term is multiplied by 75 + 50 sin (E(yi)). These

disturbance term is multiplied by (500 + 10x;, + x while in model
two functions differ from the last group of models in two ways.

First, the heteroskedasticity generated in these models is mixed (has
a non-zero intercept) while in the previous group it was pure. Second,
the heteroskedastic disturbances generated in this group are more
complex than in the previous group since more Taylor series expansion
terms are needed to correctly identify the function in this latter
group.

The results obtained from estimating the hypothesized model
appear in Table 11. As with the previous group of models, the
estimates of Bys B1» and By obtained are statistically equal to the
parameters given in model (4.8). However, as with previous models,
while the estimates of By and B, converge to the true values as the
sample size increases, the estimate of Bo does not. In contrast, all
three parameters show a significant gain in efficiency as the sample
size increases from 30 to 60 to 90 observations. Finally, it should
be noted that although the estimated variances seem to be very
volatile, this is once again due to the samples of x; and x, used
in this study. When these differences are taken into account, the
variance converges to the expected variance as the sample size

increases.
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The results of testing model 14 for a heteroskedastic disturbance
term are given in Figure 8. The results of testing this model are
similar to the results obtained for the last group of models. The
most powerful tests are again the ones that used correct knowledge
as to the variable that is causing the disturbances to be heteroske-
dastic. Also, it is interesting to note that of the tests using X5
the PARK test uses the least correct a priori information (it assumes
that E(uiz) = xgl oz, whereas GLEJSER correctly assumes that the
E(uiz) = (30 + B8 X1 * 8, xiz) 02 and the other tests correctly
assume that the heteroskedastic function is monotonic in the range
examined) and hence shows the least power of all the parametric tests
compared.

Also, as before, there seems to be a large gain in power as the
sample size increases from 30 to 60 and less of a gain as the number
of observations are increased from 60 to 90. It should also be noted
that the BAMSET tests that incorrectly assumed the wrong variable as
well as the tests that did not reorder the observations all displayed
a greater power than one would expect.

Finally, it must be pointed out that the POSEX tests, though
displaying a respectable amount of power, were generally less powerful
than the tests that assumed that the heteroskedastic disturbances were
caused either by variable x; or by the E(y). At first glance, this
result seems unexpected since the POSEX tests were to have an advantage
when the heteroskedastic disturbances were non-linear. However,
because the tests examine a predictor of the squared disturbance
term, the function that is examined by the tests is

1/2,2 2

2 -
((500 + 10x;; + x;1°)7" %)% = 500 + 10x;; + x;9°.
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The slope of this function is inl + 10 which is a monotonic function
in the region in which Xiq is restricted (0 < X5 < 100). Therefore,
the advantage the POSEX test appeared to have is minimized and in
some cases removed altogether (the Goldfeld § Quant tests and the
BAMSET tests). In conclusion, it should be recalled that this model
was included in this study because it was a more complex function
(involving two terms and a non-zero intércept), not because it was
thought to be non-monotonic in the area of interest. Instead, the
following model was designed to fill this gap.

In Figure 9, the test results for model 15 are reported. In
this model, the POSEX tests have the lowest power closely followed by
the other constructive tests (GLEJSER and PARK). Although this result
was suspected for the latter two tests, it was unexpected for the
POSEX tests. However, in retrospect, it should have been expected.
To understand why this is, one must carefully examine the function
used; it is: 75 + 50 Sin(E(y)). Since Sin x ranges between -1 and
+1, it was expected that this function would range between 125 and
25. However, because E(yi) is conditional on X5 and X599 both of
which range between 0 and 100 with a probability greater than .99,
the E(yi) can range from 0 to 1050. 'This means -that the function
oscillates between 25 and 125 a total of 167 times. Therefore,
since only a maximum of 90 points are observed on this function, the
function is not clearly defined and the points appear to be random.
Thus, the POSEX tests, as well as all the other tests, do not reject

the null hypothesis of homoskedasticity as often as would be expected.
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FIGURE 9: A Schematic Diagram of Test Results for Model 15
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Finally, since the constructive tests reject the null hypothesis
of homoskedasticity less often than do the non-constructive tests, it
appears as if the non-constructive tests are slightly more sensitive
to the alternative hypothesis than are the constructive tests. This
is probably because the distribution of the non-constructive test
statistics is known exactly (or asymptotically) while the distribution
of the constructive test statistics is known only approximately.
However, it should be emphasized that while the loss in power incurred
in using the constructive tests is slight, these tests possess the
great advantage of providing the researcher with estimates of the

heteroskedastic variances.

IV.3.3 Models that Involve the Variable Xe

There are two models which involve the variable Xg- One of these
models is homoskedastic while the other is heteroskedastic because
the variable X is multiplied by the disturbance term (see Table 2).
In both cases, the model hypothesized is

Yy = Bo * Bp X6 * By X5p * V5 i=1,...,n.
These models differ from all of the previous models in that the
variable Xg is drawn from a uniform population conditional on the
observation index i. The distribution which X6 (i'th observation)
is drawn from is (0, i.5i). Hence, each observation of X is drawn
from a different distribution.

The results of estimating the hypothesized model appear in
Table 12. It is once again obvious that the estimates of Bo> Bg and
By are statistically equal to the 'true' parameters' values of 50, 5,

and 5 in both models. Also, a gain in efficiency is noted for the
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estimated parameters Bo» Bg and B, as the sample size increases.
Finally, it should be observed that the average of the estimated
variance of each parameter, Ez(éi), is different from the observed
variance, V(éi) for the parameter B in model 17 for all three
sample sizes.

The results of testing model 16 for heteroskedasticity appear
in Figure 10. Since this is a homoskedastic model, the percentage
of rejections for all the tests should correspond to the alpha level
at which the test was made. However, since in this case, the vari-
ables X160+ X6 aTE drawn from n different populations, the diagonal
elements of the matrix M will vary more than they will in the other
homoskedastic model examined. Hence, the expected value of the OLS
predictors, ﬁi,...,ﬁn, of the time variance 02 will vary more than in
the other homoskedastic model examined. Therefore, on the basis of
this information, it would seem reasonable to suspect that tests for
heteroskedasticity which use OLS residuals will incorrectly reject
the null hypothesis a disproportionate number of times. However, as
was shown earlier in this study, since the maximum squared variation
k(n-k k

~K < 2, the OLS

predictors of the variance (which are a function of the diagonal

in the diagonal elements of the matrix M is

elements of the matrix M), although not constant, actually display
little variation under the null hypothesis of homoskedasticity.
Thus, it should instead be expected that all of the tests for
heteroskedasticity will reject this model as often as they rejected
the other correctly specified model (model 1, Figure 1).

The test results substantiate these expectations. The single
exception is the test GQPY which rejected the null hypothesis a much

greater percentage of times than it did in testing model 1 (the null
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model). The rest of the tests generally rejected the null hypothesis
about the same percentage of times as they did when model 1 was
tested. There are, of course, some occasions where, for a specific
alpha level and sample size, different results are obtained (for
example, GLEJSERZ2, sample size 60, alpha level .10; and PARKX2,
sample size 30, alpha level .10), but no general pattern was visible.
Also, because the tests suffixed by X1 are now using a different
variable, Xg» there were some minor differences in the percentage of
rejections for sample size 30, but by sample size 90, these
differences had vanished.

The results of the heteroskedastic model involving Xg appear in
Figure 11. There are many marked differences between these results
and the results of model 8 (heteroskedastic in 51) which appeared in
Figure 2. The most striking difference is that the tests which do
not reorder the observations show an extremely large gain in power
with the percentage of rejections about tripling. The only other
major increase in power is observed at all three alpha levels for
the POSEX tests when only 30 observations were used. Interestingly,
the PARK, GLEJSER, and GQN tests all show a decrease in power for
all three alpha levels when the 30 oﬁservations category is used.
This decrease is especially acute for the tests when the expected
value of y is thought to be causing the heteroskedasticity. In
general, none of the tests, except those without reordering, showed

any change in power for either sample size 60 or 90.
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IV.3.4 Examination of Hypotheses on Tests Designed to Detect
Heteroskedasticity

Nine hypotheses were stated in section III.1 relating to tests
designed to detect heteroskedastic disturbance terms. A number of
comments, observations, and findings pertaining to those hypotheses
will now be given.

Hypothesis 1 - In testing the correctly specified model (model 1),

it was observed (from Figure 1) that the tests POSEXH1YM, POSEXH1PM,
and GQPN rejected the ﬁull hypothesis many more times than hypothesized.
Although this finding was contrary to the hypothesis, it was

especially unexpected in the case of Goldfeld § Quant's parametric

test. Since the distribution of the GQPN test statistic is known,

it was expected that the estimates of the alpha levels would be very
close to the nominal alpha levels at which the tests were made.

Instead, it averaged over 10 standard deviations away from the

nominal alpha levels. In general, it was not observed, as hypothesized,
that the tests which were within a 95% confidence region (+ two
standérd deviations) about the nominal alpha levels were those with

a test statistic with a known distribution. Rather, the tests that
were within the confidence region most regularly were the PARK and

the BAMSET (asymptotic distribution of the test statistic is known)
testing procedures. The tests that were outside the confidence

limits most regularly (if the three extremely inaccurate tests are
discarded) for high alpha levels were both of the Goldfeld & Quant
procedures and for small alpha levels, the two remaining POSEX
procedures. However, it was observed, as hypothesized, that the
estimated alpha levels, in general, converged toward the nominal

alpha levels at which the tests were made.
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Hypothesis 2 - The experimental results substantiated the

hypothesis that the probability of any test's correctly rejecting
Hy is an increasing function of the amount of a priori information
available. It was further observed that when a simple function of
some variable was causing the heteroskedasticity (models 8 through
13), the tests that used this information were the most powerful
(the results can be seen in Figures 2 through 7). It was, however,
also observed that when the heteroskedasticity was caused by either
X; or X,, only a small decrease in power resulted from using the
same tests with y instead of either x; or x,. This observation was
predictable since y is a weighted sum of x; and x, and therefore
embodies both correct and incorrect information.

It was further noted that when the a priori information also
concerned the functional form of the heteroskedastic disturbances,
a notable increase in power was observable. This observation was
made on model 14 since it is heteroskedastic because of a quadratic
function of x;. In this model, the tests that used x; still showed
the highest power. However, when the test results that used Xy
were compared with those of model 8 (simple function of 51), a marked
decrease in power was observed. It should also be noted that since
the GLEJSERX1 test assumes (correctly in this case) that the
E(uiz) = (30 *B) X351 * By xil)oz, this test correctly showed the
smallest decrease in power while the PARKX1 test showed the largest
decrease in power because it incorrectly (in this case) assumed that
the E(uiz) = x?l 02. Therefore, without exception, the results
indicate that the most powerful test for heteroskedasticity is the

one incorporating the most correct information about the heteroske-

dastic function.
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Hypothesis 3 - The experimental results also indicated (as

hypothesized) that if a test was observed to have any notable power
when a sarple size of 30 was used, this power increased as the
sample size was increased. However, in many cases, it was also
noted that the gain in power was minimal as the number of observa-
tions was increased from 60 to 90. Presumably, this was because the
power was already approaching 100% and hence only a small increase

could be made.

Hypothesis 4 - Recalling that since the basic difference between

model 8 and 9 is the distribution of the variable causing the hetero-
skedasticity (the variables cover the same range with probability of
.99), any noticeable differences in the percentage of rejections
should be primarily due to the different distributional forms. In
comparing the two models (Figures 2 and 3), the tests using X in
model 8 must be compared with the tests using X5 in model 9 since
these are the variables causing the heteroskedasticity in each model.
However, when this comparison is made, no appreciable differences can
be observed (the tests on model 8 seem to have a slight edge for
sample size 30 but for sample sizes 60 and 90, the tests on model 9
show more power). Nonetheless, a comparison of the POSEX tests in
two models seems to indicate clearly that these tests have more power
when x, is causing the heteroskedasticity. A comparison of the tests
that do not reorder the sample observations reinforces this result.
However, since these tests are not expected to have any power, this
increase in power is itself surprising. It should also be noted that~
the tests which assume that E(y) is causing the disturbances to be

heteroskedastic are more powerful when x; is causing the disturbances
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to be heteroskedastic. This seems to be because the E(y) is more
dependent on x; since it has a larger mean and variance than X,.
However, these differences in the mean and variance are caused by
the fact that the variables have different distributions and hence
must be considered. Therefore, no clear pattern emerges. Also,
since the differences in power disappear as the sample size increases,
this investigator feels that the distributional form of the variable
causing the heteroskedasticity is not as important as are the para-
meters of that distribution (e.g., mean, variance, or range over
which the variables vary).

Hypothesis 5 - The next hypothesis concerns the probability of

type I error when the model includes a variable that is drawn from a
distribution with a non-constant mean and variance. In this case, it
should be recalled that since all the variables are not drawn from
fixed distributions, the diagonal elements of the matrix M vary more
than in the previous models examined. Hence, the OLS residuals will
be more heteroskedastic than those residuals obtained from the other
homoskedastic model. However, since it has been shown that the
squared variation of the diagonal elements of the matrix M is always
small, the OLS residuals should appeaf to be homoskedastic. The
three tests which would be affected if this hypothesis is wrong are
the GLEJSER, PARK and BAMSET tests.

The test results of model 16 appear in Figure 10. If these
results are compared with the results obtained from testing model 1
(the homoskedastic model consisting of variables drawn from fixed
distributions whose results appear in Figure 1), one sees that all

of the tests (with the exception of the test GQPY) reject the null
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hypothesis approximately the same percentage of times in both models.
It was further observed that any divergences that do exist became
insignificant as the sample size is increased from 30 to 60 and then
to 90 observations. Hence, the experimental results substantiate
the claim that the OLS residuals are nearly homoskedastic even when
a variable in the model is drawn from a non-constant distribution.

Hypothesis 6 - Unfortunately, since the non-monotonic function

used in this study (model 15) could not be properly defined by the
small number of observations available, the power of the POSEX tests
could not be determined for a non-monotonic function. Therefore, it
could not be determined how the power of the POSEX tests relates to
the complexity of the function causing the heteroskedastic

disturbances.

Hypotheses 7 & 8 - The next two hypotheses predicted the probable

relationship between the four POSEX tests. However, it was observed
that all four tests had virtually identical power. In some cases,
one of the tests would show a slight advantage, but no general
pattern could be detected. However, it must be remembered that since
the tests POSEXHIPM and POSEXHIYM were found to give poor estimates
of the nominal alpha level under the null hypothesis, the other two
tests are recommended. Also, since the test POSEXHIPS requires the
calculation of principal components and yet offers no power advantage
over POSEXH1YS, it appears as if one should use the POSEXHIYS test
for its simplicity. It is interesting to note that it was hypothesized
that this test would have the lowest power.

Hypothesis 9 - In contrast to the last findings, the test results

substantiated this hypothesis. It was observed, with rare exception,
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that the BAMSET tests were more powerful when OLS rather than BLUS
residuals were used. The few exceptions occurred when the wrong
variable was used to order the observations. Although in no case
was the difference in power very great, the result nevertheless
substantiates the claim that the BLUS residuals to some extent mask
the heteroskedasticity. It should also be noted that regardless of
the residuals used, the test estimates of the alpha level under the
null hypothesis were within a 95% confidence 1imit of the nominal
alpha levels used.

Hypothesis 10 - The last hypothesis indicated that if the same

amount of a priori information is built into all the tests, the
POSEX tests would have the most power. Although the POSEX tests can
be altered to include a priori information, this was not done in this
experiment. Therefore, this hypothesis really states that given no
information, the POSEX tests will be the most powerful. One version
of each test will be compared to the POSEX tests. The version u;ed
will assume that i.(or E(y)) is causing the heteroskedasticity.
i_was Chosen rather than X, or x, since it is a linear combination
of x; and x, and hence is more general than either x; or x,. The
one other alternative would be to usé each test first with x; and
then with x,; however, since the correct alpha level cannot be
determined, this procedure was not undertaken (presumably an alpha
level of .10 could be obtained by using each test at approximately
the .05 alpha level).

First, the tests POSEXH1PM, POSEXH1YM, and GQNY will be
discarded from the comparison because of the large biases displayed

in testing the null model. Of the remaining tests, the largest bias
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is by GQPY for high alpha levels (distribution of the test statistic
known) and by the two POSEX tests for low alpha levels. In comparing
the remaining tests (Figures 2 through 9 and 11), it was discovered
that the most powerful tests were the BAMSET tests. These were
followed by the GQPY test, the POSEX tests, and the GLEJSER and PARK
tests. Although it was not found that the POSEX tests were the most
powerful given no information, they are the most powerful of all the

constructive tests.

Summary
From the above results, it appears as if only the second, third,

fourth, fifth, and ninth hypotheses were strongly substantiated.

The rest of the hypotheses (with the exception of the sixth which was
not adequately tested) were only shown to be true in certain cases
and not in general. In the first hypothesis although it was found
that the estimates of the alpha levels for all of the tests become
more accurate as the sample size increases it was not found that the
tests with the smallest divergence between the estimated and nominal
alpha levels were those with a test statistic that has a known
distribution. In the seventh and eighth hypotheses, although it

was found that all of the POSEX tests had reasonéble power, none of
the four tests could be found superior. Lastly, in the tenth
hypothesis, although the POSEX tests were observed to have the most
power oﬁt of the class of constructive tests, it was not observed

that they were the most powerful in general.



CHAPTER V
SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

The disturbance terms in a linear régression model must have an
expected value of zero and be homoskedastic if one is to obtain
estimates using ordinary least squares which have certain desirable
properties. Several tests are currently being used to detect a non-
zero mean in the disturbance term and others to detect
heteroskedasticity.

