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ABSTRACT

ANALYSIS OF TESTS FOR TWO FORMS OF SPECIFICATION ERROR

IN LINEAR REGRESSION ANALYSIS

By

Ronald L. Tracy

In this study two new specification error tests based on a Power

Series Expansion Medel (POSEX) are develOped. The first test is

designed to detect a misspecified conditional mean of the dependent

variable and the second to detect heteroskedastic disturbance terms.

TWO versions of the test fer a misspecified conditional mean are

presented. One of these versions is shown to yield the same results

as the procedures currently in use yet offers the advantage of being

easier to implement. The two versions of the test are then compared

on six misspecified models using a sample experiment. It was found

that both tests have an extremely high probability of correctly

rejecting the null hypothesis if the misspecified conditional mean

is caused by using the wrong functional form of either the regressand

or regressors. In contrast, when the specification error is caused

by omitting a variable, the power of the test is a fUnction of the

relation between the omitted variable and those included in the model.

Four versions of the test for heteroskedastic disturbance terms

are presented. These four tests are then compared with various
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versions of Goldfeld G Quant's parametric and non-parametric test,

Glejser's test, Park's test, and Ramsey's test (BAMSET) by using a

sample experiment on ten heteroskedastic models. It was discovered

that when no information about the form of the heteroskedasticity is

available, the most powerful test is BAMSET with the observations

reordered by ranking the dependent variable. However, since this is

a non-constructive test, if heteroskedasticity is found, no corrective

procedure is suggested. Of the constructive tests, two versions of

the test formulated in this study were found to be the most powerful.
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CHAPTER I

INTRODUCTION AND REVIEW OF THE LITERATURE

I . 1 Introduction
 

Linear regression analysis is one of many statistical procedures

that can be used to indicate a relationship among different variables.

This method requires specification of the variable whose conditional

mean is to be estimated (the dependent variable), of the variables that

affect the mean of the dependent variable (the independent variables),

and of the distribution of the unexplained variation (the disturbance

term).

One such regression model is

y = X_B_ + 11. (1.1)

where y_ is the n x 1 vector of observed dependent variables, X is the

n x k matrix of nonstochastic independent variables of rank k, g is the

k x 1 vector of parameters to be estimated, and u is the n x 1 vector

of disturbance terms . 7

If the method of least squares is employed to estimate the regres-

A

sion model in (1.1), the estimator for the parameter _8_, g = (X'X)_ X'y,

and the model's variance oz, 82 = (y - Xé)‘(y - XE/(n-k) can be

obtained. If, however, the statistical properties of these estimators

are to be ascertained and tests of significance carried out, the

distribution of the disturbance terms must also be lmown. If, for
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example, the vector of disturbance terms has a normal distribution with

a mean of zero and a covariance matrix of 021 (hereafter denoted

N(fl, 021)), the resulting estimators are unbiased, efficient, and

consistent.

Difficulties arise when the disturbance term has a different

distribution than that which has been hypothesized. When an incorrect

assumption is made about the distribution of the disturbance term, a

Specification error has been committed. It must be emphaSized that a

specification error arises only because the exact distribution of the

disturbance term.is incorrectly assumed, not because it is distributed

differently than required by the classical assumption (that

u .. N(¢, 021)).

Typically there are two major types of specification error. The

first type concerns the distributional form of the disturbances and the

second deals with the parameters of that distribution. In the first

case, a specification error of incorrect distributional form.is made

when the vector of disturbance terms 2.15 actually distributed

differently than has been hypothesized. An example of this is if the

disturbance terms are assumed to be distributed normally whereas they

are actually distributed as log normal.

The second type of specification error is committed if an incorrect

assumption is made about the parameters that define the exact distribu-

tion of the disturbance terms. In the context of the classical

assumptions that 9;” N(0, 021), where only two parameters are needed

to define the distribution completely, this second type of specification

error can be divided into three types.
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The first error arises when an incorrect assumption is made about

the papulation.mean. IMOst commonly, this type of error occurs when the

expected value of the vector u_is assumed to be zero instead of some

non-zero vector 5,

The second error occurs when one makes an incorrect assumption

about the population variance. The most common form of this error

arises when it is incorrectly assumed that the variance of each disturb-

ance term is identical (homoskedastic) whereas the true variances would

compose a non-constant vector y_(heteroskedastic).

The third and last error incurred involves the correlation between

the disturbance terms u1,...,un. In its most common form, this error

occurs when it is assumed that the disturbance terms are independent of

one another whereas elements of the disturbance vector that are

adjacent are actually correlated (first order autocorrelation).

The purpose of this study is to examine, compare and prepare

statistical tests designed to help the researcher determine if a given

regression.model is misspecified because the vector of disturbance

terms has an incorrectly specified mean.or variance vector. The

remaining two forms of specification errors involving the disturbance

tenms, incorrect distributional form, and autocorrelation have been

studied in great detail by other authors. The reader is referred to

Shapiro, Wilk, 8 Chen [1968] and to Huang 8 Bolch for more information

on.distributiona1 form errors and to Kramer [1969], Berenblut & webb

[1973], and Abrahamse G Louter [1971] for more information on

autoregressive errors.



Netation

When tests are examined to determine if'a model has been.misspec-

ified, the null hypothesis (hereafter H6) is that no specification

error exists. This null hypothesis will be tested against two alterna-

tive hypotheses. The first alternative (hereafter H1) is that the

disturbance terms have an incorrectly specified mean vector; the second

alternative (hereafter H2) is that the disturbance terms have an

incorrectly specified variance vector.

To simplify the complexity of the statistical discussion, certain

notational conventions are used throughout this study. First, matrices

are always denoted by either Upper case Greek or Latin letters. Second,

any Greek or Latin letter that is underscored denotes a column vector,

(e.g., y;or g). Third, any lower case Greek or Latin letter not

underscored represents a scalar. Fourth, parameters are denoted by

Greek letters, whereas random variables are represented by Latin letters.

An estimator of a parameter is signified by that parameter topped

by a.symbol (for example, 9, S, g, 8, g are all estimators for B). In

a like manner, the predictor of a random variable is denoted by a

symbol over that random variable. When the inverse of a matrix is

required, the symbol -'immediately to the right of the matrix is used

(for example, the inverse of the matrix A is A7). The Operator DIAG

denotes that the diagonal elements of the specified matrix are formed

into a column vector. The operator E denotes the expected value

operator. A prime ' to the right of a vector or a.matrix denotes the

transpose of that vector or matrix. The capital letter I denotes the

identity matrix while the vector i_denotes a column of ones.
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Sane standard notation on tests will be reviewed as this notation

will be used extensively throughout this study. The probability of

incorrectly rejecting the null hypothesis (H6) (type I error) is

denoted as alpha (a) or is referred to as the alpha level of the test.

The prObability of incorrectly accepting the alternative hypothesis

(type 11 error) is denoted as beta (8). The probability of correctly

accepting the alternative hypothesis then becomes 1-8 and is referred

to as the power of the test.

Outline

Before the various testing procedures designed to detect an

incorrectly specified mean or variance vector are compared, a detailed

discussion of eaCh specification error is given. This discussion is

fellowed by a review of the pertinent literature on different predictors

of the true disturbance terms, on.various tests for detecting an

incorrectly specified mean vector, and on various tests for detecting

an incorrectly specified variance vector.

In the second Chapter, a new test fer each of the two ferms of

specification error under discussion is described. Following a detailed

explanation of the new testing procedure, the test is applied to the

case of H6 vs. H1, with careful attention paid to developing the exact

distribution theory. The new procedure is applied to testing H6 vs. Hz

with special attention focused on certain aspects of the distribution

theory.

The third chapter begins with a restatement of the hypotheses

posed in Chapters 1 and II. A sampling experiment is presented that

compares the two new tests with the previously discussed tests for
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H6 vs. H1 and H6 vs. H2. Since all of the tests presented were

designed for particular situations, special attention is given to the

experimental design so that all tests can.be compared fairly.

In Chapter IV, the experimental results are presented. Compari-

sons and contrasts between the various tests as well as between the

various models tested are made. The hypothesis presented in the

previous chapter are examined.

Finally, in Chapter V, a summary of the entire study is given.

This is followed by a discussion of the major conclusions of this study

and the inferences which can be drawn from them. Some suggestions for

further research are given.

1.2 Effects and Causes of a Misspecified Mean Vector

Assume that one hypothesizes the regression model

y1 = 81 + X12 82 + ..... + xik Bk + ui , i = 1,...n,

2 (1.2)

1_.1_~ NM, 0 I).

If these assumptions are correct, model (1.2) would be the 'true' model;

that is, the model which generated each element of the vector of

dependent variables yi. The regression model would thus be correctly

specified and the resultant least squares estimators, §_and 32, would

be unbiased, consistent, and efficient.

It is evident that if the hypothesized model had had a disturbance

term with a constant mean.vector r = r}, it could be transformed into

an hypothesized.model with a zero mean vector by subtracting the vector

5 from the dependent variable y_or by incorporating r into the constant

coefficient. Hence, it will be assumed from this point on, and without

loss of generality, that the disturbance term in the hypothesized.model
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has a zero mean vector and that the alternate hypothesis (H1) is that

of a non-zero, non-constant mean vector. Therefore, if E;15 actually

distributed as N(g,ozl), §_being a.non-constant mean vector, then the

model hypothesized in (1.2) is misspecified because of an incorrectly

specified.mean vector. The effect of this specification error on the

least squares estimators §_and 82 can be demonstrated by examining the

effect of regressing the vector §_on the matrix X. The resulting

regression model is

3 = X1 + 1, 1 ~ N(¢, 021). (1.3)

Thus, the bias in the least squares estimators caused by the misspeci-

fication is seen to be

13(5) - g = l and

so?) - o?- = E(y - xfiy (x - x_é_)/(n-k) - oz = 5' _z_/(n-k).

Hence, as a result of an incorrectly specified mean vector, 3

has an upward bias and hence always causes a loss in efficiency, which

in turn causes tests of significance to be unduly conservative. In

addition, the extent to which any parameter Bi is biased by the

mdsspecification is directly related to the correlation between the

corresponding independent variablezxi and the vector 5, Further, the

constant vector will always be biased unless all the variation in 5_

can be explained by the other independent variables. If the vector 5-

is a constant vector, that is, §_= zi_where i_is a column vector of

ones, only the constant term is biased and by the amount z. Similarly,

if 5_is a non-constant vector and uncorrelated with all the independent

variables, 51”"’§k’ only the intercept term will be biased and by the

amount

2 = z zi/n.

l
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Since the estinators of g and 02 are affected by the error of a

non- zero mean vector , it must be determined under what circunstances

such an error can occur. One such circumstance is when the original

data is collected or transcribed incorrectly. Typically, it is assured

that these errors are distributed normally and have an expected value

of zero. If this is not true, however, and, in fact, the data contains

an upward (downward) bias , only the intercept term and the variance are

affected since the bias will presumably be uncorrelated with the

independent variables in the model .

Another situation in which a non-zero mean occurs is when a

variable is omitted from the hypothesized model. This may occur if the

hypothesized model is given by (1.2),

x= X13) 2» 9. ~ NW» 021),

whereas the true model (the model that actually generated the dependent

variable y) is

x = 113+ ng- g, Q ~ N(¢, 021), (1.4)

where X, g and y are as previously defined, W is an n x m natrix of 111

additional independent variables, and _<_S_ is a colum vector (m elements

long) of additional parameters. The non-zero mean of u in this case

is equal to W3. Such an error can be comnitted if there is no data

available on the variable(s) 111, . . .,v_vm or if the variable(s) are

erroneously excluded from the hypothesized model because the researcher

was not aware of their occurence in the true model. Note that the

omitted variables cannot be included in the model and have their

significance tested because the researcher is either unaware of their

occurence in the true model or cannot obtain the necessary data.
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One final way that a specification error due to a non-zero mean

vector can occur is when the incorrect functional form of the

regressors or regressand is used. Given the true model

y1 = 71 + yz ln(xiz) + ... + yk1n(xik) + Vi’ i = 1,...,n,

!’~ N(¢, 021) (1.5)

and the hypothesized model, given in (1.2),

x= Xa+ 2.11 ~ 1103.021),

it is obvious that the hypothesized model has been misspecified. The

independent variables have taken on the wrong functional form. .As a

result, the vector u will have a mean given by

E(ui) = Y1 + y21n(xiz) + ...... + ykln(xik) - (81 + 82 xik + .....

Bk Xik) # 0, i = 1,...,n.

.Although the mean is non-zero, it may result in a relatively small bias

in eaCh of the estimated parameters because of the high correlation

between the hypothesized independent variable and the true independent

variables.

It is interesting to note that a similar violation is caused.when

the incorrect form of the regressand is used. (This error can also

cause the additional specification error of incorrect distributional

fbrm.) If, fer example, the true model is

eXp(y_)=Xy_ + 1. 1 ~ No. 021), (1.6)

whereas the hypothesized model is given by (1.2), then the hypothesized

model has been misspecified because the wrong functional form for the

dependent variables has been assumed. The mean of u would, in this

case, be
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= Ecl°ge(Yl 1 X12 Y2 + "° + Xik Yk + V1) '

(81 + 82x12 + ... + Skxik)), i = 1,...,n,

which in general is non-zero for any set of x's. .Although this non-

zero value is different from that which occurs when the misspecification

is due to the incorrect functional form of the regressand, the relation-

ship is strikingly similar.

One final point is that though incorrectly including an independent

variable in a model is committing a specification error, this error does

not affect the mean of the disturbance term; hence, the model is not

misspecified because of a non-zero mean vector. This can be

demonstrated by hypothesizing the model

X.= x§.+ np_+ 9, 9_~ th, 021), (1.7)

where y, X, g, W, and g are as previously defined, whereas the true

model is

y_= x§_+ u, u_~ N(¢, 021).

The expected value of the hypothesized model would be

B(y)=X§_+w-0=Xg

which is exactly the true model; thus, the only cost of this specifica-

tion error is a loss of efficiency in estimating the vector of parameters

_E and the variance oz.

1.3 Effects and Causes of a Misspecified variance Vector

Given the model

X: XRT 9.1 9. " NW» 021),

it should be noted that a constant variance vector ozi_(=DIAG (021))

is assumed. This does not, however, imply that a specification error
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is made when a non-constant variance vector (v) is correctly

hypothesized. Rather, just as a method exists of transforming any

hypothesized model with a non- zero mean vector into a model with a zero

mean vector, a transformation exists that will change any model with a

hypothesized non-constant variance vector into a model with a constant

variance vector. One simply divides each observed dependent and

independent variable by the square root of the corresponding

hypothesized variance (Vi)' This transforms the model

x= X83 2, 2" NW: 02V),

where DIAG (V) = L into the model

y1 = 81 1 + 82 X12 + ... + Bk xik + wi, i=1,...,n, w;~ N(¢, 021).

717-? r? r; We

Hence it can now be assumed without loss of generality that the hypothe-

sized model will always have a constant variance vector.

2, i=1,...,n)A regression model with constant variance (var(ui) = o

is Said to be homoskedastic. Since estimation using classical least

S(Wares requires the assumption that the E(ui) = 0, i = 1,. . .,n, a

homOSkedastic model conforming to the classical assumptions has

BLUE) = oz, 1 = 1,...,n. If the model violates this assumption, it is

said to be heteroskedastic (non—constant variance vector).

If a model suffers from heteroskedasticity, it is known that the

leaSt squares estimators of g, E, are unbiased and consistent but are

inefficient and asymptotically inefficient. Further, the least squares

esumaltor of the variance of the model is inappropriate since

Eco ) = 35; ECX‘Xél' (x - XS)

= if}? (z 0% - 13(3' (X(X'X)—X')_g)) 7‘ Z Gig/n,

where CI is the variance of the i'th disturbance term.
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Heteroskedasticity is generally believed to be a more serious

problem when cross-sectional data is used than when time-series data

is used. This belief is held because the magnitude of the dependent

variable over each observation differs, in general, mulch more in cross-

sectional data than in time-series data. This belief, however, is not

always justified. The dependent variable in time-series data can be

heteroskedastic if it covers a large number of years or if major

changes have occurred since its conception.

1.4 Review of Literature

The following section is divided into four parts. First, the

different types of residuals that are currently being used in testing

bOth alternative hypothesis Ho vs. H1 and HD vs. H2 are discussed.

SeCond, the testing procedures now being utilized for testing HD vs. H1

are discussed. Third, the different testing procedures now being used

to test HD vs. H2 are reviewed. Finally, previous sampling experiments

that have compared various tests for HD vs. H2 are discussed.

IAxllDifferent Residuals Being Used in Specification Error Test

If one could observe the vector of disturbances 3, either hypothesis

could be easily tested. For example, to test for a non-zero mean vector,

only a simple t test of E(=§ui) about zero is required. In a similar

vein, testing for a non-conStant variance can be done by stratifying

the ui's and using an F test for equal variances. Unfortunately, how-

ever, since the disturbance terms are not observable, another testing

Pmcedure must be devised. The procedure that most often suggests

itSelf is to use some predictor of the vector 1_1_ as a proxy for the

unObserved disturbance term.
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So far, three residuals have been used in the literature. The

first of these, which is both the easiest to compute and most frequently

used, is the residual obtained from ordinary least squares (hereafter

OLS). It is defined as

=y_-X_B_.

I
C
>
|
c
§
>

is normally distributed with HR.) = y - Xg = O and

ac); - x5) (x - xiv/(n - k)

E(y_ X' - xcx'xflc' XX' - X X'xot'xfx' + X(X'X)_ x'y_ yX(X'X)—X')

Under Ho’

Var (é)

13(1 - X(X'X)—X') yy' (I - X(X'X)—X')

M E(y y')M

= M oz I M = 02M,

that is, é~ NM, 02M).

The second technique utilized was developed by Theil [1965, 1968]

and Koerts [1967] . These residuals, denoted u}, are called the Best

Linear Unbiased Scalar-covariance (BLUS) predictors of the true disturb-

ance terms 2. They are defined as

2* = A'x.

Where A is an n x (n - k) dimensional matrix satisfying the conditions

a) A'X = 0

b) A'A = In _ k, and

c) AA' = M.

UHider HO the E*'S are normally distributed with

501*) = A'(E()L))

= New = o

mug) = E(A'yy' A)

= A' B(yy')A

_ 2 _ 2
-A'OIA-UIn-k,
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that is 2* ~ N(¢, Ozln-k)° It is important to note that although this

orthonormalization process ensures that the 3* 's are independent of one

another, it also limits the number of residuals to only (n-k) instead

of n.

The third technique was developed by Hedayat 81 Robson [1970]

and is called stepwise or recursive residuals, denoted by 1:1. The

basic idea of this method is to "obtain (residuals) by a stepwise

fitting of the linear model to successively more observations" [Hedayat

and Robson, 1970, p. 1574]. The first step of the procedure is to

estimate the model using OLS and only k+l observations. The least

Squares residual that corresponds to the (k+l) 'th observation becomes

the first stepwise residual, {11. The next step is to reestimate the

"Ddel using k+2 observations. As before, the stepwise residual is the

one that corresponds to the last observation,((k+2) in this case), and

is denoted by {‘2' As this process is continued, n-k independent step-

wise residuals are generated, 131,” . ’fin-k'

These same n-k residuals can be obtained with only a single matrix

inVersion by using a recursive teclmique develOped by Harvey 5

Phillips [1973]. The first step of the procedure is to estimate the

model using OLS and k+1 observations, just as before, denoting the

estimate of the vector g as 9(1). The least squares residual that

Corresponds to the (k+1) 'th observation becomes the first recursive

residual, denoted by 131. The second step is to calculate a new estimate

of the vector .3; This is done by using the recursive formula (with

i=2) .

o - ' 0~ ~ X'. X. _x. -x B.

3(1) = E(j-l) “ ( 3‘1 3‘1) ’3 (y) ‘3‘“) 
1+!xtx.-.

§-J ( J-l 1-1) *1
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where (X'. _1)_ denotes the inverse matrix used to calculate 8(j-_1),

i--X1J'

and x_! is the row vector that corresponds to the (k+j)' th observation.

To obtain the next inverse matrix (Xij)—, the recursive formula

_ (XX-' _)xjx5 (X3, _)

-J' j-lx1-1 -J'

is used. These n-k residuals are distributed under HO as Nm, TZIn-k) ,

2
where r is the associated variance. As in the case of the BLUS

residuals, the stepwise (recursive) residuals are independent and k

observations have been lost.

141.2 Present Procedures to Test for the Disturbance Terms Having a

Non—Zero Mean

The first test for Ho vs. H1 was developed by Ramsey [1969] using

BLUS residuals, 3*. Recall that 3* = A'y where A'X = 0, A'A = In-k

and AA' = M. Ramsey hypothesized that if the disturbance terms had an

incorrectly specified non-zero mean vector, 3, "then the mean of the

i'th disturbance terms 2i can be expressed as a linear function of the

Merits of yi’ the least squares estimator of the conditional mean of

Y1." [Ramsey, 1968, p. 66]. Stated formally,

+

E(“1) = zi = °‘o + 0‘1 m110 I °‘2 mizo o‘3 1m130 + (1 3)

i = 1,... ,n, I

Whfi‘re mijO is the j'th moment about the origin of yi. Given that BLUS

residuals have the property that if 13(3) = 5 7‘ 0, then

12th = E(A'x) = A'th) = A'E(g) = A'_Z_.

he suggested pre-multiplying equation (1.8) by the matrix A'. This

Yiekled the equation

my) = =A'o0 + A o1m_10 + A'o2 1320 + A'o3 1330 + A'o4 1340 +

(1.8')
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Removing the expected value operator from equation (1.8') and noting

that A'i = A'X_§_ = 0, Ramsey formulated the errors in variable model

(2) + “3 1*(3) + a4 y1(4) + w (1.9)
2* = 0‘2 Z".I

where 91 ~ NM, EZIn-k) under HO. In this formulation

[*(i) = A'yfi) = A'{y§,...,yril}. Given that under H0, E(u*) 7‘ 0, it

follows that under HO, the E(o2) = E(o3) = E(o.4) = 0. Hence, an F-test

was proposed by Ramsey to test for the joint significance of oz, as,

and o4. This procedure he named RESET (Regression Specification Error

Test).

The RESET procedure has been examined by Ramsey and Gilbert [1972]

11$ng a monte carlo sampling procedure. Their results (as ammended by

unPublished results of this author) have indicated that just as

exPeCted, under the null hypothesis, the test was not biased (the

Percent rejection corresponded to the a level); second that for the

alternative model examined, the power was close to 100 percent under

the alternative hypothesis of incorrect functional form; third that

the test had virtually no power under the alternative hypothesis of an

0"fitted variable for the model examined (the reason for this result

W111 be explained later).

Because BLUS residuals are utilized in this procedure, three

difficulties associated with those residuals are inherent in RESET.

First, since the A matrix is difficult to calculate, the 1_._1_*'S are not

easily computed. Second, the BLUS procedure can be used to generate

only n-k residuals from the original observations. Third, because

there are only n-k residuals, in order to find a one to one correspond-

emce between the residuals and the n observations, the k observations

that are discarded in calculating the matrix A must be carefully noted.
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Since all of the problems just outlined are caused by the use of

BLUS residuals, Ramsey and Gilbert [1972] suggested substituting the

standard least squares residuals,

§= (I - x (x'xf x') X= My,

for the BLUS residuals in the RESET technique. With this substitution,

equation (1 . 9) becomes

A A2 A3 A

9=M9=al (“azzmwgz

where w ~ N(0,oZM).

(4) + E = Q E + E, (1.10)

This procedure, however, creates another problem. The standard

F-test used to test the hypothesis that ol = 012 = as = 0 breaks down

because of nonindependence between the numerator and denominator. To

ShOW this nonindependence one can eXpress the F statistic as a ratio of

quadratics in the disturbance terms 3. The F-statistic in this

Particular case is

g‘CM'QcQ'QfQ'M) 9/3

2' W-M'QCQ'Q)_ Q'M) g/(n-k-Sl

Where Q is defined implicitly as in equation (1.10).

F:

 

Since

(M'QCQ'Q)- Q'M) 04-M' QCQ'Ql— Q'M) 7‘ 0,

it follows that the numerator and denominator are not independent as a

necessary and sufficient condition for their independence is that the

PTOduct of the two quadratics be identically zero.

To correct for this non-independence, Ramsey E Schmidt [1974]

haVe suggested pro-multiplying equation (1.10) by the matrix M. This

reslllts in:

A 63 .4

ME=E=91MXUI “ZMX(293MX(1ME=MQE+ME

where M w ~ N00, 02M) . It is easily seen from the quadratic form that
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the F-statistic has a numerator and denominator which are independent.

writing F once again as a ratio of quadratic forms one gets

F = u' GW' ( ' )_"M_ u 3 .

2' W-MIQIQIMQI“ Q9/5117 (11-15-35

Since independence of two quadratic forms is proven if their

product is identically zero and given that M is idempotent (that is,

ARFiD one obtains

(M'QLQ'MQ)_Q'M)(I‘d-M'Q(Q'MQ)—Q'M) = M'QLQ'MQ)_Q'M-I‘I'QLQ'MQl-Q'I‘I E 0,

thus proving that the numerator and denominator are independent. .All

the initial problems associated with the original formulation of the

RESET technique are thus rectified in this newly defined RESET test.

However, this procedure still requires the calculation of the well-

defined.matrix M = (I - X (X'X)_ X'). Although this is not a difficult

process, it is a time-consuming and cumbersome one. Mbreover, it is

important to note that although the BLUS and OLS residuals are unbiased

predictors of the error vector u_under H0, they are biased under H1;

that is, though the expected value of the residual vector is equal to

the expected value of the disturbance term.under the null hypothesis,

the two sets of expected values are unequal under H1. This can be

clearly shown by defining a general set of residuals E.= B u, where B

is a matrix with n columns. Under the alternative hypothesis of non-

zero mean (E(u) = g_# 0), the expected value of the general set of

residuals is

ECQ)=BE(2)=B3_#3.

It can thus be inferred that with any test in which a predictor (such

as OLS or BLUS residuals) of the true disturbance term u_is used, an

incorrect measure of the non-zero vector §_is being employed. Hence,
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a procedure that is unbiased under both H0 and H1 and where the

calculation of the matrix M is not required would be preferred.

1.4.3 Heteroskedasticity
 

There are two different types of tests for heteroskedasticity;

constructive tests and non-constructive tests. Simply stated, a non-

constructive test for heteroskedasticity enables one to test the null

hypothesis of homoskedasticity but does not help one to estimate the

individual variances if H0 is rejected. In contrast, a constructive

test not only enables one to test for H0 vs. H2, but also provides an

estimate of 01’ i=1,...,n, (the variance of the i'th disturbance term);

if the null hypothesis is rejected. These estimates of the variance

can then be used to reestimate the model using Aiken's Generalized

Least Squares (hereafter GLS) technique. However, it should be noted

that since fewer assumptions about the form of the heteroskedasticity

are usually necessary to use non-constructive than constructive tests,

the former tend to be more widely applicable.

Non-Constructive Tests
 

There are three different types of non-constructive tests employed

to test H0 vs. H2; they are an F-test, a likelihood ratio test, and a

nonrparametric peak test.

99__- The first test utilizing the F-test was designed by Goldfeld

G Quant [1965]. It can be used by a researcher who knows, or hypothe-

sizes, that the individual variances oi,...,ofi are monotonically

related to one of the variables, say 55, and that the error term.is

normally distributed. The procedure is first to order the observations

of variable xi in increasing magnitude (decreasing magnitude if it is
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hypothesized that xj is inversely related to the variance) so that

xij < xkj where i < k. The remaining variables are reordered to

confonm to this ordering. Second, the observations are separated into

two groups (denoted as group I and II, respectively) omitting the

central p,(%-< p < g), observations. Each group will have

m = (n-p)/2 > k observations. Third, using OLS, the model is

estimated using each subset of the data. Fourth, the OLS estimate of

the variance of the disturbance term from the first group of data is

calculated and denoted as 51 while the variance from the second group

is calculated and denoted as 52.

The ratio of these two independent, scaled, chi squared variables,

denoted by R1 = 52/51, defines a statistic that has an F distribution

with mrk and m-k degrees of freedom. Under H0 of homoskedasticity,

s1 and 52 have the same scaled chi squared distribution, whereas

under H2 of heteroskedasticity of the form hypothesized, s1 and 52

will have different scaled chi squared distributions.

There are, however, two difficulties with this procedure. First,

the technique requires knowledge (or at least an hypothesis) about

which single independent variable is causing the heteroskedasticity.

.Although this knowledge is sometimes available, it usually is not.

Second, though it has been found that omitting the central p observa-

tions increased the power of this test, the technique should prove

less powerful (in correctly rejecting H0) than tests that do not

discard information. Finally, in the test's favor, it should be

mentioned that the distribution of R1 is independent of the values of

the regression coefficient and, under the null hypothesis, is

independent of the value of the variance of the disturbance term.
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IEEELL’ A similar test has been suggested by Theil [1965] using

BLUS residuals. He suggested that the (n-k) BLUS residuals be divided

into two equal groups of m observations after the central p,(%-< p < g),

observations have been omitted. Denoting t1 as the sum of squared

residuals from the first group and 1:2 as the sum of squared residuals

from the second, the statistic R2 = :3 is calculated. It is

distributed as F with m and m degrees of freedom under the null

hypothesis. Under the alternative hypothesis that the heteroskedast-

icity is a fUnction of the order of the observations (for example, a

function of time in time series data), R2 is distributed as scaled F

with m and m degrees of freedom.

The problem of the loss of information associated with the GQP

procedure is thus partially solved by using this procedure. If one

does not omit the central p observations in both tests, the F-statistic

using the GQP procedure has (n-2k)/2 and (n-2k)/2 degrees of freedom,

whereas with the Theil procedure, the F-statistic has (n-k)/2 and

(n-k)/2 degrees of freedom. The reason for this is that in order to

use the GQP procedure, one must calculate the residuals after the

observations have been divided into groups. By contrast, since the

BLUS residuals are independent of one another, they can be calculated

before the data is divided into groups. However, to use this

procedure effectively, one must still discard p observations. Finally,

it must be recalled that two problems are added because BLUS residuals

are used. First, it is difficult to calculate the vector 9?. Second,

it is difficult to reorder the n-k residuals when some variable, say

xi, is related to the heteroskedastic disturbance terms u1,...,un.

It can, however, be accomplished by carefully noting the k Observations
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that are discarded in calculating the matrix A. Since the remaining

n-k observations correspond to the n-k BLUS residuals, reordering can

be done.

RECURSIVE-P - The final technique utilizing an F-statistic was
 

developed by Harvey G Phillips [1973]. In this technique the F-

statistic is defined in terms of recursive residuals. The prerequisite

for using this procedure, just as for the previous two procedures, is

that one have knowledge as to which variable, say xj, is monotonically

related to the heteroskedastic variances 01’ and that the disturbance

terms be normally distributed. If these prerequisites are met, the

test can be carried out. First the n-k recursive residuals are

calculated. Second, the first k observations of the vector xi are

discarded and the remaining n-k observations are reordered in increas-

ing magnitude (decreasing magnitude if xj is inversely related to the

variances oi,...,ofi). Third, the n-k residuals are reordered to

confbrm.to this new ordering. Fourth, the residuals are divided into

two equal groups of’m observations, after the central p observations

(§-> p > 2) have been omitted. Finally, denoting t1 and t2 as the sum

of the squared residuals from group one and two respectively, the ratio

R3 = ;%_is defined. This ratio has an F distribution with m and m

degrees of freedom under H0, whereas under H2, R3 is distributed as

scaled F with.m and m degrees of freedom.

To use this test, like Theil's, it is not required that the

residuals be recalculated. Hence, k degrees of freedom are saved.

Also, even though the recursive residuals are easier to calculate and

reorder than the BLUS residuals, they are still not as easily

manipulated as the OLS residuals. Finally, since the BLUS residuals
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have the prOperty of having the minimum variance for the class of

residuals which have a scalar covariance matrix, the BLUS procedure

will probably have more power against H2 than will the recursive

residual technique.

BAMSET - In the next procedure, Bartlet's M statistic is used.

Developed by Ramsey [1969], the test, which he named BAMSET (Bartlet's

M Specification Error Test), requires use of BLUS residuals as did the

Theil procedure. This procedure involves first calculating the n-k

BLUS residuals and then separating the residuals into three mutually

exclusive and exhaustive groups of approximately equal size (sample

size n1, n2 and n3 respectively). Denoting $1, 52 and 53 as the sum

of squared residuals from groups one, two, and three respectively, one

can form a likelihood ratio test. The ratio used in the test is 9*,

defined as

(131” (3.32” (a (s. + s. + 5.)?
n1 n2 “3 nl + n2 + “3

Since 2* is a likelihood ratio, it is well known that -2 loge 9* is

 

asymptotically distributed as x2 with, in this case, 2 degrees of

freedom. Under HO, the values of 51, $2 and 53 are found to be

statistically equal, whereas under H2, they are found to be

statistically different from one another.

As an alternative form of this same procedure, Ramsey 5 Gilbert

[1972] have suggested that OLS residuals instead of BLUS residuals be

used. They have, however, pointed out that since under H0 the OLS

residuals are heteroskedastic and not independent (recall that

E(§§f) = 02M), the asymptotic distribution of the resulting ratio

cannot be determined.
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At this point, some remarks about this test must be made. First,

since the observations are not reordered, the three groups are a

function of the index 1. Hence, the test should prove most powerful

against the alternative hypothesis when the heteroskedasticity is a

function of the observation number 1. Nevertheless, this form of

heteroskedasticity was not what the test was specifically designed for.

Rather, it was designed as a general test to detect any form of

heteroskedasticity. Because in using this procedure, one makes no

assumption as to the form of the heteroskedasticity, it should be

expected that BAMSET will prove less powerful against H2 than tests

that utilize knowledge as to the form of the heteroskedasticity.

However, when knowledge as to the form of the heteroskedasticity does

not exist, the BAMSET test is the only one that can be used. To

increase the power when knowledge of the variable (say xi) that is

related to the heteroskedastic disturbances is known, it has been

suggested by Sutcliff [1972] that the residuals should be reordered

by the variable ET before the grouping is made. Recall that this can

be done with BLUS residuals if one discards the observations of the

vector xj that correspond to the observations omitted in calculating

the A matrix. I

GQN_- The last group of tests are two non-parametric tests. The

first of these was developed by Goldfeld G Quant [1965] for cases in

which no assumptions about the distribution of the disturbance term

can be made. Hewever, this test still requires knowledge that a

variable, say ET, is monotonically related to the heteroskedastic

disturbance terms u1,...,un. The procedure requires first that the

regression model be estimated using OLS. Second, the variable x5 is

 



a. 5
3
;
.

p
:

‘
_
_
.
<
—

(.8.-

t...
L

_

trr

s

v.9 1

1

(
I
n
t
o

(
I
I

I

i
f

U
:

o
’

K
/
I



 

25

ordered by increasing magnitude (decreasing magnitude if xi is inversely

related to the heteroskedastic disturbance terms) and the OLS residuals

are reordered to conform to this ordering. Third, the number of peaks

(a peak is defined as |fij|<|fij+1|) occurring in the reordered residuals

are counted. By using a table provided by Goldfeld G Quant [1967], the

cumulative probability that heteroskedasticity is present can be

determined. Under the null hypothesis, there will be a small number

of peaks, whereas under Hz, the number will be large.

Some observations of this technique are in order. First, it has

been found [Goldfeld S Quant, 1967] that for small sample sizes,

n < 10, the procedure is biased because the OLS residuals are not

mutually independent. Second, just as with all the other tests

(including BAMSET with the reordering procedure), it is necessary to

know which variable is monotonically related to the heteroskedastic

disturbances. Third, given that OLS residuals are themselves hetero-

skedastic under H0, it is surprising that for larger sample sizes,

n > 10, the test is not biased. Finally, while it would rarely be

inapprOpriate to use this test for heteroskedasticity, it should be

selected only when.the disturbance terms are not distributed normally.

Since if the disturbance terms are normally distributed, other tests

exist which prove more powerful at correctly rejecting the null

hypothesis.

RECURSIVE-N - The last non-constructive test to be discussed was
 

designed by Hedayat G Robson [1970]. 'With this non-parametric test,

the peak tables provided by Goldfeld G Quant are also used. This test

is exactly the same as the GQN test which was just reviewed with the

exception that recursive residuals are used instead of OLS residuals.
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This test offers the advantage of not being biased even for small

sample sizes because the n-k recursive residuals are mutually

independent.

It must once again be stressed, however, that this test, just as

the GQN test, is a non-parametric test and hence should.be used when

the distribution of the disturbance term is unknown.

Constructive Tests
 

.As previously mentioned, constructive tests for heteroskedasticity

are most often viewed as being less general than non-constructive tests

because they usually require more precise a_pgigri_information about

the functional form of the heteroskedastic disturbances. For example,

some of the most popular assumptions about the functional ferm.of

constructive tests are:

2 _
E(ui ) - o xij , (l.lla)

2 _ 2 2
E(ui ) — o xij , (l.llb)

E(uiz) = 02 (a + b ij) , (l.llc)

2 _ 2 2
E(ui ) - o (a + b Xij) , (l.lld)

2 2
E(ui ) = o E(yi) , and . (l.lle)

E(uiz) = oz E(yiz), i=1,...,n. (l.llf)

Glejser [1969] divided these assumptions into two types of

heteroskedasticity, pure and mixed. Pure heteroskedasticity is

defined as E(uiz) = ozf(zi), i=1,...,n, where f(zi) represents a

fUnction in some variable 21 which passes through the origin, whereas

mixed heteroskedasticity is defined as E0112) = o2(f(zi) + a),i=l,...,n,

that is, the heteroskedastic disturbance term.has an intercept term.
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.According to this convention, only equations (l.lla) and (l.llb)

represent pure heteroskedasticity.

Though the assumptions are more rigid, constructive tests do offer

two advantages over non-constructive tests. First, the relation

between a single independent variable and the disturbance term need

not be monotonic. Second, since in constructive tests an estimator of

the heteroskedastic variances (call it giz) is defined, the hetero-

skedasticity can be corrected either by dividing the model by Si and

reestimating using OLS or by reestimating the model using GLS

(generalized least squares) and employing the values of 312 on the

diagonal of the estimated variance covariance matrix.

Three constructive tests, all formulated in terms of a basic

regression model, are described in this study. Ordinary least squares

estimators for the model's parameters are used in two of the tests,

while in the third maximum likelihood estimators are used. The

estimates Obtained from all the tests are then tested either individu-

ally or in a group.

PAR§_- The first estimation technique (that has since been used

as a testing procedure) was develOped by Park [1966]. Before that

time, it was assumed that if the variable xj were related to the

heteroskedastic disturbances, u1,...,un, the relation was specified

by E(uiz) = o2 xij’ i=1,...,n. In order to ease the restrictiveness

of this assumption, Park suggested that when xj is known to be the

cause of the heteroskedasticity, it should be assumed that the

2 o2 _ .
E(ui ) - o xij’ 1

Park then posited that the value of a could be estimated by formulating

1,...,n. (1.12)

a regression model. By taking natural logs and removing the expected
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value Operator, he obtained the model

2 2 .
1n u1 = 1n 0 + o 1nxij + 1n vi, 1=1,...,n, (1.13)

where V1 is distributed as x2 with one degree of freedom. Park then

suggested replacing the unobserved dependent variable In ui2 by its

2
OLS predictor 1n fii . When this proxy is used, model (1.13) becomes

ln £12 = 1n oz + a 1n xij + ln'wi, i=1,...n, (1.14)

wherewi is distributed as scaled x2 with one degree of freedom where

the scaling factor is

2
ECwi}/E(2wi) miio = mii

T = n- Cy2) (IE—E) ’

I—n— .

and where mii is the i'th diagonal element of the matrix

M(=I - X(X'XIX'). Estimating the model using least squares, Park

2 and o. These estimators would then enableobtained estimators of 1n 0

the researcher to correct the heteroskedastic model.

In carrying this technique one step further, others (for instance

Goldfeld G Quant [1972])have indicated that if one denotes d as the

OLSestimate of o and Oa as the estimated standard error of a, the

ratio Ry could be defined as

o

R = —:—-

Y a.

(I

This ratio is approximately distributed as student's t with n-Z degrees

of freedom. under HO’ a = 0, whereas under H2 of the type hypothesized,

o f 0.

Three points must be made. First, this process still requires

knowledge of the single variable causing the heteroskedasticity. The

test does not, however, require that a monotonic relation exist between

the variable and the disturbance terms.
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Second, 1n £12 is a biased predictor of In uiz. Recalling that

E(§;§f) = oZM and denoting mi as the i'th row of the matrix M, one

finds that

Ban 1112) = Biminplzi # Eon nil)

Third, it must be pointed out that when one estimates model (1.14)

by the method of least squares and assumes, as Park did, the classical

assumptions that the disturbance terms are distributed N(¢, 021), four

specification errors are committed.

The first of these errors is that of incorrectly assuming a

normally distributed disturbance term (recall that the disturbance

terms are distributed as loge scaled x2 with one degree of freedom).

This error, however, does not affect the properties of the estimators

of the lnoz or a, but rather affects the tests of significance (that

is a t-test or an F-test). Hence, the t-test proposed to test H0 vs.

H2 could be biased. It has been found by Srivastava [1958], however,

that a t-test is robust against considerable non-normality; therefore,

the procedure might prove reliable. This is especially true since the

disturbance terms are distributed as loge of a scaled X2 with one

degree of freedom which is a two-tailed distribution.

The second specification error is that of a non-zero mean vector.

The expected value of the i'th element of this vector is

E(ln wi) = E(ln mi 2) 7‘ o

where l_l_l"i is the i'th row of the M matrix. Since wi is based on the

matrix M (=1 - X(X'X)_X'), 1n (wi) is not independent of the variable

In (xi) and hence the estimate of a will be biased. In addition, the

estimate of In 02 will be biased unless all of the non-zero variation

in In (wi) can be absorbed by the estimate of o.
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The third specification error is that of heteroskedasticity.

This error will cause the estimated variances to be biased and hence

make the estimators of 1n 02 and o inefficient. Therefore, the

proposed t-test will prove more conservative than it would otherwise

be. Also, it should be noted that since the dependent variable is

heteroskedastic under HO, the null hypothesis will be rejected by the

test a disprOportionate number of times.

The last specification error is non-independence. Like the

misspecification of heteroskedasticity, non-independence causes the

estimated variance to be biased; hence, the estimators of 1n 02 and o

are inefficient and the t-test is unduly conservative. WOrse yet,

however, is the fact that the non-independence in the disturbance

terms adversely affects the t—test procedure another way. If the

ratio calculated is to be distributed as student's t, the numerator

and denominator must be independent. Unfortunately, when the disturb-

ance terms are not independent, the numerator and denominator of this

ratio are not independent; thus, the t-test procedure must again be

questioned. Since there is no evidence that the t-statistic is robust

against non-independence, the question arises as to whether this

procedure is valid. The question is considered further on in this

study.

FIMRL- In this procedure, suggested by Rutemuller G Bowers [1968],

a likelihood ratio test is utilized. It has the advantage, unlike the

previous procedure, of having an asymptotic distribution theory that

is well defined.
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Given the heteroskedastic model

y.1 = 81 + 82 X12 + ... + Bk Xik 4' Vi, 1:1,...,n, Y_~ NCfl’ v) (1.15)

oi 0

where ‘V = . , Rutemuller G Bowers proposed an

9 '02
- d  

estimation method whereby 012,...,on2 and 81,...,Bn could be jointly

determined. They posited that if the variances were a function of

some variables El”"’5n (typically these variables would be independent

variables from the model 1.15) whose exact functional form was known

(say f(§l,...,gn)), the parameters in the function f(-) and parameters

§_could be jointly determined.

Because Rutemuller 8 Bower's procedure requires knowledge about

the function f(o), it will be assumed, for illustrative purposes, that

f(-) is a quadratic in a single variable, that is

E(viz) = oz(oo + olxij+ oxz12].), 1=-l,. (1.16)

They then suggested transforming model (1.15) into the homoskedastic

model

2

W+alx1j+azx1j \[°‘1":jo*°‘ O‘zxij

i = 1,...,n, (1.17)

  

 
 

where u_~ N(¢, 021), under H0.

Since this model cannot be estimated using ordinary least squares,

they recommended using maximum likelihood. Setting up the likelihood

function
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. 'I‘ r
they deflned 9: and B as the estimators that maximize L1. Likewise,

they denoted L0 as the equation (1.18) when o1 and o2 are constrained

to equal zero (this is equivalent to OLS estimation of model 1.15) and

defined do and é_as the estimators that maximize L0. Finally, they

defined the likelihood ratio 2+ as

Being a likelihood ratio, —2 loge 2+ is asymptotically distributed as

x2 with, in this case, 2 degrees of freedom (the number of degrees of

freedom always equals the number of extra parameters included in L1).

Under the null hypothesis of homoskedasticity, the additional parameters

in model (1.17), ml and o2, are equal to zero and do = 02 (the model's

variance), whereas under the alternative hypothesis of heteroskedasticity

of the form hypothesized, oz and o3 are not equal to zero. Therefore,

including the polynomial is found to increase the model's efficiency.