A major problem with the current testing procedures for
disturbance terms with a non-zero mean is that these tests have not
achieved the simplicity necessary for popular acceptance. The first
procedure which was developed is based on BLUS residuals and hence
is computationally difficult. While a revised version of the test
uses OLS residuals, which are more easily calculated, the procedure
is still somewhat cumbersome since the calculation of the matrix M
is necessafy. ‘

In contrast, the current tests for heteroskedasticity have
achieved the necessary simplicity for popularity; however, they are
not always applicable since they all require some a priori knowledge
about the variable causing the heteroskedastic disturbances. One
group of current tests requires further that the variable be
monotonically related to the disturbance terms, while the other group
requires that the researcher hypothesize the functional form taken by

the disturbance terms.
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Two new testing procedures, one for each specification error,
are suggested in this study. Both tests are based on a Power Series
Expansion (POSEX) Model which has the advantage of approximating any
analytic function by using a linear combination of known variables
raised to various powers. Two linear combinations are used in this
study; the first principal component of the known variables and the
least squares predictors based on a regression model in those
variables.

The proposed procedure for a misspecified conditional mean is to
transform the hypothesized model into a POSEX model by adding three
power series expansion terms. If this model explains the conditional
mean of the vector y statistically better than does the hypothesized
model, then the hypothesized model is misspecified. This procedure
achieves the simplicity previously lacking since it does not require
the calculation of any special matrix and since the test statistic
can be obtained by using any existing least squares program. In
addition, it was proven that when this procedure is used, with the
expansion term being the OLS predictor of y from the hypothesized
model, the test statistic is mathematically equivalent to the
statistic obtained from the existing testing procedures for distur-
bance terms with a non-zero mean.

The testing procedure proposed for heteroskedasticity uses the
same POSEX model as above to explain the conditional mean of an
instrument for the unobserved variances. The instrument used is
either studentized or Minimum Norm Quadratic (MINQU) predictors of
the unobserved variances because they are both unbiased under the

null hypothesis. If this model explains the conditional mean of
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the vector of predicted variances statistically better than does the
sample mean of those variances, then the hypothesized model is
heteroskedastic. This procedure achieves the generality previously
lacking since it uses a POSEX model which approximates any analytic
function and hence does not require that the functional form be
hypothesized. In addition, knowledge of the variable causing the
heteroskedasticity is not required since all of the variables from
the hypothesized model are included in the POSEX model.

Moreover, it was proven in this study that regardless of how
the matrix X is chosen (stochastic or non-stochastic), the diagonal
elements of the matrix M display a minimal squared variation. Hence,
the squared OLS residuals, which are a function of the diagonal
elements of the matrix M, will be approximately homoskedastic

provided that the disturbances are homoskedastic.

In order to compare the new tests with the current tests, a
sampling experiment was used. Seventeen definitions of the
conditional mean were used to compare the tests under various null
and alternative models. 1000 samples of the conditional mean of the
vector y were examined so as to ensure that the samples would reflect
the population fram which the vector ‘x was drawn.

It was found that although both versions of the POSEX test for
a misspecified conditional mean are exact,the test using principal
components is more powerful. However, since the POSEX test using y
is less complicated to use, a trade-off exists between the test's
simplicity and its power.

It was also discovered that the power of the POSEX procedures

for a misspecified conditional mean varied depending on the number
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of observations used, the correlation that an omitted variable has
with the variables included in the hypothesized model, and the
correct functional form of the variable which is used in the
hypothesized model. The power was found to increase substantially
as the sample size was increased from 30 to 60 but only moderately
as the sample size was further increased from 60 to 90. If an
omitted variable was causing the conditional mean to be misspecified,
it was discovered that when the omitted variable was moderately
correlated with the variables included in the hypothesized model,

the test had the most power. Finally, as the functional form used
to define the conditional mean of the vector y becomes more complex,
the power of the POSEX procedure to reject correctly the hypothesized
linear model decreases.

The results of the tests for heteroskedasticity were more varied.
Although most of the tests were found to be relatively exact under
Hy, both POSEX procedures using MINQU predictors of the variance and,
in some cases, Goldfeld § Quant's parametric test were not exact. It
was also noted that the estimated alpha levels using Park's procedure
were, as expected, closer to the nominal alpha levels than the
estimates obtained using Glejser's pfocedure. Finally, it was noted
that the BAMSET procedure was always exact when either OLS or BLUS
residuals were used.

With striking uniformity, the power of the testing procedures
increased as more correct knowledge was incorporated into them. In a
parallel fashion, as the tests became more general, they also showed a

marked decrease in power. An exception to this was the small decrease
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in power observed in general when i, rather than the correct variable,
was used as the variable causing the heteroskedasticity.

Although the power varied depending on the sample size, it did
not vary according to the distribution of the variable causing the
disturbance to be heteroskedastic. Again, the greatest gains in power
caused by increasing the sample size were made between 30 and 60, not
between 60 and 90 observations.

Of the POSEX procedures for heteroskedasticity, the most useful
seems to be the one that uses studentized predictors of the variance
for the dependent variable and i's for the expansion variables. As
previously mentioned, the two POSEX procedures that use MINQU
predictors for the dependent variable are biased and hence cannot be
considered. Also, since the remaining two tests have approximately
the same power under the alternatives examined, the less complicated
test was chosen as the more useful.

Finally, it was observed that the BAMSET procedure which
reordered the variables by ihad the greatest overall power. However,
of the procedures that offer a corrective procedure, the POSEX test
generally had the most power. Since the POSEX procedure is more
general than the BAMSET procedure, this result should have been
expected. Both tests require that the variable causing the hetero-
skedasticity be in the hypothesized model; however, the BAMSET
procedure also requires that the functional form taken by that
variable be monotonic whereas the POSEX procedures does not.

This study has offered solutions to the problems posed at the
beginning of this study. In the first instance, it has provided a

procedure to test for a misspecified conditional mean that is
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mathematically identical to the current procedures yet much less
complicated to use. In addition, it has proposed a different version
of the same test, based on principal components, which, although more
complicated, has a higher probability of correctly rejecting the
alternative models.

In the second instance, it has provided a general constructive
test for heteroskedasticity that is more powerful than the current
constructive procedures. In addition, it has also offered a
procedure to ease the restrictive knowledge requirement that had
been previously demanded of all current tests. Applying this new
procedure to the BAMSET test proved to be the most powerful procedure
overall under the alternatives examined. However, since the BAMSET
test does not provide a corrective procedure if heteroskedasticity is
present, a trade-off exists between power and being able to correct
for the heteroskedastic disturbances. It should, nonetheless, be
reiterated that if knowledge about the variable causing the hetero-
skedasticity is available, it should be incorporated into either
the BAMSET or the POSEX procedure. When this is done, the power
of both tests increases substantially.

In carrying out this study, further questions which require
research have been generated. In examining the tests for a mis-
specified conditional mean, it was observed that the omitted variable's
relation to the included variables is of paramount importance. A
study that examined this relation in more detail would be of great
use. A useful way to perform this comparison might be to calculate
the probability of the quadratic's occurring in normally distributed

variables.
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Similarly, in analyzing the tests for heteroskedasticity, two
areas for additional research became clear. First, since hetero-
skedastic disturbances need not be monotonically related to the
variable causing the difficulty, various non-monotonic forms should
be examined. Second, since the POSEX procedure was found to be the
most powerful of the constructive tests examined, the gains in

efficiency made from using this procedure should be examined.
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APPENDIX A
THEOREM AND COROLLARIES REGARDING THE MATRIX M

Theorem: Regardless of how the vectors x seee Xy are obtained
(stochastic or non-stochastic) %he d1agonal elements of the
matrix M will have a maximum squared variation of k(n- k; .k
where squared variation of 2 n(n-1) —n
tiseenty is defined as z(ti -1 (n-1).

Proof:

Defining m. . as the i'th diagonal element of the matrix M, the

squared variation (sz) of the diagonal elements is

, i - 3 () .
s” = =1 . Recalling that M is idempotent and denoting n

as the number of observations and k as the number of parameters,

Im; =n- k, since the trace of an idempotent matrix equals its
i

trace. Also, since M is idempotent, no diagonal element can be

greater than one (mii < 1 for all i), hence szi <n - k. Since s2

is maximized if ngi is as large as possible, the maximum value
taken by s2 is
1 2 2
nax 52 (n-k) - n (n-k)” _ n(n-k) - (n-k)
(n-1) n(n-1)

(n-k) (n-n+k)
n(n-1)

k(n-k) . k
n(n-1) —n

QED
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Corollary 1: Defi_ni_ng the coefficient of variation (V) as
Vix) =

><II

where s2 is the squared variation of x, and x denotes the sample mean
of x, the maximum coefficient of variation of the diagonal elements
of the matrix M is /n—-i_l .

Proof.

Since the maximum squared deviation of the diagonal elements of

the matrix M is

k(n-k) ,
n(n-1)
and since the mean of MyqseeesM is 9;;—]3 , one finds that the maximum
coefficient of determination (V) is
. 2 _ k(n-k) n-k
maximum V= ooy T
- k.
n-1

which implies that maximum V is /_—R——- .
n-1 QED

Corollary 2: The sum of the squared diagonal elements of the matrix M
is less than (n-k)2/n and greater than (n-k).
Proof:

2

From the theorem, the maximum of Im s is n-k. This occurs when

(n-k) of the elements are equal to one and k elements are equal to

zero. In contrast, the minimum occurs when all the elements are

2 _ n(n-k)z - (n-k)2 ]
ii n n QED

equal to one another. Hence minimm Im;

Corollary 3: The sum of the squared off-diagonal elements of the
matrix M is less than (n-k) _ k
n
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Proof:

Since M is a symmetric, idempotent matrix, the sum of the squared

elements of any row or colum equals the diagonal element that appears

in that row or colum, L zj mij = n-k. Also, since the squared off-

diagonal elements are maximized when the diagonal elements are

minimized, one obtains:

2
maximum £ T mZ, = (n-k) - (n-k)
i3 " "
id] _n(n-k) - (n—k)2

n

_ (n-k) (n-n+k)
n

- (n-Kk
_..__n—<k
QED

This theorem and corollaries are especially interesting since they
indicate very strongly that although the matrix M will not equal the
identity matrix, it approaches the identity matrix as n gets large
or as k gets small. Turning to the last two corollaries, it is
especially interesting to note that regardless of the matrix X,
bounds can be put on both the diagonal and off-diagonal elements of
the matrix M. An example will illustrate the significance of all of
these statements. If one has a moderate number of observations, say
30, and 4 regressors, the following statements can now be made about
the matrix M.

_ . . =_ 27 _
1. ¢ my = 27 implying that m = 305 .9

2. maximum variance of MyqsesesMyy = (3)(27) _ . ?8. Té'

. . i _ 3
3. maximum coefficient of variation = %75 = ¢TU
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. 2
4. maximum Emii 27

- 2 _ (@nen _
minimum Imc. = ———%é——l 24.3
. 2 _ 3(27
5. maximum of i § mij —gﬁ—l <3
i#)
implying that the average off diagonal element (ﬁij) equals

3 _
2= s = L0111,

Therefore, in this modest example, the average diagonal element

equals .9 and the average off-diagonal element = .0111l.
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Variables X1s X55 X35
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Xg»

Means, Variances, Covariances, and Correlations of
X and X for Sample Size 30.

Upper Triangle, Covariance; Lower Triangle, Correlations;
and Diagonal Variances

TABLE B2:

X
X 879.406
_x_z -0047
53 -.157
54 .486
Xg .847
56 R
Means 52.901

110.

17.

X

14.

668

005

.250

.661

.457

.145

969

X3

-107.068

60.440

531.116

.506

.165

-.423

50.243

X

126.942

61.132

102.758

77.713

.833

41.629

X5

449.972

85.918

68.150

131.451

320.711

43.297

X

-15.980

-102.338

109.88

13.171
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TABLE B3: Means, Variances, Covariances, and Correlations of
Variables X1r Xps Xg5 Xgy Xes and X for Sample Size 60.

Upper Triangle, Covariances; Lower Triangle, Correlations;
and Diagonal, Variances.

eS| % X3 X4 Xc X6
x, 842.269 94.956  -53.896  152.717  522.506 ---
X, .141 535.013  -56.046  126.489  455.630 88.495
X5 -.091  -.119  417.924 55.904  -97.784  -114.586
X, .574 .597 .299 83.874  188.804 “--
Xg .715 .783 -.010 .819  633.440 ---
Xe --- .185 -.271 .- --- 428.413

Means 51.714  21.064 50.188 40.997 44.875 26.228
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TABLE B4: Means, Variances, Covariances, and Correlations of
Variables X1s X55 Xz X45 Xoo and X for Sample Size 90.

Upper Triangle, Covariances; Lower Triangle, Correlations;
and Diagonal, Variances.

eS| X2 X3 X4 X5 %6

Xy 866.219 83.888 -65.669  151.622 525.011 ---

X, .102  783.908 - .585 182.181 649.839 62.241
X3 - .114 - .001 384.240 2.628 21.540 -105.188
Xy .524 .662 .273 96.484 230.648 ---
Xg .635 .826 .039 .835 789.233 ---
X --- .802 - .194 --- --- 768.222

Means 53.186 23.467 53.109 41.352 47.429 32.622



TABLE Cl1:

Acronym
POSEXMY

POSEXMP

POSEXH1PS

POSEXH1YS

POSEXHIYM

POSEXH1PM

BAMSETIN

BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSETON

BAMSETOX1
BAMSETOX2
BAMSETOY

APPENDIX C

TEST RESULTS

Acronyms Used to Designate the Specification Error Tests
Being Examined

Test

Power Series Expansion (POSEX) model for a non-zero
Mean using ¥ as the instrument

POSEX model for a non-zero Mean using P as the
instrument

POSEX model for Heteroskedasticity using method 1 to
estimate the model, P as the instrument and .studentized
predictors (S) of the variances

POSEXH1, Y as the instrument and studentized predictors
(S) of the variances

POSEXH1, Y as the instrument and MINQU predictors of
the variance

POSEXH1, P as the instrument and MINQU predictors of
the variance

BAMSET testing procedure using Theil's BLUS residuals
(BAMSETT) and Not reordering the observations

BAMSETT, reordering the observations by the variable X, .
BAMSETT, reordering the observations by the variable X,.
BAMSETT, reordering the observations by Y.

BAMSET testing procedure using OLS residuals (BAMSETO)
and Not reordering the observations

BAMSETO, reordering the observations by the variable, 51.
BAMSETO, reordering the observations by the variable, gz.

BAMSETO, reordering the observations by Q.

199
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TABLE C1 (cont'd)
Acronym Test

GLEJSERX1 GLEJSER's test using X, as the independent variable
GLEJSERX2 GLEJSER's test using X, as the independent variable

GLEJSERY GLEJSER's test using Y as the independent variable
PARKX1 PARK's test using X; as the independent varijable
PARKX2 PARK's test using X, as the independent variable
PARKY PARK's test using Y as the independent variable

GQPN Goldfeld § Quant's Parametric test with No reordering
GQPX1 GQP, reordering the observations by the variable 51
GQPX2 GQP, reordering the observations by the variable 32
GQPY GQP, reordering the observations by ?

GQNN Goldfeld § Quant's Non-parametric test with No Reordering
GQNX1 GQN, reordering the observations by the variable 51
GQNX2 GQN, reordering the observations by the variable 52

GQNY GQN, reordering the observations by Y



TEST
POSEXNY

POSEXMP
POSEXH1PS

POSEXHLYS
POSEXHiYM

POSEXH1PN
BAMSETTN

BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSE OTN
BAMSEOTXS
BAMSEOTX2
BAMSEOTY
GLE JSERX1
GLEJSERX2
GLE JSERY
PARKX 1
PARKX2
PARKY

GaPN
GaPxy

Gaex2
cary
GaNN
GaNX1
GaNx2
CaNY
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TABLE C2: Test Results - Model 1, Sample Size 30

ALPHA LEVEL

.01
L

16,
35.

LY 2
L3.

36.
16.

T.
16.
9.
17.
7.
15.
16.
16,
9.
12,
21.
9.
12.

66.
33.

18.
18,
22.
27.
16.
26.

«05
L9,

59.
86,

89.
90.

82.
59,

57.
59.
53.
51.
58
L4 )
65.
57.
39,
64 .
49,
52.
S7.
175.
105,
76.
52,
70.
73,
7T0.
69.

10
103.

113.
13.‘.

162,

145,

13&4.
119,

110.
113.
107.
110.
124,
121,
118.

111,

83.

110.

94,
111.

96.
296,
169,
138.
102.
191.
166.
178,
170.

MEAN
«110261E+01

«115224E+ 01
«125266F+01

«128139E401
+130702E+01

«125542F +01
«?13828F4 01

20261 0E+01
0212522F+401
«203569F ¢+ 01
«208717F+08
«208288F¢ 01
«221356E¢01
.200506E061
¢118974F4+ 01
+104611E¢01
¢1113463E+01

«113376E+01

¢113377F+01
«107164LE+DL

+216487E+ 01
«138263E401

13128 3F 401
< 112590E+01
+306600E 401
301600401
+303400F+01
+302200E+ 01

VARTANCE
«957248E+00
«112727E¢01

.183520E¢01 -

«23950E+01
«263083E+01

«200652E+01
eb76066E+01

«397230€E+01
c5%45TESO1
«385308€+01
«#76733E401
«#12365E¢01
«b9blloF 0L
«065833E+01
«164346E+0L
«125251E+02
«139385€E+01
«590016E+01
«275930E+01
«338653E+01
«271406E*OL
«1581L0E+0L
+160735E¢02
«107533E+02
«256018E+01
«25964L0E+01
+244L329E¢+01
«262L1UES0OY

SKEWNESS
«189819E+01

«226669E401
«S5756A3E+01

+682536E+01
«647156E+01

«576790E+01
«204L268E+01

+163004E¢01
<199547€+01
«178457E401
<239099E401
«160443E+01
«190439E+01
<192678E+01
312279E+01
<281583E+01
<206753E+01
. T06867E+01
3516 03E401
«436233E401
436133401
«299154E¢01

 +395711E401

¢ 316252E+01
«390472E¢00

o HLWLB815SESOD.

«332084E*00
«LT71659E+00

KURTOSIS
«9124L79E+01

«118041E¢02
«635644ES 02

+8L1451E+02
«726195E+02

+610992E+02
«906295E+01

.569917E+01
+858576E+01
<T27055€401
«126885E+02
+605888E+01
+752773E¢01
<755073€401
«200617€402
<1589 08€402
<823512E¢01
<726735E402
+236650E¢02
«319048E 02
+307091E¢02

«161206E¢02
+299798E+02
«182599€402
+289583E401
«313459E¢01
<282254E+01
+326579E401



TEST
POSEXMY
POSEXMP
POSEXH1PS
POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BANSETTY
BANSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
 PARKX2
PARKY

" GOPN
GaPx1

caPx2
caPY
GQNN .
GaNX1
GaNx2
GONY
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TABLE C2: Test Results - Model 1, Sample

ALPHA LEVEL

01
6.
11.
bl.
38.
101.

91.

16,
16.
11.
16,
16.
12.
12.
18.
17.

5.

8.
16.
13.
15.
3s.
16.
17,
17.

%

8.

9.

8.

.05
49.
W8,
72.
A3,
172,
169,
53,
62,
50.
61
59,
58,
59,
63.
68.
24,
39,
49,
54
62.

126.
67,

75..

LY
62,
69.
61.
66,

«10

93.

. 94,
110.

116,

222.
217.
101,
127.
108.
119.
125,
116.

1c9.

111.
116.

69.

70.
113,
101.
116.

231.
119,

123.

144,

162, -

155,
137.
172,

MEAN
«102321E+ 01
«1068195401
. 111935€+01
«1133615401
+198511E¢01
«192L09E+01
.201781F+01
«216619E+ 01
«2068065+01
e 214 139E+ 01
« 2137655401
«216246E+01
«21097LE+ 0L
+220035E4+01
«11457AE+01
«906958F+00
«981386F+00
113254401
«107402E+01

«113373<+01

_.151717?001

<111680E401
1121336401
11594 0E+ 04
.372700E¢ 01
«XTHL500E+ 01
+364500F+01
+367000E+01

VARIANCE

«726989E+00
.769942€+00
«138995€+01
«168661E+01
«175439E+02
«151637€402
CUBBLUL1E+OL
<454987E4+01
L414177E+01
<L42872E401
<4965625+01
«432296E401
.466038E401
S45LUBTE+01
(146734 E+01
«777948E+00
«940569E+00
+320761E+01
.228812E+01

«309189E+01

«259629E+00

«318335€400
+330192E+00
+353980E+00
«296143E401
«320118E¢04
+323221E+01
«323033E+01

Size 60

SKEWNESS
«158228E+01
«18936ASE+01
«461198F+01
«552479E+01
«87777uE+01
+9174L45LE+DY
*282220E+01
«185439E+01
«193303F+01
«175324E+01

«2360LBE+0L

«188777E+01 .

«22114LOE+D1
«187671E+01
«221109E+01
«245280E+01
«2L6070E+01
«48075S7TE+01
«277431E+01
¢313142E+01

«213166E+01
«154139E+01

«151861E+01
+167213E401
+425115E+00
+43089E¢00
« b65551E+00
«421504E+00

KURTOSIS
+582291E401
<855660E401
«367069E+02
«518137€402
«998812E+02
«115022E+03
«174910E+02
«735105E401
«875310E+01
«6TOT71E+0Y
«119703E402
«810819E+01
«109379E+02
+753693E+01

' +992167E+01

«130773E+02
«125809€E+02
«458832E+02
«134100E+02
«165220E+02

s9LUL238E+01
«671777E401

+6L40200E+01
«79%150E+01
¢3164199E+01
«316868E+01
«336842E¢01
«287806E¢01



TESTY
POSEXMY

POSEXMP

POSE XH1PS
POSEXH1YS
POSEXH1YY
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

GOPN
6QPX1

6aPx2
GaPY
GaNN
GaNx1
Ganx2
Gawy
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TABLE C2: Test Results - Model 1, Sample Size 90

ALPHM LEVEL

oC1
11,
13,

36,

13,
1C.
16,
1.
is,

7o

12.
11,

14,

57
7.

6.

6he
(298
45,
o7
She

43,

o1
7.
111,
112.
116€.
136.

123.

1.8,

114,
97.
S8,

111.

12¢.
a8,

111,

112.
7€,
81,
95,

1o,

MEAN
«123059E+C1
«134556E+01
«1U3475c+C1
«2089y3E+T1
«122326E4901
«126322E+01
«2C32315401
02112432451
¢197669€+01
«205012c+901
«203291E+01
«213555S+21
¢204u36E+01
¢2137125+131
¢105388E+G1
¢ 999157E+30

01038252+01

«1031355431
¢106664LZ+(1
«100727E+01
«137395E401
«105974E+01
«1096G65401
c1125352431
«410903E+01
eL1L3UO0ESIL
«403290E421
cL124ILE+CY

VARIANCE
e 772162E¢00
«311592:2+C3

1297652 431
«1268015401
<19989:+01
2324028401
4179635401
4663332401
3755366401
c4156G52 401
<4136155+01
4872135431
4316792401
<435177€+01
+120663E+01
8551735400
<1C8236E401
233405401
«231100E+01
«193368£+401
1163452439
«162255E+00
1979112420
<1808855 40
+3668792+01
«3657562431
¢ 3384365401
¢ 3698125401

SKEWNESS
+18J0167E+01
«183351E¢31
«5310865¢481
e 461991E+01
«55.757E+01

-e66L038E+01

. 2063482401
+215530E¢01
+1918092401
+195059E+01
+185595E401

< 2318306401

02227295401
«195140E+01
¢222196E+41
«23€639E+01
+24568TE+01
¢336118E+01
e 246694E+91
¢2601565¢01
e197243E+41
«121052E+01
«164247C4+01
0112498E+01
o 424092€¢00
«410321E+00C
«4382722+00
«332017S+00

KURTOSIS
«856836E¢01
+854533E+01

~435267E+02
e3773J)3E¢02
+539959E 402
712680 +02
+9LB88SE+01
<992610€ ¢01
JTTBI56E401
+793889E+01
«712991E+31
«111375€+02
¢1G0867E¢02
+863480E+01
+108937E+02
+986476E+01
+125292E+02
+194969E +32
+116289E¢02
<120033€402
+929952€+01
<622023€+01
+697965E+01
«S1T24TE+d1
«302337E+01
<362673E¢d1
«3317T16E+C1
«285645€¢01



Test

POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY
POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP

TABLE C5:
% Rejection at a
.01 .05 .10
0.8 .1 8.6
0.4 1.2 1.7
1.9 15.6
1.0 15.5
0.1 1.
0.3 6
6.3 12.2
10.0 17.
19.9 44.7 54.9
30.2 55.5 66.8
45.6 68.0 80.5
62.6 81.4 90.6
.5 4.3 9.4
4 53 9.9
3
09 8
0.6 4.1 9.
1. 4.6 10.

Test Results - Models 2, 3 and 4
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Mean Variance

Model 2
Sample Size

.433063
.788937

Sample Size
.367349
.496730

Sample Size
.798915
.518366

Model 3
Sample Size

1.41422
1.70927

Sample Size
3.45077
3.97375

Sample Size
4.76302
5.80468

Modei 4
Sample Size

1.01705
1.12064

Sample Size
.962272

.998673

Sample Size
1.03153
1.01445

30
.078897
.202364

60
.071884
.100863

90
.191194
.112849

30
1.39668
1.94973

60
4.37355
5.02404

90
5.83823
7.10041

30
.816278
.958701

60
.649272
.677300

90
.744858
.738918

Skewness

1.20911
.971755

1.20513
.913994

.911975

1.08354

1.62245

1.71405

1.28624
1.00875

.974417

.777068

1.83557

1.85398

1.57627
1.73510

1.79539
1.63736

Kurtosis

5.
4.

4.

01158
20716

58735

.375351

4.
4.

28510
34822

6.29281

.29449

.74488

4.43899

.13101

3.62015

.09556

8.29186

.79053
.15953

.04375
.77984



Test

POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP
POSEXMY
POSEXMP

POSEXMY
POSEXMP

POSEXMY
POSEXMP

TABLE C6:

% Rejection at a

.01

2.5
13.8

85.4
90.5

66.7
92.3

1.5
8.6

39.8
55.6

34.2
51.7

1.6
16.7

4.8
43.3

1.0
16.3

.05

7.9
21.1

89.1
93.0

72.3
93.9

5.2
14.5

51.4
66.1

43.8
61.3

5.2
33.6

19.1
55.5

4.9
23.8

.10

10.0
79.3
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Test Results - Models 5, 6 and 7

Mean Variance

Model 5
Sample Size

1.13959
5.38091

Sample Size
453.589
12039.5

Sample Size
296.825
48.5093

Model 6
Sample Size
.845045

2.83147

Sample Size
21.3371

34.5887

Sample Size
18.0231
10.6566

Model 7
Sample Size

1.44189
3.32074

Sample Size
2.34178
5.33288

Sample Size
1.50024

2.71246

30
1.74522
1158.26

60
159614.

526541000.

90
165941.
4991.84

30
.794669

75.6904

60
5034.05
16791.2

90
3290.12
286.901

30
1.32832
10.9710

60
1.67149
23.5468

90
.850417
8.79796

Skewness

2.69912
15.6630

.519493
4.77357

1.43958
4.58076

N

.95879
.68327

6.51388

.73581

5.85384
5.23155

2.52995
3.52249

1.27134
1.67051

1.59515

.36190

Kurtosis

11.6914
285.515

2.97602
46.0781

4.52777
29.7045

17.6064
120.388

55.2004
97.2244

43.4622

52.3475

14.8763

29.5735

5.68311
6.69945

6.70044
9.23780



YEST
POSEXMY

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXHIYM

POSEXH1PM
BAMSETTN

BAMSETTX1
BAMSETTX2
BAMSETYTY
BAMSEOTN
BAMSEOT X1
BAMSEOT X2
BAMSEOTY
GLE JSERX1
GLE JSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GQPN
GQPX1
GaPx2
GaPY

GONN
GANX1
GONX2
GQNY

TABLE C7:

ALPHA LEVEL

.01
22.

18.
1C7.

105.
87.

83.
a5 .

25,
88.
S0b.
65,
7990,
70.
662,

S04,

3A9,
371,

L
L3S,

135,

35. .

901.
667.
27.
463,
3.

338.

.05
65,

51.
307,

284,
222,

2uL5,
208,

837,
211,
763.
174,

930.

190.

866.
738,
7.
638,
652,
38.
ra0.,
324,
83.
963.
829,
83.
699.
123,

583,

«10
102.

83.
469,

L22.
362,

394,
314,

914,
321.
860,

275.

.9hL,

272,
932.
904,

22.
822.
772,

86.
793.
436,
122,
987.
89s,
234,
874,
293.

810.
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MEAN
«102394E¢ 01

« 947 347E+00
«237+58F+ 01

«228981C# 01
«239107€401

«21704L3F+01
« 3911585+ 01

«11L777E4 92
«289356F¢ 01
«100752F+ 32
«341522E+01
«164523E4+02
e363434%¢01
«125283F ¢ 02
«532699F+01
«754928F+00

«532093E+01

. 804e29E4 01

+939210E+00
RS 7752E+01
«284193E+01
«122733€+01
«184611E402
.933659F 401
«761400F+01
«RLG300E+01
<183500€401

«5928107 ¢+ 01

VARIANCE
«166779F+01

+151176E+01
2540725401

L2LB11XESNL
2120655401

«226833F+01
«1280405492

<319116E402
<129674E+02
.232352E+02
<103966E+02
<334A77E+02
«110205E+02
.378959E+02
.154153€402
CG268ILE+00
<115094E+02
5970826402
<131260E+02
550L49E+02
.692107E+01
+260900E+01
.355L32E403
<1312u7E+03
\176076E+01
.289565E401
.210788F+01

«267950E+01L

Test Results - Model 8, Sample Size 30

SKEWNESS
«33153RrF+01

e 392L62E+01
«I17209E+01

e 2BLSLIE+DL

«291336E+01

«325142F+01

«161461E+01
.680358E+00
«172223E+01
«832771E400
«175233€401
<52624L5E400
.179092€401
<6991 33E400
«21344BE+01
«163272E401
<188850E+01
<233681E+401
«269052E401
+1988LAE+01
<428830E+01
<608349E+01
«682853E401
«652969E+01
«S46B6BE+00
«266450E+00
«48LEIBE+0D

«300467E+00

KURTOSIS
«18984LLESD2

+264265E402
¢193194E+02

«156544LE+02
«163254E+02

«206503E+402
«628253E+01

«340L33E+01L
«71959%E+01
«36077LE+0D1
«7394L03E+D 1L
«327517€E+01
«760111E+01
«349926E+01
«125580E+02
«+655696E+01
«916900E+01
«103274vE+02
«118172E402
«902932E+01
«325771E+02
«661515E+402
«470581E+02
«785253E+02
«324039E+01
«285757E+01
«333751E+01
«29732RE+02



TEST
POSEXMY

POSFXMP
POSFXH1PS

POSEXHLYS
POSEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSE TTX2
BAMSETTY
BAMSEOTN
BAMSCOTXL
BAMSEOQOTX2
BAMSEOTY
GLEJUSERX1
GLE JSERX2
GLEJSERY
PARKX Y

PARKX2

PAPKY

GQPN
GaPxi

GaPx2
deld §
GONN
GONX1
GONX2
GaNY
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TABLE C8: Test Results - Model 8, Sarple Size 60

ALPHA LEVEL

.01
21.

27.
L97,

L71.
529,
S49.
67.
q74.
181,
as2.
7.
981.
123.
363.
367 .

9.
912,
849,

5.
829.

101.
20.

99%,
920.

650.
i6.
402.

«CS
79,

78.
7765,

760,

397.
29.
932,
949,
30.
923.

255,
5%,

1000.
975.
78,
909.
101,

7%.

o1n
145,

126,
290,

A79.
886
900,
256,
998.
L36,
994,
276.
999,
357.
997.
999,

47.
996,
969.

72.
959,

391.
0.

1000.
919,
192,
978.
220,
916.

MEAN
C114772Fe01

«1124650Z+01
«LNL231F ¢ 01

«298029E4 (1
«554857C 401
CS451735401
«330110E+01
« 25926554 02
«53134LE+OL
«225673€ 402
« 3522445401
$2773345402
c4u69207¢ 01
« 2415775402
«117274F 402
«735137E400

«939336F+01

- «214L383F¢02

« 8475615400
«167246F# 12

«1815435+08
«94L6402E+ 00

«1L0879F+ 02
c795205E001
«L2L700E+01
+939500F ¢ 01
«4156100F ¢ 01

«R130J3074+01

VARIANCE
«127505€+01

«12L233E+01
«8L1LTEHECDL

.978502E+01
<117598E+03
«907616F+02
«116162E402
B52245E+02
C2U06151E402
o79098k€0q2
+130689E+02
<4734 7E+02
«197031E+02
C877744E+D2
<252891E+92
+953183E+00
«140323E402
+258597E+03
«150L31E+01
«117164E+03

«8L1UL1BE+DO
«383717E+00

«719536E402
«25734L3E+02
«21681AE+NY
«430958E+01
«323431E+01L

b14725E+01

SKEWNFSS
«222537E+01

«22L789E#U1
«5R9943E+01

«612B891E+01
«103235E402
«106271E+02
<1954 89E401
+45I889F+00
«16%5995+01
«55394LE+00
«217292E+01
«423715F+30
«209236E+01
«487292€420
«151670E+01
W1722LE+01
«111140E+01
«15801LES0L
«29280RE+01
+136391E+01

«296249F+01
«184226F+01

«183058E+01
«171518E+401
«5326E9E+00
«363561E+400
«4316LSE+D0

«372629E+00

KURTOSTIS
«102672E¢02

«963721F¢01
«679623E+02

«637762E402
«135354E+03
«156607E+03
«B6L32SES01
«349667E+01
<6811 78E+01
«345284E401
«108211E+02
«3251 79E+01
«923354E+01
«321365E+01
«732911E+01
«292732E402
«572619E401
«650946E+01
«152525E402
«624060E+01

"e1707705¢02

«822716€E4+01
«804L330FE¢01
«664535E+01
«32761N0E+01
e347399E+01
«3235A9F+01

«295515€+014



TEST
POSE XMY

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXHL1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
SAMSEOTX2
BAMSEOTY

GLEJSERX1

GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GQPN
6QPX1
6QPXx2
GQPY
GQNN
GANX1
6AaNXx2
GONY

ALOPHA LEVEL

N U 10
35, a1, 1138,
27. 72, 119,

P12, 959, 9A3,
8:0. 950. 980.
784. 9u5, 97R,
798, 977, 331,
95, 213. 312.
100C, 1300, 1%0C.
151, 279. 369,
995, 999, 1GS0.
89, 211. 296,
19C0. 15%0. 1900,
121, 262, 318,
997, 999, 100C.

1000, 107G, 1CCC.

12, 42, 6ue
996, 13C3. 1002,
973, 996, 999,

b, 35, 91,
959, 990, 997,

99, 2u9, 351,

23. 63, 96,

1000, 13¢C. 10CQ,

a7C. 990, 99,

2. €7 172,
"99, 955, 9r8.