An alternative test formulation of this same test has been

suggested by Goldfeld & Quant [1972]. They hypothesized that the

estimators of could be tested individually by using a t-test. This

procedure would, of course, enable an experimentor to differentiate

between pure and mixed heteroskedasticity. It must be realized, how-

ever, that since gf is only asymptotically distributed normally, the

test proposed would not have a student's t distribution; hence, the

test statistic would not be exact for small sample sizes. This revised

procedure might, nonetheless, pose only minimum difficulties under H0

since there is evidence [Srivastava, 1958] that a t-test is robust

against considerable non-normality.



33

TWO final points concerning this test must be made. First,

Rutemuller G Bowers suggested that if the exact functional form f(-)

is not known, one should use the regression model itself as a proxy

fer the unknown function. This procedure would, using the likelihood

ratio test, result in -2 loge 2+ being distributed as x2 with k-l

degrees of freedom. .Also, the t-test procedure (Goldfeld G Quant's

suggestion), although only an asymptotic test, might be useful in

determining which variable is causing the heteroskedastic disturbances.

Second, Rutemuller 8 Bowers' procedure, though well defined, tends

to be more difficult to implement than any other test for heterosked-

asticity. There are two reasons for this; first, a good maximum

likelihood (hill climbing) computer program is needed, and second,

since the estimation is accomplished through an iterative procedure,

the process is more costly and time consuming than are other testing

procedures.

GLEJSER - In this test, the last constructive test to be examined,

OLS is used to estimate the parameters in the heteroskedastic model.

The test, put forth by Glejser [1969], was designed to detect and

correct fer heteroskedasticity that is a polynomial in some variable.

It should, however, be noted that priOr knowledge about the degree of

the polynomial and about the identity of the variable is required

befOre the test can be used.

For illustrative purposes, the form of the heteroskedasticity

will be postulated as

E(uiz) = 02(o1 + ozxij + 0133(1)?)2, i=1,...,n. (1.19)

With the disturbance terms taking on this form, Glejser suggested that

a regression model be used so that ol, oz, and o3 can be estimated.
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Using u; as a proxy for ui2 and taking the positive square root of

equation (1.19), he formulated the model

[Oi] = (011 + ozxij 4' aSXIj) Vi, i=1,...,n, (1.20)

where vi, i=1,...,n, are distributed are scaled x with one degree of

freedom with the scale factor equal to VEEEEZ where mii is the i'th

diagonal element of the matrix M. He then suggested estimating the

model using OLS. Finally, he suggested calculating a set of t ratios

(t2 and t3) defined as

o.

1 .

t“ = 3':— 9 1:293:

a.

1

where Si is the OLS estimate of ai and.O ;. is the OLS estimate of the

1

standard error of Si. Although he indicated that the exact distribution

of these ratios was unknown, he suggested that they might be approxi-

mately distributed as student's t (with n-3 degrees of freedom in this

case). .Assuming that his suggestion is true, a standard t-test could

be performed. Under the null hypothesis of homoskedasticity, oz and as

are each equal to zero and cl = o (the standard deviation of the

disturbances), whereas under H2 of the form hypothesized, oz and o3 are

different from zero.

Glejser's model and testing procedure also enabled him.to

determine easily whether the heteroskedasticity was of the pure or of

the mixed variety. He suggested that if HO was rejected, the type of

heteroskedasticity could be determined by testing the additional

hypothesis of whether o1 is equal to zero (pure heteroskedasticity).

To test this hypothesis, a t ratio (similar to t2 and t3 above) would

be calculated and if it is again assumed that the ratio is approximately

distributed as student's t (with n—3 degrees of freedom in this case),

a standard t—test can be performed.
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A.number of observations can now be made. First, it must be

remembered that one must have a_priozi_knowledge about the degree of

the polynomial and about the identity of the variable causing the

heteroskedasticity in order to use the test. According to Glejser,

however, using the wrong degree of the polynomial presents little

difficulty as this error has only a small affect on the test's power.

Second, because Glejser uses a t-test in each coefficient to test

for H0 vs. Hz, the correct a level is difficult to obtain. The reason

for this is that since the probability of a type I error in using

individual t-tests is the union of the probability of committing a

type 1 error in testing each coefficient, the correct alpha level is

difficult to Obtain. However, when.an F-test procedure is instead

used, this problem is circumvented since when more coefficients are

being tested for significance, the degrees of freedom are correctly

varied.

Third, since [Oil is used as the dependent variable, a biased

predictor of the heteroskedastic disturbance is being used. This is

easily perceived by once again recalling that E(§_§D = 02M, andmii is

the i'th diagonal element of the M matrix,

EclfiiI) = ran—oii at Ecluil). i=1,...,n.»

The fourth point is that just as with PARK's test, Glejser's

estimation of model (1.19) using OLS while assuming the classical

assumptions causes him to commit four specification errors. The first

error is that of a non-zero mean vector. In model (1.19), the expected

value of the i'th element of v_is

_ 2

Eh’i) ‘./‘“ii°i °
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Since this vector will probably be uncorrelated with xi and x§(=[xi§]),

only the constant term will be affected. Under H0, its expected

value will be

n 2 1/2

E(o1) £1 (mii O ) //<1

i:

= o [cmnil/Z + + (mm)1/2]/n

Because mii < l andm11 + ... + In.nn = n-k, one can say that

-k
0 > E(o1) > Efi—-o. This bias will, of course, affect any test of

significance on the constant term.

The second specification error is that of incorrectly assuming a

normally distributed disturbance term. As mentioned in the section on

Park's test, this will cause the tests of significance to be biased.

HOwever, as previously mentioned becauseof Srivastava's [1958] findings

that the t-test is robust against considerable non-normality, this

Specification error might cause only minor difficulties. It should,

however, be further noted since these disturbance terms are distributed

as scaled x with 1 degree of freedom which is only a one-tailed

distribution, it must be considered more "non-normal" than two-tailed

distributions. Hence, one should expect the Park testing procedure

(disturbance terms having a Z-tailed distribution) to be a more exact

test under H0.

The third and fourth specification errors are those of heteroske-

dastic andnonindependent disturbance terms. As is true in the case of

the Park procedure, these errors cause considerable difficulty. First,

both errors will cause a loss of efficiency thus making both the t and

the F tests prOposed too conservative. Second, the fact that the

dependent variable is heteroskedastic under HO (recall OLS residuals,
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EQgg') = 02M)causes a disproportionate number of rejections under the

null hypothesis. Third, because the dependent variables are not

mutually independent, the t tests break down for lack of independence

between their numerators and denominators. Hence, the validity of

this testing procedure must be carefully checked.

Summazy

.All tests for heteroskedasticity require either some knowledge of

or an hypothesis regarding the form taken by the heteroskedastic

disturbances. The amount of infOrmation required differs drastically,

however, ranging from knowledge of a monotonic relationship to the

exact form of the relationship. Table 1 summarizes these assumptions,

indicates fOr which tests the assumptions of normality can be drOpped,

and restates all the relevant observations.

.As can be seen from Table 1, non-constructive tests offer the

advantage of not requiring as:much.a_p£igri information as constructive

tests. The latter, however, have the advantage of providing a correc-

tive procedure for the problem of heteroskedasticity. What would be

Optimal is a test whiCh would combine the advantages of both sets of

tests. Since preliminary evidence exists [Glejser, 1969; Ramsey 6

Gilbert, 1972] whiCh indicates the exact functional form of the

heteroskedastic disturbance need.not be Specified for a constructive

test to detect the presence of heteroskedasticity, a very general

constructive test might be formed.

In addition, any such general test might very well not require

the specification of a single variable which is causing the disturbances

to be heteroskedastic. Rather, the test might only require that the
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Table 1: Summary of Tests for Heteroskedasticity

Assumptions Concerning

 

 

Tests Heteroskedasticity Observations

l 2 3 4 S 6 7 A B C D E F G H

Nonconstructive

GQP X X X

THEIL + X X X

RECURSIVE-P X X X

BAMSET X + + X 8/0

GQN X X X 0

RECURSIVE X X X R

Constructive

PARK X X X 0

FIML X X X X N

GLEJSER X X X 0                    
X Applicable to test

Applicable, though not originally suggested+

No assumptions according to original formulation.

Any linear function of the independent variables.

The disturbances are monotonically related to a single known variable.

The disturbances are monotonically related to the order in which

the observations are taken.

The disturbances are a function in some power of a known variable.

The disturbances are a quadratic in some known variable.

The exact form taken by the heteroskedastic disturbances is known.\
l
O
‘
U
‘
I
#
M
N
H

Normality of disturbance terms not required (nonparametric test).

Exact test. -

Asymptotically exact test.

Testing procedure is not exact because OLS residuals are used.

Biased estimate of O1 is used in test.

Time consuming alternative procedure.

Discarded p observations resulting in loss of information.

Residuals used : 0-OLS, R-Recursive, B-BLUS, N-None.
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variable(s) causing the heteroskedasticity are present in the model.

The test itself might then approximate the correct functional fOrm

taken by those variables if the disturbance terms are in fact

heteroskedastic. Such a procedure would not require the vast amount

of information now needed and hence would be of tremendous use to the

average researcher.

One final point must be made. .Although there is often a lack of

knowledge about which variable is causing the heteroskedasticity in a

specific situation, none of the currently available testing procedures

is designed to deal with such a situation. Unfortunately, researchers

have incorrectly devised a way to circumvent the problem. When the

cause of the suspected heteroskedasticity is not known, it is not

uncommon for the researcher to select some test and to use this test

with first one independent variable, then another and another until

the test indicates the presence of heteroskedasticity. It cannot be

emphasized enough that this technique is entirely incorrect. First,

this E§;R22 technique actually violates the assumption that the vari-

able causing the heteroskedastic disturbances is known. Hewever, more

importantly, this tedhnique usually will lead to an incorrect

conclusion. A

Tb illustrate this, one could take the example of the hypothesized

model

1‘ 80+ 8151 + B23—32 +3;

I!” N(¢, V), where V indicates an unknown variance-covariance matrix,

andwherex1 and 52 are mutually independent vectors. Having no

preconceived hypothesis as to the cause of the suspected heteroskedastic

disturbances, the researcher decides to use one of the standard tests
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for heteroskedasticity to determine which variable is causing the

problem. Carefully setting the probability of incorrectly rejecting

the null hypothesis (type 1 error) of homoskedasticity at .05 (=o

level), the researcher is ready to begin testing H0 vs. H2. Using

the test, first with x1 and then with x2, the researcher concludes

that the heteroskedasticity is caused.by variable x2 and that the

probability of type I error is .05. Using this procedure has led the

researcher, as it usually does, to an incorrect conclusion. The

probability of type I error occurring is the probability of its

occurring when x1 "35 tested plus the probability of its occurring

whenx2 was tested minus the probability of its occurring in.both of

the tests. Hence,

Pr (ope I) Pr (Type I + Type I )

2El ’52

Pr (Type 1X1) + Pr (Type 1X2) - Pr (Type IE1E2)

.05 + .05 - .0025

.0975

(The independence of x1 and x2 was assumed so that the calculation of

the intersection would be possible.) Therefore, if one wants to have

a probability of type I error equal to .05, the a level for each test

must be set at about .025. Hence, if a homoskedastic model had 20

independent variables and each were tested to ascertain whether or not

it was causing heteroskedasticity, the probability of incorrectly

rejecting H0 would be very, very high.

1.4.4 Studies Comparing Tests for Heteroskedasticity

Since there are nine tests designed to detect heteroskedasticity,

a researcher is faced with a difficult choice as to which test he should
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use in any particular situation. As has already been.mentioned, the

amount of apriori information possessed by the researcher determines to

some extent which test(s) he can use. However, in.many cases after

this first elimination process has been gone through, there still

remain.a number of different tests from which to choose. The researcher

must thus use another criterion on which to base his test decision.

That criterion might be that the most desirable test is the one which

has the highest probability of correctly rejecting H0 (power) given a

specified alpha level (the probability of incorrectly rejecting H0).1

In five studies, this criterion has been used to compare various tests

for heteroskedasticity with one another. Since, however, no two

regression models are exactly alike, no comparative study can furnish

the researcher with the complete solution appropriate to his particular

prOblem. In these studies, however, the various tests have been

compared under different conditions, that is, with different sample

sizes, alpha levels, and ferms of heteroskedasticity. By making

conclusions regarding the performance of specific tests under general

categories of conditions, the experimentors proposed to establish

certain broad criteria for the researcher to use in choosing a test

fOr his particular situation.

There are two basic types of study that compare tests fer

heteroskedasticity. The first and most common type of study uses a

sampling experiment. In such an experiment, the probability of

correctly rejecting Ho (the test's power) is determined through the

use of a repetitive sampling process. This procedure is analogous to

 

1Still another criterion might be the robustness of the remaining

tests to other Specification errors. HOwever, only the robustness of

the BAMSET test has been analyzed [Ramsey 6 Gilbert, 1972], and hence

such a criterion cannot be made.
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determining the probability of selecting a blue ball out of a box With

three blue balls and two red balls by repeatedly selecting a ball out

of the box, recording its color, and returning it before the next ball

is drawn. The probability of drawing a blue ball would then be the

ratio of

number of times a blue ball was selected

number of times the experiment was repeated

 

To use this procedure in discriminating among the various tests for

heteroskedasticity, the person conducting the experiment (hereafter

referred to as the experimentor to differentiate him from the researcher

who Will use his findings) formulates a regression model, such as

E(yi) = a + Bxi i=1,...,n, (1.21)

where the value of the vector x_and the value of the parameters a and B

have been previously specified by the experimentor. Model (1.21) is

used to generate the expected value of a vector of dependent variables

E(y). Next, the experimentor specifies a population from which to

select randomly the disturbances vi, i=1,...,n. Since the experimentor

vents the regression.model to be heteroskedastic, he specifies that

v., i=1,...,n are independently and identically distributed as

1

N(0, Oi')’ where 0:- denotes that the.i'th population variance is

1 .

related in some'wayt specified by the experimentor, to the i'th

observation of the independent variable x. The experimentor then

selects n random observations from this population. Defining

y1 = E (yi) + Vi’ i=1,...,n

he generates n observations of independent variables y1,...,yn.

Following this, he applies each of the tests for heteroskedasticity

that is to be compared to this vector of observed dependent variables,



43

y, The experimentor next randomly selects another sample of n observa-

tions of V1 from the specified population and again calculates yi.

Once again.he applies all the tests to the new vector of independent

variables, y, Repeating this procedure N times, he can determine the

power of each test by calculating the ratio of

(number of times that tfie test rejected H0). Given that the alpha
 

level of all these tests is the same, the test with the greatest power

would be selected as being the best test to use given heteroskedasticity

of the form hypothesized.

The difficulty with this procedure is that, of course, the power

that is calculated for each test is often dependent on the specific

model which the experimentor formulated and on the values of x_and

a and B which he chose. Even more importantly, this procedure requires

a very large number of replications so that the probability of choosing

an unrepresentative set of samples is very low.

An alternative way of calculating a test's power and a way that

eliminates the repetitive sampling procedure has been suggested by

Imhof [1961]. This method requires that the disturbance terms be

independently and identically distributed as normal with a specified

mean.and variance. Also, it requires either the specification of the

distribution from which the values of the vector x_can be drawn or for

the values of the vector x_to be exactly specified. After the

experimentor has satisfied these conditions, the exact probability of

correctly accepting H2 is calculated for each test by computing the

prObability that each quadratic form will occur.

Although this procedure eliminates the need to sample repeatedly

from the pOpulation of the disturbance terms and hence the possibility
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of drawing a sample that is biased (that is, that the sample could have

been drawn from a distribution other than the one specified), it still

requires that a sample be drawn for the vector x, .Also, this technique

cannot be applied to all the tests reviewed, but rather only to those

tests that define a statistic that can be expressed as a convolusion

of independent quadratic forms in normal variables. Only three of the

tests presented meet this requirement.

Of the five studies comparing the various tests for heteroske-

dasticity,a sampling procedure is used in four while the direct

calculation of the power by Imhof's method is used in the fifth.

Unfortunately, in only one ofthese five studies are more than three

tests compared. Each of these studies will be reviewed in the

chronological order in which they were undertaken. This section will

then conclude with a series of remarks which can be applied to all of

the comparative studies.

Goldfeld G Quant I - The first comparative study was undertaken
 

by Goldfeld & Quant in 1965. In that study, they compared the two

tests for heteroskedasticity which they had develOped (referred to in

this study as GQP and GQN) by using a sampling experiment. In this

experiment they generated their dependent variables yi by the

regression model

yi=oo+o1 xi+ui, i=1,...,n, (1.22)

where the disturbance terms ui were independently and identically

distributed as N(0, l). The xi's were drawn from a uniform.distribu-

tion with ameanux and a standard deviation of ox“ They used their

two tests to discriminate between the null hypothesis that the

dependent variables were generated by the model
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1 .

versus the alternative hypothesis that they were generated by the

model

0 = a + a X0 + u. i = 1 0.. 0

Y1 0 l 1 1 ’ ,n

Since the true model was the alternative hypothesis, it followed that

the null hypothesis should be rejected. To compare their two tests

fer a variety of situations, Goldfeld G Quant generated the dependent

variable using model (1.22) and two different sample sizes, n = 30 and

n = 60. They also used 15 different combinations of values for u and
x

o . For each sample of the x's, 100 replications of the experiment
x

were made. In addition, since a central number of observations are

omitted in the GQP procedures, each hypothesis was tested by using

the GQP procedure five times. No observations were omitted the first

time, but four additional observations were omitted each subsequent

time the test was used. The power of each test was then calculated

fer eadh experiment.

' Goldfeld G Quant's results indicated that the power of both of

their tests increased as the sample size increased and as the ratio

of 35-increased. They also found that the power of their parametric

testx(GQP) increased and then decreased as an increasing number of

central observations were omitted; they concluded that the Optimum

number of observations to omit, p, was between one-third and one-

quarter of the sample size. Finally, as one would expect, it was

found that the nonparametric test (GQN) had less power than the

parametric test (GQP) for any particular experiment. HOwever, it was

0'

also Observed that as the ratio 55-increased, the nonparametric test's

x

power increased relative to the parametric test's.
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Glejser - The next study was reported in 1969 by Glejser. After

prOposing a new test for heteroskedasticity (referred to in this study

as GLEJSER), he felt that a comparison should be made between his test

and the pOpular parametric test of Goldfeld G Quant. To make the

comparisons he used a sampling experiment.

In his experiment, a vector of dependent variables was generated

by the model

y. = 80 + 81 xi + u1 f(xi), i = 1,...,n, (1.23)

where the ui's were independently and identically distributed as

N(0, 1). In his study, eight functional forms, f(-)'s, were used to

generate the heteroskedastic disturbances. The values of xi were

chosen from three different normal distributions with a mean of 50 and

standard deviation of 5, 10, and 30 respectively. Finally, each model

was tested using three different sample sizes; they were n = 20, 30 and

60. Thus, 72 cases (8 x 3 x 3) were studied by Glejser. 100 replica-

tions of each case were used to determine the power of each test under

the various alternative forms of heteroskedasticity.

Since Glejser's test is a constructive test for heteroskedasticity,

Glejser had to specify the functional form taken by the heteroskedastic

disturbance. He decided to hypothesize that the heteroskedasticity was

a linear function of either xi/z 1/2and xi or x- and x-1 depending on

whether f(xi) is a function of a power in X1 or in iE-respectively.

Of course, he pointed out that generally, in practice, this information

would not be known.

.After thus specifying the functional form used in his test,

Glejser was able to test the significance of each of the estimated

parameters by using a two-tailed t-test. Since, however, Glejser's
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testing procedure is not exact, he found that in using a two-tailed

t-test on a homoskedastic model, a nominal alpha level (= probability

of type 1 error) of 11% was needed to reject the null hypothesis 5% of

the time. Hence all 72 cases were examined using his test with a

nominal alpha level of 11% so that the probability of type I error

would be .05.

After Glejser completed his study, he made some observations

about his findings. First he concluded that generally, his test

compared favorably with the parametric test of Goldfeld G Quant's.

He also concurred with Goldfeld 8 Quant's findings that the power of

both tests increased with sample size. Next, he discovered that his

test could not detect the presence of mixed heteroskedasticity when it

in fact existed. Finally, he found that because his two regressors

(xi and xi/Z or xil and xil/z) were highly correlated, the test's

power was generally unaffected by using just a single regressor.

Ramsey 8 Gilbert - The third study is similar to that of Goldfeld
 

G Quant's in that the experimentors, Ramsey 6 Gilbert [1972], compared

two of their own tests with one another. They compared the BAMSET

procedure using first BLUS and then OLS residuals under the null

hypothesis and under the alternative hypothesis of heteroskedasticity.

A sampling experiment was used to compare the two procedures.

To generate the vector of dependent variables under the alternative

hypothesis, the model

yi = 1.0 + 2.0 xi, -.8 xiz + ui /i725, i = 1,...,n, (1.24)

where the ui's are independently and identically distributed as

N(0, l), was used. Ten values of x1 and x2 were obtained from a table

of random numbers. These ten numbers were then replicated two, three,
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and five times to generate sample sizes of n = 20, 30 and 50

respectively. In a basically similar way, a homoskedastic model was

generated. Realizing that a sample of disturbance terms, unrepresenta-

tive of the population from which they were drawn, would adversely

affect the results, Ramsey 6 Gilbert replicated each experiment 1000

times.

TWO surprising results were obtained. First, since it is well

known that OLS residuals are heteroskedastic under the null hypothesis,

Ramsey 6 Gilbert were surprised to find that with the BAMSET procedure

the residuals were found to be homoskedastic. This meant that the

percentage of times that HO was incorrectly rejected corresponded to

the alpha level. Secondly, they were surprised to find that when the

alternative hypothesis was correct, using OLS residuals in the BAMSET

procedure always proved more powerful than when the procedure was

applied using BLUS residuals. They offered no explanation for either

of these results. A possible explanation for both of these findings

will, however, be offered by this author later on in this study.

Goldfeld 6 Quant II - The final comparative study using the
 

sampling experiment approach was again conducted by Goldfeld G Quant

[1972]. This is, to date, the most extensive comparison of tests for

heteroskedasticity made. Goldfeld G Quant compared four different

tests fer heteroskedasticity (PARK, GLEJSER, GQP, and FDML).

They generated the vector of dependent variables by using the

model

 

7

yi = 2 + 2 xi + u1 /a+b xi + c xi, 1 = 1,...,n,

where the ui's are independently and identically distributed as

N(0, l). The parameters a, b, and c are given various combinations of
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values (7 combinations in all); the xi's are independently distributed

as either uniform or log normal. (All seven combinations Of values a,

b, and c were tested using the uniformally distributed xi's while only

two cases were examined using the log normally distributed xi's.)

All nine cases were then compared using three sample sizes n.= 30, 60

and 90. Finally, each experiment, 21 in all, was replicated either

50 or 100 times.

After carrying out this elaborate study, Goldfeld G Quant drew

three major conclusions. First, they concluded that the FIML method

appeared "to be the most powerful test for detecting heteroskedasticity."

[Goldfeld G Quant, 1972, p. 118]. Tangentially, they found that their

suggested asymptotic t-test on the coefficients Obtained from the FIML

technique was inferior to the likelihood ratio test originally posed

by Rutemuller & Bowers. This result, they asserted, was due to the

high intercorrelation between the parameters b and c.

Goldfeld G Quant's second conclusion was that the power Of each

test increased with the number of Observations; in this finding, they

concurred with all previous experimentors. Finally, using four

different tests, they were able to substantiate Glejser's finding

that mixed heteroskedasticity is more difficult to detect than pure

homoskedasticity.

Harvey 6 Phillips - In the final study, Harvey 6 Phillips
 

compared the three exact tests for heteroskedasticity (GQP, THEIL, and

RECURSIVB-P). Rather than use a sampling experiment, they calculated

the probability of correctly accepting the alternative hypothesis of

heteroskedasticity by the method suggested by Imhof. That is, they

calculated the probability of the quadratic form‘s occurring.
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Harvey 5 Phillips compared the three tests fOr two types Of

heteroskedasticity. They assumed that the variances of the disturbance

. 2 = 2 2 _ Z 2 .
terms ui were either E(ui ) o xij or else E(ui ) — o Xij' NOting

that these variances critically depend on the distribution Of x,, they

J

assumed that x5 would take on four distributional forms. They first

assumed the xj's were distributed normally, then log normally,

uniformly and finally equally spaced. They then made their comparisons

using three sample sizes of (n=) 10, 20, or 30 Observations, in either

2, 3, or 4 regressors and omitting varying numbers of central

Observations.

In computing the powers of the different rests under varying

situations, they Observed that Imhof's method seemed erratic in the

widely varying amounts of time that it took for the different calcula-

tions. When the study was fully completed, however, they were never-

theless able to make a number of Observations. First, as expected, it

was fOund that the power of all three testing procedures increased

with the number of sample Observations (n), and decreased with the

number of regressors (k). Second, they were able to substantiate

Goldfeld G Quant's findings that omitting a number of central

Observations increases the power Of the testing procedure. In conjunc-

tion with this, they also Observed that the number seemed to differ

depending on the distribution Of the 55's. However, since omitting

any number within the vicinity Of the Optimum.number resulted in very

little loss of power, they felt that the difference due to the

distribution of the xj's could be ignored. Third, they found

virtually no difference in power among the three tests though the

THEIL test (using BLUS residuals) usually out-perfOrmed the RECURSIVE-P
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test (using recursive residuals). Finally, and most interestingly,

they fOund that the power of all their tests varied considerably with

the distribution Of the xj's with the highest power typically occurring

when the xj's were distributed log normally and the lowest power when

they were distributed uniformally.

.A number Of Observations can be made on the comparative studies

undertaken tO date. First, with the single exception of Ramsey G

Gilbert's study, all Of the sampling experiments used a small number

of replications (50 or 100). By using such a small number, the

probability of drawing an unrepresentative sample is much higher than

it would be if a much larger number of replications were made. This

is especially true for Goldfeld G Quant's most comprehensive study

[1972] as they occasionally repeated the experiment only 50 times.

Second, the point has been made by Goldfeld G Quant [1972, p. 90]

that the power Of the BAMSET procedure, reported by Ramsey 8 Gilbert,

was calculated using a form Of heteroskedasticity that the test could

best detect. .Although this is true, and was mistakenly not pointed

out by Ramsey 6 Gilbert, Goldfeld 8 Quant's point is equally valid

when applied to each of the other comparative studies. For example,

though Glejser used seven different heteroskedastic models when the

heteroskedasticity was generated by xi; instead of Xij’ the knowledge

he incorporated into this test likewise changed. Similarly, in

Goldfeld & Quant's own two studies, the power of the different tests

is reported as if the researcher knew the variable that is causing

the disturbance terms to be heteroskedastic. Finally, Harvey 6

Phillips' study makes the identical assumption. What must be shown

is what the power of each Of the different tests is when the wrong



52

variable is thought to be causing the heteroskedastic disturbances and

when the wrong functional form is used.

Third, the preliminary findings given by Harvey 6 Phillips

indicated that the distribution of the variable causing the hetero-

skedastic disturbances affects the power of various testing procedures

requires further study. It could well be that the power Of the tests

is affected not so much by the distributional forms of the dependent

variable as by the parameters that exactly specified the range Of

those variables.

Finally, all Of the testing procedures should be compared, unless

they can be shown equivalent, under the same conditions. In this way,

firmer conclusions can hopefully be drawn as to which test should be

used, given a particular situation.

1.5 Summary
 

In this chapter of the study, a vast amount Of information on the

occurrence of a non-zero mean vector and heteroskedasticity in the

regression model has been drawn together. In an attempt to clarify

these two problems, a detailed discussion was given as to when and how

both difficulties arise and what the effects will be. To further

illuminate this area, an in depth review of the tests that have been

proposed, and are now being used to detect each error, was given.

Finally, different attempts at comparing the various tests for

heteroskedasticity were presented.

It is apparent that though a tremendous amount of effort has been

put forth to test for the presence of these two specification errors,

further attempts must be made. Two such attempts might be a more
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general test for heteroskedasticity and a simpler formulation of the

test for a non-zero mean vector. It is hOped this study will

contribute to this goal.



CHAPTER II

A NEW APPROACH

In this chapter two new specification error tests will be

presented. Both of these tests are based on the ability Of a Power

Series Expansion.MOde1 to estimate the conditional mean of the

dependent variable. The first of these tests is used to discriminate

between the null hypothesis Of a zero mean vector for the disturbances

and the alternative hypothesis of a non-zero mean vector. Similarly,

the second test is used to discriminate between the null hypothesis

Of homoskedasticity (constant variance vector) and the alternative

hypothesis of heteroskedasticity (non-constant variance vector).

Both tests are being proposed in response to the Objections raised

earlier in this study with the current testing procedures.

Because Of the central importance Of a Power Series Expansion

MOdel to both testing procedures, the concept Of a Power Series

Expansion.mode1 will be introduced first. .After this discussion,

the test designed to determine if the disturbance terms have a non-

zero mean will be presented. This will be followed by a discussion

of the second testing procedure, a test for heteroskedasticity.

II.1 Estimation Usinga Power Series Expansion.MOdel

In this section, the concept of a Power Series Expansion (POSEX)

model will be introduced. It will be derived from both a univariate

S4
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and multivariate Taylor series expansion. The similarities between

this model and Ramsey's RESET model will then be shown. Finally, an

instrument will be suggested to replace the cumbersome expansion

terms that appear in any multivariate POSEX model.

11.1.1 Development of a Power Series Expansion Medel

A.Power Series Expansion (POSEX) model is an expansion Of the

hypothesized model in powers of the independent variables. This

model is applicable in those situations in which the conditional

mean is an analytic fUnction in the independent variables. Suppose

the regression model is given by

y1 = f(xi) + ui, E(ui) = 0. (2.1)

Consider first using a Taylor series expansion in the variable x to

approximate the conditional mean expressed by the function f(x). In

this case, the function f(x) is approximated by

f(x) = f(a) + f'(a) (x-a) + ggg§;_(x-a)z + g3;(§)_(x-a)3 + ...,

2! 3! (2.2)

where f(n) denotes the n'th derivative of the function f(-) and a is

chosen for the ease of calculating f(a) and so that the fUnction is

continuous between a and x. If, for example, the function f(-) were

unknown, but n values Of x and f(x) were Observed, the POSEX model

would be

h2

8o + 81 Xi + 82 Xi + "° + 8h xi + “1'Vi ‘ f(xi) * “i

i = 1,...,n
(2'3)

where a = 0, f(i)(0) 8i and E(ui) = 0. This model will yield a

good approximation if f(x) can be expressed by a low series expansion.
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Estimating this model by the method of least squares, one would

Obtain unbiased estimators Of the true coefficients. That is,

E A. = f(j) , ' = O,...,h(8]) Jg0) J ,

where f(j)(0) is the j'th derivative of the function f(-) evaluated

at zero, and j! is j factorial. Hence, given any value x0, an

estimate Of f(xo), is

§0 = éo + 81 x0 + £32 *3 + '°' + E3k X3 = f(’10)’

Although yo is an unbiased predictor of f(xo), the variance Of this

predictor will increase to the extent to which x0 lies outside the

Observed sample points x1,...,xn.

Unfortunately, though this procedure is quite simple, it is not

always applicable. Often, the function which is to be approximated

is not a fUnction in a single variable but rather is multivariate.

To analyze the multivariate case is conceptually no different from

analyzing the single variate case. The Taylor series expansion of

the m variate function f(x1,...,xm) is written as

8 3

f(X1,...,)Sn) = f(a,...,%) + [(Xl‘ul) “if-{4' ... 4' (xm-am) 53:11.] £3

a k
,———) f + ...,

afm a1 ... am

where ~3—-represents the partial derivative Operator with respect to

l

a [CH-211) —— + can-am)

3x.

J

xj, and fa a denotes the evaluation of the function f(-) after
1... m

the partial derivatives have been taken at the points a1...am.

Expanding this Taylor series (for the bivariate case, that is, m.= 2),

one Obtains

a +...

1.. m
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= 8fa a _
f(xl, x2) f(al, a2) + l 2 (x1 a1) +

3X

1

afal 8.2 azfal 32 2

"‘7§§;" (x2 ‘ 32) + “‘;;1?“‘ (x1 ‘ 31) +

x1

823531 32

2 ‘SEE‘SEE'Cxl ' a1)(x2 ' 32) +

2
a f, a

2 2__1.z_.cxz-a2)
8X2

Reformulating this expansion into a POSEX model, as was done in

the single variate case (model 2.3), one Obtains the model

Vi = f("11’ X12) + ui = 80 + B1,10 x11 + B1,01 x12 +

a x2+e 2x x +3 xz+ +

2,20 i1 2,11 11 12 2,02 12 °°°

h h-l 1

811,110 x11 * Bh,(h-1)1 2X11 X12 * °'° *

1 h-l h ._
Bh,1(h-l) 2xil xi2 + 8h,0h xi2 + ui, 1—l,...,n (2.4)

= ajfa a = _ _ —
where Bj,ik ;;i—t;fiz , a1 a2 — 0, f(0, 0) - 80 and E(ui) - 0.

1 2

unfortunately, there are (h+l)(h+2)/2 = t parameters to be estimated

in the above model. Hence, unless one has more Observations than

parameters (n > t), the procedure breaks down.

One possible solution to this problem is to assume that

 

aif ajf ai+jf ~ - -
-—I-——T-= bi+° i When this assumption is made, the 1mp11cation

3x1 3 2 3 3x1 3x2

. _ 2 =

15 that B2,20 ‘ b2 81,10’ 82,11 b2 81,10 31,01’ and that

2 . . . .
82,02 = b2 81,01. U51ng this assumpt1on and denoting 811 as 81,10,

812 as 81,01 and “i as bi’ one can transform.model (2.4) into
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Y1 = f(xli’ X21) + “1 = 8o + 811 X11 + 812 X12 +

2

0‘2 (811 X11 + 812 X12) + '°' + “h (811 x11 + 812 X12)

U.1, l = 1,...,n. (2.5)

This POSEX model now has only h+2 parameters to estimate in the

bivariate case and only h+m.in thelnevariate case.

NOte, however, that although model (2.5) involves very few

parameters,to Obtain estimates of those parameters,one must use a

non-linear estimation process. TO surmount this inconvenience one

could use a two-stage procedure. The first stage would specify the

linear combination of the xi's to be used for each term that is Of

the fonm (811 X11 + ... + 81k Xik)j’ where j is greater than one.

This first stage would provide an instrument for the non-linear

terms so that a non-linear estimation technique is not needed. The

second stage could then provide estimates Of the h+2 parameters (in

the bivariate case). When this procedure is used, the model to be

estimated in the second stage would be (once again for the bivariate

case)

h2
+o1qi+...+ahqi+ui,

f("11’ ‘12) = 8o + 811 X11 + 812 X12

i = 1,...,n, ' . (2.6)

where q; represents a linear combination of the xi's raised to the

j'th power. It might be mentioned, however, that this simplified

POSEX model could instead be formulated as

_°_ 2 h . =
f(xil’ x12) - 80 + o1 qi + o2 qi + ... + ah q1 + ui, 1 1,...,n.

(2.7)

by using the linear combination Of the xi's specified in the first

stage for the linear as well as the non-linear terms involving the x-‘s.
1

h
+
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However, this formulation was rejected. Although both models (2.6)

and (2.7) are simplified versions Of the more complicated POSEX

model (2.5), model (2.6) was chosen since it maintained.more Of the

essence Of model (2.5) than did model (2.7).

11.1.2 Similarities to Ramsey's RESET'Mbdel

This model (2.6) is strikingly similar to the model Ramsey [1966]

used in his RESET test to determine if the disturbance term has a

non-zero mean. Recall that Ramsey felt that if the vector of disturb-

ance terms in model (2.1) were hypothesized to be distributed as

N(¢, 021), whereas they were actually distributed as N(z, 021) then

the mean vector z_could be expressed as a linear function in the

moments about the origin Of i, The equation he suggested was

E(E) = E_= a0 + o1 i_+ o2 QFZ) + as iFS) + o4 i‘4) + ...

(2.8)

where i(j) = {§{,...,§g}1. Premultiplying equation (2.8) by the

matrix A' (recall that BLUS residuals 9? = Afy), limiting the expan-

sion to four terms, and removing the expected value Operator, he

Obtained

1.; = A, = A2 = ., Aim -. .3 A5331. .4 N554) + .1

(2.9)

where w;~ N(0, OZIn-k) under H0. This model is a power series

expansion in the OLS predictor Of the dependent variable, i, That

is, yi is the qi in model (2.6).

Tb show Still more clearly the similarities between Ramsey's

model (2.9) and the POSEX.model (2.6) Ramsey's model (2.9) will be

refOrmulated using the POSEX technique. When model (2.1) is rewritten

as
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u1 = yi - Bl - 82 xiZ - ... - Bk Xik’ i=1,...,n,

it is clear that the disturbance terms ui are a function of the

dependent variable yi and the hypothesized independent variables

Xil"°"xik' Under the null hypothesis that model (2.1) generated

the dependent variable yi, the yi's are a linear function Of

Xi1’°"’xik’ hence, the ui's can be written as a linear fUnction

in the variables Xil""’xik' However, under the alternative

hypothesis that the E(u) = z_= 0, the yi's may be any (generally

non-linear) function of both the k variables Xil""’xik that the

researcher hypothesized in model (2.1) and Of a set of m variables

zil""’zim.that the researcher mistakenly did not hypothesize as

being part Of model (2.1). Hence, the vector u_must be written as

a non-linear function both of the k hypothesized variables

x1,...,x and of the m erroneously excluded variables 21,...zm.

Because the m variables zi1,...,ziJm are erroneously excluded

from the hypothesized model (2.1), they cannot be identified. Hence,

the ui's must be approximated by a function in the variables

Xil"°"xik' This function in xil""’xik’ if it is analytic, can

itself be approximated by a power series expansion mode in Xil"'°’xik'

This series of two approximations yields the POSEX model

+... +

“i ; f(xil”"’xik) ; Bo * 811 x11 " 81k xik

o‘2(B11 X11 + + B1k x1192 + "

“h (811 x:11 + + 81k Xik)h ” Vi’i=1"°"n

where E(vi) = 0, which is a k variate extension of the bivariate

model posed in equation (2.5). Once again this model requires a non-

linear estimation process tO estimate the h+k parameters. TO solve
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this estimation problem Ramsey suggested using §i as an instrumental

. . j
variable for each term that is Of the form (811 x11 + ... +Blk Xik) ,

where j is greater than one. The variable yi was chosen since it

provided a linear combination Of xil""’xik based on the relation

between the dependent variable yi and the independent variables

xil""’xik'

When this instrument is used, the model becomes

u. é ”2
1 8o + 811 X11 + °'° + 81k Xik * “2 Y1 + °°° +

Ah .

ah yi + V1’ 1 = 1,...,n, (2.10)

where Vi’ i=1,...,n, are independently and identically distributed as

N(0, oz) under H Multiplying model (2.10) by A', one derives the0.

model

2* = Avg: (:2 AviCZ) + a3 A'ifi) + a4 A'i(4) ... ‘1’ (2.11)

where w_~ N(¢, OZIn-k) under H0 and h is set equal to 4. Hence,

Ramsey's model (2.9) has been Obtained by using a POSEX model

fOrmulation.

11.1.3 A Suggested Instrument
 

In using the method Of instrumental variables to simplify the

POSEX model so that the linear estimation techniques can be used, the

researcher must choose an instrument which is highly correlated with

the term that it is replacing. However, unless the correlation

between the two variables is exactly one, using the instrument

reduces the accuracy Of the approximation. Hence, since the vector;y

used.by Ramsey is

A A

X-= 8o + 81 BS1 + "' 1 Bk 5k = Xfi)
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if the vector of estimated parameters is not a multiple of the vector

of parameters {811, . . . ,Blk}', that occur in the expansion term

(Bugg-1 + ... + Blkfik)cj)’ then using the instrument yfij)‘will reduce

the accurate Of the POSEX model.

As an alternative to using the instrument i, one could choose

(e13:l + ... + ekxk), which is another linear combination Of

51""’§n’ which might, in general, be more highly correlated with

the term.(811 x1 + ... + 81k 5k). Since correlation is a measure of

how two groups Of variables vary with respect to one another, the

coefficients e1,...,ek should be chosen by examining the variance

within each of the vectors x1,...,xk. However, the variance within a

vector is not the only impOrtant characteristic to be taken into

consideration. The coefficients e1...ek must also reflect the scale

of each Of the vectors xl,...,xk. For example, if the sample

variances of each vector are identical, the vector that has the

smaller elements (the smallest mean) should be given more weight.

The rationale for this might not be immediately apparent, but an

example will clarify the point. Three observations are drawn from

two populations resulting in the samples (990, 1000, 1010) and

(10, 20, 30). The sample variance is 100 in both cases. HOwever,

the variance Of 100 results in a 2% variation (=T%%5-° 100) in the

sample points in the first sample and a 100% variation (=%%-° 100)

in the sample points in the second sample. Hence, since the

variation in a variable, not the variance Of a variable, is the

important characteristic, the coefficients e1...ek must be chosen

by a method that takes into account both the variance and the mean

Of each vector Of independent variables.
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One such technique is the method of principal components.2 TO

use this technique, one first forms the k x k matrix Of squares and

cross-productions (X) from the vectors x_,...,x , that is
1

£1

2 = (‘2 ) (Zfif"§k)

Ek

Second, one finds the eigenvalues and eigenvectors of the matrix 2.

Selecting the largest of these eigenvalues and denoting the eigenvector

el‘

associated with that eigenvalue as ( ) , one can define the vector

ek

p (the first principal component of the matrix X) as

p_= e1 x1 + ... + ek xk.

This vector p_is calculated in such a way that whichever vector

31”"’§k has the most variation (reflecting both.mean and variance)

has the largest coefficient. The one with the second most variation

has the second largest coefficient, etc.

Finally, this vector possesses the statistical property of

being the best linear predictor Of the vectors xl,...,xk. This is

easily shown by noting that no other normalized, linear combination

Of the variables x1,...,xk has a greater variance than does the

vector p, Therefore, no other normalized, linear combination of the

xfs contains as much of the variability that is in the vectors

xq,...,xk than does the vector p, Hence, no other combination can

 

zIt was first suggested that principa1 component analysis be

used in conjunction with Ramsey's RESET test by Professor Dudley

wallace. His suggestion is greatly appreciated.
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predict the vectors x1,...,x better than the vector p, This is not

to say, however, that the coefficients e1,...,ek have any greater

probability Of equalling the parameters Bll""’Blk (parameters from

the term.to be replaced) than did the estimates 81,...,Bk (the

estimates used to calculate Ramsey's instrument Q). It only says

that given no knowledge as to the vector {811,...,81k}' no vector of

weights {w1,...,wk}' = w;will produce a vector X thhat contains

more variation than does the vector X e_= p, Therefore, since the

unknown variability of the dependent variable is what is trying to

be captured, no other vector can do a better job than the vector p,

Hence, if a POSEX.model is used tO approximate an analytic

multivariate function, no single instrumental variable should, in

general, provide as good an approximation as that Obtained by using

the vector p, Hewever, since the vector p_is more difficult to

calculate than the vector i, any decision as to which should, in

general, be used becomes more difficult. A.sampling experiment will

be conducted later in this study to provide some insight into what-

ever trade-Offs might exist between the two instruments. It is,

however, evident that a POGEX model can.be formulated to approximate,

to varying degrees of accuracy, any analytic univariate or multi-

variate function. Hence, besides providing the foundation for the

two specification error tests which will be next presented in this

study, one hopes that this technique might be adapted to further

uses by other researchers.
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11.2 POSEX Test for a Non-zero Mean

If one hypothesizes the model

Y1
= 31 + 32 xi2 + ... + Bk Xik + ”1’ i=1,...,n, (2.12)

where it is supposed that the vector Of disturbance terms

2 = (u1,... ,un)' is distributed as N(¢, 021), the null hypothesis of

a zero mean vector is that the E(u) = 0 whereas the alternative

hypothesis is that the E(u) = _z_ #- 0. This forrm11ation is used in

three tests which have been developed to test for the null versus the

alternative hypothesis (recall the tests developed by Ramsey, Ramsey

6 Gilbert, and Ramsey E Schmidt referred to earlier). However, the

hypothesis space can be similarly divided by yet another criterion.

Rewriting model (2.12) in matrix notation, one Obtains

x = X a + 9., 2 ~ No, 021) (2.13)

where y and u are (n x 1) column vectors, _8_ is a (k x 1) column

vector, and X is an (n x k) matrix Of rank k. If X is independent

Of 1_1_, y is distributed as u with a mean of Xe; that is, y is

distributed as N(X_B_, 021). Given this formulation, the hypothesis

space can be divided exactly as before by basing the division on the

mean Of the vector y. The null hypothesis then would be that the

My) = XE. (referred to in this section as H0), instead of E(u_) = 0,

and the alternative hypothesis would be E(y) 7‘ X8 instead Of E(u_) 7‘ 0.