20,  S1. 11C.
746, 867, 9L2,
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MEAN
0112732401

«1059285+01
«522180E+01

«S0L3T1E+01
«5151722+C1-
«5383412+01
«375830E+C1
«407986E+02
eW73786E+01
¢332850E5+02
¢362446E401
«433743EL02
«415398E+01
«353509E+02
«17995454+402
«8764055+00

«132573E+02

23682126402

¢9893472460
«28547TE+02
«157308E+01
«958764E+00
e137294E¢02
«678194E+01
«L88100E+C1
«115350E¢02
«419700E+01
« 99525 JE+01

VARIANCE
«131362€+31

¢1284322401
¢927188E+01

«805634E+401
«130092E+02
«165779E+02
¢139339E+02
e134994c 43
e 20554L4E 02
¢121665E+03
«13016ULED2
«1500L52E+03
«176977E4+02
¢13569CZ+¢03
e341167E+D2
«115150E+01
0157827E402
«526263E+03
«1830527E+01
0 223529E+03
*3484L27E+00
2 237564E+0G
e #52112E402
e136LubkT7E+)2

«287371E+01

«608286E+31
¢3L1160E+01
¢ 489659E+01

TABLE C9: Test Results - Model 8, Sarple Size 90

SKEWNESS
«22L277E+01

02724272401
e 43194L0E+CY

e 421537E+012
¢530438E+01

«535401E+01
«175860E+01

e bT74LS53TE+00
«167519E+01
¢392907E+00
«164823E+01
e 4B1LT78C¢(CO
«179880E+01
o bb2824E+ 00
¢994951E+00
¢ 363535c+01
«769243E+00
«145011E+01
+366894E+ 01
¢« 925656E+0C
0219379E+01
¢165871E+01
«206989€E¢+01
¢165943E+061
.39?311E000
¢ 276275E+00C
o b64L029E+OC
«195346E+00

KURTOSIS
«994395E¢01

«133699E+¢02
¢318980E+02

«311904E¢02
e 4354L14E¢02

«407963E¢02
«6680990E+01

+«353159E¢01
«626956€E+01
«294106E+012
«638817€E+01
¢ 340391E¢01
¢ T26374E+01
«316881E+01
e 493632E+01
¢223371E+02
o b74499E+DY
«667698E+01
«321816E+02
h77066E+02
¢986399E+01
e7T2895E¢+01
«116174ED2
o774C31E02
«302223E+012
e 276246E+012
¢294T770E01
e297438E+01



—_— =
e —



TEST
POSEXMY
POSEXMP
POSEXH1PS
POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

GQPN
GaPx4

6QPX2
Gary
GONN
GANX41
GONX2

GANY

209

TABLE C10: Test Results - Model 9, Sample Size 30

AL2HA LEVEL

e

106,
653,
115,
2,
551,
L,

Te

37C.

27,
110.
R58.

3u.
11%,

13,

10.
3E2.

LE,

i€

22,

«10

un
)
n
.

N
n

~

O

3€4.
8LL,

362.

284,

362,
3 3.
3L2.
1.
882,
112.

75.
719.
191.
“lS.
962
1te.
3fC,

133,

136,

813,

326.

MIAN

«8159915+00
«130795E401
«2776J2E401
<299811E+01
$278317€401
«253184LE+01
«321254E491
c434539E+01
«1056955402
c4366365¢01
«3652712401
c413842E401
«121641E4C2
c419414E+01
+952631E+00

«758J)79E+31

- 01223905401

¢9198325+00
«7L1138E+01
¢165745E+GY
¢2704585+(1
«149376E+92
+130629E+J1
«2L3672E+01L
«294930E+01
«328100E+01
¢59147CE+DL
«389JU0E+GY

VARIANSE
+603627Z+00
e 8LI2LABT ¢4 (
¢332157€+01
o LyB89125491
¢38L6CNZ+01
«271092E+01
«993483E+01
«1514965+02
¢ 356451c+02
¢157319c+)2
¢1272272402
«141458E432
¢362535c+02
¢152994E 492
«798462E+3)
e 404758C¢02
¢100361E4J1
«24264L9E+01
.6873635002
«513971E+01
7687695 +01
¢212242E+03
0 22J1645SE +01
1001555402
«209349E 401
«157201E+01
2803615 +01

0233423E+01

SKEWNZSS

«211297E4+01
$1972772401
$116224E+01
c1455462401
«1345022+01
e1046122¢01
«1894215+01
c143342E¢01
«583351E+400
«1582125401
«229649Z+01
¢1539135+01
«54ib6IT+ 0
c177647E401
«202250E401
¢ 3514405401
+187871Z+01
<4995355+01
«223106E401
«298996:4C1
«5779652+01
<288675E+01
« 4723912401
«560572E+01
4724792400
< 7581722400
«283034E400

« 48C211E+00

KURTOSIS
¢969115E+01

+883511E401
<443 323E¢31
«696298E401
«632573E 401
«4I9L54E D1
J777178E401
.528979E+01
+306275E¢01
+636092E+01
«129825E 32
<579006E+01
«3u6231E+31
<749518Ee01
«103905E €02
259507E+02
«108531E+92
c4u41536E¢02
+109062E402

«178789E¢02

.52&5“35002
«141836E402
s 453172E492
«5C1035€«22
«295170E+01
«385436E+01
«316017E+01
«313700E¢01



TEST
POSEXMY
POSEXMP
POSEXH1PS
POSEXH1YS
POSEXHiYM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX4
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GQPN
GaPX1
60PX2
GapPy
GQNN
GONX1
GONX2
GOaNY

TABLE C11: Test Results - Model 9, Sample

BLPHA LEVEL

01
507,

599,

927,

9¢1,
9€3.,
939.
276,
363,
994,
62k,
299,
3€9.
997.
633,
2.
985,
S5€u,
24
756,
142,
324,
10¢CC.
410,
733,
Te
6.
576.

€8,

o€

618,
739
961.
9R1,
982,
957,
Lub,
540,
10c¢C.
TT4e
Lhie
Stbe
19C3.
756,
9.
998,
713.
27,
893,
312,
75,
1040,
538.
858,
7S¢
98.
8ss8.
266.

1L
6ER,
7€5.
978.
98Q,
997,
98C.
531.

939.
639.
57C.
100C.,
6L 2,
695,
191,
237,
9€h,

4506,

210

MEAN
«8831998E+01
«10L693E+D2
«283948E+02
e 36L327E+G2
«130884E4+03
e 7576465402
«679184E+01
e 87LTTULESDL
e &) 3239E+02
e156886E¢02
«720070E+01
«882712E+01
«419277E+02
«156936E+02
«655221E+00
«287621E402
e957644LE+OL

+838495E+00

«17L795E+02
«334563E401
e266479E+01
«363119E402
+353673E+01
+656T66E+01
o412800E+01
JLLLSOGESOL
+89623CE+01
«542300E¢01

VARIANCE

<148988E+03
«180523E+403
+200254E +04
< 425545E 400
3291955406
. 234262E +05
+391694E+02
+537552E +02
+259115E+03
+150663E+03
<426820E+02
«530560E+02
«257519E403
15920 4E+03
< 454536E+00
«327425E+03
+926892E+02
<137110E+01
<179961E+03
+135035E+02
«398378E +01
«706899E+03
«182807E+02
+423995E+02
«262624E401
<231729E+01
< 431287E401
«329937E+01

Size 60

SKEWNESS
¢3328615+01
¢ 323278E¢01
+426016E¢01
«557858E+01
«182618E+02
e 4362L4E+ DL
¢149963E+01
«156483c+01
«657765E+00
«127007E+01
«144500E+ 01
¢1609825¢+01
¢« 693790E+00
¢130654E+01
¢ 245092E+01
«160123E¢01
e174351E+01
«262113E+01
0136094E+01
«193502E+01
«250362E+01
«220620c+01
e4b1003E+01
+309699€+01
o b6]391E+00
¢« 3514L15E+00
«220304E+ 00
«382593€E+00

KURTOSIS

«196762E402
«187864E¢02
«279549E¢02
cBULT1E+02
«429206E+03
«288495E+02
+552599E+01
«600645E+01
«364270E+01
«4894L08E+01
«516279E401
0623240E+01
«379861€401
«508356E401
¢126381E402
«694736E¢01
+653095€+01
«102501E¢02
¢ 520 220E+01
«806146E+01
«111802E¢02
«105201E+¢02
+352198E¢02
«179211E+02
«315856E401
«291526E401
«2T04S3E*01
«297277€401



TEST
POSEXMY

POSEXMP
POSE XH1PS
POSEXH1YS
POSEXH1YM
POSEXH1PH
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX?2
GLEJSERY
PARKX1
PARKX2
PARKY
GQPN
6arPx1
6QPX2
GaPY

GQNN
GaNx1
GaNX2

GQANY

TABLE C12: Test Results - Model 9, Sample

ALPHA LEVEL

o1
L8G.
583,
983,
992.
Qa9¢,
982.
536,
6238,

1ncc.
969.
7 (&,
f22,
19c¢cC.
970.

.
1000,
95¢€.

17.
993.
570,
593,

i1g9c0c,
363,
981.

LN

L7,
99,

2€L,

«GF
63,
698,
991.

13Cd.
392,
658,
768,
1660,
383,
821.
770,
10704
334,
8
1023,
982,
61.
399,
767.
707,

434,
99,

69,
113,
961,

©72.

1L
6E1e
L3,
997.

211

MEAN
«819753€+01
e 944223E+01
«430778E+02
oLL3I163E+G2
«376834E+402
«413925E+¢C2
«130134c402
«165295£+02
«9G7213c+C2
«Ll6667c402
«18L 3462+02
«167796E+02
+«939406E+02
«453679E+02
+«398885E+00
«6)688LE+D2

«318534Z+02

«119131£+01

«3940G61E+02

*335753E+01
«358723€+91
«597386E+02
+210337E+G1
.125&&35002
W744LJ0E+CE
«5778J0E+CY
«11572CE+02

o741600E+C1

VARIANCE
¢131J17E+403
«137832E433
f62h2165005
«59808SE+00
*«428255€+04
«853720€+0%
«1373%1E+03
«1803820E+03
«6381L47E+03
«495199E+03
«167897E+03
«193359€+03
«626225c+33
.5199255003
o 4369L4LE+0C
«159538E+06
«391621E+03
«310334E+01
o 4u038JE+D3
« 462273E+432
«796898E+01
¢16614L1E+0L
e 346070E+01
¢ J385Cc+02
«293940E+01
e 24STLTE+DY
«6JJ4LB82E+0L
«369230€+01

Size 90

SKEWNESS
«28694LE+01
«282541E+01
«637871E401
+ 628556401
+506729E+01
«6173384E401
«156273E+C1
+1334328¢01
¢ 264453E+ 00
«SC9531E+00
+965358E+00
¢135762E+61
«3B89LTE+OC
+54090 3E+00
¢112619E+01
«248637E401
+243379€+01
«355173€+01
¢ 981234E+00
+122093E+01
«247071E+01
«456616E¢01
+281606E+01
e26LT63E+01
«861216E+00
«249952E4C
«341014E+ 0L
+257033E¢00

KURTOSIS
«137334E02
«1428&18E+02
«S5U7459E402
+558625E+02
+«359205E+02
«511445E402
+599229E+01
«506555E+01
¢ 315278E+01
e 301924E 02
«38634TE+0L
«516428E+01
«354727E+01
+305809E+01
«551889E+01
«127010€E¢02
«115525E+32
«217984E+02
c443753E+01
«513584E¢01
»115424E 02
«509562E+02
¢133709E+02
+158652£¢02
«306796E+01
¢315962E+01
«321808E¢01
+328975E¢)1



TEST
POSEXMY
POSEXMP
POSEXH1PS
POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTHN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSECTN
BAMSEOTX1
BAMSEOTX?2
BAMSEOTY
GLEJSERX1L
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GAPN
6GaPx1
6QPX2
6ary

GQNN
GANX1
GANX2
GANY

212

TABLE C13: Test Results - Model 10, Sample Size 30

BLPHA LIVEL

.r1
L.
3.
18.
17,
19,
17,
AR
[
0.
ah,
7=,
56,
ur,
€2,
Te

21.

8.
17.
e.
220,
6be
2%,
20.
€.
S,
17.

8

o1
79,
€0,
AL,
111.
1L9.
85.
259,
199,
200
214,
28l
238,
214,
237,
87.
1{ 2.
7Ce
78.
13¢c.

97.

537.
2L7,
113.

81.

69,
122.
226.

137,

MIAN
«38C5372+C0
«9286535+00
«11C574E+GL
«1390T764E+01
«1C7CA8E+CL
«106239E+01
«34255CE+01
«29L544E40Y
0284LTT72E+401
«295836E¢+01
.3633595;51
¢318373c+01
«331RASC+01
03201375451
e1052792+G1
¢112734E+01

©9220362¢00

«9579J7E+AC
01355602401
«103599E+01
< 34620 0E+01
e179136E+01
1134358451
«10185154C1
«20A9)0E+i1
e 2753032401
«3428205401
«2835925431

VARIANCE
«7597THE+DS
«6A5952Z40¢
e T4B2CHE +20
<849487E+00
«87875GE+d0
<588302E+60
«137100E+02
. 8729845401
«73Ca33E+51
«815881E+01
112827E402
+9995585 401
«831549E 401
¢ 9786932431
«143526E401
«1937352+04
«951455E+0C
«228275E41
«392225E431
«232251E+C1
<1L9836E402
«379693E 401
«139285E+01
«126345E401
¢ 2261342401
19129401
«200582€401
«205316E€401

SKEWNESS |
»178366E+u1
¢ 191326E+01
2593652+ 01
¢278681c+01
¢266103E+01
0 254L134E+ G2
0172796£QB;
«187085E+C1
¢166124c4+51
e174381£431
«169453E¢01
¢189882c+01
+168611E+G1
¢191223c+31
o 475510E+01
o #37995E+01
«283465€E+01
e 42C362E+02
¢ 309845E+01
«382016E¢01
+814023c¢01
o 460918501
e 3365LUE+IL
eb345Cuce+01
«526842JE+00
¢62260G0E+0C
¢« 334292E+00
+685117E+L0

KURTOSIS

«726102E401
+812503E+01
«139151E+02
«151778E+02
+138304E+02
«131435€+02
«666892E+01
«727822E+01
«623043E401
«6T75804E+01
+698737E¢01
.82170GE+d1
<6%0371E+01
+812199E 401
+55407CE02
<402753E¢02
«181133E+02
«320384E+02
«173355€402
+276959E¢02
«116561E403
cba8600E+02
«207179E402
«330645E402
+293557E¢01
+294599E ¢31
+263503E+01
«302564€¢01



TEST
POSEXMY

POSE XMP
'POSE XH1PS

POSE XH1YS
POSEXH1YM
POSEXH1PHM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARK X1
PARKX2
PARKY

GQaPN
eaexg  °
6aPx2
Gapy

GaMN -
Gamnxy
GONX2

GanNy

213

TABLE C14: Test Results - Model 10, Sample Size 60

ALPHA LEVEL

01
.

b
1.

Se
16,
12,
55.
37.
45,
&9,
80.
37.
&0,
66.

Se

be

1.

Te
10.
11.

136,
28,
33,
28.

1.

8.

6.

Te

«05
1b.

20,
12,

17.
b,
29.
166,
121.
135,
138,
213.
129,
163,
162,
34,
23,
1be
39.
L3,
57.
289,
.05,
96,
7.
10,
79
L1
64,

10
b,

L1
27,

35.
67.
S2.
221.
161,
241,
216,
29%,

-201.

225,
240,
79.
0.
38,
92.
97.
108.
539,
140,
Lbbe
159,
39,
193,
99,
165,

MEAN
«757862E+00

«823970E+00
«672351E+00

«706122E+00
«901231E+00
¢ 855861E+00
«317874E+ DL
«281379E+01
«311108E+01
«297171E+02
«380059E+01
«28954L0E+01
0297342E+01
¢« 328767E+01
«925915€E+ 00
«783960E+00
+809568E+00

 +978267E+00

«100748E+01
¢107621E+01
< 1897496401
¢113161E+01
«11491TE+01
«114076E+01
«256300E+01
ok18800E+01
«316400E+01
«400700E+01

VARIANCE
«402183E+00

o 4874S6E+00
¢2376LTE+OC

«300008E+00
«709767E+00
«598458E+00
«105220€+02
«792116E+01
«826717E+01
«927220E+01
«130076E+02
+851795E+01
«816132E+01
«113562E+02
+875288E+00
«583111E+00
+518812E+00
«201652E+01
¢ 222601E+012
0 234217E+0L
«851659E+00
«471822E+00
«492338E+00
«503675€E+00
«254766E+01
«25T7067E+01
¢318829E+01
¢ 252167E+02

SKEWNESS
+165680E+01

«235830E+01
¢ 213285€E+01

¢ 238638E+01
¢554650E+01
«555603E+01
«209011E+01
«195071E+02
¢ 16814 0E+0L
«203635E+01
«176332E+01
«203214E+012
¢163099€E+01
«199923E+01
0182783E+01
¢ 25891 1E+01
«188457E+01
o 348616E+01
¢323142E¢01
¢ 25020 4E+ 01
¢ 213656E+01
0 223352E+01
«194527E+01
¢ 193961E+01
¢ 393232E+00
¢ 583006E+00
¢513168E+00
o b730L0OEOO

KURTOSIS
«619704E¢01

e1331643E¢02
e118084E+02

«117587E02
«639708E+02
«598686E¢02
«928648E+01
«810168E+01
«684676E+01
«879421E+01
« 720 948E+01
«891175€¢01
«619350E+01
«826226E¢01
e 710 347E¢ 01
«135706E402
«8168086E+01
«255182E¢02
«1828481E¢02
«107917E¢02
«932509E+01
e 130341E¢02
«902509E+01
«910690E¢01
«29274TE01
«3T1402E+901
©310572€+01
«310311€+01



T=ST
POSEXMY

PNSEXMP
POSEXH1PS

POSEXY1YS
POSEXH1YM
POSEXH1FEM
BAMSETTN
RAMSETTYY
BAMSETTX2
RAMSETTY
BAMSENTN
BAMSENTYY
BAMSENTX?2
BAMSENTY
GLEJSFPX1
GLEJSE®X?
GLEJSRRY
PARKX1
PARKX?2
PARKY

GNPN

GoPX1
60PX2
GNPY
GONN -
GONX1
ONX2

GONY

214

TABLE C15: Test Results - Model 10, Sample Size 90

ALPHA LTVEL

S |

19,
27,
22.
29,

7.

“0.
L1,

70.

L5

2.

118,
124,
156,

134,

38,
L&,
229,
78,
189,
71,
6e
uC,
LTS

20,

P
® 4.

31.
ThRe
1919,
1095,

192,

92.
B8R,
IL2,.
13F.
1564,
116,
22,
.
71,

63,

MEAN
«?7L3732420

e9233 822422
«3958299z+4¢

9332465430
«837H4LJE+CD
«QiCFRT79C+ 30
«282217E4C1
«28L04283401
«291573c401
«327G33Z 401
« 2052965471
«2954932+ 01
«292LF8Z4(1

+3584962401

¢ 557302400 .

«845191E+0C

«859324LE+C0

"e993547E+00

«OULABIE+DD
«9734995409
«154512E401
«1CO6A3Z401
«112945Z+01
«165165E¢51
«279200E401
+383CCOES 01
+3AA15024 91

«3579C00E+01

VARTIANCE
«572307E¢09

<FS5I8LERDC
+519945€490

62591 0F+ 30
«733858E490
592635E+DD
J7T55426E421
-917672€001
<A21C12E+01
93438 1E+31
<BLACR2ESGY
«101G632E402
.9C3GL0EDS
112098E¢82
«901939€¢00
+590633€¢50
«634103E400
189533E+01
+169220€401
<198632E¢01
2671926400

«2355LTECD
«29314L35¢09
«223803F+06
+300574EDL
«37368LEQDL
«379732E+i1
.3&1i17€001

SKIUWNESS
«13513LC¢01

«187555%+(C1
«27L933F+01

«325297E+(12
«32803LE+C1
«27(0125¢01
017901735401
«27CB0LE+OL
«185017°401
s 17L56KF 0]
«15324L7E+5Y

«258334F¢+GY

«21€LIJERC1,

«1662337401
«201943F+01
«1859320E¢C1
e167893E4+01
2694 C0F+01
«25C335F€+01
» 2930365491

«193093F+01

¢1375A9E 431
e16LLLEFE+0Y
«132021Fe¢C1
«389696F¢00
«25R4L,10F+00
e 3L5371E4G0
« 3I5CL37F+00

KU®TOSIS
+897305€+0C1

« T7R222E4CL
«146LOA3ELC2

+18LBLLESC2
«1887L1E# 02
«13u856Ee02
< 715097€¢C1
< 154377E402
. 736378E 401
6899126401
.552991E+01
«136579E402
.97L8CSECCE
+5L0601E+01
.897C91E+C1
<7838GSEeCY
. 659856€401
«129970E¢ 02
«111792E402
+150584E+02
.878676E401

«5L2837E¢01
o 770202501
« £16922E+ (1
«278729E+01
«2R0100E+01
«27HA3Z3E¢ 01
«292933E+01



TEST
POSEXMY

POSE XMP
POSEXH1PS

POSEXH1YS
POSEXH1YN
POSE XH1PM
BAMSETTN
BAMSETTXY
BAMSETTX2
BANSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERXL
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

GQPN
6QPx4

6aPXx2
6aPY
GQNN
GONX1
GANX2
GQNY

215

TABLE C16: Test Results - Model 11, Sample Size .30

ALPHA LEVEL

01
Se

Se
25.

30.
29.
19.
26,
26.
38.
20.
21.
35.
39.
39.
10.
3.
15.
39.
k0.
3.

73.
110.

T2.
60.
23.
&3.
65.
79.

«05
28.

39.
T2.

77.
83.
66,
75.
97.
116.
97.
73.
106.
145,
117.
62,
107.
T2,
108,

111,

116,

210,
260.

197,
164

66.
138.
183.
179.

10
60.

63.
127.

129,
129,
118,
162,
159.
213.
172,
128.
196,
261,
201.
131.
183.
137.
168,
195.
200.

332.
356.

310.
256.
168.
305.
367.
362.

MEAN
«8731175+00

«898607E+00
«120694z401

«1224924+01
«120229E+01
«115703Z+01
«236147E+01
«258758E4+012
«286910E+D1
«267310E40L
«229354E¢+01
e277864E¢01
«305237:+01
2835832401
«128764LZ4¢01
«1556865401
e1391562401
;1507305001
¢174L27SE+01L
«1770802401
«231563E+01
e236L41E+01
+197710E¢01
«186207E+01
«3071002+01
«387500E+01
«408600z401
«412800E+01

VARIANCE
«7164L24ELDD

«7555L6E¢00
«836488E+00

«120111€¢01
«116263E+01
«768567E*00
«582776E+01
«625311E¢01
«724698E¢01
+60AS56E+01
«577933E¢01
«664290E¢01
.803001E+01
oT17364E DL
«167478EDL
«275952E¢01
«15L463EN01
«983527E+01
«570037E0012
«T30L14ECDL

«361720E¢012
«623724EsD1

«280819E+01

«272732E4+01

¢2344L30EC 01
«217955E+01
«226285E001
¢234796E001

SKEWNESS
«215638E4+01

«217666E+01
«21C4 35E+01

«365300E+01
e 364675E401
+200541E+01
«203634E+01
«180995€E+01
«169176E+01
«165151E¢01
«253068E+01
«153592E+01
«164915E¢01
«161365E4+02
«2113L0EDL
»282507E¢01
+136251E+01
«767873E¢01
«252608E+01
.ﬁSth?EOO%

«RB26LE®DL
«505901E+01

+27881LE*D1
«365075€¢01
«486303E+80
+«529306E+00
«257271E+00
+45688562E+00

KURTOSIS
«948897E+0L

«9L2L28ES0L
«94L2376E¢02

.273597E402
<269565E402
. 868166E¢01
.85579LE+01
.710220E401
. 649825E+01
<6LT3TLESOL
<161618E¢02
+582000E¢01
.725103E401
.607615€004
<105248E+02
+158657E¢82
.863035E401
+110180E¢03
<109260E¢02
39906 7E+02
<4C2560E402
.528887E402

+156585E¢02
«248019E+02
«309583E401
«338988E¢01
«257964E* 01
«301056E+01



TFSY
POSEXMY:

POSEXMP

POSEXHLPS
POSEXHLYS
POSFXH1YM™
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSECTN
BAMSEOT X1
BAMSEOQTX2
BAMSEOTY
GLE JSERX1
GLEJSERX?2
GLEJSERY
PARKX 1
PARKX 2
PARKY
GOPN
GOPX4
GePXx2
GaPy

GQNN
GANX1
GaNXx2
GaNY

TABLE C17:

ALPHA LFVEL

01
23.

31.

155,
157.
268.
2%8,
23.
75.
70.
84,
27.
69,

66 .

92.

34,
72.
s2.
75.
58.
85.
51,

4.

143,
218,
7.
3,
32,

70.

N -
1.

1n7.

231.
24B.
396.
358,

73.

154,
228.
171,
328,
346,
bl

53,
237.
199,

302,

«10
139.
161,
309,
372.
481,
L60.

1209,

302. -

28¢F,
352.
158,
305.
274,
334,
263,
280.
350.
290.
2uS.,
351.
28S.
452,
LAE,
563,
134,
423,
373.

waa,

216

MEAN
«11793CE+01

«129084E+11

«?115707401
2315285491
<435989€¢01
«2977205401
.2342235401
«T72492E401
3615115408
4112630401
. 2459957401
3749665401
<357128E+C1
S4140185 401
«171153E+01

«192981F+ 01

«226798E+01

«?39100E+01
+196135E4+01
$2725285401
«1F0399T 04
«1862355+01
«192013E+01
«215003E+ 01
« 614 00E# 01
+526530E 401
< 4965005401

+5h61500E+01

VARIANCE
«111662E¢01

«137028F¢+01

«R33540E+01

(1046766402
1126065403
90234 3E+02
\610268E+01
<107516E402
.104737E402
(132627€402
.665877E+01
(105341F+02
<103843F¢02
.129307E+02
234257E401
L429524E401
.389297€+01
1042815402
L64B7STESOL
102499E+02
<367344E00
94364 0F+0Q
<107404E+01
.133984€+01
.235786€401
.300178E+04
33611 2E401
.262220E401

Test Results - Model 11, Sample Size 60

SKFEHNESS
«193077€+01

«201193F401

«614916E¢01
«565728E431
«987773E¢01
«105607E402
«250636E+01
<1452 80E+01
+152956E401
<1764 92E401
«225678E+01
«1499392E+01
«152951E401
«171477E401
«2220L3E+01
< 26659LESD1
«234618E+01
«343275€401
«227618E401
«250060E+01
«2N8127€401
«145653F+01
<1914 09E+01
«165038E+01
«S300ACE400
«3LN36CE+00
«222833€400
3078136400

KURTNSTS
«801343c+01

«B60L79E+01

«6TLUT7B7EFD2
«520112E402
«145094E+03
«172403E+03
«130686E+02
«555605F401
+596726E401
W772525E401
«110LLSESD2
«590143E+01
«57619NEe¢01
e76LOD1E#0L
«118647E+02
«12507%€+02
e134699€402
02L9799E402
«9778525401
«1255633E+02
«926179€+01
.565035E401
«915870E+01
«699907€¢01
«331289E4+01
«296%57F401
«286567E¢ 01

2831235401



TEST
POSEXMY

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSE OTN
BAMSEOTX1
BANSEOTX2
BAMSEOTY
GLE JSERX1
GLE JSERX2
GLE JSERY
PARKX 1
PARKX2
PARKY
carﬁ

' GoPX1
GaPx2
Gary
GANN .
Ganxi
GaNx2
Gany

217

TABLE C18: Test Results: Model 11, Sample Size 90

ALPHA LEVEL

.01
3.

39.
254,

281.
30k
277.

2he
102.
171,
199.

20.
109.
174,
200.

73.
215.
2uL2.
156.
135.
218.

31.
316.
204,
372.

22.
132.

69,
177.

«05
104,

120,
406.

437.
465,
“17.

90.
285,
393.
Lil.

4.
285.
378,
394,
270,
w27,
S03.
361,
3&9.
L35,
138.
559,
4290,
624,

&7,
259.
174,
331.

10
163.

194,
495,

537.
560.
513.
173.
bit.
509.
SL3.
158.
403.
505.
531.
k29,
SL2.
639.
465,
L31.
564,
251.
688,
555.
746,
105.
432,
325.
520.

MEAN
«125160F+01

«137892E+01
«291682F+01

«307566E+01

«337160+01
.325“905;01
«250810c+01
«4U55315E+01
«551052F+01
«59360SE+01
«239295F+01
«458005E+01
«550185F+01
«592629F+01
«238775E+01
¢ 334L6L3E+01

«366656E+¢01

" e367846E+01

.327008E+01
< 4516635401
«161164E401
«204033E401
+180751€+01
«219932E401
«412200F ¢ 01
<631800€¢01
+569300F 01

«669000F«01

VARIANCE
«139810E+01

«1590055+01
1300465402

«122269E+02

<169456E+02
.203570€+02
.616316E401
c161739E+02
156293 0€+402
<137090E+02
<STL6TSES0L
«146703E+02
(176268E402
<202997E+02
.270037€¢01
83427 1E+01
J737180E+01
«160919E+02
<120814E+02
<186267E+02
(14461 4E+00
+656353E+00
+606699E+00
<837181€+00
«347659E+01
.382070€+01
<616692E+01
+398388E+01

SKEWNESS
«217361E+01

«231163E+01
«554376E+01

<461493E+01
e Wh5212E+01
.566926E+01
«17175S7E+01
<158672E+01
<106927E+01
<128115E+01
+166563E401
<164689E+01
1251206401
<13636LE+01
« 162964E401
+195306E+01
<217793€+01
c2144TIES01
<161466E+01
«153635E401
<181511E+01
< 1290426401
«16293LE+01
«1369L6E+01
<5016 06E+00
«433276E+00
«264530E+00
«209359E+00

KURTOSIS
«102965E+02

«117290€¢02
«503203E+02

«350034E+02
+329823€E+02
+484I68E+02
«661559E+01
«716556E+01
cbll087E+0L
+SH308RE+01
«608319E+01
«743015E+01
«530682E+01
«570L38€E+01
«686551F+01
<964 128E+01
«118L27E+02
«100416E+02
«586111E%01
«615576E+01

W792353E+01

«693703E+012
«815912E+01
«654210E+01
«317998E+012
«316970E+012
«325694E+01
«293995E+01



TEST
POSEXMY
POSEXMP-
POSEXH1PS
POSEXM1YS
POSEXHLYM
POSEXH1PY
BANSEYTN
BAMSETTX1
BAMSETTX2
BAMSETYTY
BAMSEOTN
BAMSEOT X1
BAMSEOTX2
SAMSEOTY
GLE JSERX1
GLE JSERX2
GLE JSERY
PARKX Y
PARKX2
PARKY

GQPN
GaPx1

GaPX2
cary
GOANN
GONX1
GONX2
GANY

TABLE C19:

ALPHA LEVFL

01  L05 .10
12. u7. a2,
1. 52. 93.
53. 178. 289.
79. 1864, 29,
75. 167. 277.
43. 138. 255.
5. 143. 21S.

195. 464. 616.
56. 158. 234.

177. 408. 5.8,
36. 114, 204,

317. 58, 722,
€5. 149, 242,

262. 511. 6e1.

168. 428. 598,
15, 63. 110,

126, 363. &9,
162. 335. 448,
33. 113. 195,
182. 358, 482,
au, 254, 38S5.
81. 188, 257,

599, 797, 866.

277. 4a5. 519,
33. 81, 207.

206. 388, 653,
Se. 170. 353,

167+ 361, 581,

218

Test Régults, Model

MEAN
«938872F+00
«1020 33E+02
e1843L7F+0L
«198491E+0L
«198655T+01
«17 0500+ 7L
« 3038037 +0L
«h303SJE+0L
¢329111E+01
eS70134E+0L
«286L70E+01
«765329E+01
e32184L1E+01
«686920F+01
+«353631F+01
«122416F 401

. «306520€+01

«422538F+01
«165325E+01
o427321E401

«250011E+01
¢194654LF 401

+701607E+01
«28056NE4+01
«36T73I00E+ 01
«519100F¢ 01
s403300E+0L
«48830JE#+0L

12, Sample”Size 30

VARIANCE
.112837E+01
<127016E+01
(152164E+01
.3368765+01
<614855E+01
<139259€+0t
<876665E+01
<157365E+02
+938574E+01
«158768E+02
LT77957€+01
<207513E+02
<4024 7E+01
.208203E+02
.66088LE+01
<132671E+01
.539633E+01
.3061925+02
<438004E+01
«235728E+02

<458536E+01
<439619E+01

«371003E¢02
«255426E+02
«197725€E+01
«233115E¢01
«226017E+01L
«313782€+01

SKEWNESS
«296181E+01
e314268E+01
«273682E+01
«S0272LE+DL
e 907LSEE+IL
«2791 025401
«184122E+91
«107LJ5E+01
e174125E+312
«107850E+01
«2094Lb3LE+D1
«862217E+00
«193191E+01
«964615F+00

+209429E+01
W 26LLTIE+01

«198177F+012
«391991E+012
«2650195+31
.2361775001

«52654LLE+DL
o 4LB7LBAESHDL
«293015E+01
«632790F¢+01
«622234LE+00
«380867E¢00
cLLTAILE®DO

«176889E+00

KURTOSTS
«159295€402
+190623E+02"
e 1640 27E+02—
«43133SE+0Z
«1295255+0F-
«166409E+02
«735435E-0L
+b46963E+01
«683255E+01
.398602E+01
«1002825+02
<4OGBTOE+DY
<899508E401
«40L23UE+DL
¢125618€402
«133323€+02
«100607E+02
+2800805+02
«106953E+02
¢125125€402
.533809E+02
«452609E+02
«1660235+02
+696092E+02
«358140%401
+299069€+01
«293765E+01
«322479E+01



TEST
POSE X™Y

POSEXMF
POSEXH1PS

POSEXH1YS
POSE XH1YM
POSTXH1PM
BAMSETTN
BAMSZTTX1
IAMSZTTX2
BAMSETTY
BAMSZOTN
BAMSZOTX1
BAMSZNTX2
BAMSEOTY
GLEJSERX1
GLEJSE X2
GLEJSERY
PARKX 1
PARK X2
PARKY
GaFN
6QPXx1
6QPXx2
GaPy

GANN .
Ganxy
GONX2
GONY

TABLE C20: Test Results, Model 12, Sample

LN
L2R,
70,

LARK,

182.
3€.

237,

£a3,

98¢
789,

33L.

w
N
r
.

220,
763,
3e7.

Tie.