Using this formulation Of the hypothesis space is convenient

since the y's, unlike the 3's, are observable. This procedure

totally eliminates the need to select a predictor for the disturbance

terms. Using this formulation of the hypothesis space, a POSEX model

will be developed which will estimate the conditional mean of the

dependent variables yl, . - - .Yn-
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11.2.1 Fomlatinithe POSEX Model and Testing Procedure

Under the null hypothesis, the ['5 are generated by model (2.13) ,

whereas under the alternative hypothesis, the y's are generated

either by some other function (non-linear) Of the hypothesized

variables 51, . . . ,x or by some function (maybe linear) of the

hypothesized variables x1“ . . ,xk and of the erroneously excluded

variables _z_1,. .. ’Em' Hence, under H0, yis a simple linear function

Of 51,...,x while under H1, y is some unknown function of 391,... ,xk

and 51,. . . ’Em' Under H1, depending on the number of omitted

variables m (1 0) and on their relation tO 51,” . ,xk (the necessary

relation will be investigated later in this section), the vector y_

can be approximated by the variables 51,. . . ,x_k. Also, under H1, the

unknown function can be approximated by formulating a POSEX model in

the variables 331,. . . ,x . Using the POSEX technique, which was

previously described and illustrated in model (2.5) , one formulates

the model

X: f(51"Wl‘k) 1 ‘1‘ B11 1 812 ’52 + +

(2)

81k X—k + 0‘2 3
+ 013 3(3) + 014 3(4) + E (2.14)

where E(u_) = 0, and where a four-term expansion is used (same as in

Ramsey's RESET model). Because two instruments have been proposed

as the vector q, i (the OLS predictor Of y_) by Ramsey and p_ (the

first principal component of the matrix X) by Wallace, both instruments

in turn will be used. Later on in this study, they will be canpared

to determine which provides the better instrument.

Model (2.14) must now be examined under H0 so that a test for

discriminating between H0 and H1 can be formlated. Under Ho that

model (2.13) generated and dependent variable y, model (2.14) becomes
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(2) (3) (4)

E(X)=81+32_)£2+...-I'Bk)_(k+O-g_+0-9-+O-9L

xg + Q - 9

Hence, to test the null hypothesis that (2 .13) generated the vector

y, one only need test the hypothesis that 012 = = 0. If theo3 = 0.4

parameters (12, as and (14 are found to be jointly equal to zero, H0

is not rejected, whereas if oz, 013 and o4 are found to be jointly

different from zero, H0 is rejected. This hypothesis is easily

tested by using an F-test for the included variables 3(2), 3(3), and

3(4) [Goldberger, 1964, pp. 174-175].

The procedure is to estimate model (2.13) and model (2.14) by

the method Of least squares. Denoting £1 and £12 as the OLS

predictors Of the vector y_ from model (2.13) and model (2.14)

respectively and u as the OLS residuals from model (2.14), one

calculates the ratio

(1222 Xlxl)/(n-k-3).

'u

This statistic is distributed as F with 3 and n-k-3 degrees Of freedom

 

under H0 because the ratio can be rewritten in terms of two independent

quadratics in the normally distributed disturbance term 2.

In examining the F statistic under the alternative hypothesis

an interesting Observation can be made. Denoting wi as the portion

Of the 'true' model that remains unexplained by the hypothesized

model, the quadratic ratio becomes

(2' + 31') Q1 (2+ E)

(21 + 11') Q2 (3 + 11)

where u is the disturbance term and Q1 and Q2 are the appropriate

 

quadrations. Since this is a ratio of two non-central xz's, this
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ratio can be greater than or less than one. Therefore, a two-tailed

F-test should be used.

A well defined test statistic has been developed using this

formulation. Hence, no matter what the sample size, the distribution

Of the statistic is known. Also, unlike Ramsey's and Ramsey G

Schmidt's test procedures,with this formulation, the use of predictors

of the disturbance term 3 and the calculation Of the matrix M or A'

are avoided. Therefore, if a researcher uses the new formulation of

setting up a POSEX model to explain the vector y_, he avoids both of

the difficulties associated with Ramsey's and Ramsey 8; Schmidt's

testing procedures. Finally, it has been pointed out that the

apprOpriate test is a two tailed F test and not a one tailed test

as was mistakenly used by the previous authors .

11.2.2 Comparison With Previous Testing Procedures
 

It is interesting to note that formulating a POSEX model to

improve the estimate Of the conditional mean of y can, under certain

conditions, be shown equivalent to Ramsey's and Ramsey G Schmidt's

testing procedures which determine whether a disturbance term has a

non-zero mean. Of course, as has previously been shown, the

hypothesis space can be equivalently divided by setting up the null

and alternative hypotheses in terms of the vector Of disturbance

terms 3 or vector of dependent variables y.

Assume that the hypothesized model is

x=Bl+82£2+ +Bkrk+2=xé+a

where u is assumed to be distributed N(0, 021) under H0. Setting up

a POSEX model to estimate the conditional mean of y, and using X
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(the OLS predictor of y Obtained after the hypothesized model is estimated

as the instrument , one Obtains

“(2) .(3) ~(4)

X==B111312352“"B11<’—‘1<“°'2X ” “3X +"'4Y- *1”:

.(2) «(3) AC4)

X§_+o2X_ +0132: +0141 +11, (2.15)

where w is assumed to be distributed NM, 021) under H0.

If model (2.15) is premultiplied by the matrix A' (recall that

the BLUS residual vector 3* = A'y, where A'X = 0, A'A = In-k and

AA' = M = (I-X(X'X)_X')),the model becomes

' * , '.(2) '.(3) '«(4) '
Ay=u =A X§+Ay a2+Ay a3+Ay_ a4+Aw

~(2) ~(3) ~(4)

X 0.2 + X as + X (14 + A'w (2.16)

2
where A'w is distributed as N06, 0. . In-k) under H0 and where

,«(31 ~(J)
A y — y . Model (2.16) is the model in which Ramsey tested

dz = a3 = o4 = 0 and hence Obtained his RESET test for the disturbance

term 1_1_'s having a non-zero mean.

Likewise, if model (2.15) is premultiplied by the matrix M

(recall that the OLS residual vector 1; = My = (1-X(X'X)—X')y_), the

model becomes

“X = 13.: MXE. 4" Ming? + Micsg'g + “imam + M1”.

= Miczg‘z " Miags + Mi“; Mi ' (2.17)

where W. is distributed Nw, 02M) under H0. Model (2.17) is Ramsey

G Schmidt's model whereby they were able to test for the disturbance

term u's having a non-zero mean by testing if dz = o3 = o4 = 0.

Hence, since Ramsey's and Ramsey G Schmidt's models can be

Obtained from the POSEX model by prermiltiplying the POSEX model by

either the matrix A' or the matrix M, respectively, all three models

are mthenmtically equivalent. Furthermore, since all three tests
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use an F-test to determine if the parameters o2, o3 and o4 are

different from zero, all three tests are likewise mathematically

equivalent. Therefore, since neither of the previously reviewed

tests Offer any advantage over formulating a POSEX model and yet

both offer the disadvantage of compelling the researcher to calculate

either the matrix A' or the matrix M, there is no apparent reason to

use either Ramsey's or Ramsey G Schmidt's testing procedure.

11.2.3 Examination of the New Testing Procedure Under Hl

As has been mentioned, two basic errors can cause the vector of

disturbance terms u_to have a non-zero mean; likewise, the same two

basic errors can cause the vector of dependent variables y_to have a

conditional mean other than Xe, The first error occurs when the

wrong functional form of the regressors or regressand is used in

the hypothesized model. The second error occurs when a number of

relevant independent variables are omitted in the hypothesized model.

The new testing procedure will be examined under both these errors.

Incorrect Functional Form of Either the Regressors or Regressand
 

If a researcher hypothesizes model (2.12) whereas the dependent

variable y'is actually generated by the model

y= f(xl,...,x_k) + ‘L (2.18)

where v.is distributed as N(D, 021) and f(-) is some function other

than the one hypothesized in model (2.12), a specification error has

been committed. NOte that although this specification error is

caused by incorrectly hypothesizing the functional form of the

regressors, a similar error can be caused by incorrectly hypothesizing

the functional form of the regressand (see section 1.2). Hence, only

the former error will be examined in this study.
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Therefore, when a researcher hypothesizes model (2.12) while the

dependent variable actually has been generated by model (2.18), the

specification error which has been committed is usually that of

incorrectly specifying the functional form of either the regressors

or regressand. If the researcher suspects this error, he may want to

examine whether a POSEX model would better explain the conditional

mean of y_than would model (2.12). If the POSEX model does better

explain the conditional mean of y, the researcher knows that model

(2.12) was misspecified. The POSEX model that the researcher would

fOrmulate is

(2) (3) (4)

811+812§2+ °'°181k’—‘k+°'23 ”'39- +<"43 *3

X8 + Qg + E (2.19)

X.

where E was assumed to be distributed N(0, 021) and where q_is used

to represent either the instrument y_(OLS predictor of y;obtained

after estimation of model (2.12)) or the instrument p_(the first

principal component of the matrix X). If the estimate of g_is

statistically different from zero, the null hypothesis that model

(2.12) generated the vector ijill be correctly rejected.

The probability of this test's correctly rejecting Ho depends

largely on the function f(-) and on the instrument 9 chosen. First,

as previously stated, f(o) must be analytic, since a non-analytic

function cannot be expressed as a power series expansion. Second,

since the POSEX model prOposed involves a four term expansion, one

must be able to approximate f(o) using only a four term expansion in

3
the variables §1""’—k' If f(-) can only be approximated using

 

3Although four terms has been suggested in this study, any

number of tenms may be used. There is, however, a trade Off since

adding more terms changes the number of degrees of freedom involved

in the proposed test.
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more than a four term expansion in x1,...,xk, the POSEX model which

is given in the equation (2.19) will provide a poor approximation;

hence the testing procedure suggested will prove unreliable. Hewever,

since most of the standard non-linear fUnctions are analytic, and

since a good approximation of most standard analytic functions can

be obtained using as few as two or three expansion terms (for example,

the exponential, logorithmic, and sinosoidal functions are all

approximated in three or fewer expansion terms [Thomas, 1966]), these

conditions should generally cause no difficulty.

Finally, the probability of correctly rejecting H0 will also

vary in accordance with the correlation between the instrument 3 and

the expansion terms which it replaces. That is, since g_is an

instrument (representing either y, the OLS predictor of y_obtained

from the hypothesized model, or p, the first principal component of

the matrix X), this statement simply means that the test's power

varies with the quality of the instrument used.

In summary, if a model is misspecified because the functional

fOrm of x1,...,x is incorrectly hypothesized, the power of the

suggested test depends on two factors. The first factor, the

functional form of f(') which generates the vector y, does not

generally cause difficulties. The reason for this is that the

fUnctional forms of f(o) generally thought probable are both

analytic and easily approximated by using a power series expansion

(two examples are the exponential function and the logorithmic

fUnction). The other factor responsible for causing a loss in the

test's power is the instrument chosen to replace the expansion terms.

It is felt by this investigator that the first principal component p_
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will, however, in general, provide a reliable instrument for the

expansion terms. It must be recalled, nevertheless, that the OLS

predictor of y, i, has been successfully used as an instrument for

the expansion terms by Ramsey. This instrument has the advantage

of being more easily Obtained than p, This investigator feels,

however, that y_will, in general, be less highly correlated with

the expansion terms than will p, and hence be less reliable. Any

final conclusion as to which of the two instruments is the more

reliable must of course be postponed until they are actual compared

in a sampling experiment.

Omitted‘Variables
 

Assume that once again a researcher hypothesizes model (2.12)

y_= 81 + 82 x2 + ... + Bk 5k + u = X B + E;

where it is assumed that u1~ N(0, 021), whereas the model that

actually generated the dependent variable y_is

X=X§+3151+°°'+.Z.m5m+K=XB+Z§_+.YJ (2.20)

where v_~ N(0, 021). Model (2.12) is misspecified because m

independent variables, El"°°’£m’ have been omitted. If the

researcher suspects that he has inadvertently omitted some variables,

he can formulate a POSEX model to explain the conditional mean of y,

If, in a statistical sense, the POSEX.model explains the conditional

mean of y better than does model (2.12), the indication is that the

model (2.12) is misspecified.

In the POSEX model which the researcher would use to explain

the condition.mean of y, the variables xl,...,x would be used in

the expansion. It must be remembered that the researcher suspects
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that he may have erroneously omitted some variables; however, he does

not know the identity of the variables which he may have omitted.

The POSEX model thus formulated would be

_ 2 3

X-' 811 * B12 52 * "° + 81k 5k + 0‘2 SF ) + “3 3‘ ) 1 0'4 9- '1

=X§+Qa+u can

where w_is assumed to distributed N(0, 021) and where q_represents

either the instrument y_or the instrument p, 1f the estimates of g_

are found to be statistically different from zero, the model

hypothesized as generating the vector y_(model (2.12)) is found to

be misspecified.

Needless to say, the probability of this test's correctly

rejecting HO depends on the relationship between the variables

erroneously omitted and the instruments used in place of the expansion

terms. Since the idea that the power of the test depends on the

instrument chosen has already been discussed, further elaboration is

not needed here. Rather, this section will focus on how the test's

power is affected by the characteristics of the variables omitted.

In order that the analysis which follows will not be unnecessarily

complicated, it will be assumed that only one variable is omitted

erroneously from the hypothesized model (2.12).. Assume that the

model which actually generated the vector of dependent variables y_is

X=81+82£2+'”+8k)—(k+65+y-

= x §_+ 2_6 + v_ (2.22)

where v_~ N(¢, 021), and z_is a non-stochastic vector.

Since model (2.22) and model (2.21), used to test whether the

null hypothesis is misspecified, differ only in their second terms,
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the second model's ability to discriminate between H0 (g_= 0) and

H1 (g_# 0) is directly related to the proportion of the vector 2_

that lies in the space spanned by the matrix Q. Although this

cursory Observation is somewhat illuminating, a more indepth analysis

is required.

Since the instrument q_(either p_or i) is a function of

x1,...,xk, the omitted variable can be Characterized as one of three

types, depending on the omitted variable's relation to the variables

x1,...,x . The first type Of omitted variable is highly correlated

with the variables xl,...,xk, the next type is uncorrelated with them,

and the final type is moderately correlated with them. I

To simplify the analysis of each type of omitted variable, all

of the variables xl,...,xk and z_will be orthogonalized. This linear

transformation yields the k + l vectors El""’§k’ §k+l corresponding

respectively to the vectors £1”°"§k’ E: Thus, the vector §k+1

contains only that part of the vector z_which is not already

explained by the variables §l""’§k' The three cases of z_to be

analyzed, having either high, low, or medium correlation with

x1,...,x will correspond directly to the vector §k+l containing

either little, a great deal, or moderate amounts of additional

information.

The reason for this inverse relation between the amount of

information contained in the vector §k+1 and the correlation between

z_and x1,...,xk is that the latter measures the amount of linear

relation between z_and El""’§k while the former contains the amount

of information remaining after any linear relation has been removed.

For example, when the vector z_is highly correlated with xl,...,xk
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(that is, a large portion Of the information embodied in z.is also

contained in xl,...,xk), and the linear information is removed

through orthogonalization, the vector §k+1 will contain very little

information. Hence, high correlation between 2 and x1,...,xk will

imply very little additional information in the vector §k+1'

Finally, before each type of omitted variable is analyzed in

turn, it is important to stress that only the linear relation between

E and x1,...,x has been eliminated. Hence, there is no implication

that vector §k+l 1s 1ndependent of the vectors 31""’§k’ but only

that §k+1 1$ uncorrelated w1th the vectors §1""’§k'

Omitted Variable Highly Correlated with the Matrix X

In the case Of this type of omitted variable, if g were correctly

added to the hypothesized model (2.12), the model would be highly

multicolinear. When the variable 2, however, is erroneously omitted,

efficiency will be lost, but the loss will be small. Unfortunately,

though, there is always a cost involved when a specification error is

made. In this case, the estimates of the parameters 81,...,Bk, in

the hypothesized.model (2.12) will be biased. As previously mentioned,

the amount of the bias associated with each estimate depends on the

correlation between the variable associated with that parameters and

the variable 2.

If a POSEX.mode1 is used to determine whether model (2.12) is

misspecified when the omitted variable z_is highly correlated with

the variables xl,...,xk, the probability that the POGEX.model will

better explain the conditional mean of y_is very small. The reason

for this is that so little information is left in the vector §k+1
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that even if it were explained by the POSEX model, it still may not

provide a statistical improvement over the hypothesized model.

Finally, even though the testing technique being suggested does

not offer a very high probability of correctly rejecting H0 when the

omitted variable is highly correlated with the included variables

x1,...,xk, the cost of such an error is low. .A small loss in

efficiency will occur and biased estimates of 81,...,Bk will be

obtained. However, even if the omitted variable z_had been correctly

included, the model would have been.multicollinear; hence, the matrix

X'X would be ill-conditioned, so that the estimates of 81,...,Bk and

02 (the model's variance) have relatively large standard errors and

the estimates are very sensitive to small perterbations in the values

of the regressors. Therefore, the incorrect omission Of the variable

z_is relatively inconsequential even though the omission cannot be

detected by the POSEX test.

Omitted variable Uncorrelated with the Matrix X

In the case of this type Of omitted variable, the vector z_is

virtually identical to the vector §k+1' When the variable 2, which

is uncorrelated with x1” . . ,xk, is erroneously omitted, two

difficulties arise. First, since z_is uncorrelated with 51""’§k’

only the constant term B1 will be biased. The amount of the bias

will equal E'= .2 zi/n; hence, the expected value of the estimator

81 will be Hal):1 81 + 21 Also, since none Of the variation embodied

in z_is used to explain the conditional mean of y, the hypothesized

model (2.12) will be inefficient.

If a POSEX model were able to explain the conditional mean of

y;better than the hypothesized.model (2.12), one of two things could
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occur. First, if the vector z_is independent of as well as

uncorrelated with the vectors xl,...,xk, the POSEX model will have

virtually no power. The reason for this is that since z_is

independent of x_,...,xk, and as g'is a linear combination of

M} .,xk, the vector 2 is independent of the vector q_as well as of

3.2)9F? anddgF4) Hence, in the POSEX model (2. 21), since the vector

z_is independent of the vectors El” . "—k’ qF2)qF3)q(4)the POSEX

model adds nothing to the hypothesized model.

In the second case, however, the POSEX model will improve upon

the hypothesized model if z_is not independent of xl,...,xk.

Generally, however, in economic data, if the variable z_is

uncorrelated with the variables 321,. . . ’E-k’ it is also independent

of 51,...,x . Hence, the analysis of this case will be postponed

until the next section.

Therefore, when z_is uncorrelated with the variables x1,...,xk,

the POSEX.mode1 again proves to be of little use in detecting the

error. Hewever, once again, some consolation can be taken in the

fact that when an uncorrelated variable is omitted, only the constant

term and the estimate of the variance will be biased.

Omitted Variable Somewhat Correlated With the Matrix X

In the last case, which is the most common, the vector z_is

neither uncorrelated nor highly correlated with the vectors xl,...,xk.

Hence, in this case, because z is correlated with x1,.. .,xk,

the estimates of 81,...,Bk are biased, however, since z_is not highly

correlated with xl,...,xk, the estimators of 81,...,Bk are not

efficient. Therefore, this type of omitted variable can cause all of
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the estimators in the hypothesized model, 81,...,8k, 82 (model's

variance) to be biased.

This most troublesome type of omitted variable, however, is the

case where a POSEX.model might better (in a statistical sense)

estimate the conditional mean of y1 than did the hypothesized model.

In this case, unlike that in which z_was highly correlated with

x1,...,xk, the vector §k+1 still contains some information; hence, a

POSEX model can.improve on the hypothesized model by estimating the

variation in the vector §k+l' Also, unlike the case in which z_was

uncorrelated with x1, . . ‘. ,x (and hence maybe independent), 2k+1 is

not necessarily independent of the vectors E1’°°"X either squared,

cubed, or quadrupled. Therefore, the ability of the POSEX model

(2.21) to provide a better estimate of the conditional mean of y_

than did the hypothesized model (2.12) depends on how great a

portion of z_and hence §k+1 lies in the space spanned by gfié)gf§)and

3(4)
First, since g_is a linear combination of the vectors x1,...,xk;

then qFE)qF§)and'gF4Are functions of the vectors x1,...,xk squared,

cubed, and quadrupled, respectively.

In addition, since only the linear relation between the vectors

51,...,x and the vector z_has been removed from the vector 3_

(resulting in the vector §k+1)’ it is not unreasonable to expect that

3(3)q(3:)and 3(42night be able to explain still more of the variation

given in.the vector §k+1‘ The reason for this is the point that has

been stressed over and over again; since only the linear relation

between the vector §_and the vectors 51""’§k has already been

explained by the hypothesized model (resulting in the vector §k+l)’

there is no reason to assume that a relation between ak+1(or z) and
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th (2) (2) (3) (3) (4) (4 t
e vectors x1 ,...,xk , or x1 ,...,xk , or 51 ""’§k oes no

exist. If such a relation does exist, given that gF§)qF?)and qF4gre

combinations Of these vectors, the variation in the vector §k+1

might be better explained. If the POSEX model provides a better

estimate of the conditional mean Of y_because it uses part of the

variation in the vector §k+1’ then the estimate of the vector of

parameters g_will be statistically different from zero. Hence,

model (2.12) will be found to be misspecified because the POSEX

model better explained the conditional mean of y.

Even though it at first appeared as if the third type of omitted

variable would cause the most difficulties, it has been demonstrated

that a POSEX model can be used more effectively in this case than in

the other cases. Of course, the probability Of correctly rejecting

H0 depends heavily on that portion of z_which is spanned by the

vectors 51""’§k squared, cubed, and quadrupled.

It has been shown that the probability of correctly rejecting

H0, when a variable 5 has been omitted by using an F-test and a POSEX

model most certainly depends on the relationship between the variables

51’°'°’X and variable E: It appears as if the power of the

procedure is the highest when z_is moderately correlated with the

hypothesized variables xl,...,xk. If z_is uncorrelated with the

hypothesized variables, z_is most probably independent Of them and

hence independent of any linear combination of them. If z_is too

highly correlated with x1,...,xk, then little improvement in

explaining the conditional mean of y_can be ascertained by using

a POSEX.model.
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11.2.4 Summary
 

In this section, a new testing procedure fOr determining whether

a model has been.misspecified has been obtained. It is shown to be

equivalent to two current testing procedures, but is also shown to

Offer the advantage of being more easily fOrmulated and carried out.

When the new test was examined under both common causes of the

specification error, it was suggested that the test would be more

powerful when an instrument highly correlated with the non-linear

term is used. In addition, it was discovered that when the error is

caused by incorrectly formulating the functional form of either the

regressors or regressand, the power of the test increases if the

correct function is analytic and can be approximated easily. Also,

finally, when the error is caused by omitting a variable from the

hypothesized model, the power is related to the correlation between

the omitted variable and the hypothesized variables, the highest

power being obtained.when the correlation was moderate.

11.3 POSEX Test to Determine if the Disturbance Terms Are

Heteroskedastic

 

 

Given the hypothesized model

X=81+82§2+"'+Bk§k+3=xs'+9— (2.23)

where all the vectors are n x l and where u_is assumed to be

distributed N(¢, 021), a number of tests exist that will compare the

null hypothesis (H0) of homoskedasticity with the alternative

hypothesis 0H2) Of heteroskedasticity. .All of these tests, however,

require a great deal of a_p£igri_information regarding the variable,

presumably x1,...,xk, that is related to the heteroskedastic

disturbances. Since, however, a POSEX model can approximate any
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analytic function, it is possible to use a general POSEX model to

estimate the variance of each of the n disturbance terms. .A test can

be developed which will determine whether the POSEX model is better

able to explain the conditional variance of the vector of disturbance

terms u.

Under the null hypothesis of homoskedasticity, no group of

variables (or model) will be able to explain the constant variance of

the disturbance terms. Hence, if a model is able to explain the

variances of the disturbance terms, the variances are not homoskedastic

and the null hypothesis should thus be rejected.

Finally, since a model to explain the variances is used as the

basis of the proposed test, this test will be a constructive test.

That is, in the case in which the null hypothesis of homoskedasticity

in model (2.23) is rejected, a procedure will be offered which will

enable the researcher to transform model (2.23) into a homoskedastic

model.

Before the model and test are developed, however, an estimator

of the unobserved variance of u1,...,un must be selected. The POSEX

model will then be developed. Next, it will be shown how the POSEX

model can be used to reestimate the parameters in the hypothesized

model. .Also, it will be demonstrated how a priori information can

be included in the POSEX model. Finally, a number of different ways

of estimating the POSEX.model will be suggested. Included with each

of these suggestions will be a test to determine if the disturbance

terms are either homoskedastic or heteroskedastic.
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11.3.1 Estimators of the Variance of ui
 

2
unfortunately, the variance of each disturbance term, 01""’On’

is not observable. Hence, a number of estimators of 01""’G§ have

been obtained. Denoting 81 as the i'th least squares residual

obtained from model (2.23), the first estimate of 01 used (by Park

and by Glejser, by Goldfeld & Quant, and by Ramsey 8 Gilbert) was

812. Unfortunately, under the null hypothesis of homoskedasticity,

E(u_uf) 021, the least squares residuals are heteroskedastic,

E(ué') = 02M = 02(I-X(X'X)_X'). Hence, since the diagonal terms

of Ecu Rf) are E(uiz), one finds that the expected value of the n

estimates, £12,...,&n2 are 02m11,...,ozmhn, where m.ii is the i'th

diagonal of the matrix M. Therefore, ui2 is a biased estimate of

2
Ci even under H0.

Uhder the alternative hypothesis that model (2.27) is

2
heteroskedastic, however, the estimates fii become weighted averages

of the true variances. Since the diagonal elements of the matrix

fig} are u12,...,uk2, this weighting scheme is most clearly

demonstrated by taking the expected value of the matrix uuf under

the alternative hypothesis that the

-!

oi fl

my) = =v.

L” .°’2‘  
One finds that

DIAG [Ecfijqj DIAG [5mm]

DIAG [ME(uuf)M]

DIAG [MVM]



DIAG

A

DIAG

 
DIAG

  
z . m' G. .002 m ' m. o

. mn1 1l 1 . n1 1n 01

L1 1 .4

Since M is symmetric (mij = mji), the j'th diagonal element becomes

n

2m?ji oi. Hence, if one defines M(2)as being the squared elements

1 l

of the matrix M (i.e., {mij2})’ then

DIAG Eng) = Mm DIAG [V] = Mm {oinuofiu (2.24)

Therefore, since under H2, each estimate £12,...,£n2 is a

weighted sum of oi,...,o§; £12,...,&n2 are biased estimates

of oi,...,ofi.

. “ ‘ 2 . . 2 2
Hence, Since u1 ,...,un are b1ased est1mates of Ul”"’0n under

both H0 and H2, it is perplexing to account for the findings of

Goldfeld G Quant (using their non-parametric test) and Ramsey G

Gilbert (using the BAMSET procedure with OLS residuals). They fOund,

by using sampling procedures, that the probability of type I error

corresponded to what was theoretically expected and that the

probability of type 11 error was modest. Of course, the results

could have been due to the specific models used and hence to the

structure of the matrix X- HOwever, this investigator does not find

this explanation at all adequate. Rather a theorem based on the
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matrix M, will be stated and proven (in Appendix A), and another

explanation offered in place of the one just mentioned. (In addition,

three interesting corollaries to this theorem are also stated and

proven in.Appendix.A but will not be used in this study.)

Theorem: Regardless of how the vectors x1,...,xk are obtained

(stochastic or non-stoChastic) the diagonal elements of the matrix

M will have a maximum squared variation of §%%E%%-< §-, where squared

variation of t1,...,tn is defined as £(ti - t)z/n-l.

This theorem.provides a vehicle for understanding the findings

of Goldfeld 8 Quant and of Ramsey 8 Gilbert. They both Observed that

under H0, when OLS estimates Of CI""’O§ were used to test Ho versus

Hz, the probability of type I error corresponded to the nominal alpha

level at which the test was used. This finding implied that the OLS

estimates were homoskedastic under H0. It has, however, always been

assumed that the matrix M has unequal diagonal elements since

E(ui) = 02mii’ i=1,...,n. Hence the implication that the estimates

£12,...,fin2 were homoskedastic seemed difficult to accept; however,

the theorem.proven in this study provides a plausible explanation

for this finding.

It indicates that regardless of how the variables are chosen,

the maximum squared variation of the diagonal elements ofiM is never

greater than —§}-. TherefOre as n + w the squared variation-+ zero

regardless of the matrix X. Further, even with small sample sizes,

the variation is minimal if the number of parameters is small. Hence,

although OLS residuals may not be homoskedastic when the disturbance

terms are homoskedastic, they may appear to be, especially if n is

large or k is small.
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.As previously mentioned, their second finding was that under Hz,

the probability of type 11 error was reasonably small. This implied

that the OLS estimates are heteroskedastic even though each estimator

2
is a weighted sum of each true variance, 01""’0n' The type 11

error which was found is consistent with the theorem and corolaries

proven in this study. Even though each of the terms, uiz,i=l,...,n,

is a weighted sum of oi,...,o§, the weights are such that the

greatest weight given ui is that associated with oi. This is evident

if one recalls that

 

‘2 _ 2 2 2 2 2 2
E(ui) - mil 01 + + mii oi + + min on. (2.25)

Since, however, mil + ... + min = mii :_1, because M'is idempotent,

the portion of the weight given to each variance is

2 2 2

Iii}. “Lil min (2 26)m.. , ... , m.. , ... , m.. . .

11 11 11

Since this series consists only of positive numbers which sum to one,

and since the mean Of the diagonal elements of Ehe matrix M is Big-,

the series in equation (2.26) is dominated by fi%%-= mii' Therefore,

11

the weighting scheme given in equation (2.25) favors the term 01'

Hence, when the variances 01""’°fi are unequal (heteroskedastic),

the estimates fii,...,&§ are also unequal. Therefore, the finding

of Goldfeld G Quant and of Ramsey 8 Gilbert that the OLS estimates

are heteroskedastic when 012,...,ofi are unequal is correct. As a

result, even though £12,...,£n2 are biased estimators for 01"'°’°n2

under both H0 and H2; under H0 they are generally homoskedastic while

under HZ they are generally heteroskedastic.
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One final difficulty regarding the OLS estimators of oi,...,ofi

still exists. Since u1,...,un are not mutually independent,

u12,...,un2 are not mutually independent. This lack of independence,

it will be recalled, caused certain difficulties in Glejser's and

Park's testing procedures.

In large part to solve this problem of independence, Ramsey

[1969] suggested another estimator. Since the BLUS residuals,

ui,...,ufi_k are mutually independent, he suggested that the n—k

mutuall independent estimates u*2,...,u* 2 be used to test model
y l n-k

(2.23).

These estimates also have the desirable property of being

unbiased under HO. When it is recalled that BI = A'u, where A' is

chosen such that A'X = 0, A'A = In—k’ AA' =IM, and that the

diagonal elements of ufuf' are ui2,...,ufiz, it follows that

DIAG [E(A'u_u_' A)]DIAG [E(ufuf')

DIAG (A' 021A)

DIAG (o2 A'A)

2
DIAG (o In-k)

II

A

Q

N
N

V

G n-k

However, under H2, u1*2,...,un*2 are biased estimators of

01"°"°§‘ In fact, given that

2
01 fl

E(uu') = '. =‘V,



it is found that

DIAG [E(u*u*' )1
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= DIAG [E(A'u u'A)]

    

   

 

  

= DIAG [A'VA],

__ .1 .2 ¢_. ._ .1

all 0000000 aln 01 all. 0 Oa1,n-k

= DIAG Z I ' I Z
. . 2 . .

hEl,n-k 'an-k,n LE_ on] kiln 'an n-kJ

.. 2 _] _. ._

6'11 O1 aln On a11°'°a1 n-k

= DIAG 3 I °

a 02 a o2 a a
__n-k l 1' n-k n n4 __1n n n-k]

’ 2 2 2 2 “‘
all 01 + ...... + a1n on (2)

= DIAG I = (A )' DIAG[V]

52 02 + + éZ O2

n-k l l "' n-k n nJ

if.A(2) is defined as {aij2}‘

Hence, under Hz, the squared BLUS residuals are a weighted sum

of the true unobserved variances o

A'A = In_k.

weights is dominant.

2 2
1,...,On.

. . . . * 2 .

which are assoc1ated W1th each squared re51dua1 ui , sum to one Since

estimates any one of the variances oi,...,oi.

it is conceivable for the squared BLUS residuals to be homoskedastic.

. 2
The weights ai1 ,. a

2

"’ in ’

HOwever, unlike the squared OLS residuals, none of these

Hence, no squared BLUS residual actually

Therefore, under H2,

Ramsey G Gilbert's observation that the BAMSET procedure used

with OLS residuals was more powerful against H2 than was the same

procedure using BLUS residuals can now be explained. Since the

squared BLUS residuals, under H2, are each an apparently equally

weighted sum of the true variances 01"'

heteroskedasticity is masked.

2
01,000,0n

2
.,on, the extent of the

Consequently, OLS estimates of

are, under H2, more heteroskedastic than are the BLUS



89

estimates of 01""’O§' Therefore, the BAMSET procedure can more

easily detect heteroskedasticity when OLS estimates are used.

Although the OLS estimates of oi,...,ofi are less biased, under

H2, than are the BLUS estimates, they are still biased. To offer a

solution for this problem, Rao [1970] and Chew [1970] independently

develOped Minimum Norm Quadratic Estimators (MINQUE). Given that

Mfiz) is defined as {mij2}’ both Rao and Chew suggested that when M(2)

is non-singular, the MINQUE estimator 32 can be defined. The vector

of estimatorsé2 is defined as 0W2)—'DIAG(§u'), where E;is the vector

of OLS residuals. These estimators are unbiased under H0 and Hz.

This will first be shown under H2. As stated before (2.24), under

H2,

E(uu') = V = : '. and E[DIAG(1A_1u')] = MZ DIAG(u_ 3').

  

Hence, one obtains

E(Qz) = (uh-momma (1')]

= (NZ)— (MZ) E(DIAG (g on

02

~ 1

= D1AG(E(u u')) = (z )

'2
O

n

The estimator E? can similarly be shown to be unbiased under H0 by

7
4

just replacing oi,...,o§ by the constant variance 0 .

.Although this procedure offers unbiased estimates of oi,...,oi

under H0 and H2, it does have three drawbacks. First, the n

2
n are not independent. This is obvious since nestimates 3%,...,o

estimates are Obtained by using a linear transformation of the OLS

residuals which have a rank of only (n-k). Second, though the
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MINQU estimators are unbiased under HO and H2, they also may be nega-

tive. To solve this problem, Rao 8 Subrahaniam [1971] have suggested

that when &i is negative, either a small number or a different

estimate of of be used in place of Si. Although this is a solution

to the problem of negative estimates, the resulting estimates are now

neither unbiased (under H0 or Hz) nor MINQU. Hence, this investigator

feels that the cost of correcting the negative MINQU estimates is

greater than the cost of leaving the estimates negative.

The third problem with this procedure is that Mn) is not always

non-singular. Mallela [1972] has, however, found a necessary and

sufficient condition for the matrix MCZ) to be non-singular.

The last set of estimates of the variances OI" "’Orzr are

obtained from studentized residuals. Define the i'th studentized

residual is ui = xii/fin; , where ui is the i'th OLS residual

Obtained after estimation of model (2.23) and where mii(#0) is again

the i'th diagonal element of the matrix M. The studentized estimator

of the variance of the i'th disturbance term of, a: is defined as

.2 . 2
oi = ui ; this estimate is unbiased under HO. When mi is defined as

the i'th column of the matrix M and it is recalled that mimi = mii’

because M is idempotent, one obtains

-2 _ .2
E(oi) - E(ui)

= Hui/”'11)

_ 1 "

‘ 1?.“ £011)
11

= —-1—- E(m'. u u' m.)
111.. -1 —— —1

11

= —l— m'. o I m

111.. —l l

11

_ 2 1 . _ 2 "'11 2

— 0 I'm— —1 Ill-i - 0 n7:- 0
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.Also, since the i'th studentized estimate can be written in quadratic

fOrm.in the normally distributed disturbance terms 2,

N

B
I
C
>

-
N

_ 1 ' 1
— U ml m.

—- —1 —1 m.. a“; Q-
11 11

u
1—

6% is distributed as x2 with one (=trace Qi) degree of freedom.

HOwever, there are two problems with the studentized estimates

of oi,...,o§. First, the n estimates oi,...,ofi are not distributed

independently. Since 6% can be expressed as a quadratic form in the

normally distributed disturbance terms, 82 is independently

distributed of o§(ifj) if and only if the products of the two

2
quadratics are identically zero. Hence, if Qin # 0, oi is not

independently distributed of o?’

= _L . .1. 1

= ——-le——-m! m. m. m
l

Inii ”31 -e1 —1 —j -J

mo.

= fi‘:%%"ga 93 f 0'
ii jj 3

Therefore, a; and o; (i#j) are not independently distributed of one

another.

Second, just as with the OLS estimator, the studentized

estimates are biased under H2. However, also, just as with the OLS

estimates, the weighting scheme is such that the expected value of

the i'th studentized estimate is

2 2 2
m. m.. m.

Bo?) =—1-1— o§+ ”35—1 +£1.11 .3. (2.27)

1 mii ii ii

The weights are:

2 2 2

"3.1.1 “in {“12
m. a ... ,m , ... ,m

i1 ii ii
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Since, as before, the sum of these weights, which are all positive,

 is one, and the i'th weight m1? = mii has an expected value of EfiE-,

11

the i'th weight dominates the series. Thus, if the variances

oi,...,o: are unequal (heteroskedastic), the estimates oi,...,o§

will be unequal, though not unbiased.

Four estimates of the variances of the n disturbance terms have

been suggested. They all have some disadvantages. The MINQU

estimates are the only ones unbiased under both Ho and H2. The OLS

and studentized estimates are similar to one another, except that

the studentized estimates are unbiased under HO whereas the OLS

estimates are only homoskedastic. The BLUS estimates are the only

ones that are mutually independent.

This investigator has decided to use either studentized or

'MINQU estimates because they are both unbiased under H0. BLUS

2
n were not chosen, though they are unbiasedestimates of 01""’0

under H0, because of the bias that they contain under H2. Finally,

OLS estimates were not chosen because they have no apparent

advantage over studentized estimates.

111.3.2 The POSEX Model
 

.As has been previously mentioned, either some assumption or

E.EIiQ£1 knowledge about the heteroskedastic error terms is necessary

2
,on to be estimated. If estimation werefor all the variances 01”"

to be attempted without such knowledge or assumptions, the estimation

process would break down. The researcher would be attempting to

estimate n + k parameters (81,..., Bk’ oi,...,o§) with only n

Observations. Obviously, if one has a choice, it is more desirable
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to incorporate a_prigri_knowledge about the variances 01"'°’O: than

make assumptions that may or may not be correct. However, it is not

unusual for a researcher to be confronted with a model that is

suspected of being heteroskedastic although no knowledge is available

as to which variable is causing the heteroskedasticity. In this case,

some assumption is necessary if estimation is to be made.

Present methods of estimation require that one make an assump-

tion about the variable(s) that are causing the disturbances to be

heteroskedastic and about the functional form that these variables

take on. In contrast, if a POSEX model can be used, many of these

assumptions can be drOpped since a POSEX model estimates any

analytic function in a known set of variables. Hence, in using a

POSEX model, the only assumption necessary, if no knowledge exists,

is that the heteroskedastic disturbances be an analytic function of

the independent variables specified in the model. In develOping a

test based on the POSEX model, this assumption is less restrictive

than any constructive or non-constructive (with one exception) test

now being used. Of course, if knowledge does exist, the POSEX

model should be changed to reflect that knowledge. This process

will be examined later in this section.

In order to develOp a POSEX model without much.a_priggi_

information, one must assume that the variances are some analytic

function of the independent variables from the hypothesized model

(2.23), 51""’§k' The variance of the i'th disturbance term.can

be written as

2 _ 2 ._
E(ui) - o f(xi1,...,xik), 1—1,...,n. (2.28)
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When this assumption is used, the POSEX model must approximate

the analytic function f(°) in a four term power series expansion.

The equation formulated would be

2 _ 2 ;
E(E)‘O f(51,...,£()-811+812£2+ ooo+81k_x_k+

“2 9(2) + “3 9(3) + 0‘4 9(4) , (2.29)

where g_denotes either the instrument y_(OLS predictor of y_obtained

after estimating model (2.23)) of p_(the first principal component of

the matrix X). Finally, when the expected value Operator is removed

and either the studentized estimates éi,...,&§

di,...,Ofi are used as the instrument for the unobserved variances

01""’°§’ equation (2.29) becomes

or the MINQU estimates

oz_

“1 ‘ (811 + 812 X12

i=1,...,n,

2 3 4

* B1k Xik * “2 “i I “3 “i + “4 qi)wi’
+ .0.

02 . 02 ..2

where g_ denotes e1ther the vector g_ or the vector g_, and where

W1,...,W' are identically distributed as x2 with one degree of
n

freedom under H0. Note that the disturbance term is not added onto

equation (2.29) but is multiplied by the model. Recalling that under

°2
0

H0, o1,...,oi are each distributed as scaled x2 with one degree of

freedom, model (2.29) is used to estimate the scale factors.

Under HO that E(uiz) = o2 for i=1,...,n, only 811 will be

significantly different from zero. The null hypothesis of

homoskedasticity will be accepted if

812 ‘

whereas if any of the estimates are statistically different from zero,

then H0 will be rejected.
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Under Hz that E(uiz) = OIf(Xil"°"Xik)’ for i=1,...,n, the

coefficients 812,...,81k, o2, a3, and o4 should be jointly different

from zero. Of course, the probability that the estimates will be

statistically different from zero depends on a number of factors.

Three factors have been mentioned previously; they are whether the

instrument g_is correlated with the expansion terms it replaces;

whether f(-) is analytic; and whether f(-) is approximated by a low

order expansion. One other factor which will influence the

probability that the coefficients will be statistically equal to

zero is hOW'Well the estimators Q? or g? approximate the unobserved

. 2 2
var1ances, 01,...,on.

11.3.3 Estimation of the POSEX Model and Testing for Heteroskedasticity»
 

The conditional variance of the i'th disturbance term is given

by the POSEX model

02- 2 3 4

“i ’ (511 + 812 X12 + + 81k xik I “2 “i " “3 “i + “4 qi) “’1

i = 1,...,n, (2.30)

where wi, i=1,...,n, are identically distributed as x2 with one degree

of freedom under H0. The parameters 811, 812,..., Blk’ o2, as and o4

must now be estimated to determine if heteroskedasticity of the

fOrm.hypothesized, is present.

Maximum Likelihood Estimation

The first estimation procedure to suggest itself is maximum

likelihood. HOwever, since the disturbance terms, wi, i=1,...,n,

are identically distributed as x2 with one degree of freedom, under

Ho, this procedure breaks down. The reason for this is that a x2
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distribution with one degree of freedom is an unbounded function;

thus, no maximum exists.

Estimation.Using Ordinary Least Squares

The second method to suggest itself is the method of least

squares. Denoting the estimates of the parameters as 811,..., Blk’

o2, as and o4, one finds that under H0,

A _ 2

E (811) "' C

E(Blz) = -°° = E(Blk) = E(az) = E(a3) = E(d4) = 09

whereas under Hz, the expected value of the estimates of 812”°”Bik

o2, as, and o4 are jointly non-zero. The E(811) under Hz depends on

whether heteroskedasticity is mixed, E(R #0, or whether the
11)

heteroskedasticity is pure, E(811)=0. Because the hypothesis space

is divided depending on whether 812"°"Blk’ o2, o3, and o4 are

different from zero or not, an F test for the included variables

52""’§k’ 9?, 3;, and g? is suggested.

HOwever, two difficulties exist with the suggested F test. The

first difficulty is that the dependent variables 3i,...,8§ are each

distributed as o2 x2 with one degree of freedom under H0. Hence,

the statistic calculated by using the F test procedure is a ratio of

quadratic forms in.ng§;normally distributed variables. Therefore,

the statistic is not distributed as F. Research carried out by

Donaldson [1968], however, indicates that an F distribution appears

to be robust against nonenormality. He discovered, by using a

sampling experiment, that statistics which are a ratio of quadratics

in.variables distributed as either log normal or exponential

(Pearson type III distributions) are approximately distributed as an
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F distribution. This finding was true for sample sizes greater than

4. Of course, the approximation became less and less accurate the

farther out on the tails the comparison was made. Since a distribu-

tion.with one degree of freedom is a Pearson type III distribution,

it would not be surprising if the statistic calculated using the

F test procedure were approximately distributed as F.

Second, since neither dependent variable (MINQU estimates or

studentized estimates of 01""’O§) is composed of elements that are

mutually independent, the disturbance termS'w1,...,wh are not mutually

independent. Once again, Donaldson's findings can cast some light on

the problem- He discovered that non-independence between the

numerator and denominator of his quadratic forms helped to explain

why the statistics, which he calculated using variables distributed

other than normal, were distributed as F. To apply Donaldsom's

findings to the current situation, it should be noted that the

O O

11 non- independent estimates , oi, . . . ’Orzr can theoretically be

expressed as n-k independent estimates by some linear transformation

of the n estimates. Denoting this transtrmation by the (n-k) x n

+ +

matrix B, the (n-k) independent estimates 01"'°’°§-k are defined

as E? = B 3?. Using this formulation, the statistic calculated by

using the F test process can be expressed as a quadratic in.n:k

independently distributed variables 3i,...,§§_k. However, when so

expressed, the quadratic forms are no longer independent. Hence,

the findings of Donaldsom are now applicable. Given those findings,

the lack of independence between‘w1,...,wh might enhance the

robustness of the statistic, defined by the F test procedure, to

non-normality.
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Therefore, even though unbiased estimates of the parameters in

model (2.31) can be obtained using ordinary least squares (regardless

of the fact that the disturbance terms are distributed asymmetrically),

the normal tests of significance break down. However, given the

findings of Donaldson, the statistics calculated might still be

distributed approximately as F.

Indirect Maximum Likelihood Estimation

The final estimation procedure suggested circumvents the problem

that the disturbance terms, w1,. . . ,wn's, are not mutually independent.

This is accomplished by formulating a model which uses both the k

parameters 81,... ’8k and k + 3 parameters, Bll’°‘°’Blk’ (12, OS and

(14. The model to be estimated is:

y. X.2 X. .

:1: 81 %._+ 82 +_1_.—+ + Bkrl—Z—i- ui, i=1,...,n, (2.31)

o. o. o. o.
1 1 1 1

where ul, . . . ,un are independently and identically distributed

N(0, oZI), under H0, and where

 

0
+ _ 2 3 7F

i ‘,/811 1 B12 X12 1 °°' 1 81k xik+ “2 “1 1 “3 “i 1 “4 “i '

To estimate this model, a maximum likelihood procechire must be used.

The maximum of the likelihood function L, under H2, is

defined as L2,

L = II + 6-1/2 11.2

2 ._ V211 o. 1
1-1 1

where 31 is as defined above and ui is obtained from model (2.31) .

The estimates of the parameters that maximize L2 will be denoted as

81,--°:Bk9 811,---,81k, oz, 03, and 0.4. Under H0,
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81k = dz = as = o4 = 0 whereas under H2,

812,...,81k, o2, o3 and a4 are jointly non—zero.

To test the hypothesis of H0 vs. Hz, a likelihood ratio

statistic can be used. Under HO that the variances are homoskedastic,

the maximum of the likelihood function L is defined as L

1 2

_ n 1 Vi ‘ B1 1 82 X12’°'°’Bk xik)

L0 1 i=1 VII oz exP "'2 2
O

03

 

 

If one then defines the likelihood ratio statistic i as

' 2:2,
2

it follows that -2 loge 2 is distributed as x2 with k + 2 degrees of

freedom.

This testing procedure is basically the one suggested by

Rutemuller G Bower. However, a POSEX model is used to explain the

variance rather than a model composed of the independent variables

x1,...,xk. This last estimation and testing procedure does not

contain any of the problems which were associated with the previous

two procedures. However, this estimation procedure is more easily

implemented in theory than in.practice.

111.3.4 Further Observations on the POSEX Procedure
 

POSEX Mbdel and a Reestimation Procedure
 

If it is found that the estimate of the parameters 812,...,81k,

o2, a3 and o4 in the model (2.30) are statistically different from

zero, H0 is rejected. Since model (2.30) estimates the conditional

2
mean of 01""’°§’ n estimates of 01""’°n can be Obtained. The
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estimates, denoted as 01"°°’°§ can be used to reestimate model (2.30)

and thereby increase the efficiency of the estimates of the regression

parameters. TWO methods of reestimation exist. The first method is

to transform model (2.23) into the model

y. X. x.

01 01 Oi Ci 1

where ui, i=1,...,n are assumed to be independently and identically

distributed N(0, oZI). Ordinary least squares can be used to

reestimate model (2.32).

The second method is to use Aiken's Method of Generalized Least

Squares. Using this method and denoting

(’12 '-
61. Q

Q:

a '3 ,  
the new estimator for B,

§= ()0 9—10-10 :2— X-

These two methods will yield identical estimates of the parameters

81,...,Bk and Oz. .

HOwever, it should be pointed out that since 8i,...,8§ are

estimates, it is possible for them to be negative. If this is the

case, model (2.32) cannot be used to reestimate model (2.23) unless

the negative estimate is removed. This investigator suggests using

the absolute value of the estimate when the estimate is negative;

when this is done, the magnitude of the estimate variance remains

the same and the square root can be taken. However, when this is

done the estimates 81,...,8k and o2 will no longer be identical to

those Obtained by the method of Generalized Least Squares.
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Incorporating a priori Information into the POSEX Medel

Depending on the a_p§igri_knowledge about the heteroskedastic

disturbances, the POSEX model (2.30) can be varied in many ways.

Three different types of a_priori_information will be presented

here. First, a set of m(:_l) variables El"°°’5m is thought to be

included with the variables xl,...,x in the unknown analytic

function, f(-). Second, only a set of m(:_l) variables 21,...,zm

is thought to be in the unknown function, f(-). Third, only a set

of m(:_l) variables 31,...,zm is known to be causing the hetero-

skedastic disturbances in some known way.

In the first case, the POSEX model could be formulated to

include the variables 31"'°’Em' This would change model (2.30) to

O2

“1 1 (“11 1 B12 X12 1 °°° 1 81k xlk 1 61 211 1 °" 1

2 3 4
5m_zim.+ o2 qi + as q1 + o4 qi) wi (2.33)

where w1,...,wh are each distributed as x2 with one degree of

freedom under H0, and where the instrument qi is a linear combination

of 51,...,zm as well as xl,...,xk.

In the second case, the POSEX model could be formulated to

include the variables zil""’zim.bUt not to include xi1""’xik'

Hence, the POSEX model would be

02 _ 2 3 4
oi — (zil 61 + ... + zim.6im.+ o2 qi + as qi + o4 qi) w: (2.34)

1

where'w1,...,wh are identically distributed as x2 with one degree

of freedom under H0, and where qi is a linear combination of the

variables Zil”"’zim and not the variables Xil""’xik'

In the third case, a POSEX model will not be formed since the

exact functional form involving the variables El’°°"5m.is known.
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To illustrate this, it will be assumed that the function involving

the variables El”°"5m is a quadratic of the second degree. The

model to be examined would be:

02 2

01 = (611 zi1 + ... + 6 z. + 8 z. + ... + 6 ) w:
2

m 1m 21 11 m 2im 1

(2.35)

where wl,...,wh are identically distributed as x2 with one degree

of freedom under H0. If m,is large, the squared terms could be

replaced.by an instrument; however, if the knowledge embodied in

model (2.35) is correct, introducing the instrument will reduce the

probability that the model will be able to estimate the

heteroskedastic disturbances.

Similarities Between the POSEX Procedure and Other Constructive

Testing Procedures

 

 

Using the POSEX model building technique presented in this

study, any of the current constructive testing procedures can be

deduced. To illustrate this contention, assume that it is known

that a single variable 55 in the form of a second degree quadratic

is causing the heteroskedasticity. Using this information, Glejser's

model can be obtained. If the model is estimated using OLS and

either a t or F test issued to test if the coefficients are

statistically significant from zero, Glejser's testing procedure

has been Obtained. Similarly, Rutemuller G Bower's model and

Park's model can be deduced using the concept of a POSEX model,

a_p£igri information, and the different estimation procedures

suggested. Thus, using the POSEX formulation and a_priori knowledge
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as to the heteroskedastic disturbances, one can deduce all of the

constructive testing procedures.

11.3.5 Summary
 

In this section, a POSEX model was suggested to explain the

variance of the disturbance terms when heteroskedasticity is

presumed present. It was required only that the unobserved

variances oi,...,ofi be a fUnction of the independent variables

from the hypothesized model.

Since the variances OI’°"’°: are unobserved, four different

estimators of the variances were discussed. It was shown that

although squared OLS estimates are biased, they are, nevertheless,

homoskedastic under very non-restrictive conditions. Two estimators

were then chosen to estimate the unobserved variances.

Two possible ways in which to estimate the POSEX model were

suggested. .A testing procedure for distinguishing between H0 and

H2 was associated with each of these estimation procedures.

Finally, some extensions of the POSEX procedure were suggested.



CHAPTER III

HYPOTHESES AND EXPERIMENTAL DESIGN

,A large number of hypotheses have been made in the two previous

chapters of this study. Unfortunately, since there are an infinite

number of different models that can be specified, none Of these

hypotheses can, in general, be proven correct. Rather, each hypothesis

must be carefully examined using a very carefully selected subset of

model specifications. If an hypothesis is not refuted in the models

chosen, it will then be assumed that it can be generalized as being

valid for other similarly specified models. However, as the new

models differ more and more from the models that were chosen for

examination, the probability that the generalization will be invalid

increases. In contrast, it should be noted that if an hypothesis is

shown invalid for the models specified, the hypothesis has been proven

invalid in general.

Another difficulty still remains in testing the hypotheses made

in this study. Since all of the hypotheses concern various test

statistics, a method must be found whereby the probability of type I

and II errors can be determined for each test. HOwever, since the

distribution of'most of the test statistics discussed in this study

is not known, a sampling eXperiment, similar to others that have

been discussed, will be used to analyze the various statistics.

104
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This chapter will be divided into two sections. First, all of

the hypotheses made in this study will be restated and briefly

explained. Second, a sampling experiment will be presented that

examines various tests for a misspecified.mean and heteroskedastic

disturbance term.

111.1 Hypotheses
 

It is most convenient to divide these hypotheses into two groups.

The first group contains hypotheses that are applicable to tests for a

misspecified conditional mean. The second grOUp comprises those

hypotheses that are applicable to tests for heteroskedastic disturbance

terms.

111.1.1 IMisspecified Conditional Mean

Five broad hypotheses are made in this study regarding tests

designed to determine if a.model has a misspecified conditional mean.

Since the reasoning behind each hypothesis has been previously given,

each of the five hypotheses will only be stated in this section of

the study.

1. Under the null hypothesis, Ramsey's test, Ramsey G Schmidt's test,

and the prOposed test will each have a probability of type I error

equal to the alpha level at which each test is conducted.

2. When a variable is omitted from the hypothesized model, the

probability that Ramsey's test, Ramsey & Schmidt's test and the

prOposed test will each correctly reject H0*will increase as the

correlation between the omitted variable and the included variables

increases. .At some point, however, this trend will reverse itself

and as the correlation increases past this point, the probability

of correctly rejecting HO will decrease.



106

When the wrong fUnctional form of either the regressors or

regressand is used, the power of all three tests will be an

increasing fUnction of two factors. The first factor is whether

the correct functional form is analytic. The second factor,

which only becomes important if the function is analytic, is the

accuracy with which a Taylor expansion in four terms can approx-

imate the correct function.

Under the alternative hypothesis that the conditional mean of the

vector y_is misspecified, the power of all three testing procedures

'will be an increasing function of the number of sample Observations

(n).

Under the alternative hypotheses of a.misspecified conditional

mean, the power of the proposed test will be greater than the power

of either Ramsey's test or Ramsey G Schmidt's test.

111.1.2 Heteroskedastic Disturbance Terms
 

Ten broad hypotheses are made in this study regarding tests

designed to determine if an hypothesized model is heteroskedastic.

Since, as before, the reasoning behind each hypothesis has been

previously given, each of the ten hypotheses will only be stated in

this section of the study.

1. under H0 of homoskedasticity, the only tests that will have a

probability of type I error equal to the alpha level will be those

tests that define a statistic whose exact distributional form is

known. However, all other tests will have a probability of type 1

error approximately equal to the alpha level at which those tests

are examined. Furthermore, that approximation will become

increasingly accurate as the alpha level increases.
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The probability of any test's correctly rejecting H0 will be an

increasing fUnction of the amount of correct a_p:ipgi_information

available.

The power of all the tests fOr heteroskedasticity will increase as

the number of sample observations (n) increases.

The power of the various tests for heteroskedasticity will, in

general, be independent of the distributional form of the variable

causing the disturbances to be heteroskedastic.

The tests for heteroskedasticity will not display an increased

probability Of type I error when the independent variables are not

drawn from a fixed distribution even though this choice Of

independent variables insures that the diagonal elements of

the matrix M are not equal.

The power of the POSEX.model and testing procedures to determine

if a.model is heteroskedastic will be a decreasing function of the

number of terms needed by a Taylor series expansion to approximate

the functional form (taken by the disturbance terms) to some level

of accuracy.

The power of the POSEX model and testing procedures will be, in

general, increased if the instrument p (first principal component

of the matrix X) is used for the expansion terms versus the

instrument y (the OLS predictor of y).

The power of the POSEX model and testing procedures will, in

general, be increased when E? GMINQU estimates of g?) is used as

the predictor of E? versus when é? (studentized estimates of g?)

is used.
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9. The BAMSET tests with OLS residuals will have a higher probability

of correctly rejecting H0 than the same tests using BLUS residuals.

10. If the same amount of a_pgiggi_information is incorporated into

all of the testing procedures, the POSEX model and tests will have

the highest probability of correctly rejecting H0.

111.2 Sampling Experiment
 

In order to test these hypotheses, the probability of type 1 and

type II errors must be calculated under various model specifications.

Because the finite distribution of most of the test statistics is not

known, these probabilities are most easily calculated by using a

sampling experiment. Hence, in the first part of this section, a

general sampling experiment will be outlined. Each of the following

two parts of this section will, in turn, be concerned with using this

experiment to examine various alternative tests for either a.misspeci-

fied conditional mean of the vector y_or heteroskedastic disturbance

terms. Both of these parts will have the same format. First, each of

the alternative hypotheses to be generated will be discussed with their

relationships to one another expressly pointed out. Next, the various

tests to be examined under the null and various alternative hypotheses

'will be selected with special attention paid to justifying this

selection. .After these two parts, a final summary of the experiment

and of all the models that are examined will be given.

111.2.1 General Design of the Sampling Experiment
 

In conducting this experiment, the basic procedure will be to

test if a model that is hypothesized to estimate the conditional mean

of a sample of variables, y1,...,yh, is misspecified because either the
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conditional mean has been misspecified or the disturbance terms are

heteroskedastic. This procedure will be repeated on 1000 independently

drawn samples of first 30, then 60, and finally 90 dependent variables,

y1,..., n’ (n = 30, 60 or 90). The percentage of times that each

specification error test rejects H0, that the hypothesized model is

correctly specified, will then be recorded for nominal alpha levels of

.01, .05, and .10. The first four sample moments of each test

statistic will also be calculated. In this way, by defining 17

different pOpulations of dependent variables from which the 1000

samples of y1,..., n’ (n = 30, 60 or 90) are chosen, the testing

procedures under examination can be compared.

Each of the seventeen pOpulations is defined by specifying the

conditional mean of the dependent variable and by adding on a disturbance

term that has a.mean of zero and a.specified variance. These population

definitions will be referred to as the 'true' models. Sixteen of these

'true' models are specified differently than is the hypothesized model.

Hence, it can be observed how the power of the various testing

procedures varies under different specification errors. These sixteen

models will be eXplained and examined, in turn, later in this section

of the study.

At this point, only the first 'true' model will be examined. It

is

yi = 50 + 5xil + 5x12 + ”1’ i = 1,...,n (3.1)

where u1,...,u.n are independently and identically distributed as

N(0, 2500). The variables x11,...,xn1, are independently drawn from a

uniform distribution with end points of 0 and 100 (mean of 50 and

pOpulation variance of 833.33). In contrast, variables, x12,...,xn2,
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are independently drawn from a log normal distribution with a mean of

20.327 and pOpulation variance of 413.197. The population.parameters

of the second variable guarantee that the Pr (0 f-Xiz

for i = 1,...,n. Hence, with a probability of .99, both variables

§_100) > .99

cover the range, 0 to 100. Since, however, the two variables come

from two different independent pOpulations, they are independent of

one another. One drawing Of 90 Observations was made for each Of the

two variables. These Observations are divided into 3 groups of 30

observations each. Hence, when n = 30, the first group will be used;

when n = 60, the first and second are used; and when n = 90, all

three are used. .All 90 of these observations together with various

sample statistics for either n = 30, or 60, or 90 are given in

Appendix B.

The conditional mean of the dependent variables Obtained from all

seventeen 'true' models will be estimated using the hypothesized.model

yi = 80 + 61x11 + 82xi2 + V1’ 1 = 1,...,n. (3.2)

where v ..,vn are assumed to be independently and identically1,.

distributed as N(0, o2). Hence, when the 'true' model is model (3.1),

the hypothesized model will be a correctly specified.model. In this

way, the probability of type I error can be calculated fOr each of the

tests examined. Similarly, since each of the specification error tests

is also used when the hypothesized model (3.2) is misspecified, the

probability of type 11 error can be calculated.

Only one difference exists in the basic procedure just outlined

when any of the sixteen remaining 'true' models are used. When the

'true' model has a conditional mean other than that specified by the

hypothesized model, only tests for a misspecified conditional mean
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‘will be examined. Likewise, when the 'true' model generates dependent

variables that are heteroskedastic, only tests for heteroskedasticity

will be examined. .Although in using this procedure, the interrelation

between the various specification errors is not brought out (a study by

Ramsey 8 Gilbert, 1972, does make this comparison), this procedure was

necessary to save computer time and money.

Finally, in order to simplify the discussion of the sixteen

remaining models, three new variables will be defined. They will be

denoted by the vectors x5, x4, and x5, respectively. The variables

x13,...,xn3 will be drawn from a normal pOpulation with a mean of 50

and a variance of 400. These pOpulation parameters ensure with a

probability of .99 that X13""’Xn3 will lie in the range Of 0 to 100.

Once the sampling is made, the observations x13,...,xn3 are never

redrawn. Since 53 is drawn from a pOpulation independent of the

populations from which x1 and x2 are drawn, x3 is independent of both

31 and 12-

The second set of variables x14,...,xn4, is a sum of the first

three variables. The i'th observation of x4 is defined by

xi4 = 5.428 loge xil + 7.71 loge xi2 + 3(xis - 50).

20

(3.3)
 

This variable is defined in such a way as to have a moderate correla-

tion with either x1 or x2. Note that x14,...,xn4 W111 also be

correlated with various powers of either x11,...,xn1 or x12,...,xn2.

The third and final additional variable, X15""’Xn5’ is defined

to be highly correlated with either x1 or x2 The i'th Observation

of x5, defined in terms of x1, x2, and x3 is

= .5428 xi + .771 xi + 3(xis - 50) .

20

X15 1 2 (3.4)
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The E(xis) is 42.81 and the variance of x1 is 500.148. The population
5

correlation coefficient between x5 and x1, and between 55 and x2 is .70.

Also, because of the way x5 is defined, the coefficient of determina-

tion obtained by regressing 55 on x1 and x2 is 0.98.

A listing of all three variables appears in Appendix B. Also,

in Appendix B, corresponding to the sample sizes of 30, 60, and 90 are

the sample means, variance covariance matrix and correlation matrix of

the var1ables, x1, 52, x3, x4 and x5.

111.2.2 Sampling EXperiment to Examine Tests that Discriminate Between

H0 Versus H1

Of the sixteen remaining 'true' models (that is, the models that

 

actually generate the dependent variable) to be used in this experiment,

six were generated so that the hypothesized model (3.2) will misspecify

the conditional mean of the dependent variable. These six 'true'

models are divided into two categories. The first category consists

of three models designed so that the hypothesized model (3.2)

mistakenly omits a relevant variable. The second category, consisting

of the remaining three models, is designed so that either the

regressors or the regressand of the hypothesized model has the wrong

functional form. These two groups of models will be discussed in turn.

variable Omitted from the Hypothesized Model
 

To generate a pOpulation of dependent variables that omits a

relevant variable from the hypothesized model (3.2), a model

., i = 1,...,u, (3.5)

Y1 1 8o 1 B1 X11 1 B2 X12 1 8321 1'11

where u1,...,un are independently and identically distributed as

N(0, o2), is used. In using this 'true' model, both sets of variables
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x11....,x1n and x12,...,xn2 are defined as before. In each of the

three 'true' models that use this basic form, a different set of

var1ables z1,...,zn is used.

These different variables are the variables x5, x4, and x_ that
5

were previously defined. The three 'true' models will then be

yi = 50 + 5xi1 + 5xi2 + 5xl3 + ui, i = 1,...,n, (3.5a)

yi = 50 + 5xil + 5x12 + 5x14 + ui, 1 = 1,...,n, and (3.5b)

y1 = 50 + 5xi1 + 5x12 + 5xis + ui, i = 1,...,n, (3.5c)

where in each model u1,...,un are independently and identically

distributed as N(O, 2500).

These three models (3.5a), (3.5b), and (3.5c) each generates a

dependent variable that causes the hypothesized model to be misspecified

because of an omitted variable. However, the omitted variables are

related to the included variables in different ways. The first omitted

variable is independent of the included variables, the second is

moderately correlated with the included variables, and the third is

highly correlated with the included variables. Hence, a relation

between correlation and the power of the various tests can be Obtained.

Incorrect Functional Form of the Hypothesized Model

Three models are designed to cause the hypothesized model to be

misspecified because an incorrect functional form is used. The models

are designed so that the correct functional forms are increasingly

difficult to approximate with a four-term Taylor series expansion.

The three 'true' models will be defined as:
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Y1 = exp (2 + .OSXil + .OSXiZ + Zui), i = 1,...,n, (3.68)

y1 = 81.0 Xiio Xiéo Gui, i = 1,...,n, and (3.6b)

-2 .
yi = exp (-(-.25 + .02xi1 - .05xi2 + 'Sui) ), 1=l,...,n,

(3.6c)

where in each model u1,...,un are independently and identically

distributed as N(0, l), and x11,...,xn1 and x12,...,xn2 are as

previously defined.

Because model (3.6a) is an exponential model, it will be the most

accurately approximated (of the three models) by a Taylor series expan-

sion. The second model (3.6b) is analytic; however, since it is a

multiplicative function, it is less accurately approximated than model

(3.6a). Finally, since in the neighborhood of zero the last function

is discontinuous,model 7 is a non-analytic function in x11 and x12

and hence cannot be approximated using a Taylor series eXpansion.

Note that each of these three models is written such that the

hypothesized model has the incorrect functional form of the regressors.

HOwever, the first two of these models can be reformulated so that the

hypothesized models will have the incorrect functional form Of the

regressand. written in this way, the two models become

loge yi 2 + .05x.L1 + .05xi2 + Zui, i1= 1,...,n, and (3.6a)

loge yi l + xil + xiz + ui, 1 = 1,...,n, (3.6b)

where in each case u1,...,un are independently and identically

distributed as N(0, 1). Since an incorrect functional form of the

regressand can equivalently be eXpressed as an incorrect functional

form of the regressors, Only one of the errors need be examined in

flfissflfly.
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The three models (3.6a), (3.6b), and (3.6c) each causes the

hypothesized model (3.2) to be misspecified because of an incorrect

functional form. However, the functional fOrms are chosen so that

they are not approximated equally accurately by a Taylor series

expansion in four terms. Hence, a relation can be determined between

the power of the various tests and the degree of accuracy by which a

Taylor series eXpansion of four terms can approximate the 'true'

functional form.

The Tests Compared
 

Three testing procedures (Ramsey's test, Ramsey 8 Gilbert's test

and Ramsey 8 Schmidt's test) have been used in the literature to

determine if the conditional mean of the disturbance terms has been

misspecified. The distributions of two of the resulting test

statistics are known (Ramsey's statistic and Ramsey G Schmidt's

statistic), while the distribution of the third is unknown. Hence,

since Ramsey G Gilbert's testing procedure offers no advantage over the

other two tests and offers the disadvantage of defining a test statistic

that has an unknown distribution, their test will not be examined in

this study.

Using a POSEX model, two additional tests have been developed.

They both determine if the conditional mean of the dependent variable

has been.misspecified. The two tests differ, however, in the instrument

used to replace the expansion terms in the POSEX model. In one version,

the vector p (obtained from the first.principal component of the matrix X) is

used as the instrument, while in the other version, the vector y_(the

OLS predictor of the dependent variable y) is used.
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This implies that four tests should be examined in this study.

However, it should be recalled that Ramsey's and Ramsey 8 Schmidt's

models and tests have been shown to be mathematically equivalent to

using a POSEX model and test with the instrument y, Hence, only one

of the three tests should be used. Because it is mathematically easier

to formulate and calculate the test statistic, the POSEX test, with

the instrument 2, has been chosen. Therefore, the hypothesized.model

‘will be tested for a misspecified conditional mean of the dependent

variable only by using both POSEX testing procedures.

111.2.3 Sampling Experiment to Examine Tests that Discriminate Between

H vs. H0 2.

Ten 'true' models remain to be defined. .All of these models are

used to examine the different tests designed to determine if an

hypothesized model is heteroskedastic. Hence, each of these 'true'

models is designed so that the hypothesized model will be miSSpecified

because it was incorrectly assumed to be homoskedastic. Since in each

Of the models the heteroskedastic disturbance terms are generated in a

different way, a relation can be found between the power of the various

tests and the form taken by the heteroskedastic disturbance terms.

These ten models can be divided into three groups. In the first

group, the heteroskedastic disturbance terms are a simple fUnction Of

one variable. In the second group, the disturbance terms are a non-

linear function of one variable. Finally, in the third group, the

disturbance terms are a function Of a variable whose mean and'variance

is conditional on some other variable.
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Heteroskedastic Disturbance Terms are a Simple Function of One Variable

Six 'true' models are generated which have the disturbance term

as a function of a single variable. All of these models are of the

form

y1 = 50 + 5xil + 5xiz + zi ui, i = 1,...,n, (3.7)

where u1,...,u are independently and identically distributed as N (0,1)

and x11,...,xn1 and x12,...,xn2 are as previously defined. The

variable zi represents one of six variables that will cause the

\hypothesized model (3.2) to be heteroskedastic. These six variables

will be chosen for their relationship to the hypothesized model.

In the first two models, the variables used for zi are xi1 and

x12 respectively. Since both of these variables are included in the

hypothesized model, the heteroskedastic disturbances (generated by the

first two 'true' models) are a function of a variable that the

researcher can.identify. However, the variables differ from one

another since they are drawn from different distributions.

The third and fourth 'true' models are generated when either the

variable x13 or the variable xi4 is used as zi. Recall that X13 is

drawn from a normal pOpulation that is independent of xi1 or x12,

whereas xi4 is generated so that it is partially correlated with x11

and x12. Hence, while the first two models generate heteroskedastic

disturbances that are a function of a variable that the researcher can

identify, the third and fourth models generate disturbances that are

either independent of those known variables or are only partially

correlated with them.

In the fifth model, zi will be replaced with a function of the

index i. The particular fUnction is 19%111.. .Although this particular
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variable will be (like x13) independent of x11 and x12, it represents

the type of variance that increases over time. NOte, however, that

normally when the heteroskedasticity is generated by a function of

time, the independent variables are also highly correlated with a time

index. Since in this case, i is independent of xi1 and x12, this

particular form of heteroskedasticity will be a more difficult type

to detect than the normal type. Rather, the model generated using

xi4 conforms to the more typical occurence of the variance's increas-

ing over time since it is partially correlated with xil and.xiz.

The sixth and last model of the group replaces zi with E(yi).

This form of heteroskedasticity has been suggested by Theil [1951].

The pOpulation correlation coefficient between E(yi) and x1 is .817
1

while between E(yi) and xiz it is .576.

All six Of these models correspond to various types of heteroske-

dasticity. The first two represent heteroskedastic disturbances caused

by a variable included in the hypothesized model. The third represents

heteroskedastic disturbances that are generated independently of the

model's variables, while the fourth represents disturbances that are

partially correlated with those variables. The fifth represents

disturbances that are related to some indexing scheme that cannot be

identified. Finally, the sixth represents the case where the

heteroskedastic disturbances are generated by the dependent variable.

Heteroskedastic Disturbances that are a.Non-Linear Function of One

variable

 

TWO of the 'true' models to be generated have heteroskedastic

disturbances that involve a non-linear function. Both of these models

are of the form
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yi = 50 + 5xi1 + 5xi2 + f(zi)ui’ i = 1,...,n, (3.8)

where u1,...,un are independently and identically distributed as

N(0 , l) and x11,...,xn1 and x12,...,xn2 have been previously defined.

The function and variable f(zi) represent two different non-linear

functions in a variable denoted as 21. The two functions, both

analytic, can be approximated using a Taylor series expansion with

different degrees of accuracy. 1

The first analytic function, f(zi), has been suggested by Goldfeld

G Quant [1972]. It is a second degree quadratic in the variable x11.

This function can be quite accurately approximated with a Taylor series

expansion of just two terms. The function will be

2 1/2
(500 + 10xi1 + xi1 .

The function f(zi) to be used in the second model is also an

analytic function; hence it can be approximated with a Taylor series

expansion. However, this approximation requires more expansion terms

in the Taylor series to achieve the same accuracy as is achieved with

the first function. The function is

75 + 50 SIN E(yi).

Heteroskedastic Disturbances that are a Function of a variable with a

Non-Constanthean
 

This last group of 'true' models are quite different from any of

the previously defined models. First a new variable, denoted as the

vector 56’ must be generated. The i'th Observation of this variable

is drawn from a uniform distribution with end points of 0 and l.Si

(population mean of .75i and variance of .1878i2). Since each

observation is drawn from.a population with a different mean and
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variance, the vector x6 has a non-constant mean. The sample drawn

appears in Appendix B together with various sample statistics.

The first model generated with the variable x16,...,xn6 is

yi = 50 + 5xi6 + 5X12 + “1’ i = 1,...,n (3.9)

where u1,...,u.n are independently and identically distributed as

N(0, 2500). In contrast, the other 'true' model in this group is

generated with a non-constant variance. It is

yi = 50 + 5X16 + 5X12 + X16 ui, i = 1,...,n, (3.10)

where u1,...,un are independently and identically distributed as

N(0, 1).

In testing both of these models, the hypothesized model is

yi = 80 + 81x16 + Bzxiz '1' vi, 1 = 1,...,n, (3.11)

where v1,...,vh is assumed to be independently and identically

distributed as N(0, o2). Hence, model (3.11) is correctly specified

when model (3.9) is generated and is incorrectly specified when model

(3.10) is generated.

Both of these 'true' models represent forms of models previously

examined; a homoskedastic model and a heteroskedastic model in an

identifiable variable. HOwever, since the variable xi6 is used in

both of these models, there is a significant difference between these

two models and any of the previously generated.models. In the case of

these two models, one of the independent variables is drawn from a

population with non-constant mean and variance. Under the null

hypothesis this Will cause the diagonal elements of the matrix M

to be more unequal than previously and hence cause the OLS residuals

to be more heteroskedaStic than previously. However, if the theorem
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proven in this study is correct, the OLS residuals should still appear

to be homoskedastic under HO, and heteroskedastic only under H2.

Tests Examined that Discriminate Between Hoand H2

One final decision.must still be made before the experiment is

examined; that is, which of the tests fOr heteroskedasticity reviewed

and suggested is to be used to test if either of the two hypothesized

models (3.2 and 3.11) is misspecified.

A total of nine tests are currently being used in the literature

to discriminate betweenHO and H2. They have been denoted in this

study as GQP, THEIL, RECURSIVE-P, GQN, RECURSIVE-N, BAMSET, PARK,

GLEJSER, and FIML. However, all of the tests do not have to be

examined if the findings of Harvey 8 Phillips are referred to. It

should be recalled that they found that the tests denoted as GQP,

THEIL and RECURSIVE-P (recall that these test procedures were identical

except for the predictors of CI""’°§ used) had virtually identical

power under a large number of alternative hypotheses. Hence, there

seems to be no reason to compare the three tests again. Consequently,

only the more commonly used test, GQP, will be examined in this

experiment. Similarly, since the two testing procedures GQN and

RECURSIVE-N are identical except for the prediction of o2
l”

are used, only the more widely accepted procedure, GQN will be used

2
..,on that

in this experiment.

HOwever, in contrast, since Ramsey 8 Gilbert [1972] found

indications that the BAMSET testing procedure can be used even.more

successfully with OLS than with BLUS residuals, this procedure will be

examined using both sets of residuals. The two tests will be



122

differentiated by suffixing BAMSET with O for OLS residuals and T for

BLUS residuals (developed by Theil). Hence, seven of the current

testing procedures will be examined in this experiment.

In this study, two different testing procedures have been

suggested to discriminate betweenHO versus H2. Both of these

procedures used a POSEX.model to explain the unobserved variances

UI”"’°§' However, because the model could be estimated in two

different ways, two different testing procedures were suggested. It

should be recalled that when the POSEX model was estimated with.OLS,

an F-test was suggested to test H0 versus H2, whereas, when full

information maximum likelihood (FIML) was used to estimate the model,

a likelihood ratio test was suggested. These two tests bring the

number of tests to be examined in this study to nine.

When these tests were used in a cursory examination, it was

discovered that the theoretically expected results were not being

obtained with some of the tests. .All of these tests were formulated

with models that were estimated using a.maximum likelihood procedure.

Since estimation by maximum likelihood requires an iteration convergence

procedure, it was found that the theoretically expected results could

only be obtained by increasing the number of iterations. This result

'was not entirely unexpected since Rutemuller & Bowers [1968] fOund

they needed 15 iterations to converge using the FIML technique.

HOwever, since in this experiment the hypothesized model is examined

for heteroskedasticity 33,000 times (11 different populations of

dependent variables are estimated with 3 different sample sizes and

each is replicated 1000 times - 11 x 3 x 1000), increasing the number

iterations needed for each examination becomes very costly. For
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example, it was found in the preliminary study that the 2 tests that

use iterative estimation (FIML, POSEX using FIML.) required 6 times the

amormt of computer time than the 6 tests that do not use iterative

estimation. Hence, it was decided that neither of the tests which use

a maximum likelihood procedure would be examined in this experiment.

The information lost by not examining these two tests could prove

to be very small. One of the tests that was drOpped from the experiment

was based on the POSEX model. However, since one test still remains

that is based on the POSEX model, the POSEX procedure can still be

carefully examined.

The second test that was drOpped is the procedure developed by

Rutemuller 8 Bower [1968] and denoted as FIML in this study. Much

evidence already exists on this technique. For example, Goldfeld G

Quant [1972] discovered that when the correct form of the heterosked-

asticity was known, the FIML testing procedure had a higher probability

of correctly rejecting Ho than any other test. In contrast, they also

found that when the form of the heteroskedasticity was not known, the

FIML testing procedure seemed to lose this advantage. Therefore,

since the FIML testing technique takes much more computer time than

other testing procedures (in the preliminary examination it took 15

times as long as the other tests) yet offers no gain in power when the

form Of the heteroskedasticity is not known, it appears as if the test

has a comparative disadvantage to other tests when a_ p_r_i_gr_i. information

does not exist. Hence, since in this experiment it is assumed that no

am information exists as to the form of the heteroskedasticity,

very little information will be lost by dropping the FIML testing

technique .
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Seven tests remain to be examined in this experiment. Since it

is assumed that no a_p:ip§i_information exists as to the form of the

heteroskedastic disturbances, many versions of the different tests are

used. In the four non-constructive tests (BAMSETT, BAMBETO, GQP, and

GQN), for example, the Observations can be reordered by a variable

that is suspected of causing the heteroskedasticity. Since, however,

no information is available, each of the tests will be reordered in

turn by using one of the independent variables Of the hypothesized

model or by using y_(the OLS predictor of y). In addition to these

three versions, each of the tests will also be used without reordering.

In this way, four different assumptions as to the form of the hetero-

skedasticity are being made. These different tests will be designated

by suffixing the test's name with the variable that was used.for

reordering or by N for no reordering. Thus GQP becomes GQPXl if the

test is reordered by the vector x1; GQPX2 if reordered.by x2; GQPY

if reordered by i, and GQPN if no reordering occurs.

Likewise, in the two constructive tests (PARK and GLEJSER) that

are currently used in the literature, assumptions will also have to

be made. Since no information exists as to the form of the hetero-

skedasticity, it will be assumed in Park's test (denoted as PARK) that

the disturbances are of the form

a 22
E(ui) = 21 o .

Since the variable Z1 is unknown, this variable will be assumed to be,

in turn, one of the independent variables of the hypothesized set or

yi (the OLS predictor of yi). These three versions will be denoted as

PARKXl (PARKX6 when 56 is used instead of xi), PARKXZ, and PARKY.
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In Glejser's test (denoted as GLEJSER) it will be assumed that the

heteroskedastic disturbances are Of the form

2 _ 2 2 2
E(ui) - (80 + 81 21 + 82 21) o .

Since once again Z1 is not known, it will be assumed, in turn, that

21 is one of the independent variables in the hypothesized.model or

yi (the OLS predictor of yi). Each of these different versions will

be denoted as GLEJSERXl (GLEJSERX6 when'x6 is used in the hypothesized

model instead of xi), GLEJSERXZ, and GLEJSERY. The estimated

coefficients 81 and 82 will be tested for significance using an

F-test as was suggested earlier in this study.

These assumptions together with the assumption necessary for the

non-constructive tests expand these six tests into 22 tests. It is

important to note that the 'true' models were designed so that each

of the assumptions made in the 22 tests would be exactly correct in

at least one instance. In this way it can be determined how the

power of each of these tests varies when a correct versus an incorrect

assumption is made as to the form of heteroskedasticity.

.Although it has been shown how assumptions can be incorporated

into a POSEX model, in using the model in this experiment it will only

be assumed that the heteroskedastic disturbances are a function of the

independent variables in the hypothesized model. Hence, when the

model is hypothesized to be a function of x1 and x2 the POSEX model

designed to test for heteroskedasticity becomes

,2 (2) (3) (4)

9- 15018115115123‘21129 113-cl 1143 11’

(3.12)
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where E? is a predictor of oi,...,o§, q_is an.instrument for the

expansion terms and y_is assumed to be distributed as N (p, oZI). .A

similar model could, of course, be fOrmulated when the hypothesized

model is a function of x6 and x2. Since OLS is being used to estimate

this model (3.12), an F-test will be used to determine if the para-

meters 811, 812, 72, Y3 and Y4 are significantly different from zero.

This test will be denoted as POSEXHl to indicate that it is a POSEX

model designed to test heteroskedasticity and estimated using OLS

(the first of the two estimation procedures earlier suggested).

Since it has been suggested that either i (the OLS predictor of

y) or p (which uses the first principle component of the matrix X) to be

used as the instruments for the expansion terms, each will be used in turn

To differentiate between the two instruments, the acronym POSEXHl will

be suffixed by'Y if y_is used as the instrument or P if p_is used.

Similarly, since it has been suggested that either p? (studentized

predictors of OI’°"’°:) or E? (MINQU predictors of CI"°"°§) be used

as the dependent variable in model (3.12), each will be used in turn.

As before, to differentiate between their use, either an S (studentized)

or M (MINQU) will suffix the acronyms POSEXHlP and POSEXHlY. In this

way, fOur versions of the POSEX test designed fOr heteroskedasticity

and estimated using OLS (POSEXHl) will be examined. They will be

denoted as

POSEXHflPS - POSEXHl using the instrument p_and studentized

predictor,

POSEXHlPM - POSEXHl using the instrument p and MINQU predictors,

POSEXHIYS - POSEXHU using the instrument i and studentized

predictors,
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POSEXHlYM - POSEXHl using the instrument y and MINQUE predictors .

Hence, 26 different versions of the 7 different tests are to be

examined in this experiment. Through the use of the different versions

Of each test, it will be possible to determine the relationship between

the power of each test and the version of each test used. This will

be especially enlightening when the different versions of each test

are the result of different assumptions as to the form Of the

heteroskedasticity.

111.2.4 Summary
 

In this section, a sampling experiment has been designed to

examine tests that determine if a model has a.misspecified conditional

mean or has heteroskedastic disturbance terms. The basic procedure

used in the experiment was then presented: First, a population of

dependent variables is defined. Second, a sample consisting of n (set

first at 30, then at 60 and finally at 90) Observations, is drawn from

this pOpulation. Third, the hypothesized model is estimated with the

first sample of n observations. Fourth, specified tests are used to

determine if the hypothesized.model is misspecified and the results

are recorded. By repeating this process 1000 times, one can determine

the percentage of times that a given test indicates that a.model is

misspecified. This percentage then corresponds to either the prObabil-

ity of type I error (if the hypothesized model is correctly specified)

or the power of the test (if the hypothesized model is misspecified).

In the second and third parts of this section, 17 different

pOpulations of dependent variables are defined. The models that

generate each of these populations are summarized in Table 2 below.
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TABLE 2: MOdels that Generate the Dependent Variable

Dependent'Variable
 

 

l yi = 50 + 5xi1 + 5xi2 + 50ui

2 y1 = 50 + 5xil + 5xi2 + 5xis + 50ui

3 y1 = 50 + 5xi1 + 5xiz + 5xi4 + SOui

4 y1 = 50 + 5xil + 5xi2 + 5xi5 + SOui

5 y1 = exp (2 + .05xi1 + .05xi2 + Zui)

_ 1.0 1.0 1.0 u-

6 Y1 ‘ e X11 x12 9 1

7 yi = eXp(—(-.25 + .02xil - .05xiZ + .Sui)-2)

8 yi = 50 + 5xil + 5xiz + xilui

9 y1 = 50 + 5x11 + 5xiz + xizui

10 y1 = 50 + 5xil + 5xiz + Xi3ui

11 yi = 50 + 5xil + 5xi2 + xi4ui

12 y1 = 50 + 5xil + 5xiz + E(yi)ui

13 y1 = 50 + 5xil 4» 5xi2 + 1201 i

- 2 l/2
l4 yi - 50 + 5xil + 5xiz + (500 + 10xil + x11) ui

15 y1 = 50'+ 5xil + 5x12 + (75 + 50 Sin(E(yi)))ui

16 y1 = 50 + 5xi6 + 5xi2 + 50ui

l7 y1 = 50 + 5xi6 + 5x12 + xiOUi

 

u1,...,un are independently and identically distributed as N(0, l).

The variables x1, 52, x3, x4, x5, and;6 are listed in Appendix B

together with the relevant sample statistics.
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The conditional mean of the dependent variables generated by the

17 models will be estimated using two hypothesized models. The first

15 pOpulations of dependent variables will be estimated using the

hypothesized model

Y1 1 8o 1 B1 X11 1 82 X12 + Vi. i = 1,...,n. (3.13)

where v1,...,vn are assumed to be independently and identically

distributed as N (0, oz). The conditional mean of the remaining two

populations of dependent variables will be estimated using the

hypothesized model

Y1 = 80 + 81 X16 + 82 X12 + vi, 1 = 1,...,n (3.14)

where v1,...,vh are again assumed to be independently and identically

distributed as N (0, oz).

Each Of these hypothesized models will be tested to see if it is

misspecified. The hypothesized model used for the first 7 populations

of dependent variables will be tested for a misspecified conditional

mean. The first population should prove to be the only set of dependent

variables that is correctly specified. Two tests will be used to

determine this. The first is denoted as POSEXMP (POSEX test for a

misspecified conditional mean using the vector p_as the instrument)

and the second as POSEXMY (same test as before except that the vector

y_is used as the instrument). The hypothesized models used for the

remaining 10 pOpulations of dependent variables, together with the

population defined by model 1, will be tested for heteroskedastic

disturbance terms. The first and fifteenth.pOpu1ations should prove

to be the only sets of dependent variables that are correctly specified.

This will be done by using the 26 different tests which are listed in

Table C1 (the first table in Appendix C).



CHAPTER IV

RESULTS OF SAMPLING EXPERIMENT

AND OBSERVATIONS ON THE MAINTAINED HYPOTHESES

In this chapter, the results of the sampling experiment outlined

in the last chapter will be given. These results consist of reporting

the estimated parameters of the hypothesized model, examining the

percentage of times the various tests reject the null hypothesis

(power), comparing and contrasting the experimental results between

models in the same group, and commenting on the hypotheses stated in

the previous chapter.

To facilitate the discussion of these results, the two hypo-

thesized.models will be restated and the groupings of the six 'true'

models reviewed. For models 1 through 15, the hypothesized model is

yi= 80+ 81 Xii+ 82x12+vi’ 1: 1,...,n,
(4.1)

while for models 16 and 17, the hypothesized model is

y1 = 80 + 86 x16 + 82 x12 + vi, 1 = 1,...,n. (4.2)

In both cases, it is assumed that vi, i=1, . . . ,n,. are independently

and identically distributed as N (9, oz) and that n is equal to first

30, next 60, then 90. The 'true' models were divided into six groups

for convenience. They were (1) a model that corresponded to the

hypothesized model (4.1), (2) models that included a variable not in

model (4.1), (3) models that had a different functional form.than

130
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(4.1), (4) models that were heteroskedastic due to a simple function

of one variable, (5) models that were heteroskedastic due to a non-

linear function of one variable, and (6) models that included a

variable which had a conditional mean. Each of these six groups of

models will be discussed in one of the three sections of this chapter.

The first section will consider the correctly specified model (model

1); the second, the models with a misspecified conditional mean; and

the third, models that are heteroskedastic. In analyzing the results

of the experiment on each group of models, the estimates of the

parameters of the hypothesized model are given first. Following this

are the results of the specification error tests applied to each of

the models within the group and a summary of these results.

So as to avoid needless repetition, some standardized notation

will be introduced at this time. 1000 estimates of the parameters

80, 81 (86), 82 and oz are obtained for each of the seventeen models.

For each of these models, the arithmetic average of the estimates of

each of the four parameters is denoted as Eb, Ei (E6),'§é and 32.