219

MEAN
<236303E+7%1

W2LL192E+01
J745962E401

eB32527E+.4
«1832955+22
e174733c+.2
281925543
«135236E+22
«CUld742401
«130212E422
«285795E¢01
«14295J€402
e LR5105E4¢1
e14ZJ60E+C2
«61HLI9E+Y
«355380E+01

o TLHAG4LE+CL

e769979E401

«25T217E+01
«953869E+51

0169553E+01

«198025C+(1

WR745332451
« 3509652421
«uw238.G34C1
«B3usI0E4DL
W693310E051

«67H3ITEHL

VARIANCE
«723w11E+CY

«377155£+21
«1953(5E+J3

«238532E+%53
«3328C9C 434
e2207BiLE+IL
«3237135401
«427,83€E 402
.15365%E032
«583%12E¢y2
.86315ﬂEf51
e ULTB83E+L2
«184267c+)2
«638159E+(2
«126147TE+I2
«194522e+C2
e2438LTE+T2
e 4C3uLuE+C2

«3585613E+31

«5G656LE+U2

e5457152402

o1475k5E 451

«15339/24+52
«J11186E+51
¢239962E+J1
«389630E+ul

«36162122+01

Size 60

SKZWNESS
029,60 4Z+91

¢ 3214765401
¢105207£+02

e 793754c+01
«12€820E+C2
«132390c+02
¢18230L6E+J1
«716592z+100
e16L877E+401
«698810c+00
¢194068E+C1
«673236E+G0
«1791372c+01
«5982C7c+C0
«2074L88E+01
«293135E+414
«1620925+01
¢1853485401
.2233905001
¢1389€E5E+01
« 2656425401
¢164840E+0L
¢2207632+01
¢292427E+01
¢3911352+00

o413426E40C

¢ 394295€+00

e653336E+4J1 =o188LU3EXLO

KURTOSIS
«167952E+02

«185626E+02
¢1692382¢33

.130657€+03
.2399082¢03
«166176E+d3
«735199E401
.383768E¢01
<733079E+01
< 365148E+01
BL1662E+01
<376968E+01
+819686E+01
. 329858E¢01
<131215€¢02
«150634E+02
<766 789E¢01
«863353E¢01
<108136€402
<552346E ¢01
L146850E+02
+683266E¢01
«112874E¢02
\158637E422
«292014E+01
. 326787E 001
310699E+01
+338391E¢01



TEST
POSEXMY

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXH1YM

PCSEXH1PM
BAMSETTN

BAMSZTTX1
. BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSENTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLZJSFPY
PARKX1
PARKX?2
PARKY

GQPN
GOPX1

GaPx2
GQPY
GQNN
GANX1
GONX2

GaNY

220

TABLE C21: Test Results, Model 12, Sample Size 90

ALPHA LZvEL

«C1

-
-

*Jd

o1,
368.

382,
9r7e.

-
~3
O
.

8ua9,

MZAN
+267353C+21

«2525732+401
¢1291322+432

«119822E+432
01235192452

«1L21 845402
«L5601254C1

«2129385z+72
«B8U99+8E+(1
«249936c+L2
o LG3175E401
«2113195+02
«328655c+C1
«2594082+C2
EB31L LI+
«812453E+01
«142773E+402

«1363262402

+519313E+51
«171710E+02
)

«165658E+01
02395072401

«£95254E401
e I534485¢(1
«LO8773E40L
e 785230E+01
«Su97CJE+21

«8B8BBIIE+TY

VARIANCE
«1U6398C+02

+838548E401
«528363E403

eW182722403
5233472433

8323132433
¢1521852+32

«7327°822402
¢« 3935965402
¢1123395423
«1487°83c+)2
¢ 796557E+32
«435231£+432
e122u35c+493
«1327752+32
«5978712+92
+ 7893252402
6792995432
«1802525+32
«970892E+02

e 4252652403
«155757£ 4012

«763685c¢31
«530815E431
«297781E+01
s 457867E431
e 4L3IBLIE+0L

SKENWNESS
«275793c+01

«25€528c+ 01
«6651€72+401

«B8735752+01
«B8163R7c+01

«638110c+01
e1545252+01

+588323E¢ 0L
«1530732+91
¢ 329761E446
«1668792401
C€03917E+CC
c161212E+01
+31103S5+C0
«1383162+01
«23560EE+ 61
«2600255401
«125202:401

01216811c+01

0 90LULSEes(

¢1982532+01

«255739E+01°

«1815€€c+01
016“8235‘?;
¢2994125+00
509640240
¢« 397925E+CC

«€30977c+401 ~,224496E+(0D

KURTOSIS
¢132190E+92

«117168E¢02
¢5703763E¢32

«125176E¢23
*«1C6156E+33

«563964E402
+56B8827E+01

¢383672E+J1
e772632E+01
¢322822E+01
«522239E+J1
¢371237E+21
«C24639E+01
«313€56E+01
«7u7912E¢01
e113732€+02
«163618E¢D2
e SLLT786E+DYL
«467605E+u1
s 4u9872Eey1

«855831E+01
«18286GE*J2

+891958E401
06512435401
¢304160E+31
«3E8794E Q1

¢3C5767E+J1

¢3456490E401



TEST
POSEXMY

POSEXMP
POSFXHLPS

POSEXH1YS
POSEXH1YY
POSEXH1PM
BAMSETTN
BAMSETTX1

" BAMSETTX2
BAMSETTY
BAMSE OTN
BAMSEOTX1
BAMSEOTX2
BAM3EOTY
GLE JSERX1
GLEJSERX2
GLE JSERY
PARKXY
PARKX2
PARKY

GOPN
GOPX1

6QPX2
GaPY
GANN
GONX1
GAN X2

GONY

TABLE C22:

Test Results, Model 13, Sample

ALPYA LEVFEL

<01 05
10. 55
12, S,
1R, Y-
25. 59,
31. 63.
13. 4R,
. Lb7. 731,
sS4, 137,
65. 1749,
€5. 178,
663. 849.
58. 163,
4. 186,
T4, 206,
e 29.
Se 19,
3. 28.
11, 52.
12, 60.
8. 47,
910. 960.
111. 213.
L8, 1323,
36. %,
373. 519,
19. 73,
25. 65,
23, 87,

«1C
118.

112,
hl,

88,
89,

68,
825,

221.
2u9,
256,
ELE N
254,
265.
296,
60.

S0.

85,

96.
B4,

982.
313,

189,
15%,
8132,
184,
167,

22%,

221

MEAN
«115654E+ (1

«1189%4E+ 91
«10227754+01

«1109325%+ 01
«111317%+01

«100383%+01
«9633165+01

«3166732¢01
«327635%+01
«2L2830°4¢11
«1242365402
«339L25F+01
«341711F 401
«370435F+01
«9876945+00
8111065400
« 999850+ 00
«100045E+11
«101552€¢01
«101334E+ 01

«221263%¢02
«221356F 491

«155223C+01
+133542F+01
«608100E+01
+305900E401
+2733005401

«3105007+21

VARIANCE
«104230F+01

«116705E+01
«103233E+01

«171421F+01
«13I7T102E+N1
«1?23551F+01
«233126F+02
«912NM78FE+01
«108925€+02
«977366F+01
«4040B83E+D2
«103158E+02
«1164251E+02
«11L215FE402
«857450€+00
«T8L710E+UO

«918332FE+09

 .273695E+01

«243512F+01
«230170%+01

«800575E+03
«781192E+01

«2372LBE+OL
«205L17E+01
«235339F+01
«258811E+01
«283571E+01

«285083F+01

Size 30

SKEWNESS
«194L869E+01

«254195E401
«607087E+01

«627445E+401
«H22150E+01

«618522E+191
«871273E400

»185972F+131
e1764272F+01
«16N777E+01

«773583F+00

«185240E+01
«170793F+01
«162233E+01
«178910F+01
«2A3046E+01
«1884:39E+01
«3R7EQRE+01
«293763E+01
«299211E+01

«65845LE+DL
«L47366LE+Y1

«373576E+01
«361415E+01
«35726RE+00
«399231E+00
«627807F+00

«330391E+00

KURTOSTIS
«900595<+01

«1463405402
«61688%E+02

«606530E402
«F06381E+02

«621515F ¢92
«393393E+01

«7T7R235E+01
«64034HE+01
«613914E+01
«367490E+01
«787252E+01
«64L3713E+01
«6L5077E4+01
«74932454+01
«1350335+402
«793413E+01
.2i6112€002
«133323E+02
«14L2197E+02

«8010555+02
«381912E+02

«2338K1E402
«2L6L3RF 02
«309429E+01
«30635%E+01
«34L67TLESO1

«261595%+01



TEST
POSEXMY
POSEXMP
POSFEXH1YS
POSEXH1YM

POSEXH1PM

BAMSETTN
BAMSETTX1
BAMSE TTX2
" BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOT X2
BAMSEOTY
GLE JSERX1
GLE JSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GOPN
GOPX1
6aPx2
caPy

GONN
GaNX1
GaNX2
GONY

222

TABLE C23: Test Results, Model 13, Sample Size 60

ALPHA LEVFL

.01
20.
3be
A1.
158.

119.

982.
107.
64 .
154,
99 .
117.
71.
165.

.

999.

23.
35.
79.
582,
10.
2.

7.

«N5
T4,
98.
135,
239.

182.

997,
257.
i76.
311,
1000,
276
194,
323.
23.
38,
27.
30.
26,
32.
1000.
60.
92.
188.
333,
74,
26,
S1.

«10
132.
168.
197,
298.

229.

999,
355,
271.
uo7.
1000.
371.
296,
L22.
The
64,
46,
75.
S7.
68,

1000.

105.
163,
265.
956.
166,

7.
151.

MEAN
«121661E+01
«132258€+01
«141070F¢ 04
«?30861F¢01

«1974165+01

«252383¢02
«422935E+01
+«343694E+01
«499180F+01
+299361E4+02
«440552E+01
+«361345E+01
«5197A1E+01
+«913638E+N0
«836187E+00

«744979E+ 00

.« 879319E+00

«785969E+10
«B8657765+400
.1736825*02
«10134&6E4+01
«11LLS1Fe0L
«14184RE+ 01
+905900E+01
¢3954L00E+ 01
«3052005+01

«389000F+01

VARIANCE
«109863E+01
«161019E+01
«440373E+01
«2254T1E+02

«159211E+02

76274 8E+02
«159499€F+02
<108805€402
.207291E+02
<957031E402
17233 4E+02
«113020E+02
<226054E+02
.778216E+00
<10358 4E+01
«762550F +00
«139177E+01
.136378E+01
«151127E+01
1056685403
<S14724E+00
.ST16LOE+00
<772915E+00
ob9L8L7EFDL
+275063E+01
<273003E401
«240230E401

SKEWNESS
«199649E+01
«231714E+01
«617459E+01
«100802E+02

«102662€E+02

«431600E+00
«169570E+01
«183489E+01
.168287E+01
«360667E+00
«167763E401
«179678E+01
«169311E¢01
«175266E+01
<2913 08€+01
«348282E+401
«271793E+01
.308108€01
«295756E+01
<2086 00E+01
«28964L9E+01
+251L20E+01
<15564L3E4+01
+199128€400
«63793LE+00
«388438E¢00
«549857E¢00

KURTOSIS

«9177 31E+01
«126703F+02
«66L59UE+D2
«1534L86E403

«145596F+03

«319641E+01
«T18331E+01
«788787E+01
«T01356E401
«304044E+01
«TOL2TIE01
e76361UE+0L
«703423E+01
«694318E+01
«145450E+02
«240981E+02
«139416€+02
«165557E402
«14UTTSES02
«107021E+02

«181607€+02
«169043E+02 -
«641906E401
«272621E+01
«343538€E+01
«306135E+01
«358101E+01
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TABLE C24: Test Results, Model 13, Sample Size 90
PLAEMP LIVEL

TEST W01 T et MZAN VARIANG?T SKEWNESS KURTOSIS

POSEXMY 11.  “be  SRe  4131531S+51 7885135400 L183612E+01 .739981E+01
POSEXMF 17. 75, 133, 115854E4C1 .970123E+J0 L1€€LLIE+01 .677288E+l1
POSEXH1FS 83, 3. 12k. 41081665451 .128775E+01 o 35376EI401 - +213676E¢u2
POSEXHLYS €A, 1 9. 1FQ, ,3i18363E+U1 ,191K525401 LLLE2LHE4J1 o341566E+02
POSEXH1YY Ctoe 223, 179, 4127991431 .22)671E+31 +423817E+¢01 3263032
POSEXH1PM L8, ©3, 1LE, o115833Z+i1 <153.1504J1 3559218401 ,209956E+42
BAMSETTN 990, 1u..s 1C[:e +LI653LC+402 o126518E403 o3611L6E+LG o 3C9628E+I1
BAMSETTX1 89, 2:8. 3:L. o3B6535T+01 o1383350402 1732915451 J6BB7LUESIL
BAMSETTX2 7The 186. 287, 43489171401 L11737:5472 .162592E+431 .585383E¢01
BAMSETTY 167, 328, WE1, o5212L2T4¢C1 42165895402 L161985:+431 <661871E+51
BAMSECTN  15(l. 10.C(s 1l(1e oLB2T1SE+G2 41527558403 2874135400 +391878E+41
BAMSEOTX1 94, 226s 3ilke +3980925491 L1U466L3ED2 L17L294E+01 o695626E401
BAMSEOTX2 820 129, 2F7. .I5TOS6ESG1 1237295432 1636125601 o501146E401
BAMSEOQTY 1784 355, L70e oE45783Z401 .23614BE+402 L1613725¢01 .656240E+31
GLEJSERX1 Fe 134 %24 oB8399763¢ur  +6632375410 L2CW1TLE+01  ,932677E¢01
GLEJSEPX2 18, 72, 119 <139371E401 +1€6364E+4I1 o291B873E+01 o154668E¢)2
GLEJSERY 13¢ %1,  BY. .998077Z4C0 .121261Z+431 .2611825+31 .131616E¢02
PARKX1 To  Z6e  ET. o810433E400 o137915Z4u1 3641765601 o238291E¢42
PARKX2 2¢ 25,  74.  <Bu5e97I400 4122273541 +211977E401 +833534E491
PARKY e I5.  B2. +933861F40C 4170354491 . 302357E+401 o173791E432
GQPN 1006 107¢e 15{Ge o1732735452 o€29171E432 1760165401 831858E¢31
GaPx1 47, 125, 1GF, 41179245401 3733722430 41820935431 +999156EeJ1
GOPX2 Tle 174e 22F. 41263125401 L423656Z410 +1656B80E+01 .739163E+01
Gasy 138, 295, 3@, 153373401 .598I4SE+0C 1374792431 o535994E431
GQNN 830, 9 8, OfL, ,10863UE+(2 +B2L8822+¢01 797413c-01 .3C22u0Eeu1
GaNX1 15, 330 106. 4125155401 ,338L76C+01 <3956C3E4I0  +331658E401
GQNX2 by 37, 10de <3.4)C3¢u1 2998535471 ,395185:400 +319484E431
GONY Fe 224  Tle 43753315451 +3061052461 J4185GE+400 .284G78E+01



TEST
POSEXMY
POSEXMP
POSCEXH1PS
POSEXHLYS
POSFEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
RAMSE OTN
BAMSEOTX!
BAMSEOTX2
BAMSEOTY
GLEJSERX1L
GLEJSERX2
GLEJSERY
PARKX1
PARKX 2
PARKY

GQPN
6QPX1

GQP X2
GQPY
GONN
GaNX4
GAaNX2
GONY

224

TABLE C25: Test Results, Model 14, Sample Size 30

ALPHA LFVEL

.01
19.

i6.
79.

1.
58.
335.
€6.
254,
3a,
480,
1.
379.

268,

207.

167.

196.

110.
33.

219.

« 0%
59.
Lb.
221.
203,
167.
183,
160.
603,
160.
523.
133.
735,
136,
630,
572,
12.
4346,
366
35.
L63.

281.
80.

870.
630,

83,
W74,
108.

b11.

.10

as,

81.
351.
331.
272,
293.
2L3.
730.
268,
653.
21k,
25,
222.
752,
725.

37.
624,
L9%&.

T4,
562.

405.
122.

918.
721,
203.
718,
271,

670.

MEAN
«1013167¢ 01
«9540675¢00
«204265E+01
«138208F¢N1
«182682E+01
«188153E+01
«332297E+01
«781532E+901
«33314S5E+01
«698034F¢01
«293437%¢01
¢ 95143274014
«305812€+01
¢ 845501F+01
«6523315+01

«822142F+00

+384127F+01

«U73834 01
«987A8765+400
«482430C¢01

«2628237¢01
«122886E+01

«901502%+01
s UIR758%¢ 01
«3X50200F 401
«5452)0F+ 01
«269700F+01

«521600C+01

VARIANCE

e1413795+01
«125057E+01
«210486F+01
«21558RE+01
«186264E¢01
«1816ASE+D1
«956273F+01
«2177595402
«1J0L452E+02
«202156E+402
«B23809E+01
0«27 3251F4+02
«890264E+01
«251547E402
«102149E+02
¢522048E+04
«811910F+01
«2323hLE+02
«195171€+01
«2837h18E+02

«509554LE+N1
«209753€E+01

«6298LLES02
«2719)1E+02
«183183E+01
«290260€+01
«200520€E+01

«268603€+01

SKEWNFSS

«314L4L25E+D1
+ 3L1050E+01
« INPALAE+DL
«321701E+01
«32804LE+01
«320311F+01
«16984L5E+01
«924617E+400
«184951E+01
«102925F+01
«1839979€£+401
«718Aa75E4+00
«1865175F+ 31
«91966CE+00
«2054L53E+01
«172965E+01
«198037E+01
«321761E+01
«2R5252€E+N1
« 2911 54E+01

«4L0SS5R0E+01
«5219LLE+DL

«314802€+01
5321 73E+401
«601387E+00
« 28RS ALE+QD
«L7088LE+TD

«169885F+00

KURTNSIS

«174968E+02
«203115E+02
«185674E+D2
«2004L75E+D02
«206507E+02
«1924L4L2E+D2
«+6565035+01
«395490E+01
«799286H%+01
«415383N0E+01
«BL24LT71E4+01
«353524LF+01
«79%384E+01
«382399E+01
«118203E+02
«698u6154+01
«9362933E+01
«197241E+02
1474 09E+02
«17L205E+02

+«300701€+02
«525183€+02

«195875E+02
«568003E+02
«34WLABNE+D1L
«323312€+01
«303476E+01
2775315401



T=ST
PCSEXMY
POSEXMP
POSEXH1FS
POSEXH1YS
POSEXH1YM
POSEXH1PM
SAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOQOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

GOPN
6QPX1

6QPx2
GQPY
GQANN
GANX1
GQNX2
GQNY
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TABLE C26: Test Results, Model 14, Sample Size 60

PLTHY LEVIL

oL

R4,
117.
~uaq,
L7,
RAY,
1.,
781,
753,
9,
6LE,
4LRQ,
L,

W67,

2uL%,
9.