The variance of each of the estimates of 80’ 81 (B6) and 02 is denoted

by V(BO),'V(81), CV(B6)),'V(BZ). These variances are calculated

using the standard algorithm, A

1000 ’ _ 2

We) = .2 (Bi - a) /999.
1=l

.Also, since the hypothesized model is estimated using OLS, an estimate

of the variance of $0, El (E6) and a2 is obtained for each of the 1000

times the model is estimated. The average of each of these estimated

variances is denoted as 32 (go), 32 (El) (32(R6)) and 32 (£2)

respectively. In addition, and F statistic is calculated to determine



132

if the hypothesized model explains the conditional mean of

n

yi, i=1,...,n better than does the sample mean §'= Z yi/n. The

i=1

average of these F statistics for each of the seventeen.models is

denoted as F2

IV.l Hypothesized Model is Correctly Specified

The first group of models consists only of one model. In this

case, the hypothesized model is correctly specified. The 'true'

model is

yi = 50.0 + 5.0xi1 + 5.0xi2 + SOui, i=1,...,n, (4.3)

where u1,...,un are distributed independently and identically as

N(0, l). The estimates of the parameters of the hypothesized.model

are shown in Table 3 for samples of 30, 60, and 90. It is evident

from this table that the estimated parameters become increasingly

accurate as the sample size increases from 30 to 90. This is

especially true for the estimate of the variance of the disturbance

term. It should also be noted that the estimated variance of each of

the parameters (32(Bi)) decreases as sample size increases, that is,

there is a gain in efficiency with increasing sample size. This gain

in efficiency is also clear from the fact that the sample variance of

each parameter (V(Bi)) decreases as the sample size increases.

Finally, it should be stressed that the estimated variance of the

estimates of each of the parameters is extremely close to the sample

variance of each of the parameters. In addition, with only one

exception (sample size 90, parameter 80), the difference between the

estimated variance and sample variance becomes smaller as the sample

size increases.
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TWenty-eight specification error tests were applied to model 1.

Two of these tests were designed to detect a misspecified conditional

mean while the other twenty-six were designed to detect heteroskedastic

disturbance terms. The results of these tests appear graphically in

Figure 1. The actual number of times out of 1000 that a test rejected

H0 appears in Appendix C with the relevant test statistics.

Figure l is designed to enable the reader to make a general

comparison of the various tests among the three sample sizes and

among the three alpha levels; it is not meant to be used for determin-

ing specific percentages of rejection. If the reader wants this

specific sort of information, he should use the tables in Appendix C.

In Figure l, the test acronyms appear on the left side of the page

(a list of these acronyms appears in Appendix C). These are grouped

in terms of the knowledge utilized in each of the tests. First are

the POSEX tests, which require limited knowledge. These are followed

by tests assuming that x1 is causing the heteroskedasticity, next by

tests assuming x2, then by those assuming y, and last by those assum-

ing the order of observations. Each test has three lines associated

with it. Each of the three lines indicates one of the three different

sample sizes used, the upper line representing 30, the middle line

60, and the lower line 90. The length of the line up to the first

letter (g_for sample size 30, x_for sample size 60, and m fOr sample

size 90) represents the percentage of times the test rejected the

null hypothesis at the .01 alpha level. The length of the line up

to the second and third letters represents the percentage

of times the test rejected H0 at the .05 and .10 alpha levels

respectively (the line is continuous, the starting point for



Test

POSEXMY

POSEXMP

POSEXHlPS

POSEXHIYS

POSEXHIYM

POSEXHlPM

BAMSE‘ITXI

BAMSETUXI

GLEJSERXI

PARlO(1

GQPXl

GQNXl

BAMSE'I‘TXZ

BAMSETOXZ

GLEJSERXZ

PARKXZ

GQPX2

GQNXZ

BAMSETI‘Y

BAMSETOY

GLEJSERY

PARKY

GQPY

GQNY

BAMSE'I'I'N

BAMSETON

GQPN

GQNN

FIGURE 1:

135

Percentage Rejection

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1% 5% 10% 15% 20% 25%

1% {7: x4

‘11? m— ‘17},

TELL v "t v 4

fl“ W A 511

C: V G v O

_m 1'1": jfi

0 *0 0

iii“ M

—0+ 0 X wif) A X

#17? II? in

0* (,P 0

1'1} if}? m A A

O _Q o

-—X X x

"—111 V111 ill

0; 0 _0
4C v

-—flh' e—fi%—r Em

fit Jv‘ ., 4..
_m fi'fi A 711A

—X g «0 x

-fll m Am

C— 0—-————0

W 111 m

~01 m A an

11% “W m A

n} m5 9m

X V V G—T-o

-m m " _m A

—%f m A m A

‘0 CV: fi’) v... A A

Hy" “‘L “1 LEGEND
—cv fie, v_{) .

——m“ A ,. Sample Size 30: 0—0—0

-or o .0 - Sample Size 60: x——-xr-—x

:fi5~ Km. xm Sample Size 90: IW——flF—-fll

—ce—* To 0 First Symbol a = 0.01

a?" an X m X Second Symbol a = 0.05

4} 7<> ,_0 Third Symbol a = 0.10

0—7 ~c: o
—X X X

-—fl1 an :n

__G A 0

-—x x“ x
-n5* 3: .33

-—C* <> 4440

-—x x x
-fl} a: ——an

_n“ A ‘7“ A 1’“

G A_

-x x x

HF— m fil

A Schematic Diagram of Test Results for Model 1



136

each of the 3 percentage levels being the same). The results shown

in Figure 1 can now be analyzed.

Since the hypothesized model is correctly specified, the

estimated alpha level (the percentage of times each test was observed

to reject H0) should correspond to the nominal alpha level at which

the test was made. Hence, the first 9, x, and mLfOr each test should

be approximately aligned with the 1% rejection level; the second

2, _x_, and mwith the 5% rejection level; and the third 9, x, and‘m

with the 10% rejection level.

Both tests for a miSSpecified conditional mean (POSEXMY and

POSEXMP) conform to these criteria. The largest deviation from the

expected result occurs with the test POSEXMP at the .10 alpha level.

In this case, the percentage of rejections is approximately 11%, a

deviation of 1% from the eXpected result.

The results for the tests for heteroskedasticity are much.more

varied. In order to analyze the results, it is useful to set up a

confidence interval about each of the nominal alpha levels. In doing

this, one presumes that the nominal alpha levels are correct so that

the probability of a rejection is known. Using the binomial distribu-

tion, one obtains the standard deviation of the number of rejections

at each nominal alpha level. The standard deviation is 3 for the .01

alpha level, 7 for the .05 and 9.5 for the .10. Since a binomial is

approximated by a normal distribution, i 2 standard deviations from

the nominal alpha level will be used asa95% confidence interval.

When this procedure is followed, the tests whose estimated alpha

levels lie outside the confidence intervals with the most regularity

are the POSEX tests for heteroskedasticity and both of Goldfeld G
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Quant's testing procedures. Of these, the tests that lie the furthest

from the nominal alpha levels are POSEXHlYM, POSEXHlPM and GQPN. ‘With

all three tests, the estimated alpha levels average over 10 standard

deviations away from the nominal alpha levels. This difference is

large enough to cast serious doubts on the tests' validity.

Interestingly, the GQPN test procedure (Goldfeld 6 Quant's Parametric

test with no reordering) displays the greatest amount of divergence

from the expected result. This is surprising since the test defines

a statistic with a known distribution and hence the estimated alpha

level should approximate the nominal alpha level at which the test

was made.

For samples of 60 and 90, the estimated alpha levels of the

remaining two POSEX tests are within 2 standard deviations of the .10

nominal alpha level. However, as the nominal alpha level decreases

to .05 and to .01, the number of standard deviations between the

estimated alpha level and the nominal alpha level increases. This

result, although unfortunate, was not unexpected since the testing

procedure used defines a test statistic that is only approximately

distributed as F. It was also known [Donaldson, 1968] that this

approximation becomes less accurate the farther out on the tail the

comparison is made.

In contrast, estimates for two of the three tests based on

Glejser's method are not within a 95% confidence region for a nominal

alpha level of .10, while for the lower nominal alpha levels, the

estimates are within the region. Since Glejser indicated that a nominal

alpha level of .11 should be used to obtain a 5% rejection level, it

is surprising that a relatively high degree of accuracy is obtained
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when a nominal alpha level of .05 is used. No explanation can be

given for this result although it should be pointed out that while

Glejser used a t test on gagh_included variable, an F test on the

jgint_effect of the variables was used in this study.

The estimates of the alpha levels of the BAMSET tests (eight of

them) were never more than three standard deviations from the nominal

alpha levels used. Since half of the eight tests were defined using

OLS residuals and the other half using Theil's BLUS residuals, this

agreement between the estimated and nominal alpha levels confirms the

findings of Ramsey E Gilbert [1971] that the test can be used with

either set of residuals.

In contrast, it is extremely surprising that the estimates of

the alpha levels obtained for both the Goldfeld G Quant parametric

and nonrparametric testing procedures were so frequently outside of

the 95% confidence interval about each alpha level (44 out of 72

times). Since both of these procedures define a statistic with a

known distribution, it was expected that these results would always

lie within the confidence limit.

Equally surprising is the small number of times the three Park

testing procedures lay outside of the confidence regions (1 out of 27

times). The estimated alpha levels diverged from the nominal alpha

levels less frequently in this test than did any other test examined.

Since the statistic is only approximately distributed as t, this

accuracy was unexpected. However, as previously mentioned, it was

anticipated that the estimated alpha levels in the PARK procedure

would agree with the nominal alpha levels more frequently than would

the estimates obtained from using the GLEJSER procedure.
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The only general comment that can be made applies to the sample

size used in each test. It appears that as the sample size increases,

the percentage of rejections generally approaches the alpha level at

which the test was made. However, there were exceptions even to this,

most notably POSEXHIPM, POSEXHIYM, GLEJSERYZ, and GQPY.

In general, it appears that if the three tests that lie the

furthest outside of the confidence interval are discarded (POSEXHlPM,

POSEXHIYM, and GQPN), the overall results are reasonable. When the

sample size is small and the alpha level is large, the estimates of

the alpha levels obtained by using Goldfeld G Quant's testing

procedures lie the furthest outside a 95% confidence interval about

.10. HOwever, as the sample size increases, the difference between

the nominal and estimated alpha levels decreases. .At the lowest alpha

level examined, .01, the estimates of the alpha level Obtained using

the POSEX procedures lie the fUrthest from the nominal alpha level of

.01. The nearest agreement between the nominal and estimated alpha

levels were obtained by using either the PARK or BAMSET testing

procedures.

IV.2 Hypothesized Models with a Misspecified Conditional Moan

Two of the model groups are examined in this section; the group

that includes a variable not in the hypothesized model and the group

that has a different functional form than the hypothesized model.

.After each of these groups has been analyzed, the section will end

with a discussion of the hypotheses made in Chapter III that pertain

to tests for a misspecified conditional mean.
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IV.2.1 Misspecified Conditional Mean.Due to an Omitted variable

There are three hypothesized models that omit a relevant variable.

In each case, the 'true' model is

y1 = 50.0 + 5.0xil + 5.0xiz + 5.021 + 50ui, i=1,...,n,

(4.4)

where u1,...,un are independently distributed as N(O, 1) and 21

denotes the variable omitted from the hypothesized model (4.1). It

should be recalled, however, that the three models differ in the degree

of correlation between the variable omitted from the hypothesized

model and the variables included in the hypothesized model. In the

first case, the omitted variable is independent of the included

variables (drawn from an independent normal distribution with a mean

of SO and variance of 400); in the second case, it is moderately

correlated with each included variable (xi4 is defined as

_ 3(x. -50)
x14 - 5.428 loge xi1 + 7.711 loge xi2 + :3 ,

i=1,...,n);

and in the third, it is highly correlated (.7) with eaCh included

variable (xis is defined as

x. = .5428 x. + .771 x. + 3(XiS-SO) ,
15 11 12 -——7fir———-

i=1,...,n,

hence the coefficient of determination between xis and both xil and

xiz is .98). The estimates of the parameters of the hypothesized

models are shown in Table 4 for each of the three sample sizes.

It is Obvious from Table 4 that the estimates of 80, 81’ 82 and

02 Obtained do not correspond to the parameters in the 'true' model

(4.4). The reason for this is that when an hypothesized.model that
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omits a relevant variable is estimated, the estimates of BO, 81, 82

and 02 obtained include that part of the omitted variable that each

of the variables explains. .A detailed discussion of this identifica-

tion problem is given in section 1.2 of this study. Since, however,

the pOpulation correlation between the omitted variable and the

included variable is known in models 2 and 4, the expected values

of 80, 81, 82 and 02 can be obtained. These are given in Table 5

below.

TABLE 5: Expected Value of so, 81, 82 and o2 in Models 2 8 4

Parameter MOdel 2 Model 4

E(BO) 300 50.0

E(el) 5 7.7140

E(Bz) 5 8.855

E(OZ) 12500 2725

The estimates in Table 4 are very close to these expected values. In

addition, generally as the sample size increases, the estimates

converge on these expected values (two exceptions are Eb for sample

size 30, which is extremely close to begin with, and Bi for sample

size 90).

Unfortunately, the expected values for the parameters in the

hypothesized model cannot be calculated for model 3 because the

amount of xil and xi2 1J1 xi4 is not known. However, since in

model 2 the omitted variable is independent of the included variables

while in model 4 it is highly correlated with the included variables,

the estimated parameters for model 3, being moderately correlated,

should lie between those of model 2 and model 4. This observation

is confirmed by the results shown in Table 4. Moreover, since the
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correlation betweengg2 and x4 is always greater than that between

g1 and E4, the estimates of 82 (associated with.x2) differs from 5.0

(the true value of 81 and 82) more than the estimate of 81

(associated with x1).

All three of the models were tested for a misspecified conditional

mean by using the POSEXMY and POSEMMP tests. The results are shown

in Table 6.

In model 2, since the omitted variable is independent of the

included variables, the test is expected to have very little power.

This expectation is confirmed in the test results for model 2 in

Table 6. It should, however, be noted that for a sample size of 30,

the POSEXMP test, and, for sample size 90, the POSEXMY test rejected

the null hypothesis much too infrequently (this is especially obvious

at the 10% a level). Since these low rejections are not observed for

each sample size, however, it does not appear as if the tests are

biased.

In model 3 the test results also confirmed earlier expectations.

It appears that if the omitted variable has non-linear components of

the included variable, the test shows substantial power. This is

especially true for sample sizes of 60 and 90. It should also be

noted that the POSEXMP test shows a marked power advantage over the

POSEXMY test .

The test results on the last model in this group (model 4) also

provided the expected results. Since the omitted variable is highly

correlated with the included variables, very little of the omitted

variable is not explained by the hypothesized model; hence, the tests

fOr a.misspecified model should have very little power. In fact, all
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TABLE 6: Percentage of Rejections of Models

Mflth an Omitted Variable

Sample Size 30 60 90

o (100%) Level 1% 5% 10% 1% 5% 10% 1% 5% 10%

Test

Model 2

POSEXMY 0.8 3.1 8.6 1.9 7.6 15.6 0.1 0.7 1.7

POSEXMP 0.4 1.2 1.7 1.0 7.3 15.5 0.3 3.2 6.9

Model 3

POSEMMY 1.5 6.3 12.2 19.9 44.7 54.9 45.6 68.0 80.5

POSEXMP 2.2 10.0 17.5 30.2 55.5 66.8 62.6 81.4 90.6

Model 4

POSEXMY 0.5 4.3 9.4 0.8 5.3 9.9 0.6 4.1 9.7

POSEXMP 0.4 5.3 9.9 0.8 3.9 8.8 1.1 4.6 10.6
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of the test results for model 4 in Table 6 are within 2 standard

deviations of the nominal alpha level used for the test. Thus, the

test showed no gain in power over testing a correctly specified

model.

IV.2.2 'Misspecified Conditional Mean Due to an Incorrect Functional

Form

 

 

There are three hypothesized models that have the wrong functional

form. The 'true' models are:

model 5 y1 = eXp(2 + .05xi1 + .05xiz + Zui), (4.5)

1.0 1.0 1.0 -
model 6 y1 = e xi1 xi2 eul, and (4.6)

_ _ _ _ -2
model 7 yi - eXp( ( .25 + .OZXil .OSXiZ 4' .Sui) ) (4.7)

These 'true' models, it should be recalled, differ in the degree of

accuracy with which the correct functional form can be approximated

using a four-term Taylor series expansion.

The estimates of the parameters of the hypothesized models are

shown in Table 7 for each of the three sample sizes. It is

immediately obvious that the estimates given in the table do not

correspond to the parameters given in models (4.5), (4.6) and (4.7).

This is due to an identification problem caused by using the wrong

functional form.

Each of the three models was tested for a misspecified

conditional mean by using the POSEXMY and POSEXMP tests. The results

are given in Table 8. Generally, the results are as expected. There

was a marked increase in power in both models 5 and 6 as the sample

size was increased from 30 to 60. In contrast, the power stayed

relatively constant as the sample size was increased from 60 to 90.
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TABLE 8: Percentage of Rejections of Models that have an

Incorrect Functional Form

10

 

Sample Size 30 60 90

o (100%) Level 1% 5% 10% 1% 5% 10% 1% 5%

Test

Model 5

POSEMMY 2.5 7.9 12.9 85.4 89.1 90.9 66.7 72.3

POSEXMP 13.8 21.1 25.3 90.5 93.0 94.5 92.3 93.9

Model 6

POSEXMY 1.5 5.7 12.3 39.8 51.4 57.6 34.2 43.8

POSEXMP 8.6 14.5 20.6 55.6 66.1 70.7 51.7 61.3

Model 7

POSEXMY 1.6 5.2 9.8 4.8 19.1 29.7 1.0 4.9

POSEXMP 16.7 33.6 41.0 43.3 55.5 60.5 16.3 23.8

77.9

95.2

52.6

69.7

10.0

29.3
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It thus appears as if the power function rises very quickly with

respect to sample size and flattens out soon thereafter. .Also, in

models 5 and 6, it should be noted that the test POSEXMP was more

powerful than POSEXMY for every sample size and alpha level examined.

Although there was generally a decrease in power going from

models 5 to 6 to 7, the decrease in going from 6 to 7 was not as

marked as expected when the POSEXMP was used. This was especially

true for a sample size of 30 where the power actually increased

substantially. Since model 7 is a non-analytic function (the

function is not continuous) in the neighborhood of 0.0 and since a

Taylor series expansion is not able to approximate a non-analytic

function, it was expected that the percentage of rejections would corre-

spond to the alpha level at which the test was made. These expected

results were obtained for sample size of 30 and 90 when the POSEXMY

test was used but were never obtained when the POSEXMP test was used.

IV.2.3 Examination of Hypotheses on Tests Designed to Detect a

Misspecified Conditional Mean

 

 

Five hypotheses were stated in section 111.1 relating to tests

designed to detect a misspecified conditional mean vector. Observa-

tions on each of these hypotheses will be stated in turn.

Hypothesis 1 - In both the POSEXMY (equivalent to Ramsey's and
 

Ramsey 8 Schmidt's) and POSEXMP tests, the estimated alpha levels

were within 2 standard deviations (95% confidence region) of the

nominal levels at which the tests were made, as illustrated in

Figure l.

Hypothesis 2 - It was also observed, as hypothesized, that the
 

power of each test increased as the correlation between the omitted
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variable and the included variable would increase. However, it was

also observed that this power function would decrease (as hypothesized)

when the correlation increased past some point. Unfortunately, since

only three points are observed on the power function, a more precise

statement cannot be made.

Hypothesis 3 - The third hypothesis was not completely verified

by the experiment although it was observed that the power of both

tests to detect the misspecified model decreased from model 5 to

model 6, and to a lesser extent, to model 7. (Recall that a four-

term Taylor series expansion became less accurate at approximating

the correct functional form of the model as the model numbers

increased from 5 to 7.) The reason that this acceptance is only

partial is that for the POSEXMP test for sample size 30, the power

calculated in model 7 is greater than that in either model 5 or 6;

this finding is contrary to the hypothesis since model 7 is a

non-analytic function.

Hypothesis 4 - It was also observed that the power of both tests
 

did not always increase as the sample size increased from 30 to 60 to

90 observations. Rather, the power increased as hypothesized only

when the misspecified model either had an omitted variable with

medium correlation or when the correct fUnctional form was easily

approximated by a Taylor series expansion. That is, when the theory

behind the POSEX tests indicates that the tests would have little

power, the power is not increased by increasing the sample size.

Hypothesis 5 - The last hypothesis was maintained for every
 

alpha level, sample size, and model examined. It was continually

observed that the POSEXMP test was more powerful than the POSEXMY
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test was more powerful than the POSEXMY test (recall that this is

equivalent to Ramsey's and Ramsey 8 Schmidt's test). HOwever, it

should be pointed out that some might find the POSEXMY test more

appealing because of its simplicity.

Summary

Hence, while the first, second, and fifth maintained hypotheses

were conclusively SUpported, the experimental results did not

completely substantiate the third and fourth hypotheses. However,

the findings did indicate that the fourth hypothesis was true in

certain important cases and that the third hypothesis seemed always

to be true for large sample sizes.

IV.3 Hypothesized MOdels with Heteroskedastic Disturbance Terms

The remaining three model groups are analyzed in this section;

the group of models that are heteroskedastic due to a simple function

of one variable, the grOUp that is heteroskedastic due to a non-linear

function of one variable, and the group that includes a variable with

a conditional mean. As before, after each group of models has been

analyzed, a discussion of the hypotheses made in Section 111.1 that

pertain to tests for a miSSpecified conditional mean will be given.

IV.3.l Heteroskedasticity_due to a Simple Function of One Variable
 

There are six hypothesized models that are heteroskedastic

because the disturbance terms are multiplied by a single variable.

In each case, the 'true' model is

yi = 50.0 + 5.0xi1 + 5.0x2 + ziui, 1=1,...,n. (4.8)

However, the variable zi differs for each model; it is xil in model 8,
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x12 in model 9, x13 in model 10, xi4 in model 11, E(yi) in model 12,

and lOOi/n in model 13. Because of these differences, the six models

differ in the form of heteroskedasticity and the relation between the

disturbance terms and the included variables in the model. The

estimate of the parameters of the hypothesized model is shown in

Table 9 for each of the sample sizes examined.

In every case, the estimates of 80; 81’ and 82 are statistically

equal to the true values of the parameters. Of the divergences from

the true values, the greatest is about 11% and occurs in model 12 for

sample size 90. This unbiasedness is even.more evident if model 12 is

discarded since the largest bias in the remaining models is less than

2%. It should also be noted that in all but one case (BE, model 9),

the bias in parameters 81 and 82 becomes smaller (or shows a negligible

increase) as the sample size increases from 30 to 60 to 90. This

does not appear to be true for 80. This result, however, is not

entirely surprising since the estimates of the intercept terms have

such large variances associated with them.

Next, it should be noted that the estimated variance of all the

parameters and the sample variance of the parameters decreases as the

sample size increases; that is, there is an increase in efficiency as

the sample size increases. .Also, it should be noted that with a few

exceptions (most notably 82 in model 12 and in model 9), the average

estimates of the variance of each parameter (32(Bi)) are extremely

close to the observed variance in the parameter estimates (V(Bi)).

The last estimated parameter to be examined is the variance of

the disturbance term ziui. If the averages of the estimates of the

variance (32) for the different sample sizes are simply compared,



TABLE 9:

Sample Space 30

Parameters 0 1 2

81 49.722 4.983 5.038

62(81) 916.19 .1414 1.130

V(§i) 380.05 .1683 .7760

62,F 3596.9 109.90

Bi 50.120 4.995 5.008

62(81) 103.94 .0160 .1282

V(8i) 84.734 .0129. .3322

52,? 408.06 987.59

Bi 49.174 4.989 5.055

52(81) 869.12 .1341 1.072

vtéi) 915.01 .1495 1.229

62,? 3412.1 76.51

81 49.710 4.990 5.034

62(81) 452.25 .0690 .5570

vtéi) 329.62 .0670 .6424

62,? 1775.5 213.35

81 48.649 4.881 5.275

62(81) 46735. 7.721 57.64

V(8i) 24684. 7.777 58.99

62,F 183478 2.080

Bi 49.615 4.985 5.061

62(81) 894.64 .1380 1.103

V(éi) 789.46 .1269 .8713

52,F 3512.3 75.591

152

60

0 1 2

MablB

50.273 4.986 5.002

266.68 .0702 .1106

152.32 .0869 .1804

3420.6 359.45

Mmle

50.442 4.997 4.982

57.971 .0152 .0240

88.003 .0120 .3856

743.56 1924.2

Model 10

49.666 4.997 5.007

257.872 .0679 .1069

236.115 .0689 .0572

3307.6 368.21

MOdel 11

49.923 4.995 5.002

134.88 .0355 .0559

114.82 .0341 .0886

1730.1 695.42

Medel 12.

53.323 4.908 4.925

14929. 3.930 6.190

17756. 4.267 28.97

191486 9.151

Medel 13

49.585 5.003 5.005

264.72 .0696 .1098

254.92 .0621 .1227

3395.4 363.75

Estimation of Simple Heteroskedastic Models

50.410 4.990 4.996

193.30 .0481 .0531

80.994 .0546 .0667

3670.5 572.22

50.762 4.996 4.975

61.047 .0152 .0167

86.915 .0085 .1941

1159.2 2076.4

50.032 4.997 5.000

167.811 .0418 .0462

162.448 .0415 .0450

3186.5 656.24

50.313 4.995 4.995

94.109 .0234 .0258

68.273 .0192 .0457

1787.0 1159.7

55.775 4.929 4.854

11798. 2.936 3.244

8445.2 2.653 12.80

224025 11.578

50.240 4.994 4.996

178.26 .0443 .0490

155.50 .0415 .0652

3385.0 620.86
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extremely misleading information will result. This becomes evident

if one notes that for any model and sample size, the variance of the

disturbance term is

_ _ 2 _ 2 2 _ 2 2
Var(ziui) — E(ziu.i E(ziui)) - E(zi ui ) — E(zi ) E(ui )

2 2
= E(zi) = Var(zi) + (Mean(zi))

since the E(ui2)=1 and where Mean and Var denote the sample mean and

variance of 21. Hence, the variance of the disturbance term.depends

on the sample of zi used. The expected variance of the disturbance

term.for each model and sample size appears in Table 10. Whereas the

TABLE 10: Variance of Disturbance Terms

In Simple Heteroskedastic MOdels

Sample Size 30 60 90

Mbdel 8 3677.922 3516.607 3694.970

Medel 9 432.890 978.705 .1334.608

iMOdel 10 3055.475 2936.759 3204.806

'Mbdel ll 1810.687 1764.628 1806.472

IMOdel 12 188204.8 205926.9 229139.5

Medel l3 3530.487 3431.250 3398.457

superficial examination of the estimated variances in Table 9 could

lead one to conclude that the estimate of the variance was biased

(especially model 9), one now finds that the estimates are unbiased

‘with the divergencies from the true values generally decreasing

slightly as the sample size increases.

Next, each of the six models was tested to determine if the

disturbance terms are heteroskedastic. The results for each model

appear on a separate figure and will be examined in.turn. The reader

is referred to section IV.l for a basic explanation of all the

following figures.



154

The test results for model 8 appear in Figure 2. In this model,

the heteroskedasticity is caused by the variable x_. The most obvious

result which can be inferred from Figure 2 is that the group of tests

that assume that x2 is causing the disturbances to be heteroskedastic

together with those tests that did not reorder the observations have

comparatively little power. Noteworthy for their slight differences

are the BAMSET tests when the observatibns have been reordered by x2.

.Also strikingly obvious is the fact that the tests with the greatest

power are those that assume (correctly) that the heteroskedasticity is

caused by x1. Next most powerful are the tests that use the predicted

value of y; which are closely followed by the POSEX tests. The

difference in power among these tests appears to be very small for a

sample size of 90 and increases as the sample size decreases.

Generally, the results are as expected. Since the POSEX tests

require less a priori_infbrmation, it was expected that they would

have less power than the tests which correctly assumed that x1 was

causing the disturbances to be heteroskedastic. One rather surprising

finding is the extremely good results obtained by the tests that

assumed that the predicted values of y were causing the heteroskedas-

ticity. .Another somewhat surprising result was how well the BAMSET

tests did when the observations were incorrectly reordered by x2.

The results for the next model, appearing in Figure 3, are

unfortunately not as definitive. The heteroskedasticity is caused by

x2 in this model. Unsurprisingly, the most powerful tests overall

seem to be those that assumed that the variable x2 was causing the

disturbance terms to be heteroskedastic. .Although these tests as

well as all the others seem to show a marked loss in power for a
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sample size of 30, the power loss does seem to be less for this

group of tests. The next most powerful set of tests seem to be the

POSEX tests. This superiority over the remaining tests is most

evident for sample size 60 and, to a slightly lesser degree, for

sample size 30. The tests that reordered the observations by using

the predicted values of y_did comparatively worse, particularly for

sample size 30, in correctly rejecting the null hypothesis in this

model than they did in the previous model. Surprisingly, the tests

that did not reorder the observations showed a considerable increase

in power over that displayed in the previous model. Similarly, the

Goldfeld 8 Quant and BAMSET tests that reorder the observations by

the wrong variable (51 in this case) showed a marked increase in

power over the last model.

In both models, the tests that correctly assume the variable

which is causing the heteroskedasticity seem to display the greatest

power. HOwever, since a test that incorrectly assumes that the

variable causing the heteroskedasticity has low power, the tests

that display the greatest overall power are the POSEX tests. Never-

theless, these are closely followed by the BAMSET tests that reorder

the Observations by the predicted value of y}

In contrast to the overall excellent results Obtained in the

last model, the results of Medel 10, appearing in Figure 4, are

extremely poor. It should be stressed that this was expected since

the variable causing the heteroskedasticity is independent of the

variables in the hypothesized model. One surprising result is the

slight power advantage displayed by all of the BAMSET tests. Equally

notable ‘was the tremendous power displayed by the GQPN. However,
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since the alpha level under H0 could not be determined, this result

loses much of its significance. For all of the tests it was

suspected that the percentage of rejections would correspond to the

alpha level at which the tests were made.

The results of model 11, appearing in Figure 5, were even.more

consistent with the expected results than those obtained from the

previous model. Recall that in this model the variable causing this

model to be heteroskedastic is a weighted sum of non-linear fUnctions

of 51’ x2, and x3, two of which are variables in the hypothesized

model. With the exception of the tests that did not reorder the

observations, all of the tests displayed extremely similar power.

Nevertheless, the GQP tests seem to show a slight overall advantage

closely fOllowed by the POSEX tests, BAMSET tests, GLEJSER.and.PARK

tests.

The results of model 12 are given in Figure 6. In this model,

the E(y) is causing the disturbances to be heteroskedastic. The tests

that assumed x1 was causing the heteroskedasticity seem to display

the greatest power. Next most powerful are the tests that assume i;

is causing the problems which are closely followed by the POSEX tests.

This ranking is most evident if one makes the comparison with a

sample size of 30; at the other two sample sizes, 60 and 90, the

differences appear to be negligible. Although the E(y) is composed

both of x1 and x2, it appears as if the tests that rankgg1 display

an advantage because the mean and variance of x2 is less than those

of 51'

In the last model examined in this section, the variable causing

the disturbances to be heteroskedastic is lOOi/n, where i is the
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Observation number and n is the number of observations. The results

of this model appear in Figure 7. Since the variance of the disturb-

ance term increases with the Observation number, it was not surprising

that the most powerful tests were those that did not reorder the

observations. Once again, however, the other BAMSET tests displayed

a much greater power than was eXpected. This is true to a lesser

degree with respect to the GQP tests and the POSEX tests. .Also,

unlike most other models, only a small increase in the power was

observed in all the tests as sample size increased from 30 to 90.

The results of this group of models seem to indicate that if the

variable that is causing the heteroskedastic disturbance is known, the

test used should reflect this knowledge. under these conditions, the

GQP test seems to be the most powerful followed closely by the BAMSET

tests and the GLEJSER and PARK tests. .Although the latter two are not

as powerful, they have the advantage of being constructive tests. If,

however, knowledge about the variable causing the problem is unknown,

it appears that the tests with the greatest power are BAMSET tests

with the observations reordered by the predicted value of y, This

is followed by GQPY, the POSEX tests, GLEJSERY and PARKY. The last

three tests have the advantage of being constructive tests. Three

surprising results were observed in this group of models. First was

the generally high power displayed by the BAMSET tests. Second was

the typically large gain in power observed as the sample size was

increased from 30 to 60 observations. Third was the unexpectedly

high power displayed.when tests based on the E(y) were used.when the

correct knowledge was unavailable.



Test

POSEXHlPS

POSEXHUYS

POSEXHInM

POSEXHIPM

BAMSETTXl

BAMSETOXl

GLEJSERXl

PARKXl

GQPXl

GQNXl

BAMSETFXZ

BAMSETOXZ

GLEJSERXZ

PARKXZ

GQPX2

GQNXZ

BAMSETTY

BAMSETOY

GLEJSERY

PARKY

GQPY

GQNY

BAMSETTN

BAMSETON

GQPN

GQNN

163

Percentage Rejection

20% 40% 60%

 

 

 

 

 

X— —X

3
>
<

>
<

LEGEND

Sample Size 30:

Sample Size 60:

Sample Size 90:

First Symbol

Second Symbol

Third Symbol

fi
x

 

a

 

100%

x—x—-—-x

0.01

0.05

0.10

Q
Q

II
II

II

 

 

 

 

 

 

 

 A inlan—4fi

FIGURE 7: .A Schematic Diagram.of Test Results for Model 13



164

IV.3.2 Heteroskedasticity Due to a NOn-linear Function

Two models are examined which are heteroskedastic because the

disturbance terms are multiplied by a non-linear function of a single

variable. The basic model is given in equation (4.8); however, in

this group of models, 21 is a non-linear function. In model 14, the

2 1/2

1 + x11)

15, the disturbance term is multiplied by 75 + 50 sin (E(yi)). These

disturbance term is multiplied by (500 + 10xi while in model

two fUnctions differ from the last group of models in two ways.

First, the heteroskedasticity generated in these models is mixed (has

a non-zero intercept) while in the previous group it was pure. Second,

the heteroskedastic disturbances generated in this group are more

complex than in the previous group since more Taylor series expansion

terms are needed to correctly identify the function in this latter

grOUp.

The results obtained from estimating the hypothesized model

appear in Table 11. .AS‘With the previous group of models, the

estimates of 80’ 31, and 82 obtained are statistically equal to the

parameters given in.model (4.8). HOwever, as with previous models,

while the estimates of 81 and 82 converge to the true values as the

sample size increases, the estimate of 80 does not. In contrast, all

three parameters show a significant gain in efficiency as the sample

size increases from 30 to 60 to 90 Observations. Finally, it should

be noted that although the estimated variances seem to be very

volatile, this is once again due to the samples of x1 and x2 used

in this study. When these differences are taken into account, the

variance converges to the expected variance as the sample size

increases.
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The results of testing model 14 for a heteroskedastic disturbance

term are given in Figure 8. The results of testing this model are

similar to the results obtained for the last group of models. The

most powerful tests are again the ones that used correct knowledge

as to the variable that is causing the disturbances to be heteroske-

dastic. Also, it is interesting to note that of the tests using x1,

the PARK test uses the least correct a_prigri_information (it assumes

that E(uiz) = A11 02, whereas GLEJSER correctly assumes that the

E(Uiz) = (80 + 81 xi1 + 82 x12) 02 and the other tests correctly

assume that the heteroskedastic fUnction is monotonic in the range

examined) and hence shows the least power of all the parametric tests

compared.

.Also, as before, there seems to be a large gain in power as the

sample size increases from 30 to 60 and less of a gain as the number

of observations are increased from 60 to 90. It should also be noted

that the BAMSET tests that incorrectly assumed the wrong variable as

well as the tests that did not reorder the observations all displayed

a greater power than one would expect.

Finally, it must be pointed out that the POSEX tests, though

displaying a respectable amount of power, were generally less powerful

than the tests that assumed that the heteroskedastic disturbances were

caused either by variable x1 or by the E(y). .At first glance, this

result seems unexpected since the POSEX tests were to have an advantage

when the heteroskedastic disturbances were non-linear. However,

because the tests examine a predictor of the squared disturbance

term, the function that is examined by the tests is

2)1/2 2 2
((500 + 10xi1 + xil ) = 500 + 10xil + x11 .
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The SIOpe of this function is 2xil + 10 which is a monotonic function

in the region in which xi1 is restricted (O §_x. §_100). Therefore,
11

the advantage the POSEX test appeared to have is minimized and in

some cases removed altogether (the Goldfeld 6 Quant tests and the

BAMSET tests). In conclusion, it should be recalled that this model

was included in this study because it was a more complex function

(involving two terms and a non-zero intercept), not because it was

thought to be nonrmonotonic in the area of interest. Instead, the

following model was designed to fill this gap.

In Figure 9, the test results for model 15 are reported. In

this model, the POSEX tests have the lowest power closely followed by

the other constructive tests (GLEJSER and PARK). Although this result

was suspected for the latter two tests, it was unexpected for the

POSEX tests. HOwever, in retrospect, it should have been expected.

To understand why this is, one must carefully examine the function

used; it is: 75 + 50 Sin(E(y)). Since Sin x ranges between -1 and

+1, it was expected that this function would range between 125 and

25. However, because E(yi) is conditional on xil and x12, both of

which range between 0 and 100 with a probability greater than .99,

the E(yi) can range from 0 to 1050. [This means that the function

oscillates between 25 and 125 a total of 167 times. Therefore,

since only a maximum of 90 points are observed on this function, the

fUnction is not clearly defined and the points appear to be random.

Thus, the POSEX tests, as well as all the other tests, do not reject

the null hypothesis of homoskedasticity as often as would be expected.
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Finally, since the constructive tests reject the null hypothesis

of homoskedasticity less often than do the non-constructive tests, it

appears as if the non-constructive tests are slightly more sensitive

to the alternative hypothesis than are the constructive tests. This

is probably because the distribution of the non-constructive test

statistics is known exactly (or asymptotically) while the distribution

of the constructive test statistics is known only approximately.

HOwever, it should be emphasized that while the loss in power incurred

in using the constructive tests is slight, these tests possess the

great advantage of providing the researcher with estimates of the

heteroskedastic variances.

IV.3.3 Mbdels that Involve the Variable x5
 

There are two models which involve the variable x6. One of these

models is homoskedastic while the other is heteroskedastic because

the variable 56 is multiplied by the disturbance term (see Table 2).

In both cases, the model hypothesized is

yi = 80 + 86 xi6 + 82 xi2 + vi, i=1,...,n.

These models differ from all of the previous models in that the

variable x6 is drawn from a uniform pOpulation conditional on the

observation index i. The distribution which xi6 (i'th Observation)

is drawn from is (0, i.5i). Hence, each observation of x6 is drawn

from a different distribution.

The results of estimating the hypothesized model appear in

Table 12. It is once again obvious that the estimates of 80’ 86’ and

82 are statistically equal to the 'true' parameters' values of SO, 5,

and 5 in both models. .Also, a gain in efficiency is noted for the
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estimated parameters 80, B6 and 82 as the sample size increases.

Finally, it should be observed that the average of the estimated

variance of each parameter, 32(01), is different from the observed

variance, V(8i) for the parameter 86 in model 17 for all three

sample sizes.

The results of testing model 16 for heteroskedasticity appear

in Figure 10. Since this is a homoskedastic model, the percentage

of rejections for all the tests should correspond to the alpha level

at which the test was made. However, since in this case, the vari-

ables x16,...,xn6 are drawn from n different pOpulations, the diagonal

elements of the matrix M will vary more than they will in the other

homoskedastic model examined. Hence, the expected value of the OLS

predictors, fii,...,fin, of the time variance 02 will vary more than in

the other homoskedastic model examined. Therefore, on the basis of

this information, it would seem reasonable to suspect that tests fOr

heteroskedasticity which use OLS residuals will incorrectly reject

the null hypothesis a disprOportionate number of times. However, as

was shown earlier in this study, since the maximum squared.variation

in the diagonal elements of the matrix M is :(2:E :_%, the OLS

predictors of the variance (which are a function of the diagonal

elements of the matrile), although not constant, actually display

little variation under the null hypothesis of homoskedasticity.

Thus, it should instead be eXpected that all of the tests for

heteroskedasticity will reject this model as often as they rejected

the other correctly specified model (model 1, Figure 1).

The test results substantiate these expectations. The single

exception is the test GQPY'which rejected the null hypothesis a much

greater percentage of times than it did in testing model 1 (the null
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model). The rest of the tests generally rejected the null hypothesis

about the same percentage of times as they did when model 1 was

tested. There are, of course, some occasions where, fOr a specific

alpha level and sample size, different results are obtained (for

example, GLEJSERZ, sample size 60, alpha level .10; and PARKXZ,

sample size 30, alpha level .10), but no general pattern was visible.

Also, because the tests suffixed by X1 are now using a different

variable, x6, there were some minor differences in the percentage of

rejections for sample size 30, but by sample size 90, these

differences had vanished.

The results of the heteroskedastic model involving 56 appear in

Figure 11. There are many marked differences between these results

and the results of model 8 (heteroskedastic in x1) which appeared in

Figure 2. The most striking difference is that the tests which do

not reorder the observations show an extremely large gain in power

‘with the percentage of rejections about tripling. The only other

major increase in power is observed at all three alpha levels for

the POSEX tests when only 30 observations were used. Interestingly,

the PARK, GLEJSER, and GQN tests all show a decrease in power for

all three alpha levels when the 30 observations category is used.

This decrease is especially acute for the tests when the expected

value of y.is thought to be causing the heteroskedasticity. In

general, none of the tests, except those without reordering, showed

any change in power for either sample size 60 or 90.
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IVL3.4 Examination of Hypotheses on Tests Designed to Detect

Heteroskedasticity
 

Nine hypotheses were stated in section 111.1 relating to tests

designed to detect heteroskedastic disturbance terms. .A number of

comments, observations, and findings pertaining to those hypotheses

will now be given.

Hypothesis 1 - In testing the correctly specified model (model 1),
 

it was observed (from Figure 1) that the tests POSEXHlYM, POSEXHlPM,

and GQPN rejected the null hypothesis many more times than hypothesized.

Although this finding was contrary to the hypothesis, it was

especially unexpected in the case of Goldfeld G Quant's parametric

test. Since the distribution of the GQPN test statistic is known,

it was expected that the estimates of the alpha levels would be very

close to the nominal alpha levels at which the tests were made.

Instead, it averaged over 10 standard deviations away from the

nominal alpha levels. In general, it was not observed, as hypothesized,

that the tests which were within a 95% confidence region (:_two

standard deviations) about the nominal alpha levels were those with

a test statistic with a known distribution. Rather, the tests that

were within the confidence region.most regularly were the PARK and

the BAMSET (asymptotic distribution of the test statistic is known)

testing procedures. The tests that were outside the confidence

limits most regularly (if the three extremely inaccurate tests are

discarded) for high alpha levels were both of the Goldfeld G Quant

procedures and fbr small alpha levels, the two remaining POSEX

procedures. HOwever, it was observed, as hypothesized, that the

estimated alpha levels, in general, converged toward the nominal

alpha levels at which the tests were made.
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Hypothesis 2 — The experimental results substantiated the
 

hypothesis that the probability of any test's correctly rejecting

H0 is an increasing function of the amount of a_prigri_information

available. It was further observed that when a simple function of

some variable was causing the heteroskedasticity (models 8 through

13), the tests that used this information were the most powerful

(the results can be seen in Figures 2 through 7). It was, however,

also observed that when the heteroskedasticity was caused by either

x1 or x2, only a small decrease in power resulted from using the

same tests with y_instead of either x1 or x2. This observation was

predictable since y_is a weighted sum of x1 and x2 and therefore

embodies both correct and incorrect information.

It was further noted that when the a_prigri_information also

concerned the functional form of the heteroskedastic disturbances,

a notable increase in power was observable. This observation was

made on.mode1 14 since it is heteroskedastic because of a quadratic

function of xi. In this model, the tests that used x1 still showed

the highest power. However, when the test results that used x1

were compared with those of model 8 (simple function of'xl), a marked

decrease in power was observed. It should also be noted that since

the GLEJSERXl test assumes (correctly in this case) that the

2, this test correctly showed the
E(“iz) = (80 + 81 X11 * B2 X§1)°

smallest decrease in power while the PARKXl test showed the largest

decrease in power because it incorrectly (in this case) assumed that

the E(uiz) = Ail 02. Therefore, without exception, the results

indicate that the most powerful test for heteroskedasticity is the

one incorporating the most correct information about the heteroske-

dastic fUnction.
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Hypothesis 3 - The experimental results also indicated (as
 

hypothesized) that if a test was observed to have any notable power

when a sample size of 30 was used, this power increased as the

sample size was increased. However, in many cases, it was also

noted that the gain in power was minimal as the number of observa-

tions was increased from 60 to 90. Presumably, this was because the

power was already approaching 100% and hence only a small increase

could be made.

Hypothesis 4 — Recalling that since the basic difference between

model 8 and 9 is the distribution of the variable causing the hetero-

skedasticity (the variables cover the same range with probability of

.99), any noticeable differences in the percentage of rejections

should be primarily due to the different distributional forms. In

comparing the two models (Figures 2 and 3), the tests using x1 in

model 8 must be compared with the tests using x2 in model 9 since

these are the variables causing the heteroskedasticity in each model.

HOwever, when this comparison is made, no appreciable differences can

be observed (the tests on model 8 seem to have a slight edge for

sample size 30 but for sample sizes 60 and 90, the tests on model 9

show more power). NOnetheless, a comparison of the POSEX tests in

two models seems to indicate clearly that these tests have more power

when x2 is causing the heteroskedasticity. {A comparison of the tests

that do not reorder the sample observations reinforces this result.

HOwever, since these tests are not expected to have any power, this

increase in power is itself surprising. It should also be noted that'

the tests which assume that E(y) is causing the disturbances to be

heteroskedastic are more powerful when x1 is causing the disturbances
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to be heteroskedastic. This seems to be because the E(y) is more

dependent on x1 since it has a larger mean and variance than.x2.

HOwever, these differences in the mean and variance are caused by

the fact that the variables have different distributions and hence

must be considered. Therefore, no clear pattern emerges. .Also,

since the differences in power disappear as the sample size increases,

this investigator feels that the distributional form of the variable

causing the heteroskedasticity is not as important as are the para-

meters of that distribution (e.g., mean, variance, or range over

which the variables vary).

Hypothesis 5 - The next hypothesis concerns the probability of
 

type I error when the model includes a variable that is drawn from a

distribution with a non~constant mean and variance. In this case, it

should be recalled that since all the variables are not drawn from

fixed distributions, the diagonal elements of the matrix M vary more

than in the previous models examined. Hence, the OLS residuals will

be more heteroskedastic than those residuals obtained from the other

homoskedastic model. However, since it has been shown that the

squared variation of the diagonal elements of the matrile is always

small, the OLS residuals should appear to be homoskedastic. The

three tests which would be affected if this hypothesis is wrong are

the GLEJSER, PARK and BAMSET tests.

The test results of model 16 appear in Figure 10. If these

results are compared with the results Obtained from testing model 1

(the homoskedastic model consisting of variables drawn from fixed

distributions whose results appear in Figure 1), one sees that all

of the tests (with the exception of the test GQPY) reject the null
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hypothesis approximately the same percentage of times in both models.

It was further observed that any divergences that do exist become

insignificant as the sample size is increased from 30 to 60 and then

to 90 observations. Hence, the experimental results substantiate

the claim that the OLS residuals are nearly homoskedastic even when

a variable in the model is drawn from a non-constant distribution.

Hypothesis 6 - Unfortunately, since the nonemonotonic function
 

used in this study (model 15) could not be pr0perly defined by the

small number of observations available, the power of the POSEX tests

could not be determined for a nonrmonotonic function. Therefore, it

could.not be determined how the power of the POSEX tests relates to

the complexity of the function causing the heteroskedastic

disturbances.

Hypotheses 7 a 8 - The next two hypotheses predicted the probable
 

relationship between the four POSEX tests. HOwever, it was observed

(that all four tests had virtually identical power. In some cases,

one of the tests would show a slight advantage, but no general

pattern could be detected. However, it.must be remembered that since

the tests POSEXHlPM and POSEXHIYM were fOund to give poor estimates

of the nominal alpha level under the null hypothesis, the other two

tests are recommended. .Also, since the test POSEXHIPS requires the

calculation of principal components and.yet offers no power advantage

over POSEXHIYS, it appears as if one should use the POSEXHIYS test

for its simplicity. It is interesting to note that it was hypothesized

that this test would have the lowest power.

Hypothesis 9 - In contrast to the last findings, the test results
 

substantiated this hypothesis. It was observed, with rare exception,
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that the BAMSET tests were more powerful when OLS rather than BLUS

residuals were used. The few exceptions occurred when the wrong

variable was used to order the Observations. Although in no case

was the difference in power very great, the result nevertheless

substantiates the claim that the BLUS residuals to some extent mask

the heteroskedasticity. It should also be noted that regardless of

the residuals used, the test estimates of the alpha level under the

null hypothesis were within a 95% confidence limit of the nominal

alpha levels used.

Hypgthesis 10 - The last hypothesis indicated that if the same
 

amount of §_prigri_information is built into all the tests, the

POSEX tests would have the most power. Although the POSEX tests can

be altered to include E 221231 information, this was not done in this

experiment. Therefore, this hypothesis really states that given.no

information, the POSEX tests will be the most powerful. One version

of each test will be compared to the POSEX tests. The version used

‘will assume that y_(or E(y)) is causing the heteroskedasticity.

i was chosen rather thangg1 or x2 since it is a linear combination

of 51 and x2 and hence is more general than either x1 or x2. The

one other alternative would be to use each test first with x1 and

then with x2; however, since the correct alpha level cannot be

determined, this procedure was not undertaken (presumably an alpha

level of .10 could be obtained by using each test at approximately

the .05 alpha level).

First, the tests POSEXHIPM, POSEXHlYM, and GQNY will be

discarded from the comparison because of the large biases displayed

in testing the null model. Of the remaining tests, the largest bias



182

is by GQPY for high alpha levels (distribution of the test statistic

known) and by the two POSEX tests for low alpha levels. In comparing

the remaining tests (Figures 2 through 9 and 11), it was discovered

that the most powerful tests were the BAMSET tests. These were

followed by the GQPY test, the POSEX tests, and the GLEJSER and PARK

tests. Although it was not found that the POSEX tests were the most

powerful given no information, they are the most powerful of all the

constructive tests.

Summary

From the above results, it appears as if only the second, third,

fourth, fifth, and ninth hypotheses were strongly substantiated.

The rest of the hypotheses (with the exception of the sixth which was

not adequately tested) were only shown to be true in certain cases

and not in general. In the first hypothesis although it was fOund

that the estimates of the alpha levels for all of the tests become

more accurate as the sample size increases it was not found that the

tests with the smallest divergence between the estimated and nominal

alpha levels were those with a test statistic that has a known

distribution. In the seventh and eighth hypotheses, although it

was found that all of the POSEX tests had reasonable power, none of

the four tests could be found superior. Lastly, in the tenth

hypothesis, although the POSEX tests were observed to have the most

power out of the class of constructive tests, it was not observed

that they were the most powerful in general.



CHAPTER‘V

SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FURTHER RESEARCH

The disturbance terms in a linear regression model must have an

expected value of zero and be homoskedastic if one is to obtain

estimates using ordinary least squares which have certain desirable

properties. Several tests are currently being used to detect a non-

zero mean in the disturbance term and others to detect

heteroskedasticity.

A major problem with the current testing procedures for

disturbance terms with a non-zero mean is that these tests have not

achieved the simplicity necessary fOr popular acceptance. The first

procedure which was develOped is based on BLUS residuals and hence

is computationally difficult. While a revised version of the test

uses OLS residuals, which are more easily calculated, the procedure

is still somewhat cumbersome since the calculation of the matrix M

is necessary. A

In contrast, the current tests for heteroskedasticity have

achieved the necessary simplicity for pOpularity; however, they are

not always applicable since they all require some §_p§iggi_knowledge

about the variable causing the heteroskedastic disturbances. One

group of current tests requires further that the variable be

monotonically related to the disturbance terms, while the other group

requires that the researcher hypothesize the functional form.taken by

the disturbance terms.
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TWO new testing procedures, one for each specification error,

are suggested in this study. Both tests are based on a Power Series

Expansion (POSEX) Mbdel which has the advantage of approximating any

analytic function by using a linear combination of known variables

raised to various powers. Two linear combinations are used in this

study; the first principal component of the known variables and the

least squares predictors based on a regression model in those

variables.

The proposed procedure for a misspecified conditional mean is to

transform the hypothesized model into a POSEX model by adding three

power series expansion terms. If this model explains the conditional

mean of the vector y_statistically better than does the hypothesized

model, then the hypothesized model is misspecified. This procedure

achieves the simplicity previously lacking since it does not require

the calculation of any special matrix and since the test statistic

can be obtained by using any existing least squares program, In

addition, it was proven that when this procedure is used, with the

expansion term being the OLS predictor of y_from the hypothesized

model, the test statistic is mathematically equivalent to the

statistic obtained from the existing testing procedures fOr distur-

bance terms with a non-zero mean.

The testing procedure proposed for heteroskedasticity uses the

same POSEX model as above to explain the conditional mean of an

instrument for the unobserved variances. The instrument used is

either studentized or Minimum Norm Quadratic (MINQU) predictors of

the unobserved variances because they are both unbiased under the

null hypothesis. If this model explains the conditional mean of
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the vector of predicted variances statistically better than does the

sample mean of those variances, then the hypothesized model is

heteroskedastic. This procedure achieves the generality previously

lacking since it uses a POSEX model which approximates any analytic

function and hence does not require that the functional form be

hypothesized. In addition, lmowledge of the variable causing the

heteroskedasticity is not required since all of the variables from

the hypothesized model are included in the POSEX model.

Moreover, it was proven in this study that regardless of how

the matrix X is chosen (stochastic or non-stochastic),the diagonal

elements of the matrix M display a minimal squared variation. Hence,

the squared OLS residuals, which are a function of the diagonal

elements of the matrix M, will be approximately homoskedastic

provided that the disturbances are homoskedastic.

In order to compare the new tests with the current tests, a

sampling experiment was used. Seventeen definitions of the

conditional mean were used to compare the tests under various null

and alternative models. 1000 samples of the conditional mean of the

vector 1 were examined so as to ensure that the samples would reflect

the pOpulation from which the vector y was drawn.

It was found that although both versions of the POSEX test for

a misspecified conditional mean are exact, the test using principal

components is more powerful. However, since the POSEX test using y

is less complicated to use, a trade-off exists between the test's

simplicity and its power.

It was also discovered that the power of the POSEX procedures

for a misspecified conditional mean varied depending on the number
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of observations used, the correlation that an omitted variable has

'with the variables included in the hypothesized.model, and the

correct functional fOrm.of the variable which is used in the

hypothesized.model. The power was found to increase substantially

as the sample size was increased from 30 to 60 but only moderately

as the sample size was further increased from 60 to 90. If an

omitted variable was causing the conditional mean to be misspecified,

it was discovered that when the omitted variable was moderately

correlated with the variables included in the hypothesized model,

the test had the most power. Finally, as the functional fOrm used

to define the conditional mean of the vector y becomes more complex,

the power of the POSEX.procedure to reject correctly the hypothesized

linear model decreases.

The results of the tests for heteroskedasticity were more varied.

.Although.most of the tests were fOund to be relatively exact under

H0, both POSEX procedures using MINQU predictors of the variance and,

in some cases, Goldfeld G Quant's parametric test were not exact. It

was also noted that the estimated alpha levels using Park's procedure

were, as expected, closer to the nominal alpha levels than the

estimates obtained using Glejser's procedure. Finally, it was noted

that the BAMSET procedure was always exact when either OLS or BLUS

residuals were used.

With striking unifOrmity, the power of the testing procedures

increased as more correct knowledge was incorporated into them. In a

parallel fashion, as the tests became more general, they also showed a

marked decrease in power. An exception to this was the small decrease
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in power observed in general when i, rather than the correct variable,

was used as the variable causing the heteroskedasticity.

Although the power varied depending on the sample size, it did

not vary according to the distribution of the variable causing the

disturbance to be heteroskedastic. Again, the greatest gains in power

caused by increasing the sample size were made between 30 and 60, not

between 60 and 90 observations.

Of the POSEX procedures for heteroskedasticity, the most useful

seems to be the one that uses studentized predictors of the variance

for the dependent variable and i' s for the expansion variables. As

previously mentioned, the two POSEX procedures that use MINQU

predictors for the dependent variable are biased and hence cannot be

considered. Also, since the remaining two tests have approximately

the same power under the alternatives examined, the less complicated

test was chosen as the more useful.

Finally, it was observed that the BAMSET procedure which

reordered the variables by i had the greatest overall power . However ,

of the procedures that offer a corrective procedure, the POSEX test

generally had the most power. Since the POSEX procedure is more

general than the BAMSET procedure, this result should have been

expected. Both tests require that the variable causing the hetero-

skedasticity be in the hypothesized model; however, the BAMSET

procedure also requires that the functional form taken by that

variable be monotonic whereas the POSEX procedures does not.

This study has offered solutions to the problems posed at the

begixming of this study. In the first instance, it has provided a

procedure to test for a misspecified conditional mean that is
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mathematically identical to the current procedures yet much less

complicated to use. In addition, it has proposed a different version

of the same test, based.on.principal components, which, a1though.more

complicated, has a higher probability of correctly rejecting the

alternative models.

In the second instance, it has provided a general constructive

test for heteroskedasticity that is more powerful than the current

constructive procedures. In addition, it has also offered a

procedure to ease the restrictive knowledge requirement that had

been previously demanded of all current tests. Applying this new

procedure to the BAMSET test proved to be the most powerful procedure

overall under the alternatives examined. HOwever, since the BAMSET

test does not provide a corrective procedure if heteroskedasticity is

present, a trade-off exists between power and being able to correct

for the heteroskedastic disturbances. It should, nonetheless, be

reiterated that if knowledge about the variable causing the hetero-

skedasticity is available, it should be incorporated into either

the BAMSET or the POSEX.procedure. When this is done, the power

of both tests increases substantially.

In carrying out this study, further questions which require

research have been generated. In examining the tests fOr a mis-

specified conditional mean, it was observed that the omitted variable's

relation to the included variables is of paramount importance. .A

study that examined this relation in more detail would be of great

use. A useful way to perform this comparison.might be to calculate

the probability of the quadratic's occurring in normally distributed

variables.
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Similarly, in analyzing the tests for heteroskedasticity, two

areas for additional research became clear. First, since hetero-

skedastic disturbances need not be monotonically related to the

variable causing the difficulty, various non-monotonic forms should

be examined. Second, since the POSEX procedure was found to be the

most powerful of the constructive tests examined, the gains in

efficiency made from using this procedure should be examined.



.
[
a
]
!

.
1

I
;

3
.
x
l
{
I

I
l
u
l
l



APPENDICES



APPENDIX.A

THEOREM.AND COROLLARIES REGARDING THE MATRIX M

Theorem: Regardless of how the vectors x ,. .. ,)_ck are obtained

(stochastic or non-stochastic) the diagonal elements of the

matrix M will have a maximum squared variation of k(n-k; < _1_<_

where squared variation of 2 n n-l - n

t1,...,tn is defined as 2(ti - _) /(n-l).

Proof:

Defining mii as the i'th diagonal element of the matrix M, the

squared variation (52) of the diagonal elements is

2 mi ‘ 1% “"1192 .
s = n _ 1 . Recalling that M is idempotent and denot1ng n 

as the number of observations and k as the number of parameters,

2 mii = n - k, since the trace of an idempotent matrix equals its

1

trace. Also, since M is idempotent, no diagonal element can be

greater than one (mii i l for all i), hence Zmii _<_ n - k. Since 52

is maximized if Xmii is as large as possible, the maxiimxm value

taken by $2 is

l
-— 2 2

2 (n-k - n (n-k) _ n(n-k) - (n-kL

max 5 ) (n-l) _ n(n-l)

(n-kL(n-n+k)

n (n- 1)

k(n-k) < _13

n(n-l) -n

  

QED

190
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Corollary 1: Defining the coefficient of variation (V) as
 

vcx) = S

>
<
l
l

where 52 is the squared variation of x, and x- denotes the sample mean

of x, the maximum coefficient of variation of the diagonal elements

of the matrix M is /I—l-:-—I_‘1 .

Proof .
 

Since the maximum squared deviation of the diagonal elements of

the matrix M is

k(n-k) ,

nin-l)

and since the mean of m11,...,mrm is 21:1— , one finds that the maximum

coefficient of determination (V) is

. 2 _ k(n-k) n-k
maxunumV - nn-l —-——n

= .3.
n-l

which implies that maximum V is f—R:
n-l QED

Corollary 2: The sum of the squared diagonal elements of the matrix M

is less than (n-k)2/n and greater than (n-k).

 

From the theorem, the maximum of Em;i is n-k. This occurs when

(n—k) of the elements are equal to one and k elements are equal to

zero. In contrast, the minimum occurs when all the elements are

2 a 2 = 9.3.12 ,
equal to one another. Hence minumim mii = n( n ) n QED

Corollary 3: The sum of the squared off-diagonal elements of the

matrix M is less than gn—k) < k
n .
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Proof:

Since M is a symmetric, idempotent matrix, the sum of the squared

elements of any row or column equals the diagonal element that appears

in that row or column, Xi Zj mij = n-k. .Also, since the squared off-

diagonal elements are maximized when the diagonal elements are

minimized, one obtains:

 

2

muhwm? Dm?.=(nk)-(fif)

} 3

1 * J = n(n-k) - (n-k)2

n

 

= (n-k) (n-n+k)

n

(n-k)k <

Tl

 

k

QED

This theorem and corollaries are especially interesting since they

indicate very strongly that although the matrix M will not equal the

identity matrix, it approaches the identity matrix as n gets large

or as k gets small. Turning to the last two corollaries, it is

especially interesting to note that regardless of the matrix X,

bounds can be put on both the diagonal and off-diagonal elements of

the matrix M; An example will illustrate the significance of all of

these statements. If one has a moderate number of observations, say

30, and 4 regressors, the following statements can now be made about

the matrix M.

= .9

D
I
N

o
l
x
x

1. Z mii = 27 implying that fi'=

2. maximum variance of'm11,...,mnn = (3 (27 < 3%.- 1%.

E
T
!

3. maximum coefficient of variation = /g%: 4
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2
4. maximum Emii = 27

. . Z _ (27 27 _

minimum 2mii - —)3é—)— - 24.3

. 2 = 3(27)

5. maX1mum of § § mij -3U——-< 3

i 7‘ J'

implying that the average off diagonal element (mij) equals

3
 

3 _
112-n = 77'0- - .0111.

Therefore, in this modest example, the average diagonal element

equals .9 and the average off-diagonal element = .0111.



AHPEEDIX E

:Zr\ALYSIS elf-ii) LIV] \JF :I.V’\pL:-<I"'-,‘3‘Trls'_ DI\T;.

TABLE 81. SAT-"PLE ‘JF VAAxI/‘MLES .41. A2. A}. A4. A”). AN“

USED Ix Expgainpgi

)(1 X2 7;) X4 X‘: AD

6.78475 20.2557 lcé.'}4’..) 41.5413 27....064 .D‘;Q~12

39.8679 14.2427 0'30:va QZ.~3153 34.5574: .534-29

9305878 25.-J2’+7 5(0.u' 59.6354 63.51rl 3.)4~."3’

17.8005 2.65120 94.9uv 3:.353/ 3e.7,:5 4.53-5.

81.0743” 10.2171 -'.‘30U2~J “wail-fl 59:. :3: (3.37.3"I7

8706414 5.8535)? 15.45 32.57.1' 1.70v";"'+5 7.145412)

670Q641 26.4822 L7.63» Q9.i142 Fb.v3-7 7.5ile»

4308766 {#8:}.54'54 72.65“. 5’40-v‘v- 65.3376 3.2.-ii3

930544“ 10083552 f7..,(3'.,', 47.4541 Eben-19v 11.7315:

51.6529 27.7230 05.5? 4?.kéfb $106320 .136-26

44.1.1934 ‘).DZ7~JZ L‘/.'9f') 3’).l'c;“3+ 741. 17:; 13....‘ZC

7904276 1‘304615 31190.5( -. 47.953]:- 5.‘ov:’:.l 4.45.le

31.4788 7.13330 31.44-- 45.:4i1 12.: 27 13.1407

509572 13.65.")? 93.32;. 5.1.9“th 5L.L’.7rf5) Joli-.2193

28.2434 13.1649 31.289 39.164” 72.1231 12.O£yl

2505628- 12. (35.3. 1..-72- ‘Q‘-OI.7’¢ 75.95 "L (.1..‘ "2‘/

12048-4") ?1.2..2C 53.43., 4‘13.:‘"46 1,17." ‘31 21.53-35

8502872 2Q.‘A§J(+-’+ 550535.“. 47.15%:1'3 6“. 1+)? £4.29.er

78.8047 1Q.5017 54. GCn h2.&#33 Oloétlu ll.al?7

.906842 10.0233 32.5303‘ 14.3271. 5.64723: £23.155v

2308b21 34.3942 56.3Z-u 47.\337 42.9191 1.5c274

82.1371 14.5233 5e. 3 42.é14; 53.9155 15.3-91

5107585 270-359? "1206/1 422.741.33 '37.?2’37‘1‘: 12.1.1.3‘

24.7230 2308649 95.37») QZOQh28 £2.5515 .456Q5»

23.5956 3.62330 31.4".“ 21.0..57 12.215!) iwolllv

930~3508 I .2993 34.1.? ’3 .‘.’.-"42 55.525) 2"..uivb

93.5784 ..C3012§‘E‘ .71.:923" “3.57.37 4.2036(3/ .33 li.~’3

“405762 0.14520 2U.”% 33.277: Biog‘i” 2e./79u

40.3735 21.3421 “7.65. 93.3.9% 7 .1817 £3.7ibé

57.0092 29.6323 79.1.2'4' 52.’h’-AI"‘ 3.3.1:»!32 41.5?»9':

3304147 19.188Q 53owfitl 43.753* ?4.3335 4 .5ééc

8709997 1"+9.R74 ‘3‘"...‘33 ‘ 6'-.18 :3 161.5“), "Soivil

7.5.6220 '.3.7'f=t”if‘j " {3.11. (433.5275 'jé.21’¢l l3o'7C4‘.’

83095959 8.411.511 .-..-(‘L . '._.’2,"¢' :T'“..Z_>£~" ......zl it;

36.8247 3.74?.U %§.i4 ‘J.v3m6 25.13): D .; so

89.999: IGOZVIC +1.;Lu- agouéts GaOCEAO 47. ”J:

35.95.22 1i..‘:.."/+".‘ i'Lo'f’Za "lo"~"2.i' 35:.715'.) 34.?”ch

3“.5€)7r_’ 3.7«4‘18 34.95" 723.334.: 25.?._/‘v7fi 370C)"1'3

9.42564 42.?29: ub.6¢t~ Au.e51” ?7.597v #9.rn:~

{
)
)

r
x
l
P
"

I
.
"

,7
.“

\
I
O

.
)
U

3
"
“
!

I
'
m

P
.
)
K
)
H

r
—
a

I
N
:

h
.
)

P
.
)

4
"

b
:

n
x
:

~
J

(
7
"

N
R
)

.
9
.

.
a
‘
J

l
‘
)
>
6

'
.
'

C
'

.
U

.

\
L
‘

D
.
‘

K
.

I
:

k
}
.



TAULE 51.

X1

79.5166

14.5101

5.04679

1.53453

46.9975

12.7199

3?.1592

-.9033

1.261300

9").4071

‘1‘3.81."‘-">

64.6811

64.5002

32.6936

57.2367

74.2425

63.0451

4.3.7501

54.7375

63.2910

92.2533

.632860

87.107C

90.5968

95.6275

33.48Q6

27.3038

6.96685

49.5913

22.3614

76.3541“

25.2083

83.4594

54.1052

62. 2352

93 .1901

66.1216

31.7865

84.7244

4.08369

98.2598

47.5557

38.8548

52.1354

34.0346

70.8406

55.0507

36.5052

21.1924

64.7006

89.4377

(CONTIUED)

X R
)

13.9261

24.4277

22.9(DC2

13.1487

16.930?

3.13-;ff

3.08." r‘,

19.74 1

2?.7*4u

1C.(J1‘.._‘

1.61%“,

87.9654

19.9371

6. 66 17

70.5???

(‘.K 471M.

b.4555:

21.“?41

16.3125

7.57759

54.7770

5.3594:

6.55JFC

3.78115

15.7571

11.5’54

11.1970

8.7O75

9.1;“95

1A.50;7

’2 Roof7

77);,?,’).’.\ nL+

59.0 ”215+

134.J53

149.50C

4.41317

9.53550

83.6951

47.32;?

5. 73 36

21. 3;91

39.36U3

3.};98

11.6923

26.1536

36.3V57

35.6181

17.1432

3.59742

10.3483

9.59186

. _ _, . .

‘1 V . ‘, Z V v

’ I‘ ‘ t

L, u . fi --. I u

.. ,‘ _ J

a' 7 . J ‘ . ‘i‘

f, i ,

O 3 C. \ a

[#4. /"7..

0
7
3

\
:

p
-
)

|
\
;

O

u
n
x
w

('48.: , I

73.42“,

77.6L.

IR .33;3

29.362H

32.720d

99.62..

53.33JL

35.16--

02.2975

45.~b;

2?.SQQ

67.CQ}J

39.5-;,

32.14"9

35.56UJ

37.7U.O

)6.62UQ

“3.28sd

26.96 W

6U.669-

33.54)U

47.J4')U

27.1209

68.2.5'11)

63.58UJ

7-.'.(-‘:’)I..'

61.05LJ

48.96U5

31.12Ud

41.2

43.76416

(
_
,
~

195

X4

I '3 '\'|

4L.u441

5.5."4 .51")

.\ I- ’1‘

.1 -‘...x _‘<‘..

‘31.:‘614"

'71.. ‘TR\

4. L

7w."15~
. -‘ _. _.

45 . .l ‘4

“r 'r:

L ’0 0’4.

.)

3:1.-. ..c.l

an'. :(‘f

r- "

31.;7F7

53.31h7

54..AL“

1.). I.) I...

‘- ’. ‘97.?

1“ . :‘;\'2(.

37.3573

53.9363

14.9766

4".*.-‘T-111

31.9444

51.43Ux

4w.1313

34.5736

21;". 1C'." +

-.¢71”

37.2440

35.1974

46.5?77

54.41320

66.24v2

.e?.312fi

33.4921

41.1493

51.6112

5.)."'r-'§UJ

42.7771

46.J21u

48.5354

36.37.)

6;.1356

.37177

53.3353)

63.9655

45.968v

26.6872

39.7917

,"57.v2(3.5

91.14:

'1;.3.'.._

99.1771

42.66Lt

7:.4C71

86.1.”61

41.7511

[4 1.1.3 4“7)

’11.262 a

4.~7?2

39.9112

05.8157

9.59163

97.6577

03.92v2

69.773¢

11. 2752

21.92 45

5.96375

35.70134:

23.1Jv3

:§.5755

41.156;

).4Z5l

137.544

15v.33v

61.8355

44.2536

78.3 )22

79.4.62

82.5653

67.3351

55.716-

31.5138

4;.Q529

au.7175

50.3465

59.6651

53.~233

18.5U54

62.2123

“2.2221.

II\ C}

bC.J'J

d3.h¥

21.47

35.;-77

13.;57»

6~.37d4

.613765

24.3573

1d.~a6©

53.3L97

69.322»

07.1474

2.93391

on.o122

46.4:63

35.11v9

62.é365

55.4457

3 .9242

26.9234

43.1387

1.67396

47.J6J9

(6.5576

11.5383

11.9963

4.75614

62.7189

42.2369

7. 9432-

1!.21+61

lu.1)b3

39.1106

43.6766

27.6153

58.7477

61.4312

12.7636

44.9469

47.:22U

43.3618

71.1222

55.6825

18.2928

50.5?55

98.1317

17.3499

126.544

110.679

125.5VS

'
\
L

‘
J

‘
4
7

h
)

\
J
’

K
.
“

J33.

4-

$4

36

b7

58

59

6;

61

62

63

64

65

66

67

ad

76

71

72

73

74

7b

76

77

78

79

8.

81

82

83

84

85

86

87

80

r.

7

9-
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)54. £5, and 56

.Means, variances, Covariances, and Correlations of

for Sample Size 30.

Upper Triangle, Covariance; Lower Triangle, Correlations;

TABLE 82:

variables 51’ §2, E5,

and Diagonal variances

£1 £2 53

El 879.406 -14.668 -107.068

52 -.047 110.005 60.440

§3 -.157 .250 531.116

E4 .486 .661 .506

E5 .847 .457 .165

E6 --- -.145 -.423

Nbans 52.901 17.969 50.243

£4

126.942

61.132

102.758

77.713

.833

41.629

is

449.972

85.918

68.150

131.451

320.711

43.297

56

-15.980

-102.338

109.88

13.171
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TABLE B3: Means, variances, Covariances, and Correlations of

variables El’ 52, §3, 54, 53, and £6 for Sample Size 60.

Upper Triangle, Covariances; Lower Triangle, Correlations;

and Diagonal, Variances.

ZS1 2c-2 13 354 2$5 56

31 842.269 94.956 -53.896 152.717 522.506 ---

g2 .141 535.013 -S6.046 126.489 455.630 88.495

E3 -.091 -.119 417.924 55.904 -97.784 -114.586

E4 .574 .597 .299 83.874 188.804 ---

§5 .715 .783 -.010 .819 633.440 ---

56 --- .185 -.271 —-- --- 428.413

Nkans 51.714 21.064 50.188 40.997 44.875 26.228
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Means, Variances, Covariances, and Correlations of

Variables El, 52’ 53, 54, §5, and £6 for Sample Size 90.

Upper Triangle, Covariances; Lower Triangle, Correlations;

and Diagonal, variances.

TABLE B4:

E-1

£1 866.219

E; .102

53 - .114

§A .524

£5 .635

56 ---

Means 53.186

52

83.888

783.908

- .001

.662

.826

.802

23.467

$3

65.669

.585

384.240

.273

.039

.194

53.109

£4

151.622

182.181

2.628

96.484

.835

41.352

55

525.011

649.839

21.540

230.648

789.233

47.429

86

62.241

-105.188

768.222

32.622



TABLE C1:

Acronym

POSEXMY

POSEXMP

POSEXHIPS

POSEXHIYS

POSEXHIMM

POSEXHlPM

BAMBETTN

BAMSETTXl

BAMBETTXZ

BAMSETTY

BAMSETON

BAMBETOXI

BAMSETOXZ

BAMBETOY

APPENDIX C

TEST RESULTS

Acronyms Used to Designate the Specification Error Tests

Being Examined

Test

Power Series EXpansion (POSEX) model for a non-zero

IMean Using Y as the instrument

POSEX.mode1 for a non-zero Mean using P as the

instrument

POSEX model for Heteroskedasticity using method 1 to

estimate the model, P as the instrument and.studentized

predictors (S) of the variances

POSEXHl, ? as the instrument and studentized predictors

(S) of the variances

POSEXHl, T as the instrument and MINQU predictors of

the variance

POSEXHl, P as the instrument and MINQU predictors of

the variance

BAMSET testing procedure using Theil's BLUS residuals

(BAMSETT) and NOt reordering the observations

BAMSETT, reordering the observations by the variable 31'

BAMSBTT, reordering the observations by the variable X2.

BAMSETT, reordering the observations by'?.

BAMSET testing procedure using OLS residuals (BAMSETO)

and Not reordering the observations

BAMSETO, reordering the observations by the variable,

[
X

BAMSETO, reordering the observations by the variable, X2.

BAMSBTO, reordering the observations by T.

199
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TABLE C1 (cont'd)

Acronym

GLEJSERXl

GLEJSERXZ

GLEJSERY

PARKXl

PARKXZ

PARKY

GQPN

GQPXl

GQPX2

GQPY

GQNN

GQNXl

GQNXZ

GQNY

Test

GLEJSER'S test using 51 as the independent variable

GLEJSER's test using X as the independent variable

N

GLEJSER's test using 2 as the independent variable

PARK's test using 51 as the independent variable

PARK's test using X2 as the independent variable

PARK's test using 2 as the independent variable

Goldfeld 6 Quant's Parametric test with.No reordering

GQP, reordering the observations by the variable X1

GQP, reordering the observations by the variable 32

GQP, reordering the Observations by'v

Goldfeld 8 Quant's NOn-parametric test with No Reordering

GQN, reordering the Observations by the variable 51

GQN, reordering the Observations by the variable 32

GQN, reordering the observations by Y



YES?

POSEXHV

POSEXHP

POSEXH1PS

POSEXH1YS

POSEXH1YH

POSFXHIPN

BAMSET?"

BlHSETTX1

BINSETTXZ

BANSETTY

BIHSEOTN

BAHSEOTXI

BIHSEOYXZ

BAHSEOTY

SLEJSERX1

GLEJSERXZ

GLEJSER?

PIRKMI

PARKXZ

PIRKY

50PM

.GOPX1

GQPX2

GQPY

GQNN

GOIXI

GONXZ

SONY

TABLE C2:

ALPHA LEVEL

.01 .05 .10

6. 69. 103.

16. $9. 113.

35. 66. 135.

62. 89. 162.

43. 90. 145.

36. 82. 13k.

16. 59. 119.

7. 57. 110.

16. 59. 113.

9. 53. 107.

17. 51. 110.

7. 56. 126.

15. 71. 121.

16. 65. 116.

16. 57. 111.

9. 39. 63.-

12. 66. 110.

21. b9. 96.

9. 52. 111.

12. 57. 96.

66. 175. 29k.

33. '105. 169.

13. 76. 130.

1a. 52. 102.

22. 70. 191.

27. 73. 166.

15. 70. 17B.

26. 69. 170.

201

MEAN

.110261E§01

.115229E001

.125266E001

.1261395+01

.1307025+01

.125542=401

.aizazarooi

.202610E+01

.212522E+01

.203569F901

.2067175601

.2082886001

.ZZ1356E001

.208506EO01

.1159’“F§01

.1096118001

.1113u36901

..1133765+01

.113377F601

.107166E001

.21suare.p1

.1362636001

.131263F401

.1125905401

.3066006001

.3otuooc.oi

.3oaunosooi

.3022005401

VARIANCE

.9572658‘00

.112727E901

.18352056017

.2349305401,

.263083E*01

.2006525401

..7606~E+01

.397230E*01

.663957E+01

.3353086’01

.676753E+01

.9123658901

.6969995001

.565633E001

.169366E001

.125251E*01

.139365E’01

.590016E§01

.275930E901

.336653E001

.271906E901

.1saiuoeooi

.isorzse.01'

.1075335901

.256016E001

.259660Etfl1

.2563295001

.2626165901

Test Results - Mbdel 1, Sample Size 30

SKEHNESS

.189819E001

.226669E001

.575683E001

.632536E§01

.667156E+01

.576790E901

.209266E901

.1ssouueoo1

.1995475.01

.1784575.01

.239099E+o1

.1604435+o1

.1904398+01

.1qzs7ae.01

.31zz7eeoo1

.2a1sass.oz

.2047535001

.706667E*01

.351603E901

.636233E901

.4341335001

.2991sus.o1

.3957115401

.3162525001

.3904725400

.6631558000.

.3320665000

.571659E000

KURYOSIS

.912679E001

.1180618602

.635696E002

.661951E§Oz

.726195E+02

.6109925‘02

.90629SE§01

.5699175401

.asasrse.oi

.727osse.oz'

.1248652402

.6056866001

.7527735.01

.rssorse.o1

.zoosivcooz

.1sa9oa£+oz

.623512E601

.7zsrsssooz

.2366506602

.3190485002

.3070915ooz

.1612066002 '

.2997965002

.1azssqeooz

.zaqsasaoox

.3134595.01

.2822568601

.3265795.ox



7:51

Poscxnv

POSEXMP

POSEXH1PS

Possxn1vs

Possxn1vn

POSEXH1PH

BAHSETTN

sanssrrx1

annssrrxz

annsertv

annseoru

annseorx1

nauseatxz

annseorv

GLEJSERX1

GLEJSERXZ

GLEJSERY

pARKx1

' PARKXZ

PARK!

LGOPN__

GOPX1

sanz

can?

scan .

soux1

cunxzo

couv

202

TABLE C2: Test Results - Mbdell, Sample

ALPHA LEVEL‘ "

.01

6.

11.

61.

36.

101.

91.

14.

16.

11.

1b.,

16.

12.7

12.

1a.

17.

5.

a.

16.

13.

15.

35.

16.

17.

17.

9.

9.

6.

.05

99.

_ 98.

72.

83.

172.

169.

53.

62.

so.

61.

59.

56.

59.

63.

66.

26.

39.

'49.

,56.

62.

126.

67.

75..

a1:

62.

69._

61.

66.

.10

93.

. 96.

110.

116.’

222.

217.

101.

127.

108.

119.

125.

116.

.109.

111.

11“.

69.

' 70.

113.

101.

116.

’231.

119.

123.

16“.

1BZ.'

155.

137.

172.

MEAN.

.102321E.01

.1048195o01

.111935e.u1

.113361s.01

.198511soo1

.192409E.01

.201761F.01

.216619E+o1

.2068065+o1

.214139E.01

.2137455001

.216296E001

.21097AE001

.220035E+01

.11“578E+01

.906958E600

.9813868000

'.113254£+01

.1079025+01

.1133739901

.151717r.01

.1116805601

.112133EOO1

.115960E601

.3727008001

.376500E601

.369500‘001

.367000EOO1

VARIANCE

.726989E+00

.7699626+00

.1389956901

21666612401

.1754395502

.15163TE+02

.466461E+01

.456987E+01

.414177E.o1

.6628726001

.6965625+o1

.432296£+01

.466038$+01

.u5uua7s+o1

.1467945.01

.777948£+00

.960569E+00

.320761E+o1

.226612Eto1

.3091a9soo1

.269629Evoo

6330192E§00

..3599BGE+00

.296143:.o1

.3201168001

.323221coo1

.3230335+o1

Size 60

SKEHNESS

.156228E+01

.1893655901

.6611985001

.5526795001

.8777768001

.917ESBE+01

.262220E001

.165439E+01

.193303E001

.175326E+01

.2360685601

.1887775901-

.2211608+01

.187671E601

.221109E+01

.245260E+o1

.2660706+01

.480757E+01

.2776316001

.313162E+01

.213166E001

.1561395601

.151661E.o1

.167213E+01

.425115£.oo

6.6330698600

.665551E000

.921509E900

KURTOSIS

.562291E001

.6556606.01

.3670696.02

.5181378502

.9968126.oz

.1150226003'

.176910E*02

.735105£.o1

.6753106.o1

.670771eoo1

.1197032.oz

.610619E+o1

.109379E.oz

.753693E+01

..992167E+01

.1307735002

.125809E002

.9538325002

.13k100E002

.1652208002

.9662385001

.6717778601

.6602008001

.799150EQO1

.319199E901

.3163696001

.3366628001

.2376065601



TEST

POSEXHY

POSEXMP

possxu1ps

'POSEXH1YS

posst1v4

posexn1pn

BAHSETTN

annserrx1

annssrrxz

eansertv

annszoru

aanseorx1

ennseorxz

annssorv

GLEJSERX1

GLEJSERXZ

GLEJSERY

pnnxx1

PARKXZ

PARKY

GOPN

GGPX1

capxz

copy

can»

caux1

60~x2

couv

203

TABLE C2: Test Results - MOdel 1, Sample Size 90

5L???“| LEVEL

.Cl

11.

13.

36.

13.

1C.

19.

11.

1B.

7.

‘
3
'

o

12.

11.

11.

15.

.5?

97.

c6.

71.

83.

97.

Q30

‘08.

99.

59.

99.

“9.

“30

.1C

112.

116.

136.

133.

168.

119.

97.

98.

810

95.

10“.

9B.

195.

’1th.

121.

126.

113.

159.

96.

125.

”SAN

.123059E.c1

.134666s.01

.1094752.c1

.1oe9ase.01

.122936E+01

.124322:+01

.203131s+a1

.2113435+a1

.197669E+01

.zcsu1za+01

.2:3291E+01

.2135355+31

.204»96E+01

.21371zs.11

.105396£+o1

.999167E.30

61038255001

.10313SE+01

.10666ua.81

.109727E.91

.1373965.01

.105971E+01

.109696s+01

.11csaaa.a1

.u1c9oce+a1

.u1usuosos1

.6932906+21

.4124)LE+c1

VARIANCE

.7721625+00

.3115925*03

.129785E001

.1268615001

.199892E001

.2324026+01

.9179635601

.96h3333+01

.375536E051

.4154052+a1

.4136155.01

.667213Efa1

.4314795401

.435177s+o1

.12666JE+01

.5551735ooo

.1082362.01

.2334055.01

.2311nncoo1

.1933682.01

.1163452.29

.1622555+oo

.197911E.ao

.1668652.oc

.366679E+01

.356756E+91

.3366365001

.3696125901

SKEHNESS

.1601676001

.183351aoa1

.5310865od1

.461991£+o1

.55975TE+01

'.66£03BE+01

.2063465.01

.2195382.01

.191aa9a.01

.1952596+01

.188595E+01

.231a3oe+o1

.2227295.01

.1951402.01

.222196£+a1

.236639Eo01

.245667£.n1

.33611aa.o1

.2~669~e.91

.260156s.o1

.1972435o61

.121asze+o1

.194247£+01

.1121965+a1

.6266925.0o

.410921aooa

.9aaz7zs.oa

.332017sooo

KURTOSIS

.6366366001

.6595335001

.495267E.az

.3773032.02

.5399592.02

.7124002.02

.9486652.01

.99261oeon1

.7761565901.

.7936692.n1

.712991E.a1

.1113756.oz

.160667a.oz

.660460£.o1

.106937E.oz

.966676E.o1

.1252925002

.1949696.02

.1162696.02

.1200336.02

.9299526.01

.6220236.01

.6979656.01

.517267E.a1

.302537E001

.362673£.o1

.33171.E.61

.2656656001



Test

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

TABLE C5:

% Rejection at o

.01 .05

19.9

30.2

45.

62.

10.0

44.7

55.5

68.

81.

Test Results - Models 2, 3 and 4

.6 15.

.3 15.5

.10

\
I
O

12.2

0 80.

4 90.6

17.5

54.9

66.8

.6 10.6

204

Mean

Mmklz

Sample Size

.433063

.788937

Sample Size

.367349

.496730

Sample Size

.798915

.518366

Mbdel 3

Sample S1ze

1.41422

1.70927

Sample Size

3.45077

3.97375

Sample Size

4.76302

5.80468

Model 4

Sample Size

1.01705

1.12064

Sample Size

.962272

.998673

Sample Size

1.03153

1.01445

variance

30

.078897

.202364

60

.071884

.100863

90

.191194

.112849

30

1.39668

1.94973

60

4.37355

5.02404

90

5.83823

7.10041

30

.816278

.958701

60

.649272

.677300

90

.744858

.738918

Skewness

1.20911

.971755

1.20513

.913994

.911975

1.08354

1.62245

1.71405

1.28624

1.00875

.974417

.777068

1.83557

1.85398

1.57627

1.73510

1.79539

1.63736

Kurtosis

5.01158

4.20716

4.58735

.375351

4.28510

4.34822

6.29281

7.29449

5.74488

4.43899

4.13101

3.62015

8.09556

8.29186

5.79053

7.15953

8.04375

6.77984



Test

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

POSEXMY

POSEXMP

TABLE C6:

% Rejection at o

.01 .05

2.5

13.

85.

8

90.5

66.7

92.3

39.8

55.6

34.2

51.7

16.

43.3

16.3

7. t
o

21.1

89.

93.

72.3

93.9

14.

51.4

66.1

43.8

61.3

33.6

19.1

55.5

23.8

.10

12.9

25.3

90.9

94.5

77.9

95.2

12.3

20.6

57.6

20.2

52.6

69.7

41.0

29.7

60.5

10.0

79.3

205

Mean

Medel 5

Test Results - Models 5, 6 and 7

Variance

Sample Size 30

1.13959

5.38091

1.74522

1158.26

Sample Size 60

453.589

12039.5

159614.

526541000.

Sample Size 90

296.825

48.5093

Model 6

Sample Size

.845045

2.83147

Sample Size

21.3371

34.5887

Sample Size

18.0231

10.6566

Model 7

Sample Size

1.44189

3.32074

Sample Size

2.34178

5.33288

Sample Size

1.50024

2.71246

165941.

4991.84

30

.794669

75.6904

60

5034.05

16791.2

90

3290.12

286.901

30

1.32832

10.9710

60

1.67149

23.5468

90

.850417

8.79796

Skewness

2.69912

15.6630

.519493

4.77357

1.43958

4.58076

N .95879

.68327

6.51388

.73581

.85384

5.23155

2.52995

3.52249

1.27134

1.67051

1.59515

.36190

Kurtosis

11.6914

285.515

2.97602

46.0781

4.52777

29.7045

17.6064

120.388

55.2004

97.2244

43.4622

52.3475

14.8763

29.5735

5.68311

6.69945

6.70044

9.23780



YFST

POSEXNY

Possxnp

POSEXHlPS

POSEXHlYS

POSEXH1YH'

POSEXH1PN

BAHSETTN

annssttx1

aanszrrxz

anuserrv

annseoru

BAHSEOTX1

aanseorxz

BANSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKX1

PARsz

PARKV

GQPN

VGQPX1

COPXZ

GQPY

GONN

GQNX1

GONXZ

GQNY

TABLE C7:

ALPHA LEVEL

.01

22.

18.

107.

105.

87.

83.

95.

625.

86.

506.

65.

790.

70.

662.

509.

389.

371.

338.

.05

65.

51.

307.

289.

295.

208.

837.

211.

763.

17k.

930.

190.

866.

798.

7.

658.

652.

38.

700.

329.

83.

963.

829.

83.

699.

123.

583.

.10

102.

83.

A69.

922.

362.

39k.

314.

919.

321.

860.

275.

.96“.

272.

932.

904.