197,

cc

T2

972,
164,

‘9 e

125,

215,

936,
910,
79,
651.
a7,

Sr2.

o1

€7,
49,

9L,

MIAN
011113558431
el11 2042401
«I#2236Z+01
e3359)2%+01
e4RA7838Z4J1
du767625+02
e290564F+01
«163535E+(2
317825401
«1LLABWERD2
¢31G265E+61
«173L10E+02
e376H1L4LEXCY
e1E3557E+402
«7786903E+G1

«7853875c+03

_+6328J6E+G1

«8624L704LE+UL
e 92874554 C
e 7B53546E+01

«172266E+01
«96301075+00

e73LL16GE+CL
«LBL275E4+4C]
«@157J0E+DL
«7332060E+01
eL157CJE+JL

¢58370 54012

VARIANCE
«111902C+y1
«109532E+01
«HTHITHE+D L
«792183E+(1
09715322452
« 76095uLE+02
e91924uLE+01
«551225E+32
«171487E4¢02
«539226E¢D2
«1028LNE+C2
«587.9R2432
«1LLILBE+J2
e 5452722402
«1662C02E+02
e 943114400
«937615E+01
«497836E+02
«186988E+01
« 3740152402

«615595E +33
«341679E+00

«156419E+02
«756356E+31
«228263E+01
«3815509E4+01
« 3127482 ¢01

s WllULLOE+CY

SKZIWNZSS
«211432E+401
021L5LBT+u1
e561733Z¢01
¢58021CZ¢ 1
«100159E+y2
«104L775E482
«198915E+01
«624817z+00
01763485+ 01
o 77282254 C0
+217789E+01
«5493883c+.0
02201492+ C1
«6766285+¢2%
¢161913E+01
¢ 3717512 ¢01
¢11C949E+01
e204235E+01
«376818E+01
«1667882+01

«272270E+CY
¢1675335+01

«163686E+01
«160632z+C1
bHhi614Z¢30
e 32676L7E4CY
«275018E+3¢0
e 4160(BED(C

KURTOSIS

«9u5033E+01
.938050€001
«511728E402
«5b64130E¢02
«129665E+03
.15?99&E*d3
«87183CE+01
«347919E+01
«716973E+91
«382103E+01
«106699E402
«326G59E+31
«100572E+432
«350021E+41
«739588E+01
«239453E¢02
«545460E+01
«109582€402
«279561E+402
«B7C787E+CY

e148C40E«D2
«697L9TE+O1

«637698E¢01
«639689E+01
¢282316E+01
¢323718E¢01
«303009E¢04
¢321917E+01
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TABLE C27: Test Results, Model 14, Sample Size 90
BLPHA LEVEL

TESY 31 .05 .1n MEAN VARIANCE SKEWNE SS KURTOSIS

POSEXMY 32, 71, 131. .109710F+¢01 .116116E¢01 .217775E+01 .977505E+01
POSEXMP 23, 62+ 11FR. 4105172°¢31 .113698E+01 .262704E+01 1320225402
POSEXHIPS  651. 885, G954, .L3BIRBE+0L .7LIE26E+01 L 43IJLLIE+IL .3181L2Es02
POSEXH1YS 636, 380. O94lL. o4253535¢01 .65GL51E+01 .418129E+401 .303025E402
POSEXHIYM 624, 877. Qu4L. ,L3B54B8E401 +107403E+02 .518901E+01 .407394E02
POSEXHIPY 636, 831. 949, .L55891F+01 .135873E+02 .530192E+401 .397424E+02
BAMSETTN 68. 161, 266, 4327555401 .106751E402 ,170953E+01 .661525C+01
BAMSETTX1  980. 997, 1000, .2534L79E+02 .88L4%39E+402 .610013F+00 .37556095401
BAMSETTX2 96. 223. 301. ,3943995¢01 .150366E402 .175193E401 .660L105401
BAMSETTY 9u1. 982. 993, .215250T#02 L758043E+N2 .S542837E400 .323725E401
BAMSE OTN 60. 157. 2uL9, LIL7R01F+01 .100489F+02 .163500F+01 .6181R3E+01
BAMSENTX1 981, 398. 1000. .2710155402 ,96B84045402 .62L7SRE+400 .37244IE+D1
BAMSEOTX2 86. 195. 270. .355039F401 .130771E402 .1881695401 .777168Ee01
BAMSENTY 49, 983. 996. .226167°¢02 .B32L79E402 .602072E400 +349LSHE+D1
GLEJSFRX1 967, 937. 999. .11931AF#02 ,228L21E¢02 .104606E401 .508732E+01
GLEJSERX2 15. 34, H58. .9128226400 ,112107E+01 .351896E+01 .220227E+402
GLE JSFRY 909. 989, 996, 489042301 .110432F402 .95LOO0LE+00 ,550278E+01
PARKX1 764, 304, 957, .136401F4+02 .798131E+02 L 170275€+01 .832976E+01
PARKX 2 6o Wbb. 78, ,O955L41E400 .175228E+01 .262190E+01 4126555E402
PARKY 720. 877, 930. .120656F+02 .586222E402 .109L7ULE+01 +480995E401
GaPN 83, 215. 326, .152121E+01 .27+554E+00 .205659E+401 .880174E+01
GaPx1 15. 53, 95, ,9R9553EeN0 .209234E+00 .15068LE+01 .635118E401
6aPx2 997. 1000, 1000. 47294095401 .101952E402 .180673E+01 .986227E+01
GaPY 884. 965, 978, .L22073E¢01 .3L5SM9F+01 .127841E+01 .563263E+01
GQNN 18. B4, 145, .LE5900E401 .236158E+01 .37617AF+00 ,293855E401
GaNX1 876, 70, B34, 8556005401 .L9940BE+D1 .35L6S0E+00 .327920E+01
GaNX2 20, 60. 123. .L30LOJE40L .350519E401 .426883E+00 .2967LSEeQ1
Gany 377. 584. 761. o799300F401 .431126FE+01 .230068E¢00 .297965E+01
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TABLE C28: Test Results, Model 15, Sample Size 30
ALPHA LEVEL

TEST 01 .05 .10 MEAN VARIANCE SKEWNFSS KURTNSTS

POSEXMY 2. 4. 27. 7287652400 .337350540) L195352E401 .971021E+01
POSEXMP 5. 25. 57. oB72734F¢10 .635703E4+00 .235989E401 .12uLIKARE+02
POSEXH1PS 5. 28. 55. +B920505400 .453229E400 ,222509F+31 .111695€+02
POSFXH1YS 16, 4B,  78. L972LHUE+00 .684L5145400 2731935401 .133773E402
POSEXH1YM 11. 51. 81, .971LIRE+00 .653724E¢00 ,24LL3S6E+01 .1196555¢02
POSEXH1PM 2. 27+ 56, JRT4G3HKEF00 L425132E400 L19LTE7E+01 .898306E401
BAMSETTN S0. 142. 226. .082%3E401 .832690E+01 .1834775¢01 L 7717LLE+DL
BAMSETTX1 53. 148. 228. .3101965401 .B34709E+01 .18C517E401 ,752423E+01
BAMSETTX2 55. 160. 251. +331450£401 .9398L1E+01 .1696055401 .682642E+01
BAMSETTY 75. 189. 281, ,357790E401 .177198E+02 .15859LE+01 .594507E+01
BAMSEOTN 64e 198, 294, L3R0BISE+01 .115660E+02 .179117E+01 .808829E+01
BAMSEOTX1 53, 153, 2%5. <%21158F401 L977L97E+01 .1793796E+401 ,708392E+D1
BAMSEOT X2 61, 158. 253. ,332851F+01 .101919E+02 o173017E¢01 ,672567E¢01
BAMSEOTY 78. 204. 309, .371511F#01 .118893F+02 .163373E+401 .62916LE+0L
GLEJSERX1 . 18, 47, .BI4152F400 .B831071E¢N0 .396LB2E+D1 .40979IE+02
GLEJSFRX2 5. 119, 169. .153082°401 .452250E401 .380951E401 .2L1241E+02
GLEJSERY 2. 26. 53, .913336F+00 .775055E+00 .208885E+01 .911213E401
PARKX1 23, %1, 98. .115038E401 LLH62580E+401 .L3I0175E+01 .270073E+02
PARKX2 7. 37. 82. ,990795E400 .282546E+71 .549218E+01 ,51689JE+02
PARKY 18, 59, 104, .11L224F401 .321513E+401 .330907E+01 +178143E+02
GaPN 119. 278, 400, .262793FE+CL .585117E+401 .50929RE+01 .455333E¢02
GoPX1 127. 262. 360. .260018540L .70L9ATE+01 o331691E¢01 +186974E+02
Gopx2 72. 159, 235. 1735755401 .3084LLSE+01 JLO5013E+01 3d6867F+02
GaPy 49. 130, 188. 1571935401 .329739E+401 .4B87159E+401 ,416114E+02
GONN 21, 65, 174, +?118005401 .226234E+CL . 4289685E+00 +308713E¢01
GaNX1 26, 94, 238, .IS67O00E+I1 .1347LEE+01 L4B60924E+00 3018555401
GaNX2 17. 45. 119, .267600°¢01 .23353AE+01 .6L3Q0LE+00 .338393E+01
GONY 30. 83, 236, +359600F¢01 .193672F¢01 .575993E+00 .363021E+01



TEST
POSC XMy

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXH1YM

POSEXH1PM
BAMSETTN

BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSECTN
BAMSEOTX1
BAMSECTX2
BAMSENTY
GLEJSFOX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

GQPN
GaPx1

6QPx2
GQPY
GONN -
GANX1
GAaNXx2
GANY
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TABLE C29: Test Results, Model 15, Sample Size 60

ALOHA LEYTL

o1

27.

19,

2b,

15

16,

143,

1.5,
275,

175,

o117

~n

[N XY
]

[AVEENN )
o

4ZAN
e56H515515+ . (

eH575L82450
«71HL75540T

e 73LT754Z+( 2
«827782E+0D

«83h4527+00
«30LL14Z+0

¢3558058£+4J1
«3352955+01
«3621815+01
¢3374L345402
«368058F+71
e34C717E40L
«372159E+C1
«105C020E+21
¢ 775121 +4C0
«£93218E+00

«12L74BE+0Y

«140559E+401
«€95161E400

«1585725+C1
«107887E+(2

el1blu9E+01
«138413E+01
3944 JCE+OL
eblEH Y JEec )
¢332900E+01
«49555CE+01

VARIANCE
e 30335GE+G¢

«3707352403
«178834543¢C

1862082407

«351151E+30

«343894E+090
«837592z+01

<118369E+32
«103183E+02
«121669E+02
«1125¢5E4G2
(124690402
.1078855402
1251802402
< 3647525430
4658735400
«4B4IESE+00
CG14B67E+01
352994241
V1702725401

«538721E+00
e LL3IBLBE 4+

«864LJ51E+02
¢« 80631LE+I0
«267754E4+21
¢ 3U0489E+0L
e2585342401
e 277975E+01

SKZWNESS
«16€241Z+01

«279504Z¢01
01172305401

«125477E+01
«368676E+01

«3726485+01
«215630E+01

e17257ucE+i1
¢1654282+401
«172316c+01
«208833E+01
¢164823c+61
«172948E+ Q2
¢161646E+0G1
e1668732+01
e 2440T2E+01
¢17L527c+01
«458912&+01
«2L1318E¢01
¢295193€E+01
02532126401
.2021265001
e178331E+01
«297782E+01
« 346259E+0C
«57C341E+D0
e 488392E+00
.ﬁ263525090

KURTOSIS
«6334L11E¢51

«173607c¢02
«492548E¢01

«531606E+01
«279587E¢02

«300429E+02
«136L358E¢02

¢69338T7E+01
«633998E+01
«673081E¢01
«978748E¢01
«6360694LE+01
¢691233E+431
«575626E+01

«5611315+31

W136116E¢02

¢ 797253E+01
«42793uE+02
«102662E¢02
«145222E+432

«129138E+02
¢995929E+01

¢734987E+Q1
e 247E25E40D2
«260522E¢01
e3L9782E+01
e J41646E+01
»313766E¢01



TEST
POSEXMY
POSEXMF
POSEXH1PS
POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTM
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSECTN
BAMSEOTX1
BAMSEOTX2
BAMSEQTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY
GQPN
GQPX1
GOPX2
GOPY

GQNN
GaNXY
GaNX2
GaNY

TABLE C30: Test Results, Model 15, Sample

ALPH, LEVEIL

o1
1.
-

.

i.

110,
€2.
€q,
51.

114,

12.

59,

euf
13.

13.

8.

16,

1F ..

P
4.

2e4,
2€€.
2L3.
337.
131.

29,
1.7,
22¢L,
137
11,
3%9.

84

305,

2€3.

1€,

2hbe

wr
0
.

370

.

229

MZAN
«6901342+70
«68171524(08
«79583032+400
e 7TLYT7E+CD
«78875254(G
«8J7585E+(0
«381698£+4012
«3381932+01
¢326952E5+C1
«14735€401
«352936E+{1
«341133E+01
03296625408
e416675E4+71
«119156E+31

« 8254332400

01286555401

«19L510E4DL
+1165886401
¢ 11991 €E+LY
«156578E401
e982L1LE+CT
+1561132401
01303043401
433400E+D1
¢53270GE401
«37(500E401

oE8TT30E+CL

VARIANCE
«3787872+C0
«3958L8C ¢35
021761 3+0

o O

«229789E+]
¢ 2314362400
«214513E400
«136LGHE+C2
« 1137472452
+127132E432
+145258E+02
«117326E+02
«1087LTE+D2
«123888E402
01522435402
0114200E 431
W 439716E400
«1G2954E+01
«770C26E4+01
¢ 242485E+01
+2811965+01
«3070722+00
«19L563E+20
«5963572406
«3577722+2C
+281926E+01
03258612421
0 276874E 401

«3481552+91

Size 90

SKEWNESS

«1758L65431
¢1014763+31
01257372+ 01
«1358675+C1
e138538E+C1
«1247832401
«2579€85401
«1662375+01
+2484L05E+61
«147493E+31
«197719E4C1
«1€5971E+01
+2336735+01
«151996E+91
«165178E+01
e14E341Z 401
«15C8L 3E+01
«35€2325491
«2293055401
+285261E401
+1859€92+C1
+1265055+01
¢1€3914Z+01
+1148165491
«371869E+0)
«5123432¢00
e 4016LEZ+ Iy
«2866L0Z+09

KURTOSIS
«677373E 401
«818320E+31
«530980E¢01
.5377755031
+«550843E+01
+529990E+D1
«101569E+u2
«622886E+01
«134523E+02
«5L2267E#IL
«888C76E+01
«6C9623E+31
«121153E¢02
¢563539E+01
«666243E+01
«618357E+01
«652884E+GL
«251855E+32
¢953253E+01
¢147099€+02
«738375E+01

«663272E401

«T45521c+02
« L4UL5S55E I
«298035E+¢01
¢291294E+01
«307047E+D1
«278426E+01



TEST
POSEXMY

POSEXMP
POSFXHL1PS

POSEXH1YS
POSEXH1YM
POSEXH1PN
BAMSEYTN
BAMSETTX1
BAMSETT x2
BAMSETTY
BAMSE OYN
BAMSEOTX1
BAMSEOT X2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX 1
PARKX2
PARKY
GOPN
GQPx1
6QaPXx2
GQPyY

GQNN
GANX1
GaNX2
GQNY

TABLE C31: Test Results, Model 16, Sample

ALPHA LEVFL

«01
15.

13.
43.

L0,
68.
70.
10.
12.
18.
13.
17.
ib6.
16.
12.

7.

9.

2.

i0.

15.
62.
32.
28,
7.
2L,
27.
i6.
19.

« 05
51,

52.
85.

80.

59,
58,
68,
Sk
37.
40.

36.

L6,
55,
185.
90.
a87.
1bhb,
66.
6L,
59.
62

10
110.

107.
125.

121.
165,
178.
109.

96.
in1.

9s,
105.
111,
123.
108.

82.