22.

822.

772.

86.

793.

#36.

122.

987.

895.

23h.

87k.

293.

610.

206

MEAN

.102399E701

.947367E+00

.237458F+01

.228981E‘01

.209107E§01

.2170636901

.3911585+01

.114777E702

.389356F+01

.100752F+02

.341522E+01

.144523E+02

.34343u=.01

.125283E+02

.632699V+01

.764928€+00

.532093E+01

'.804.29E+01

.939210E+00

.9577522+01

.2541932401

.12273aE+o1

.1846115002

.9396595401

.2614005.01

.6uusooe+o1

.363500E+01

.5928908001

VARIANCE

.1667795901

.151176E+o1

1254072€+01

6268113E+91

.2120655+01

.2268535‘01

.1280905+02

.3191166+02

.1296745+02

.2923525+02

.103966£+02

.394877E.oz

.1102055+02

.378959E002

.1541535102

.424896£.oo

.1150945ooz

.5970525+02

.19126ue+o1

.550449E+oz

.692107Ef01

.2609oos+o1

.3554325.03

.131247E+03

.176076E+o1

.28956SE+01

.210786€+o1

.267950E*01

Test Results - Model 8, Sample Size 30

SKEHNESS

.3315395+01

.392662E+01

.317209E+01

.2895h1E+01

.291336E+01

.3261Q3F+01

.161461E+o1

.6603585+00

.172223£+01

.8327715+00

.175233€.a1

.526245£+00

.179092£+01

.699133£+00

.213448£.o1

.16327ZE+01

.1686505+o1

.233681E+01

.259052£+01

.1958495+01

.6288395+o1

.606349E+o1

.482653E+01

.6529695oa1

.5668686+oo

.2664505+00

.6666965.oo

.300967E400

KURTOSIS

.18986h5002

.26426SE+02

.19919.E+92

.156694E+02

.163254E+02

.206503E+02

.628253E+01

.390933E+01

.719598E+01

.360774E001

.739409E001

.32751TE+01

.7601115001

.399926E+81

.1255805002

.655696E901

.916900E501

.103276E702

.1181726002

.902932E001

.325771E902

.661515E902

.470581E002

.785258E602

.329039E001

.285757E001

.333751EOO1

.297326E601



IESI

POSEXMY

POSFXHP

POSFXH1PS

POSEXHlYS

POSEXH1YH

POSEXH1PH

BAHSETTN

BAHSETTX1

BAMSETTXZ

BAHSETTY

BAHSEOTN

BAHSEOIX1

BAHSEOTXZ

BAHSEOIY

GLEJSEPX1

GLEJSERXZ

GLEJSERY

PARKX1

PARKXZ

PAPKV

GQPN

GOPX1

GQPX2

GOPV

GQNN

GONX1

GONXZ

SONY
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TABLE C8: Test Results - MOdel 8, Sample Size 60‘

ALOHA LEVEL

.01

21.

27.

497.

471.

529.

549.

67.

974.

181.

952.

77.

981.

123.

963.

967.

9.

912.

849.

5.

629.

101.

20.

995.

920.

9.

650.

16.

“02.

.05

79.

78.

776.

760.

785.

810.

167.

993.

331.

988.

187.

998.

982.

940.

30.

923.

255.

58.

1000.

975.

73.

909.

101.

78“.

.10

195.

126.

890.

879.

886.

900.

256.

998.

936.

99k.

276.

999.

357.

997.

999.

“7.

996.

969.

72.

959.

391.

90.

1000.

989.

192.

978.

220.

916.

MEAN

.1147325001

.1129505+01

.6042315991

.398029E501

.556857’601

.545173€+01

.33011OE+01

.2592655602

.531346E+01

.225673F+02

.3922445001

.2773945602

.4469205901

.2415775602

.117274¢+82

.735137E+00

.9393365+01

..219383F002

.867561E+00

.1672965002

.1815935001

.966902E000

.190879F+02

.795205E.nl

.629700E+01

.9395006681

.9161002601

.813000'+01

VARIANCE

.127505E+01

.129233E+01

.861476E701

.9785025+01

.11759BE+03

.907616E+02

.1161625+02

.8522455.02

.2441s1s+02

.790984E+02

.130689E+02

.947347E+02

.197091E+02

.877744E+02

.252891E+92

.953183E+00

.1.0323£+oz

.2565976403

.1504315401

.117164E003

.861418E+00

.3837175‘00

.7195368002

.2573436502

.216616E+01

.950958E+01

.323431E001

.8197255001

SKEHNFSS

.222537E+01

.224789E.o1

.569943E.01

.613891E+01

.1032355.02

.106271E+02

.195489E.a1

.453889E+00

.1695992+o1

.553944E+oo

.2172925.o1

.4237156+oo

.209236E+01

.4372925+co

.1516705.01

.417224E+o1

.11114oe+o1

.150014E.o1

.2928065501

.1343915401

.2962695901

.189226E+01

.163058E+01

.17151aE+01

.532669E+00

.363561E+00

.631665E+00

.372629E+00

KURTOSIS

.1026728002

.9637215001

.679623E+02

.637762E+02

.1353542403

.1556075403

.6643255401

.349667:+o1

.681178E001

.345284s+o1

.1062115o02

.3251795.o1

.9233645401

.32136SE+81

.732911E+01

.2927326902

.572619E+o1

.650946£.o1

.152525£+oz

.624060E001

‘.1707705002

.8227165401

.8093305001

.669535E001

.3276108001

.3673995001

.323689E081

.2955155001
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TABLE C9: Test Results - MOdel 8, Sample Size 90

ALOHA LEVEL

TEST .f1 0‘35 .10 MEAN VARIANCE SKEHNESS KURTOSIS

POSEXMY 35. 91. 130. .1121735101 .1319625+J1 .2242776o01 .9943955.01

POSEXMP 27. 72. 119. .1059285+01 .12843ZE+D1 .2724272+01 .1336992402

possxn1ps 012. 959. 903. .522190£+01 .9271366+01 .4319402101 .316980£.02

POSEXH1YS 000. 950. 900. .504301E.01 .805634E+01 .421537E+01 .311904E.02

Posexn1vn 764. 945. 979. .51517as+c1- .1300922402 .530430£.01 .435414£.02

Posexu1pn 790. 957. 991. .538341a.01 .1657795o02 .535401E+01 .407963E002

BAHSETTN 95. 210. 3312. .375830£+c1 .139839E+02 .1700602401 .6609902o01

eanserrx1 1000. 1000. 1900. .407906£+02 .1349942403 .4745376100 .3501596o01

aAnserrxz 151. 279. 369. .4737962+01 .2055445002 .1675192o01 .6269566901

94552777 995. 999. 1030. .332650£+02 .1216656603 .3929075400 .2941062401

annssoru 09. 211. 296. .362446E.01 .1301642102 .164023E+01 .6368175001

BAHSEOTX1 10t0. 10:0. 1010. .430743E+02 .1504522o03 .4614702400 .3403912401

aawssotxz 121. 242. 335. .4153935+01 .174077E+02 .179000£+01 .72637kE+01

00552077 997. 999. 1000. .353509E.02 .1356902o03 .EEZBZEEOOO .316301E+01

GLEJSERXi 10:0. 1000. 1006. .179954s+02 .341167E+02 .9949512100 .493632£+01

GLEJSERXZ 13. 42. 64. .3764055+00 .1151506+01 .3635352001 .223371E002

GLEJSERY 996. 1000. 1000. .132573E+02 .1570275402 .769243E.00 .4744992401

PARKXi 973. 996. 999. ..3682128002 .520263E+03 .145011E.01 .6676966o01

PARKXZ 4.~ 35. 91. .9093472+00 .1005272101 .3668948001 .3216165002

PARKY 959. 990. 997.- .265477£.02 .223529E.03 .9256565400 .677066E001

GQPN 99. 249. 351. .157300£¥01 .3404272400 .2193792401 .986399soo1

00Px1 23. 63. 96. .950764E+00 .2375642100 .165671E.01 .7720952o01

GQPXZ 1000. 130c. 10cc. .137294E.02 .45211ze+02 .2069696001 .1161742402

GQPY‘ 970. 990. 994. .6761942401 .134047E+02 .1659436061 .7740316o01

GQNN 4 2:. 67. 172. .4661002.01 .2373716401- .3973112400 .332223a.01

GQNX1 599. 965. 970. .1153502o02 .6002365101 .2762755.00 .276246E001

GONXZ 20. 51. 11:. .4197006401 .341160E001 .4640292100 .2947702001

couv 746. 867. 942. .9952002401 .4096596401 .1953462100 .2974302001
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TEST

POSEXMY

POSEXMP

POSEXHlPS

Posexn1vs

POSEXH1VH

POSEXH1PH

BAMSETTN

8AMSETTX1

BAMSETTXZ

BAHSETTY'

BAHSEOTN

annssorx1

annseorxz

aanseofv

GLEJSERXi

GLEJSERXZ

GLEJSERY

PARKX1

PARKXZ

PARKY

GQPN

GOPX1

GQPX2

GQPY

GQNN

GQNX1

GONXZ

GONY
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TABLE C10: Test Results - Medel 9, Sample Size 30

ALDHQ LEVEL

.91

281.

261.

188.

551.

22.

44.

“Rb.

455.

441.

413.

156;

271.

756.

267.

.15

Sf.

MEAN

.e159915+00

.1:e7955+61

.277602£+01

.299811E+01

.276317E+01

.253184E+61

.3212645901

.434509E+01

.10669SE+82

.4364365401

.3652715701

.41384ZE+01

.121641E+02

.519414E001

.952631£+00

.7580795791

~.1223905+01

.9198325000

.791138E+01

.165745E401

.2708585781

.16937GE+92

.132629E+01

.293672E001

.298930E+01

.3881OOE+01

.5914?OE+01

03893006701

vnaxnwca

.603627E+00

.8402482.30

.332157s.01

.44891as+01

.3846093+01

.2710922+01

.993483E.01

.151496s+02

.356451a+02

.157319E+02

.1273272402

.1414585082

.3625352402

.1529945o02

.7964622+00

.404758E002

.1003615+J1

.242649E+01

.4373632o02

.5139716o01

.7687695401

.212242£+03

.2206452401

.1001552402

.2090492o01

.1572012+01

.2003412o01

.233923E+01

SKEHNESS

.2112975001

.197277E+01

6116224E+01

.1454462o01

.1345022+01

.1046123401

.139421s+01

.1433412o01

.503351E+00

.153212£+01

.2294492o01

.15391cs+01

.544469E900

.1776475401

.202250£+01

.3514405+01

.1378712401

.4995352+01

.223106£+01

.298996£+C1

.5779652+01

.2066752:01

.4723912401

.560572E901

.4724792+00

.7501722400

.283034£+00

.4002112400

KUQTOSIS

09691155901

.883511E001

.6603235031

.6062932.01

.602573E001

.4394542401

.7771702.01

.526979£.01

.3062756o01

.636092£.01

.1296255402

.5790066401

.3062312401

.749510£.01

.103905£.02

.2595076402

.1005312402

.4415362.02

.1090622.02

‘.17a769£.02

.5285935002

.191806E002

.653172E002

.561085E902

.298170E601

.3856365001

.318017E001

.3137005001
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TABLE C11: Test Results - Model 9, Sample Size 60

ALPHA LEVEL

TEST .01 .05 .16 MEAN VARIANCE SKEHNESS KURTOSIS

Possxn7 507. 616. 668. .661996£+01 .1469662403 .3326615401 .1967626o02

POSEXMP 599. 709. 765. .104693£+02 .180523E+03 .323278E701 .187664E002

POSEXHiPS .927.' 961. 976. .2639465.02 .200254£.04 .4260166001 .2795496402

possxu17s 951. 961. 989. .364927E+02 .4255452.04 .5576566401 .4644716402

POSEXH1YH 963. 982. 99:. .1388845+03 .32919SE+06 .162616E+02 .4292066403

POSEXHiPH 939. 967. 960. .757646s+02 .2342426+05 .4362446401 .2664956.02

BAHSETTN 276. 446. 531. .679164E+01 .391694e+02 .1499636+01 .5525992401

BAHSETTX1 363. 540. 640. .6747745701 .5975522+02 .1564632.01 .6006456601

aanssrrxz 994. 1020. 1002. .403239E+02 .2591155703 .6577656+00 .364270E701

aanserrv 624. 774. 621. .1546666.02 .1500636.03 .127007E+01 .469406£.01

BAMSEOTN 299. 461. 558. .72007oe+01 .4266206402 .166500E701 .5162796401

6AMSEOTX1 3E9. 546. 629. .6827126.01 .530560E+02 .1609625401 .6232402401

sansaorxz 997. 1020. 1026. .4192775402 .257519E+03 .6937902.00 .3796616401

BAHSEOTV 633. 756. 609. .1569366402 .1592046403 .1306548701 .5063566.01

01:3senx1 2. 9. 21. .655221E+00 .454536E+00 .2450922401 .1263616402

GLEJSERXZ 965. 996. 1030. .2676215402 .327425£+03 .1601236401 _.694736£.01

GLEJSERY 564. 713. 760. .9576448+01 .924892E+02 .1743516401 .6530956401

PARKX1 2. 27. 75. '.6364952.00 .1371106+01 .2421132401 .1025016402

PARKXZ 756. 693. 939. .1747952402 .179961E+03 .1360945401 .5242242401

PARKY 142. 310. 439. .3345636.01 .1350352+02 .193502£+01 .6061466401

GQPN 324. 475. 570. .266479E701 .3963766401 .25036ZE+01 .1116026402

'609x1 1000. 1060. 1000. .3631196402 .706699E+03 .2206202401- .1052012402

00972 410. 536. 6:2. .3534736401 .1626076+02 .4410036401 .3521962402

GQPY 733. 659. 695. .654766E+01 .4039956+02 .3096992+01 .179211E.oz

GQNN ‘ 7. 75. 191. .4126005401 .2626245401 .4403916+00 .3150546401

GONX1 6. 96. 237. .4445002401 .2317296+01 .3514156400 .2915262401

60Nxz 576. 666. 966. .6962006401 .4312672401 .2203046400 .2704535401

60N7 56. 266. 454. .5423005401 .329937E.01 .3625936400 .2972776401



TEST

POSEXMY

POSEXMP

POSEXHlPS

POSEXHiYS

Posexu1vn

POSEXH1PH

BAHSETTN

BAHSETTX1

BAHSETTXZ

BAHSETTY

BAHSEOTN

BAMSEOTX1

aAnseorxz

BAHSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERV

PARKX1

PARKXZ

PARKY

GQPN

GOPX1

quxz

GQPY

GQNN

GONX1

Gauxz

GONY

ALpHfl LEVEL

.C1

5800

583.

983.

992.

99C.

982.

536.

638.

1060.

969.

7th.

632.

10EC.

970.

.

1000.

956.

17.

993.

570..

593.

1000.

363.

981.

2“.

B7.

9C9.

25B.

.0?

6‘3.

698.

991.

1060.

“992.

660.

766.

10000.

983.

821.

779.

1070.

989.

.13

6510

7&3.

831.

lOLC.

968.

37.

10(2.

989.

159.

1000.

889.

891.

108L.

997.

997.

152.

317.

991.

685.

211

MEAN

.819753E+01

.999223E+01

.430778E+02

.443163E+02

.37683“E+02

.913925E+CZ

.13t13bE+02

.165295E+OZ

.907213E+CZ

.446667E+02

.1BL3AEE+02

.167796E+02

.939406E+02

.953679E+02

.9988858+00

.63588BE+02

.31853HE+02

.119131E+01

'.394661E+02

.9357535.01

.3587285+91

.597386E+02

.210337E+01

.128443E902

.h7kh0089c1

.577830Eot1

.115725E+02

1.741400E+c1

TABLE C12: Test Results - Mbdel 9, Sample

VARIANCE

.1313175+03

.137832E+33

.824218E*09

.5980855+0h

.8282556*flh

.8537205‘09

.1373~1£+03

.180820E+03

.6381h7E+03

.49519OE+03

.167897E+03

.193359E+03

.626225E+03

.519OZSE+03

.436944E+0c

.159536£+04

.6916215403

.310334E+01

.4003605403

.462273E+0z

.796696£+01

.166141E+04

.3h60706001

.9436566402

.2939405401

.245717E+01

.6004626+01

.3692308001

SiZe 90

sxeunsss

.2669446401

.262541E+01

.6376715401

.6265566+01

.506729E+01

.617336E601

.156273£+61

.1334322o01

.264453£+00

.569531E+0o

.965356£+00

.1357626461

.366947E+06

.5409035o00

.112619E.01

.246637E+01

.2433796601

.355173E+01

.961234E+06

.1220935401

.247071E+01

.4566166401

.261606£+01

.2647432401

.4612165400

.2499526406

.3410146406

.257033E000

KURTOSIS

.1373346602

.1424166.02

.5474595602

.5586255002

.3592056402

.511h456902‘

.5992296001

.5065556.01

.315278E701

.3619245601

.3863h75601

.516426£.o1

.3547275o01

.3058098001

.5516695.01

.127010E602

.1155255002

.2179646402

.4437538001

.5135845901

.115424£.02

.5095625402

.1387098902

.158652E002

.3067945601

.3159626491

.3218086001

.328975E601



 

7657

9056797

POSEXMP

905679195

905679175

905679179

905679199

66956779

669567771

669567772

66956777

66956079

669560771

669560772

66956077

GLEJSERX1

GLEJSERXZ

GLEJSERY

969771

969772

96977

VGOPN

60971

60972

6097

6099

60971

60972

6097
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TABLE C13: Test Results - Model 10, Sample Size 30

DLPHA LEVEL

.71

4.

'3.

16.

17.

19.

17.

66.

46.

40.

‘60.

75.

56.

45.

52.

7.

21.

8.

17.

8.

220.

65.

2‘.

20.

E.

9.

17.

90

'-

A

...'

38.

416.

173.

.1:

79.

60.

94.

111.

169.

65.

259.

199.

266.

214.

282.

236.

214.

237.

67.

1:2.

70.

76.

136.

97.

537.

257.

110.

81.

9669

.9605376+60

.9206536400

.1165746+01

.1399746+01

.1670966+01

.1662396401

.3425506+01

.2945945+El

.2647726+01

.2956366.01

.3633696961

.3163736401

.3916656+01

.32L1376601

.155279E+01

.112531E+01

..92203BE+E0

.9579076+00

.1355606401

.1066996+01

.3462006+01

.1791366.01

.11343SE+51

.1016516+c1

.2069006+01

.2753036+01

.3426006+c1

.2836035931

VARIANCE

.75977BE+05

.6859SZE+OG

.7462066+00

.6994676+00

.878750E+OG

.5663026+60

.1071006+02

.6729646+01

.730333E+81

.6166616+01

.1129276+02

.9995566+01

.6315496401

.9766936+a1

.1435266401

.1937356+01

.9514556o06

.2260756.01

.3922256401

.2322515061

.1496366+02

.3796936+01

.1392656+01

.1263456+01

.2261346401

.19139CEf01

.ZGOBBZE+91

.2953165+01

SKEHNESS.

.178366E991

.1913265+01

.2593655601

.2786818601

.2661035701

.25913QE+61

.1727965909

.1870858+01

.1661295651

.1743816031

.1694536601

.1898826+01

.1689116+61

.191223E+01

.975510E901

.9379956601

.283“65£+01

.42c3626701

.3098956+01

.382016E601

.8190235601

6&659185601‘

.33658h2931

.B34589E601

.SZBQZJEOOO

.6226005000

.3392928780

.6851175990

70970515

.729102E601

.8125035001

.1391518602

.151778E+02

.1363046.02

.1314356402

.666892E001

.7278225+01

.6236436401

.6756046401

.6967376401

.6217066.01

.6403716o01

.6121996601

.55907CE002

.4027536.0z

.1611336602

.3203646.02

.1733555+02

.2769596402

.116561E003

.4466006402

.2071796.02

.3306456402

.2935576.01

.2945996401

.2635036.01

.3625646401



VEST

POSEXHY

POSEXMP

"365679195

POSEXH1¥S

POSEXHlYH

POSEXHIPH

BIHSETTN

BIHSETTXl

BIHSETTXZ

BIHSETTV

BIHSEOTN

8|"SEOTX1

BIHSEOTXZ

BIHSEOTY

GLEJSERXl

GLEJSERXZ

GLEJSER?

PIRKX1

PIRKXZ,

PIRKY'

6099

'60971

60972

6097

6099 -

60971

60972

6097
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TABLE C14: Test Results - MOdel 10, Sample Size 60

6L996 LEVEL

.01 .05 .10

. 14. 41.

4. 20. 46.

1. 12. 27.

5. 17. 35.

16. 44. 67.

12. 29. 52.

55. 166. 221.

37. 121. 161.

45. 135. 241.

49. 136. 214.

60. 213. 294.

37. 129. .201.

40. 143. '225.

66. 162. 240.

5. 34. 79.

4. 23. 40.

1. 14. 36.

7. 39. 92.

10. 43. 97.

11. 57. 106.

134. 269. 439.

26. .65. 140.

33. 96. 144.

26. 97. 159.

1. 10. 39.

6. 79. 193.

6. 44. 99.

7. 64. 165.

NE!"

.757862E000

.8239705000

.6723515900

.7091225000

.901231E*00

.6556616400

.317875E001

.281379E001

.311108E001

.2971715901

.3800595901

.2895908001

.2973926001

.3287675001

.925915E000

.7839605‘00

.809568E900

'.9762676.00

.1007466461

.1076216401

.1697496.01

.1131616.01

.1149176.01

.1140766401

.2563006401

.4146006401

.3164006.01

.4007006.01

VARIANCE

.b02189E*00

.9874568900

.2376478900

.3000066900

.7097676400

.5989585400

.1052205902

.792116E+01

.826717E+01

.9272206401

.1300766402

.6517956401

.6161326+01

61135625902

63752885500

.5631116400

.5188126400

.201952E001

.222601E*01

6235217E§01

.6514596+06

.9718ZZE000

.4923366400

.503675E000

.25h7665001

62570675001

63188295001

6252197E§01

SKEHNESS

.165680E001

.235830E001

.213285E601

.2366366401

.5546506401

.5556036.01

.2090116401

.1950716401

.1661406+01

.2036356401

.1763328901

.2032146401

.1630996401

.1999236461

.1627636401

.258911E601

.1664576401

.3466166461

.3231426401

.2562046401

.2136566.01

.223352E401

.1945276461

.1939616401

.3932326.06

.5630046.00

.5131686400

.4730406400

KURTOSIS

.61970bE001

0133193E002

o 115 “O“EOOZ

.1175875902

.6397085902

.5986868002

.9286h8E001

.810168E901

.689676E001

.8796216001

.72h9th901

.891175E901

.619350E981

.826226E001

.7103975901

.135706E002

.818086E901

.2551626462

.1829815002

.107917E902

.932509E901

.130361E002

.9025095901

.910690E401

.292767E001

.371902E9I1

.310572E401

.310311E601
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TABLE C15: Test Results - Model 10, Sample Size 90

T?ST

POSEX”Y

POSEXMD

POSEKHIPS

905679175

905679179

905679199

BAHS‘TTN

969967771

669567772

RAHSETTY

66956079

669560771

669560772

66956077

6L6359971

GLEJSE°X2

6L635697

909771

969772

96977

6099 '

60971

60972

6097

6099 ,

60971

60972

SONY

ALDHA LTVEL

19.

27.

22.

29.

37.

45.

97.

90.

#1.

70.

.L5

29.

119.

12k.

196.

13%.

39.

229.

78.

1C9.

71.

6.

9C.

36.

20.

.-

."o

69I O

70,

‘32.

61.

75.

199.

199.

192.

92.

85.

382.

13‘.

15%.

116.

22.

8“.

7‘.

63.

9969

.974639:+30

.9239925050

.9582995+CO

.8392h6EOJ0

.997693E+00

.91667QE+GB

.282217E+01

.284428€+01

.29167QE+01

.32?G!9€+01

.3252956421

.2959935901

.2929885+61

.3594966401

.“5573OE+CO.

.9451916400

.8698295‘90

‘.9995176+00

.9446616400

.9734996400

.1545126401

.1694636401

.1129455401

.1051656.s1

.2792006401

.381CCOEOB1

.3691006401

.3579006901

VAQIANCE

.5723075009

.65598EE003

.519986E700

.625910F’30

.733858E090

.992639E700

.755929E081

.9176725051

.821012EO01

.9393815931

.8b9C62E731

.1810325002

.9CBBhOEOO1

.1120985’02

.9019395000

.590633E960

.6391035‘00

.189533E901

.16922OE501

.138632E901

.2671939000

.2355976000

.2931935909

.223803F706

.300579EOO1

.373689E001

..3797325‘61

.3h1117E001

SKEHVFSS

.19513bc601

.197955°+81

.279933F+01

.3252975701

.32863RE*C1

.27C0125901

.17‘173€#81

.2708095901

.1950177701

.174566E+01

.159297E931

.2583399+01

.2169935901.

.1662395+01

.201943‘601

.1859206061

.1678935001

.2694806901

.25E335E701

.2330365+91

.1990939001

.137559E631

.16h9955001

.132921FOD1

.3896965000

.2539109900

.3953715400

.35C337F900

KUDTOSIS

.8973OSE*81

.77‘282E*51

.196993E+C2

.1898C460C2

.1887915‘02

.1346546.02

.7150976401

.1543776402

.7343766401

.6699126401

.5529916401

.136579E902

.9746066.c1

.6906018+01

.6970916461

.7636656.c1

.6599566401

.129970E902

.1117926.02

.1505646602

.8796765001

.592837E601

.7702h25001

.6199ZZE9C1

.2797296601

.2801008901

.276333E001

.292933E001



TEST

POSEXMY

POSEXMP

POSEXH1PS

905679175

905679179

905679199

66956779

669567771

669567772

66956777

66956079

669560771

669560772

66956077

GLEJSERX1

GLEJSERXZ

GLEJSERY

969771

969772

96977

GQPN

GOPX1

GOP!Z

GQPY

GQNN

GONX1

GONXZ

SONY
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TABLE C16: Test Results - MOdel ll, Sample 5126.30

ALPHA LEVEL

.01

5.

5.

25.

29.

19.

29.

26.

38.

20.

21.

35.

39.

39.

10.

31.

15.

39.

60.

31.

73.

110.

72.

60.

23.

b3.

65.

79.

.05

26.

39.

72.

77.

B3.

66.

75.

97.

116.

97.

73.

106.

185.

117.

62.

107.

72.

106.

.111°

1190

210.

260.

197.

166.

66.

138.

183.

179.

.10

60.

63.

127.

129.

129.

118.

162.

159.

213.

172.

128.

19k.

261.

201.

131.

1.3.

137.

166.

195.

200.

332.

356.

310.

256.

166.

305.

367.

362.

MEAN

.8731175000

.698607E600

.1206995001

.1229925001

.120229E901

.1157035001

.236197E701

.256758E901

.2869106‘01

.267310E‘01

.2293565001

.2778696001

.3052375901

.2635835001

.12676HE¢01

.1556865‘01

.1391565001

.1607305901

.176275E901

.1770605001

.2315635001

.2365618901

.1977105001

.1662075901

.3071005001

.337500E+01

.6086005001

.6128005001

VIRIINCE

.716BZBEFDO

.755556E600

.8366885000

.120111E001

.1152636.01

.7665576.00

.5627756.01

.6253116601

.7266966+o1

.6095566701

.5779358001

.6662906601

.6030016.n1

.7173666661

.1676766so1

.275952E001

.1566536.61

.6635276601

.5760676oo1

.7306166.o1

.3617205001

.6237266‘01

.280819E001

.2727326oo1

.239930E001

.2179556001

.226265E001

.2367968901

SKEHNESS

.2156366031

.2176666001

.210935E601

.3659006001

.366675E001

.2005915001

.20363BE001

.180995E’fll

.1691768001

.165151E001

.253068EO'1

.1595926901.

.1566156601

.1613656.o1

.2113605081

.282507E001

.196251E601

.7670735001

.ZSZSDDEOI1

.6561376o66

.966266E001

.5659016901

.2788165001

.3650758‘01

.6663086030

.5293068000

.257271E000

.6668626000

70970575

.9666676o01

.9929288001

.992376E601

.2735976002

.2695656.02

.6661666.61

.6557996601

.7102205001

.6698256001

.697371E001

.161618EOIZ

.5820005001

.725103E001

.6076156701

.105256E002

.158657EOIZ

.363035EOI1

.1101306003

.1092605602

.3990675002

.6025668002

.628637E002

.156565EOIZ

.2680198002

.309563E601

.3339686001

.257966E001

.3010566901



TFST

POSEXMY

POSEXMP

POSEXHipS

POSEXHlYS

POSFXH1YH

POSEXHiP“

BAHSETTN

BAHSETTXi

BAHSETTXZ

BAHSETYY

BAHSECVN

BAHSEOTXi

BAHSEOTXZ

BAHSEOTY

GLEJSERXl

GLEJSERXZ

GLEJSERY

PARKX1

PARKXZ

PARK?

GQPN

GOPX1

GQPX2

GQPY

GQNN

GONX1

GONXZ

GQNY

TABLE C17:
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Test Results - MOdel 11, Sample Size 60

ALPHA LFVEL

.01

23.

31.

155.

157.

268.

258.

23.

75.

70.

09.

27.

69.

66.

92.

36.

72.

82.

75.

56.

as.

51.

”199.

163.

218.

7.

39.

32.

70.

.05

51.

107.

230.

298.

396.

368.

73.

207.

138.

231.

133.

187.

233.

103.

15“.

228.

171.

328.

396.

“#1.

53.

237.

199.

302.

.10

139.

161.

30°.

3‘2.

981.

A60.

12°.

302.’

286.

352.

198.

305.

27%.

33k.

293.

280.

350.

290.

295.

351.

285.

952.

hfifl.

563.

135.

923.

373.

“99.

MEAN

.1170305001

.129059E+01

.2115707601

.231528€+01

.9359895001

.2677206o01

.2362236+01

.3726926+a1

.3616116+a1

.911293C+01

.295995?+01

.3765666o01

.3571266+t1

.6160166601

.1711536+o1

.192981E+01

_.22679BE+01

.2361006+01

.1961355901

.2725266601

.160399=+o1

.1062355+01

.1920176+o1

.2150036.01

.7616006.01

.5265006+o1

.6965006o01

.561500E+01

VARIANCE

.1116625001

.1370285701

,6335606701

.1066766+02

.1126066+03

.9023636+02

.6102666+01

.1075166602

.1067376602

.1326276+02

.6656776+01

.1053616+02

.103893F002

.129307E+02

.2392576001

.9295296601

.359297E601

.1092615602

.6967576601

.1029995702

.3673996300

.9699606+00

.1076096+o1

.1339895‘01

.2353666+01

.3601766701

.3361126601

.3922205001

SKEHNESS

.1930775001

.201193€+01

.6169166.01

.5667266oa1

.9677736601

.1056076.02

.2506365001

.1652606+01

.1529556.01

.1766936+o1

.2256766+01

.1699926+01

.1526516+01

.1719776901

.2220636+o1

.2666966.01

.2366166.01

.3632756oo1

.2276166.01

.2500606+o1

.2061276.01

.1656536.01

.1616096+01

.1650366oo1

.5300696+00

.3603606o00

.2226336+oo

.3078136900

KURTOSTS

.8013Q3E+01

.8609795601

.67975?E+02

.52011?EOOZ

.195096E003

.1729036603

.130686E+02

.585605€+01

.5967268901

.7725?5E+01

.11096§£+02

.5901995601

.5751905901

.7666016701

.1186976+02

.1ZSOTSE+OZ

.136699E+02

.2697606+02

.9778525001

.125633E+02

.9261796601

.5850368901

.915870E601

.6999075901

.331289E+01

.296357E001

.2866675901

.2891235001



YES?

POSEXMY

POSEXMP

POSEXH1PS

905679175

905679179

905679199

66956779

669567771

669567772

66956777

66956079

669560771

669560772

66956077

6L6356971

GLEJSERXZ

6L6J5697

969771

969772

96977

a...

‘60971

60972

6097

GQNN .

60971

60972

6097
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TABLE C18: Test Results: M0del 11, Sample Size 90

ALPHA LEVEL

.01

36.

39.

25k.

281.

306.

277.

Z“.

102.

171.

199.

20.

109.

17k.

200.

73.

215.

292.

156.

135.

216.‘

31.

316.

209.

372.

22.

132.

89.

177.

.05

109.

120.

#06.

#37.

665.

“17.

90.

285.

393.

611.

9“.

285.

376.

399.

270.

927.

503.

361.

319.

“35.

138.

559.

“20.

629.

67.

259.

176.

331.

.10

163.

19k.

#95.

537.

560.

513.

173.

611.

509.

593.

158.

603.

505.

531.

#29.

562.

639.

665.

“31.

566.

251.

688.

555.

3766.

105.

632.

325.

520.

9669

.1251606.01

.1378925701

.2919825701

.3075666i01.

.337160‘701

.3259999701

.250810’001

.9553155701

.551052F+01

.593605E+01

.239295E001

.hS8005Ef01

.5501855001

.592629E001

.2387756001

.339693E+01

.366656E001

'.367866E+01

.3270066.o1

.6516636ou1

.16116ME601

.2060336o01

.1607616601

.2159326oo1

.6122006+01

.6316006601

.5653006.01

.669000F001

-- .,

VARIANCE

.139810E701

.1590055701

.130066E+02

.122269E702.

.1696566+02

.2035706+02

.616316E001

.1617396+02

.1629306o02

.1970606+02

.5766756+n1

.1667036+02

.1762666o02

.2029976+02

.2700376601

.839271E601

.7371606601

.1609196002

.1206166ooz

.1662676+0z

.196619E600

.6563536600

.6066996600

.6371616+00

.3676596.01

.3620706.01

.9166925901

.3963666+o1

..-. - . o .... --..

SKEHNESS

.217361E001

.2311636+u1

.5563766+o1

.6616936+o1

.6662126+01

.5669266+o1

.1717676+o1

.158672E001

.1069276+o1

.1261156601

.166563E+01

.1666696+o1

.125120E901

.1363666+o1

.1626666+01

.1953066+01

.2177936+01

.2166716+o1

.1616666+o1

.1536356601

.1015116+o1

.1290626+o1

.1629366+o1

.1369666.o1

.5016066oou

.6332766+on

.2665306ooo

.2093696ooo

KURTOSIS

.102965E002

.1172606.02

.5032036o02

.350039E002

.3296236.02

.6069666.02

.6615596001

.7165566.o1

.6660676oo1

.563086E001

.6083198701

.7630156.o1

.5306626oo1

.5709385001

.6665516.o1

.9651286001

.1106276+oz

.1006166ooz

.5661116701

.6155766.o1

.792353E001

.693703E001

.815912E001

.6592105‘01

.317998E001

.316970E081

.325696E001

.293995E081



TEST

POSEXMY

9056799-

POSEXHlPS'

POSEXHlYS

POSEXH1YH

POSEXH1P9

BAHSETTN"

BAHSETTX1

BAHSETTXZ

BAMSETTY

BAHSEOTN

BAHSEOTX1

BAHSEOTXZ

BAMSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKX!

PARKXZ

PARKT

GQPN

GOPX1

GQPX2

GQPY

GQNN

GONXl

GONXZ

CONT

TABLE C19: Test 9650115, MOdel

ALPHA LEV‘L

.01

12.

1k.

59.

79.

75.

A3.

65.

195.

56.

177.

36.

317.

599.

277.

33.

209.

56.

1676

.05

97.

52.

178.

18k.

167.

138.

163.

A66.

158.

#08.

116.

588.

169.

511.

928.

63.

363.

335.

113.

358.

25“.

188.

767.

665.

61.

366.

170.

361.

.10

62.

63.

269.

296.

277.

255.

215.

616.

236.

598.

206.

722.

262.

691.

596.

110.

699.

666.

195.

#82.

385.

257.

866.

519.

207.

653.

353.

581.

216

MEAN

.938872E000

.102033E+01

.189367FFO1

.198991E+01

.1986555’01

.1705003fflt

.309803Ff01

.630350E+01

.329111E+01

.57013HEOO1

.286670E+01

.765329E+01

.321861E+01

.6869205*01

.353681E§01

.122916E+01

..3065206’01

0922538F+01

.1553ZSE+01

.6273216+01

.250011E+01

.1966595001

.701607E001

.3805605701

.3573006001

.519100F601

.9033006901

.988900E701

12, Sample Size 30

VARIANCE

.1126976.n1

.1270166601

.1521666+u1

.3366766+01

.61.6656+o1

.1392596+01

.6766666601

.1673656+02

.9365766.61

.1567666+02

.7779576+61

.207513E+02

.968297E001

.208103E*02

.66088“E+01

.152971E+01

.589633E+01

.3061925+02

.998009E901

.235728E+02

.6565366.h1

.6996166+01

.3710036.02

.2556266+02

.197725E001

.2531155901

.22601TEOO1

.3137825001

SKEHNESS

.296181E701

.3192665+01

.275682Efi01

.50272hE+01

.907656E*01

'.2791025701

.18h122E+01

.107uOSE+01

.1791255+01

.1008506+01

.209639E+01

.86221TE+00

.193191E+01

.9696155+00

.209629E+01

..269h79E+01A

.1961776+01

.3919916601

.2450195*01

.2361776601

.5266696oo1

.6676666+01

.2930156.o1

.6327906+01

.6222366.oo

.3606676+00

.hh761hE+00

.1768895700

70970575

.1592956602

.1906256+nz:

.16662767-02-

.931339E9UZ'

.1295266+03-

.1666066+02'

.7356356962.

.6660636+01

.6662566+01

.3666026.01

.1002626.02

.6066706+01

.6995066.01

.6062666+01

.1256166.02

.1336236+02

.1006076.02

.2600606.02

.1069536.02

.1251256.02_

.5336066.02

.6526096+02

.1660236.02

.6960926.02

.3561606.01

.2990696+o1

.2637666.01

.3226796.01



TEST

POSEX“Y

FOSEXNP

POSEXHIDS

POSEXHiYS

POSEXHiYH

POSEXHIPH

BAHSETTN

BAHSETTxl

9AHSETTX2

BAHSETTY

BAMSEOTN

BAHSEOTX1

BAMSEOTXZ

BAMSEOTY

GLEJSEEX1

GLEJSE?72

GLEJSEPY

PARKXI

PARKXZ

PAQKY

GQPN

60971

60972

6097

GQNN .

60971

GONXZ

6097

TABLE C20: Test Results, Mbdel 12, Sample

182.

36.

237.

u N m o

227.

7530

.357.

718.

219

9669

.236393E+51

.2661926.01

.7659656+a1

.832527E761

.1832955+32

.179733E+.2

.2819255+31

.136236E+32

.90107QE+01

.13h212E+32

.2057955+;1

.1929SJE+62

.985195E+61

.192060E+82

.616999E+01

.355380E+017

.7LBQGQE701

'.7669796+01

.2570176701

.959869E001

.1690636+01

.1960256661

.679533E+01

.3666656.a1

.6296:66+C1

.6395&GE+31

.6033306+01

.676323E731

VARIANCE

.728911E+01

.377155E+31

.1953E5EOJ3

.23853ZE+03

.332829E+39

.ZZGTBhE+Jb

.328713£+01

.927389E702

.1836998632

.5839125702

.8631535701

.997883E+CZ

.18A367E902

.638159E+02

.1261QTE+32

.1995226+82

02938Q7E+92

.0333“CHE+52

.858613E031

050656“6032

.5657153700

.1675656+31

.1533965+02

.911186EOJ1

.2399635731

.389630E701

.3606128901

Size 60

SKZHNESS

.2936CHE+01

.321976E+01

.105207£+02

.7937SAE+01

.126820E+02

.1020905+02

.1823666901

.716592E+00

.1698776901

.698810E700

.1990686+01

.673236E000

.179372E+01

.598267E+00

.207988£+01

.29313SE+01

.1620925901

.185398E+01

.2233905701

.1369655+61

.265692£+a1

.169890E+01

.2257635+01

.2929275601

.3911355900

.9136266ooc'

.3992956700

.6533366731 ..1889035700

KURTOSIS

.167952E002

.185626E+02

.1692383903

.1006576.03

.2399066.03

.1661766.03

.7301995601

.3637666.01

.7330796.01

.3661666oo1

.8919626001

.3769666oo1

.6166666+01

.3298585701

.1312156.02

.1566366.02

.769789E001

.6633536.o1

.1061366+02

.5523666.01

.1666606.02

.6632666.01

.1120766.02

.1566376.62

.2920166.01

.3267676.a1

.319999E701

.3383912001



TEST

POSEXMY

POSEXMP

POSEXH1PS

POSEXHiYS

POSEXHlYH

PCSEXH1°H

BAHSETTN

BAHSETTXi

.BAHSETTXZ

BAHSETTY

BAHSEOTN

BAHSEOTX1

BAHSEOTXZ

BAMSEOTY

GLEJSEin

GLEJSEEXZ

GLEJSFPY

PARKXi

PARKXZ

PARKY

GQPN

GOPX1

GQPX2

GQPY

GQNN

GONX1

GONXZ

GONY

220

TABLE C21: Test Results, MOdel 12, Sample Size 90

ALPHA LEVEL

.01 .35 .1.

203. 316. 366.

193. 327. 382.

666. 963. 977.

669. 953. 963.

666. 9’6. 98¢.

83?. 992. 971.

1C7. 232. 39:.

616. 965. 969.

’52. 357. 657.

937. 971. 978.

112. 237. 327.

920. 973. 99k.

366. 556. 658.

061. 9‘0. 979.

666. 981. 997.

675. 730. 8L2.

0:9. 975. 965.

‘80. 927. 961.

291. 521. 655.

855. 936. 96!.

161. 266. 9:9.

039. 697. 763.

981. 976. 966.

676. 8;1. 656.

if. 77. 179.

352. 535. 728.

79. 175. 31:.

56°. 727. 899.

 

MEAN

.267953E+91

.252570£+21

.12913ZE+02

.1193:2§+92

.123319E+§2

61921895+02

65560125701

.2129855722

.809998E+01

.2999365+02

.5531755+31

.2113195902

.628655E+01

.259808E+C2

.5631693+01

.812953E+01

0192773E702

.1366266+02.

.5193136+61

.1717106o02
)

.1656366+01

.2395076+a1

.E9525AE+01

.3536985701

.A987?JE+01

.785200E+01

.5697COE+01

.8888)SE*C1

VARIANCE

.10639BE+02

.838598E+01

.6263666+03

.918C7ZE+03

.503997S+03

.802313E+03

.1531855+02

.73206:6+02

.3565966+02

.1123396+03

.198283E+JZ

.796557E+QZ

.6352316+02

.122.356+93

.13:7756+92

.5976716+02

.7893ZSE+02

.6792996+02

.1606526+02

.9706926+oz

.9252652900

.155757E731

.7696852701

.500815E+01

.2977815701

.A57867E+01

.9938838001

SKEHNESS

.275793E+01

.2565286001

.6051675001

.8735755701

.816387E+21

.63811GE+01

.1595255+01

.588323E+U£

.1530736+01

.3297616+66

.1968?9£+01

.6039176+:c

.1612126+01

.3110366+cc

.1363166+61

.2359CGE+01

.2600256o01

.1252026+01

.1218115001

{.6019656066

.198253£+01

.255739E+01'

.1815566701

.1698236001

.299912E+00

.5096ADE+00

.397925500C

.6309775001 -.22&h96£¢00

KURTOSIS

.1321905002

.117168E002

05907655902

.125176E903

.106156E703

.5669666+oz

.5666276.01

.3606726701

.7726326901

.3228222901

.522239E+01

.371237E+31

.8296395001

.313656E+01

.707912E601

.1137325002

.1636185682

.599786E601

.9676056+u1

.99987ZE601

.8558315’01

.182860E032

.8919586001

.6512935601

.309160E001

.358796E001

.305767E031

.365690E601



7EST

POSEXMY

POSEXHP

POSFXH1PS

poscxn1vs

POSEXH1Y‘

possxu1on

BAHSETTN

BAMSETTX1

‘BAHSETTXZ

BAMSETTY

annseoru

ennssorx1

ennscorxz

annssorv

GLEJSEPX1

GLEJSERXZ

GLEJSERY

PARKX1

pnnxxz

PARKY

GOO“

GOPX1

GQPX2

GQPY

GQNN

GONX1

GQNXZ

SONY

TABLE C22: Test Results, Medel 13, Sample

ALPHA LEVEL

.01

10.

12.

19.

“67.

Rh.

65.

65.

663.

58.

79.

7“.

be

5.

11.

12.

910.

111.

68.

36.

373.

19.

25.

23.

.05

55.

5h.

“2.

59.

63.

«A.

731.

137.

179.

178.

899.

163.

186.

206.

29.

19.

28.

52.

60.

#7.

960.

213.

9“.

619.

73.

65.

87.

.10

118.

112.

6b.

88.

89.

68.

825.

221.

2&9.

296.

908.

25k.

265.

296.

60.

90.

83.

65.

zzi

MEAN

.11565QE501

.1169HAE+01

.102277E+01

.1109259031

.111317F+01

.1003839+01

.963316E§01

.3166736001

.327685?+01

.EAZBSOCOOI

.1292365032

.339h?:F+01

.3917115‘01

.37013§F+91

.95769AF+00

.8111OGE+00

.999SSOE+00

.1ooou55.91'

.1015526001

.1013BHE*U1

.221263?+02

.221356E+91

.155223coo1

.136562F.o1

.6061ooe+o1

.3059ooe.o1

.2739oo=¢01

.310500E931

VARIANCE

.10h230E‘01

.1167055’01

.109293E+01

.171921E+01

.197102E+01

.123551F+01

.293126E+02

.912076E+01

.108925E*DZ

.977366E+01

.hDA0835+02

.103158E+02

.11h251EOOZ

.11h215E002

.6579508900

.76u71oe+uo

.91833ZE+00

.273QQSE+01

.299512F+01

.Z301709+01

.8005758003

.781192E*01

.2972h8E+01

.205“17E+01

.295339’401

.256811E+01

.283571E+01

.269663€+o1

Size 30

SKEHNESS

.19h869E+01

.2591955001

.607087E+01

0627““5E701

.622150E+01

.618522E+01

'.871273E§00

.185972F*01

.17“272F+01

.160777E+01

.773583F§00

.1862“0E+01

.170793F+01

.162233E+01

.176916F+o1

.263OAGE+01

.166.39E+01

.367696E+01

.293763E+o1

.293211E+01

.658h‘fiE+01

.h7366hE*d1

.37357us+01

.361“15E+01

.357268E+00

.399231Eooo

.627807E+00

.330391E+00

KURTOSIS

.9005555*01

01‘63Q65502

0616883£§02

.606530E402

.‘063815‘02

.621516€*02

.393393E+01

.7782056901

.6b98h6E+01

.619915E‘01

.36749OE+01

.7872525001

.6h371SE+01

.6“5077E¢01

.7h992“€*01

.139099E*02

.793“13E+01

.2161125002

.133323E+02

.1“2197€+02

.801055E+02

.33191ZE*OZ

.233861E§OZ

.2h693RE*OZ

.309629E+01

.3uezste.n1

.3h677hE+01

.261596§+01



FEST

POSEXMY

POSEXHP

POSEXH1YS

POSEXH1Y1

POSEXH1PH

BANSETTN

BAHSETTX1

BAHSETTXZ

' BAMSETTY

annseoru

BAHSEOTXi

ennseorxz

aanseorv

GLEJSERXi

GLEJSERXZ

GLEJSERV

Panxx1

pnnxxz

panxv

GQPN

GOPX1

GQPX2

GQPY

CONN

GQNX1

GONXZ

SONY

222'

TABLE C23: Test Results,.Model 13, Sample Size 60

ALPHA LEVEL

.01

81.

158.

119.

982.

107.

6A.

15b.

99k.

117.

71.

165.

A.

15.

6.

999.

28.

35.

79.

582.

10.

2.

7.

.05

7A.

98.

136.

239.

182.

997.

257.

176.

311.

1000.

276.

19k.

323.

23.

38.

27.

30.

26.

32.

1000.

60.

92.

188.

953.

7A.

26.

51.

.10

132.

.168.

197.

298.

229.

999.

355.

271.

A07.

1000.

371.

296.

“22.

7A.

6%.

A6.

75.

57.

68.

1000.

105.

1A3.

265.

956.

166.

77.

151.

MEAN

.121661E+01

.1322585+01

.1910705*01

.230861F§01

.197A16F+01

.2523835002

.A2293SE+01

.39369AE001

.A99180F901

.2993615002

.040552E001

.3613A5F001

.519761E+01

.9136385+00

.836187E+00

.7hA979E*00

..879319F+00

.7859695*00

.865776E+00

.1736825t02

.101366E601

.11AA51F§01

.1A18A8E001

.905900EO01

.39suooe+o1

.3052005+01

.3890005901

VARIANCE

.109863E+01

.191019E*01

.Ah0973E001

.225A71E+02

.169211E002

.7ezvuasooz

.159A99E002

.1oaaose+oz

.267291E+oz

.957051£*02

.1rzssusooz

.11aozoE.oz

.zzsosuE+uz

.778216E+00

.1ossa~E+o1

.7szssoe.oo

.1.9177£+o1

.136378E+01

.1511275001

.1056685903

.s1b7zue.oo

.971suos+oo

.77291ss.oo

..9.6.7£+o1

.275063E+01

.273003E+01

.2A023DEOO1

SKENNESS

.1996A9E+01

.23171AEO01

.617959E+01

.100802E+02

.1626625o62‘

.A316005+00

v.16957OE+01

.163469E+o1

.1682876001

.360667sooo

.1677635tu1

.179676Eo01

.1693116601

.1792665oo1

.291306£+o1

.3u6262£+u1

.2717936901

.3661uaeoo1

.2957565601

.208600E001,

.2896A9E001

.251AZOE+01

.1556635+03

.1991zaeooo

.63793uéooo

.366.36£.uo

.569657E.oo

KURTOSIS

.917731E+01

.126703EO02

.66A69AE+02

.153A865*03

.1A5596E003

.3196915901

.716331E+o1

.766767£+o1

.7613565.o1

.3ouou.E+u1

.7ouzrze.o1

.76361ue+o1

.703923E.o1

.6993186001

.1ASASOE+02

.296961£.oz

.139.15£+62

.165957£.oz

.1uu7rse+oz

.167021Eo62

.181607E*02

.1390k35902'

.6819065001

.272621E*01

.393538E+01

.306136EOO1

.358101E+01



TEST

POSEXMY

POSEXMP

POSEXH1PS

POSEXH1YS

POSEXH1YN

Posexn1PH

BAHSETTN

BAHSETTXl

IBAHSETTXZ

BAMSETTY

annsscru

ennseorx1

BAHSEOTXZ

BAHSEOTY

GLEJSERXl

GLEJSEPXZ

GLEJSERY

PARKX1

PARKXZ

pnaxv

GQPN

GOPX1

GOPXZ

GQ‘Y

GQNN

GONXl

GQNXZ

GONY

6L:Hr LEVEL

.11

’
A

1.

L8.

999.

6.

CLO.

A7.

71.

138.

83°.

15.

6.

r

.1.

179.

7a.

82.

15(8.

1950

223'

MEAN

.131521S+51

.11585AE+01

.158166E+&1

.1188635+Ui

.127991€+al

.1158335+81

.53653AE+32

.3868353+C1

.398917E+C1

.521ZBZE+$1

.L62315E+62

.3980925+01

.357966E+51

.5A57BGE+C1

.839376E+uu

.139871£+61

.998077E+CD

.81G433E+CU

0895997E+80

.9338612+EE

.173273£+92

.11792.E+u1

.1263125+C1

'.1933732+c1

61586335+C2

.9125355+01

.A3;&JCE+.1

.3753335+81

TABLE C24: Test Results, Model 13, Sample

VAQIANC?

.788613E+OO

.979123£+ou

.128775E+01

.1916525+81

.220671€+31

.153L18E+J1

.126518£+03

.136335:+62

.11737:a+32

.2165699+oz

.152795:+o3

.196693E002

.1237215o32

.2361h85+02

.666232£+ao

.16636.E+a1

.121:61E+31

.1379155+J1

.1222735+ui

.17095~E+01

.629171Ef32

.3733TZE+JC

.923666£+30

.698:A3E+UC

.62A88ZE+01

.338A7BE+01

.2998585+11

.3861655+G1

Size 90

SKEHNESS

.163612£+a1

.166AA1E*01

.3537eea+61

.Ah62h6E+01

.A23817E+01

.355921E+01

.3611AGE+CB

01732915+51

.16259ZE+31

.161965£+61

.267413£+ao

.17AZ9~E+01

.163912£+o1

01613725§01

.2cu1rcz+01

.291673E+01

.26118ZE+01

.39a1755061

.211077E+01

.392357E+n1

.17u019E+01

.1820935951

.165A80E001

.137h792931

.797A13E-01

.3956536+i0

.395185£+00

.AA1859E+00

KURTOSIS

.739981£+31

.6772885031

'02138765‘02

.3u1seesonz

.3J26OCE+32

.2999565+JZ

.3c9uzae.a1

.6667uue.a1

.5653635.o1

.661671a+a1

.391878E+J1

.695626E001

.5911ues+o1

.6562405001

.932677E+fi1

.154668E002

.13161eeoaz

.2362915..2

.6335645+a1

.1737915oaz

.833858E601

.999156EQJ1

.7391636601

.53599AE+J1

.3622905051

.3316585001

.31988AE+51

.2890786901



TEST

POSFXHY

POSEXMP

POSEXH1PS

POSEXHlYS

POSEXH1YH

POSEXH1PH

BAHSETTN

BAHSETTX1

BAHSETTXZ

BAHSETTY

BAHSEOTN

BAHSEOTX1

BAHSEOTXZ

BAHSEOTY

GLEJSERX1

GLEJSFRXZ

GLEJSERY

PARKX1

PARKXZ

PARKY

GQPN

GQPX1

GQPX2

GQPV

GQNN

GONX1

GONXZ

GONY
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TABLE C25: Test Results, Model 14, Sample Size 30

ALPHA LFVEL

.01

19.

16.

79.

61.

58.

335.

56.

25A.

39.

#80.

51.

379.

268.

207.

167.

196.

110.

33.

219.

.05

59.

A6.

221.

203.

167.

183.

160.

603.

160.

523.

133.

735.

136.

630.

572.

12.

A9“.

366.

35.

“A3.

281.

80.

870.

630.

83.

A7“.

108.

A11.

.10

95.

81.

351.

331.

272.

293.

2A3.

730.

A9“.

7“.

562.

“05.

122.

918.

721.

203.

718.

271.

670.

“EAN

.101316”§01

.9590675600

.20A265E001

.1982085001

.182682E+01

.188153E+01

.3322976001

.78193ZE+01

.3331ASE+01

.69803A=&01

.298A875501

.9614329601

.305812E+01

.895561F+01

.u52331s+o1

.8221AZE+00

..38A127F+01

.AA79895001

.9878765+00

.A92A805901

.262823§+01

.122886E+01

.9015025001

.A967585‘01

.3502005*01

.5952005001

.369700F+01

.521600E*01

VARIANCE

.1.137qs+o1

.125957E+o1

.21nuaeso01

.215588Eé01

.15626~E+o1

.1816656+01

.956273F+01

.217759E+02

.1aousze+oz

.292156E+02

.823809E+01

.273251F702

.89026AE+01

.2615A7E+02

.102199E+02

.5220386900

.811910F+01

.25236AE+02

.1951716001

.257618E+02

.50955AE*01

.209753E+01

.6298“b§*02

.271901E+02

.18318JE+01

.29026OE+01

.ZOOSZOE+01

.268603E+01

SKEHNFSS

.31AA26E001

.3A1U5UE+01

.30?6A8E+01

.321701E+01

.3280Ah€+01

.310311E701

.1698ASE+01

.92A617E+00

.18A951E+01

.102925E701

.189979E+01

.718975E000

.186175F*01

.91966CE+00

.205A53E+01

.17296SE+01

.196037E+01

.321761E+01

.285252E+01

.2911SAE+01

.905589E+01

.5219AAE+01

.31A8026601

.532173E+01

.6013876+00

.28656AE+00

.A7088AE+00

.1698855’00

KURTOSIS

.1790685+02

.2031168+02

.18567AE+02

.200A76E402

.206607E+02

.192AA2E002

.656509E+01

.395A906+01

.7992865+01

.A16350E+01

.8A2A715+01

.35352AE+01

.79398A5001

.382398E+01

.118208E*02

.6989615+01

.9362985+01

.1972A1E+02

.1u7406E+02

.17A206E002

.300701E+02

.5251BTE+02

.195876E+02

.568009E902

.3998605001

.3238125*01

.303976E901

.2775315001



TEST

POSEXMY

POSEXHP

POSEXHiFS

POSEXH1YS

POSEXH1Y9

POSEXH1PM

BAMSETTN

BAHSETTX1

BAHSETTXZ

BAHSETTY

BAHSEOTN

BAHSEOTX1

BAHSEOTXZ

BAHSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKXi

PARKXZ

PAQKY

GOPN

GQPX1

GQPX2

GQPY

GQNN

GONX1

GQNXZ

GONY

TABLE C26:

{LTH’ L

.E! .15

17. 72.

22. 7;.

‘58. 638.

333. 612.

A56. 6’2.

A20. 5°9.

AA. 139.

RAI. 937.

117. 25A.

‘u9. 972.

A7. 158.

861. 53.

81. 195.

781. 916.

753. 928.

Q. 31.

6L9. 872.

A89. 720.

L. 37.

A67. 69:.

8k. 215.

‘ 16. =3.

053. 996.

777. 910.

A. 79.

2&9. 6‘1.

9. o7.

197. 5‘2.

22's

Test Results, Model 14, Sample

EJSL

.13

128.

126.

773.

'26?

3AA.

95.

992.

958.

MEAN

.111136‘tfll

.11128AE+01

.3A3236£+01

.3369025+01

.A878383+01

.u767625+91

.29C5605*01

.16359SE+CZ

.A31782E+01

.1AA96AEODZ

.3102655+G1

.173A1GE+02

.37612AE751

.153557E+02

.778690E+01

.785875E000

,.632836E+01

.862A7AE+01

.9287A55000

.7853A6E+01

.1722665+01

.9630075‘00

.73LA16E+C1

.ueu27ss+c1

.A157JOE+01

.733266£+L1

.A157238931

.68970£E+C1

VAQIANCE

.1119GZE+01

.109532E+01

.6769755+01

.7921882001

.9715325+02

.76095AE+02

.9193AAE901

.551225E902

.171A87E002

.5392265602

.1828895+52

.5875985032

.1AA3A8E‘J2

.5A62725+02

.166ZCZE*02

.9A311AE+00

.937615E+01

.A97836E002

.1869885+01

.37AA165+02

.6155956+30

.3A16792+00

.156u195002

.756356E+01

.228363E*01

.381559E+01

.3127A85001

.ACGAAOE+01

Size 60

sxaszss

.211a325+a1

.2155A8E701

.5617335oc1

.56221c:.a1

.106159E+62

.10L77SE+02

.19691SE+61

.6248175900

.1763u69+61

.7726225o60

.2177896501

.5A98835030

.ZZG1A9E+C1

.6766285930

.1619136901

.371751aou1

.1109A96001

.2692355o61

.376818E+01

.1667665+u1

.27227OE*C1

.167503E+01

.1636865601

.160632£+c1

.uuas1uaoco

.3267u7aona

.2750162.ao

.uieocaevoc

KURTOSIS

.9u5033eoo1

.9380505001

.61172850J2

.569133E602

.1296658003

.15A93AE’03

.6716665oo1

.3A7919E+01

.7169756601

.362103£+o1

.106A99E002

.326559E+01

.100572E002

.3500216001

.7995666oo1

.239A538002

.5A5A606001

.169562£.nz

.2795615002

.67c767E.61

.1A80A08002

.697A9TEOO1

.697698E001

.6396895601

.2823165001

.3237188001

.303009E001

.321917E001
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TABLE C27: Test Results, Model 14, Sample Size 90

ALPHA LEer

1557 .01 .05 .10 MEAN VARIANCE SKEHNESS KURTOSIS

POSEXMY 32. 71. 131. .109710F+01 .116115£+01 .217775£+01 .9776055o01

POSEXMP 23. 62. 116. .1053029+a1 .1136986601 .26270AE701 .1320225902

POSEXH1PS 651. 885. 956. .A38968E+01 .769626£+01 .633163£+a1 .3181AZEOOZ

POSEXH1YS 636. 880. 9AA. .6253939+01 .656651E+01 .616129E+01 .3030252902

Posexn1vn 626. 877. 966. .636566£+01 .107603E+02 .516901E+01 .607396E+02

9052x9199 639. 661. 9A9. .A56891F+01 .135673£+02 .5301925.01 .3976262602

BAHSFTTN 66. 161. 266. .3279992+01 .1067515+02 .170953E+01 .661625€+01

BAHSETTX1 960. .997. 1000. .258A79E+02 .666639E+02 .610019F+00 .375609E+o1

BAHSETTXZ 96. 223. 301. .396399=+01 .1503665+02 .175193£+01 .6606105+01

BAMSETTY 9A1. 982. 993. .2152502902 .756063E+02 .5A2837E+00 .3237255+01

BAHSEOTN 60. 167. 269. .317601:+o1 .100669E+02 .1635006o01 .616163E+01

ennsentx1 961. 996. 1000. .2710155+az .968AOAE+02 .626756£+00 .372669£+01

BAHSEOTXZ 66. 195. 270. .355039E+01 .1307715602 .188169E+01 .777168E001

nauseatv 969. 963. 996. .2261679o62 .632679E+02 .602072£+00 .3696565+01

GLEJSFRX1 967. 997. 999. .119316r.02 .226621E+02 .1066065101 .50873ZE901

GLEJSERXZ 15. 3A. 56. .912822E+00 .112107E+o1 .351696£+01 .2202275902

GLEJSFQY 909. 989. 996. -.690623E.0L .1106925+02 .956001E+00 .5502766901

PARKX1 766. 906. 957. .136601r+02 .798131E902 .1702755+01 .83297AEOO1

PARKXZ A. AA. 76. .956661E+00 .1!5228E+01 .262190£+01 .1269555002

PARKY 720. 877. 930. .120656F+02 .566222£+02 .109676E+01 .660996£.01

GQPN 63. 215. 326. .152121E+a1 .2765565600 .205659E+01 .88017AE+01

GQPX1 1=. 53. 95. .969553E+00 .2092962600 .150666E+01 .695116E.01

GQPX2 997. 1000. 1000. .729609E+61 .1019522ooz .160673E+01 .986227E001

GQPY 666. 965. 976. .622073E+01 .3655992101 .127661E+01 .553263E.01

GQNN 16. 6A. 165. .6659008f01 .296166£+01 .376176£+0o .293655£+01

Gonx1 A76. 670. 636. .6556005+o1 .699606£+01 .35A6506+00 .3279205001

Gouxz 20. 60. 123. .6306002+01 .3605192o01 .626669£.oo .2967A55001

SONY 377. 566. 761. .799300F901 .6311265o01 .2300688+00 .2979658901
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TABLE C28: Test Results,.Mode1 15, Sample Size 30

ALPHA LEVEL

TEST .61 .05 .16 9:66 vaoxawce SKEHNFSS KURTOSIS

Posexnv .2. 6. 27. .7267652+66 .3973565+66 .1953522+01 .971621E+01

possxnp 5. 25. 57. .6727666666 .665363£+60 .2359692661 .126966E+02

POSEXHIPS 5. 26. 55. .8920905*J0 .663229E+66 .222569F+61 .1116952+62

posrxu1vs 16. 66. 76. .9726665+66 .6665165+66 .2761935+61 .1397795+62

POSEXHiYH 11. 51. 61. .9716965+66 .663726£+00 .266356£+01 .1196555002

posexn1pn 2. 27. 56. .6766662666 .625132£+06 .196767E+01 .896906Ef01

BAHSETIN 56. 162. 226. .366293E+01 .832690E+01 .1636775o61 .7717665661

BhHSETTXl 53. 166. 226. .3101965901 .666709E+01 .180517E+01 .7526235661

BAHSETTXZ 55. 160. 251. .3316565+61 .939661e+61 .1696655+01 .6626625661

BAHSETTY 75. 169. 261. .367796£+61 .1371986*02 .156596E+61 .596607E*01

BAHSEOTN 66. 196. 296. .366695E+61 .1156606+02 .179117E+61 .6666295o61

annseorx1 53. 153. '235. .321158F+01 .9776978001 .179796E+01 .7669925+61

6669607x2 61. 156. 253. .332851F+01 .101919E+62 .173617E+01 .6725675661

BAHSEOTY 76. 266. 309. .371511r+01 .1166936o02 .163373E+61 .629166E+61

GLEJSERX1 6. 16. 67. .6961526106 .331071E+00 .396662£+61 .669799£+62

GLEJSFRXZ 65. 119. 169. .153082=§01 .652256£+61 .380951E+01 .2b1261E002

GLEJSERY 2. 26. 53. ‘6913336F90? .775055E+00 .266665£+01 .9112135+61

PARKXl 23. 91. 96. .115038E+01 .6625605+01 .636175E+61 .2700735+02

PARKXZ 7. 37. 62. .990795E+00 .2625162oo1 .5692165661 .5166962+62

PARKY 16. 59. 166. .11622bF+01 .321513E+61 .330907E+01 .176163E+oz

lcapn 119. 276. 666. .262793E+01 .565117E+61 .50929nE+01 .655533E+02

669x1 127. 262. 360. .2666165+61 .761967E+61 .3315915001 .1669765662

fiopxz 72. 159. 235. .1735755+61 .3666655+61 .665013E+01 .366667E+62

copy 69. 130. 166. .1571935601 .329739E+61 .667159E+61 .616116E+62

GQNN 21. 65. 176. .3118005001 .2262365+01 .626965£+06 .308713E601

saux1 26. 96. 236. .356706£+61 .1967666661 .666926E+60 .3616555+61

GQNXZ 17. 65. 119. .2676605601 .2335365+61 .663906£+06 .3366995661

couv 30. 63. 236. .3596005o61 .193672=+61 65759936000 .3630215601

 



TEST

POSEXMY

POSEXMP

POSEXH1°S

POSEXHIYS

POSEXHlYH

POSEXHipW

BAHSETTN

BAMSETTX1

BAMSETsz

BAMSETTY

annseoTu

BAHSEOTXl

annssovxz

BAMSEGTY

GLEJSFDX1

GLEJSERXZ

GLEJSERY

PARKX1

PARKXZ

PARKV

soon

GQPXl

GQPX2

copy

GQNN ,

caux1

canxz

GQNY
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TABLE C29: Test Results, Model 15, Sample Size 60

f‘L’Hf‘ L§J*L

o'1

1o

27.

19.

he

2“.

.l5 .1: WEAN

ob615515+ic

.657568£+50

.7166765+OE

.73h75QE+£3

6827782E+£3

.6366525+06

.3666165+01

.3553685931

.3352955+91

.3621815‘91

.33769QE+C1

.365098E+01

.34C7l?5+01

.3721596+C1

.195020E221

.775121E+00

08982185+00

.12h7k8E+01

.1h0559E+01

.695161E+06_

61635725+£1

.107887E+C1

.166669s+61

.136613E+01

.3966602+61

ohhShdJanl

6332909E+01

.6955605+61

VARIANCE

.3633555066

o3707355’03

017833“E*0&

.1862295503

3361151E+00

.3“389#E+00

.897592E+01

.116369E+62

.103153E+02

.121669E+62

.11250SE+02

.12669ca+62

.1C78855402

.12518C£+02

6.9697SZE+30

.666673£+66

.6669655+06

.616667E+01

.3529965+61

.17027ZE+01

.536721E+00

.663666£+66

.86h351E+d3

.80631BE+00

.26775h8091

o300h895001

.25653HE+01

62779755001

SKEHNESS

61662415001

.27990Q3f01

.1172305001

0125Q77E§01

63686765+01

.3726485+01

.2156305+01

.1725766901

.1659285+G1

.172316£+01

.2088335901

.16&BZDE+51

.172966E‘C1

.161666€+51

.1h68735901

.2669725+01

.176527E+01

.958912£+01

.2h18166001

.2951§3E+01

62532125901

.2021Z6E*01

61783315001

02977826‘01

6346259E+OC

.57C3h16000

.hBB392E‘00

oh263525+06

KURTOSIS

.693511E*01

.1736076902

oh92565E601

.531606E001

6279587E+02

o300k29£002

.1033585902

o693387€*01

663399BE*01

.673681E001

.9787h85+01

66366946001

.6912338+61

.5756265001

.5611315001

.6136116E902

6797253E+01

.h2799bE+02

.1926625002

.1hSZZZE+JZ

.129138E002

.9959295001

o73h987£601

.2h7525E002

6260522E001

.3“9782€*01

o3h16k68001

63137668001



TEST

POSEXMY

POSEXMP

POSEXHiPS

POSEXHlYS

POSEXHiYH

POSEXHlPH

BAHSETTN

8AMSET1X1

BAHSETTXZ

EAHSETTY

BAHSECTN

BAHSEOTX1

BAHSEOTXZ

BAHSEOTY

GLEJSERXi

GLEJSEPXZ

GLEJSERY

PARKXi

PARsz

PARKY

GQPN

GOPX1

GOPXZ

GQPY

GQNN

Gunx1

GONXZ

GQNY

 

TABLE C30:
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Test Results, Model 15, Sample Size 90

3L3H5 LEVEL

.51

66.

11“.

62.

6°.

51.

11“.

12.

59.

.05

13.

13.

137.

191.

2‘3.

6“.

16.

156.

..

0".

26k.

266.

2&3.

337.

131.

29.

157.

22L.

MEAN

.6931865+C0

.6617155+00

.795666£+66

.776977E+06

.7667525+00

.667565£+00

.3616965+01

.3361 65+61

.3269525+01

.6167355+01

.3529365+61

.361136£+01

.3296625+61

.61667SE+01

.119156£+61

.825b335+56

‘.1266555+01

.196610£+61

.1165665+01

.11991EE+01

.156576£+01

.962616E+00

.1561135+01

.1309665+61

.633600E+01

.533760£+01

.37ISJOE+C1

65577055+81

VARIANCE

.3767675+00

.395666£+00

.2176135+66

.2297692636

.2316365+60

.2165138000

.1366065+62

.163767a+62

.12713ZE+32

.1652566+62

.117326E+62

.166767£+62

.1236665+62

.152263s+62

.1162062161

.639716£+00

.1629565+61

.7700262o01

.2626655+61

.261196£+01

.3076725466

.196563E+60

.5963575+00

.3577725+60

.261926E+01

.3253615001

.276676E001

.3h81555*81

SKEHNESS

61758565+01

.191k765+31

.125737E*91

6135867E+C1

61385385+61

.12h783i+31

.2379EBE+01

o166237£+01

.2h8#055+61

.147h935+31

6197719E+Ci

.16597IE+01

62336735+31

.15199GE+91

6165178E001

o1h63h1i+fi1

.1568238001

035623ZE*51

6229355€+01

6255261E§31

61859696+61

61265855+01

616391QE+91

.11h3165+01

6371859E+OJ

o6123§3£000

oh31656E+Ob

oZfiGBCOE+DO

KUQIOSIS

.677373E051

.6163265+61

.530980E061

.537775£+61

.556663£+61

.5299908901

.101569£+62

.622666E+01

.136523E+62

.562267E+61

.666076E+61

.609623E+a1

.1211535o02

.563539E+61

.6662k95+01

.616357E+61

.652666E+01

.251855E+02

.959253£+61

.167699£+02

.738375E001

'.6692725661

o7b5521E+01

6&485555931

.298035E901

.291Z9QE501

.3070675931

.ZTGQZ6E601
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TABLE C31: Test Results, Model 16, Sample Size 30

ALOHA LEVFL

TEST .01 .65 .16 MEAN VARIANCE SKEHNESS Kuatosts

POSEXMY 15. 51. 116. .113778E+01 .107666E+01 .217266£+01 61082528+02

possxnp 13. 52. 167. .1121175+61 .1066725+61 .266763E+61 .939906E+01

9055xn1ps 63. 65. 125. .121262£+01 .196616£+01 .6136675o01 .276166£+62

POSEXHiYS 66. 66. 121. .116752£+61 .197655E+61 .0586315901 .336197£+62

Posexu1vn 66. 126. 165. .152919E+01 .526156E+01 .667956£+61 .568568EOOZ

POSEXH1PH 76. 132. 176. .1551b8€*01 .652075:+01 .693671E+61 .3671565+02

BAHSETTN 16. 67. 109. .2059655661 .6266665+01 .266073£+61 .9666365601

BAHSETTXl 12. 52. 96. .2613925+61 .665661E+01 ‘.195677E+61 .66967asoo1

BAHSETTXZ 16. 56. 161. .2121165*Of .6556326+01 .217990E+01 .160199E+02

BAMSETTY 13. 51. 95. .199833E+01 .666696E+61 .197166£+01 .6069765601

BAHSEOYN 17. 59. 165. .2136125+61 .6726165+61 .215957soo1 .103566E+62

BAHssorx1 16. 56. 111. .211761£+61 .636279E+01 .169573E+61_ .77037ZE+01

BAHSEOtxz 16. 66. 123. .219669F+61 .692062£+01 .2692126+61 .966636£+61

BAHSEOTY 12. 56. 166. .2066555+61 .626111eoo1 .188530E601 .776616E+61

GLEJSERX1 7. 37. 62. .1033675+61 .107656E+01 .2326875001 .116161E+02

GLEJSERXZ 9. 60. 66. .1033675+61 .139223E+01 .376626£+01 .29921SE+02

GLEJSERY 2.‘ 36. 76. .985382E+00 .9326995666 .2031055001 68736038601

PARKX1 10. 56. 169. '.110665£+01 .261567E601 .2631665601 .1166665+62

PARsz s. 66. 102. .106333£+61 .2b5hh1E+01 .337828E+01 .216069E+02

PARKY 15. 55. 169. .1099995+61 .306669E+61 .336666£+01 .180069E002

GQPN 62. 165. 366. .2167765661 .309822Ef01 6576897E+01 .55h0795602

GQPX1 32. 90. 157. .137168€+01 .193926E+01 .699197E+61 .501966E+02

can2 26. 67. 161. .1351626+61 .136965E+61 .2963925oo1 .162661E+0z

GQPY 57. 166. 216. .1769355o01 .336566£+61 .626929E+01 .326662£+02

GQNN 5 26. 66. 166. .3666665+61 .263613E+01 .612566E+00 .302953E+01

conx1 27. 66. 165. .31OBOOE+01 .2526665661 .627527£+oo .3166365+01

cauxz 16. 59. 163. .300300E+Q1 .239136£+01 .b351236600 .3197965601

conv 19. 62. 166. .3005665601 .231129E+61 .671657cooo .3050h86001

 



TABLE C32:

TEST

POSEXMY

POSEXHP

POSFXH1PS

POSEXH1YS

POSEXHlYH

POSEXH1PH

BAMSETTN

BAHSETTX1

BAHSETTXZ

BAHSETTY

BAHSEOTN

8AMSEOTX1

BAMSEOTXZ

BAHSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKX1

PARKXZ

PARKY

GQPN

GOPX1

GOPXZ

GQPY

GQNN

GQNX1

GONXZ

GONY
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Test Results, Model

ALPHA LEVEL

.01

8.

8.

#7.

#3.

99.

97.

18.

.05

9?.

92.

13.

77.

170.

169.

S6.

#7.

“h.

61.

61.

53.

‘01.

26.

36.

61.

52.

67.

12k.

75.

67.

180.

69.

61.

6h.

67.

.10

103.

100.

10‘.

10%.

222.

228.

98.

101.

110.

87.

111.

119.

117.

10k.

105.

63.

98.

116.

10k.

121.

22k.

136.

122.

263.

157.

166.

137.

1&9.

fiEAN

.1013505601

.101433E+01

.11h065F001

.113912E291

.2009165001

.2000.8€+01

.205277F+01

.2095685601

.2063805001

.193586F+O1

.2136D7E+31

.7137995901

.212759E+01

.202173E001

.110BQ’F+01

, .90793QE+00

.10h7965*91

..112626E001

.1066535.61

.118579EOQ1

.1513665.01

.113OZSE+01

.113h306+01

.1k95665601

.3763665+61

.369509Ero1

.370900E001

.372200F001

VARIANCE

.7868675t00

.29115“E+01

.293651E+01

.215263E.62

.2166565662

.656666E+61

.6593135+61

.631676£+61

.3665275+01

.696706£+61

.666651E+61

.679166E+01

.3966565+01

.1326315661

.761656E+06

.166317E+o1

.279257E+01

.256653E+61

.310676E+61

.266ST1E+00

.3323825§00

.3h2638E+00

.636120E+00

.307699E+01

.301699F+01

.3091316001

.31198bE+01

16, Sample Size 60

SKEHNFSS

.19315h6901

.1951Q1E+01

.981522E+01

.982799E001

.1053“3E+02

.1089696+02

.2173856901

.2185176031

.ZlthSEOO1

.1699168001

.231875E+01

.236063E*01

.2291088+01

.1937625+01

.2‘1261F+01

.2h78835001

.2703395001

.2986356601

.285767E+01

.31ZZ3SE+01

.218121E+01

.1h87326*01

.169695E+01

.2182095601

.h331025f00

.5176636600

.h18737E000

.579252E000

KURYOSIS

.8957515+01

-.891ZSSE§01

.1562225663

.158716E+03

.1571955903

.1666265663

.96116oe+01

.1039576602

.10851.E+02

.6576966+61

.115676E+02

.1337265+02

.1195665602

.86711TE+01

5.137293E002

.132995E+02

.167h11E002

.159057E+02

.1h1309E002

7.170h20E002

.105585E+02

.6186685001

.7667595901

.1300056002

.3259978601

.3668995001

.3628356001

.3k55185901



TEST

POSEXMY

POSEXMP

Posexu1ps'

POSEXH1YS

POSEXH1YH

POSEXH1PH

BAMSETTN

8AMSETTX1

BAMSETTXZ

BAHSETTY

BAHSEOTN

BAHSEOTXi

BAHSEOTXZ

BAMSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERV

PARKX1

PARKXZ

P‘RKY

GQPN

GOPX1

GQPX2

GQPY

GQNN

GQNX1

GQNXZ

GQNY

 

TABLE C33:

11966 L

.01 .65

9. 62.

6. 61.

25. 67.

26. 63.

26. 79.

29. 76.

11. F3.

6. 52.

1o. 52.

16. 61.

7. 51.

6. 69.

12. 69.

16. 61.

10. 67.

6. 31.

10. 69.

13. 52.

6. 56.

17. 63.

26. 99.

11. 52.

15. 65.

67. 207.

16. ‘ 63.

12. 32.

13. 33-

16. 39.

Test

1127.

105.

72.

106.

100.

102.

'109.

201.

163.

166.

‘321.

96.

97.

66.

870

232

MEAN

.9853BGE+00

.9956905+00

.15771GE+01

.108737E+01

.1160335001

.113199E+01

.1995hZE+01

.198OZZE+01

.197796E+01

.2106988+B1

.200319E+01

.20h565E+01

.202b225+01

.21718QE+01

.180776E+01

.992760E*00

.1072195+01

.10h787E+01

.10613GE+01

.1696235o61

0 13.710 35’0 1'

.1660525461

.106287E+01

.161266E+01

.6131065+01

.607966£+61

.6616665+61

.399606£+61

VARIANCE

.719659a+06

.6995265160

.7659662o66

.773726£+66

.868575E+OG

.627666s+06

.666131E+61

.376316E+61

.3633h1E001

.63269cs+61

.391639E+01

.399659E+61

.6196215+01

.666969E+61

.10317ZE+01

.666366£+oo

.106339E+01

.2989836+01

.2197525001

.2591655+01

.1216665o06

.162617£+60

.1669225+66

.296690£+oo

.3501365661

.325001E+01

.326517E+o1

.3365365+61

Results, Model 16, Sample Size 90

SKEHNESS

.191397E+01

.156261E101

.258159E+01

.262233E+01

.269973E+01

.2622628+01

.197287E+01

.166237E+a1

.180753E+01

.1788225+01

.1705605+01

.1672355661

.2096935.61

.2666655o01

.165305£+o1

.2066755+61

.1661175+61

.3365228+01

.26961ae+61

.276257E+01

.215669s+01

..127b736601

.1366615901

.1050855001

.3h66735+03

.312966£+oo

.609561E+00

.28020&E+00

KURTOSIS

.998713E601

.616395E’01

.1h06978002

.1fl2858E902

.150568E002

.1k53035*02

.859271E901

.636138E+01

.6951875601

.6908998001

.67h5306001

.798063E901

'.9387T7E*31

.9551155o01

.739392£+61

.161725E002

.6316602161

.216759c+02

.1076555o02

.129623Eo02

.1012725o62

{6569975.01

.6209876001

.668962E901

.2991625001

.2932665001

.308788E001

.2796086001



TEST

POSEXMY

POSEXMP

POSEXH1PS

POSEXHIYS

POSEXHlYH

POSEXH1PH

BAHSETTN

BAHSETTXl

BAHSETTXZ

BAMSETTY

BAHSEOTN

aANseon1

. aAnseosz

BANSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKx1

PARKXZ

PARKV

666N '

eopxt

GQPX2

606v

CONN

soin

66Nx2

OONY
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TABLE C34: Test Results,'Model 17, Sample Size 3.0

ALPHA LEVEL

. 1

13‘0.

150.

3060

363.

342.

339.

494.

868.

61.

261.

664;

955;

99.

3770

526.

6.

ca.

340;

o.

1‘.

651.

54;

993.

362.

42..

364.

13.

93;

.05

238.

267.

450.

464.

490.

486.

722.

967.

207.

482.

860.

993.

226.

580.

825.

2.

218.

576.

12.

89.

931.

131.

1606.

635.

680.

661.

36.

225.

.10

323.

V348,

572.

563.

599.

587.

612.

966.

302.

MEAN

.243880E*01

.266537E*01

.495437E‘01

.568391E'02

.8990805‘01

.6956465*01

.956924E‘01

.1756755002

.376556E’0!

.669779E*O!

.1241415202

,215965E902

,4357406961

.6232106961

.5556206’01

.4961675966

‘.245489E‘01

,715422E'01

.7695356‘00

.1742055‘01

.238891E*02

.1525886'01

.1653736208

.1164395‘02

.6264005‘0‘

.7377005*Ot

.267200E‘01

.4539006001

vARIANCE

.9660768+51

01407675032

68975185*52

.158067E963

.5884715*53

.1?3098£+63

.3660966+52

.465426Eo62

.1372665462

.2969995962

0377359E‘62

96§1553E¢EZ~

.156639E+62

63480235’62

.154463E¢52.

.2918365960

.5535636451

..4673395‘52

.8511325‘50

.2694355961

91615515‘643

.4549595961

.25167EE*55

.2591575963

62358665951

.2657735661

.2i96615961

.2184666061

sxeuness

:3317726o61

;§63664E¢o1

21672796902

31135465002

,9586626001

:6462372901

.7836303000

33875575000

.1873305001

;1166506961

.634316§*00

.7346605900

$196759E9o1

.9585315000

.1966368901

22339632901

.2423395901

22291635001

.2525395901

31876888¢01

.6416665‘01

'.567633Eoo1

0563454E‘Q1

.54623BE¢01

;3513345.oo

'33353765000

.5533306900

.3525722400

KURTOSIS

.1881245002

,3692645002

.1914895003

.1695165903

.126469eoo3

.9332665902

.3665675961

.2937135001

.7030368001

.4158366001

.3956165901

.326030E001

.9159255461

.3660715001

.6135655901

.1612105o02

.1039642462

.1944375902

.1163322902

.6122935901

.5879655002

.611304eo02

.3156565002'

.4136605462

.3¢4983EOOI

.3265025001

.3183285001

.3166265401

 



 

TABLE C35:

TEST

POSEXHY

POSEXMP

POSEXP1PS

POSEXHiYS

POSEXH1YH

POSEXH1PN

BAHSETTN

BAHSETTX1

BAMSETTXZ

BAHSFTTY

BAHSEOTN

BAHSEOTX1

BAHSEOTXZ

BAHSEOTY

GLEJSERX1

GLEJSERXZ

GLEJSERY

PARKXi

PARKXZ

PARKY

60PM

GOPX1

GQPX2

GQPY

GQNN

GQNX1

GONXZ

SONY

ALPHA LEVEL

.01

110.

112.

811.

816.

811.

809.

9&9.

1000.

151.

995.

963.

1000.

167.

999.

999.

36.

969.

903.

2.

886.

993.

1.8.

1000.

996.

527.

758.

1.

“Q3.

.05

215.

218.

990.

938.

991.

937.

986i

1000.

290.

1000.

990.

1000.

302.

1000.

1000.

89.

996.

968.

29.

962.

999.

103.

1000.

998.

873.

962.

17.

30“.

.10

302.

308.

973.

976.

967.

966.

995.

1666.

367.

1006.

996.

1000.

605.

1000.

1606.

132.

999.

979.

71.

963.

1000.

151.

1000.

999.

957.

990.

56.

928.

234

Test Results, Model

“EAN

.195865E001

.198651F+01

.762325F§01

.766811E#01

.895921E§01

.886169E+01

.227110F+02

.h3h8h8F002

.h761769+01

.330189E+02

.2h6233E+02

.h931505+02

.h9657hE+01

.38h135E+02

.199688E002

.1200h2F+01

.129019F002

'.270623E+02

.866615E000

.193193E+02

.1669696462

.107321E901

.519362E+02

.183750E+02

.873100E+01

.103110F+02

.2717005001

.826800E901

17, Sample

VA°IANCE

.h12h33E+01

.h32616E+01

.k75000E*02

.5006186+02

.116656e+63

.112896E+03

.695565£+02

.153759E+03

.210668E+02

.160171E+03

.101982E*03

.1606225603

.2267SZE+02

.160069E+03

.956767E+02

.251879E+01

.315669e+02

.636001E+03

.160361E+01

.132968E+03

.173930Ef03

.85Z9Q3E+00

.155k55E+0h

.213989F903

.392956E+01

.5852138001

.2h8339E001

.387805E’01

Size 60

SKEHNESS

.268692F+01

.262279F*01

.355011E+01

.3627632601

.h95099E+01

.5193625661

.5612136+06

.28266°E+00

.161521E+01

.6635595+60

.569006E+00

.266526E+00

.1795062.01

.510028E+00

.1766156+01

.2961315601

.112675£.01

.1656962.61

.2660955.01

.1006656+01

.h639h56001

.266612£+01

.2613025461

.303259E+01

.20296hE000.

.306610E900

.5719136900

.220“5&E+00

KURTOSIS

.152623E002

.139568E602

.206220E002

.21009BE+02

.3968969902

.667315E+02

.3065338601

.3105065+01

.769837E+01

.315910E+01

.31808HE+01

.3030265+01

.751506E+01

.333267E+01

.7798DQE+01

.1h62h7E*02

.556632£+01

.6226635661

.110525£+02

.6001SSE+01

.510565E+02

.157016E+02

.1k5580E602

.199515E002

.273337E‘01

.2807766001

.322825E001

.276275E+01
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TABLE C36: Test Results; Medel 17, Sample Size 90

TEST

POSEXMY

POSEXMP

POSEXH1°S

POSEXH1YS

POSEXHiYW.

POSEXH1PH

BAHSETTN

BAHSETTX1

BAHSETTXZ

BAHSETTY

BAHSEOTN

9AMSZCTX1

BAMSEOTXZ

BAHSEOTY

GLEJSERXi

GLEJSEPXZ

GLEJSERY

PARKXi

PARKXZ

PAQKY

GQPN

GOPX1

GQPX2

GQPY

GQNN

GONX1

GQNXZ

GONY

ALCHJ LEVEL

.11

13.

106C.

050.

2.

96?.

99h.

62.

10.0.

999.

709.

966.

766.

' C
.4-

197.

1LC.‘

992.

999.

397.

162;.

10.0.

667.

962.

9.

887

.1.

2(5.

219.

998.

996.

lOLL.

“960

131:.

989.

E7.

996.

993.

136.

161;.

1ut;.

9‘1.

998.

31.

959.

~56N'

.1777515+01

.167636E+c1

.1C1791E+t2

.9562995+£1

.879772E+01

.93329BE+01

.277591E+UZ

.757999E+52

.627319E+C1

.56“423E+22

.353738E+02

.PZ7518E+£Z

.68235h3+01

.6C2061E+32

.355716E+62

..18155E+08

..189396E+32

05210935902

.761#§JE+03

.3135895602

1.1177665+02

.916119E+60

.539966£+02

.2299965+:2

.96;6006+61

.1269165+.2

.3312:CE+01

.1G&ZBSE*52

VAQIANCE

.373513E+31

.2318685051

.289325E*52

.2251635032

.193385E‘32

0247667E+92

.146783E+03'

.293265E+03

.383“19E+32

.278728E+J3

.180525E+03

.3“9398€+33

.3982156+02

.3355615093

.265h775+03

.115117E+J1

.361915E002

.909286E+03

.11n571E‘31

.2668715093

.6536195932

.3675102+00

.8269CCE933

.208877E+03

.h898905001

.7931k55001

.2h31065*51

.5659885+01

SKEHKESS

.2671665+61

.2626632+31

.1555“9E+01

.13559SE+G1

.1“1314E+01

.16th75531

.6323135600

.3'33915000

.2219195‘01

.3121LZEOOC

.h957155+25

.267066a+00

.221612£+u1

.276735£.00

.189879E+01

.2789755001

.71AZ5OE+OJ

'.1ZHSBCE‘C1

.28693TE*21

.6583765000

.299625E*81

.168573E+91

.1507062081

.19h1585+01

.315396E+00

.3392185600

.522623E+00

.2619b5E+00

KUQTOSIS

.1160595002

.111697E.62

.656756£+01

.563536a.61

.591261E+61

.6622665+01

.376101E+01

.269666£+01

.120683E+02

.2962626o61

.332502E+01

.2591965.a1

.123:61E+62

.2616335401

.6566325o61

.1626962+32

.39673ss.61

.6761575+61

.1620162.62

.3136666+61

.206257E+JZ

065558h6501

.599920E001

.909522E001

.3103662‘01

.288389E901

.297920E+01

.3J737b5001
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