84,

Tu,
109.
102.
109,
306.
157,
161,
216.
164,
185.
163.
166,

230

ME AN
«113778E£+01

1121175401
«121242E+01

< 118752E+01
«152919E+ 01
«155148C+01
«205905€+01
«201392F ¢ 01
«212116E401
«199833E+ 01
«213612E+01
«211781E4+01
«219049F+ 01
«204055F+01
«1033475401
«103387€401

«985382E+ 00

«110605E+ 01

.108333€401
«1099995+01
«216776E+01
«137168F+01
<135182E401
1749355401
«30L800E+ 01
«310800F+01
+300300E+01

«300500£+01

VARIANCE
«107884E+01

«104R72E+01
e13L418E+D1

<197655E4+01
.526154E+01
<452075E+01
420668E4+01
<405801E+01
c4S5L32E+01
<40B8ILE+01L
CW72410F+01
c436279E+01
<432062E+01
<426111E+01
<1074564E+01
«139223E401
.932099E+00
«261567E+01
«2L5LL1E+01
«306889E+04
.309822€+01
«193924E+01
«136955E+01
<338586E+01
<263813E+01
«252486E+01
«239138E+01
<231129€+01

Size 30

SKEWNESS
«217208E+01

«206763E+91
«413467E+01

+458631E¢01
«60795RE+01
<U93LTIE+DL
«204073E+01
«1954L77E+01
«217990E+01
«1971LBE+01
;2159575001
189573E+01
«279212E+01
«188530E+01
«232687E+01
«37L02FE*01L
«203105F+012
«263166E+01
«337828E+01
«336608E+01
«57H897E+0L
« 4981 97E+01
«298392E+01
<428929E+01
«L1258LE+CQD
«L27527E+00
« 4351 23E+00
cW71857E+00

KURTOSIS
«108252€+02

«939904€E+01
«278104E+02

«336197€+02

«568568E402

«367150E+02

«966430E+01
«8094L78E+01

«100199E+02

«800974E+D1
«103506E+02
«770872E401
+966630E+01
«776814LE+01
«116161€E+02
«299215E+02
«8734L03E+01
«114868E+D2
«21404I9FES+02
«180043E+02
;5560795002
«501984E+02

«182661E+02
«32L062E+02
«302953€E+01
e3140L3%ESDY
«319790E+01
«305048E¢01
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Test Results, Model

TABLE C32:
ALPHA LEVFL
TESY <01 .05 10
POSEXMY 8. 62, 103,
POSEXMP 8. 52. 100,
POSFXH1PS 42. The 10F,
POSEXH1YS L3. 77 104,
POSEXH1YM 9. 179. 222.
POSEXHLPM 97. 169, 228,
BAMSETTN 18. 5o 98.
BAMSETTX1 12. 56 101.
BAMSETTX2 1. 7. 110.
BAMSETTY 7. b, 87.
BAMSEOTN 18. 1. 111,
BAMSEOTX1 12. 61. 119.
BAMSEOTX2 1%, 53. 117.
BAMSEOTY 9. wl1. 104,
GLEJSERX1L 13. 55, 10k,
GLE JSERX2 7. 26, 63.
GLEJSERY 8. 36. EL N
PARKX1 14. 61. 116.
PARKX2 13. 52. 104,
PARKY 16. 67, 121.
GOPN 3be 124. 224,
GaPX1 15, 75. 136.
60P X2 17. 67. 122.
GaPy 3. 130. 243,
GONN 10. 59, 157.
GONX1 9. 61. 11L&,
GONX2 7. bhe 137
GONY 10. 67. 149.

MEAN
«101350E+01

«1016%3E+01
«114065F¢+ 0L

«113912F+04
«200915E+01
«2000485+01
«205277F+01
«20Q5LARE+ 01
«206380F 431
«1925C6F+ 01
«2138307E+74
«?713799%+01
«2127895+01
0202177+ 01
¢11064774+01
«20793LE+ 00

«104L746E*DL

 W112L26E¢01

«108453€¢ 01
«118579E¢01

+151304Ee01
.113025€+91

«113430E+01

« 1495665401

3783005401

«369500E+01
«370900E+01

«372200F+ 01

16, Sample Size 60

VARIANCF
«772148E+00

«786867E4+00
«231184LFE401

«293851E+01
«215283E+02
0216454E+02
454886E4+01
«459313E401
«431678E+01
«34L527F401
LI670LE+DL
~488851E+01
JL79160EH0L
«394850E+01
«132631E+01
«7B81054E+00
«106317€401
«279297E401
«25L453E+01
«310874LE+0L

«2665715+00
«332382E+00

«3L2L3B8E+09
«636120E+00
«307L99E+01
«301L99F 401
«3091%91E+01

«31198LE+0NY

SKEWNFESS
«19315uLE+01

«195141E+01
«981522E+01

«982799E+01
«105343E+02
«108969E+32
.él?385£001
«218517€431
«214LALSE+DL
«169516€E+01
«231375E+01
«235063E4+01
«229108£401
«193762E+01
«2512A1F+01
«2L78835401
«270339E+01
«29863IS5E¢0L
«285767E+01
«312235E+018

«218121E+01
«14LA732E+01

«169695E+01
«218209E+01
« 4331 02FE+00
«517hA63E+00
o418737E¢00

«579252E+00

KURTOSIS
«895751E+01

. «891255E+01

«1582225403
«158716E+403
«1571935€+403
«168824E+03
«961160E+01
«103957€+02
«108514+E402
«657896E+01
«1154LTLE+ 02
«133T726E+02
«119508€+02

«867117E+01

- «137293€+02

¢132995€E¢02
«16TL11E+02
«159057€+02
«14130%E+02
«170L20E+02

«105585E+02
+618668E¢01

«T6L759E+01
«130005€+02
«325997E+01
«346899E+01
«342835E+01

«JL551REe01



TEST
POSE XMY

POSEXMP

POSEXH1PS

POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTN
BAMSETTX1
BAMSETTX2
BAMSETTY
BAMSEOTN
BAMSEOTX1
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKX1
PARKX2
PARKY

"~ GQPN
6QPX1

6QPX2
Gary
GANN
GQNXx1
GQNX2
GANY

TABLE C33:
ALOHA L
«C1 Rl
9, 42
6o i,
25, A7,
2€. 63e
28, 79
2%, T6he
11. €3,
L, €24
10. c2.
14, €1,
7. S1.
8, 49,
12. L9,
14, 61,
10. L7
8, 31,
10. 49,
13. 524
8. S6e
17, €3.
r{-N 99.
1. 52.
15, 65,
67. 2307,
18, L3,
12. 32.
13. 38
ic. 39.

Test
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Results, Model 16, Sample Size 90

MZAN
«9803L6E+O0
«935690£+00
e10(771GE+01
«108737E+C1
«1140335+61
¢113199€+01
¢199542£+01
«198022E+01
¢197796E+(1
«210698E+G1
«200319E+01
«204565E+01
«202422E+01
02171 84E+0L
vo1d07765001
«99276CE+00
¢107219€+01
«1JLT7ATE+OL
«106136%+01

©«199323E+G1

«137103E+01

+106052E+01
«106287E+01
«141264E401
«13100E401
«4079C0E+01
«b010G0E+DY
«39980€+04

VARIANCE
« 7190592403
«69952C2+0C
« 74590 8E+00
«773726E+00
«848575E+0G
e 8274LB4LE+00
+470131E401
e376314E401
«383341E+01
«%43289CE+01
«391039E+01
«399659E 401
e 4190215401
e 46894L9E+IL
+103172E+01
¢ 84634IE+00
«108339E+01
«268983E+401
¢219752E+01
«259165E+01

«121666E+00

«162617E+00
«180922E+00
«294090E+00
«35013LE+04
«325001E+01
«326517E+01
¢« 336536E+01

SKEWNESS

¢ 191397E+01
«154281E+01
«258159E+01
«262233E+01
«269973E+01
¢262262E+01
«197287E+01
«166237E+01
«180753+01
«178822E+01
«170560E+01
«187235E+01
+209093€+01
«204465E+01
«185305E+01
*2064L75E+01
¢186117E+01
¢336522E+01
+2649618€E+01
e 2T4257E+01
¢« 215869€E+01

w1274T3E+01

¢136481E+01
«10L085E+01
¢ 348673E+0)
¢ 3125684E+00
+409581E+30
+2806204E+00

KURTOSIS
«998713E+01
«616395E+01
«140697E¢02
«142858E+02
o155568é002
«145303E¢+02
«859274E+01
+636130E+01
«695187E+01
+690899E+01
«674530E¢01
o7980%3E+01

. O3LTTTESSY

«955115E+01
«739392E+01
«181725€E+02
«83164L0E+0OL
«214759€¢02
+107855€E¢02
¢129623E+02

0101272E+02
. 658997E¢04

«620987E+01
e LW89L2E+01
¢299162E+01
+293266E+01
+308784E+01
«2796008E+01



TEST
POSEXMY

POSEXMP
POSEXH1PS

POSEXH1YS
POSEXH1YM
POSEXH1PM
BAMSETTN

BAMSETTXY
BAMSETTX2

BAMSETTY
BAMSEOQTN
BAMSEOTXL
 BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSERX2
GLEJSERY
PARKXY
PARKX2
PARKY
GAPN
6aPxXy
GOPX2
GoPY

GONN
GONX1
GONX2
GANY
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TABLE C34: Test Results, Model 17, Sample Size 30

ALPHA LEVEL

001

134,

150,
306

303,
342,
339,
494,
868,

81,

284,
664,
955,
99,
3776
528,
0.
88,
340,
O

14,
851,

54,
998,
662,
428,
684,

13.

93,

238,

267,
450,

464,
490,
486,
722,
967,
207,

482,
860,
993,
226,
580,
82s,
2,
218,
576,
12,

89,
931,

131,
1000,
835,
680,
881,
36,
225,

10
323,

348,
572,

583,
599,
587,
812,
988,

302,

597,
911,
999,
321,
68i,
934,

16,
334,
715,

33,

192,
957,

187,
1000,
887,
884,
967,
122,
soi,

MEAN
.243B8GE+0¢

«266537E+02
+495437E+0¢

«568391E*0¢
.899080E*0¢
«695646E+0¢2
«966924E+08
«170875E+02
«376556E+0¢

.68?7795*0!
«124141E+02
«215965E+02
+400740E+0¢
.820210E+0%
«656620E+02
«498167E+00

«246489E+0¢
,7154225‘02

«709535E+00

«174205E+0¢
«238891E*02

«152588E+0¢
+105373E+08
«116489E+02
«626400E*0¢
«737700E*0¢
«267200E*0¢
+453900E*04

VARIANCE
+986076E+31

0140767E+32
+897518E¢32

+188067E+§3
+588471E+53
+173098E+33
«300096E+32
1465420E+g2
1137288E¢g2

1290999E+52
+377359€¢52
1691553E+(2
1150639E+32
+348023E¢52
1154463E+52
+291838E¢30
+8535313E+31

‘04673395‘52

+851132E400
v289435E+71

0161851E+p4

+454959E¢01
+201670E+05
1269137E+33
1235866E+01
1285773E¢01
0219661E+51
.2ia4§65661

SKEWNESS
$331772E+01¢
+463664E+01
L107274E«02

+113546E¢02
+908662E#01
+640237E+01
+783630E¢00
<387557E+00
»187330E¢01

+118850E+01
<634316E+00
«734640E+00
«196759E+01
«908531E¢00
+196636E+01
;éseous&¢01
0242339E+01
+229103E+01
+252539E+01

+187688E+04
«641666E+01

" 587033B+08

«503454E+04
+546238EB¢01
<351334E400

"+ 335376E+00

+583630E+00
«352572B¢00

KURTOSIS
«108124E¢02

1 369264E402
+191489E¢03

1189516E«03
+120409E03
+736286E+02
+388507E¢01
02903743E«01
170303668001

+ATSA36E«01
+345816E¢01
1426830E¢01
+915925E¢01
+388071E¢01
18165656401
«181210€¢02
«106964E¢02
+§04437E¢02
1863326402

«842293E¢01
1587965602

1681304E¢02

«315058E¢02

4T6680E+02
»344983E¢01
+326502E404
,328328E¢01
0386028E¢0L

-



TEST
POSEXNY

POSEXMP
POSEXH1PS

POSEXHLYS

POSEXH1IYM

POSEXH1PM

BAMSETTN
BAMSETTX1
BAMSETTX2
4 BAMSFTTY
BAMSEOTN
BAMSEOTX1
BAMSEOT X2
BAMSEOTY
GLEJSERX1
GLEQSERXZ
GLE JSERY
PARKX1
PARKX2
PARKY
GOPN

60P X1
GaP x2
GOPY
GQNN
GQNX1
GONX2
GONY

TABLE C35:

Test Results, Model

ALPHA LEVEL

«01 «05 «10
110. 21S5. 302.
112, 2118, 308.
811, 940, 97X,
816. 938. 974.
811, 941. 947,
809, 937. 966,
949, 986. 995,

1000. 1970, 1000,
151. 290. 387.
995. 1000. 1000.
963. 990. 996,

1000. 1000. 100b.
167. 302. 405,
999, 1000, 1000.
399, 1000, 1000.

36. 83, 132,
969. 996. 999,
903. 968, 979,

2. 29. 71,
886. 962, 983.
a93, 999, 1000.

8. 103. 151.

1000. 1000. 1000.
996, 998, 999,
s27. 873. 957,
758. 962. 990.

1. 17. Sé.
“u3. S04. 928,
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MEAN
«19584L5€E+01

«198651F+ 01
e 762325F+ 01

+766811E+401
«R95921€+ 01
«RB86164LE+DL
«227110F402
«L3LBLBF&N2
«L4T76176F¢01
«330189E+02
«266233E+02
«493150<+ 02
e L96574F 401
«IBLL13ISE+02
«199483E+02
«12004L2F+ 01

«129014F¢02

" 2706235402

+8665615€+00
+193193E+02
«166969E+ 02

«107321E+01
¢519362E+02
«183750E+02
«873100E+01
«103110F+02
2717005401
«R26800F+01

17, Sample

VAOIANCE
«W12433E+01

«432616E+01
+475000E+02

«500618E+02
«116656E+03
«112836E+03
«B895565E+02
«153789E+03
«210668E+02
«160171E+03
«101982E+03
«180822E+03
«226752E¢12
«1500%9E+03
«95474+7E+02
«251879E+01
«315809E+02
+436001E+03
«140331E+01
«132968€E+03
.173#30Ef03

«852903E+00
«1654L55E+004
«213989F+03
«332456E+01
«585213E+01
«2LB339E+01
«387R05E¢01

Size 60

SKEWNESS
«268692F+01

«262279F+01
«355011€+01

«362743F401
+495099E+01
«519342E+01
«541213F+00
«282660E+00
«181521E+01
« 4835595400
«569004E+00
«249526E+00
+179506E+01
«510028F+00
«176415E+01
«296131F¢01
«112875E+01
«186698E¢01
+248095E+01
«100485E+01
« 463945F¢01

e 2844k12E+01
«261302E¢01
+303259E+01

«202964LE+D0 .

«306610E+00
«S571913E+00
«220L5LF+00

KURTOSIS
«152623E¢02

«13954LRE+02
«206220E+02

+210098E+02
+39489LE+02
CLW7315E402
«306533E+01
310506401
764837E+01
«315910E+01
<31608AE+01
+303024E401
«7S150LE+01
3332676401
«779809E401
<146247E+02
555632E401
+822643E+01
<110525€¢02
«400155€+01
«510545E402

«157016E+02
.1655606002
«199515E+ 02
«2T73337€4+01
«280776E+01
«322825E+01
«276275E+01
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TABLE C36: Test Results; Model 17, Sample Size 90

TEST
POSZXMY
POSEXMP
POSEXH1PS
POSEXH1YS

POSEXH1Y*"

POSEXH1PM

BAMSETTN
BAMSZTTX1
BAMSETTX2
BAMSETTY
BAMSZOTN
BAMSZCTXL
BAMSEOTX2
BAMSEOTY
GLEJSERX1
GLEJSEFX2
GLEJSERY
PARKX1
PARKX?2
PARKY

GQAPN
GaPx1

GaFXx2
GOPY
GQANN
GANX1
GANX2
GONY

ALFHA LZvEL

of1

13,
1%0C
asC.
2
967,

Q94,

L2,
1r .0,
qap,
769,
que,

TRR,

T
177,
b L

932,

9e2.
9.

8a7,

™
2€ .
219.
958,
Q%€ .
ace,
967,
gaz,

120,

MZAN-
«177751454¢014
«1L7636E4(1
«1U1731E+(2
«958208F+({1
«374LT772E4L Y
¢933298E+C1
«277591E+42
«7574335+72
«E27319E+(1
«t6LL235+72
eI537C8Z4C2
«P17518%4L2
eCuZluhTe01
o6l 20617432
03507165442

«218165F+0¢

_e18909€c+22

k2104324032
«7614Z3Z+0d
«313589E#02

«1177 435422
«91L119E490

«539988E4(2
2299965452
0982062401

«1206910E+.2
¢2312(0CE+91

e1(L26352402

VARIANCE
«3735132431
«2218682¢351
» 2893252452
022814324232
«19338CE£422

e 2LT766TE+D2

«1467835+443

0293265E+93
«383419E+4]2
¢ 2737282413
¢183525£403
¢349798Z+33
«3938215c+92
«335561£+443
¢268364775+433
«115117E+121
«361915€+y2
«93032862433
¢114571E 421
«266L71E+53

e €L 34195432
+387510E+28

«8263(2e433
«208877c+03
«h8989:5z+01
¢ 79314534212
«2L31C6Z+GY

«565388L+012

SKEWNESS
c2671485431
. 2624832431
«1555402401
«135593Z401
e1413145¢01
«16G4L7T401
«63£3132400
3333915406
«2219195+01
e 31210 2E40C
c495715240¢
02470865460
02216125441
«274735E¢00
«1898795421
«278975E4G1
¢ T14253E43)

01245872401

«286937z+421
«65837€5+C0

¢29962¢%c+J1
¢1€85732+491

«15C7062431
¢1941582+01
¢« 315396€E+03
«339218E4+G0
«522623F+20
0261345z +0C

KURTOSIS
«1163595¢02
c1114L97E 52
«656750E401
5835362431
«591261E+401
«662268E+01
«376101E+01
«289L04E+01
<120683E+02
<296262E+31
«332502E+01
2691985431
e123041E+02
«281833E401
«858832€ 401
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«288384E+01
«297820E401
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